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Abstract 

During this work has been developed an innovative methodology for continuous 

and in situ gas monitoring (24/24 h) of fumarolic and soil diffusive emissions 

applied to the geothermal and volcanic area of Pisciarelli near Agnano inside the 

Campi Flegrei caldera (CFc). In literature there are only scattered and in discrete 

data of the geochemical gas composition of fumarole at Campi Flegrei; it is only 

since the early ’80 that exist a systematic record of fumaroles with discrete 

sampling at Solfatara (Bocca Grande and Bocca Nuova fumaroles) and since 

1999, even at the degassing areas of Pisciarelli. This type of sampling has resulted 

in a time series of geochemical analysis with discontinuous periods of time set (in 

average 2-3 measurements per month) completely inadequate for the purposes of 

Civil Defence in such high volcanic risk and densely populated areas. For this 

purpose, and to remedy this lack of data, during this study was introduced a new 

methodology of continuous and in situ sampling able to continuously detect data 

related and from its  soil diffusive degassing. Due to its high sampling density 

(about one measurement per minute therefore producing 1440 data daily) and 

numerous species detected (CO2, Ar, 36Ar, CH4, He, H2S, N2, O2) allowing a good 

statistic record and the reconstruction of the gas composition evolution of the 

investigated area. This methodology is based on continuous sampling of 

fumaroles gases and soil degassing using an extraction line, which after 

undergoing a series of condensation processes of the water vapour content - better 

described hereinafter - is analyzed through using a quadrupole mass spectrometer  

This methodology has also been applied successively, during the drilling 

operations of the 500 meters depth pilot-hole, within the frame of the International 

project Campi Flegri Deep Drilling Project (CFDDP) in order to analysis the 

formation gases brought to the surface and extracted out from the drilling mud.  
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1. CAMPI FLEGREI: INTRODUCTION 

Located in the Campanian region (South Italy), the Phlegraean Volcanic District 

(PVD) is a densely populated active volcanic area, including the Campi Flegrei 

(CF) caldera, the islands of Procida and Ischia, plus a number of submerged 

volcanoes. Volcanological, geophysical and geochemical evidences (De Vita et 

al., 1998; De Vita et al., 1999) support the hypothesis that remnants of the magma 

source feeding the two large eruptive events of Campanian Ignimbrite (37 ky BP) 

and Neapolitan Yellow Tuff (14.9 ky BP) are involved in more recent volcanic 

episodes (e.g. Agnano-Monte Spina eruption, 4 ky BP). Volcanic risk has 

increased through time as a consequence of rapid population expansion in such 

active and potentially active volcanic areas of the Earth. The reconstruction of the 

temporal evolution and the definition of the present state of the magmatic system 

feeding an active volcano are essential data for hazard assessment. Therefore the 

restless Campi Flegrei caldera (CFc) is one of the most dangerous volcanic areas 

on Earth. It is inhabited by more than 1.5 million people, most of whom live in the 

city of Napoli. The magmatic system is still active as demonstrated by the 

widespread fumaroles and thermal springs (Allard et al., 1991 Caliro et al., 1997), 

and by recent bradyseismic episodes that occurred in 1969–1972 and 1982–1984 

(Corrado et al., 1977; Barberi et al., 1984, 1989; Orsi et al., 1999). 

Since the beginning of their activity the Phlegrean Fields have been characterized 

by an impressive series of volcanic eruptions from many eruptive vents, the 

proximal products of which cover an area of about 200 Km2 west of Naples. 

The Campi Flegrei is an area of extreme tectonic instability. An uplift of about 1.8 

m occurred in the area from June 1982 to December 1984, and a swarm of 

moderate earthquakes lasted from March 1983 to December 1984 (Berrino et al., 

1984). Only one minor eruption has occurred in historic time, but the area is 

known to have experienced major caldera-forming events, and due to the high 

population it is considered a high-hazard volcanic area (Barberi et al., 1984). The 

area is currently the target of a comprehensive research and surveillance program 

(Barberi et al., 1984).  
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The Campi Flegrei caldera system is similar in size and other characteristics to 

others which contain major epithermal mineral deposits associated with subaerial 

caldera volcanism (Guilbert and Park, 1986). The attention of many researchers 

has been focused recently on these types of deposits; this attention has resulted in 

a variety of ore-forming models (Bonham, 1986 and references therein). However, 

the Campi Flegrei volcanic products are mostly trachytic (undersaturated) in 

contrast with the more common intermediate to felsic calc-alkalic igneous 

systems. The Campi Flegrei geothermal system can thus provide an analog 

hydrothermal system, developing in a trachytic resurgent caldera. 

The Campi Flegrei volcanic area, has been known and used for its thermal springs 

since before the Roman Empire. Geothermal exploration of the area from 1939 to 

1954 was unsuccessful. An extensive exploration and drilling program was 

resumed in 1978 as a joint venture of the national utilities, AGIP and ENEL, and 

the Italian Geodynamic Project (Rosi and Sbrana, 1987). Several wells have been 

drilled to depths of 3 km (Carella and Guglielminetti, 1983). At shallow depths, 

partially hydrothermally altered volcanic, volcano-clastic and sedimentary rocks 

are encountered. At greater depth, their thermo-metamorphic equivalents are 

encountered. The deep wells have indicated the presence of a saline water-

dominated geothermal field with multiple reservoirs (Carella and 

Guglielminetti,1983). Long-term production and injection tests are underway to 

ascertain the main characteristics of the field (Carlino et al., 2012). 

 

1.1 Tectonic setting 

 

The Campanian Province, the southernmost sector of the Plio-Quaternary volcanic 

belt along the Italian peninsula, is formed by the active volcanoes Somma-

Vesuvius, Ischia and Campi Flegrei and by the islands of Procida and Vivara. 

Sometimes the Pontine islands (Ponza, Palmarola, Zannone, Ventotene and Santo 

Stefano) are included in the Campanian Province even if petrological data suggest 

that just Ventotene, Santo Stefano and the youngest rocks of Ponza (1 Ma) have 

similar composition with those from Campanian Volcanoes.  
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The volcanic centers of the Campanian Province developed in Quaternary 

extensional basins along the Tyrrhenian Sea border at the intersection between 

NE-SW and NW-SE fault systems. The Pontine Islands form a row of volcanoes 

(W-E trend) along the 41
st 

parallel tectonic Line (Serri 1990; Bruno et al., 2000). 

The thickness of the lithosphere along this transect varies from about 50 km along 

the Tyrrhenian Sea border to more than 110 km in the Apulia foreland. The depth 

of Moho has a range between 20-25 km offshore the Tyrrhenian Sea cost, 40 km 

beneath the central zone of the Apennine chain and 30km beneath the Apulia 

foreland (Piromallo and Morelli, 2003). The area between the Campanian 

Province and Vulture (located east of the Apennine chain on the western border of 

the Apulia foreland) is characterized by a moderate elevation and positive 

Bouguer anomaly, which crosses the Apennines from Tyrrhenian sea to Apulia. 

Such a lineament is sited along the continuation of 41
st 

Parallel Line which divides 

the northern and southern section of the Tyrrhenian basin (Bruno et al, 2000).  

The Campi Flegrei Volcanic District lies in the Campanian Plain (CP), 

between the western side of the Southern Apennine Chain and the eastern border 

of the Tyrrhenian abyssal plain. Since late Miocene-early Pliocene, the Tyrrhenian 

Sea has been opening (Scandone, 1979; Doglioni, 1991) and the Calabrian arc has 

migrated to the SE following rollback of the subducted Ionian plate under 

Calabria (Selvaggi and Chiarabba, 1995; Piromallo and Morelli, 1997; Gvirtzman 

and Nur, 2000). Extension in the Tyrrhenian basin was accompanied by 

contemporaneous compression in the Apennine chain (Meletti et al., 2000). As a 

result of motions of the Tyrrhenian and Ionian blocks, the CP became a structural 

depression bordered by NW-SE and NE-SW trending faults (D’Argenio et al., 

1973; Ippolito et al., 1975; 1994). Geological, geophysical and petrologic 

evidence (Selvaggi and Amato, 1992; Serri et al., 1993; Peccerillo, 1999) suggest 

that subduction of oceanic lithosphere (from the relict Ionian basin) beneath the 

Apennines occurred concomitant with thinning of the continental lithosphere in 

the region of the Adriatic Sea, Sicily and North Africa. 
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1.2 Volcanic Setting 

 

The Campi Flegrei is a restless, nested caldera structure resulting from two main 

collapses related to the two most powerful eruptions of the volcanic system (Orsi 

et al., 1992, 1995, 1996.): the Campanian Ignimbrite CI. eruption (37 ka, Deino et 

al., 1992, 1994; Armienti et al., 1983; Rosi and Sbrana, 1987; Rosi et al., 1983, 

1996; Barberi et al., 1991; Fisher et al., 1993; Civetta et al., 1997) and the 

Neapolitan Yellow Tuff (NYT) eruption 12 ka (Alessio et al., 1971; Orsi and 

Scarpati, 1989; Orsi et al., 1992, 1995, 1996). The structural boundaries of both 

CI and NYT calderas result from partial reactivation of earlier regional faults 

(Orsi et al., 1996.). The central part of the younger NYT caldera is uplifting since 

its formation, likely as a consequence of the arrival of new magma in the system 

(Orsi et al., 1996). 

The uplift occurs through a complex simple-shearing block resurgence 

mechanism (Orsi et al., 1991). Because of this mechanism, the conditions for 

magmas to rise to the surface were established only in those parts of the caldera 

floor subject to extensional stress (Orsi et al., 1996). Thus, the caldera structure 

strongly constrains the areal distribution of volcanism active during the past 12 

ka. Volcanism in the Campi Flegrei began more than 60 ka ago and was 

essentially explosive and subordinately effusive (Orsi et al., 1996; Pappalardo et 

al., 1999). The sedimentological characteristics of deposits erupted before the CI 

eruption indicate that volcanism was highly explosive and that vents were located 

also outside the Campi Flegrei depression (Orsi et al., 1996). The products 

erupted before the CI eruption range in composition from latite to phono–trachyte. 

The CI is the largest pyroclastic flow deposit of the Campanian area. The products 

range in composition from trachyte to phono– trachyte. They covered an area of 

30,000 km2 with an estimate volume of erupted magma of 150 km3 DRE (Fisher 

et al., 1993; Civetta et al., 1997). 

Volcanism between the CI and NYT eruptions was explosive, mostly 

hydromagmatic, with products ranging in composition from latite to phono–

trachyte. The morphological and sedimentological characteristics of the exposed 

rocks suggest that vents were active inside the CI caldera  (Orsi et al., 1996; 
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Pappalardo et al., 1999). The NYT was the most powerful phreatoplinian eruption 

of the Campanian area. The volume of the erupted magma is estimated at more 

than 40 km3 DRE. The area covered by the tuff was about 1000 km2 including the 

bays of Napoli and Pozzuoli. The products range in composition from alkali–

trachyte to latite, although the complex chemostratigraphy has allowed us to infer 

that the eruption was fed by three geo-chemically distinct batches of magma (Orsi 

et al., 1992, 1995; Wohletz et al., 1995). The evolution of the Phlegraean 

magmatic system before the eruption of the Neapolitan Yellow Tuff was 

characterized by an open-system behavior with involvement of geochemically 

distinct magmas interplaying in a complex behaviour (Pappalardo et al., 1999).  

After the NYT eruption the CFc has been the site of both volcano-tectonic activity 

and intense volcanism located inside the younger caldera depression. About 72 

eruptions occurred in three epochs of volcanic activity, between 12 and 9.5 ka, 

between 8.6 and 8.2 ka, and between 4.8 and 3.8 ka (Di Vito et al., 1999), 

generated by vents located either inside the NYT caldera or along its structural 

boundary (Fig. 1).  
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Fig. 1. Campi Flegrei sketch map (from Mormone et al., 2011b) showing the main tectonic structures, the 

eruptive vent locations in the last 14.9 ka, the ground movements, the distribution of the temperature at <200 

m, the ground water circulation (De Vita, 1990) and the location of AGIP’s (1987) boreholes. 
 

During the first epoch (12–9.5 ka), vents were located along the structural 

boundary of the NYT caldera, except those of the St. Teresa, La Pietra and Rione 

Terra eruptions. They were dominantly tuff rings and tuff cones, suggesting that 

the eruptions were mostly triggered by efficient water magma interaction. The 

vents of the second epoch  (8.6–8.2 ka) were mostly located along the 

northeastern boundary of the NYT caldera, except that of the Fondi di Baia 

eruption. After a quiescence of about 3000 years, volcanism resumed. The vents 

of the latter epoch  (4.8–3.8 ka) were mostly located in the northeastern sector of 

the caldera floor which was subject to extensional stress, except for the Averno 

eruption which occurred in a compressive regime sector. The volcanic activity 

was mostly explosive with phreato-magmatic phases, and subordinately effusive 
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(Orsi et al., 1996; Di Vito et al., 1999). The subsequent and most recent eruption 

formed the Monte Nuovo tuff cone in 1538 AD, after a quiescence of about 3000 

years. 

After the Neapolitan Yellow Tuff eruption and related caldera collapse that 

occurred within the 39 ka-caldera, at least 70 eruptions, took place in three epochs 

of intense activity (15.0÷9.5, 8.6÷8.2 and 4.8÷3.8 ka) and followed one to another 

at mean time intervals of a few tens of years. The last event was in 1538 AD, after 

about 3.0 ka of quiescence, and formed the Mt. Nuovo tuff cone (Di Vito et al., 

1987; Piochi et al., 2005a). Sixty-four of these eruptions were phreatomagmatic to 

magmatic explosive events, and 76% of these eruptions occurred from vents 

active in the central-eastern sector of the caldera (Mormone et al., 2011).  
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Fig 2. Chronology of the volcanic activity in Campi Flegrei  

 

Fallout deposits of the I epoch were distributed manly toward north-east sector of 

the caldera and the Camaldoli hill, 15 km from the caldera centre (Fig.2). Only 

fallout beds of the Pomici Principali Tephra are widely distributed and are 20 cm 

thick along the western margin of the Apennines, at about 50 km from the vent. 
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Pyroclastic currents travelled within the caldera floor and reached the Campanian 

plain.  

The eruptions of the II epoch were all low-magnitude events. Fallout 

deposits covered only the caldera and its immediate surroundings, while most of 

the pyroclastic currents deposited their load within the caldera lowland. The 

fallout deposits of the III epoch and of the Mt. Nuovo eruption covered the 

caldera floor and its surroundings. Only beds of the Agnano-Monte Spina Tephra, 

the largest sub-plinian postcaldera event, covered a large area up to the 

Apennines. Pyroclastic currents travelled across the caldera floor and 

subordinately over the northern slopes of the Camaldoli hill (Orsi et al., 2004; de 

Vita et al., 1999). 
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Figure 3 . Distribution of the pyroclastic deposits of the past 15 ka at the Campi Flegrei caldera (from Orsi et 

al., 2004). a, c and e: frequency of deposition of fallout beds thicker than 10 cm of the I, II and III epoch, 

respectively; b, d and f frequency of deposition of pyroclastic-current beds cm of the I, II and III epoch, 

respectively. 

 

In the past 15 ka, the caldera floor has been affected by tectonic resurgence 

causing a maximum net uplift of about 90 m at the La Starza marine terrace which 

determined the definitive emersion of the terrace at about 4000 years BP (Isaia et 

al., 2010). Ground movements are also documented during the past 2.0 ka and, in 

particular, since late 1960s, unrest episodes have been recorded by the 

Osservatorio Vesuviano monitoring system; the largest ones took place in 1969-

72 and 1982-84 and generated uplifts of 170 and 180, respectively, and the 

evacuation of part of Pozzuoli town. Geometry of these short-term deformation 
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events is very similar to that of the long-term deformation, likely indicating a 

similar stress regime over at least the past 5 ka. 

Seismicity has been documented in the Campi Flegrei caldera since the 

15th century. Historical chronicles describe many earthquakes felt by Naples’ 

inhabitants in the 2 years preceding the last Monte Nuovo eruption. Moreover, 

seismic data recorded in the last 30 years has evidenced the occurrence of mostly 

volcano-tectonic events connected to the uplift phases of the unrest. The seismic 

sequence (De Natale and Zollo, 1986; D’Auria et al., 2011) clustered in two major 

epicentral areas: one between the town of Pozzuoli and the Agnano Plain, 

ellipsoidal in shape with a 5 km long major axis, and the other one between Baia 

and Monte Nuovo within the Gulf of Pozzuoli, with an elongated NNW-SSE 

shape. Troise et al. (2003) explained the volcano-tectonic seismicity in terms of 

the Coulomb stress changes due to a shallow overpressure source, superimposed 

to the regional tensional stress field. The authors invoked the main role of the 

geothermal systems in the volcano seismicity and deformation. 

 

 

 

1.3 Stratigraphy 

 

The most striking structural element of the Phlegrean Fields is represented by a 12 

km wide caldera, mainly resulting from collapse following the emplacement of 

the Campanian Ignimbrite a huge ash flow deposit that, about 35.000 years ago, 

covered the entire Campanian Plain between Roccamonfina and Salerno (Rosi and 

Sbrana, 1986). 

The recent geothermal exploration in Campi Flegrei is concentrated in two 

inner areas of the major caldera: (1) Mofete, in the western sector, and (2) San 

Vito, in the central sector (De Vivo et al. 1989).  

The remnants of the Mofete cone are located at the northwestern end of 

Pozzuoli Bay. The name "Mofete" is derived from the numerous occurrences of 

hydrothermal manifestations between Lucrino Lake, Baia and Fusaro Lake. The 

Mofete volcano is located in an inner position compared with the grossly annular 
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distribution of other volcanoes of similar age. The stratigraphic sequence (Fig. 4) 

reconstructed by the Mofete 1, Mofete 2 and Mofete 5 wells is quite uniform. In 

the first 250 m are found recent pyroclastics deposits with yellow tuffs at the base.  

From 250 m to 800 m, the sequence consists of chaotic marine tuffites 

with trachytic-type lava at the bottom. From 800 m to 1300 m there is a 

homogeneous trachytic lava complex probably corresponding to a lava dome. 

From 1300 m to 2000 m pyroclastic products alternating with lavas and 

subordinate siltites of marine environment are found. Below 2000 m, the lithology 

is quite heterogeneous with sedimentary rocks alternating with trachylatitic lava 

layers. The primary rock types were difficult to recognize at this depth because of 

the pervasive thermometamorphic recrystallization.  

The San Vito plain is located in the central portion of the Campi Flegrei, 

about 2 km north of the city of Pozzuoli. The plain formed as a result of volcano-

tectonic collapse that occurred after the building of the Gauro tuff cone (10,000-

11,000 yr B.P.), the largest volcano of the Campi Flegrei area. The geology of the 

plain is characterized by a deep pyroclastic cover formed in the recent subaerial 

post-caldera period. The pyroclastics filled up the collapse structure (Bruni et al., 

1985).  
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Fig. 4. Cross section including wells MF5, MF2 and MF1 in the Mofete geothermal field. Well MF3 is 

projected onto the cross section and the oblique well MF7D is also shown. MF5, MF2, and MF1 are vertical. 

Total depth (t.d.) is indicated at the bottom of each well (meters). 1 = pyroclastics from Baia  ~ 8400 yr. B .P. 

); 2 = yellow tuff; 3 = chaotic tuffites; 4 = subaerial tufts; 5 = trachytic lavas; 6 = latitic lavas (lava domes 

); 7 = interbedded tuffites, tufts, and lavas ( submarine environment ); 8 = interbedded shales, siltstones, and 

sandstones (marine); 9 = top of thermometamorphism; 10-- isotherms ( ° C ) from measured down-hole well 

temperature. No vertical exaggeration. From (De Vivo et al. 1989).  
 

 

The stratigraphy of the uppermost 1000 m of the San Vito 1 and San Vito 3 wells 

consists of a rather chaotic sequence of pyroclastic products of pumice and cinder 

tuffs, tuffaceous breccias, and chaotic tuffites belonging to the post-caldera 

period. From 1000 m to 1350 m homogeneous trachytic rocks occur. Below this 

lava body, down to 1900 m there are again chaotic tuffites alternating with 

trachytic volcanics and a complex sequence containing siltites with subordinate 

volcanics. Below 1900 m the effects of thermometamorphism are observed; the 

thermometamorphism obliterates completely the primary structure of the rocks in 

the deepest portions of San Vito 1 well (De Vivo et al. 1989). 
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1.4 Geophysics and subsurface surveys 

 

Geophysical surveys and analyses yielded a quite good knowledge of the very 

complex subsurface structure of the Campi Flegrei caldera. In particular, seismic 

wave velocities (Aster et al., 1989; Judenherc and Zollo, 2005), attenuation (De 

Siena et al., 2010) and scattering (Tramelli et al., 2006) tomographies evidenced a 

ring-shaped high P wave velocity zone mainly at 1.5 km b.s.l. offshore in the 

southern part of the Gulf of Pozzuoli that also extends onshore along the western 

border of the Gulf, in the Capo Miseno area, coinciding with a positive gravity 

anomaly (Barberi et al., 1991). It represents the buried trace of the southern 

caldera rim, evidenced by positive gravity anomaly onshore. The same data also 

excludes the presence of molten rocks with volume larger than 1 km3 but it 

indicates high probability for the existence of fractured over-pressured gas-

bearing rocks at depth shallower than 4 km. Low attenuation values, north-east of 

the Solfatara crater, are compatible with the presence of a gas-rich volumes 

between a depth of 0 and −2.5 km. The medium appears to be more homogeneous 

below -4 km, where, Battaglia et al. (2008) found P wave velocity of 5.5 km/s and 

inferred the (doubtful on the base of sedimentological data) presence of limestone 

as the basement of the caldera. Interestedly, a large-amplitude seismic reflection 

zone occurs at ~7.5 km depth and probably corresponds to the top of an extended 

melt-bearing crustal volume beneath the caldera (Zollo et al., 2008). The Campi 

Flegrei subsurface has been investigated ‘40s years (AGIP, 1987; Rosi and 

Sbrana, 1987; De Vivo et al., 1989, Carlino et al., 2012) by drilling that reached 

depth down to 1600 m to 3000 m bsl. The maximum measured temperatures 

within the caldera are >350° C at depth of 3000 m, with a geothermal gradient 

between 100° and 170°C/km (Rosi and Sbrana, 1987). Cored samples provide a 

picture, although inhomogeneous and discontinuous, of the rock types and 

physical properties: density and porosity and, subordinately, permeability and P 

and S-wave velocity of subsurface sequences (e.g., AGIP 1987; Rosi and Sbrana, 

1987; De Vivo et al. 1989; Mormone et al., 2011b). The drilling investigations 

evidenced tuffites bearing marine fossils emplaced during the marine ingression 

inside the Campanian Ignimbrite caldera and displaced at different depths and 
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elevations during the following activity, and a well developed and depth-

dependent mineral alteration zoning related to the increasing temperature of 

hydrothermal activity (Rosi and Sbrana, 1987; Mormone et al., 2011b). This 

investigations did not reach the exploitation phase due to technological and 

communication problems. Recently, the Campi Flegrei Deep Drilling Project (De 

Natale and Troise, 2011), sponsored by the International Continental Scientific 

Drilling Program, foresees the realization of medium-to-deep wells in the caldera 

with the ambition of stimulating interest in geothermal energy exploitation and 

technology development and, in addition, of installing downhole monitoring 

systems. 

 

1.5 Hydrothermal fluids circulation 

 

Permeable zones characterized by the presence of hydrothermal fluids have been 

recognized at various depths in Phlegrean Fields. Available information refers 

only to the drilled areas (Mofete, S.Vito, Agnano). 

In the Mofete area the first important aquifer occurs at the base of the yellow tuff 

formation at a depth of 150-300m showing temperatures in the range 100-130 °C. 

The impervious base is formed by deeply argillified lithified tuffites while the 

permeability of yellow tuff is mainly due to intense fracturation. A sequence of 

nearly pervious deposits follows downward with a thickness exceeding a thousand 

meters until a second aquifer with good lateral continuity is crossed within the 

calc-aluminum silicate zone (1,250-1,600 m depth, about 300 °C). 

The rocks of this zone acquired a remarkable rigidity and brittle behavior by 

hydrothermal alteration and became permeable by fracturing. Other permeable 

horizons with fluid circulation occur within the thermo-metamorphic zone (top at 

1850 m about 350 °C) where decarbonation reactions have induced porosity and 

permeability. The lateral extension of such aquifer cannot be evaluated on the 

basis of the deep wells that have presently reached the thermo-metamorphic zone. 

The hydrothermal circulation in the S.Vito area appears poorly defined because of 

the lake of reliable well test data. Permeable horizons occur in both calc-

alluminum silicate and thermo-metamorphic zones at greater depth than in the 
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Mofete area. In this area there is no evidence of widespread aquifers in the first 

2,000m with the exception of the near-surface phreatic water tables interbedded 

within both the yellow tuffs and the recent loose subaerial pyroclastics. 

Scattered data from the Agnano plain suggest a first relevant deep aquifer at a 

depth of 1,400m with temperatures exceeding 250 °C (AGIP 1987; Rosi and 

Sbrana, 1987). 

 

1.6 The Bradyseism at Campi Flegrei 

 

Several theories were formulated regarding the dynamic of eruptions in Campi 

Flegrei area, but they are all based on limited evidence. The only eruption 

occurred in ancient period at Campi Flegrei described by contemporary reporters 

is the eruption that generated Monte Nuovo, a little volcanic cone with elevation 

of 150 m near Pozzuoli. We know that Monte Nuovo represents one of the minor 

events of the eruptive history of Campi Flegrei, consisting in the eruption of a 

relatively small volume of magma (about 25 millions of m
3
). Reading 

contemporary chronicles it is possible to assess the existence of remarkable 

bradyseismic events during the period before the eruption.  

At the beginning of XVI century the area between Baia and Pozzuoli developed a 

progressive elevation, evidenced by the migration of the coast line. This 

bradyseismic phenomenon is confirmed by several seismic events occurred two 

years before the eruption of 1538 A.D. First interpretations of bradyseismic events 

were in 1792, when some scientists started to study the traces of marine organisms 

on the Roman column of Serapide Temple, the ancient market of Roman Age, 

near the Port of Pozzuoli. From that moment the variation of the sea level in 

Serapide Temple and in general of bradyseismic phenomena were interpreted in 

various ways. A good description is given by Parascandola (1947), where the 

author reconstructed the variations of level in Serapeo Temple relatively to the 

last 2000 years sea level. The reconstructed trend shows a general subsidence 

starting from the eruption of Monte Nuovo.  
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In the last 30 years bradyseisms at Campi Flegrei made often the news, because of 

an abrupt inversion of ground movement, characterized by two episodes of fast 

uplift occurred within a decade from one another. The first of this episodes 

occurred between 1970 and 1972 when the ground, accompanied by several 

earthquakes, raised about 70 cm in the Port of Pozzuoli.  

The most important episode occurred between 1982 and 1984 when a very fast 

uplift of the ground level was recorded (Fig. 5); this level didn’t change in the 

previous ten years but showed only few oscillations. The ground uplift started 

during summer 1982 and continued with a mean velocity of about 6 cm every 

month (but it pikes of 0.5 cm per day were recorded) until 1984, when the total 

uplift reached the value of 1.80 m. During the autumn of 1984 uplift velocity 

decreased, and at the end of that year inflation ended and a new phase of deflation 

started which continues today. Uplift episodes are also characterized by horizontal 

deformations whose value is approximately equal to the half of vertical uplift.  

 

 
Fig 5. Ground deformations in Pozzuoli from 1968 to 2012 (from Del Gaudio et al. 2010) 

 

Ground deformations in volcanic areas are generated by the rising of the pressure 

of the rocks at a certain depths; the expansion source depth is determined by the 

amplitude of deformed area. Ground deformations in Campi Flegrei, limited to a 
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circular zone with radius from Pozzuoli less than 3 km, showed a source centre at 

a depth of 2-3 km.  

In this area proposed causes for the deformations are: 1) the migration of hot 

flows under pressure (Oliveri del Castillo and Quagliariello, 1969; Casertano et 

al., 1976; Oliveri del Castillo and Montagna, 1984); 2) overpressure in a 

magmatic chamber (Corrado et al., 1977; Berrino et al., 1984; Bianchi et al., 

1987); 3) overpressure of the magmatic chamber and heat convective transfer to 

confined superficial aquifers (Bonafede, 1990; De Natale et al., 1991).  

The latter hypothesis is supported by De Vivo et al. (1989) controlla ed inserisci 

l’ultimo lavoro di De Vito et al., 2012) who suggest that ground deformations 

could be generated by the heating of the aquifers overlying the magmatic 

chamber. Heated fluids would remain under lithostatic pressure for long periods 

and the heat, supplied by continuous input of magma, could determine 

overpressure in the upper area confined by impermeable rocks, causing uplift of 

overlying rocks (positive bradyseism). A crisis would occur with a change from 

lithostatic to hydrostatic pressure, with consequent boiling, hydraulic fracturing, 

volcanic tremor and then pressure release. At this point the area would experience 

maximum rising, then followed by pressure release and beginning of subsidence. 

Afterward the system, saturated with boiling fluids, begins to seal again. The 

beginning of a new positive bradyseism phase will occur only after several years 

when the system “reloads” with new lithostatic pressure. Ground deformations 

and the seismicity are associated with the presence of intense fumarolic and 

hydrothermal activity, concentrated in the crater of Solfatara where CO2 
and H2O 

fluxes are particularly intense and probably originated by a magmatic degassing 

system (Chiodini et al., 2001).  

 

1.7 Solfatara Geological Setting 

 

The Solfatara volcano, about 2 km east-northeast of Pozzuoli, is a tuff cone (180 m 

above sea level) characterized by a sub rectangular (0.5x0.6 km) crater, shaped by 

NWSE and SW-NE trending faults (Fig. 6) along which the vegetation lacks. The 

volcano generated a low-magnitude explosive eruption that deposited a tephra 
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over a small area (<1 km2), named Solfatara Tephra, during phreatomagmatic and 

subordinate magmatic explosions (Di Vito et al., 1999). This tephra overlies the 

Monte Olibano and Accademia lavas, both younger than Agnano-Monte Spina 

Tephra (4.1 ka), and underlies the Astroni Tephras (3.8 ka), from which it is 

separated by a thin paleosoil containing many charcoal fragments. 

 
Fig 6. The Solfatara crater. The photo evidence the degassing area (white area) and the structural features: 

main faults depicted as red lines, craters as green dashed lines and the marine terrace of “La Starza” as 

white dashed line (from Isaia et al. 2010). 

 

The Solfatara Tephra comprises a phreatomagmatic coarse breccias overlain by a 

sequence of stratified, dune-bedded deposits composed of accretionary lapilli-

bearing ash surge layers, alternating with thin, well sorted, rounded pumiceous 

lapilli beds pyroclastic pumiceous fallout beds. The breccia contains large blocks 

of green tuff, altered lavas and dark scoriaceous bombs engulfed in a 

hydrothermally altered matrix. The scoriae of the basal breccia are porphyritic 

containing crystals of sanidine, plagioclase, clinopyroxene, biotite and Fe-Ti 

oxides, in order of decreasing abundance. Rare crystals of leucite converted to 

analcime are also present. The late erupted pumice fragments are alkali-trachytic 

in composition, crystal-poor to subaphyric pumice (upper sequence), and contain 
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rare crystals of plagioclase. A thin massive fallout layer, grey to yellowish in 

color, consisting of fine-to-coarse ash with scattered pumice clasts and 

interbedded pumice beds represents the distal counterpart of the Solfatara Tephra. 

It is a deposit dispersed towards the north-east with a minimum measured 

thickness of 5 cm at Verdolino, at about 7 km from vent. 

 
Fig 7. - CO2 fluxes in December 1998 (a) and in July 2000 (b) and main structural features within the 

Solfatara crater. Contour lines of log CO2 were drawn by ordinary kriging, every 0.2 g m−2 day−1. 

Modified from Chiodini et l. (2010). 

 

The crater of the Solfatara has been the site of an intense hydrothermal activity 

since Greek times. It is the most impressive manifestation of the present 

hydrothermal activity of the caldera, which includes both focused vents, with a 

maximum temperature of about 160°C (Bocca Grande fumarole), and large areas 

of hot steaming ground. The average molar composition of the fluids is H2O about 

82 %, CO2 17.5%, H2S 0.13% and minor amounts of N2, H2, CH4 and CO. 

Systematic measurements of the gas fluxes from the soil evidenced up to 1500 

tonnes/day of CO2 emission (Chiodini et al., 2001) through the main fault system, 

coinciding with temperature up to 95°C (Granieri et al., 2010); the degassing area 

is enlarging since the first analytical campaign (Fig. 7). The isotopic compositions 

of H2O, CO2 and He suggest the involvement of magmatic gases in the feeding 

system of the fumaroles. Subsequently the original magmatic gases are condensed 
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by an aquifer system as suggested by the absence of the soluble acid gases SO2, 

HCl and HF, typical of the high-temperature volcanic gas emissions. Boiling of 

this heated aquifer(s) generates the Solfatara fumaroles. Based on geochemical 

data, the hydrothermal system at the Solfatara crater consists of a heat source, 

possibly represented by a relatively shallow (few kilometers deep) magma batch, 

a geothermal system located above the magma, and the shallow hydrothermal 

system. 

In the Fig. 8 (Chiodini et al., 2010; Troiano et al., 2011) is shown a diagram of 

operation of the hydrothermal system of Solfatara obtained from the comparison 

of the results of previous studies and simulations physical-numeric. In particular, 

the figure 8 shows the expected temperatures and the relationship vapor-liquid 

made the approach to physical conditions stable, after 2000 years of simulated 

injection of steam and carbon dioxide at 350 ° C and with a composition similar to 

that of fumarolic fluids obtained  before bradyseism crisis of 1982 - 84 and with a 

flow rate similar to that measured currently Solfatara. The numerical simulations 

predict the entire center column of fluids upward, below the injection zone, the 

presence of a vapor phase separate, either as a single area in the gaseous phase (as 

mea 1500-1400 300-100 m depth ) or as an area in two phases (gas-liquid). In this 

central area of the plume, the flow moves from an area of high temperature, near 

the injection zone, a zone consisting of a single gaseous phase at temperatures 

from 190° C to 230° C in agreement with the zone of steam indicated by the 

geochemical analyzes. 

An important issue for discussion is the implication of this new geochemical 

model for fumaroles of Solfatara surveillance geochemistry of the Phlegraean 

Fields. During the last 24 years of monitoring of the geochemical composition of 

the fumaroles the ratio of the concentration of CO2/H2O showed three clear peaks 

in 1985, 1990 and 1995 which was followed a few months later, a lifting of the 

ground. According Caliro et al. (2007) these peaks reflecting the composition of 

the fumaroles rich component of magmatic, probably due to episodes of degassing 

of the magma in depth during periods of lifting the soil. 

Other physical and numerical simulations have shown that periods of intense 

degassing of fluids rich in CO2 can explain other relevant characteristics of the 
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crisis of 1984, 1990 and 1995, such as ground deformation and gravity anomalies 

(Todesco et al., 2004; Todesco and Berrino, 2005). After 2000, the ratio of the 

concentration of CO2/H2O fumaroles showed no peaks but a slow upward trend 

still underway. This different behavior of the composition of fumarolic reflect a 

change in the style of degassing at depth. If this growing trend is the ascending 

portion of fluids rich in CO2 then this is easily relatable to an episode of 

outgassing from the deepest portion of the magmatic system. Alternatively, this 

behavior could be related to a magmatic source that Degas constantly compared to 

isolated periods as previously thought. In particular a slow lifting of the soil is 

started in 2004 and continues to this day and is characterized by a deformation 

longer and slower than previous episodes of lifting (Troise et al., 2007). 

Cioni et al (1989) suggest that the relationship CO2/H2O behave like a true 

precursor of the crisis of 1984 as it was thought that a geochemical indicator for 

monitoring the boiling hydrothermal confined aquifer. 

In this first interpretation, the decrease in the ratio CO2/H2O observed 

before the crisis of 1984 and even before the smaller crisis that followed, it could 

indicate an increase in the boiling process and overpressure of the aquifer due to 

an increase in the flow of heat from magmatic body. Unlike Caliro et al. (2007) 

show that the ratio CO2/H2O is controlled by the mixing zone of magmatic gases 

and liquid of meteoric origin. The decrease of the ratio CO2/H2O corresponds to 

periods in which there is a low flow of magmatic component and underpressure of 

hydrothermal plume in agreement with the subsidence of the soil always 

accompanied by periods of decrease of the ratio gas/vapor. 
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                   Fig 8. Geochemical conceptual model of Solfatara modified after Caliro et al (2007),  

                   considering results from simulation (Chiodini et al., 2010; Troiano et al., 2011). 

 

At the present the Solfatara is one of the most active geothermal areas where the  

geochemical surveillance of the chemical compositions of both the fumarolic 

fluids than the CO2 fluxes from the soil. Strong variations involving both main 

and minor gas species were observed during the bradyseismic crises in 1982–

1984, 1989, 1994, and 2000 and minor in most recent years. The monitoring 

activities highlighted a strong correlation between chemical compositions at the 

fumaroles, seismicity and ground movements (D’Auria et al., 2011), likely as the 

results of periodic injections of hot CO2-rich fluids at the base of a shallow 

hydrothermal. 
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1.8  Recent seismicity: the 07.09.2012 event 

 

Since 2005 there is an uplift of the CFc, at different speeds, with a total rise of 

about 15 cm and a speed increase during the end of the 2012. Previously the area 

was characterized by a slow decrease began in 1985, when it ended the crisis that 

began in 1982. This crisis saw an increase in total soil greater than 1.5 meters in 

Pozzuoli. These movements were accompanied by earthquake swarms. Swarms 

have occurred since 2005 have been characterized by a degree of magnitude 

comparable to the current year. The Vesuvius Observatory, Naples section of the 

INGV, performs continuous monitoring of such phenomena using permanent 

networks for seismic measurements, ground deformation and geochemical, 

installed in the Phlegraean area.At 09:15 of September 7th 2012 began a seismic 

swarm at Campi Flegrei. There were about 200 events, all characterized by low 

energy, and only some felt by the population in the interested area. Those of 

greater magnitude, the maximum value of which did not exceed 1.6 Ml, were 

localized in the central area of the CFc (Pozzuoli). Major events occurred at 09:34 

(Ml 1.6), 10:03 (Ml 1.1) and 10:25 (Ml 1.5). (from bulletin of Osservatorio 

Vesuviano) 

 

 

2. GEOCHEMICAL MONITORING STUDIES 

 

2.1 Monitoring and sampling methodologies volcanic gases in discrete  

 

Gases dissolved in magma provide the main energy of volcanic eruptions, but 

only recently have been introduced new techniques for measuring the different 

types of volcanic gases released into the atmosphere. Sulphurous volcanic gases 

and vapors visible are usually the first things that people warn when visiting an 

active volcano. There are also a number of other invisible gases escaping from 

fumaroles, active vents and porous surfaces on the ground. These gases are 
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released, reaching the surface, both when the magma explodes and when this 

cools and crystallizes to below it. 

One of the main objectives of gas monitoring is to determine changes in the 

release of certain gases from a volcano, mainly carbon dioxide and sulfur dioxide. 

These variations can be used with other control data to provide warnings in case 

of imminent eruptions. The gas from most of the volcanoes are difficult to be 

sampled especially when the volcano is restless. In fact the direct gas sampling 

requires that scientists are positioned in the vicinity of fumaroles very hot or even 

within the crater itself. Often, intense and dangerous fumes, also accompanied by 

bad weather and the possibility of sudden eruptions can ensure that the sampling 

be hazardous or even impossible. Currently it seeks to address a very important 

challenge, and that is able to sample the acid gases such as SO2, easily soluble in 

water. Thus, volcanic eruptions with abundant surface water or underground water 

can prevent the scientists to measure the emissions of acid gases, even after the 

explosive eruptions. Since CO2  is less likely to be masked by the presence of this 

water is measured when the volcano begins to be restless and this can be 

important to determine if there is a significant degassing of the magma.  

The direct sampling of gases escaping from fumaroles is currently the only way: 

(1) to fully characterize the composition of the gases emitted by volcanic 

eruptions, and (2) to collect the data needed to determine the origin of certain 

gases.  

As in all types of volcanic monitoring is important to identify the phenomena 

typical of precursors of an impending eruptions; therefore is fundamental to 

record  a large amount of data  of volcanic gases during the quiescence period in 

order tto determine the normal geochemical compositions of baseline so that they 

can be distinguished from a future anomalous geochemical signal that could 

instead indicate an imminent eruption. 

The volcanic gases are one of the most important sources of information on the 

current degassing from the interior of the Earth. The chemical nature of these 

gases is highly variable, and not only differs from volcano to volcano, but also 

from fumaroles fumaroles. 
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Recent surveys carried out fumarolic fluids began in France in the second half of 

the eighteenth century in which they classified the fumarolic emissions manly into 

three types (Scandone, Giacomelli L., 2004) 

a) high temperature (fumaroles dried), T = 1000 ° C; 

b) average temperature (fumaroles acid), T = 300 ° C; 

c) low temperature (fumaroles neutral), T = 100 ° C. 

Often, the number of samples collected for each area is insufficient to provide a 

full spectrum of chemical and isotopic data that you want. In the past, the 

geochemical studies on volcanoes has been widely discontinuous, thus implying 

the collection of a large amount of data for periods of time too short. In many 

cases, these data represent only brief moments in the life of a volcano and are 

insufficient to provide a complete model of its geochemical behavior. The 

volcanic gases during the migration to the surfacare, are subject to processes of 

expansion, cooling, and oxidation. Therefore, all samples collected at fumaroles 

represent only the fraction of low pressure gas originating, which has probably 

interacted with the shallow hydrothermal system. Furthermore, phase changes 

may occur due to sublimation and condensation. The volcanic volatile phase is 

therefore divided into two components: the volcanic gases emitted in a gaseous 

state and sublimated that, because of the cooling into the atmosphere come as 

solid phase or liquid. The latter are often deposited around the fumaroles.  

Before 1975, the sampling of the gas phase was carried out by entering the gas in 

a container in which it was possibly a vacuum. The method most commonly used 

currently is being developed by Giggenbach (1975) and involves the use of a 

bottle partially filled with a 4 N solution of caustic soda (NaOH). The container is 

attached to a dewar silica tube (to avoid condensation), inserted into another pipe 

silica or titanium that is placed inside the fumaroles. During sampling, the gas 

bubbling through the solution NaOH; the H2O condensate and acid gases (CO2, 

SO2, H2S, HCl, HF) are absorbed by the solution (Symonds et al., 1994). 

The non-condensable gases (H2, CO, CH4, COSN2, Ar, O2) are collected in the 

upper space of the container. In the laboratory are then analyzed the uncondensed 

gases through gas-chromatography, while the solutions are analyzed with various 

chemical techniques. 
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2.2 Geochemical Continuous Monitoring Techniques 

 

The measurement of flow due to degassing from the floor of the main volcanic 

gases involves measuring a wide area, typically using a mesh with a sampling 

interval of 10x10 meters across the main structures of the volcano which systems 

of fractures and rift zones that can be identified by geological maps or aerial 

photographs. Currently you can analyze up to 50-100 sites per day, thus allowing 

a more rapid localization of fractures of exit gases and the determination of their 

distribution and their chemical characteristics. The anomalies of the gas can be 

associated with fractures both hidden and visible, and their origin can be assessed 

by their geographical distribution, their chemical nature and their relationship 

with fluid sources and fumaroles in the area. The data can be used to produce a 

map of geochemistry (Lombardi et al. 1984) that shows the extension and the type 

of abnormalities of gas and their possible relationship with the presence of a 

reservoir of magma or hydrothermal localized in the subsoil.  

The volcanic gases coming from the soil (Fig. 9) are normally analyzed at depths 

of 0.1-0.7 meters below the ground surface, in order to minimize the effect of 

changes in the weather. 

The monitoring of degassing at Solfatara is achieved through the continuous 

operation of stations regularly measure the flow pattern in the selected sites. 

These monitoring stations measure the amount of CO2 released by the soil and the 

change of other parameters that can affect with it. 
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Fig 9. measure the amount of CO2 released by the soil (from Chiodini et al., 2001) 

 

2.2.1 Spectrometer in correlation COSPEC 

 

It's the most widely used technique to monitor SO2 emissions from volcanoes. The 

spectrometer uses correlation to the solar UV radiation as the source diffused into 

the atmosphere. The instrument (Fig. 10), through a system of calibration, 

measures the percentage of absorbed radiation dall'SO2 and estimate the 

concentration of sulfur dioxide along the optical path. The product of the 

absorption profile of the gas and the wind speed corresponds to the speed of 

emission of the SO2. 
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Measurements can be made either from the ground plane. However, high flows of 

SO2 emitted during explosive eruptions can not be measured with this method due 

to the absorption of light by particles of ash. This technique is used in the phases 

of stagnation between explosive eruptions or steps of degassing during the 

effusive eruptions. The SO2 concentration can also be measured using 

instrumentation installed on artificial satellites as one called Total Ozone Mapping 

Spectrometer (TOMS) for measurement of ozone in the atmosphere. The SO2 has 

a large absorption band at wavelengths around 300 υM, as well as ozone. We can 

then discriminate the contribution of ozone from that of sulfur dioxide, so as to 

estimate the amount of the latter emitted in the course of an eruption. The first 

case of use in the field of volcanology TOMS was carried out during the eruption 

of El Chichon in Mexico in 1982. The estimated annual emission of sulfur 

anhydrite from 1978 to 1992 (Bluth et al., 1993) gives a value of 4 million of 

tonnes per year (Krueger et al., 1993). 

 

 

Fig.10 - Spectrometer in correlation COSPEC (USGS) 
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2.2.2 LI-COR infrared analyzer: rate measurement of CO2 emissions 

 

The use of a small infrared analyzer of carbon dioxide (LI-COR), has become, 

recently, a standard method for the measurement of the emission rates of carbon 

dioxide. 

The LI-COR can be mounted on a small plane configured for the sampling of 

external air. The plume is traversed at different altitudes until the entire section is 

analyzed. From these data, one can calculate a rate of emission of carbon dioxide. 

This technique has been used by scientists at the USGS volcano Popocatepetl in 

Mexico in 1995. 
 

 

      Fig. 11 - LI-COR infrared analyzer 

A typical set-up inside of an aircraft comprises the LI-COR analyzer of carbon 

dioxide and a unit of flow control, a GPS receiver, and laptop computer for 

performing data acquisition software. 
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2.2.3 FTIR (Fourier transform infrared spectrometer) 

 

A further technique for the measurement of volcanic gases involves the use of a 

Fourier transform system with infrared (FTIR) (Fig. 12). The FTIR is able to 

simultaneously analyze more gases with a path opened or closed. The open 

method uses an optical path such as to point the telescope toward a FTIR gas 

source magmatic placed at a certain distance. The source of infrared light is 

simply the natural sunlight. The method of the closed path implies instead of the 

emission gas that comes from a plume or fumarolic gas passes through a cell 

located within the FTIR. Recently, a prototype of a closed path FTIR has been 

used successfully at Kilauea volcano in Hawaii to measure the concentration of 

SO2. 

     Fig 12..  FTIR (Fourier transform infrared spectrometer). 

 

2.2.4 DOAS (Differential Optical Absorption Spectrometry) 

 

The DOAS system works by exploiting the principle that many species pollutants 

emitted into the atmosphere absorb energy, in a selective manner and 

characteristic for each of them, only certain wavelengths in the spectrum of 
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electromagnetic radiation ranging from the ultraviolet and infrared and therefore 

this absorption can be correlated to the amount of airborne substance. 

The DOAS system allows the automatic and continuous monitoring of the average 

concentrations of greenhouse gases into the atmosphere. 

The integrated computer system provides for the management and control of the 

instrumental parameters, acquisition of the frequency spectrum, the calculation of 

the concentration values and to data storage. The duration of the acquisition of the 

spectra is selectable according to the conditions of analytical sensitivity required, 

by some tens of seconds up to some minutes. The management software processes 

the measured spectra and comparing them with a library of reference spectra 

previously stored. Through this procedure, the computer program determines the 

amount of the test compounds and the margin of error (deviation) for each 

determination. 

The analysis result obtained is represented, for each pollutant, from the average 

value over the entire optical path, to which is associated a deviation value that will 

allow the validation of the entire analytical process. 

 

 

2.3 Geochemical Discontinuous data at the Solfatara and Pisciarelli from 

1996 to 2006 

 

The experimental studies performed at Campi Flegrei, especially the volcano 

Solfatara, are focused on the volatile component, as the study of their distribution 

in the primary magmas is useful for understanding the nature of volcanic 

eruptions and the interpretation of monitoring data hydrothermal activity. 

Since 1983 began on periodic sampling of the fumaroles at higher temperatures 

(BG, Large Mouth T = 160 ° C) of the Solfatara of Pozzuoli, and subsequently 

began systematic sampling of fumaroles BN (Bocca Nuova crater of the Solfatara, 

data from 1995) and Pisciarelli (data from 1999). 
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Fig.13  – Solfatara volcano, fumarole BG 

 

 
Fig 14. – Solfatara volcano, fumarole BN 
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The following table shows the number of samples taken at discrete for each year 

from 1996 to 2006 to the fumaroles of Bocca Grande (BG), Bocca Nuova (BN) 

and Pisciarelli (PISC). 

Anno BG BN PISC 

1996 8 0 0 

1997 10 1 0 

1998 9 8 0 

1999 6 8 3 

2000 16 38 6 

2001 9 9 2 

2002 12 12 3 

2003 13 12 5 

2004 12 12 5 

2005 14 11 6 

2006 13 13 10 
Table 1 - Number of samples taken at discrete from 1996 to 2006 (Unit Functional Fluid Geochemistry - 

INGV section of Naples, Vesuvius Observatory) 
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3.  A CONTINUOUS GEOCHEMICAL MONITORING AT PISCIARELLI: 

METHODS OF STUDY 

 

3.1 Field Studies: Pisciarelli geological setting 

 

The Pisciarelli area is located slightly outside the caldera rim of the Solfatara with 

NO direction. This area is characterized by the presence of fractures and is 

affected by phenomena of emission of gases and fluids. 

The main component of the fumaroles is H2O followed by CO2 and H2S and with 

a range of temperature between 100-110 °C (Chiodini, 2009)  

During field surveys in the Pisciarelli made during the year 2006 were observed, 

compared to similar surveys conducted in the past (the year 2005), changes in the 

most affected by the phenomena of gases and fluids. Particularly in the first 

characterized by several point sources of emission of fluids. In addition, along the 

eastern side of the small hill to the east of this place pool have increased the points 

of greenhouse gas emissions. Fractures are mostly trending N110-120E and the 

area is dominated by two main features NWSE and NE-SW. Also were not 

observed accumulations of material from surface gravitational movements of 

recent formation. 24.10.06 The day the area has been the subject of an initial 

investigation with camera 

Portable thermal, both for carrying out a first thermal relief that identify a 

favorable area for the installation of a thermal fixing station. On 30 October, the 

station has been installed TIR Mobile (TITANO: Thermal Infrared Transportable 

Apparatus for Nearby Observation). the average distance is about 150m field of 

view which shows an average resolution of pixels of about 15cm. From that date 

shall be acquired and the control unit of the network TIIMNet 6 images at night. 
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3.1.1 Gas emissions in the locality Pisciarelli - March 2009 

 

In surveys carried out in the Pisciarelli days 09/03/09 and 10/03/09 were observed 

important changes in the area most affected by the phenomena of gases and fluids, 

compared to similar surveys conducted in the past (late 2005 and 23.10. 2006 

surveillance Report November 2006). 

A first variation had been detected already in October 2006, when in the first 

characterized by several point sources of emission of fluids has been found the 

presence of a pool of boiling water (condensed fumaroles) wide and about 3 m. 

During the inspections carried out on the dates 9 and 10 March 2009 was 

observed the formation of an additional pool of boiling water that is larger than 

the first (diameter 6.5 m). The presence of mud in the walls of the escarpment 

adjacent to the new emission suggests that the emission is formed by a sudden 

event and rapid, similar to a phreatic explosion of entities very weak. The event 

took place in the afternoon of Friday, March 6, when the Vesuvius Observatory 

operators in the area had not detected the presence of the new issue, and on the 

morning of March 9 when it was first reported. During the inspection it was 

decided to sampling of fumaroles adjacent (systematically sampled since 1999) 

and the liquid output from the spring. (Chiodini et al. Since preliminary report, 

Vesuvius Observatory INGV-Naples, Functional Unit Fluid Geochemistry, 2009). 

 

3.2 Construction of the gas-line monitoring station (May 16-30 2012, June  1-

5, 16-23 2012) 

The on-line gas monitoring station  is localized close the fumaroles field (100mt). 

The equipment used in the on-line monitoring station consists of a Quadrupole 

Mass Spectrometer (Pfeiffer Omnistar©) for on-line gas analysis a field computer 

and a data logger for data storage.  

Air condition was used to stabilize the temperature of the station and 1 UPS 

(Uninterrupted Power Supply) units were used for data retrieval in case of power 

cut off.  
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Silicon tubings, a temperature probe, an gas plastic trap and some additional 

devices (eg. Water trap, connection plastics, metal rings) were also used during 

the construction of the gas line between the station and the bubbling pool.  

 

 

3.2.1 Construction of the gas line: different experimental test 

 

Test 1 

For the construction of the gas line, a Teflon tube with 6 mm diameter was placed 

in the ground of the main fumaroles (T=114 °C) where gas was discharged. The 

gas was pumped by a membrane pump located in the monitoring station. We used 

one water trap to remove the condensation during the gas line. Nevertheless, in 

this test the temperature of the fumaroles was too high and the Teflon tube was 

blocked by steam.  

 
 

Test 2 

In the second test we sampled in a thermal pool close the main fumaroles. In this 

case we used an inverted gas trap inserted in the pool. Gas was pumped by the 

membrane pump but the problem we had was that the pressure in the gas trap 

became too high and in this case the gas line was blocked by the rise of mud along 

the Teflon tube. 
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Test 3 

In the third and last test we sampled in a fumaroles situated at a height greater 

than the other sampling points. This is because its lower temperature allows to 

have a lower condensation inside the Teflon tube. In fact the best results were 

obtained by considering this point of sampling.  

 

 
 

 

 

 

 

 

 

 



  40

3.3 Installation of the Quadrupole Mass Spectrometer  
 

After setting up all the electrical connections, the QMS and the computer were 

turned on. 

After turning on the QMS and waiting for some time for the Turbo Molecular 

Pump to reach its maximum speed, we were ready to begin monitoring gases from 

the pool/fumarole. For the operation of the QMS the Quadstar software were 

installed on the computer. The Quadstar program generated daily files consisting 

of gas compositions (vol.% and ppm). 

During the routine field visits performed nearly within weekly intervals, the data 

regarding the gas composition measured by the QMS recorded by the computer 

were all downloaded and compiled in separate daily EXCEL files. The QMS was 

arranged to analyze the composition of gases in every one minute. 

 

 
3.3.1 Calibration of the QMS  
 
For quantitative analysis, the QMS was calibrated with air, pure CO2, and 

certified gas mixtures, the composition of which are selected according to the 

expected nature of gas. With calibration, the measured ion currents are put to a 

solution matrix and the individual concentrations of the components in the gas to 

be analyzed are determined via calibration factors. For calculating the gas 

concentrations from ion currents, the mass spectrometer sensitivity for the 

individual gas components must be known. Those relative mass spectrometer 

sensitivities are determined by the measurement and stored as calibration factors. 

Calibration gas files were prepared via the PARSET menu of the Quadstar 

software. After the preparation of the calibration files, from MEASURE menu, the 

QMS was calibrated with air and the calibration gas. With these calibrations, a 

table containing the gases and their respective calibration factors was generated. 

During air calibration, the capillary of the QMS was disconnected from the gas 

line and exposed to air. Air was used to calibrate for Oxygen, Nitrogen, and 

Argon. As internal standard, Ar was used.  



  41

During calibration with gas standards, the QMS was disconnected from the gas 

line and then connected to the calibration gas flask. After establishing the 

connection, the “dead volume”, i.e. the space between the inlet capillary of the 

QMS and the calibration flask was evacuated by using the QMS for some time 

until a pressure inside the chamber of <10-7 mbar was achieved. Then the 

calibration gas flask was opened to the QMS for measuring. Once calibrated, the 

QMS was ready to proceed with the quantitative analysis. 

 

3.4 Online Monitoring data evaluation 

 

As a first step before data evaluation, the seismic events data were all compiled. 

The seismic data were routinely compiled from the website records of the 

“Osservatorio Vesuviano” (Fig. 15). The raw data (comprising gas compositions 

(in ASCI format), and pool temperature) from the QMS and the data logger were 

all gathered in separate monthly files using the EXCEL software. The data files in 

EXCEL were then transformed into temporal variation diagrams for every single 

monitored parameter using the GRAPHER (graphical design) software. 
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Fig 15 - Seismic data from Osservatorio Vesuviano 
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4.  GEOCHEMICAL EVIDENCE FROM DATA SET MAY-JUNE 2012: 

CO2/CH4 RATIO AS POWERFUL TOOL TO DETECT MAGMA 

DEGASSING EPISODES AT CAMPI FLEGREI 

 

The best result obtained during the development of the continuous monitoring 

system has occurred during the months of May-June 2012. In particular from 16th  

May to 5th June have occurred the best conditions for performing the continuous 

extraction of gas 24 hours a day. In the following it  will be discussed the 

geochemical composition trends from the Pisciarelli degassing field  as well as the 

main relationships of  good tracer of magmatic fluids injection such us CO2/CH4  

and H2S/CO2 

Methane is a gas species which differentiates in hydrothermal systems, where it is 

present in relatively high concentrations, from high temperature volcanic 

magmatic fluids where it is normally absent or present in very low concentrations. 

Measured CO2/CH4   in fumaroles from 23 hydrothermal systems on the world 

range from 10 to 104 roughly in agreement with the theoretical values expected 

for a gas phase in chemical equilibrium at temperatures from 200°C to 400°C and 

redox conditions fixed by hydrothermal buffers (Chiodini and Marini, 1998).  

The CO2/CH4   is a good tracer of magmatic fluids injection because CO2 

concentration increased, due to its  the higher content of the magmatic component, 

and CH4, a gas species formed within the hydrothermal system, is lowered both 

by dilution and by the more oxidizing, transient conditions caused by the arrival 

of SO2 into the hydrothermal system (Chiodini, 2009, Chiodini 2012). This 

opposite behaviour causes rapid increases of the CO2/CH4 ratio in fumarolic fluids 

like it showed by the following figure (Fig. 16) 



  43

CO2/CH4

2000

2500

3000

3500

4000

4500

5000

5500

6000

CO2/CH4

  16/05              19/05             24/05               27/05              01/06              04/06              08/06  

Fig 16. CO2/CH4 ratio from 16/05/2012 to 05/06/20 measured by Quadrupole  Mass Spectometer 

This trend seems to be confirmed by the data of GPS ground deformation (Fig. 

17) that show a general tendency to uplift with an acceleration of the phenomenon 

in the period spanning from June to August 2012 (25 mm/month in average) and 

increasing during the last month beginning on December 2012 (10 mm/month). 

 
Fig. 17 ‐ GPS ground deformation (from Osservatorio Vesuviano website) 

The total lifting  from January 2012 is about 8 cm. The black points represent 

weekly averages calculated with the GPS final products.  

In general systematically every ground inflation corresponds to an increase of 

CO2/CH4, and systematically a decrease of the ratio accompanies any deflation for 
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each of the four minor bradyseisms in the last 25 years (Chiodini 2009).As shown 

by the results of Chiodini et al. (2008)  (Fig. 18) the progressive increase of the 

CO2/CH4 ratio starts from 2000: 

 

              

Fig. 18 - CO2/CH4 ratio (from Chiodini et al., 2012) 

Therefore, the numerous CO2/CH4 peaks observed at Solfatara fumaroles can be 

interpreted as the result of the injection of new magmatic fluids into the 

hydrothermal system, a process that occurs some time before the geochemical 

signal is observed at the surface. 

Another geochemical parameter particularly important as tracer of magmatic 

fluids injection is the H2S/CO2 (Chiodini et al., 2012) (Fig. 19) 
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Fig 19. H2S/CO2 ratio from 16/05/2012 to 05/06/20 measured by Quadrupole  Mass Spectometer 

In this case the ratio H2S/CO2 shows a constant trend without showing significant 

variations during the measurement period. 

 

4.1 Geochemical evidence from previous data (January – June 2009) 

The methodology for continuous sampling of fumarolic gases by mass 

spectrometry in the Pisciarelli began in January 2009. During this initial phase of 

sampling data were acquired continuously from  24th January until the beginning 

of June. Then the measurements were interrupted for re-calibration and 

maintenance of the instrument. It should also be noted that the hydrothermal 

system that characterizes the area has undergone several times Pisciarelli changes 

in the composition of the fumaroles (richer in H2O) which led to the 

implementation of changes in the line of gas extraction. During the first 

measurement period there was an increase in the ratio CO2/CH4 followed by a 

progressive decrease from the end of April (Fig.20). This type of behaviour could 

indicate a lower contribution of magmatic fluids in the shallow hydrothermal 

system. 
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Fig 20. CO2/CH4 ratio from 24/01/2009 to 05/06/2009 measured by Quadrupole  Mass Spectometer 

also the H2S/CO2 ratio (Fig. 21) does not seem to show significant variations 
during the same  period of  measurement. 
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Fig 21. H2S/CO2 ratio from 24/01/2009 to 05/06/2009 measured by Quadrupole  Mass Spectometer 
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5. DISCUSSION AND CONCLUSIONS 

This  innovative methodology  of continuous monitoring, which doesn’t replace 

the traditional sampling using vial, allowed us to acquire more frequent data of 

gas composition  in the fumarolic and degassing area of  Pisciarelli. Taking into 

account some interruption  in the time series of data it was possible to compare 

the behavior of the shallow hydrothermal system in two different periods. The 

first period (January-June 2009 Fig. 20 and  21) is characterized by changes in the 

concentration of  fumaroles not particularly meaningful to bear witness of a period 

of quiescence without a significant contribution of magmatic fluids. This is 

confirmed, in particular, by an increasing presence of methane (Fig.22) in the gas 

hydrothermal and from valuesof the concentrations of He in the norm (Fig.23). 
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Fig 22.- CH4 trend (2009) 
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Fig 23 – He trend (2009) 

The second period (May-June 2012), in agreement with the recent changes in the 

activity of the Phlegraean Fields also recorded by other geophysical parameters, 

shows that a rapid decrease in methane concentration in fumarolic composition 

and values of He progressively increasing. This behavior confirms a greater 

contribution of magmatic fluids in the hydrothermal system, resulting in alteration 

of the composition of the fumaroles that characterize the overhead Solfatara and 

Pisciarelli, earthquake swarms more frequent and raising the ground level. 
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Fig 24 – CH4 trend (May-June 2012) 
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Fig 25 – He trend (May-June 2012) 

 

5.1 Implication for the Campi Flegrei unrest and eruption forecast 

A new unrest phase started in 2004 and is followed by our measurements since 

2009. It involves large geochemical signatures, with increase of several volcanic 

gases, with relatively minor ground deformation and seismicity. 

It is consistent with an extensive fracturing of the caldera volume, caused by past 

unrests, with a consequent increase of the connection between deep fluids and 

shallow aquifers. This implies we should expect, in the future, less prominent 

uplift and seismic events, and more marked geochemical indicators as eruption 

precursors. A continuous, multi-gas geochemical monitoring as the one we 

developed, is then even more crucial for volcano monitoring, interpretation and 

forecast. 
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6. CONTINUOUS GEOCHEMICAL MONITORING BY MASS-
SPECTOMETER AT THE MUD GASES DURING DRILLING OF 

CFDDP PILOT HOLE 
 

 

6.1  The Campi Flegrei Deep Drilling Project: introduction 

The Campi Flegrei Deep Drilling Project (CFDDP) is an International scientific 

research project aimed to the understanding of volcano dynamics at Campi Flegrei 

caldera, and of the mechanisms causing the unrest phenomena associated to large 

uplift and subsidence (called bradyseism). The Project involves two drillings; the 

first one, already in progress, will reach 500 meters of depth (pilot hole); the 

second, to be planned, will reach a depth of about 3.500 meters. 

The pilot hole is mainly aimed to study in detail the stratigraphy and eruptive 

history of the easternmost caldera border, which is the less known at depth for 

lack of previous drillings. This area is also the highest risk one, due to the extreme 

urbanisation and population density. Furthermore, the pilot hole will be used to 

install the new ‘Campi Flegrei Deep Observatory’ (CFDO), hosting innovative 

sensors to monitor volcano dynamics and unrest episodes with a much higher 

sensitivity (above 1000 times more) with respect to the present surface sensors. 

The deep drilling will be mainly aimed to study the mechanisms generating 

volcanic eruptions and unrests in the area, by ‘in situ’ measurement of the main 

mechanical and fluid-dynamical parameters of deep rocks. Furthermore, 

measuring the temperature gradients in the deeper part of drilling, the depth of 

magma chamber will be inferred. 

A more general goal of CFDDP is to focus International interest on the volcanic 

risk and on environmental, cultural and energy resources of Campi Flegrei. This 

area has the potential to become a large natural laboratory to plan and testing 

innovative technologies for environmental monitoring and sustainable 

development. 
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6.2  The pilot hole site 

The drilling site dedicated to the first phase of the CFDDP project (500 m deep 

pilot hole) is the former industrial area of the ILVA Bagnoli (Fig. 26), currently 

managed by the company “Bagnoli Futura”. This is a restored area, chosen for the 

pilot well for several scientific and logistic reasons. This site is, indeed, at a 

sufficient distance from the houses to ensure no disturbance in terms of noise and 

no interaction between the drilling activities (and the drilling risks) and the nearby 

population. From the volcanological point of view, the site is of great interest 

because it is one of the least explored areas (from past drillings), although 

representing the most urbanized part of the caldera, and then the most risky one, 

including the metropolitan area of Naples.  

 

Fig. 26 – Panoramic view of Bagnoli 

 

6.3  Drilling updates 

The drilling reached a depth of 222,5 mt at the end of July 2012. Since July 2012 

the drilling activities was temporarily suspended. They started again on November 

12th with a new rig, technologically more advanced than the one used in the first 

phase. In the first week of December, the maximum planned depth of 500mt was 

been reached and all the activities in the area was end. Before the drilling kick off, 
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in the area of “Bagnoli Futura” were installed tools for the monitoring of micro-

horizontal and vertical ground deformations. The drill was equipped with sensors 

for the continuous control, within the well, of all the parameters (pressure, 

temperature, gas  emission etc..) necessary to ensure maximum security of drilling 

operations. The wellhead is provided a double “blow-out preventer” a device 

which ensures maximum hermeticity  of the well, even in the case of uplift of 

fluid/gases under pressure. 

 

Fig. 27 – Deep Drilling by night 

We did not detect any technical problems during the drilling. A logging of the 

well was ran by Schlumberger, which is one of the major company owner of 

special sensors able to be lowered into a well. These instruments will be used to 

precisely define the main physical parameters of the rock, and compare the results 

with those of the stratigraphy that volcanologist drown based on the cuttings 

coming out from the well during the drilling. 

The next step, at the end of the drilling, will be to install technologically advanced 

sensors  inside the well to measure the temperature, the ground deformations and 

seismicity. These measure will be very useful for the identification of precursors 
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of a possible eruption.       

 

6.4  Geochemical monitoring 

The continuous geochemical monitoring system during the drilling provides the 

extraction of gas, through gas trap contained within the mud drilling and 

subsequently analyzed by a quadrupole mass spectrometer. 
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The gas extracted is carries by means of a diaphragm pump, along a short path 

through a Teflon® tube inside a cabin Mud-logging, located near the drilling 

point, and subsequently analyzed by the mass spectrometer. The gas measurement 

is repeated cyclically every minute and the following main concentrations are 

analyzed: CO2, CH4, He, H2, N2, O2, Ar and 36Ar. A further amount of gas is 

collected in Pyrex® sampler, in average each five meters of depth, to be analyzed 

in the laboratory either for gas concentration than for isotopes gas composition. 

(i.e. C and noble gases isotopes). 

 

6.5  Results 

The preliminary results concerning to the mud gas monitoring of the first 222 

meters of drilled depth allowed us to constrain the chemical evolution of the main 

gas concentrations in relation with the depth. In particular the following graphs 

obtained show variations of CH4, CO2 and He in correspondence of lithological 

transitions detected at different depths. 

 

 

Fig 30 - Gas composition vs. Depth 
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An evident change in the gas composition is found at a depth of 50 meters where 

have been found abundant organic matter originated from plant fragments that 

could explain the decrease in the CO2 concentration and increase in the value of 

CH4 (up to about 330 ppm Vol.) and moderate He increase (up to 6.8 ppm Vol.). 

At a depth of about 75 meters was observed a rapid increase in CO2 probably 

linked to the presence of a turbiditic a level and almost constant He and CH4 gas 

composition. 

Further changes can be observed at different depths between 100 and 175 meters 

maybe corresponding to the alternating of lithological facies at the present still 

under detailed study. Finally, a change in the composition of the gases released 

during drilling about 200 meters, could explain the transition between pumice and 

scoriae. 
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