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Introduction  

Marine organism growth has been the focus of increasing interest, over recent years, among marine 

biologists (Stolarski et al., 2007), (Goffredo et al., 2000). The goal of this work is therefore the problem of 

estimating the growth of some very common marine organisms in the Mediterranean sea, belonging to the 

family of corals, better known as solitary corals. Little is known about their growth mechanism and the 

influence of environmental factors. Furthermore the coral reproductive ability depends on how fast they 

reach the minimum size for reproduction.  

The individual age of these corals may be estimated through their body size: standard age-based growth and 

population dynamics models may be subsequently applied. Demographic parameters highlight relationships 

between organisms and their environment, and contribute to the assessment of habitat stability; in addition, 

information on population turnover may contribute to techniques for the restoration of damaged or degraded 

coastal areas.  

Due to difficulties and costs of recording the ages of corals, it is necessary to build up reliable growth 

models to infer coral age from their body size. In fact corals have a truncated cone geometry and their 

growth is isometric. Since growth depends on annual rings of calcium carbonate in coral bodies, the coral 

body size is directly related to the coral age and the ring thickness, which is in turn related to genetic and 

environmental factors. As a consequence, coral growth can be described as a function of several parameters, 

having a biological meaning, linked to age by a non-linear relationship.  

In biology, the estimates of such parameters are generally obtained by using different strategies of 

linearization (see for instance Gulland and Holt ,1959; Fabenas,1965; Basso and Kehr,1991). 

Biologists follow two main strategies for collecting data useful to estimate these parameters and 

consequently the coral growth.  

In the first one the sample consists of corals randomly chosen in the site under study; each coral is measured 

repeatedly at fixed intervals of times in situ; the results are the mm/months of growth of each coral; then the 

parameters describing individual growth are estimated by a suitable method. Finally, the parameters for the 
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population are subsequently estimated starting from the individual ones and a growth curve for the 

population is finally constructed (Harper, 1977; Grigg et al. ,1984; Ross et al, 1988; Goffredo. et al., 2000).  

In the second approach, the sample consists of colony of corals. Corals of different sizes of each colony are 

random collected, measured and dated. Each coral is measured only once because collection and dating 

causes the destruction of the coral. The growth curve for each colony is constructed using the dimensions of 

the body size of corals at different ages. The parameters of the growth curve for the population are then 

estimated by the parameters of the growth curve for each colony (Goffredo et al., 2000; Epstein et al. 2001; 

Goffredo and Chadwick-Furman, 2003; Goffredo and Lasker, 2008). 

Apart from the method used for collecting data, the estimate of the growth curve parameters is traditionally 

is traditionally obtained by linear models that simplify nonïlinear relationships. The influence of 

environmental factors is accounted for by their linear  correlation coefficient with the parameters 

(McClanahan, 2009; Goffredo and Caroselli, 2010; Harrell Yee and Barron, 2009; Soto et al., 2011). For 

example, Goffredo and Caroselli (2010) assessed the influence of the sea surface temperature (SST) on coral 

growth by finding a linear correlation between SST and estimated growth parameters in colonies located in 

places having different SST.  

The above approaches share two main drawbacks: first, linearization is introduced regardless the behaviour 

of observed data, without considering the presence of variability in the body size of corals of the same age. 

This could cause an error in the parameter estimates. Furthermore no connection is hypothesised between 

the parameter estimate error at the coral (or colony) level, the parameter estimate error at the population 

level and the error of the linear regression between the parameter and the environmental factors.  

For these reasons we propose instead a non-linear mixed effect model with the aim to overcome all these 

limits related to the estimation of coral growth and to obtain more reliable parameter estimates of the 

population growth curve, in this case avoiding forced linearization. 

In addition, a new parameterization of the coral growth curve is proposed in order to identify parameters that 

are sensitive to the environment from those depending only on the genetics of the coral. 

The dissertation starts in chapter 1 with an outline of the basic growth curves chapter 2 is focused on the 

description of the curve used to describe coral growth, the reasons for choosing it and a summary of the 

http://www.springerlink.com/content/?Author=Susan+Harrell+Yee
http://www.springerlink.com/content/?Author=Mace+G.+Barron
http://www.hindawi.com/16509136/
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traditional methods used to estimate the parameters of the curve; in the chapter there is also the description 

of a new proposed parameterization for the curve. Chapter 3 describes the new approach using a hierarchical 

nonlinear model is performed, whereas chapter 4 describes the data sets and the models using both 

parameterizations of the growth curve. Chapter 5 shows the results of the traditional linearization methods 

used in biology to estimate parameters; furthermore an estimate of the parameters using a nonlinear 

regression is proposed. Chapter 5 presents the results for the nonlinear hierarchical model applied to both 

parameterizations with and without considering the influences of environmental covariates. 
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1  The growth curves in Biology 

1.1 The Growth Curve Model  

Growth curve models are used to describe how a particular quantity increases or evolves over time and 

consists of a sequence of data points taken at successive moments in time commonly spaced at uniform 

intervals. These models are also used to identify the type of growth pattern of different populations and to 

study the related variables in different fields of applications, for examples biology, ecology, demography, 

population dynamics, finance, econometrics, where a lot of models are developed including: mechanistic 

models, time series models, stochastic differential equations, etc.  

In biology, growth is considered to be both related to the physical dimension and to the population of an 

organism; it is considered to be a fundamental property of biological systems studied at the colony level 

(group level), as well as for each organism (individual level). Growth curve models are based on 

longitudinal data, so measurements are repeatedly taken on a response variable at different time points.  

Different kinds of growth patterns have been used in the literature to model the various types of realistic 

growth mechanisms. The first study pertaining to growth curves was presented by Wishart (1938) and 

differences between growth curves were discussed by Burnaby (1966). A wide and organic discussion of 

growth curve models (GCM) was introduced by Potthoff and Roy (1964) and subsequently expanded among 

others by Rao (1965). Results lead to summarizing growth curve shapes into three different growth mode 

categories: unbounded, bounded and bell-shaped curves (Figure 1.1). They behave similarly in early times 

because the energy available is all used for t growth, then saturation starts to play a significant role. In fact 

saturation is due to an increasing part of energy used to maintain the reached dimension and this process can 

be very different among  organisms. In bell-shaped curves, the increase eventually turns into decrease after 

passing through a peak point: bell-shaped curves can be symmetric or asymmetric. However, the curves 

displayed in Figure 1.1 have to be considered as examples, and there are a multitude of mathematical 

functions available for each type of growth mode (Höök et al., 2011). 
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Figure 1.1 general growth modes

 

1.1.1 Bell-shaped growth  

Bell-shaped growth (Hubbert, 1956) includes a portion of time with a positive slope, an inflection point 

which becomes also a maximum and finally a portion of time with a negative slope. Bell-shaped curves have 

many different shapes and may be symmetric or asymmetric. They are often closely related to sigmoid 

functions and commonly appear as their derivatives (Höök et al., 2011). These curves have frequently been 

used in a wide array of disciplines, but initially were developed to describe and predict production growth in 

biological systems (cell production) or in bioenergetics systems (fuel production). Hubbert (1956) was 

among the first to formulate a basis for the extrapolation of finite resource production curves into the future 

and bell-shaped growth curves were an important cornerstone in such framework. He assumed that 

production levels begin at zero, before production has started, and end at zero, when the resource has been 

fully exhausted. In between, production would pass through one or several maxima. Conceptually, all 

resources are subjected to a physical limitation, due to the earthôs intrinsic finiteness. Such physical resource 

limitations affect the general growth pattern. The limitation lies primarily in the maximum cumulative 

production that can be reached. So after an initial increase the production reaches a maximum, then slows 

down towards zero because of the finiteness of the resource. In biology they were developed to describe and 



 9 

predict growth in biological systems such as in organs of the human body that show degeneration or 

involution: a typical example is the human brain which grows fast in children and slowly in adults; it reaches 

its maximum development in adult age and then shrinks slowly until old age when shrinking occurs rapidly.  

1.1.2 Unbounded growth 

All forms of unbounded growth, regardless of their mathematical nature, are clearly not suitable in the long-

term. Linear growth is obviously slower than exponential growth but in the long run all unbounded growths 

tend towards infinity (Höök et al., 2011). Growth in economic theory is the most commonly used unbounded 

model; in fact, growth is believed to continue forever, but these models can be interesting only if they are 

studied over a ñshortò time (Bartlett, 1993 1999 and 2004) because models change according to different 

economic conditions. Unbounded growth is supported by those who believe that the obvious physical 

limitations of the earth do not necessarily imply an economic limitation (Simon, 1981); in fact conditions for 

the economic growth are continuously changing so when a source of economic growth is ending it is 

replaced by another one brought about by new technology or inventions or different behavioural patterns of 

humans. Others believe that that natural resources are not needed for economic growth (Solow, 1974) or 

even that human ingenuity can act as a powerful force capable of overcoming all possible physical 

limitations (Radetzki, 2007).  

1.1.3 Bounded growth 

This growth model is subject to physical limitations that affect growth rates, making growth slow down over 

time and asymptotically strive towards a maximum value (Janoschek, 1957; Beverton and Holt, 1957). 

Bounded growth occurs in many cases, such as human growth, organ growth, population growth and finite 

resource production. Growth may actually continue indefinitely but the rate of growth approaches zero as 

time tends to infinity. This is well known in many biological systems where an organism may grow quickly 

in its juvenile stage but then its growth slows down as it reaches maturity. The limiting factor lies rather in 

the growth process itself than in the amount of resources available for the growth. The upper limit is reached 

when all the available resources have been used to maintain the dimension achieved and there are no more 
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resources left for further growth. In the biological sciences, this condition is often modelled as 

proportionality between growth rate and actual size.  

Sometimes these growth curves imply a rapid growth in the beginning, which later slows down; as in the 

case of exponential growth curves they are commonly used to estimate the length of some organisms, or the 

size of the skull and the brain.  

Some curves have an inflection point (flex): the initial increase is slow therefore the first part of the curve 

appears flat; then growth increases rapidly so the curve turns upwards sharply until a second slow increase 

occurs, thus giving the curve a flat appearance again. An example can be found in sigmoid growth curves 

where growth is slow at the beginning of the time of observation and at the end but faster in the central time 

of observation. 

The weight and volume of the body and of most organs show a sigmoid growth pattern initially, since the 

rate of growth in mass is low but increasing. The growth rate reaches a maximum, which corresponds to the 

inþection point in the curve, and then slowly declines to zero when the organism achieve their mature 

weight.  

Richards (1959) proposed a sigmoid function developed as a generalization of classical growth curves and 

shown in Figure 1.2. This function is characterised by four parameters not very easy to interpret in many 

applications. Moreover it converges less frequently than the curves that we describe in what follows, 

especially if data do not already include the inflection point. It is actually used to fit data on forest growth.  

 

Figure 1.2 Richards curve 
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where y(t) is the dimension, LÐ is the asymptotic maximum, b depends on the difference between the 

asymptotic maximum ant the initial dimension y(0), k is the growth rate and M shapes the way the 

asymptotic maximum is reached and the position of the inflection point. 

Other well-known sigmoid curves are the Gompertz curve (Gompertz, 1825), the logistic curve (Verhulst, 

1838) and the von Bertalanffy curve (von Bertalanffy, 1938). 

The Gompertz curve (Gompertz, 1825) is shown in Figure 1.3, and was developed for the calculation of 

mortality rates. It is one of the most commonly used curves in growth mathematics and it is characterized by 

slow growth at the beginning and the end.  

Figure 1.3 Gompertz curve 

 

The function is  

 () -ktbey t L (e )-
¤=  1.2 

where y(t) is the dimension,  LÐ is the asymptotic maximum, b sets the displacement along the abscissa and k 

is the growth rate.  

The Logistic curve, shown in Figure 1,4, was developed by Verhulst (1838) as a model for population 

growth. It is characterized by an inflection point independent of measurements so it is often used for sigmoid 

growth where the inflection corresponds approximately to one-half of final size. 
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Figure 1.4 Logistic curve 

 

The function is 
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where y(t) is the dimension, LÐ is the asymptotic maximum, b sets the displacement of the inflection point 

and k is the growth rate. 

The von Bertalanffy curve is a bounded growth curve, derived from the von Bertalanffy Growth Law (1938) 

and based on the balance by the energy income provided by ñfoodò and the fraction of this energy used for 

growth. The most common parameterisation of the von Bertalanffy Growth Law was described by Beverton 

and Holt (1957) and consists of a Richards model with the M shape parameter equal to 1. In this curve, 

dimension is a non-linear function of time based on 3 parameters, each with a physical meaning: maximum 

dimension, growth rate, and time at which the coral size is equal to zero. Their role and importance are 

discussed widely in the next chapter.  
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2. The use of the von Bertalanffy curve to estimate the solitary coral 

growth 

2.1 Coral growth and problems of its modelling  

Most simple marine organism populations are analysed considering individual body size. This measure is 

fundamental, since all physiological processes are related to size, including rates of metabolism, foraging 

and digestion (Peters, 1983; Calder, 1984). Body size is directly linked to life-history traits and individual 

competitive ability (Fox, 1975; Arendt, 2007). For these reasons, a reliable estimate of the growth 

parameters for a population of a certain area is important. In particular, the body size of corals is strictly 

related to the reproductive activity because size has to be big enough to let the planulae get out of the oral 

disk; where corals reaching the dimension of reproduction in early ages have more reproductive success. 

Growth modelling and the analysis of intra-population patterns of body size variability over time are the 

central topics in animal population biology, since the internal size structure of populations may have a 

decisive influence on the population dynamics (De Angelis et al., 1993; Imsland et al., 1998; Uchmanski, 

2000; Kendall and Fox, 2002; Fujiwara et al., 2004).  

De Angelis et al. (1993) observed that model structure and parameter values are based on observations of 

individuals, so the natural variation among individuals and the stochastic nature of their fates should be 

incorporated in any model used. In this framework, the numbers of individuals necessary for estimation 

needs to be high. This model produces a reliable estimate of the population response to environmental 

variation only if data come from well-documented long-term studies of individuals belonging to the same 

populations. Imsland et al. (1998), Kendall and Fox (2002) and Fujiwara et al. (2004) underline that a model 

should incorporate population-specific data on ecological energetics, thermal and size dependence of 

digestive physiology and metabolic rates, energetics of individual growth, allometric relationships, social 

structure and mating system, and the dependence of mortality rates on age, size, and social status of 

individuals. This means that individual-level processes are determined by the organismôs physiological state 

and interactions with its environment, whereas the population state is the distribution of individuals over all 

possible individual states. 
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In general, the von Bertalanffy growth function (VBGF, von Bertalanffy, 1938) is the most widely accepted 

relationship to describe the growth of fish and other marine organisms (Ricker, 1979; Cailliet et al., 2006). 

The VBGF describes the relationship between age and mean length of a population, whereas the variability 

among individuals of the same age (e.g. the variance or even the distribution of each cohort) is not included. 

Each individual is born with a specific genetic constitution that, to a certain extent, controls its growth 

profile (Sainsbury, 1980), but many physical and biological factors, such as water temperature (Sumpter, 

1992), dissolved oxygen (Brett, 1979), photoperiod (Imsland et al., 2002), and the availability and type of 

food sources (Rilling and Houde, 1999) affect the actual growth rates achieved. In addition, the plasticity of 

phenotypes has been shown to be adaptive across environmental gradients (Conover and Munch, 2002; 

Ernande et al., 2004). Therefore, a suitable growth model should take into account individual and 

environmental variability. 

In both ecological (Arino et al., 2004) and evolutionary (Conover and Munch, 2002; Ernande et al., 2004) 

contexts, one of the challenges of researchers is to model how the body size of an individual changes over 

time and to understand from the growth model what kind of probability distribution is suitable for the size of 

an individual as age increases (Lv and Pitchford, 2007; Fujiwara et al., 2004). In corals, as in other animals, 

the first source of variability is rooted in physiological processes and is the net result of two opposing 

processes, catabolism and anabolism (von Bertalanffy, 1938). The inter-individual variability in growth is 

the result of several internal (genetic) and external (environmental) factors, which affect these physiological 

processes. Pilling et al. (2002) and Clarke et al. (2011) state that the estimate of the growth curve of a 

population in each collection site is better performed by the growth model proposed for the size-at-collection 

data than a repeated measure model on a sample of individuals; in fact a single observation per individual 

better describes the mean growth parameters. 

In fact, whilst each individual is born with a personal genetic architecture, which primarily determines its 

growth profile, a number of physical and biological factors, such as water temperature, solar radiation, the 

availability of appropriate food sources etc, have been shown to affect growth rates. 

Differences in size among individuals that are established early in their life history can persist or be 

amplified (Ricker, 1958) if growth is positively size dependent and if there are positive correlations in 
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growth over time among individuals. The latter phenomenon is referred to as ógrowth autocorrelationô 

(Pýster and Stevens, 2002) and is the reason for persistent growth differences among individuals. Similarly, 

differences among individuals in size can dampen over time (Ricker, 1958) if growth is negatively related or 

unrelated to size and there is no growth autocorrelation among individuals. The pattern of growth 

autocorrelation may be the result of several mechanisms, including factors that are intrinsic to the 

organisms, such as genetic or behavioural traits that confer performance differences among individuals (see 

Fraser et al. 2001). Alternatively, factors extrinsic to organisms, such as environmental heterogeneity, can 

cause persistent differences among individuals.  

In conclusion, the underlying sources of growth variability in a population cannot generally be known. For 

size-at-collection data the consequences of not accounting for individual growth variability, or assuming the 

wrong source of variability, are less with respect to tagïrecollection data, even when individual variability is 

high or data coverage is poor. So to reach a reliable size-at-age estimation the best way is to estimate VBGF 

parameters under a stochastic model using size-at-collection data.  

2.2  The von Bertalanffy growth function for solitary corals 

The main approach followed by biologists to obtain insights into metabolic phenomena is the study of the 

metabolism as a balance of energies: the energy entering the organism from food, heat, radiation and the 

energy necessary for feeding, growth, reproduction, maturation and maintenance. The mechanisms that are 

responsible for the organization of metabolism are not species specific (Kooijman, 2000). This care for 

generality is supported both by the universality of physics and evolution and the existence of widespread 

biological empirical patterns among organisms. In particular the growth of isomorphic organisms with 

abundant food is well described by the von Bertalanffy growth curve (Putter 1920; von Bertalanffy 1938). 

The identification of the curve is based on the physical principle that mass and energy are fixed quantities as 

starting points, so that the maintenance rate coefficient is the ratio between the cost of volume maintenance 

EM and the cost of growth EG ( M
M

G

E
k

E
= ) under the biological principle that maintenance has priority over 

growth and maturity maintenance has priority over maturation or reproduction. This leads to the biological 
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proposition that organisms of the same species have a maximum structural length LÐ. (Kleiber ,1947) All 

these considerations point to von Bertalanffyôs law: the growth curve of an isomorphic juvenile or adult 

individual with constant food availability or abundant food is then  

 
dL

k( L L )
dt

¤= -                2.1 

The von Bertalanffy growth rate k is given by 

 

1

33
-

h

M

( L L )
k

k

¤
å õ+
= +æ ö

nç ÷
 2.2 

where Lh is the reduction in length due to the energy used for heating (Lh is the ratio between the cost of the 

surface maintenance ES, associated mainly with heating, and the cost of volume maintenance EM) and n is 

the energy conductance (a measure of energy transfer efficiency).The set of parameter values is individual-

specific. Individuals differ in parameter values and selection leads to evolution characterized by a change in 

the (mean) value of these parameters. However, it is important to underline that, in agreement with 

Errore. L'origine riferimento non è stata trovata. , LÐ and the growth parameter k are correlated; the von 

Bertalanffy growth rate decreases, in fact, with ultimate length: different combinations of k and LÐ can give 

almost the same fit to data, except when a wide range of ages is represented. Again, a high value of k 

combines with a low value of LÐ and vice versa (Sparre and Venema, 1992). 

The von Bertalanffyôs law (Putter, 1920; von Bertalanffy, 1938) is one of the most universal biological 

patterns (Fraser et al., 1990; Strum, 1991; Schwartz and Hundertmark, 1993; Ferreira and Russ, 1994; Ross 

et al., 1995) and can be considered the pillar of the laws describing the growth of organisms. Of course 

complex organisms have interactions between the different parts of their body and with the environment, so 

the description of growth only in terms of a physical law is very difficult. For simple organisms like corals 

this law well describes the body growth and can be used also for organisms of the same species with 

different food availabilities. In the latter case Kooijman et al. (2007) asserts that unlike 

Errore. L'origine riferimento non è stata trovata. , the logarithm of the von Bertalanffy growth rate 

decreases with ultimate length,  

 
1

ln( k )
L¤

´  2.3 
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The most common parameterization of the solution to the differential equation 2.1 is  

 01 k( t t )y( t ) L ( e )- -
¤= -  2.4 

where y(t) is the dimension, LÐ is the asymptotic maximum, k is the growth rate and t0 is interpreted as the 

age when an individual would have been of zero length. 

Biologists use the von Bertalanffy model with size at birth equal to 0 to describe solitary coral growth; when 

the size at birth is considered zero, thus t0=0, the curve starts from the origin, and the 

Errore. L'or igine riferimento non è stata trovata.  becomes  

 () 1 kty t L ( be )-
¤= -

 2.5
 

From a biological point of view the VBGF has three meaningful parameters: 

1. L0 is the mean length at birth (t = 0), which is species-specific and for solitary corals is universally 

considered to be very close to zero  

 0 00 or equivalently 0L t=         =  

2. LÐ is the maximum mean length achievable by the species, with set environmental conditions and food 

availabilities, when t goes toward infinity.  

3. k is the so-called Brody growth rate coefficient, but it is actually the exponential rate of approach to the 

asymptotic size, his unit is the reciprocal  of the unit time (e.g. year-1).  

The main problem for biologists is then a reliable estimate of these parameters; the estimate should face two 

basic matters: the strong correlation between the parameters and the potential influence on them of 

environmental covariates which shouldnôt affect, in agreement with the metabolic theory, the ultimate length 

LЊ.  

For these reasons, we propose a new parameterization able to capture the effect of environmental covariates 

only by one parameter, isolating the role of the ultimate length LÐ and, in addition, to propose a method to 

obtain reliable estimates of the two parameters of the curve. 
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2.3  The methods used in marine biology for estimating the von Bertalanffy 

growth parameters 
 

2.3.1 The Gulland-and-Holt (GH) plot  

The GH plot (Gulland and Holt, 1959) is one of the most widely used methods in biology: it is based on 

annualized growth rates plotted vs. mean length at first and second measurements. Indeed the von 

Bertalanffy growth curve implies that the growth rate (
dL

dt
) declines linearly with length. 

This relationship between length and growth rate can be used to estimate the two parameters LÐ and k. In a 

standard GH plot, the growth rate 
dL

dt
of an experimental interval is plotted over the mean length in that 

interval). The differential form is  

          mean mean

dL
L'( t ) kL kL k ( L - L )

dt
¤ ¤= = - =  2.6 

  

or in terms of growth increments per interval (length L1 and L2); 

 

2 1 2 1

2 1

 
2

            

L - L L L
a b

t - t

a a
 k -b L

-b k
¤

+å õ
= +æ ö

ç ÷

= = =

 2.7 

 

For corals the mm/year growth is calculated for each individual and then plotted against the individual 

length: the least squares estimation of the straight line parameters are then used to calculate LÐ and k. 

This method has several limitations: 

¶ it is adequate only if the time interval ȹt=t2-t1 is infinitesimal; 

¶ it should be used only with follow up measurements, it is commonly used instead also with the 

length-at-capture data; 

¶ it does not take into account the correlation between LÐ and k; 

¶ it does not take into account the possible influence of environmental parameters; 
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¶ it is a deterministic method which does not take into account any possible statistical fluctuation and 

does not provide any confidence measure of the estimate. 

2.3.2 The size-increment method proposed by Fabens 

The size-increment method proposed by Fabens (1965), fits the von Bertalanffy model by the least squares 

method to observed lengths, using data on known growth increments in known time intervals but making no 

assumption about absolute age according to: 

 1k t k t
t t tL Le L ( e )- D - D
+D ¤= + -  2.8 

 

where ȹt is the time increment between the two measured points Lt and Lt+ȹt. 

Indeed for corals the growth is measured for each individual at fixed intervals of time, so ȹt is constant and 

then a linear regression of Lt+ȹt against Lt will generate a slope of k te- Dand an intercept of L 1 k t( e )- D
¤ - . 

This method has several limitations: 

¶ it overestimates k and underestimates LÐ .The bias appears to be associated with a failure to account 

for the redistribution of the error term when the basic growth equation is transformed to eliminate the 

necessity of estimating age; 

¶ it does not take into account the correlation between LÐ and k; 

¶ it does not take into account the possible influence of environmental parameters; 

¶ it does not take into account the level and the distribution of the error at the individual and 

population of a colony level.  

2.3.3 The linearization proposed by Basso and Kehr  

The linearization proposed by Basso and Kehr (1991) fits the von Bertalanffy model imposing as LÐ the 

largest size found in individuals of each species and then considering the linear regression between 

1 tL
ln

L¤

å õ
-æ ö
ç ÷

 as dependent variable and t as independent variable. So the estimate of k and 0 0kt L=  is the 

solution via the least squares method of the equation 
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0 1      tL

ln - - kt kt
L¤

å õ
= +æ ö

ç ÷
 2.9 

The above models are stated as deterministic, while linearization is valid only considering a small 

neighbourhood of the studied times, so nonlinear statistical methods can definitely improve the results. 

2.4 Gallucci and Quinn parameterization 

Gallucci and Quinn (1979) noted that comparisons of ñgrowth" between two or several groups should 

involve both k and LÐ. However, because of the generally high correlation between these two parameters, 

simultaneous hypothesis tests of these two parameters are non-standard and difficult to interpret. They 

introduced a new parameter, ɤ= kLÐ asserting that it is a sensible index to compare two or more growth 

curves because it captures both the essential features of body-size growth. The new parameterization can be 

then achieved, by solving for LÐ and substituting it In Errore. L'origine riferimento non è stata trovata. ,  

 ( )1 kty( t ) e
k

-
w
= -  2.10 

 

In the same article Galucci and Quinn (1979) state that ɤ can be thought of as a growth rate because the 

units are in length-per-time, which, in fact, corresponds to the instantaneous growth rate near t=0 in the case 

of corals. Furthermore, they claim that ɤ is the appropriate parameter to use to compare populations because 

of its statistical robustness owing to its normality (with small variance) for different populations of the same 

species (Moreau et al. 1987). 

2.5 A new proposal of parameterization based on Galucci and Quinn 

model. 

Kooijman (2000) underlines that for organisms of the same species with different food availabilities the 

logarithm of the von Bertalanffy growth rate decreases linearly with ultimate length as stated in 

Errore. L'origine riferimento non è stata trovata.  

1
ln( k )

L¤
´  
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So, different combinations of k and LÐ can give almost the same fit to data, except when a wide range of 

ages is represented. Again, a high value of k combines with a low value of LÐ and vice versa (Sparre and 

Venema, 1992)  

Our proposal is then to use a different parameterization of 

Errore. L'origine riferimento non è stata trovata.  

 1 ¤-
¤

å õ
= -æ ö
ç ÷

c

Ltey( t ) L e  2.11 

 

where       

 
¤

=c ln( k )L  2.12 

 

This new approach might lead to more reliable results when including the effect of environmental 

covariates, in fact, as Kooijman (2008) pointed out, for simple isomorphic organisms with different food 

availabilities LÐ could be considered independent of external factors; so the influence of covariates 1 vx ,...x  

representing environmental influences could be attributed to the new parameter  

 1= vc f ( x ,..,x ) 2.13 

 

The new parameter c could be seen then as the part of the length growth accountable to site-specific 

conditions such as environmental factors.  

This parameterization, compared to the traditional one, has the advantage of isolating the parameter sensible 

to environmental influences, so that it is possible to obtain a more meaningful and parsimonious statistical 

model when covariates are involved. The deterministic methods used by biologists do not suit with this 

parameterization because they were designed to find k and LÐ, while the new parameterization does not 

contain k. 
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3 An alternative approach to estimate the growth curves: 

hierarchical models  

3.1 The hierarchical approach 

The models used by biologists are deterministic in the sense that they do not take into account differences 

among individuals of the same population and differences among populations related to different 

environmental conditions. They furthermore introduce a forced linearization which produces an unreliable 

estimation of the VBGF parameters; in fact the VBGF is a nonlinear relationship. A first step to improve the 

parameters estimation is the use of a nonlinear regression model so that it is possible to consider directly in 

the model the functional form linking growth and age. The nonlinear models are based therefore on 

assumptions often violated in the corals growth; in addition the studied data have two sources of variation: 

the coral population and the sites of collection. It comes natural then to get to nonlinear hierarchical models. 

Therefore a better approach could be a non-deterministic model in which each coral is characterized by 

different parameter values of the VBGF: in this way, each single coral has its own couple of parameters, 

( )¤L ,k , in the case of the classic VBGF parameterization, or ( )¤  L ,c , in the case of the new proposed 

VBGF parameterization, which is retained throughout its life (Sainsbury, 1980). According to biologists, the 

parameters values of corals collected in the same site, leaving in an environment characterised by the same 

sea surface temperature, sea current and solar radiation, should be more alike than those of corals collected 

in different sites. The parameters describing the growth of a coral can then be seen as a sum of different 

contributions: the species contribution common to all corals, the site contribution common to all corals 

exposed to the same environmental characteristic and a random contribution typical of the single coral 

attributable to immeasurable aspects. This approach points directly to a hierarchical model. Another critical 

aspect of the deterministic approach is the forced linearization; the statistical approach provides techniques 

to estimate the parameters while maintaining the nonlinear relationship. Combining the two aspects we 

come to the hierarchical nonlinear models: the coral growth curve can be then estimated via the nonlinear 

least squares method; where the species contribution, common to all the corals, is considered as a fixed 

effect; the site contribution related to all corals exposed to the same environmental characteristics is 
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considered as a random effect, which might depend on environmental covariates; the random contribution 

typical of the single coral can be seen as the residual error. 

In fact, hierarchical nonlinear models for data in the form of continuous, repeated measurements on each of 

a number of individuals, are a popular platform for analysis when interest focuses on individual-specific 

characteristics and has gained broad acceptance as a suitable framework for such problems. The central 

concept of hierarchical models is that certain model parameters are themselves modelled; in other words, not 

all the parameters are directly estimated from the data, rather some of them are calculated from estimates of 

the modelôs hyperparameters which are in turn estimated from the data. The latter parameters are sometimes 

referred to as ñrandom effectsò. They are to be distinguished from ñfixed effects,ò which are not modelled, 

but are instead estimated directly from the data.  A hierarchical model can have both, so it is often described 

as a ñMixed effects modelò. 

Hierarchical nonlinear models may be regarded as both an extension of the nonlinear regression models and 

the hierarchical linear models. A natural framework is the two-stage model that takes into consideration 

intraï and inter-individual variations, as in mixed effect models. Hierarchical nonlinear models can be 

considered mixed effect models where some, or all, of the fixed and random effects occur non-linearly in the 

model function. From a non-linear point of view they can be seen as nonlinear regression models for 

independent data (Bates and Watts, 1988) where random effects are incorporated in the coefficients to allow 

them to vary by group, thus inducing correlation within the groups. From a mixed effect point of view they 

can be seen as linear mixed effect models where the conditional expectation of the response, given the 

random effects, is allowed to be a nonlinear function of the coefficients. 

Pinheiro and Bates (2000) discuss three important advantages of nonlinear hierarchical models:  

¶ interpretability. The modelling approach requires that one explicitly model. Judgment as well as 

background empirical or theoretical knowledge can be used to guide the choice of nonlinear 

functional form; 

¶ parsimony. A well-chosen nonlinear function can model a non-linear process with fewer parameters 

than a linear model with multiple polynomial terms. In addition, the hierarchical modelling approach 
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allows one to replace a potentially large number of subject-specific indicator variables and 

interaction terms with a small number of hyperparameters;  

¶ validity beyond the observed range of the data. Of course it is always dangerous to use a model to 

extrapolate beyond the data. However, this approach at least offers a framework within which one 

can harness oneôs background knowledge when specifying a model. Such an approach is less likely 

to lead one astray than a less parsimonious or more atheoretical ñcurve-fittingò approach. 

3.2 Basic nonlinear regression model  

The nonlinear regression models are the starting point to improve the estimation of the parameter values of 

the VBGF. For longitudinal data the used method are mostly based on least-square, maximum-likelihood 

and Bayesian estimation procedures as can be seen in Gallant (1987), Seber and Wild (1989), Genning et.al 

(1989), Davidian and Giltinan (1995), Vonesh and Chinchilli (1997). 

Let yj  be the generic observation of the ith of M sites, where j=1,..,ni, the model can be written then as 

 ,( ) e= +j j jy f x f   3.1 

   

where f(.) is a nonlinear function, f is the (px1) vector considering the p parameters of the functions and ‐j is 

the random error. The function f(.) should satisfy mj=f(xj,f) for one value of f in F and for all values of x. 

This condition, if verified, implies that E(‐j)=0 and consequently E(yj) = mj. The error should in addition 

satisfy the classical assumptions so that ‐j should be independent and identically distributed with zero mean 

and common variance s
2
. 

In the biological area, for growth curve or repeated measures this assumption could be often unrealistic.  

The model formulation proposed by Davidian and Giltinan (1995) allows departures from the assumptions 

to be accommodate through some generalizations. 

A general way to consider the intra-individual variance heterogeneity consists of specifying the variance 

function g(.) which may depend on the mean response, on constants zj which may include the influence of 

environmental site-specific covariates and on an additional q-dimensional parameter vector ◒ fully 

specifying the variance functional form.  
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( )2 2s m

m = E(

=  

=  

j j j

j j j

Var( y ) g ,z ,

y ) f ( x )

J

,f
  3.2 

   

Furthermore because of the repeated measures, errors might be correlated, that could be accommodate 

delineating the correlation of the error by the correlation matrix G(a) where a is a s-dimensional vector of 

correlation parameters 

Furthermore, for repeated measures, errors might be correlated. This intra-site correlation could be 

considered by using the correlation matrix G(a) where a is a s-dimensional vector of correlation parameters 

(Davidian and Giltinan, 1995). 

Moreover in growth curves both correlation among measurements and intra-site heterogeneity may be 

evident; if this happens, variance function g (.) could be used to define the diagonal variance matrix 

 ( ) ( )2 2
1 1G   m , .., m= è øê ún n( , ) diag g ,z , g ,z ,fJ J J  3.3 

   

with 1 2G / ( )f,J the diagonal matrix with elements the square root of those of G( )f,J (Davidian and 

Giltinan, 1995). Here f appears as an explicit argument to emphasize the possible dependence of intra-

individual variance on the regression parameters through the mean responsem=  j jf ( x ),f. 

Considering a correlation pattern described by the matrix G(a) then the specification 

 ( )2 1 2 1 2G G ɝ=s =/ /Cov( ) ( ) ( ) ( ) R ,e f,J G a f,J f  3.4 

where [ ]
'

' 'ɝ= s, ,J a is the (q+s+1)-dimensional combined vector of all intra-site covariance parameters 

The Errore. L'origine riferimento non è stata trovata.  implies that  

 
1 2 1 2

2 2

( , )( ) ( , , ), ( , ) ( )ũ Ŭs m= =j j j j j j jVar y g z Corr y yJ       3.5 

These latter considerations improve the model but still doesnôt fulfil the exigency to have a model which 

takes into account the different sites of collection and maybe the influence of environmental covariates 

points: this can be done in a more complete model like hierarchical nonlinear one.  
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3.3 Newtonôs method for nonlinear function estimation  

Let jy denote the response obtained at the jth covariate value tj where j=1,..,n. The response vector 

[ ]1

'
y= ny ,.., y  contains the information at values [ ]1

'
x= nx ,..,x so that 

[ ]1

'

e

  e e

= +

=

j j j

n

y f ( x , )

,..,

f

e
 

where f(.) is a nonlinear function, f is the (px1) vector considering the p parameters of the functions.  By the 

Least squares method, the parameter estimates provide the best fit of the mean function =j jy f ( x ),f to the 

observations obtained by minimisation of the residual sums of squares (RSS) with respect to f as follows:  

 

 ( )
n

2

j j j

j 1

RSS( ) f ( ) e
=

= - +äy xf ,f  3.6 

 

The minimisation of the RSS is known as least-squares estimation, and the solution is the least-squares 

parameter estimates, denoted by 
^

f. The minimisation of the RSS is a nonlinear problem due to the 

nonlinearity of jf ( x , )f , and therefore numerical optimisation methods are needed. These methods start 

from some initial values and then repeatedly calculate next available value according to some optimization 

rules so that the iterative procedures will ideally approach the optimal parameter values in a stepwise 

manner.  At each step, the proposed algorithm computes the new parameter values based on the data, the 

model, and the current parameter values. By far the most popular algorithm for estimation in nonlinear 

regression is the Gauss-Newton method, which relies on linear approximations to the nonlinear mean 

function at each step; unfortunately, two main complications arise when using it: how to choose the 

initial/starting parameter value and how to ensure that the procedure reached the global minimum rather than 

a local minimum. These two issues are interrelated. If the initial parameter values are sufficiently close to 

the optimal parameter values, then the procedure will usually reach the optimal parameter value (the 

algorithm is said to converge) within a few steps. Therefore, it is very important to provide sensible starting 
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parameter values. Poorly chosen starting values on the other hand will not reach convergence. If lack of 

convergence persists regardless the choice of the starting values, the conclusion is that the model is not 

appropriate for the data at hand. As the solutions to nonlinear regression problems are numeric, they may 

differ as a consequence of different algorithms, different implementations of the same algorithm (for 

example, different criteria for declaring convergence or computing first derivatives numerically or 

analytically), different parameterisations, or different starting values. However, the final parameter estimates 

ought not differ much. If there are large discrepancies, they might indicate that a simpler model should be 

preferred. Once the parameter estimates 
^

f are found, the estimate of the residual variance ů
2
 is obtained as 

the minimum value of RSS (attained when parameter estimates are inserted divided by the degrees of 

freedom (nīp), as 
2

^å õ
æ ö
ç ÷=
-

RSS

s
n p

f

  (Fox et al. 2002). The residual standard error is then s. 

3.4 The hierarchical model specification proposed by Lindstrom and 

Bates  

According to Lindstrom and Bates (1990) a general nonlinear mixed effects model for repeated measures 

can be defined at two levels. At the first step the jth observation on the ith site is modelled as  

 ( ) 1 1x e= +      =   =ij ij i ij iy f , i ,..,M and j ,..,nf  3.7 

where yij is the jth response on the ith individual, xij is the covariate vector for the jth response on the ith site 

and and fi is the M-dimensional parameter vector, f is a nonlinear function and eij is a normally distributed 

error term (Lindsrom and Bates ,1990). In the second step, the parameter vector if 
, is modelled as 

 
i i i i

Aɓ Bb= +f  and 
2

~ (0, )
i

b N Ds         3.8 

where ɗ is a p-dimensional vector of fixed effects, bi is a q-dimensional random effects vector associated 

with the ith individual, the matrices A i and Bi are, respectively, the design matrices for the fixed and random 

effects and s2
D is a general varianceïcovariance matrix.  
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This formulation assumes the observations, corresponding to different groups, as independent and the 

within-group errors eij
as i.i.d. N(0, ů

2
) and independent on the bi.  

The assumption of independence and homoschedasticity for the within-group errors can be combined 

therefore in a more general model. 

3.4.1 Intra -site variation 

The model Errore. L'origine riferimento non è stata trovata. describes the systematic and random 

variation associated with measurements on the ith site. In particular the systematic variation is taken into 

account by the regression function f, random variation is taken into account by a distributional assumption 

for the random errors eij and the specification of a model for its distribution. As already seen, for a given site 

variability in the yij may be a systematic function of the mean response for that site, other known constants 

and additional, possibly unknown parameters; correlation among measurements on a given site may also 

arise. In many contests, and growth curve should be one of those, it is reasonable to expect a comparable 

pattern of intra-site variation across sites (Davidian and Giltinan,1995). The pattern of correlation of 

measurement taken in a given site would also be likely to remain constant across sites. 

According to Errore. L'origine riferimento non è stata trovata.  and collecting the errors for the 1th site 

into the vector 1,..,
'

e eè ø=ê úii i ine  it is possible to write a general specification of the common intra-site 

variance structure as 

 ( ) [ ]
'

' 'ɝ ɝ       = = si i i iCov( | ) R , , , ,e f f J a  3.9 

allowing for variance heterogeneity and correlation within sites. The most common assumption about the 

conditional distribution of the error for a given if is that of intra-site normality of the response which comes 

from the error specification (Davidian and Giltinan, 1995) 

 ( )ɝe N        )i i i i| R ,f ~ (0, f   3.10 
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3.4.2 Inter -site variation 

Variation among different sites is taken into account by the site specific regression parameters if. The 

standard approach as already seen is to specify a model for the ifwhich could consider part of the 

parameters variation due to a systematic dependence on individual characteristic (possibly covariates) and 

part due to unexplained (random) reasons. To account for these possibilities the parameters if are 

considered as depending on systematic and random components respectively ɓ and bi.  

Let if be a p-dimensional vector of regression parameters specific to the ith individual and ai be an  a-

dimensional  covariate vector corresponding to the attribute of the ith individual. If bi is a k-dimensional 

vector of random effects associated with the ith individual and b is a (rx1) vector of fixed effects then a 

general model for if could be given by 

 ( )a b=i i id , ,f b  3.11 

 

where d is a p-dimensional vector-valued function. Each element of d is associated with the corresponding 

element of if, so that the functional relationship may be of a different form for each element. A complete 

characterization of the inter-site variation requires an assumption about the distribution of the random effects 

bi. The most common distributional assumption is  

 2b 0 Dsi N( , ):   3.12 

 

where s
2
D is a (k x k) covariance matrix  (Davidian and Giltinan, 1995) 

As an alternative to normality it is possible to assume a multivariate t (Wakefield 1995) or a mixture of 

normal distributions (Beal and Sheiner 1992). The t distribution with its heavier tails may provide a robust 

alternative to handle outlying individuals; the mixture of normals accommodates the possibility of 

multimodality of the distribution of the random effects. It is also possible to consider situations in which the 

assumption of zero mean is not made. 
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3.5 Hierarchical Nonlinear model for the solitary corals 

In the following paragraphs the hierarchical model to design the solitary corals growth curve based on 

VBGF will be specified.  

3.5.1 The standard parameterization 

Let yij be the length of jth coral in the ith site; let tij be the age of corals and let if be a bi-dimensional vector 

'

,¤è ø=ê úii iL kf   and considering then M sites each one measured ni times, the nonlinear model can be 

integrated and the Errore. L'origine riferimento non è stata trovata.  in accordance with the (3.6) becomes 

 1 11 e¤        =           = M = - +i ij

iij ij i

k t j ,..,n i ,..,y L ( e )  3.13 

  

In designing the distribution of the error eij  we have to consider if the classical assumption are reliable for 

corals growth.  

The assumption of zero mean of the error is not called into question as the relationship between the response 

and the covariate based on the VBGF has a physical meaning and is derived, as already seen, by biochemical 

considerations. The assumption that the error has common variance ů
2
 and is identically distributed for all tij 

risks to be easily violated for two reasons: the first one is that young corals are less variable than old one as 

environmental factors have less time to influence them, the second one depends on the way they are 

measured. The age of solitary corals are determined by counting the growth rings, so in small corals that 

could be less precise than in adult corals, on the other hand in very old corals, slowing their growth after a 

certain dimension is very difficult to count ultimate rings because they are very close, sometimes collapsed. 

The error may be also correlated: the growth in a certain site depends on the yearly fluctuation of 

environmental parameters, such as temperature, solar radiation and current. So corals closer in age should 

have had the same fluctuation of environmental parameters. 
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A more flexible model for the variance of the error can be then build considering the function described in 

Errore. L'origine riferimento non è stata trovata.  and 

Errore. L'origine riferimento non è stata trovata.  according to which the error variance matrix becomes 

( ) [ ]where
'

' 'ɝ ɝ       = si iR , , , ,f J a 

 

So that  

( )ɝe N        )ij i iR ,~ (0, f  

At the inter-site level it is possible to attribute the variations of parameters LÐi and ki among the M sites to 

systematic and random sources.  

Parameter estimates can be obtained by the method of Least Squares; however minimization of residual sum 

of squares yields equations nonlinear in the parameters. Since it is not possible to solve nonlinear equations 

in closed forms, the alternative is to obtain approximate analytic solutions by employing iterative 

procedures. The main methods being (Draper and Smith 1998): the Taylor Series Method, the Steepest 

Descend Method and the Levenberg-Marquardtôs GaussïNewton based Method. 

It is then possible to see each parameter comprising a fixed effect LÐ and k) due to known site-specific 

characteristics and a random effect respectivelyb1i and b2i  due to unexplained variation among the sites. The 

vector fi  considering both the effect can be then defined 

 
1

2

¤ ¤+å õ å õ
= =æ ö æ ö

+ç ÷ ç ÷

i i

i

i i

L L b

k k b
f   3.14 

   

   

Unlike the traditional marine biology approach, the Errore. L'origine riferi mento non è stata trovata. 

approach to parameter estimations has the desirable feature of contemporarily taking into account the site 

model and the ñpopulationò model introducing a hierarchy between them. 

Analysis of data of repeated measurement over time is a recurrent challenge to statisticians engaged in 

biological applications: growth curves are among this kind of data. The inter-individual variability in growth 

is the result of several internal (genetic) and external (environmental) factors which affect these 

physiological processes. The choice of applying the growth model to the length-at-collection data rather than 

following the growth process over time of several individuals allows the description through mean growth 
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parameters which oversee individual variability in each site of capture. The measures are then repeated in a 

wide sense. Anyway Pilling et al., (2002) and Schaalje et al., (2001) focused on the statistical nuances of 

fitting back-calculated lengths at age data in a repeated measures context and obtaining better estimates of 

individual growth variability than taking repeated measurements on a sample of individuals.  

The main strategy followed was to incorporate these features in an inferential setting by building a 

hierarchical model. Inter-site variation is then considered as consisting of a model for variation in the 

regression parametersif. Thus variation can be modelled using a distributional assumption for ifat various 

levels of complexity. For instance a possible specification is  

 Aɓ b= +i i if  3.15 

where if is assumed to depend linearly on a two-dimensional vector of parameter ɓ and on site-specific 

information such as temperature and radiation summarized in a design Matrix A i. as shown further on. 

Error bi corresponds to the random component of inter-site variation, which is supposed not depending on 

environmental covariates and is taken to have mean zero and covariance matrix D. 

Adding the restriction that the distribution of if belongs to a particular parametric family, the bivariate 

normal-lognormal distribution is often chosen (Helser and Lai, 2004) 

 A DN
¤å õ

= ~æ ö
ç ÷

i

i i

i

L
( , )

lnk
f b  3.16 

So, considering a linear influence of radiation gradient R and temperature gradient Ton LÐ , and  exponential 

influence of radiation gradient R and temperature gradient Ton k in the parameterization of the VBGF, 

expression (3.14) is composed by the following elements 
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The elements of the bi-dimensional vector-valued function described in 

Errore. L'origine riferimento non è stata trovata.are then expressed as 

 

( )

( )

1 1 2 1

2 3 4 2

Ŭ ɓ b

Ŭ ɓ b
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d , , ln( k ) a R a T b

R
where

T

 3.20 

3.5.2 The new proposed parameterization  

Similarly to the previous chapter the above VBGF Errore. L'origine riferimento non è stata trovata.   in 

accordance with the Errore. L'origine riferimento non è stata trovata.  becomes 

 1 1 1
¤-

¤

å õ
= -        =           = M æ ö

ç ÷
+e

ci

L i
ij

i

t e
ij ij iy ( t ) L e j ,..,n i ,..,  3.21  

  

where the error distribution is ( )ɝe N        )ij i iR ,~ (0, f  

The if is a bi-dimensional vector 
'

,¤è ø=ê úii iL cf and also in those case it is possible to see each parameter 

comprising a fixed effect LÐ and c and a random effect b1i and b2i. The vector f considering both the effect 

can be then defined 
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This new parameterization is designed to be more parsimonious: in fact the two parameters are divided in 

the one sensitive to environmental and, in general, external, influences that is c and the one derived by 

genetic and moreover, site not-depending, characteristics, that is LÐ. 

We consider for the distribution of if the bivariate normal distribution  

 Aɓ DN
¤å õ

= ~æ ö
ç ÷

i
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i

L
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c
f  3.23 

Considering a linear influence of radiation (R) and temperature (T) on c which is designed to be the only 

parameter sensitive to environmental covariates, the parameterization of the VBGF the 

Errore. L'origine riferimento non è stata trovata.  is composed by the following elements 
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The elements of the two-dimensional vector-valued function described in the 

Errore. L'origine riferimento non è stata trovata. become then 
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4 Growth cur ves for corals  

4.1 The Solitary Corals of our study 

For this study we considered two species of solitary corals: Balanophyllia europaea and Leptopsammia 

pruvoti, because these corals are very important in determining the health of other colonial corals of the area 

with regards to climatic changes and the presence of pollution. Moreover for these corals age-based models 

can be easily applied. In fact, age can be determined by counting the growth bands of the skeleton using the 

Computerized Tomography scans (CT) and the size can be easily measured by a calliper. 

4.1.1 Balanophyllia europaea and Leptopsammia pruvoti 

Balanophyllia europaea is a solitary, ahermatypic, zooxanthellate scleractinian coral that lives on a rocky 

substratum and is endemic to the Mediterranean Sea. Owing to its symbiosis with zooxanthellae, depth 

distribution appears to be restricted in this species; it is found between 0 m and a maximum of 50 m depth 

(Zibrowius 1980), though congeneric azooxanthellate corals have been reported at depths of up to 1,100 m 

(Cairns 1977). The reproductive biology of this species is characterized by simultaneous hermaphroditism 

and brooding. During the annual cycle of sexual reproduction, fertilization takes place from March to June 

and planulation in August and September.  

 

Figure 4.1 Balanophillia europaea 

 

 

This coral has been chosen because Goffredo et al. (2007) observed that unlike other tropical and temperate 

corals, in which calcification is positively correlated with solar radiation and surface sea temperature (SST), 
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balanophyllia calcification is not correlated with solar radiation, whereas it is negatively correlated with 

SST. The conjecture is that photosynthesis of the symbiotic algae of Balanophyllia europaea is inhibited at 

high temperatures, consequently causing an inhibition of calcification so that the calcification of 

Balanophyllia europaea would be depressed at 20.5ï21 °C mean annual SST.  

Leptopsammia pruvoti is an ahermatypic, nonzooxanthellate and solitary scleractinian coral, which is 

distributed in the Mediterranean basin and along the European Atlantic coast from Portugal to Southern 

England and Ireland. It is one of the most common organisms in semi-enclosed rocky habitats, under 

overhangs, in caverns and small crevices at 0ï70 m depth, with mean abundances of [104 individuals m-2, 

i.e., [2 kg m-2 of CaCO3 biomass (Goffredo et al. 2007). When released, the planulae (695ï1,595 mm in 

length) are ready to settle and swim by ciliary movement for 1ï20 days. 

 

Figure 4.2 Leptopsammia pruvoti 

 
 

This coral was chosen because Goffredo et al. (2007) observed that unlike other tropical and temperate 

corals, in which calcification was positively correlated with solar radiation and SST, the biometry of 

individuals, thus skeletal density, corallite length, width and height, and their abundance are not affected by 

SST and solar radiation along an 850-km latitudinal gradient in western Italian coasts.  

Solitary coral size growth and reproduction is usually related to the length of maximum diameter of the oral 

disk, so the study was based on the growth of the radial length according to the VBGF. 

As observed by Goffredo (2008), the population structures of these two species of temperate solitary corals 

become less stable and have deviated from the steady state in recent years as a result of a progressive 
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deficiency of young individuals. The study of the variation in calcification rate, linear extension rate, and 

skeletal density in populations arranged along a temperature and solar radiation gradient can provide 

therefore an explanation for this observation. The results can be extended to the other temperate 

scleractinian corals and considered in light of the most recent scenarios on climate changes for the near 

future. 

4.2 The data  

The data were collected by S. Goffredo et al.(2007) e S. Goffredo et al. (2008). Specimens of different ages 

(from 1 to 14 years) of two species of solitary corals: Balanophyllia Europaea and Leptopsammia Pruvoti 

were collected at maximum biomass density depth in 6 different sites having different mean annual 

radiation, sea surface temperature and sea current; they were then dated and measured. Two sites were 

islands and four were on the coast. Table 4.1 shows the values of annual mean and standard error of sea 

surface temperature, solar radiation and sea current for the sites under study. The other variables considered 

in this analysis were: 

¶ the length in mm of the corals measured by callipers 

¶ the age in years measured by the mean over 3 repeated counts of the growth rings visualized by CT scan 

¶ the mean annual radiation in (W/m
2
) of the 6 sites (Italian Air Force Weather Service) 

¶ the mean annual temperature in (°C) of the 6 sites (Italian Air Force Weather Service) 

¶ the mean annual surface current in (m/s) of the 6 sites (Atlas of the surface currents of the Italian Navy)  

 

Table 4.1 Environmental Characteristics of each site 

 
Genova  

#1  

Calafuria  

#2  

Elba  

#3  

Palinuro  

#4  

Scilla  

#5  

Pantelleria  

#6  

Mean annual radiation 

(SE)  (W/m
2
) 

166.95 

(1.02) 

170.07 

(1.02) 

172.74 

(1.02) 

181.48 

(1.01) 

187.31 

(1.02) 
190.95  (1.02) 

Mean annual surface 

temperature (SE) (°C) 

19.56 

(0.04) 

18.02 

(0.04) 

18.74 

(0.04) 

19.14 

(0.03) 

19.54 

(0.02) 

19.88 

(0.04) 

Mean annual Current 

(m/s) 
0.08  0.08  0.2  0.15  0.6  0.15  

Island/Coast Coast Coast Island Coast Coast Island 
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4.3 Explorative analysis 

4.3.1 Balanophyllia europaea 

238 corals of Balanophyllia europaea were collected in the six sites considered. Table 4.2 shows the number 

of corals per site and the relative descriptive analysis for the age and the oral disk length. It can be argued 

that the different sites show different mean oral disk lengths; this difference is not always ascribable to a 

different mean age; in fact, corals from Calafuria are the smallest but not the youngest. Corals from Elba and 

Pantelleria are at least as young as those of Calafuria but they are definitely wider. Corals collected in 

Genova, on the other hand, are older and much wider. Figure 4.3 shows the oral disk length plotted against 

the relative age of each coral:  The graphic shows the different pattern of the sites: corals from Elba, for 

example, are wider than the others only until the age of five years, corals from Genova are wider from the 

age of seven years, and corals from Palinuro are smaller at all ages. This may suggest different growth 

patterns in the different sites. Figure 4.4 shows the oral disk length plotted against the relative age of each 

coral in each site and confirms the idea of a different growth pattern according to the sites. Figure 4.5 shows 

the oral disk length distribution at different ages: the distributions of several ages are clearly not Gaussian, 

maybe because of the influence of the sites; the shape of the distribution of the oral disk length against the 

age is confirmed by a Von Bertalanffy-like growth curve. 

Table 4.2 Balanophyllia europaea: descriptive analysis 

 
Sites Number 

of 

corals 

Mean Std. 

Deviation 

Median 95% 

Confidence 

Interval for 

Mean 

Minimum Maximum 

Age 

 

 

 

 

 

 

Genova 42 7.4 3.3 7.0 6.4 8.5 1.0 14.0 

Calafuria 34 5.5 1.9 5.0 4.9 6.2 2.0 9.0 

Elba 34 4.6 2.2 4.0 3.9 5.4 2.0 12.0 

Palinuro 54 6.9 3.3 6.5 6.0 7.8 1.0 14.0 

Scilla 32 6.2 2.6 6.5 5.3 7.2 1.0 13.0 

Pantelleria 42 5.2 2.3 5.0 4.5 6.0 1.0 9.0 

Total 238 6.1 2.8 6.0 5.7 6.5 1.0 14.0 

Length 

 

 

 

 

 

 

Genova 42 11.7 3.9 11.6 10.4 12.9 2.4 19.0 

Calafuria 34 8.3 2.7 10.0 7.4 9.3 4.0 14.5 

Elba 34 9.0 2.9 10.5 7.9 10.0 3.0 16.3 

Palinuro 54 9.9 3.2 10.6 9.0 10.8 2.5 16.9 

Scilla 32 9.9 2.9 11.0 8.8 10.9 3.7 16.0 

Pantelleria 42 8.8 2.8 9.7 8.0 9.7 2.6 13.3 

Total 238 9.7 3.3 10.5 9.2 10.1 2.4 19.0 
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Figure 4.3The length of Balanophyllia europaea vs age  

 
 

Figure 4.4 The length of Balanophyllia europaea vs age for each site under study 
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 Figure 4.5 Boxplot of length of Balanophyllia europaea at different ages  

 

4.3.2 Leptopsammia pruvoti  

179 corals of Leptopsammia pruvoti were collected in the six sites considered. Table 4.3 shows the number 

of corals per site and the relative descriptive analysis for the age and the oral disk. As for Balanophyllia 

europaea, the different sites show different mean oral disk lengths not always ascribable to a different mean 

age: corals from Genova and Pantelleria have similar dimensions, but corals from Genova are younger, The 

same can be said of corals from Calafuria and Palinuro or corals from Elba and Scilla where corals from 

northern sites are younger than those of southern sites with similar dimensions. Figure 4.6 shows the oral 

disk length plotted against the relative age of each coral. The graphic shows a wide spread of the dimensions 

at older ages and furthermore, unlike Balanophyllia europaea, the corals from Elba are wider than the others 

only from the age of six years, where corals from Genova are smaller from the same ages; corals from 

Pantelleria are smaller at all ages. Therefore, for Leptopsammia pruvoti a different growth pattern can also 

be hypothesized in the different sites. Figure 4.7 shows the oral disk length plotted against the relative age of 

each coral in each site and confirms the idea of a different growth pattern according to site. In particular it 

can be noticed that corals from Calafuria are very young and fast growing, but due to the lack of older corals 

it will be difficult to understand if this fast growth will be maintained. Anyway, the difference in age 

distribution of the corals from Calafuria might be a problem when carrying out separate estimations 

according to site. . Figure 4.8 shows the oral disk length distribution at the different ages: as for the 
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Balanophyllia europaea the distributions of several ages are clearly not Gaussian. Furthermore, the oral disk 

length distribution vs age confirms a Von Bertalanffy-like growth curve only for ages starting from three 

years; Ages two and moreover one have bigger dimensions than those expected by a Von Bertalanffy-like 

growth curve. It can be noticed therefore that this coral is smaller than Balanophyllia europaea and may be 

subjected to a bigger error of measurement for very young or small corals; on the other hand the influence of 

the environment of the six studied sites might produce a different growth rate at early ages thus explaining 

the gap from the theoretical behaviour.  

Table 4.3 Leptopsammia pruvoti: descriptive analysis 

 
Sites N Mean Std. 

Deviation 

Median 95% Confidence 

Interval for Mean 

Minimum Maximum 

Age 

 

 

 

 

 

 

Genova 30 6.2 3.9 6.0 4.7 7.6 1.0 14.0 

Calafuria 29 4.1 1.9 4.0 3.4 4.8 1.0 7.0 

Elba 30 6.3 2.0 6.2 5.6 7.0 3.0 10.0 

Palinuro 30 5.6 3.0 6.0 4.5 6.8 1.0 13.0 

Scilla 30 7.8 4.5 8.0 6.1 9.5 1.0 14.0 

Pantelleria 30 7.0 4.2 6.0 5.5 8.6 1.0 14.0 

Total 179 6.5 3.8 6.0 5.9 7.0 1.0 14.0 

Length 

 

 

 

 

 

 

Genova 30 4.8 2.2 4.9 4.0 5.7 2.0 9.0 

Calafuria 29 4.0 1.5 3.6 3.4 4.5 2.0 6.0 

Elba 30 6.3 2.0 6.2 5.6 7.0 3.0 10.0 

Palinuro 30 4.4 1.8 4.3 3.8 5.1 2.0 8.0 

Scilla 30 6.3 3.1 6.2 5.1 7.4 2.0 12.0 

Pantelleria 30 4.8 2.2 4.4 4.0 5.6 2.0 9.0 

Total 179 5.1 2.3 5.0 4.7 5.4 2.0 12.0 

 

Figure 4.6 The length of Leptopsammia pruvoti vs age 

 



 42 

Figure 4.7 The length of Leptopsammia pruvoti vs age for each site under study 

 

 

Figure 4.8 Boxplot of length of Leptopsammia pruvoti at different ages 
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5 Results with the traditional Methods used in marine biology for 

the Von Bertalanffy Growth Function fitting  

5.1 The Gulland-and-Holt (GH) plot  

As pointed out in chapter (2.3.1) this method is used for the estimation of the two parameters LЊ and k.  and 

is based on the growth rates plotted vs. the  mean length at first and second measurements using 

Errore. L'origine riferimento non è stata trovata.  and 

Errore. L'origine riferimento non è stata trovata. . The method consisted of first calculating the elements 

of the growth rates (the dependent variable) of the six sites, thus
1

1

1 14   
-

-

-
= =
-

j j

j

j j

L L
y j ,..,

t t
 , and the elements 

of the mean length at first and second measurements (the independent variable), thus 

1
1 14

2
   

-+
= =

j j

j

L L
x j ,.., . After this a linear regression was fitted. At the end the fitted regression 

coefficient was used to estimate parameter k as =-k b and the estimated intercept was used to estimate 

parameter LÐ  as L¤=
a

k
 

The graphic in Figure 5.1 is obtained by applying this method to the Balanophyllia europaea data  

The estimated regression coefficients were 2.7437; 0.1493 = =-a b
^ ^

 so that the estimation of parameter LÐ, 

representing the ultimate length was 18.38 mm and the estimated growth rate k, was 0.149.  The curve 

presented in Figure 5.2 was built according to (2.5) using. 18.38; 0.1493 ¤= =L k
^ ^

.  

Then standardized residuals e* were calculated and plotted vs fitted values as shown in Figure 5.3. The 

standardized residuals were calculated according to 

 *

1
^

s

=

-

j

j

jj

e
e

h

  5.1 

Where 
^

s is the standard deviation of the residuals and jjh  is the Leverage of the jth estimated point 

calculated according to 
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Figure 5.2 shows that the dimensions of young and old corals are underestimated; Figure 5.3 suggests that 

the dimensions of small corals are definitely underestimated. Furthermore, the residuals are asymmetrical, in 

particular the residuals of large corals are divided into two groups: one exceeding zero and the other one 

below zero. The overall impression is that the method underestimates parameter k producing a growth curve 

that is too slow at the young ages and too remote reaching the ultimate length. In addition the variance of the 

dimension seems to vary according to the dimension itself, but there is no way to consider this behaviour in 

the model.  

 

Figure 5.1 Gulland and Holt plot for the Balanophyllia europaea 
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Figure 5.2 Curve fitting for the Balanophyllia europaea data using the Gulland and Holt plot method  

 

 

Figure 5.3 Balanophyllia europaea: residuals of the Gulland and Holt plot method 

  
 

 

The graphic in Figure 5.4 is obtained by applying this method to the Leptopsammia pruvoti data 

As for the Balanophyllia the linear regression of the data shown in Figure 5.4 allows the estimation of 

1.2906; 0.1224 = =-a b
^ ^

 so that 10.54; 0.122 ¤= =L k
^ ^

. As for Balanophyllia data, these two parameters are 

used for the construction of the curve shown in Figure 5.5; this curve, in turn, gives origin to the residuals 
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plotted in Figure 5.6. Here the dimensions of very young corals are also underestimated; furthermore the 

residuals are very asymmetrical showing a ñUò shape; in particular the residuals of big corals are all above 

zero, instead those of medium dimensions are below zero; this might mean the presence of a nonlinear 

relationship not correctly considered in the model. Also in this case, the overall impression is that the forced 

linearization introduced in the estimate of the parameters leads to the underestimation of parameter k thus 

causing the curve to grow too slowly.  

 

Figure 5.4 Gulland and Holt plot for the Leptopsammia pruvoti  
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Figure 5.5 Curve fitting for the Leptopsammia pruvoti data using the Gulland and Holt plot method 

 
 

 

 

Figure 5.6 Leptopsammia pruvoti: residuals of the Gulland and Holt plot method 
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