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Abstract

In this thesis, we extend some ideas of statistical physics to describe the properties

of human mobility. By using a database containing GPS measures of individual

paths (position, velocity and covered space at a spatial scale of ' 2 Km or a time

scale of 30 sec), which includes the 2% of the private vehicles in Italy, we succeed

in determining some statistical empirical laws pointing out “universal” character-

istics of human mobility. Developing simple stochastic models suggesting possible

explanations of the empirical observations, we are able to indicate what are the

key quantities and cognitive features that are ruling individuals’ mobility.

To understand the features of individual dynamics, we have studied different as-

pects of urban mobility from a physical point of view. We discuss the implications

of the Benford’s law emerging from the distribution of times elapsed between suc-

cessive trips. We observe how the daily travel-time budget is related with many

aspects of the urban environment, and describe how the daily mobility budget

is then spent. We link the scaling properties of individual mobility networks to

the inhomogeneous average durations of the activities that are performed, and

those of the networks describing people’s common use of space with the fractional

dimension of the urban territory. We study entropy measures of individual mobil-

ity patterns, showing that they carry almost the same information of the related

mobility networks, but are also influenced by a hierarchy among the activities per-

formed. We discover that Wardrop’s principles are violated as drivers have only

incomplete information on traffic state and therefore rely on knowledge on the

average travel-times. We propose an assimilation model to solve the intrinsic scat-

tering of GPS data on the street network, permitting the real-time reconstruction

of traffic state at a urban scale.
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Chapter 1

Introduction

The characteristics of people movements are very important pieces of information

upon which many models and studies depend. Individual mobility is coupled

with the spatial distribution of activities in a city, a fundamental problem in

geography and spatial economics[1]. At the same time, human mobility at all scales

is a key ingredient for epidemics spreading models, as diseases are transmitted at

close proximity and diffuse because persons travel and interact[2]. The need for

transportation is realized by participating to traffic flows over the street network,

in most cases using vehicles. When the flow of vehicles overcomes the capacity of a

street, a transition to a congested state takes place[3]. These transitions have direct

costs in terms of time and monetary loss. Each year traffic delays in the US are said

to cost nearly $100 billion, and waste around 10 billion liters of fuel, while drivers in

Los Angeles can expect to spend a total of 56 hours sitting in jams[4]. Indeed, the

importance of handling traffic was already manifest at the time of ancient Rome: in

order to reduce the frequent congestion that afflicted the narrow and crowded roads

of the city, Julius Caesar forbade wagon traffic from dawn until dusk, ratifying

the first traffic management law in the history[5]. Therefore, the study of the

statistics of humans movements and their interactions is fundamental for urban

and transportation planning, epidemics and traffic congestion containment, and

more generally for the design of smarter cities[6].

Even if we have already made many progresses in the understanding of the mi-

croscopical behavior of vehicular and pedestrian flows[3], when we wide the scope

to the general picture of human mobility, integrating the complex features and

heterogeneities of real-world systems, we are challenged by what in principle is a

daunting many-body problem that can be included in the class of complex techno-

social systems[7]. Unlike many physics problems, in this case the nature of the

1



2 Chapter 1 Introduction

complex of factors determining individual mobility choices and the way people in-

teract with their surroundings cannot be completely known. This kind of systems

can hardly be completely understood from a particular disciplinary perspective,

and probably the very finding of a single, consistent, complete and correct model

for them is unattainable[8].

The objective of this thesis is to participate to the effort of understanding human

mobility from a statistical physics viewpoint, and at the same time to study human

mobility as a paradigmatic example of a complex statistical cognitive particles sys-

tem. If we could assume that statistical laws are governing individual dynamics,

we could make predictions on system evolution averaging over the evolutions of an

ensemble of possible states. This ensemble is characterized by macroscopic observ-

ables that give information on the global state of the system. Knowing the nature

of this observables permit us to use them as control variables, which are essential

to understand the macroscopic behavior of the system, its transient and critical

states and phase transitions. Although, the microscopical laws governing individ-

ual dynamics are not known, and is therefore necessary to start with the statistical

analysis of individual mobility and understand in what measure our ignorance of

the micro-dynamical details can be overcome by statistical physics’ methods and,

alternatively, in which situations the complexity of the system makes those details

essential. Studies in this sense have become possible in recent years thanks to

the availability of vast amounts of data produced by the Information and Com-

munication Technologies. Mobile phones, GPS devices and geo-referenced social

networking are a continuous source of data on peoples whereabouts. This data

abundance makes even more important to bring at light where the important in-

formation lies, and the specific development of aggregation, filtering and analysis

methods is needed. In fact, the potential power of this huge data flow is lim-

ited by our ability of extracting the information really needed to create models

which can be used to anticipate trends, evaluate risks, and eventually manage

future events[9]. Moreover, when studying a cognitive system, we cannot limit

our modeling to the description of how from micro (the individual dynamics) we

obtain the macro (the population dynamics). The awareness of all individual of

the conditions at macro level and the ability of changing strategies implicate also

an adaptive feedback in microscopical dynamics. The way people choose among

different strategies, the quantities considered in these decisions and the effective

understanding of the real state of the system and of its evolution have to be taken

into account in modeling population dynamics.
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Our modeling approach is data driven. From the analysis of a large GPS database

of single-vehicle mobility we deduce statistical laws valid over the whole popula-

tion. Then we design stochastic models that, capturing the fundamental features

of individual mobility strategies, are able to reproduce the observed statistical

properties. These models, lying conceptually between micro and macro level, per-

mit us to point out what are the key quantities required for the description of

human mobility, and the ways these quantities concur into individual decisions.

The knowledge of those quantities and their properties allows to a deeper analy-

sis of individual dynamics, of which we are able to isolate and study new aspects

subtracting what we are already aware of. On the other hand, quantifying the rela-

tionships of those key quantities with the physiological, economical, infrastructural

or geographical constraints influencing our mobility, we can reach the goal of char-

acterizing the strategical processes underlying driver’s decision dynamics, making

one or more steps forward in the developing of a mobility governance framework.





Chapter 2

Mobility Data

Figure 2.1: Distribution of driver’s presences in our database.
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6 Chapter 2 Mobility Data

This work takes advantage of a huge database of GPS (Global Positioning System)

measurements, describing the motion of private vehicles in Italy. Those data

have been collected, primarily for insurance reasons, by a private company (Octo

Telematics S.p.A.[10]), who granted us access to part of its database for research

purposes. This database refers to roughly 2% of the vehicles registered in Italy.

The big advantage in the use of GPS measures for the study of human mobility

is the chance of directly following the movements of people. In fact, we can easily

and precisely define a trip as the transfer between two places where the engine

has been turned off, where other indirect measures of human mobility, such phone

calls’ location or of accesses to a social network, may be systematically influenced

by the complex features of the communication habits. Moreover, this type of data

clearly permits to study at the same time the individual mobility in the urban

environment and the associated use of the road network.

The installed GPS devices can record and send to the main Octo Telematics Service

Center the geographical coordinates, time, instantaneous velocity, distance covered

since the last record and quality of the GPS signal at the time of the recording,

that can be absent, weak or good. Communications with the Service Center

are made via GSM/GPRS network. Therefore, to reduce costs, the records are

normally taken only at engine start (starting data), stop (stopping data) and every

approximately 2 Km of travel (travel data) and sent in packets of 50. In particular,

after 2 Km from the last record, the device will save a new one as soon as it has a

sufficiently good GPS signal. A slightly different recording pace is used for travels

along highways or ring roads around important cities, where the company provides

traffic information in real time. In this case, when a car enters the highway, it

passes through a virtual gate and its position is recorded. Starting from that

moment the record will be made every 30 seconds and sent every 12 minutes until

a second passage through another virtual gate happens exiting the highway. Being

this system not perfect, it may happen that a car is recording with a 30 second

pace outside highways.

The data suffer from the limited precision of GPS measurements, in particular

when the device looses the satellite signal. These problems are especially relevant

when the engine is switched on or the vehicle in parked inside a building. When the

signal quality is good, the time precision of the recorded data is perfect, whereas

the space precision is of the order of 10 m, which is usually sufficient to localize a

vehicle on the road. In adverse circumstances, errors can increase up to 30 meters

or more. Naturally, errors on both instantaneous velocity and covered space are

related to errors on the GPS positioning given. Nevertheless, these last quantities
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are calculated with an adequate precision, as they result from an elaboration of

GPS data recorded (but not registered) each second.

Due to the Italian law on privacy, we have no direct information on the owners or

any specific knowledge about the social composition of the sample. The installation

of this GPS system on a vehicle entitles the holder to a discount off the insurance

price. This is particular appealing for young people so it can be expected a bias in

this sense. Taxi companies or the delivering services use their own GPS systems

and they do not contribute to the database, which is mainly set up by private

vehicles. There is a small percentage of vehicles used for professional reasons and

belonging to private companies, that take advantage of the insurance discounts of

collective contracts.

In this Thesis we analyze three datasets containing the records of one month of

mobility in different areas and years. The first dataset is about the province

of Florence in March 2008, the second about the region Emilia-Romagna 1 in

November 2009 and the last dataset contains information about all the mobility

in Italy in May 2011. More information about the dimensions of these datasets

are found in table 2.1

Month Surface Trips Cars

Florence March 2008 3,514 Km2 1,806,000 32,000

Emilia-Romagna November 2009 22,451 Km2 7,157,000 75,000

Italy May 2011 301,340 Km2 128,363,000 779,000

Table 2.1: Datasets dimensions.

In the following, I will illustrate some of the algorithms that have been developed

within the Physics of the City research group for the analysis of these datasets.

2.1 Data Pre-Elaboration

GPS data are originally organized chronologically. In order to consolidate the trip

structure, all measures are re-organized with a new ordering given by the vehicle

identifier. Then, it is verified if trip sequences (starting datum - travel data -

stopping datum) are complete. In this phase, all measures without informative

1For Emilia-Romagna the analysis has been made considering only working days.
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content, i.e. double records or travel measures taken without satellite signal, are

erased. Between measures taken too close one another (≤ 30 m or 20 sec), only

one is kept and if an entire trip is, in this sense, too short, it is completely erased.

In cases where the starting and stopping data are taken with low levels of sig-

nal, other measurement associated to the same stay are used to have a quality

improvement. This happens often for data taken when the engine has started:

as the device has been just turned on, this kind of data is often taken with no

signal. In all cases, when there is no signal, the device records the last known good

quality position as the actual one. In the case of starting data, the last known

position should be the place where the engine has been turned off, and thus proba-

bly describing to the same location. If the two measured positions are distant less

than 100 meters, the quality of the starting point data has been enhanced as it is

supported by the precedent stopping point, otherwise we may have a pathological

stop, where the continuity of the trajectory is lost. Moreover, for all starting data,

both velocity and covered length of the starting point are initialized to a nil value.

Another situation where the continuity of the trajectory is lost is when a signal loss

occurs during the travel. This can happen for many technological or environmental

reasons. If, as a result of the signal loss, two consecutive GPS data, with good or

weak satellite signal, are too far one another (temporally: more than an hour; or

spatially: more than 3 Km), the trip is considered interrupted and we declare no

knowledge on what has happened in that tract.

Finally, it has been observed it that in many cases reasonably continuous trajec-

tories were interrupted by stops (identified by a stopping and a following starting

datum) that were hardly justifiable. In particular, the duration of these stops was

too short to be associated to any activity done out from the vehicle. It could be

both that the engine was turned off for a little while, voluntarily (i.e. at traffic

lights) or not, or a consequence of technical problems with the device. In any case,

these short stops have been filtered out: two consecutive trajectories interrupted

by a stop shorter than 30 seconds are joint in one longer trajectory. As an excep-

tion, the stop is kept if the angle formed by the stopping position and precedent

and following points in the trajectory was not far from 180 degrees, as probably

the driver is making a round trip with the purpose of giving someone a lift.

In the pre-elaboration phase have been eliminated roughly the 10% of the raw

GPS data, while the 17% has been modified.
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2.2 Parking Points Clustering

Figure 2.2: A result of the clustering algorithm.

One of the objective of our study is the identification of the decisional mechanisms

at the root of each individual’s mobility planning. Our data provide naturally a

good microscopical description of this mobility. However, it is our interest to be

able to recognize different locations visited by the single drivers (home, workplace,

. . . ), that we identify with the coordinates where each trip ends, the parking point,

and we associate to an activity performed near the parking place. To bi-univocally

associate parking coordinates with visited locations is not trivial, since we have a

precision that can even resolve two different parking places in the same parking

area, and at the same time an high risk of signal loss errors due to technological

limits and the use of underground parking places. Hence, from the cloud of all

the parking points, activity locations have been identified through a gravitational

clustering algorithm. This mechanism is based on the assumption that between

the location where an activity is carried out and the chosen parking place there

is a maximum acceptable parking distance distance[11]. This distance has been

first assumed of 400 m for the Florence dataset and then modified to 500 m

for the Emilia-Romagna and Italy dataset. This difference did not appear to
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have noticeable consequences on the obtained statistical results. In addition, for

Florence and Italy the clustering procedure has been performed individually, i.e.

the parking places of different individuals do not interact for the purposes of the

clustering. In the used gravitational clustering algorithm, at each visited point is

associated an unitary weight. Under the threshold value given by the maximum

parking distance, two different locations are joint in another, which weight is the

sum of those of the original two and which coordinates are the barycenter. This

aggregation takes place iteratively, picking at each time the two closest points

in the ensemble, until those are further than the threshold value. As long as

we consider separately the different individuals, the algorithm is computationally

efficient. In any case it has the advantage of bringing to a one-to-one result, not

depending by an arbitrary choice of the first aggregation points, but only on the

maximum parking distance.

2.3 Map Matching and Path Reconstruction

Figure 2.3: (Left) Map Matching and (Right) Trajectory Reconstruction.

The information carried by our GPS dataset is naturally bound to the street

network, where all vehicular movements take place. Nevertheless, we know only

geographical coordinates and velocity of a vehicle, which are not originally related

to the position on one particular road. The shift from coordinates to roads repre-

sents a precious enrichment of our knowledge on the nature of the trips performed.

This knowledge is essential for studies on road traffic, where the street network

plays a central role. In this thesis, those analysis are part of chapters 7 and 8.

The passage from the recorded coordinates to trajectories on the street network

is made through two steps: map matching and path reconstruction. The map

matching is the process of locating the optimal placement of the GPS data on

the street map (figure 2.3 left), while the path reconstruction is the process of
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obtaining the optimal guess on the roads driven between two following placements

(figure 2.3 right).

It has been developed[12] a map matching and a path reconstruction algorithm

that work simultaneously, car by car, in order to perform the optimal map match-

ing of the raw GPS data. This procedure takes place considering a particular car,

that will have in our dataset a number N of recorded positions xi and veloci-

ties vi, where i = 1, . . . , N . To every street arc j close to the measured position

xi = (lati, loni), is assigned a matching probability wi,j with
∑

j wi,j = 1. Each

wi,j is a function of: i) the minimum distance between the measured position

xi and the arc j; ii) the angle between the speed vi and the arc. The less are

those quantities, the better will be the matching and thus the higher will be the

matching probability. The weights may be summed Wj =
∑N

i=1wi,j in order to

describe a field Wj over the street network representing the number of times that

the car has been located in a given street arc. The values of Wj, modulated by

a sigmoid function, have been used to define a “discount” (up to the 20%) to the

estimated (free flow) travel time cost. These discounted values T fj are then used

to identify the shortest path for each possible map match couple [(i, a), (i+ 1, b)],

with wi,a > 0 and wi+1,b > 0, of subsequent data records belonging to the same

trajectory. Then, for each trajectory, the best paths are computed point by point

beginning from the engine starting point matches and targeting the possible fol-

lowing target street arc. For all possible targets n, only one path, the shortest in

terms of T fj , is then carried toward the next step. Paths that fail a consistency

check with the distance covered (maximum tolerated error 10%) are excluded. If

all paths from a to b are excluded, the trajectory is cut in a as if it would be a final

target and a new reconstruction will start from point b. When we reach a final

target, i.e. the engine stopping point or a cutting point, we may have different

alternatives for the global path match of the whole trajectory. Coherently with

the previous steps, we chose as global best path match the global path with lowest

travel-time cost.





Chapter 3

Use of Time

When dealing with the modeling of human mobility, it appears natural to give

time a central role. Time is spent traveling and time is spent in the destinations

of our journeys, and it is people’s common desire to minimize the time spent in

traffic. The time available for our daily activities is limited by physiological needs

like eating or going to sleep every night. Besides, working rhythms and personal

habits shape each individual’s timetable differently. On top of all that, even the

more precise daily schedule may always be altered by some unexpected event.

It has been observed, from the analysis of the movements of bank notes[13], mo-

bile phones[14] or private vehicles[15], that the time devoted to different locations

follows a fat tailed distribution. This shows the fact that people spend most of

their time in just a few locations while others are visited more shortly. The scaling

properties of this distribution represents both one strong assumption for mobility

models and one peculiar difference among data with different origins[17][18][16].

For these reasons, before starting with the actual characterization of human mo-

bility, we start here determining the statistical features of time use when dealing

with private vehicle mobility. Furthermore, taking advantage from datasets car-

rying information on time used also on the Internet and with mobile phones, we

want to provide support to a more general approach in describing the perception

of time.

13
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3.1 Benford’s Law of Activities’ Duration

10
0

10
1

10
−3

10
−2

10
−1

10
0

Downtime (h)

P
ro

ba
bi

lit
y 

D
en

si
ty

5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

4

Downtime (h)

T
ot

al
 T

im
e 

S
pe

nt
 (

h)

Figure 3.1: (Left) Statistical distribution of the activity times computed
using GPS data of the Emilia-Romagna region (blue dots). The red straight
line suggests the existence of a Benford’s law p(t) ∝ 1/t. (Right) Total activity
time distribution (cfr. eq. (3.2)). The different peaks can be associated to the
main individual activities: part-time job, full time job and the night rest.

GPS data do not give direct information on individual activities, but we may

assume that each time a driver leaves the engine off more than 5 minutes, this can

be associated to the execution of one activity. So, we can study the car engine’s

downtimes distribution, that we identify as activity durations, to understand how

individuals use their time.

The result for the Emilia-Romagna dataset is plotted on the left of figure 3.1,

where we point out the existence of a power law that accurately describe the

distribution for τ ≤ 3 h (' 95% of the data): a numerical interpolation of the

experimental data gives p(t) ∝ 1/τα with α = 1.02 ± 0.02, and it is therefore

statistically consistent with:

p(τ) ∝ 1/τ (3.1)

We recognize in this scaling law an alternative formulation of the Benford’s law. In

fact, the original Benford’s law states that the probability of finding d as the first

digit of given number N is p(d) = log[(d+ 1)/d]. Pietronero et al.[19] have shown

that the Benford’s law emerges if the considered numbers are distributed following

p(N) ∝ 1/N , and that this distribution can be obtained in the limit t → ∞
for a multiplicative process N(t + 1) = ξN(t), i.e. multiplicative fluctuations

as it happens in stock markets. Like a diffusion process gives a Gaussian, that

for σ → ∞ becomes an uniform distribution, the multiplicative diffusion gives a
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lognormal, that for σ →∞ converges to 1/N . For this reason we call equation 3.1

the Benford’s Law of Activities’ Duration.

It is important to remark that the empirical Benford’s law for the time spent in

the visited locations suggested by GPS data is not consistent with the analogous

distributions computed from the mobile phone data[17] p(τ) ∝ τ−β with β = 1.8;

this can be the consequence of the finer time resolution of the GPS data, that allows

to properly consider short time activities. GPS data suggest that distribution in

fig. 3.1 is robust and does not depend on the spatial scale considered, as we have

the same distribution considering different cities.

Differences among cities may instead be extracted considering the distribution

π(τ) of the average time spent for activities with a time cost τ :

π(τ) = τp(τ) (3.2)

This quantity is constant where the profile of the downtime probability density

follows exactly the statistics of equation 3.1. Figure 3.1 (right) shows instead a

peak structure, a signal modulating the underlying Benford’s law statistics. The

most prominent peaks are related to the main human activities: the part time

job (rest time τ ' 4 h), the full time job (rest time τ ' 8 h) and the night rest.

Another significant peak is also around τ ' 1.5 h, while others smaller may be

identified around multiples of one hour. The relative heights, the width and the

position of those peaks in different analyzed areas may be compared in order to

investigate over the peculiarities of distinct areas, because this profile is a direct

consequence of the daily habits of each city’s inhabitants.
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3.1.1 Progressive time usage model

0 A 24

A 24B

C 24B

Figure 3.2: Graphical representation describing the first three random choices
of activity lengths, compatibly with previous made choices, given an initial 24
time budget.

In order to give a microscopical interpretation of the empirical downtime distribu-

tion, we propose here a simple model showing how the observed Benford’s law may

be a consequence of a progressive scheduling of a limited daily time budget. This

approach is antithetical to spontaneous behavior[20]: as individuals make plans,

the programmed future activities influence the duration of the preceding ones.

For sake of simplicity we identify a fixed temporal constraint in the circadian

rhythm. Therefore, the total daily time budget, which can be distributed to the

many activities performed in a day, is assumed to be of 24 hours. This choice

may be recognized as a micro-canonical approach, where the energy (in this case

the total daily time budget) is almost exactly determined. Moreover, ignoring the

real habits of the individual, we assume that they cannot precisely determine a

priori each activity downtime, because this is varied depending on unpredictable

circumstances.

Under these conditions, each individual progressively consumes the time budget

with a succession of random choices (see figure 3.2). First choices will take the

biggest portions of time, mimicking the role of the main activities such as night

rest and work. The following choices can allocate less and less time, as most of it

has already been assigned, and thus they represent the way the free time between

a fixed activity and another can be spent.

If one computes the interval distribution that is obtained by the stochastic pro-

cess of choosing successively k points in a given segment as in fig. 3.2, one gets

analytically the Benford’s distribution (for the analytical proof, see appendix A);

this result has been also verified with Monte Carlo simulations.
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3.2 Relationship between Activity Time and De-

gree

a) b)

c) d)

Figure 3.3: Empirical distributions in the Florence dataset for the conditional
probabilities p(τ | k) for activities performed k = 3, .., 20 times in a month as
a function of the normalized activity downtime τ/〈τ〉k. The different symbols
refer to the different activity degrees. a) k = 3 (circles), k = 4 (squares), k = 5
(rhombus), k = 6 (up triangles) and k = 7 (down triangles); b) k = 8 (circles),
k = 9 (squares), k = 10 (rhombus), k = 11 (up triangles) and k = 12 (down
triangles); c) k = 16 (circles), k = 17 (squares), k = 18 (rhombus), k = 19 (up
triangles) and k = 20 (down triangles); d) Combined representation of various
of k ranging from 3 to 20: the continuous line refers to an interpolation with
the function (3.4).

The Benford’s law for activities’ downtime outlines the stochastic features of the

system, but it does not explain how such features can be related to the individual

daily agendas, which are certainly the result of a cognitive behavior. In order to

study this question, we perform a statistical analysis of the downtimes related to

the different individual activities that present the same monthly degree k (i.e. the

number of times that a citizen repeats a certain activity during a month)[21].

Let τ the activity downtime, we introduce the joint probability p(τ, k) to denote

the probability of finding a k-degree activity associated to a downtime τ . Then,
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by definition we have to recover the Benford’s law by summing over k:

∑
k

p(τ, k) ∝ 1

τ
(3.3)

We have also the equality p(τ, k) = p(τ | k)kp(k) where p(τ | k) is the conditional

probability for a downtime t considering only the k-degree activities, and p(k) is

the probability to detect a k degree activity; the factor k takes into account the

multiplicity of the k degree activities. The study of the conditional probability

p(τ | k) can shed some light to understand the mobility habits related to the use

of private vehicles and to face the question of the relevance of repeated activities

both in the mobility and in the use of time.

In figure 3.3 we plot the empirical probability densities for different degrees (from

k = 3 to k = 20), to investigate the existence of the universal distribution f(u).

There is a decreasing of the data number as k increases, but all the distributions

are computed with a sample of the same order (from 4× 104 to 104). The figures

enlighten three different features. There is a collapse of all the curves on a unique

distribution: this is clear in the figure 3.3-a (the tail spread is consistent with

statistical fluctuations) and in the first part of all the plotted distributions that

contains the great majority of the data. All the distributions show a big contribu-

tion from the short times activities and a fast decaying tail for large (τ/〈τ〉k) > 2.

There is a smooth rise of a “signal” as k increases denoted by the appearance of two

peaks at τ/〈τ〉k ' 1 and τ/〈τ〉k ' 3: this is clear in 3.3-c. Therefore the empirical

observation gives a strong indication for the existence of an universal distribution

f(u) for the normalized activity downtime, even if when we consider high degree

activities (k ≥ 10) some new features appear but with a small statistical weight.

A possible interpolation of the distribution f(u) is given by:

f(u) ∝ 1

u
e−αu (3.4)

where the coefficient α has a value ' .4. The distribution (3.4) is singular at the

origin so that the interpolation is certainly approximated at u→ 0 (see fig. 3.3-d).

Remarkably, these experimental observation suggests the existence of an universal

probability distribution f(u) for the normalized downtime τ/〈τ〉k:

p(τ | k) =
f(τ/〈τ〉k)
〈τ〉k

(3.5)
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where 〈τ〉k is the average downtime for the k-degree activities. We read this

universal function as the signature of the fact that individuals organize their time,

when performing a private car mobility, in a common way independently from

the specific activity, i.e. the relative downtime fluctuations are the result of a

stochastic universal mechanism. Moreover, there should exist a common feature

among the individuals, concerning how they manage the downtime related to the k-

degree activities, since only the average value 〈τ〉k characterizes the k dependence

of the conditional probability p(τ | k). This universal character could be explained

thinking that the 〈τ〉k variable is a “measure” of the mobility actions, valid for

every individual. More precisely, 〈τ〉k can be considered the temporal norm for all

the mobility related activities. From the empirical data in the Florence dataset

we detect ' 3× 105 activity downtimes and we have computed the dependence of

the average value 〈τ〉k using the degrees k = 3, .., 20.

Figure 3.4: Dependence of the average downtime 〈τ〉k from the activities’
degree k in Florence. The continuous line refer to a possible interpolation with
the exponential function (3.6).

From the result, shown in fig. 3.4, appears evident that we have an almost linearly

increasing behavior of 〈τ〉k as the degree k increases. This means the existence

of a relation between the activity degree and the activity “use value” (individual

satisfaction, profit, etc. . . ) introducing an individual tendency to repeat and to

spend time in the activities with a relevant added value[22].
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A possible local interpolation of the empirical data is obtained by using the func-

tion (continuous line in fig. 3.4):

〈τ〉k ∝ exp(γka) (3.6)

where a ' .3 and γ ' .7.

3.3 Weber-Fechner’s Law of Perceived Durations

Benford-like distributions have been observed in other works on time related be-

havior. Some examples are: the time between consecutive emails[23], phone calls

durations[14], visits of a web portal or library loans by a single user[24]. A queuing

model has been proposed[23] to explain the nature of inter-event time distribu-

tions, but which was the correct interpolation’s curve for the distribution’s heavy

tail has been object of debate[26][25]: depending upon the methodology either a

lognormal[25]:

p(τ) =
1

τ
√

2πσ2
e−

(ln τ−µ)2

2σ2 (3.7)

or a power law with exponent -1 and an exponential cutoff[24]:

p(τ) ∝ 1

τ
e
− τ
τ0 (3.8)

were endorsed.

Therefore, we have focused our attention on the tail of our activity time distribu-

tion, switching from a linear binning as in fig. 3.1, where for times greater than

24 hours the distribution would have resulted too noisy, to a logarithmic binning

that produces figure 3.5. There, for values of the activity time ranging from 2

minutes to 9 hours, we recognize the Benford’s Law, where for values over 9 hour

the interpolation has been made with a lognormal function. The distribution’s tail

clearly overcomes the limited budget of 24 hours assumed for the progressive us-

age model, and is therefore related to stop durations out of the range that cannot

be directly described by our model without introducing fluctuation in the total

activity time budget.
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Figure 3.5: Statistical distribution of activity times computed using GPS data
of the Italy dataset. The red line represents an interpolation with a power law
p(τ) ∝ τ−1.04±0.03 for τ ∈[2 minutes, 9 hours] and the green line an interpolation
with a lognormal for τ greater than 9 hours.

Then, we tried to apply a similar approach to inter-event times relative to mobile

phones, taken from the Reality Mining dataset[27]. In this case has been possible

to fit (see fig. 3.6 left) both the short and long times tails with only one lognormal

curve, which parameter µ has been fixed to the empirical average value of log τ

in the sample and only σ is a free parameter. At the same time, in the interval

within 30 seconds and 12 hours the distribution follows closely the Benford’s Law.
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Figure 3.6: (Left)Mobile phone inter-event times distribution. Within the
interval 30 seconds - 12 hours the fit is with a power law with exponent
−1.00 ± 0.03, while outside this range with a lognormal distribution. (Right)
An illustration of the proposed distribution of τ∗ = ln τ , with the coexistence
of two maximum entropy distribution: uniform and normal.

Furthermore, we have obtained a new independent dataset that enable us to pro-

ceed with another investigation on activity times. We have been given the rights

to export from the Google Analytics data regarding the image bookmarking web-

site imggot.com[28]. Analytics data give every hour the number of visitors and

the average duration of the visits. Considering only the hours when only a single

visit occurred we have extracted from 3 years of recording ≈ 2000 duration times,

that are distributed as in figure 3.7. So, we have a perfect second example of Ben-

ford’s Law of duration times, that might be again interpreted as a consequence of

a progressive consumption of a finite time budget (as shown in section 3.1.1).
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Figure 3.7: Distribution of the visit durations on imggot.com. The red line
shows the best fit with the power law p(τ) ∝ τ−1.00±0.04.

The log-normal tails suggest that, alternatively to both the time consumption

model and the queuing model for inter-event time, we can take into consideration

a logarithmic time perception as the root of both the Benford’s Law and the

lognormal cutoff. In fact, with the change of variable:

τ ∗ = ln τ (3.9)

the Benford’s Law becomes an uniform distribution (on an interval), while the

lognormal distribution becomes the normal distribution. Both normal and uniform

distributions are maximum entropy distributions: the first among the real-valued

distributions with assigned mean and standard deviation, the second among the

continuous distributions supported in an interval. Therefore, under those and the

log-time perception assumptions, there is no real need for a model to explain these

curves. The change in behavior from one to the other curve suggests that time

intervals belonging to the range of validity of the Benford’s Law are equivalent

and different by those outside that range, where τ ∗ is limited by the need of

having average and variance and thus follows a Gaussian distribution. An idealized

distribution for τ ∗ is represented in figure 3.6 right.

Logarithmic time perception is one aspect of the psychophysical Weber-Fechner’s

law. Numerous human responses to physical stimulus of quantities such as bright-

ness, loudness and weight appear to be naturally compressed in a logarithmic
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encoding. This logarithmic scale has the advantage of permitting a compact rep-

resentation that can cover several order of magnitudes with a constant relative

error[29]. As an alternative to Weber-Fecher’s law has been proposed the Stevens’

law, stating that the relationship between stimulus and responses is better mod-

eled by a power law. Nevertheless, as experimental results report that in general,

power relations for duration have coefficients in the interval 1 ± 0.1[30][31][32],

in this case Stevens’ law would be almost equivalent to linear response. But,

these studies were focused only short time perceptions. When dealing with times

longer than 5 seconds the evaluation of a duration involves memory and may be

influenced by expectation and attention[32]1.

Concerning longer periods, it has been observed that human temporal cognition in

inter-temporal choice in the range one week-25 years follows the Weber-Fechner’s

law rather than Stevens power law[33]. The logarithmic perception of temporal

duration might also explain the hyperbolic discounting of delayed rewards, that can

be put in relationship with drug-addicted patients’ behaviors[34] and consumers’

decisions[35].

1Indeed, for longer time interval it would be more correct to use the term “time
estimation”[32].
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Trip Lengths and Mobility

Budgets

In this section, we begin the statistical characterization of human mobility fo-

cusing on the spatial characteristics of trips. The most important quantity for

this analysis is the distance covered while traveling. Understanding the relation

between trips lengths, urban structure and economical indicators, represents a nec-

essary step in order to reduce energy and environmental problems and converge

to sustainable cities[1].

In the following we propose a theoretical explanation for the statistical distribution

of trips lengths, based on the assumption of the existence of a daily Mobility

Budget that is linked to a Total Travel-time Budget. The specific relationship

between a trip length and its duration will be investigated in one of the next

chapters (section 7.1).

4.1 Curvilinear-Euclidean Lengths Relationship

Before moving forward to the analysis of the statistical properties of trip lengths,

it is essential to define a method to evaluate this quantity. In fact, in our data are

available three different measures of length (see fig. 4.1):

25
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Polygonal
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Figure 4.1: Different types of distance associated to a trip where starting
datum, stopping datum and 3 travel data have been recorded.

Euclidean distance: distance “as the crow flies” between starting and stopping

point;

Polygonal distance: sum of the euclidean distances between the subsequent

GPS positions recorded for the same trip;

Curvilinear distance: sum of the “distances from the previous datum” fields

for data in the same trip, where the GPS device has progressively added the

distances between the intermediate GPS positions that are not recorded in

memory.

Each of these measures has advantages and disadvantages. Curvilinear distance is

in principle the most precise, but if the most influenced by errors due to week or

absent GPS signal. Instead, polygonal and euclidean distances are systematically

underestimating the real values of distance covered, but are less subject to errors.

These differences are evident when we see the probability densities of the three

types of distance in the Florence dataset (fig. 4.2). Polygonal and euclidean dis-

tances are in good correspondence after that the euclidean distances are multiplied

by a factor
√

2 (quantity indicated in figure as “equivalent length). Curvilinear

lengths are greater than polygonal ones, and this difference is especially remarkable

for short trips. On the other hand, the peaks in the curvilinear distances distri-

bution, for multiple values of 2 Km, are probably consequences of signal losses.

What we suppose it is happening, as 2 Km is intra-records distance imposed by
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the GPS device design, is that if between this recording and the trip’s end the

device lose contact with the satellite, curvilinear distance cannot be updated and

the last part of the trip is missed, while the stopping position used in the other

measures is subject to a correction process reducing this type of errors. This cor-

rection grants also an average a better quality to at the starting and stopping point

with respect of data taken during movement. As we have observed that, in the

Florence dataset, a fraction of curvilinear and polygonal distances pathologically

wrong, such as negative values of curvilinear distance, we have chosen euclidean

distance as reference measure as it is the most trustworthy, being calculated only

using starting and stopping positions
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Figure 4.2: Probability densities of polygonal and curvilinear distance, con-
fronted with the equivalent distance l proportional to the euclidean.

Therefore, taking advantage of the euclidean distance de we use an equivalent

distance:

l =
√

2 · de (4.1)

that is in a good statistically correspondence with both polygonal and curvilinear

length, which are by nature a good approximation for the effective length of the
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vehicle’s trajectory. We can imagine this new quantity as the measure of a fictional,

zig-zagging trajectory constituted by a sequence of orthogonal sections (see fig.

4.1)1. This equivalent distance is able to statistically substitute the constraint

represented by the street network that does not permit to the drivers to direct

towards the destination.

From now on and where not differently specified, trip lengths are intended as

measure of the euclidean distance de, and if a comparison with actual distance

covered is needed, that can be made using the equivalent distance l defined through

the relationship (4.1).

4.2 Trips Length’s Distribution

We consider here the trip lengths distribution (figure 4.3), computed using the

Emilia-Romagna GPS data. In this particular case, trip have been considered

completed when the rest time is longer than 5 minutes, otherwise we sum the

lengths between two successive stops.
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Figure 4.3: Statistical distribution of the trip lengths for the Emilia-Romagna:
we use log-lin scale in the left plot and log-log scale in the right plot. The log-
lin scale suggests a possible exponential behavior for the short trips, which
represent the 95% of the data (red line). The log-log scale points out a possible
interpolation of the distribution tail by a power law: p(l) ∝ l−3.3 (red straight
line).

We remark on three main features:

• the very short trips (l ≤ 2 km) have a great statistical relevance;

1We may notice that this virtual path is similar to a measure of length in a “taxicab geometry”
metric. Although, we have that our equivalent distance is ≥ L1 distance.
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• there exists a characteristic trip length ' 6.2 km;

• the long trip distribution recalls a fat tail (power law) distribution.

The trip lengths distribution reflects the way everybody realizes his mobility de-

mand in connection with the spatial activity distribution[36]. In the following, we

propose a theoretical explanation for this distribution.

4.2.1 Individual Mobility Budgets

As a consequence of the circadian rhythms, it is natural to consider the daily

mobility as limited for both for physiological and economical reasons (any trip

has a cost in time, energy and money). Thus, we can define a quantity λ for

each individual and each day of mobility, defined by the sum of the trip lengths

of performed within an interval of 24 hours. This quantity describes the total

daily length covered and we will call it “Daily Mobility Length” or just “Daily

Mobility”2.

The daily mobility distribution computed from the GPS data is plotted in fig. 4.4

together with an exponential interpolation.
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Figure 4.4: (Left) Daily mobility distribution from the GPS data selecting
people moving inside the Emilia-Romagna region. The straight line refers to an
exponential fit of the distribution with a characteristic length β−1 = 30.4± 0.4
km. (Right) m(λ) distribution (cfr. definition (4.6)) computed using (4.5).

2The term “Energy” has also been used by us in [15] and in some figures of this dissertation,
both because an underlying energy consumption concept has been been suggested in [37] and
because the probability density of this quantity follows the Maxwell-Boltzmann energy distribu-
tion.
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We suggest a theoretical explanation for this behavior by dividing the territory

into a number of different locations x ∈ X, with homogeneous geographical fea-

tures. Assuming a given activity distribution in the territory, we associate to each

location a daily mobility length λx defined by the average distance that an indi-

vidual has to cover each day to satisfy his mobility demand (in other words λx

measures the accessibility of the x-location to the existing activities). Let px be

a priori probability that an individual chooses to live in the x-location without

taking into account any mobility cost3. Assuming that individuals act as indepen-

dent particles, the probability associated to a distribution {nx}, where nx is the

number of individuals in the location x, is given by a multinomial distribution:

w({nx}) =
∏
x

(
pnxx
nx!

)
(4.2)

Applying a maximal entropy principle with the constraints that the total number

of individuals and the total mobility are finite:∑
x

nx = N
∑
x

λxnx = Λ

one can determine the most probable distribution. Maximizing the Gibbs entropy[38]:

S = −
∑
x

w(nx) lnw(nx) (4.3)

we get the Maxwell-Boltzmann distribution

ρ(x) = A exp(−βλx)px (4.4)

where A is a normalizing constant and β depends on the average mobility β−1 =

Λ/N . Adding over all the locations with the same value λx = λ, we finally get the

distribution:

ρ(λ) = Am(λ) exp(−βλ) (4.5)

where

m(λ) =
∑
λx=λ

px (4.6)

The measure m(λ) gives the statistical weight of individuals that would perform a

daily mobility λ, if their distribution in the territory does not depend on mobility

costs related to trips lengths. As shown in fig. 4.4, the daily mobility distribution is

3In a homogeneous territory px would be constant, otherwise px may depend on the geo-
graphical features.
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quite well interpolated by an exponential distribution in the interval 10 km < λ <

150 km. The distribution m(λ) estimated according to the formula (4.5) (figure

4.4 right), has a limited variation within this interval with a local maximum at

λ ' 30 km, that reflects the macroscopic spatial distribution of activities in the

Emilia-Romagna territory. Therefore a possible explanation for the m(λ) behavior

is the following: considering that activities are mainly located in the cities, the

initial increase of m(λ) is due to the population living in the attraction basin of

the cities and the maximum at ' 30 km gives an estimate of the average distance

among the main cities.

The statistical distribution (4.4) leaves open the question if the exponential decay

is related to the extension of the considered region. Then, we have compared

the daily mobility related to areas of different size R centered on Bologna (the

regional capital), from the Bologna province (R ≤ 30 km), to the area enclosing

the nearby cities (R ≤ 50 m) and then to the whole region. In each area we

have only considered individuals whose mobility is performed internally to the

area itself, but that have not been previously (for smaller radius) considered. We

recall that our analysis refers to the use of private vehicles and we expect cars

to be utilized to satisfy the same mobility demand in all the cases; this is false

inside urban areas (R < 5 km) where one has a good availability of public means

and more restriction in the use of private cars. The resulting distributions are

reported in fig. 4.5 where the exponential decaying can be clearly detected at

different scales, and for large daily mobility we see a different behavior close to

the main city.
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Figure 4.5: (Left) Daily mobility distributions computed considering individ-
uals performing their mobility inside regions of different size around the Bologna
center: the circles refer to the Bologna province R ' 30 km, the crosses refer
to region that includes the nearby cities R ' 50 km and the triangles give the
distribution for the whole region. (Right) Daily travel-time distribution cor-
responding to the daily mobility distributions plotted in the left picture: the
symbols have the same references as in left picture.
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The results suggest that the entropic principle is robust in describing the average

mobility demand, but the characteristic spatial scale decreases approaching an

urban area.

Furthermore, in transportation planning and modeling is frequently taken as key

concept the Travel Time Budget. This quantity, measuring the time that every day

an individual accepts to invest in his mobility, has been assumed as an universal

constant of ≈ 1.2± 0.1 hours per traveler per day[39].

Considering the travel-time budget distributions on the previous regions of differ-

ent size (see figure 4.5 (right)), they tend to collapse into a single curve. Interest-

ingly, the average mobility time is estimated over all the Emilia-Romagna region

is 70 minutes (1.17 hours) from our GPS data. This experimental evidence seems

to support the definition of a universal cost for mobility (once the transportation

mean is given). We will show in the following section 4.3 that, when we focus on

the urban scale, the Italy dataset suggests a dependence of the travel time budget

from the city where the travelers live.

Comparing the figures 4.5 left and right, we remark that the space-time relation-

ship cannot be reduced to a simple proportionality. The reason is twofold: from

one hand there is an intrinsic heterogeneity in the human mobility due to different

drivers behaviors, on the other hand the small scale structure of the road network

influences the vehicle dynamics. A specific study on the relationship between trip

length and duration has been made in section 7.1.
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4.2.2 Random Partitioning of the Daily Mobility Length
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Figure 4.6: Distribution of the daily activities number for the sampled indi-
viduals in Emilia-Romagna; the continuous line is an exponential interpolation
p(nt) ∝ exp(−nt/a) with a = 3.27± .08.

In order to relate the trip lengths distribution (fig. 4.3) with the daily mobility

(fig. 4.5), we have to consider how many trips each individual makes in a day. In

figure 4.6, we plot the probability distribution of the trips number together with an

exponential interpolation. For nt ≤ 5 we have about half of the sample population

that presents an almost uniform activities number distribution. Probably, this

sample represents people who are performing a systematic mobility involving a few

essential locations such home, workplace and grocery stores. Besides, where nt >

5, the exponential decay suggests a statistical equilibrium without any particular

structure in the individual mobility. Indeed, the emergence of an exponential

distribution is consistent with the assumption that, in average, individuals behave

as independent random particles that define their daily agenda in a random way.
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Figure 4.7: Graphical representation of the distribution of stops in a segment
representing the mobility length λ of a day where in agenda there are nt = 4
trips (n = 3 stops) and both nights are spent at home.

To interpret the statistical part of the trip lengths distribution (cfr. fig. 4.3), we

consider an ensemble of particles characterized by a total mobility λ and, for each

particle, we randomly distribute at most n = nt−1 destinations within the interval

[0, λ], as pictured in figure 4.7. The obtained distances among the destinations

are the trips performed by individual-particles. Given λ and n, the trip lengths

distribution can be computed analytically according to:

pn,λ(l) ∝
n∑
k=1

e−k/a(k + 1)k(1− l/λ)k−1 (4.7)

(see Appendix B or [15] for the derivation of the last formula) where l ∈ [0, L] and

a = 3.27 is determined from the empirical activities number (see fig. 4.6). Using

the exponential distribution (4.5), where we neglect the changes due to m(λ), and

integrating over λ, we get an analytic formula for the trip lengths distribution:

pn(l) ∝
∫ λM

λm

pn,λ exp(−βλ)dλ (4.8)

In the fig. 4.8 we compare the empirical trip lengths distribution with our analyt-

ical result (4.8).
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Figure 4.8: Statistical distribution of the trip lengths measured using GPS
data (black dots): the red curve refers to the distribution (4.8), whereas the
blue curve is computed using eq. (4.9) with λ = 180 km and n = 30.

Formula (4.8) closely interpolates the experimental data for short trip lengths

l ≤ 15 km4. This allows to reproduce the mobility of ' 87% of the observed users,

that correspond to ' 52% of the total space traveled. But, we have a discrepancy

in the tail of the empirical distribution. A possible explanation is obtained if one

does not introduce the exponential decaying in the number of trips (cfr. fig. 4.6),

so that the distribution (4.7) reads:

pn,λ(l) =
2λ2

n(n+ 3)

n∑
k=1

(k + 1)k(1− l/λ)k−1 =

=
2λ3

n(n+ 3)

d2

dl2
(1− l/λ)2

(
1− (1− l/λ)n

l

)
(4.9)

Since 1− l/λ is small for long trips (l ' λ) for n� 1 we can approximate:

pn,λ(l) '
2λ3

n(n+ 3)

d2

dl2
(1− l/λ)2 1

l
∝ l−3 +O(λ−2) (4.10)

The power law tail (4.10) seems to be in agreement with the empirical observations

(see fig. 4.8 for a comparison of (4.9) with the experimental data). This result

suggests that we have users with a number of trips higher than the statistical

expectation and with a large mobility. This can be due to a correlation between

4The discrepancy at very small trip l < 1 km is expected since using the exponential distri-
bution e−k/a for the activities, small trips are overestimated.
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λ and nt in a subset of vehicle, probably driven for working reasons. We remark

that the power law p(l) ∝ l−3 is different from the power-laws suggested by the

dollar bill displacement distribution p(l) ∝ l−1.59[13] or by the mobile phone data

p(l) ∝ l−1.55[17]. But both consider a much larger spatial scale and do not refer

to a particular transportation mean.

4.3 Travel Time Budget

Transportation research on travel times is dominated by the assumption of the

existence of a constant travel-time budget[40]. This concept is based on the be-

havioral hypothesis that people have a certain amount of time that they are willing

to spend on travel, and they therefore tend to minimize deviations from that bud-

get in either direction while maximizing the utility coming from the activities

carried out at the destinations[41]. Drivers will therefore trade travel-time savings

for more trips to perform[40]5. In addition, also the share of monetary expendi-

ture that individuals allocate to transportation (money budget) has been indicated

as one decisive factor for aggregate travel behavior. Both travel time and money

budgets have been suggested to be characterized relatively stable distribution that

appear to be universal if aggregated for different cities and times[39].

Although, a slight tendency to travel time budget increase with the size of the area

was already been observed[40], and budget in the same nation has been recently

been observed to be growing over time[42]. A meta-analysis in different aggregate

and disaggregate studies of travel time expenditures has suggested that they are

also strongly related to the characteristics of the individual, of the destination

activities and of residential areas[41]. Moreover, a constant travel-time budget

is only consistent with empirical data when considering only a single mode of

transport. Conversely, energy consumption rates specific for each form of transport

have to be taken into account to define an universal travel-energy budget[37].

In the last part of this chapter, we show an analysis of the travel-time budget

distribution, aggregated over different cities in our Italy dataset, where we find

noteworthy dependencies on either census or traffic related quantities. We inte-

grate this subject in the chapter on trip lengths, as travel time budget is evidently

5Is attributed to Zahavi the observation that, rather than assuming the individual to be
asking, “What is the least amount of travel I can do in order to accomplish a given set of
activities?”, the individual instead should be viewed as asking, “What is the most attractive set
of activities/destinations I can achieve, given a certain travel time budget?”.
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related with total mobility, that we have seen is a key quantity to explain the trip

lengths distribution.

4.3.1 City Dependency

From our Italy dataset, we have systematically extracted the average values of

daily travel times for 1233 cities where we have at least 100 drivers, a sample sta-

tistically dominated by medium sized and small municipalities. In this particular

analysis we have defined one driver as belonging to a city if the most part of its

parking time was spent in the municipality area. Then, all the mobility performed

in a day (in and out the urban area) has been considered. Those budgets appear

in fig. 4.9 as normally distributed with mean 1.43 h, and standard deviation 0.15

h.
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Figure 4.9: Distribution of the average travel time budget in 1233 italian
cities. The red line represents the best-fit with a Gaussian distribution of mean
1.43h and std 0.15h.

Even if the values appear bigger than the expected 1.2 hours, the Gaussian inter-

polation and its relative small width is still suggesting a relative stability of the

values of travel-time budget across cities of different size, economy an geograph-

ical characteristics. In order to better understand the differences between cities,

we have picked the 29 of them where we have the larger number of drivers. This

selection is a good sample of the whole set of cities, as their average travel time
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budgets are spread in the same range (mean 1.40 h and standard deviation 0.12 h).

For these cities, we have analyzed the shape of the travel time budget probability

densities considering all the days of mobility of their inhabitants.
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Figure 4.10: The travel time budget probability density for the cities of Rome
(blue dot line), Naples(green dash line), Milan (red solid line) and Turin(cyan
dot-dash line).

Those distributions are shaped similarly to fig. 4.5 right, as we can see comparing

it with those relative to the 4 bigger cities in Italy that are in fig. 4.10. A

notable phenomena we remark is that restricting the analysis to city dwellers the

average travel time is bigger than what we find considering larger areas, in contrast

with what suggested in [40]. In fact, limiting the analysis of the Emilia-Romagna

dataset to only the city area of Bologna results in a growth from 70 to 89 minutes

for the average travel-time budget. Some differences can be noticed between the

values in Bologna in the two different years, but it can be the product of a slightly

different filtering procedure.

Distributions similar to those of fig. 4.10 have been interpreted in [37] as a re-

alization for a particular mode of transportation of an universal travel energy

distribution (with the energy defined as Ei = pit that is proportional to p, the

energy consumption per unit time in the use of a particular transportation mean)

and fitted with the curve:

p(tb) ∝ exp (−α/tb − tb/β) (4.11)
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The dominating term exp(−tb/β) corresponds, similarly to what observed for the

total mobility, to the entropy maximizing Maxwell-Boltzmann energy distribution.

A second term, which in the reference paper[37] was chosen to be exp(−α/tb),
describes the suppression of short trip. An interpretation for this suppression

is that it is reflecting the fact that short trips are less likely to be undertaken,

because there is an additional amount of energy for the preparation of a trip, of

the order αpit, that makes the energy budget not worth to be spent. We add to

this interpretation, being our data relative to an unique transportation mean, the

car, that this suppression might represent also day of mobility where other means

have been chosen.
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Figure 4.11: Suppression function for the cities of Rome (blue dot line),
Naples(green dash line), Milan (red solid line) and Turin(cyan dot-dash line).
This function is obtained dividing the probability densities of figure 4.10 for the
exponential best-fit for the exponential tail.

In our data, the presence of an exponential tail is clearly suggesting the same

dominant term. Multiplying the empirical distribution p(tb) by a best-fit for the

exponential tail 1
β

exp(−tb/β) we can isolate the suppression term function, that

is represented in fig. 4.11. Many interpolating functions can be proposed but

none appear in a manifest agreement with the observed suppression functions.

Therefore, in order to make a comparative analysis of the trip suppression among

different cities without relying on a particular interpolating function, we define

a time tc where the suppression function reaches the value 0.5: this value may

represent an amount of time budget for which it becomes worth to take the car
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for performing a part of the daily mobility. Comparing our approach with the

exp(−α/tb) curve fit, we have a linear relationship tc = α
ln 2

.

The average value of travel time budget 〈tb〉 grows when either β or tc grow,

stretching the tail of the distribution when incrementing β and excluding small

values when incrementing tc. This has been also observed across all cities with a

correlation of 0.88 between 〈tb〉 and β and a correlation of 0.55 between 〈tb〉 and

tc. Noteworthy, the two quantities used for defining the distribution β and tc have

a correlation of only 0.15, granting that they are related to independent aspects

of the drivers behavior. Measures of 〈tb〉 hide these aspects, not considering the

non Gaussian form of the distribution. For this reason, in the end of this chapter

will focus on β or tc, trying to isolate the key aspects shaping the total travel-time

distribution.

For the 29 considered cities, we have gathered data on municipality surface and

population from the Italian statistics institute ISTAT[43], on average income in

provincial capitals, from data of the Ministry of Economy published by an eco-

nomical newspaper[44] and on house prices (for the end of year 2011), taken from

a vertical real estate search engine[45]6.
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Figure 4.12: Relationship between municipality surface and β for cities which
surface is under 300 Km2.

First, if we isolate cities whose municipality surface is under 300 Km2 we observe

an anti-correlation of -0.56 between surface and β (see figure 4.12). This result is

6This study has been conducted with advises by Prof. Dirk Helbing.
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somehow confirming what shown restricting the analysis from a region to a city:

the values of the travel time budget tend to be more limited (β is a sort of energetic

constraint) where the urban area is bigger. This fact can be a consequence of a

higher level of stress, and thus higher energy consumption, when driving in bigger

cities. At the same time, larger cities are offering more suitable activities one closer

to another, so it can also be easier to optimize daily patterns. Excluded cities

do not follow this relationship. But, those cities are Rome and others (Foggia,

Perugia, Andria, and Grosseto) having a low population density. Probably, in

both cases our value of surface is not a good measure for the size of the urban

area where the mobility takes place because their municipality border include

large parts of countryside (the municipality of Rome, for instance, includes many

natural reserves).
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Figure 4.13: Relationship between average speed and respectively β (Left)
and tc (Right): red circles indicate cities with density under 2000 inh./Km2,
blue triangles cities over that threshold while Roma is represented by a green
square.

Second, as we see in figure 4.13, both β and tc are anti-correlated (with a coefficient

of -0.48 and -0.44 respectively) with the average speed of traveling in the area, that

we measure as the total distance covered in the month by all drivers divided by

the total travel-time. It is clear that an high average speed is attained when there

is an efficient road network. This efficiency lowers the activation energy that has

to be overcome for choosing to perform the mobility (in particular to perform it by

car) and therefore lowers tc. It is even possible that optimized organizations of the

street network that optimize of car travel time, e.g. an intense implementation of

roundabouts, might turn the same network into something less accessible by other

transportation means like bikes or walking and thus raising the activation energy

for those other means. But is fundamental to remark the reduction of β when the

average speed grows. In fact, this is evidently contrasting with the assumption of
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a constant travel-time budget: if the street network is more efficient the activities

that an individual wants to perform can be reached with less effort, but we see

that travel-time savings due to a faster network are not invested in new mobility

but are, indeed, saved.
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Figure 4.14: Relationship between relative housing price and β: red circles
indicate cities with density under 2000 inh./Km2, blue triangles cities over that
threshold while Roma is represented by a green square.

In the analysis involving economical quantities, we have found that house prices

is a key quantity related to both β and tc. In the relationship with β, a good

correlation (0.50) has been found with the house prices per square meter rescaled

with the average income, a quantity that probably represents better the impact of

housing on families’ financial resources than only the house price. An even higher

correlation of 0.78 is present for cities with a population density greater than 2000

inhabitants/km2 (circles and squares in figure 4.14). This indicates that relative

housing costs influence those major cities mobility, and do that more than for

minor cities. This difference can be related to work-related migrations, which

are more frequent toward big cities. In fact, in case of migration, higher relative

housing costs leads to the choice of a living place further from the city center,

where the most attractive activities take place. This tradeoff is consistent with

the modeling framework of radiation model[36], assuming a not uniform benefit

distribution p(z) at a urban scale.
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Figure 4.15: Relationship between housing price and tc: red circles indicate
cities with density under 2000 inh./Km2, blue triangles cities over that threshold
while Roma is represented by a green square.

In the last figure, house prices have been found anti-correlated with tc. This is

especially true (-0.81) for cities with a density under 2000 inh./km2 (triangles in

figure 4.15) where there is also a broader range of values for tc. For denser cities,

the activation time is instead almost constantly around the half hour: probably,

under this threshold, the time needed for going to and finding a parking place

overcomes the advantage of using the vehicle. This appears not true for less dense

cities, where the anti-correlation with house prices suggests that the activation

effort is influenced by economical factors. Both the correlation coefficients of tc

with the average income and with the relative house price are lower, so housing

cost appears to be the better indicator for this influence. This anti-correlation can

be related to a lesser impact of monetary costs related to the use of cars where

economical conditions are better. If those costs are considered smaller with re-

spect to the utilities associated with the performed activities and to time saving

and higher comfort due to the use of a vehicle, the rational choice for a driver

becomes using the car even for short travel-times.

In summary, our analyses show:

• travel-time budget is not constant, and can be described using two parame-

ters: β and tc;
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• β is smaller, if the city area is great;

• both β and tc are greater, if the road network is efficient;

• β is greater, if the relative costs for housing are high (this is especially true

for major cities);

• tc is smaller, if the costs for housing are high (this is especially true for minor

cities).

Peculiarly, with her combination of extreme house prices and gigantic municipality

size, Rome does not fit some of these schemes.



Chapter 5

Use of Space

In the precedent sections, we have discussed of the statistical properties of the

trip lengths and durations with studies that have been intentionally developed not

considering the environment where the mobility takes place. For a successful mod-

eling of Human Mobility, it is necessary to understand not only how much people

are willing to move, but also how these movement are distributed into space. The

approach that is commonly used in transportation modeling for this purpose is the

origin-destination matrix, which is obtained by a division of the of interest into

different zones i = 1, . . . , N : the number of individuals going from i to j defines

the matrix Tij. This matrix is equivalent to a directed and weighted network and

describes the aggregated mobility of all drivers in a delimited area and a definite

time span. This network is suitable for studying the rush hour mobility of com-

muters, which can be often deduced from census questionnaires. A model recalling

Newton’s law of gravity, and therefore called gravity law, is the prevailing tool to

predict the origin-destination matrix. This law states that Tij is proportional to

the some power of the populations living in i and j, and decays with a function

f(rij) of the distance between the two locations. Although, a novel method called

radiation model[36] has been recently proposed as an replacement to gravity law.

Still using only population densities as input quantities, this last model considers

also the possible alternatives to j when choosing a target destination form i.

Aside from this aggregate point of view, thanks to the advances in Information

and Communication Technologies, it is now possible to focus on individuals’ mo-

bility. The description of the spatial mobility of a particular person involves many

different quantities like radius of gyration, confidence ellipses or Zipf exponents of

the distribution of visited locations frequencies[21][14]. In the following, we focus

on the characteristics of the individual mobility network that each person defines

45
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with their movements from a location to another. In particular, we study the

degree and rank distributions scaling exponents and how these are related to the

way people explore new places.

5.1 Individual Mobility Networks

5.1.1 Degree Distribution

Each person’s mobility differs from the others because of the own habits, agenda

and knowledge of the urban environment. To study those differences, we introduce

individual mobility networks, in which a node represents a visited location where

an activity has been performed, while each weighted and directed link implies the

existence of one or more trips between two locations1. Our objective here is to

study the general features of individual mobility networks and in particular the

hierarchy between performed activities, which is pointed out by the degree of a

node. The degree quantifies the total number of connections or, more specifically

for our case, the total number of trips that have passed by a node. As trips start

from the same location where the last trip stopped, even if the network is directed

in- and out-degree are equal and thus we will use only the term degree. Although,

a single mobility network, derived from one month of mobility, is often not enough

for an accurate statistical analysis. For this reason, we have extrapolated the shape

of the individual networks’ degree distribution by superposing the distributions of

the whole ensemble of networks. This aggregated degree distribution is shown in

figure 5.1, where we have highlighted its scale-free behavior with a power law fit.

1Being the weights the number of passages through one link, the network is more specifically
a multigraph.
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Figure 5.1: Empirical distributions of the activity degree (circles) in Florence.
In a log-log scale we enlighten the interpolation with a power law k−b with
b ' 1.6 (continuous curve).

Dealing with a scale-free network, it appears natural to verify if it is possible to

modeling it with preferential attachment[46]. The extreme simplicity of this model

makes it highly adaptable to the description of a wide range of phenomena and

for thus represents one of the pillars of network theory. In this sense, we have

developed a Monte Carlo simulation where a weighted network expands with a

succession of trips each starting from the last arrival node. If destinations are

chosen with preferential attachment with weight proportional to connectivity, the

scaling exponent found is close to −2[47]. With respect of the Barabási-Albert

model, besides the constraint of following a path, here the number of possible note

is in principle limited, as the number of places in the analyzed area are finite, and

a “freedom” parameter has been introduced to permit the exploration of locations

different from the two extremes of the first trip chosen as initial condition.

The difference of the scaling exponent observed in our data from −2 is due to

the fact that working time schedule introduces further constrains to the individual

mobility agenda. Activity times statistical properties have been included in a

microscopic model where individual human mobility is represented as a dynamical

process on a weighted network, in which each individual jumps from one node

to another in a random way with preferential attachment.[17]. This model is

successfully self consistent in explaining cell-phone users mobility. However, as

we have already remarked in the chapter on time use, visit durations estimated

with cell phones possess statistical characteristics inconsistent with our observed

downtime durations, which are following the Benford’s Law (eq. 3.1): the key
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factor in this microscopic model is the deviation of the scaling exponent of activity

durations from −1, that in our case is negligible. For this reason, we propose a

different model to include activity duration following the Benford’s Law.

We have proposed in section 3.2 the existence of a universal distribution f(u) for

the normalized activity downtime (eq. (3.4)). Now, the existence of an universal

distribution implies (cfr. eq. (3.5)):

p(t, k) = f

(
t

< t >k

)
kp(k)

< tk >
(5.1)

Then using the interpolation (3.6) and performing the change of variable u(k) =

t/ exp(γka), we obtain that the Benford’s law implies a power law distribution for

the activity degrees (see appendix C):

p(k) ' 1

k2−a (5.2)

According to the estimate (3.6), we expect an exponent ' −1.7. In fig. 5.1, we

plot the empirical activity degree distribution with a numerical interpolation by

a power law k−b; data provide b ' 1.6 which is consistent with the analytical

estimate (5.2).

5.1.2 Heaps’ Law of the Number of Visited Locations

Alternatively to degree distribution, in scale free networks also the rank distri-

bution is suitable to describe hierarchy among nodes. Rank distribution can be

obtained ordering nodes from the highest degree to the lowest one for each in-

dividual mobility network. A simple relationship links the scaling exponents of

the two distributions[19]: being b the exponent for the degree distribution, the

distribution of ranks r reads:

p(r) ∝ r−
1
b−1 (5.3)

We examine the rank distribution grouping the individual mobility networks ac-

cording to the number of nodes and computing the average visitation frequencies

fr for nodes with the same rank. The results are reported in the figure 5.2, where

we point out a possible interpolation with a power law distribution fr ∝ r−α

where the exponent α = 1.42 is in agreement with the analogous results on hu-

man mobility based on a different data set[17]. Due to the relationship between

degree and rank, the existence of a power law distribution for the frequencies rank
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indicates that the individual activities network is structured according to a prefer-

ential attachment rule, where the most visited locations could be related to habit

mobility.
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Figure 5.2: (Left picture) Rank distribution of average visitation frequencies
for each nodes in the individual mobility networks with a fixed number of nodes:
N = 5 (triangles down), N = 10 (circles), N = 15 (triangles up), N = 20
(light squares), N = 25 (stars), N = 30 (squares) and N = 35 (diamonds).
The red line corresponds to a power law interpolation where fr ∝ r−α where
α = 1.42 ± .06. (Right picture) Number of visited distinct locations as a
function of time (day unit); the continuous line is an interpolation using a
power law n(t) ∝ tβ where β = 0.5357 ± 0.006. In both figures the data refer
to individuals that perform at least 20 mobility days in the Emilia-Romagna
dataset.

A power law rank distribution is commonly known as Zipf’s law, after the name

of the linguist that first proposed a similar law for the frequency of any word[48].

Strongly related to Zipf’s law is Heaps’ law[49], stating that the number of different

words used in a text grows as a power of the length of the text itself[50]. In our

case, the equivalent of Heaps’ law is the study of the diffusion process where,

over time, the number of visited location grows. We have empirically studied this

process using the time dependence of the total number of different visited locations

n(t) for individuals whose mobility covers at least 20 days in the analyzed period:

i.e. n(t) is the number of new locations visited by the ensemble of individuals in a

time t. We apply a Markov hypothesis to describe the evolution of n(t). Letting

p(r, t) be the probability that individuals have visited r locations after t days, we

have the Master equation

p(r, t+ 1) = p(r, t)p̄r + p(r − 1, t)(1− p̄r−1) (5.4)
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where p̄r is the average probability of choosing one of the r visited locations, that

we assume not dependent from t (stationary process). By definition:

n(t) =
∑
r

rp(r, t)

so that from the equation (5.4) we get:

n(t+ 1) = n(t) + 1−
∑
r

p(r, t)p̄r (5.5)

where we have used the normalizing condition:∑
r

p(r, t) = 1

and we have neglected the boundary effect of a finite number of locations. To

proceed, we need to estimate p̄r. Assuming that individuals perform a Markov’s

dynamics, p̄r is the measure of the r visited locations. The average visitation

frequency fr can be interpreted either as a measure or as a choice probability of

the r location. Let us order the r locations according to their rank, the average

measure of the j ∈ [1, r] choice (after j − 1 choices), mj, can then be estimated

with:

mj ∝
∫ N

j

f 2
l dl ∝

∫ N

j

1

l2α
dl ∝ 1

j2α−1
N � 1 (5.6)

where we have used the power law interpolation for the rank distribution fr ∝ r−α.

As a consequence, the expected measure for the r visited locations reads:

p̄r ∝
r∑
j=1

1

j2α−1
'
∫ r

1

1

j2α−1
dj ∝

(
1− 1

r2α−2

)
(5.7)

By definition, p̄r → 1 as r increases. Using the estimate (5.7), the equation (5.5)

reads:

n(t+ 1) = n(t) + 1−
∑
r

p(r, t)

(
1− 1

r2α−2

)
= n(t)−

∑
r

p(r, t)

r2α−2
(5.8)

Then, we apply the mean field theory argument to reduce the equation (5.8) to

the simple form:

n(t+ 1) = n(t) +
1

n(t)2α−2
(5.9)
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whose solution can be approximated by:

n(t) ' ct1/(2α−1) (5.10)

where c is an integration constant2. According to the fr interpolation (fig. 5.2

left) α ' 1.42± .06 and we get:

n(t) ∝ tβ

where β = .54 ± .03. This result is very close to the numerical interpolation of

the empirical measures β = .53 (fig. 5.2 right) and it has to be compared with

the result (β = .60± .02) and the relative individual mobility model developed on

mobile phone data[17], the model we said that cannot be applied in our case since

it is not consistent with the empirical activity time distribution. The results may

be interpreted in a twofold way. From one hand this is another indication that

macroscopic statistical properties of human mobility mimics the properties of an

ensemble of particles which perform a stochastic Markov dynamics, taking into

account the existence of spatial and temporal constraints. On the other hand the

individual dynamics is certainly not a Markov process and the rank distribution

in fig. 5.2 is the result of a cognitive behavior defining the daily mobility agenda

in a complex urban environment.

2More generally, equation 5.10 can in principle be extended to any Zipf ’s law with α > 1.
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5.1.3 Mobility Classification: Mono and Dipolar Networks
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Figure 5.3: 2D distribution of the percentage of round trips having at one hand
the house vs. the relative difference of the two main hubs degrees (Florence
Dataset). We observe that the distribution is manifestly bimodal, where the
two peaks represent two different spatial organizations of trips, one dipolar and
another mono-polar.

One difficult task that we have undertaken is to classify individual mobility net-

work. Various network theory quantities have been evaluated (see Appendix D)

in order to find characteristics allowing to separate the networks in different cat-

egories. However, all the considered distribution are bell-shaped, and thus do not

allow to define classes of networks. On exception is represented by the difference

between the degrees of the two main hubs. These hubs are the nodes with the

higher number of connections and therefore represent the most important loca-

tions of the mobility network. If we compute the difference of the degrees k1 and

k2 of the first and second most important hubs (that can be seen, for instance,

as home and workplace), rescaled by the sum of the degree of the whole network∑
i ki in order to be able to confront network with a different number of trips

and nodes, we find a distribution that recalls the superposition of two bell shaped

functions. In order to permit a better identification of this bi-modality, we can

use a second quantity that we can extract from the mobility pattern of visit of the

network: the number of round trips that have at one end the main hub, namely

the home. If we represent these two quantities in a 2D distribution (fig. 5.3), we

can clearly distinguish two peaks. The one at the bottom of the figure represents
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what we may call “dipolar networks” where two almost equivalent hubs exists

(k1 ' k2), and only half of the round trips have the house at one end. The one on

the right of the figure represents “mono-polar networks’ where the second hub is

significantly less visited than the main hub, and almost all the round trips have

the main hub at one end. These two classes of networks embody two different

spatial organizations of trips and probably two different way of interacting with

the urban environment. From the empirical distribution, we can deduce that the

majority of the networks are mono-polar, but further analysis have to be done to

understand causes and impacts of these two types of mobility. It is possible that

other classes, as tri-polar networks, exist, but are so infrequent that they are not

distinguishable it the considered distribution.

5.2 Interaction Network

In the second part of this chapter we move from individual to collectivity, ana-

lyzing how places attract people and how people share places. This analysis is

defined studying interactions networks that we define as a bipartite graph3 where

the nodes are either individuals or locations and a connection exists if a location

has been visited at least once by that individual. From this bipartite graph, two

different networks can then be defined. One is the individual interaction network,

where individuals that have shared the same location are put in relationship, and

the other is the location interaction network, where a link between two locations

identify a driver who has visited at least once both places. In our opinion, these

networks might be be useful to extrapolate information on social or simple prox-

imity interactions eventually related the epidemic spreading. In this section, we

propose a study on the statistical properties of the interaction network that has

been obtained from the multi-driver clustering of the destination coordinates in

the Emilia-Romagna dataset.

3A graph is bipartite if it can be divided in two subset of vertices such that no vertices in the
same set are connected.
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5.2.1 Attraction Basins
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Figure 5.4: (Left picture) Distribution of travel durations to the considered
mall. The red line suggests an exponential interpolation for the tail. (Right
picture) Distances of the origin of the trip to the mall, also here the red line
suggests an exponential tail. Both graph are obtained from data of the Italy
dataset.

Before dealing with the statistical properties of the Emilia-Romagna interaction

network, it is important to have an idea of the attraction basin that a location

can have. We propose here briefly the results of case study based on ≈ 8000

trips toward a mall situated in southern Italy, along a trunk road outside from

any urban area. Analyzing both the distance of origin of costumers and the time

they take for getting to the shopping center, we find that the attraction is short

ranged. The probability of finding a trip that took a travel-time t follows a curve

recalling the distribution of travel-time budgets (fig. 4.10), with a exponential tail

(here with a scale parameter of 14 ± 1 minutes) and a suppression for brief trips

under 10 minutes. Besides, the probability of finding a costumer at a distance

d decreases also exponentially, with a scale parameter of 14 ± 2 Km and a less

noticeable, but still present, suppression effect for close origins. We expected

that close origins were rare, being the location situated far from any city. The

similarities of these distributions with those of daily budgets make easy to believe

that energetic traveling limits and effort-advantage balance can be fundamental

also for the single choice among leisure activities.

5.2.2 Relation with Settlement’s Fractal Dimension

The degree of a node i in the bipartite interaction network is the number Ii of

different individuals who have visited at least once that node. As we can see
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in figure 5.5, the probability of finding an activity visited by Ii individuals is

distributed in the analyzed region following a power law p(I) ∝ I−γ with an

exponent γ = 1.46± 0.04.
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Figure 5.5: Distribution of the number of different individuals per node: the
red line represents the best-fit with a power law p(l) ∝ l−1.46, calculated in the
range 1-100.

In the last section we found evidence that the spatial attraction basin of a par-

ticular location can be reasonably modeled by an exponential radial distribution

with a scale parameter R. Let us assume that this attraction distance is equivalent

to an “excluded area” σ(R), representing the attraction basin of the considered

location. If we assume that the attraction area is the same for all similar activities,

the total number of conflicting activities A with attraction basin R that can be

present in a region of given surface is:

A ∝ R−2

Being the region characterized by a fractal geography of the lived areas, and if

we assume a constant population density in such area, the number of inhabitants

that can be found in the attraction basin of radius R is:

Iσ ∝ RD
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Where D is the fractal dimension. Therefore:

A ∝ I−
2
D

meaning that the number of activities that can be found with I inhabitants in its

attraction basin scales with a function of the fractal dimension. Superposing the

effect of the conflicting area for all the different activities and locations we find in

general:

p(I) ∝ I−
2
D (5.11)

This relationship is confirmed by our experimental analysis on Emilia-Romagna,

where the fractal dimension found for dimension between 500 and 600 meters

(the clustering procedure is defining areas of at least 500 m of radius) is Der =

1.31 ± 0.03, while the dimension that would justify the scaling law of individual

presence is consistently D∗er = 2/γer = 1.37 ± 0.04. An analogue result has been

found dividing the Florence dataset in squares with edge 500 m: in this case the

γfi = 1.4± 0.1 while the fractal dimension is Dfi = 1.4± 0.1.

5.2.3 Location Interaction Network

The location interaction network is represented by an undirected multigraph4

where nodes represent locations and each link represents an individual who have

visited the two locations. This kind of network is representing an intermediate

point of view between Origin Destination matrices and individual mobility net-

works: the location-location structure may recall the network derived from the

Origin-Destination matrix, but each link here contains information not of direct

movements but of the whole mobility of the driver. The degree of a node in this

multigraph is given by the sum of the connections due to individuals who have

visited the same node i. Each individual participates to this sum with the Np

nodes present in his individual mobility network:

di =

Ii∑
p=1

Np (5.12)

Where sum has to be intended over the Ii individuals labeled by p who have visited

the node i.

4A multigraph is a graph in which are permitted more than an edge between two vertices.
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From the empirical analysis, it emerges that between di and Ii there is a linear

relationship with di
Ii
≈ 30 at all scales (see figure 5.6).

Figure 5.6: Linear relationship between number of individuals and multigraph
degree of the nodes. The superposition with the red straight line reflects the
validity of eq. 5.17.

This relationship is due to the fact that the probability of finding an individual

having Np connections in a particular node i of the network is proportional to Np,

as individual with bigger mobility networks have been present in a larger number

of nodes, multiplied by the probability of having a individual that have visited Np

nodes in our data:

p(Np) = Cnorm ·Np ·
1√

2πσNNp

exp

(
−(logNp − µN)2

2σ2
N

)
(5.13)

where µN and σN are those found in Appendix E.2 for the empirical lognormal

distribution of the number of nodes visited in the different individual mobility

networks:

p(N) =
1√

2πσNN
exp

(
−(logN − µN)2

2σ2
N

)
(5.14)

Thus, the normalization factor Cnorm is given by the inverse of the average number

of nodes visited by drivers:

Cnorm =
1

〈N〉
(5.15)
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And the average value of the distribution p(Np) is the ratio between the second

moment and the first moment of the distribution 5.14, ratio that has been numer-

ically evaluated as 30.4:

〈Np〉 =
〈N2〉
〈N〉

(5.16)

Therefore, it is valid the relationship:

di =

Ii∑
p=1

Np ≈ 〈Np〉 · Ii =
〈N2〉
〈N〉

Ii (5.17)

binding the statistical properties of location interaction network’s degrees to those

of the distribution of individuals and those of the number of nodes in the individual

networks.

Moreover, the weights in the network may result a fundamental quantity: for in-

stance, knowing what are the strongest links in this network permit to identify

key routes of disease transmission. Therefore, we conclude this chapter examining

the values in the adjacency matrix Aij of the location interaction network. This

matrix is by nature symmetric, and diagonal elements Aii, topologically represent-

ing loops, are exactly the number of individuals present in the node labeled with

i. Network characterization is therefore completely covered by the strictly upper

triangular part of the matrix. Evaluating in an histogram the values of Aij in this

area, we find that they are distributes following a power law with exponent close

to −2.
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Figure 5.7: Probability density for the values of weights in the location in-
teraction network: the red line suggests an interpolation with a power law of
exponent -2.

Again, also this statistical property is completely determined by the individual

visit distribution over the various locations. In fact, if individuals are distributes

following a power law with scaling exponent ≈ −1.5, the related rank distribution

has, after equation 5.3, a scaling exponent of ≈ −2. Therefore, we define:

p(i) = Cni
−2 (5.18)

representing the probability that, extracted a random individual, they participate

to node i. Given the relative weights to two nodes w(i) and w(j), let us suppose

that the weight of a link w(i, j) is proportional to the product w(i)w(j). From

this, we obtain the distribution w(i, j) passing to the continuous limit from the

given distributions w(i) and w(j) and with the coordinate change x = i, y = ij

p(i)p(j)didj =

p(x)p(
y

x
)dxdy

1

x
=

C2
nx
−2(

y

x
)−2 1

x
dxdy =

C2
ny
−2x−1dxdy (5.19)
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Integrating over x we obtain p(i, j) ∝ y−2dy and therefore the distribution of the

link degree is a power law with exponent −2.

In closing, the results of this section indicate that the scaling properties of the

location interaction network, i.e. way people use and share space, is fully deter-

mined by the characteristics of the territory, embodied by the fractal dimension.

In defining the interaction network, we have excluded all information on the struc-

ture of the individual mobility network, and therefore ignored individual dynamics

represented by the individual mobility networks. For a deeper understanding of

individuals dynamics, in the next section we propose a study of the their mobility

patterns where we take advantage of information entropy measures.



Chapter 6

Entropic Analysis of Mobility

Patterns

At the beginning of every new day, people wake up knowing that a series of tasks

have to be carried out. Necessarily, they must satisfy the physiological need of

eating, that represents a periodical constraint in the daily routine, and sleeping,

that forces the circadian rhythm and thus imposes an end to the chain of performed

activities. Besides, they have to perform duties, usually the working related ones,

that are precisely scheduled and others, as shopping, social and leisure activities,

which can be done in any moment during the free time. Changes of plan during

the day are always possible: a planned meeting may be postponed, a new activity

may be picked instead of another or something can be done just because some

spare time is available.

The accomplishment of the daily duties is realized traveling through the locations

where each particular task has to be performed, and is clearly the primary cause

of human mobility. Therefore, understanding the structure of the daily activity

pattern is a crucial step in the development of a model for human mobility.

Thanks to the commercial spreading of the Information and Communication Tech-

nologies, important steps have been made toward the characterization of individual

mobility patterns: approaches in this direction have been made analyzing mobile

phone [14][17][51][52][53], geographic online social networks [54] and private cars’

GPS [21][15] datasets.

The aim of this section is to highlight the different roles that activities of different

duration have in the structure of the individual mobility patterns. For doing

61
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this, we have chosen to use entropy as the key quantity for our study and we

have introduced methods of analysis different form those used in [51]. For our

purposes entropy is a good observable because it resumes the information present

in a sequence of characters (given by the statistical properties and the correlations

due to the personal habits) in a real number. In particular, as the entropy per

character in principle does not depend on the length of the sequence, we can then

easily compare patterns of different length representing the mobility of different

individuals1.

6.1 Mobility Patterns

For the purposes of this analysis, we assume that every time the engine was off for

more than 5 minutes, this stop can be associated to an activity performed near

the parking place. Once the locations are identified, at each activity is associated

an identification number that, in analogy with the studies of the entropy of texts,

we call character. Mobility patterns are series of those characters representing

individual mobility.

We have isolated, in the Florence dataset, two types of mobility patterns for each

individual. The first is the time pattern, where the month has been divided in

equal time intervals of length ∆ttp and at each time interval we have associated an

activity (in this case, traveling is considered as an extra activity and therefore is

identified by a specific character). As it is possible that many activities have been

performed in the same timeframe, one activity has been randomly chosen in case

of conflict regardless the activities relative duration. We make this choice, that is

the same made in [51], in order to make our method consistent with this prece-

dent study. As a consequence of that, for time patterns with time interval ∆ttp,

activities shorter than ∆ttp might disappear from the analysis. The second type

of pattern is the jump pattern, which consists in the sequence of visited locations.

Here, we have introduced a time interval ∆tjp that represents the minimum time

interval considered. Activities shorter than ∆tjp are excluded from the sequences.

If, after this exclusion, two or more identical characters appear one aside the other,

they collapse in an unique copy of the same character, so any repetition of the

same character is neglected. Clearly, these two types of patterns carry different

information. On one hand, the time patterns focus both the way the people moves

1This study has been conducted with advises by Prof. Mirko Degli Esposti.
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in both space and time. On the other hand, the jump patterns focus only on the

spatial relations between the visited locations.

6.2 Entropy Measures

Here, we consider three different measures for the information entropy of a mo-

bility pattern: the actual entropy S, the temporal-uncorrelated entropy Su =

−
∑N

j=1 pj log2 pj and the random entropy Sr = log2N , where pj is the probability

of finding the character j in our sequence and N the number of unique characters

in the sequence. Sr represents a maximal value for the entropy, because for repre-

senting each value of the sequence it is necessary at least a number of characters

equal to the total number of visited activities. Su is a better measure of the en-

tropy, as it considers also the uneven frequencies of characters in the sequence,

while still ignoring the possible compression due to the relative position of the

activities. These three values are clearly bound by the relationship S ≤ Su ≤ Sr.

The measures of the entropy per character S have been evaluated using the

Lempel-Ziv algorithm estimator. This algorithm searches for repeated sequences of

characters that may be exploited for the pattern data-compression. For a sequence

of length n, the estimated value of entropy is:

S =

(∑n
i=2 li
n

)−1

lnn (6.1)

where li is the length of the shortest string starting at position i that does not

appear in the part of sequence up to position i − 1 (included). The goodness of

this estimate raises with the length n of the sequences and decreases with the

broadening of the size of the alphabet N .

The more informative is a sequence, the more difficult is to predict how it may

continue. The predictability Π is defined as the rate of correct predictions about

the value of a character in the sequence knowing all the precedent characters. Low

entropy is related to an high predictability and vice-versa. An upper bound Πm

to the predictability of a sequence can be computed as a function of the entropy

S by the inversion of the formula:

− Πm log2 Πm − (1− Πm) log2(1− Πm) + (1− Πm) log2(N − 1) = S (6.2)
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This last equation is a consequence of the Fano’s inequality[51] and the inversion

is possible as long as N and Πm are not too small.

6.3 Time Regularity

We have considered 28 days in the analyzed month excluding two public holidays

and a Sunday and compensating when the daylight saving time has been intro-

duced. For each day of the week we have 4 daily patterns and we have counted

how many times the drivers were, in a given timeframe i of width 5 minutes cen-

tered on the instant ti, in their most visited location. The so found average values

of R (probability of finding in a given hour the user in his most visited location

during that hour) across all timeframes for the different users is distributed within

the 79 ± 9% confidence interval, at the margin of which lies the result regarding

mobile phone data[51]. However, considering only the most visited location does

not permit to take into account the complete information that lies in all locations

visited in a given hour i. Also in this case, an entropic approach can here grant a

most comprehensive analysis, because the information regarding all visited loca-

tions in a given timeframe can be taken into account. Thus, we have calculated

for each i the regularity entropy: SR(i) = −
∑N

j=1 pj(i) log2 pj(i), where pj(i) is

the probability for the driver to be found at the position j at the timeframe i. The

average values of SR(i) across all users for the different days shown in fig. 6.1,

where can be observed how every day have a peak of dispersion in the afternoon

and has its minimum value in the late night. The working days appear substan-

tially equivalent, if we exclude a growing tendency to spend time in unexpected

places in the evening (and in Friday afternoon). Saturday is the more variable day

while Sunday appears clearly to have a late beginning.
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Figure 6.1: The average Regularity Entropy SR measures the information
lying in the distribution of the probabilities of finding a person in a particular
place in a given timeframe. Every day of the week has a characteristic hour-
dependency. Monday: green squares; Tuesday: red stars; Wednesday: yellow
crosses; Thursday: orange diamonds; Friday: cyan circles; Saturday: magenta
down triangles; Sunday: blue up triangles. With equation 6.2 we can link this
entropic measure with the upper bound to predictability. The dot-dash lines
represent the related values of Πm(SR), calculated for N = 2.

6.4 Pattern Analysis

6.4.1 Time Patterns

Being our data extremely precise in time, we can afford to create time-patterns

with relatively short values ∆ttp. This extension has a clear importance, because

the downtimes in different daily activities follow a Benford’s Law, i.e. a power law

distribution with exponent near -1 (see chapter 3).

Therefore, we proceed examining the dependence of the entropy with respect of

∆ttp, analyzing mobility patterns created using different timeframes.



66 Chapter 6 Entropic Analysis of Mobility Patterns

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S/<S>

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

  5min
10min
15min
20min
25min
30min
35min
40min
45min
50min
55min
60min

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S/<S>

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

  5min
10min
15min
20min
25min
30min
35min
40min
45min
50min
55min
60min

Figure 6.2: (Left picture) The rescaled distributions of the Time Patterns
Entropies S with different timeframes ∆ttp are perfectly superposed, suggest-
ing that all the dependency upon ∆ttp lies in the average value 〈S〉. (Right
picture) Similarly, the rescaled distributions of the Jump Patterns Entropies
S with different threshold ∆ttj are superposed and also in this case all the
dependency upon the threshold lies in the average values of the entropy.

The results, regarding ∆ttp ranging from 5 to 60 minutes, suggest the existence of

an universal probability distribution of the entropies S among the sample. In fact,

the distribution of the rescaled values p(S/〈S〉) does not depend upon ∆ttp(fig.

6.2 left). Therefore, the only significant value representing the dependence of the

distribution p(S) on ∆ttp is the mean value 〈S〉. The same thing has been observed

also for p(Su) and p(Sr) and for the jump patterns. Thus, it is sufficient to study

this dependence of the mean values of the entropy (see fig. 6.3).
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Figure 6.3: (Left picture)The dependency upon the timeframe size ∆ttp of
the average values of the Time Patterns Entropies. 〈Sr〉 (blu crosses) grows for
small values of ∆ttp, due to the inclusion of new locations, while 〈Su〉 (green
squares) is constant, indicating that the frequency distribution of the different
characters in the sequences pj is not dependent on the size of the timeframe.
〈S〉 (red circles) drops for small ∆ttp. (Right picture)The dependency upon
the threshold ∆ttp of the average values of the jump Patterns Entropies. All
the entropy averages 〈Sr〉 (blu crosses), 〈Su〉 (green squares) and 〈S〉 (red cir-
cles) grows for small values of ∆ttp, showing that information increases when
characters representing shorter stops are included.

The value found for ∆ttp = 60 minutes represents the same experimental conditions

of the work of Song et al. on a mobile phone users’ mobility[51]. Their results

show an upper limit to the predictability of 93% that is in a remarkable accord

with value of Πm = (92 ± 3)% that we can derive from our measures of S. The

validation of this result on an independent, and rather different, dataset grants

that mobility patterns obtained from both phone calls and private cars’ parking

are a good representation of human mobility with a temporal scale of one hour.

But, by using a timeframe of this size, we are keeping out a great part of the

mobility, as the 41% of the stops are shorter than one hour and thus are not

considered in a 24-hour a day time pattern.

Going deeper in the analysis for shorter timeframes, we may observe that when

∆ttp decreases, Sr grows, Su is constant and S drops, reaching values near zero.

The growth of Sr is due to the growth of the number of different character in the

pattern, as activities previously not observed are included when we, shortening the

timeframe, create longer time patterns. The fact of Su being constant means that

frequency distribution of the characters pj does not depend upon ∆ttp. This fact

helps us in interpreting the tendency of entropy S toward zero for short timeframes.

Indeed, this tendency suggests that the most part of the new characters introduced

shortening the timeframes are only prolonging repetitions of the same character
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representing long stops. Even if we are introducing new information regarding

shorter activities in our analysis, the analyzed sequences will have more and more

longer series of iterated characters, which can be easily compressed and therefore

lower the value of entropy per character.

To confirm that, we observe that S follows a scaling law S(∆ttp) ∝ ∆tβtp, where

β = 0.75 ± 0.03. We can see that this scaling law is only a consequence of the

observed distribution of the activity downtimes ts. This distribution, for activities

shorter than 4 hours, has been observed to follow a power law p(ts) ∝ tαs with

an exponent α ≈ −1. We have generated sequences constituted only by two

characters (0 or 1). This choice permit us to reduce the errors of the LZ estimator,

that converges slower to the real value of S for larger numbers of characters in

the used alphabet. A random character is picked and is repeated r times, with r

distributed as ts. Then another random character is picked and repeated, and so

forth. Sequences of these kind, with length equal to the number of minutes in a

month, have been generated and shorter sequences, corresponding to the different

timeframes ∆ttp, have been derived from the original sequence. The entropy of

these shorter sequences have been estimated with the LZ algorithm and it follows

a scaling low Smc(∆ttp) ∝ ∆tβmctp , where βmc = 0.73 ± 0.03, consistently with the

empirical curve.

If we want to avoid these repeated characters, the spatial resolution has to be

scaled together with the time resolution, and the complete spatial dynamics of the

mobility agents should be analyzed. Unluckily, our data do not permit this fine

spatial analysis, and therefore we cannot extract any activity time related feature

from our time patterns. However, using a different approach, that is still possible,

and it will be presented in the next section.
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Figure 6.4: The scaling of 〈S〉 can be explained measuring the entropy of
Monte Carlo simulated sequences that share the same Benford’s Law distribu-
tion of the lengths of repeated characters. Thus, the fact that the entropy is
small for small timeframes is due only to the progressive growth in length of the
sequences of repeated character describing the same activity.

6.4.2 Jump patterns
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Figure 6.5: (Right picture) The compression ratio 〈S〉
〈Sr〉 has no dependency

on the threshold value. This suggests a time invariant structure of the correla-
tions including activities shorter than one hour.
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We have seen in the previous section that the entropy of time patterns is un-

suitable for describing the information carried by human mobility at short time

scale. Indeed, in time patterns the fundamental pieces of information describing

the movements lie hidden in the transition from one iteration of characters to an-

other. The statistical characteristics of the stops duration play the leading role in

determining the value of S. We want to focus our attention to these transitions,

and for doing this we analyze the jump patterns, where only the movements are

considered.

We use again values of ∆tjp ranging from 5 to 60 minutes, that here represent

a thresholding value under which stops are excluded from the pattern. Larger

thresholds can hardly be considered, as it would produce string too short to be

consistently analyzed with the LZ algorithm. Also in this case, the distributions of

the three measures of entropy among the different users have their only dependence

on ∆tjp in their mean value (see fig. 6.2) and we can consider only this quantity in

our analysis. In the left graph in fig. 6.5, we may observe a number of differences

with the corresponding graph for the time patterns. First, Sr behaves differently,

as the way the characters are excluded is different. Second, the values of Su and

S are greater in the jump patterns, as we have neglected all repetitions that were

dominating the distribution of character frequencies and are easily compressible.

Third, shortening the timeframe and thus introducing new characters, all the three

measures of entropy raise. This last observation is straightforward, as introducing

new characters we introduce new information. Although, we may notice that the

change in S is not great2, especially as common sense would suggest that the

shorter activities, being to be free from organizational constraints, might appear

more randomly within the mobility pattern than the longer ones. We would have

expected a more steep increase of the entropy caused by the emergence of an a-

systematic, and thus less predictable, behavior associated to shorter stops. Not

only that does not happens, but if we consider the compressibility ratio S/Sr,

represented in the right graph in fig. 6.5, we notice that it has only a very weak

dependence on on ∆tjp. The compression ratio is the measure of the maximum

possible compression that can made to the string (it is equivalent to the ratio

between the size of a zipped file and the size of the original file): for all the

analyzed values of ∆tjp, its value lies between 52.6% and 53.6% . The fact that

the compression ratio is almost constant clearly indicates that the activities that

take 5-10 minutes are as compressible as the one that take 50-60 minutes, i.e. they

have the same chance of being part of a repeated sequence that the LZ estimator

2Translated in maximum predictability through the inversion of equation 6.2, the values vary
from 66% to 71%



Chapter 6 Entropic Analysis of Mobility Patterns 71

uses for the compression. This fact seems to imply that the mobility patterns are

somehow invariant with respect of the activity time, at least within the analyzed

range (5-60 minutes).
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Figure 6.6: Performing a progressive shuffling of the characters representing
activities which duration is under a threshold ∆t′, we progressively break the
correlations in the Jump Patterns. In this figure, we may observe how the aver-
age difference in entropy ∆S between the shuffled and un-shuffled patterns grows
with the average number of permuted chars with three different slopes. The blue
circles represent values of ∆t′ ≤115min, green triangles 115min< ∆t′ ≤12h and
red diamonds 12h< ∆t′.

In order to verify this result, we proceed with a new time-dependent entropic anal-

ysis: we compare the values of S measured for jump patterns generated with the

minimum threshold value of 5 minutes, after that activities shorter than a given

value ∆ts have been randomly permuted. This shuffling procedure breaks the re-

peated sequences that the LZ algorithm finds and uses for compressing the pattern.

The compression due to correlations between consecutive groups of characters is

in this way lost and thus the value of S should rise. In the limiting case where

all the values are shuffled, the measured value of S is, in principle, equal to Su.

Using this shuffling procedure instead of excluding activities permit us to analyze

the activity-time dependency of the correlations without changing the length of

the patterns. For this reason, it is possible to extend the range of values ∆ts taken

into account. We have here analyzed the values of S with ∆ts spanning from 5

minutes to 24 hours. In fig. 6.6, we show the values of the average difference in

entropy ∆S(∆t′) = S(∆ts = ∆t′)−S(∆ts = 0) within the sample, plotted against
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the average number of permuted characters Ns(∆ts = ∆t′) with the same ∆t′.

The greater is the slope of the curve ∆S(Ns), the faster is the variation in entropy

due to the shuffling, and therefore the stronger is the breaking of the correlations

due to the shuffling procedure. It is evident how in this curve can be easily divided

in three parts, each of which appear to be linear. 3 The best fit with a multiple

linear interpolation gives the temporal limits of these parts: 115 minutes (value

that, for sake of simplicity in the exposition, we round up to 2 hours) and 12

hours. The slope is greater for the shuffling of the short activities with duration

of less than 2h. Then, when we start shuffling the activities longer than 2h with

the shorter activities, the variation in entropy falls (the derivative of the 2h-12h

part is roughly one half of the derivative of the 0h-2h part). Finally, when even

activities longer than 12 hours begin to be included in the permutations, the vari-

ation becomes negligible. These three behaviors in the entropy variation permit

us to define three classes of activities. The fact that the information introduced

with shuffling is simply proportionate to the number n of permuted characters

indicates that each class is internally homogeneous. Each character of any value

∆t within a given class brings the same increase in entropy when moved from

his original position. In particular, this time invariance is valid in the range 5-60

minutes analyzed with the exclusion analysis, which is therefore consistent with

this result.

3Being this result obtained, for each pattern, with a fixed string length and a fixed number
of different characters, we can exclude that this result might be a consequence of some bias due
to the LZ entropy estimator.
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Figure 6.7: (Left picture) If we shuffle random characters belonging to the
same class of activity (∆t ≤115min: blue circles , 115min< ∆t ≤12h: green
triangles, 12h< ∆t: red squares) we point out that the most effective way for
breaking the correlations between consecutive stops is shuffling activities of in-
termediate length. (Right picture) The distribution of the Shannon entropies
given by the frequencies of the characters in the different classes (∆t ≤115min:
red solid line, 115min< ∆t ≤12h: green dash line, 12h< ∆t: blue dot-dash
line). The long activities tend to have a less spread distribution of frequencies
(the peak at S = 0 for the activities over 12h indicates that frequently only one
location (probably home) is visited for such a long time.

Having identified these three classes (that we call respectively short, long and

ultra long activities), we can analyze them separately. For doing that, we shuffle a

progressive number Ns of characters picked at random within each group, and we

measure again the variations in entropy. This analysis has been restricted to the

≈ 3800 jump patterns where have been made at least 15 activities for each class.

The results, shown in fig. 6.7 left, point out that shuffling characters representing

long activities we raise the entropy faster than shuffling the characters of short

activities class. The long activities have the smaller derivative, as we could have

expected, as only a few locations are visited for such a long time, thus we often

shuffle identical characters. This can be observed in fig. 6.7 right, where the

distributions of Su calculated with the frequencies of characters of the three classes

are plotted. The curve representing long activities has its values concentrated

under 1 bit/char, with a peak at zero, that means that we have usually only one

character, representing the overnight stops at home. The distributions of the short

and long classes reveal that there is a greater variability in the short activities,

while the longer have a less spread distribution of activities, that leads to a smaller

value of Su. This suggests that that differences observed between the derivatives

of these two classes in the left picture is even more significant, as the long activities
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have a faster rate of growth of entropy with the permutations, even if it is more

probable that these permutations are inactive because of the repetition of the same

character.

Summing up, if we shuffle first the short activities and then the long activities,

the rate ∆S/Ns relative to the part where long activities are mixed is smaller than

the rate relative to the short activities, while if we start shuffling the long activi-

ties, the rate is bigger. Besides if we proceed with the shuffling of the ultra long

activities after having shuffled the short and the long, the shuffling is ineffective,

while the shuffling inside the class have a finite, even if small, effect. We may

interpret those facts as hints of a hierarchical structure in the mobility pattern.

This hierarchy appears in the repeated sequences that the LZ algorithm recog-

nizes for the compression. Those repeated sequences, representing the individual

habits, are more easily broken if we shuffle long stops than if we shuffle the short

ones. But, if we shuffle first the short activities, shuffling then the long activities

becomes less efficient in breaking these sequences. In our opinion, this can be ex-

plained by the assumption that a cluster of activities constitutes a significant part

of the repeated sequences where long activity plays a pivoting role between the

short activities. Shuffling the long activity breaks more efficiently those sequences,

while if we shuffle all the short activities, shuffling then the long activities has not

strong consequences. These clusters are embedded, with the possible presence of

other correlations, in the middle of an arrangement formed by ultra long activities

(representing the cornerstone of the mobility schedule), other hierarchical clusters,

other repeated sequences and other activities. We may remark that this interpre-

tation is consistent with our time usage model where the daily schedule is created

progressively, starting from the activity with the long duration and progressively

using the time left in the timetable (see section 3.1.1).

6.5 Markov processes on network

In this last part of the chapter, we evaluate if the information of the examined

jump patterns can be successfully modeled with discrete-time Markov processes

on individual mobility networks. In this dissertation, we have already successfully

used a Markov assumption in 5.1.2, where we have shown how the exploration

of individual networks is related to the topological characteristics of the network

resumed by the rank distribution’s scaling exponent.
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Therefore, we have evaluated, with the Lempel-Ziv estimator, entropies of patterns

generated by Markov sources, where the probability matrix is computed from the

network adjacency matrix. Two alternative sources have been compared: one

where the probability is given by the weights of the undirected mobility networks

(see appendix D.1 for the adjacency matrix notation):

pwi→j =
wuij∑
k w

u
ik

(6.3)

and another where only the topology, intended as the absence or the presence of

a connection between the two links, is taken into account:

pti→j =
auij∑
k a

u
ik

If this second “Topological” process would be able to successfully describe individ-

ual mobility, weights would not matter and thus interaction network would carry

all the information needed for describing collective movements. As we see in the

end of this chapter, this is not the case.

For each network, patterns of 2000 characters have been generated 10 times. This

is reducing at minimum levels both statistical error and systematic error due to

the entropy estimator. The values of entropy found are represented in figure 6.8

against the entropies measured for the actual patterns.

Figure 6.8: Relationship between empirical jump entropies and entropies of
patterns generated with the pwi→j (Left) and pti→j(Right). In both pictures the
solid black represents the identity.

It appears clear that for low-entropy patterns, Markov processes generated with

weights are considerably more similar to real ones. “Topological” entropy seems
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to be in some linear relationship far from identity with empirical entropy. On

the other hand, highly informative patterns present significant differences in both

cases. These difference can be caused by the limited length of the real mobility

patterns, that is probably insufficient for the convergence of the Lempel-Ziv esti-

mator to the real value of S if the number of different characters is too high. A

comparison between the goodness of “Weighted” and “Topological” entropies in

approximating the empirical values is explicit in figure 6.9.
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Figure 6.9: Standard deviation of the generated pattern entropies from the
empirical ones. The blue curve represents deviations of patterns generated with
pwi→j while the red one represents deviations of patterns generated with pti→j .
From this graph emerges that the firsts patterns are in good correspondence for
a much wider range of values of entropies, while in case of highly informative
patterns both processes fail to emulate reality.

Consequently, we can assume that the a Markov process defined by a matrix

obtained by the weighted adjacency matrix is reasonably good for explaining the

pattern entropy in a wide range of values.

Lastly, we have verified the stability of this consistence introducing a progressive

rewiring in the multigraph defined by the weights wuij and measuring the conse-

quent increase in the generated pattern entropy. The results exhibit an initial

linear trend (see fig. 6.10) with a slope (0.014 bit/char2) that lies between the em-

pirical slopes measured for activities under 2 hours (0.010 bit/char2) and activities

between 2 and 12 hours (0.015 bit/char2) relative to the graph of figure 6.7 left4.

4For sake of completeness, the slope for shuffling over 12 hours is 4.3e-03 bit/char2.
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Figure 6.10: Effect of progressive rewiring of the individual networks in the
values of pattern entropies generated by the transition probabilities (6.3). For
a small number of rewired links, the variation grows linearly, as seen for the
empirical patterns in fig. 6.7.

This second quantitative consistency grants a greater interchangeability between

real and generated patterns. The a-posteriori information carried by the mobility

network is therefore can be sufficient for describing the information entropy of the

dynamical process that has generated it. Together those topological properties,

activity durations are still playing two roles in jump patterns. A major one that

we have seen in section 5.1.2, as they limit in the size of the pattern’s alphabet.

Second, subtler, in the hierarchical structures that are suggested by the time-

shuffling study of last paragraph.





Chapter 7

Mobility on the street network

As we already discussed in chapter 4, human mobility is constrained by energetic

consumption due to the effort of traveling[37]. Once the transportation mean is

chosen, time, rather than distance, appears to be the quantity used to evaluate

remoteness or proximity. Travel-time defines a metric that depends on many

factors, notably driver characteristics and traffic conditions. Driver’s decision

dynamics can be probabilistically modeled using the concept of utility function[55].

As the benefits of a journey decreases with the travel time, utility is at first order

proportional of with its inverse function v̄/l[56]: with a given distance l to cover,

utility is therefore linear with the average speed v̄. This chapter intends to analyze

the features of the travel-time metric, which is continuously deformed by traffic

conditions, and how those features influences drivers behavior.

7.1 Space-Time Relationship

For comparing the fixed spatial metric defined by the street network with the

temporal metric, we study the average speed of the vehicles’ trajectories in the

Florence dataset. It has been observed[57] that the relationship l = v̄t is valid only

for long trips, while it is not consistent when the distance covered l is short. In

fact, the short paths’ vehicular micro-dynamics is dominated by the microscopical

interactions with the street network, and these interactions cause a continuous

alternation of accelerations and decelerations. Only for the longest trips these

fluctuations become negligible and an average speed independent by l or t is well

defined.

79
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To point out the regime dominated by microscopical interaction, we consider only

the trajectories belonging to a daily cycle, i.e. a daily mobility patterns starting

and ending in the same location. These cycles represents a typical day of mobility

with night rest at home. This choice automatically excludes “diffusive” move-

ments and focuses more on urban mobility. The microscopical interactions can

be assimilated in a stochastic model[57] where the succession of accelerations and

decelerations are described by white noise:

v̇ = σξ(t)

l̇ = |v|

with 〈ξ〉 = 0 and 〈ξ(t)− ξ(s)〉 = δ(t− s).

It is common knowledge that v follows a Wiener:

p(v, t) =
1√

2πσ2t
exp

(
− v2

2σ2t

)
Therefore, the average speed is:

〈l̇〉(t) = 〈|v|〉 ' σ
√
t
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Figure 7.1: Comparison between the travel-time distributions and the distri-
bution of the quantity d′ obtained from transformation (7.1). Data are from
the Florence dataset with restriction to daily cycles.
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It is important to highlight that this relationship between average speed and travel

time can be used, like in figure 7.1, to convert distances in temporal measures with

the transformation:

d′ =
d

2
3

K
(7.1)

With K = σ
2
3 ≈ 9.3Km

2
3

h
, we obtain a good agreement between the two metrics.

We remark that the good correspondence shown in figure 7.1 is obtained only if

not-cyclic days are excluded from the analysis.

To better understand the space-time relation, we have studied the variance of

the average speed as a function of the trip length. In the figure 7.2 we plot the

result for the whole Emilia-Romagna dataset: the data show a power law increase

of the variance for very short trips and a relaxation to a stationary condition

for trip lengths greater than 8 km: the stationary variance corresponds to a rms

σ0 ' 10 km/h in the speed distribution (the red line show an interpolation of the

experimental data).
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Figure 7.2: (Left picture) Average speed variance as a function of the trip
length: we have computed the average speed for a given trip length using the
GPS data of the Emilia-Romagna dataset with a discretization step of 100
m. The continuous line is a data interpolation using the function σ2(l) =
σ2

0(1 − exp−(l/b)5/2) with σ0 = 10 km and b = 3.8 km. (Right picture)
Average speed distribution for the recorded trips (blue curve): the distribution
can be decomposed into the sum of two distributions considering the trips whose
length is ≤ 5 km (red curve) and the remaining ones (green curve).

However, considering the average speed distribution for all trips, it is possible to

point out the two different typologies of trips: the short trips l ≤ 5 km with

an average velocity ' 20 km/h and a small variance and the longer trips with a

distribution centered at ' 45 km/h and with a rms σ0 ' 10 km/h (fig. 7.2 left).
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We remark that the two trip typologies are not directly related to the exponential

and power law behavior in the trip length distribution (see chapter 4) since the

power law behavior can be detected considering trip longer than 20 km. Instead,

the length-time relationship (7.1) can be the cause of the apparent reduced short

trips’ suppression effect shown in the Total Mobility distribution with respect to

Travel-Time Budget (confront the shape of the curves on the two sides of fig. 4.5).

In fact, even in mobility with short travel-time is suppressed, mobility with short

travel distance is still possible because it tends to be slower and therefore takes a

relatively longer time.

7.2 The Bike alternative

The slower speed of short trips represents a disutility that, together with the time

spent directly and indirectly preparing from locomotion, represents one of the

hidden costs of transportation[58]1. Moreover, traveling at low speed because of

the continuous accelerations and decelerations is a source of stress, and stress rises

the energy consumption influencing the Travel-Time Budget. For those reasons, it

can become the optimal solution switching for short tripsbetween cars and other

forms of transportation.

To quantify this, we take as example the city center of Milan, a city where the

stress from driving is notably high[59]. We have restricted the analyzed area to

the region within the “Circonvallazione esterna”, a ring of avenues with diameter

of ≈ 6Km. We have selected only the trajectories with both starting and stopping

point within the area, a portion representing the 47% of the total trajectories

involving the area. The distribution of the average speed in this selection is plotted

in figure 7.3.

1Disclosed costs are, for instance, fuel and parking space, the buying price of the vehicle, the
expenses for its maintenance or the costs for the upkeep of the street network that are paid by
the community.
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Figure 7.3: Distribution of v̄ for trips within the “Circonvallazione esterna”
in Milan. In red is highlighted the share of trajectories slower than 15 Km/h,
representing the 73% of the total.

We observe that over the 70% of the trips inside the “Circonvallazione esterna”

are slower than 15 Km/h, which we pick as reference measure because it is a

standard speed for bikes. That means that the larger part of the car movements

in the central area of Milan could would be faster if done by bike, even without

considering the time spent from the parking place to the actual destination (time

that tends to be greater for cars’ parking). If we take into account also walking

times from the activity to the car, cars becomes even less attractive for very short

distances[42]. Also bike movements are probably limited by crossroads, traffic

lights and the lack of infrastructure in a way similar to car mobility, and therefore

a relationship similar to (7.1) can be introduced for this transportation mean: also

in this case the average speed is not constant and for longer distances fatigue has

to be taken into account as well. But, the fact that cars are chosen instead of bikes

reflects that other factors, like comfort or safety, are taken into consideration for

modal choice.

This quantitative analysis confirms that bikes are a perfect alternative to cars for

urban mobility. If the dis-utilities given by insufficient cycle facilities are reduced

with specific developments policies, the speed advantage can prevail, triggering a

mode shift with benefit for both bikers and drivers.
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7.3 Route Assignment

7.3.1 The oeconomicus driver

Figure 7.4: Two alternative routes in Bologna: the northern option is longer
but takes advantage of a ring road while having therefore higher average speed;
the southern option is shorter but involves numerous roundabouts.

In transportation theory, a driver as considered similar to the homo oeconomicus.

Choices among alternatives, like what mode of transportation select or what is

the best trajectory from A to B, can be explained with the multinomial logit

model[55]. In particular, for the case of route choice, travel time can be used as

cost function[56], so that a driver moving from x to z at a traffic node opts for the

alternative route k ∈ R with the probability:

Pk(t) =
exp(−Tk(t)/T ′0)∑
k′∈R exp(−Tk(t)/T ′0)

(7.2)

where Tk(t) is the travel time expected at time t for the route k and T0 a suitable

proportionality constant between travel time and utility:

Uk(t) =
T0

Tk(t)
(7.3)

As traffic situation and expected travel times may significantly change while the

next node k is not yet reached, may be in some cases useful to re-estimate the
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travel time at each node

Tk(t) = Tt(x, k) + Tt(k, z) (7.4)

More generally, the multinomial logit model permits to estimate the probability

P (x|s, B) of choosing the option x from an alternative set B given the measured

attributes vector s (where both individual parameters and external information

lie). The model is based on several assumptions[60]. Some of the most relevant

are:

Independence of Irrelevant Alternatives

P (x|s{x, y})
P (y|s{x, y})

=
P (x|s, B)

P (y|s, B)
(7.5)

;

Irrelevance of Alternative Set Effect

U(s, x, z) = u(s, x)− u(s, z) (7.6)

taking z to be a “benchmark” member of B;

Linearity of u(s, x)

u(s, x) =
K∑
k=1

θku
k(s, x) (7.7)

where uk(s, x) are specified numerical functions and the θk unknown param-

eters.

Under these and other assumptions the multinomial logit model probability:

P (x|s, B) =
exp(U(s, x, z))∑
y∈B exp(U(s, y, z))

(7.8)

is consistent with a model of individual behavior where the actual utility function

is the sum of two effects:

u∗ = u(s, x) + ε(s, x) (7.9)

where u is non-stochastic and reflects the “representative” tastes of the population,

and ε is stochastic and reflects the idiosyncrasies of a particular individual in tastes

for the alternative with attributes x and the randomness of a particular choice

made by the individual.
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7.3.2 Wardrop’s Equilibrium

From the rationality and total knowledge assumed for drivers’ decisions, together

with the fact that when a lot of vehicles try to use the same road, the road

becomes congested and travel-time increases, come as consequences the Wardrop’s

principles[61].

The Wardrop’s first principle states that a traffic flow over a street network is at

equilibrium (a Wardrop equilibrium) if no user can reduce his cost by switching

from his current path to another one connecting the same origin-destination pair.

This flow equilibrium represents a steady state in a system where the flow is

generated by a very large number of infinitesimal users. It has been demonstrated

that a Wardrop equilibrium is equivalent to a Nash equilibrium for congestion

games with a large number of players[62]. In this kind of game, it is assumed that

each driver is acting in a purely selfish manner, and will use the minimum-latency

path from its source to its destination, given the congestion caused by the rest

of network users. These congestion games are also potential games, because a

potential function can always be defined[63].

The Wardrop’s second principle states that at equilibrium all flow paths between

a given source and destination have equal, and smallest possible latency. How-

ever, this traffic assignment could be far from the optimal assignment minimizing

total latency[64]. In this game theoretical framework, it is even possible that im-

provements in traffic facilities have negative effects due to lack of coordination of

drivers, an effect called Braess’s Paradox[65].

Summing up, the Wardrop’s Principles are based on three strong assumptions:

• system being in a steady state;

• rational drivers are aiming to travel time minimization;

• all players have complete information of the system state.

It is our interests to check if a real urban traffic system can be actually observed at

Wardrop equilibrium. In the negative case this can be a consequence, for instance,

of the incomplete information about the system state or a less-rational behavior

like inertia in switching from of the usual route even if it has an higher cost2.

2This study has been conducted under the supervision of Prof. Dirk Helbing.



Chapter 7 Mobility on the street network 87

7.3.3 Empirical falsification of Wardrop’s principles

In order to validate the Wardrop’s principles, it is necessary to confront the tra-

jectories followed by different drivers at the same time. Therefore, we have to bin

our data in timeframes, each identified by its center in t and of width ∆T . Then,

we may identify a particular trial n = [o, d, t] for each origin-destination couple

[o, d] and each timeframe t. In a particular trial there will be Jn different routes

labeled with k chosen by Mn drivers. Each driver m have incurred a travel cost

τkmn, that we may associate with the travel time of route k in trial n. The analysis

has been done considering the actual travel time τkmn. For the 2nd principle, in

the same trial, for all k and m the values of τkmn should be identical.

Two samples of the Italy dataset with the mobility in the city of Bologna and

Florence have been chosen. These municipalities are of similar size (respectively

380.000 and 370.000 inhabitants), but due to a different commercial diffusion of the

GPS device, the two samples are of different sizes: 1.35 million trips in Bologna,

0.79 million trips in Florence. Even with those large sizes, only a limited number of

trials have been found with information sufficient to make a statistical comparison

between travel times on two alternative routes. The important bottleneck comes

from the low recording frequency of the devices: with only one datum every 2

Km all the movements between one point and another have to be guessed with

path reconstruction. To have complete certainty that two trajectories are actually

different, it is necessary to consider only trips with at least 3 matched points, which

requires a minimal length > 2 Km. Moreover, picking timeframes 15 minutes, we

have to find at least 3 cars that in that time span have chosen at least two different

roads between the same couple of links in the street network. The need of 3 cars is

for computing a confidence interval for the travel-time in at least one of the routes

in the trial, which is necessary for evaluating the consistency of the travel-time in

the other route. In almost all cases, only one route is commonly used while the

alternative choice is relatively rare. In fact, the flow of a car with a device installed

15 minutes is approximately equivalent to 200 car/h along the entire alternative

route. This is involuntarily focusing our analysis on rush hours, when these flows

are possible.

is the two data samples, we have identified 301 timeframes with enough statistics

over 31 different route pairs. Each trip has been used only once in the analysis,

so when it belonged to more than a route pair, the one covering the longest has

been chosen. Our finding is that Wardrop’s equilibrium is significantly violated

50.5% of times. The result is similar for the two samples (53% in Bologna and 46%
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Florence and is consistent in all hours of the day. In figure 7.5 left, we represent

the percentage of Wardrop’s equilibrium violations as a function of the hour of

the considered timeframe: even if statistical errors do not make the differences

significant, the graph is suggesting that at rush hours the equilibrium is violated

more than usual.
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Figure 7.5: (Left figure) Hour dependency of the percentage of Wardrop’s
equilibrium violations. (Right figure) Distribution of the relative fluctuation
around the average of travel-times in the selected trials: the red line suggests a
lognormal interpolation.

A possible explication for the deviation from equilibrium would be that the cost

function involves other alternative to travel time. Possible path costs can be

function of[66]:

• length;

• angular change (or, alternatively total square curvature of the trajectory);

• number of turns (or eventually only number of turns left);

• travel-time variance (greater variance can be interpreted as higher risk).

To compensate differences in travel-time, an additional term should be anti-correlated

with them. However, no significant anti-correlation has been found with functions

of the costs present in the list3.

A second analysis over the average speed of the routes has been done. Those values

may better represent the value for the travel cost as the drivers can anticipate it.

3This has been verified supposing either a linear or a logarithmic travel-time cost. A loga-
rithmic cost can be in principle be consequence of the Weber-Fechner’s law (section 3.3).
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Indeed, travel-times τkmn associated to the effective realization of the trip from o

to d by the driver i are precise and reliable, but in principle they cannot be known

by the drivers when the route is effectively assigned. For average travel-times, we

find that only 2 of the 31 route couples have average times significantly different.

Therefore, average travel time can be suggested as a consistent cost function. This

implicate that most of the drivers can only rely on average knowledge of the travel

times.

Finally, we want to point out that, for the same route, all observed travel-times

are log-normally distributed (see fig. 7.5). This cannot be a consequence of exper-

imental errors, which are for our measures Gaussian. It is possible to suggest that

also this distribution can be related to a Weber-Fechner’s law of perceived times.

This non-linear perception could be fundamental for decisions, as Weber-Fechner’s

law has been identified as a possible unique assumption needed for obtaining in a

multinomial logit function in quantitative decisions[55].





Chapter 8

Methods for Traffic Data

Assimilation

Thanks to the commercial diffusion of GPS technology, we have now access in

real time to information on traffic condition, which are not limited anymore to

particular places where measure instruments and cameras are installed, but are

available over the entire street network. The information, coming form navigators,

cell-phones or black boxes installed on vehicles, is extremely precise but has two

important limits. First, it is associated to the mobility of a single vehicle, which

might not be a good representative of all the traffic flow. Second, it can be too

dispersed over time and space, so that in some location no recent knowledge on

traffic condition are at disposal even for long periods of time. In this chapter we

present the data assimilation methods we have applied to our path reconstructions

(see section 2.3) in the real-time traffic data assimilation software developed for

the industrial project Pegasus - Industria 2015[67].

8.1 Kalman Filter

We are have information about the average speeds at various edges of the street

networks, obtained by the reconstruction of trajectories followed by single drivers[12].

Data at our disposal are not homogeneously available either over time, as they are

abundant in rush hours and rare during the nights, or over space, as we can have

from the 100 data/hour of main roads to the total absence of information over one

month of recording. For instance, on the whole Italian street network, only the

91
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3.6% of the total length have a monthly flow of cars equipped with Octo Telemat-

ics GPS device greater than 3000, corresponding to ≈ 4.5data/hour and thus to a

real flow of ≈ 150 vehicles/hour[68].

Our objective is to give an optimal estimate to the values of speed and flow at a

given time in those roads where we have a reasonable quantity of data. As our

practical goal is to develop software able to work in real time, we cannot use the

a posteriori knowledge of the future state of traffic, but we can only rely on the

last updates, the previous traffic conditions and historical information. Moreover,

a further factor to be considered is computation time, as data elaboration for real

time purposes should be constraint to an update pace from 5 to 15 minutes.

The solution we propose here is based on Kalman Filter. Kalman Filter has been

chosen as it permits to:

• enrich the information on a given time with the state of the system in the

preceding times;

• give a reasonable estimate even in absence of data;

• reduce the errors due to the variability of data;

• improve the estimate for a given road with information received in the neigh-

boring area.

In particular, we have implemented the Discrete Linear Kalman Filter1 with the

additional assumptions:

• Qk = σ2
fI

• Rk = σ2
oI

• H = I

which means that both forecast and observational errors are identical and inde-

pendent for all analyzed roads and, at the same time, the observed values maps

perfectly the fields considered for the model state.

1An explanation of this method is found in appendix F.
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Kalman equations become (vector notation is now not necessary as the problem

has become diagonal):

Forecast Step : xfk+1 = φkx
a
k

P f
k+1 = φkP

a
k φ

T
k + σ2

fI

Analysis Step : xak = xfk +Kk(zk − xfk)

P a
k = (I −Kk)P

f
k

Kalman gain : Kk = P f
k (P f

k + σ2
oI)−1

Dividing the two equations about variances P by σ2
f we obtain the equation for

P
σ2
f
:

P fk+1

σ2
f

= φk
P a
k

σ2
f

φTk + I

Pak
σ2
f

= (I −Kk)
P f
k

σ2
f

Kk =
P f
k

σ2
f

(
P f
k

σ2
f

+
σ2
o

σ2
f

I

)−1

Redefining P̃ = P
σ2
f
, Kalman equation are:

Forecast Step : xfk+1 = φkx
a
k

P̃ f
k+1 = φkP̃

a
k φ

T
k + I

Analysis Step : xak = xfk +Kk(zk − xfk)

P̃ a
k = (I −Kk)P̃

f
k

Kalman gain : Kk = P̃ f
k

(
P̃ f
k +

σ2
o

σ2
f

I

)−1

where the ratio σ2
o

σ2
f

is a free parameter, which has to be experimentally estimated. A

deeper analysis of the asymptotic properties of this 1-Dimensional Discrete Linear

Kalman Filter can be found in appendix G.

The assumptions leading to this version of the Kalman Filter are not hold if the

model is not diagonal, i.e. it uses, to estimate the future state of a given arc,

information of the states of other street arcs. For this more elaborated models

(such as the one described in section 8.3) is computationally lighter to use the

3DVar method (see appendix H), where the inversion of the n × n matrix (with



94 Chapter 8 Methods for Traffic Data Assimilation

n the number of analyzed street arcs) necessary to compute the Kalman gain is

replaced by the optimization of a n-dimensional function.

8.2 Evaluation and calibration of two simple mod-

els

There are many possible forecast models developed in traffic theory[3]. Fluid-

dynamics models have been implemented for velocity data assimilation on highways[69].

Although, we doubt that a similar approach can be successfully applied at urban

scale. On the other hand, models like the gravitation or the radiation model[36],

can only describe mean fields and not transitory phenomena.

Therefore, we have chosen to start implementing two extremely elementary models,

whose role is only to propagate information of the past in the current state analysis.

The first model is temporal persistence (φk = 1 ∀k). The second has two regimes:

in absence of recent data on a particular street arc it converge exponentially with

a relaxation time τ to a value characteristic of the street, while persistence is used

again if new data have been received. The characteristic value can be either the

empirical speed of that street when it is free from traffic, the speed limit or the

average speed.

We have information from a different data source on cars’ speed and flow in the

highway denoted as “Strada a Grande Percorrenza Firenze-Pisa-Livorno (FI-PI-

LI)” in the time span covered by the Florence dataset. These data have been taken

by coils immersed in the street in different points along the highway. One particular

section (close to the exit from a freeway) presented marked speed variability and

therefore 8 days of speed and flow records relative to this location have been chosen

for the calibration of the σ2
o

σ2
f

ratio. Indeed, these data, averaged in 5 minutes

timeframes, can be reasonably assumed as correct.

The calibration has been performed confronting coil data with the Kalman anal-

ysis results obtained from path reconstruction data. As initial conditions for the

Kalman analysis we took the average value of the first 4 hour of GPS records

(78Km
h

.). To this value it has been arbitrarily associated a variance equal to the

square of the mid-range of the values of speed for the same time span (237Km
2

h2 ).

For the exponential convergence model, besides the ratio σ2
o

σ2
f

also the relaxation

time τ has been subject to calibration. Moreover, we have defined two different

metrics for the measure of the quadratic deviations between coils’ “real” data
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and GPS-Kalman reconstructions. In one case, all timeframes have been equally

weighted as long as there have been measures of speed in the coils’ dataset. In

another, deviations have been weighted with the car flow measured by coils in

that timeframe. In the following, we call simple the first metric and flux metric

the second one. The flux metric has the advantage of focusing on rush hours

and moments of congestion, and is therefore more interesting for the practical use

of the filter, while the simple metric is a better measure of the overall Kalman

reconstruction consistency.

8.2.1 Persistence

As we see in figure 8.1, for the persistence model the optimal average error we

obtain is less than 10Km
h

for both metrics. The optimal value for R = σ2
o

σ2
f

is 90

with simple metric and 80 with flux metric.
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Figure 8.1: Relationship between average estimation error and the parameter
R = σ2

o

σ2
f
. The left picture shows errors evaluated with simple metric, while in

the right picture errors are evaluated with flux metric. Note that in both cases
with values of R ranging many orders of magnitude, errors have variation within
the 10%.

Furthermore, we notice that in the range of the estimated optimal parameters,

errors present a weak dependency by deviation from optimum: reasonable errors

are kept for different order of magnitude of the parameters. So, even if we have

calibrated on only one road, these values would probably give acceptable results

also in very different conditions.

The result of the analysis with R = 90 is shown in figure 8.2.
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Figure 8.2: Comparison of the Kalman analysis with persistence model on
path reconstruction speeds (red line) with coils’ data (blue points).

The Kalman analysis is characterized by a latency of ≈ 20 minutes with respect to

coils data. The numerical value of the latency has been evaluated maximizing the

correlation between the two signals with shifted times. This effect is typical of the

Kalman filter, as more than one datum suggesting a departure from the expected

values has to be fed to the algorithm for considering that deviation trustworthy

and not a random fluctuation. Nevertheless, the use of a persistence model is

unquestionably increasing this effect. In figure 8.3 we zoom on a smaller time

interval to show more clearly this latency.
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Figure 8.3: The Kalman analysis with persistence model presents a latency
of ≈ 20 minutes with respect to both coils data (blue points) and original GPS
speeds data (green circles).

8.2.2 Exponential convergence

For the calibration of the exponential convergence model we have first chosen the

average value of speed measured in all 30 days as characteristic converge value,

because it gives better statistical consistency with coil data than the speed limit or

free speed, particularly during rush hours. For the analyzed section and timespan,

this speed was 61 Km/h. We find that with the simple metric we obtain minimal

deviations for τ = 6h and R = 70, while for weighted metric for τ = 2, 5h and

R = 60 (figure 8.4).
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and τ . The left picture shows errors evaluated with simple metric, while

in the right picture errors are evaluated with flux metric.
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Also in this case the average error is far below 10 Km/h and has not a strong

dependence with the chosen parameters. With the optimal values for the simple

metric, τ = 6h and R = 70, we obtain the Kalman analysis of figure 8.5:

Figure 8.5: Comparison of the Kalman analysis with exponential convergence
model on path reconstruction speeds (red line) with coils data (blue points).

The exponential convergence model reduces the measured latency to 8 minutes

from the 20 of the persistence. But, above all, its principal advantage is to make

the analysis converge to an historical value in case of total absence of data update.

At the same time, it is also reducing the average error. Furthermore, we have

verified that even with significantly less data inputs the value of the error does not

have remarkable changes: this is probably a consequence of the weak dependency

of the resulting error from estimated parameters.

8.2.3 Flow Analysis

Together with speed, cars flow is a fundamental quantity in traffic analysis. For

instance, road network performance can be measured by its ability to carry a cer-

tain amount of traffic kinetic energy, namely the product of flow and its speed[40].
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To measure real flows from our sample of cars with the GPS device installed, we

first compute the average ratio between our flow data and real flows measured

with coils. The value found for the analyzed section is 115, corresponding to a

device commercial diffusion at the time of 0.87%.

Our flow data are extremely poor: the number of cars passing in a 5 minutes time-

frames lies in the range 0-5. Those values are multiplied by 115 to be confronted

with coils’ data. We have used the persistence model to filter this signal, finding

an optimal value of R = 1800 with an quadratic deviation of 330 car/h. We have

that R is greater for flows than for speeds because data are bringing only a small

amount of information. Errors dependency with R and the optimal analysis are

displayed in figure 8.6.
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with errors evaluated with simple metric.

(Right picture) Comparison of the Kalman analysis with exponential
convergence model on path reconstruction flows (red line) with coils
data (blue points).

8.3 Statistical Traffic Forecast: Application to

the Grande Raccordo Anulare

The two forecast models implemented so far in this chapter are not doing, in

reality, any real forecast. In this section we try to apply a statistical forecast

method developed in meteorology[70]. This method, which detailed description is

given in appendix I, defines a linear forecast model minimizing statistical errors

given a set of somehow correlated time series. Noise amplification is reduces taking

advantage of a projection over Empirical Orthogonal Functions (i.e. a Principal

Component Analysis).
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In particular, we have tested the method over a set of 410 time series representing

the mean speeds, evaluated in 15 minutes timeframes, along the Grande Raccordo

Anulare (GRA). The GRA is a ring shaped orbital motorway that encircles Rome.

In particular we have isolated the external track and we have placed the point

s = 0 after exit 25 (Laurentina) and then taken the first half of the month of

May 2010 for the calibration of the prediction formula and the second part of the

month as a control sample.

8.3.1 Principal Components Analysis

Over this set of signals we have calculated the time covariances and diagonalized

the covariance matrix. As can be seen in figure 8.7, the first six functions carry

the 95% of the variance, while the following bring less than 1% of the variance

each.
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Figure 8.7: Variance explained by the first 100 Empirical Orthogonal Func-
tions. The red circle highlights the explained variance of the 6th EOF, the last
included in the forecast model.

The first six spatial EOF isolated are then represented in figure 8.8, while the

corresponding first six time EOF (for the first week of May 2010) are represented

in figure 8.9.
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Figure 8.8: The first six space EOF.
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Figure 8.9: The first six time EOF.

8.3.2 Predictions

To evaluate the goodness of the statistical prediction formula we compare, for the

control sample, the results of the predictions with persistence (v(t + dt) = v(t)).

For each time ti, i > 1 we can evaluate the forecast value vf (ti) and the persistence

value vp(ti) and compare them with the real data value vr(ti). The first quantities

we can measure are the mean prediction errors:

• err(v)2
f = 〈(vf − vr)2〉

• err(v)2
p = 〈(vp − vr)2〉

As the forecast value depends on the choice of the number K of EOF considered,

the error errf is a function of K. On the other hand we expect that the persistence

error errp grows when we demand a farther prediction time dt. In figure 8.10 the

values of errf are plotted in blue while the solid red line is the value of errp in
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our control sample. From this graph appears clearly that the mean error of our

forecast is higher than the error of persistence with dt = 15 minutes. For K >> 1

the difference becomes small, but statistical forecast with this short prediction

time remains always worse than persistence.
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Figure 8.10: Mean error in statistical forecasting vs persistence model error

Moreover, we can focus on the variation of the fields between a timeframe and the

following, considering the quantities dv(ti) = v(ti)− v(ti−1). These variations are

not taken into account by the persistence model, as the variation of the persis-

tence model is always 0. For the forecast model, instead, there can be correlation

between predicted and real variation. This is shown in fig. 8.11 where are repre-

sented the values of the correlations between signal variations and the variations

estimated from the forecast. An asymptotic behavior for K > 40 can be observed

also in this graph, and the correlation reaches values of ≈ 0.3. Thus, while errors

are comparable with the ones from persistence, the statistical predictor is fairly

sensible in predicting sign and relative intensity of the variations.
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Figure 8.11: Correlations of real and forecasted variations for different K.

Furthermore, we can consider covariation instead of correlation, giving in such

way a higher weight to high variations and a lower to low ones. The correlation

and covariance curves are quite similar, if we exclude the first part. There, the

covariance reaches a minimum for K = 12 and for K = 1 the value is not far

from the asymptotic limit for K � 1. This trend for K → 1 is probably a

consequence of the specific optimal covariance approach in the developing of the

prediction formula. We can suppose then that the predictor is capable to make

good prediction about exceptional wide fluctuations, which are highlighted by

covariance, while he makes the most part of the error on the small fluctuation.
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Figure 8.12: Covariances of real and forecasted variations for different K.

In conclusion, we remark that even if the statistical forecast gives a mean error

higher than persistence at the chosen prediction time of 15 minutes, the formula is

able to foresee variations. In particular, comparing covariances and correlations,

it appears that strong variations are foreseen better than low ones, at least for low

values of K. This is a good result for two reasons. The first is that in our Kalman

Filter framework it is important to have a model sensible to variations, especially

if quick and strong, because stationary conditions are usually well described by

data alone. The second is that, if we want to forecast the state of a whole road

network we can easily have a huge number of signals and therefore we need to

reduce a lot the dimensionality of the problem. Therefore it will be necessary

choosing only a small number of EOF: in our case, keeping for example 8 EOF

out of 410, we have already a reduction of a factor 50.

We finally remind that we have two contributes to consider in this forecast model:

we have a good contribute in covariance but a bad contribute in errors: it will be

necessary to consider both while choosing the correct number K of EOF.





Chapter 9

Conclusions

The focal point in the modeling approach taken in this thesis was finding the

key quantities for the description of human mobility, which can then be used as

control parameters. Our database of GPS vehicular trajectories guided us in this

purpose, and the empirical results are suggesting that one quantity is distinctly

predominant among all the others. This quantity is time.

From our analysis has emerged that activities’ duration follows a Benford’s law,

i.e. a power law p(τ) ∝ 1/t, modulated by a minor perturbation with a peculiar

structure related to working times, which is different from area to area. The scaling

exponent −1 has been confirmed by an independent source on visit durations on

a web site, but is significantly different from what observed in other datasets

of human and animal mobility[16] and it is not consistent with human mobility

models developed on the base of phone records[17]. Two alternative interpretations

have been proposed to explain the Benford’s law of activities’ durations, both

presuming that circadian rhythm imposes a limit to the time budget that can be

spent for the activities of a given day. The first assumes a linear time perception

and a progressive assignment of activities durations, limited by the length of the

already scheduled tasks. The second assumes a logarithmic time perception: in

this case Benford’s law represents the limit distribution as far as the support

of the distribution is an interval, interval that is dictated by the limit due to

circadian rhythm. Outside this limit, a log-normal tail confirms the involvement

of a logarithmic time statistics, at least out from the daily schedule.

However, Benford’s law is not sufficient to have a full understanding of the role

of activity time. In modeling the decisional aspects behind individual mobility

there has been a general shift towards its explanation as dynamic on networks.
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In this framework, the second ingredient we need is the relationship between the

average time spent by an individual in a particular activity 〈τ〉 and the number

of times k that activity has been performed. This relationship has already been

pointed out as crucial for epidemics spreading[71]. In our data, this relationship

is described by 〈τ〉 ∝ exp(γka). This function, and in particular the exponent

a ≈ 0.3, plays a fundamental role in shaping the individual mobility networks,

in particular determining the scaling exponent of the degree distribution, and as

a consequence how networks grow in time. Furthermore, studying the networks

describing the locations visited by the same individuals, has emerged that also the

fractional nature of the urbanized territory influences people’s use of space.

Benford’s law plays a dominant role in the information carried by time mobility

patterns, whose analysis has suggested an extremely high predictability of human

movements[51]. Analyzing jump patterns where this influence is negligible, the

dynamics becomes almost equivalent to a Markov process where the transition

probability is given by the empirical weights of the undirected mobility networks.

Some fine structure is hidden in this equivalency. It has been possible to iden-

tify three different classes of activities: short activities τ < 2h, long activities

2h < τ < 12h and ultra long activities 12h < τ . Each of these categories is

reasonably homogeneous and contributes to the final structure of the individual

mobility patterns. The ultra long activities can be identified with the overnight

stop at home, together with only a few other un-frequently taken alternatives.

This daily return to home constitutes the base structure of the mobility pattern,

which is then developed between one night rest and the following. The short and

the long activities are performed in this period of time, but among them exists a

hierarchical relationship, where the long activities play a central role and the short

activities a subordinate one. Long activities are most likely planned before and

play a pivotal role for short activities. In fact, short activities arrange themselves

around the long (or ultra long) ones, forming sequences that are repeated in dif-

ferent days. Therefore, contrarily to what would have expected, short activities

do not seem to be executed randomly. The homogeneity in the classes indicates

that even the shortest ones are eventually able to concur in a systematic mobility,

pointed out by the formation of repeated sequences. The nature of the values 2

hours and 12 hours remains an open question. The value of 12 hours seems again

to reflect the circadian rhythm, while the value of 2 hours (or, more exactly, 115

minutes) may instead be a duration characteristic of the studied area. The hierar-

chical structure suggested by our observations is consistent with a recent study[53]

proposing that the spatiotemporal structure of human mobility patterns can be
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flow-wise partitioned in groups of related nodes called habitats, and that those

habitats tend to be more spatially cohesive than the total mobility. The repeated

sequences we found may reflect this habitat structure and thus be geographically

related. In addition, we found that influences of this division into habitats can be

found in the a-posteriori structure of the individual mobility networks, which can

be classified as mono- or dipolar according to the characteristics of their hubs.

The fact that activities located one near another are performed in sequence is

an effect of the optimization that individuals do on their daily schedule because

their mobility is limited by a travel time budget. Travel time budget has been

for long time believed to be an universal constant of about 1.2 hours, but our

analysis establish that the shape of its distribution in different municipalities is

conditioned by economical and census features of the city and by the efficiency

of the street network. Travel time budget can be converted in total mobility,

i.e. the total length covered in a day, but this conversion is not trivial: for short

trips, distance covered d and travel-time t are not simply linked by an average

velocity but by a power function: t ∝ d
2
3 . Nevertheless, the differences between the

activities’ time budget partitioning explaining Benford’s law and the total mobility

partitioning explaining the empirical trip lengths distribution are suggesting that

time and space are used and lived in two different ways. Movement are largely

planned before they take places, as the whole daily mobility is shared consistently

with a simultaneous division of the limited total mobility length, while time is

progressively divided considering the activity already performed or planned, and

therefore a succession of decisions have to be made during the day.

Travel time is also the quantity we evaluate when choosing between alternative

routes. Although, our data indicate that many drivers’ choices are non-optimal,

as slower routes are chosen when a faster option is available. These mistakes are

probably a consequence of incomplete information on traffic conditions. Routes

chosen as alternatives have different travel times at the moment of the choice,

but the difference is not significant when we take monthly averages. Thus, is

probably the average travel-time, known thanks to personal experience, which

better represents the cost function taken into account in route choice. In the near

future this will probably change, as real time traffic information will be always

more integrated in navigation systems. The last chapter of this thesis is about our

work in this direction. Data analysis methods originally developed in meteorology

have been implemented to deal with one fundamental limit of our data source: data

sparseness. Our GPS measures of vehicle trajectories are scattered in space and

time. The data aggregation methods we developed solve this problem producing
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traffic information represented by continuous fields, which can be used for analysis

or control purposes and have been integrated in an info-mobility platform.

This many results will hopefully contribute to the general understanding of human

mobility. From our statistical physics perspective, we notice that the observed sta-

tistical properties are largely consistent with the maximum entropy principle and

the models we have developed are effective in explaining observations without the

need of including the interaction of individuals among themselves. Every indi-

vidual seems to behave as almost independent particle, performing his mobility

mostly according to his propensities. Effects due to traffic interactions and collec-

tive mobility events appear to be small in average. If mobility could be seen as

the realization of many independent individual agenda, its dynamical properties

become similar to that of a Boltzmann gas, where drivers organize their mobility

by applying a minimization strategy of the interactions with other individuals,

like animals that share the same spatial resources[72]. As the system has reached

equilibrium, many important aspects such transitory phenomena, which can have

strong local effects and great impact on people’s life, are hidden by the statistics.

In our opinion, is studying these transients that the features of collective mobility

dynamics will come to light. For this reason, to achieve a real knowledge of urban

mobility systems and their critical states, our efforts have to move from statistical

towards dynamical studies.



Appendix A

Progressive time usage model

Let us consider the random choice of k stochastic variables ui, uniformly dis-

tributed in the segment [0, Ui−1], while the residual interval is updated with

Ui = Ui−1 − ui. Assuming for sake of simplicity U0 = 1, the variables ui are

given by a combination of independent variables xj uniformly distributed in the

unit segment.

u1 = x1

u2 = x2(1− x1)

u3 = x3(1− u1 − u2) = x3(1− x1)(1− x2)

...

uk = xk(1− x1) . . . (1− xk−1)

We note that if xj is uniformly distributed in [0, 1] we get the same for (1− xj).

Finding the distribution of ui is equivalent to finding the distribution of:

yk = x1x2 . . . xk

We proceed by induction on k starting from k = 2

y2 = x1x2

We may calculate

p(y2) =

∫ 1

0

∫ 1

0

δ(x1x2 − y2)dx1dx2
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with the change of variables

u = x2

v = x1x2

⇒ dudv =
0 1

x2 x1

dx1dx2

dx1dx2 =
dudv

u

u ∈ [0, 1]

v ∈ [0, u]

obtaining:

p(y2) =

∫ 1

0

du

u

∫ u

0

δ(v − y2)dv =

∫ 1

0

δ(v − y2)dv

∫ 1

v

du

u
= − log y2

Assuming that as true for k we may determine p(yk+1) where yk+1 = xk+1yk:

p(yk+1) =

∫ 1

0

∫ 1

0

ρ(yk)δ(xk+1yk − yk+1)dxk+1dyk

With:
u = xk+1

v = xk+1yk
⇒ dudv =

0 1

xk+1 yk
dxk+1dyk

We find:

p(yk+1) =

∫ 1

0

du

u

∫ u

0

ρ
(v
u

)
δ(v − yk+1)dv =

∫ 1

0

δ(v − yk+1)dv

∫ 1

v

ρ
(v
u

) du
u

The explicit calculation gives:∫ 1

v

ρ
(v
u

) du
u

=

∫ 1

v

(− log(v/u))k−1

(k − 1)!

du

u
=

∫ − log v

0

zk−1

(k − 1)!
dz =

(− log v)k

k!

Where we have introduced the variable z = − log( v
u
).

Finally, we obtain:

p(yk+1) =

∫ 1

0

δ(v − yk+1)
(− log v)k

k!
dv =

(− log yk+1)
k

k!

and therefore uk follows the distribution:

p(uk) ∼
(− log uk)

k−1

(k − 1)!



Appendix A Progressive time usage model 113

Let u be any uk, where all k ∈ [1, n] has equal probability of being represented.

The distribution of u reads:

p(u) ∼ Cn

n∑
k=1

(− log uk)
k−1

(k − 1)!
' Cne

− lnu =
Cn
u

Where Cn is a normalization factor.





Appendix B

Random Partitioning of the Total

Mobility

It is possible to compute in analytical way the single trip length distribution, as

the distribution realized by uniformly spreading k points into a given segment of

length L. A simple calculation provides the single trip length distribution in the

form

pN,L(x) =
c

L

N∑
k=1

(k + 1)kak(1− x/L)k−1 (B.1)

where c is a normalizing factor and N is the maximum number of daily activities;

we remark that the choice of the points in the segment is contextual without any

time-ordering. It is quite natural to assume that there should exist a correlation

between the number of daily activities N and the daily mobility length L, but the

GPS data do suggest that this correlation is weak.

Let us consider k stochastic variables uniformly distributed in the unit segment,

the probability that a segment of length ≤ x is empty can be estimated according

P(≤ x) = 1− (1− x)k

As a consequence the probability density that a certain segment x is empty is

given by

p(x) =
dP
dx

= k(1− x)k−1
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Therefore if one choices randomly an integer number k in the interval [1, N ], the

probability density for a segment of length x conditioned by the choice k is

pk(x) ∝ (k + 1)k(1− x)k−1 x ∈ [0, 1] (B.2)

since we have to take into account k+ 1 possible segments. The probability (B.2)

has to be weighted by the probability p(k) ∝ ak to have k points so that the

probability density to detect a segment of length x for any choice k is

pN(x) =
(1− a)2

(2− a)a(1− aN)−NaN+1(1− a)

N∑
k=1

(k + 1)kak(1− x)n−1 (B.3)

where we have introduced a normalizing factor.



Appendix C

Link between degree distribution

and universal activity time

There is a strict relation between the activity degree distribution (see fig. 5.1 in

this dissertation) and the existence of an universal distribution probability f(u)

in eq.(3.5). Indeed, taking advantage from the dependence of 〈t〉k on the degree k

pointed out by experimental observations (see fig. 3.4) we perform the change of

variables t = t

u = t/〈t〉k
(C.1)

in the join probability distribution p(k, t) of degree and downtime (cfr. eq.(5.1)).

Using the definition (3.3), we get the new distribution

p′(u, t) = f(u)k(u)p(k(u))
dk

du
= −f(u)kp(k)

〈t〉k
t

(d〈t〉koverdk)−1

where k has to be read k(u) in the r.h.s. and p(k) is the activity degree distribution.

In the previous formula we approximate interpolate the discrete variable k with

a continuous variable. By integrating of u we have to recover the Benford’s law

∝ 1/t for the global activity downtime distribution (see fig. 3.1 left). Since f(u)

is normalized as probability distribution, this is possible if

kp(k)〈t〉k
(
d〈t〉k
dk

)−1

= const. (C.2)
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According to the interpolation < t >k∝ exp γka of the experimental data as shown

in the figure 3.4, we explicitly have

d〈t〉k
dk
∝ ka−1eγk

a ∝ ka−1〈t〉k

therefore the condition (C.2) reads

k2−ap(k) = const.

i.e. a power law distribution of the activity degree with exponent ≤ 2. This is

consistent with the experimental observations as shown by the figure 5.1.



Appendix D

Quantitative Analysis on

Individual Mobility Networks

In this appendix we want to study the networks described by the origin-destination

mobility of people. In particular we will analyze a GPS dataset where the move-

ments of 32457 vehicles has been recorded for a month (March 2008) in the

Province of Florence.

The main intent of this study is to isolate a set of fundamental observables, which

could permit the classification of different species of moving individuals.

D.1 Individual Mobility Networks

In our data each vehicle makes a series of trips and each trip has a point of origin

and one of destination. Through a gravitational clustering process, executed sepa-

rately for each different vehicle, these points have been assigned to a specific node

that identifies a circular area with diameter 400m. Each trip is then associated to

a directed link between the origin node and the destination node. This way we

have built directed multigraphs, but if we assign as the weight wij the number of

links from the node i to the node j, we can identify Ad,w = {wij} as the weighted

adjacency matrix of a Directed Weighted Network. We can then easily extract

from Ad,w:

• Undirected Weighted Network

Au,w = {wuij} = Ad,w + AT
d,w
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• Directed Unweighted Network

Ad,u = {aij} : aij = 1 if wij > 0 , aij = 0 if wij = 0

• Undirected Unweighted Network

Au,u = {auij} : auij = 1 if (wuij) > 0 , auij = 0 if wuij = 0

Assuming that the same person always drives each vehicle, we can therefore asso-

ciate an Individual Mobility Network to each sequence of data relative to one of

our vehicles.

D.2 Data Filtering

We have in our dataset over 30000 networks, but a large part represents the mo-

bility of individuals not living in the area in analysis, visitors who have made only

a few trips an visiting few nodes. Observing the number of trips distribution:

0 50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

Number of Trips

N
um

be
r 

of
 V

eh
ic

le
s

we have decided to consider as a sample for our study just the 13127 vehicles which

have maid at least 30 trips in the 31 days considered in this study. As we can see

considering the Number of Nodes distribution:
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it appears that we have made a good selection of the networks with a significant

number of nodes (red) in the whole sample (blue).

It is important to highlight here that we have not, as usual in network studies,

a huge (N � 1) network but an ensemble of small networks (N < 100). We

can compute then a series of observables relative to each single network or we

can evaluate others observable relative every node or alternatively some nodes in

particular.

D.3 Classical Observables

Our work on this dataset has been the computation, for each network, of some clas-

sical observables of the network theory. These observables are usually evaluated

for simple (i.e. undirected and unweighted) networks. Most networks’ observables

are properties of single links or nodes (local parameters), in that case we have to

extract a global parameter, as the mean, to represent the whole network. Many

of these observables have been computed using the Matlab Boost Graph Library.

D.3.1 Network Size

The number N of nodes in each network represents the number of different sites

visited by each individual during the month. His logarithm is the upper bound
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to the information entropy of the sequence of sites visited by that individual.

Therefore we can choose log(N) as a natural measure of the size of the network.
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D.3.2 Connectivity Degree

The Connectivity Degree of a node (often just called degree of a node) is the

number of links entering to (IN-degree) or exiting from (OUT-degree) a given

node. It is easily defined from the adjacency matrix as:

kin(i) =
∑
j

wij

kout(j) =
∑
i

wij

For undirected networks one can speak just of degree as k(i) = kin(i) = kout(i).

For our weighted and directed mobility networks also we can simply speak of

degree k, because, if there are no losses in the signal, each time a trips ends in a

node, the next trip will start from that node.

In the following with k we will identify the weighted degree while we will use tilde

notation k̃ for the unweighted degree.

For all the nodes of a network we can estimate the correlation between the degree

of the node k̃(i) and the mean of the degrees of his neighbors k̃n(i).
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DD = corr(k̃, k̃n)

As we see:
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k̃(i) and k̃n(i) are anti-correlated, showing the disassortativity of the mobility

networks.

The values of the degree-degree correlation for the weighted and unweighted form

of network describing the same individual mobility are highly correlated (0.87):

we have then chosen to show in the figure just the unweighted value.

We associate to the home of a particular individual his most visited node, i.e. the

node with the greater weighted degree. Then we will call home degree fraction kh

the fraction of connectivity taken by this main hub.

kh =
k(h)∑
i k(i)
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The weighted degree k is greater than the unweighted degree k̃. We want to

evaluate the tendency to repeat trips by estimating:

Rwu =

〈
k(i)

k̃(i)

〉
i

We can see that the distribution of log(Rwu) is bell shaped and symmetrical, then

we will utilize this logarithm as a measure of the repetition of the links.
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D.3.3 Betweenness Centrality

Using an algorithm like the Dijkstra it is possible to find all the shortest paths

Pmn between the nodes m and n. The Normalized Betweenness Centrality is then

defined for each node or link as the fraction of these shortest paths passing through

that node/link:

BC(i) =
1

BCmax

∑
m,n Pmn(i)∑
m,n Pmn

where BCmax = (N−1)(N−2)
2

is the total number of shortest paths in the network.
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In our dataset we find that the 90% of the homes have also the top betweenness

centrality. We do not show much difference considering weighted or unweighted

networks (the two results are 0.84 correlated).

D.3.4 Clustering coefficient

The clustering coefficient of a node is the measure of the fraction of neighbors that

are connected between them. It’s value for the node i is:

Ci =
2ei

k̃i(k̃i − 1)

where ei is the number of connections between first neighbors.
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For the whole network is defined the clustering coefficient as C = 〈Ci〉i .

For each network we can evaluate C and their distribution is shown in figure:
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D.3.5 Correlations

For the intent of isolating an effective set of features for the developing of a cluster-

ing procedure on these Individual Networks is worth to evaluate if the observables

are correlated.

kh BC(h) DD C log(N) log(Rwu)

kh 1 0.61 -0.54 0.18 -0.53 0.61

BC(h) 0.61 1 -0.12 -0.05 -0.02 0.10

DD -0.54 -0.12 1 -0.47 0.66 -0.63

C 0.18 -0.05 -0.47 1 -0.16 0.29

log(N) -0.53 -0.02 0.66 -0.16 1 -0.64

log(Rwu) 0.61 0.10 -0.63 0.29 -0.64 1



Appendix E

Emilia-Romagna Trip and Node

number distributions

E.1 Trips

The total number of trips T made by an individual depends on the number of

days of mobility. We have isolated all drivers who performed mobility in all the

20 working days included in the Emilia-Romagna dataset, and for these subset we

have that T is log-normally distributed:

p(T ) =
1√

2πσTT
exp

(
−(log T − µT )2

2σ2
T

)
(E.1)
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E.2 Nodes

In every day of mobility each individual visits different places. However, many

of those places have already been visited before, even very recently. We have

considered the number of different places visited N by each individual with 20

days in mobility. We may notice that in this subset that N too is distributed

log-normally:
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p(N) =
1√

2πσNN
exp

(
−(logN − µN)2

2σ2
N

)

A similar curve can be deduces also from the random entropy curve [51].





Appendix F

Discrete Linear Kalman Filter

The Discrete Linear Kalman Filter, which is based on the stochastic-dynamic

system1:

xk+1 = φkxk + wk (F.1)

zk+1 = Hkxk + vk (F.2)

where xk is an n-vector the model state (the estimate) at time tk while zk is an m-

vector representing the observed state (the empirical information). The evolution

of the model state is regulated by the n × n transition matrix φk while observed

state and model state are related by the m × n observation operator Hk. Both

model and observation are subject to errors: wk is the model error and vk is the

observation error. If we had the true state x and true measurements z, given our

imperfect discrete forecast model and observation operator the state would evolve

according to the equations (F.1)(F.2).

Let us make the assumption that those errors are white, unbiased and independent

of each other:

〈wk〉 = 0 (F.3)

〈wk · (wl)
t〉 = Qδkl (F.4)

〈vk〉 = 0 (F.5)

〈vk · (vl)t〉 = Rδkl (F.6)

〈wk · (vl)t〉 = 0 (F.7)

1This appendix is completely based on Saroja Polavarapu lecture notes[73]
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The Kalman Filter problem is this: given a prior (background) estimate xfk , of

the system state at time tk, what is the update or analysis xak, based on the

measurements zk? The background xfk bears a superscript f referring to the fact

that it is derived from a model forecast. The superscript a refers to the analysis, or

estimate. At time tk+1 a forecasting of the actual state is made from the preceding

state:

xfk+1 = φkx
a
k (F.8)

Pf
k+1 = φkP

a
kφ

t
k + Qk (F.9)

Then, by requesting an unbiased estimate with minimal analysis error variance,

the new estimate (or analysis) is defined in the linear, recursive form:

xak = xfk + Kk(zk −Hkx
f
k) (F.10)

Pa
k = (I−KkHk)P

f
k (F.11)

where Kk is the Kalman gain:

Kk = Pf
kH

t
k(HkP

f
kH

t
k + Rk)

−1 (F.12)



Appendix G

Asymptotic limits for the Kalman

Equations

G.1 Perfect Model: σ2
q = 0

For a single variable only the variance Kalman Equations are:

Kk =
pfk

σ2
o + pfk

(G.1)

pfk = αkp
a
k−1 (G.2)

pak =
σ2
op
f
k

σ2
o + pfk

(G.3)

where αk represents the linearization of the model φ at time k.

Given these equations in [74] it is demonstrated that, for αk = α > 1:

lim
k→∞

pfk = p̃f = σ2
o(α− 1) (G.4)

lim
k→∞

pa = σ2
o

α− 1

α
(G.5)

lim
k→∞

K =
α− 1

α
(G.6)

The three limits actually exists also for α = 1, but are all 0.

These limits have been exactly calculated. It is possible to estimate them also

looking for stable stationary points of the respective successions. For example at

133
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each step pfk evolves as:

pfk =
ασ2

op
f
k−1

σ2
o + pfk−1

And the limit →∞ correspond to the stationary point p̃f :

p̃f =
ασ2

o p̃
f

σ2
o + p̃f

σ2
o p̃
f + p̃f2 = ασ2

o p̃
f

p̃fσ2
o(1− α) + p̃f2 = 0

p̃f = σ2
o(α− 1)

If we want to check the stability of p̃f we can perturb the stationary point p̃f with

an εk−1 � 1. The following value in the succession will be:

p̃f + εk =
ασ2

o(p̃
f + εk−1)

σ2
o + p̃f + εk−1

=
ασ2

o p̃
f

σ2
o + p̃f + εk−1

+
ασ2

oεk−1

σ2
o + p̃f + εk−1

=

ασ2
o p̃
f

σ2
o+p̃

f

1 + εk−1

σ2
o+p̃

f

+

ασ2
oεk−1

σ2
o+p̃

f

1 + εk−1

σ2
o+p̃

f

' ασ2
o p̃
f

σ2
o + p̃f

(
1− εk−1

σ2
o + p̃f

)
+
ασ2

oεk−1

σ2
o + p̃f

(
1− εk−1

σ2
o + p̃f

)
'
(
ασ2

o p̃
f

σ2
o + p̃f

)
+ εk−1α

σ2
o

σ2
o + p̃f

(
1− p̃f

σ2
o + p̃f

)
= p̃f + εk−1α

(
σ2
o

σ2
o + p̃f

)2

= p̃f + εk−1α

(
σ2
o

σ2
o + (σ2

o(α− 1))

)2

= p̃f + εk−1
1

α

And the trivial error succession εk = εk−1α leads to the convergence condition

α > 1.
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G.2 Imperfect Model: σ2
q > 0

Let the model be constant in time (αk = α) and the predictions errors have a

variance σ2
q > 0. The Kalman equations now read:

Kk =
pfk

σ2
o + pfk

(G.7)

pfk = αpak−1 + σ2
q (G.8)

pak =
σ2
op
f
k

σ2
o + pfk

(G.9)

We want now to find and analyze the stationary points of pf and pa, verifying that

they are the limits of the successions.

G.2.1 pf

At each step the pfk evolves as:

pfk =
ασ2

op
f
k−1

σ2
o + pfk−1

+ σ2
q (G.10)

A priori in this case there can be two the stationary points p̃f±:

p̃f =
ασ2

o p̃
f

σ2
o + p̃f

+ σ2
q

(σ2
o + p̃f )p̃f = ασ2

o p̃
f + (σ2

o + p̃f )σ2
q

p̃f2 + ((1− α)σ2
o − σ2

q )p̃
f − σ2

oσ
2
q = 0

p̃f± =
1

2

(
−((1− α)σ2

o − σ2
q )±

√
((1− α)σ2

o − σ2
q )

2 + 4σ2
oσ

2
q

)
But the one-dimensional case p̃f is simply a variance and should then be > 0.

Therefore, calling B = −((1− α)σ2
o − σ2

q ), we have the condition:

B ±
√
B2 + 4σ2

oσ
2
q > 0

The + equation: √
B2 + 4σ2

oσ
2
q > −B
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is always satisfied, while the − is never satisfied:√
B2 + 4σ2

oσ
2
q < B

Thus the p̃f− solution has to be excluded and the stationary point is only:

p̃f =
1

2

(
(σ2

q + (α− 1)σ2
o) +

√
((1− α)σ2

o − σ2
q )

2 + 4σ2
oσ

2
q

)
(G.11)

In the α = 1 case in particular we will have as stationary point:

p̃fα=1 =
1

2

(
σ2
q +

√
σ4
q + 4σ2

oσ
2
q

)
(G.12)

G.2.2 pa

pak evolves as:

pak =
σ2
o(αp

a
k−1 + σ2

q )

σ2
o + (αpak−1 + σ2

q )
(G.13)

The stationary points p̃a are the solutions of:

p̃a =
σ2
o(αp̃

a + σ2
q )

σ2
o + (αp̃a + σ2

q )

(σ2
o + αp̃a + σ2

q )p̃
a = σ2

o(αp̃
a + σ2

q )

αp̃a2 + ((1− α)σ2
o + σ2

q )p̃
a − σ2

oσ
2
q = 0

p̃a± =
1

2α

(
−((1− α)σ2

o + σ2
q )±

√
((1− α)σ2

o + σ2
q )

2 + 4ασ2
oσ

2
q

)
As for the pf , the pa > 0 condition excludes the p̃a− point and the stationary point

is:

p̃a =
1

2α

(
((α− 1)σ2

o − σ2
q ) +

√
((1− α)σ2

o + σ2
q )

2 + 4ασ2
oσ

2
q

)
(G.14)

For α = 1 we obtain:

p̃aα=1 = p̃fα=1 − σ2
q

=
1

2

(
−σ2

q +
√
σ4
q + 4σ2

oσ
2
q

)
(G.15)
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G.2.3 Stability

Given the pfk evolution rule:

pfk =
ασ2

op
f
k−1

σ2
o + pfk−1

+ σ2
q (G.16)

If we perturb the stationary point p̃f with an εk−1 � 1 the following value will be:

p̃f + εk =
ασ2

o(p̃
f + εk−1)

σ2
o + p̃f + εk−1

+ σ2
q

=
ασ2

o p̃
f

σ2
o + p̃f + εk−1

+
ασ2

oεk−1

σ2
o + p̃f + εk−1

+ σ2
q

=

ασ2
o p̃
f

σ2
o+p̃

f

1 + εk−1

σ2
o+p̃

f

+

ασ2
oεk−1

σ2
o+p̃

f

1 + εk−1

σ2
o+p̃

f

+ σ2
q

' ασ2
o p̃
f

σ2
o + p̃f

(
1− εk−1

σ2
o + p̃f

)
+
ασ2

oεk−1

σ2
o + p̃f

(
1− εk−1

σ2
o + p̃f

)
+ σ2

q

'
(
ασ2

o p̃
f

σ2
o + p̃f

+ σ2
q

)
+ εk−1α

σ2
o

σ2
o + p̃f

(
1− p̃f

σ2
o + p̃f

)
= p̃f + εk−1α

(
σ2
o

σ2
o + p̃f

)2

Therefore ε evolves as:

εk = εk−1α

(
σ2
o

σ2
o + p̃f

)2

= ε0

(
α

(
σ2
o

σ2
o + p̃f

)2
)k

The validity of the inequality α
(

σ2
o

σ2
o+p̃

f (α,σ2
o ,σ

2
q ))

)2

< 1 for α > 0 has been verified

numerically. The left hand quantity reach his maximum value in the limit for
σ2
o

σ2
q
→∞ in correspondence of α = 1. As σ2

o

σ2
o+p̃

f < 1, for α = 1 the stationary point

pfα=1 is then stable ∀α > 0

Similarly:

p̃a + εk = p̃a + εk−1α

(
σ2
o

σ2
o + σ2

q + αp̃a

)2

and also in this case ∀α > 0 p̃a is stable.
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G.2.4 1
σ2

q
rescaling

We can redefine the Kalman equations dividing all the variances by σ2
q . As we can

see with such rescaling the Asymptotic behavior is fully determined by α the σ2
o

σ2
q

ratio:

p̃f

σ2
q

=
1

2σ2
q

(
(σ2

q + (α− 1)σ2
o) +

√
((1− α)σ2

o − σ2
q )

2 + 4σ2
oσ

2
q

)
=

1

2

((
1 + (α− 1)

σ2
o

σ2
q

)
+

√(
(1− α)

σ2
o

σ2
q

− 1

)2

+ 4
σ2
o

σ2
q

)

p̃a

σ2
q

=
1

2ασ2
q

(
((α− 1)σ2

o − σ2
q ) +

√
((1− α)σ2

o + σ2
q )

2 + 4ασ2
oσ

2
q

)
=

1

2α

((
(α− 1)

σ2
o

σ2
q

− 1

)
+

√(
(1− α)

σ2
o

σ2
q

+ 1

)2

+ 4α
σ2
o

σ2
q

)

G.2.5 Limit σ2
o

σ2
q
→∞

For σ2
o

σ2
q
� 1 and α 6= 1:

p̃f

σ2
q

=
1

2

((
1 + (α− 1)

σ2
o

σ2
q

)
+

√(
(1− α)

σ2
o

σ2
q

− 1

)2

+ 4
σ2
o

σ2
q

)

=
1

2

(
1 + (α− 1)

σ2
o

σ2
q

+

√(
(1− α)

σ2
o

σ2
q

)2

+ 1− 2(1− α)
σ2
o

σ2
q

+ 4
σ2
o

σ2
q

)

=
1

2

1 + (α− 1)
σ2
o

σ2
q

+ |1− α| σ
2
o

σ2
q

√√√√√1 +
1 + 2(1 + α)σ

2
o

σ2
q(

(1− α)σ
2
o

σ2
q

)2


' 1

2

1 + (α− 1)
σ2
o

σ2
q

+ |1− α| σ
2
o

σ2
q

1 +
(1 + α)

(1− α)2 σ
2
o

σ2
q



For α > 1, |1− α| = (α− 1) and the solution is then (α− 1)σ
2
o

σ2
q
.

For α < 1, |1− α| = (1− α) and the solution is a constant 1
1−α .
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For α = 1:

p̃fα=1

σ2
q

=
1

2

(
1 +

√
1 + 4

σ2
o

σ2
q

)
'

√
σ2
o

σ2
q

If we want to find the α dependence near the value α = 1 we have to make first

the limit for α→ 1 and then the limit for σ2
o

σ2
q
→∞. Redefining β = α − 1 in this

last case we obtain:

p̃fα→1

σ2
q

=
1

2

((
1 + β

σ2
o

σ2
q

)
+

√(
β
σ2
o

σ2
q

+ 1

)2

+ 4
σ2
o

σ2
q

)

=
1

2

(
1 + β

σ2
o

σ2
q

+

√(
β
σ2
o

σ2
q

)2

+ 1 + 2β
σ2
o

σ2
q

+ 4
σ2
o

σ2
q

)

=
1

2

(
1 + β

σ2
o

σ2
q

+

√
1 + 4

σ2
o

σ2
q

+ 2β
σ2
o

σ2
q

+

(
β
σ2
o

σ2
q

)2
)

' 1

2

1 + β
σ2
o

σ2
q

+

√
1 + 4

σ2
o

σ2
q

√√√√√1 +
2β σ

2
o

σ2
q

1 + 4σ
2
o

σ2
q


' 1

2

1 + β
σ2
o

σ2
q

+

√
1 + 4

σ2
o

σ2
q

1 +
β σ

2
o

σ2
q

1 + 4σ
2
o

σ2
q


=

1

2

1 + β
σ2
o

σ2
q

+

√
1 + 4

σ2
o

σ2
q

+
β σ

2
o

σ2
q√

1 + 4σ
2
o

σ2
q


=

1

2

1 +

√
1 + 4

σ2
o

σ2
q

+ β
σ2
o

σ2
q

1 +
1√

1 + 4σ
2
o

σ2
q


'

√
σ2
o

σ2
q

+
α− 1

2

σ2
o

σ2
q

To summarize, there are three different asymptotic behaviors for σ2
o

σ2
q
→∞:

p̃f

σ2
q

'


(1− α)−1 if α < 1√

σ2
o/σ

2
q + (α− 1)(σ2

o/σ
2
q )/2 if α→ 1

(α− 1)(σ2
o/σ

2
q ) if α > 1

(G.17)
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G.3 Variance Reduction

If we identify as a variance reduction the fraction
p̃aα=1

σ2
o

, we easily obtain for α = 1,

as a leading term in a
σ2
q

σ2
o
→ 0 limit:

p̃aα=1

σ2
o

=
1

2

√(σ2
q

σ2
o

)2

+ 4
σ2
q

σ2
o

−
σ2
q

σ2
o

 '√σ2
q

σ2
o

The limit is justified as in our data we have
σ2
q

σ2
o
≈ 1

100
, giving a variance reduction

of ≈ 1
10

(in terms of errors the reduction will be then of ≈ 1
3
).

G.4 A different method for the limit for α = 1

It is easy to reconnect the both successions (pfk and pak), for α = 1, to the form:

pk+1 =
σ2pk
σ2 + pk

+ 1

where σ2 = σ2
o

σ2
q

and p =
(
pa

σ2
q

+ 1
)

or p = pf

σ2
q

respectively.

Through Wolfram’s Mathematica online tool (Wolfram Alpha) it is possible to

compute the general equation for k term for this succession given p0, obtaining:

pk =
(
√

4σ2 + 1p0 + 2σ2 + p0)
(

(
√

4σ2+1+1)2

2σ4

)n
+ (
√

4σ2 + 1p0 − 2σ2 − p0)
(

(
√

4σ2+1−1)2

2σ4

)n
(
√

4σ2 + 1 + 2p0 − 1)
(

(
√

4σ2+1+1)2

2σ4

)n
+ (
√

4σ2 + 1 + 1− 2p0)
(

(
√

4σ2+1−1)2

2σ4

)n
As (
√

4σ2 + 1 + 1)2 > (
√

4σ2 + 1− 1)2, in the k →∞ limit we obtain:

p̃k =
(
√

4σ2 + 1p0 + 2σ2 + p0)

(
√

4σ2 + 1 + 2p0 − 1)
=

1

2
(1 +

√
1 + 4σ2)

This is a further confirmation of our results in G.2.1 and G.2.2.

G.5 Numerical Computation

A numerical computation of the asymptotic values so far calculated has been made.
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Figure G.1: Circles: numerical asymptotic limits. Crosses: analytical asymp-
totic limits. In purple: the α > 1 approximation. In cyan: the α → 1 approxi-
mation. In red: the α < 1 approximation.

G.6 Notes

• One can still calculate just the limit values for pf and then evaluate pa and

K with the Kalman equations;

• The limit values exist also for α < 1;

• Different behaviors are found for α < 1, α→ 1 and α > 1;

• The p− solution excluded in G.2.1 and G.2.2 is recognizable in the
(

(
√

4σ2+1−1)2

2σ4

)n
contribution to the exact solution found in G.4;

• These results have been checked numerically.





Appendix H

Notes on 3DVAR

As sources for this appendix we refer to [75][73][76][77].

H.1 Maximum a posteriori

Given an observation vector z and a background (forecast) vector xb which are

Normally distributed with zero means and covariance matrices R and Pb respec-

tively, the joint probability density function of the observation and background

errors is given by:

p(eb, er) =
1

(2π)N det(Pb)
1
2 det(R)

1
2

exp

(
−1

2
(eb)T(Pb)−1eb − 1

2
(er)T(R)−1er

)
Where eb = xt − xb and er = z−H(xt) .

The maximum a posteriori estimate is obtained by minimizing the cost function:

J(xt) =
1

2
(xt − xb)T(Pb)−1(xt − xb) +

1

2
(z−H(xt))T(R)−1(z−H(xt))

H.2 Measurement & Forecast model

H.2.1 Measurement

The observation function H is supposed to be linear and the measures z indepen-

dent, therefore:

zk+1 = Hkxk + vk

143
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Where vk is a white noise: 〈vk〉 = 0 and 〈vk · (vl)t〉 = R = rδkl Given any linear H

operator the cost function is purely quadratic and is guaranteed to have an unique

minimum. We will assume from now on H = I. In such case the gradient of the

cost functions is:

∇J(xt) = (Pb)−1(xt − xb) + (R)−1(xt − z)

As the covariance matrix is diagonal the inversion of R is trivial.

H.2.2 Forecast

We have a time dependent linear forecast operator φk:

xbk+1 = φkx
t
k + ωk

(In the time independent case the model is stable if the eigenvalues of φ are less

than equal to 1)

The errors wk are assumed to be a white noise with 〈wk〉 = 0 and

〈wk · (wl)
t〉 = qδkl .

At each step the forecast error covariance matrix is given by:

Pb
k+1 = φkP

t
kφ

T
k + qδkl

The inversion of Pb appears non trivial.

H.3 Incremental formulation

At each step we can take the background value as a reference and calculate the

increment from the background:

xtn = xbn + δxn
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Thus the general 3DVAR cost function can be rewritten as:

J(δxn) =
1

2
(z− xb − δxn)T(R)−1(z− xb − δxn)

+
1

2
δxT

n (Pb)−1δxn

= Jz + Jb

The need for (Pb)−1 can be avoided by redefining the control variable. If we

can find L triangular such that Pb = LLT then we can define a new increment

δχn = L−1δxn and minimize the cost function with respect to δχ:

J(δχ) =
1

2
(z− xb − Lδχn)T(R)−1(z− xb − Lδχn) +

1

2
δχT

nδχn

The gradient of this cost function is:

∇J(δχ) = −R−1LT(z− xb − Lδχn) + δχn

= −R−1LTz + R−1LTxb + (R−1Pb + I)δχn

H.4 Cholensky decomposition (LLT)

The key passage that avoids the Pb matrix is the decomposition in Pb = LLT. If

we write out the equation A = LLT

A = LLT =

L11 0 0

L21 L22 0

L31 L32 L33


L11 L21 L31

0 L22 L32

0 0 L33


we obtain the following formula for the entries of L:

Lj,j =

√√√√Aj,j −
j−1∑
k=1

L2
j,k.

Li,j =
1

Lj,j

(
Ai,j −

j−1∑
k=1

Li,kLj,k

)
, for i > j.

The expression under the square root is always positive if A is real and positive-

definite.
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H.5 Optimization

H.5.1 Steepest descent

One starts with a guess x0 for a local minimum of F , and considers the sequence

x0,x1,x2, . . . such that

xn+1 = xn − γn∇F (xn), n ≥ 0.

So hopefully the sequence (xn) converges to the desired local minimum. Note that

the value of the step size γ is allowed to change at every iteration.

H.5.2 BFGS quasi-Newton method

Newton’s method and the BFGS methods need not converge unless the function

has a quadratic Taylor expansion near an optimum. These methods use the first

and second derivatives. In quasi-Newton methods, the Hessian matrix of second

derivatives need not be evaluated directly. Instead, the Hessian matrix is approx-

imated using rank-one updates specified by gradient evaluations (or approximate

gradient evaluations). Quasi-Newton methods are a generalization of the secant

method to find the root of the first derivative for multidimensional problems. In

multi-dimensions the secant equation does not specify a unique solution, and quasi-

Newton methods differ in how they constrain the solution. The BFGS method is

one of the most popular members of this class.

From an initial guess x0 and an approximate Hessian matrix B0 the following steps

are repeated until x converges to the solution.

• Obtain a direction pk by solving: Bkpk = −∇f(xk).

• Perform a line search to find an acceptable stepsize αk in the direction found

in the first step, then update xk+1 = xk + αkpk.

• Set sk = αkpk.

• yk = ∇f(xk+1)−∇f(xk).

• Bk+1 = Bk +
yky

T
k

yT
k sk
− Bksk(Bksk)

T

sTkBksk
.
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f(x) denotes the objective function to be minimized. Convergence can be checked

by observing the norm of the gradient, |∇f(xk)|. Practically, B0 can be initialized

with B0 = I, so that the first step will be equivalent to a gradient descent, but

further steps are more and more refined by Bk, the approximation to the Hessian.

The first step of the algorithm is carried out using an approximate inverse of the

matrix Bk, which is usually obtained efficiently by applying the ShermanMorrison

formula to the fifth line of the algorithm, giving

B−1
k+1 = B−1

k +
(sT
k yk + yT

kB
−1
k yk)(sks

T
k )

(sT
k yk)2

− B−1
k yks

T
k + sky

T
kB
−1
k

sT
k yk

H.5.3 Preconditioning

All minimization algorithms work best if the iso-surfaces of the cost function are

approximately spherical. The degree of sphericity of the cost function can be

measured by the eigenvalues of the Hessian. (Each eigenvalue corresponds to the

curvature in the direction of the corresponding eigenvector.). In particular, the

convergence rate will depend on the condition number:

κ =
λmax
λmin

If we utilize the Cholensky decomposition (Pb = LLT) the Hessian is given by:

J ′′(δχ) = I + LR−1LT + . . .

The presence of the identity matrix in this expression guarantees that the minimum

eigenvalue is ≥ 1 and there are no small eigenvalues to destroy the conditioning

of the problem.

H.6 Error estimate

The optimization give us the knowledge of the most probable xtk but we need also

a new estimate of the errors covariances Pt
k.

I think we can proceed in such estimate solving the Kalman analysis equations for

H = I.: {
xtk = xbk + Kk(zk − xbk)

Pt
k = (I−Kk) Pb

k
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Obtaining:

Pt
k =

(
z− xt

z− xb
· I
)

Pb
k

H.7 Further simplifications

We can assume that all the observables x have the same forecast errors ωkand the

same measurements errors vk. This implies r = r and q = q. Now if we divide all

the covariances matrices by q obtaining P̃t = Pt/q , P̃b = Pb/q and r̃ = r/q We

can rewrite the cost functions as:

qJ(xt) =
1

2
(xt − xb)T(P̃b)−1(xt − xb) +

1

2
(z− xt)T(r̃I)−1(z− xt)

With P̃b
k = P̃t

k−1 + I and P̃t
k =

(
z−xt

z−xb
· I
)

P̃b
k.

In the minimization we can then ignore the value of q and we have just one free

parameter r̃ = r/q.

The Cholensky decomposition gives P̃b = L̃L̃T and the cost function can be in-

crementally rewritten as:

qJ(δχ) =
1

2
(z− xb − L̃δχn)T(r̃)−1(z− xb − L̃δχn) +

1

2
δχT

nδχn (H.1)

His gradient will read:

q∇J(δχ) = −r̃−1L̃Tz + r̃−1L̃Txb + (r̃−1P̃b + I)δχn

This can be simplified redefining multiplying both sides for r̃ and explicating the

value of Pb:

qr̃∇Jk(δχk) = L̃T
k zk + L̃T

k xbk + (P̃t
k−1 + (r̃ + 1)I)δχk (H.2)
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H.8 3DVar algorithm scheme

OPTIMIZATION

Forecast Step

RPb

φ

Pt

xb z

Timeframe Data
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L

Last Step

xt

Cost function
gradient 

computation

xt
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Parameters
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Appendix I

Statistical Forecast

This appendix is based on [70].

I.1 Introduction

In this appendix we want to derive, from a sample of GPS data on traffic speed

and fluxes over large roads, a statistical forecasting operator suitable for imple-

mentation in a Kalman Filter framework for traffic nowcasting (i.e. short term

forecasting).

In fact, in the Kalman Filter plays a fundamental role the prediction of the state

~x(t + dt) given the vector state ~x(t) at time t. Using a meteorological lexicon

we call here predictors the values of the field ~x(t) and predictands the values of

~x(t+dt). In our case the elements of ~x are the values of an observable (e.g. speed)

over different points of the road network.

As a further condition, we want the forecast operator to be linear and then rep-

resented as a matrix. The values in this matrix are the coefficients of the linear

combination of the predictors which form the best approximation (in the least

square sense) for the predictands.

Statistical formulas have a greater probability of verifying well, when applied to

new data, if the number of predictors is small relative to the number of independent

observations of each predictor. To reduce the number of predictors we will project

~x on a base of Empirical Orthogonal Functions (EOF) of space ~Y whose coefficients

151
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Q(t) are also orthogonal functions of time. A small number of ~Y with large

variances may then be used as predictors.

I.2 Prediction

We will develop here the statistical prediction formulas. In the most general case

the predictands are different by the predictors. We will identify in this section the

predictands with x and the predictors with p.

I.2.1 Single predictand

I.2.1.1 p, x: original data

Let the predictand be x(t), and let the M predictors be p1(t), . . . , pM(t), where t

is time.

For any choice of M + 1 prediction constants c0, . . . , cM , the prediction formula

for x(t) is:

x(t) = c0 +
M∑
m=1

cmpm(t) + r(t) =
M∑
m=0

cmpm(t) + r(t) (I.1)

where we have let p0(t) = 1 and the final term r(t), which depends upon the choice

of constants, is the error in prediction x(t).

The problem at hand is determining the set of M+1 constants cm which minimizes

the mean value of r(t). This optimization is achieved taking a set of N observations

of each quantity and minimizing the value of 〈r2〉

〈r2〉 = 〈x2〉 − 2
M∑
m=0

cm〈pmx〉+
M∑

m,n=0

cmcn〈pmpn〉 (I.2)

over the dataset. In order to minimize 〈r2〉, its derivative d〈r2〉
dcm

must vanish ∀m.

Therefore we obtain as a sufficient condition:

M∑
n=0

〈pmpn〉cn = 〈pmx〉 for m = 0 . . .M (I.3)
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Solving this set of M + 1 equations in the M + 1 unknowns cm we obtain the

prediction constants. Equation I.3 is a necessary and sufficient condition that

〈r2〉 is minimized. From eq. I.1 and eq. I.3 can be easily obtained an equivalent

condition:

〈pmr〉 = 0 for m = 0 . . .M (I.4)

I.2.1.2 p̃, x̃: departures from mean values

Using a prediction formula which refers to departures from their mean values of

predictors p̃ and predictands x̃, is useful as we can avoid the m = 0 term:

x̃(t) =
M∑
m=1

cmp̃m(t) + r(t) (I.5)

and may permit us to easily quantify the quality of the predictor through a useful

quantity called reduction of variance.

The equations for the prediction constants in eq. I.5 are then:

M∑
n=1

〈p̃mp̃n〉cn = 〈p̃mx̃〉 for m = 1 . . .M (I.6)

where 〈p̃mp̃n〉 and 〈p̃mx̃〉 are the sample covariances with respect to time. Also in

this case stands the equivalent condition:

〈p̃mr〉 = 0 for m = 1 . . .M (I.7)

Moreover, from eq. I.5 and eq. I.7 follows that:

〈r2〉 = 〈x̃2〉 − 〈
M∑
n=1

cnp̃m〉 (I.8)

The last formula describes how the unexplained variance (on the left) is equal to

the variance of the predictand x minus the amount of the variance of x explained

by the predictors. The ratio

rv =
〈
∑M

n=1 cnp̃m〉
〈x̃2〉

(I.9)



154 Appendix I Statistical Forecast

is therefore called reduction of variance and is used, as we said, as a measure of

the goodness of the prediction.

I.2.1.3 p̂, x̂: standardized signals

If we standardize predictand and predictors we obtain a system of conditions

involving correlations instead of covariances:

M∑
n=1

〈p̂mp̂n〉cn = 〈p̂mx̂〉 for m = 1 . . .M (I.10)

and the reduction of variance is directly:

rv = 〈
M∑
n=1

cnp̂m〉 (I.11)

I.2.2 Sampling and over-fitting issues

The means 〈pmpn〉 and 〈pmx〉, as the covariances 〈p̃mp̃n〉 and 〈p̃mx̃〉 and correla-

tions 〈p̂mp̂n〉 and 〈p̂mx̂〉 tend to differ considerably from one sample to another,

and hence from sample to population. It follows that the coefficients cm might

also depend upon the particular sample. Therefore, any effort to ensure that a

prediction formula is the best for a particular sample, rather than merely good,

are probably wasted. Indeed, a formula which appears good for one sample may

be poor for the population. At first glance it might seem that a greater number

of predictors should lead to a greater probability of obtaining a good prediction

formula. This would be so if the sample used in establishing the formula was

consistent with the entire population. But the greater the number of predictors,

the greater the probability that some linear combination of these predictors will

be highly correlated with the predictand within the sample, even though it may

be uncorrelated with the predictand within the population.

If we assume that population means do exist, we may let S0 and R0 be the reduc-

tion of variance and the ratio of unexplained variance to the total variance within

the population (S0 + R0 = 1). We may also let S ′ be the expected reduction of

variance within the sample where the prediction formula is the best, and let S ′′ be

the expected reduction of error when the formula is applied to another sample. It
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can be shown that:

S ′ = S0 +
M

N − 1
R0 (I.12)

S ′′ = S0 −
M

N + 1
R0 (I.13)

Thus a considerable discrepancy is expected between the reduction of variance

and the reduction of error and this discrepancy is proportional to the ratio M/N .

Therefore to ensure we have picked an efficient formula the sample should be as

great as possible and the number of predictors restricted. Having a great number

of predictors gives the maximum information, but makes higher the danger of

sampling problems.

I.2.3 Multiple predictands formula

If we have a vector of D predictands ~x, the formula I.6 is valid ∀xi and can be

rewritten in matrix sense (where repetition of indices implies summation) as:

〈p̃mp̃n〉Cn,i = 〈p̃mx̃i〉 for m,n = 0 . . .M and i = 0 . . . D (I.14)

Furthermore, being this a set of D linear system, it is possible to evaluate the

matrix coefficients Cn,i through the inversion of the square matrix 〈p̃mp̃n〉:

Cn,i = 〈p̃mp̃n〉−1〈p̃mx̃i〉 for m,n = 0 . . .M and i = 0 . . . D (I.15)

I.3 Dimensionality Reduction

In I.2.2 it has been seen how the difference between the reduction of variance

in the sample and the reduction of variance in the population proportional to

the ratio M/N , being M the number of predictors and N the sample size. It is

therefore important to reduce the number of predictors for our statistical forecast

formula. First, we can simply avoid keeping in our analysis field which are poor of

information or considered less important (in our traffic application these could be

secondary roads with only a few data per hour). When the fundamental core of

our predictors has been identified, it is then possible to make a further reduction of

the dimensionality of the problem, retaining in the meanwhile the dimensionality
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of the problem, describing in an approximate way the fields in analysis through a

set of Empirical Orthogonal Functions.

I.3.1 Empirical Orthogonal Functions

We want to determine a set of quantities, in number smaller than the number

of given predictors, such that all predictors may be then be approximated by

linear combinations of these new quantities. Then we can reduce the number

of predictors, using as predictors these new quantities. To find these quantities

(called in meteorology Empirical Orthogonal Functions and in other field Principal

Components) we consider a set of M predictors p1(t), . . . , pM(t), each observed N

times t1, . . . , tn. We call total variance of the predictors the sum:

V =
M∑
m=1

〈p2
m〉 (I.16)

Let q1(t), . . . , qK(t) be any K quantities, where K < M and let

p∗m(ti) =
K∑
k=1

yk,mqk(ti) + rm(ti) (I.17)

Where the yk,m have to be chosen to minimize the unexplained variance:

R =
M∑
m=1

〈r2
m〉 (I.18)

The value of R remains function of the choice of the qk. The problem at hand

is then choosing the right qk to minimize R, and thus maximize the quantity

(V−R)/V , that becomes the fraction of total variance which may be represented by

K quantities. We proceed in this choice projecting the pk on a base of orthogonal

functions:

pm(t) =
M∑
k=1

Yk,mQk(t) (I.19)

Where the Yk,m are orthonormal functions of space:

M∑
k=1

Yk,mYj,m = δk,j (I.20)
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and the Q̃k(t) (where the tilde means again the fluctuations from the mean value

in time) are orthogonal functions of time:

〈Q̃kQ̃j〉 = akδk,j (I.21)

with ak ≥ ak+1 ≥ 0. It is proven [70] that the quantities Q̃1, . . . , Q̃K minimize

the error R. In this case the variance can be easily estimated with the following

formulas:

V =
M∑
k=1

ak (I.22)

R =
M∑

k=K+1

ak (I.23)

V −R =
K∑
k=1

ak (I.24)

In order to describe a method for determining the quantities Yk,m and Qk(t) satisfy-

ing (I.19) it is convenient to use matrix notation. Let then P ,P̃ ,Q,Q̃ be matrices of

N rows andM columns whose elements are respectively pm(ti),p̃m(ti),Qk(ti),Q̃k(ti),

and let Y be a square matrix of order M whose elements are Yk,m. The problem

consists in expressing P in the form:
P = QY

Y tY = I

Q̃tQ̃ = D

(I.25)

where I is the identity matrix and D a diagonal matrix whose diagonal elements

are the decreasing ak. This system can be rewritten as:
Q = PY t

Y tY = I

Y P̃ tP̃ Y t = D

(I.26)

Therefore, if Y satisfies the last two equations in (I.26) then Q is defined by the

first. Let:

A = P̃ tP̃ (I.27)

be a matrix whose elements N〈p∗jp∗k〉 are proportional to the time covariances of the

predictors. Thus the problem of finding Y becomes a simple eigenvalue problem
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of the covariance matrix A:

Y AY t = D (I.28)

while, as just said, Q can be than determined from the equation:

Q = PY t (I.29)

I.3.2 Role of Noise

Each of the pk is likely to contain some noise. The Qk with small variances

may be regarded as the small residuals in approximate linear relations connecting

the pk, therefore they are likely to consist almost entirely of noise, like many

other quantities which are small differences between larger quantities. These same

remarks do not apply to the Qk with large variances, since, although they may

contain as much noise as the other Qk, they should contain less noise relative their

total variance.

I.3.3 Alternative formulations

We have seen in section I.2.1 that, in developing a prediction formula, signals can

be taken in three different ways: original data, departures from mean values and

standardized signals. Depending on which signal we want to use as a predictor,

the problem can be redefined.

For instance if we want to use original data instead of the covariance matrix

(multiplied by N), we should let A = P tP . In this case has been observed that∑M
k=1 ak is not anymore the explained variance, while Y1,m represents 〈pm〉. The

advantage of this approach is only the straightforward procedure, as it does not

involve the addition or subtraction of the mean values (or the rescaling of the

fluctuations).

For standardized signals instead we have A = P̂ tP̂ , i.e. the correlation matrix,

multiplied again by N . In this kind of approach we increment the relative weights

of low variance signals, and therefore the possibility of a more accurate prediction

for these fields. On the other hand, with a more sensible information extraction

for those signals we are also amplifying noise. Thus this approach should be

considered only for systems where little fluctuations in low variance signals are of

the same relevance as considerable variations high variance ones.
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In general, the covariance case we have illustrated so far is often the most suitable

for a nonspecific problem. Furthermore, in our specific case, if we consider the

speed fields over a road network, their mean values are reasonably comparable.

Therefore fluctuation in different roads can be compared without the need of a

rescaling and is not worth to try to focus our forecast over signals where fluctua-

tions are negligible. For this reason, from now on, we will always use as signals P̃

and as time EOF Q̃. When finally we will want to describe the original data will

sufficient to add to each these functions the mean value of the signal.

I.3.4 Space-time inversion

Besides the space base Y , we want also the time coefficient Q̃ to be orthonormal

basis of time. We should then redefine it as:

Q̃ = Q̃D
1
2 (I.30)

and with this transformation EOF system becomes then equivalent to:
P̃ = Q̃D

1
2Y

Y tY = I

Q̃tQ̃ = I

(I.31)

And the solution can be now found with:
Q̃ = P̃ Y tD−

1
2

Y tY = I

D−
1
2Y P̃ tP̃ Y tD−

1
2 = I


Q̃ = P̃ Y tD−

1
2

Y tY = I

Y AY t = D

(I.32)

We will now show how it is possible to invert the problem and find firstly the Q̃

as EOF of time, then the Y as their coefficients in space. The way for doing this

is to transpose the whole problem:
P̃ t = Y tD

1
2 Q̃t

Y Y t = I

Q̃Q̃t = I

(I.33)
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
Y t = P̃ tQ̃D−

1
2

D−
1
2QtP̃ P̃ tQD−

1
2 = I

Q̃Q̃t = I
Y t = P̃ tQD−

1
2

QtBtQ = D

Q̃Q̃t = I

(I.34)

Here B = P̃ P̃ t is a matrix whose elements are proportional to the space covariances

of the signals(and not time covariances as A) : Bj,k =
∑M

m=1 p̃m(ti)p̃m(tk). We can

notice that the equations in (I.32) have the same shape of (I.34). In particular,

the second equation:

QtBtQ = D (I.35)

have the shape of an eigenvalue problem. But, if we check the dimensions of the

matrices involved, we have:

(M ×N)(N ×N)(N ×M) = (M ×M) (I.36)

where M is the space dimension and N the time dimension. We have then 3

possible situations, which have been analyzed numerically:

• for N = M the eigenvalue problem is again well defined and we can obtain

the same space and time EOF both diagonalizing the A or B;

• for N < M we can find at maximum N independent eigenvectors of B,

associated to N eigenvalues in D, and the others M − N values of the

diagonal of D are 0;

• for N > M we find N independent eigenvectors of B, where M are associ-

ated to the M non-zero eigenvalues in D and N −M are associated to the

eigenvalue 0.

In conclusion, it has been shown that, from a data matrix P of dimension N ×M ,

only a number of EOF equal to the minimum value between M and N can be

extracted. The space and time EOF can be then computed both solving the

A = P̃ tP̃ (M ×M) and the B = P̃ P̃ t (N × N) eigenvalue problem. Therefore,

if N and M have a significant difference, the choice of which matrix have to be

memorized and then diagonalized.
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I.4 Final Formulas

We want here to obtain a final version of the prediction formula, suitable for a

direct application to our data. Our aim is then to make the formula operating

directly to a field (in our case the speed field v(t)), in order to forecast the state

after a time dt. Let x = v(t+ dt) be the predictands and p = v(t) the predictors.

Let also be x̃ = x − 〈v〉 and p̃ = p − 〈v〉. Predictands and predictors have been

projected to a truncated basis of K < M EOF:

x = qxY (I.37)

x̃ = x− 〈v〉 = q̃xY = (qx − 〈q〉)Y = qxY − 〈q〉Y (I.38)

〈q〉 = 〈qx〉 = 〈qp〉 = 〈v〉Y t (I.39)

And the forecast matrix C has to be computed over the coefficients q:

Cn,i = 〈q̃pmq̃pn〉−1〈q̃pmq̃xi 〉 for m,n = 0 . . . K and i = 0 . . . D (I.40)

where D is the dimension of the sample where the predictor is created. In the

formulation so far developed we have let the predictand x, the predictor vector p

be row vectors of dimensions 1×M , their coefficients qx and qp be row vectors of

dimensions 1 × K, while C is a K × K matrix and Y a K ×M matrix. Then,

the full forecast formula has to be obtained through 3 passages, representing the

transformation of operator C in the EOF space:

Projecting: q̃p = p̃Y t

Forecasting: q̃x = q̃pC = p̃Y tC

Reconstruction: x̃ = q̃xY = p̃Y tCY

Finally, we can rewrite the equations for data arranged in column vectors. If we

let now be v(t + dt) = xt, v(t) = pt and 〈v〉 be column vectors of M elements.

After transposing all the equation we obtain as forecast formula:

ṽ(t+ dt) = φṽ(t) (I.41)

(I.42)

where the forecast matrix is:

φ = Y tCtY (I.43)
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