AlmnmaaieMadde rum S W midae /@ n//isbimb o di Bol

DOTTORATO DI RICERCA IN

METODOLOGIA STATISTICA PER LA RICERCA
SCIENTIFICA

Ciclo _XXIV__

SETTORE CONCORSUALE DI AFFERENZA: 13/D3 DEMOGRAFIA E STATIST ICA SOCIALE

SETTORE SCIENTIFICO -DISCIPLINARE:SECS -S/047 DEMOGRAFIA

TITOLO TESI
Parameter estimation in a growth model for a

biological population

Presentata d&lettra Pignotti

Coordinatore Dottorato Relatore

PROF. ANGELAMONTANARI PROF. DANIELA COCCHI

Correlatore

PROF.BARBARA CAFARELLI

Esame finale anno 2013



Introduction
1 The growth curves in Biology
1.1Growth Curve Model
1.1.1 Beltshaped curve
1.12 Unbounded growth

© © 00 N N b

1.13 Bounded growth

2 The use of the von Bertalanffy curve to estimate the solitary coral growth 13
2.1Coralgrowth and problems of its modelling 13
2.2 Thevon Bertalanffygrowth function for solitary corals 15

2.3 Themethods used in marine biology for estimating the von Bertalanffy growth parameterd8

2.3.1 TheGullandandHolt (GH) plot 18
2.3.2 Thesizeincrement method proposed by Fabens 19
2.3.3 Thelinearization proposed by Basso and Kehr 19
2.4 Gallucci and Quinn parameterization 20
2.5 A new proposal of parameterization basedzatiucci and Quinn model 20
3 An alternative approach to estimate thegrowth curves: hierarchical models 22
3.1 The hierarchical approach 22
3.2 Basic nonlinear regression model 24
33 Newtondés method for nonlinear functi on26est.i
3.4 Thehierarchical model specification propodsdLindstrom and Bates 27
3.4.1 Intrasite variation 28
3.4.2 Intersite variation 29
3.5 Hierarchicalnonlinear nodel for the solitary corals 30
3.5.1 The standard parameterization 30
3.5.2 Thenew proposed parameterization 33
4 Growth curves for corals 35
4.1 The Solitary Corals of our study 35
4.1.1Balanophyllia europaea and Leptopsammia pruvoti 35
4.2 The Data 37



4.3 Explorativeanalysis
4.3.1 Balanophyllia europaea
4.3.2 Leptopsammia pruvoti
5 Results with the traditional Methods used in marine biologyfor the
Von Bertalanffy Growth Function fitting
5.1 The GullaneandHolt (GH) plot
5.2 The sizeancrement method proposed by Fabens
5.3 The linearization proposed by Basso and Kehr
5.4 Newtonds method for nonlinear
5.4.1 The standard parameterization
5.4.2 The new parameterization
5.5 Results with nonlinear hierarchical model
5.5.1The method giving the best fit for the Balanophyllia Europaea
5.5.2The method giving the best fit for Leptopsammia Btuv
6 Conclusions

Bibliography

38
38
40

42
42
a7
51

funct i obv

57
59
62
64
71
77
79

est



Introduction

Marine organism growth has been the focus of increasing interest, over recent years, among mar
biologists (Stolarski et al2007), (Goffredcet al, 2000). The goal of this work is therefore the problem of
estimating the growth of some very common marine organisms in the Mediterranean sea, belonging to
family of corals, better known as solitary corals. Little is known about their growth mechandshnea
influence of environmental factorurthermore the coral reproductive ability depends on how fast they
reach the minimum size for reproduction.

Theindividual age of these corals may be estimated through their body size: standbesedgrowth and
population dynamics models may be subsequently apiliechographic parameters highlight relationships
between organisms and their environment, and iané to the assessment of habitat stability; in addition,
information on population turnover may contribute to techniques for the restoration of damaged or degrac
coastal areas.

Due to difficulties and costs of recording the ages of corals, it is segeso build up reliable growth
models to infer coral age from their body size. In fact corals have a truncated cone geometry and th
growth is isometric. Since growth depends on annual rings of calcium carbonate in coral bodies, the cc
body size idirectly related to the coral age and the ring thickness, which is in turn related to genetic ar
environmental factors. As a consequence, agn@alth can be described as a function of several parameters,
having a biological meaning, linked to age by a-tioear relationship.

In biology, the estimates of such parameters are generally obtained by using different strategies
linearization (see for instance Gulland and Holt ,1959; Fabenas,1965; Basso and Kehr,1991).

Biologists follow two main strategiesorf collecting data useful to estimate these parameters and
consequently the coral growth.

In the first one the sample consists of corals randomly chosen in the site under study; each coral is meas!
repeatedly at fixed intervals of times in situ; theules are the mm/months of growth of each coral; then the

parameters describing individual growth are estimated by a suitable method. Finally, the parameters for



population are subsequently estimated starting from the individual ones and a growthfocutiie
population is finally constructed (HarpéiQ77; Grigg et al. ,1984Ro0ss et al, 1988; Goffredo. et al., 2000)

In the second approach, the sample consists of colony of corals. Corals of different sizes of each colony
random collected, mea®d and dated. Each coral is measured only once because collection and datir
causes the destruction of the coral. The growth curve for each colony is constructed using the dimension
the body size of corals at different ages. The parameters of thehgcawte for the population are then
estimated by the parameters of the growth curve for each colony (Goffredo et al., 2000; Epstein et al. 20
Goffredo and Chadwickurman, 2003¢Goffredo and Lasker, 2008).

Apart from the method used for collecting date estimate of the growth curve parameters is traditionally
is traditionally obtained by linear models that simplify himear relationships. The influence of
environmental factors is accounted for by their linear correlation coefficient with the giaram
(McClanahan, 2009; Goffredo and Caroselli, 20d@yrell Yeeand Barron 2009;Soto et al., 2011). For
example, Goffredo and Caroselli (2010) assessed the ic8ufithe sea surface temperature (SSil¢aral
growth by finding a linear correlation between SST and estimated growth parameters in colonies locatec
places having different SST.

The above approaches share two main drawbacks: first, linearization is introduced regardless the behav
of observed data, without considering the presence of variability in the body size of corals of the same a
This could cause an error in the parameter estimates. Furthermore no connection is hypothesised betw
the parameter estimate error at the coral @@ory) level, the parameter estimate error at the population
level and the error of the linear regression between the parameter and the environmental factors.

For these reasons we propose instead alinear mixed effect model with the aim to overcomktla¢se

limits related to the estimation of coral growth and to obtain more reliable parameter estimates of tl
population growth curve, in this case avoiding forced linearization.

In addition, a new parameterization of the coral growth curve is proposeder to identify parameters that
are sensitive to the environment from those depending only on the genetics of the coral.

The dissertation starts in chapter 1 with an outline of the basic growth curves chapter 2 is focused on

description of the cuevused to describe coral growth, the reasons for choosing it and a summary of th
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traditional methods used to estimate the parameters of the auithe; chapter there is also the description
of a new proposed parameterization for the cuBleapter3 desribes the new approach using a hierarchical
nonlinear model is performed, whereas chapter 4 describes the data sets and the models using |
parameterizations of the growth curve. Chapter 5 shows the results of the traditional linearization methc
usedin biology to estimate parameters; furthermore an estimate of the parameters using a nonline
regression is proposed. Chapter 5 presents the results for the nonlinear hierarchical model applied to |

parameterizations with and without considering ttii@mces of environmental covariates.



1 The growth curves in Biology

1.1 The Growth Curve Model

Growth curve models are used to describe how a particular quantity increases or evolves over time
consists of a sequence of data points taken at successive moments in time commonly spaced at unif
intervals. These models are also used to identifytyipe of growth pattern of different populations and to
study the related variables in different fields of applications, for examples biology, ecology, demograph
population dynamics, finance, econometrics, where a lot of models are developed inclugthgnistic
models, time series models, stochastic differential equations, etc.

In biology, growth is considered to be both related to the physical dimension and to the population of
organism; it is considered to be a fundamental property of biologystiéms studied at the colony level
(group level), as well as for each organism (individual level). Growth curve models are based c
longitudinal data, so measurements are repeatedly taken on a response variable at different time points.
Different kinds & growth patterns have been used in the literature to model the various types of realisti
growth mechanismsThe first study pertaining to growth curves was presented by Wishart (1938) anc
differences between growth curves were discussed by Burnaby (1®6@jle and organic discussion of
growth curve models (GCM) was introduced by Potthoff and Roy (1964) and subsequently expanded amc
others by Rao (1965). Results lead to summarizing growth curve shapes into three different growth mc
categories: unbouwled, bounded and bedhaped curves (Figure 1.1). They behave similarly in early times
because the energy available is all used for t growth, then saturation starts to play a significant role. In f
saturation is due to an increasing part of energy tesethintain the reached dimension and this process can
be very different among organisms. In kgllaped curves, the increase eventually turns into decrease afte
passing through a peak point: bsflaped curves can be symmetric or asymmetric. Howewergutves
displayed in Figure 1.1 have to be considered as examples, and there are a multitude of mathema

functions available for each type of growth modédk et al., 201)L



Figure 1.1 general growth modes
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1.1.1Bell-shaped growth

Bell-shaped growth (Habert, 1956) includes a portion of time with a positive slope, an inflection point
which becomes also a maximum and finally a portion of time with a negative slopshBe#id curves have
many different shapes and may be symmetric or asymm@tney areoften closely related to sigmoid
functions and commonly appear as their derivativé8ok et al., 201l These curves have frequently been
used in a wide array of disciplines, but initially were developed to describe and predict production growth
biological systems (cell production) or in bioenergetics systems (fuel production). Hubbert (1956) we
among tle first to formulate a basis for the extrapolation of finite resource production curves into the futur
and beHshaped growth curves were an important cornerstone in such framework. He assumed tl
production levels begin at zero, before production hegest, and end at zero, when the resource has been
fully exhausted. In between, production would pass through one or several maxima. Conceptually, .
resources are subjected to a physical | i mesouraet i o
limitations affect the general growth pattern. The limitation lies primarily in the maximum cumulative
production that can be reached. So after an initial increase the production reaches a maximum, then sl

down towards zero because of the éni¢ss of the resource. In biology they were developed to describe anc
8



predict growth in biological systems such as in organs of the human body that show degeneration
involution: a typical example is the human brain which grows fast in children ang/stoadults; it reaches

its maximum development in adult age and then shrinks slowly until old age when shrinking occurs rapidly

1.1.2Unbounded growth

All forms of unbounded growth, regardless of their mathematical nature, are clearly not suitable in-the lon
term. Linear growth is obviously slower than exponential growth but in the long run all unbounded growtr
tend towards infinitfH6Ok et al., 201)L Growth in economic theory is the most commonly used unbounded
model; in fact, growth is believed to conia forever, but these models can be interesting only if they are
studied over a fAshor &nd2004) becausq ndelstcHamge accordihgot® dBfferdnd
economic conditions. Unbounded growth is supported by those who believe that thes giiwical
limitations of the earth do not necessarily imply an economic limitation (Simon, 1981); in fact conditions fo
the economic growth are continuously changing so when a source of economic growth is ending it
replaced by another one brought atby new technology or inventions or different behavioural patterns of
humans. Others believe that that natural resources are not needed for economic growth (Solow, 1974
even that human ingenuity can act as a powerful force capable of overcomingssble@hysical

limitations (Radetzki, 2007).

1.1.3Bounded growth

This growth model is subject to physical limitations that affect growth rates, making growth slow down ove
time and asymptotically strive towards a maximum value (Janoschek, 1957; Bevertbtolgniio57).
Bounded growth occurs in many cases, such as human growth, organ growth, population growth and fir
resource production. Growth may actually continue indefinitely but the rate of growth approaches zero
time tends to infinity. This is weknown in many biological systems where an organism may grow quickly
in its juvenile stage but then its growth slows down as it reaches maturity. The limiting factor lies rather |
the growth process itself than in the amount of resources available fymotlh. The upper limit is reached

when all the available resources have been used to maintain the dimension achieved and there are no |
9



resources left for further growth. In the biological sciences, this condition is often modelled a
proportionalitybetween growth rate and actual size.

Sometimes these growth curves imply a rapid growth in the beginning, which later slows down; as in tl
case of exponential growth curves they are commonly used to estimate the length of some organisms, ol
size of he skull and the brain.

Some curves have an inflection point (flex): the initial increase is slow therefore the first part of the cun
appears flat; then growth increases rapidly so the curve turns upwards sharply until a second slow incre
occurs, the giving the curve a flat appearance again. An example can be found in sigmoid growth curve
where growth is slow at the beginning of the time of observation and at the end but faster in the central ti
of observation.

The weight and volume of the bodydaaf most organs show a sigmoid growth pattern initially, since the
rate of growth in mass is low but increasing. The growth rate reaches a maximum, which corresponds to
i npection point in the curve, and tchievertheg matwd y
weight.

Richards (1959) proposed a sigmoid function developed as a generalization of classical growth curves :
shown in Figure 1.2. This function is characterised by four parameters not very easy to interpret in ma
applications. Moeover it converges less frequently than the curves that we describe in what follows

especially if data do not already include the inflection point. It is actually used to fit data on forest growth.

Figure 1.2 Richards curve
18

14 -
12 A
10 -

oON b~ O ©
|

The function is
y(t) =L, (1 bek ) 1.1
1C



where y(t) is the dimensionLp is the asymptotic maximunh depends on the difference between the
asymptotic maximum ant the initial dimensigf0), k is the growth rate an® shapes the way the
asymptotic maximum is reachadd the position of the inflection point.

Other weltknown sigmoid curves are the Gompertz curve (Gompertz, 1825), the logistic curve (Verhuls
1838) and the von Bertalanffy curve (von Bertalantf§38.

The Gompertz curve (Gompertz, 1825) is shownigufe 1.3, and was developed for the calculation of
mortality rates. It is one of the most commonly used curves in growth mathematics and it is characterized
slow growth at the beginning and the end.

Figure 1.3 Gompertz curve
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The function is
y(t) =L, (e ) 1.2
wherey(t) is the dimensionLp is the asymptotic maximurb,sets the displacement along the absciss&and

is the growth rate.
The Logistic curve, shown in Figure 1,4, was developed by Verhulst (1838) as a model forigopulat
growth. It is characterized by an inflection point independent of measurements so it is often used for sigm

growth where the inflection corresponds approximately tehaieof final size.

11



Figure 1.4 Logistic curve
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wherey(t) is the dimensionlLy is the asymptotic maximuni, sets the displacement of the inflection point

1.3

andk is the growth rate.

The von Bertalanffy curve is a bounded growth curve, derived from the von Bertalanffy Guawil1938)
and based on the balance by the energy 1 ncome |
growth. The most common parameterisation of the von Bertalanffy Growth Law was described by Bevert
and Holt (1957) and consists of a Riactis model with thé/l shape parameter equal to 1.this curve,
dimension is a notinear function of time based on 3 parameters, each with a physical meaning: maximur
dimension growth rate and time at which the coral size is equal to zero. Their nadeimportance are

discussed widely in the next chapter.
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2. The use of the von Bertalanffy curve to estimate the solitary coral

growth

2.1 Coral growth and problems of its modelling

Most simple marine organism populations are analysed considering individual body size. This measure
fundamental, since all physiological processes are related to size, including rates of metabolism, forag
and digestion (Peters, 1983; Calder, 1984)dyBsize is directly linked to lithistory traits and individual
competitive ability (Fox, 1975; Arendt, 2007lror these reasons, a reliable estimate of the growth
parameters for a population of a certain area is important. In particular, the body sal® is strictly
related to the reproductive activity because size has to be big enough to let the planulae get out of the
disk; where corals reaching the dimension of reproduction in early ages have more reproductive success.
Growth modelling andhe analysis of intrpopulation patterns of body size variability over time are the
central topics in animal population biology, since the internal size structure of populations may have
decisive influence on the population dynamics (De Angelis ei@@3; Imsland et al., 1998; Uchmanski,
2000; Kendall and Fox, 2002; Fujiwara et al., 2004).

De Angelis et al. (1993)bserved that model structure and parameter values are based on observations
individuals, so the natural variation among individuatsl ahe stochastic nature of their fates should be
incorporated in any model used. In this framework, the numbers of individuals necessary for estimati
needs to be high. This model produces a reliable estimate of the population response to environme
variationonly if data come from welllocumented longerm studies of individuals belonging to the same
populationsimsland et al. (1998), Kendall and Fox (2002) and Fujiwara et al. (20@&rlinethat a model
should incorporate populatiespecific dataon ecological energetics, thermal and size dependence of
digestive physiology and metabolic rates, energetics of individual growth, allometric relationships, soci
structure and mating system, and the dependence of mortality rates on age, size, arstasocialf
individuals. This means thatdividuatl e v e | processes are determined
and interactions with its environment, whereas the population state is the distribution of individuals over ¢

possible individual stas.

13



In general, the von Bertalanffy growth function (VBGF, von Bertalari®38 is the most widely accepted
relationship to describe the growth of fish and other marine organisms (Ricker, 1979; Cailliet et al., 200¢
The VBGF describes the relationshiptween age and mean length of a population, whereas the variability
among individuals of the same age (e.g. the variance or even the distribution of each cohort) is not include
Each individual is born with a specific genetic constitution that, to aioeeixtent, controls its growth
profile (Sainsbury,1980, but many physical and biological factors, such as water temper&unepter,
1992, dissolved oxygenBrett, 1979, photoperiod Ifnslandet al., 2002, and the availability and type of
food sourcesRilling andHoude,1999 affect the actual growth rates achieved. In addition, the plasticity of
phenotypes has been shown to be adaptive across environmental gracemage(and Munch, 2002
Ernandeet al, 2004. Therefore, a suitable grolwtmodel should take into account individual and
environmental variability.

In both ecological (Arino et al., 2004)nd evolutionary (Conover and Munch, 2002; Ernande et al., 2004)
contexts, one of the challenges of researchers is to model how the bodfaemdividual changes over
time and to understand from the growth model what kind of probability distribution is suitable for the size ¢
an individual as age increases (Lv and Pitchford, 2007; Fujiwara et al., 2004). In corals, as in other anim:
the first source of variability is rooted in physiological processes and is the net result of two opposin
processes, catabolism and anabolism (von Bertalanffy, 1938). Thenuitedual variability in growth is

the result of several internal (genetic) amteenal (environmental) factors, which affect these physiological
processesPilling et al. (2002 and Clarle et al. (2011)state that theestimate of the growth curve of a
population in each collection site is better performed by the growth model proposed for-titecsifection

data than a repeated measure model on a sample of individuals; in fact a single observation per indivic
beter describes the mean growth parameters.

In fact, whilst each individual is born with a personal genetic architecture, which primarily determines it
growth profile, a number of physical and biological factors, such as water temperature, solar rad@tion,
availability of appropriate food sources etc, have been shown to affect growth rates.

Differences in size among individuals that are established early in their life history can persist or

amplified (Ricker, 1958) if growth is positively size depemdand if there are positive correlations in

14



growt h over time among individuals. The | atter
(Pyster and Stevens, 2002) and is the reason fc
differences among individuals in size can dampen over time (Ricker, 1958) if growth is negatively related
unrelated to size and there is no growth autocorrelation among individuals. The pattern of grow
autocorrelation may be the result of several meismas, including factors that are intrinsic to the
organisms, such as genetic or behavioural traits that confer performance differences among individuals (
Fraser et al. 2001). Alternatively, factors extrinsic to organisms, such as environmentaleimetieypgan
cause persistent differences among individuals.

In conclusion, the underlying sources of growth variability in a population cannot generally be known. Fc
size-at-collection datghe consequences of not accounting for individual groxatiability, or assuming the
wrong source of variability, are less with respect td tagpllection data, even when individual variability is
high or data coverage is poor. So to reach a reliableasizge estimation the best way is to estimate VBGF

paraneters under a stochastic model usizgat-collection data.

2.2 The von Bertalanffy growth function for solitary corals

The main approach followed by biologists to obtain insights into metabolic phenomena is the study of tl
metabolism as a balance of ggies: the energy entering the organism from food, heat, radiation and the
energy necessary for feeding, growth, reproduction, maturation and maintenance. The mechanisms that
responsible for the organization of metabolism are not species specifigniidnpi2000). This care for

generality is supported both by the universality of physics and evolution and the existence of widespre
biological empirical patterns among organisms. In particular the growth of isomorphic organisms wit
abundant food is wellescribed by the von Bertalanffy growth curve (Putter 1920; von Bertalanffy 1938).
The identification of the curve is based on the physical principle that mass and energy are fixed quantities

starting points, so that the maintenance rate coefficigheisatio between the cost of volume maintenance

Em and the cost of growtkg (k,, :EEM) under the biological principle that maintenance has priority over

growth and maturity maintenamdas priority over maturation or reproduction. Tle&ds to the biological

1t



proposition that organisms of the same species have a maximum structuraLlgnggleiber ,1947)All
these considerations point to von Bertalanffyo
individual with constant food availability or abundant food is then

dL ]
kL L) 2.1

The von Bertalanffy growth rateis given by

o -1
k=g Abtl) ¢ 2.2

whereLy is the reduction in length due to the energy used for hedting the ratio between the cost of the
surface maintenandes, associated mainly with heating, and the cost of volume maintela)cend 1 is

the enegy conductance (a measure of energy transfer efficiency).The set of parameter values is individu.
specific. Individuals differ in parameter values and selection leads to evolution characterized by a change
the (mean) value of these parameters. Howeiteis important to underline that, in agreement with
Errore. L'origine riferimento non € stata trovata., Ly and the growth parametkrare correlated; the von
Bertalanffy growth rate decreases, in fact, with ultimate length: different combinatitrendLp can give
almost the same fit to data, except when a wide range of ages is represented. Again,adu@igikv
combines with a low value &f; and vice versa (Sparre and Venema, 1992).

The von Bertalanffyés | aw (Putter, 1920; von E
patterns (Frser et al., 1990; Strum, 1991; Schwartz and Hundertmark, 1993; Ferreira and Russ, 1994; Rc
et al.,, 1995) and can be considered the pillar of the laws describing the growth of organisms. Of cou
complex organisms have interactions between the diffeats pf their body and with the environment, so
the description of growth only in terms of a physical law is very difficult. For simple organisms like corals
this law well describes the body growth and can be used also for organisms of the same spgecies v
different food availabilities. In the latter case Kooiman et al. (2007) asserts that unlike
Errore. L'origine riferimento non & stata trovata., the logarithm of the von Bertalanffy growth rate

decreasewith ultimate length,

In(k )’ Li 2.3

1€



The most common parameterization of the solution to the differential eq@atien

y(t)=L @1 ekto)) 2.4
wherey(t) is the dimension,p is the asymptotic maximunk, is the growth rate ang is interpreted as the

age when an individual would have been of zero length.
Biologists use the von Bertalanffy model with size at birthadd¢o O to describe solitary coral growth; when
the size at birth is considered zero, thtsO, the curve starts from the origin, and the

Errore. L'or igine riferimento non é stata trovata. becomes

y(t)=L. (1 -bek ) 2.5
From a biological point of view the VBGF has three meaningful parameters:

1. Lo is the mean length at birth € 0), which is speciespecific and for solitary corals is universally
considered to be very close to zero

L, =0 orequivalentlyt, (
2. Lp is the maximum mean length achievable by the species, with set environmental conditions and fo
availabilities,whent goes toward infinity.
3. kis the secalled Brody growth rate coefficient, but it is actually the exponential rate of approach to the
asymptotic size, his unit is the reciprocal of the unit time (e.g-}ear
The main problem for biologists is then a reliable estimate of these parameters; the estimate should face
basic matters: the strong correlation between the parameters and the potential influence on them
environmental covar t, ;agesmem viththd mesabhoticthearyntbetultinaate lergth
Ltb.
For these reasons, we propose a new parameterization able to capture the effect of environmental covar
only by one parameter, isolating the role of the ultimate lebgtand, in addion, to propose a method to

obtain reliable estimates of the two parameters of the curve.

17



2.3 The methods used in marine biology for estimating the von Bertalanffy
growth parameters

2.3.1The Gulland-and-Holt (GH) plot

The GH plot (Gulland and Holt, 1959)is one of the most widely used methods in biology: it is based on

annualized growth rates plotted vs. mean length at first and second measurements. Indeed the
. . L . . .
Bertalanffy growth curve implies that the growth regdetn) declinesinearly with length.
This relationship between length and growth rate can be used to estimate the two patanaeteks In a
L . . . .
standard GH plot, the growth ra%t— of an experimental interval is plotted over the mean length in that

interval). The differential form is

L'(t):% =L, kL., k(L -L,..) 2.6

or in terms of growth increments per interval (lengtrahd L,);

Lz'l-1:a -*béL2+L1 0
t -t 2 9
2"l v 27

For corals the mm/year growth is calculated for each individual and then pégtaadst the individual
length: the least squares estimation of the straight line parameters are then used to calantite L

This method has several limitations:
1 it is adequate only if the time intervglt s=titis infinitesimal;

9 it should be used onlwith follow up measurements, it is commonly used instead also with the

lengthat-capture data;
9 it does not take into account the correlation betweeandk;

9 it does not take into account the possible influence of environmental parameters;

18



1 it is a determmistic method which does not take into account any possible statistical fluctuation anc

does not provide any confidence measure of the estimate.

2.3.2The sizeincrement method proposed by Fabens

The sizeincrement method proposed by Fabens (1965), fits theBeotalanffy model by the least squares
method to observed lengths, using data on known growth increments in known time intervals but making

assumption about absolute age according to:

L, ,=LekP 4 (1 exD 2.8

w h e rt is thegtime increment between the two measured pbi@SdL; + ¢t

Indeed for corals the growth is measured for each individual at fixed intervals of tieptissconstant and
then a linear regression bf. pagainst_; will generate a slope af * Pand an interceptf L, (1- ek P).

This method has several limitations:

1 it overestimate& and underestimatds, .The bias appears to be associated with a failure to account
for the redistribution of the error term when the basic growth equation is transformed to eliminate tf
necessity of estimating age;

1 it does not take into account the correlation betweeandk;

1 it does not take into account the possible influence of environmental parameters;

1 it does not take into account the level and the distribution of the error at the individual an

population of a colony level.

2.3.3The linearization proposed by Basso and Kehr

The linearization proposed by Basso and Kehr (1991) fits the von Bertalanffy model impos&isdhas

largest size found in individuals of each species and then considering the linear regression betwe

In

o] ?ﬁ_‘mo

- Li as dependent variable cah as independent variable. So the estimat& ahd ki, = L is the

solution via the least squares method of the equation

19



In - Li -kt +kt, 2.9

|- ql o

Ce] ?B_\QJO

The above models are stated as deterministic, while linearization is validcongidering a small

neighbourhood of the studied times, so nonlinear statistical methods can definitely improve the results.

2.4 Gallucci and Quinn parameterization

Gal l ucci and Quinn (1979) noted that compari sc
involve bothk andLps. However, because of the generally high correlation between these two parameter
simultaneous hypothesis tests of these two paramatersonstandard and difficult to interpret. They
introduced a new parameter,= gkakserting that it is a sensible index to compare two or more growth
curves because it captures both the essential features eéizedyrowth. The new parameterizatiom ¢z

then achieved, by solving féw and substituting it IfErrore. L'origine riferimento non é stata trovata. ,
y(t):VEv(l en) 2.10

In the same article Galucci and Quinn (1979) statethe&n be thought of as a growth rate because the
units are in lengtpertime, which, in fact, corresponds to the instantaneous growth rate=Qeiarthe case

of corals. Furthermore, they claim thatis the appropriate parameter to use to compare populations becaus
of its statistical robustness owing to its normality (with small variance) for different populations of the sam

species (Moreau etl. 1987).

2.5 A new proposal of parameterization based on Galucci and Quinn

model.

Kooijman (2000) underlines that for organisms of the same species with different food availabilities th
logarithm of the von Bertalanffy growth rate decreases linearly witimatle length as stated in

Errore. L'origine riferimento non é stata trovata.

In(k)’ Li

o}
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So, different combinations d&fandLp can give almost the same fit to data, except when a wide range of
ages is represented. Again, a high valu& odmbines with a low value dfs and vice versa (Sparre and
Venema, 1992)

Our proposal is then to use a ifferent parameterization of

Errore. L'origine riferimento non e stata trovata.
y(t)=L 3 e 2.11
¢

where
c=In(k)L, 2.12

This new approach might lead to more reliable results when including the effect of environment:
covariates, in fact, as Kooijman (2008) pointed out, for simple isomorphic organisms with different foo
availabilities Lp could be considered independent of external factors; so the influence of covasiat&s
representing environmental influences could be ateibto the new parameter

c=f(x,.% . 2.13
The new paramet ¢ could be seen then as the part of the length growth accountable -spesiiBc
conditions such as environmental factors.
This parameterization, compared to the traditional one, has the advantage of isolating the parameter sen:
to environmentainfluences, so that it is possible to obtain a more meaningful and parsimonious statistic:
model when covariates are involved. The deterministic methods used by biologists do not suit with tf

parameterization because they were designed tokfiadd Lp, while the new parameterization does not

containk.
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3 An alternative approach to estimate the growth curves:

hierarchical models

3.1 The hierarchical approach

The models used by biologists are deterministic in the sense that they do not take into diffecemtes
among individuals of the same population and differences among populations related to differe
environmental conditions. They furthermore introduce a forced linearization which produces an unreliab
estimation of the VBGF parameters; in fdoe VBGF is a nonlinear relationship. A first step to improve the
parameters estimation is the use of a nonlinear regression model so that it is possible to consider direct!
the model the functional form linking growth and age. The nonlinear modelbased therefore on
assumptions often violated in the corals growth; in addition the studied data have two sources of variatic
the coral population and the sites of collection. It comes natural then to get to nonlinear hierarchical mode
Therefore a higer approach could be a ndeterministic model in which each coral is characterized by

different parameter values of the VBGF: in this way, each single coral has its own couple of paramete

(L, .k), in the case of the classic VBGFrameterization, of(L, ,c) , in the case of the new proposed

VBGF parameterizatiorwhich is retained throughout its life (Sainsbury, 1980). According to biologists, the
parameters values of corals collected in the same site, leaving in an environment characterised by the s
sea surface temperature, sea current and solar radiatiofd Sleomnore alike than those of corals collected

in different sites. The parameters describing the growth of a coral can then be seen as a sum of diffel
contributions: the species contribution common to all corals, the site contribution common tacalall cor
exposed to the same environmental characteristic and a random contribution typical of the single co
attributable to immeasurable aspects. This approach points directly to a hierarchical model. Another criti
aspect of the deterministic approachhs forced linearization; the statistical approach provides techniques
to estimate the parameters while maintaining the nonlinear relationship. Combining the two aspects !
come to the hierarchical nonlinear models: the coral growth curve can be tmeatedtvia the nonlinear
least squares method; where the species contribution, common to all the corals, is considered as a fi

effect; the site contribution related to all corals exposed to the same environmental characteristics
22



considered as a randoaffect, which might depend on environmental covariates; the random contribution
typical of the single coral can be seen as the residual error.

In fact, hierarchical nonlinear models for data in the form of continuous, repeated measurements on eact
a nunber of individuals, are a popular platform for analysis when interest focuses on indspéuéic
characteristics and has gained broad acceptance as a suitable framework for such problems. The ce
concept of hierarchical models is that certain nhpdeameters are themselves modelled; in other words, not
all the parameters are directly estimated from the data, rather some of them are calculated from estimate
the model 6s hyperparameters which ar érsarasomaimes e
referred to as Arandom effectsd. They are to b
but are instead estimated directly from the data. A hierarchical model can have both, so it is often descril
as a AMisedodet ec

Hierarchical nonlinear models may be regarded as both an extension of the nonlinear regression models
the hierarchical linear models. A natural framework is the-stage model that takes into consideration
intrai and interindividual variatons, as in mixed effect models. Hierarchical nonlinear models can be
considered mixed effect models where some, or all, of the fixed and random effects oelmgarbnin the
model function. From a nelnear point of view they can be seen as nonlinegression models for
independentlata (Bates and Watts, 1988) where random effects are incorporated in the coefficients to allc
them to vary by group, thus inducing correlation within the groups. From a mixed effect point of view the
can be seen as éar mixed effect models where the conditional expectation of the response, given th
random effects, is allowed to be a nonlinear function of the coefficients.

Pinheiro and Bates (2000) discuss three important advantages of nonlinear hierarchical models:

1 interpretability. The modelling approach requires that one explicitly model. Judgment as well a
background empirical or theoretical knowledge can be used to guide the choice of nonline:
functional form;

1 parsimony. A welchosen nonlinear function can neé nonlinear process with fewer parameters

than a linear model with multiple polynomial terms. In addition, the hierarchical modelling approack
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allows one to replace a potentially large number of sugjeetific indicator variables and
interaction terra with a small number of hyperparameters;

1 validity beyond the observed range of the data. Of course it is always dangerous to use a mode
extrapolate beyond the data. However, this approach at least offers a framework within which ot
can har nbackgsound knewledge when specifying a model. Such an approach is less likely

to lead one astray than a | esfsi tptairmg dnoanpg prucsa

3.2  Basic nonlinear regression model

The nonlinear regression models are the startingt goiimprove the estimation of the parameter values of
the VBGF. For longitudinal data the used method are mostly based oisdeaseé, maximurikelihood

and Bayesian estimation procedures as can be seen in Gallant @8183) and Wild (1989), Gennieg.al
(1989),Davidian and Giltinan (1995), Vonesh and Chinchilli (1997).

Lety; be the generic observation of e of M sites, wherg=1,..,n;, the model can be written then as

y, = f(x.f) & 3.1

wheref(.) is a nonlinear functiorf, is the px1) vector considering theparameters of the functions ands

the random error. The functidq) should satisfyz=f(x;,f) for one value of in F and for all values ox.

This condition, if verified, implies thaE(-))=0 and consequentli(y;) = m. The error should in addition
satisfy the classical assumptions so thahould be independent and identically distributed with zero mean
and common variance?.

In the biological area, for growth curve or repeated measures this assuoaptidibe often unrealistic.

The model formulation proposed by Davidian and Giltinan (1995) allows departures from the assumptio
to beaccommodatéhrough some generalizations.

A general way to consider the intiredividual variance heterogeneity consistf specifying the variance
functiong(.) which may depend on the mean response, on congtavitech may include the influence of
environmental sitspecific covariates and on an additiorggdimensional parameter vector fully
specifying the variancinctional form.
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var(y, )=s2¢*( ;7 J)
m = BO="1(x, J

3.2

Furthermore because of the repeated measures, errors might be correlated, that could be accommc
delineating the correlation of the error by the correlation m&(@®) wherea is a sdimensional vector of
correlation parameters

Furthermore, for repeated measures, errors might be correlated. Thisitmtieorrelation could be
considered by using the correlation mat&@a) wherea is as-dimensional vector of correlation paratars
(Davidian and Giltinan, 1995).

Moreover in growth curves both correlation among measurements anesiiatiaeterogeneity may be

evident; if this happens, variance functgi.) could be used to define the diagonal variance matrix

G(f, y=diagg ¢( ,.z2 ) G( ...z .)< 3.3

with GY¥2(f , ) the diagonal matrix with elements the square root of thos&(df , ) (Davidian and
Giltinan, 1995). Heref appears as an explicit argument to emphasizgdissible dependence of intra
individual variance on the regression parameters through the mean regperfses;, ¥ .
Considering a correlation pattern described by the m&ex then the specification
Cov(e)= 8GY2(f ) 0 &' ) R, A 3.4

where 3~=[ J, a]' is the @+s+1)-dimensional combined vector of all intsite covariance parameters
TheErrore. L'origine riferimento non e stata trovata. implies that

Var(y))=s’g’( mz,d), Cor(y,y) i, (U 35
These | atter considerations improve the model

takes into account the different sites of collection and maybe the influence of environmental covariat

points: this can be done in a more completeleh like hierarchical nonlinear one.
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3.3 Newtonds method for nonl i near

Let y;denote the response obtained at jtie covariate valuej where j=1,..n. The response vector

y =[v;,...y] contains the information at valugs=[x,..,x ] so that

v= 103 f)

e=[ .., e

wheref(.) is a nonlinear functiorf, is the px1) vector considering the parameters of the functions. By the

Least squares method, the parameter estimates ptbeidest fit of the mean function = f(x, Jto the

observations obtained by minimisation of the residuahs of squares (RSS) with respecf tas follows:

n

RSSE )=a(yj fx ,)fe) 3.6

=1

The minimisation of the RSS is known as lesgtiares estimation, and the solutisrthe leastsquares

f

parameter estimates, denoted by The minimisation of the RSS is a nonlinear problem due to the

nonlinearity of f(x; f ), and therefore numerical optimisation methods are needed. These methods stz

from some initial values and then repeatedly calculate next availakhie &ccording to some optimization

rules so that the iterative procedures will ideally approach the optimal parameter values in a stepwi
manner. At each step, the proposed algorithm computes the new parameter values based on the date
model, and tla current parameter values. By far the most popular algorithm for estimation in nonlinea

regression is the Gaudewton method, which relies on linear approximations to the nonlinear mean

function at each step; unfortunately, two main complications avisen using it: how to choose the

initial/starting parameter value and how to ensure that the procedure reached the global minimum rather t
a local minimum. These two issues are interrelated. If the initial parameter values are sufficiently close
the optimal parameter values, then the procedure will usually reach the optimal parameter value (t

algorithm is said to converge) within a few steps. Therefore, it is very important to provide sensible startir
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parameter values. Poorly chosen starting vatreshe other hand will not reach convergence. If lack of
convergence persists regardless the choice of the starting values, the conclusion is that the model is
appropriate for the data at hand. As the solutions to nonlinear regression problems exie, nhey may
differ as a consequence of different algorithms, different implementations of the same algorithm (fc
example, different criteria for declaring convergence or computing first derivatives numerically ol
analytically), different parameterisafis, or different starting values. However, the final parameter estimates

ought not differ much. If therarelarge discrepancies, thegight indicate that a simpler model should be

preferred. Once the parameter estimdteare fownd, the estimate of the residual variaiéés obtained as

the minimum value of RSS (attained when parameter estimates are inserted divided by the degrees

RSS

freedom (i p), ass’ = an— (Fox et al. 2002). The residual standard error is ghen

3.4 The hierarchical model specification proposed by Lindstrom and

Bates

According to Lindstrom and Bates (1990) a general nonlinear mixed effects model for repeated measu

can be defined at twouels. At the first step thgh observation on thih site is modelled as
Y = f()gj ,fi) € i 1.,Mandgj 1,.,n 3.7
wherey; is thejth response on théh individual, x; is the covariate vector for thith response on thiéh site
and and; is theM-dimensional parameter vectdris a nonlinear function ang; is a normally distributed
error term (Lindsrom and Bates ,1990). In the second stemarameter vectof. , is modelled as
f,=Ab +B,landb, ~N(0,s°D) 3.8
where d is ap-dimensional vector diixed effects,b; is ag-dimensionarandom effectvector associated

with theith individual, the matriceé; andB; are, respectively, the design matrices for the fixed and random

effects ands’D is a general varianteovariance matrix.
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This formulation assumes the observations, corresponding to different groups, as independent and
within-group errorsg; asi.i.d. N(O, %) &nd independent on the

The assumption of independenaed homoschedasticity for the withgnoup errors can be combined

therefore in a more general model.

3.4.1Intra -site variation

The modelErrore. L'origine riferimento non é stata trovata. describes the systematic and random
variaton associatedvith measurements on thth site. In particular the systematic variation is taken into
account by the regression functigrrandom variation is taken into account by a distributional assumption
for the random errorg; and the specification of a modelrfits distribution. As already seen, for a given site
variability in they; may be a systematic function of the mean response for that site, other known constar
and additional, possibly unknown parameters; correlation among measurements on a givaty sitso
arise. In many contests, and growth curve should be one of those, it is reasonable to expect a compar
pattern of intrasite variation across sites (Davidian and Giltinan,1995). The pattern of correlation of
measurement taken in a given siteuld also be likely to remain constant across sites.

According toErrore. L'origine riferimento non é stata trovata. and collecting the errors for the 1th site
into the vectore =g671,.., £ '{ it is possible to write a general specification of the common -sitea
variance structure as

Covie | )=R(, 8, 3% s J] 3.9
allowing for variance heterogeneity and correlation within sites. The most common assumption about t
conditional distribution of the error for a givdn is that of intrasite normality of the responsehich comes

from the error pecification(Davidian and Giltinan, 1995)

elf, ~N (RQ in3‘)) f 3.10
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3.4.2Inter -site variation

Variation among different sites is taken into account by the site specific regression pardmeTédrs

standard approach as already seen is to specify a model fof, whech could consider part of the
parameters variation due to a systematic dependence on individual characteristic (possibly covariates)
part due to unexplaed (random) reasons. To account for these possibilities the pararfictare
considered as depending on systematic and random components respeetnctdy.

Let f. be ap-dimensional vector of regression parameters specific tathhimdividual anda; be an a-
dimensional covariate vector corresponding to the attribute othhedividual. If b; is a k-dimensional
vector of random effects associated with iteindividual andb is a §x1) vector of fixed effects then a

general model fof, could be given by

f.=d(a, bb) 3.11

whered is ap-dimensional vectevalued function. Each element dfis associated with the corresponding
element of , so that the functional relationship may be of a different form for each element. A complete

characterization of the inteite variation requires an assumption about the distoibwif the random effects

bi. The most common distributional assumption is

b,: N(0,s2D) 3.12

wheres?D is a k x k) covariance matrixDavidian and Giltinan, 1995)

As an alternative to normality it is possible to assume a multivarig@téakefield 1995) or a mixture of

normal distributions (Beal and Sheiner 1992). The t distribution with its heavier tails may provide a robu
alternative to handle outlying individuals; the mixture of normals accommodates the possibility o
multimodality d the distribution of the random effects. It is also possible to consider situations in which the

assumption of zero mean is not made.
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3.5 Hierarchical Nonlinear model for the solitary corals
In the following paragraphs the hierarchical model to design th&rgocorals growth curve based on

VBGF will be specified.

3.5.1 The standard parameterization

Let y; be the length ojtth coral in theith site; lett; be the age of corals and letbe abi-dimensional vector

f. =8|—ui'|§ . and considering theM sites each one measuredtimes, the nonlinear model can be

integrated and thErrore. L'origine riferimento non é stata trovata. in accordance with the (3.6) becomes

y, =L@ €%) & | L.n E 1. 3.13

In designing the distribution of the errar we have to consider if the classical assumption are reliable for

corals growth.

The assumption of zero mean of the error is not called into question as the relationship between the respc
and the covariate based on the VBGF has a physical meaning dedvied, as already seen, by biochemical
considerations. The assumption that the emesr common variand& and is identically distributed for &tl]

risks to be easily violated for two reasons: the first one is that young corals are less vaniabld tre as
environmental factors have less time to influeticem, the second one depends on the way they are
measured. The age of solitary corals are determined by counting the growth rings, so in small corals t
could be less precise than in adultals, on the other hand in very old corals, slowing their growth after a
certain dimension is very difficult to count ultimate rings because they are very close, sometimes collaps
The error may be also correlatetie growth in a certain site depends the yearly fluctuation of
environmental parameters, such as temperature, solar radiation and current. So corals closer in age st

have had the same fluctuation of environmental parameters.
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A more flexible model for the variance of the error can be then build considering the function described
Errore. L'origine riferimento non e stata trovata. and

Errore. L'origine riferimento non e stata trovata. according to which the error variance matrix becomes

R(f 3), where =[sJ, &

So that

g~ M RB(,; 3)f
At the intersite level it is possible to attribute the variations of paraméigrandk; among theM sites to
systematic and random sources.
Parameter estimates can be obtained by the method of Least Squares; however minimization of residual
of squares yields equations nonlinear in the parameters. Since it is not possible to solve nonlineas equat
in closed forms, the alternative is to obtain approximate analytic solutions by employing iterative
procedures. The main methods being (Draper and Smith 1998): the Taylor Series Method, the Steej
Descend Method and the Levenb®d@ r g u a r ditNénmon lasedstiod.
It is then possible to see each parameter comprising a fixed efeamdd k) due to known séspecific
characteristics and a random effect respectiyendb,; due to unexplained variation among the sites. The

vectorf; consideringboth the effect can be then defined

_al,; 0 Lath

f, —g% Tk?@ 3.14

Unlike the traditional marine biology approach, tBeore. L'origine riferi mento non € stata trovata.
approach to parameter estimations has the desirable feature of contemporarily taking into account the
model and the Apopulationo model i ntroducing a
Analysis of data of repeated measurement over time is a recurrent challenge to statisticians engagec
biological applications: growth curves are among this kind of data. Theimatigrdual variability in growth

is the result of several internal (genetic) aegternal (environmental) factors which affect these
physiological processes. The choice of applying the growth model to the-kragitection data rather than
following the growth process over time of several individuals allows the description thraaagh growth
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parameters which oversee individual variability in each site of capture. The measures are then repeated
wide sense. Anyway Pilling et al., (2002) and Schaalje et al., (2001) focused on the statistical nuances
fitting backcalculated lentps at age data in a repeated measures context and obtaining better estimates
individual growth variability than taking repeated measurements on a sample of individuals.

The main strategy followed was to incorporate these features in an inferentiiad) $8t building a
hierarchical model. Intesite variation is then considered as consisting of a model for variation in the

regression parametdrs Thus variation can be modelled using a distributional assumptiofy &rvarious
levels of complexityFor instance a possible specification is

f.=Ab +p 3.15
where f, is assumed to depend linearly on a {limensional vector of parametbrand on sitespecific
information such as temperature and radiation summarized in a design Maasxshown further on.
Error b; corresponds to the random component of ister variation, which is supposed not depending on
environmental covariates amgltaken to have mean zero and covariance mtrix
Adding the restriction that the distribution #f belongs to a particular parametric family, the bivariate

normatlognormal distribution is often choseHdlser and Lai2004)

_aLk,; o
fi_g?nk N (A D) 3.16

So, considering a linear influence of radiatgmadientR and temperaturgradientTonLpy and exponential
influence of radiatiorgradientR and temperaturgradientTon k in the parameterization of the VBGF,

expression (3.14) is composed by the following elements

A= R T 000 3.17
"% 00 1R T
OLn
b % 3.18
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The elements of the dolimensional vectevalued function described in

Errore. L'origine riferimento non é stata trovata. are then expressed as

dl(q’bi)):Ln R 8T b

d,(U, b p=In(k) \aR 4T B 3.20
. aR o
where U 6 =
ol

3.5.2The new proposed parameterization
Similarly to the previous chapter the above VBEi#fore. L'origine riferimento non e stata trovata. in

accordance with thErrore. L'origine riferimento non é stata trovata. becomes

(=L & € §e | L.p Q4. 3.21
¢

|- GOt

where the error distribution ig, ~ M R(,; 3)) f

The f, is abi-dimensional vectoff, = gLni ,G andalso in thoe case itis possible to see each parameter

comprising a fixed effedts andcand a random effedd;; andb,;. The vectorf considering both the effect

can be then defined

fi:g%‘ g_cgeqi' 3.22

This new parameterization is desigrtedbe more parsimonious: in fact the two parameters are divided in
the one sensitive to environmental and, in general, extaniklences that i< and the one derived by

genetic and moreover, site rdépendingcharacteristics, that ls.

We considefor the distribution off; the bivariate normal distribution

fiz%‘“‘ SN(AD, D 3.23
¢t =

Considering a linear influence of radiation (R) and temperature (T)wamich is designed to be the only
parameter sensitive to environmental covariates, the parameterization of the VBGF th

Errore. L'origine riferimento non é stata trovata. is composed by the following elements
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The elements of the twdimensional vectevalued function described in the
Errore. L'origine riferimento non é stata trovata.become then
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4 Growth curves for corals

4.1 The Solitary Corals of our study

For this study we considered two species of solitary corals: Balanophyllia europaea and Leptopsamr
pruvoti, because these corals are very important in determining the health of other colonial coralseaf the
with regards to climatic changes and the presence of pollution. Moreover for these coelaseajenodels

can be easily applied. In fact, age can be determined by counting the growth bands of the skeleton using

Computerized Tomography scans (@hd the size can be easily measured by a calliper.

4.1.1Balanophyllia europaea and Leptopsammia pruvoti

Balanophyllia europaea is a solitary, ahermatypic, zooxanthellate scleractinian coral that lives on a roc
substratum and is endemic to the Mediterranean Sea. Owing to its symbiosis with zooxanthellae, de
distribution appears to be restricted in thpedes; it is found between 0 m and a maximum of 50 m depth
(Zibrowius 1980), though congeneric azooxanthellate corals have been reported at depths of up to 1,10
(Cairns 1977). The reproductive biology of this species is characterized by simultanenapHhreditism

and brooding. During the annual cycle of sexual reproduction, fertilization takes place from March to Jut

and planulation in August and September.

Figure 4.1 Balanophillia eu
o~ 3 : :

ropaea

This coral has been chosen because Goffredo et al. (2007) observed that unlike other tropical and tempe

corals, in which calcification is positively correlated with solar radiation and surface sea temperature (SS
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balanophyllia calcification is notocrelated with solar radiation, whereas it is negatively correlated with
SST. The conjecture is that photosynthesis of the symbiotic algae of Balanophyllia europaea is inhibited
high temperatures, consequently causing an inhibition of calcificationhab the calcification of
Balanophyllia europaea would be depressed at 20.3C mean annual SST.

Leptopsammia pruvoti is an ahermatypic, nonzooxanthellate and solitary scleractinian coral, which
distributed in the Mediterranean basin and along thelaan Atlantic coast from Portugal to Southern
England and Ireland. It is one of the most common organisms ineseroised rocky habitats, under
overhangs, in caverns and small crevicesi@00n depth, with mean abundances of [104 individuaB m
i.e., [2 kg m2 of CaCO3 biomass (Goffredo et al. 2007). When released, the planulédé &% in

length) are ready to settle and swim by ciliary movementifad Hays.

Figure 4.2 Leptopsammia pruvoti

This coral was chosen because Goffredo et al. (2007) observed that unlike other tropical and tempel
corals, in which calcification was positively correlated with solar radiation and SST, the biometry o
individuals, thus skeletal density, corallite l&mgwidth and height, and their abundance are not affected by
SST and solar radiation along an 8&@ latitudinal gradient in western Italian coasts.

Solitary coral size growth and reproduction is usually related to the length of maximum diameterraf the o
disk, so the study was based on the growth of the radial length according to the VBGF.

As observed by Goffredo (2008), the population structures of these two species of temperate solitary col

become less stable and have deviated from the steadyistaécent years as a result of a progressive
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deficiency of young individuals. The study of the variation in calcification rate, linear extension rate, an
skeletal density in populations arranged along a temperature and solar radiation gradient cin prov
therefore an explanation for this observation. The results can be extended to the other temper
scleractinian corals and considered in light of the most recent scenarios on climate changes for the r

future.

4.2 The data

The data wereollectedby S. Gffredo et al.(2007) e S. Goffredo et al. (2008). Specimens of different ages
(from 1 to 14 years) of two species of solitary corals: Balanophyllia Europaea and Leptopsammia Pruvi
were collected at maximum biomass density depth in 6 different sitesghdifierent mean annual
radiation, sea surface temperature and sea current; they were then dated and measured. Two sites
islands and four were on the coaBable4.1 shows the values of annual mean and standard error of sea
surface temperature, solar radiation and sea current for the sites under study. The other variables consid
in this analysis were:

1 the length ifTmmof the corals measured by callipers

1 theagein yearsmeasured by the mean over 3 repeated counts of the growth rings visualized by CT scan
1 the mean annual radiation W(nf) of the 6 sites (ltalian Air Force Weather Service)

1 the mean annual temperatung(iC) of the 6 sites (Italian Air Force Weather Service)

1 the mean annual surface currentrim'g of the 6 sites (Atlas of the surface currents of the Italian Navy)

Table 4.1 Environmental Characteristics o each site

Genova Calafuria Elba Palinuro Scilla Pantelleria
#1 #2 #3 #4 #5 #6

Mean annual radiation  166.95 170.07 172.74 181.48 187.31 190.95 (1.02)

(SE) Q/V/n?) (1.02) (1.02) (1.02) (1.01) (1.02) ' '
Mean annual surface 19.56 18.02 18.74 19.14 19.54 19.88
temperature (SEYC) (0.04) (0.04) (0.04) (0.03) (0.02) (0.04)
Mean a(”nrq‘fsa' Currentl 5 g 0.08 0.2 0.15 0.6 0.15

Island/Coast Coast Coast Island Coast Coast Island

37




4.3 Explorative analysis

4.3.1Balanophyllia europaea

238 corals oBalanophyllia europaeaere collected in the six sites considered. Tablesd®vsthe number

of coralsper site and the relative descriptive analysis for the age and the oral disk lergth be argued

that the different sites show different mean oral disk lesdths difference is not always ascribable to a
different mean age; in faatorals from Calafuria are the smallest but not the youngest. Corals from Elba anc
Pantelleria aretaleast as young as those of Calafuria but they are definitely wider. Corals collected i
Genova, on the other hand, are older and much wider. Figure 4.3 shows the oral disk length plotted aga
the relative age of each coral: The graphic shows therdiit pattern of the sites: corals from Elba, for
example, are wider than the others only until the age of five years, corals from Genova are wider from t
age of seven years, and corals from Palinuro are smaller at all ages. Thsuggagtdifferent gowth
patterns in the different sites. Figure 4.4 shows the oral disk length plotted against the relative age of e
coral in each site and confirms the idea of a different growth pattern according to the sites. Figure 4.5 shc
the oral disk length distoution at different ages: the distributions of several ages are clearly not Gaussiar

maybe because of the influence of the sites; the shape of the distribution of the oral disk length against

age is confirmed by a Von Bealanffy-like growth curve.

Table 4.2 Balanophyllia europaea: descriptive analysis

Sites Number| Mean Std. Median 95% Minimum | Maximum
of Deviation Confidence
corals Interval for
Mean

Age Genova 42 7.4 3.3 7.0 6.4 | 85 1.0 14.0
Calafuria 34 5.5 1.9 5.0 49 | 6.2 2.0 9.0
Elba 34 4.6 2.2 4.0 3.9 | 54 2.0 12.0
Palinuro 54 6.9 3.3 6.5 6.0 | 7.8 1.0 14.0
Scilla 32 6.2 2.6 6.5 53| 7.2 1.0 13.0
Pantelleria| 42 5.2 2.3 5.0 45 | 6.0 1.0 9.0
Total 238 6.1 2.8 6.0 57 | 6.5 1.0 14.0
Length | Genova 42 11.7 3.9 11.6 | 10.4| 12.9 2.4 19.0
Calafuria 34 8.3 2.7 10.0 | 7.4 | 9.3 4.0 14.5
Elba 34 9.0 2.9 105 | 7.9 | 10.0 3.0 16.3
Palinuro 54 9.9 3.2 10.6 | 9.0 | 10.8 2.5 16.9
Scilla 32 9.9 2.9 11.0 | 8.8 | 10.9 3.7 16.0
Pantelleria| 42 8.8 2.8 9.7 8.0 | 9.7 2.6 13.3
Total 238 9.7 3.3 105 | 9.2 | 10.1 2.4 19.0
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Figure 4.3The lengthof Balanophyllia europaeavs age
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Figure 4.4 The lengthof Balanophyllia europaeavs age for each site under study
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Figure 4.5 Boxplot of lengthof Balanophyllia europaeaat different ages

*

" -

Length (mm)
3

Age (years)

4.3.2Leptopsammia pruvoti

179 corals of Leptopsammia pruvoti were collected in the six sites considered. TathewsBhe number

of coralsper site and the relative descriptive analysis for the age and theliskalAs for Balanophyllia
europaea, the different sites show different mean oral disk kengthalways ascribable to a different mean
age: corals from Genova and Pantelleria have similar dimensions, but corals from Genova are younger,
same can beatd of corals from Calafuria and Palinuro or corals from Elba and Scilla where corals from
northern sites are younger thiiose ofsouthernsiteswith similar dimensions. Figure 4.6 shows the oral
disk length plotted against the relative age of each.cohal graphic showswide spread of the dimensions

at older ages and furthermoralike Balanophyllia europagthe corals from Elba are wider than the others
only from the age of six years, where corals from Genova are smaller from the same age$ooorals
Pantelleria are smaller at all ages. Therefore, for Leptopsammia pruvoti a different growth pattern can a
be hypothesized in the different sites. Figure 4.7 shows the oral disk length plotted against the relative ag
each coral in each site aondnfirms the idea of a different growth pattern according to site. In particular it
can be noticed that corals from Calafuria are very young and fast growing, but due to the lack of older cor
it will be difficult to understand if this fast growth wibe maintained. Anyway, the difference in age
distribution of the corals from Calafuria might be a problem when carrying out separate estimatior

according to site. . Figure 4.8 shows the oral disk length distribution at the different ages: as for tl
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Balarophyllia europaea the distributions of several ages are clearly not Gaussian. Furthermore, the oral d
length distribution vs age confirms a Von Baanffy-like growth curve only for ages starting from three
years; Ages two and moreover one have biglygrensions than those expected by a Von dgerffy-like
growth curve. It can be noticed therefore that this coral is smalleBkamophylliaeuropaea and may be
subjected to a bigger error of measurement for very young or small;aordle other haththe influence of

the environment of the six studied sites might produce a different growth rate at eadlgusgeplaining

the gap from the theoreticlbéhaviour

Table 4.3 Leptopsammia pruvoti: descriptive analysis

Sites N | Mean Std. Median| 95% Confidence| Minimum | Maximum
Deviation Interval for Mean
Age Genova | 30 | 6.2 3.9 6.0 4.7 7.6 1.0 14.0
Calafuria | 29 | 4.1 1.9 4.0 3.4 4.8 1.0 7.0
Elba 30 | 6.3 2.0 6.2 5.6 7.0 3.0 10.0
Palinuro | 30 | 5.6 3.0 6.0 4.5 6.8 1.0 13.0
Scilla 30| 7.8 4.5 8.0 6.1 9.5 1.0 14.0
Pantelleria) 30 | 7.0 4.2 6.0 55 8.6 1.0 14.0
Total 179| 6.5 3.8 6.0 5.9 7.0 1.0 14.0
Length | Genova | 30 | 4.8 2.2 4.9 4.0 5.7 2.0 9.0
Calafuria| 29 | 4.0 1.5 3.6 3.4 4.5 2.0 6.0
Elba 30 | 6.3 2.0 6.2 5.6 7.0 3.0 10.0
Palinuro | 30 | 4.4 1.8 4.3 3.8 5.1 2.0 8.0
Scilla 30 | 6.3 3.1 6.2 5.1 7.4 2.0 12.0
Pantelleria) 30 | 4.8 2.2 4.4 4.0 5.6 2.0 9.0
Total 179| 5.1 2.3 5.0 4.7 5.4 2.0 12.0

Figure 4.6 The lengthof Leptopsammia pruvoti VS age
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Figure 4.7 The lengthof Leptopsammia pruvoti vs age for each site under study
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Figure 4.8 Boxplot of lengthof Leptopsammia pruvoti at different ages
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5 Results with the traditional Methods used in marine biology for

the Von Bertalanffy Growth Function fitting

5.1 The Gulland-and-Holt (GH) plot

As pointed out in chapter (2.3.1) this method is used for the estimation of the two par&meteds®. and
is bssed on the growth rates plotted vs. the mean length at first and second measurements us
Errore. L'origine riferimento non e stata trovata. and

Errore. L'origine riferimento non e stata trovata.. The methodtonsistedf first calculating the elements

L - L
of thegrowth rates (the dependent variable) of the six sites,yghastj—t"l j 4,..14, and the elements
Tt

of the mean length at first and second measurements (the independent variable), th

L +L,
Xj: J j-1

j 4,..14. After this a linear regression wdited. At the endthe fitted regression

coefficientwas used to estimate parameteas k= b and the estimated interceptas used to estimate

parametetp aslL, :E

The graphic in Figure 5.1 is obtained by applying this method to the Balanophyllia europaea data

The estimated regression coefficients ware 2.7437b = 0.149 so that the estimation of parameley,

representing the ultimate length was 18881 and the estimated growth rake was 0.149. The curve

presented in Figure 5.2 was built according2.5) using.l_: :18.38;Ak =0.149:

Then standardized residuads were calculated and plotted vs fitted values as shown in Figure 5.3. The
standardized residuals were calculated according to

* — eJ
e*=—1 5.1

s fih

Where; is the standard deviation of the residuals dndis the Leverage of thgth estimated point
calculated according to
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N (e - E(G))2
%(ei - E(9)

> 5.2

Figure 5.2showsthat the dimensions of young and old corals are underestimated; Figumeg§estshat

the dimensions of small corals are definitely underestimated. Furtheimeresiduals are asymmetrical, in
particular the residuals dérge corals are divided iot two groups: one exceeding zero and the other one
below zero. The overall impression is that the method underestimates patapretiucinga growth curve

that istoo slow at the young ages and too remote reaching the ultimate length. In addition the variance of 1
dimension seem® varyaccording to the dimension itself, but there is no way to consider this behaviour in

the model.

Figure 5.1 Gulland and Holtplot for the Balanophyllia europaea
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Figure 5.2 Curve fitting for the Balanophyllia europaea data using the Gulland and Holt plot method
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Figure 5.3Balanophyllia europaea: residuals of the Gulland and Holt plot method
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The graphic in Figure 5.4 obtained by applying this method to the Leptopsamm