Amidani, Lucia
  
(2013)
Progress in x-ray spectroscopies for the study of advanced materials, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Fisica, 25 Ciclo. DOI 10.6092/unibo/amsdottorato/5188.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      This thesis work is focused on the use of selected core-level x-ray spectroscopies to study semiconductor materials of great technological interest and on the development of a new implementation of appearance potential spectroscopy.
Core-level spectroscopies can be exploited to study these materials with a local approach since they are sensitive to the electronic structure localized on a chemical species present in the sample examined. This approach, in fact, provides important micro-structural information that is difficult to obtain with techniques sensitive to the average properties of materials.
In this thesis work we present a novel approach to the study of semiconductors with core-level spectroscopies based on an original analysis procedure that leads to an insightful understanding of the correlation between the local micro-structure and the spectral features observed. In particular, we studied the micro-structure of Hydrogen induced defects in nitride semiconductors, since the analysed materials show substantial variations of optical and electronic properties as a consequence of H incorporation.
Finally, we present a novel implementation of soft x-ray appearance potential spectroscopy, a core-level spectroscopy that uses electrons as a source of excitation and has the great advantage of being an in-house technique. The original set-up illustrated was designed to reach a high signal-to-noise ratio for the acquisition of good quality spectra that can then be analyzed in the framework of the real space full multiple scattering theory. This technique has never been coupled with this analysis approach and therefore our work unite a novel implementation with an original data analysis method, enlarging the field of application of this technique.
     
    
      Abstract
      This thesis work is focused on the use of selected core-level x-ray spectroscopies to study semiconductor materials of great technological interest and on the development of a new implementation of appearance potential spectroscopy.
Core-level spectroscopies can be exploited to study these materials with a local approach since they are sensitive to the electronic structure localized on a chemical species present in the sample examined. This approach, in fact, provides important micro-structural information that is difficult to obtain with techniques sensitive to the average properties of materials.
In this thesis work we present a novel approach to the study of semiconductors with core-level spectroscopies based on an original analysis procedure that leads to an insightful understanding of the correlation between the local micro-structure and the spectral features observed. In particular, we studied the micro-structure of Hydrogen induced defects in nitride semiconductors, since the analysed materials show substantial variations of optical and electronic properties as a consequence of H incorporation.
Finally, we present a novel implementation of soft x-ray appearance potential spectroscopy, a core-level spectroscopy that uses electrons as a source of excitation and has the great advantage of being an in-house technique. The original set-up illustrated was designed to reach a high signal-to-noise ratio for the acquisition of good quality spectra that can then be analyzed in the framework of the real space full multiple scattering theory. This technique has never been coupled with this analysis approach and therefore our work unite a novel implementation with an original data analysis method, enlarging the field of application of this technique.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Amidani, Lucia
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze matematiche, fisiche ed astronomiche
          
        
      
        
          Ciclo
          25
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/5188
          
        
      
        
          Data di discussione
          21 Febbraio 2013
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Amidani, Lucia
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze matematiche, fisiche ed astronomiche
          
        
      
        
          Ciclo
          25
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/5188
          
        
      
        
          Data di discussione
          21 Febbraio 2013
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: