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“Dans la vie l’essentiel est de porter sur tout des jugements a priori. Il apparaît en

effet que les masses ont tort, et les individus toujours raison. Il faut se garder

d’en déduire des règles de onduite: elles ne doivent pas avoir besoin d’ être

formulées pour qu’on les suive. Il y a seulement deux choses: c’est l’amour,

de toutes les façons, avec des jolies filles, et la musique de la

Nouvelle-Orléans ou de Duke Ellington. Le reste devrait disparaître, car le

reste est laid, et les quelques pages de démonstration qui suivent tirent

toute leur force du fait que l’histoire est entièrement vraie, puisque je l’ai

imaginée d’un bout à l’autre.”

Boris Vian, L’écume des jours.
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Abstract

Our view of Globular Clusters has fundamentally changed in the last decade. A large body

of spectroscopic and photometric data have conclusively established that globulars are neither

coeval nor monometallic, reopening the issue of the formation of such stellar systems. The for-

mation of globular clusters is now schematized as a two-step process, during which the enriched

material from the more massive stars of a first generation gives birth, in the cluster innermost

regions, to a second generation of stars with the characteristic signature of fully CNO-processed

matter. However, there are still several points regarding this self-pollution scenario that remain

to be properly understood before we can claim a profound comprehension of the multiple pop-

ulation phenomenon

In this thesis I present my contribution to the study of multiple populations in Galactic glob-

ular clusters.

The first chapter gives a broad introduction to the topic, both from the observational and the

theoretical point of view. The chapter ends with a description of presently open questions and

the motivation for the various studies contained in this thesis.

In the second chapter we use the property of photometric indices including near ultraviolet

passbands to trace spread in light-element abundances. I show how accurate photometry based

on ultraviolet filters can be used as an efficient tool to trace the presence of multiple populations

in globular clusters, as it can be obtained in a modest amount of observational time and also

for distant clusters. To this end we use publicly available multi-band Sloan photometry for nine

Northern Galactic globular clusters. We detect multiple populations in seven out of nine clusters

and present radial distributions for the first-to-second generation number ratio for these seven

objects. Our work more than doubles the number of clusters for which such studies exist and in-

dicates that the younger generation stars are always more concentrated toward the cluster center

with respect to the first generation of stars.

The third chapter contains a spectroscopic and photometric study of main sequence and

subgiant branch stars in NGC 1851. This cluster belongs to the group of massive clusters, i.e.,

such asωCentauri and M 22, which display a spread in iron abundance in addition to the spread

in light element abundance found also in normal globular clusters. For this reason, they have

been suggested that they may be the relics of more massive primeval dwarf galaxies that were dis-

rupted by and merged with the Galaxy. We use Hubble space telescope and ground-based pho-

tometry to select two groups of faint- and bright-SGB stars from the visual and Strömgren color-

magnitude diagrams. Significant variations in the carbon and nitrogen abundances are present

among stars of each group, which indicates that each SGB hosts multiple sub-generations of

stars. Coupling our results with literature photometric data and abundance determinations from

high-resolution studies, we identify the fainter SGB with the red-RGB population, which also



should be richer on average in Ba and other s-process elements, as well as in Na and N, when

compared to brighter SGB and the blue-RGB. I discuss the implications of our findings for the

theoretical models on the formation and evolution of NGC 1851 in the last part of the chapter.

Similarly, in the fourth chapter, we use spectral synthesis to measure C and N abundances for

a large sample of stars along the red giant branch of the globular cluster M 2. We found evidence

of multiple populations also in this cluster. Our data allow us to investigate the mixing effects

on carbon surface abundance during red giant branch evolution as well. We detect from UV

photometry an additional, redder red giant branch sequence, amounting to a small fraction of

the total giant population. This substructure could be connected to the faint sub giant branch

component recently reported from space observations. Additionally, we identify two CH stars in

our V ,U´V diagram. These stars, which are both cluster members, fall on this redder sequence,

and exhibit both enhanced CH and CN bands. This evidence perfectly fits the suggestion that

stars located onto the red red giant branch should have a peculiar chemical nature.

The fifth chapter investigates the behavior of nitrogen and carbon abundance variations

at relatively high metallicities ([Fe/H] ě –0.5 dex). We consider unevolved stars in NGC 5927,

NGC 6352, and NGC 6388. These main sequence stars show intrinsic (anticorrelated) abun-

dance variations in both C and N that cannot be explained by mixing. More interesting, when

the signal-to-noise was good enough, we could detect separated groups of stars in the C-N di-

agram. First generation stars are chemically homogeneous while the second population has an

intrinsic spread that follows its own C-N anticorrelation, with a hint of bimodality. This result

raises the question of whether all clusters should have always bimodal (or multimodal) distribu-

tion with respect to the C and N abundances, or whether high metallicity clusters are unusual in

this regard.

In chapter sixth, I summarize the main results presented in previous chapters and the open

problems addressed in this dissertation. The last part of this chapter presents a list of future steps

that would be the natural outcome of my Thesis work.
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CHAPTER

1
The multiple population phenomenon
in globular cluster

Until few years ago, globular clusters (GCs) were thought to be stellar systems hosting a sim-

ple stellar population (SSP), i.e., an ensemble of stars with the same age and chemical compo-

sition (Renzini and Buzzoni, 1986). Omega Centauri, whose stars were known to span a signifi-

cant range in metallicity since long time (Cannon and Stobie, 1973; Freeman and Rodgers, 1975;

Dickens and Bell, 1976; Butler et al., 1978; Norris, 1980; Persson et al., 1980), was considered as

an outstanding exception, since it is also the most massive GC of the whole Galaxy (3ˆ 106 Md,

Pryor and Meylan, 1993).

Today the situation appears more complex: the considerable progress made in the domains

of high-resolution photometry and multi-object spectroscopy has produced precise data, that

raise many challenging issues for the understanding of the formation process of GCs, and of the

structure and evolution of their stars.

In particular, it is now well established that most (perhaps all) GCs have been sites of two

or even more star-formation episodes, producing a peculiar chemical self-enrichment pattern.

From a chemical perspective, GCs show a large variation in the abundances of light elements (Li,

C, N, O, F, Na, Mg, and Al; i.e., Kraft, 1994, Gratton et al., 2004, Carretta et al., 2010c, Martell and

Smith, 2009, Kayser et al., 2008, Pancino et al., 2010, Gratton et al., 2012a) both internally to a

given cluster, and between clusters. Conversely, the abundances of heavier α (Si, Ca, Ti), iron-

peak (Fe, Ni, Cu), and neutron-capture elements (Ba, La, Eu) do not, in general, show the same

star-to-star variation.

Interestingly enough, these chemical inhomogeneities are not confined only to Galactic GCs,

but signature of extreme chemical abundance anomalies has been found also in extragalactic

stellar cluster (e.g., M 31, Large Magellanic Cloud, and Fornax; see Colucci et al., 2009; Mucciarelli

et al., 2009; Johnson et al., 2006; Letarte et al., 2006).

Nowadays, the multiple population phenomenon cannot longer being considered a oddity,

as it emerges naturally within massive cluster formation. Therefore, a clear comprehension of

the mechanisms that lead to the formation and evolution of GCs and the relation existing be-

tween GCs and field stars is a basic requirement to understand how galaxies assembled.

1



2 The multiple population phenomenon in globular cluster

Figure 1.1: The cyanogen distribution for RGB stars in NGC 6752 (Norris et al., 1981), M 4 and
NGC 3201 (Norris, 1981) is represented in this plot from Smith and Norris (1982). The scale on
the ordinate is arbitrary.

1.1 Star-to-star abundance variations

1.1.1 Light element abundance variations: a historical overview

The first evidence of departure from chemical homogeneity among stars within individual

GCs came from studies of the more accessible, bright red giant branch (RGB) stars since forty

years ago (e. g., Osborn, 1971, Norris, 1981, Hesser et al., 1982, and Norris et al., 1984). The

first of the unusual chemical patterns to be revealed were the anticorrelated variations in the

CH and CN spectral features for stars at the same absolute magnitude on the RGB (i.e., at the

same evolutionary phase), with most of the GCs analyzed presenting a bimodal distribution of
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Figure 1.2: The nuclear reactions in the CNO cycle from Wiescher et al. (2010). This cycle pro-
cesses 1H into 4He through a series of nuclear reactions involving the different species of carbon,
nitrogen and oxygen.

CN strength (see Fig. 1.1). This was promptly recognized as a characteristic feature of stars in

clusters, because typical field or open cluster stars show weak CN bands and strong CH bands,

at odds with GC giants (Smith and Norris, 1984, Jacobson et al., 2008, Gratton et al., 2004, Martell

and Smith, 20091).

Because the CNO cycle, operating in equilibrium, tends to convert both carbon and oxygen

into nitrogen (see Fig. 1.2), CN-strong giants were promptly interpreted as having some amount

of CNO processed material in their atmospheres.

When a star evolves off the main sequence (MS), the envelope expands outward, and convec-

tion penetrates into a region that had already experienced partial CN processing, whose abun-

dance of light elements had therefore been changed by proton-capture, dredging up material

toward the stellar surface (see Fig. 1.3). As a result of the convective mixing, the outer atmo-

sphere will display the spectral signature of hydrogen fusion: the 12C/13C and C/N ratios are

lowered, and the surface abundances of lithium is strongly reduced (see Langer, 1985, Shetrone

et al., 1993, Palacios et al., 2006, Gratton et al., 2000). Therefore, the CNO cycle and mixing capa-

ble of bringing processed material to the stellar surface were immediately proposed as a viable

source to explain these chemical inhomogeneities. However, this mixing scenario was soon put

into trouble by the observational evidence. In fact, the first dredge-up (FDU) depends only on

mass and chemical composition of stars, and therefore cannot account (a) for the bimodal CN

band strength distribution observed in intermediate metallicity clusters and (b) the presence of

these chemical inhomogeneities in low metallicity stars, which convective envelopes will never

1Using moderate-resolution spectra of 561 field giants with typical halo metallicities, Martell et al. (2011) find that
3% of the sample shows the CN-CH band strength behavior typical of GC stars. They argue that these stars are genuine
second-generation GC stars that have been lost to the halo field.
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dig deep enough to come in contact the H-burning shell along the entire RGB evolution accord-

ing to stellar models (Gratton et al., 2004). Additionally, the origin of CN-strong stars cannot be

ascribed to mere surface pollution, because surface pollution on already-formed stars would re-

sult in abundance anomalies that are largely diminished after the FDU (Iben, 1965). The general

impression at that time was that mixing-mechanism should obviously take a rôle, but this was

not the entire story. They found that a clear anticorrelation between the O and Na abundances

among evolved RGB stars exists for all studied GCs and variations in Al and Mg (anticorrelated

with each other) were also discovered (see Fig. 1.5 and Fig. 1.6).

When higher-resolution spectra became available, it was found that stars depleted in car-

bon and enhanced in nitrogen were also depleted in oxygen and magnesium, and enhanced in

sodium and aluminum (e.g., correlation between CN strength and Na, Al found by Cottrell and

Da Costa, 1981, or anticorrelation between CN and O, coupled with correlation between CN and

Na, found by Sneden et al., 1992, see Fig. 1.4).

In the late ninety eighties, a collaboration between the Lick Observatory and McDonald Ob-

servatory (Texas) led by R. P. Kraft started a spectroscopic survey of GCs in a large metallicity

Figure 1.3: The composition profile for the C, N, and O isotopes as a function of the interior mass
for the 1 Md and Z=0.02 models from Karakas (2010a). The unit of the y-axis is the logarithm of
the number fraction, Y, where the mass fraction is given by X = Y A, and A is the atomic mass. By
definition, the mass fraction of all species sums such that Σ X = 1. The composition profile is a
snap-shot of the interior of the star at the end of core hydrogen exhaustion. The position of the
maximum inward penetration of the convective envelope during the first dredge-up is reported.
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Figure 1.4: Spectra of the NGC 6752 giants A3, A8, and A68 around the 5683Å and 5688Å Na lines.
The two CN-strong stars, A8 and A68, exhibit Na lines of comparable strength, much stronger
than the Na line observed in the CN-weak giant A3 (from Smith and Wirth, 1991).

range. This extensive work delivered abundances of light elements (O, Na, Mg, Al), α-, and Fe-

peak elements for stars typically within a magnitude from the RGB tip (a summary of some re-

sults of Lick-Texas group is shown in Fig. 1.5, taken from Ivans et al., 2001).

We refer to the reviews by Gratton et al. (2004) and Gratton et al. (2012a) for an exhaustive

summary of earlier Na-O anticorrelation studies undertaken by others groups in the same years.

The presence of Na-O and Mg-Al anticorrelations point towards the NeNa and MgAl chains (see

Fig. 1.7) that take place at much higher temperatures than the hydrogen-burning through CNO

cycle, which can not be reached in the MS or in RGB phases of GC stars. 23Na could be produced

at the expense of 22Na in the same regions where O begins to be depleted in the ON cycle. At T

ě 3ˆ107 K in regions of O depletion, 20Ne could produce 23Na, and at higher temperatures (T

ě 7ˆ107 K) 27Al could be processed by p-captures first on 25Mg and 26Mg, then on 24Mg (see

Denisenkov and Denisenkova, 1989, Langer et al., 1993, Salaris et al., 2002, Prantzos et al., 2007

and references therein).
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Figure 1.5: Na-O anticorrelations from Ivans et al. (2001) for clusters with intermediate metallic-
ity.

Significant spreads in C and N abundances, as well as their anticorrelations, were lately found

also among MS and turn-off (TO) stars (see Figures 1.8 and 1.9; e.g, Cannon et al., 1998, Harbeck

et al., 2003, Suntzeff and Smith, 1991, Cohen et al., 2002, Ramírez and Cohen, 2003, and Cohen

et al., 2005; among others).

From the high-resolution front, the Na-O anticorrelation was found in unevolved stars in

M 13 (Cohen and Meléndez, 2005), NGC 6397 and NGC 6752 (Carretta et al., 2005 and Gratton

et al., 2001), 47 Tuc (Carretta et al., 2004), and recently by D’Orazi et al. (2010), Lind et al. (2011)

and Monaco et al. (2011) on large samples of stars in 47 Tuc, NGC 6397, and M 4; where Na, O

and Li abundances were measured. The extension of the abundance anomalies to unevolved or

scarcely evolved stars provided compelling evidence that this pattern cannot be due to in situ

nuclear reactions but they were present in the material out of which the stars formed. In fact

low mass MS stars are not hot enough for the required set of nuclear reaction to occur within

their interiors. Moreover stellar models do not predict any physical mechanism able to bring

processed material from the core to the surface of these stars.

Indeed, these stars were born with the observed CNONa abundance patterns. An evolution-

ary component to the abundance variations is still demanded by the variation of C (Suntzeff and

Smith, 1991) and Li (Grundahl et al., 2002) with luminosity along the RGB sequence. Hence,

some degree of internal mixing is required in any case.

The actual sources of the anomalous chemical enrichment observed in clusters have not

been firmly identified yet. Intermediate-mass asymptotic giant branch (AGB) stars having un-
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dergone hot bottom burning (HBB; Dantona et al., 1983; Ventura et al., 2001), fast rotating mas-

sive stars (FRMS; Decressin et al., 2007b), massive interacting binaries (de Mink et al., 2009),

or novae (Smith and Kraft, 1996; Maccarone and Zurek, 2012) have been proposed as sources

of the pollution of the intra-cluster medium (ICM) at the origin of second-generation stars (see

Sects. 1.3 and 1.5 for a discussion).

Figure 1.6: Relative Al and Mg abundances in ω Cen and M 13 giants (from Kraft et al., 1997)

Figure 1.7: Reactions of the Ne-Na and Mg-Al chains. Unstable isotopes are denoted by dashed
circles.
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Figure 1.8: [C/A] vs [N/A] abundances for M 5 stars as derived from CH and CN band strengths
from Briley et al. (1992). Square markers are used for RGB stars, circles for sub giant branch
(SGB) stars, and filled/unfilled for CN-strong/CN-normal respectively. The typical observational
uncertainties are shown in the bottom-left corner.

Figure 1.9: The division of the 47 Tuc MS stars into CN-strong and CN-weak stars from Cannon
et al. (1998). The solid lines show the loci of synthetic spectra for two different C and N abun-
dances, essentially the trend of the indices with temperature. Dashed lines join pairs of models
with different abundances but the same temperature and gravity.
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1.1.2 Present spectroscopic surveys

Nowadays, the self-enrichment scenario is largely accepted by the community (D’Ercole et al.,

2008; D’Antona and Ventura, 2007; Ventura et al., 2001; Ventura and D’Antona, 2008a,b; De-

cressin et al., 2007b, 2008, 2010; Conroy and Spergel, 2011; Valcarce and Catelan, 2011), and

observational efforts point toward the collection of a large amount of data, to shed light on the

phenomenology of the multi populations in GCs through the study of possible trends of light

element abundance with cluster parameters. Such kind of studies are allowed by the multiplex

capabilities of the new generation of instruments (e.g. FLAMES for high resolution studies and

FORS multi-object observations for low resolution works). Moreover, these large scale studies al-

low for the comparison of the cluster abundance behaviors within homogeneous observations,

data reduction and analysis. The recent large scale studies by Kayser et al. (2008) and Pancino

et al. (2010) measured CN and CH band strengths in stars from the MS to the RGB in a total of

14 Southern GCs (partly in common). Kayser et al. (2008) demonstrated that CN variations ex-

ist among unevolved stars in the clusters NGC 288, NGC 362, M 22 and M 55, which were not

previously been observed to contain MS abundance variations.

Figure 1.10: Anticorrelation plots for the CH and CN band strengths from Pancino et al. (2010).
Each panel shows the measurements for stars (gray dots) in each cluster. CH strong and weak
stars are separated by the horizontal dotted line, and their centroids are marked as large white
dots, while CN strong and weak stars are separated by the vertical dotted line and their centroids
are marked as large black dots. The S/N ratio in the CN band region is indicated in the lower left
corners.
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Figure 1.11: Na-O anticorrelations observed in 19 Galactic GCs from from Carretta et al. (2009c).

Pancino et al. (2010) detected a clear anticorrelation (and even a bimodality) between the

CN and CH band strengths for MS stars in the metal-rich clusters in their sample (Pal 12, 47 Tuc,

NGC 5927, NGC 6352), while they could not detect any clear anticorrelation or bimodality for the

metal-poor clusters (but for M 15, see Fig. 1.10). Interestingly, they found that the ratio of CN-

strong and CN-weak stars rC N correlates with the cluster age, concentration c, total luminosity

MV , total present-day mass in units of log(M/Md), orbital inclination, and orbital period P; al-

beit the statistical significance of the observed correlations is weak. These relationships fairly

well agree with previous findings (e.g., correlation between rC N and MV ; Kayser et al., 2008,

Smith and Mateo, 1990, Carretta et al., 2010c), except for the correlation between rC N and el-

lipticity (ε = 1 – (b/a); initially found by Norris, 1987, Smith and Mateo, 1990, and Smith, 2002 but

not confirmed by Kayser et al., 2008).

In the framework of the self -enrichment scenario, this might mean that the relative number

of the two stellar populations (or the efficiency of formation of the second generation stars) is

only marginally influenced by the cluster total mass and orbital parameters, while the correlation

with age might suggest that older clusters are more efficient in converting gas into the second

generation of stars.

From the high resolution spectroscopy front, the study of Carretta et al. (2009c) reported ho-

mogeneous oxygen and sodium abundances for a sample of about 2000 RGB stars in 19 Southern

GCs (see Fig. 1.11). The spectroscopic evidence is that all GCs surveyed so far (with the possible
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exception of Terzan 7, Pal 12 and IC 4499) show the Na-O anticorrelation, although the slope and

shape of the Na-O relationship and the lowest O abundance detected changes from cluster to

cluster (Fig. 1.11). There are clusters with a well extended Na-O anticorrelation and clusters for

which both Na and O abundances span very short ranges. In a few cases, Na-O distribution turns

out to be bimodal (as for M 4, Marino et al., 2008). Moreover, Carretta et al. (2010c) found that

there is a good correlation – that broadly agrees with past findings (Kayser et al., 2008; Pancino

et al., 2010)– between the extension of the Na-O anticorrelation and the present-day total mass

of the GCs (using the absolute magnitude MV as a proxy for the mass). When placing abundance

analysis results in a broader context, they suggest that the presence of a Na-O anticorrelation

can be regarded as the operative definition of a bona fide GCs. On the other hand, the analysis of

UVES spectra for»200 stars by Carretta et al. (2009c) has shown that the Mg-Al anticorrelation is

not present in all GCs. Both of these indications suggest that the typical polluter masses change

from cluster to cluster: this variation is apparently driven by a combination of cluster luminosity

and metallicity.

1.2 Photometric evidence of multiple populations

In recent years, thanks to the large capabilities of the Hubble space telescope (HST), the ad-

vent of 8-meter-class telescopes, and the massive use of U -based filter observations, accurate

photometry has revealed unexpectedly complex CMDs in many GCs. Indeed, star-to-star varia-

tions in light- and alpha-element abundances, age, and metallicity can determine multimodal or

broad sequences in the CMD observed within some galactic or extragalactic GCs (e.g., Pancino

et al., 2000a; Bedin et al., 2004; Sollima et al., 2007; Piotto et al., 2007; Marino et al., 2008; Milone

et al., 2009a; Lardo et al., 2011).

Omega Centauri is by far the most famous example and the first object for which photomet-

ric evidence of multiple populations was found. Its CMD (see Fig. 1.12) display multiple RGBs,

multiple SGBs (Lee et al., 1999; Pancino et al., 2000a), and an extended horizontal branch (HB;

Villanova et al., 2007; Cassisi et al., 2009; D’Antona et al., 2010; Bellini et al., 2010). As shown by

Bedin et al. (2004), the MS is double with a third, less-populated MS probably associated with

the most metal-rich population.

The blue MS is about 0.3 dex more metal-rich than the red one. This finding implies that

the blue MS is highly enhanced in He (see Sect. 1.4.5). The complexity of the observational sce-

nario indicates that ω Cen is so peculiar that it may not be a genuine GC: it has often been sug-

gested (e.g., Bekki and Freeman, 2003 and references therein) that ω Cen may be the remnant of

a tidally disrupted dwarf galaxy, once similar to the Sagittarius dwarf (with its central GC M54;

e.g., Monaco et al., 2005; Bellazzini et al., 2008; Piotto, 2009; Carretta et al., 2010b). In this sec-

tion we review the most interesting cases illustrative of various phenomenology of the multiple

populations along the different evolutionary sequences in GCs.
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Figure 1.12: ω Cen CMD resulting from the 10 ˆ 10 arcmin2 mosaic of ACS images centered on
the cluster center from Bellini et al. (2010). On the right-hand panel Hess diagrams are plotted
to highlight the four main SGBs and the triple MS (following the notation from Villanova et al.,
2007).

1.2.1 Main sequence

As showed by several recent studies, multimodal MSs could be quite common among GCs.

In addition to the spectacular case of NGC 2808, which shows three distinct MSs2 (Piotto et al.,

2007, see Fig. 1.13), double and triple MSs have been observed in several GCs, including 47 Tuc,

NGC 6752, and NGC 6397 (Anderson et al., 2009, Milone et al., 2012c,b, 2010) and have been as-

sociated to stellar generations with a different content of helium and light-elements (e. g. Norris,

2004; D’Antona et al., 2005; Piotto et al., 2005; Carretta et al., 2006; Bragaglia et al., 2010b; see also

Sect. 1.4.5).

1.2.2 Sub giant branch

Apart from the case of extreme case of ω Cen (e.g., (Ferraro et al., 2004; Bedin et al., 2004;

Sollima et al., 2005; Villanova et al., 2007; Pancino et al., 2011a,b), impressive evidence of multiple

populations at the level of the SGB comes from the very precise photometry of an increasing

number of lower-mass clusters: NGC 1851 (Milone et al., 2008; Zoccali et al., 2009; Han et al.,

2009a; Lardo et al., 2012a; Piotto et al., 2012), NGC 6388 (Moretti et al., 2009; Piotto et al., 2012),

2Milone et al. (2012a) used infrared, space-based images to study the multiple MSs in this cluster. They found the
three MSs detected by Piotto et al. (2007) from visual-band photometry to merge together at the level of the MS bend; at
fainter magnitudes, the MS again splits into two components, with one component accounting only for the 35% of the
entire population. This less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and
oxygen, and it can be associated with the middle and the blue MS of the optical CMD.
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47 Tuc (Anderson et al., 2009; Milone et al., 2012c; Piotto et al., 2012), M 22 (Piotto, 2009; Marino

et al., 2012b; Piotto et al., 2012), M 54 (Piotto, 2009), NGC 362 (Piotto et al., 2012), NGC 5286

(Piotto et al., 2012), NGC 6715 (Piotto et al., 2012), and M 2 (Piotto et al., 2012).

NGC 1851 and M 22 are the best studied of all these. We refer the reader to Chapter 3 for a

complete review of the large literature on NGC 1851, here we focus only on M 22. As mentioned

before, multiple stellar groups in M 22 are clearly manifest by a split in its SGB CMD domain and

two distinct RGB sequences (see Fig. 1 of Marino et al., 2011). As in the case of NGC 1851, the

split SGB appears to be related to chemical differences observed among its giant stars. Marino

et al. (2009) and Marino et al. (2011) showed that this cluster hosts two metallicity groups, with

mean [Fe/H] abundance which differs of about „0.15 dex. These two metallicity groups are

characterized also by a different content of s-process elements: 〈[Y, Zr, Ba, La, Nd/Fe] 〉= –0.01

dex (σ= 0.06) in the lower metallicity group and +0.35 dex (σ = 0.06) in the high metallicity group;

while the template r -process element Eu exhibits a constant abundance. Stellar models fail in

reproducing the size of the SGB photometric split if only a metallicity spread between the two

populations is assumed. Marino et al. (2009) suggest that the origin of the split could be more

complex and also involves a difference in age and/or variations in the total CNO abundance, as

Figure 1.13: Proper-motion-selected, differential-reddening-corrected CMD of MS stars in
NGC 2808 from Piotto et al. (2007). In the inset, the observed CMD is fitted with four 12.5 Gyr
isochrones, with different He content.
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proposed by Cassisi et al. (2008) and Ventura et al. (2009) for NGC 1851. Evidence supporting

this scenario was found among its RGB stars (Marino et al., 2011). In a recent work, Marino

et al. (2012b) demonstrates that the faint SGB is populated by s-rich (metal-rich) stars, and the

bright SGB by s-poor (metal-poor) stars. This SGBs-RGBs connection is further confirmed by

inspecting the U , (U ´V ), in close analogy to what we discovered for NGC 1851 (Lardo et al.,

2012a, see Chapter 3). As discussed above, Marino et al. (2011) found that s-rich giants are also

enhanced in the total CNO with respect to the s-poor ones. The SGBs-RGBs connection allow

the authors to extend this fundamental result to the SGB stars.

1.2.3 Red giant branch

To date, multiple or broad RGBs have been observed in nearly all the GCs that have been

observed with good signal-to-noise in the appropriate photometric bands (e. g. Milone et al.,

2012c; Yong et al., 2008a; Lee et al., 2009a, see Chapter 2).

As an example, Yong et al. (2008a) used Strömgren photometry from Grundahl and Andersen

Figure 1.14: The V ,cy CMDs for a sample of clusters from Yong et al. (2008a) (photometry by
Grundahl et al., 1999). All clusters exhibit a large range in cy at all evolutionary stages.
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Figure 1.15: CMDs for NGC 1851 from Han et al. (2009a). Open circles denote RR Lyrae stars, and
the photometric errors are shown.

(1999) to show remarkable spreads in cy
3, at any magnitude along the RGB of NGC 288, NGC 362,

M 5, M 3, M 13, NGC 6752, M 15, M 92, and NGC 6397 (Fig.1.14). Carretta et al. (2011a) and

Alonso-García et al. (2012) also considered results from Strömgren photometry, extending the

work by Grundahl and Andersen (1999) and Yong et al. (2008a). Kravtsov et al. (2010a,b) used U

band photometry to identify multiple populations within the clusters NGC 3201 and NGC 1261.

Similarly, Roh et al. (2011) found that the RGB of NGC 288 is clearly split into two in the hk =
[(C a´b)´ (b´ y)] index, while the split is not shown in the b´ y color. Marino et al. (2008)

were able to demonstrate for M 4 that a bimodal Na-O distribution, correlated with a bimodal

distribution in CN strength, was also clearly associated with a bimodal spread in the color of RGB

stars in the U vs. (U-B) CMD, not seen with other color indices.

The spread in U-B color among RGB stars of NGC 3201 was shown to correlate with Na abun-

dance by Carretta et al. (2010c).

Finally, Han et al. (2009b) showed that the RGB of NGC 1851, which is narrow and well defined

in optical CMDs not including U photometry, is clearly split into two parallel branches in the U

vs. (U´I ) color (Fig. 1.15). Han et al. (2009b) suggest that the splitting is caused by a combination

3cy = c1´ (b´ y), where c1 = (u´ v)´ (v´b).
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of effects due to variations in the abundances of not only of C,N,O but also of heavier elements

(Ca, Si, Ti, and Fe) and helium.

1.2.4 Effects of different chemical compositions on photometry

There are several intriguing potential connections between the photometric multiplicity and

the peculiar chemical pattern because is not surprising that the abundance variations should

have large effects on photometry.

On the other hand, there is also a rich literature concerning the analysis of the effects on

stellar evolution induced by a change of the heavy element abundances in the mixture (Salaris

et al., 2006, Dotter et al., 2007, Pietrinferni et al., 2009, VandenBerg et al., 2012; to name the more

recent works). Recently Sbordone et al. (2011) calculated synthetic spectra for typical chemical

element mixtures (i.e., a standardα-enhanced distribution, and distributions displaying CN and

O-Na anticorrelations) found in the various subpopulations hosted by individual GCs. From the

theoretical spectra they determined bolometric corrections for standard Johnson-Cousins and

Strömgren filters and predicted colors. They found that CNO abundance variations affect mainly

the portion of the spectra short of about 4000Å (see Fig. 1.16) owing to the changes in molecular

bands (such as NH, CN, and OH in the fainter MS stars).

As a result color and magnitude changes are largest in the blue filters (encompassing the

wavelength range 3000 Å ď λ ď 4000 Å ), independently on the use of broad or intermediate

bandpasses. Indeed, broadening or splits have been observed in the majority of cases when color

indices including a near ultraviolet band (such as Johnson U or Strömgren u) are considered

(Han et al., 2009a, Kravtsov et al., 2010a, Roh et al., 2011, Lardo et al., 2011, Marino et al., 2008,

Carretta et al., 2009c, and Milone et al., 2010, Milone et al., 2012a, among others; see Fig. 1.14

and Fig. 1.15). We will discuss this in more details in the following Chapters.

We summarize the results presented by Sbordone et al. (2011) in Fig. 1.17. In general, when

using BV I CMD, a splitting of sequences along the MS up to the TO can only be achieved by vary-

ing the helium content Y. A variation of the C+N+O-abundance (mixture CNONa1 in Fig. 1.17)

leads to a split of the SGB (as in the case of NGC 1851; see Cassisi et al., 2008). When consid-

ering U BV and uy diagrams, CNONa abundances as well as Y differences may lead to multiple

sequences from the MS to the RGB, where the effect tends to be larger and may reach 0.2–0.3

mag (see Fig. 1.17). We must note that this multiplicity is independent of the sum of C+N+O, as

the individual element variations are decisive. For v y diagrams a splitting of the MS up to the TO

can be achieved only by a variation in Y and a split of the SGB is the result of a change in C+N+O

(as for the BV I colors). Additionally, a split along the RGB may result both from helium and

from C+N+O variations; at variance with the BV I case. Finally, for the cy V diagrams, all parts

of a CMD show the influence of both element anticorrelations and of helium variations, and the

strongest separation can be seen (see bottom left panel of Fig. 1.17).
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Figure 1.16: From top to bottom: flux distribution for the RGB (Te f f = 4476 K, log g = 1.2), SGB
(Te f f = 6490 K, log g = 4.22), and MS (Te f f = 4621 K, log g = 4.47) model stars from Sbordone
et al. (2011). The α-enhanced mixture employed in the BaSTI database (Pietrinferni et al., 2006),
which corresponds to a typical first-generation star is plotted in black, while the mixture rep-
resentative of a second-generation star is shown in red, and displays – compared to the black
mixture, – enhancements of N and Na by 1.8 dex and 0.8 dex by mass, respectively, together with
depletions of C and O by 0.6 dex and 0.8 dex, respectively. Both mixtures have [Fe/H]=–1.62 and
Y= 0.246. Superimposed to the stellar spectra the transmission curves for the Johnson-Cousins
U ,B ,V , and I filters (thin, gray lines; left to right) and for the Strömgren uvby filters (grey-shaded
regions). A number of molecular bands, which vary significantly between the two mixtures, are
labelled.
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Figure 1.17: Several CMDs in Johnson-Cousins and Strömgren filters for three different metal
mixtures are plotted (age 12 Gyr, [Fe/H] = –1.62 and Y = 0.246); from Sbordone et al. (2011).
The reference mixture (solid blue line) refers to the α-enhanced mixture (first generation stars).
The first mixture representative of second-generation stars is labelled CNONa1 (magenta dot-
dashed line), and displays – compared to the reference α-enhanced mixture –enhancements of
N and Na by 1.8 dex and 0.8 dex by mass, respectively, together with depletions of C and O by
0.6 dex and 0.8 dex, respectively. A CNONa1 mixture with Y=0.4 is also shown as black dotted
line. An alternative composition for second-generation stars is labelled CNONa2 (dashed red
line); it is the same as the CNONa1 mixture but for the enhancement of N that in this case is
equal to 1.44 dex by mass. The important difference between CNONa1 and CNONa2 second-
generation mixtures is that in the first case, at fixed Fe abundance, the C+N+O mass fraction is
enhanced by a factor of 2 compared to the reference composition, whereas the CNONa2 mixture
has the same CNO content (in both number and mass fractions) as the reference composition,
within 0.5%. The CNONa pattern considered for the second generation stars is characterized by
extreme values for the anticorrelation observed in Galactic GCs, the range of colors spanned by
the isochrones should give a rough idea – considering also that the extension of the abundance
anticorrelations varies from cluster to cluster (e.g. Carretta et al., 2010c )– of the maximum color
spread to be expected in the CMD of a generic Galactic GC.
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1.3 The nature of the polluters

The most natural explanation for chemical inhomogeneities in GCs is the self-pollution sce-

nario, where a cluster experiences a relatively extended star formation period, with the younger

population born from an ICM polluted by the ejecta from first generation stars that have pro-

cessed material through hot H-burning. The older generation stars share the same chemical

compositions of Population II field stars of similar metallicity, while the second generation is rel-

atively enhanced in He, N, Na, and Al and depleted in C, O, Ne, and Mg. It may be useful to recall

that the material that formed first generation stars is not pristine, but it was previously enriched

by (at last a few) SNe, in most cases SNII, since we do not know any GC with [Fe/H] ď –2.5 dex

and most of them have [α/Fe]ě +0.2 dex. This sets up the initial conditions for the subsequent

self-enrichment and may have a strong impact on the observable effects of this process4.

Critical for the understanding of the multiple population phenomenon in GCs is to identify

the progenitor stars responsible for the excess of some element (like N, Na and Al) in the second

generation of stars. Given the constraints imposed by the new observational evidence, valuable

candidate polluters must:

(a) be able to modify only the light elements without contributing heavy elements like

iron. The observed intrinsic spread in [Fe/H] is generally < 0.06 dex (e.g, Carretta et al.,

2009b). Spreads in iron abundances have been found so far only in the most massive GCs:

ω Cen (e.g., Pancino et al., 2000a, Sollima et al., 2007, Marino et al., 2012a, Johnson and

Pilachowski, 2010), M 54 (Bellazzini et al., 2008; Carretta et al., 2010b), M 22 (Marino et al.,

2009, 2011; Da Costa and Marino, 2011), Terzan 5 (Ferraro et al., 2009; Origlia et al., 2011);

NGC 1851 (Yong and Grundahl, 2008, Carretta et al., 2010d, Gratton et al., 2012c; but see

also Villanova et al., 2010), and perhaps NGC 5024 (Saviane et al., 2012).

(b) own a mechanism to bring the processed material from the core to the stellar surface,

(c) have a way to release this material to the ICM with a relatively low velocity to avoid the

escaping from the cluster potential well.

1.3.1 Intermediate-mass AGB stars

In AGB stars more massive than about 3 – 4 Md, the hydrogen burning shell with a tem-

perature of 6 –10 ˆ 107 K can extend into the convective envelope (HBB): in this way the en-

velope composition is directly affected by the various H-burning cycles (CNO, NeNa, MgAl; see

Fig. 1.18). According to the AGB scenario, the CNONa anomalies arise within intermediate mass

stars5, because they experienced HBB process that even in presence of the TDU prevents the

formation of carbon stars (Renzini and Voli, 1981). Moreover, » 3 – 8 Md stars experience the

4For example it is very different if AGB stars process and pollute a gas with initial [O/Fe]= +0.4 dex or [O/Fe]= –0.2
dex.

5In particular, intermediate-mass (4-11 Md) AGB stars undergoing HBB (Cottrell and Da Costa, 1981; D’Antona and
Ventura, 2007; Ventura et al., 2001; D’Antona and Caloi, 2004; Karakas et al., 2006), and/or super-AGB. Super-AGB stars
are objects with initial masses in the range of 9 – 11 Md that undergo off-center carbon ignition in partially degenerate
conditions, end end up as O – Ne white dwarfs.
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second dredge-up (SDU) shortly before reaching the AGB, leading to a sizable He enrichment

in the whole stellar envelope (Sect. 1.4.5). The mass lost via the slow winds of AGB stars could

then be retained by the cluster from which CN-strong, Na-rich stars formed (Thoul et al., 2002;

D’Ercole et al., 2008; Renzini, 2008). Star formation is eventually halted by SNe which sweep the

remaining gas from the cluster, carrying with it the products of explosive nucleosynthesis. In this

scenario, the mass of stars that first become SNe cannot significantly exceed the mass of the most

massive stars that undergo thermal pulses. Moreover, the required fine-tuning of the dredge-up

and HBB casts some doubt on the robustness of scenario. Additionally, AGB models cannot

fully match the observed abundance trends (Denissenkov and VandenBerg, 2003; Fenner et al.,

2004; Campbell et al., 2004)6. In particular, AGB stars fail in reproducing the notable O depletion

observed in some GC stars ([O/Fe] < –0.5 dex; Ventura and D’Antona, 2009). Furthermore, AGB

6The abundance trends are also dependent on the number of TDU episodes and therefore on the adopted convec-
tion efficiency (Renzini and Voli, 1981), mass loss (Ventura and D’Antona, 2005), and nuclear reaction rates (Lugaro et al.,
2004; Karakas et al., 2006).

Figure 1.18: Overview of the nucleosynthesis occurring in 3 Md Z= 0.02 AGB stars. The figure
displays a schematic representation of two successive pulses. The long-dashed lines locate the
maximum energy production in the H-burning (top) and He-burning (bottom) layers. Short-
dashed lines locate the extensions of the H-burning shell, defined by the region where the energy
production exceeds 1 erg g´1 sec´1. Dredge-ups following each pulse (identified by the dashed
envelope border) are also displayed (from Mowlavi, 1998).
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stars are expected to produce a substantial increase of the CNO sum as they enhance Na and

Al and deplete Mg and O (e.g., Decressin et al., 2009). This is in stark contrast to observational

requirements: whenever C, N, O abundances are available simultaneously, their sum is constant

within the observational errors with few exceptions (see Yong et al., 2009 and Marino et al., 2012b

for the case of NGC 1851 and M 22; respectively). The constant CNO sum, generally observed

in GCs, is explained with more massive AGB progenitors for which the nucleosynthesis is not

greatly affected by the third dredge-up, responsible for increasing the sum CNO and the slow

neutron capture elements (Ventura and D’Antona, 2008a; Renzini, 2008; see also Sect. 1.4.1.1).

1.3.2 Fast rotating massive stars

Massive stars, more precisely, Wolf-Rayet stars, have been initially proposed by Brown and

Wallerstein (1993) and Wallerstein et al. (1987) as possible sources of processed material from

which second generation stars formed. More recently Prantzos and Charbonnel (2006) proposed

a qualitative scenario for the role of massive stars, suggesting that their winds provide the metal-

enriched material for the next stellar generation, and that the subsequent supernova explosions

provide the trigger for star formation; the SN ejecta escape the GC environment along the cavities

opened previously by the stellar winds.

This scenario was later developed and enlarged by the study of Decressin et al. (2007b). The

key point of this scenario is the fast rotation of massive stars. Fast rotation is needed to remove

material from the stellar surface and inject it with a low velocity in the interstellar medium. Fur-

thermore, it triggers internal mixing which brings H-burning products (and hence matter with

correct abundance signatures) from the convective core to the stellar surface. Massive stars have

short lifetimes and can release H-synthesized material while low-mass stars are still forming in

the nascent globular cluster. They can, through the wind and SN shocks or through the ioniza-

tion front they produce, trigger star formation in their vicinity, being thus able to be at the same

time the cause of new star formation and the provider of at least part of the material from which

the stars form.

In Fig. 1.19 we report a simple sketch of the evolution of a FRMS from Decressin et al. (2010).

In early stages, rotationally-induced mixing leads to strong internal mixing of H-burning prod-

ucts synthesized in the convective core. Providing initial rotation is high enough, the stars reach

the break-up on the MS evolution and form an equatorial gas disk around them, similar to that

of Be stars (e.g. Townsend et al., 2004). Unlike the normal winds of massive stars, which have

velocities ranging from hundreds to a few thousand km s´1, the equatorial disk loses mass with

velocities lower than 50 km s´1, that can then easily be retained by the potential wells of GCs.

In this scenario, FRMS ejecta are mixed with pristine gas to form second generation stars near

their massive progenitors. However, the latest version of the FRMS scenario predicts a gathering

of polluted gas in the generic centre of the GC (Decressin et al., 2010). Even though this scenario

may help us to explain the O-Na anticorrelation observed in all GCs, the multiple MSs observed

in some GCs (see Sect. 1.4.5) cannot be explained without invoking discrete helium abundances,
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Figure 1.19: Schematic view of the evolution of FRMS from Decressin et al. (2010). The colors
reflect the chemical composition of the various stellar regions and of the disc. Top: during the
MS, a slow outflowing equatorial disc forms and dominates matter ejection with respect to radia-
tive winds. Middle: at the beginning of central He-burning, the composition of the disc material
spans the range in [O/Na] observed today in low-mass cluster stars. The star has already lost
an important fraction of its initial mass. Bottom: due to heavy mass loss, the star moves away
from critical velocity and does not supply its disc anymore; radiatively-driven fast wind takes
over before the products of He-burning reach the stellar surface.
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which is in conflict with the smooth spread in Y predicted by this scenario, as also pointed out

by Renzini (2008).

Finally, we note that both scenarios are problematic, with issues relating to the initial mass

function and the predicted nucleosynthesis yields (i. e., Fenner et al., 2004, Decressin et al.,

2007b; see also Sect. 1.5).

1.3.3 Other candidate polluters

Although most of the active debate is centered on the two above mentioned main candidate

polluters, also other channels have been proposed. While it may be observationally determined

that one particular class of polluters could be dominant, it is highly probable that several mech-

anisms are active (Valcarce and Catelan, 2011). de Mink et al. (2009) proposed massive binaries

as a source for the internal pollution of globular clusters. The majority of massive stars are ex-

pected to be members of interacting binary systems. These return most of the envelope of their

primary star to the interstellar medium during non conservative mass transfer.

Maccarone and Zurek (2012) showed that the production of a substantial amount of helium

from novae triggered by accretion of ICM by isolated white dwarfs is a necessary consequence

of having a large amount of gas available in a globular cluster’s core well after the white dwarfs

have started forming.

1.4 Clues from less studied elements

Accurate measurements of specific element abundances could provide new insight in the

multiple population phenomenon.

1.4.1 n-capture elements

For a few clusters, also dispersion in neutron-capture (n-capture) elements (Z > 30) has been

found. Nuclear fusion of elements heavier than iron is endothermic. As a result, most heavy

nuclei are formed by addition of neutrons onto Fe-peak elements, which act as seeds. These

nuclei can then β decay if they are unstable, transforming neutrons into protons. This process is

defined as slow (rapid) if the timescale for neutron capture is slower (faster) than the radioactive

decay timescale, for unstable nuclei. Generally we refer to these as the s-processes or the r -

processes.

1.4.1.1 s-process elements

The s-processes are the main channel for the production of elements such as Sr, Zr, Ba and

La in the Solar System. At least two distinct components are needed to fit the solar abundance

distribution of the s-process nuclei, there is the weak s-process component, which is confined

to the atomic number 29 < Z < 40, and the main s-process component, which is responsible for

the production of the heavier nuclei with 37 < Z < 84. These two components are associated

with distinct stellar sites of s-element production: the weak component is mainly synthesized
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in massive stars (M > 13 Md), while the main component is produced during the AGB phase of

low-mass stars (» 1.5 – 4 Md). There is a third component to the s-processes called the strong

component which produces the heaviest of the s-process elements (e.g. Pb). It is postulated to

occur in low mass, low metallicity AGB stars (Travaglio et al., 2004).

Massive stars are hence too hot to have the required efficiency to produce heavier s-process

elements (hs ; e.g., Ba, Nd, La)7. In this manner massive stars can pollute the surrounding ma-

terial at most with only the lightest of these s-process elements. However, the yields of rapidly

rotating massive stars from Frischknecht et al. (2012) showed that massive, rapidly rotating stars

can produce significant amount of elements up to Ba over a wide range of metallicities. This

strongly processed material can then be released to the ICM through binary interactions (de

Mink et al., 2012)8.

Only in a few clusters, interestingly those where a spread in iron is also found, variations in

s-process elements, positively correlated with the iron abundance are detected. Several authors

(e.g., Norris and Da Costa, 1995; Smith et al., 2000; Johnson and Pilachowski, 2010; Marino et al.,

2012a) demonstrated that, as [Fe/H] increases inωCen, the s-process dominates the enrichment

of the neutron-capture elements.

Marino et al. (2009, 2011, 2012b) showed that M 22 hosts two metallicity star groups sepa-

rated by a difference in the iron content of » 0.15 dex, each with its own Na-O anticorrelation.

These two metallicity groups are characterized principally by different relative contents of s-

process elements.

Similarly to M 22, also NGC 1851 shows s-process element variations correlate with Al and

Na abundances (Yong and Grundahl, 2008) and also a variable CNO abundance sum, positively

correlated with Na, Al, Zr, and La variations, is found among four bright RGB stars (Yong et al.,

2009) (see Fig. 1.20 and Chapter 3).

Indeed, a relation between the O-Na and s-process effects might be expected, since thermally

pulsing AGB stars are the main source of s-process elements (Busso et al., 1999), and such stars,

albeit of somewhat higher mass, are invoked to explain the O-Na anticorrelation (Ventura and

D’Antona, 2009).

Moreover, in the case of M 22 and NGC 1851, also an overabundance in the total CNO sum is

observed for the same stars (Marino et al., 2012b, Yong et al., 2009 but see Villanova et al., 2010

for the constancy of this sum for NGC 1851 stars), strongly supporting the AGB scenario.

However, there might be a significant timescale problem, since only the most massive AGBs

(4-8 Md) and the super-AGBs (Pumo et al., 2008; Ventura et al., 2009) contribute to the enrich-

ment/depletion in light elements, on a timescale between 40 and 160 Myr (Schaller et al., 1992).

On the other hand, the timescales involved in low-mass producers of s-process elements are of

7On the other hand, the light s-process element (ls ; e.g., Sr, Y, Zr) abundances can be attributed to either the main
s-process from AGB stars or the weak s-process (Iliadis, 2007).

8A possible observational test to disentangle the contribution of AGB and spin stars to the s-process enhancement
would be to look for the scatter in the [Pb/Fe] ratio in GC stars. Low-metallicity AGB mass-transfer models (Karakas,
2010b) have quite a robust prediction for the minimum expected [Pb/Eu] ratios, but spin star models predict a large
scatter in the [Pb/Eu] ratios. Therefore, if Pb could also be measured for stars with known abundances of Sr, Y, Zr, Ba and
La, it would be possible to distinguish between the two scenarios.
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Figure 1.20: Abundances of Na, Al, Zr, and La vs. the abundance sum C+N+O. A representative
error bar and a linear least-squares fit to the data (including formal slope and error) are shown
(from Yong et al., 2009. Data for M 4 (Smith et al., 2005) and NGC 6712 (Yong et al., 2008b) are
included for comparison.

340 Myr up to almost 2 Gyr. This implies a time delay of several 108 yr to be added in the phase

of pollution from AGBs, which should instead run smoothly9.

The high values of [Ba, La/Eu] at larger [Fe/H] in M 22, NGC 1851, andωCen contrast with the

situation in the majority of other globular clusters, where the ratio typically reveals a dominant

r -process contribution. Gratton et al. (2004) listed a mean [Ba, La/Eu] value of –0.23˘ 0.04 (σ =

0.21) dex for 28 clusters with [Fe/H] values between –2.4 and –0.7 dex. The one clear exception

is M4, for which Ivans et al. (1999) give [Ba/Eu] = +0.25 dex, indicative of a more substantive s-

process contribution to the gas from which the M4 stars formed. We note, however, that there is

no evidence for any intrinsic spread in the barium abundances in M4 (Ivans et al., 1999; Marino

et al., 2008).

1.4.1.2 r -process elements

In r -processes a very large number of neutrons are captured per second and element synthe-

sis occurs far from stability in neutron-rich and very radioactive regions (see Sneden and Cowan,

9In this case, it is more likely that gas flows into and out of the star-forming systems are required as suggested by
Bekki and Norris (2006).
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2003, Cowan and Thielemann, 2004, and Arnould, 2008). Here typical r -process products are el-

ement such as Rh, Ag, Eu and Pt; although the clearest signature of stellar r -process richness is

an anomalously large Eu abundance10. Despite more than two decades of intense study of field

stars (see the review by Sneden et al., 2008), the specific astrophysical sites of r -process nucle-

osynthesis are unknown, though association with core-collapse supernovae (SNe) is likely based

on the short timescales (»1 s), high neutron densities (Nn »1025 neutrons cm´3) required, and

appearance of r -process material in extremely metal-poor stars ([Fe/H] <–3 dex)11. The vast ma-

jority of Galactic globular clusters have [Eu/Fe] = +0.40 dex with relatively little cluster-to-cluster

scatter (e.g., Armosky et al., 1994, James et al., 2004), a value consistent with halo field stars of

comparable metallicity (Gratton et al., 2004). Generally, a lack of any variation of [Eu/Fe] with

[Fe/H] is observed, that indicates that the r -process nucleosynthesis must be tightly coupled to

that of iron. However, a notable exception exists: in the very metal poor GC M 15 a significant

range in [Eu/Fe] abundances of the order of » 0.5 dex is seen at constant [Fe/H] (Sneden et al.,

1997). However, the ratios of La and Eu show there are no (or insignificant) contributions from

s-processes. Since chemical composition of stars in GCs are believed not to be affected by explo-

sive events after their formation, there exists clear inhomogeneities in abundance of n-capture

elements in the gases from which M 15 stars formed, while the lighter elements like Fe are essen-

tially uniform.

1.4.2 Litium

Li abundances can provide constraints both on the nature of of polluters and the dilution

between processed and pristine material (see also Sect. 1.8 for a discussion).

In all the scenarios proposed so far, the composition of stars is reproduced only by assuming

dilution of the polluting material with pristine gas (see, e.g. D’Ercole et al., 2011). In the case

of AGB stars, the current nucleosynthesis models indicate that the O and Na abundances are

always correlated (e.g. Karakas and Lattanzio, 2007, Ventura and D’Antona, 2009, Siess, 2010).

Thus, second generation stars forming from AGB ejecta would exhibit the same correlation, in

evident contrast with what is observed. Also in the FRMS scenario some degree of dilution with

pristine gas is needed to account for the presence of lithium in second generation stars because

this fragile element is absent in the massive star ejecta (Decressin et al., 2007b; Lind et al., 2011).

As a matter of fact, some Li production is possible for AGB stars through the Cameron and

Fowler (1971) mechanism at the beginning of the HBB (Ventura et al., 2002), so possibly the pre-

diction of the two models differ.

Also for other scenarios lithium can be a sensitive discriminant: the polluting matter is Li-free

also if it comes from runway collision between massive stars (Sills and Glebbeek, 2010), non-

conservative evolution of massive binaries (de Mink et al., 2009), mass loss from first generation

10In the Solar System,» 97% of Eu was synthetised via the r -processes (Burris et al., 2000, and references therein).
11Other sites have also been proposed including colliding neutron stars (Argast et al., 2004) or black hole/neutron

star mergers (Surman et al., 2008).
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stars by winds (Gratton and Carretta, 2010a), and also if it is made up by the matter in non con-

servative evolution of interacting close binaries (Vanbeveren et al., 2012). In other words, the

presence of very Li-rich stars among GC populations or the lack of correlation between Li and O

(or a slope different from the unity), with the second generation stars also showing a rather high

Li content, would be strongly consistent with the AGBs.

Some sets of observational data are already available. Decressin et al. (2007a) showed that

the anticorrelation Li-Na in the data of NGC 6752 (Pasquini et al., 2005) is fully compatible with a

simple dilution model, but Shen et al. (2010) presented new data Li-O, probably not compatible

with dilution with Li-free matter. In other clusters, like NGC 6397 (Lind et al., 2011), M 4 (D’Orazi

and Marino, 2010; Mucciarelli et al., 2011; Monaco et al., 2012), 47 Tuc (D’Orazi et al., 2010) the

first generation and second generation stars have very similar Li content, and Li-depleted stars

may be attributed to convective dilution. Generally, the similar Li abundances between the two

subpopulations in these clusters seems in better agreement with the AGB scenario.

1.4.3 Fluorine

The F abundance, almost overlooked so far, may be regarded as an unique tool, because the

F production is highly dependent on stellar mass.

Theoretical models of AGB stars (Jorissen et al., 1992) foresee fluorine production due to the

activation of the chain of reactions 18O(p,α)15N(α,p)19F in the He intershell during the thermal

pulses associated with He burning. After the quenching of each thermal pulse the envelope may

sink in mass deep in the He intershell and carry 19F to the convective envelope via the TDU. The

peak of F production in AGB stars is reached for stars of initial masses » 2 Md (Lugaro et al.,

2004), i.e., stars that are also responsible for C+N+O and s-process variation. For stars with mass

higher than roughly Á 5 Md (depending on the metallicity), fluorine is destroyed both via α-

captures in the He intershell, and via proton captures at the base of the convective envelope due

to HBB.

As a result, we expect F abundances to be correlated with O (and Mg) and anticorrelated with

those of Na (and Al). Indeed this was observationally confirmed by Smith et al. (2005) in M 4,

by Yong et al. (2008b) in NGC 6712 and M 22 (D’Orazi et al., 2012)12. For M 22, Alves-Brito et al.

(2012) did not find a significant correlation between F and other light elements. They attributed

the absence of such correlations to the small sample size (7 stars) and/or the more complex

chemical enrichment history of M 22. At a variance with the latter authors, D’Orazi et al. (2012)

found large variations in the F abundances, which are correlated with O and anticorrelated with

Na in the same cluster. Furthermore, the F-O-Na (anti) correlations can be marked separately

within both s-process rich and s-process poor stars, with the s-process-rich group being, on

average, also F-rich with respect to the s-poor one. The correlation between [F/H] and [La/H]

suggests that the polluters responsible for the s-process production must account for a simulta-

neous F production.

12Cunha et al. (2003) presented F abundances for two giants in ω Cen. However, they provide a F measurement only
for one star, giving an upper limit for the other.
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By comparing these values with the model predictions by Lugaro et al. (2012) they found that

AGB stars with masses of» 4-5 Md can well reproduce the observed chemical pattern.

For the sake of completeness, we recall that other sites have also been suggested for F pro-

duction: the ν-process in core-collapse SNe (Woosley et al., 1990), and core He burning in Wolf-

Rayet stars (Meynet and Arnould, 2000; Palacios et al., 2005). However, low-mass AGB stars are

the only site observationally confirmed (Jorissen et al., 1992; Abia et al., 2010).

1.4.4 Magnesium-potassium anticorrelation

Mucciarelli et al. (2012) discovered the presence of two distinct, well-separated populations

of stars in NGC 2419, differing in their magnesium and potassium contents, with the Mg-poor

population significantly enriched in potassium by a factor »10 (see also Cohen et al., 2011; Co-

hen and Kirby, 2012). The [Mg/Fe] distribution is also bimodal, with about 40% percent of the

stars having sub-solar [Mg/Fe] abundance ratio (Mucciarelli et al., 2012).

NGC 2419 is characterized by an HB hosting a blue, faint population, clearly detached from

the main component (Ripepi et al., 2007), which can be explained only by invoking a stellar com-

ponent greatly enriched in helium (di Criscienzo et al., 2011, see also Sect. 1.4.5). Interestingly,

the fraction of Mg-poor stars measured by Mucciarelli et al. (2012) is similar to that suggested by

di Criscienzo et al. (2011) for the extreme population stars with initial helium abundance of Y»

+0.4. According to the model by D’Ercole et al. (2008) (see also Sect. 1.5.1), these He-rich stars

should be born directly from the ejecta of super-AGB and from the most massive AGB stars, with

no dilution. Indeed, Ventura et al. (2012) compared the yields with observations and found that

the low metallicity of the models allows a very strong HBB, especially for masses around 6 Md,

at the edge between the AGB and the super-AGB regime. Therefore, these ejecta are predicted to

produce the most extreme contamination, with a strong depletion of oxygen, a significant reduc-

tion of the initial magnesium, and only a modest increase in sodium. The presence of a K-rich

population of Mg-poor stars (Mucciarelli et al., 2012) is also a signature of extreme nucleosyn-

thesis13. Magnesium depletion cannot be found in the ejecta of massive stars (Decressin et al.,

2007b) or of massive binaries. On the other hand, super-AGB models with non-extreme mass

loss rates (Siess, 2010) or massive AGB models with efficient convection (see Ventura et al., 2011)

can predict it. If the Mg-poor stars will be found also extremely depleted in O and with normal

Na, the Mg-K anticorrelation could indicate that AGB (and super-AGB) stars were at work.

1.4.5 Helium

Since He is the main product of H-burning, it is obvious that, whatever the polluters produc-

ing CN-strong and Na-rich stars are, they must provide matter that is enriched in He.

Recent photometric and spectroscopic studies have confirmed that such He variations exist

(Bragaglia et al., 2010b,a; King et al., 2012; Norris, 2004; Piotto et al., 2005; Gratton et al., 2010;

13Potassium can be produced by proton capture on Argon nuclei if the relevant cross section is higher (by a factor of
100) than the standard rate (Ventura et al., 2012).
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D’Antona et al., 2005; Dupree et al., 2011; Pasquini et al., 2011; among others), and that they

might be indeed large (up to Y» 0.4) at least for the most extreme cases.

D’Antona et al. (2002) explained that variations in the abundance of He, which are expected

to be correlated with the variations in Na and O and other elements, might result in large dif-

ferences in the TO masses of stars of similar age: this is because He-rich stars evolve faster than

He-poor ones and thus, at a given age, He-rich stars at TO are less massive. Therefore, similar

mass losses along the RGB would lead to HB stars of very different masses, and hence colors.

Similarly, Lee et al. (2005) suggested that the presence of a super-He rich population could ac-

count for the extreme HB stars observed in some GCs, which are hotter than normal HB stars.

The presence of a large enhancement in He in ω Cen can be inferred from the presence of

a splitting MS in a high-precision HST- based CMD for the cluster (Norris, 2004; Bedin et al.,

2004; Bellini et al., 2010; King et al., 2012). In this CMD the bluer sequence is less numerous

and of higher iron abundance than the redder sequence (Piotto et al., 2005). The observations

are best interpreted as indicating that the stars in the bluer sequence are enhanced in helium

by ∆Y» 0.10-0.15 relative to those in the redder sequence (Piotto et al., 2005; see also Sect 1.2).

Very recently Dupree et al. (2011) have found direct evidence for an enhancement in He inωCen

RGB stars. A perhaps more remarkable result is that multiple MS are also observed in other

luminous, massive GCs without any significant heavy element abundance spread. The prime

example is NGC 2808, whose CMD shows a triple main sequence (Piotto et al., 2007). Given the

lack of heavy-element abundance variation in the cluster (e.g., Carretta et al., 2009c), the main

sequence structure is best interpreted as indicating distinct He abundance groups, which are

then likely also related to the multi-modal structure of the horizontal branch in the cluster CMD

(D’Antona et al., 2005). Recently, a detailed photometric and spectroscopic study of RGB bump

stars derived He abundance differences spanning a range of ∆Y from 0.11 to 0.19 among the

three sub-populations identified in NGC 2808 (Bragaglia et al., 2010a). A similar difference, ∆Y

» 0.15, was also proposed by D’Antona and Caloi (2008) to account for its HB morphology. This

large He enhancement was actually found by Pasquini et al. (2011), who used used the Heλ10830

line to estimate a helium value Y ě0.39. Furthermore, Bragaglia et al. (2010b) found that, from

X-shooter@VLT spectra of a two stars belonging to the red MS and to the blue one in NGC 2808,

the first has the composition of a first generation star, while the latter show the typical chemical

pattern of a second generation star (e. g., depleted in C and Mg, and enhanced in Na, N and Al).

Other clusters for which very deep and precise CMDs reveal the existence of split or broad

CMDs (see Sect. 1.2.1) include 47 Tuc (Anderson et al., 2009), NGC 6752 (Milone et al., 2010), and

NGC 6397 (Milone et al., 2012b). Recently, di Criscienzo et al. (2011) assembled accurate pho-

tometry from different telescopes and found that the observed F435W-F814W color spread along

the RGB of NGC 2419 was significantly larger than what expected from observational errors. The

observed RGB color distribution can be interpreted, together with the peculiar HB cluster mor-

phology, by assuming that»30% of the cluster stars belong to a second generation that is heavily

enriched in He (Y» 0.42; di Criscienzo et al., 2011).
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The He production occurs in the MS for both kinds of polluters. For FRMS the p-capture

elements are also produced in the same phase, while their production is decoupled from that

of He for AGB stars. In » 3-8 Md stars, He is brought to the convective envelope by the sec-

ond dredge-up (Ventura et al., 2002; Renzini, 2008), while the light elements are produced in

p-capture reactions in hot bottom burning (see Sect. 1.3.1) during the AGB phase. While FRMS

are able to produce the extremely large He abundances (Y > 0.35) probably required to explain

the blue MS of ω Cen and NGC 2808 (Norris, 2004; Piotto et al., 2005; D’Antona et al., 2005) it

is difficult to produce Y > 0.35 with AGB stars, although values up to Y » 0.38 can be possibly

produced by super-AGB stars (Ventura and D’Antona, 2011).

1.5 Formation scenarios for multiple populations

A quantitative investigation of the early stages of cluster formation and enrichment is neces-

sary in order to go from a scenario to a model, which must rely as far as possible on computed

models. From this point of view, very few are the models available in the literature, in spite of the

large number of works recently published on this subject in the last years.

Essentially, any theoretical effort to understand the origin of these puzzling systems has to

face three main issues:

(a) understand how gas from first generation of stars remains bound to the system for sev-

eral 108 yrs despite the shallow potential well;

(b) identify the stars that process the material at T > 107 K (see previous section);

(c) explain why the observed number of first and second generation stars is approximately

equal today.

1.5.1 D’Ercole et al. (2008) scenario

In the N-body hydrodynamical simulations performed by D’Ercole et al. (2008) and the first

generation is 10-20 times more massive than at present. After the last core-collapse SN explo-

sion, this polluted material collects in a cooling flow at the center of the cluster, where the second

generation forms. The cooling flow is due to the low-velocity (»10-20 km s´1) stellar winds and

planetary nebulae of super-AGB and massive AGB stars (Dantona et al., 1983; Thoul et al., 2002;

Ventura and D’Antona, 2009; Pumo et al., 2008), and meets the physical conditions for a second

epoch of star formation. Using N-body simulations, D’Ercole et al. (2008) studied the dynamical

evolution of both populations, showing that if second generation stars are formed in the center

of the GC, most of the stars that are lost belong to the first generation, which can result in a GC

dominated by second generation stars. For their scenario, hydrodynamical simulations show

that the star formation rate increases since 10 Myr (the time of the last core-collapse SN) until

40 Myr, when Type Ia SNe explosions end the star formation in the cluster. Moreover, they show

that the three populations with different helium content, necessary to explain the presence of a

triple main sequence in NGC 2808 (D’Antona et al., 2005; Piotto et al., 2007) can be reproduced
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if the most helium rich population forms from the pure ejecta of super-AGB stars (Pumo et al.,

2008), collecting in the cluster core devoid of pristine gas after the end of the SN II epoch. Af-

terwards, pristine gas is re-accreted and mixes with the massive AGB ejecta, giving origin to the

Intermediate (following the classification by Carretta et al., 2009c,b) population having a helium

content intermediate between that of the AGB and of the pristine gas.

However, D’Ercole et al. (2008) do not considered the effect of core-collapse SNe belonging

to the younger population, which must stop the formation of the second generation stars after a

few Myr. Valcarce and Catelan (2011) noted that every first generation star that does not explode

as a core-collapse SN is a possible progenitor of a type Ia SN. The more massive the progenitor,

the closest the remaining white dwarf will be to the Chandrasekhar mass (e.g., Salaris et al., 2009,

Kalirai et al., 2009). Therefore, after the core-collapse SNe period, there must also be a period

of type Ia SNe, which eventually halt the formation of stars with gas ejected by more massive

intermediate-mass stars.

1.5.2 Bekki (2011) scenario

Bekki (2011) investigated whether and how AGB star ejecta from a fist generation of stars can

be converted into new stars within originally more massive star clusters (MSCs). In this scenario

MSC can be formed from high-mass, high-density giant molecular clouds (GMCs) in their host

galactic building blocks embedded in dark matter haloes at high redshifts. Their 3D hydrody-

namical simulations showed that nuclear MSC are found to retain much more effectively the

AGB ejecta and convert more efficiently the gas into new stars (with efficiency in forming second

generation stars of the order of »0.3-0.9), only if their mass exceeds a threshold of »106 Md,

owing to the much deeper gravitational potential of their hosts. Additionally, capture and accre-

tion of cold molecular gas (or small GMCs) by forming MSCs themselves can be mechanisms for

mixing (i.e., dilution) of AGB ejecta with cold pristine gas. Bekki (2011) suggested that both the

mass and the locations within their hosts can determine whether abundance spread can be seen

only in light elements or even in heavy ones. Old, first generation stars are eventually lost, owing

to tidal stripping by their host galactic building blocks.

1.5.3 Conroy and Spergel (2011) scenario

A particular model for the formation of two generations of stars within GCs was also pro-

posed by Conroy and Spergel (2011), considering in detail the relative importance of (a) ram

pressure, (b) Bondi accretion, and (c) the sweeping up of the ISM via geometric cross section, as

a function of the GC total mass, relative velocity between GC and ambient ISM and density of

the ambient medium. In this scenario, the cluster has an initial mass similar to the current one.

The first generation stars are born in an ICM previously enriched in metals (i.e., characterized by

the present-day GC metallicity), while after some Myr the remaining gas is completely expelled

by core-collapse SN explosions. The GC starts then to accrete ejecta from intermediate-mass

AGB stars for several»108 years. During this enrichment phase, the GC is also accreting pristine

material from the ambient interstellar medium, which mixes with the AGB ejecta to form second
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generation stars. The star formation process is then halted by second generation core-collapse

SN and first generation type Ia SN explosions. Therefore an interesting feature of this model is

that it predicts the presence or the absence of multiple populations within GCs as a function

of the GC mass and its formation environment. To support their model, these authors used

constraints from intermediate-age clusters in the LMC. They started from the recent analysis by

Milone et al. (2009a), who analyzed – among other properties – internal age spreads for several

clusters in the LMC, finding that only 5 GC out of 16 in their sample were consistent with being

coeval. Conroy and Spergel (2011) found that there appears to be a critical mass below which

the multiple stellar population phenomenon is suppressed: all clusters in the LMC with masses

< 104Md show no evidence for multiple populations, consistent with their predictions for the

mass at which ram pressure stripping is capable of clearing gas from clusters in the LMC at the

present epoch. As for other formation scenarios proposed so far, also this model suffers of some

drawbacks. Even though the accretion of material from the ISM is plausible, it is unlikely that this

accreted gas has a metallicity similar to that of the first generation. Moreover, if core-collapse SN

explosions clean the ICM, they must also clean the surrounding ISM or/and increase its metal-

licity, implying that second generation stars will be formed with different metal abundances. As

discussed by D’Ercole et al. (2011), Conroy and Spergel (2011) scenario can be easily ruled out

for those few clusters with very high helium enrichment (Y» 0.38, see Sect. 1.4.5), because such

a large amount of helium cannot be released by a number of first generation stars as small as the

present one (Renzini, 2008).

1.5.4 Carretta et al. (2010c) scenario

A qualitative scenario aimed to reproduce the trends of observable quantities with globular

parameters was also proposed by Carretta et al. (2010c). In this scenario, GCs formed within

a more massive precursor which was afterward disrupted by tidal interaction with the galaxy.

First, a precursor population of stars is formed when the unborn GC (with typical size of »100

pc, consisting of gas and dark matter) interacts strongly with other structures. Core-collapse SNe

of this population enrich the remaining gas, and trigger the formation of the first generation of

stars. The gas ejected by FRMS or super-AGB stars from this older population give rise to a gas in

the center of the cluster, where the second generation of stars is born. Finally, second generation

core-collapse SNe clean the remaining gas, thus ending star formation. During this time, the

structure has lost all its dark matter content, almost all the precursor stars, and a large fraction

of the primordial population. Therefore, according to this scenario, a large number of metal-

poor, primordial stars must be present in the field. As stated by Valcarce and Catelan (2011),

there are only 174 known stars with [Fe/H] ď –3 dex, and 659 stars with [Fe/H] ď –2 dex (SAGA

database, Suda et al., 2008). Alternatively, the initial mass function (IMF) must be top-heavy at

low metallicities (Skillman, 2008). In addition, the same authors noted that if the gas ejected by

the precursor core-collapse SNe is retained in the initial structure, the ejecta of the primordial

core-collapse SNe must also be retained, which would increase the metallicity of the second
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generation stars unless the initial structure had already lost a large fraction of its mass in a short

period of time.

1.5.5 Valcarce and Catelan (2011) scenario

Valcarce and Catelan (2011) proposed a toy model aimed to explain the different morpholo-

gies of GC CMDs, starting from the point that, while star-to-star abundance variations are now

believed to be a universal characteristic of GC, not all of them display evidence of multiple pop-

ulations in their CMDs. The main parameter at work would be the initial mass of the precursor

(PS), that accounts for the different chemical pattern displayed by i) extreme PSs (like ω Cen,

M 54, M 22 and Terzan 5), that were able to retain the gas ejected by massive stars, including the

ejecta of core-collapse SNe (see Fig. 1.21); ii) intermediate-mass PSs can retain at least a frac-

tion of the fast winds of massive stars, but none of the core-collapse SNe ejecta (NGC 2808,

Figure 1.21: Schematic representation of the Valcarce and Catelan (2011) scenario for massive
PSs. Stars of the first, second, third, and fourth generations (FG, SG, TG,and 4G; respectively) are
represented as red, blue, yellow, and orange circles, respectively. Panels represent: a) formation
of FG stars; b) gas accumulation, from a mix of winds of FG massive stars plus pristine gas; c) first
core-collapse SN explosions, which trigger the formation of SG stars; d) gas accumulation, from
a mix of FG SN ejecta, winds of FG and SG massive stars, and gas remaining from the formation
of SG stars; e) formation of TG stars, when SN explosions end; f) gas accumulation, from winds
of super-AGB and AGB stars from all generations; g) formation of 4G stars; h) present-day O-Na
anticorrelation.
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Figure 1.22: As in Fig. 1.21, but for intermediate-mass PSs (Valcarce and Catelan, 2011). Here the
first, second, and third generation (FG, SG, and TG; respectively) of stars are represented in red,
blue, and green, respectively. Panels represent: a) formation of FG stars; b) gas accumulation
from winds of FG massive stars and pristine gas; c) first core-collapse SN explosions, which trig-
ger the formation of SG stars and expel the gas that has not yet arrived at the core; d) FG and SG
SN explosions; e) gas accumulation from winds of super-AGB and AGB stars of the FG and SG; f)
formation of TG stars; g) present-day O-Na anticorrelation.

see Fig. 1.22); iii) low-mass PSs can only retain the slow winds of intermediate-mass stars (see

Fig. 1.23).

To avoid the classical argument against the possibility of using the ejecta of massive stars be-

cause of the high velocity of their winds (from hundreds to some thousands of km s´1), in their

scenario they postulate that: i) GCs were (much) more massive in the past, hence had escape

velocities of some hundreds of km s´1, and a large percentage of first generation stars and the

pristine gas were expelled by core-collapse SNe and/or SNe type Ia, and the interaction with their

host galaxy; and ii) after the formation of the first generation of stars, the remaining pristine gas

begins to fall to the center of the PS, interacting with massive stellar winds that try to escape the

PS. An important aspect the Valcarce and Catelan (2011) scenario is that it can naturally explain

the discrete nature of first generation and (especially) second generation stellar populations, as

photometrically observed in GCs. Moreover, this scenario can also explain why the O-Na anti-

correlation does not follow the same pattern for all GCs, where extreme high-Na/low-O stars are

second generation stars formed with material processed by massive stars and a fraction of the

pristine gas (massive and intermediate-mass PSs), while normal high-Na/low-O ones are second

generation stars formed with material ejected by super-AGB or AGB stars (low-mass PSs). Sub-

sequent generations are formed with a mixture of material from pre-existing generations, where

the last stars to form are more chemically similar to first generation stars.

1.5.6 Decressin et al. (2010) scenario

Recently, N-body models whose main players are FRMS were presented (Decressin et al.,

2010); taking into account the effect of primordial gas expulsion. In their model, they started

from the hypothesis that primordial mass segregation holds, so that the massive stars are located



1.6. Larsen et al. (2012) argument 35

Figure 1.23: As in Fig. 1.21, but for low-mass PSs. Stars of the first and second (FG and SG; re-
spectively) generations are represented as red and orange, respectively. Sizes indicate the differ-
ent star masses, where large, medium, and small circles represent massive, intermediate-mass,
and low-mass stars, respectively. Arrows show the gas flux, with the arrow color indicating the
chemical composition following the same color scheme as for the stars of the different genera-
tions, and the arrow size being roughly proportional to the gas speed. Colored areas represent
zones of gas accumulation. In each panel, an approximate time for these events is given. Panels
represent: a) formation of FG stars; b) pristine gas expulsion due to winds of FG massive stars; c)
core-collapse SN ejecta are not retained in low-mass PSs; d) gas accumulation from winds of FG
super-AGB and AGB stars; e) formation of SG stars; f) SG core-collapse SNe period; g) present-
day O-Na anticorrelation.

at their center. Since they expect that the formation of the second generation of low-mass stars

happens locally around individual massive stars (Decressin et al., 2007b), the second generation

of stars will also be initially more centrally concentrated than the first generation. As a result, (i)

the loss of stars in the outer cluster parts will first reduce the number of bound first generation

stars and (ii) the dynamical spread of the initially more concentrated second generation stars

will stop this differential loss when the two populations are dynamically mixed. From their N-

body models, presented in Decressin et al. (2008), they found that second generations stars can

account for 25% of the low-mass stars present in the clusters. Compared to the observed ratios

(50 to 80% in 19 globular clusters, e.g., Carretta et al., 2009b) the internal dynamical evolution

and the dissolution due to the tidal forces of the host Galaxy are not efficient enough. An addi-

tional mechanism is thus needed to expel the first generation stars more effectively. Decressin

et al. (2010) postulated that initial gas expulsion by SNe, operating a few million years after clus-

ter formation at the latest, ensures a strong lowering of the potential well of the cluster so that

the outer parts of the cluster can become unbound, accounting for the observed number ratio

between the second to first generation stars.

1.6 Larsen et al. (2012) argument

Recently, Larsen et al. (2012) discussed the GC system in the dSph Fornax, in the context

of the self-enrichment scenario. Detailed abundances suggest that Fornax GCs share the same
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Figure 1.24: Metallicity distributions for field stars and globular clusters in the Fornax dSph from
Larsen et al. (2012). The filled histogram shows the raw distribution of field star metallicities
from Battaglia et al. (2006), while the outlined histogram is corrected for radial variations in the
coverage (Larsen et al., 2012). The hashed histogram represents the GCs with weights scaled by
their luminosities and exaggerated by a factor of 6 (note that Fornax 2 and Fornax 5 fall in the
same bin).

abundance anomalies observed in Galactic GCs (Letarte et al., 2006). Four out of five clusters

in Fornax are very metal-poor with [Fe/H] <–2 dex, the remaining cluster having [Fe/H] = –1.4

dex. This evidence is in clear contrast with the field star metallicity distribution which shows a

broad peak around [Fe/H]» –1.0 dex, with only few percent of stars having [Fe/H] <–2 dex (see

Fig. 1.24).

Given that, they found a very high GC specific frequency (SN » 400) when considering only

stars and clusters with [Fe/H] <–2 dex. Larsen et al. (2012) estimated that a large fraction (1/5

– 1/4) of the most metal-poor stars ( [Fe/H] <–2 dex) in Fornax belong to the four metal-poor

GCs14. Therefore, Fornax GCs could at most have been a factor of 4-5 more massive in the

past, and this is especially true for Fornax 3, the most massive cluster, whose very low metal-

licity places it even out in the tail of the field metallicity distribution.

The extreme ratio of metal-poor GC versus field stars in Fornax seriously challenges the self-

enrichment scenario postulated for Galactic GCs, in which large fraction of first generation (up

to 90-95%) stars were supposedly lost in the early stages of cluster life (D’Ercole et al., 2008; De-

cressin et al., 2010; Gratton et al., 2012a).

14For comparison with the Milky Way GC system, which has a combined mass of » 2.8 ˆ 107Md (Kruijssen and
Portegies Zwart, 2009), or about 2% of the mass of the stellar halo if we assume for the halo a mass of„109Md.
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1.7 Mass budget problem

One of the main challenges for all the models proposed is to provide the large amount of

ejecta needed to create a second population that is (at least) larger than the first population. The

population of low-mass stars (0.1–0.8 Md), which can still be observed today, represents 38% of

the stellar mass initially present in the cluster assuming a standard Kroupa (2001) IMF between

0.1–120 Md.

The ejecta of AGB stars with initial masses between 4 and 9 Md represent up to 8.9% of the

initial stellar mass (assuming an initial-final mass relation by Ciotti, 1991). For spin stars this

fraction is 3.4%, if one assumes that every massive star is single and born with a rotational veloc-

ity high enough to reach break-up rotation (using models by Decressin et al., 2007b). Obviously,

there are not enough of these ejecta to create a second generation which is equally numerous as

the first generation.

Let us consider that in a present-day GC, with a mass of 5 ˆ105Md, the ratio between first

and second generation stars is 1:1. By assuming a reasonable value of 30% (note that typical val-

ues for AGB mass loss areď 10%) for the star formation efficiency, it turns out that the generation

of younger stars must have formed from» 8 ˆ105Md of gas (see Martell, 2011). As a result, for

a standard initial mass function (IMF), the ejecta produced by first-generation stars fall short by

large factors compared to the actual mass of the second generation, even if a 100% efficiency in

forming stars is postulated. Several solutions have been proposed to this mass budget problem:

(a) top-heavy first generation mass function (Decressin et al., 2007b),

(b) a second generation mass function truncated above 0.8 Md (e.g., D’Ercole et al., 2008),

(c) a fist generation with an initial mass 10 to 20 times its present mass (e.g., D’Ercole et al.,

2010),

(d) infall of pristine gas (e.g., Carretta et al., 2010c; Conroy and Spergel, 2011).

1.8 Open issues

Throughout this Chapter, I tried to summarize the recent progress in the study of multiple

population phenomenon. The current scenarios for GCs formation now include several popu-

lations of stars, that we may divide into a primordial, first generation and a second generation,

although the second generation likely consists of several distinct sub-populations. Evidence for

the presence of these different populations comes both from their chemical composition, in par-

ticular the abundances of the light elements involved in proton-capture processes (Sect. 1.1), as

well as from the splitting of sequences in the CMDs (Sect 1.2). Nevertheless, it is clear, from this

work and others, that we do not yet have a complete understanding of the multiple populations

issue.

Here, I try to highlight a number of the largest remaining problems.
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‹ The nature of polluters While it has been conclusively established that the chemical anti-

correlations are due to the fact that a fraction of stars in GCs formed from matter that has

been polluted with the yields of a previous stellar generation, the debate about the kind of

stars responsible for this pollution is still open (Sect. 1.3).

None of the current models for both AGB and FRMS are able to reproduce the exact pat-

tern of abundances observed (Carretta et al., 2009c), and some fine tuning of the most

relevant parameters (nuclear cross sections, efficiency of convection, etc.) is required (see

e.g., Ventura and D’Antona, 2011 and Karakas, 2010a).

Identifying the stars responsible for the enrichment of the younger generation is needed to

globally set the time scale of the whole phenomenon: the Na and O abundance variations

allow us to resolve age differences of a few 108 yrs (in the case of AGB pollution) and as

low as some 106 yrs (for FRMS). Hence, in the FRMS scenario there is a very narrow time

gap between the end of the slow wind phase by most massive stars (about 6 Myr) and the

explosion of the bulk of core-collapse supernovae (about 10 Myr after the star formation

burst) when compared with the expected length of the star formation episodes. On the

other hand, the age gap is often so short that AGBs do not have sufficient time to start

polluting the new generation. Clearly more theoretical work and additional observations

are required (see D’Orazi et al., 2012; Marino et al., 2012b; Karakas et al., 2006; Lugaro

et al., 2004; Decressin et al., 2007b; Ventura and D’Antona, 2008a, 2011; D’Ercole et al.,

2008, 2010; Carretta et al., 2010c; Gratton et al., 2012a, and references therein).

Insight may be reached by observing young massive clusters (see the review by Portegies

Zwart et al., 2010) as proxy of early evolutionary phases in the formation of stellar clusters.

A interesting starting point could be the detailed study of stellar systems that could become

globular clusters in a few Gyr, such as the two young massive Galactic clusters RSGC1 (Bica

et al., 2003) and RSGC2 (Stephenson, 1990). As mentioned above, we expect to resolve age

differences of a few 108 yrs in the case of AGB and as low as some 106 yr for FRMS: if spreads

in Na, O abundances are detected, only FRMSs can have enriched them, given their young

ages (12˘ 2 and 17˘ 3 Myr, respectively, Davies et al., 2007, 2008).

‹ The need of dilution and the nature of diluting material. The dilution of polluting gas

with unprocessed material is necessary to reconcile the observation with theory, whatever

the polluters are (Prantzos and Charbonnel, 2006; D’Ercole et al., 2011; Conroy and Spergel,

2011). Required for the FRMS scenario, the dilution is a mandatory ingredient for the AGB

scenario, since the nucleosynthesis of AGB models actually predicts that Na and O corre-

late, at odds with all observed chemical patterns in globular clusters (see Sect. 1.4.2 for a

complete discussion). Several mechanisms, neither of which devoid of drawbacks, have

been proposed to gather the pristine matter required for dilution: gas left from early star

formation, Bondi accretion and gas sweeping from the proto-cluster orbiting a gas-rich

ancestral galaxy (Conroy and Spergel, 2011), self pollution by wind of first generation stars

less massive than polluters (Gratton and Carretta, 2010b), and material collapsing back
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from a torus left behind by a bi-conic, collimated gas sweeping generated by supernovae

in the proto-cluster (D’Ercole et al., 2008).

‹ Fraction of first-to-second generation stars. In the framework of the self-enrichment sce-

nario, the ratio between first and second generation stars becomes a fundamental con-

straint to model the chemical evolution of a GC. Analysis of horizontal branch morpholo-

gies of several clusters also led to the first suggestion that the second stellar generation

could account for a high fraction – from 30% to 100%– of the total number of stars (D’Antona

and Caloi, 2008). The Carretta et al. (2009c,b) survey has shown evidence of multiple pop-

ulations in all the clusters observed, and in all cases SG stars account for a significant frac-

tion (50 – 80%) of the cluster mass. From their low resolution study, Pancino et al. (2010)

found that the fraction of CN-strong (second-generation) stars was » 30-50%, distinctly

lower than the 70% reported in Carretta et al. (2009c). This discrepancy is curious and fu-

ture studies will need to measure the C-N and O-Na variations simultaneously in order to

address the mismatch in frequency of second-generation stars found in low- versus high-

resolution spectroscopic studies (see also Chapters 5 and 6).

‹ Globular clusters-Milky Way halo connection. One of the main question is whether a

part of the galactic field stars were formed in clusters and are now a main component of

the halo. Since the composition of the second generation stars requires that they formed

from the ejecta of only a fraction of the first generation stars, it may be concluded that most

of their original population has been lost (see the mass budget problem in Sect. 1.7). In

this light is even more interesting to determine the number of first-to-second generation

stars (see also Chapter 6). According to a conservative estimate presented by Gratton et al.

(2012a), the original proto-globular clusters should then have included > 50% of the halo

mass. There is then a strong argument suggesting that the primordial stars of the current

globular cluster were responsible for a large fraction, possibly the majority of the current

field halo stars, although a contribution by dSph’s, mainly to the outer halo, is certainly

present (Helmi, 2008). Furthermore, if we consider that the total number of globular clus-

ters per unit halo mass does not depend strongly on the magnitude or Hubble type of the

host galaxy (Bekki et al., 2008) we can conclude that the massive star-formation episodes

producing globular clusters played a very important role in the formation of stars in galax-

ies, and might have substantially contributed to the re-ionisation of the universe at z ě 6

(Schaerer and Charbonnel, 2011).

However, the extreme ratio of metal-poor GC versus field stars in the Fornax dSph is dif-

ficult to reconcile with scenarios for self-enrichment and early evolution of GCs in which

a large fraction (90%Ð95%) of the first-generation stars have been lost. It also suggests

that the GCs may not have formed as part of a larger population of now disrupted clusters

with an initial power-law mass distribution (see Sect. 1.6 for details on the Larsen et al.

argument).
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‹ Discreteness vs continuity. The distinctly separated MSs observed for the more massive

GCs (see Sect. 1.2) put serious constraints on dilution and polluters. The clear separation

implies that within each sequence the matter is homogeneous within each group, both in

He and in Fe. Generally, first and second generation stars are distributed smoothly in the

Na-O anticorrelation (but see Marino et al., 2008 for a separation between the two stellar

generations). This may indicate that the measurement errors on the abundances are not

sufficiently small for this kind of analysis. On the other hand, such a bimodality in C and

N enhancements has been found for a large number of clusters (see Sect. 1.1), while it is

rarely found among red giants when the Na-O anticorrelations are considered. I present a

critical discussion on this topic in Chapters 5 and 6.

‹ Construction of reliable 3-d hydrodynamical models. Although a number of theoreti-

cal works based on the AGB scenario tried to explain the observational scenario in a self-

consistent manner (e.g., Fenner et al., 2004, Bekki, 2011, D’Antona et al., 2005, Ventura and

D’Antona, 2008a, D’Ercole et al., 2008, 2010, 2012, Vesperini et al., 2010, 2013), their models

appear to have not yet explained all of the relevant observations on chemical abundances

of the Galactic GCs in a fully self-consistent manner. Interestingly, earlier theoretical pre-

dictions stars were later confirmed by observations (i.e., systematic differences in the ra-

dial distributions of first and second generation stars, see Chapter 2).

Chemical evolution models based on the FRMS scenario have not yet been fully explored

so that the validity of the FRMS scenario can not be currently assessed (but see Decressin

et al., 2010). Therefore, the next step should be to investigate the secondary star forma-

tion processes within clusters by numerical simulations that can include various physical

processes within clusters. Three-dimensional (3D) stellar and gas dynamical numerical

simulations with a plausible model for star formation are ideal to investigate secondary

star formation within clusters and can furthermore provide theoretical predictions that

can be compared with the observed differences in 3D structures and kinematics between

first and second generation stars (e.g., Sollima et al., 2005, Pancino et al., 2007, Bellini et al.,

2009).

‹ Nucleosynthesis. None of the candidate polluters can successfully reproduce the observed

abundance patterns (Sect. 1.3). Additional measurements of the abundance pattern for

those elements, such as He, Li, Al, and F, whose potential has not been fully exploited will

be of great value (Sect. 1.4). All these will offer new insight into the light element abun-

dance variations in globular clusters and potentially a new check on nuclear reaction rates.

1.9 Thesis layout

This thesis is structured as follows.
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˛ First, in Chapter 2, I discuss the results derived from a photometric analysis in the con-

text of multiple populations of a sample of nine galactic GCs from u, g ,r Sloan Digital Sky

Survey (SDSS) photometry.

˛ Chapter 3 presents the first analysis of the two populations hosted by NGC 1851 and clearly

visible in its SGB split. We derived CH and CN index measurements and C and N abun-

dances from IMACS@Magellan and FORS2@VLT spectra of faint, unevolved stars in this

cluster. With these data we explored relationships between the observed SGB photometric

split in this cluster and two stellar groups characterized by different contents of s-process

elements (and perhaps iron), previously discovered by high-resolution spectroscopic stud-

ies.

˛ In Chapter 4 I present the results obtained applying the same method used for NGC 1851

to the poorly studied cluster M 2. We analyzed spectra of RGB stars and derived carbon

and nitrogen abundances from CN and CH bands. We also studied evolutionary effects on

the [C/Fe] abundance and the link between the derived abundances and the location of

stars along the RGB in the (U ´V ) color. From U ,U ´V CMD we were able also to detect

for the first time an additional RGB sequence, that can possibly be connected to the slit

SGB discovered by Piotto et al. (2012). All these findings point toward a similarity of this

cluster with the well studied cases of NGC 1851 and M 22 (see also Chapter 3).

˛ In Chapter 5, we derived C and N abundances for a moderately large sample of MS stars

in three high-metallicity GCs (namely NGC 5927, NGC 6352, and NGC 6388). We obtained

large (and anticorrelated) [C/Fe] and [N/Fe] variations in all clusters. However, the main

result of this analysis is that the distribution of stars in the [C/Fe] vs. [N/Fe] plane appears

to be bimodal, with second generation stars displaying a well extended anticorrelation.

Finally, we explored the trends of this population ratio with some structural and orbital

parameters of these three clusters plus two additional clusters from literature.

˛ in Chapter 6 I present a summary of my findings, I discuss the impact they had on the

open issues discussed in Chapter 1, I present a list of future steps that would be the natural

outcome of my Thesis work and I draw my conclusions.





CHAPTER

2
SDSS photometry to trace multiple
populations in GCs

Nearly all GCs studied to date show evidence for multiple populations (Sect 1.1). Very re-

cently a spectacular confirmation that the origin of the chemical anomalies must be primor-

dial came also from properly constructed CMDs, at least for some GCs (Sect. 1.2). Variations in

the light element abundances have been conclusively associated with the multiple sequences

observed in the CMD, demonstrating that these two phenomena are intimately linked (Marino

et al., 2008; Yong et al., 2008a; Carretta et al., 2011a; Sbordone et al., 2011; Milone et al., 2012c,

among others). It is not surprising that the abundance variations should have large effects on

photometry, particularly in the UV -blue bands where CN (band heads at 3883 and 4215Å), NH

(around 3360Å), and CH (around 4300Å) molecular bands can be dominant (see Sect. 1.2.4 for a

exhaustive discussion).

This property of medium/broad band UV photometry opens a new window to study multi-

ple populations, as accurate U photometry for very large samples of GC stars can be obtained

in a much easier way and for much more distant clusters than the mid-to-high-resolution spec-

troscopy needed to obtain direct chemical abundance determinations.

Wide-field photometry capable of discriminating between first and second generation stars

would provide the large samples and the wide radial coverage that are needed to compare the

radial distributions of the two groups, which might retain information about where they formed.

According to some models of the early enrichment of GCs, at the end of the enrichment phase

(supposedly lasting a few hundred Myr), stars from the first generation (P) should be signifi-

cantly less concentrated toward the center of the cluster than stars of later generation(s) (I+E),

born from material polluted by the ashes of P stars (e.g., D’Ercole et al., 2008; see Sect. 1.5.1).

While it may be expected that this difference should have been largely erased long ago by the dy-

namical evolution of the cluster (D’Ercole et al., 2008; Decressin et al., 2008), the (sparse) avail-

able observational evidence about radial distributions of the two populations is in qualitative

agreement with the prediction of the above quoted model. For example, Kravtsov et al. (2010b,a)

found that the stars on the red side of of the broad U´I distribution of the RGB of NGC 1261 and

NGC 3201 are significantly more centrally concentrated than those on the blue side. In the case
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of NGC 3201, Carretta et al. (2010a) used detailed Na, O abundances from high resolution spec-

troscopy to show that Na-rich RGB stars are redder (in U ´ I ) and more centrally concentrated

than Na-poor RGB stars.

Carretta et al. (2009c) merged the spectroscopic sample of RGB stars in 19 GCs, normaliz-

ing the distance of each star from the center of its cluster by the cluster rh , and compared the

radial distributions of P, I, and E stars. They found that I stars are significantly more centrally

concentrated that P stars, while E stars appear slightly less concentrated than P stars. However,

as discussed in detail by Carretta et al. (2009c), this result may be affected by serious selection bi-

ases, inherent to the process of efficient fiber allocation in multi-object spectroscopy of Galactic

GC stars.

A difference in the radial distribution of the two sub giant branches of NGC 1851 (whose

stars are presumed to differ in terms of CNO abundance; Cassisi et al., 2008) was detected by

Zoccali et al. (2009), but the result was not fully confirmed by Milone et al. (2009b). However,

Carretta et al. (2010d) find that the radial distribution of the RGB stars they analyzed depends on

their iron abundance, more metal-poor stars being more centrally concentrated than their more

metal-rich counterparts.

Different populations with different radial distributions are known to be present in ω Cen-

tauri (Pancino et al., 2003; Sollima et al., 2007; Villanova et al., 2007), but this system is more

complex and may have a different origin with from classical GCs (see Carretta et al., 2010b, and

references therein).

In this Chapter we used publicly available u1 , g, r Sloan Digital Sky Survey photometry (SDSS;

see Abazajian et al., 2009, and references therein) searching for anomalous u-g spread in the RGB

of nine Galactic GCs. We confirmed the presence of multiple populations in seven of them. More

interestingly, we recognized that, for these seven clusters, stars assigned to the second generation

on the basis of their u-g color are more centrally concentrated than the first generation ones,

as expected by theoretical models of GC formation that accounts for the presence of multiple

populations (D’Ercole et al., 2008; Decressin et al., 2008).

Some preliminary results from this study were presented by M. Bellazzini at the meeting The

Giant Branches held in Leiden in May 2009 2.

The results presented in this Chapter have been published in Lardo et al. 2011, A&A, 525,

A114.

2.1 Description of the photometric data set

An et al. (2008) reanalyzed SDSS images of the GCs and open clusters included in the survey

using the DAOPHOT/ALLFRAME suite of programs (Stetson, 1987, 1994). These programs are

1The SDSS u filter hasλe f f = 3521 Å and FW H M = 555 Å. For details about the photometric filters quoted in this pa-
per see the Asiago Database of Photometric Systems http://ulisse.pd.astro.it/Astro/ADPS/ (Moro and Munari,
2000).

2www.lorentzcenter.nl/lc/web/2009/324/Friday/Bellazini.ppt

http://ulisse.pd.astro.it/Astro/ADPS/
www.lorentzcenter.nl/lc/web/2009/324/Friday/Bellazini.ppt
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Figure 2.1: g,g-r and g,u-g CMDs for M 5 and M 15. The stars for which spectroscopic abundances
are available from from Carretta et al. (2009b,c) are marked according to their Na abundances:
Na-poor stars are marked as blue open circles, while Na-rich stars are marked with red open
triangles. Stars plotted as heavy dark dots are those selected as candidate RGB stars from the
g,g-r CMD.

known to perform more effectively than the survey photometric pipeline in the high-crowding

conditions typical of dense star clusters.

We limited our analysis to the most favorable cases, excluding clusters with |b|ď 20°– to avoid

strong contamination from Galactic field stars – and/or with E(B´V )ě 0.15 - i.e., clusters with

relatively high extinction. Moreover, we decided to include in our sample only clusters with more

than 100 candidate RGB stars between the HB and two magnitudes below this level, to ensure a

solid statistic basis to our analysis. According to these criteria, among the seventeen clusters

considered by An et al. (2008) we selected the nine GCs listed in Table 2.1.

Only stars with valid magnitude estimates in both g and r have been retained for subsequent

analysis. When An et al. (2008) provided more that one catalog per cluster (i.e., in cases of clusters

imaged in different overlapping SDSS “plates”, see Abazajian et al., 2009, An et al., 2008, and

references therein), we merged the catalogs into a single one including all the cluster stars listed

by An et al. (2008) without duplications. The final catalogs cover fields including the vast majority

of cluster stars but does not reach the tidal radius (except for NGC 2419, see below).

In some cases, the available photometry was highly incomplete and/or was characterized by

large uncertainties in the innermost regions of the cluster, because of the high degree of crowd-

ing. In most cases the final catalog also covered a field of view including regions where the con-

tamination from Galactic stars was not negligible. To avoid the inclusion of cluster stars with

poor-quality photometry and contamination from fore/background Galactic stars, we limited

the analysis to a radial corona between the ri n and rout values specified in Table 2.1. In this

table, ri n and rout are also expressed in units of core, half-light, and tidal radii (rc , rh , and rt ,
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Table 2.1: Globular cluster sample

NGC Alt. Name ri n rout ri n /rc ri n /rh rout /rh rout /rt E(B–V) [Fe/H]
arcmin arcmin

2419 0.0 7.0 0.0 0.0 7.3 1.0 0.11 –2.12
5024 M 53 1.0 7.0 2.8 0.9 6.3 0.3 0.02 –1.99
5272 M 3 0.0 10.0 0.0 0.0 8.9 0.3 0.01 –1.57
5466 0.0 10.0 0.0 0.0 4.4 0.3 0.00 –2.22
5904 M 5 0.0 10.0 0.0 0.0 4.7 0.3 0.03 –1.34
6205 M 13 1.0 10.0 1.3 0.7 6.7 0.4 0.02 –1.54
6341 M 92 0.0 10.0 0.0 0.0 9.2 0.7 0.02 –2.28
7078 M 15 0.0 10.0 0.0 0.0 9.4 0.5 0.10 –2.32
7089 M 2 1.0 10.0 2.9 1.1 10.7 0.5 0.06 –1.62

Global parameters are from the Harris (1996) on-line database (year 2003), except for [Fe/H] for both M 5
and M 15, which are taken from Carretta et al. (2009b), and structural parameters for NGC 2419 that are
taken from Bellazzini (2007).

respectively), to provide a more objective idea of the actual radial sampling and of the cluster-

to-cluster differences in the radial sampling. We note that: (a) in all the considered cases we

sample the clusters out to > 4 rh , and in most cases out to 6´10 rh ; (b) in the cases in which we

excluded the innermost 11 from the analysis, the innermost regions between„ 1´3 rc were lost,

the completeness in these inner parts possibly being remarkably low also in clusters for which

we retained the central region3; and (c) the considered clusters span a wide range of central den-

sity (more than 4 orders of magnitude, see Harris, 1996), hence the different radial ranges also

sample regions in widely different dynamical conditions, depending on the considered cluster.

The reddening for the GCs are taken from Harris (1996). The coefficients of the adopted

extinction laws (Aλ/AV ) are taken from the computations by Girardi et al. (2004) for cool giants

(Te f f = 4000, log g = 2.00 and [M/H]= –2), and assuming AV = 3.1 E(B´V ). In particular: Au =
4.84 E(B ´V ), Ag = 3.64 E(B ´V ), and Ar = 2.71 E(B ´V ), and E(u´ g ) = 1.20 E(B ´V ) and

E(g ´ r ) = 0.93 E(B´V ).

2.1.1 The correlation between Na abundances and u-g spreads along the RGB

For two of the selected clusters, M 5 and M 15, we found a significant sample of stars for which

there are spectroscopic Na abundances over a remarkably wide luminosity range along the RGB,

from Carretta et al. (2009b,c). Following the criteria used by these authors, we divide the RGB

stars between a candidate first generation and a candidate second generation (P and I+E com-

ponents, respectively, adopting their nomenclature4) by adopting a threshold in sodium abun-

dance that depends on the cluster metallicity. In particular, stars having [Na/Fe]mi n ď [Na/Fe]<

[Na/Fe]mi n +0.3 dex are assigned to the Na-poor P component, while stars having [Na/Fe] ě

[Na/Fe]mi n +0.3 dex are assigned to the Na-rich I+E component (see Carretta et al., 2009c, for

3This should not affect the results presented below, as in all the cases we compare RGB stars having the same distri-
bution in magnitude, see Sect. 2.2.1.

4P stands for the first - Primordial - generation (Na-poor stars), while Na-rich stars are divided into I (Intermediate)
and E (Extreme) subsequent generations. For homogeneity, we follow the nomenclature by Carretta et al. but we always
consider all Na-rich stars as a single class (I+E), for simplicity.
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further details). The resulting thresholds are [Na/Fe]= +0.10 dex for M 5 and [Na/Fe]= +0.22 dex

for M 15; we stress, however, that the results presented below are not particularly sensitive to the

adopted threshold.

The left-hand panel of Fig. 2.1 shows that, in the case of M 5, the Na-poor and Na-rich stars,

that are tightly aligned along the narrow cluster RGB in the g, g-r CMD, are clearly separated into

two parallel sequences in the much broader giant branch seen in the g, u-g diagram, the Na-rich

stars appearing systematically redder than Na-poor ones (at least below the HB level), a behav-

ior strictly analogous to that observed by Marino et al. (2008) in M 4, by Milone et al. (2010) in

NGC 6752, using U photometry, and by Carretta et al. (2009c), again in NGC 6752, but using

Strömgren u photometry.

This result clearly indicates that SDSS u photometry can also be used to trace the UV color

spread correlated with the light-element abundance spread described in Sect. 1.2.4. We note that

most of the RGB stars displaying the color segregation as a function of Na abundance are fainter

than the RGB bump (at g » 15.4, see Fig. 2.2 and Fig. 2.3, below), as expected if the observed

chemical anomalies are not due to extra-mixing phenomena known to occur in evolutionary

phases brighter than this feature (Gratton et al., 2000; Smith and Martell, 2003).

However, the clear u-g color segregation between Na-poor and Na-rich stars observed in M 5

is not seen in M 15 (right-hand panel of Fig. 2.1). A likely explanation of this different behav-

ior calls into play the difference in overall metal content between the two clusters. The iron

abundance in M 5 is ten times higher than in M 15 and the average abundance of the light ele-

ments should scale similarly. Hence, the same degree of N abundance with respect to iron (as

expressed by [N/Fe]) corresponds to very different absolute abundances of N ([N/H]). This, in

turn, should correspond to significant differences in the strength of the absorption features that

are supposed to drive the spreads observed in broad-band near-ultraviolet photometry (see also

Martell et al., 2008). In particular, the strengths of spectral lines of diatomic molecules (such as

CN, NH) depend quadratically on the overall metallicity and it has been noted that CN bands

become very weak in the spectra of GC giants for [Fe/H]ď –1.8 (Smith, 2002). In this context, we

note that the clusters for which the color spread in the RGB has been detected using the broad

U (or u, in the present case) filter and correlated with spectroscopic light-element abundances,

have intermediate metallicities, i.e. [Fe/H]= –1.34 for M 5, [Fe/H]= –1.17 for M 4, [Fe/H]= –1.51

for NGC 3201, [Fe/H]= –1.55 for NGC 6752 (metallicities from Carretta et al., 2009c), and [Fe/H]=

–1.18 for NGC 1851, (metallicity from Carretta et al., 2010d).

On the other hand, we need also consider that the RGBs of M 5 and M 15 seem to display

similar spreads in the (V, cy ) plane (Yong et al., 2008a), thus not supporting the above hypothe-

sis. It is difficult to draw a firm conclusion at the present stage and this kind of investigation is

clearly beyond the scope of the present work. However, we note that a stark discrepancy exists

also when comparing the fraction of CN-strong and Na-rich stars (Pancino et al., 2010; Carretta

et al., 2009c). This is quite curious, and Pancino et al. (2010) suggests that C and N abundance

variations are contributed, at lest in part, by a different feedback source from the Na-O anticor-

relation studied by Carretta et al. (2009c). For our present purposes, we take as the basis of the
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further analysis of the clusters in our sample the clear evidence that, at least in some cases, star-

to-star differences in light-element abundances in the RGB of GCs can be discerned with the

u´ g color.

In particular, the sought-after anomaly should be distinguishable as a significant color spread

in the RGB in the g, u-g CMD, not seen in the g, g-r CMD and unaccounted for by other effects,

such as an increase in the photometric error and/or an increase in the amplitude of the effect of

differential extinction (see Sect. 2.2). Independently of its true origin, we refer in the following

section to the observational effect under consideration as a UV -spread and we will look for its

presence in the clusters of our sample, trying to establish, in the various cases, whether it is (at

least partially) due to intrinsic star-to-star physical differences or it can be fully accounted for by

trivial effects.

2.2 Introducing a method to detect anomalous u-g spreads

In Fig. 2.2 and Fig. 2.3, we present the g, g-r CMDs, flanked by their g, u-g counterparts for all

the clusters listed in Table 2.1. In all cases, two horizontal segments enclose the magnitude range

to which we limit our analysis of the color spread: we tried to select similar portions of the RGB

in all clusters, spanning a wide region below the horizontal branch. Given the different distances

and reddenings of the various clusters, this was not always possible (in particular, for NGC 2419

which is far more distant than the other GCs in our sample). This gives rise to differences in the

sensitivity of the adopted method as (a) the color spread corresponding to a given abundance

spread is always observed to decrease with increasing luminosity along the RGB, virtually disap-

pearing at the RGB tip (Yong et al., 2008a; Marino et al., 2008; Milone et al., 2010), and (b) the

same portion of the RGB occurs at different apparent magnitudes in different clusters, which is

indicative of different distance, and causes a different photometric accuracy.

The line located approximately at the red edge of the RGB, within the two horizontal seg-

ments, is a ridge line following the curvature of the observed RGB, and is taken as a reference to

compute the color spreads, that is the difference between the color of a given star and the color

of the ridge line at the same magnitude, ∆col , where col = g ´ r or col = u´ g . Both ∆g´r and

∆u´g are computed only for stars selected as candidate RGB in the g , g´r CMDs (heavier dots in

Fig. 2.2 and Fig. 2.3). To limit the effects of possible spurious u´ g outliers, we considered only

stars for which ´0.2 ď ∆u´g ď 0.05; these limits were found to be appropriate for all clusters

except NGC 2419 for which we adopted´0.8ď∆u´g ď 0.05.

There are several cases in Fig. 2.2 and Fig. 2.3 in which a conspicuous broadening of the RGB

in u-g with respect to g-r is apparent. However, as anticipated above, a few factors unrelated to

physical differences among cluster stars may also (in principle) produce this effect. These factors

and the methods we adopted to keep their effect under control can be summarized as follows:

Field contamination. The degree of contamination by Galactic fore/background stars is

very modest, because of the combination between the relatively high (absolute) Galactic

latitude of the considered clusters (all have |b| > 25°and four |b| > 70°) and the relatively
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small area of the considered annular fields. We used the Galactic model TRILEGAL (Girardi

et al., 2005) to obtain a conservative estimate of the degree of contamination affecting the

samples of candidate RGB stars considered in the present analysis (see Fig. 2.2 and Fig. 2.3).

We found that the fraction of Galactic field stars in our samples is lower than 5% for seven

of the nine clusters, reaching 8% for M 15 and 10% for M 92. Moreover, the effect of even

this small degree of contamination should be minimized by the way in which we selected

candidate RGB stars. In the following, we analyze the color spreads of candidate RGB stars

selected in the g, g–r CMD as the most tightly clustered along the narrow RGB sequence

Figure 2.2: g, g–r and g, u–g CMDs for NGC 2419, M 53, NGC 5466 and M 3. In some cases, the
RGB is truncated due to SDSS saturation. The red arrows in the upper right corner of each panel
are the reddening vectors whose amplitudes correspond to the average E(B´V ) values reported
in Table 2.1. Horizontal black arrows mark the position of the RGB bump. Stars selected as can-
didate RGB on the g, g–r CMDs are plotted as heavy dark dots, the remaining ones as lighter red
dots. The curves approximately tracing the red edges of the RGBs are used as references to com-
pute the color spread distributions shown in Fig. 2.4; the the two horizontal segments display
the portion of the RGB that is used to compute those distributions. In most cases, note that the
asymptotic giant branch starts above the bright end of the adopted selection box (NGC 2419 is
an obvious exception).
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Figure 2.3: The same as in Fig. 2.2, but for M 5, M 13, M 92, M 15 and M 2.
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in this plane (heavy dark dots in Fig. 2.2 and Fig. 2.3. This means that we compare the g–r

and u–g color spreads produced by exactly the same stars. Hence, any field star artificially

broadening the distribution of ∆col in u–g should also have a similar effect on g–r.

Blendings and artifacts. Any photometry of crowded fields (especially ground-based see-

ing-limited ones) is expected to include some fraction of sources that are either blends of

two (or more) fainter stars, or non-stellar sources, such as unresolved distant galaxies or

flukes in the halo of bright stars, both misclassified as stars. While it is likely that our sam-

ples of RGB candidates include some of these sources, their effect is expected to broaden

the distribution of ∆col by a similar amount in both of the considered colors, given the

adopted selection, as for the case of contamination described above.

Differential reddening. In principle, if there is a star-to-star difference in the degree of

stellar extinction (due to spatial a variation in the reddening over the considered field of

view) this will produce a larger color spread in u–g than in g–r, mimicking the effect we are

looking for. However, the ratio of the expected spreads is quite small∆E(u´g )
∆E(g´r ) = 1.29, mean-

ing that a difference of 0.02 mag in E(B´V ) would correspond to 0.019 in E(g´r ) and 0.024

in E(u´ g ), i.e. a mere difference of 5 millimag between g–r and u–g. The clusters consid-

ered here have, in general, low average reddening values (four having E(B ´V ) ď 0.02,

seven E(B´V )ď 0.06, and all nine E(B´V )ď 0.11) and, as far as we know, no indication

of differential reddening has ever been reported in the literature. In the cases for which

we report the detection of significant u–g spread, the full width at half maximum (FWHM)

of the distribution spread in u–g is ě 2 times larger than in g–r, more than the factor of

1.29 that can be attributable to differential reddening alone. Finally, the case of M 5 pre-

sented here as well as the previous cases reported in the literature (see Sect. 2.1.1) suggests

that differential reddening does not play a major role in producing the UV -spread, in the

cases where this has been revealed up to now. We conclude that the effects of differential

reddening for the considered sample should be negligible.

Photometric errors. Since all the SDSS observations are performed at fixed exposure time

and RGB stars emit much less light in the near-UV than in the visible range5, any given star

in our sample has larger photometric errors in u than in either g or r: as a consequence,

the color spread due to photometric errors is larger in u–g than in g–r. We see below that

this is the most serious problem in the present analysis, as there are cases in which a large

observed UV -spread can be fully accounted for by (relatively) large photometric errors

which hide any (possible) underlying signal associated to real differences among stars. To

take this effect into due account, we divided the color spread of each star by the associated

photometric uncertainty in each color∆
1

col =
∆col
σcol

(normalized color spread), which should

5There are other factors concurring to lower the signal-to-noise ratio of u observations with respect to g or r ones.
For example: (1) CCDs are less sensitive in near-UV than in visible bands; (2) as in the SDSS the photometry of a given
field is taken simultaneously in all the ug r i z passbands and the seeing worsens at shorter wavelengths, u images hence
experiencing the worst seeing; (3) at fixed atmospheric transparency conditions and air mass, u light suffers from the
highest amount of atmospheric extinction.
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be (approximately) expressed in units of standard deviations. Comparing ∆
1

col distribu-

tions in g–r and u–g, we can check whether there is any significant UV -spread in addition

to that due to photometric errors; if the latter were the main contributor to the observed

u–g spread, the two distributions should be indistinguishable.

In Fig. 2.4, we plot the distribution of∆col and∆
1

col for all the considered clusters. Histograms

in g–r are plotted as dotted lines, and those in u–g as continuous lines. The ∆
1

col distributions

have been shifted by (small) arbitrary amounts to ensure that their maxima approximately co-

incide with ∆
1

col = 0, to allow for a more direct comparison between the distributions in the two

color indices6. We shall see below that the significance of the detected differences is maintained

independently of the adopted shifts.

It may be useful to start the discussion of Fig. 2.4 from the pair of panels in the lower right

corner (NGC 2419). As readily visible in the CMD of Fig. 2.2 and Fig. 2.3 there is an impressive

broadening of the RGB color spread passing from g–r to u–g in this case. The broadening in u–g

color is so large that we had to adopt a different horizontal scale in this panel to accommodate

the bulk of the ∆u´g distribution. However, the distributions of ∆
1

col are indistinguishable, with

essentially all the stars lying within ˘3σ of the mean, as expected for (approximately) normal

errors7. Hence, all the UV -spread observed in NGC 2419 can be accounted for by the effect of

photometric errors. We note that this does not mean that there is no underlying spread in light-

element abundance, but that the photometric accuracy is not sufficient to reveal it, if it exists. The

same is true for NGC 5466, while the case of M 15 is discussed in more detail below.

On the other hand, in all the cases considered in the left raster of panels pairs of Fig. 2.4 (M 5,

M 53, M 13, M 3, and M 2), plus M 92 in the right raster of panels, the differences in the ∆col

distributions correspond to significant differences in the distributions of ∆
1

col , implying that the

detected UV -spread cannot be entirely accounted for by observational effects, thus requiring the

presence of some physical star-to-star difference. In particular, the ∆
1

u´g distributions display

extended tails toward the blue that are completely lacking in the remarkably symmetric g ´ r

distributions. In the case of M 5, we know from Sect. 2.1 that the observed u–g spread correlates

with Na abundances (and it is likely to be caused by differences in N abundances, Yong et al.,

2008a). It is interesting to note that the ∆u´g distribution of this cluster appears to be bimodal

(as in the case of M 4 Marino et al., 2008), even if it is not possible to firmly establish the statistical

significance of this feature. Hints of multi-modality are indeed visible in all the∆u´g (and∆
1

u´g )

distributions of these six clusters.

A Kolmogorov-Smirnov (KS) test would be the most straightforward non-parametric way to

quantitatively establish the statistical significance of the detected differences between the u-g

and g-r ∆
1

col distributions. However, it is well known that this test is very sensitive to offsets

between distributions and the shifts adopted in Fig. 2.4 are quite arbitrary. In principle, a given

6In particular, the g–r distribution has been shifted to ensure that its well defined maximum occurs at ∆
1

col = 0,
while for the broader u–g distributions, with less clear peaks, we searched for a compromise between placing the peak at

∆
1

col = 0 and matching the right (red) edge of the two distributions, to make the comparison easier.
7We note that this is true for all the g-r distributions of ∆

1

col .
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Figure 2.4: Distributions of u´g (solid histograms) and g´r (dashed histograms) color spreads
(with respect to the RGB fiducials of Fig. 2.2 and Fig. 2.3) for the clusters in our sample. Panels
marked with (a) show the distributions of absolute color spreads, while those marked with (b)
show the normalized color spreads, in units of σ.

Table 2.2: Dimensions of the samples and results of KS tests.

NGC Nst ar s Shift P
phot
K S NUV´blue NUV´r ed P r ad

K S

M 5 652 0.2 1.1ˆ10´11 199 453 2.0ˆ10´6

M 2 492 –0.3 6.0ˆ10´10 132 360 < 1.0ˆ10´11

M 3 501 1.5 3.9ˆ10´10 206 295 3.8ˆ10´10

M 13 596 0.4 5.7ˆ10´8 185 411 1.3ˆ10´4

M 92 442 0.4 3.8ˆ10´7 139 303 < 1.0ˆ10´11

M 53 394 0.4 2.9ˆ10´7 75 319 5.7ˆ10´11

M 15 371 0 8.9ˆ10´4 110 261 7.8ˆ10´11

NGC 5466 172 0.2 0.60 37 135 0.15
NGC 2419 693 –0.2 0.79 94 599 0.24

Nst ar s : total number of candidate RGB stars selected for the analysis of color spread. ”Shift” is the differen-

tial shift in∆
1

col that is found to maximize P
phot
K S . NUV´bl ue and NUV´r ed are the number of stars having

∆
1

col < 2.0 and ∆
1

col ě 2.0, respectively. P
phot
K S and P r ad

K S are defined in the text. Clusters are listed in order

of increasing P
phot
K S .
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choice of the shift between the two distribution may add spurious significance to their mutual

difference measured by the KS test. To circumvent this problem, we proceeded as follows:

(1) keeping the g–r distributions shown in Fig. 2.4 fixed, we moved the u–g distribution

from´5 to +5 ∆
1

col units in steps of 0.1;

(2) at each step, we performed the KS test computing the probability that the two samples

are drawn from the same parent population, P phot
K S ; and,

(3) we adopted the value of the shift that maximize P phot
K S , i.e. the shift that minimize the

significance of the difference between the two distributions.

In this way, we are guaranteed that the residual differences considered by the KS test are gen-

uine differences in the shape of the distributions, not due to unphysical shifts. The adopted dif-

ferential shifts and the corresponding values of P phot
K S are reported in Table 2.2. The significance

of the difference in the u–g and g–r distributions of ∆
1

col is very high for all the clusters whose

distributions are plotted in the left hand panels of Fig. 2.4 plus M 92 (P phot
K S < 10´4). In particu-

lar, we note that the difference is also significant in the case of M 15: the probability that the u–g

and g–r distributions of ∆
1

col measured in this cluster are drawn from the same parent popula-

tion is just 0.08%. A careful inspection of the ∆
1

col distributions for this cluster in Fig. 2.4 reveals

that while the wings virtually coincide, the core of the g-r distribution is far more peaked than

its u-g counterpart, which exhibits hints of bimodality (compare with the cases of NGC 5466 and

NGC 2419, where the distributions nearly coincide in both the wings and the core). Hence, while

the amplitude of the effect is insufficient to provide an obvious color segregation in the CMD of

this cluster (see Fig. 2.1), the underlying signal is there and can be revealed once the much larger

photometric sample is considered and the observational effects are properly taken into account,

in agreement with the results of Yong et al. (2008a). This conclusion is strongly supported by the

behavior of the radial distributions of RGB stars as a function of their color spread in this cluster,

as discussed in the following section.

We note that the four clusters displaying the most obvious and significant difference in their

∆
1

u´g and∆
1

g´r distributions have metallicity around [Fe/H]=´1.5, while M 53, M 92, and M 15,

which have larger P phot
K S , are significantly more metal-poor ([Fe/H]ď´2.0). This is likely due to

the weakening of the intrinsic UV -spread effect at low metallicity, discussed in Sect. 2.1.1.

2.2.1 The radial distribution of UV-red and UV-blue stars

As anticipated above, it would be very interesting to verify whether RGB stars with different

u´g colors (at the same magnitude) may have different radial distributions. Indeed, one way to

understand how the multiple populations may have originated is to study the spatial distribu-

tions of the different populations, which might retain information about where they formed. In

particular, theoreticians have been finding that if the second generation of stars is formed from

an interstellar medium polluted and shocked by the winds of the first generation, then we would
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expect that the second generation would be more concentrated towards the center of the cluster

than the first one (see D’Ercole et al., 2008, Decressin et al., 2008).

To follow up this line of investigation, we divided the selected RGB candidates in each of the

considered clusters into two sub-samples, according to the value of their normalized u–g spread

∆
1

col . For brevity, we dub UV -blue the stars having ∆
1

col <´2.0 and UV -red those having ∆
1

col ě

´2.0, in the scale of Fig. 2.4 (i.e. using the shifts adopted there). It is important to recall that any

observational effect potentially affecting the radial distributions (notably, the radial variation in

the degree of completeness, due to the increase in crowding toward the center) must affect the

two sub-samples exactly in the same way, as they have the same distribution of magnitudes.

The comparison between the radial distributions of UV -blue and UV -red RGB stars for all

the considered clusters is presented in Fig. 2.5; the probability that the two distributions are

drawn from the same parent population according to a KS test (P r ad
K S ) is reported in the last col-

Figure 2.5: Comparison between the radial distribution of UV -blue (continuous blue line) and
UV -red (dashed red line) for all the considered clusters (for a chosen threshold ∆

1

col = ´2.0).
The data within the radius marked by the dotted lines in the plots of the distributions for M 53,
M 2, and M 13 were not included in the analysis (see Sects. 2.1 and 2.1.1). See Table 2.2 for the
significance of the detected differences, as measured by the KS test.
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Table 2.3: Dimensions of the samples and results of KS tests.

NGC NUV´bl ue NUV´r ed P r ad
K S NUV´bl ue NUV´r ed P r ad

K S
M 5 167 204 4.1ˆ10´12 131 521 3.5ˆ10´7

M 2 199 293 < 1.0ˆ10´15 86 406 8.0ˆ10´14

M 3 267 234 5.3ˆ10´11 154 347 8.9ˆ10´9

M 13 292 304 9.0ˆ10´4 102 494 4.7ˆ10´5

M 92 231 211 1.5ˆ10´15 78 364 2.1ˆ10´13

M 53 145 249 2.0ˆ10´11 34 360 7.5ˆ10´8

M 15 167 204 4.1ˆ10´10 60 311 9.2ˆ10´10

NGC 5466 67 105 0.24 16 156 0.80
NGC 2419 224 469 0.09 36 657 0.09

umn of Table 2.2. In all clusters for which we detected a significant intrinsic u–g spread (includ-

ing M 15), the UV -red population is obviously more centrally concentrated than the UV -blue

one, with P r ad
K S always lower (and in most cases much lower) than 0.02%. We note that this result

is very insensitive to the actual choice of the∆
1

col threshold; the difference remains highly signifi-

cant for a large range of adopted thresholds (in particular, for the whole range´3.0ď∆
1

col ď 0.0).

This result clearly provides further support to the physical significance of the u–g spread:

it is very hard to conceive how any spurious observational effect can be associated with such a

strong difference in the radial distribution. Moreover, it suggests that the higher degree of central

concentration of UV-red (putative I+E) stars with respect to UV-blue (putative P) stars may be a

general characteristic of all GCs where intrinsic UV -spread can be detected, therefore any model

intended to explain the origin of the spread in light-element abundances in GCs should also be

able to reproduce this feature.

Fig. 2.5 aims to demonstrate the high level of statistical significance of the detected differ-

ences between the radial distributions of UV -red and UV -blue stars. To allow for a more direct

comparison with the predictions of chemo-hydro-dynamical models (D’Ercole et al., 2008; De-

cressin et al., 2008, 2010), in Fig. 2.6 we present the radial profile of the ratio of the number of

UV -red to UV -blue stars (
NUV´r ed
NUV´blue

), where the radial coordinate is expressed in units of the

clusters core radii (rc ), and the distances of 1, 2, 3, 4, and 5 half-light radii (rh) are also indicated

(vertical dashed lines). This ratio should approximately scale as the ratio of second generation(s)

(I+E) to first generation (P) stars, whose radial distribution is a typical outcome of the considered

models. However, we stress that while the overall shape of the observed profiles does not change

much when different thresholds between UV -blue and UV -red stars are adopted8, the true val-

ues of NUV´r ed /NUV´bl ue depends on the adopted threshold, hence they cannot be directly

compared with second-to-first generation ratios computed elsewhere. The only safe conclusion

that we can draw here is that UV -red stars are more abundant than UV -blue stars (in the inner-

most „ 3´4 rh) for any threshold ∆
1

col ď´1.0 (see also Fig. 2.7), albeit with cluster-to-cluster

8Over the range´3.0ď ∆
1

col ď´1.0. In particular, the slope of the inner rising branch of the profile changes with
the adopted threshold (the relative height of the central peak grows by a factor ofď 3´4 changing the threshold from –1

to –3) but the radius where the profile flattens remains unchanged. In Fig. 2.6, we have adopted ∆
1

col =´2, as above.
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differences of a factor of a few; this is in qualitative agreement with the predictions by D’Ercole

et al. (2008) and Decressin et al. (2008), and with the observations by Carretta et al. (2010c).

The profiles shown in Fig. 2.6 cover the range given by » 0.5´ 1 rh and > 4 rh . In nearly

all cases, the profiles display a relatively steep decline from the innermost bin out to a radius of

„ 3 rh where they flatten at a level NUV´r ed /NUV´blue ď 1, remaining approximately flat out to

the last observed point. Hints of another increase at rh ě 10 rh are seen in the profiles of M 3

and M 2 but their significance seems only marginal, if any. A notable exception to this general

trend is provided by M 13, whose profile is nearly flat out to „ 3 rh , then declines into another

flat branch at r „ 4 rh .

It is interesting to compare the observed profiles with the model predictions shown in Fig. 18

of D’Ercole et al. (2008). In that specific model, after 25 half-light relaxation times of evolution,

the profile of the second-to-first generation number ratio is nearly flat within r » 0.5 rh (a region

always entirely enclosed in the innermost bin of our profiles, or not even included in the consid-

ered sample, in the cases of M 2 and M 53), then declines by a factor of a few by » 2 rh , at the

Figure 2.6: Ratio of the number of UV -red to UV -blue stars as a function of distance from the
cluster center, for the seven clusters in which we detected a significant intrinsic UV -spread. The
radial coordinate is expressed in units of cluster core radii, the dashed vertical lines marks the
radial distances corresponding to 1, 2, 3, 4, 5 half-light radii (rc and rh from Harris, 1996). The
ratio is computed in radial bins 2.52 wide in steps of 0.52. Note that the actual value of the
ratio depends on the adopted threshold between UV -red and UV -blue stars: here we adopted
∆
1

col =´2.0 as in Table 2.2 and Fig. 2.5.
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Figure 2.7: The same as in Fig. 2.6, but for an adopted threshold ∆
1

col =´3.0

limit of that figure. This is in fair agreement with the observed profiles9; a broad agreement is

also found with some of the models presented in Decressin et al. (2010, see the middle bottom

and right bottom panels of their Fig. 1). A detailed comparison with models is far beyond the

scope of the present work. On the other hand, we feel that Fig. 2.6 provides a very useful set of

observational constraints that must be reproduced by models of GC formation. Unfortunately,

our data do not sufficiently probe the innermost regions (r ď 0.5 rh) of the considered clusters;

and complementary HST observations are probably needed to check this part of the profiles. Fi-

nally, a fully meaningful comparison with the profiles of Fig. 2.6 would require dedicated models

for each cluster, taking into account its specific structural and dynamical properties, as well as

accounting for its evolution for a Hubble time.

2.2.2 Comments on individual clusters considered in this work

In this section, we briefly report on previous results about abundance and/or UV color spreads

in the clusters considered in this Chapter.

Five of our clusters were also considered in the study by Yong et al. (2008a), namely M 5, M 3,

M 13, M 15, and M 92. These clusters display a significant spread at all evolutionary stages in

9However, it is expected that the inner flat region of the profile would progressively extend as dynamical evolution
proceeds beyond the 25 tr h time lapse considered in that simulation (Vesperini et al., 2013).
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the V, cy CMD (from photometry by Grundahl et al., 1999). According to Yong et al. (2008a), the

observed spreads are comparable to what seen in NGC 6752, suggesting that all these clusters

exhibit a»2.0 dex dispersion in [N/Fe], i.e., the value found in NGC 6752.

Grundahl et al. (1998) provided evidence of stars from two different populations in the hor-

izontal branch of M 13. In particular, they noted that at any given (b´ y)0 color, there is a large

spread in the c0 index (defined as c0 = c1´ 0.2 E(b´ y)) that they interpreted as being due to

star-to-star-variations in CNO abundances.

Turning to spectroscopic analyses, Martell et al. (2008) showed that M 53 has a broad but

not strongly bimodal distribution of CN band strength, with CN and CH band strengths that are

anticorrelated for unevolved stars.

For the well-studied cluster M 5, Smith and Norris (1983) showed that the cyanogen distri-

bution is strongly bimodal for a sample of 29 stars near the RGB tip. The classic Na/O anticor-

relation has been found by Sneden et al. (1992) and confirmed by Ivans et al. (2001). This was

further correlated with the CN strength index, δS(3839): stars with larger CN indices also have

larger Na and Al abundances and lower O abundances than stars with lower CN indices. Finally,

Briley et al. (1992) and Cohen et al. (2002) found strong (and anti-correlated) variations in the

abundances of C and N of stars down to the base of the RGB of M 5.

An extended Na/O anticorrelation was found also in the extremely metal-poor cluster M 92

(Sneden et al., 1991), as well as strong (and anticorrelated) variations in the abundances of C and

N (Carbon et al., 1982).

Spectroscopic observations revealed star-to-star variations in the abundances of the CNO

group elements among the M 3 giants (Pilachowski and Sneden, 2001), with both oxygen-rich

and oxygen-poor stars coexisting in the cluster (Kraft et al., 1992; Cohen et al., 2005). Lee (2000)

claimed the existence of a C-N anticorrelation among stars on the lower RGB of M 15, although

no bimodality is found (Cohen et al., 2005). Kayser et al. (2008) showed a weak indication of a

bimodality in the CH-CN plane (two clumps separated at CN„–0.6), although the observational

errors are large compared to the separation of the two clumps. Pancino et al. (2010) detected a

clear and bimodal CN and CH anticorrelation among the unevolved stars measured by Kayser

et al. (2008). Finally, Smith and Mateo (1990) found a CN-CH band strength anticorrelation and

a possible bimodality in their sample of red giants in the cluster M 2. We will present a spectro-

scopic analysis of RGB stars in this cluster in Chapter 4.

We note that for all the clusters in which we detected a significant intrinsic u–g spread, there

was previous evidence of inhomogeneity in their stellar population reported in literature, sup-

porting our findings.

Previous detections of differences in radial distributions between different populations in

GCs were limited to the cases of ω Cen, NGC 1851, NGC 1261, and NGC 3201, as discussed in

Sect. 2.2.1. The results presented here more than double the number of GCs where these differ-

ences are detected at a very high degree of significance.
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2.3 Summary & conclusions

We have used publicly available u, g, r photometry from An et al. (2008) to search for anoma-

lous spread in near UV color (u–g) along the RGB of nine high-latitude, low-reddening, and well

populated Galactic GCs. This anomalous spread was detected before in some clusters, using col-

ors including other broad/intermediate band filters, such as Johnson’s U or Strömgren u, and it

was shown to be associated with the well known spread in the abundance of light elements (C,

N, O, Na, etc.; see Carretta et al., 2009c, and references therein). The main results of our analysis

can be summarized as follows:

˛ We revealed anomalous u-g spreads in seven of the nine clusters. The lack of detection of

any significant intrinsic u-g spread in the two remaining clusters (NGC 2419 and NGC 5466)

may be due to a real lack of chemical spread but it may also be associated with insufficient

photometric accuracy and/or radial sampling. NGC 2419 is far more distant than any other

cluster in the sample and its RGB is observed at much fainter apparent magnitudes, im-

plying much larger photometric errors in the range of interest; for the same reason, the

available photometry for this cluster samples mostly the portion of the RGB between the

HB and the tip, where the amplitude of the UV -spread effect is known to decrease. The

radial range explored here for NGC 5466 is the smallest of the whole sample, r ď 4.1 rh .

There are indications that the UV -spread effect may be weaker at very low metallicity and

this may also hamper our ability to detect it in clusters with [Fe/H]ď´1.8.

˛ In the case of M 5 ([Fe/H]= –1.34), we have demonstrated that the Na abundance corre-

lates with the u–g color along the RGB, in the same way as in other clusters studied in the

literature: The same effect is not seen in M 15 ([Fe/H]=–2.32): we attribute this to the weak-

ening of the UV -spread with decreasing metallicity, which is probably associated with the

extreme weakening of CN lines for [Fe/H]ď´1.8 However, the case of M 5 illustrates that

light-element abundance variations can be traced with the u´g color as done before with

U´B , U´V , U´ I , and cy indices (see, for example Yong et al., 2008a; Marino et al., 2008;

Han et al., 2009b; Carretta et al., 2009c, 2010c).

˛ Dividing the RGB stars of each cluster into UV -blue and UV -red subsamples, accord-

ing to their ∆
1

u´g , we found that UV -red stars are more centrally concentrated than UV -

blue stars in all the seven clusters in which we detected a significant intrinsic UV -spread.

Kolmogorv-Smirnov tests have proven that the difference in the radial distributions of the

two groups are highly significant in all cases: the probability that UV -blue and UV -red

stars be drawn from the same radial distribution is always lower than 0.02%. This result

does not depend critically on the choice of the the dividing line between UV -blue and

UV -red.

˛ The radial profiles of the ratio of UV -red to UV -blue stars typically show an approximately

linear decline from the first sampled point (at» 0.5´1 rh) out to 3´4 rh , where they flatten
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and remain approximately flat out to the last sampled point (at» 4´8 rh). This behavior

is in qualitative agreement with the predictions of most recent models of formation and

chemical evolution of globular clusters. It is interesting to note that in M 13 the profile is

flat in the innermost „ 3 rh , then declines at larger radii. The shape of the observed pro-

file provides a quantitative basis to test these theoretical scenarios, once specific models

reproducing the present-day status of the considered clusters become available.

The results presented here clearly suggest that the difference in the radial distribution of first

and second generation stars is be a general characteristic of globular clusters. Moreover, it has

been demonstrated that near UV photometry can be a very efficient tool to trace light element

spreads in very large samples of RGB stars in clusters, and it is especially well suited to studying

the radial distribution of the various cluster populations. It must be considered that the very

encouraging results presented in this Chapter have been obtained with a relatively small (2.5 m

aperture) ground-based telescope, under non-ideal seeing conditions (ď 1.62 FWHM, An et al.,

2008). A survey performed with larger telescopes and/or under good seeing conditions (e.g.,

with service mode observations) and complemented with HST observations of the cluster cores

would provide a completely new insight into the problem, and would surely contribute to shed-

ding light on the mysterious earliest phases of the evolution of globular clusters.





CHAPTER

3
A spectroscopic and photometric
investigation of the split SGB in
NGC 1851

NGC 1851 is one of the most intriguing clusters with multiple stellar populations. It exhibits a

double SGB, with the faint component accounting for 35% of the stars (Milone et al., 2008). If age

is the sole cause, then the SGB split is consistent with two stellar groups with an age difference

of „1 Gyr. As an alternative, the two SGBs could be nearly coeval but with a different C+N+O

content (Cassisi et al., 2008; Ventura et al., 2009). The HB is also bimodal, with about „35% of

HB stars on the blue side of the instability strip. Both the HB and the MS morphology leave no

room for strong helium variations (Salaris et al., 2008; D’Antona et al., 2009). Nor is the RGB

consistent with a simple stellar population (Grundahl et al., 1999; Calamida et al., 2007). Lee

et al. (2009b) and Han et al. (2009a) pointed out two distinct RGB evolutionary sequences, using

Strömgren Ca uvby photometry, and proposed that the split might be attributed to differences

in calcium abundance.

Many spectroscopic studies have been dedicated to RGB stars in NGC 1851. Almost 30 years

ago, Hesser et al. (1982) noticed three out of eight bright-RGB stars with anomalously strong CN

bands and with enhanced Sr and Ba lines. More recently, Yong and Grundahl (2008) analyzed

UVES spectra of eight giants. Their analysis revealed that star-to-star abundance variations of O,

Na, and Al with a clear anticorrelation of O and Na also exist in this cluster, and the amplitude of

these variations is comparable with those found in clusters of the same metallicity. More inter-

estingly, they argued for the presence of two different populations in this cluster, characterized

by significant differences in the the light s-process element Zr and the heavy s-process element

La. Yong et al. (2009) and Yong et al. (in preparation) found a wide spread in the abundance sum

C+N+O (while a constant sum of C+N+O was derived by Villanova et al., 2010 from the abun-

dance analysis of 15 RGB stars); with the CNO-rich stars being also enhanced in Zr and La. Yong

and collaborators associated the group of CNO-rich s-rich stars to the progeny of the faint-SGB

and suggested that intermediate-mass AGB stars might have contributed to the enrichment of

the ICM before the formation of the second generation of stars. Interestingly, both the s-rich and

the s-poor groups exhibit their own Na-O anticorrelation, which suggests that NGC 1851 has ex-

perienced a complex star-formation history. In these respects, Campbell et al. (2012) concluded

63
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that the merger scenario suggested by Carretta et al. (2010d) leads to a natural expectation that

the two bimodal CN populations in the original clusters would also be superimposed, giving the

quadrimodality detected among both RGB and AGB stars in their sample.

Yong and Grundahl (2008) also suggested the presence of a slight metallicity spread (ď0.1

dex) among NGC 1851 RGB stars. This result has been recently confirmed by Carretta et al.

(2010d) on the basis of a larger sample of stars. Following a classification scheme based on Fe and

Ba abundance, Carretta et al. (2010d) distinguished between a metal-rich, barium-rich (MR) and

a metal-poor, barium-poor population (MP). They associated the MR and the MP components

to the bright- and the faint-SGB respectively, which is at odds with what was suggested by Yong

and Grundahl (2008). Very recently, Gratton et al. (2012b) studied the Na-O anticorrelation from

moderately high resolution spectra for a large sample of stars on the bimodal HB of NGC 1851.

They found that the red HB stars clearly separate into two groups: the vast majority are O-rich

and Na-poor, while about 10-15% are Na-rich and moderately O-poor. Most (but not all) Na-rich

red HB stars are also Ba-rich and there is an overall correlation between Na and Ba abundances

within the red HB. The group of Ba-rich red HB stars resides on the warmer edge and includes

10% of the red HB stars. They proposed that they are the descendant of the stars on the RGB

sequence with very red v´ y colour (Carretta et al., 2010d). Gratton et al. (2012b) also showed

that a Na-O anticorrelation among blue HB stars exists, partially overlapping that found among

red HB stars, though generally blue HB stars are more Na-rich and O-poor.

While the above listed spectroscopic studies targeted evolved stars in NGC 1851, before this

work, only Pancino et al. (2010) analyzed a sample of unevolved stars in this clusters to provide

index measurements, and we present for the first time an abundance analysis of MS, TO and SGB

stars.

In particular, we observed stars located on the faint- and bright-SGB and derived for them

C and N abundances; aiming to provide insights on the chemical signature differences between

the two discrete sequences on the SGB. Soon after the publication of this study, Gratton et al.

(2012c) presented abundances for Fe, C, Ca, Cr, Sr, and Ba for stars located onto the double SGB

in this cluster. They found that the blue SGB is slightly more metal-poor than the faint SGB, with

[Fe/H] = –1.227 ˘ 0.009 dex and [Fe/H] = –1.162 ˘ 0.012 dex, respectively. They confirmed that

the abundances of the n-capture elements Sr and Ba have a bimodal distribution, reflecting the

separation between faint SGB (Sr and Ba-rich) and bright SGB stars (Sr and Ba-poor).

The results presented in this Chapter have been published in Lardo et al. 2012, A&A, 541,

A141.

3.1 Observations and data reduction

3.1.1 Source catalogs and sample selection

We selected our targets from literature photometry: FORS2 V and I photometry presented

by Zoccali et al. (2009), in the southwest quadrant of the cluster, as well as F 606W and F 814W
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Figure 3.1: Area covered by the catalogs from which the spectroscopic selection was made: the
FORS2 in the outer part (shown in black) and the ACS/HST field (continuous red line) in the
inner region. The red crosses represent the IMACS+FORS2 sample. We also indicate the half
tidal radius in this figure (dotted circle).

HST/ACS photometry from the GGC treasury program GO-10775 for the inner part of the cluster

(Milone et al., 2008). The area covered by the catalogs and the selected spectroscopic targets is

shown in Fig. 3.1. We transformed the coordinates using 2MASS as a reference astrometric cat-

alog, so the final catalog is on the same relative astrometric system. Spectroscopic targets were

selected as the most isolated stars located around the turn-off and the SGB, reaching the RGB

base. The resulting photometry was calibrated using stars in common with the V , I Bellazzini

et al. (2001) catalog, covering an 81ˆ81 field centered on the cluster. We also used publicly avail-

able Strömgren u, v,b, y photometry1 of NGC 1851 from Grundahl et al. (1999) and Calamida

et al. (2007). We refer the reader to those paper for details about observations and data reduction

of Ströemgren photometry.

3.1.2 Observations and spectroscopic reductions

We acquired low-resolution (R»1123 and R»1246 at 3880 and 4305 Å, respectively) spectra

of turnoff and SGB stars in the globular cluster NGC 1851 with the IMACS multi-object spec-

trograph at the Magellan 1 (Baade) telescope at the Las Campanas Observatory in Chile. The

1http://www.mporzio.astro.it/spress/stroemgren.php.

http://www.mporzio.astro.it/spress/stroemgren.php
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adopted instrumental setup with the grating GRAT 600-I covers the nominal spectral range be-

tween 3650–6750 Å with a dispersion of 0.38 Å /pix. This spectral range includes CN (3883 Å) and

CH (4305 Å) molecular bands used to derive nitrogen and carbon abundances. However, the ac-

tual spectral coverage depends on the location of the slit on the mask with respect to the spectral

dispersion. Because we observed faint stars, the total integration time was long, requiring ten

exposures of 1800 seconds each. Therefore all observations were made with a single-mask setup

with 48 slits. We were able to extract spectra for 46 targets from our initial target list. To these

46 spectra observed with Magellan, we added 47 other MS and SGB spectra from Pancino et al.

(2010) observed with the FORS2 multi-object spectrograph on the ESO VLT at the Paranal Ob-

servatory in Chile2. We refer the reader to that paper for details of the FORS2 observations. We

reduced our data following the procedure described in Pancino et al. (2010). For the data pre-

reduction, we used the standard procedure for overscan correction and bias-subtraction with

the routines available in the noao.imred.ccdred package in IRAF3. Cosmic rays were removed

with the IRAF Laplacian edge-detection routine (van Dokkum, 2001). The frames were then

flat-fielded and reduced to one dimension spectra with the task apall. Once we obtained ten

2Under programme ID 68.D-0510.
3IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Univer-

sities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

Figure 3.2: Color-magnitude diagrams for NGC 1851. Gray dots show V ´ I photometry for the
outer field (left panel) and inner field (right panel) from FORS2 and ACS, respectively. White dots
mark spectroscopic targets presented in Pancino et al. (2010), while black dots show our newly
observed stars.
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wavelength-calibrated, one-dimensional spectra for each star, we co-added them on a star-by-

star basis to reach a relevant S/N (typically between 20-30 per pixel at 3880 Å) even in the bluer

part of the spectrum4. As a final step, we examined each spectrum and rejected those spectra

with bad quality, following the recipes outlined in Pancino et al. (2010). We defined several crite-

ria for this rejection:

1. S/N ratio < 10 (per pixel) in the CN 3883 Å band;

2. clear defects (like spikes or holes) from an individual inspection of the spectrum on the

band or continuum windows;

3. discrepant Ca (H+K) and Hβ index measurements.

Forty-three stars survived our criteria of selection. Moreover, 20 stars had spectral or continuum

passbands falling in the gap between the CCDs because of the location of the slit on the mask

with respect to the dispersion direction. We were not able to measure CH and CN band strengths

for these stars, but in some cases we determined N and C abundances (Sect. 3.3). Therefore we

decided to retain these spectra and consider them in the subsequent analysis.

3.1.3 Membership

NGC 1851 (l ,b = 244.51,´35.08; Harris, 1996, 2010 edition) is projected at a far distance from

the Galactic plane and consequently the contamination from field stars is almost negligible. In

addition, the average radial velocity of cluster stars significantly differs with respect to the field

(320.5 km/s; Harris, 1996, 2010 edition), hence cluster non members can be easily identified from

their radial velocities. For the stars in the ACS/WFC field of view, member stars were furthermore

selected on the basis of their proper motions (see Milone et al., 2008 for details).

For all the spectra, radial velocities were measured with the IRAF task fxcor, which performs

the Fourier cross-correlation between the object spectrum and a template spectrum (the latter

with known radial velocity). As a template we chose the spectrum of the star with the highest

S/N : its radial velocity was computed using the laboratory positions of several strong lines (e. g.

Hβ, Hα, Hγ and Ca (H+K) among others) with the IRAF task rvidlines. To derive a robust deter-

mination for the radial velocities, we performed for a given star the cross-correlation against the

template in four different spectral regions that span the entire spectral coverage, from the bluest

part out to the reddest part of the spectrum. Then, the four values were averaged together, ob-

taining typically internal errors of » 25-30 km s´1. We obtained an average Vr ad of 317 km s´1

with a dispersion of 11 km s´1, which fully agrees with the previous determination by Yong and

Grundahl (2008), Villanova et al. (2010), and Carretta et al. (2010d).

4Before co-adding we checked that the shifts between spectra from different exposures were negligible compared to
our wavelength calibration uncertainty (30 km s´1) .
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3.2 CH and CN index measurements of NGC 1851 stars

Spectral indices are defined as a window centered on the molecular band of interest and

one or two windows around it to define the continuum level. For each spectrum, S(3839) and

CH(4300) indices sensitive to the absorption by the 3883 Å CN band and the 4300 Å CH band were

measured. Several spectral index definitions exist in literature, generally optimized to quantify

the CN content of the atmospheres of red giant stars. In our case, to be consistent with the

previous work of Pancino et al. (2010), we decided to adopt the indices as defined in Harbeck

et al. (2003):

S(3839) =´2.5log
F3861´3884

F3894´3910

S(4142) =´2.5log
F4120´4216

0.5F4055´4080 +0.5F4240´4280

C H(4300) =´2.5log
F4285´4315

0.5F4240´4280 +0.5F4390´4460
.

In particular, the S(3839) index we used differs from that of Norris (1981) or Norris and Free-

man (1979), and it accounts for stronger hydrogen lines in the region of CN feature for stars

cooler than red giants. As an additional check, we defined and measured two different CN band

indices in the wavelength region covered by our spectra: the S(3839) for the CN band around

3880 Å and the S(4142) for the one around 4215 Å5. We obtained index measurement uncertain-

ties with the expression derived by Vollmann and Eversberg (2006), assuming pure photon noise

statistics in the flux measurements. In addition, we measured the two indices centered around

the calcium H and K lines and the Hβ line as defined again in Pancino et al. (2010) to reject out-

liers from our sample.

The final reduced spectra generally show a strong decline of the signal toward bluer wave-

lengths. This is largely expected and may be due to the different instrumental efficiency, higher

absorption of the Earth’s atmosphere in the blue and stellar flux wavelength dependency (see Co-

hen et al., 2002, for a complete discussion). The CH band at 4300 Å is not affected by the change

in spectral slope from atmosphere or instrumental effects thanks to two continuum bandpasses.

On the other hand, we had to rely only on a single continuum bandpass in the red part of the

spectral feature for the 3883 Å CN band. Following Cohen et al. (2002, 2005), we decided to nor-

malize the stellar continuum in the spectrum of each star, then found the absorption within the

CN bandpass. Moreover, by fitting the continuum, we were able to directly compare the indices

measured in this section and the abundances derived from spectral synthesis in Sect. 3.3. We

fitted a third-order polynomial masking out the region of the CN band (see Cohen et al., 2005).

The polynomial fitting used a 6σ high and 3σ low clipping, running over a five pixel average.

5As discussed by different previous authors, the S(3839) index is found to be by far much more sensitive to CN
variations with respect to S(3839). For the S(4142) index, the spread is generally of the size of (or slightly wider) than the
median error bar on the index measurements. Therefore, we decided to rely only on the S(3839) index measurements
throughout the rest of this Chapter.
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Then we computed S3839 indices from these continuum-normalized spectra and used the av-

erage (0.126˘0.04 and 0.05˘0.01 for IMACS and FORS2 spectra respectively) to set a zero point

offset and thus delete the instrumental signature present in the raw S(3839) indices.

The measured indices are listed in Table 3.5 and plotted in Fig. 3.4.

3.2.1 Eliminating dependencies on temperature and gravity

CN and CH bands are stronger at a fixed overall abundance for stars with lower tempera-

ture and gravity. In particular, the formation efficiency of the CN molecule strongly depends on

the temperature, therefore we expect the indices depend on the color of the single stars. These

dependencies are usually eliminated (see Harbeck et al., 2003; Kayser et al., 2008, for example)

by fitting the lower envelope of the distribution in the index-magnitude plane (or index-color

plane). For our sample, we used the median ridge line, shown as dashed red lines in Fig. 3.4, to

eliminate these dependencies (see Pancino et al., 2010). These rectified CN and CH indices are

Figure 3.3: Panel a: example of the windows from which we measured the CN and CH in-
dices (dark gray hatched regions) together with their respective continuum windows (light gray
hatched regions). Panels b and c show the windows adopted for the H and K calcium index and
the Hβ index. The non-normalized superimposed spectrum (star 41213, S/N»35 in the S3839
region) was smoothed for clarity. Panel d: Observed (small black dots) and synthetic (line) spec-
tra around CH band for the star 15490. The black best fits, while the red and green lines are the
syntheses computed with C abundance altered by ˘ 0.10 dex from the best value. Panel e: The
same as in panel d but for the CN feature for the star 40062. The synthetic spectra show the best
fit (thick black line) and the syntheses computed with N abundance altered by˘ 0.20 (thick red
and green lines).
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Figure 3.4: Measured S(3839) and CH(4300) indices for the program stars as a function of V .
White dots are stars from Pancino et al. (2010), while black dots are from the IMACS sample.
Dashed red lines in both panels are the median ridge lines used to eliminate temperature and
gravity dependencies.

in the following indicated as δS(3839) and δCH(4300), respectively, and we refer to these new

indices throughout the rest of this Chapter6. For the stars in common between this work and

Pancino et al. (2010), the mean difference in the δS(3839) and δCH(4300) indices, derived by

subtracting Pancino et al.’s values from ours, are 0.00 ˘ 0.02 mag and –0.01˘0.01 mag, respec-

tively. Because we adopted the same reduction procedures as in Pancino et al. (2010), we can

only ascribe this small difference to the continuum normalization we performed.

3.2.2 CN and CH distribution

Variations of several light elements and anticorrelations between strengths of the CN and

CH bands were detected for very many clusters. Because molecular abundance is controlled by

the abundance of the minority species, the corrected CH index is a proxy for carbon abundance,

while δS(3839) traces the nitrogen abundance. The visual inspection of the top panel of Fig. 3.4

reveals significant scatter in the CN index over the magnitude range with V Á 19.5 mag with

some hints of bimodality toward the brightest tail of the distribution.

The range of CN becomes less evident at fainter luminosities as a consequence of the in-

creasing temperature. In the bottom panel of the same figure, we plot the CH(4300) and S(3839)

6We obtained a rough estimate of the uncertainty in the placement of these median ridge lines by using the first
interquartile of the rectified indices divided by the square root of the total points. The uncertainties (typically„ 0.01 for
the CN index and„ 0.005 for the CH index) are largely negligible for the applications of this work.
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versus the stellar V -band magnitudes. Here the variations among the measured index are very

small and within the uncertainties.

Figure 3.5 shows the rectified index δS(3839) as a function of δCH(4300) for all stars. We

found no evidence for a significant CH-CN anticorrelation, similarly to what was found by Pan-

cino et al. (2010).

3.3 Spectral synthesis and abundance derivations

Indices are a fast tool to characterize chemical anomalies, but we can also rely on spectral

synthesis to fully characterize our target stars. This becomes necessary when indices do not

offer conclusive answers, as we saw in the previous sections.

3.3.1 Atmospheric parameters

We derived estimates of the atmospheric parameters from the calibrated ACS and FORS2

photometry presented in Sect. 3.1. Dereddened (V ´ I )0 colors were obtained adopting E(B´V )

= 0.02 (Harris, 1996; 2010 edition). We obtained effective temperatures and bolometric correc-

tions (hereafter Te f f and BCV ) with the Alonso et al. (1996, 1999, 2001) color-temperature rela-

tions, adopting [Fe/H]= –1.22 from Yong et al. (2009), and taking into account the uncertainties

in the magnitudes and reddening estimates. Alonso et al. (1996, 1999) adopted Johnson’s system

Figure 3.5: Plot for the distribution of CN and CH band strengths. Gray dots show measurements
for stars. CH-weak and CH-strong stars are separated by the horizontal dashed line and their
centroids with error bars (drawn at 1σ) are marked as black dots and large empty dots, respec-
tively.
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as a reference, therefore we converted (V ´IC ) into (V ´I J ) after dereddening using the prescrip-

tions by Bessell (1979) to feed the Alonso et al. (1996, 1999, 2001) calibration. Gravities were then

obtained by means of the fundamental relations

log
g

gd
= log

M

Md
+2log

Rd
R

,

0.4 (Mbol ´Mbol ,d) =´4log
Te f f

Te f f ,d
+2log

Rd
R

,

where we assumed the solar values reported in Andersen (1999): log gd = 4.437, Te f f ,d =

5770K and Mbol ,d = 4.75. For all our stars, we assumed a typical mass of 0.8 Md (Bergbusch and

VandenBerg, 2001) and a distance modulus of (m´M)V = 15.47 (Harris, 1996; 2010 edition).

Finally, we obtained the microturbulent velocities (vt ) from the relation log g and vt , i.e.,

vt = 1.5´ 0.03log g as in Carretta et al. (2004). This method leads to an average microturbu-

lent velocity estimate of vt = 1.0˘ 0.1 kms´1, therefore we assumed vt = 1.0 km s´1 for the

entire sample. An additional check to test the reliability of our atmospheric parameter deter-

mination was performed using theoretical isochrones downloaded from the BaSTI7 database

(Pietrinferni et al., 2006). We chose an isochrone of 11 Gyr (12 Gyr for the faint-SGB) with stan-

dard α-enhanced composition, and metallicity Z = 0.002 and we projected our targets on the

isochrone to obtain their parameters. We present the average difference between the two meth-

ods in Fig. 3.6. In the top panel we plot the difference in temperature obtained using the Alonso

et al. (1999) calibration and the temperature obtained by projection of the stars on the BaSTI

isochrones as a function of the temperature derived by means of the Alonso et al. (1999) empiri-

cal relations. The scatter for high temperatures is significant, as largely expected, because these

empirical calibrations were obtained for giant stars and therefore are valid in a precise range of

colors. On the other hand, the scatter is modest (and in many cases within the uncertainties)

when comparing temperatures obtained by using theAlonso et al. (1999) and Alonso et al. (1996)

relations (see bottom panel of Fig. 3.6), where the latter was derived for low main sequence stars.

However, we preferred to avoid using temperatures derived by isochrone fitting mainly for these

reasons: (a) we cannot assume a priori that the cluster is a single population (with the same

[Fe/H] and CNO content, among others) and (b) the projection on the (V ,V ´ I ) plane is always

uncertain, and a rigorous treatment should include (asymmetrical) errors on the V magnitude

and V´I color, and finally, (c) different sets of isochrones (Padova, BaSTI, and DSEP for example)

give different results.

As discussed in the following sections, even if the differences between the two temperatures

scales appear non-negligible, the main results of this analysis appear totally unchanged if we

adopt one or the other temperature scale. This is mainly because the abundances ranking among

target stars is left unchanged. We therefore preferred to rely on the Alonso et al. (1999) parameter

estimates and discuss the effect of the chosen temperature scale below.

7http://albione.oa-teramo.inaf.it/

http://albione.oa-teramo.inaf.it/
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Figure 3.6: Top panel: Differences in the temperature estimates by means of isochrone projec-
tion procedure and using the Alonso et al. (1999) relation (∆(Ti so ´TA99)) as a function of the
Alonso et al. (1999) temperature (TA99) for all our target stars. Bottom panel: The same, but for
the Alonso et al. (1996) calibration (TA96).

3.3.2 Abundances derivation

We used the local thermodynamic equilibrium (LTE) program MOOG (Sneden, 1973) com-

bined with the ATLAS9 model atmospheres (Kurucz, 1993, 2005) to determine carbon and nitro-

gen abundances. The atomic and molecular line lists were taken from the latest Kurucz compi-

lation and downloaded from F. Castelli’s website8.

Model atmospheres were calculated with the ATLAS9 code starting from the grid of mod-

els available in F. Castelli’s website, using the values of Te f f , log g , and vt determined as ex-

plained in the previous section. The ATLAS9 models employed were computed with the new set

of opacity distribution functions (Castelli and Kurucz, 2003) and excluding approximate over-

shooting in calculating the convective flux. For the CH transitions, the log g obtained from the

Kurucz database were revised downward by 0.3 dex to better reproduce the solar-flux spectrum

by Neckel and Labs (1984) with the C abundance by Caffau et al. (2011), as extensively discussed

in Mucciarelli et al. (2011).

C and N abundances were estimated by spectral synthesis of the 2Σ–2Π band of CH (the G

band) at „4310 Å and the UV CN band at 3883 Å (including a number of CN features in the

wavelength range of 3876 – 3890 Å), respectively. Lower panels of Fig. 3.3 illustrate the fit of syn-

thetic spectra to the observed ones in CH and CN spectral regions. Abundances for C and N were

determined together in an iterative way, because for the temperature of our stars, carbon and

8http://wwwuser.oat.ts.astro.it/castelli/linelists.html

http://wwwuser.oat.ts.astro.it/castelli/linelists.html
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Figure 3.7: [C/H] and [N/H] abundances for the NGC 1851 SGB, TO and MS stars in Table 3.5
are plotted. A C versus N anticorrelation is evident. Stars that have already experienced some
mixing episode are shown as large white dots, while three notable outliers are represented as
large triangles (see text for comments). Histograms of [N/H] and [C/H] with typical median error
bars are also plotted in this figure.

nitrogen form molecules and as a consequence their abundances are related to each other. The

input model atmosphere was used within MOOG running the synth driver which computes a set

of trial synthetic spectra at higher resolution (0.3 Å intervals) in the spectral region between 4150

– 4450 Å, varying the carbon abundance in steps of 0.1 dex typically in the range of –0.2 to –1.2

dex to fit a full band profile. After the synthesis computations, the generated spectra were con-

volved with Gaussians of appropriate FWHM to match the resolution of the observed spectra. In

this way, the carbon abundances were derived by minimizing the observed-computed spectrum

difference and were used to determine A(C). The carbon abundance was then used as input in

the synthesis of the UV CN feature to derive nitrogen abundances. The procedure was repeated

until we obtained convergence within a tolerance of 0.1 dex in the C and N abundances.

For the results presented here, a fit was determined by minimizing the observed-computed

spectrum difference in a 60 Å window centered on 4300 Å for the CH G-band and 40 Å window for

the UV CN feature at 3883 Å. Running synth on quite a broad spectral range (200 and 300 Å for

the G-band and the CN feature, respectively) to produce synthetic spectra allowed us to set a

reasonable continuum level also by visual inspection and thus to compute robust abundances.

We adopted a constant oxygen abundance ([O/Fe]=0.4 dex) throughout all computations.

The derived C abundance is dependent on the O abundance and therefore so is the N abun-

dance, and in molecular equilibrium an over-estimate in oxygen produces an over-estimate of
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carbon (and vice versa), and an over-estimate of carbon from CN features is reflected in an

under-estimate of nitrogen. We expect that the exact O values will affect the derived C abun-

dances only negligibly, since the CO coupling is marginal for stars warmer than„ 4500 K. To test

the sensitivity of the C abundance to the adopted O abundance we varied the oxygen abundances

and repeated the spectrum synthesis to determine the exact dependence for a few representative

stars in a wide range of Te f f (from 5200 to 5900 K). In these computations, we adopted [O/Fe]=

–0.5, [O/Fe]= 0.0, and [O/Fe]= +0.5 dex. We found that strong variations in the oxygen abundance

slightly affect (δA(C )/δ[O/Fe]» 0.15 dex) the derived C abundance in colder stars (Te f fď 5400

K), while they are completely negligible (on the order of 0.05 dex or less) for warmer stars. This

is within the uncertainty assigned to our measurement.

The total error in the A(C) and A(N) abundance was computed by taking into account the two

main sources of uncertainty: (i) the error in the adopted Te f f , typically δA(C)/δTe f f » 0.08–0.10

dex and δA(N)/δTe f f » 0.11–0.13 per 100 K for the warmest stars in our sample9; (ii) the error in

the fitting procedure and errors in the abundances that are likely caused by noise in the spectra10.

The errors due to uncertainties on gravity and microturbulent velocity are negligible (on the

order of 0.02 dex or less). The sensitivity of the derived abundances to the adopted atmospheric

parameters was obtained by repeating our abundance analysis and changing only one parameter

at each iteration for several stars that are representative of the temperature and gravity range

explored. Thus, we assigned the internal error to each star depending on its Te f f and log g . The

errors derived from the fitting procedure were then added in quadrature to the errors introduced

by atmospheric parameters, resulting in an overall error of„˘0.14 dex for the C abundances and

„˘0.28 dex for the N values.

Very recently Carretta et al. (2010d) found in NGC 1851 a small spread in metallicity for a large

number of giants, which is compatible with the presence of two different groups of stars whose

metallicity differs by 0.06-0.08 dex (but this result was not confirmed in Villanova et al., 2010) .

This finding could affect our analysis in principle, because we adopted the same metallicity for

all our stars in the synthesis ([Fe/H]=–1.22 dex). To test this effect we repeated the synthesis by

altering the metallicity of stars belonging to the faintest SGB by 0.10 dex (well above the spread

claimed by Carretta et al., 2010d). The resulting abundance variations are within the uncertainty

assigned to our measurement (typically δA(C )/δ[Fe/H ]» 0.07 dex and δA(N )/δ[Fe/H ]» 0.04

dex) for our low-resolution spectra. Therefore this potential small [Fe/H] variation among our

spectroscopic targets has no influence on our analysis and conclusions. We present the abun-

dances derived as described above and the relative uncertainties in the abundance determina-

tion in Table 3.5. Additionally, this table lists the derived atmospheric parameters of all our tar-

gets.

9Cooler stars are slightly less sensitive to Te f f variations, typically at a level of δA(C)/δTe f f » 0.07–0.08 dex and
δA(C)/δTe f f » 0.09-0.11 dex per 100 K.

10Additionally, in the treatment of internal error for nitrogen we varied the carbon abundance by˘0.10 dex (that is
the typical error associated to A(C)). We added these errors in quadrature with those introduced by the model atmosphere
to estimate the internal uncertainty of the A(N) values.
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3.3.3 C and N abundance results

Fig. 3.7 plots [C/H] versus [N/H] measured for our sample stars. We observe strong star-to-

star variations in both elements, as already observed in all GCs studied to date. An anticorre-

lation, with considerable scatter, is apparent from Fig. 3.7. The scatter is consistent with the

observational errors, but there are a few outliers. In a sample of 64 objects with Gaussian errors,

two outliers at the 3 σ level are not expected. The deviation of stars 41350 (V = 19.3) and 40022

(V =19.9) with extremely depleted C, from the mean relation shown by the NGC 1851 sample in

Fig. 3.7 is of higher statistical significance. We cannot provide a reliable explanation for this. Both

stars are from the Pancino et al. (2010) sample and, judging from their radial velocities, are cluster

members. Moreover, their V , I magnitudes do not have large errors. As a tentative hypothesis we

suggest that these two stars could belong to the extreme population, using the scheme suggested

by Carretta et al. (2009c).

All our stars are C-depleted, with moderately weak variations in carbon abundances (from

[C/H]»–2.7 to [C/H]»–1.5 dex) anticorrelated with strong variations in N. The nitrogen abun-

dance spans almost 2 dex, from [N/H]»–1.9 up to [N/H]»0.0 dex11. To check the dependence of

the carbon and nitrogen abundances on the adopted temperature scale, we re-ran the synthe-

sis using the atmospheric parameters derived by isochrone fitting (see Sect. 3.3.1). The result of

this exercise is shown in Fig. 3.8. As can be seen from this figure, the carbon abundances would

be higher considering these higher temperatures (ranging from » 0.2 dex for giants up to 0.4-

0.5 dex for MS stars). This reflects on the nitrogen abundances, as demonstrated in the bottom

panel of the same figure. This is only to show that the abundances ranking among target stars

is left unchanged: while the zero point of our derived abundances would shift, the amplitude

of the star-to-star variations for C and N would remain similar regardless of the adopted stellar

parameter. Therefore, our conclusions do not depend on the adopted stellar parameters.

Evaluating the accuracy of our absolute abundance scale is very difficult because we found

no literature data to compare with. Fig. 3.9 compares the C and N abundances derived here to

the abundances derived for M 5 by Cohen et al. (2002), a cluster with a metallicity comparable

(»–1.29; Harris, 1996, 2010 edition) to that of NGC 1851. In panel (a) we present a comparison

between C and N abundances derived by assuming the Alonso et al. (1999) temperature scale and

abundances derived by Cohen et al. (2002) for stars at the base of the RGB in M 5, while panel

(b) refers to isochrones-fitting temperatures. In both panel a clear C-N anticorrelation is appar-

ent. According to theoretical computations and earlier investigations, the carbon abundance

declines from MS to RGB. In panel (a) there is a mild disagreement with the Cohen et al. (2002)

data; that is completely reconciled in panel (b). This effect can be entirely explained because

Cohen et al. (2002) used atmosphere parameters obtained from the isochrone. Still, although

there is an offset, the two anticorrelations seem to follow a similar pattern. We conclude again

11If we exclude the outliers discussed above.
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Figure 3.8: Comparison of carbon (top) and nitrogen (bottom panel) abundances derived by
adopting different temperature scales ("A99" refers to the Alonso et al., 1999 calibration and "iso"
to the isochrones fitting procedures) with their relative uncertainties.

from Fig. 3.9 that the anticorrelation we observe is totally untouched by the choice of the tem-

perature scale, and shifts in the absolute abundance scale cannot account for the wide range in

N abundances apparent in Fig. 3.7.

We therefore conclude that the C versus N anticorrelation among unevolved NGC 1851 stars

in Fig. 3.7 is indeed real and from here on we will therefore only present results based on the

Alonso et al. (1999) temperature scale.

We also plotted the derived abundances as a function of the V magnitude and V ´ I color in

Fig. 3.10 to evaluate possible systematic effects with luminosity and temperature.

While none of these effects are apparent, we can tentatively identify the occurrence of a mix-

ing episode for NGC 1851 stars from this plot. The top panel of Fig. 3.10 shows a notable decline

in the carbon abundances for stars with V À18.9 and (V ´ I )Á0.8 (stars marked as white dots

in the same figure), which is expected for stars in the course of normal stellar evolution. This

behavior of the C abundance allows us to identify stars that experienced a major mixing episode,

which may alter the primordial abundances. Curiously enough, these stars, plotted again as large

white dots, seem to define a pretty clear and narrow anticorrelation in Fig.3.7 (Spearman’s rank

correlation coefficient –0.92). The shape of this anticorrelation agrees with what we expect after

the occurrence of a mixing episode: the high N enhancement found in unevolved or less-evolved

stars is strongly softened by evolutionary effects and a large part of dwarfs and early subgiants

have N abundances as high as those observed in slightly evolved RGB stars. We identify, again

from Fig. 3.10, three outliers, coded as empty triangles as in Fig. 3.7. Two of these stars were

found to deviate significantly from the main C-N relation if Fig. 3.7. We call these anomalous
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Figure 3.9: Panel (a): [C/Fe] and [N/Fe] abundances for NGC 1851 stars. Stellar atmospheres
and spectral syntheses were derived by assuming the Alonso et al. (1999) temperature scale. The
symbols are the same as in Fig. 3.7. Abundances and relative uncertainties for stars in M 5 from
Cohen et al. (2002) are also shown as crosses for comparison. Panel (b): the same as in the left
panel, but assuming temperatures and gravities obtained from the isochrones.

only by virtue of their positions in the upper panel of Fig. 3.10 and decided to not consider them

further.

At this point we note that we cannot arbitrarily distinguish between two groups of stars with

different [N/H] or [C/H] because we are unable to detect any clear bimodality. To be more quan-

titative, we ran the dip test on unimodality (Hartigan and Hartigan, 1985). We performed this

simple statistical test only on stars with a magnitude V < 18.9 mag and can confirm that there is

no bimodality in either the [C/H] or [N/H].

3.4 The chemical composition of the double RGB and SGB

As already discussed above, the discovery of multiple sequences in the CMD of NGC 1851

provided unambiguous proof of the presence of multiple populations and brought new interest

and excitement about this GC. While it is now widely accepted that NGC 1851 hosts two or more

stellar populations, the connection among its multiple SGBs, RGBs, and HBs is still controversial

and the chemical composition of the two SGBs is also debated.

Several authors suggested that the groups of s-rich and s-poor stars detected from RGB-star

spectroscopy are the progeny of the faint- and bright-SGB, respectively (e. g. Milone et al., 2008,

Yong and Grundahl, 2008), in close analogy to what was observed in M 22 and ω Centauri (e.
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Figure 3.10: Derived C and N abundances are plotted against the photometry for NGC 1851 stars.
No systematic trends with either luminosity or temperature are apparent in the abundances. We
call stars marked as black empty triangles anomalous, while stars that supposedly underwent
some mixing episodes are plotted as empty dots (see text).

g. Marino et al., 2009, 2011; Johnson and Pilachowski, 2010; Pancino et al., 2011a). In contrast,

Carretta et al. (2011b) claimed that the faint-SGB consists of barium-poor metal-poor stars while

bright-SGB stars have an enhanced barium and iron abundance.

3.4.1 Photometric connection between SGB and RGB

To investigate this question in more detail, we started analyzing literature photometry. We

used the WFC/ACS HST CMD in F 606W and F 814W bands presented in Milone et al. (2008) (see

Sarajedini et al., 2007; Anderson et al., 2008, for details) and the Strömgren u, b, v , y photometry

from Grundahl et al. (1999) and Calamida et al. (2007). Here we are interested in high-quality

photometry and included in the analysis only relatively isolated, unsaturated stars with good

values of the PSF-quality fits and small rms errors in astrometry and photometry. A detailed de-

scription of the selection procedures is given in Milone et al. (2009b, Sect. 2.1). We corrected

our photometry for remaining spatially dependent errors, caused by small inaccuracies of the

PSF model (see Anderson et al., 2008). To account for the color differences of these variations

we followed the recipes from Milone et al. (2012b, Sect. 3). Briefly, we defined a fiducial line for

the MS by computing a spline through the median colors found in successive short intervals of

magnitude, and we iterated this step with a sigma clipping; then we examined the color residu-

als relative to the fiducial and estimate for each star, how the observed stars in its vicinity may
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Figure 3.11: CMD for NGC 1851 from Strömgren photometry. The inset shows a zoom of the SGB
region. Only stars with high-quality photometry were plotted (see Sect. 3.4.1 for details). Note
the discrete double RGBs connected with the bimodal SGBs.

systematically lie to the red or the blue of the fiducial sequence. Finally we corrected the star’s

color by the difference between its color residuals.

To study multiple populations from the CMD analysis, we started searching for the combi-

nation of magnitude and colors that provides the best separation of the two RGBs and SGBs in

NGC 1851. Results are illustrated in Fig. 3.11 where we plot u as a function of (u´ y)+(v´b). A

visual inspection of this diagram leaves no doubts on the presence of a bimodal RGB and SGB

and shows that the faint-SGB and the bright-SGB are clearly connected with the red- and the

blue-RGB, respectively. A similar connection between the two SGBs and RGBs has already been

observed for NGC 1851 by Han et al. (2009a) in the U versus (U´ I ) CMD and was studied more

recently by Sbordone et al. (2011) (see Sect. 1.2.4). These authors showed that while the double

SGB is consistent with two groups of stars with either an age difference of about one Gyr or with

different C+N+O overall abundance, the double RGB seems to rule out the possibility of a large

age difference.

Fig. 3.11 revealed that the bimodality found in the SGB can also be seen in the RGB. To further

confirm our association of the faint-SGB (bright-SGB) component with the red-RGB (blue-RGB),

we focused on the relative number of stars of all evolutionary stages. To estimate the fraction of

stars in the two RGBs we used only RGB stars between the two dashed lines in the magnitude
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Figure 3.12: Main panel: Reproduction of the CMD of Fig. 3.11. We used red color codes for red-
RGB and faint-SGB stars, while blue-RGB and bright-SGB stars are represented in blue. Symbols
refer to stars from spectroscopic studies as indicated in the figure. The rectified CMD and the
histogram color distribution of RGB stars between the two dashed lines is shown in the inset (see
text for details).

interval where the split is more evident (main panel of Fig. 3.12). The procedure is illustrated in

the inset of Fig. 3.12.

To obtain the straightened RGB of the right-hand panel, we subtracted from the color of each

star the color of the fiducial sequence at the u magnitude of the star. The color distribution of

the points in the middle panel were analyzed in two magnitude bins. The distributions have two

clear peaks, which we fitted with two Gaussians (red for the red-RGB and blue for the blue-RGB).

From the areas below the Gaussians, 70˘3% of stars turn out to belong to the blue-RGB, and

30˘3% to the red one. With the statistical uncertainties these fractions are the same in both

magnitude intervals and roughly match the relative frequency on the fainter/brighter SGBs (35%

versus 65%, Milone et al., 2008) and HB stars on the blue/red side of the instability strip (35%

versus 65%).

3.4.2 Chemical composition of NGC 1851 subpopulations

Because the chemical abundance determinations presented so far do not define any clear

bimodality, the clear separation of the sequences of Fig. 3.11 provides a unique opportunity to

obtain information on the chemical differences between the two RGBs and SGBs in NGC 1851.
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To do this, we used a u, (u´ y) + (v ´ b) diagram to isolate the samples of blue-RGB and

bright-SGB stars, and red-RGB and faint-SGB stars. Then we plotted with red and blue symbols

the red-RGB and blue-RGB stars for which abundance measurements are available from high-

resolution spectroscopy.

Our analysis of the chemical abundance patterns of the two RGBs is summarized in Fig. 3.13.

Lower panels show [Fe/H] versus the abundances of the s-process elements barium and lan-

thanum measured by Yong and Grundahl (2008), Villanova et al. (2010), and Carretta et al. (2011b)

from GIRAFFE and UVES data. The histogram of the s-element distribution is illustrated in the

middle panel, while upper panels plot [Na/Fe] versus [O/Fe].

The average iron, barium, lanthanum, sodium, and oxygen abundances are listed in Table 3.3

for the two groups of stars. In the light of our analysis of literature photometric and spectroscopic

data we are now able to characterize the two RGBs and SGBs of NGC 1851 as follows:

´ Faint-SGB and red-RGB stars are photometrically connected, therefore they represent the

same subpopulation of NGC 1851; the same can be said about bright-SGB and blue-RGB

(see also Marino et al., 2012b, for the case of M 22). This connection is supported by the

relative (percentage) numbers of the sequences; therefore the data do not support the in-

terpretation by Carretta et al. (2010d) that the red-RGB is associated to the bright-SGB. This

Figure 3.13: Upper panel: Na-O anticorrelation among NGC 1851 RGB stars from HR spec-
troscopy studies. Red color refers to stars photometrically selected to belong to the red-RGB
in the Strömgren u, (u´ y)+ (v ´ b) diagram, while stars located on the blue-RGB are shown
in blue. Symbols and color code are consistent with those of Fig. 3.12. Bottom panel: The run
of [La/Fe] versus [Fe/H] and the normalized number distribution for red and blue stars in this
plane. The color code is consistent with the upper panel.
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Table 3.3: Mean abundances for NGC 1851 stars from high-resolution studies.

Element Abund (blue RGB) Nst ar s Abund (red RGB) Nst ar s Ref.
[La/Fe] 0.27˘0.02 5 0.61˘0.05 3 1
[Na/Fe] –0.05˘0.11 5 0.57˘0.15 3 1
[O/Fe] 0.50˘0.04 5 0.17˘0.14 3 1
[Fe/H] –1.29˘0.04 5 –1.23˘0.07 3 1
[Ba/Fe] 0.09˘0.02 8 0.52˘0.03 7 2
[Na/Fe] 0.04˘0.11 8 0.47˘0.07 7 2
[O/Fe] 0.09˘0.07 8 –0.19˘0.08 7 2
[Fe/H] –1.23˘0.01 8 –1.22˘0.01 7 2
[Ba/Fe] 0.43˘0.02 72 0.78˘0.04 21 3a

[Na/Fe] 0.13˘0.03 81 0.47˘0.04 24 3a

[O/Fe] 0.04˘0.02 66 –0.14˘0.05 17 3a

[Fe/H] –1.16˘0.01 82 –1.15˘0.01 24 3a

[Ba/Fe] 0.51˘0.04 8 0.94˘0.09 3 3b

[Na/Fe] 0.20˘0.07 8 0.57˘0.11 3 3b

[O/Fe] 0.12˘0.08 8 –0.27˘0.13 3 3b

[Fe/H] –1.18˘0.01 8 –1.14˘0.08 3 3b

(1) Yong and Grundahl (2008); (2) Villanova et al. (2010); (3) Carretta et al. (2011b).
Red- and blue-RGB stars are defined according to their location with respect to the ridge line
used to define color residuals in Fig. 3.12.
a GIRAFFE data b UVES data

SGB - RGB connection was later confirmed also by Joo and Lee (2012) and Gratton et al.

(2012c) 12.

´ Literature data suggest that the red-RGB stars tend to be enriched on average in Na and

s-process elements, and poor in oxygen, while blue-RGB stars appear to have their own,

extended anticorrelation and to be solar in Ba and s-process elements. This is particularly

evident in the Carretta et al. (2011b) dataset, which also has the highest statistical value.

´ Red-RGB (and thus faint-SGB, according to our interpretation above) stars are enhanced

in barium and lanthanum by„0.3-0.4 dex with respect to the blue-RGB (and consequently

the bright-SGB).

´ The literature data suggest that there is no significant iron difference between the two

groups of stars. In this context we recall that Yong and Grundahl (2008) and Carretta et al.

(2011b) detected a significant [Fe/H] variation among both s-rich and s-poor stars but

these results strictly disagree with the narrow iron distribution observed by Villanova and

collaborators. The presence of an intrinsic iron spread among NGC 1851 stars is still con-

troversial.

12See also Gratton et al. (2012b) for the HB-RGB connection.



84 A spectroscopic and photometric investigation of the split SGB in NGC 1851

3.4.3 C and N abundances along the double SGB

In this section we present the chemical composition of stars on the two SGBs of NGC 1851. A

bona fide sample of stars that belong unambiguously either to the faint-SGB or to the bright-SGB

were selected using both the V , V ´ I and u, (u´ y)+ (v´b) diagrams (see Fig. 3.14).

The C and N abundances of these bona fide stars are plotted in Fig. 3.15, where it is imme-

diately clear that stars belonging to the bright-SGB show a fully developed anticorrelation, while

stars belonging to the faint-SGB appear to have a smaller scatter, and to have on average an ex-

cess of N (this remains still valid when considering temperatures derived by isochrone fitting as

input of the synthesis, as anticipated in Sect. 3.3.3). This new result supports our previous iden-

tification of the faint-SGB as the parent population of the red-RGB, and of the bright-SGB as the

parent of the blue-RGB, not only on the basis of photometry and population ratios, but also on

the basis of chemical composition.

Cassisi et al. (2008) and Ventura et al. (2009) argued that the overall CNO abundance differ-

ence could account for the SGB split. Yong et al. (2009) found evidence for strong CNO variations

in contradiction with the the results of Villanova et al. (2010). To further investigate this hypothe-

sis, we computed the C+N sum for our bona fide faint-SGB and bright-SGB stars. We then derived

the histograms of the distribution of the C+N sum. In the left panel of Fig. 3.16, we plot the his-

tograms for the entire dataset (faint-SGB + bright-SGB bona fide stars) with the typical (median)

Figure 3.14: Left panel: selected bright-SGB (marked as blue dots) and faint-SGB (shown as red
squares) stars are over plotted on the V ,V´I CMD presented by Milone et al. (2008). Right panel:
selected bright- and faint-SGB stars are shown in the Strömgren u, (u´ y)+(v´b) diagram. The
color code is consistent with the left panel.
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error bar indicated. The histogram shows a high dispersion with a hint of bimodality (with two

clumps separated at A(C+N)»7.35). For this larger dataset, according to a KMM test (Ashman

et al., 1994), a bimodal distribution is a statistically significant improvement over the single Gaus-

sian at a confidence level of 89%. However, a much clearer result is obtained when histograms are

built considering the bright- and the faint-SGBs separately (right panel of Fig. 3.16): they have a

different (averaged) C+N content, the faint-SGB having A(C+N)» 7.64˘0.24 and the bright-SGB

A(C+N)» 7.23˘0.3 (A(C+N)» 7.80˘0.19 and A(C+N)» 7.47˘0.26; using isochrone fitting tem-

peratures, respectively, see Sect. 3.3.3). As an additional check, we performed a two-sample KS

test computing the probability that these two samples are drawn from the same parent distri-

bution and found a rather high (PK S „0.03) significance of the difference in the bright-SGB and

faint-SGB distribution of A(C+N).

From Fig. 3.15 bright-SGB stars appear to be on average more N-poor than their faint-SGB

stars; assuming an N-O anticorrelation, the bright-SGB stars are more O-rich than the faint-

SGB stars. Even though we do not provide oxygen abundances for our SGB stars, we can spec-

ulate on the C+N+O sum for the two SGB components assuming [O/Fe] values from available

measurements. Various oxygen abundance determinations of RGB stars can be found in the

literature. From Fig. 3.13 we just note that large systematic differences exist between different

Figure 3.15: Photometrically selected bright-SGB (marked as blue dots) and faint-SGB (shown
as red squares) stars are represented in the A(C) versus A(N) plane. Stars that we were unable to
unambiguously associate with either of the two populations are shown with open circles.
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Figure 3.16: Left panel: Histogram of the C+N distribution for SGB stars selected as described
in Sect. 3.4.3. The median error bar is plotted below the histogram for reference. Right panel:
Histograms of the C+N sum for bright-SGB (dashed blue) stars and faint-SGB (hatched red) stars
are shown.

determinations of the O content (see also Table 3.3) and we caution readers that assigning a ref-

erence [O/Fe] content to each SGB group could be naïve at this stage. If we assume for the bright

and faint component [O/Fe]»0.1 dex and [O/Fe]»–0.2 dex, respectively13, the separation one

sees in C+N content virtually disappears when considering C+N+O. We found that the faint-SGB

have A(C+N)»7.89˘0.14 and the bright-SGB A(C+N)»7.93˘0.07. The distributions even swap

when considering O abundances suggested by Yong and Grundahl (2008) ([O/Fe]»0.5 dex and

[O/Fe]»0.2 dex for the bright- and faint-SGB stars, respectively14. We conclude that the bimodal-

ity we observe in the C+N sum does not necessarily imply or exclude a bimodality in the C+N+O

content and more observations are needed to settle the case of NGC 1851.

3.5 Summary & conclusions

We presented low-resolution spectroscopy for a large sample of MS and SGB stars in NGC 1851

with the goal of deriving C abundances (from the G band of CH) and N abundances (from the

CN band at „ 3883 Å) and investigating the chemical differences between the two branches of

the double SGB. We derived carbon and nitrogen abundances for 64 stars, whose spectra were

obtained with FORS2 at VLT and IMACS at Magellan and analyzed in a uniform manner.

13We derived these averaged values from the works of Villanova et al. (2010) and Carretta et al. (2010d) reported in
Table 3.3.

14Here we note that our N abundances are systematically lower than Yong et al. (2009), in some case as much as 0.6-
0.7 dex. We can attribute this discrepancy to (a) the different spectral resolution, (b) the different evolutionary status of
program stars (see Fig. 10 of Gratton et al., 2000) and (c) the fact that in Yong et al. (2009) N measurements come from
the CN features at 8005 Å.
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NGC 1851 is one of the most interesting GCs whose CMD displays a discrete structure at the

level of the SGB and of the RGB. The photometric complexity is reflected in a peculiar chemical

pattern that has only recently been investigated in detail. So far, the available abundance studies

in NGC 1851 were limited to evolved stars that belong to the RGB (except for the study of Pancino

et al., 2010). This is the first time that a precise chemical tagging of C and N content is made for

stars directly located in the bright- and faint-SGB component. The main results of our analysis

can be summarized as follows:

˛ We derived CH and CN band index measurements for 23 stars observed with IMACS, the

spectrograph on the Magellan I telescope. We added to our sample spectra from Pancino

et al. (2010). We were able to detect a large scatter and a hint of bimodality in the CN band

strengths toward the brighter luminosities (refer to Fig. 3.4). We did not report any clear

anticorrelation from these index measurements (Fig. 3.5).

˛ We performed spectral synthesis to separate the underlying C and N abundances from the

CH and CN band strengths. Star-to-star strong variations with a significant range in A(C)

and especially in A(N) were found at all luminosities from the MS (V » 20.1 mag) up to the

lower RGB (V » 18.6 mag). C and N abundances are strongly anticorrelated, as would be

expected from the presence of CN-cycle processing exposed material on the stellar surface

(Fig. 3.7).

˛ We used literature photometry in u, b, v , and y Strömgren bands (Grundahl et al., 1999;

Calamida et al., 2007) to define a new color index ((u´ y)+ (v ´b)). We found that the

u versus (u´ y)+ (v´b) diagram is a powerful tool to identify the double RGB and SGB

of NGC 1851 and showed that the faint-SGB is clearly connected with the red-RGB, while

blue-RGB stars are linked to the bright-SGB (Fig. 3.11, see also Han et al., 2009a). Moreover,

the relative frequency on the fainter/brighter SGBs (35% versus 65%) roughly matches the

relative frequency of red-/blue-RGB stars selected in the u, (u´ y)+ (v´b) diagram (30%

versus 70%; see Fig. 3.12).

˛ We photometrically defined blue- and red-RGB stars according to their position on this

bimodal RGB sequence. We used s-elements, Na, O, and iron abundance that are avail-

able from literature for some RGB stars of both populations to investigate their chemical

content. The less populous red-RGB consists of Ba-rich La-rich stars and have, on aver-

age, a higher Na abundance, while the bulk of Ba-poor La-poor stars belong to the blue-

RGB. However, since we have demonstrated that the two RGB and SGB are photometrically

connected, we can confidently extend these results to the two SGB components for these

s-process elements not studied in this work.

˛ Similarly, we isolated bona fide stars on the faint-SGB and bright-SGB using available pho-

tometry and analyzed their chemical composition. We noted a fully extended C-N anticor-

relation for the bright-SGB stars, while faint-SGB stars tend to be richer in N, on average
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(Fig. 3.15). The C-N pattern observed for SGB stars recalls the Na-O anticorrelation ana-

lyzed for RGB stars in previous papers. Specifically, the faint-SGB and bright-SGB samples

are not completely superimposed on one another in the A(C), A(N) plane; but faint-SGB

stars have, on average, a higher nitrogen abundance. This finding rules out the claims by

Carretta et al. (2011b), who suggested that the faint-SGB is also nitrogen-poor.

˛ We analyzed the C+N sum for both bright-SGB and faint-SGB bona fide stars. Bright-SGB

stars have A(C+N)»7.23˘0.31 dex, while for the faint component A(C+N)»7.64.˘0.24 dex.

A difference in logε(C+N) of 0.4 dex as we find implies that the fainter SGB has about 2.5

times the C+N content of the brighter one. According to the Cassisi et al. (2008) scenario,

the faint-SGB is anticipated to have the higher CNO content. The current findings of in-

creased C+N content in the faint-SGB relative to the brighter one agree, in part, with the

Cassisi et al. (2008) results. However, we caution that the separation one sees in C+N con-

tent could significantly decrease or disappear when considering the C+N+O sum (as dis-

cussed in Sect. 3.4.3).

The general picture demonstrates that NGC 1851 shows an impressive resemblance to M 22.

M 22 possesses a spread in s-process elements, iron content (although this is still debated

for NGC 1851), and each of the two populations exhibits its own anticorrelation, with the s-rich

having on average higher C, N, and Na abundances. The chemical anomalies point to a bimodal

SGB and RGB both for M 22 and NGC 1851. Similarly to NGC 1851, also for M 22 the faint-SGB

and the bright-SGB consist of s-rich and s-poor stars (see Marino et al., 2012b).

Since the Na-O and the C-N anticorrelations alone can be considered as the signature of mul-

tiple stellar populations, and both clusters are composed of two groups of stars with different

s-element content (associated to the double SGB and RGB) possibly with their own Na-O, C-N

anticorrelations, we conclude that each group in turn is the product of multiple stellar formation

episodes. Very recently, Campbell et al. (2012) found that the CN band strengths in this cluster

divide into four separate groups in both the RGB and AGB populations. This result fully sup-

port our conclusion for which in NGC 1851 each s-process group is the product of multiple star

formation episodes.

NGC 1851 and M 22 do not harbor only two stellar populations (like normal GC) but have

experienced a much more troubled star-formation history that resembles the case of ω Centauri

(see e. g. discussions in Marino et al., 2009; Da Costa et al., 2009; Da Costa and Marino, 2011;

Roederer et al., 2011; D’Antona et al., 2011),

D’Antona et al. (2011) suggested for ω Centauri a chemical evolutionary scenario where due

to the large mass of the proto-cluster and its possible dark matter halo the material ejected by

SNII may survive in a torus that collapses back onto the cluster after the SN II epoch (see also

D’Ercole et al., 2008). The 3D-hydro simulations by Marcolini et al. (2006) show indeed that

the collapse back includes the matter enriched by the SN II ejecta. This scenario could be easily

extended to M 22 and NGC 1851 (see Marino et al., 2012a). ForωCentauri and M 22 it is tempting

to speculate that enrichments in N and Na and depletion of C and O may have originated from
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the ejecta, collected in a cooling flow, of AGB stars that evolve in the cluster when the gas has

been entirely exhausted by previous star-formation events.

D’Antona et al. (2011) suggested that a poorly discussed site of s–nucleosynthesis that oc-

curs in the carbon burning shells of the tail of lower mass progenitors of SNII (e.g. The et al.,

2007), may become particularly apparent in the evolution of the progenitor systems of ω Cen,

and similarly M 22 and NGC 1851 (see also Roederer et al., 2011).

As an alternative possibility, NGC 1851 has been recently suggested to be the merger-product

of two independent stellar aggregates (van den Bergh, 1996). While this possibility seems un-

likely for globular clusters in the Galactic halo, an origin as a merger product of two independent

star clusters cannot be excluded in dwarf galaxies. In this case, numerical simulations (Bekki

and Yong, 2011) showed that two clusters can merge and form the nuclear star cluster of a dwarf

galaxy. After the parent dwarf galaxy is accreted by the Milky Way, its dark matter halo and stellar

envelope can be stripped by the Galactic tidal field, leaving behind the nucleus (i.e., NGC 1851)

and a diffuse stellar halo (as observed by Olszewski et al., 2009; see also Carballo-Bello et al., 2012

and Sollima et al., 2012). In these respects, it worths to recall the recent conclusions achieved by

Joo and Lee (2012), for which the faint SGB can be explained mostly by the combined effects of

the metallicity and helium enhancements15, while the small variations in the total CNO abun-

dance and age have only a little impact on the CMD. Their main result suggests that the metal-

rich subpopulation is also enhanced in helium abundance. They concluded that, by assuming

that NGC 1851 have formed by simple merging of two GCs having different heavy element abun-

dances initially belonged to a proto-dwarf galaxy, would be difficult to understand why all stars

in initially more metal-rich GC were selectively enhanced in helium abundance, while those in

the metal-poor GC were not the merger scenario.

As already mentioned in the introduction, Carretta et al. (2011b) associated the s-rich and the

s-poor populations to the bright-SGB and the faint-SGB, respectively, with the bright-SGB having

also higher N and Na abundances. According to Carretta and collaborators, the possibility that

the faint-SGB is CNO enhanced should be excluded, demonstrating that the split is caused by an

age difference of „ 1 Gyr between the two populations. In this Chapter we have shown instead

that the faint-SGB is made of N-rich and probably s-rich stars and bright-SGB stars are N-poor

and probably s-poor.

While we added important pieces of information to the general picture, our results do not

provide a conclusive answer on the occurrence of a merger in NGC 1851 and suggest that the

measurement of the overall C+N+O abundance as well as a precise determination of the spa-

tial distribution of the multiple SGBs and RGBs are still mandatory to shed light on the star-

formation history of this GC.

15In their analysis, Joo and Lee (2012) adopted 0.1 dex for ∆ [CNO/Fe] and ∆ [Fe/H] = 0.13 dex between the two
subpopulations
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Table 3.5: Atmospheric parameters and carbon and nitrogen abundances for NGC 1851 stars.

ID Te f f log g A(C) eA(C) A(N) eA(N)
(K)

11219 5193˘ 90 3.4 6.42 0.14 7.29 0.31
11755 5247˘ 93 3.5 6.51 0.12 7.15 0.34
12485 5620˘ 116 3.8 6.64 0.13 7.58 0.53
12925 5746˘ 124 3.9 6.88 0.14 7.73 0.34
13062 5221˘ 92 3.4 6.14 0.14 7.50 0.30
13872 5764˘ 125 3.9 7.10 0.18 7.17 0.35
15182 5139˘ 87 3.4 6.20 0.14 7.45 0.23
15490 5563˘ 112 3.7 7.01 0.13 6.36 0.30
16047 5174˘ 90 3.4 5.90 0.14 7.69 0.26
20295 5191˘ 90 3.4 6.25 0.12 7.48 0.26
40017 5909˘ 135 4.1 6.55 0.13 7.12 0.26
40020 5310˘ 97 3.6 6.47 0.12 7.12 0.19
40022 5774˘ 126 4.2 5.47 0.14 8.67 0.26
40062 5732˘ 123 3.9 6.57 0.11 7.82 0.24
40072 5789˘ 128 4.2 6.44 0.14 7.44 0.26
40083 5792˘ 127 3.9 6.46 0.12 7.20 0.25
40088 5792˘ 127 3.9 6.40 0.12 7.52 0.25
40094 5817˘ 129 4.0 6.32 0.12 7.44 0.23
40097 5753˘ 125 4.2 6.61 0.14 7.34 0.26
40117 5774˘ 126 4.0 6.66 0.12 7.37 0.25
40123 5580˘ 102 3.7 6.60 0.15 7.43 0.53
40191 5902˘ 135 4.1 6.09 0.13 8.00 0.27
40197 5757˘ 125 4.0 6.33 0.13 7.99 0.24
40235 5796˘ 128 4.2 6.42 0.14 8.07 0.24
40239 5890˘ 135 4.1 6.22 0.13 7.66 0.25
40340 5810˘ 129 4.2 6.59 0.13 7.89 0.22
40344 5843˘ 130 4.0 6.64 0.12 7.28 0.27
40348 5796˘ 128 4.2 6.54 0.13 6.32 0.24
40376 5750˘ 124 4.2 6.43 0.15 7.52 0.25
40385 5854˘ 132 4.2 6.56 0.12 7.01 0.26
40424 5757˘ 125 4.0 6.45 0.13 7.40 0.24
40504 5977˘ 140 4.1 6.76 0.13 7.42 0.26
40507 5939˘ 117 3.9 6.72 0.16 7.85 0.29
40508 5872˘ 133 4.1 6.25 0.14 7.47 0.30
40545 5518˘ 100 3.7 6.41 0.16 7.64 0.28
40571 5924˘ 137 4.0 6.33 0.13 7.99 0.25
40575 5785˘ 127 4.2 6.61 0.15 6.66 0.30
40620 5199˘ 86 3.4 6.57 0.14 6.71 0.23
40665 5570˘ 113 3.7 6.50 0.12 7.05 0.22
40709 5757˘ 125 3.9 6.62 0.13 7.95 0.25
40715 5803˘ 129 4.2 6.51 0.13 7.41 0.26
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Table 3.5: Atmospheric parameters and carbon and nitrogen abundances for NGC 1851 stars
(continued).

ID Te f f log g A(C) eA(C) A(N) eA(N)
(K)

40756 5792˘ 127 3.9 6.48 0.12 7.71 0.24
40863 5935˘ 130 4.0 6.31 0.17 7.58 0.36
40874 5905˘ 135 4.0 6.69 0.14 6.96 0.27
40978 5817˘ 130 4.2 6.50 0.18 7.41 0.29
41003 5515˘ 109 3.7 6.47 0.13 6.81 0.22
41018 5244˘ 93 3.6 6.41 0.12 7.05 0.26
41108 5760˘ 125 4.1 6.51 0.14 7.47 0.26
41185 5796˘ 127 3.9 5.78 0.13 7.52 0.27
41213 5626˘ 116 3.8 6.44 0.13 7.77 0.25
41279 5843˘ 131 4.0 6.36 0.14 7.60 0.29
41325 5832˘ 130 4.0 6.66 0.14 7.15 0.25
41350 5806˘ 128 4.0 5.49 0.14 8.57 0.25
41558 5832˘ 130 4.1 6.54 0.14 7.01 0.28
41610 5663˘ 119 3.8 6.45 0.13 6.81 0.22
41807 5136˘ 87 3.5 6.67 0.12 6.37 0.21
41835 5586˘ 114 3.8 6.45 0.13 6.63 0.23
41884 5372˘ 97 3.7 6.34 0.31 7.42 0.36
42073 5817˘ 129 4.0 6.37 0.13 7.72 0.25
42195 5806˘ 128 4.1 6.63 0.13 7.11 0.27
42623 5499˘ 99 3.7 6.94 0.13 6.98 0.22
42785 5905˘ 130 4.1 6.50 0.14 7.80 0.26
42865 5316˘ 93 3.6 6.56 0.20 7.00 0.30
43014 5879˘ 115 3.9 6.86 0.18 7.78 0.54



CHAPTER

4
C and N abundances of stellar
populations in M 2

In this Chapter we report the behavior of carbon and nitrogen along the RGB of M 2. This is

an intermediate-metallicity ([Fe/H] =–1.65; Harris, 1996, 2010 edition) cluster, which is located

11.5 kpc from the galactic center, is relatively rich in stars, and lies in a sparse field.

M 2 is characterized by a bimodal CN distribution, with the majority of red giants found to

be CN-strong stars (Smith and Mateo, 1990). Earlier works have already revealed a large number

of stars with strong λ3883 CN bands (McClure and Hesser, 1981; Canterna et al., 1982). Further-

more, this cluster is found to contain CH stars (Smith and Mateo, 1990; Zinn, 1981). In a recent

paper, Smolinski et al. (2011) detected signs of enhanced N enrichment well before the point of

first dredge-up, besides the usual CN variations on the RGB.

On the photometric front, M 2 g , (u´ g ) CMD from SDSS photometry (see Chapter 2) shows

evidence of a spread in light-element abundances, which comes from the significant spread

along the RGB (incompatible with measurements errors alone or with differential reddening ef-

fects).

As widely discussed in the previous Chapters, the broadening in the U , (U´V ) CMD (and/or

usual visual colors) may be a different way to study in detail multiple stellar populations. In this

Chapter, we used U -based photometry coupled with C and N abundances to tag multiple stellar

populations in M 2.

The results presented in this Chapter have been published in Lardo et al. 2012, A&A, 548,

A107.

4.1 Observational material

We selected M 2 spectroscopic targets from the An et al. (2008) publicly available photom-

etry. An et al. (2008) reanalyzed SDSS images of the GCs (and open clusters) included in the

survey using the DAOPHOT/ALLFRAME suite of programs (Stetson, 1987, 1994). In our pre-

vious work (Lardo et al., 2011), we used An et al. (2008) photometry to search for anomalous

spread in near UV color (u-g) along the RGB of nine Galactic GCs and study the radial profile of

95
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the first and second generation stars (see Sect. 2.1 for a detailed description of the photometric

database employed to select spectroscopic targets). The initial sample of candidate stars con-

sisted of those located more than 11 away from the center of M 2 (to facilitate sky subtraction)

with 14.5 <V < 17.5 mag. Spectroscopic targets were hence chosen as the most isolated stars (no

neighbors within 22) as close as possible to the main locus of the RGB sequence in the g , (u´ g )

and g , (g ´ r ) diagrams to reduce the incidence of blended images1.

4.1.1 DOLORES U ,V photometry

In addition, we also obtained images of the cluster in the standard Johnson U and V filters

for a total of 540 seconds shifted in three single exposures in each filter with the DOLORES cam-

era. DOLORES (Device Optimized for the LOw RESolution) is a low-resolution spectrograph and

camera permanently installed at Telescopio Nazionale Galileo (TNG) located in La Palma, Ca-

nary Islands (Spain). The choice of passbands is due to the ability of separating photometric

sequences at different evolutionary stages along the CMD (as discussed in Sects. 1.2 and 4.5).

The DOLORES camera offers a field of view (FoV) of 8.61 ˆ 8.61 with a 0.252 arcsec/pix scale. The

raw frames were processed (bias-subtracted and flat-fielded) using the standard tasks in IRAF.

Point spread function (PSF) fitting photometry was thus carried out with the DAOPHOT II and

ALLSTAR packages (Stetson, 1987, 1994) using a constant model PSF. The photometric calibra-

tion was done using stars in common with Stetson Photometric standard field (Stetson, 2000)2.

Stars within 11 and outside of 41 from the cluster center are excluded from the CMD to reduce

blending effects and the field star contamination, respectively. The rms in magnitude and the

chi and sharp parameters are powerful indicators of the photometric quality3. To select a sam-

ple of well-measured stars we followed the procedure given in Lardo et al. (2012a), Sect. 5.1 and

summarized in Sect. 3.4.1. The catalog of the selected sample is presented in Table 4.1. The

resulting V ,U ´V CMD, calibrated and corrected for differential reddening, and showing the

position of the spectroscopic targets, is presented in Fig. 4.1.

4.1.2 Spectroscopic observations and reduction

Stellar spectra were obtained with DOLORES which allows for multi-slit spectroscopy. We

defined three slit masks using the stand-alone version of the Interactive Mask Design Interface,

provided by the DOLORES staff at the telescope4. The positions of the program stars were de-

termined using M 2 catalogs by An et al. (2008), as discussed in Sect. 4.1. The slit width on the

masks was fixed to 1.12, and the slit length was chosen to be at least 82 to allow for local sky

subtraction. Typically, we succeeded to fit»16 slits onto one mask (for a total of 48 target stars).

1Unfortunately, by using these selection criteria, we accidentally excluded stars belonging to a previously unknown
additional RGB sequence (see Sect. 4.1.1) from our spectroscopic sample.

2 available at http://www3.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/STETSON/standards/
3On all stars we imposed the selection limits of CHI < 2.0 and -1 < SHARP < 1 on DAOPHOT II photometric pa-

rameters. The first of these parameters, CHI, is the ratio of the observed pixel-to-pixel scatter in the fitting residuals
to the expected scatter, based on the values of readout noise and the photons per ADU specified in the DAOPHOT op-
tions file, while SHARP is a zeroth-order estimate of the square of the quantity SH ARP 2„σ2(obser ved)´σ2(poi nt´
spr ead f uncti on); see the DAOPHOTII manual at http://www.astro.wisc.edu/sirtf/daophot2.pdf.

4see for reference http://web.oapd.inaf.it/mos/

http://www3.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/STETSON/standards/
http://www.astro.wisc.edu/sirtf/daophot2.pdf
http://web.oapd.inaf.it/mos/
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Table 4.1: Photometry of M 2: selected sample.

ID RA Dec V εV U–V εU
(deg) (deg) (mag) (mag) (mag) (mag)

164 323.3657998 -0.8890510 20.215 0.026 0.213 0.076
196 323.3800929 -0.8885692 19.943 0.019 0.311 0.072
234 323.3661658 -0.8882047 20.342 0.018 0.393 0.084
286 323.3795809 -0.8875061 19.015 0.012 0.220 0.028
303 323.3872881 -0.8872826 18.445 0.010 0.632 0.023
313 323.3674707 -0.8870783 19.661 0.024 0.202 0.050
330 323.3908254 -0.8869171 19.613 0.019 0.267 0.041
336 323.3657205 -0.8868386 19.325 0.012 0.305 0.037

A portion of the table is shown for guidance about its content, the complete table is avail-
able in electronic format through the CDS service via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/548/A107 .

Figure 4.1: V ,U´V CMD for M 2 from DOLORES images. White dots mark spectroscopic targets,
the black dot shows the probable field star (see Sect. 4.1.2).

.

Because the goal of our spectroscopic observations was to measure the strengths of the 3883 and

4300 Å CN and CH absorption bands, we used the LRB grism with a dispersion of 2.52 Å/pix. In

combination with the chosen slit width this results in the spectral resolution of R(@3880Å) = 353

and R(@4305Å) = 391 in the wavelength region of interest. The grism’s spectral region covers the

nominal wavelength range between 3000´8430 Å, while the actual spectral coverage depends

on the location of the slit on the mask with respect to the dispersion direction. To reach a high

S/N , each mask configuration was observed three times with exposure durations of 1800 sec-

http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/548/A107
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onds each, leading to a total exposure time of 1.5 hours per mask and a typical S/N of » 20-30

in the CN region. Additionally, bias, flat field, and wavelength calibration observations were ob-

tained in the afternoon.

For the data prereduction, we used the standard procedure for overscan correction and bias-

subtraction with the routines available in the noao.imred.ccdred package in IRAF. First, we stack-

ed the flat fields for each night and mask. Because each slit mask was observed three times and

the alignment of the frames was quite good, we co-added the three frames for a given slit mask

with cosmic-ray rejection enabled, providing resulting frames that were almost free of cosmic

rays. For the following analysis we extracted the area around each slit with the optimal extraction

and treated the resulting spectra as single-slit observations. The wavelength-calibration images

and flat fields were treated in the same manner. TNG spectroscopic flats show a severe internal

reflection problem in the blue regions of the spectra that could in principle heavily affect our

further measurements. To minimize this effect, we fit the 2D large-scale structures in the nor-

malized spectroscopic flat field by smoothing and dividing the original flat by the fit, keeping the

small pixel-to-pixel variations, which are the ones we intend to correct for with flat fielding. The

object spectra and arc images were flat-field-calibrated with these corrected flat fields. Standard

IRAF routines were used to wavelength-calibrate, sky-subtract, and extract the stellar spectra.

The wavelength solution from the HeNeHg arcs was fitted by a first-order spline. The typical rms

of the wavelength calibration is on the order of 0.3 Å, which is largely expected at the given spec-

tral resolution. The residual uncertainties in the wavelength calibration are then removed using

the position of strong emission lines (in particular OI at 5577.7 Å and NaD at 5895 Å).

The shape of the final spectra is affected by the dependence of the instrumental response on

the wavelength. Given the quite low instrument response in the blue part of the spectrum and

the presence of many absorptions in this region, we avoided any attempt to remove this effect

through flux calibration or continuum normalization (see Pancino et al., 2010, and references

therein).

To derive the membership of candidate RGB stars, we first performed a cross-correlation of

the object spectrum with the highest S/N star on each MOS mask as a template with the IRAF

fxcor routine, as in Sect. 3.1.3. The template Vr were computed using the laboratory positions of

the most prominent spectral features (e.g., Hα, Hβ, Hγ, Hδ, and Ca (H+K), among others), yield-

ing a mean radial velocity of -13 ˘ 30 km/s for the entire sample. This value, given the low res-

olution of our spectra, agrees quite well with the value tabulated (–5.0 km/s) in the Harris, 1996

(2010 edition) catalog. Then, we rejected individual stars with values deviating by more than 3σ

from this average velocity, deeming them to be probable field stars. Only one star (ID:10427, see

Fig. 4.1) was rejected based on its radial velocity. In a final step, we examined each spectrum in-

dividually and rejected spectra with defects (like spikes or holes) in the measurement windows.

4.2 CH and CN band strengths

A set of indices quantifying the strengths of the UV CN band, the G band of CH and the CaI I

H and K lines were measured for the spectra. We adopted the indices as defined in Sect. 3.2 and
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Figure 4.2: The Ca II H and K index plotted vs. V magnitude for the M 2 giants. A probable non-
member star is shown as an open square. The small scatter, fully compatible with the formal
measurement errors, in the Ca (H+K) values as a function of V provides additional evidence that
all spectroscopic targets but the notable outlier are members of M 2. The open red symbol refers
to star 10427, which is not a member of M 2, according to its radial velocity.

obtained uncertainties related to the index measurements as explained in the same section. To

obtain additional membership information we employed the strength of the C aI I H and K lines

(see Sect. 4.2, as in Smith and Mateo, 1990) as a further discriminant between cluster and field

stars, since the strength of these lines depends on the metal-abundance in this low to interme-

diate metallicity regime. By assuming that M 2 is chemically homogeneous with respect to the

calcium abundance, we expect that stars belonging to the cluster show a tight sequence in the

HK, V plane. We present the plot of HK index vs. the V magnitude in Fig. 4.2. A tight relation be-

tween HK index strength and the V magnitude is clearly present for all stars selected using radial

velocity criteria. From this figure, we were able to pinpoint only one outlier (ID 21729), whose

spectrum has a noticeably strong-lined appearance. We also measured indices for this star to

allow for a direct comparison with respect to cluster members; however, we excluded this star

from the abundance analysis. Again from Fig. 4.2, we note that the probable field star (rejected

according to its radial velocity), does occupy an anomalous position in the the plot of HK index

vs. the V magnitude. This evidence further confirms that this stars is not a cluster member. The

measured indices, together with additional information on target stars, are listed in Table 4.3.

4.2.1 Index analysis

Figure 4.3 shows S(3839) and CH(4300) index measurements for our data set. Several low-

resolution studies have demonstrated that the CN-band strength is a proxy for the nitrogen con-

tent of star atmospheres, whereas CH traces carbon (e.g., Smith et al., 1996). A visual inspection

of the left hand panel of Fig. 4.3 reveals a clear bimodality in the CN index over the entire mag-

nitude range, with a few mid-strength stars. The difference in S(3839) between CN-strong and

CN-weak stars of comparable magnitude is „0.2-0.3 mag. Giants considered to have relatively

strong CN bands and CN-poor giants are represented in Fig. 4.3. The right hand panel of Fig. 4.3
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illustrates the relation between the CN and CH band strengths for all giants: it shows a plot of

the CH(4300) index vs. the V magnitude with the CN-strong and CN-weak stars. In this case the

spread among the measured index is very small and, in any case, within the uncertainties. There

is a tendency, as expected, for CN-strong stars to also be CH-weak, even if exceptions exist.

Out of a sample of 38 stars, 16 have weak CN bands. The number ratio of CN-weak to CN-

strong that we obtained („0.73˘0.2) is very different5 from what is found by Smith and Mateo

(1990) (0.33; 16 RGB stars6) and Smolinski et al. (2011) (0.35; 70 MS, SGB, and RGB stars.). Com-

paring these values directly is complicated by the fact that our study only uses RGB stars, while

for example Smolinski et al. (2011) includes subgiants and dwarfs and Smith and Mateo (1990)

focused on brighter stars. Dwarfs are significantly hotter than RGB stars and less likely to show

5 We emphasize that the ratio derived here is based on relatively few stars and the criteria for defining CN-strong
stars are different in each work.

6If we exclude the two CH stars.

Figure 4.3: Left panel: Removal of gravity and temperature dependencies from CN index using
median ridge line (shown as red dashed line). Stars considered to have mid-strength or strong
CN bands are depicted by filled circles, while CN-weak giants are marked by open circles. A
probable non-member star (see Sect. 4.2) is shown as an open square. The median error bar on
the S(3839) and CH(4300) measurements is also shown in the lower-right corner of each panel.
Right panel: The same as in the left panel but for the CH index. The color code is consistent with
the left panel.
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remarkable CN absorption, thus their inclusion may bias the CN-weak to CN-strong value down-

ward.

To be consistent with our previous works (Sect. 3.2.1), we used median ridge line (Fig. 4.3)

to minimize the effect of effective temperature and surface gravity in the CH and CN measure-

ments. The baselines adopted for the M 2 red giants to correct S(3839) and CH(4300) indices

are

S0 =´0.09ˆV +1.3

C H0 = 0.005ˆV 2´0.21ˆV +2.88,

The rectified CN and CH indices are indicated as δS3839 and δCH4300, respectively, and we refer

to these new indices in the following7.

7We obtained a rough estimate of the uncertainty in the placement of these median ridge lines by using the first
interquartile of the rectified indices divided by the square root of the number of points. The resulting uncertainties
(typically„ 0.013 for the CN index and„ 0.008 for the CH index) are largely negligible for the applications of this work.

Figure 4.4: Upper panel: Anticorrelation plot for the CN and CH band strengths in three magni-
tude bins (Vě16.9 mag, 15.7ďV < 16.9 mag and V < 15.7 mag). Gray dots show measurements
for stars. CH weak and CH strong stars are separated by the horizontal dashed line, and their
centroids with 1σ are marked as large white dots. CN strong and weak stars are separated by
the vertical dashed line, and their centroids with their 1σ are shown as large blue dots. The red
continuous line connects the locus equidistant from CH-strong/CN-weak centroids and CH-
weak/CN-strong ones.The generalized histograms in the bottom panels represent the distribu-
tion of distances of projected points from the origin P (see text for details).
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Figure 4.4 shows the rectified index δS(3839) as a function of δCH(4300) for all the stars stud-

ied in this paper. Abundance analysis in Sect. 4.4 confirmed that carbon abundance depends

on the evolutionary state and decreases towards brighter luminosities. Therefore, we separately

considered stars in three different magnitude bins: V ě 16.9, 15.7ďV < 16.9, and V < 15.7 mag,

to minimize the impact of evolutionary effects on our index analysis. To better visualize the hid-

den substructure in the δS(3839) vs. δCH(4300) plane we adopted the method described below.

´ A median is used to compute the centroids of the CH-strong (δCH(4300) > 0) and CH-

weak (δCH(4300) < 0) in the CH-CN plane. The resulting centroids with their 1σ errors are

reported in Fig. 4.4 along with the measurements for each star. We also divided also the

stars into CN-strong (δS(3839) > 0) and CH-weak (δS(3839) < 0) groups and their centroids

with relative error bars are plotted in the same figure;

´ A line passing through the midpoint connecting CH-strong/CN-weak and CH-weak/CN-

strong centroids is traced;

´ Each observed point in the CN-CH plane is projected onto this line;

´ We take as origin (P ) the intersection between this line and the perpendicular line passing

through the point (δS(3839), δCH(4300))=(0,0);

´ A generalized histogram of the distribution of distances of projected points from the origin

P is constructed.

The histograms are shown in the bottom panels of Fig. 4.4, where different panels show differ-

ent subsamples of RGB stars. Each data point in this histogram has been replaced by a Gaussian

of unit area and standard deviationσ=0.04 8. We distinguish between CN-strong (CH-weak) stars

and CN-weak (CH-strong) stars by cutting at zero the histogram of distances distribution. The

dimension of the subsamples, and the number of CN-strong stars in each bin is listed in the sec-

ond and third columns, respectively, in Table 4.2. Figure 4.4 shows that stars fainter than V»16.9

Table 4.2: Dimension of the samples and results of KS test.

MAG BIN NSt ar s CN-s(CH-w) PK S

V ě 16.9 mag 21 11 1.14e´0.5

15.7 <V ď 16.9 mag 13 9 0.002
V < 15.7 mag 4 2 0.1

display clear bimodality, with both CN-strong (CH-weak) and CN-weak (CH-strong) stars, as is

common among GCs of intermediate metallicity. For brighter giants, the distribution of the pro-

jected points is still not described well by a single symmetric Gaussian curve: indeed, a two-sided

Kolgomorov-Smirnov returns a probability of PK S = 0.002 (PK S = 1.14ˆ10´5 for stars in the first

magnitude bin, see the last column in Table 4.2) that the CN-strong (CH-weak) and CN-weak

8The 0.04 magnitudes used as the Gaussian width in the generalized histograms of Fig. 4.4 is the same as the mea-
surement error on δS(3839).
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(CH-strong) are drawn from the same parent population. When analyzing all data sets, the un-

derlying bimodality can be confused by evolutionary effects (mixing), but a wide spread with

three notable peaks is still present. Again from Fig. 4.4 (top panel), for all magnitude bins we

report a clear CH-CN anticorrelation for all magnitude bins.

4.3 Abundance analysis

4.3.1 Atmospheric parameters

We derived stellar parameters from photometry. The effective temperature Te f f was cal-

culated using Alonso et al. (1999) Te f f -color calibrations for giant stars. We used the U ´V

color from DOLORES photometry (once calibrated on the Stetson standard field), using E(B´V )

=0.06 and [Fe/H] = –1.65 from the Harris (1996) catalog (2010 edition). In addition, we used

– when available – B ´V , V ´ J , V ´H , and V ´K colors from Lee and Carney (1999) and

the 2MASS (Skrutskie et al., 2006) photometry. The final Te f f was the mean of the individual

Te f f values from each color weighted by the uncertainties for each color calibration. The sur-

face gravity was determined using Te f f , a distance modulus of (m´M)V =16.05 (Harris, 1996),

bolometric corrections BC(V) from Alonso et al. (1999), and an assumed mass of 0.8 Md (Berg-

busch and VandenBerg, 2001). The microturbulent velocity was determined using the relation,

vt =´8.6ˆ10´4Te f f +5.6, adopted from the analysis by Pilachowski et al. (1996) of metal-poor

subgiant and giant stars with comparable stellar parameters. This method leads to an average

microturbulent velocity estimate of vt = 1.1˘0.13 km s´1, therefore we chose to assign a refer-

ence microturbulent velocity of vt = 1.0 km s´1 to all our program stars.

An additional check to test the reliability of our chosen atmospheric parameters was per-

formed using theoretical isochrones downloaded from the Dartmouth Stellar Evolution Database

(Dotter et al., 2008)9. We chose an isochrone of 12 Gyr with standard α-enhanced composition,

and we projected our targets on the isochrone (following a criterion of minimum distance from

the isochrone points) in the U , (U ´V ) diagram to obtain their parameters. The median differ-

ence in temperature between the two methods is approximately 20˘4 K, while the difference in

gravity is negligible (on the order of 0.013˘0.002). By projecting our targets on the isochrone in

the intrinsically broad U ,U ´V RGB, we could possibly erase differences in color (and thus in

temperature) between spectroscopic targets; therefore, we preferred to rely on the Alonso et al.

(1999) parameter estimates.

The residual external uncertainties, which could result only in a shift of the zero point, do

not affect the amplitude of star-to-star variation in C and N, because we want to measure the

internal intrinsic spread of our sample of stars. Table 4.4 reports the Te f f , log g values, and their

uncertainties used to derive C and N abundances.

9http://stellar.dartmouth.edu/models/isolf.html

http://stellar.dartmouth.edu/models/isolf.html
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4.3.2 Abundances derivation

Abundances for a given element were derived by comparing synthetic spectra with observed

spectra, as explained in Sect. 3.3.2. Briefly, the C and N abundances were estimated by spectral

synthesis of the 2Σ–2Π band of CH (the G band) at „4310 Å and the UV CN band at 3883 Å ,

respectively. The synthetic spectra were generated using the local thermodynamic equilibrium

(LTE) program MOOG (Sneden, 1973). The atomic and molecular line lists were taken from the

latest Kurucz compilation (Castelli and Hubrig, 2004) and downloaded from the F. Castelli web-

site10.

Model atmospheres were calculated with the ATLAS9 code, starting from the grid of models

available on the F. Castelli website (Castelli and Kurucz, 2003), using the values of Te f f , log g ,

10http://wwwuser.oat.ts.astro.it/castelli/linelists.html

Figure 4.5: Top panel: DOLORES-LRB spectra of the stars 17116 (gray) and 18369 (black) in the
region of the CN UV feature and CH band. The stars are essentially identical in V magnitude
(V =15.86, 15.94 mag, respectively), U ´V color ( U ´V = 1.06 and 0.95, respectively), and C
abundance (see Table 4.4). The gray shaded regions show the continuum regions, while the solid
gray lines show the window from which we measured the CN and CH indices. Bottom panels:
observed (gray empty circles) and synthetic (line) spectra around the CN and CH band for the
stars 11131 and 2288 stars, respectively. The solid line represents the best fit, while the dashed-
dotted lines are the synthetic spectra computed with the derived C abundance altered by ˘0.2
dex and N abundance altered by ˘ 0.5 dex from the best value. Vertical lines show the location
of the CN (3861 – 3884 Å) and CH (4285 – 4315 Å) absorption bandpass.

http://wwwuser.oat.ts.astro.it/castelli/linelists.html
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and vt determined as explained in the previous section. For all the models we adopted [A/H]= –

1.5, according to the metallicity of the cluster. The ATLAS9 models we employed were computed

with the new set of opacity distribution functions (Castelli and Kurucz, 2003) and excluded ap-

proximate overshooting in calculating the convective flux. For the CH transitions, the log g f

obtained from the Kurucz database were revised downward by 0.3 dex to better reproduce the

solar-flux spectrum by Neckel and Labs (1984) with the C abundance by Caffau et al. (2011), as

extensively discussed in Mucciarelli et al. (2012). Figure 4.5 illustrates the fit of synthetic spectra

to the observed ones in CH and CN spectral regions. These stars have essentially the same stellar

parameters (Te f f » 5000 K log g =2.2 dex), lying at about the same place in the cluster CMD, yet

their CN bands differ strongly. Because the abundances of C and N are coupled, we iterated until

self-consistent abundances were obtained.

We assumed that all stars had the same oxygen abundance ([O/Fe] = +0.4 dex) regardless

of luminosity (constant oxygen abundance as the star evolves along the RGB). The derived C

abundance is dependent on the O abundance and therefore so is the N abundance. In molecular

equilibrium an overestimate of oxygen produces an overestimate of carbon (and vice versa), and

an overestimate of carbon from CN features is reflected in an underestimate of nitrogen. We

expect that the exact O values will affect the derived C abundances only negligibly, since the

CO coupling is marginal in cool stellar atmospheres (T ď 4500 K). To quantify the sensitivity of

the C abundance on the adopted O abundance, we varied the oxygen abundances and repeated

the spectrum synthesis to determine the exact dependence for a few representative stars (4900

K ď Te f f ď 5400 K). In these computations, we adopted [O/Fe]= -0.2 dex, [O/Fe]= 0.0 dex, and

[O/Fe]= +0.4 dex. We found that strong variations in the oxygen abundance markedly affect the

derived C abundance only for the brighter stars in our sample, for which [C/Fe] can change by

as much as 0.17-0.20 dex for a 0.6 dex change in assumed [O/Fe]. This is within the uncertainty

assigned to our measurement. See also a discussion of the effects of considering different O

abundance on carbon abundance derivation in Martell et al. (2008).

The total error in the derived C and N abundances was computed by taking the internal er-

rors associated to the chemical abundances into account. Two sources of errors can contribute

to this internal error: (i) the uncertainty introduced by errors in the atmospheric parameters

used to compute chemical abundances, and (ii) the error in the fitting procedure and errors in

the abundances that are likely caused by noise in the spectra. To estimate the sensitivity of the

derived abundances to the adopted atmospheric parameters, we therefore repeated our abun-

dance analysis and changed only one parameter at each iteration for several stars that are repre-

sentative of the temperature and gravity range explored.

Typically, we found δA(C)/δTe f f » 0.09 – 0.13 and δA(N)/δTe f f » 0.14 – 0.18 for the temper-

ature. The errors due to uncertainties on gravity and microturbulent velocity are negligible (on

the order of 0.03 dex or less). The contribution of continuum placement errors was estimated by

determining the change in the abundances as the synthetic/observed continuum normalization
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was varied11: generally, this uncertainty added 0.11 dex to the abundances. The errors derived

from the fitting procedure were then added in quadrature to the errors introduced by atmo-

spheric parameters, resulting in an overall error of approximately 0.20 dex for the C abundances

and 0.22 dex for the N values.

We present the abundances derived as described above and the relative uncertainties in the

abundance determination in Table 4.4. Additionally, this table lists the derived atmospheric pa-

rameters of all our targets.

4.4 C and N abundance results

Variations in light-element abundances were already observed in all GCs studied to date,

and are also present in M 2. Carbon and nitrogen exhibit the typical anticorrelation, as shown in

Fig.4.6, where the [C/Fe] values are plotted as a function of [N/Fe] with their uncertainties. For

three stars out of 38, we were not able to derive C and N abundances because of the low S/N in

the CN band spectral region. We observe modest variations in carbon abundances (from [C/Fe]„

–1.4 to [C/Fe]„ –0.4 dex) mildly anticorrelated (Spearman’s rank correlation coefficient r M 2
S = –

0.35) with strong variations in N, which span almost 2 dex, from [N/Fe]» –0.3 up to [N/Fe]» 1.4

11We continuum-normalized our spectra using the same function (cubic spline) in the task IRAF continuum but with
an order slightly higher with respect to that chosen for the first normalization.

Figure 4.6: Derived [N/Fe] abundances for M 2 stars in Table 4.4 as a function of the [C/Fe] abun-
dances from our sample (filled circles). A C vs. N anticorrelation is apparent. For comparison we
also plotted our previous results on a sample of MS and SGB stars in the cluster NGC 1851 (white
dots). The red dashed line indicates the relationship, shown over its full range, that prevails in
NGC 1851 from our earlier work.
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dex. In the same figure we also plot C and N abundances derived for NGC 1851 in our previous

work (Lardo et al., 2012a) (see Chapter 3) with the [C/Fe]-[N/Fe] relationship that prevails for

these stars (r NGC 1851
S = –0.42). The range of the spread in both C and N is about the same for M 2

and NGC 185112 (and fully agrees with the C and N abundances presented by Cohen et al., 2005,

for M 71, 47 Tuc, M 5, M 13, and M 15). The two anticorrelations clearly follow a similar overall

pattern in the [C/Fe] vs [N/Fe] plane.

4.4.1 Evolutionary effects along the RGB

Following the classical prediction, during the H-burning phase via the CNO cycle, N is en-

riched at the cost of C and O. When a star evolves off the main sequence, the convective enve-

lope starts to move inward, dredging up material that has been processed through partial hydro-

gen burning by the CNO cycle and pp chains. Canonically, light-element abundances should be

untouched by subsequent evolution along the RGB, but the observational evidence has shown

that both various light-element abundances (particularly [C/Fe] and log ε(Li)) and isotopic ratios

(12C/13C) vary as the stars evolve along the RGB, and this cannot be accounted by a single first

dredge-up alone (see Sect. 1.1 for a complete discussion).

Some further nonconvective deep mixing should take place in the advanced phases of RGB

evolution: after the end of the dredge-up phase is reached, the star’s convective envelope be-

gins to move outward, leaving behind a sharp discontinuity in mean molecular weight (the µ-

barrier) at the point of deepest inward progress (Iben, 1968). The corresponding change in

molecular weight can potentially hinder further mixing. However, during the evolution along

the RGB, the hydrogen-burning shell advances outward and eventually encounters theµ-barrier.

The influx of fresh hydrogen-rich material to the hydrogen-burning shell causes a temporary

slowdown of the star’s evolution, which manifests itself in a bump in the differential luminos-

ity function (LF) of the cluster. Thereafter, since the molecular gradient is effectively canceled

out, some further mixing episodes are allowed. Briefly, possible sources of extramixing could be

rotation-induced mixing (Charbonnel, 1995) or thermohaline mixing associated with the reac-

tion 3He(3He,2p)4He (Angelou et al., 2012). Extramixing is a universal mechanism that occurs in

ě 96% of these RGB bump stars (Charbonnel and Do Nascimento, 1998) in the field, in open and

globular clusters and also in stars in external galaxies. Therefore, surface abundance changes

due to deep mixing are not expected to occur in stars fainter than the RGB bump.

We plotted the derived abundances as a function of the V magnitude and U ´V color in

Fig. 4.7 to evaluate possible systematic effects with luminosity and temperature. While none

of these effects is apparent, the top panel of Fig. 4.7 again illustrates the notable depletion in

the carbon abundances with luminosity (Shetrone et al., 1993; Smith and Martell, 2003; Gratton

et al., 2000, and references therein). The surface carbon abundance depletion along the RGB

of M 2 can be straightforwardly interpreted within a deep-mixing framework. This implies that

12For comparison, the median value of carbon abundance is [C/Fe]=–0.79 dex (σ=0.2) for M 2 and [C/Fe]=–0.84
dex (σ=0.12 dex); respectively. Median nitrogen abundances are [N/Fe]=0.77 (σ =0.31 dex) for M 2 and [N/Fe]=0.61
for NGC 1851 (σ=0.30).
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some form of deep mixing (i. e., meridional circulation currents, turbolent diffusion or some

similar processes), which extends below the base of the conventional convective zone, must cir-

culate material from the base of the convective envelope down into the CN(O)-burning region

near the hydrogen-burning shell. The onset of the decline in the carbon abundance appears

from Fig. 4.7 to occur at magnitude V»15.7 mag: the strong C decline for stars brighter than

VÀ15.7 mag can be interpreted as the signature of the extra mixing common among metal-poor

cluster giants as they cross the RGB bump. Restricting our sample to those giants fainter than

the RGB bump, we found an average C abundance of A(C)=6.11˘0.23. A significant decrease in

C abundance occurs at about VÀ 15.7, which is essentially the location of the RGB bump in this

cluster (VBU MP „15.82˘0.05, Di Cecco et al., 2010): the average value for this group of upper

RGB stars is A(C)=5.61˘0.05. Naturally, the extent of the carbon (nitrogen) depletion (enhance-

ment) depends on the value of [O/Fe] used in the analysis. For comparison, in metal-poor field

giants (Gratton et al., 2000), a drop in the surface 12C abundance by about a factor 2.5, is seen

after this second mixing episode. To connect CN index measurements with carbon and nitrogen

Figure 4.7: Derived C and N abundances plotted against the V magnitude and U´V color for M 2
giants. The dot-dashed lines indicate the luminosity at which the RGB bump occurs (V „15.7
mag). Relatively N-rich and N-poor stars are shown in the left panels as filled and open symbols,
respectively.

abundances derived by spectral synthesis, we labeled CN-strong and CN-weak stars in Fig. 4.8

as defined in Sect. 4.2 in the A(C) and A(N) vs. V mag and A(C) vs. A(N) planes. From Fig. 4.8,

we note good agreement between the underlying [N/Fe] abundance and the measured CN band
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strength: as expected CN-strong and CN-weak stars tend to occupy two separate regions in the

A(C)-A(N) diagram.

Figure 4.8: Left panels: derived C and N abundances are plotted against the V magnitude for M 2
RGB stars. The dot-dashed vertical lines indicate the luminosity at which the RGB bump occurs
(V „15.7 mag). CN-strong and CN-weak stars, as defined in Sect. 4.2, are shown as filled and
open symbols, respectively. Right panel: CN-strong and CN-weak stars (see Sect. 4.2) are plotted
in the A(C)vs A(N) plane for stars with luminosities fainter (top) and brighter (bottom) than the
RGB bump. The color code is consistent with the left panel.

Any difference of [C/Fe] at a given magnitude is difficult to interpret since it can arise from

systematic differences between the analysis techniques. As discussed in Smith and Martell (2003),

a reasonable estimate of the dependence of the carbon abundance on luminosity can be ob-

tained by deriving d[C/Fe]/dMV . To compare the behavior of [C/Fe] among from field giants

with M 2 giants, we fit a linear least-squares regression of [C/Fe] against MV for stars with –0.8

ďMV ď 1.6. We restricted our attention to stars selected by Smith and Martell (2003)13 from the

Gratton et al. (2000) survey. In close analogy with Smith and Martell (2003), we limited our fit to

stars with MV ď1.6, because there is only a slight variation below this luminosity level (see Fig. 10

13We consider the the restricted sample with the exclusion of stars HD97 and HD218857.
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of Gratton et al., 2000). The upper limit in luminosity was chosen to compare only the overlap-

ping region between the two data sets. As far as can be ascertained from the carbon abundances,

the rate of mixing in this cluster is comparable to the one for halo field stars and many cluster

giants. We found a dependence of d [C /Fe]/d MV =0.21˘0.16 that is very similar within the ob-

servational errors to that found among halo field giants (d[C/Fe]/dMV =0.20˘0.03 dex) and other

GCs (e.g., M 3, NGC 6397, and M 13; Smith and Martell, 2003).

From the bottom left hand panel of Fig. 4.7, we see no significant trend in the N abundance

with either luminosity or color: the average nitrogen abundance we found for stars fainter than

the RGB bump (A(N)=7.1˘ 0.4) agrees within the quite large error bar with the one obtained

for the more luminous stars after the LF bump (A(N)=6.9˘0.6). We tentatively divided the tar-

get stars between candidate first-generation and candidate second-generation (N-poor and N-

rich component, respectively) stars by adopting a threshold in nitrogen abundance A(N)=7.0. In

Fig. 4.7, N-poor and N-rich stars are plotted, where we note that N-rich stars are systematically

C-poor and vice versa, to further support the presence of C-N anticorrelation. Finally, Gratton

et al. (2000) show an abrupt increase in N abundance of about „ 4 at „ VBU MP for field giants.

Here we could not detect such a trend as the effect of the poor statistics (4 stars) towards higher

luminosities.

4.4.2 C-N anticorrelation

We have seen in Sect. 4.4.1 how deep mixing affects nitrogen and (strongly) carbon abun-

dances, because it introduces carbon-depleted material into the stellar convective envelopes.

All our target stars have luminosities well above the first dredge-up onset, so we expect that their

atmospheres are already depleted in carbon abundance14. A matter we plan to investigate now

is how to disentangle the intrinsic star-to-star differences in surface carbon and nitrogen abun-

dances from the changes resulting from normal stellar evolution. First, we note that we cannot

arbitrarily distinguish between two groups of stars with different A(C) or A(N) for stars fainter

than the LF peak, because we are unable to detect any clear bimodality. To make more quanti-

tative statements about bimodality, a KMM test (Ashman et al., 1994) was applied to the data15.

Under the assumption that the two Gaussians have the same dispersion (homoscedastic test),

we can confirm that there is no bimodality in either A(C) or A(N) for stars with V ě 15.7. At this

point we proceed to analyze the C-N anticorrelation as follows:

´ computed the median abundance of carbon and nitrogen for stars with V magnitude <
15.7 andě 15.7 mag (traced in red in Fig. 4.9);

´ for each measured point in the A(C)-A(N) vs. V magnitude plane, and calculated the dif-

ference between A(C), A(N) and the median carbon and nitrogen abundance (δA(C ) and

δA(N ), respectively);

14Among the field stars, Gratton et al. (2000) data support the occurrence of a small (« 0.1 dex) drop in the region of
the first dredge-up.

15The star 22047 with an anomalously low carbon abundance ( A(C)» 5.6) is excluded from the fit.
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´ constructed a plot of the δA(C ) vs. δA(N ).

The corrected δA(C ) vs. δA(N ) anticorrelation is shown in the bottom right hand panel of

Fig. 4.9. In this case, having corrected for the carbon decline due to normal stellar evolution, the

anticorrelation appears tighter (r M 2 cor r ected
S =´0.43).

To better visualize the distribution of corrected C and N abundance in the two magnitude

bins, we constructed histograms of the δA(C ) and δA(N ) distribution in Fig. 4.10. For stars be-

low the RGB bump we note hints of bimodality in δA(C ). Despite the low statistics, the corrected

C-N anticorrelation shows evidence for bimodality in the distribution of N abundances, with at

least two (or three) groups of stars populating the extremes of high N or low N (see the lower

right panel of Fig. 4.9). To consider stars in the same evolutionary stage as much as possible,

Figure 4.9: Correction of the C-N anticorrelation for evolutionary effect. The left panels show the
runs of A(C) and A(N) vs. V magnitude for spectroscopic targets. The vertical dashed line marks
the RGB bump position. The red continuous red line indicates median value of the carbon and
nitrogen abundance for stars in two bins of magnitude (V < 15.7 and V ě 15.7 mag). The top
right panel shows the derived C-N anticorrelation uncorrected for carbon decline (and nitrogen
enhancement) due to evolution of the stars along the RGB. The bottom right panel shows the
corrected C-N anticorrelation. In this case we plotted the difference of A(C) and A(N) from the
median abundance value shown in the left panels (see text for further details).
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Figure 4.10: Histograms of the δA(C) and δ(N ) (see text) distributions. The two vertical panels
correspond to two bins of V mag (V ě 15.7 and V < 15.7 mag; from bottom to up).The bin size
is set to 0.1 and 0.25 for the δA(C) and δ(N ), respectively. Typical median error bars are plotted
below each histogram.

we first focused on the the corrected C-N anticorrelation for the faintest stars in our sample with

magnitudes below the RGB bump (V ě 15.7 mag). To confirm this suggestion, we analyzed the

corrected distribution of stars along the C-N anticorrelation using a procedure similar to the one

described in Marino et al. (2008). In brief, we first draw a fiducial (shown in the top right panel of

Fig. 4.11) by putting a best-fit spline through the median abundance found in successive short

intervals of δ A(N). Then we projected each program star in the δA(C)-δA(N) anticorrelation on

this fiducial and plotted the histogram of the distribution of vertical distances (D) of the pro-

jected points from the line δA(N)=0. The histogram is shown in the left panel of Fig. 4.11. In this

case (at least) two substructures are apparent, peaked at » –0.4 and 0.2. We tentatively divided

RGB stars between a candidate first generation and a candidate second generation by setting an

arbitrary separation at D =´0.2. To allow a direct comparison between CN-strong (as derived

in Sect. 4.4) and these second-generation stars, we plotted CN-strong stars in the δA(C)-δA(N)

plane in the same figure. We note that the smearing of CN-strong and CN-weak stars that hap-

pens in the A(C)-A(N) plane (see Fig. 4.7) is still present in the δA(C) vs. δA(N) plot.

A visual inspection of Fig. 4.11 suggests that the extent of the C-N anticorrelation in the pro-

jected plane for second-generation (Na-N/rich) stars is greater than the errors associated with

abundance measurements. This evidence possibly suggests the presence of a third group of

stars16; unfortunately, because of uncertainties on abundance measurements and low statistics,

16Stars with E (Extreme) composition, by adopting the nomenclature first introduced by Carretta et al. (2009b).
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we cannot provide conclusive evidence.

In general, when stars with available Na and O abundances have been identified in the U ,U´

B CMD (or in a different color combination that includes the blue filters), it was found that the

group of Na-poor stars are systematically spread on the blue side of the RGB, while the Na-rich

population define a narrow sequence on the red RGB (Grundahl and Briley, 2001; Marino et al.,

2008; Han et al., 2009a; Milone et al., 2010). Several authors have demonstrated that a clear cor-

relation exists between N abundances (and so λ3883 CN band strength) and Na, O and Al abun-

dances (see for example Marino et al., 2008, and references therein). N-rich (CN-strong) stars

clearly show significantly enhanced Na abundance. In contrast, N-poor (CN-weak) stars have a

higher O content than the N-rich ones (see also Chapter 2).

In the bottom right hand panel of Fig. 4.11, N-rich and N-poor stars are superimposed on

Figure 4.11: Left panel: distribution of the projected distance D of stars with Vě 16.9 on the fidu-
cial plotted in the top right panel. The dotted-dashed line separates stars belonging to the two
different N groups. Top right: corrected C-N anticorrelation for stars with V ě 15.7. We tenta-
tively discriminated between first (blue) and second (red) populations. The error bar represents
the typical errors on A(C) and A(N). Middle right: CN-strong and CN-weak stars are plotted in
the δA(C)-δA(N) plane. Bottom right: first- and second-generation stars are superimposed to
V ,U´V CMD of M 2. The color code is used consistently in each panel.
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M 2 V ,U ´V DOLORES CMD. N-poor and N-rich stars are clearly separated into two parallel

sequences in the broader giant branch seen in the V ,U ´V diagram, with the N-rich stars sys-

tematically appearing redder than N-poor ones, a behavior strictly analogous to what is observed

Marino et al. (2008) in M 4. It is clear that the strength of the CN and NH bands strongly influ-

ences the U ´V color, the NH band around 3360 Å, and the CN bands around 3590, 3883, and

4215 Å, located in the U being the main contributors to the effect (see Sect. 1.2.4).

4.5 The discovery of an anomalous RGB in M 2

As discussed in Sect. 1.1, GCs are essentially monometallic, e.g., all the stars in a cluster show

the same [Fe/H] abundance. Besides the remarkable exception of ω Centauri (see Marino et al.,

2012a, and references therein), variations in the heavy element content have been detected only

for a few clusters: M 22 (Marino et al., 2012b), Terzan 5 (Ferraro et al., 2009; Origlia et al., 2011),

M 54 (Carretta et al., 2010b), and NGC 1851 (Yong and Grundahl, 2008; Carretta et al., 2010d;

Gratton et al., 2012c). In particular, among the clusters that displayed this anomalous behav-

ior, NGC 1851 and M 22 appear rather peculiar. For these clusters, a bimodal distribution of

s-process elements abundance has been identified (Yong and Grundahl, 2008; Marino et al.,

2012b). The chemical inhomogeneity reflects itself in a complex CMD: multiple stellar groups

in M 22 and NGC 1851 are also clearly manifested by a split in the SGB region (Piotto, 2009;

Milone et al., 2008) which appears to be related to chemical variations observed among RGB

stars (Marino et al., 2012b; Lardo et al., 2012a). Indeed, carefully constructed CMDs —based on

colors that include a blue filter (Han et al., 2009a; Lardo et al., 2012a; Marino et al., 2012b)—

clearly reveal that the bright SGB is connected to the blue RGB, while red RGB stars are linked to

the faint SGB. The split of the RGB discovered in the U–I and U–V colors for NGC 1851 and M 22,

respectively, would not be detected in the usual optical colors.

M 2 DOLORES photometry (see Fig. 4.1) displays an anomalous branch beyond the red edge

of the main body of the RGB. The difference in color between stars belonging to this structure and

normal RGB stars is quite large (on the order of 0.2–0.3 mags, well above the typical measurement

errors) and extends down to the SGB region. There may be a second group of stars that are

0.3 mags redder with respect to this sequence and can possibly be more, the anomalous RGB

stars. Unfortunately, because of low statistics, we cannot provide a conclusive evidence and

radial velocity and proper motion measurements should be made to see whether these stars are

members of the cluster.

As a high-latitude system, M 2 is not affected by high interstellar absorption (E(B´V )=0.06;

Harris, 1996, 2010 edition), and it is very unlikely that the differential reddening has caused the

double RGBs. The color difference between the two RGBs in the U´V color, at the given V mag-

nitude of the HB level, is „0.3 mag, which is about three times more than the maximum color

difference expected in the extreme situation where one group of stars is all reddened by E(B´V )

= 0.06, while the other group has E(B ´V ) = 0.00. Because the additional RGB sequence only

amounts to a small fraction of the total giant population, we cannot exclude field contamination
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Figure 4.12: (a) U ,V CMD from DOLORES images is shown in gray. Selected RGB stars are plot-
ted as black dots, while the red continuous line is the fiducial obtained in the way described in
the text. Panels (b) and (c) show the rectified RGB in function of the color difference and the
histogram color distribution, respectively (see the text for details).

as the cause of the observed additional RGB branch. We expect a very modest degree of contam-

ination by Galactic fore/background stars, because of the combination between the relatively

high (absolute) Galactic latitude of the cluster (b= – 36˝) and the small area of the considered an-

nular field (11 < R < 41). We used the Galactic model TRILEGAL (Girardi et al., 2005)17 to obtain

a conservative estimate of the degree of contamination affecting the samples of candidate RGB

stars with 0.4ď (U´V )ď 2 and 18.5ďV ď 14.5 mag in the present analysis (Fig. 4.12). We found

that the fraction of Galactic field stars in our samples is lower than 1% in the considered annular

field.

To take photometric errors into due account, we follow the method described in Anderson

et al. (2009) to distinguish intrinsic color broadening from unphysical photometric error effects.

We considered the two independent CMDs obtained from DOLORES and An et al. (2008) pho-

tometry. In Fig. 4.12 we selected the portion of the RGB sequence with magnitudes between

17http://stev.oapd.inaf.it/cgi-bin/trilegal

 http://stev.oapd.inaf.it/cgi-bin/trilegal
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14.5ď V ď 18.5 mag. In addition, we defined bona fide RGB members as the stars closer to the

main RGB locus in the corrected DOLORES CMD (panel (a) of Fig 4.12). We obtained the RGB

fiducial as described in Milone et al. (2008). In brief, we drew a ridge line (fiducial) by putting

a best-fit spline through the average color computed in successive short (0.2 mag) magnitude

intervals. In panel (b) we have subtracted from the color of each star the color of the fiducial at

the same magnitude and plotted the V magnitude in function of this color difference; ∆(U´V ).

The histogram color distribution on a logarithmic scale in panel (c) presents a clear substructure

at the red end of the RGB, and we arbitrarily isolated RGB stars with ∆(U´V ) >0.15. These stars

are plotted in panel (b). If the red branch we see is due to photometric errors, then a star redder

than the RGB ridge line in the V ,U ´V diagram has the same probability of being bluer or red-

der in a different CMD obtained with different data. To this purpose, we identified the selected

stars in u, g photometry (An et al., 2008) in Fig. 4.13. The (a) panel shows a zoom around the

RGB, and again the red line is the fiducial defined as discussed above. In the following analysis,

we considered only those stars in common with the DOLORES photometry and, for the sake of

homogeneity, we kept only stars between 11 < R < 41 from the cluster center. That the histogram

distributions of the selected RGB stars systematically have red colors demonstrated that we are

seeing a real feature: no random or systematic errors can explain that the two distribution re-

main confined in the CMDs obtained from independent data sets. Similar spatial distributions

of stars on the bluer and redder RGBs (panel (a) of Fig. 4.13) also indicate that the differential

reddening, if any, is not likely the cause of the double RGBs (see panel (c) in the same figure).

Having demonstrated that the split RGB shown by the U ,U´V DOLORES photometry is intrin-

sic, we named giant stars belonging to the main body of the RGB sequence blue, while red are

the stars located on the anomalous red substructure. We found that the average color difference

for the blue stars is ∆(U ´V )bl ue =´0.005˘0.016, significantly different from the average color

difference for red stars (∆(U´V )r ed =´0.251˘0.017), which account for only„ 4% of the RGB

population in this range of magnitude (14.5ď V ď 18.5 mag). For comparison, „ 30% of stars

turn out to belong to the blue-RGB in NGC 1851 (Lardo et al., 2012a; see Sect. 3.4.1).

A visual inspection at the CMD of Fig. 3 from Dalessandro et al. (2009) indeed reinforces our

finding and suggests that the anomalous RGB is also present in the cluster center. Moreover,

Piotto et al. (2012) claim the presence of a split SGB for this cluster, with a fainter component

remarkably less populous than the brighter one. We tentatively speculate that, also for M 2,

this newly discovered double RGB might be photometrically connected to the split SGB, in close

analogy to the case of NGC 1851 and M 22.

4.5.1 CH stars along the anomalous RGB

M 2 contains two CH stars, as discovered by Zinn (1981) and Smith and Mateo (1990). These

stars show abnormally high CH absorption, together with deep CN bands, compared to other

cluster giants. They are seen in dSph galaxies, and in the Galactic halo, but they are relatively

rare within GCs. At present, a handful of stars having enhanced C and s-process elements have

been reported in each of ω Cen (e.g., Harding, 1962; Bond, 1975), M 22 (McClure and Norris,
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Figure 4.13: (a) u,u´ g CMD from An et al. (2008) corrected photometry zoomed in around the
RGB. Stars selected as red in Fig. 4.12 are plotted as red circles, while the red continuous line is
the fiducial obtained in the way described in the text. Panels (b) show the color distribution in
the u´ g color, while panel (c) shows spatial distribution of the selected red stars.

1977), NGC 1851 (Hesser et al., 1982), M 55 (Smith and Norris, 1982), M 14 (Cote et al., 1997),

and NGC 6426 (Sharina et al., 2012). Their spectra usually do not show strong Swan bands of

C2, which dominate optical spectral features of classical CH stars, suggesting that their anoma-

lous carbon abundances probably arise through a different mechanism, such as incomplete CN

processing (Vanture and Wallerstein, 1992). Indeed, among this sample of CH-enhanced stars in

GCs, only two are likely to be genuine CH stars. Both of these stars, RGO 55 (Harding, 1962) and

RGO 70 (Dickens, 1972), are found in ω Cen. The surface carbon enhancement of such stars has

been attributed to a dredge-up of processed material via mixing or to the mass transfer of such

material between members of a binary system (McClure, 1984). Moreover, that both ω Cen and

M 22 display heavy element abundance variations suggests that in these clusters CH stars could

owe their peculiar chemical pattern to initial enrichment.

Prompted by these considerations, in Fig. 4.14 we identified the two CH stars discovered by

Zinn (1981) (ID: I-240) and Smith and Mateo (1990) (ID: I-451) in our V ,U´V photometry. Inter-
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estingly enough, both stars belong to the additional RGB, pointing out the anomalous chemical

nature of this redder branch. Regardless of the exact classification of I-240 and I-451, it is appar-

ent that the anomalous RGB contains a population of giants that exhibit both a strong CN and

strong G band. These stars may be the analogous to other CN and CH-strong RGB stars found

in ω Cen, M 22, and NGC 1851 (Hesser et al., 1982). Given the peculiarity of other clusters that

contain CH stars, it is of extreme interest to investigate the chemical pattern of stars in this red

substructure. High-resolution spectroscopy of stars in the two distinct groups could be one of

the next steps in deriving the chemical pattern in this cluster, with particular emphasis on the

measure of heavy element abundances.

4.6 Summary & conclusions

We have presented low-resolution spectroscopy (R»350) of RGB stars in M 2, with the goal

of deriving C abundances (from the G band of CH) and N abundances (from the CN band at „

3883 Å). We were able to measure CH and CN band strengths for 38 giants and derive carbon

and nitrogen abundances for 35 stars, whose spectra were obtained with DOLORES at TNG. The

main results of our analysis can be summarized as follows.

Figure 4.14: CMD for M2. The location of the carbon stars in the CMD is indicated by the open
stars.
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˛ We measured the CH and CN band strengths and found large variations (» 0.2-0.3 mag)

and a bimodal distribution of CN index strengths (Fig. 4.3). We did report the presence of

a clear CH-CN anticorrelation over the whole magnitude range (see Fig. 4.4).

˛ We used spectral synthesis to measure C and N abundances, and found variations of »

1 dex and » 2 dex, respectively, at all luminosities. C and N abundances appear to be

anticorrelated, as would be expected from the presence of CN-cycle processing exposed

material on the stellar surface (Fig. 4.6).

˛ Our derived C abundances show a decline with increasing luminosity. As far as can be

derived from the carbon abundances, the rate of mixing in this cluster is comparable to

that of halo field stars and many cluster giants. We found d [C /Fe]/d MV =0.21˘0.16, which

is very similar within the observational errors to what is found among halo field giants and

other globulars (e.g., M 3, NGC 6397, and M 13; Smith and Martell, 2003).

˛ We distinguished between first and second subpopulations and found that N-poor and

N-rich stars are clearly separated into two parallel sequences in the broader giant branch

seen in the V , (U ´V ) diagram, the N-rich stars appearing systematically redder than N-

poor ones, a result that is strictly analogous to the one of Marino et al. (2008) for M 4.

˛ In addition to these results, we detected an anomalous substructure beyond the red edge

of the main body of the RGB (see Fig. 4.1) from DOLORES U ,V photometry. When plotting

CH stars from the studies of Zinn (1981) and Smith and Mateo (1990) onto the V ,U ´V

CMD (see Fig. 4.14), we found that both stars belong to this additional red RGB. These

are giants that exhibit both enhanced CH and CN bands, and this evidence perfectly fits

the suggestion that stars located on the red RGB should have a peculiar chemical nature.

Moreover, this additional RGB could be connected to the less populated faint SGB detected

by Piotto et al. (2012) in this cluster.

Among the GCs with photometric evidence of multiple populations, only NGC 1851 and M 22

display a bimodal SGB that is photometrically connected to the split RGB (see Chapter 3). Both

M 22 and NGC 1851 host not only two subpopulations, but they have experienced a complex

formation history that resembles the extreme case of ω Centauri (see Marino et al., 2012b; Da

Costa and Marino, 2011; Roederer et al., 2011; D’Antona et al., 2011, for a discussion). The ap-

parent similarity of M 2 to NGC 1851 and M 22 calls for a deeper and complete spectroscopic

characterization of stars in this poorly studied cluster.
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Table 4.4: Atmospheric parameters and carbon and nitrogen abundances for sample stars.

ID Te f f dTe f f log g A(C) A(N)
(K) (K) (cgs) (dex) (dex)

1047 5184 60 2.7˘0.03 5.80˘0.19 7.50˘0.23
1221 5041 56 2.4˘0.03 6.11˘0.19 6.75˘0.22
1249 5111 59 2.6˘0.03 6.14˘0.19 6.30˘0.23
1921 4955 54 2.2˘0.03 5.92˘0.16 7.23˘0.22
1927 5304 85 3.0˘0.03 6.22˘0.22 7.25˘0.25
2288 4959 54 2.2˘0.03 6.07˘0.18 7.18˘0.22
3190 5581 71 3.0˘0.03 6.47˘0.23 7.48˘0.27
3397 5301 84 2.9˘0.03 6.28˘0.20 7.15˘0.24
3760 5421 86 2.9˘0.03 6.46˘0.22 7.44˘0.25
4144 5142 107 2.6˘0.05 5.87˘0.21 7.40˘0.23
5010 4732 65 1.8˘0.03 5.68˘0.17 6.96˘0.22
5149 4904 53 2.0˘0.03 5.59˘0.20 7.56˘0.21
5185 5413 67 3.0˘0.03 6.27˘0.22 7.06˘0.25
9229 5022 75 2.3˘0.03 5.87˘0.21 7.53˘0.22

10803 5458 88 3.0˘0.03 6.35˘0.21 7.12˘0.26
11131 5326 85 2.8˘0.03 6.18˘0.20 7.17˘0.25
11796 5282 87 3.0˘0.04 5.91˘0.20 7.77˘0.24
14343 5229 83 2.8˘0.03 6.12˘0.20 7.25˘0.24
15217 5328 88 3.0˘0.04 6.24˘0.20 6.85˘0.25
16614 5224 83 2.7˘0.02 6.17˘0.19 6.75˘0.24
17116 5006 73 2.2˘0.03 6.13˘0.17 7.58˘0.22
17978 5263 85 2.9˘0.03 5.98˘0.19 7.19˘0.24
18076 5232 82 2.8˘0.03 5.99˘0.22 7.17˘0.24
18369 4956 73 2.2˘0.03 6.12˘0.22 6.11˘0.22
18682 5397 87 2.9˘0.03 6.40˘0.24 6.52˘0.26
19348 5383 87 2.9˘0.03 6.41˘0.22 6.85˘0.25
19928 5146 81 2.7˘0.03 5.82˘0.22 7.41˘0.23
20163 5179 82 2.9˘0.04 5.99˘0.19 7.10˘0.24
20473 5200 82 2.8˘0.03 5.92˘0.21 7.46˘0.23
20654 5488 125 3.0˘0.04 6.46˘0.22 6.84˘0.26
20871 5263 83 2.8˘0.03 6.27˘0.21 6.79˘0.24
20885 5076 80 2.8˘0.04 5.45˘0.19 7.47˘0.23
21053 4661 62 1.7˘0.03 5.61˘0.16 7.21˘0.23
22047 4630 61 1.6˘0.03 5.57˘0.28 6.48˘0.24
22170 5271 83 2.8˘0.03 6.21˘0.20 7.16˘0.24



CHAPTER

5
On the CN bimodality of metal-rich
clusters

Star-to-star variations of the strength of the CN band are nearly universal in moderate metal-

licity ([Fe/H]ě –1.6 dex) globular clusters of the Milky Way (see Sect. 1.1).

Most of the relatively metal-rich GCs surveyed present a bimodality (or in general a mul-

timodality) of CN distribution on the RGB, HB, and AGB (e.g. Suntzeff, 1981, Smith and Norris,

1993, Smolinski et al., 2011, Kayser et al., 2008, Campbell et al., 2012, see Fig. 5.1). Significant vari-

ations in CN band strengths have been reported for stars prior to their undergoing first dredge-up

(e.g. Briley and Cohen, 2001, Cohen et al., 2002, Ramírez and Cohen, 2002, Cohen et al., 2005),

even down to the MS in 47 Tuc (Cannon et al., 1998; Harbeck et al., 2003).

However, searches within other cluster MS stars have produced mixed results. Cohen (1999a)

reported no significant CN variation for MS and TO stars belonging to M 13, most probably be-

cause the CN feature in their spectra are too weak (Briley and Cohen, 2001). This interpretation is

supported by the detection of a bimodality in CN index among MS stars in M 71 at a level larger

than the measurement uncertainty, as well as an anticorrelation between CN and CH (Cohen,

1999b)1. In their sample of eight Southern globulars, Kayser et al. (2008) found no statistically

significant variation in CN abundance for stars on the MS and SGB, and they attributed that to

low S/N spectra producing relatively large measurement uncertainties. Some evidence for indi-

vidual CN groups on the SGB of M 92, M 2, and M 13 was found by Smolinski et al. (2011). Finally,

Pancino et al. (2010) reported CN bimodality for MS stars in four of their most metal-rich clusters

among a sample of 12 clusters.

Clearly, as already said, the detection of CN variation for these unevolved stars demands that

GC stars are initially formed with different chemical signatures, because the first mixing episode

is expected to happen later on the star evolution. Therefore these stars are free from evolutionary

effects that, superposed to the CH and CN extrinsic variations, could confuse the picture.

The fact that generally multiple CN behaviors at the level of the MSs are not observed for rel-

atively metal-poor clusters could well be due to the large uncertainties associated to measure-

1Follow-up analysis of these data further showed that the variation is at the same level as that observed for RGB stars
in that cluster, leading the authors to claim that no significant mixing is occurring on the RGB and that the abundance
variations were in place at the time the stars formed (Briley and Cohen, 2001).
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124 On the CN bimodality of metal-rich clusters

ments: the bands of bi-metallic molecules like CN become vanishingly weak at low metallicity,

owing to their quadratic dependence on the metal abundance, therefore, CN band is particu-

larly easy to observe at relatively high metallicities even at low signal-to-noise (S/N ) ratio and

for the fainter MS stars. In this case, the errors associated with the C and N abundances derived

from spectral synthesis could be sufficiently small to reveal discrete components in the [C/Fe]

vs. [N/Fe] plane.

In this Chapter we perform spectral synthesis on FORS2 data by Pancino et al. (2010) in order

to investigate the extent of the [C/Fe] and [N/Fe] variations in three metal-rich clusters (namely

NGC 6352, NGC 5927, NGC 6388, see Table 5.1). In the case of NGC 6352 and NGC 5927 we aim to

confirm the presence of a bimodal [N/Fe] distribution as indicated by the bimodal CN strengths

(Pancino et al., 2010). We also attempted an analysis of the peculiar cluster NGC 6388, for which

Pancino et al. (2010) could detect neither a CN-CH anticorrelation nor a CN bimodality because

Figure 5.1: Generalized histograms of the cyanogen excess parameterδCN for 12 GCs from Norris
(1987). A Gaussian kernel has been adopted with σ = 0.04 and all the distributions have been
normalized to have the same peak value. The vertical line correspond to δCN = 0.20.
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Table 5.1: Globular cluster sample

Name [Fe/H] (m -M)V E(B-V ) MV nst ar (P10) Nst ar (this work)

(dex) (mag) (mag)

NGC 5927 –0.49 15.82 0.45 –7.81 46 36
NGC 6352 –0.64 14.43 0.22 –6.47 24 24
NGC 6388 –0.55 16.13 0.37 –9.41 22 13

Global parameters are from the most recent version of the Harris (1996) on-line database (year 2010). The
sixth and the seventh columns indicate the original dimension of Pancino et al. (2010) (P10) sample and
the number of stars for which we were able to derive carbon and nitrogen abundances, respectively.

Figure 5.2: CMDs for the three GCs considered in this study. Grey dots show pre-imaging, V ,V´I
photometry from Pancino et al. (2010). Black dots mark only the stars for which we we were able
to measure [C/Fe] and [N/Fe] abundances.

of the low S/N ratio of the spectra, in an attempt to derive at least upper limits or to analyze

combined spectra.

5.1 Observations and data reduction

For the pourpose of this Chapter it is only important to recall that target stars were selected

from V , I pre-imaging (see Sect. 2.2 in Pancino et al., 2010) and the photometric calibration was

done using stars in common with the HST photometry by Sarajedini et al. (2007). The original

observational data set consists of » 100 MS stars acquired with FORS2 under the ESO program

ID 69.D-0056 and presented by Pancino et al. (2010). We refer the reader to that paper for details

of the FORS2 observations and data reduction.
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5.2 CN and CH index results

As mentioned before, Pancino et al. (2010) were able to detect an anticorrelated CH and CN

variation, with a clear bimodality in both the CN and CH content for NGC 6352 and NGC 5927.

For NGC 5927 that study was the first one dedicated to light element anticorrelations, while in the

case of NGC 6352 a correlated trend in Al and Na abundances was already suggested by Feltzing

et al. (2009), based on nine HB stars. Although NGC 6388 was already found to show the Na-O

and Mg-Al anticorrelations (Carretta et al., 2007), the insufficient S/N of their data prevented

Pancino et al. (2010) from reaching any conclusion about the CH and CN anticorrelation for

NGC 6388.

We corrected our CH and CN indices for temperature and gravity effects as described in

Sect. 3.2.1. In Fig. 5.3 the clusters are arranged in order of increasing metallicity, from left to

right, and the δS(3839) and δCH(4300) distributions on the MS are represented for each cluster.

To better visualize the hidden substructure in the δS(3839) vs. δCH(4300) plane we used the

same method introduced in Sect. 4.2.1:

´ A median is used to compute the centroids of the CH-strong2 and CH-weak3 in the CH-CN

plane. The resulting centroids with their 1σ errors are reported in Fig. 5.3 along with the

measurements for each star. We also divided also the stars into CN-strong4 and CH-weak
5 groups and their centroids with relative error bars are plotted in the same figure;

´ A line passing through the midpoint connecting CH-strong/CN-weak and CH-weak/CN-

strong centroids is traced;

´ Each observed point in the CN-CH plane is projected onto this line;

´ We arbitrarily take as origin (P ) the intersection between this line and the perpendicular

line passing through the point (δS(3839), δCH(4300))=(0.0, 0.0);

´ A generalized histogram (with σ = 0.10, 0.04, and 0.06, from left to right) of the distribu-

tion of distances of projected points from the origin P is constructed. Smoothing the his-

togram, in fact, could help eliminate any artificial substructure in the distribution created

by small number statistics and additionally accounting for unidentified sources of uncer-

tainty.

According to Pancino et al. (2010) (see also Sects. 3.2 and 4.2.1) we consider a distribution

to be bimodal when the centroids of the CN-strong (CH-weak) and CN-weak (CH-strong) stars

are clearly separated in the δCH-δCN plane. First, we see clear anticorrelations (upper panel

in fig. 5.3) for all cluster. Moreover, for NGC 6352 and NGC 6388 these anticorrelation are also

clearly bimodal: in both cases the generalized histograms of Fig. 5.3 appear bimodal.

2δCH(4300) > 0.0.
3δCH(4300) < 0.0.
4δS(3839) > 0.0.
5δS(3839) < 0.0.
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For NGC 5927, the generalized histograms do not show signs of bimodality, but rather a de-

viation from the Gaussian shape, with asymmetric residuals. To get more insights in this issue,

we studied the statistical significance of this spread using a KMM test (Ashman et al., 1994). The

KMM test can reject the null hypothesis that a single population well describes the observed

data in the case of NGC 5927 at a significance of 92%, possibly indicating a non-Gaussian dis-

tribution. In these respects, the determination of [C/Fe] and [N/Fe] via spectral synthesis could

help in clarifying the picture.

5.2.1 On the CN-CH bimodality

It is important to stress that the measured bimodal CN distribution does not necessarily re-

flect a bimodal abundance spread: the distribution of CN absorption strengths measures the

Figure 5.3: CH weak and CH strong stars are separated by the horizontal dashed line, and their
centroids with 1σ are marked as large white dots. CN strong and weak stars are separated by
the vertical dashed line, and their centroids with their 1σ are shown as large blue dots. The red
continuous line connects the locus equidistant from CH-strong/CN-weak centroids and CH-
weak/CN-strong ones. The generalized histograms in the bottom panels represent the distribu-
tion of distances of projected points from the origin P (see text for details).



128 On the CN bimodality of metal-rich clusters

true distribution of atomic abundances folded with the curve of growth (COG). As a matter of

fact, a continuum of atomic carbon and nitrogen abundances could lead to more or less the

same CN absorption strength at a given effective temperature if all the CN-enhanced stars are

polluted, but they fall on the flat part of the COG. Such a saturation of the CN S(3839) band was

proposed by Suntzeff (1981) and Langer (1985) to explain the bimodality of CN absorption in

GC RGB stars. The similarity of CN absorption strength for the CN-rich stars might be explained

by this saturation scenario, but the homogeneity of CN strength of the CN-weak stars remains

unsolved. As discussed by Harbeck et al. (2003), these CN-weak stars represent the unpolluted,

chemically homogeneous fraction of the cluster whose CN abundance falls on the rising part of

the COG and one would expect a continuum of CN absorption strength until the flat part of the

COG is reached.

5.3 Model atmospheres, synthetic spectra, and resulting abundances

The approach we have taken is identical to that of Lardo et al. (2012a) (see Sect. 3.3). Briefly,

we derived estimates of the atmospheric parameters from the calibrated FORS2 photometry

(Sect. 5.1), taking into account the errors on photometric parameters. For each cluster, we ob-

tained effective temperatures (Te f f ) with the Alonso et al. (1996) color-temperature relations,

adopting metallicities and foreground reddenings listed in Table 5.1. Gravities were then ob-

tained by means of theoretical isochrones downloaded from the Dartmouth Stellar Evolution

Database6 (Dotter et al., 2008), with the appropriate age and metallicity. Finally, we assumed a

microturbulent velocity vt = 1.0 km s´1 for the entire sample.

C and N abundances were determined via spectral synthesis, using the local thermodynamic

equilibrium (LTE) program MOOG (Sneden, 1973) combined with the ATLAS9 model atmosphe-

res (Kurucz, 1993, 2005). The atomic and molecular line lists were taken from the latest Ku-

rucz compilation and downloaded from F. Castelli’s website7. Abundances were computed as

explained in Sect. 3.3.2 and Sect. 4.3.2. To investigate the effect of erroneous stellar parameters

on the derived elemental abundances we have for two representative stars in each cluster var-

ied the stellar parameters and re-derived the elemental abundances. The error in the adopted

Te f f is typically δA(C)/δTe f f » 0.11 – 0.12 dex and δA(N)/δTe f f » 0.12–0.16 dex in the case of

NGC 6352. For the more distant and high-reddened NGC 6388 and NGC 5927, the errors in the

derived Te f f are larger, i.e.; δA(C)/δTe f f » 0.17 – 0.19 dex and δA(N)/δTe f f » 0.20–0.22 dex.

In every case, the errors due to uncertainties on gravity is negligible (on the order of 0.03 or

less). We expect that, in the case of MS stars, the exact O values will affect slightly the derived C

abundances. Indeed, we found that strong variations (˘ 0.5 dex) in the oxygen abundance are

completely negligible (on the order of 0.07 dex or less) for these warmer stars.

The errors derived from the fitting procedure (see Sect.3.3 for further details) were then added

in quadrature to the errors introduced by atmospheric parameters, resulting in an overall error

of eA(C)»0.18 dex and eA(N)»0.24 dex for NGC 6352, eA(C)»0.23 dex and eA(N)»0.28 dex for

6http://stellar.dartmouth.edu/models/
7http://wwwuser.oat.ts.astro.it/castelli/linelists.html

http://stellar.dartmouth.edu/models/
http://wwwuser.oat.ts.astro.it/castelli/linelists.html
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Figure 5.4: Synthetic spectra in the region of the 3883 Å CN band. Parameters are [N/Fe] = (-
1.5,-1.0,-0.5,0.0,0.5) (from upper to bottom), [C/Fe] = -0.6, Te f f =5800 K, and log g=4.3. It is clear
from this figure that, for this kind of stars and spectra quality, the CN feature becomes clearly
insensitive to nitrogen abundance variations for [N/Fe]ď –0.5 dex.

NGC 5927, and eA(C)»0.23 dex and eA(N)»0.26 dex for NGC 6388. We adopted a constant oxy-

gen abundance ([O/Fe]=0.4 dex) throughout all computations.

5.3.1 Stacked spectra to characterize N-poor population

While we were able to derive carbon and nitrogen abundances for the majority of the stars

in our sample, the CN feature at 3876 - 3890 Å appears to be so weak for a group of stars, that

only upper limits on the nitrogen abundances can be inferred. As a matter of fact, we can reason-

ably distinguish between two groups of stars: (1) stars with both [C/Fe] and [N/Fe] measurements

available (N-rich) and (2) stars for which we are able only to measure upper limits for the nitrogen

abundances (N-poor).

If the C/N ratio is solar, carbon atoms outnumber nitrogen atoms and the product of C and

N is small. If nitrogen is initially under abundant in metal-poor stars ([N/C] < 0.0), the product

of C and N will be still smaller and the CN bands still weaker. Figure 5.4 shows the dependence

of the 3883 Å CN band on nitrogen abundance (for a fixed [C/Fe] = – 0.6 dex) for a representative

star with atmospheric parameters similar to those derived for our target stars. This Figure shows

that the CN feature become clearly insensitive to nitrogen abundance variations for [N/Fe] ď

–0.5 dex.

Therefore, to provide a sound measure the difference in nitrogen the CN-normal and CN-

enriched populations we proceeded by combining the spectra within each nitrogen group to

produce summed spectra with much higher S/N as in Cannon et al. (1998).
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Figure 5.5: Upper panel: combined spectra for samples of N-rich (12 stars, black solid line) and
N-poor (12 stars, grey solid line) groups on the MS of NGC 6352. Lower panel: the ratio of N-rich
and N-poor spectra, after some binning (see text).

This technique assumes that the spectra of the stars are virtually identical apart from the

molecular features, which appears to be our case, since we found that other major features in

the spectra (e.g.; Ca (H+K) lines, Hβ) do not correlate with CN or CH8.

We show the combined spectrum for N-poor and N-rich stars for NGC 6352 in Fig. 5.5, which

also illustrates the locations of the CN and CH bands and various lines. For this cluster, the

spectra of twelve N-rich stars were added together to yield one spectrum, and twelve N-poor

stars were combined to form another spectrum. The intensity scale in Fig. 5.5 gives flux per unit

wavelength, scaled so that unity represents the continuum in the synthetic spectra. The two

summed observed spectra in the upper panel of Fig. 5.5 are very similar everywhere (particularly

near the region of the very strong Ca II lines and the Balmer H lines), demonstrates that the

two samples of main-sequence stars do not differ in any important respect, except for the CN

and CH molecular features. To verify that the difference in the UV CN band is real, we show in

the bottom panel of Fig 5.5 the result of dividing the N-rich spectrum by the N-poor spectrum.

For the purposes of this comparison, the observed and synthetic spectra were binned in steps

of 3.5 Å to show the presence of broad features, before the division was performed bin-by-bin.

The most striking feature of Fig.5.5 is that a deep S(3839) band corresponds to a strong CH G

band, but the latter lies on the opposite side of unity; in other words, the CN and CH bands are

anticorrelated (Sect. 5.2). The same could be said for NGC 5927 and NGC 6388 (see Fig. 5.6)

8We note that all our target stars lie in a small range of V magnitudes and V ´ I colors (Fig. 5.2), therefore all our
stars have very similar temperatures and gravities (see also Table 5.3).
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Figure 5.6: The same as in Figure. 5.5, but for NGC 5927 and NGC 6388. In this case we combine
the spectra of 21 and 4 N-poor stars and 15 and 9 N-rich stars for NGC 5927 and NGC 6388,
respectively.

As a final step, we used these combined spectra to derive upper limits for the N abundances

of N-poor stars. The comparison with synthetic spectra in the CN region shows that a reasonable

fit might be achieved at (upper limits) [N/Fe] ď – 0.64 ˘ 0.35, –0.61 ˘ 0.30, –0.5 ˘ 0.35 dex for

NGC 5927, NGC 6352, and NGC 6388 respectively.

The abundances derived as described above and the relative uncertainties in the abundance

determination are listed in Table 5.3 and plotted in Fig. 5.7. Additionally, Table 5.3 lists the de-

rived atmospheric parameters of all our targets.

5.4 C and N abundance results

Carbon and nitrogen show the typical anticorrelation found in many other GCs (see Chap-

ters 3 and 4), as shown in Fig. 5.7, where the [N/Fe] values are plotted as a function of [C/Fe]. The

open white circles represent the 37 stars for which upper limits for the nitrogen abundance were

derived from the stacked spectra (Sect. 5.3.1).
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Although we were able to measure only upper limits for the N-poor group, in the case of

NGC 6352 a sharp bimodality is present (see Fig. 5.7). Even taking into account the small num-

ber statistics and the large errors associated to the measurements, it does not seem premature to

conclude that in NGC 6352 there there are two well separated groups of MS stars, with a gap of

at least»0.5 dex in between, and a number ratio of 1:1 approximately. Therefore, we can safely

assume that all the stars for which we derived upper limits on [N/Fe] are first generation stars,

while the remaining ones belong to a second generation. Concerning the carbon of the N-poor

population, we found a median value of [C/Fe] = –0.57 dex ( σ = 0.05), virtually consistent with a

population with a single carbon abundance. At odds with the N-poor population, carbon is rel-

atively depleted among N-rich stars [C/Fe] = –0.93 dex (σ = 0.19), while the nitrogen abundance

Figure 5.7: The C and N abundances, along with their measurement errors, are plotted each
against the other for the three target clusters as black circles. The white circles refer to stars for
which we were able to measure only upper limits for the nitrogen abundances from the com-
bined spectra (see text).
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Figure 5.8: [C/Fe] vs. [N/Fe] abundances for all the three metal-rich GCs.

is highly enhanced [N/Fe] = 0.73 dex, with a large spread (σ = 0.24). NGC 5927 MS stars seem to

share the same pattern in the [C/Fe] vs. [N/Fe] plane. However, here the separation of the N-poor

and N-rich group is not so large: second generation stars are enhanced in nitrogen with respect

to first generation stars by [N/Fe] » 1.0 dex (at least). Although the carbon depletion among

N-poor stars in NGC 5927 might appear more extreme than in NGC 6352, this impression re-

lies on one star only (possibly belonging to the extreme generation mentioned by Carretta et al.,

2009c); the median value: [C/Fe] = –0.99 dex (σ = 0.25) is fully comparable to what obtained for

NGC 6352, while the nitrogen excess appears lower when compared to NGC 6352 (with a median

value [N/Fe] = 0.44 dex (σ = 0.29)).

The same cannot be said about the C-N anticorrelation in NGC 6388. Here the separation

between first and second generation stars is not so clear, most probably because of the low S/N

of the spectra. If we consider once again first generation stars, stars for which we could not

infer reliable N abundances, we found also in this case a large enhancement of N among second

generation stars [N/Fe] = 0.60 dex (σ = 0.40), similar to the N enhancement found for N-rich stars

in NGC 6352.

These results resemble what was found by Marino et al. (2008) for M 4 in the [Na/O]-[O/Fe]

plane, with two separated groups of stars 9 that corresponds to the two generations.

9With a number ratio of 1:1 approximately.
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From these values we note what is immediately apparent in Fig. 5.8 for second generation

stars: while the spread in [N/Fe] is well above 1 dex, in each cluster there is a smaller variation

in C abundances. Figure 5.8 further highlights two issues in regard to the detected C-N anticor-

relation. First, the pattern of C and N abundances among N-rich stars is similar for the three

clusters. Certainly this is expected, as NGC 5927, NGC 6352, and NGC 6388 have nearly identical

metallicities ([Fe/H] » –0.5 dex). Yet the abundances found among NGC 5927 and NGC 6388

show greater nitrogen abundance variations, with similar C depletions. This could resemble the

correlation Carretta et al. (2010c) found between the extension of the O-Na anticorrelation and

the present-day total mass of the GCs (using the absolute magnitude MV as a proxy for the mass,

see Table 5.1 and Fig. 5.8). Also in the case of the C-N anticorrelation, a large mass seems to be a

requisite for an extended anticorrelation.

5.4.1 The C-N anticorrelation

The most interesting result of our investigation is that we can show that the N distribution for

NGC 6352 and NGC 5927 is bimodal (Fig. 5.7). Moreover, a visual inspection of Fig. 5.7 suggests

that the extent of the C-N anticorrelation for second-generation (Na-N/rich) stars is greater than

the errors associated with abundance measurements for both clusters. This evidence possibly

suggests the presence of a third group of stars10. To confirm this suggestion, we analyzed the

distribution of stars along the C-N anticorrelation using the same procedure used in Sect. 4.4.2.

In brief, we first draw a fiducial by putting a best-fit spline through the median abundance found

in successive intervals of [N/Fe] = 0.5 dex (shown as red lines in the insets of Fig. 5.9). Then

we projected each program star in the [C/Fe]-[N/Fe] anticorrelation on this fiducial and plotted

the histogram of the distribution of vertical distances (D) of the projected points from the line

[N/Fe]=0. The resulting histograms for the three clusters are shown in Fig. 5.9. The red over-

imposed curve is the normalized kernel density distribution:

K =
N

ÿ

i=1

e
´(x´x(i ))2

2σ2

where x = [N/Fe] and σ is the observational error associated to [N/Fe]. We used for each star

σ = 0.26, 0.24, and 0.28 dex that has been taken equal to the dispersion of the group of stars with

available N measurements for NGC 5927, NGC 6352, and NGC 6388 respectively.

For NGC 5927 and NGC 6352 at least two substructures are apparent, peaked at D» 0.4 and

0.7 for NGC 5927 and D » 0.5 and 1 for NGC 6352. We tentatively divided RGB stars between

intermediate and extreme second generation stars by setting an arbitrary separation at [N/H]»

0.5 and 0.7 for NGC 5927 and NGC 6352, respectively.

For NGC 6388, the situation is less clear, because of the large errors associated to the abun-

dance measurements and the poor statistics. Nevertheless, if we tentatively assume that stars

with upper limits on N abundances are first generation stars, we can detect a hint of bimodality

10Stars with E (Extreme) composition, by adopting the nomenclature first introduced by Carretta et al. (2009b).
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for N-rich stars also in this case. Similarly, Carretta et al. (2012a,b) demonstrated the the exis-

tence of three distinct stellar populations in NGC 6752 and 47 Tuc. In this case, the distribution

of RGB stars is clearly clustered around three distinct Al values, low, intermediate, and high. Our

data suggest the presence of three discrete sub-populations for all clusters, unfortunately, we

cannot provide conclusive answers because the low number statistics in our data, rather than

data quality, at least for the N-rich stars.

5.4.2 Comparison with index measurements

To directly compare results from index measurements and abundance analysis, we identified

N-rich and N-poor (i.e., stars for which we were able to measure only an upper limit for the

nitrogen abundance) stars in the plot showing the distribution of CN and CH indices against

the stellar V magnitude in Fig. 5.10. Figure 5.10 shows that CN-strong stars are also N-rich and

C-poor, as expected. This indicates that [N/Fe] abundances linearly correlate with the S(3839)

band strengths for all the three clusters.

Figure 5.9: Distribution of the projected distance D of stars on the fiducial plotted in the the
insets in the top-right corner. For NGC 5927 and NGC 6352 we considered only N-rich stars. The
error bars in the inset represent the typical errors on [C/Fe] and [N/Fe].
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Figure 5.10: S(3839) and CH(4300) indices are plotted for all the sample stars in the three clusters
NGC 5927, NGC 6352, and NGC 6388 (from up to bottom). N-poor stars are plotted as white
circles, while N-rich stars are shown as black circles.

5.5 Comments on individual clusters

5.5.1 NGC 5927

According to Zinn and West (1984), NGC 5927 is one of the most metal-rich GCs ([Fe/H]=–

0.3 dex). Cohen (1983) found that this cluster is +0.59 dex more metal rich than 47 Tuc. Other

[Fe/H] estimates exist in literature (e.g., [Fe/H]= –0.5 dex; Francois, 1991), while Pancino et al.

(2010) were the first to study light element anticorrelations in NGC 5927. As already mentioned

throughout this Chapter, these authors found a clear anticorrelation of the CH and CN band

strength, in spite of the low S/N ratio of the spectra and of the relatively high reddening in the

cluster field. We confirm the presence of an extended C-N anticorrelation, with a bimodality in

the nitrogen variations. While first generation stars share homogeneous carbon and nitrogen

content, the second generation group displays an extended C-N anticorrelation. N-rich stars

also show a hint of bimodality, with a third group of stars with extreme chemical composition.

The source of errors that most affects [C/Fe] and [N/Fe] determinations in our case is the

large errors on the temperature of stars. Using differential reddening corrected photometry to

derive atmospheric parameters in NGC 5927 stars could help in obtaining smaller errors on the
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photometrically derived temperature. This will be the next step in the study of this particularly

interesting cluster.

5.5.2 NGG 6352

NGC 6352 is a sparsely populated cluster with disk kinematics. Following Mackey and Gilmore

(2004) classification, it is a bulge/disk GC, while Pritzl et al. (2006) placed it in the group of thin

disk clusters. Its CMD (Pulone et al., 2003) is very similar to that of 47 Tuc and M 71 with a stubby

red HB and a break at the RGB at the level of the HB. So far only few high-resolution spectro-

scopic studies exist for its bright giants. Cohen (1983) found that it is +0.38 dex more metal-rich

than 47 Tuc, while Carretta and Gratton (1997) found an average [Fe/H] = – 0.64˘ 0.06 dex from

their small sample (3 stars). This value was later adjusted to [Fe/H] = – 0.62 ˘ 0.05 dex by Car-

retta et al. (2009a). A possible Al-Na correlation was detected among HB stars by Feltzing et al.

(2009). The presence of two distinct sub-population in this cluster was confirmed by the study

of Pancino et al. (2010), who detected a bimodal CH-CN anticorrelation among MS stars from

low resolution, blue spectra. Here, we confirm that two discrete sub-population exist in this clus-

ter, with a remarkable difference in the N content. Moreover, N-rich stars display a clear C-N

anticorrelation which possibly is also bimodal.

5.5.3 NGC 6388

NGC 6388 is a very peculiar cluster: in contrast to expectations for its high metallicity (e.g.,

[Fe/H] = –0.44˘ 0.01 dex; Carretta et al., 2007) the cluster displays an extended blue horizontal

branch (Rich et al., 1997). In addition, the HB presents a slope, so that in the V band its blue tail

lies about 0.5 mag brighter than the red HB clump (Raimondo et al., 2002). Recently, Moretti et al.

(2009) detected a split at the level of the SGB region, indicative of two distinct stellar populations.

Although the statistics is very poor, we were able to detect a clear anticorrelation also for this

cluster. Moreover, the behavior of MS stars in the [C/Fe] vs. [N/Fe] plane appears to be bimodal

in nature11. This is the first time that a C-N anticorrelation is detected for this cluster.

5.6 Trends with cluster parameters

When trying to connect the GC properties with the extension of the anticorrelations, two pa-

rameters are usually defined: (i) the low-resolution community, studying the strength of molec-

ular indices, usually builds the ratio of CN-strong to CN-weak stars rC N (e.g., Norris, 1987, Smith

and Mateo, 1990, Smith, 2002, citealplayser08, Pancino et al., 2010, Smolinski et al., 2011); (ii) the

high-resolution community (namely Carretta et al., 2010c) measures the extension of the Na-O

and Mg-Al anticorrelations with interquartile ranges.

The two parameters measure two different physical quantities, and both give clues to the un-

derstanding of the anticorrelation phenomenon. Clearly, in the framework of the self-enrichment

11Unfortunately, because of uncertainties on abundance measurements and low statistics, we cannot provide con-
clusive evidence.
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scenario, the ratio between N-rich and N-poor star is a fundamental constraint to model the

chemical evolution of a GC, as this number tells us the relative importance of stellar groups

with different chemical composition (Sect. 1.8). Because we observed discrete groups in the

C-N plane, we have the opportunity to directly discriminate between first and second generation

stars (at least for two clusters in our sample). This give us the opportunity to count the num-

ber of stars in the two groups. To this end we define the number ratio between first and second

generation stars (n(N r i ch)/n(N poor )).

Similarly, we note that the C-N anticorrelation is clearly bimodal also in the case of 47 Tuc

(Briley and Cohen, 2001) and M 71 (Cohen et al., 2002), therefore we decided to include these

two cluster to our sample.

Although the sample is presently small, the use of low-resolution spectra to derive C and

N abundances in GC stars appears very promising, as it requires less telescope time and data

analysis efforts with respect to high resolution spectroscopy.

5.6.1 Ratio of first-to-second generation stars

We classified as first generation stars for which we have only upper limits for the nitrogen

abundance. While this classification is supported by the C-N bimodality observed for NGC 5927

and NGC 6352, this is only a tentative classification for NGC 6388, where the errors are too large

to discriminate between discrete groups12. The final errors on this ratio were propagated by as-

suming Poissonian errors on the [N/Fe] and [C/Fe] abundances. We obtained the following val-

ues or the number ratio between the second and first generation stars (r ): r = 0.71 ˘ 0.50, 1.00

˘ 0.40, and 2.25 ˘ 0.38 for NGC 5927, NGC 6352, and NGC 6388 respectively; with an average

value of <r > = 1.32˘ 0.81 (<r > = 0.85˘ 0.20 if we exclude NGC 6388). The study by Pancino et al.

(2010) (12 Galactic GCs), reported an average of r = 0.82˘ 0.29, while the average of the r values

reported by Kayser et al. (2008) for RGB stars in their sample is 0.61. Our results appear consistent

within the uncertainties with the values found by Kayser et al. (2008), Pancino et al. (2010), and

the value derived for RGB stars in M 2 (Chapter 4). Together, these results indicate that for the

studied clusters, generally CN-strong stars can account roughly for half of their respective cluster

populations (or less). However, studies of Na and O abundances in cluster giants Carretta et al.

(2009c) suggest that the ratio is much higher, with enriched stars comprising from 50 up to 70%

of the total (r > 1). This discrepancy is curious, and Pancino et al. (2010) suggested that it may

indicate that C-N abundance variations are contributed, at least in part, by a different feedback

source from the O-Na abundance variations studied by Carretta et al. (2009c). In fact, the C, N, O,

and Na are not directly comparable, because they are not produced exactly at the same temper-

ature: C and N are altered within the CN bi-cycle, O is depleted in the complete CNO cycle and

Na is produced in the NeNa cycle, each dominating at progressively higher temperatures. The

observed mismatch could also depend on the way stars are assigned to different populations by

the Padua group. Indeed, in the few cases where the Na-O anticorrelation is found to be bimodal

12However this classification seems to be reasonable if we compare the behavior of NGC 6388 in the [C/Fe] vs [N/Fe]
plane with respect to the other two clusters for which the bimodality was found (see Figure 5.8).
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Table 5.2: Global parameters of globular clusters of our sample. All sources for the parameters
are listed in the footnotes.

Name [Fe/H]a MV
a RGC

1a Ageb ε2a σ0
3c,d c4a rt

5a log(M/Md)e, f

(dex) (mag) (kpc) (Gyr) kms s´1 (pc) (dex)
NGC 104 –0.72 –9.42 7.4 13.06 0.09 11.5 2.07 42.86 6.05
NGC 5927 –0.49 –7.81 4.6 12.67 0.04 4.3 1.75 16.68 5.32
NGC 6352 –0.64 –6.47 3.3 12.67 0.07 5.4 1.15 10.51 4.57
NGC 6388 –0.55 –9.41 3.1 12.03 0.01 18.9 1.60 6.21 6.02
M 71 –0.78 –5.61 6.7 12.54 0.00 2.3 1.10 8.96 4.98

1 distance from Galactic center, 2 ellipticity, 3 central velocity dispersion, 4 concentration, 5 tidal radius.
a Harris, 1996 (2010 edition); b relative ages Marín-Franch et al. (2009)converted to absolute ages multiply-
ing by 12.8 Gyr; c Pryor and Meylan (1993); d Gnedin et al. (2002); e Mandushev et al. (1991); f McLaughlin
and van der Marel (2005).

(i.e. with stars divided in two well separated groups having different light-element content, see

Marino et al., 2008 for M 4 and Fig. 8 in Carretta et al., 2012b for 47 Tuc), we can assigning about

half of stars to each group.

5.6.2 Comparison with cluster parameters

The possibility that the various physical parameters of the cluster and the environment could

be linked in some way with the multiple population phenomenon has been examined exten-

sively in several studies. For example, a possible correlation between CN band strength and the

apparent ellipticity of the cluster was initially found by Norris (1987). This suggested correlation

was also confirmed by Smith and Mateo (1990) and Smith (2002), but this trend is not confirmed

by Kayser et al., 2008. Smith and Mateo (1990), Kayser et al. (2008), and Pancino et al. (2010)

found that clusters with a higher fraction of CN-strong stars are also more luminous and there-

fore more massive. This finding is supported also by the trend found by Smith and Mateo (1990)

with the central velocity dispersion σ0.

In order to explore possible correlations of the ratio of first-to-second generation stars with

global parameters of the GCs we combine our observations to quantities available in the liter-

ature. As mentioned above, we added to our sample also 47 Tuc and M 71 from the studies by

Briley and Cohen (2001) and Cohen et al. (2002). The cluster quantities were selected from the

2010 version of the Harris (1996) and Pryor and Meylan (1993) globular cluster catalogs. The

age estimates were adopted from Marín-Franch et al. (2009). Table 5.2 gives an overview of the

extracted parameters. In order to quantify the statistical significance of possible correlations be-

tween the number ratio of CN-strong stars with various structural parameters we computed for

each parameter the Pearson coefficient of rank correlation, rP .

Figure 5.11 shows the number ratio of N-rich/N-poor stars (r -parameter, hereafter) for the

clusters in our sample plotted against various cluster parameters. We plotted NGC 6388 in red,

as in this case we were not able to detect a nitrogen bimodality. For the same reason, we decided
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to calculate the correlation coefficients by neglecting this cluster13. We detected a correlation

between the r -parameter and the central velocity dispersion (as found also in Smith and Mateo,

1990). There is also a trend of an increased percentage of CN-strong stars with increasing cluster

tidal radius14. We observe a correlation between N enrichment and cluster ellipticity15, cluster

luminosity, mass and concentration that well agree with past findings (Norris, 1987; Smith and

Mateo, 1990; Kayser et al., 2008; Pancino et al., 2010), albeit the statistical significance of the

observed correlations is weak.

This result is consistent with expectations from the self-enrichment scenario –the most mas-

sive clusters possess the deepest gravitational potentials, allowing them to retain the largest

amount of chemically enriched gas expelled from evolving stars. We caution, however, that the

range of cluster metallicities, rt , concentration, age and RGC is not very broad to allow for firm

13However, we reported in the top right of each panel the value of the Pearson correlation coefficient computed when
NGC 6388 is included in the sample.

14But note that when considering NGC 6388, the same test gives a much lower probability that a correlation is present.
15As pointed out by Smith, the CN-strong/ellipticity correlation may be a selection effect; i.e., the higher ellipticity

clusters in the sample tend also to have higher masses.

Figure 5.11: Run of the ratio = n(N´r i ch)/n(N´poor ) for NGC 5927 and NGC 6352 (black circles).
The red circle represents NGC 6388. Grey circles show the n(N´r i ch)/n(N´poor ) value for 47 Tuc
and M 71 from Briley and Cohen (2001) and Cohen et al. (2002), respectively. Dotted lines mark
linear fits to clusters with the exception of NGC 6388 and the Pearson rP correlation coefficients
are reported on left-hand top of each panel. The rP correlation coefficient derived for all the
sample is reported in parenthesis. On the X labels, we plotted (from top to bottom, left to right):
mean iron abundance ratio; the integrated V magnitude; Galactocentric radius (RGC ); the age in
Gyr; the isophotal ellipticity ε=1–(b/a); the central radial velocity dispersion; the concentration;
the tidal radius; and the logarithm of the total mass in solar units .
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conclusions. Clearly, with only four clusters (of the same metallicity) in the sample, little more

can be said. Would be very interesting to extend this exercise to a larger number of clusters to

allow for a direct comparison with the population ratios drawn from different indicators (i.e.,

Na-O anticorrelation) and methods (i.e., photometry).

5.7 Discussion & conclusions

We have used low-resolution FORS2 spectra from Pancino et al. (2010) to confirm the pres-

ence of a bimodality in the [N/Fe] distributions for stars in three metal rich GCs (with [Fe/H]

» –0.5 dex). Pancino et al. (2010) were able to detect a substantial spread, with a hint of bi-

modality in the strength of the S(3839) band, and in CH(4300), among MS stars in these clusters.

Furthermore, these bands are found to anticorrelated and almost certainly have a bimodal dis-

tribution. Our comparison with synthetic spectra presented in this Chapter confirms that the

band strengths correspond to substantial real variations in the abundances of [C/Fe] and [N/Fe].

Moreover, the behavior of NGC 5927, NGC 6352, and NGC 6388 MS stars in the [C/Fe]-[N/Fe]

plane is very similar (see Figure 5.7). First, these MS stars display an intrinsic dispersion in bot

C and N abundances that could not be accounted for by mixing effects. N shows a clear spread,

while the spread in C is not as strong but still well above the measurement errors. This find-

ing demonstrates that multiple populations are not confined to metal poor clusters that may have

formed in a rather quiet environment and perhaps later accreted and stripped off their progenitor;

but also the metal-rich GC family formed in a turbulent, clumpy disk or within the bulge itself

hosts multiple generation of stars. Second, N exhibits a clear bimodality in the case of NGC 5927

and NGC 6352: in the case of NGC 6352 stars, we detected a difference in [N/Fe] between the first

and the second generation of stars of» 0.8 dex. Third, the N-rich population also appears to have

an internal spread in the nitrogen content and possibly a bimodality in the case of NGC 6352 and

NGC 5927.

In order to search for possible drivers for the abundance anomalies we studied the ratio of

first-to-second generation stars as a function of various cluster parameters. We considered both

structural parameters (including concentration, ellipticity, rt ) and orbital parameters or param-

eters depending on the location in the Galaxy (RGC , age, MV , [Fe/H]). Although our sample is

made up by only five GCs, which have also similar metallicity, we found weak correlations be-

tween r and concentration, luminosity, eccentricity, and present-day mass that broadly agree

with past findings (Norris, 1987; Smith and Mateo, 1990; Kayser et al., 2008; Pancino et al., 2010;

Smolinski et al., 2011). We find that preferably the more luminous/massive clusters exhibit a

large number of N-rich stars. This may be an indication that the CNO processed ejecta could be

more efficiently retained by more massive objects. Thus they might keep their gas longer, which

favors the buildup of a second generation of enriched stars. Furthermore, we find evidence for

an increase of the second-generation stars star fraction with cluster tidal radius (see also Kayser

et al., 2008). Since GCs with large tidal radii are mostly found in the weak tidal field of the Galaxy

(well outside the bulge and disk potential) they might occupy orbits that avoid bulge/disk shocks.
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Nevertheless we point out that our study is limited to a small sample of clusters. For a statistically

better supported study a larger cluster sample is necessary.
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Table 5.3: Carbon and nitrogen abundances for metal-rich GCs.

ID A(C) A(N) V I T log g
(mag) (mag) (K) (dex)

NGC5927-1101 7.07˘ 0.23 7.99˘ 0.26 20.216 18.677 5616˘ 274 4.3
NGC5927-1102 6.18˘ 0.26 8.76˘ 0.32 20.285 18.750 5630˘ 276 4.3
NGC5927-1103 7.09˘ 0.22 6.91˘ 0.35 20.172 18.606 5524˘ 261 4.3
NGC5927-1104 7.07˘ 0.23 7.88˘ 0.25 20.149 18.605 5599˘ 272 4.3
NGC5927-1105 7.20˘ 0.23 6.91˘ 0.35 20.368 18.841 5659˘ 280 4.3
NGC5927-1106 6.78˘ 0.22 8.26˘ 0.25 20.140 18.586 5564˘ 267 4.3
NGC5927-1107 6.89˘ 0.23 8.30˘ 0.25 20.392 18.845 5589˘ 270 4.3
NGC5927-1202 7.40˘ 0.25 7.65˘ 0.27 20.448 18.932 5699˘ 286 4.4
NGC5927-1204 6.93˘ 0.21 6.91˘ 0.35 20.729 19.128 5410˘ 246 4.4
NGC5927-1205 6.62˘ 0.21 8.50˘ 0.25 20.392 18.808 5465˘ 253 4.3
NGC5927-1206 6.79˘ 0.22 8.33˘ 0.25 20.396 18.822 5497˘ 258 4.3
NGC5927-1207 7.28˘ 0.22 6.91˘ 0.35 20.770 19.200 5511˘ 259 4.4
NGC5927-1208 7.14˘ 0.21 6.91˘ 0.35 20.170 18.574 5426˘ 248 4.3
NGC5927-1209 7.15˘ 0.23 6.91˘ 0.35 20.376 18.841 5630˘ 276 4.3
NGC5927-1210 7.08˘ 0.22 7.72˘ 0.32 20.210 18.652 5551˘ 265 4.3
NGC5927-2101 7.04˘ 0.27 8.26˘ 0.29 20.143 18.701 5989˘ 329 4.3
NGC5927-2102 7.62˘ 0.28 6.91˘ 0.35 20.289 18.856 6028˘ 335 4.3
NGC5927-2115 7.58˘ 0.25 6.91˘ 0.35 20.216 18.728 5804˘ 301 4.3
NGC5927-2116 7.55˘ 0.24 6.91˘ 0.35 20.167 18.658 5725˘ 290 4.3
NGC5927-3111 7.10˘ 0.21 6.91˘ 0.35 20.186 18.601 5461˘ 253 4.3
NGC5927-3112 7.19˘ 0.21 6.91˘ 0.35 20.411 18.816 5429˘ 248 4.3
NGC5927-3113 7.28˘ 0.21 7.86˘ 0.23 19.818 18.236 5471˘ 254 4.1
NGC5927-3115 7.25˘ 0.20 6.91˘ 0.35 19.958 18.353 5398˘ 244 4.2
NGC5927-3201 7.31˘ 0.20 6.91˘ 0.35 20.425 18.820 5398˘ 244 4.4
NGC5927-3203 7.41˘ 0.23 6.91˘ 0.35 20.133 18.609 5670˘ 282 4.3
NGC5927-3204 7.08˘ 0.20 6.91˘ 0.35 20.226 18.623 5404˘ 245 4.3
NGC5927-3205 7.38˘ 0.22 6.91˘ 0.35 19.930 18.364 5524˘ 261 4.2
NGC5927-3206 7.10˘ 0.23 6.91˘ 0.35 20.031 18.490 5609˘ 273 4.2
NGC5927-3208 7.28˘ 0.21 7.74˘ 0.23 19.834 18.236 5420˘ 247 4.1
NGC5927-3209 7.49˘ 0.23 7.68˘ 0.26 20.114 18.573 5609˘ 273 4.3
NGC5927-3210 7.08˘ 0.22 6.91˘ 0.35 20.438 18.867 5507˘ 259 4.4
NGC5927-4103 6.75˘ 0.23 8.13˘ 0.27 20.113 18.555 5551˘ 265 4.3
NGC5927-4106 6.93˘ 0.21 6.91˘ 0.35 20.315 18.711 5401˘ 244 4.3
NGC5927-4108 7.12˘ 0.21 6.91˘ 0.35 20.273 18.675 5420˘ 247 4.3
NGC5927-4112 7.09˘ 0.21 6.91˘ 0.35 20.411 18.816 5429˘ 248 4.3
NGC5927-4114 7.43˘ 0.23 7.64˘ 0.27 20.002 18.447 5561˘ 266 4.2
NGC6352-1101 6.96˘ 0.19 8.43˘ 0.23 18.661 17.632 5843˘ 153 4.1
NGC6352-1102 7.21˘ 0.16 6.80˘ 0.30 19.006 17.948 5732˘ 145 4.3
NGC6352-1103 7.29˘ 0.16 6.80˘ 0.30 18.988 17.946 5792˘ 149 4.3
NGC6352-1104 7.25˘ 0.18 7.82˘ 0.25 18.644 17.579 5706˘ 143 4.1
NGC6352-1105 6.99˘ 0.18 7.91˘ 0.25 18.633 17.566 5699˘ 143 4.1
NGC6352-1106 7.36˘ 0.17 6.80˘ 0.30 19.153 18.115 5808˘ 150 4.3
NGC6352-1107 7.24˘ 0.17 6.80˘ 0.30 18.550 17.491 5728˘ 145 4.1
NGC6352-1108 6.78˘ 0.19 8.30˘ 0.26 18.882 17.798 5638˘ 138 4.2
NGC6352-1109 6.68˘ 0.19 8.38˘ 0.27 18.682 17.592 5616˘ 137 4.1
NGC6352-1111 6.90˘ 0.18 8.14˘ 0.24 18.931 17.882 5766˘ 147 4.2
NGC6352-1113 7.17˘ 0.18 8.02˘ 0.24 19.081 18.038 5789˘ 149 4.3
NGC6352-1114 6.37˘ 0.20 8.54˘ 0.25 19.147 18.086 5721˘ 144 4.3
NGC6352-1115 6.75˘ 0.18 8.50˘ 0.23 18.522 17.484 5808˘ 150 4.1
NGC6352-1116 7.27˘ 0.16 6.80˘ 0.30 18.623 17.603 5879˘ 156 4.1
NGC6352-1201 7.34˘ 0.16 6.80˘ 0.30 18.603 17.554 5766˘ 147 4.1
NGC6352-1202 7.15˘ 0.20 7.94˘ 0.24 18.792 17.750 5792˘ 149 4.2
NGC6352-1203 7.36˘ 0.16 6.80˘ 0.30 18.664 17.619 5781˘ 149 4.1
NGC6352-1204 7.33˘ 0.16 6.80˘ 0.30 18.785 17.740 5781˘ 149 4.2
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Table 5.3: Carbon and nitrogen abundances for metal-rich GCs (continued).

ID A(C) A(N) V I T log g
(mag) (mag) (K) (dex)

NGC6352-1208 7.51˘ 0.16 6.80˘ 0.30 18.560 17.539 5875˘ 155 4.1
NGC6352-1210 7.18˘ 0.20 7.90˘ 0.24 18.904 17.857 5773˘ 148 4.2
NGC6352-1211 7.45˘ 0.17 6.80˘ 0.30 18.519 17.487 5831˘ 152 4.1
NGC6352-1212 7.12˘ 0.19 8.08˘ 0.23 18.843 17.830 5907˘ 158 4.2
NGC6352-1213 7.35˘ 0.17 6.80˘ 0.30 18.595 17.562 5827˘ 152 4.1
NGC6352-1214 7.39˘ 0.17 6.80˘ 0.30 18.941 17.915 5855˘ 154 4.2
NGC6388-1103 7.64˘ 0.24 7.31˘ 0.27 20.530 19.170 5981˘ 262 4.2
NGC6388-1104 7.45˘ 0.24 8.12˘ 0.26 20.831 19.469 5973˘ 261 4.3
NGC6388-1106 7.44˘ 0.23 7.85˘ 0.26 20.610 19.254 5998˘ 264 4.2
NGC6388-1108 7.26˘ 0.24 7.65˘ 0.27 20.994 19.619 5919˘ 254 4.3
NGC6388-1109 6.93˘ 0.23 8.45˘ 0.26 20.815 19.446 5944˘ 257 4.3
NGC6388-1112 6.80˘ 0.23 8.60˘ 0.26 20.555 19.172 5887˘ 251 4.2
NGC6388-1113 7.41˘ 0.23 7.00˘ 0.35 20.689 19.267 5736˘ 233 4.2
NGC6388-1202 7.12˘ 0.23 7.00˘ 0.35 20.558 19.133 5725˘ 231 4.2
NGC6388-1203 6.97˘ 0.23 8.10˘ 0.25 21.189 19.790 5823˘ 243 4.4
NGC6388-1206 7.37˘ 0.23 7.00˘ 0.35 20.716 19.299 5755˘ 235 4.2
NGC6388-1207 6.91˘ 0.25 8.72˘ 0.28 20.642 19.276 5956˘ 259 4.2
NGC6388-2103 7.73˘ 0.24 7.00˘ 0.99 20.530 19.170 5981˘ 262 4.2
NGC6388-2105 7.43˘ 0.24 7.53˘ 0.28 20.592 19.232 5981˘ 262 4.2



CHAPTER

6
Conclusions and discussion

The knowledge about how GCs formed and evolved has advanced at a incredible rate over the

last 10 years, but there are still several points regarding this self-pollution scenario that remain

to be properly understood (see Sect. 1.8 for a description). Accurate multi-band photometry

and multi-object spectroscopy are providing a huge amount of data, making the observational

scenario far more complex than once envisioned: interpretation of all these data in a working

scenario for the origin and early stages of cluster life appears anything but simple. As a matter of

fact, understanding the chemical enrichment histories of all clusters, from the least to the most

complex, represents one of the major challenges in modern astronomy.

It is not easy to put all the result of three years research in a coherent picture, as the field is

moving very quickly in the last years. In this last chapter I try to summarize the observational

evidence I added to the multi population scenario, the questions addressed, and the conclusion

reached. The second part of the chapter is devoted to a review of ongoing and future research

developments.

6.1 Summary of Thesis Results and Implications

I can summarize the main results of this dissertation as follows.

1. In Chapter 2 we present radial distributions for the first-to-second generation number

ratio for seven GCs in the SDSS. Lardo et al. (2011) more than doubles the number of clus-

ters for which such studies exist. This clearly indicates that second generation stars are

always more concentrated toward the cluster center with respect to first generation stars.

We enlarge and discuss the implications of this result in Sect. 6.2.1.

2. In Chapter 3 we add critical pieces of evidence to the puzzling NGC 1851 observational

scenario (Lardo et al., 2012a). This cluster belongs to the group of massive clusters1, which

1Such as ω Centauri (Pancino et al., 2000b; Bedin et al., 2004), M 54 (Siegel et al., 2007), M 22 (Marino et al., 2009,
2011, 2012b), Terzan 5 (Ferraro et al., 2009; Origlia et al., 2011).
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are distinguished from the normal GCs. The discrete distributions of RGBs and SGBs ob-

served in the CMDs of these GCs, together with spectroscopic variations in heavy element

abundances, indicate that they have experienced a much more troubled star-formation

history. These GCs are generally thought to be the relics of more massive primeval dwarf

galaxies that were disrupted by and merged with the Galaxy (Lee et al., 1999; Bekki and

Freeman, 2003; Carretta et al., 2010d; Bekki and Yong, 2011), and therefore, have impor-

tant implications on the hierarchical merging paradigm of galaxy formation.

3. In Chapter 4 we present new spectroscopic and photometric findings on the peculiar

nature of M 2. Coupling our results with other recent studies (Piotto et al., 2012), we ar-

gue that also M 2 could belong to the class of peculiar clusters (see Sect. 6.3). The apparent

similarity of M 2 to NGC 1851 andM 22 calls for a deeper and complete spectroscopic char-

acterization of stars in this anomalous RGB we discovered (see Sect. 4.5): only accurate

measurements of metal abundances for a representative sample of stars will shed light on

the origin of this poorly studied cluster.

4. In Chapter 5 we report a spectroscopic study of three metal-rich ([Fe/H] » –0.5 dex)

clusters; namely, NGC 5927, NGC 6352, and NGC 6388. When the S/N of our spectra was

good enough, we could detect clear [C/Fe] and [N/Fe] anticorrelations, which were always

clearly bimodal. The interest related to the presence of a bimodal distribution – rather

than a continuous spread – is clear in the light of the latest theories of self-enrichment

for GC: if we find a clear bimodality in the data, this supports the idea of two discrete star

formation episodes. This result also suggests that the contradiction between GCs discrete

photometric properties and continuous spectroscopic ones could be only apparent (see

Chapter 5 for a critical discussion).

6.2 Global Results

Our work contributed to make significant progress mainly in two areas: the structural prop-

erties and radial distribution of multiple populations and the discrete vs continuos nature of the

stellar properties in the different generation of stars.

6.2.1 Spatial distribution of multiple populations

In Chapter 2 we have used wide-field u, g ,r SDSS photometry of 9 GCs to search for the

spread in UV color along the RGB indicative of multiple populations. We detected a statisti-

cally significant UV spread in 7 of the considered clusters and found that in all of these cluster

second generation stars are more centrally concentrated than first generation ones. This leads

us to conclude that this difference in the radial distribution of different gene ration of stars may

be a general property shared by most/all GCs.

At the time at which this result was obtained, only a handful of studies reported the evi-

dence that second generation stars are more concentrated toward the cluster center with respect
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to their first generation counterparts (Pancino et al., 2003; Sollima et al., 2007; Kravtsov et al.,

2010b,a; Carretta et al., 2009c; Milone et al., 2009b; Zoccali et al., 2009; Bellini et al., 2009). There

was also some controversy concerning NGC 1851 (Milone et al., 2009b), but whit our study we

more than doubled the number of the GCs for which this effects is reported and dispelled any

remaining doubt.

Our result fully confirms the theoretical predictions by D’Ercole et al. (2008). Their hydrody-

namical, N-body simulations showed that AGB ejecta form a cooling flow and rapidly collect in

the innermost regions of the cluster, forming a concentrated second generation stellar subsys-

tem (see also Bekki, 2011).

Aditionally, we provided the radial profiles of the second-to-first generation number ratio

(NSG /NFG ). The shape of this observed quantity is a useful basis to test theoretical scenarios,

when compared with specific models reproducing the present-day status of the considered clus-

ters. In a recent paper Vesperini et al. (2013) studied the structural evolution of multiple pop-

ulation clusters. They focused on the spatial mixing of the first and second populations, and

their relative spatial distribution. After the early loss of first generation stars (after » 1–2 Gyr

in D’Ercole et al., 2008 simulations), a multiple-population cluster starts its long-term evolution

driven by two-body relaxation with a similar number of first and second generation stars, but

with the second population still concentrated in the inner regions.

As shown in Fig. 7 in Vesperini et al. (2013), the system starts with the SG population more

concentrated toward the center; then, as the cluster evolves, the first and second generation

stars mix. This mixing occurs more efficiently in the cluster innermost regions, where the local

two-body relaxation time scale is shorter, resulting in a flat portion in the NSG /NFG profile in the

cluster center. The inner portion of the profiles progressively extends toward the outer regions

until it reaches the cluster outskirts (i.e., complete mixing). As a result, during a large fraction of

cluster evolution, the first and second generation stars are not completely mixed and NSG /NFG

varies with the distance from the cluster center. The NSG /NFG radial profile is characterized by

an approximately flat NSG /NFG inner region followed by a declining outer portion correspond-

ing to regions increasingly dominated by first generation stars. In the outer regions, the NSG /NFG

profile is characterized again by an approximately flat portion followed, in some cases, by a weak

final rise in the profile in the cluster outermost regions. Vesperini et al. (2013) simulations indi-

cate that some memory of the initial second population segregation predicted by D’Ercole et al.

(2008) should still be preserved and observable in many clusters today, depending on the relax-

ation times of each cluster. As a matter of fact, the overall shape of the NSG /NFG radial profile

we observed (see also Bellini et al., 2009 and Milone et al., 2012c) is entirely compatible to what

obtained by Vesperini et al. (2013). This is expected by theoretical models, as all our clusters

have values of the t/tr h(t ) such that the presence of a radial gradient in the NSG /NFG profile is

predicted to be observable (Vesperini et al., 2013).

While our data presented in Chapter 2 do not in general probe these innermost regions (see

Fig. 2.6), i.e., indicating the need of complementary HST observations for the central crowded

regions, they demonstrated it to be a fundamental starting point to test theoretical predictions.
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Systematic and uniform investigation of the photometric properties of a large number of GCs

will be one of the basic observational constraints for testing theoretical scenarios (and, hopefully,

models) of the multiple populations.

6.2.2 Photometric discreteness vs. spectroscopic continuity

One of the most interesting open issues in the multiple population context is the continuous

versus discrete nature of the multiple stellar generations in GCs.

For the most massive clusters, the clearly separated, multiple MSs indicate that within each

sequence the matter is homogeneous, both in He and in Fe. That is, He enrichment of the

ICM and star formation for the second (and third) stellar generation took place through distinct

episodes. However, this is not reflected by the observed Na-O anticorrelations, where first gener-

ation and second generation appear to be distributed continuously. A few studies (e.g., Marino

et al., 2008 for M 4, Carretta et al., 2012a for NGC 6752, Carretta et al., 2012b for 47 Tuc) seem

to indicate a separation between the two stellar generations, but the evidence of multimodality

from high resolution spectra is still sparse.

On the contrary, bimodality of the stellar surface abundance of CN is almost universal among

clusters having metallicities [Fe/H] ě –1.6 (see the excellent review by Martell, 2011). Because

of the large effect of NH and CN molecules (i.e., both proxies for the nitrogen abundance) on

the UV filters, first and second generation stars, with different nitrogen abundances, are clearly

separated along the RGB in U -based CMD; i.e., Han et al. (2009a); Roh et al. (2011); Kravtsov et al.

(2010a); Lee et al. (2009b); Carretta et al. (2011a); Milone et al. (2010, 2012c); Marino et al. (2008,

2012b); see also Sect. 1.2.4. CN bimodality could also be found all the way down to the MS for

metal-rich GCs, for which the double-metal molecule CN could be observed also at low S/N (see

Fig. 6.1).

All these findings together suggests that maybe the errors associated with the [Na/O] and

[O/Fe] abundances derived so far are not sufficiently small for reveal underlying discreteness.

In the case of M 2 (see Chapter 4), we were able to separate between first and second subpop-

ulations and found that N-poor and N-rich stars are clearly separated into two parallel sequences

in the broader RGB seen in the V ,U ´V diagram. Also, the extent of the C-N anticorrelation

for second generation stars is greater than the errors associated with abundance measurements.

This possibly suggests the presence of a third group of stars; unfortunately, because of uncertain-

ties on abundance measurements and low statistics, we cannot provide conclusive evidence.

For metal-rich ([Fe/H] » –0.5 dex) clusters presented in Chapter 5, the situation is clearer.

At these metallicities, in fact, the CH and CN bands are so strong that it is quite easy to reveal

their variations also at low S/N for faint unevolved stars. As described in Chapter 5, we obtained

[C/Fe] and [N/Fe] abundances of a relatively large number of faint MS stars in three metal-rich

clusters: namely NGC 5927, NGC 6352, and NGC 6388. Interestingly, we obtained a bimodal

distribution in the C-N plane for two out of three clusters in our sample2. This is even more sur-

prising when considering that we are dealing with low resolution spectra in the blue part of the

2The lack of detection of bimodality for NGC 6388 is probably due to the low S/N ratio of its spectra.
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Figure 6.1: Left: C and N abundances of 47 Tuc MS stars are shown (from Briley et al., 2004),
where a clear bimodality can be seen.Right: The distribution of C and N among a similar sample
of M 71 and M 5 stars (from Briley and Cohen, 2001 and Cohen et al., 2002) is also plotted. The
general pattern is the same between all three clusters, and M 71 and 47 Tuc (two clusters of
similar metallicity) appear to be essentially indistinguishable. In the case of the more metal-
poor M 5, the C depletions are more extreme, yet the N enhancements are not.

visible spectrum of faint stars. The distribution of first and second generation stars in the C-N an-

ticorrelation closely resembles the case of involved stars in 47 Tuc and M 71 (see Fig. 6.1), where

a strong bimodality in the nitrogen content is apparent, with second generation also showing a

clear internal C-N anticorrelation.

If this is the case, the implication seems to be that the scenario of cluster formation must

include multiple bursts where the second population formed. In each, the interplay between

matter processed by polluters of different mass (decreasing with time) and pristine material does

combine to give the observed chemical pattern in each group. Not much more can be said using

only C and N abundances, ideally one would need a complete set of key element abundances in

a significant number of stars and clusters to fully characterize each individual group.

We have now analyzed five Galactic GCs covering a large range in metallicity: NGC 1851

(Chapter 3), M 2 (Chapter 4), NGC 5927, NGC 6352, and NGC 6388 (see Chapter 5). In the case

of NGC 1851, NGC 5927, NGC 6352, and NGC 6388, we have large samples of unevolved stars.

Only a few determinations of carbon and nitrogen abundances for SGB, TO, and MS stars exist

in literature (namely, M 71, M 5, M 13, M 15, and 47 Tuc; see Cohen et al., 2005 and references

therein). With our work we double the number of clusters for which viable [C/Fe] and [N/Fe]

abundances exist for the low luminosity range.

So far, a clear bimodality in the C and N distribution (see Fig. 6.1) was only found in the

case of M 71 Briley and Cohen, 2001 and 47 Tuc (see Cannon et al., 1998 and Briley et al., 2004

for references therein to many earlier studies). In Chapter 5 we demonstrated that also in the

case of NGC 6352 and NGC 5927 the MS stars the first generation and second generation are
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confined into discrete clumps, enlarging once again the size of the sample for which bimodality

is observed.

The existence of a clear separation between populations, possibly bringing into agreement

photometry, low- and high-resolution spectroscopy (of all the involved chemical species) would

be of immense value, helping us not only to solve the long standing puzzle of who-is-who, but

also to resolve all conflicts on the population ratio (see Sect. 5.6.1), a strong constraint on our

ability to understand and model the formation and evolution of multiple populations in glob-

ular clusters and GC system connection with the Galaxy halo. According to models (see also

Sect. 6.2.1), almost all of the stars that manage to escape the clusters at early times are first gen-

eration stars (D’Ercole et al., 2008)3, as the cluster evolution continues into the phase dominated

by two-body relaxation, the two populations mix and the fractional escape rates of the first and

second generation stars due to evaporation tend to equalize, stabilizing the second generation

fraction (Vesperini et al., 2010). Two recent spectroscopic studies have found that the vast major-

ity of halo stars studied have abundances typical of first generation stars in clusters; only about

1.5% – 2.5% of the stars are Na-rich (Carretta et al., 2010c) and CN-strong (Martell et al., 2011),

and hence classifiable as second generation stars. Vesperini et al. (2010) confirmed this values

and found that the fraction of mass of the Galactic stellar halo in second-generation stars is al-

ways small, < 4%-6% for a Kroupa et al. (1993) IMF and < 7%-9% for a Kroupa (2001) IMF. This

implies that a large fraction of the Galactic stellar halo (from 20% to about 40%) must be com-

posed of stars originally formed in globular clusters (Vesperini et al., 2010).

6.3 The zoo of Galactic globular clusters

From the discussion to the subject of multiple stellar populations presented in this disserta-

tion and the large literature published on this topic in the last years (and reviewed in Chapter 1),

it appears clear that all clusters are different and the main properties of stellar generations (i.e.,

the first-to-second generation number ratio, their radial trends, extension and shape of the C-N,

Na-O anticorrelation, CMD morphologies) differ from cluster to cluster.

Appears, at the moment, difficult to fit all the observational evidence and modeling into a

unique scenario. Marino et al. (2011) proposed a a schematic classification, according to the

degree of complexity GCs display:

´ normal GCs, those GCs that show only chemical inhomogeneities in the light element

abundances. Nearly all globular cluster have these characteristics4 and the presence of

the Na-O anticorrelation has been suggested as the operative definition of bona fide GC

(Carretta et al., 2009c). Multiple RGBs can be recognized in their CMDs if proper filters are

used.

3The fact that first generation stars were much more numerous at the time of cluster formation can also account for
the polluting material needed to explain the following stellar generation.

4With the possible exceptions of Pal 12, Terzan 7 and IC 4499 (Walker et al., 2011).
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´ peculiar GCs. To this class belong clusters such as M 22 and NGC 1851. Beyond the classic

C-N, Na-O anticorrelations, these GCs display small metallicity spreads and bimodal heavy

element distribution. Additionally, each s-process group has its own C-N, Na-O anticor-

relation; suggesting that their nucleosynthetic history must be more complicated than for

normal GCs. Their CMDs appear also complex, with split at also the level of RGB and SGB.

´ ω Centauri, the more extreme GC, with a huge spread in iron, multiple Na-O anticorrela-

tions, large variation in s-process elements with metallicity, and multiple sequences along

the entire CMD. Also the massive cluster M 54 displays many similarities with ω Cen 5.

Even more so than those, G 1 could be a kind of transition step between globular clusters

and dwarf elliptical galaxies, in being the remaining core of a dwarf galaxy whose envelope

would have been severely pruned by tidal shocking due to the bulge and disk of its host

galaxy, M 31 (Meylan et al., 2001).

Although high-resolution spectroscopy is the best way to derive abundances, it needs also an

enormous amount of observing time. Throughout these pages, we tried to convince the reader

that low resolution spectroscopy, aimed to derived C and N abundances can be reasonably re-

garded as a useful complement to high-resolution observations. Whenever possible, it is worth

coupling C and N abundances to U -based photometry, in order to maximize the information on

multiple stellar generations. We demonstrated the effectiveness of such approach both in the

cases of NGC 1851 and M 2 (see Chapters 3 and 4 for more details).

For NGC 1851, our analysis added new pieces of evidence for the observational scenario (we

refer the reader to Chapter 3 for a summary of the previous photometry and spectroscopic find-

ings and for a wider discussion on the peculiarity of this cluster). As for the other clusters be-

longing to the second group, NGC 1851 could be the link between normal GCs and more massive

objects like ω Centauri and even dwarf galaxies.

Recently, Joo and Lee (2012) investigated the star formation histories of these peculiar GCs,

by constructing synthetic CMDs for M 22, and NGC 1851. They found that the age differences

between the metal-rich and metal-poor subpopulations, as defined by the split SGB, is relatively

small (»0.3 Gyr, see also Marino et al., 2012b) and metal-rich subpopulations with redder RGBs

are also enhanced in helium abundance. The formation time scale of stellar populations in these

GCs is therefore expected to be fairly short, i.e., less than 1 Gyr. Hence we can imagine this

possible scenario for these two peculiar clusters:

(1) initially, a first generation of metal-poor (bright SGB/blue RGB) stars formed from gas

having normal helium and light element abundances,

(2) the remaining gas is then polluted by the winds from FRMSs, which enhance helium

and alter the abundance profile of light elements.

5As suggested by Carretta et al. (2010b), also M 54 may has formed in a very similar way to ωCen: these two objects
(the most massive GCs of the Milky Way) may represent just two subsequent snapshots of the same basic evolution of
dwarf galaxies, taken at different times (Carretta et al., 2010b)
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(3) The most massive (ě8 Md) stars then would explode as type II SNe, altering the overall

metallicity, including heavy elements and the total CNO content6.

(4) Further pollution of the gas by the ejecta from intermediate-mass AGB stars (»3–7 Md)

would follow, which enhance helium and change light element abundances.

(5) Finally, formation of the second-generation metal-rich (faint SGB/redder RGB) stars

from the gas now enriched in overall metallicity and helium and polluted in light element

abundances.

This simple scenario requires that GCs were much more massive in the past, because their

present masses are too small to retain the ejecta of SNe explosions (e.g., Baumgardt et al., 2008).

This suggests that these GCs were once nuclei of now disrupted dwarf galaxies and then merged

and dissolved in the proto-Galaxy, as is widely accepted for ω Cen (e.g., Lee et al., 1999, Bekki,

2011 and references therein).

Finally, our analysis of Chapter 4 possibly suggests that also M 2 may belong to this second

group (see also the results on its double SGB presented by Piotto et al., 2012). It is not clear,

however, why the additional RGB we discovered is made up only by this tiny fraction of stars. All

these findings call for a deeper and complete spectroscopic characterization of stars in this so

far neglected cluster.

6.4 Future Prospects

In this concluding Section, we briefly outline possible future work, which would help to clar-

ify or extend the results presented throughout this dissertation.

6.4.1 Search for UV -blue photometry of GCs in public database

Changes in light-element abundance and helium, in addition to those caused by age, overall

metallicity and [α/Fe] reflect in a complex collection of photometric shifts and spreads in GC

CMDs when suitable filters are used (see Sect. 1.2). A systematic search of archival space and

ground-based photometry could be a profitable way to confirm or deny the presence of multi-

ple populations for a large number of GCs. Also, tracing the multiple population phenomenon

throughout the different evolutionary phases (MS, SGB, RGB), and different cluster properties

(total mass, orbital parameters, structure, metallicity) is important to establish the distribution

among stars from different generations (see for example the SUMO project7). Wide field ground-

based data should be complemented with HST data to cover also the innermost regions (see

Sect. 6.2.1).

6The enhancement of the total CNO abundance in the metal-rich later generation subpopulations would in fact
indicate the contribution by type II SNe (see also Marino et al., 2012b).

7http://www.iac.es/proyecto/sumo/project.html

http://www.iac.es/proyecto/sumo/project.html


6.4. Future Prospects 153

6.4.2 Search for GC-like chemical pattern in extra-galactic environments

The chemical inhomogeneities and multiple sequences are not confined to Galactic GCs

only, but they were observed in the LMC clusters (Johnson et al., 2006; Mucciarelli et al., 2009;

Milone et al., 2009b) and in Fornax clusters (Letarte et al., 2006). On the other hand, Milky Way

stars generally do not show anticorrelations (Gratton et al., 2000) and no chemical anomalies

were found in Open Clusters (Martell and Smith, 2009; Smiljanic et al., 2009; Bragaglia et al.,

2012 but see Geisler et al., 2012 and Carrera, 2012 for the unique case of NGC 6791).

This suggests that the environment at formation is a fundamental key in the understanding

of these anomalies. The environment defines in fact the enrichment history of a cluster through

dynamical interactions with the ambient medium of the parent galaxy. Evidence that the orbital

parameters and present-day total cluster mass have some impact on the extension of anticorre-

lations (Carretta et al., 2010c) and on the number ratio of the enriched-to-normal stars (Pancino

et al., 2010) supports this statement.

Low-resolution spectroscopy aimed to derive C and N abundances could be regarded as the

only viable way to detect multiple populations in far away clusters, for which high-resolution

spectroscopy for a statistical significant number of stars is out of reach. In extragalactic envi-

ronments such as Sagittarius, Sculptor, and Sextans dwarf galaxies, observational constraints

(i.e., CH and CN band measurements) can be derived with state-of-art ESO facilities. This kind

of study will expand our ability to study of the environmental effect on cluster formation and

enrichment history, still unknown or under-constrained.

6.4.3 Building the right database

While it is clear that something is going on in almost every well-studied cluster, it is not clear

that we understand how that effect depends on the cluster properties. There are indeed very

large cluster to cluster differences: some GCs possibly comply with the SSP template paradigm

(e.g., IC 4499; see Walker et al., 2011), others have two, or three, or even five distinct sub-popu-

lations (see Chapter 1 and Sect. 6.3). Several studies (e.g., Norris, 1987, Smith and Mateo, 1990,

Kayser et al., 2008, Carretta et al., 2010c, Pancino et al., 2010) have highlighted the advantage of

having data for a set of GCs, with different structural and orbital parameters, to globally study

the extension of light element abundance variations with GC parameters.

To this end, it would be of great value to expand the parameter space to study the multiple

population phenomenon in a global way. In order to constrain the properties of the stars in the

different generations, it is vital to follow their evolution from the MS to the white dwarf cooling

sequence in a carefully selected number of clusters spanning a large range in metallicities, con-

sidering (old and young) clusters with different degrees of chemical and photometric complexity.

It would be interesting to expand the present research by exploring more GCs, including all

the most massive ones as well as a number of those of smaller mass, searching for multiple se-

quences and performing accurate star counts. Available multiplex high resolution spectrographs

would allow for a detailed chemical composition measurement of large samples of GC stars in
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various evolutionary phases. A detailed analysis for not only C and N, but also other elements

whose potential has not been fully exploited (such as s-process elements, F, and Li see also

Sect 1.4), is mandatory whenever possible. This chemical tagging would be particularly inter-

esting for stars in clusters which display s-process elements variations (e.g., M 22 Marino et al.,

2012b; D’Orazi et al., 2012 and NGC 1851 Lardo et al., 2012a; Gratton et al., 2012c) and for stars

belonging to anomalous substructures in GC CMDs (e.g., the additional RGB sequence in M 2,

see Lardo et al., 2012b and Chapter 4).
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