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Introduction

Marine organism growth has been the focus of increasing interest, over recent years, among marine
biologists (Stolarski et al., 2007), (Goffredo et al., 2000). The goal of this work is therefore the problem of
estimating the growth of some very common marine organisms in the Mediterranean sea, belonging to the
family of corals, better known as solitary corals. Little is known about their growth mechanism and the
influence of environmental factors. Furthermore the coral reproductive ability depends on how fast they
reach the minimum size for reproduction.

The individual age of these corals may be estimated through their body size: standard age-based growth and
population dynamics models may be subsequently applied. Demographic parameters highlight relationships
between organisms and their environment, and contribute to the assessment of habitat stability; in addition,
information on population turnover may contribute to techniques for the restoration of damaged or degraded
coastal areas.

Due to difficulties and costs of recording the ages of corals, it is necessary to build up reliable growth
models to infer coral age from their body size. In fact corals have a truncated cone geometry and their
growth is isometric. Since growth depends on annual rings of calcium carbonate in coral bodies, the coral
body size is directly related to the coral age and the ring thickness, which is in turn related to genetic and
environmental factors. As a consequence, coral growth can be described as a function of several parameters,
having a biological meaning, linked to age by a non-linear relationship.

In biology, the estimates of such parameters are generally obtained by using different strategies of
linearization (see for instance Gulland and Holt ,1959; Fabenas,1965; Basso and Kehr,1991).

Biologists follow two main strategies for collecting data useful to estimate these parameters and
consequently the coral growth.

In the first one the sample consists of corals randomly chosen in the site under study; each coral is measured
repeatedly at fixed intervals of times in situ; the results are the mm/months of growth of each coral; then the

parameters describing individual growth are estimated by a suitable method. Finally, the parameters for the



population are subsequently estimated starting from the individual ones and a growth curve for the
population is finally constructed (Harper, 1977; Grigg et al. ,1984; Ross et al, 1988; Goffredo. et al., 2000).
In the second approach, the sample consists of colony of corals. Corals of different sizes of each colony are
random collected, measured and dated. Each coral is measured only once because collection and dating
causes the destruction of the coral. The growth curve for each colony is constructed using the dimensions of
the body size of corals at different ages. The parameters of the growth curve for the population are then
estimated by the parameters of the growth curve for each colony (Goffredo et al., 2000; Epstein et al. 2001,
Goffredo and Chadwick-Furman, 2003; Goffredo and Lasker, 2008).

Apart from the method used for collecting data, the estimate of the growth curve parameters is traditionally
is traditionally obtained by linear models that simplify non-linear relationships. The influence of
environmental factors is accounted for by their linear correlation coefficient with the parameters
(McClanahan, 2009; Goffredo and Caroselli, 2010; Harrell Yee and Barron, 2009; Soto et al., 2011). For
example, Goffredo and Caroselli (2010) assessed the influence of the sea surface temperature (SST) on coral
growth by finding a linear correlation between SST and estimated growth parameters in colonies located in
places having different SST.

The above approaches share two main drawbacks: first, linearization is introduced regardless the behaviour
of observed data, without considering the presence of variability in the body size of corals of the same age.
This could cause an error in the parameter estimates. Furthermore no connection is hypothesised between
the parameter estimate error at the coral (or colony) level, the parameter estimate error at the population
level and the error of the linear regression between the parameter and the environmental factors.

For these reasons we propose instead a non-linear mixed effect model with the aim to overcome all these
limits related to the estimation of coral growth and to obtain more reliable parameter estimates of the
population growth curve, in this case avoiding forced linearization.

In addition, a new parameterization of the coral growth curve is proposed in order to identify parameters that
are sensitive to the environment from those depending only on the genetics of the coral.

The dissertation starts in chapter 1 with an outline of the basic growth curves chapter 2 is focused on the

description of the curve used to describe coral growth, the reasons for choosing it and a summary of the
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traditional methods used to estimate the parameters of the curve; in the chapter there is also the description
of a new proposed parameterization for the curve. Chapter 3 describes the new approach using a hierarchical
nonlinear model is performed, whereas chapter 4 describes the data sets and the models using both
parameterizations of the growth curve. Chapter 5 shows the results of the traditional linearization methods
used in biology to estimate parameters; furthermore an estimate of the parameters using a nonlinear
regression is proposed. Chapter 5 presents the results for the nonlinear hierarchical model applied to both

parameterizations with and without considering the influences of environmental covariates.



1 The growth curves in Biology

1.1 The Growth Curve Model

Growth curve models are used to describe how a particular quantity increases or evolves over time and
consists of a sequence of data points taken at successive moments in time commonly spaced at uniform
intervals. These models are also used to identify the type of growth pattern of different populations and to
study the related variables in different fields of applications, for examples biology, ecology, demography,
population dynamics, finance, econometrics, where a lot of models are developed including: mechanistic
models, time series models, stochastic differential equations, etc.

In biology, growth is considered to be both related to the physical dimension and to the population of an
organism; it is considered to be a fundamental property of biological systems studied at the colony level
(group level), as well as for each organism (individual level). Growth curve models are based on
longitudinal data, so measurements are repeatedly taken on a response variable at different time points.
Different kinds of growth patterns have been used in the literature to model the various types of realistic
growth mechanisms. The first study pertaining to growth curves was presented by Wishart (1938) and
differences between growth curves were discussed by Burnaby (1966). A wide and organic discussion of
growth curve models (GCM) was introduced by Potthoff and Roy (1964) and subsequently expanded among
others by Rao (1965). Results lead to summarizing growth curve shapes into three different growth mode
categories: unbounded, bounded and bell-shaped curves (Figure 1.1). They behave similarly in early times
because the energy available is all used for t growth, then saturation starts to play a significant role. In fact
saturation is due to an increasing part of energy used to maintain the reached dimension and this process can
be very different among organisms. In bell-shaped curves, the increase eventually turns into decrease after
passing through a peak point: bell-shaped curves can be symmetric or asymmetric. However, the curves
displayed in Figure 1.1 have to be considered as examples, and there are a multitude of mathematical

functions available for each type of growth mode (Hook et al., 2011).



Figure 1.1 general growth modes
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1.1.1 Bell-shaped growth

Bell-shaped growth (Hubbert, 1956) includes a portion of time with a positive slope, an inflection point
which becomes also a maximum and finally a portion of time with a negative slope. Bell-shaped curves have
many different shapes and may be symmetric or asymmetric. They are often closely related to sigmoid
functions and commonly appear as their derivatives (H60k et al., 2011). These curves have frequently been
used in a wide array of disciplines, but initially were developed to describe and predict production growth in
biological systems (cell production) or in bioenergetics systems (fuel production). Hubbert (1956) was
among the first to formulate a basis for the extrapolation of finite resource production curves into the future
and bell-shaped growth curves were an important cornerstone in such framework. He assumed that
production levels begin at zero, before production has started, and end at zero, when the resource has been
fully exhausted. In between, production would pass through one or several maxima. Conceptually, all
resources are subjected to a physical limitation, due to the earth’s intrinsic finiteness. Such physical resource
limitations affect the general growth pattern. The limitation lies primarily in the maximum cumulative
production that can be reached. So after an initial increase the production reaches a maximum, then slows

down towards zero because of the finiteness of the resource. In biology they were developed to describe and
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predict growth in biological systems such as in organs of the human body that show degeneration or
involution: a typical example is the human brain which grows fast in children and slowly in adults; it reaches

its maximum development in adult age and then shrinks slowly until old age when shrinking occurs rapidly.

1.1.2 Unbounded growth

All forms of unbounded growth, regardless of their mathematical nature, are clearly not suitable in the long-
term. Linear growth is obviously slower than exponential growth but in the long run all unbounded growths
tend towards infinity (HO0k et al., 2011). Growth in economic theory is the most commonly used unbounded
model; in fact, growth is believed to continue forever, but these models can be interesting only if they are
studied over a “short” time (Bartlett, 1993 1999 and 2004) because models change according to different
economic conditions. Unbounded growth is supported by those who believe that the obvious physical
limitations of the earth do not necessarily imply an economic limitation (Simon, 1981); in fact conditions for
the economic growth are continuously changing so when a source of economic growth is ending it is
replaced by another one brought about by new technology or inventions or different behavioural patterns of
humans. Others believe that that natural resources are not needed for economic growth (Solow, 1974) or
even that human ingenuity can act as a powerful force capable of overcoming all possible physical

limitations (Radetzki, 2007).

1.1.3 Bounded growth

This growth model is subject to physical limitations that affect growth rates, making growth slow down over
time and asymptotically strive towards a maximum value (Janoschek, 1957; Beverton and Holt, 1957).
Bounded growth occurs in many cases, such as human growth, organ growth, population growth and finite
resource production. Growth may actually continue indefinitely but the rate of growth approaches zero as
time tends to infinity. This is well known in many biological systems where an organism may grow quickly
in its juvenile stage but then its growth slows down as it reaches maturity. The limiting factor lies rather in
the growth process itself than in the amount of resources available for the growth. The upper limit is reached

when all the available resources have been used to maintain the dimension achieved and there are no more
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resources left for further growth. In the biological sciences, this condition is often modelled as
proportionality between growth rate and actual size.

Sometimes these growth curves imply a rapid growth in the beginning, which later slows down; as in the
case of exponential growth curves they are commonly used to estimate the length of some organisms, or the
size of the skull and the brain.

Some curves have an inflection point (flex): the initial increase is slow therefore the first part of the curve
appears flat; then growth increases rapidly so the curve turns upwards sharply until a second slow increase
occurs, thus giving the curve a flat appearance again. An example can be found in sigmoid growth curves
where growth is slow at the beginning of the time of observation and at the end but faster in the central time
of observation.

The weight and volume of the body and of most organs show a sigmoid growth pattern initially, since the
rate of growth in mass is low but increasing. The growth rate reaches a maximum, which corresponds to the
inflection point in the curve, and then slowly declines to zero when the organism achieve their mature
weight.

Richards (1959) proposed a sigmoid function developed as a generalization of classical growth curves and
shown in Figure 1.2. This function is characterised by four parameters not very easy to interpret in many
applications. Moreover it converges less frequently than the curves that we describe in what follows,

especially if data do not already include the inflection point. It is actually used to fit data on forest growth.

Figure 1.2 Richards curve

18

14 -
12 A
10 -

oON b~ O ©
|

The function is
y(t)=L,(1-bek )™ 1.1

10



where y(t) is the dimension, L. is the asymptotic maximum, b depends on the difference between the
asymptotic maximum ant the initial dimension y(0), k is the growth rate and M shapes the way the
asymptotic maximum is reached and the position of the inflection point.

Other well-known sigmoid curves are the Gompertz curve (Gompertz, 1825), the logistic curve (Verhulst,
1838) and the von Bertalanffy curve (von Bertalanffy, 1938).

The Gompertz curve (Gompertz, 1825) is shown in Figure 1.3, and was developed for the calculation of
mortality rates. It is one of the most commonly used curves in growth mathematics and it is characterized by
slow growth at the beginning and the end.

Figure 1.3 Gompertz curve
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where y(t) is the dimension, L. is the asymptotic maximum, b sets the displacement along the abscissa and k

is the growth rate.
The Logistic curve, shown in Figure 1,4, was developed by Verhulst (1838) as a model for population
growth. It is characterized by an inflection point independent of measurements so it is often used for sigmoid

growth where the inflection corresponds approximately to one-half of final size.
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Figure 1.4 Logistic curve
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where y(t) is the dimension, L., is the asymptotic maximum, b sets the displacement of the inflection point
and k is the growth rate.

The von Bertalanffy curve is a bounded growth curve, derived from the von Bertalanffy Growth Law (1938)
and based on the balance by the energy income provided by “food” and the fraction of this energy used for
growth. The most common parameterisation of the von Bertalanffy Growth Law was described by Beverton
and Holt (1957) and consists of a Richards model with the M shape parameter equal to 1. In this curve,
dimension is a non-linear function of time based on 3 parameters, each with a physical meaning: maximum
dimension, growth rate, and time at which the coral size is equal to zero. Their role and importance are

discussed widely in the next chapter.
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2. The use of the von Bertalanffy curve to estimate the solitary coral

growth

2.1 Coral growth and problems of its modelling

Most simple marine organism populations are analysed considering individual body size. This measure is
fundamental, since all physiological processes are related to size, including rates of metabolism, foraging
and digestion (Peters, 1983; Calder, 1984). Body size is directly linked to life-history traits and individual
competitive ability (Fox, 1975; Arendt, 2007). For these reasons, a reliable estimate of the growth
parameters for a population of a certain area is important. In particular, the body size of corals is strictly
related to the reproductive activity because size has to be big enough to let the planulae get out of the oral
disk; where corals reaching the dimension of reproduction in early ages have more reproductive success.
Growth modelling and the analysis of intra-population patterns of body size variability over time are the
central topics in animal population biology, since the internal size structure of populations may have a
decisive influence on the population dynamics (De Angelis et al., 1993; Imsland et al., 1998; Uchmanski,
2000; Kendall and Fox, 2002; Fujiwara et al., 2004).

De Angelis et al. (1993) observed that model structure and parameter values are based on observations of
individuals, so the natural variation among individuals and the stochastic nature of their fates should be
incorporated in any model used. In this framework, the numbers of individuals necessary for estimation
needs to be high. This model produces a reliable estimate of the population response to environmental
variation only if data come from well-documented long-term studies of individuals belonging to the same
populations. Imsland et al. (1998), Kendall and Fox (2002) and Fujiwara et al. (2004) underline that a model
should incorporate population-specific data on ecological energetics, thermal and size dependence of
digestive physiology and metabolic rates, energetics of individual growth, allometric relationships, social
structure and mating system, and the dependence of mortality rates on age, size, and social status of
individuals. This means that individual-level processes are determined by the organism’s physiological state
and interactions with its environment, whereas the population state is the distribution of individuals over all

possible individual states.
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In general, the von Bertalanffy growth function (VBGF, von Bertalanffy, 1938) is the most widely accepted
relationship to describe the growth of fish and other marine organisms (Ricker, 1979; Cailliet et al., 2006).
The VBGF describes the relationship between age and mean length of a population, whereas the variability
among individuals of the same age (e.g. the variance or even the distribution of each cohort) is not included.

Each individual is born with a specific genetic constitution that, to a certain extent, controls its growth
profile (Sainsbury, 1980), but many physical and biological factors, such as water temperature (Sumpter,
1992), dissolved oxygen (Brett, 1979), photoperiod (Imsland et al., 2002), and the availability and type of
food sources (Rilling and Houde, 1999) affect the actual growth rates achieved. In addition, the plasticity of
phenotypes has been shown to be adaptive across environmental gradients (Conover and Munch, 2002;
Ernande et al., 2004). Therefore, a suitable growth model should take into account individual and
environmental variability.

In both ecological (Arino et al., 2004) and evolutionary (Conover and Munch, 2002; Ernande et al., 2004)
contexts, one of the challenges of researchers is to model how the body size of an individual changes over
time and to understand from the growth model what kind of probability distribution is suitable for the size of
an individual as age increases (Lv and Pitchford, 2007; Fujiwara et al., 2004). In corals, as in other animals,
the first source of variability is rooted in physiological processes and is the net result of two opposing
processes, catabolism and anabolism (von Bertalanffy, 1938). The inter-individual variability in growth is
the result of several internal (genetic) and external (environmental) factors, which affect these physiological
processes. Pilling et al. (2002) and Clarke et al. (2011) state that the estimate of the growth curve of a
population in each collection site is better performed by the growth model proposed for the size-at-collection
data than a repeated measure model on a sample of individuals; in fact a single observation per individual
better describes the mean growth parameters.

In fact, whilst each individual is born with a personal genetic architecture, which primarily determines its
growth profile, a number of physical and biological factors, such as water temperature, solar radiation, the
availability of appropriate food sources etc, have been shown to affect growth rates.

Differences in size among individuals that are established early in their life history can persist or be

amplified (Ricker, 1958) if growth is positively size dependent and if there are positive correlations in
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growth over time among individuals. The latter phenomenon is referred to as ‘growth autocorrelation’
(Pfister and Stevens, 2002) and is the reason for persistent growth differences among individuals. Similarly,
differences among individuals in size can dampen over time (Ricker, 1958) if growth is negatively related or
unrelated to size and there is no growth autocorrelation among individuals. The pattern of growth
autocorrelation may be the result of several mechanisms, including factors that are intrinsic to the
organisms, such as genetic or behavioural traits that confer performance differences among individuals (see
Fraser et al. 2001). Alternatively, factors extrinsic to organisms, such as environmental heterogeneity, can
cause persistent differences among individuals.

In conclusion, the underlying sources of growth variability in a population cannot generally be known. For
size-at-collection data the consequences of not accounting for individual growth variability, or assuming the
wrong source of variability, are less with respect to tag—recollection data, even when individual variability is
high or data coverage is poor. So to reach a reliable size-at-age estimation the best way is to estimate VBGF

parameters under a stochastic model using size-at-collection data.

2.2 The von Bertalanffy growth function for solitary corals

The main approach followed by biologists to obtain insights into metabolic phenomena is the study of the
metabolism as a balance of energies: the energy entering the organism from food, heat, radiation and the
energy necessary for feeding, growth, reproduction, maturation and maintenance. The mechanisms that are
responsible for the organization of metabolism are not species specific (Kooijman, 2000). This care for
generality is supported both by the universality of physics and evolution and the existence of widespread
biological empirical patterns among organisms. In particular the growth of isomorphic organisms with
abundant food is well described by the von Bertalanffy growth curve (Putter 1920; von Bertalanffy 1938).
The identification of the curve is based on the physical principle that mass and energy are fixed quantities as

starting points, so that the maintenance rate coefficient is the ratio between the cost of volume maintenance

Ewm and the cost of growth Eg (k,, :E—M) under the biological principle that maintenance has priority over
G

growth and maturity maintenance has priority over maturation or reproduction. This leads to the biological
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proposition that organisms of the same species have a maximum structural length L.. (Kleiber ,1947) All
these considerations point to von Bertalanffy’s law: the growth curve of an isomorphic juvenile or adult
individual with constant food availability or abundant food is then

dL
—=k(L,-L 2.1
5~ <(L-L)

The von Bertalanffy growth rate k is given by

-1
k =[1+Mj 29
Ky \Y%

where Ly, is the reduction in length due to the energy used for heating (L is the ratio between the cost of the
surface maintenance Es, associated mainly with heating, and the cost of volume maintenance Ey) and v is
the energy conductance (a measure of energy transfer efficiency).The set of parameter values is individual-
specific. Individuals differ in parameter values and selection leads to evolution characterized by a change in
the (mean) value of these parameters. However, it is important to underline that, in agreement with
Errore. L'origine riferimento non é stata trovata., L., and the growth parameter k are correlated; the von
Bertalanffy growth rate decreases, in fact, with ultimate length: different combinations of k and L., can give
almost the same fit to data, except when a wide range of ages is represented. Again, a high value of k
combines with a low value of L., and vice versa (Sparre and Venema, 1992).

The von Bertalanfty’s law (Putter, 1920; von Bertalanffy, 1938) is one of the most universal biological
patterns (Fraser et al., 1990; Strum, 1991; Schwartz and Hundertmark, 1993; Ferreira and Russ, 1994; Ross
et al., 1995) and can be considered the pillar of the laws describing the growth of organisms. Of course
complex organisms have interactions between the different parts of their body and with the environment, so
the description of growth only in terms of a physical law is very difficult. For simple organisms like corals
this law well describes the body growth and can be used also for organisms of the same species with
different food availabilities. In the latter case Kooijman et al. (2007) asserts that unlike
Errore. L'origine riferimento non é stata trovata., the logarithm of the von Bertalanffy growth rate

decreases with ultimate length,

1
In(k)oc— 2.3
()ocl_

16



The most common parameterization of the solution to the differential equation 2.1 is

y(t) =L, (1-e*tw)) 2.4
where y(t) is the dimension, L., is the asymptotic maximum, Kk is the growth rate and to is interpreted as the

age when an individual would have been of zero length.
Biologists use the von Bertalanffy model with size at birth equal to 0 to describe solitary coral growth; when
the size at birth is considered zero, thus t=0, the curve starts from the origin, and the

Errore. L'origine riferimento non e stata trovata. becomes

y(t)=L,(1-be ™)
From a biological point of view the VBGF has three meaningful parameters:

2.5

1. Lo is the mean length at birth (t = 0), which is species-specific and for solitary corals is universally
considered to be very close to zero

L, =0 orequivalently t,=0
2. L, is the maximum mean length achievable by the species, with set environmental conditions and food
availabilities, when t goes toward infinity.
3. k is the so-called Brody growth rate coefficient, but it is actually the exponential rate of approach to the
asymptotic size, his unit is the reciprocal of the unit time (e.g. year-1).
The main problem for biologists is then a reliable estimate of these parameters; the estimate should face two
basic matters: the strong correlation between the parameters and the potential influence on them of
environmental covariates which shouldn’t affect, in agreement with the metabolic theory, the ultimate length
Lco.
For these reasons, we propose a new parameterization able to capture the effect of environmental covariates
only by one parameter, isolating the role of the ultimate length L., and, in addition, to propose a method to

obtain reliable estimates of the two parameters of the curve.

17



2.3 The methods used in marine biology for estimating the von Bertalanffy
growth parameters

2.3.1 The Gulland-and-Holt (GH) plot

The GH plot (Gulland and Holt, 1959) is one of the most widely used methods in biology: it is based on

annualized growth rates plotted vs. mean length at first and second measurements. Indeed the von
L dL : : :
Bertalanffy growth curve implies that the growth rate (E) declines linearly with length.
This relationship between length and growth rate can be used to estimate the two parameters L., and k. In a
L . . . .
standard GH plot, the growth rate ?j—tof an experimental interval is plotted over the mean length in that

interval). The differential form is

L'(t):% = kLoo - kLmean = k (Loo - Lmean) 2.6
or in terms of growth increments per interval (length L; and L,);
L-L_ a+b(ﬂj
t,-t, 2 97
k=-b L=2-2
bk

For corals the mm/year growth is calculated for each individual and then plotted against the individual
length: the least squares estimation of the straight line parameters are then used to calculate L., and k.
This method has several limitations:
e it is adequate only if the time interval At=t,-t; is infinitesimal;
e it should be used only with follow up measurements, it is commonly used instead also with the
length-at-capture data;
e it does not take into account the correlation between L., and k;

e it does not take into account the possible influence of environmental parameters;

18



e it is a deterministic method which does not take into account any possible statistical fluctuation and

does not provide any confidence measure of the estimate.

2.3.2 The size-increment method proposed by Fabens

The size-increment method proposed by Fabens (1965), fits the von Bertalanffy model by the least squares
method to observed lengths, using data on known growth increments in known time intervals but making no

assumption about absolute age according to:

L, =Le*t+L (1—e*a) 2.8

where At is the time increment between the two measured points L and L;.4.

Indeed for corals the growth is measured for each individual at fixed intervals of time, so 4¢ is constant and
then a linear regression of L.t against L will generate a slope of e*Atand an intercept of L_(1—e ™).

This method has several limitations:

e it overestimates k and underestimates L., .The bias appears to be associated with a failure to account
for the redistribution of the error term when the basic growth equation is transformed to eliminate the
necessity of estimating age;

e it does not take into account the correlation between L., and k;

e it does not take into account the possible influence of environmental parameters;

e it does not take into account the level and the distribution of the error at the individual and

population of a colony level.

2.3.3 The linearization proposed by Basso and Kehr

The linearization proposed by Basso and Kehr (1991) fits the von Bertalanffy model imposing as L., the

largest size found in individuals of each species and then considering the linear regression between

In[l—LiJ as dependent variable and t as independent variable. So the estimate of k and kt, =L, is the

00

solution via the least squares method of the equation
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|n(-ij = -kt + ki, 2.9
L

The above models are stated as deterministic, while linearization is valid only considering a small

neighbourhood of the studied times, so nonlinear statistical methods can definitely improve the results.

2.4 Gallucci and Quinn parameterization

Gallucci and Quinn (1979) noted that comparisons of “growth" between two or several groups should
involve both k and L... However, because of the generally high correlation between these two parameters,
simultaneous hypothesis tests of these two parameters are non-standard and difficult to interpret. They
introduced a new parameter, w= kL., asserting that it is a sensible index to compare two or more growth
curves because it captures both the essential features of body-size growth. The new parameterization can be

then achieved, by solving for L., and substituting it In Errore. L'origine riferimento non é stata trovata.,
y(t)=%(1—e*kt) 2.10

In the same article Galucci and Quinn (1979) state that « can be thought of as a growth rate because the
units are in length-per-time, which, in fact, corresponds to the instantaneous growth rate near t=0 in the case
of corals. Furthermore, they claim that  is the appropriate parameter to use to compare populations because
of its statistical robustness owing to its normality (with small variance) for different populations of the same

species (Moreau et al. 1987).

2.5 A new proposal of parameterization based on Galucci and Quinn

model.

Kooijman (2000) underlines that for organisms of the same species with different food availabilities the
logarithm of the von Bertalanffy growth rate decreases linearly with ultimate length as stated in

Errore. L'origine riferimento non é stata trovata.

|n(k)ocLi

00
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So, different combinations of k and L., can give almost the same fit to data, except when a wide range of
ages is represented. Again, a high value of k combines with a low value of L, and vice versa (Sparre and
Venema, 1992)

Our proposal IS then to use a different parameterization of

Errore. L'origine riferimento non e stata trovata.
y(t)=L, (1—e—te%j 2.11

where

c=In(k)L, 2.12
This new approach might lead to more reliable results when including the effect of environmental
covariates, in fact, as Kooijman (2008) pointed out, for simple isomorphic organisms with different food
availabilities L., could be considered independent of external factors; so the influence of covariates X, ,...X,

representing environmental influences could be attributed to the new parameter

c=f(x,.X) 2.13
The new parameter ¢ could be seen then as the part of the length growth accountable to site-specific
conditions such as environmental factors.
This parameterization, compared to the traditional one, has the advantage of isolating the parameter sensible
to environmental influences, so that it is possible to obtain a more meaningful and parsimonious statistical
model when covariates are involved. The deterministic methods used by biologists do not suit with this
parameterization because they were designed to find k and L., while the new parameterization does not

contain k.
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3 An alternative approach to estimate the growth curves:

hierarchical models

3.1 The hierarchical approach

The models used by biologists are deterministic in the sense that they do not take into account differences
among individuals of the same population and differences among populations related to different
environmental conditions. They furthermore introduce a forced linearization which produces an unreliable
estimation of the VBGF parameters; in fact the VBGF is a nonlinear relationship. A first step to improve the
parameters estimation is the use of a nonlinear regression model so that it is possible to consider directly in
the model the functional form linking growth and age. The nonlinear models are based therefore on
assumptions often violated in the corals growth; in addition the studied data have two sources of variation:
the coral population and the sites of collection. It comes natural then to get to nonlinear hierarchical models.

Therefore a better approach could be a non-deterministic model in which each coral is characterized by

different parameter values of the VBGF: in this way, each single coral has its own couple of parameters,

(L,.k), in the case of the classic VBGF parameterization, or (L, ,c) , in the case of the new proposed

VBGF parameterization, which is retained throughout its life (Sainsbury, 1980). According to biologists, the
parameters values of corals collected in the same site, leaving in an environment characterised by the same
sea surface temperature, sea current and solar radiation, should be more alike than those of corals collected
in different sites. The parameters describing the growth of a coral can then be seen as a sum of different
contributions: the species contribution common to all corals, the site contribution common to all corals
exposed to the same environmental characteristic and a random contribution typical of the single coral
attributable to immeasurable aspects. This approach points directly to a hierarchical model. Another critical
aspect of the deterministic approach is the forced linearization; the statistical approach provides techniques
to estimate the parameters while maintaining the nonlinear relationship. Combining the two aspects we
come to the hierarchical nonlinear models: the coral growth curve can be then estimated via the nonlinear
least squares method; where the species contribution, common to all the corals, is considered as a fixed

effect; the site contribution related to all corals exposed to the same environmental characteristics is
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considered as a random effect, which might depend on environmental covariates; the random contribution
typical of the single coral can be seen as the residual error.

In fact, hierarchical nonlinear models for data in the form of continuous, repeated measurements on each of
a number of individuals, are a popular platform for analysis when interest focuses on individual-specific
characteristics and has gained broad acceptance as a suitable framework for such problems. The central
concept of hierarchical models is that certain model parameters are themselves modelled; in other words, not
all the parameters are directly estimated from the data, rather some of them are calculated from estimates of
the model’s hyperparameters which are in turn estimated from the data. The latter parameters are sometimes
referred to as “random effects”. They are to be distinguished from “fixed effects,” which are not modelled,
but are instead estimated directly from the data. A hierarchical model can have both, so it is often described
as a “Mixed effects model”.

Hierarchical nonlinear models may be regarded as both an extension of the nonlinear regression models and
the hierarchical linear models. A natural framework is the two-stage model that takes into consideration
intra— and inter-individual variations, as in mixed effect models. Hierarchical nonlinear models can be
considered mixed effect models where some, or all, of the fixed and random effects occur non-linearly in the
model function. From a non-linear point of view they can be seen as nonlinear regression models for
independent data (Bates and Watts, 1988) where random effects are incorporated in the coefficients to allow
them to vary by group, thus inducing correlation within the groups. From a mixed effect point of view they
can be seen as linear mixed effect models where the conditional expectation of the response, given the
random effects, is allowed to be a nonlinear function of the coefficients.

Pinheiro and Bates (2000) discuss three important advantages of nonlinear hierarchical models:

e interpretability. The modelling approach requires that one explicitly model. Judgment as well as
background empirical or theoretical knowledge can be used to guide the choice of nonlinear
functional form;

e parsimony. A well-chosen nonlinear function can model a non-linear process with fewer parameters

than a linear model with multiple polynomial terms. In addition, the hierarchical modelling approach
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allows one to replace a potentially large number of subject-specific indicator variables and
interaction terms with a small number of hyperparameters;

o validity beyond the observed range of the data. Of course it is always dangerous to use a model to
extrapolate beyond the data. However, this approach at least offers a framework within which one
can harness one’s background knowledge when specifying a model. Such an approach is less likely

to lead one astray than a less parsimonious or more atheoretical “curve-fitting” approach.

3.2 Basic nonlinear regression model

The nonlinear regression models are the starting point to improve the estimation of the parameter values of
the VBGF. For longitudinal data the used method are mostly based on least-square, maximum-likelihood
and Bayesian estimation procedures as can be seen in Gallant (1987), Seber and Wild (1989), Genning et.al
(1989), Davidian and Giltinan (1995), Vonesh and Chinchilli (1997).

Let y; be the generic observation of the ith of M sites, where j=1,..,n;, the model can be written then as

y; = f(X,9)+¢ 3.1

where f(.) is a nonlinear function, ¢ is the (px1) vector considering the p parameters of the functions and & is
the random error. The function f(.) should satisfy 4=f(x;¢) for one value of ¢ in @ and for all values of x.
This condition, if verified, implies that E(5)=0 and consequently E(y;) = ;. The error should in addition
satisfy the classical assumptions so that & should be independent and identically distributed with zero mean
and common variance o°.

In the biological area, for growth curve or repeated measures this assumption could be often unrealistic.

The model formulation proposed by Davidian and Giltinan (1995) allows departures from the assumptions
to be accommodate through some generalizations.

A general way to consider the intra-individual variance heterogeneity consists of specifying the variance
function g(.) which may depend on the mean response, on constants z; which may include the influence of
environmental site-specific covariates and on an additional g-dimensional parameter vector 8§ fully
specifying the variance functional form.
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Var(y;)=029?(4;.2;,9)
H; :E(yj ): f(Xj’¢)

3.2

Furthermore because of the repeated measures, errors might be correlated, that could be accommodate
delineating the correlation of the error by the correlation matrix I'(at) where a is a s-dimensional vector of
correlation parameters

Furthermore, for repeated measures, errors might be correlated. This intra-site correlation could be
considered by using the correlation matrix I'(a) where o is a s-dimensional vector of correlation parameters
(Davidian and Giltinan, 1995).

Moreover in growth curves both correlation among measurements and intra-site heterogeneity may be

evident; if this happens, variance function g (.) could be used to define the diagonal variance matrix

G(¢.9)=diag[ 9°(.2.9)...92(44,.2,.9)] 3.3

with G¥2(¢,9) the diagonal matrix with elements the square root of those of G(¢,9) (Davidian and
Giltinan, 1995). Here ¢ appears as an explicit argument to emphasize the possible dependence of intra-
individual variance on the regression parameters through the mean response x; = f(x;,¢) .

Considering a correlation pattern described by the matrix I'(a) then the specification

Cov(g) = 62G¥2( ¢, 9)()GV2(,9) =R($,€) 3.4

where § = [0,9' ,oc']' is the (g+s+1)-dimensional combined vector of all intra-site covariance parameters
The Errore. L'origine riferimento non e stata trovata. implies that
Var(y,)=o’9*(x;,2;,9), Corr(y,,y,)=T ;,(a) 35
These latter considerations improve the model but still doesn’t fulfil the exigency to have a model which

takes into account the different sites of collection and maybe the influence of environmental covariates

points: this can be done in a more complete model like hierarchical nonlinear one.
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3.3 Newton’s method for nonlinear function estimation

Let y,;denote the response obtained at the jth covariate value tj where j=1,..,n. The response vector

y=[Y,-y,] contains the information at values x =[x,,..,x, ] so that

y; = f(x,9)+¢

e=[&,..6,]

where f(.) is a nonlinear function, ¢ is the (px1) vector considering the p parameters of the functions. By the

Least squares method, the parameter estimates provide the best fit of the mean function y; = f(x;,¢) to the

observations obtained by minimisation of the residual sums of squares (RSS) with respect to ¢ as follows:

RSS(4) :Zn:(yj —f(x,9)+¢,) 3.6

The minimisation of the RSS is known as least-squares estimation, and the solution is the least-squares

parameter estimates, denoted by ¢. The minimisation of the RSS is a nonlinear problem due to the
nonlinearity of f(X;,¢), and therefore numerical optimisation methods are needed. These methods start

from some initial values and then repeatedly calculate next available value according to some optimization
rules so that the iterative procedures will ideally approach the optimal parameter values in a stepwise
manner. At each step, the proposed algorithm computes the new parameter values based on the data, the
model, and the current parameter values. By far the most popular algorithm for estimation in nonlinear
regression is the Gauss-Newton method, which relies on linear approximations to the nonlinear mean
function at each step; unfortunately, two main complications arise when using it: how to choose the
initial/starting parameter value and how to ensure that the procedure reached the global minimum rather than
a local minimum. These two issues are interrelated. If the initial parameter values are sufficiently close to
the optimal parameter values, then the procedure will usually reach the optimal parameter value (the

algorithm is said to converge) within a few steps. Therefore, it is very important to provide sensible starting
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parameter values. Poorly chosen starting values on the other hand will not reach convergence. If lack of
convergence persists regardless the choice of the starting values, the conclusion is that the model is not
appropriate for the data at hand. As the solutions to nonlinear regression problems are numeric, they may
differ as a consequence of different algorithms, different implementations of the same algorithm (for
example, different criteria for declaring convergence or computing first derivatives numerically or
analytically), different parameterisations, or different starting values. However, the final parameter estimates

ought not differ much. If there are large discrepancies, they might indicate that a simpler model should be

preferred. Once the parameter estimates ¢ are found, the estimate of the residual variance ¢° is obtained as

the minimum value of RSS (attained when parameter estimates are inserted divided by the degrees of

RSS (q,j
freedom (n—p), as s* = n—p (Fox et al. 2002). The residual standard error is then s.

3.4  The hierarchical model specification proposed by Lindstrom and

Bates

According to Lindstrom and Bates (1990) a general nonlinear mixed effects model for repeated measures

can be defined at two levels. At the first step the jth observation on the ith site is modelled as
y; = (xij,ch)+gij i=1.,Mand j=1,..n, 3.7
where y;; is the jth response on the ith individual, x;j; is the covariate vector for the jth response on the ith site
and and ¢; is the M-dimensional parameter vector, f is a nonlinear function and &; is a normally distributed
error term (Lindsrom and Bates ,1990). In the second step, the parameter vector ¢. , is modelled as
& =AB+Bb, and b, ~ N(0,5°D) 3.8
where f is a p-dimensional vector of fixed effects, b; is a g-dimensional random effects vector associated

with the ith individual, the matrices A; and B; are, respectively, the design matrices for the fixed and random

effects and o?D is a general variance—covariance matrix.
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This formulation assumes the observations, corresponding to different groups, as independent and the

within-group errors &; as i.i.d. N(O, %) and independent on the b;.

The assumption of independence and homoschedasticity for the within-group errors can be combined

therefore in a more general model.

3.4.1 Intra-site variation

The model Errore. L'origine riferimento non & stata trovata. describes the systematic and random
variation associated with measurements on the ith site. In particular the systematic variation is taken into
account by the regression function f, random variation is taken into account by a distributional assumption
for the random errors ej; and the specification of a model for its distribution. As already seen, for a given site
variability in the y;; may be a systematic function of the mean response for that site, other known constants
and additional, possibly unknown parameters; correlation among measurements on a given site may also
arise. In many contests, and growth curve should be one of those, it is reasonable to expect a comparable
pattern of intra-site variation across sites (Davidian and Giltinan,1995). The pattern of correlation of
measurement taken in a given site would also be likely to remain constant across sites.

According to Errore. L'origine riferimento non é stata trovata. and collecting the errors for the 1th site

into the vector ¢; :[gil,..,gini] it is possible to write a general specification of the common intra-site

variance structure as

Cov(g |¢)=R($.8), &=[c.9a] 3.9
allowing for variance heterogeneity and correlation within sites. The most common assumption about the
conditional distribution of the error for a given ¢, is that of intra-site normality of the response which comes

from the error specification (Davidian and Giltinan, 1995)

&ld ~N@O,R (4.8) 3.10
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3.4.2 Inter-site variation

Variation among different sites is taken into account by the site specific regression parameters ¢ . The

standard approach as already seen is to specify a model for the ¢ which could consider part of the
parameters variation due to a systematic dependence on individual characteristic (possibly covariates) and
part due to unexplained (random) reasons. To account for these possibilities the parameters ¢ are
considered as depending on systematic and random components respectively p and b;.

Let ¢ be a p-dimensional vector of regression parameters specific to the ith individual and a; be an a-
dimensional covariate vector corresponding to the attribute of the ith individual. If b; is a k-dimensional
vector of random effects associated with the ith individual and B is a (rx1) vector of fixed effects then a

general model for ¢ could be given by

¢ =d(a .B.b;) 311

where d is a p-dimensional vector-valued function. Each element of d is associated with the corresponding
element of ¢, so that the functional relationship may be of a different form for each element. A complete

characterization of the inter-site variation requires an assumption about the distribution of the random effects

bi. The most common distributional assumption is

b.: N(0,02D) 3.12

where o°D is a (k x k) covariance matrix (Davidian and Giltinan, 1995)

As an alternative to normality it is possible to assume a multivariate t (Wakefield 1995) or a mixture of
normal distributions (Beal and Sheiner 1992). The t distribution with its heavier tails may provide a robust
alternative to handle outlying individuals; the mixture of normals accommodates the possibility of
multimodality of the distribution of the random effects. It is also possible to consider situations in which the

assumption of zero mean is not made.
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3.5 Hierarchical Nonlinear model for the solitary corals
In the following paragraphs the hierarchical model to design the solitary corals growth curve based on

VBGF will be specified.

3.5.1 The standard parameterization

Let y;; be the length of jth coral in the ith site; let tjj be the age of corals and let ¢ be a bi-dimensional vector

¢ :[Lwi,ki] and considering then M sites each one measured n; times, the nonlinear model can be

integrated and the Errore. L'origine riferimento non e stata trovata. in accordance with the (3.6) becomes

Y; =Lwi(1—ekitu )+ j=1..n i=1..M 3.13

In designing the distribution of the error &; we have to consider if the classical assumption are reliable for

corals growth.

The assumption of zero mean of the error is not called into question as the relationship between the response
and the covariate based on the VBGF has a physical meaning and is derived, as already seen, by biochemical
considerations. The assumption that the error has common variance ¢° and is identically distributed for all t;
risks to be easily violated for two reasons: the first one is that young corals are less variable than old one as
environmental factors have less time to influence them, the second one depends on the way they are
measured. The age of solitary corals are determined by counting the growth rings, so in small corals that
could be less precise than in adult corals, on the other hand in very old corals, slowing their growth after a
certain dimension is very difficult to count ultimate rings because they are very close, sometimes collapsed.
The error may be also correlated: the growth in a certain site depends on the yearly fluctuation of
environmental parameters, such as temperature, solar radiation and current. So corals closer in age should

have had the same fluctuation of environmental parameters.
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A more flexible model for the variance of the error can be then build considering the function described in
Errore. L'origine riferimento non é stata trovata. and

Errore. L'origine riferimento non é stata trovata. according to which the error variance matrix becomes

R(¢.8), where &=[c,9 o]

So that

&~ N(QO,R, ((h ,2;))

At the inter-site level it is possible to attribute the variations of parameters L.; and k; among the M sites to
systematic and random sources.

Parameter estimates can be obtained by the method of Least Squares; however minimization of residual sum
of squares yields equations nonlinear in the parameters. Since it is not possible to solve nonlinear equations
in closed forms, the alternative is to obtain approximate analytic solutions by employing iterative
procedures. The main methods being (Draper and Smith 1998): the Taylor Series Method, the Steepest
Descend Method and the Levenberg-Marquardt’s Gauss—Newton based Method.

It is then possible to see each parameter comprising a fixed effect L., and k) due to known site-specific
characteristics and a random effect respectivelyb; and by due to unexplained variation among the sites. The

vector ¢; considering both the effect can be then defined
L. L +Db,
HE

Unlike the traditional marine biology approach, the Errore. L'origine riferimento non é stata trovata.
approach to parameter estimations has the desirable feature of contemporarily taking into account the site
model and the “population” model introducing a hierarchy between them.

Analysis of data of repeated measurement over time is a recurrent challenge to statisticians engaged in
biological applications: growth curves are among this kind of data. The inter-individual variability in growth
is the result of several internal (genetic) and external (environmental) factors which affect these
physiological processes. The choice of applying the growth model to the length-at-collection data rather than

following the growth process over time of several individuals allows the description through mean growth
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parameters which oversee individual variability in each site of capture. The measures are then repeated in a
wide sense. Anyway Pilling et al., (2002) and Schaalje et al., (2001) focused on the statistical nuances of
fitting back-calculated lengths at age data in a repeated measures context and obtaining better estimates of
individual growth variability than taking repeated measurements on a sample of individuals.

The main strategy followed was to incorporate these features in an inferential setting by building a
hierarchical model. Inter-site variation is then considered as consisting of a model for variation in the

regression parameters ¢, . Thus variation can be modelled using a distributional assumption for ¢ at various
levels of complexity. For instance a possible specification is

¢ =ApB+b, 3.15
where ¢ is assumed to depend linearly on a two-dimensional vector of parameter § and on site-specific
information such as temperature and radiation summarized in a design Matrix A. as shown further on.

Error b; corresponds to the random component of inter-site variation, which is supposed not depending on

environmental covariates and is taken to have mean zero and covariance matrix D.
Adding the restriction that the distribution of ¢ belongs to a particular parametric family, the bivariate

normal-lognormal distribution is often chosen (Helser and Lai, 2004)

Lwi
qz[mK]~AmApIn 3.16

So, considering a linear influence of radiation gradient R and temperature gradient Ton L., and exponential
influence of radiation gradient R and temperature gradient Ton k in the parameterization of the VBGF,

expression (3.14) is composed by the following elements

1 RT 00O
A = P 3.17
0 00 1R T
L.
&
B= % 3.18
| Ink '
CH
a,
bi:[Qi 3.19
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The elements of the bi-dimensional vector-valued function described in

Errore. L'origine riferimento non é stata trovata.are then expressed as

d,(e;.p.b;)=L, +aR +a,T, +b,
d,(e;.p.b;)=In(k)+a;R +a,T, +b, 3.20

Ri
where @, =
o)

3.5.2 The new proposed parameterization
Similarly to the previous chapter the above VBGF Errore. L'origine riferimento non e stata trovata. in

accordance with the Errore. L'origine riferimento non é stata trovata. becomes

Gi

yij(t): |_3oi (1_e‘iieL‘”‘ j+8ij i=1..n i=1..M 3.21

where the error distribution is &, ~ N(0,R (¢.£))

The ¢, is a bi-dimensional vector ¢ :[Lwi ,ciJ and also in those case it is possible to see each parameter

comprising a fixed effect L., and c and a random effect by; and byi. The vector ¢ considering both the effect

L) (L.+by
(h:[ci j_£c+b2i j 322

This new parameterization is designed to be more parsimonious: in fact the two parameters are divided in

can be then defined

the one sensitive to environmental and, in general, external, influences that is ¢ and the one derived by

genetic and moreover, site not-depending, characteristics, that is L..

We consider for the distribution of ¢, the bivariate normal distribution

¢ {Ej ~N(AB.D) 3.23

Considering a linear influence of radiation (R) and temperature (T) on ¢ which is designed to be the only
parameter sensitive to environmental covariates, the parameterization of the VBGF the

Errore. L'origine riferimento non é stata trovata. is composed by the following elements
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(o)

The elements of the two-dimensional vector-valued function described in the
Errore. L'origine riferimento non é stata trovata. become then

d, (a’i B.b, ) =L, +b,
d,(a;.B.b;)=c+a;R +a,T; +b,

(Ri}
where @, =
T.
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4 Growth curves for corals

4.1 The Solitary Corals of our study

For this study we considered two species of solitary corals: Balanophyllia europaea and Leptopsammia
pruvoti, because these corals are very important in determining the health of other colonial corals of the area
with regards to climatic changes and the presence of pollution. Moreover for these corals age-based models
can be easily applied. In fact, age can be determined by counting the growth bands of the skeleton using the

Computerized Tomography scans (CT) and the size can be easily measured by a calliper.

4.1.1 Balanophyllia europaea and Leptopsammia pruvoti

Balanophyllia europaea is a solitary, ahermatypic, zooxanthellate scleractinian coral that lives on a rocky
substratum and is endemic to the Mediterranean Sea. Owing to its symbiosis with zooxanthellae, depth
distribution appears to be restricted in this species; it is found between 0 m and a maximum of 50 m depth
(Zibrowius 1980), though congeneric azooxanthellate corals have been reported at depths of up to 1,100 m
(Cairns 1977). The reproductive biology of this species is characterized by simultaneous hermaphroditism
and brooding. During the annual cycle of sexual reproduction, fertilization takes place from March to June

and planulation in August and September.

Figure 4.1 Balanophillia eu
o~ 3 , :

ropaea

This coral has been chosen because Goffredo et al. (2007) observed that unlike other tropical and temperate

corals, in which calcification is positively correlated with solar radiation and surface sea temperature (SST),
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balanophyllia calcification is not correlated with solar radiation, whereas it is negatively correlated with
SST. The conjecture is that photosynthesis of the symbiotic algae of Balanophyllia europaea is inhibited at
high temperatures, consequently causing an inhibition of calcification so that the calcification of
Balanophyllia europaea would be depressed at 20.5-21 °C mean annual SST.

Leptopsammia pruvoti is an ahermatypic, nonzooxanthellate and solitary scleractinian coral, which is
distributed in the Mediterranean basin and along the European Atlantic coast from Portugal to Southern
England and Ireland. It is one of the most common organisms in semi-enclosed rocky habitats, under
overhangs, in caverns and small crevices at 0—70 m depth, with mean abundances of [104 individuals m-2,
i.e., [2 kg m-2 of CaCO3 biomass (Goffredo et al. 2007). When released, the planulae (695-1,595 um in

length) are ready to settle and swim by ciliary movement for 1-20 days.

Figure 4.2 Leptopsammia pruvoti

This coral was chosen because Goffredo et al. (2007) observed that unlike other tropical and temperate
corals, in which calcification was positively correlated with solar radiation and SST, the biometry of
individuals, thus skeletal density, corallite length, width and height, and their abundance are not affected by
SST and solar radiation along an 850-km latitudinal gradient in western Italian coasts.

Solitary coral size growth and reproduction is usually related to the length of maximum diameter of the oral
disk, so the study was based on the growth of the radial length according to the VBGF.

As observed by Goffredo (2008), the population structures of these two species of temperate solitary corals

become less stable and have deviated from the steady state in recent years as a result of a progressive
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deficiency of young individuals. The study of the variation in calcification rate, linear extension rate, and
skeletal density in populations arranged along a temperature and solar radiation gradient can provide
therefore an explanation for this observation. The results can be extended to the other temperate
scleractinian corals and considered in light of the most recent scenarios on climate changes for the near

future.

4.2 The data

The data were collected by S. Goffredo et al.(2007) e S. Goffredo et al. (2008). Specimens of different ages
(from 1 to 14 years) of two species of solitary corals: Balanophyllia Europaea and Leptopsammia Pruvoti
were collected at maximum biomass density depth in 6 different sites having different mean annual
radiation, sea surface temperature and sea current; they were then dated and measured. Two sites were
islands and four were on the coast. Table 4.1 shows the values of annual mean and standard error of sea
surface temperature, solar radiation and sea current for the sites under study. The other variables considered
in this analysis were:

e the length in mm of the corals measured by callipers

e the age in years measured by the mean over 3 repeated counts of the growth rings visualized by CT scan

« the mean annual radiation in (W/m?) of the 6 sites (ltalian Air Force Weather Service)

e the mean annual temperature in (°C) of the 6 sites (Italian Air Force Weather Service)

e the mean annual surface current in (m/s) of the 6 sites (Atlas of the surface currents of the Italian Navy)

Table 4.1 Environmental Characteristics of each site

Genova Calafuria Elba Palinuro Scilla Pantelleria
#1 #2 #3 #4 #5 #6
Mean annual radiation 166.95 170.07 172.74 181.48 187.31
2 190.95 (1.02)

(SE) (W/m?) (1.02) (1.02) (1.02) (1.01) (1.02)
Mean annual surface 19.56 18.02 18.74 19.14 19.54 19.88
temperature (SE) (°C) (0.04) (0.04) (0.04) (0.03) (0.02) (0.04)
Mean annual Current 0.08 0.08 0.2 0.15 0.6 0.15

(m/s)
Island/Coast Coast Coast Island Coast Coast Island
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4.3 Explorative analysis

4.3.1 Balanophyllia europaea

238 corals of Balanophyllia europaea were collected in the six sites considered. Table 4.2 shows the number
of corals per site and the relative descriptive analysis for the age and the oral disk length. It can be argued
that the different sites show different mean oral disk lengths; this difference is not always ascribable to a
different mean age; in fact, corals from Calafuria are the smallest but not the youngest. Corals from Elba and
Pantelleria are at least as young as those of Calafuria but they are definitely wider. Corals collected in
Genova, on the other hand, are older and much wider. Figure 4.3 shows the oral disk length plotted against
the relative age of each coral: The graphic shows the different pattern of the sites: corals from Elba, for
example, are wider than the others only until the age of five years, corals from Genova are wider from the
age of seven years, and corals from Palinuro are smaller at all ages. This may suggest different growth
patterns in the different sites. Figure 4.4 shows the oral disk length plotted against the relative age of each
coral in each site and confirms the idea of a different growth pattern according to the sites. Figure 4.5 shows
the oral disk length distribution at different ages: the distributions of several ages are clearly not Gaussian,
maybe because of the influence of the sites; the shape of the distribution of the oral disk length against the
age is confirmed by a VVon Bertalanffy-like growth curve.

Table 4.2 Balanophyllia europaea: descriptive analysis

Sites Number | Mean Std. Median 95% Minimum | Maximum
of Deviation Confidence
corals Interval for
Mean

Age Genova 42 7.4 3.3 7.0 6.4 | 85 1.0 14.0
Calafuria 34 5.5 1.9 5.0 49 | 6.2 2.0 9.0
Elba 34 4.6 2.2 4.0 39 | 54 2.0 12.0
Palinuro 54 6.9 3.3 6.5 6.0 | 7.8 1.0 14.0
Scilla 32 6.2 2.6 6.5 53 | 7.2 1.0 13.0
Pantelleria 42 5.2 2.3 5.0 45 | 6.0 1.0 9.0
Total 238 6.1 2.8 6.0 5.7 | 6.5 1.0 14.0
Length Genova 42 11.7 3.9 11.6 | 104 | 12.9 2.4 19.0
Calafuria 34 8.3 2.7 10.0 74 | 9.3 4.0 14.5
Elba 34 9.0 2.9 10.5 7.9 | 10.0 3.0 16.3
Palinuro 54 9.9 3.2 10.6 9.0 | 10.8 2.5 16.9
Scilla 32 9.9 2.9 11.0 8.8 | 10.9 3.7 16.0
Pantelleria 42 8.8 2.8 9.7 8.0 | 9.7 2.6 13.3
Total 238 9.7 3.3 10.5 9.2 | 10.1 2.4 19.0
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Figure 4.3The length of Balanophyllia europaea vs age
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Figure 4.4 The length of Balanophyllia europaea vs age for each site under study
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Figure 4.5 Boxplot of length of Balanophyllia europaea at different ages

*

" -

Length (mm)
3

Age (years)

4.3.2 Leptopsammia pruvoti

179 corals of Leptopsammia pruvoti were collected in the six sites considered. Table 4.3 shows the number
of corals per site and the relative descriptive analysis for the age and the oral disk. As for Balanophyllia
europaea, the different sites show different mean oral disk lengths not always ascribable to a different mean
age: corals from Genova and Pantelleria have similar dimensions, but corals from Genova are younger, The
same can be said of corals from Calafuria and Palinuro or corals from Elba and Scilla where corals from
northern sites are younger than those of southern sites with similar dimensions. Figure 4.6 shows the oral
disk length plotted against the relative age of each coral. The graphic shows a wide spread of the dimensions
at older ages and furthermore, unlike Balanophyllia europaea, the corals from Elba are wider than the others
only from the age of six years, where corals from Genova are smaller from the same ages; corals from
Pantelleria are smaller at all ages. Therefore, for Leptopsammia pruvoti a different growth pattern can also
be hypothesized in the different sites. Figure 4.7 shows the oral disk length plotted against the relative age of
each coral in each site and confirms the idea of a different growth pattern according to site. In particular it
can be noticed that corals from Calafuria are very young and fast growing, but due to the lack of older corals
it will be difficult to understand if this fast growth will be maintained. Anyway, the difference in age
distribution of the corals from Calafuria might be a problem when carrying out separate estimations

according to site. . Figure 4.8 shows the oral disk length distribution at the different ages: as for the
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Balanophyllia europaea the distributions of several ages are clearly not Gaussian. Furthermore, the oral disk
length distribution vs age confirms a VVon Bertalanffy-like growth curve only for ages starting from three
years; Ages two and moreover one have bigger dimensions than those expected by a VVon Bertalanffy-like
growth curve. It can be noticed therefore that this coral is smaller than Balanophyllia europaea and may be
subjected to a bigger error of measurement for very young or small corals; on the other hand the influence of
the environment of the six studied sites might produce a different growth rate at early ages thus explaining

the gap from the theoretical behaviour.

Table 4.3 Leptopsammia pruvoti: descriptive analysis
Sites N | Mean Std. Median | 95% Confidence | Minimum | Maximum
Deviation Interval for Mean

Age Genova | 30 | 6.2 3.9 6.0 4.7 7.6 1.0 14.0

Calafuria | 29 | 4.1 1.9 4.0 3.4 4.8 1.0 7.0

Elba 30 | 6.3 2.0 6.2 5.6 7.0 3.0 10.0

Palinuro | 30 | 5.6 3.0 6.0 4.5 6.8 1.0 13.0

Scilla 30 | 7.8 4.5 8.0 6.1 9.5 1.0 14.0

Pantelleria | 30 | 7.0 4.2 6.0 5.5 8.6 1.0 14.0

Total 179 | 6.5 3.8 6.0 5.9 7.0 1.0 14.0

Length Genova | 30 | 4.8 2.2 4.9 4.0 5.7 2.0 9.0

Calafuria | 29 | 4.0 1.5 3.6 3.4 4.5 2.0 6.0

Elba 30 | 6.3 2.0 6.2 5.6 7.0 3.0 10.0

Palinuro | 30 | 4.4 1.8 4.3 3.8 5.1 2.0 8.0

Scilla 30 | 6.3 3.1 6.2 5.1 7.4 2.0 12.0

Pantelleria | 30 | 4.8 2.2 4.4 4.0 5.6 2.0 9.0

Total 179 | 5.1 2.3 5.0 4.7 5.4 2.0 12.0

Figure 4.6 The length of Leptopsammia pruvoti Vs age

i
o]

111 site

o

) O
N g;i;rll:lle\ ia [e] 0
Secmn o o
OEka o o 0
a- O Calafuria o o O
°© 3 g ° 8
5 8 8 o] Q o o
_ o °o g 8
o g ¢ 8 5
= (o}
'.E 5 g g 0 g 8 (o]
o
5 8 fo) le) (o]
- o o Q 8 8
B ° 8
e

O @O O Qo

i

[ JeXe]

@DO0D

(@D
a

T T T T 1 1 1 1 I L] T T 1 U
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14
Age (years)

41



Length (mm)

Figure 4.7 The length of Leptopsammia pruvoti vs age for each site under study
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Figure 4.8 Boxplot of length of Leptopsammia pruvoti at different ages
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5 Results with the traditional Methods used in marine biology for

the Von Bertalanffy Growth Function fitting

5.1 The Gulland-and-Holt (GH) plot

As pointed out in chapter (2.3.1) this method is used for the estimation of the two parameters L., and k. and
is based on the growth rates plotted vs. the mean length at first and second measurements using
Errore. L'origine riferimento non e stata trovata. and

Errore. L'origine riferimento non e stata trovata.. The method consisted of first calculating the elements

of the growth rates (the dependent variable) of the six sites, thus y; = tj " I j=1,..,14 , and the elements
Tt

of the mean length at first and second measurements (the independent variable), thus

X; = ) > L j=1,.,14. After this a linear regression was fitted. At the end the fitted regression

coefficient was used to estimate parameter k as k =—b and the estimated intercept was used to estimate
a

parameter L, as L = X

The graphic in Figure 5.1 is obtained by applying this method to the Balanophyllia europaea data

The estimated regression coefficients were a=2.7437;b =-0.1493 so that the estimation of parameter L.,

representing the ultimate length was 18.38 mm and the estimated growth rate k, was 0.149. The curve

presented in Figure 5.2 was built according to (2.5) using. L, =18.38;k =0.1493

Then standardized residuals e* were calculated and plotted vs fitted values as shown in Figure 5.3. The
standardized residuals were calculated according to

* _ ei
e*=__ 1 51

' s fich

Where o is the standard deviation of the residuals and h; is the Leverage of the jth estimated point
calculated according to
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hoot (ej - E(e))2

TN Zj:(ej ~E(e))

5.2

Figure 5.2 shows that the dimensions of young and old corals are underestimated; Figure 5.3 suggests that
the dimensions of small corals are definitely underestimated. Furthermore, the residuals are asymmetrical, in
particular the residuals of large corals are divided into two groups: one exceeding zero and the other one
below zero. The overall impression is that the method underestimates parameter k producing a growth curve
that is too slow at the young ages and too remote reaching the ultimate length. In addition the variance of the
dimension seems to vary according to the dimension itself, but there is no way to consider this behaviour in

the model.

Figure 5.1 Gulland and Holt plot for the Balanophyllia europaea
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Figure 5.2 Curve fitting for the Balanophyllia europaea data using the Gulland and Holt plot method
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Figure 5.3 Balanophyllia europaea: residuals of the Gulland and Holt plot method
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The graphic in Figure 5.4 is obtained by applying this method to the Leptopsammia pruvoti data
As for the Balanophyllia the linear regression of the data shown in Figure 5.4 allows the estimation of
a=1.2906;b =-0.1224 so that L, =10.54;k =0.122. As for Balanophyllia data, these two parameters are

used for the construction of the curve shown in Figure 5.5; this curve, in turn, gives origin to the residuals
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plotted in Figure 5.6. Here the dimensions of very young corals are also underestimated; furthermore the
residuals are very asymmetrical showing a “U” shape; in particular the residuals of big corals are all above
zero, instead those of medium dimensions are below zero; this might mean the presence of a nonlinear
relationship not correctly considered in the model. Also in this case, the overall impression is that the forced
linearization introduced in the estimate of the parameters leads to the underestimation of parameter k thus

causing the curve to grow too slowly.

Figure 5.4 Gulland and Holt plot for the Leptopsammia pruvoti
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Figure 5.5 Curve fitting for the Leptopsammia pruvoti data using the Gulland and Holt plot method
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Figure 5.6 Leptopsammia pruvoti: residuals of the Gulland and Holt plot method
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5.2 The size-increment method proposed by Fabens

As already seen in chapter (2.3.2) the size-increment method proposed by Fabens (1965), fits the von
Bertalanffy curve by applying the least squares method to the observed lengths, using data of known growth
increments in known time intervals but making no assumption about absolute age according to

Errore. L'origine riferimento non é stata trovata.. For this data At corresponds to one year. The linear
regression of Lya: against L; will generate a slope of b=e*and an intercept ofa=L_(1-e*) The

a
1-e

parameters can then be calculated according to k =—In(b) and L, = —

The graphic in Figure 5.7 is obtained by applying this method to the Balanophyllia europaea data and

considering y=Lw and x=L; The linear regression results are then a=2.7897;b=0.8455 so that

L, =18.06;k =0.168. The curve in Figure 5.8 is built using these two parameters and originates the

residuals plotted in Figure 5.9. From Figure 5.8 it is possible to argue that the dimensions of old corals are
underestimated. Furthermore, Figure 5.9 shows that the residuals are asymmetrical; in particular the
residuals of big corals are divided into two groups: one mostly above zero and the other one strongly below
zero. The overall impression is that this method is more suitable than the previous one but is still not reliable
for old corals because of the presence of at least two groups of different dimensions for the same age. This is
a problem that is difficult to solve without considering the source of this difference. Here too the variance of
the dimensions seems to vary according to the dimensions themselves, but there is no way to consider this

behaviour in the model.

48



Figure 5.7 Fabens plot for the Balanophyllia europaea data
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Figure 5.8 Curve fitting for the Balanophyllia europaea data using the Fabens method
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Figure 5.9 Balanophyllia europaea: residuals of the Fabens method
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The graphic in Figure 5.10 is obtained by applying the Fabens method to the Leptopsammia pruvoti data.

The linear regression estimations are a=1.6532;b=0.7917 the parameter estimation is then

L, =7.94;k =0.233. The curve shown in Figure 5.11 is constructed using these two parameters and

originates the residuals plotted in Figure 5.12. From Figure 5.11 it is possible to argue that the dimensions of
very young and old corals are underestimated. Corals 2 to 4 years old are overestimated; furthermore Figure
5.12 shows that the residuals are very asymmetrical with an asymmetrical “U” shape also in this case there
is a suspicion of the presence of nonlinearity not well explained by the model and in particular the residuals
of big corals are strongly above zero. The overall impression is that the method because of its forced
linearization tends to underestimate parameter L., so that all the older corals are underestimated. Here too the

variance of the dimensions seems to vary according to the dimensions themselves,
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Figure 5.10 Fabens plot for the Leptopsammia pruvoti data
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Figure 5.11 Curve fitting for the Leptopsammia pruvoti data using the Fabens method
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Figure 5.12 Leptopsammia pruvoti: residuals of the Fabens method
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5.3 The linearization proposed by Basso and Kehr

This method fits the von Bertalanffy model by imposing as L., the largest size found in individuals of each

species and then considering the linear regression between In(l—LiJ as the dependent variable and t as the

0

independent variable. So the estimate of k, considering kt,=L,=0 for corals, will be obtained by the solution

via the least square method of the equation Errore. L'origine riferimento non e stata trovata. passing

In ( - ij = -kt 5.3
L,

so the biggest length measured in the Balanophyllia europaea data is 19.40 mm then Lw = 19.40mm ; the

through the origin

graphic of Figure 5.13 calculating parameter k according to (5.2) is based on the linear regression of y over x

where y = In( —Lij and x=t. According to (5.2) the slope will then be the additive inverse value of the

00

desired parameter k.

The result is then L. = 19.40; k =0.142 . The curve in Figure 5.14 is built using these two parameters; the

residuals plotted in Figure 5.15 are then calculated. Figure 5.13 shows a wide outlier which corresponds to
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the coral used to estimate the ultimate length Lo in so far as it has the greatest measured length. This is a
very weak point in the method because it is impossible to eliminate the outlier and, in the meantime, the
estimate of k would appreciably change without considering the outlier. From Figure 5.14 it is possible to
argue that the dimensions of young corals are underestimated. Figure 5.15 shows that the residuals might
depend linearly on fitted values so that they are symmetrical with respect to a line different from the
abscissa. This method depends too much on the sample because parameter L., is directly chosen from the
data; so in this case there might be an underestimation of L., which causes a possible overestimation of k.

Figure 5.13 Basso and Kehr plot for the Balanophyllia europaea
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Figure 5.14 Curve fitting for the Balanophyllia europaea data using the Basso and Kehr method
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Figure 5.15 Balanophyllia europaea: residuals of the Basso-Kher method
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Applying this method to the Leptopsammia pruvoti data it is possible to determine from the data
L. = 11.85mm ; the graphic in Figure 5.16 enables the estimation of parameter k. The result is then

L. = 11.85; k =0.104 . The curve shown in Figure 5.17 is built using these two parameters and produces

the residuals plotted in Figure 5.18. By observing Figure 5.16 the presence of a wide outlier corresponding
to the data used for the estimation of the ultimate length can also be noticed here. From Figure 5.17 it is
possible to argue that the dimensions of young corals are underestimated, Figure 5.18 shows that the
residuals are very asymmetrical and with a “U” shape; in particular the residuals of big corals are strongly
above zero and those of medium size are below zero and of course the “U” shape could be a symptom of not
considered nonlinearity. Also in this case there might be an underestimation of L., which explains the lack of

fit for old-big corals.
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Figure 5.16 Curve fitting for the Leptopsammia pruvoti data using the Basso and Kehr method
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Figure 5.17 Curve fitting for the Leptopsammia pruvoti data using the Basso and Kehr method
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Figure 5.18 Leptopsammia pruvoti: residuals of the Basso-Kher method
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5.4 Newton’s method for nonlinear function estimation

This method fits the von Bertalanffy model following the method described in chapter 3.3, i.e. the two
parameters of the VBGF are estimated by the least square method, by minimizing the
Errore. L'origine riferimento non é stata trovata. via a numeric method based on the auss-Newton
iterative algorithm. This method does not take into account the collection sites or the influence of covariates.
The estimation procedure was carried out using the R function nls (), (Bates and Chambers, 1992). The
results of the Gulland and Holt plot method were inserted as starting values. In the following paragraphs the

method is applied to both parameterizations.

5.4.1 The standard parameterization

Applying the Least square nonlinear regression to the VBGF standard parameterization, the function to

minimize Errore. L'origine riferimento non e stata trovata. becomes

RSS(¢) = En:(yj ~L, (- +g )2

j=1
the use of Newton’s method to estimate the parameters gives the following results Ew =19.16 with a SE
equal to 0.65, |2 =0.154 and SE=0.010 for Balanophyllia europaea and Lw =10.92 with a SE equal to 0.87,

12 =0.107 and SE =0.014 for Leptopsammia pruvoti.
The above estimated parameters are used to build the growth curve presented in figures 5.19 and 5.20, both
graphics show the underestimation of values for very young and old corals, more evident in the

Balanophyllia data. The fit for corals aged 2 to 9 years is nevertheless improved.
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Figure 5.19 Curve fitting for the Balanophyllia europaea data using the nls method
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Figure 5.20 Curve fitting for the Leptopsammia pruvoti data using the nls method
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From the residuals of the model values plotted vs the fitted values in Figure 5.21 A, for Balanophyllia
europaea, and 5.22 A, for Leptopsammia pruvoti, it is possible to extrapolate that residuals are mostly above
zero in small corals and that their dispersion around zero increases with the fitted size. The assumption of a
normal distribution of residuals was investigated by analysing the residuals plotted vs the quantiles of a
standard normal distribution presented in Figure 5.21 B, for Balanophyllia europaea, and 5.22 B, for

Leptopsammia pruvoti, both plots show that residuals are normally distributed except for the extremes. This
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method introduces an improvement in comparison to the methods used by biologists but there are still
margins for improvement.

Figure 5.21 Residuals with nls method for Balanopyillia europaea data
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Figure 5.22 Residuals with nls method for Leptopsammia pruvoti data
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Newton’s method is very sensitive to the presence of outliers; this is one explanation for the poor
performance around the extreme values; in addition the increase of residuals with size can be avoided by
introducing a suitable model for the variance. The poor performance with small and wide corals can be
overcome by enriching the model with different patterns of growth according to corals origin sites: this leads

to Hierarchical nonlinear models.
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5.4.2 The new parameterization

By applying the Least square nonlinear regression to the VBGF new parameterization the function to

minimize Errore. L'origine riferimento non é stata trovata. becomes
. 2
: (o
RSS(¢) = Z(yj -L, [1—etie J+ gjj
j=1

the use of Newton’s method gives the following estimations of the parameters of the growth curve: Ew
=18.16 with a SE equal to 0.65, (A; =-33.98 and SE =2.377 for the Balanophyllia europaea and ﬂw =10.91

with a SE equal to 0.86, 3 =-24.40 and SE=3.345 for Leptopsammia pruvoti.

The above estimated parameters are used to build the growth curve presented in Figure 5.23 and Figure 5.24
which show a better performance than the standard parameterization in matching the old corals, even if there
is still an underestimation of very young corals.

Figure 5.23 Curve fitting for the Balanophyllia europaea data using the nls method
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Figure 5.24 Curve fitting for the Leptopsammia pruvoti data using the nls method
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Diagnostic plots were then made to assess the hypotheses about the residuals. From Figure 5.25 A, showing
the residuals plotted vs the fitted value for the Balanophyllia europaea data, it is possible to deduct that
residuals of small corals are mostly above zero, bigger corals have widely spread residuals. Figure 5.26 A,
representing the residuals plotted vs the fitted value for the Leptopsammia pruvoti data, shows a linear
decreasing trend of small corals residuals; the wide dispersion of residuals of medium and large dimensions
are confirmed. Figure 5.25 B (Balanophyllia europaea) and 5.26 B (Leptopsammia pruvoti) showing the
residuals plotted vs the quantiles of a standard normal distribution confirm the normal distribution of

residuals but for the extremes for both the studied corals.
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Figure 5.25 Residuals with nls method for Balanopyillia europaea data

1 1
a L
3 -
=]
o
o o < L
2 o -
j -
=2 ) o £
5 ¢ g ° o g 8 2 r
T 1 o @ 2 & 8 5,08 F -
3 L TR S 5
= 2 g o % g 8 o 0.0 2
.g 0 2 g g 8 7 -
= & ] = g
] o g , 8 8 3 g
2 o g o &g 2 b
5 g oo g g = |
3 ] £ . 5 g8 . §
1 & o g g © 8
o 8 © e |
2 7 e o g " u
o
o
@ -
i T T T r T T T T T T T
5 10 15 -2 -1 0 1 2 3
Fitted values Standardized residuals

Figure 5.26 Residuals with nls method for Leptopsammia pruvoti data
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5.5 Results with nonlinear hierarchical model

The implementation of hierarchical models was based on the method described in paragraphs 3.4 and 3.5
according to which two levels can be defined: the site level and the coral level. So each site will have his

own growth curve designed according to a couple of site-specific parameters: the parameters are composed
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of a value common to all corals, i.e. the fixed effect, and a value specific for each site that is the random
effect. This formulation assumes the within-site errors as i.i.d. and normally distributed.

The general approach used for the analysis was similar for both corals and both parameterizations; we
started by performing the most simple model i.e. considering both parameters having fixed and random
effects according to the Errore. L'origine riferimento non é stata trovata. for the standard
parameterization and the Errore. L'origine riferimento non é stata trovata. for the new parameterization;
any particular correction for the possible intra-site correlation and heteroscedasticity was taken into account.
We then tried with one parameter having a fixed and random effect and the other one having the fixed effect
only. The models were compared by choosing the one improving the model comparison criteria such as the
Bayesian Information Criterion (BIC) (Schwarz, 1978) and the Akaike Information Criterion (AIC)
(Sakamoto et al., 1986). According to the model having the smallest, and then, the best BIC and AIC the

Errore. L'origine riferimento non e stata trovata. becomes

H
A

The Errore. L'origine riferimento non e stata trovata. does not change in either coral; in fact, the best

for the Balanophyllia europaea and

for the Leptopsammia pruvoti

model has a random effect for both parameters.

The assumption that the within-site errors have a zero expected value was then assessed by verifying that the
residuals mean was close to zero. Because of the presence of within-site heteroscedasticity observed by
plotting the residuals against the fitted values the model for both parameterizations and both corals had to be
improved by considering a variance function modelling the variance structure of the within-site errors. The
improvement of this new model was assessed by the decreasing of residuals and their normal distribution.
Having found a model with any violation of the assumption about the within-site error, the presence of intra-
site correlation was investigated by calculating the residuals empirical autocorrelation function (Box et

al.,1994) at every lag, i.e. every year. The largest coral, i.e. the Balanophyllia europaea, showed an
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autoregressive correlation of order 1 (AR(1)); conversely, in the smaller coral, i.e. the Leptopsammia
pruvoti, no autocorrelation was observed.

The influence of covariates was then tested to see if the model could be further improved. We considered
only the mean sea surface temperature gradient from 18°C and the mean solar radiation gradient from
190W/m® The mean sea current measurement was excluded because it is not very reliable for all the
collection sites except Scilla where the current is constantly monitored because of his strength. The rationale
for considering the gradient of the environmental covariates instead of the measured values is the small
variations of the covariate values among the studied sites and the need to test only a linear influence on the
parameters of the VBGF.

We considered a different approach for each of the two parameterizations.

In the traditional parameterization the effect of the covariates was attributed to both the VBGF parameters k
and Lo, but because of their correlation previously described in
Errore. L'origine riferimento non é stata trovata., we considered only one random effect, which is the
one that produces a better model.

In the new parameterization the effect of the covariates was attributed only to parameter c, but we
considered two random effects for both parameters L., and c. The results of the models considering the
covariates are shown in the following chapters.

All the described analyses were performed using the R function n1me (), (Bates and Chamber ,1992). The

previous results obtained by the nonlinear method were inserted as starting points.

5.5.1 The method giving the best fit for the Balanophyllia Europaea

The best fit for Balanophyllia europaea involves the environmental covariates, a variance function modelling
the variance structure and a correlation structure used to model dependence among observations. The
estimated parameters of the model providing the best fit are shown in Table 5.1 and the goodness of fit

indicators in following Table 5.2
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Table 5.1 Best fit estimated parameters for the Balanophyllia europaea data in both

parameterizations
Standard Parameterization New Parameterization
Loi=LevoyR~a;T+by Lyi=L.Tby
ith site VB GF parameters
ki =kt ;R +o.T+by ¢,=cta;R +a,T.+b,
LotaR~a;T; ‘L':x:

L.=18.18E=12 p<00003

a;=-0.08 SE=0.08 p=0.03 L.=17.0 SE=1.3 p<0.0005
a;=-2.74 SE=1.90 p=0.09

Fixed effects

frosR el T

c+ta,R +a,T.

A=0.161 SE=0.018  p<0.0005

¢=-30.1 SE=5.0 p=<0.0003

a;=0.00002 SE=0.0020 p=0.79 a;=-0.19 SE=0.08 p=0.01
a ,=0.04 SE=0.03 p=0.14 a,~=0028E=1.2 p=07
by 0 5 bs
genova 0.006 Senova -54 13
calafuria -0.008 calafuria -14.7 3.5
Random effects clba 0.027 clba 140 33
palimwo -0.020 palimiro -5.5 13
scilla -0.001 scilla 34 -0.8
pantellenia 0.007 pantellena 8.2 -1.9
Variance 2y, B) =™ e (u.8)=(5+u
8,=0.153 §.,= 836 2,=13864 8,235
Corr(e, e, )= a : Cor . =

M -:c: a L @] MM a 'L &

. . 1 & L me-t 1 ¢ L =

Correlation S oo Tra - 00

0 = v

' =041 L vl =038

Table 5.2 Model comparison criteria and residuals distributions for Balanophyllia europaea data

Standardized Error
AIC | BIC [LogLik | GAL |Minimum| Q1 |Median| Q3 |Maximum
Standard
. 758 796 -368 11 -2.36 -0.65 0.13 0.70 3.16
Parameterization
New
. 753 791 -365 11 -2.50 -0.63 0.10 0.71 2.30
Parameterization
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By the inspection of Table 5.1 it can be gathered that in the standard parameterization the ultimate length L

is considered to decrease linearly with solar radiation and sea surface temperature; conversely the growth
rate k is considered to increase linearly with solar radiation and sea surface temperature, this might mean
that in southern and warmer sites corals grow faster but reach a smaller final dimension.

For both parameters the slope of solar radiation is smaller than the slope of sea surface temperature but with
a narrower confidence interval. The only random effect concerns growth rate k. The variance heterogeneity
is corrected by a function which is a compound of an exponential increasing function and a power with
negative exponent function. This function in fact decreases the influence of the extreme fitted values and
increases that of central ones when contemplating the fact that the measures of young and very old corals are
generally less reliable because of the difficulty in counting the growth rings. The correlation structure is
autoregressive AR(1). The goodness of fit of this model is confirmed by the very close to zero residuals
quantiles presented in Table 5.2.

In the new parameterization the ultimate length L is independent of solar radiation and sea surface

temperature as observed by Kleiber (1947) and confirmed by Kooijman (2008); conversely growth
coefficient ¢ is considered to decrease with solar radiation and increase with the sea surface temperature, so
southern but colder sites should have more slowly growing corals than those of northern but warmer sites.
The slope of solar radiation is larger and has a narrower confidence interval than the slope of sea surface
temperature. The random effects are quite large: the similar behaviour of the two islands, i.e. Elba and
Pantelleria and the site with certainly a much stronger current, i.e. Scilla can be noticed. This might suggest
that by adding further covariates, such as precisely measured sea current, the model might be further
improved. The two random effects are correlated, suggesting a more parsimonious model with only one, but,
when we estimated it, the results were definitely worse. The variance heterogeneity is corrected by
decreasing the influence of only the larger fitted values; in fact, the bad estimation of young corals seems to
be less emphasized than in the traditional parameterization. The function having produced the better model
is a mixture of a constant function and a power with positive exponent function. Also in this case the

correlation function is autoregressive AR(1).
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Table 5.2, showing the model comparison criteria and the residuals distributions of both parameterizations,
confirms a general good performance of both models; it might be underlined however that the new
parameterization has slightly smaller AIC and BIC and residuals slightly closer to zero.

The residuals plotted vs the fitted values in Figure 5.27 show that some extreme estimated values typical of
the more common parameterization are absent in the new one; the residuals of both parameterizations are
symmetrical and centred on zero.

Figure 5.27 Residuals using the covariates with the two parameterizations for Balanophyllia europaea
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Figure 5.28 shows that the distribution of the residuals of both parameterizations has deviations from

normality for extreme values; less strong for the new parameterization.
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Quantiles of standard normal

Figure 5.28 Normal plot of residuals using the covariates with the two parameterizations for
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Balanophyllia europaea data
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The observed vs fitted data plot shown in Figure 5.29 highlights, for both parameterizations, the general
underestimation of the larger corals, likely due to the lack of consideration of the sea current which can be
an important factor of growth.

Figure 5.29 Observed vs fitted plot using the covariates with the two parameterizations for
Balanophyllia data
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Figure 5.30 shows the distribution of the residuals along sites and confirms that both parameterizations
perform poorly only at Scilla which is the site with the largest sea current.

Figure 5.30 Boxplot of residuals by sites using the covariates with the two parameterizations for the
Balanophyllia europaea dé;\ta
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Finally, Figure 5.31 shows the predicted curve with the intra-site random effect accommodations: the
biggest difference between the two models is in the prediction of the coral growth in Elba; there are
remarkable differences also for Calafuria and Scilla. The reason for these differences might be once more
the lack of information about the sea current which might be the reason for the wide random effects of the
new parameterization. Parameter c, introduced to capture the effect of covariates, is in fact more sensitive to
poor environmental information. The standard parameterization, distributing the covariate influences

between the two parameters, can manage this lack of information.
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Figure 5.31 Observed data, population prediction (fixed) and within-site predictions (z) with the two
parameterizations for the Balanophyllia europaea data
A — fixed — z B — fixed — z
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5.5.2 The method giving the best fit for Leptopsammia Pruvoti

The model giving the best fit takes into account the environmental covariates and a function modelling the

variance structure and is shown in Table 5.3; its goodness of fit is presented in Table 5.4.

Table 5.3 Best fit estimated parameters for the Leptopsammia pruvoti data in both parameterizations

Standard Parameterization New Parameterization
Loi=LemoyR~a;T;7by Lyi=L.Tby
ith site VB GF parameters
I =kt ;R +o.T+by ¢,=c+a;R ,+a,T . +b,,
L.~ R;~a,T; L.
L. =10.5SE=09 p<0.0003
a;=0.15 SE=0.08 p=0.013 L..=10.1 8E=1.1p<00005
a,=-103 §E=1.30 p=0.7
Fixed effects
ot aR+asT; cra R ~a,T,
k=0.115 SE=0.01 p<0.0003 c=-2158E=3.6 p<0.00035
a,=0025 SE=0.027 p=0.3 a;=-0.08 SE=0.03 p=0.08
a ,=-0.004 SE=0.0018§ p=0.03 a.=-0.04 SE=0.4 p=06
by by b
genova 0.009 genova -1.7 3.
calafuria 0.010 calafuria 03 1.8
Random effects elba 0.048 elba 05 -1.7
palinuro -0.313 palinuro -07 2.5
scilla 04354 scilla 32 -10.3
pantelleria -0.209 pantelleria -07 24
Variance g’ (@5.8)=(% —_H_is; I _H_i:';" g 4. 8)=%+ _.c{_i‘;" | u ”‘
8,=104 8746 8=34 8.=101 8,=51  8=-40

Table 5.4 Model comparison criteria and residuals distributions for Leptopsammia pruvoti data

Standardized Error

AIC [ BIC |LogLik | GAL [Minimum| Q1 |Median| Q3 |Maximum

Standard
.. 531 566 -254 11 -2.01 -0.64 0.10 0.86 2.75
Parameterization
New
.. 527 562 -252 11 -2.01 -0.62 0.13 0.81 2.60
Parameterization

In accordance with the results presented in Table 5.3, in the standard parameterization the ultimate length L

decreases linearly with solar radiation and increases linearly with the sea surface temperature; conversely
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growth rate k decreases linearly with both solar radiation and sea surface temperature, so that southern and
warmer sites have corals growing slower but reaching a larger final dimension if the site is very warm. For
both parameters the slope of solar radiation is smaller but with a narrower confidence interval than the slope

of sea surface temperature. The only random effect is due to the ultimate length L_. For this coral the

variance heterogeneity also needs to be corrected by decreasing the influence of the extreme fitted values
and increasing that of central ones: in this case because of the smaller dimension of the coral, the age of only
very young corals, mainly one year-olds, is strongly underestimated and those of old corals is generally
poorly estimated because of the difficulty in counting the growth rings. The most suitable function for
modelling the variance structure is thus a compound of an exponential increasing function, a constant
function and a power with negative exponent function. In fact, no autocorrelation was found, because of the
very small dimensions; the yearly fluctuation conditions should not have any influence on the coral growth

rings. In the new parameterization the ultimate length L is, obviously, independent of solar radiation and

sea surface temperature; growth coefficient ¢ is considered to decrease with solar radiation and sea surface
temperature, so southern and warmer sites should have slower coral growth than that of corals in northern
and cold sites. As for the Balanophyllia europaea, the slope of solar radiation gradient is larger and has
narrower confidence intervals than the slope of the sea surface temperature gradient. The random effects
confirm the common behaviour only for Elba and Scilla. Variance heterogeneity is corrected by a function
similar to that used for normal parameterization. Table 5.4 shows the model comparison criteria and the
residuals distributions of both parameterizations: the performance is similar even if the new

parameterization has a smaller AIC and BIC and also the residuals range is smaller.

In addition, Figure 5.32 shows that some outliers of the normal parameterization are reduced in the new one.
The residuals of both parameterizations are centred on zero, but despite the correction they are still not

symmetrical for very young corals.
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Figure 5.32 Residuals using the covariates with the two parameterizations for Leptopsammia pruvoti
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The normality of residuals distributions was investigated by plotting the quartiles of a standard normal
distribution against those of residuals shown in Figure 5.3; both parameterizations have evident deviations
from normality for small values and the distribution of the new parameterization seems to be slightly closer
to normal than the standard parameterization.

Figure 5.33 Normal plot of residuals using the covariates with the two parameterizations for
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The fitted vs measured plot shown in Figure 5.34 highlights for both parameterizations the general
underestimation of very small and very big corals; the new parameterization seems to slightly limit this
underestimation.

Figure 5.34 Observed vs fitted plot using the covariates with the two parameterizations for
Leptopsammia pruvoti data
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Figure 5.35 describes the distribution of the residuals according to the sites and shows that both the
parameterizations have the worst performance with Scilla and Elba even if the new parameterization seems

better performing with Scilla.
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Figure 5.35 Boxplot of residuals by sites using the covariates with the two parameterizations for the

Leptopsammia pruvoti data
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Figure 5.36 shows the predicted curve with the intra-site random effect accommodations: the biggest
difference between the two models is in the prediction of the coral growth in Scilla confirming the better

performance of the new parameterization.
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Figure 5.36 Observed data, population prediction (fixed) and within-site predictions (z) with the two
parameterizations for the Leptopsammia pruvoti data
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6 Conclusions

The motivating problem of this thesis concerns the estimation of the growth curve of solitary corals that
follow the nonlinear Von Bertalanffy Growth Function (VBGF). The most common parameterization of the
VBGF for the corals is based on two parameters: the ultimate length L., and the growth rate k. One of the
aims of this thesis is to find a more reliable method for estimating these parameters than those currently used
and able to capture the influence of environmental covariates. The main problem of the methods currently
used is the forced linearization of VBGF. Therefore a preliminary step for improving the model was the use
of a nonlinear least square method to estimate the two parameters. A further decisive improvement was
expected by introducing the hierarchical nonlinear model which has the appealing features of taking into
account the influence of the collection sites and the possible intra-site measurement correlation and variance
heterogeneity. Further on, the hierarchical nonlinear model can manage the influence of environmental
factors and all the reliable information that might influence coral growth. The models considered were tested
on two databases relating two different solitary corals i.e. Balanophyllia europaea and Leptopsammia
pruvoti, collected in six different sites having different environmental conditions. The nonlinear least square
model introduces a substantial improvement in the results compared to those obtained by the linearized
methods used by biologists. The use of nonlinear hierarchical models including environmental covariates
gives a further marked improvement in the fit suggesting it is a suitable method to study the growth of
solitary corals. Nevertheless, the theory of the energy balance in growth ascertains the linear correlation of
the two parameters and the independence of the ultimate length L., from the influence of environmental
covariates, so a new parameterization was introduced based on the ultimate length and a parameter ¢ which
explicitly describes the part of the growth accountable to site-specific conditions such as environmental
factors. In this thesis we explored the possibility of estimating these parameters characterizing the VBGF
new parameterization via nonlinear Least squares regression. The second step was to improve the model
considering a nonlinear hierarchical model; a further improvement was reached by introducing the
possibility of managing the intra-site variance structure and autocorrelation into the model. Finally, the
presence of environmental covariates was introduced into the model. Also in this case the nonlinear least

squared regression highlighted a general improvement with respect to the traditional methods, but the most
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suitable models were obtained considering the hierarchical nonlinear approach involving the presence of
environmental covariates. The results giving the best fit of each of the two parameterizations were similar,
even if a very slight improvement was observed in the new one. This one is nevertheless, more suitable from
a theoretical point of view when considering environmental covariates. In fact, their influence is correctly
ascribed only to the parameter sensitive to them, i.e. parameter c. The advantages of this new
parameterization are considerable only if the measurement of environmental covariates is accurate. The lack
of accuracy in measuring covariates might cancel the advantage of the new parameterization. The results
obtained show, for both parameterizations, a decisive improvement when compared to the traditional

methods; nevertheless, other models might be examined introducing, for example, a Bayesian approach.
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