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Capitolo 1

Introduction

In this thesis work I would like to combine my different skills as a biotechno-
logist and as a statistician. I decided to analyze, from a mathematical point
of view, the genome of the whole chromosome 1 of a simple plant organi-
sm, Arabidopsis thaliana (A.thaliana), that represents a model for molecular
biology and genetic studies.

The discovery of the genetic code, a universal translation table that links
the world of nucleic acids to the world of proteins, led scientists to focus on
sequencing the entire genomes of different organisms. The Human Genome
Project succeeded in sequencing the whole human genome in 2001 [38, 54]
and triggered a strong hype on the possibility of diagnosing and treating ma-
ny serious diseases. However, after ten years, it looks like the expectations
have not been met. The recent article by S.S. Hall published on Scienti-
fic American: “Revolution Postponed: Why the Human Genome Project Has
Been Disappointing” is emblematic: In fact its subtitle states: “The Human
Genome Project has failed so far to produce the medical miracles that scien-
tists promised. Biologists are now divided over what, if anything, went wrong
- and what needs to happen next”.

The whole genetic information is passed from a parent cell to two or more
daughter cells through the process of cell division. The main concern of cell
division is the maintenance of the genome of the original cell. Before division
can occur, the genetic information must be replicated and the duplicated
genome is separated cleanly between cells. During DNA replication several
errors may occur. Some of these errors have no effect on the life of the cell,
while others can result in growth defects, cell death or cancer. A permanent
change in the DNA sequence of a gene is called mutation. [44, 45].

Mutations occasionally occur within cells as they divide and can affect
the behaviour of cells, sometimes causing them to grow and divide more
frequently. Several biological mechanisms can stop this process: biochemical
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signals can cause inappropriately dividing cells to die. Sometimes additional
mutations make cells ignore these messages. Most dangerously, a mutation
may give a cell a selective advantage, allowing it to divide more vigorously
than its neighbours and to become a founder of a growing mutant clone.
Since mutations may occur because of errors during DNA replication, the
study of error detection/correction mechanism in such process could be of
key importance for understanding the onset of different serious pathologies,
among with there is cancer.

In biology, a reading frame is a way of breaking a sequence of nucleo-
tides in DNA or RNA into three letter codons which can be translated in
amino acids. There are 3 possible reading frames in an DNA strand: each
reading frame corresponds to starting at a different alignment. Usually, there
is only one correct reading frame. Moreover, error detection and correction
mechanisms are strictly involved with frame recognition. [39]

In this work I study the features of different portions of the genome of
A.thaliana, by using a recently developed mathematical model for the ge-
netic code [16, 18, 17]. I use the information of dichotomic classes, binary
variables naturally derived from the above mentioned model, in order to as-
sess different behaviours between coding and non coding sequences. In par-
ticular I analyze the role of frame. So far, the mathematical model of the
genetic code has been used to investigate only some proteins of different ori-
gin [19, 20, 21, 22, 23]. Now I apply it to a whole chromosome of a single
(and well-known) organism: A.thaliana. It has many advantages for genome
analysis: a small size, a short generation time and relatively small nuclear ge-
nome. These advantages promoted the growth of a scientific community that
has investigated the biological processes of A.thaliana and has characterized
many genes [50].

Finally, since the existence of a coding mechanism for error correction
and detection implies some kind of dependence inside data, I want finally
to study the presence of dependence structure, related to dichotomic classes,
within different portion of the genome. It could be useful in order to develop
alternative methods to understand error detection and correction mechanisms
involved in the translation process.

The thesis is organized as follows: in chapter 1 I introduce the basic concept
and terminology of genetics and the model organism A.thaliana. In chapter 2
I describe the salient features of the mathematical model. In chapter 3 I per-
form a descriptive statistical analysis on the data set; moreover, I implement
and apply a test for independence based on dichotomic classes. In chapter 4
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I describe logistic regression models built in order to discriminate between
different portions of the genome. In chapter 5 I use three different measures
of dependence (χ2, Sρ and mutual information) in order to assess if there are
short-range dependence structure related to dichotomic class within different
portions of the genome. Finally I discuss the results.
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Capitolo 2

Genetic information

Genetics is the science of genes, heredity, and variation in living organisms
[27]. It deals with the molecular structure and function of genes. Since genes
are universal to living organisms, genetics can be applied to the study of
all living systems, from viruses and bacteria, through plants and domestic
animals, to humans (as in medical genetics).

The genetic information is carried by genes segments of DNA (deoxy-
ribonucleic acid) located on chromosomes. They exist in alternative forms
called alleles that determine distinct traits which can be passed on from
parents to offspring. The process by which genes are transmitted was disco-
vered by Gregor Mendel and formulated in what is known as Mendel’s law
of segregation.

DNA is a self-replicating nucleic acid which is present in nearly all living
organisms as the main constituent of chromosomes. It is the carrier of genetic
information.

DNA The molecular basis of genes is DNA. Each molecule of DNA consists
of two strands coiled round each other to form a double helix, a structure like
a spiral ladder. DNA is a polymer. The monomer units of DNA are nucleoti-
des, and the polymer is known as a polynucleotide. Each nucleotide consists
of a 5-carbon sugar (deoxyribose), a nitrogen containing base attached to the
sugar, and a phosphate group (see Figure 2). There are four different types
of nucleotides found in DNA, differing only in the nitrogenous base. The four
nucleotides are given one letter abbreviations as shorthand for the four bases.

• A is for adenine

• G is for guanine

• C is for cytosine
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• T is for thymine

Figura 2.1: DNA molecule structure
(from http://commons.wikimedia.org, under Creative Commons)

Adenine and guanine are purines while cytosine and thymine are pyrimi-
dines. Purines are the larger of the two types of bases found in DNA; they
have two nitrogen-containing rings while pyrimidines have only one.

A nucleoside is one of the four DNA bases covalently attached to the
C1’ position of a sugar. The sugar in deoxynucleosides is 2’-deoxyribose. A
nucleotide is a nucleoside with one or more phosphate groups covalently
attached to the 3’- and/or 5’-hydroxyl group (see Figure 2).

The DNA backbone is a polymer with an alternating sugar-phosphate
sequence. The deoxyribose sugars are joined at both the 3’-hydroxyl and
5’-hydroxyl groups to phosphate groups in ester links, also known as pho-
sphodiester bonds. Chain has a direction (known as polarity), 5’- to 3’- from
top to bottom and A, G, C, and T bases can extend away from chain, and
stack atop each other.The bases combine in specific pairs (A/T and C/G)so
that the sequence on one strand of the double helix is complementary to that
on the other: it is the specific sequence of bases which constitutes the genetic
information. [27]
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Features of the DNA double helix:

• Two DNA strands form a helical spiral, winding around a helix axis in
a right-handed spiral

• The two polynucleotide chains run in opposite directions

• The sugar-phosphate backbones of the two DNA strands wind around
the helix axis like the railing of a spiral staircase

• The bases of the individual nucleotides are on the inside of the helix,
stacked on top of each other like the steps of a spiral staircase.

• Within the DNA double helix, A forms 2 hydrogen bonds with T on the
opposite strand, and G forms 3 hydrogen bonds with C on the opposite
strand. For this reason and G are called Strong bases (S) while T and
A are called Weak (W).

Genes are arranged linearly along long chains of DNA base-pair sequen-
ces. In bacteria, each cell usually contains a single circular genophore, while
eukaryotic organisms (including plants and animals) have their DNA arran-
ged in multiple linear chromosomes. These DNA strands are often extremely
long; the largest human chromosome (chromosome 1), for example, is about
247 million base pairs in length.[26]

All living organisms can be sorted into one of two groups depending on
the fundamental structure of their cells. These two groups are the prokaryotes
and the eukaryotes:

• Prokaryotes are organisms made up of cells that lack a cell nucleus
or any membrane-encased organelles. This means the genetic material
DNA in prokaryotes is not bound within a nucleus. Additionally, the
DNA is less structured in prokaryotes than in eukaryotes. In prokaryo-
tes, DNA is a single loop. In eukaryotes, DNA is organized into chromo-
somes. Most prokaryotes are made up of just a single cell (unicellular)
but there are a few that are made of collections of cells (multicellular).
Scientists have divided the prokaryotes into two groups, the Bacteria
and the Archaea.

• Eukaryotes are organisms made up of cells that possess a membrane-
bound nucleus (that holds genetic material) as well as membrane-bound
organelles. Genetic material in eukaryotes is contained within a nucleus
within the cell and DNA is organized into chromosomes. Eukaryotic
organisms may be multicellular or single-celled organisms. All animals
are eukaryotes. Other eukaryotes include plants, fungi, and protists.
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Figura 2.2: Components of a DNA molecule
(from: http://www.nature.com/scitable)
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2.1 Central dogma of molecular biology
The central dogma of molecular biology describes the flow of genetic infor-
mation within a biological system. It was first stated by Francis Crick in 1958
and re-stated in a Nature paper published in 1970. [7]

The central dogma of molecular biology deals with the detailed transfer
of sequential information. It states, as Marshall Nirenberg said, DNA makes
RNA makes protein meaning that information is transferred from DNA to
RNA and from RNA to proteins and not in the opposite sense.

The dogma is a framework for understanding the transfer of sequence in-
formation between sequential information-carrying biopolymers, in the most
common or general case, in living organisms. There are 3 major classes of
such biopolymers: DNA and RNA and protein. DNA, deoxyribonucleic acid,
and RNA, ribonucleic acid, are molecules that hold the genetic information
of each cell. The DNA strands store information, while the RNA molecules
take the information from the DNA, transfer it to different places in the cell,
and decode or read the information. RNA molecules are similar to DNA ones
except for:

• The sugar present in the backbone is ribose instead of deoxyribose

• The nucleobase thymine (T) is substituted by Uracil (U)

• RNA molecules are formed by a single strand

Proteins, instead, are large biological molecules consisting of one or more
chains of amino acids. [42]

The flow of biological information is:

• DNA can be copied to DNA (DNA replication),

• DNA information can be copied into mRNA (transcription), and

• proteins can be synthesized using the information in mRNA as a tem-
plate (translation).

Replication It is the process in which a cell makes an exact copy of its own
DNA (copy DNA → DNA). Replication occurs in the step of cell division
cycle during which the genetic information is transferred from the mother-
cell to the daughter-cell. Replication begins with local decondensation and
separation of the double DNA helices, so that the DNA molecule becomes
accessible for enzymes that make a complementary copy of each strand (see
Figure 2.1).During DNA replication, it takes place DNA errors control.
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Figura 2.3: DNA replication
(from http://commons.wikimedia.org, under Creative Commons)
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Transcription In the transcription step, DNA is copied to RNA in order to
produce mRNA (messenger RNA), rRNA (ribosomal RNA) or tRNA (trans-
port RNA). This happens in the nucleus by means of enzymatic complexes
produced themselves by specific genes. The RNA is further transported ou-
tside the nucleus, to the cytoplasm, where it become active in the translation
(the actual synthesis of proteins). During transcription the chromosomes are
locally despiralized (decondensed), so that the genes present inside can be
read. (see Figure 2.1)

Figura 2.4: Transcription process
(from http://commons.wikimedia.org, under Creative Commons)

Translation The synthesis of new proteins occurs in the cytoplasm, more
precisely in ribosomes located in polyribosomal complexes or in the rough
endoplasmatic reticulum where a rRNA unit binds a single-strand mRNA
chain, which enhosts the genetic code as mirror of the DNA template. tR-
NA units carry aminoacids (each tRNA binds specifically to one of the 20
different amninoacids) to the ribosomes where they are coupled to form a
polypeptide (see Figure 2.1). [36]

There is an exception to the central dogma of molecular biology, and it
is represented by the process of reverse transcription. It is directly oppo-
site to the process of transcription: an enzyme, called reverse transcriptase
(RT) is able to generate a complementary DNA molecule (cDNA) from an
RNA template. RT is needed for the replication of particular viral species
(retroviruses - e.g. HIV), and its activity is also associated with the repli-
cation of chromosome ends (telomerase) and some mobile genetic elements
(retrotransposons).
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Figura 2.5: Translation process
from: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
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2.2 The genetic code
Genetic information, represented by genes, is used by organisms to create all
the proteins necessary for their metabolism. The genetic code is the dictio-
nary used by the cell to translate a sequence of codons (triplets or bases) of
RNA in a sequence of amino acids during the translation process. Almost all
living organisms use the same genetic code, called the standard genetic code
(see Table 3.1), but many slight variants have been discovered. There are
various alternative mitochondrial codes, and small variants in some members
of bacteria and archaea.

Despite these differences, all known naturally-occurring codes are very
similar to each other, and the coding mechanism is the same for all organisms:
it implies three-base codons, tRNA, ribosomes, reading the code in the same
direction and translating the code three letters at a time into sequences of
amino acids.

The ribosome facilitates the decoding process by inducing the binding of
tRNAs with complementary anticodon sequences to that of the mRNA. The
tRNAs carry specific amino acids that are chained together into a polypep-
tide as the mRNA passes through and is read by the ribosome in a fashion
reminiscent to that of a stock ticker and ticker tape. Each codon corresponds
to a specific amino acid, then it is said that the codon encodes that specific
aminoacid in the genetic code. [8] [43]

The RNA is made of four bases: adenine (A), guanine (G), cytosine (C)
and uracil (U) (in DNA uracil is replaced by thymine (T)). There are the-
refore 43 = 64 possible codons. 61 of them encode amino acids, while the
remaining three (UAA, UAG, UGA) encode stop signals, that is, at what
point the assembly of the polypeptide chain should be stopped. Because the
amino acids that contribute to the formation of proteins are 20, they generally
are encoded by more than one codon.

Therefore genetic code is said to be degenerate and different codons that
encode the same amino acid are synonymous. For example, the sequence
of RNA UUUACACAG consists of three codons, UUU, ACA, CAG, which
correspond to the amino acids Phenylalanine (Phe), Threonine (Thr) and
Glutamine (Gln). Protein synthesis applied to this sequence would then ge-
nerate the tripeptide Phe-Thr-Gln. Therefore, we can say that the genetic
code connects the language of nucleic acids and the language of proteins. In
Table 3.1 codons are displayed into quartets: groups of codons sharing the
first two bases.

Not all genetic information is stored using the genetic code. In all organi-
sms, DNA contains regulatory sequences: intergenic segments, chromosomal
structural areas, and other non-coding DNA that can contribute greatly to
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UUU Phe UCU Ser UAU Tyr UGU Cys
UUC Phe UCC Ser UAC Tyr UGC Cys
UUA Leu UCA Ser UAA Stp UGA Stp
UUG Leu UCG Ser UAG Stp UGG Trp

CUU Leu CCU Pro CAU His CGU Arg
CUC Leu CCC Pro CAC His CGC Arg
CUA Leu CCA Pro CAA Gln CGA Arg
CUG Leu CCG Pro CAG Gln CGG Arg

AUU Ile ACU Thr AAU Asn AGU Ser
AUC Ile ACC Thr AAC Asn AGC Ser
AUA Ile ACA Thr AAA Lys AGA Arg
AUG Met ACG Thr AAG Lys AGG Arg

GUU Val GCU Ala GAU Asp GGU Gly
GUC Val GCC Ala GAC Asp GGC Gly
GUA Val GCA Ala GAA Glu GGA Gly
GUG Val GCG Ala GAG Glu GGG Gly

Tabella 2.1: Standard genetic code
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Figura 2.6: RNA codons (from http://commons.wikimedia.org, under
Creative Commons)
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phenotype. Those elements operate under sets of rules that are distinct from
the codon-to-amino acid paradigm underlying the genetic code.[?]

Sequence reading frame A codon is defined by the initial nucleotide from
which translation starts. For example, the previous sequence UUUACACAG,
if read from the first position, contains the codons UUU, ACA, and CAG;
and, if read from the second position, it contains the codons UUA and CAC;
if read starting from the third position, UAC and ACA. Every sequence
can, thus, be read in three reading frames, each of which will produce a
different amino acid sequence (in the given example, Phe-Thr-Gln, Leu-His,
or Tyr-Thr, respectively). With double-stranded DNA, there are six possible
reading frames, three in the forward orientation on one strand and three
reverse on the opposite strand. The actual frame in which a protein sequence
is translated is defined by a start codon, usually the first AUG codon in the
mRNA sequence. [43]

Start/stop codons Translation starts with a chain initiation codon (start
codon). Unlike stop codons, the codon alone is not sufficient to begin the
process. Nearby sequences (such as the Shine-Dalgarno sequence in E.coli)
and initiation factors are also required to start translation. The most common
start codon is AUG, which is read as methionine (Met) or, in bacteria, as
formylmethionine. The three stop codons are: UAG, UGA and UAA. Stop
codons are also called termination or nonsense codons. They signal release
of the nascent polypeptide from the ribosome because there is no cognate
tRNA that has anticodons complementary to these stop signals, and so a
release factor binds to the ribosome instead.[?]

Mutations During the process of DNA replication, errors occasionally oc-
cur in the polymerization of the second strand. These errors, called muta-
tions, can have an impact on the phenotype of an organism, especially if
they occur within the protein coding sequence of a gene. Error rates are
usually very low (1 error in every 10-100 million bases) due to the proofrea-
ding ability of DNA polymerases.[27][?] Missense mutations and nonsense
mutations are examples of point mutations. Clinically important missense
mutations generally change the properties of the coded amino acid residue
between being basic, acidic polar or non-polar, whereas nonsense mutations
result in a stop codon. Mutations that disrupt the reading frame sequence
by indels (insertions or deletions) of a non-multiple of 3 nucleotide bases are
known as frameshift mutations. These mutations usually result in a comple-
tely different translation from the original, and are also very likely to cause
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a stop codon to be read, which truncates the creation of the protein. These
mutations may impair the function of the resulting protein. Although most
mutations that change protein sequences are harmful or neutral, some mu-
tations have a positive effect on an organism. These mutations may enable
the mutant organism to withstand particular environmental stresses better
than wild-type organisms, or reproduce more quickly. In these cases a mu-
tation will tend to become more common in a population through natural
selection.[43]

2.3 Gene structure
There are two general types of gene in the human genome: non-coding RNA
genes and protein-coding genes. Non-coding RNA genes represent 2-5 per
cent of the total and encode functional RNA molecules. Many of these RNAs
are involved in the control of gene expression, particularly protein synthe-
sis. They have no overall conserved structure. Protein-coding genes represent
the majority of the total and are expressed in two stages: transcription and
translation. They show incredible diversity in size and organisation and ha-
ve no typical structure. There are, however, several conserved features. The
boundaries of a protein-encoding gene are defined as the points at which
transcription begins and ends. The core of the gene is the coding region,
which contains the nucleotide sequence that is eventually translated into the
sequence of amino acids in the protein. The coding region begins with the ini-
tiation codon, which is normally AUG. It ends with one of three termination
codons: UAA, UAG or UGA. On either side of the coding region are DNA
sequences that are transcribed but are not translated. These untranslated
regions or non-coding regions often contain regulatory elements that control
protein synthesis. Both the coding region and the untranslated regions may
be interrupted by introns. Most human genes are divided into exons and
introns. The exons are the sections that are found in the mature transcript
(messenger RNA), while the introns are removed from the primary transcript
by a process called splicing. [39]

Summarizing, eukaryotic gene structure is shown in the following figure:
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We can recognize:

• Genes: regions of a genomic sequence corresponding to a unit of in-
heritance. They are formed by regulatory regions, transcribed regions,
and/or other functional sequence regions.

• Exons: portions of a gene that are transcribed into mRNA and then
translated into a protein. Each gene can contain one or more exons.

• CDS: portions of a gene that encode for a given protein. It is formed
by joining exons (one or more) within a gene.

• Introns: portions of a gene that are transcribed but not translated.

• Intergenes: sequences between a gene and the following one.

• UTR: portions of mRNA that precede the codon that begins transla-
tion (AUG) (5’UTR) and follow the termination codon (3’ UTR)

• Regulatory regions: portions of a gene, with regulatory function, that
precede (upstream) and follow (downstream) the fragment transcripted
into mRNA

2.4 Arabidopsis thaliana as a model organism
Although geneticists originally studied inheritance in a wide range of organi-
sms, researchers began to specialize in studying the genetics of a particular
subset of organisms. The fact that significant research already existed for
a given organism would encourage new researchers to choose it for further
study, and so eventually a few model organisms became the basis for most
genetics research.Common research topics in model organism genetics inclu-
de the study of gene regulation and the involvement of genes in development
and cancer. Organisms were chosen, in part, for convenience-short generation
times and easy genetic manipulation. Widely used model organisms include
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the gut bacterium Escherichia coli, the plant Arabidopsis thaliana, baker’s
yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the
common fruit fly Drosophila melanogaster, and the common house mouse
Mus musculus.

Arabidopsis thaliana (A. thaliana) is a small flowering plant native to
Europe, Asia, and northwestern Africa. A spring annual with a relatively
short life cycle, A. thaliana is popular as a model organism in plant biology
and genetics. A. thaliana has a rather small genome, only 157 megabase pairs
(Mbp) and five chromosomes [50]. Arabidopsis was the first plant genome to
be sequenced, and is a popular tool for understanding the molecular biology
of many plant traits. By the beginning of 1900s, A.thaliana began to be used
in some developmental studies. It plays the role in plant biology that mice
and fruit flies (Drosophila) play in animal biology. Although A.thaliana has
little direct significance for agriculture, it has several traits that make it a
useful model for understanding the genetic, cellular, and molecular biology
of flowering plants.

The small size of its genome makes A. thaliana useful for genetic mapping
and sequencing. It was the first plant genome to be sequenced, completed in
2000 by the Arabidopsis Genome Initiative.[35] The most up-to-date version
of the A.thaliana genome is maintained by the Arabidopsis Information Re-
source (TAIR). Much work has been done to assign functions to its 27,000
genes and the 35,000 proteins they encode.[50]
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Capitolo 3

A mathematical model for the
genetic code

The genetic code is the dictionary used by the cell to translate a sequence of
codons (triplets or bases) of RNA in a sequence of amino acids during the
translation process. In Table 3.1 codons are displayed into quartets: groups of
codons sharing the first two bases. Since 64 codons encode for 20 amino acids
and the stop signal, some amino acids are necessarily encoded by more than
one codon. This fact determines the properties of redundancy and degeneracy
typical of the genetic code.

Why amino acids are not represented in a unique way? And why the level
of degeneracy is different between amino acids?

3.1 Mathematical structure of the code
In order to try to answer these questions we could resort to information
theory, a branch of applied mathematics involving the quantification of in-
formation. A key measure of information is known as entropy.In information
theory, entropy is a measure of the uncertainty associated with a random va-
riable. In this context, the term usually refers to the Shannon entropy, which
quantifies the expected value of the information contained in a message,
usually in units such as bits. In this context, a “message” means a speci-
fic realization of the random variable and implies the presence of a term of
uncertainty (error).

Considering genetic code as a communication system allow us to apply
information theory concept. Therefore we can state that it is not a free-error
system. Errors, which occur mainly during the transmission phase, can be
detected and then corrected at the time of decoding the message. Gonzalez
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Tabella 3.1: Standard genetic code

UUU Phe UCU Ser UAU Tyr UGU Cys
UUC Phe UCC Ser UAC Tyr UGC Cys
UUA Leu UCA Ser UAA Stp UGA Stp
UUG Leu UCG Ser UAG Stp UGG Trp

CUU Leu CCU Pro CAU His CGU Arg
CUC Leu CCC Pro CAC His CGC Arg
CUA Leu CCA Pro CAA Gln CGA Arg
CUG Leu CCG Pro CAG Gln CGG Arg

AUU Ile ACU Thr AAU Asn AGU Ser
AUC Ile ACC Thr AAC Asn AGC Ser
AUA Ile ACA Thr AAA Lys AGA Arg
AUG Met ACG Thr AAG Lys AGG Arg

GUU Val GCU Ala GAU Asp GGU Gly
GUC Val GCC Ala GAC Asp GGC Gly
GUA Val GCA Ala GAA Glu GGA Gly
GUG Val GCG Ala GAG Glu GGG Gly
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et al. [19] investigated the existence of error-detection and correction mecha-
nisms in the genetic machinery based on a particular mathematical model
of the genetic code. This model can encode each nucleotidic sequence into
three binary strings of different meaning; these strings show some interesting
correlation patterns that enforce the hypothesis of deterministic error and
correction mechanisms. In the following pages we explain the features of this
mathematical model.

3.1.1 Degeneracy and redudancy

The genetic code is a surjective (all amino acids are encoded by at least one
codon) and non-injective (some amino acids are degenerate) function between
two sets of different cardinality. We can say that the codon set is the domain
and the amino acids set the codomain. This implies the degeneration of the
code.

Gonzalez [16, 18, 17] proposed a model that explains the degeneracy of the
genetic code based on a non-power number representation system. This ap-
proach describes the structure of the genetic code from a mathematical point
of view and allows the analysis of degeneracy and redundancy properties on
two related levels:
• the distribution of degeneration (the number of codons that code for

each amino acid)

• the distribution of codons (codons assigned to each specific amino acid)
The code is degenerate from the amino acids point of view: a given ami-

no acid can indeed be encoded by more than one codon. The redundancy,
however, is a property that concerns the codons: a set of triplets that encode
the same amino acid is said to be redundant. Degeneracy and redundancy
are still described by the numerical quantities that define the respective sub-
sets: tyrosine is a degeneracy-2 amino acid because it is encoded by a set of
two redundant codons (UAU, UAC). Tables 3.2 and 3.3 show the degeneracy
distribution of euplotid genetic code.

The main difference with the standard version concerns the UGA codon:
here it encodes the amino acid Cysteine while in the standard version of the
code it is one of the stop signal. The degenracy distribution inside quartets
is obtained by taking into account that the 3 degeneracy-6 amino acids (Ar-
ginine, Leucine and Serine) are divided into two subsets of degeneracy-2 and
4.

After specifying the degeneracy distribution it is necessary to associate
an amino acid to each codon. This distribution of codons represents a second
level of complexity and defines uniquely the genetic code.
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Tabella 3.2: Degeneracy distribution for the euplotid genetic code

number of amino acids
sharing the same

degeneracy

Degeneracy

2 1
9 2
2 3
5 4
3 6

Tabella 3.3: Degeneracy distribution inside quartets of euplotid nuclear
version of genetic code

number of amino acids
sharing the same

degeneracy

Degeneracy

2 1
12=9+3 2

2 3
8=5+3 4
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3.1.2 Non-power binary representation of the genetic
code

The genetic code can be defined as a translation table that connect two finite
sets of 64 codons and 20 amino acids. In this context, the binary system of
representation is very interesting. Indeed, using a binary string of length n we
can represent 2n different objects. For example, the 4 nucleotides (A, C, G,
U) can be represented by a binary string of length 2. Consequently codons
(groups of 3 nucleotides) are represented by binary strings of length 6, in
fact 26 = 64. Gonzalez [16, 18, 17] showed that using a particular type of
number positional representation, called non-power representation, we can
fully describe the degeneracy distribution of the genetic code.

Usual number representation systems are positional power representation
systems. In these systems numbers are represented by a combination of digits,
from 0 to n − 1, where n is the system base, that are weighted with values
that grow following the power expansion of the base n. For example, if we
want to represent number 476 in base 10 we have to use digit from 0 to 9 in
this way:

476 = 4 ∗ 102 + 7 ∗ 101 + 6 ∗ 100

while number 13 is obviously represented by

13 = 1 ∗ 101 + 3 ∗ 100

If we turn to the binary system, the power positional representation of
number 13 is 1101:

13 = 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

In non-power representation systems the positional values grows
more slowly than the powers of the system base. This implies that:

• it is possible to represent all the numbers from 0 to the sum of all the
positional weights;

• the system is redundant: a given number can be represented by more
than one string.

Hence, non-power representation systems can be used to describe degene-
racy distributions. A typical example of non-power representation is Fibonac-
ci representation [57] where positional weights are represented by successive
Fibonacci numbers. These numbers form a series in which the nth element of
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the series is the sum of its two predecessors, with the first two elements of the
series = 1. For example, if we consider Fibonacci representation of order 6,
we use as positional values the first 6 Fibonacci numbers: 1, 1, 2, 3, 5 and 8.
Using this representation system we can describe number from 0 to 21 with
degeneracy distribution as shown in Table 3.4.

Tabella 3.4: Degeneracy distribution for Fibonacci non-power representation

numbers sharing the same
degeneracy

Degeneracy

2 1
4 2
8 3
5 4
2 5

We can notice, for instance, that in this system number 7 is represented
by 3 different strings : 010011, 010100 and 001111.

There is a non-power binary representation that describes perfectly the
degeneracy of the genetic code. This system is based on a specific sequence
of positional wiegths: (1, 1, 2, 4, 7, 8) and this solution is unique up to
trivial equivalence classes [16]. The solution is specific for the degeneracy
inside quartets (presented in Table 3.3) because there is no solution for the
degeneracy distribution at large (presented in Table 3.2).

First of all, we can observe that any non-power representation is palindro-
mic: the represented number n and N − n (where N , the sum of all weigths,
is the maximum integer that can be represented) share the same degeneracy.
Therefore the degeneracy distribution of Table 3.2 can’t be represented in
any way. On the contrary, degeneracy inside quartets can be ordered in a
palindromic table.

Table 3.5 shows the non-power representation of the first 23 integers by
length-6 binary strings and positional weights 1,1,2,4,7,8. Notice the same
degeneracy distribution of euplotid genetic code (see Table 3.6).

We can state that each codon can be associated to a length-6 binary string
representing a whole number. So the genetic code and this specific non-power
binary representation are linked by a structural isomorphism: they share
the same logical structure.

Two structures are isomorphic if they are indistinguishable given only a
selection of their features. In our case the nuclear genetic code of the fla-
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Tabella 3.5: Non power representation of whole numbers by length 6 binary
strings

Number Positional weights: [8,7,4,2,1,1]
0 000000
1 000001 000010
2 000011 000100
3 000101 000110
4 000111 001000
5 001001 001010
6 001011 001100
7 010000 001101 001110
8 100000 010001 010010 001111
9 100001 100010 010100 010011
10 100011 100100 010101 010110
11 100101 100110 011000 010111
12 101000 100111 011001 011010
13 101001 101010 011100 010111
14 101100 101011 011100 011011
15 110000 101101 101110 011111
16 110001 110010 101111
17 110100 110011
18 110101 110110
19 111000 110111
20 111001 111010
21 111100 111011
22 111101 111110
23 111111
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Tabella 3.6: Palindromic representation of the euplotid version of the genetic
code and non-power binary representation of whole numbers

Degeneracy Amino acid Coded whole number
1 T Trp 0
2 F Phe 1
2 Stop 2
2 Y Tyr 3
2 L Leu(2) 4
2 H His 5
2 Q Glu 6
3 C Cys 7
4 S Ser(4) 8
4 P Pro 9
4 V Val 10
4 L Leu(4) 11
4 R Arg(4) 12
4 G Gly 13
4 A Ala 14
4 T Thr 15
3 I Ile 16
2 E Glu 17
2 D Asp 18
2 R Arg(2) 19
2 N Asn 20
2 K Lys 21
2 S Ser(2) 22
1 M Met 23
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gellate Euplotes and the non power binary representation of length 6 with
bases 1,1,2,4,7,8, are isomorphic with regard to the cardinality of the sets and
the cardinality of the respective applications. In fact both domains and both
co-domains have the same cardinality: 64 codons and 64 binary non-power
strings for the domains, and 24 amino acids (inside quartets) and 24 integer
numbers for the co-domains. Moreover the two applications have the same
degeneracy distribution (see table 3.6). However such properties do not suffi-
ce for establishing a correspondence between codons and binary strings, and
between integer number and amino acids, that is, do not suffice for creating
a mathematical model of the genetic code. However, studying the properties
of both applications, we found that ”all” symmetry properties are shared by
both applications (for example we have 16 subsets of 2 codons each that are
invariant under the C ↔ T transformation of the last letter of the codon,
and we have 16 subsets of 2 binary strings each that are invariant under the
complement to one of the two last digits of the string). Of course, there is
not any reason ”a priori” for the sharing of symmetries between the appli-
cations. We can say that the structural isomorphism describing the global
degeneracy properties of the genetic code, describes also its internal sym-
metries. In such a way some important organizational aspects of the genetic
code can be uncovered and a true mathematical model of the genetic code
can be constructed by assigning specific codons to specific non-power binary
strings, and specific amino acids to specific whole numbers.

3.1.3 A hiearchy of symmetries

Pyrimidine ending codons

If we analyze the genetic code and the mathematical model we can notice
many symmetry properties. First, if we make a pyrimidine (U vs. C) exchange
in the last base of each codon, the meaning of the codon remains the same.
This implies the definition of two groups of 16 codons that encode the same
amino acid. So far we know 26 variants of the genetic code (10 nuclear and
16 mitochondrial) and all of these respect this symmetry. It’s remarkable to
observe that the non-power representation system shows this same symmetry.
In fact the 6-digits binary strings xxxx01 and xxxx10 always encode the
same whole number. This is a property of this specific representation system
because it belongs to the positional weights chosen. This means that we can
associate strings ending in 01 or 10 with pyrimidine ending codons. It must
be underlined that there is no biological reason for this degeneracy as codons
ending in C or U are recognized by different tRNA.
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Purine ending codons

This aspect determines an immediate consequence since the remaining 32
codons have to be associated with the remaining 32 strings representing whole
numbers. Thus strings ending in 00 or 11 are linked with purine ending
codons. Since the only two degeneracy-1 strings (000000 and 111111) have
to be associated with the only degeneracy-1 codons (AUG and UGG) a new
concept raises naturally: the parity of a string, that is, the sum of its digits.
So, we can assume that, in case of purine ending codons, strings with even
parity are associated with G-ending codons, while strings with odd parity
are associated with A-ending codons.

All these aspects are summarized in Table 3.7

Tabella 3.7: Equivalence between strings and purine/pyrimidine ending
codons

Strings Parity Codons
x x x x 0 1 Even N N C/U
x x x x 0 1 Odd N N C/U
x x x x 1 0 Even N N C/U
x x x x 1 0 Odd N N C/U
x x x x 1 1 Even N N G
x x x x 1 1 Odd N N A
x x x x 0 0 Even N N G
x x x x 0 0 Odd N N A

Degeneracy-3 elements

We can notice that there are only two degeneracy-3 whole numbers (7 and 16)
and amino acids (Cysteine and Isoleucine). Obviously these elements must
be associated. So the group (AUU, AUC, AUA) and (UGU, UGC, UGA) are
linked with binary strings representing numbers 7 and 16. These two groups
of codons are linked by a degeneracy-preserving transformation: U <–> A
in the first base and U <–> G in the second one. It is remarkable to notice
that this transformation corresponds to a symmetry property from the model
point of view: the palindromic simmetry. In fact the first group strings can be
obtained by the 0 <–> 1 exchange of the digits of the second group strings.
This palindromy is observed also for the degeneracy-1 string (000000 and
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111111) coding for amino acid Methionine (AUG) and Tryptophan (UGG).
Notice that the numbers encoded by a palindromic couple sum up to 23.

Summarizing we can say that degeneracy-3 and degeneracy-1 amino acid
form two group of quartets that show a palindromic simmetry. Notice that,
in the standard genetic code we have UGA codon encoding a stop signal and
not Cysteine. Palindromic symmetry involves all the quartet of the genetic
code. It connects quartets with the same degeneracy distribution and strings
related by the complement to one operation.

Degeneracy-6 elements

So far we have noticed the following rules:

• pyrimidine ending codons are linked to strings ending in 01 or 10

• G ending codons are linked to strings ending in 00 or 11 and with even
parity

• A ending codons are linked to strings ending in 00 or 11 and with odd
parity

• pairs of quartets with the same degeneracy are linked by palindromic
symmetry

By analalyzing Table 3.8 we can see that there are two degeneracy-2
numbers that correspond to A-ending codons (4 and 19); but there are no
amino acid with degeneracy 2 encoded by two A-ending codons. Therefore
these numbers must be associated with the degeneracy-2 part of degeneracy-6
amino acids encoded by at least two A-ending codons.

Looking at the Tables it is easy to recognize these amino acids in leu-
cine (Leu) and arginine (Arg). Both of them are encoded also by two G-
ending codons that necessarily belongs to their degeneracy-4 part. The only
degeneracy-4 numbers showing this feature are 11 and 12: both of them di-
splay two even strings ending with 00 or 11. It can be observed once more
that this couples of numbers (4 and 19) and (11 and 12) are palindromic
(their sum equals 23). So we can state that there is a symmetry of the role
of Leu and Arg.

Pyrimidine ending with odd parity

We succeded in linking binary strings with codons whose second letter is U
or G. Moreover all the U or C ending codons so far associated show an odd
parity. We could introduce another rule:
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• Amino acids with pyrimidine ending codon and with a G or a U (keto
base) in the second position are encoded by an odd string

We can find only two degeneracy-4 numbers (10 and 13) and only two
degeneracy-2 numbers (1 and 22) satisfying this rule and, as a consequen-
ce, we can associate to them the amino acids valine (Val), glycine (Gly),
phenylalanine (Phe) and the degeneracy-2 part of serine (Ser).

The last associations: second base A or C

Now it remains to associate only codons whose second base is an amino-base
(A or C). It’s quite simple because codons with A in second position share all
degeneracy-2, while codons with C in the second position have degeneracy-4.
Following the rules described above, we can try to give a place to all codons
into the mathematical model. The result is shown in Table 3.8

Tabella 3.8: Non-power model of the euplotid nuclear genetic code

U C A G

U

1 000001 Phe 15 101101 Ser 18 110110 Tyr 16 110010 Cys U
1 000010 Phe 15 101110 Ser 18 110101 Tyr 16 110001 Cys C
4 001000 Leu 15 011111 Ser 2 000100 Stp 16 101111 Cys A
11 011000 Leu 15 110000 Ser 2 000011 Stp 23 111111 Trp G

C

11 100101 Leu 14 011110 Pro 3 000101 Tyr 12 011010 Arg U
11 100110 Leu 14 011101 Pro 3 000110 Tyr 12 011001 Arg C
4 000111 Leu 14 101100 Pro 17 110100 Stp 19 111000 Arg A
11 010111 Leu 14 101011 Pro 17 110011 Stp 19 101000 Arg G

A

7 001101 Ile 8 010010 Thr 5 001001 Asn 22 111110 Ser U
7 001110 Ile 8 010001 Thr 5 001010 Asn 22 111101 Ser C
7 010000 Ile 8 100000 Thr 21 111011 Lys 19 110111 Arg A
0 000000 Met 8 001111 Thr 21 111100 Lys 12 100111 Arg G

G

13 101001 Val 9 100001 Ala 20 111010 Asp 10 010110 Cys U
13 101010 Val 9 100010 Ala 20 111001 Asp 10 010101 Cys C
13 011100 Val 9 010011 Ala 6 001011 Glu 10 100011 Cys A
13 011011 Val 9 010100 Ala 6 001100 Glu 10 100100 Trp G

It’s easy to notice how palindromy preserve degeneracy within quartets.
From a mathematical point of view palindromy is represented by the com-
plement to one operation of all the binary digit of a given string. From a bio-
chemical point of view palindromy is given by different base transformations
depending on the quartet considered.
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Looking at Table 3.8 we succeded in assigning a binary string to each
codon but of course it is not the unique way to do it. In fact it is obvously
possible to exchange the full set of a quartet’strings with the set assigned to
the palindromic quartet. However this assignation is the most probable one,
taking into account all the simmetry properties we have found.

3.1.4 Dichotomic classes for codons

Studying degeneracy properties of the genetic code we can classify couples
of two nucleotides into three dichotomic classes:

• parity class

• Rumer’s class

• hidden class

For the definition of these classes it is necessary to introduce the unique
three possible chemical binary classification of the bases (U, C, A, G):

• Purine(R) vs Pyrimidine(Y): A,G vs C,U

• Keto(K) vs Amino(Am): G,U vs A,C

• Strong(S) vs Weak(W): C,G vs A,U

Parity class

According to the mathematical model described so far, each codon is asso-
ciated with a binary string. The parity of a codon corresponds to the parity
of the sum of all the digits of the associated string. We can observe that the
parity of a binary string can be obtained simply by counting the number of
ones: an even number of ones leads to an even string while an odd number
of ones leads to an odd string. It’s important to underline that palindromic
symmetry preserves parity in fact the complement to one operation doesn’t
change the parity of the string (since the string length is even, the parity of
one digit remains the same in the complement string). The parity bit of a
string can be determined also by its biochemical composition: if we assume
that a codon ending with A is represented by an odd string, then every codon
ending with G is associated to an even string. If the codon ends with a pyri-
midine (U or C) then we have to look at the second base of the codon: when
it is an amino-base then the codon is even, while a keto-base in the second
position leads to a odd codon. So we can underline that R-Y transformation
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changes the parity of a string. Now it is possible to build an algorithm as
we did for Rumer’s class in order to define the parity of a codon from its
biochemical composition. This algorithm, obviously, takes into account the
last two bases of the codon as it’s shown in Figure 3.1

Figura 3.1: Algorithmic definition of the parity class.

Rumer’s class

Y. B. Rumer was a theoretical physicist who first noticed a regularity of
the degeneracy distribution within quartets in the standard genetic code. He
observed that exactly one half of the quartets showed degeneracy-4 while the
other half showed degeneracy 1, 2 or 3. So each codon can be assigned to a
dichotomic class named Rumer’s class depending on whether it belongs to a
degeneracy-4 or degeneracy 1, 2 or 3 quartet. Moreover Rumer observed that
a specific transformation links the two halves of the genetic code: U,C,A,G
<-> G,A,C,U. This Rumer’s transormation convert a codon of class 1 2 or
3 in a codon of class 4 and vice-versa; it breaks the degeneracy of the code
since it reveals an antisymmetric property of the degeneracy distribution.
Rumer’s transformation is global. That means that it acts univocally on the
4 mRNA bases. Anyway, the same effect can be obtained if we apply this
transformation only to the first two bases (remember that a quartet is a
group of four codons sharing the first two letters).

Considering the chemical properties of the codon’s bases we can create
an algorithm in order to easily determine the Rumer’s class which the codon
belongs to (see Figure 3.2). First we can take into account the second base of
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a codon: if it’s an amino-base we can immediatly determine the class (class
4 if it’s C, class 1,2,3 if it’s A). If the second base is a keto-type base (G or
U) we have to make one more step considering the strong/weak character of
the first base of the codon. If the first base is a strong type base (C or G)
then the codon is a class 4 type. Otherwise it’s a class 1,2 or 3 type.

Figura 3.2: Algorithmic definition of the Rumer’s class.

Hidden class

At this point we have two algorithms that allow us to generate parity and
Rumer class by reading the biochemical properties of a dinucleotide within a
codon (we observed that Y-R transformation changes the parity of a codon,
while the K-Am transformation changes its the Rumer’s class). The two
algorithms are obtained by moving of one position the ”reading-frame” of the
dinucleotide within a codon.

Since the nucleotides present within a codon are three, it would seem
logical moving of one more base within the codon in order to generate a new
algorithm that will give rise to a new dichotomic class: the hidden class (see
Figure 3.3.)

Although the hidden class does not have a specific meaning in relation to
the properties of the codons or of the amino acids, it can be interpreted on the
basis of the biochemical properties of the bases i.e. it should be antisymmetric
with respect to the missing global transformation (S-W).

In this case we have to consider the bases of two different codons: the first
base of a certain codon and the third base of the previous one. If the first
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base is a weak base (A or T) then the hidden class is arbitrarily determined:
0 for A and 1 for T. In case of strong first base (C or G) we have to consider
the last base of the previuos codon: if it’s a pyrimidine base the hidden class
is 0 otherwise it is 1.

Figura 3.3: Algorithmic definition of the hidden class.

The three global transformations described above, together with the iden-
tity transformation, define a Klein V group structure as shown in Table
3.9.

Tabella 3.9: Product table of the Klein V group as implied by the three global
transformations plus the identity.

I K-Am S-W Y-R
I I K-Am S-W Y-R

K-Am K-Am I Y-R S-W
S-W S-W Y-R I K-Am
Y-R Y-R S-W K-Am I

In fact if we consider the bases as four-dimensional column vectors:

U ′ = (1, 0, 0, 0); C ′ = (0, 1, 0, 0); A′ = (0, 0, 1, 0); G′ = (0, 0, 0, 1)

the possible global transformation of the bases are defined by the matrix
product of the following permutation matrices:
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L =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 M =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 N =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


If we include in this set the identity matrix, I4, we obtain the Klein V

group. These matrices are orthogonal and the following identities hold:

LM =ML = N ; LN = NL =M ; MN = NM = L

Now, defining the infinite order matrix norm for a pXp matrix Q as:

‖Q‖∞ = max
1≤i≤p

p∑
j=1

|qij|

we can obtain operators that acting on a 4x4 matrix made of four conse-
cutive vector or bases computes the values of dichotomic classes. For example
operators:

O1 =


0 0 0 0
0 0 0 0
1 2 2 1
0 0 3 4

 M =


0 0 0 0
1 2 1 2
0 4 3 0
0 0 0 0


can compute the values of c1 = parity and c2 = Rumer classes through

the following operation:

ci = ‖Oi �Q′‖∞mod2, i = 1, 2

where � denotes the matrix Hadamard product.
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Capitolo 4

Descriptive analysis

In this chapter I perform a statistical analysis on the dichotomic classes com-
puted on the eight groups of sequences of the chromosome 1 of A. thaliana
described before. I want to study whether the information conveyed by di-
chotomic classes can characterize different portions of the genome. In order
to accomplish the task, I encode all the sequences into the three dichotomic
classes and study the distributions of such binary sequences. In particular,
we focus on their mean value, that is, the percentage of “ones”. Thus, for each
sequence, I obtain 22 variables as reported in Table 4.1:

Tabella 4.1: Variables included in each dataset

Name Description

p0, r0, h0 mean value for parity, Rumer, hidden classes, in
frame

p1, r1, h1 mean value for parity, Rumer, hidden classes, out
of frame 1

p2, r2, h2 mean value for parity, Rumer, hidden classes, out
of frame 2

p0a, r0a, h0a mean value for parity, Rumer, hidden classes,
antisense strand in frame

p1a, r1a, h1a mean value for parity, Rumer, hidden classes,
antisense strand out of frame 1

p2a, r2a, h2a mean value for parity, Rumer, hidden classes,
antisense strand out of frame 2
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I consider eight groups of sequences (see Fig. 4.1) from the chromosome 1
of A. thaliana, that is composed by a long DNA sequence of 30.427.671 base
pairs as follows:

1. Genes: regions of a genomic sequence corresponding to a unit of in-
heritance. They are formed by regulatory regions, transcribed regions,
and/or other functional sequence regions.

2. Exons: portions of a gene that are transcribed into mRNA and then
translated into a protein. Each gene can contain one or more exons.

3. CDS: portions of a gene that encode for a given protein. It is formed
by joining exons (one or more) within a gene.

4. Introns: portions of a gene that are transcribed but not translated.

5. Long introns: sequences artificially built in order to be compared to
CDS. They are composed by joining all the introns present within a
gene.

6. Intergenes: sequences between a gene and the following one.

7. (UTR): portions of mRNA that precede the codon that begins trans-
lation (AUG) (5’UTR) and follow the termination codon (3’ UTR)

8. Regulatory regions: portions of a gene, with regulatory function, that
precede (upstream) and follow (downstream) the fragment transcripted
into mRNA

Figura 4.1: Definition of type of sequences within a fragment of DNA
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First of all I have extracted the complete sequence of A. thaliana chromo-
some 1 from Genbank. This dataset allows to extract four kind of sequence
data in fasta format: the complete sequence of the entire chromosome, a list
of the genes sequences, a list of CDS, a list of mRNA sequences. I imported
and processed the data by the means of R [51]. Then I created specific origi-
nal routines that, using the information of annotation, allowed us to extract
the remaining group of sequences of interest: exons, introns, intergenes, 5’
and 3’ untranslated regions (UTR), and upstream and downstream regula-
tory regions. The annotation file, in fact, contains useful information for this
purpose such as the nucleotide position of the beginning and the end of each
gene, CDS and mRNA. The procedure led to the creation of eight datasets,
one for each sequence group.

Once the data have been imported, I removed from the datasets those
sequences that display undefined bases (different from A, C, G, T) or that
are shorter than 6 bases. The eight different dataset together with the number
of records are shown in Table 4.2.

Tabella 4.2: Number of records and percentages of bases for each type of
sequence analyzed from A. thaliana chromosome 1

Type Records A C G T
Genes 8428 28.47 18.77 21.33 31.43
Exons 37549 29.00 19.94 23.73 27.33
CDS 9262 28.61 20.48 23.87 27.04

Introns 30663 26.93 15.72 16.68 40.68
Long introns 5532 27.73 15.15 16.83 40.29

Intergenes 8350 34.01 15.92 16.04 34.03
UTR 14427 30.42 17.76 16.78 35.10
Reg 2037 31.08 18.34 16.38 34.19

Sequence length I start by analyzing the sequence length to study the
differences between the classes considered.

From Figure 4.2 and Table 4 it is evident that genes and intergenes, CDS
and long introns are much longer than exons, introns, UTRs and regulatory
sequences. I am going to compare genes with intergenes, introns with exons,
CDS with long introns and finally UTRs with regulatory sequences.
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Figura 4.2: Length of the different classes of sequences
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Tabella 4.3: Length statistics for each portion of the genome

Min. 1st Qu. Median Mean 3rd Qu. Max.
Genes 37.00 1041.00 1843.00 2160.00 2846.00 26440.00
Exons 6.00 85.00 133.00 236.40 243.00 7761.00
CDS 63.00 648.00 1065.00 1264.00 1587.00 16180.00

Introns 8.00 85.00 98.00 155.60 153.00 5610.00
Long introns 20.00 299.00 651.00 862.20 1123.00 13170.00

Intergenes 6.00 317.00 844.50 1499.00 1928.00 72640.00
UTR 6.00 109.00 190.00 262.10 299.00 13790.00

Regulatory 6.00 37.00 90.00 295.40 247.00 10280.00

4.1 Base distribution
The data reported in Table 4.4 and in Figures in appendix B.2 shows some
interesting differences between the eight groups of sequences we considered.
In fact while non coding sequences (such as introns, intergenes, UTR and
regulatory sequences) have an higher prevalence of A and T bases (with
median values ), CDS and exons show an increase of C and G bases. The
whole gene sequences obviously show intermediate features because they are
composed by introns, exons, UTR and regulatory sequences together.

In particular we can see that:

• Itergenes display a clear prevalence of A nd T (median values of 34%).

• In UTR and regulatory sequences the proportions of T remain more
or less the same while the presence of A decrease to a median value of
29-30% with a correspondent increase of C and G.

• CDS and exons show a further increase of strong bases, in particular G.
In fact the median distribution of bases in CDS and exons sequences is
the following:

A C G T
CDS 28,6 20,1 23,8 27,0
Exons 28,9 19,6 23,6 27,3
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Genes
A C G T

Min. 8.78 6.45 6.69 13.58
1st Qu. 26.78 16.99 19.37 29.29
Median 28.45 18.34 20.86 31.93
Mean 28.47 18.77 21.33 31.43

3rd Qu. 30.38 20.07 22.60 34.00
Max. 44.48 41.75 50.29 45.45

Intergenes
A C G T

Min. 8.33 2.56 1.70 7.14
1st Qu. 31.79 13.97 14.04 31.68
Median 34.32 15.57 15.63 34.41
Mean 34.01 15.92 16.04 34.03

3rd Qu. 36.40 17.54 17.69 36.48
Max. 63.64 44.44 42.86 66.67

Exons
A C G T

Min. 2.63 2.56 1.27 2.63
1st Qu. 25.47 16.78 20.90 24.17
Median 28.93 19.64 23.66 27.27
Mean 29.01 19.94 23.73 27.33

3rd Qu. 32.39 22.73 26.44 30.46
Max. 64.29 50.63 60.00 62.79

CDS
A C G T

Min. 11.56 6.31 6.14 10.44
1st Qu. 26.59 18.54 22.30 25.23
Median 28.63 20.12 23.78 27.06
Mean 28.61 20.48 23.87 27.04

3rd Qu. 30.66 22.06 25.37 28.90
Max. 51.37 48.36 48.97 46.55

Introns
A C G T

Min. 4.40 1.21 2.73 8.22
1st Qu. 23.01 12.93 14.08 37.18
Median 26.67 15.62 16.67 40.65
Mean 26.93 15.72 16.68 40.68

3rd Qu. 30.61 18.29 19.19 44.21
Max. 53.49 45.65 53.40 65.52

Long introns
A C G T

Min. 7.77 3.09 4.04 12.73
1st Qu. 24.89 13.47 15.07 38.46
Median 26.96 15.26 16.90 40.37
Mean 27.73 15.15 16.83 40.29

3rd Qu. 30.30 16.76 18.45 42.42
Max. 50.00 39.77 53.40 62.50

UTR
A C G T

Min. 3.77 1.35 1.41 1.92
1st Qu. 25.59 13.87 13.92 31.43
Median 29.39 16.78 17.02 36.23
Mean 30.42 17.70 16.78 35.10

3rd Qu. 33.84 20.47 19.71 40.26
Max. 78.26 55.56 50.00 63.64

Regulatory sequences
A C G T

Min. 2.78 1.85 1.32 2.08
1st Qu. 25.72 13.99 12.68 29.45
Median 30.28 17.24 16.30 34.38
Mean 31.08 18.34 16.38 34.19

3rd Qu. 35.94 21.72 19.67 39.66
Max. 75.00 54.55 46.15 75.00

Tabella 4.4: Percentage of bases in sequences of different classes
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4.2 Percentage of dichotomic classes
In this section I perform a statistical analysis on the dichotomic classes com-
puted on the eight groups of sequences of the chromosome 1 of A. thaliana
described in the previous section. As mentioned above, the aim is to stu-
dy whether the information conveyed by dichotomic classes can characterize
different portions of the genome. In order to accomplish the task, I code all
the sequences into the three dichotomic classes and study the distributions
of such binary sequences. In particular, I focus on their mean value, that is,
the percentage of ones. Thus, for each sequence, we obtain 22 variables as
reported in Table 4.1:

Here I report, as an example, mean percentage tables for normal sequences
computed on both sense and antisense strand (median values are very similar
and lead to the same conclusions). The whole set of tables are reported in
appendix A . They show median and mean values of percentage of ”one”
digits in dichotomic class binary string computed respectively on sense and
antisense strands for

• normal sequences

• complementary sequences

• reverted sequences

• sequences undergone to Keto/Amino global transformation

• sequences undergone to Purine/Pyrimidine global transformation

4.2.1 Normal sequences

Sense strand

(see table 4.2.1) First of all we can notice that coding and non-coding se-
quences show a different behaviour:

• Non coding sequences (all the genome’s portions but Exons and CDS)
show similar values for mean and median percentages of the same
dichotomic class in and out of frame 1 and 2. That is, for example,
p0 = p1 = p2. In some cases (such as UTR and regulatory sequences)
this similarity is very very high.

• exons and CDS, the only sequence classes that undergo to transcription
and translation processes, show different mean and median values in
different frames. If we consider parity, for instance, we can see that p0
is similar to p1 but both of them are lower than p2

46



These observations can lead to the conclusion that the frame is
important only for coding sequences

Tabella 4.5: Mean values of dichotomic class proportions computed in sense
strand for each portion of the genome

P0 R0 H0 P1 R1 H1 P2 R2 H2
Genes 55.19 38.87 48.00 55.86 38.66 48.18 56.84 38.56 47.17
CDS 50.13 44.09 51.88 51.63 41.74 54.78 58.67 38.81 45.90

Exons 52.13 42.17 50.58 52.71 39.93 51.44 56.26 39.47 47.41
Introns 61.21 34.85 38.74 60.40 33.06 38.33 59.29 32.82 37.83

Long Int 60.67 33.22 41.04 60.42 32.74 40.87 60.05 32.56 40.76
IG 60.62 31.48 49.19 60.53 31.43 49.07 60.42 31.49 49.13

UTR 60.22 35.27 44.55 60.01 35.24 44.23 60.15 35.25 44.31
Reg 59.67 35.86 44.08 59.72 35.84 43.56 60.19 36.53 43.45

Parity class:

• Parity percentage values for introns, intergenes, UTR and regulatory
sequences are almost the same (the range is from 59% to 61%). They
do not show differences in values in and out of frame.

• Genes show the same behaviour as non coding sequences but the values
of their proportions are different (55-56%). This value can be considered
as the weighted mean between coding and non-coding sequences of
which it is made of.

• CDS and exons show a lower value in p0 and p1 (CDS: 50-51%; exons:
52%) and an higher value in p2 (CDS: 58,7%; exons:56,3%). CDS and
exons percentages vary with frame in this way:

p0 < p1 < p2

Rumer class:

• Non-coding sequences (introns, intergenes, UTRs and regulatory) show
almost the same percentage values in and out of frame.
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• UTR and regulatory sequences show values between 35% and 36%,
while introns percentages vary within 32,8% and 34,8%.

• Intergenes seems to have a specific Rumer percentage value that is
around 31%

• Genes show the same behaviour as non coding sequences but the values
of their percentages are around 39%). This value can be considered
again as the weighted mean between coding and non-coding sequences
of which it is made of.

• Coding sequences proportions vary with the frame in this way:

r2 < r1 < r0

Their values are remarkably higher than non-coding ones, in particular
for what concerns r0 (CDS: 44%, exons: 42%).

Hidden class

• Non-coding sequences (introns, intergenes, UTRs and regulatory) show
almost the same percentage values in and out of frame but with specific
values for each sequence class: introns (38%) , intergenes (49,1%), UTRs
and regulatory(44%)

• Once again coding sequences show a different pattern that take into
account the frame:

h2 < h0 < h1

For what concerns exons, we can see again that h0 is very similar to
h1 (50,6% and 51,4%) but higher than h2 (47,4%)

• Once again genes show the same behaviour as non coding sequences
(they do not change with frame) but the values of their percentages
(about 48%) can be considered as the weighted mean between coding
and non-coding sequences of which it is made of.

• Finally it is interesting to underline that introns seem to minimize
hidden class.
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Antisense strand

Analyzing dichotomic classes percentages in antisense strand (see Table 4.2.1),
we can observe a similar behaviour for coding and non-coding sequences with
respect to what is described in sense strand:

• Genes and non coding sequences do not seem to consider frame, while
exons and CDS do.

• Percentage values are different from the ones observed in sense strand.
This is valid for all the sequence classes except intergenes.

Surprisingly, intergenes show the same percentage values that
we observed analysing sense strand

• For the other non-coding sequences (introns, long introns, UTR and
regulatory) we can see that parity percentage values are similar to
those computed in sense strand, while Rumer and hidden percentage
values differ from sense strand ones.

• CDS and exons show again a frame-related behaviour:

p2a < p0a < p1a

r0a < r2a < r1a

h2a < h0a < h1a

Tabella 4.6: Mean values of dichotomic class proportions computed in
antisense strand for each portion of the genome

P0a R0a H0a P1a R1a H1a P2a R2a H2a
Genes 56.29 38.60 51.04 56.33 39.33 51.01 56.01 39.09 50.59
CDS 54.61 39.05 48.66 56.33 49.32 49.39 51.06 43.64 44.14

Exons 54.85 40.75 49.09 55.92 45.28 49.27 53.29 42.76 47.06
Introns 60.45 29.38 61.01 61.58 26.75 61.68 61.74 28.64 61.36

Long Int 60.57 29.15 58.66 60.92 28.43 58.85 60.94 29.04 58.78
IG 60.56 31.56 49.12 60.47 31.56 49.09 60.54 31.53 49.14

UTR 60.12 32.16 52.20 59.70 32.40 52.30 59.71 32.19 52.65
Reg 60.39 32.61 49.50 59.74 33.28 48.97 59.18 33.15 49.13
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4.2.2 Complementary sequences

Complementary sequences are those sequences which undergo to strong/weak
global transformation that is A is converted to T while C is converted to G
(and viceversa). We applied this transformation to all the sequences consi-
dered before and then we computed dichotomic classes proportions again on
sense and antisense strand (the relative tables are shown in Appendix A).

Sense strand

Also in complementary sequences we can see that coding and non-coding
sequences show the different behaviour observed in normal sequences: in fact
only exons and CDS show different mean and median values in different
frames.

Proportions values for introns, long introns, intergenes, UTRs and regu-
latory sequences are almost the same in and out of frame for each dichotomic
class.

Genes show the same behaviour as non coding sequences but the values of
their proportions are different. This value can be considered as the weighted
mean between coding and non-coding sequences of which it is made of.

CDS and exons proportions vary with frame in this way:

p0 < p2 < p1

r1 < r0 < r2

h1 < h0 < h2

Finally we can observe that proportion values are different from the one
computed in normal sequences for all classes except for intergenes.

Antisense strand

We can make the same considerations as in sense strand. The only difference
is the proportions pattern of CDS and exons:

p0a < p1a < p2a

r1a < r0a < r2a

h1a < h0a < h2a

We have to underline that proportions in intergenes sequences are exactly
the same as in sense strand and in sense and antisense strand of normal
sequence!!
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p = 60%, r = 31%, h = 50%

4.2.3 Reverted sequences

Computing dichotomic classes on a reverted sequence is like computing di-
chotomic class on the antisense strand of the complementary sequence. The-
refore in this section we have a copy of the tables shown in the previous one
(i.e: complementary sense strand is identical to reverted antisense strand and
viceversa).

4.2.4 Keto/Amino global transformation sequences

Sequences that undergo to keto/amino global transformation convert A to C
and G to C (and viceversa). We applied this transformation to all the normal
sequences and then we computed dichotomic classes percentages again on
sense and antisense strand (the relative tables are shown in Appendix A).

Sense strand

Also in this case we can see that only exons and CDS show different mean
and median values in different frames.

Proportions values for introns, long introns, intergenes, UTRs and regu-
latory sequences are almost the same in and out of frame for each dichotomic
class. In particular, percentages of UTRs and regulatory sequences are almost
the same between them

Genes show the same behaviour as non coding sequences but the values of
their percentages are different. This value can be considered as the weighted
mean between coding and non-coding sequences of which it is made of.

CDS and exons percentages vary with frame in this way:

p0 < p2 < p1

r0 < r1 < r2

h0 < h1 < h2

Finally we can observe that percentage values are different from the
one computed in normal and complementary sequences for all classes (also
intergenes).
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Antisense strand

We can make the same considerations as in sense strand. The only difference
is the percentages pattern of CDS and exons:

p2a < p1a < p0a

r1a < r2a < r0a

h1a < h2a < h0a

Moreover, we can notice that intergenes percentages are the same com-
puted in sense strand.

4.2.5 Purine/Pyrimidine global transformation sequen-
ces

Sequences that undergo to purine/pyrimidine global transformation convert
A to G and C to T (and viceversa). We applied this transformation to all
the normal sequences and then we computed dichotomic classes percenta-
ges again on sense and antisense strand (the relative tables are shown in
Appendix A).

Sense strand

We can make the same general considerations done for keto/amino global
transformation.

CDS and exons proportions vary with frame in this way:

p2 < p1 < p0

r2 < r0 < r1

h2 < h1 < h0

It is important to underline that percentages of intergenes are the same
observed in sense and antisense strand of keto/amino global transformation
sequences.

Antisense strand

The proportions pattern of CDS and exons is:

p1a < p0a < p2a

r2a < r0a < r1a
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h0a < h2a < h1a

As expected the percentages pattern of intergenes is the same as in sense
strand!!

p = 40%, r = 67%, h = 50%

4.2.6 Comments

By these observations we could speculate that:

• Since dichotomic classes percentages vary with frame only for coding
sequences, the frame is important only for coding sequences and dicho-
tomic calsses can be useful to recognize it.

• All dichotomic classes can distinguish between coding and non-coding
sequences, in fact their percentage values are always different. In par-
ticular, if we consider, for example, normal sequences we can see that:

– Parity could discriminate also between sense and antisense coding
sequences. In fact it is always around 60% for non-coding sequen-
ces (in both strands), while it is remarkably lower for CDS and
exons and, moreover, it varies with strand: p0 in sense strand seem
to be a bit lower (50-52%) than in antisense strand (54%). Similar
differences can be found for p1 and p2.

– Since Rumer and hidden percentage values vary between non-
coding sequences and, moreover, between sense and antisense strand,
they are useful to discriminate between the different classes of non-
coding sequences (i.e: introns, long introns, intergenes, UTRs and
regulatory)

Similar considerations can be done for complementary, reverted, ke-
to/amino and purine/pyrimidine transformated sequences.

• Since intergenes sequences show the same pattern of dichotomic classes
percentages in sense and antisense strand, they could be considered
as the expression of a random sequence (they don’t carry any kind of
information)

• Finally, for what concerns coding sequences, we can see that CDS show
proportions values that differ with frame a bit more than exons ones.
For example, if we consider parity, we can see that:
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– p0 and p1 values are almost the same for exons (p0 = 52, 1%,
p1 = 52, 7%) while they differ a bit more for CDS (p0 = 50, 1, p1 =
51, 6)

– p2 value is higher for CDS than for exons (58,7% and 56,3%
respectively)

This kind of difference can be observed in Rumer and hidden propor-
tions too. This could suggest that there is a sort of “union effect” that
occurs when fragments of coding sequences (exons) join together to
form a CDS.

4.3 Independence test
Now I want to check if the information provided by these properties is spe-
cific for dichotomic classes or simply comes from the proportion of bases in
the original sequence. In the latter case, the information content should be
always the same, regardless of the order of bases within the sequence if their
proportions are kept constant. If, given a nucleotide sequence A, I perform a
permutation of the basis without changing their number, I get a new sequen-
ce B with the same proportion of the four bases (A,C,G,T). However, the
dichotomic classes binary strings computed from the two original sequences
(A and B) will be different (for what concerns parity class we will get PA and
PB. If the proportion of 1 in each binary string (PA and PB) is the same, then
the information carried by dichotomic classes depends only on the proportion
of bases. Otherwise we can state that dichotomic classes carry an additional
information content, with respect to that carried by the proportion of bases
in the original sequence.

For instance, define the random variable X as the parity of a dinucleotide
for a given sequence. Then,X follows a Bernoulli distribution with parameter
π = P (X = 1), that is: E(X) = π and V (X) = π(1− π). Then, we have the
following null hypothesis:

H0 : π = π0

H1 : π 6= π0

where π0 = P (X = 1) under the assumption that the DNA sequence is an
expression af an i.i.d. process, that is its sequence is randomly derived on the
basis of a given proportion of the four bases. Now, we can see that:
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π0 = P (X = 1) = P (D) ∈ S1 =
8∑
i=1

P (b1)i ∗ P (b2)i (4.1)

where:

• D is the dinucleotide considered

• S1 and S0 are, respectively the group of dinucleotides that correspond
to parity class 1 (S1) and parity class 0 (S0)

• b1 and b2 are, respectively, the bases in the first and in the second
position of the dinucleotide.

• P (b1) and P (b2) are the probability of occurrences of the 4 nucleotides
(T,C,A,G) in the first and second base, respectively.

The association scheme for the parity is presented in Table 4.7. Therefore,
the possible differences observed between the original and i.i.d. sequences are
not due to the proportion of bases and all the quantities derived from it (e.g.
the GC content and the like).
For example, if we have the following probability distribution for the nucleo-
tides: 1

base P
A 0.20
C 0.25
G 0.20
T 0.35

then

π0 = 0.20× 0.20 + 0.25× 0.20 + 0.20× 0.20 + 0.35× 0.20 + 0.20× 0.35+

+ 0.35× 0.35 + 0.20× 0.25 + 0.35× 0.25 = 0.53

Now, if we take the usual sample mean π̂ as the estimator of π we have that
under the null hypothesis, E(π̂) = π0 and V (π̂) = π0(1−π0)

n
where n is the

length of binary sequence. Thus, we can use the test statistic Z

Z =
π̂ − π0√
π0(1−π0)

n

.

1They are global (not position-dependent) proportions
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Tabella 4.7: Partition of the 16 dinucleotides into parity groups.

1st base 2nd base Dinucleotide group Parity
i (b1) (b2) (D)
1 A A

S1 1

2 C A
3 G A
4 T A
5 G T
6 T T
7 G C
8 T C
9 A G

S0 0

10 C G
11 G G
12 T G
13 A T
14 C T
15 A C
16 C C
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Z converges in distribution to a standard normal random variable so that
the usual critical values can be used.

I have computed the p-values associated to the test for each sequence and
for each dichotomic class. The results are shown in Figures 4.3 and 4.4, where
we present the histograms of the p-values for the sequences analyzed.

Tabella 4.8: Percentages of p-values lower than 0.05

Parity Rumer Hidden
Genes 17.94 13.24 8.93
CDS 28.28 14.96 5.80

Exons 11.45 5.80 4.00
Introns 4.31 1.50 1.20

Long introns 5.71 1.84 1.43
Intergenes 9.09 3.13 1.70

UTR 6.27 1.98 1.43
Regulatory 5.65 2.85 1.96

4.3.1 Comments

By looking at the histograms in Figures 4.3 and 4.4, we can see that:

• only coding sequences and genes show a pattern which indicates the
presence of differences between the proportions values computed on
original sequences and those computed on sequences whose properties
belongs only to proportions of bases. Only these classes, in fact, show an
important rate of p-value lower than 0.05. That could mean that only
genes, exons and CDS are non-random sequences with an informative
content.

• parity sequences seem to be more informative. They show, in fact, an hi-
gher rate of low p-values. This trend can be observed also in non-coding
sequences where parity p-values seem to follow an uniform distribution
while Rumer and hidden show fewer low p-values.

• If we compare graphs relative to exons and CDS we can see that the
latter show an higher rate of low p-values. This effect could be related
to the sample size. However, this observation could be also a further
indication of the presence of a “union effect” that occurs when fragments
of coding sequences (exons) join together to form a CDS.
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Figura 4.3: Histograms of the p-values associated to the independence test
for genes, intergenes, exons and CDS
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Figura 4.4: Histograms of the p-values associated to the independence test
for introns,long introns, UTRs and regulatory sequences
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The latter issue might be also studied by resorting to adjusted p-values
and to false discovery rate estimation (see e.g. [11]). The overall results
confirm the findings of [20] regarding the presence of correlations between
dichotomic classes in coding sequences.

4.4 Conclusions
The analysis of bases distributions and percentage of dichotomic classes di-
stributions is helpful in order to characterize different portions of the genome
in A.thaliana chromosome 1 and it leads to the following considerations:

• Coding and non-coding sequences show different patterns of distribu-
tion. Since the percentages of dichotomic classes vary with frame only
for coding sequences, we can conjecture that frame is important only
for these kind of sequences (CDS and exons).

• Dichotomic classes seem to be useful in order to recognize coding se-
quences. In fact all the dichotomic classes can distinguish between co-
ding and non-coding sequences: their mean values are always different.

• Parity class could discriminate also between sense and antisense coding
sequences: while the mean percentage for non-coding sequences is al-
ways around 60% (in both strands), it is remarkably lower and strand
dependent for CDS and exons.

• Rumer and hidden percentages vary in both strand between coding and
non-coding sequences. Therefore they are useful in order to discrimina-
te between the different groups of non-coding sequences (i.e: introns,
long introns, intergenes, UTR and regulatory sequences). In particular,
introns seem to minimize hidden class.

• Intergenes show a constant distribution pattern that vary neither with
frame nor with strand. They always show:

p ' 60%, r ' 31%, h ' 49%

• Finally, we can identify a sort of “union effect” that occurs when short
fragments of coding sequences (exons) join together to form a CDS. In
fact mean percentage values of CDS in each dichotomic class differ vary
with frame more than those of exons. For example, if we consider parity,
we can see that p0 and p1 are almost the same for exons (p0=52.1%,
p1=52.7%) while for CDS we have p0 = 50.1%, p1 = 51.6%. Moreover
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the mean for p2 is higher for CDS than for exons (58.7% and 56.3%
respectively). This kind of difference can be observed in Rumer and
hidden percentages too.

• The results obtained from the independence tests show that the fra-
mework suggested by dichotomic classes is able to uncover the existen-
ce of significant correlations in those sequences that are involved in
protein synthesis.
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Capitolo 5

Discriminating different portions
of the genome

In the previous chapter I showed how dichotomic classes can characterize the
different portions of A.thaliana genome. It means they may carry a quantity
of information higher than that explained by the proportion of bases. The-
refore, I want to answer the following question: is the information carried
by dichotomic classes useful in order to discriminate between two different
portions of the genome?

5.1 Classification through Logistic Regression
I try to answer this question with the help of logistic regression models that
is part of generalized linear models. Logistic regression allows to predict a
discrete outcome, such as group membership, from a set of variables that may
be continuous, discrete, dichotomous, or a mix of any of these. ([32] [28])

An explanation of logistic regression begins with an explanation of the
logistic function, which, like probabilities, always takes on values between
zero and one:

π(x) =
e(β0+β1x1)

e(β0+β1x1) + 1
=

1

e−(β0+β1x1) + 1

The dependent variable in logistic regression is usually dichotomous, that
is, the dependent variable can take the value 1 with a probability of success
π, or the value 0 with probability of failure (1− π). This type of variable is
called a Bernoulli (or binary) variable where:

Y ∼ Ber(π) E(Y ) = π V (Y ) = π(1− π)
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As mentioned previously, the independent or predictor variables, in lo-
gistic regression, can take any form, that is, logistic regression makes no
assumption about the distribution of the independent variables. They do not
have to be normally distributed, linearly related or of equal variance within
each group. The relationship between the predictor and the response varia-
bles is not a linear function in logistic regression. It is used a link function,
called “logit transformation of π”:

π =
eβ0+β1x1+β2x2+...+βkxk

1 + eβ0+β1x1+β2x2+...+βkxk

logit[π] = log

[
π

1− π

]
= β0 + β1x1 + β2x2 + ...+ βkxk

The goal of logistic regression is to correctly predict the category of out-
come for individual cases using the most parsimonious model. To accomplish
this goal, a model is created that includes all predictor variables that are
useful in predicting the response variable.

The logistic regression method is used for example to make a classifica-
tion. The response variable Y can assume two values that, for expository
convenience, we could call A and B. Let’s suppose that a certain observation
belongs to class A with probability π.

Starting from a set of data, namely a set of observations that are known,
the coefficients of the model are calculated. Then, examining new observa-
tions that we want to classify on the basis of mere knowledge of the predictors,
we calculate the value of π and assign the observation to the class A if the
probability π exceeds a certain threshold (s).

Classification Classification models are tested by comparing the predicted
values to known target values in a set of test data. The test data must be
compatible with the data used to build the model and must be prepared in
the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the
records is used to build the model; the remaining records are used to test the
model.Test metrics are used to assess how accurately the model predicts the
known values. If the model performs well, it can then be applied to new data
to predict the future.

In order to assess the prediction ability of the model it is useful to build
a confusion matrix that displays the number of correct and incorrect predic-
tions made by the model compared with the actual classifications in the test
data. The matrix is n× n, where n is the number of classes.
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The following table shows a confusion matrix for a binary classification
model. The rows present the number of predicted classifications in the test
data. The columns present the number of observed classifications made by
the model.

observed
0 1

predicted 0 n00 n01 n0·
1 n10 n11 n1·

n·0 n·1 N

where N = n00 + n01 + n10 + n11 is the sample size of the test set.

W =
n10 + n01

N
100

I will use W , as the misclassification rate.
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5.2 Sequence classification of A.thaliana chro-
mosome 1

Sequence prediction can be seen as a classification problem:

Y = f(X1, ..., Xp) + ε

where Y is a dichotomic response variable and (X1, ..., Xp) is a set of
predictors.

I would like to predict if a given sequence belongs (Y = 1) or not (Y = 0)
to a specific portion of the genome (i.g: exons, introns, etc.) using dichotomic
classes percentages as predictors.

• Y ∼ Ber(π);

g (E[Y |X]) = β0 +

p∑
i=1

βiXi . (5.1)

where g(π) = log π
1−π is the link function.

I create logistic regression model in order to verify if some combination of
the variables in the datasets can discriminate the different sequence classes.
I take into account the following pairwise comparisons:

1. Exons vs Introns

2. CDS vs Long Introns

3. Exons vs CDS

4. Genes vs intergenes

5. Exons vs UTR

6. Introns vs UTRs

For each of these couple I created six logistic regression models that differs
in number and kind of explanatory variables considered, as shown in Table
5.1 and 5.2.

For each model I joined the two classes dataset. Then I divided the records
into two random groups: the first, containing 80% of records, is used to fit
the model, while the other (containing the remaining 20% of records) is
used to make predictions and build the misclassification table (out of sample
analysis).
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Tabella 5.1: Logistic regression models created for each couple of sequence
classes

Model Regressors
P p0, p1, p2
R r0, r1, r2
H h0, h1, h2
Sen h0, h1, h2, p0, p1, p2, r0, r1, r2
Anti h0a, h1a, h2a, p0a, p1a, p2a, r0a, r1a, r2a
Tot h0, h1, h2, p0, p1, p2, r0, r1, r2, h0a, h1a, h2a,

p0a, p1a, p2a, r0a, r1a, r2a
B A, C, G, T

Tabella 5.2: Variables included in each dataset

Name Description

p0, r0, h0 mean value for parity, Rumer, hidden classes, in
frame

p1, r1, h1 mean value for parity, Rumer, hidden classes, out
of frame 1

p2, r2, h2 mean value for parity, Rumer, hidden classes, out
of frame 2

p0a, r0a, h0a mean value for parity, Rumer, hidden classes,
antisense strand in frame

p1a, r1a, h1a mean value for parity, Rumer, hidden classes,
antisense strand out of frame 1

p2a, r2a, h2a mean value for parity, Rumer, hidden classes,
antisense strand out of frame 2
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5.2.1 Exons vs Introns

First, I want to assess if I can discriminate between intron and exons using,
as regressors, the sets of variable defined in Table 5.1. I proceeded as follows:

• I create a dataset with both the sequences Then I define a new binary
variable (named ”class”) that takes value 1 if the sequence is an intron
and 0 if the sequence is an exon.

• I randomly divided th 68212 records into two groups:

– The first group composed by 53212 sequences was used in order
to build a logistic regression model

– The second group composed by 15000 sequences was used for out
of sample analysis:

∗ I compute the estimation of π
∗ I set a threshold value (s = 0.5)
∗ If π > s then I consider the sequence as an intron, otherwise

I consider it as an exon.
∗ Finally I build the confusion matrix and compute the misclas-

sification rate.

• I repeated this scheme for all the seven models defined in Table 5.1 and
obtained the results as shown in Table 5.3 and Figure 5.1

Tabella 5.3: Misclassification rate for each model comparing exons and introns

Model Misclassification
rate (%)

P 15.72
R 29.34
H 21.39
Sen 8.53
Anti 7.17
Tot 5.7
B 5.81

We can see that:
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• Models Sen, Anti, Tot and B discriminate with a good accuracy between
intron and exon sequences. We can see that each of these model show
a misclassification rate lower than 10%. The best models are tot and B
with an error rate around 5.75%

• P, H and R models show higher misclassification rates. However parity
class percentages seem to discriminate better between intron and exon
sequences than other dichotomic classes
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Figura 5.1: Sequence prediction: introns vs. exons
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5.2.2 CDS vs. Long introns

I randomly divided the 14794 records into two groups and used 3000 sequen-
ces for out of sample analysis. The results are summarized in Table 5.4 and
Figure 5.2.

Tabella 5.4: Misclassification rate for each model comparing CDS and long
intron sequences

Model Misclassification
rate (%)

P 3.9
R 12.37
H 7.63
Sen 1.93
Anti 1.33
Tot 1.27
B 1.77

• All the models can discriminate with a good accuracy between the two
groups of sequences. The worst model is R-model, with a misclassifi-
cation rate equal to 12.37%. All the other models show a rate of error
lower than 10%.

• In particular sen, anti, tot and B models discriminate with an excellent
accuracy (lower than 2%). The best model is tot (m.r.=1.27%).

Once again we can see that comparison between CDS and long introns
presents enhances the features observed in the comparison between exons
and introns.
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Figura 5.2: Sequence prediction: CDS vs. long introns
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5.2.3 Exons vs. CDS

I randomly divided th 46811 records into two groups and used 10000 sequen-
ces for out of sample analysis. The results are summarized in Table 5.5 and
Figure 5.3

Tabella 5.5: Misclassification rate for each model comparing CDS and exons

Model Misclassification
rate (%)

P 19.67
R 19.57
H 19.89
Sen 20.23
Anti 20.27
Tot 21.71
B 80.45

All the models show a similar misclassification rate (around 20%). As
expected, none of the models is good in order to discriminate between CDS
and exon sequences (remember that CDS are obtained by joining different
exons present within the same gene).
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Figura 5.3: Sequence prediction: exons vs. CDS
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5.2.4 Genes vs. Intergenes

I randomly divided th 16778 records into two groups and used 3000 sequences
for out of sample analysis. The results are summarized in Table 5.6 and Figure
5.4

Tabella 5.6: Misclassification rate for each model comparing genes and
inergenes

Model Misclassification
rate (%)

P 15.27
R 19.4
H 39.47
Sen 15
Anti 14.43
Tot 14.2
B 13.23

The misclassification rates in these model are quite high, in fact they
vary from 13,23% (B-model) to 19,4% (R-model). It is interesting to notice
that H-model is very bad, in fact it shows a really high misclassification rate
(39,47%)
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Figura 5.4: Sequence prediction: Genes vs. Intergenes
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5.2.5 Exons vs. UTRs

I randomly divided the 51976 records into two groups and used 10000 se-
quences for out of sample analysis. The results are summarized in Table 5.7
and Figure 5.5

Tabella 5.7: Misclassification rate for each model comparing exons and UTRs

Model Misclassification
rate (%)

P 14.98
R 25.8
H 27.16
Sen 12.6
Anti 13.63
Tot 11.9
B 10.66

Misclassification rates vary from 10% to 15% except for R and H-models
that high shows misclassification rates (25,8 and 27,16% respectively). One
again parity class percentages seem to be better than Rumer and hidden’s
ones when coding sequences (exon and CDS) are involved.
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Figura 5.5: Sequence prediction: exons vs. UTRs
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5.2.6 Introns vs. UTRs

I randomly divided the 45090 records into two groups and used 10000 se-
quences for out of sample analysis. The results are summarized in Table 5.8
and Figure 5.6

Tabella 5.8: Misclassification rate for each model comparing UTR and Intron
sequences

Model Misclassification
rate (%)

P 31.78
R 31.27
H 28.62
Sen 26.09
Anti 24.05
Tot 20.2
B 26.67

In these models misclassification rates are very high, varying from 20,2
% (Tot-model) to 31,78 (P-model). It is interesting to underline that, in this
case, H-model is better than P and R ones. In fact it happens every time
introns are considered.
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Figura 5.6: Sequence prediction: introns vs. UTRs
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5.3 Comments
• Models involving exons and CDS (sequences within a gene that are

transcripted and translated) show an good discrimination rate. In fact,
it is possible to discriminate with a good sensitivity exons from introns
and, overall, CDS from Long introns.

– This could mean that A.thaliana cell has to distinguish between
coding and non coding region within a DNA sequence. The di-
scrimination power grows when we consider CDS instead of exons
indicating, as we have already seen before, a sort of “joined effect”
occuring when different exons join to form a CDS

– It is evident how the percentage of bases is, itself, sufficient in
order to achieve the best discrimination rate.

∗ The only exception is the Tot-model that uses as regressors
all the percentages of dichotomic classes computed both in
sense and antisense strand.
∗ Anyway, the gain of sensitivity is not so much to overcome

the parsimony of the B-model (3 vs. 18 regressors)

• P-models are usually better than R and H-models. This could mean
that parity class could discriminate better between the different por-
tions of a gene.

• H-model (usually better than R-model) applied in order to discrimina-
te between genes and intergenes seems to be very unhelpful. On the
contrary it is more sensitive in discriminating between CDS and long
introns. This could mean that hidden class represent a mathemati-
cal structure meaningful only to recognize different portions of coding
sequences

• Because the model B is almost always the best model, the computation
of dichotomic classes seems not to be useful for the discrimination bet-
ween the different portions of the genome, since it seems to be sufficient
the computation of the proportion of bases.
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Capitolo 6

Dependence analysis

The analysis conducted in the previous chapter showed that the dichoto-
mic classes carry no informational advantage for classification purposes if
compared to proportions of bases. However, the information content of the
dichotomic classes could detect the presence of short-range dependence struc-
tures within genome sequences. Therefore, in this chapter, I want to check if
there is any dependence structure in the dichotomic classes within different
portions of a gene.

In information theory and coding theory with applications in computer
science and telecommunication, error detection and correction or error con-
trol are techniques that enable reliable delivery of digital data over unreliable
communication channels. Many communication channels are subject to chan-
nel noise, and thus errors may be introduced during transmission from the
source to a receiver. Error detection techniques allow detecting such errors,
while error correction enables reconstruction of the original data.

The general idea for achieving error detection and correction is to add
some redundancy (i.e., some extra data) to a message, which receivers can
use to check consistency of the delivered message, and to recover data deter-
mined to be corrupted. Error-detection and correction schemes can be either
systematic or non-systematic: In a systematic scheme, the transmitter sends
the original data, and attaches a fixed number of check bits (or parity data),
which are derived from the data bits by some deterministic algorithm. If only
error detection is required, a receiver can simply apply the same algorithm
to the received data bits and compare its output with the received check
bits; if the values do not match, an error has occurred at some point during
the transmission. In a system that uses a non-systematic code, the original
message is transformed into an encoded message that has at least as many
bits as the original message.

Redundancy and degeneracy are two main features of a communication
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code with an error detection and correction system. Since the genetic code
is redundant and degenerate it is supposed to have such a system: it is a
still open challenge linking information theory and biology. Moreover it is
known that DNA-polymerase shows a proofreading ability in order to detect
and correct some point mutations during DNA-replication process. When
an error is detected, these polymerases halt the process of DNA replication,
work backward to remove nucleotides from the daughter DNA chain until
it is apparent that the improper nucleotide is gone, and then reinitiate the
forward replication process.

The existence of a coding mechanism for error correction/detection im-
plies some kind of dependence inside data and several studies have highlighted
the presence of fractal long-range correlations in nucleotide sequences. Howe-
ver, error detection and correction should act at a local level. The existence
of a dependence structure in the dichotomic classes has been demonstrated
[19, 20].

The objective of my analysis is to assess if there is a dependence structure
in the genome sequence of A.thaliana and if it is present within all the dif-
ferent portions of the genome. Moreover I would like to assess if dichotomic
classes can detect such dependence structure.

In order to try to answer this question I will perform the same analysis as
in [19, 20] applied to different portions of the genome.

6.1 Dependence measures
In statistics, dependence refers to any statistical relationship between two or
more random variables. Formally, dependence refers to any situation in which
random variables do not satisfy a mathematical condition of probabilistic
independence:

Two events A and B are independent if and only if their joint probability
equals the product of their probabilities:

P (A ∩B) = P (A)P (B)

Similarly, Two random variables X and Y are independent if and only if
for every a and b, the events {X ≤ a} and {Y ≤ b} are independent events
(as defined above). That is, X and Y with cumulative distribution functions
FX(x) and FY (y), and probability densities fX(x) and fY (y), are independent
if and only if the joint random variable (X,Y) has a cumulative distribution
function
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FX,Y (x, y) = FX(x)FY (y),

or equivalently, a joint density

fX,Y (x, y) = fX(x)fY (y).

There is an extensive literature on how to measure dependence, mainly on
the basis of the distance between the joint distribution of the data and the
product of the marginal distributions, where the latter distribution assumes
the property of independence. [30, 2, 52, 37, 46, 25, 13].

The most commonly used measures of dependence and test statistics be-
longs to ”correlation” function. This is motivated by linear relations involving
continuous variables and/or Gaussian processes. These measures tend to fail
when variables are discrete, or in detection, as when they face nonlinear, or
non-Gaussian processes. The currently dominant measures tend to be func-
tions of only one or two moments of the underlying processes. While this has
the advantage of simplicity, it can mislead when distinctions between the tail
areas and higher order moments are germane. Thus, it is clearly desirable for
measures of association and dependence to be robust towards possible (but
unknown) nonlinearities and non-Gaussian processes.

In recent years there have been developed several different methods and
indicators statistics of dependence, using the concepts of entropy borrowed
from information theory. Some of them are finalized to measure the level of
dependence, autocorrelation and irregularities of the fluctuations of a sin-
gle series or of multiple series between them (dependence,correlation and
synchronization).

Examples of other “well-informed” measures include the moment genera-
ting and characteristic functions, as well as many entropy functionals deve-
loped in information theory. Entropies are defined over the space of distri-
butions which form the bases of independence/dependence concepts in both
continuous and discrete cases. Entropy is also dimensionless as it applies
seamlessly to univariate and multivariate contexts.

In information theory, entropy is a measure of the uncertainty associated
with a random variable [34]. In this context, the term usually refers to the
Shannon entropy, which quantifies the expected value of the information
contained in a message. Equivalently, the Shannon entropy is a measure of
the average information content one is missing when one does not know the
value of the random variable. The concept was introduced by Claude E.
Shannon in his 1948 paper “A Mathematical Theory of Communication” [47].
The Shannon entropy of a random variable (r.v) X is defined as:
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H(X) = −
n∑
i=1

pi log2 pi

In this chapter consider three measures of dependence

• Chi-squared test

• Sρ (a normalized variant of the Bhattacharya-Hellinger-Matusita di-
stance)

• Average mutual information

6.1.1 Chi-squared test for independence

Chi-squared test allows us to study the relationship between two categorical
variables. In particular, the chi-square test is used to test the null hypothesis
that the variables, indicated with X and Y are independent.

Given the double random variable (X, Y), consider the following joint
probability distribution:

y1 · · · yk · · · yc
x1 π11 · · · π1k · · · π1c π10
...

... . . . ... . . . ...
...

xj πj1 · · · πjk · · · πjc πj0
...

... . . . ... . . . ...
...

xr πr1 · · · πrk · · · πrc πr0
π01 · · · π0k · · · π0c 1

where:

• x1, x2, ..., xj, ..., xr and y1, y2, ..., yk, ..., yc, are, respectively, the possible
realizations of X and Y;

• πjk is the joint probability that the v.a. X takes the value xj and v.a.
Y takes the value yk:

πjk = P (X = xj, Y = yk), j = 1, ..., r, k = 1, ..., c;
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• πj0 is the marginal probability that the v.a. X takes the value xj (for
any value of Y), or

πj0 = P (X = xj) =
c∑

k=1

πjk j = 1, ..., r;

• π0k is the marginal probability that the v.a. Y takes the value yk ((for
any value of X), or

π0k = P (Y = yk) =
r∑
j=1

πjk k = 1, ..., c.

The null hypothesis is that X and Y are independent, namely:

P (X = xj, Y = yk) = P (X = xj)P (Y = yk)

or, equivalently, that:

πjk = πj0 · π0k
with j = 1, ..., r k = 1, ..., c.
Therefore, the problem can be formalized as follows:

H0 : ∀j, k πjk = πj0 · π0k,

H1 : ∀j, k πjk 6= πj0 · π0k.

Given a random sample from a. double v.a (X, Y), consider the following
contingency Table (r × c):

y1 · · · yk · · · yc
x1 n11 · · · n1k · · · n1c n10
...

... . . . ... . . . ...
...

xj nj1 · · · njk · · · njc nj0
...

... . . . ... . . . ...
...

xr nr1 · · · nrk · · · nrc nr0
n01 · · · n0k · · · n0c n

where :

• x1, x2, ..., xj, ..., xr and y1, y2, ..., yk, ..., yc, are, respectively, the possible
realizations of X and Y;
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• njk is the frequency with which it is presented in the sample pair
(xj, yk);

• nj0 is the marginal frequency of the sample realization xj, for any value
of Y:

nj0 =
c∑

k=1

njk j = 1, ..., r

• n0k is the marginal frequency of the sample realization yj, for any value
of X:

n0k =
r∑
j=1

njk k = 1, ..., c

The maximum likelihood estimators π̂jk, π̂j0, π̂0k for the probability πjk, πj0
andπ0k, coincide with the corresponding sample relative frequency, as follows:

π̂jk =
njk
n

; π̂j0 =
nj0
n

; π̂0k =
n0k

n
Moreover, in case the hypothesis of independence between X and Y is

true, the following relationship is expected to hold:

π̂0
jk = π̂j0 · π̂0k

or, multiplying both sides by n:

n0
jk =

nj0 · n0k

n
, j = 1, ..., r; k = 1, ..., c.

N.B. ”0” symbol in the apex means that we are considering H0 as true
Therefore, the test of independence between X and Y can be conducted

on the quantities:

(njk − n0
jk)

2, j = 1, ..., r; k = 1, ..., c

that is, on the squared distances between the sampling frequency and the
corresponding expected frequencies in the case of independence.

If the differences between njk and n0
jk are not too high, we will accept the

H0 hypothesis of independence between X and Y, otherwise we will have to
reject it.. In particular, the test statistics is as follows:

Y0 =
r∑
j=1

c∑
k=1

(njk − n0
jk)

2

n0
jk

,
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with

n0
jk =

nj0 · n0k

n

If H0 is true Y0 converges in distribution to a χ2 r.v. with (r − 1)(c− 1)
degrees of freedom.

Y0 → χ2
(r−1)(c−1)

Once the significance level of the test is fixed, we have the following
decision rule:

A : Y0 < y(g;α), R : Y0 ≤ y(g;α),

where y(g;α) is the above centile of the χ2 distribution with g = (r−1)(c−1)
d.f.

6.1.2 Mutual information

A second measure of dependence between two random variables X and Y is
given by the mutual information [6]:

I(X, Y ) =
∑
i

∑
j

p(xi, yj)log2
p(xi, yj)

p(xi)p(yj)

If the two variables are independent, the mutual information between
them is zero. If the two are strongly dependent, e.g., one is a function of
another, the mutual information between them is large. There are other in-
terpretations of the mutual information; for example, the stored information
in one variable about another variable, and the degree of the predictability
of the second variable by knowing the first. Clearly, all these interpretations
are related to the same notion of dependence and correlation [40].

The previous equation can be rewritten as follows:
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I(X, Y ) =
∑
i

∑
j

p(xi, yj)log2
p(xi, yj)

p(xi)p(yj)

=
∑
i

∑
j

p(xi, yj)log2p(xi, yj) +
∑
i

∑
j

p(xi, yj)log2
1

p(xi)
+

+
∑
i

∑
j

p(xi, yj)log2
1

p(yj)
+

=
∑
i

∑
j

p(xi, yj)log2p(xi, yj)−
∑
i

p(xi)log2p(xi)−
∑
j

p(yj)log2p(yj)

= −H(X, Y ) +H(X) +H(Y )

ovvero

I(X, Y ) = H(X) +H(Y )−H(X, Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

Therefore, it is clear that the mutual information between two random
variables is nothing more than the reduction of uncertainty of a variable due
to knowledge of the other. If the knowledge of Y reduces our uncertainty
about X, then we say that Y carries information about X.

If X and Y are independently distributed, ie if p(x, y) = p(x)p(y),the mu-
tual information between the two variables is zero. In addition, this measure
is symmetric, that is

I(X, Y ) = I(Y,X)

and is always non-negative.
Mutual information provides an indication of the link between two varia-

bles random X and Y. In particular it:

• assumes the value zero if only if p(x, y) = p(x)p(y), that is, if the
variables X and Y are independent;

• is always non-negative, then I(X, Y ) > 0;

• in the continuous case we have that I(X, Y ) = +∞ if Y = g(X) that
is the indicator tends to positive infinity if there is a perfect relation,
although not linear, between X and Y.
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Mutual information has been proposed, for example, as a criterion on
which base test of independence and for the study of the level of dependency
(not linear) in time series [10], [9].

In the present work I will compute mutual information between two
dichotomic class sequences such that:

I(Xt, Yt+k) =
∑
i

∑
j

p(xt, yt+k)log2
p(xt, yt+k)

p(xt)p(yt+k)

where

• Xt(·) is a random process that measures which digit appears at position
t of the first dichotomic class sequence

• Yt+k(·) is a random process that measures which digit appears at posi-
tion t+ k of the second dichotomic class sequence

• (Xt, Yt+k) is the bivariate random process that measures the joint ap-
pearance of Xt(·) at position t and Yt+k(·) at position t+ k

6.1.3 Sρ

Shannon’s relative entropy and almost all other entropies fail to be “metrics”,
as they violate either symmetry, or the triangularity rule, or both. This means
that they are measures of divergence, not distance. A metric measure would
have the additional advantage of allowing multiple comparisons of depar-
tures/distances. It is also desirable to provide the framework for assessing
statistical significance of any proposed measure. [49], [24]

Among the various indices based on the concept of entropy cited in the
literature, it is worth mentioning that proposed by Granger, Maasoumi and
Racine [25], more often referred to as Sρ and defined as:

Sρ(k) =
1

2

∫ +∞

−∞

∫ +∞

−∞

(
f

1
2 − f

1
2
1 f

1
2
2

)2
dxdy

where f is the joint density distribution of the random variables X and
Y, while f1 and f2 are their respective distributions of marginal densities.
If X and Y are independent, Sρ = 0 otherwise, Sρ is positive and grea-
ter than zero. Granger, Maasoumi Racine and developed the Sρ based on
Hellinger-Battacharya-Matusita distance measure [25] [41]. In particular, the
Battacharya coefficient on the generic distributions fa and fb is defined as in
[5] [1]:
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ρ∗(fa, fb) =

∫ +∞

−∞
(fafb)

1
2dx

and is a measure of divergence between distributions. This coefficient
does not have a metrical structure because it does not meet all three axioms.
On the contrary, its modified version is a metric distance, known as the
Battacharya distance:

B(fa, fb) =
√
1− ρ∗(fa, fb)

Matusita measure, has the following form [47] [26]:

M(f − a, fb) =
∫ +∞

−∞
(f

1
2
a − f

1
2
b )

2dx

Between these two indicators there is the following relation:

M(fa, fb) = 2B(fa, fb)
2

Both M(fa, fb) and B(fa, fb), a rare case between the measures of di-
vergence, have the peculiar characteristic to meet, among other things, the
triangular inequality and therefore can be considered as metric measures

Moreover, if we replace fa with the joint density distribution of the ran-
dom variables X and Y (f = f(X, Y )) and fb with the product of the
respective marginal density distributions (f1f2) the we will obtain Sρ:

Sρ = 1− ρ∗(fa, fb) = B(fa, fb)
2

Sρ is therefore a metric too and has a close relation with the Havrda and
Charvat entropies family of k-order:

Ik(f1, f2) =
1

k − 1

[∫
(fk1 /f

k
2 )dF2 − 1

]
, k 6= 1

Sρ is an indicator that can measure the degree of deviation from the con-
dition of independence and is robust against possible (but unknown) nonli-
near and non-Gaussian processes. In fact, the entropy of Granger, Maasoumi
and Racine normalized to its maximum formally meets the following six
properties:

1. It is well defined for both continuous and discrete variables.

2. It is normalized to zero if X and Y are independent, and lies between
0 and +1.
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3. The modulus of the measure is equal to unity (or a maximum) if there is
a measurable exact (nonlinear) relationship, Y = m(X) say, between
the random variables.

4. It is equal to or has a simple relationship with the (linear) correlation
coefficient in the case of a bivariate normal distribution.

5. It is metric, i.e., it is a true measure of ”distance” and not just of
divergence.

6. The measure is invariant under continuous and strictly increasing tran-
sformations ψ(·). This is useful since X and Y are independent if and
only if ψ(X) and ψ(Y ) are independent. Invariance is important since
otherwise clever or inadvertent transformations would produce different
levels of dependence.

For a detailed discussion on the definition, implementation and estimation
issues of Sρ, see [25].

In the present work, the statistical analysis of binary sequences obtained by
means of our coding framework is based on the implementation of a bivariate
version of the metric entropy measure Sρ. This version corresponds to a
two-dimensional implementation of the methods employed in [19], as follows:

Sρ(k) =
1

2

∫ ∫ [√
f(Xt,Yt+k)(x, y)−

√
fXt(x)fYt+k

(y)
]2
dxdy

where

• Xt(·) is a random process that measures which nucleotide appears at
position t

• (Xt, Yt+k) is the bivariate random process that measures the joint ap-
pearance of Xt(·) at position t and Yt+k(·) at position t+ k

The measure has been proven to have impressive and robust power for
characterizing nonlinear processes. In particular, it has been shown that tests
based upon Sρ have very good performances in terms of power and size [15].
In the binary case the double integral reduces to summation and probabilities
are estimated through relative frequencies:

Sρ(k) =
1

2

1∑
i=0

1∑
j=0

[√
Pr(Xt = i, Yt+k = j)−

√
Pr(Xt = i)Pr(Yt+k = j)

]2
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Tabella 6.1: Legend

class frame anticodon
p = parity 0 = in frame a = reversed complement
r = Rumer 1 = out of frame 1
h = hidden 2 = out of frame 2

6.2 Sequence analysis
In previous works [19, 20] the authors analyzed both the univariate depen-
dence structure of parity sequences generated from protein coding DNA re-
gions, and bivariate dependence structure comparing pairwise chemical or
dichotomic codon classes.

In this work, I would like to assess the short-range dependence stuctures
between dichotomic classes computed on nucleotide sequences of different
portions of the genome. In order to do that, I have analyzed the following
set of sequences:

Group # of sequences
Exons 500
CDS 100

Introns 500
Long introns 100
Intergens 250
UTR 100

For each sequence, I computed all the possible nontrivial combinations
of dichotomic classes (an overall set of 153 different cases): Then I compu-
ted the dependence measure between the two binary strings relative to each
combination at lag -1, 0 and +1.

Given two binary sequences Xt and Yt the null hypothesis tested is:{
H0 : Xt and Yt+k are independent
H1 : Xt and Yt+k are not independent

for k ∈ Z

and 
pXt(x) is the relative frequency of Xt;

pYt+k
(y) is the relative frequencyYt+k;

p(Xt,Yt+k)(x, y) is the joint relative frequency (Xt, Yt+k).
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In order to build a valid test, I need a suitable measure of dependence and a
scheme for testing H0.

Measures I use the three dependence measures (D) described in the pre-
viuos section:

1. Chi-squared test

2. Sρ (a normalized variant of the Bhattacharya-Hellinger-Matusita di-
stance)

3. Mutual information

We must consider that:

• the null hypothesis we test is that of independence between binary
sequences, that is, the absence of an informational organization between
codons

• the dichotomic classes are naturally correlated because they can be
computed on the same bases

• spurious correlations due to nonstationarity/different GC content

• when comparing dichotomic classes the test does not have to depend on
correlations induced by their definition; in fact, some specific combina-
tions of dichotomic classes and reading frames induce nonzero spurious
correlations even in random sequences.

Because of such issues simple nonparametric bootstrap schemes that re-
sample the binary sequences are not appropriate.

Testing scheme The above requirements can be satisfied by resorting
to suitable nonparametric bootstrap or permutation schemes proposed in
[19, 20]. The original DNA base sequence is randomly permuted. On this
new sequence, the chemical (or dichotomic) classes are computed and the
dependence measure D is estimated. The procedure is repeated B times (say
B=5000) as to obtain the bootstrap distribution of Sρ under the null hypo-
thesis. Clearly, each permutation of the original data preserves the original
proportion of bases and this fulfils requirement.
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Given a nucleotide sequence Zt

1. compute the two dichotomic classes Xt and Yt on Zt

2. compute the measure on Xt and Yt+k: D̂k

3. draw Z∗t , a random permutation of Zt

4. compute the two dichotomic classes X∗t and Y ∗t on Z∗t

5. compute the measure on X∗t and Y ∗t+k: D̂∗k

6. repeat steps 3 – 5 B times.

7. compare D̂k with the quantiles of the distribution of D̂∗k.

I applied the testing scheme to all the three dependence measures consi-
dered.
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6.2.1 Results

CDS

Looking at Table 6.2 we can see that:

• There is a strong dependence between dichotomic classes h0a and r1a
at lag 0: in fact it is present in 60% of the sequences analyzed.

• Strong dependence seems to involve also:

– h1a and r2 at lag 0

– h0 and r2 at lag 0

– h2 and r1a at lag1

All of these couples of dichotomic classes are dependent in at least the
40% of the sequences I analyzed. Table 6.2.1 display the differences
between CDS and the other portions of the genome: we can observe a
clear prevalence of dependence structures in sequences CDS.

• As far as Sρ and mutual information (MI) concern, there are 10 couple
of dichotomic classes that show a dependence structure at least in 30 %
of sequences. These structures involves only Rumer and hidden classes.

• Sρ and MI shows a very similar pattern. They seem to recognize the
same dependence structures with the same level of accuracy.

• χ2 − test recognize the same kind of dependence structure as Sρ and
MI, but it shows a lower sensibility

Exons

We can see the same dependence structures observed for CDS sequences but,
in this case, they are present in a lower percentage the sequences considered
(see Table 6.3). For example the couple h0a-r1a is dependent at lag 0 in
only 36.5% of the exon sequences while it was in 62.5% of CDS (as far as Sρ
index is concerned). This could be another clue supporting the hypothesis
that hidden class represent a mathematical structure meaningful to recognize
different portions of coding sequences

None of the dichtomic class combination show a frequency of dependence
higher than 40% and only the couple h0a-r1a exceeds 30%. Sρ andMI shows
the similar frequencies in each dichotomic class combination, while χ2 seems
to be less sensitive.
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Tabella 6.2: Dependence measures computed on CDS sequences. Combina-
tions that show dependence in the highest percentage of sequences.

Combination Lag Freq Sρ Freq MI Freq χ2 Bases
h0a-r1a 0 62.5 62.0 50.5 34− 45
h1a-r2 0 48.5 48.5 47.5 56− 34
h0-r2 0 47.0 49.0 46.5 34− 67
h2-r1a +1 46.0 46.0 41.5 23− 78
r1-r1a 0 38.0 38.5 10.0 23− 45
h1-r2 0 37.5 36.0 38.0 23− 34
h0a-r2a 0 36.0 36.5 28.5 34− 34
r0-r0a -1 35.0 35.5 4.5 45− 23
h0-r1 0 34.5 34.0 28.5 34− 45
r2-r2a 0 32.0 31.5 24.5 34− 34

Tabella 6.3: Dependence measures computed on Exon sequences.
Combinations that show dependence in the highest percentage of sequences.

Combination Lag Freq Sρ Freq MI Freq χ2 Bases
h0a-r1a 0 36.5 36.5 25.5 34− 45
h0-r2 0 26.0 23.5 20.5 34− 67
h1a-r2 0 23.5 23.0 17.5 56− 34
h2-r1a +1 22.5 22.5 12.0 23− 78
h1-r1a 0 22.0 23.0 12.5 12− 45
h0-r1a 0 19.0 18.0 15.5 34− 78
h0-h1 0 19.0 19.0 15.5 34− 45
r1-r2a 0 18.0 18.5 5.0 23− 34
p0-p1 0 17.0 18.5 9.0 23− 34
h1-r2 0 16.5 16.5 18.0 23− 34
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Introns

The analysis conducted on intron sequences indicates that no dichotomic
class combination shows a dependence in a number of sequences higher than
20% (see Table 6.4). This indicates that there are no short-range dependence
structure as far as introns are concerned.

Once again Sρ and MI measures shows similar outcomes, while χ2 seems
to be less sensitive.

Tabella 6.4: Dependence measures computed on intron sequences.
Combinations that show dependence in the highest percentage of sequences.

Combination Lag Freq Sρ Freq MI Freq χ2 Bases
r2-r2a 0 18.5 17.5 4.0 12− 45
h0a-r2a 0 17.5 17.0 12.0 34− 34
r1- r2a 0 16.0 15.5 4.0 23− 34
h0a-h1a 0 15.0 14.0 14.5 34− 56
h0-r2 0 12.5 12.5 5.0 34− 67
r0a-r2a 0 12.0 12.5 3.0 23− 34
r0-r0a -1 11.5 11.5 2.5 45− 23
h1a-r2 0 11.5 11.5 6.5 56− 34
h0a-r1a 0 11.5 11.5 13.5 34− 45
h0-r1 0 11.5 11.5 2.5 34− 45
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Long introns

Table 6.5 shows the dichotomic class combinations with the highest depen-
dence frequency. We can see that no combination exceed a 30% frequency.
Dependence is more frequent in the couples r2-r2a and r1-r2a at lag 0 (around
28% when computed with Srho and MI indexes). It could be argued that
Rumer class is relevant in order to recognize different introns within the same
gene.

It is interesting to notice that if we use χ2 as measure of dependence, no
combination shows a dependece frequency higher than 20%.

Tabella 6.5: Dependence measures computed on long intron sequences.
Combinations that show dependence in the highest percentage of sequences.

Combination Lag Freq Sρ Freq MI Freq χ2 Bases
r2-r2a 0 28.5 28.5 7.5 12− 45
r1- r2a 0 26.5 28.0 5.5 23− 34
h0a-r2a 0 24.0 24.5 13.5 34− 34
r1-r1a 0 22.5 21.0 13.0 23− 45
h0-r1 0 22.0 22.0 11.0 34− 45
h1a-r2 0 22.0 22.0 6.5 56− 34
h0a-h1a 0 21.0 20.5 18.5 34− 56
r0-r1 -1 19.0 19.0 6.5 45− 23
p0a-r1 -1 18.5 18.0 0 45− 23
h1-r2 0 18.0 18.5 16.0 23− 34
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UTRs

Dependence analysis on UTR sequences shows interesting results. In fact we
can see that only two combinations are dependent in more than 20% of the
sequences: h0a-r1a and h0-h1, both at lag 0 (see Table 6.6) While the first
combination is typical of coding sequences (it is indeed the more frequent
both in CDS and exons), the second one is specific of UTRs, since we have
not met it previously. Notice that both these two combinations involve bases
3 and 4 on the first binary sting and bases 4 and 5 on the second binary
string. It is also interesting to underline that χ2 detects h0− h1 dependence
structure in 26% of the sequences, while it does not detect h0a-r1a with a
rate higher than 20%.

Tabella 6.6: Dependence measures computed on UTR sequences. Combina-
tions that show dependence in the highest percentage of sequences.

Combination Lag Freq Sρ Freq MI Freq χ2 Bases
h0-h1 0 29.0 29.0 26.0 34− 45
h0a-r1a 0 28.5 30.0 17.0 34− 45
h0-r2 0 19.0 20.0 6.0 34− 67
h1-r1a 0 18.5 19.0 7.5 12− 45
p1-p2 0 17.5 16.5 10.5 34− 445
r0-r0a -1 16.5 16.0 0.5 45− 23
h1a-r1a 0 15.5 16.0 7.0 23− 12
h0a-r2a 0 15.0 14.0 5.5 34− 34
p0-p2 0 13.5 14.0 1.5 23− 45
h0-r2a 0 13.0 14.0 2.05 34− 67
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Intergenes

Finally we can see that dependence analysis conducted on intergenes shows
similar results as UTRs. In fact all the dependence measures used detect a de-
pendence structure in more than 20% of sequences only for the combination
h0-h1 at lag 0 (see Table 6.7). This could mean that there is a short-range de-
pendence involving hidden class that is relevant in order to recognize portions
of DNA that are not genes or that do not undergo to translation process.

It is interesting to underline that the difference between UTRs and in-
tergenes is in the combination h0a-r1a, detected as relevant in UTRs but
not in intergenes. This short-range dependence could discriminate between
non coding region present within (UTRs) or outside (intergenes) genes, re-
membering that it is present with the highest frequency both in CDS and
exons.

Tabella 6.7: Dependence measures computed on intergenes sequences.
Combinations that show dependence in the highest percentage of sequences.

Combination Lag Freq Sρ Freq MI Freq χ2 Bases
h0-h1 0 26.0 28.0 23.0 34− 45
h0-r2a 0 18.5 17.5 3.0 34− 67
h0-h1a 0 18.0 18.0 15.5 34− 89
h1-h2a -1 18.0 17.5 3.5 45− 45
h0a-h2a -1 17.0 15.5 14.5 67− 45
h1a-h2a +1 16.5 17.0 10.5 23− 45
h1a-h2a -1 16.5 15.0 13.0 56− 12
h0a-h2 +1 15.5 15.0 0.5 34− 56
h0a-r2a 0 15.5 15.5 4.0 34− 34
h2-r2a +1 14.5 14.5 0 23− 67
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Tabella 6.8: Comparison between the dependence measures of the four main
combinations computed in all the genome portions

CDS Exon Intron
Combination Lag Sρ MI χ2 Sρ MI χ2 Sρ MI χ2

h0a-r1a 0 62.5 62.0 50.5 36.5 36.5 25.5 11.5 10.0 13.5
h1a-r2 0 48.5 48.5 47.5 23.5 23.0 17.5 11.5 13.0 6.5
h0-r2 0 47.0 49.0 46.5 26.0 23.5 20.5 12.5 12.5 5.0
h2-r1a +1 46.0 46.0 41.5 22.5 22.5 12.0 7.0 8.5 2.5

Long introns UTR Intergenes
Combination Lag Sρ MI χ2 Sρ MI χ2 Sρ MI χ2

h0a-r1a 0 16.0 15.5 18.5 28.5 30.0 17.0 3.0 3.5 1.0
h1a-r2 0 22.0 22.0 11.0 11.5 11.0 8.0 8.0 8.0 4.5
h0-r2 0 16.5 17.0 4.0 19.0 20.0 6.0 2.0 2.5 2.5
h2-r1a +1 16.0 16.5 6.0 7.5 7.0 2.0 4.0 4.5 1.5
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6.2.2 Comparison between indexes

Sρ vs. Mutual information

Figure 6.1 shows the boxplots of the differences between the frequency of
rejections computed with Sρ and MI. We can see that the median is around
0 for all the portion of the genome analyzed.

Moreover only few dichotomic class combinations display a difference
greater than 2.

Sρ vs. χ2

Looking at Figure 6.2 it is clear how Sρ detects dependence structure better
than χ2.

A big group of dichotomic class combinations display differences greater
than 10%, in particular when CDS are considered.

It is evident (and interesting) how χ2 index has difficulty in detecting
dependence structures involving Rumer class variables.

Mutual information vs. χ2

If we compare MI and χ2 indexes we can observe big differences in detecting
dependence structures as shown in Figure 6.3. Mutual information seems
to be more sensitive than χ2. Once again, a big group of dichotomic class
combinations display differences greater than 10%, in particular when CDS
are considered.

6.2.3 Comments

The analysis shows that there is an important correlation between h0a and
r1a at lag 0 in exon and, overall, in CDS.

• involves adjacent bases of the same codon.(12 and 23)

• the percentage of sequences that shows this correlation is remarkably
higher in CDS than in exons.

The fact that we can find this short-range dependence only in coding se-
quences could represent a clue supporting the hypothesis of the importance
of dichotomic class in error detection and correction mechanism.

There are at least other three combinations of dichotomic classes that
seem to show a relevant dependence in CDS:

• h1a and r2 at lag 0
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Figura 6.1: Comparison between Sρ and MI ability of detecting dependence
structures.
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Figura 6.2: Comparison between Sρ and χ2 ability of detecting dependence
structures.
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Figura 6.3: Comparison between MI and χ2 ability of detecting dependence
structures.
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• h0 and r2 at lag 0

• h2 and r1a at lag 1

All of these involve a Rumer and a hidden binary string as to indicate
that it is necessary an interaction between the two dichotomic class in order
to detect a dependence structure.

We can also see an important even though less frequent, dependence bet-
ween h0 and h1 binary strings in UTRs and intergenes. This combination
seems to be specific for non coding regions external to the genome portions
that undergo to transcription and translation processes.

Finally we can state that Sρ and MI indexes show a similar behaviour in
detecting dependence structure in couples of binary sequences. χ2 index, in-
stead, seem to be less sensitive: it, in fact, detect the same kind of dependence
but in a lower number of sequences.

6.3 Multiple testing problem
In this section I introduce the problem of multiple testing and describe some
methods that I could (and should) apply in order to adjust the type I error
rate. This is one of the main future developments of this research work.

Notice that Giannerini et al. [14] has applied such adjustment in a simi-
lar analysis on different data. Their results show that there are dependence
structures similar to those presented here.

In this study I conducted a series of repeated tests on different groups of
sequences in order to assess the presence of dependence structures between
dichotomic classes binary strings. The use of repeated tests may lead to errors
in results interpretation. In fact, once the type I error rate is set at α = 5% for
each test, the chance of erroneously finding a statistically significant impact is
5%. However, when the “family” of hypothesis tests are considered together,
the “combined” type I error rate could be considerably larger than 5%.

For example, suppose that the null hypothesis is true for each test and
that tests are independent. Then, the chance of finding at least one spurious
impact is 1− (1−α)N , where N is the number of tests. Thus, the probability
of making at least one type I error is 23 % if 5 tests are conducted, 64% for
20 tests, and so on as shown in Table 6.3.

The two most common definitions of the combined type I error rate found
in literature are the family-wise error rate (FWER) and the false discovery
rate (FDR):
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Tabella 6.9: Chances of findings spurious impacts for independent tests

Number of independent tests Probabilty that at least one test
with true null hypotheses is statistically significant

5 0.23
10 0.40
20 0.64
50 0.92

• The FWER, defined by Tukey [53] is the probability that at least one
null hypothesis will be rejected when all null hypotheses are true. As
discussed, the FWER is 1− (1− α)N , for independent tests, where N
is the number of tests.

• The FDR, defined by Benjamini and Hochberg [3], is a more recent
approach for assessing how errors in multiple testing could be conside-
red. The FDR is the expected proportion of all rejected null hypotheses
that are rejected erroneously.

Table 6.10 helps clarify these two error rates. Suppose that multiple tests
are conducted to assess intervention effects on N study outcomes and that
M null hypotheses are true (M is unobservable). Suppose further that based
on t-tests, Q null hypotheses are rejected and that A, B, C, and D signify
cell counts when t-test results are compared to the truth. The counts Q and
A to D are random variables.

Tabella 6.10: The number of errors when testing multiple hypotheses

Results from hypothesis tests
(Observed)

Truth(Unobserved) H0 is not rejected H0 is rejected Total
H0 is true A B M
H0 is false C D (N-M)
Total (N-Q) Q N

In Table 6.10, the FWER is the probability that the random variable B
is at least 1 among the M null hypotheses that are true. The FDR equals
the expected value of B /Q , where B /Q is defined to equal 0 if Q = 0.3
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If all null hypotheses are true, then B = Q and the FDR and FWER are
equivalent, otherwise the FDR is smaller than or equal to the FWER.

The two error rates have a different philosophical basis. The FWER mea-
sures the likelihood of a single erroneous rejection of the null hypothesis across
the family of tests. FWER is concerned with mistakenly reporting any stati-
stically significant findings. Unwarranted scientific conclusions about evalua-
tion findings could be made as a result of even one mistake and that resear-
chers may select erroneous significant findings for emphasis when reporting
and publishing results.

The rationale behind the FDR is that a few erroneous rejections may not
be as problematic for drawing conclusions about the family tested when many
null hypotheses are rejected as they would be if only a few null hypotheses
are rejected. The rejection of many null hypotheses is a signal that there are
real differences across the contrasted groups.

FDR is a less conservative measure than the FWER, especially if a con-
siderable fraction of all null hypotheses are false. Thus, as reported below,
methods that control the FDR could yield tests with greater statistical power
than those that control the FWER. The choice of which error criterion to
control is important and must be made prior to the data analysis.

6.3.1 Statistical Solutions to the Multiple Testing Pro-
blem

A large body of literature describes statistical methods to adjust type I errors
for multiple testing ([?, 55, 56, 33]). The literature suggests that there is not
one method that is preferred in all instances. Rather, the appropriate measure
will depend on the study design, the primary research questions that are to
be addressed, and the strength of inferences that are required.

Methods for FWER Control

Until recently, most of the literature on multiple testing focused on methods
to control the FWER at a given α level (that is, methods to ensure that
the FWER ≤ α). The most well-known method is the Bonferroni procedure,
which sets the significance level for individual tests at α/N where N is the
number of tests.

The Bonferroni procedure controls the FWER when all null hypothe-
ses are true or when some are true and some are false (that is, it provides
strong control of the FWER). The Bonferroni method applies to both conti-
nuous and discrete data, controls the FWER when the tests are correlated,
and provides adjusted confidence bounds (by using α/N rather than α in the

108



calculations). Furthermore, it is flexible because it controls the FWER for
tests of joint hypotheses about any subset of N separate hypotheses (inclu-
ding individual contrasts). The procedure will reject a joint hypothesis H0 if
any p-value for the individual hypotheses included in H0 is less than α/N .
The Bonferroni method, however, yields conservative bounds on type I error
and, hence, has low power.

Many modified and sometimes more powerful versions of the Bonferroni
method have been developed that provide strong control of the FWER. Here
some examples are provided:

• Sidák (1967) [48] developed a slightly less conservative bound where
the significance level for individual tests is set at 1− (1− α)1/N rather
than α/N . This method has properties similar to those of the Bonfer-
roni method and is slightly more powerful, although it does not control
the FWER in all situations in which test statistics are dependent.

• Holm (1979) [31] developed a sequential step-down method : (1) or-
der the p-values from the individual tests from smallest to largest,p1 ≤
p2... ≤ pN , and order the corresponding null hypothesesH0(1), H0(2), ..., H0(N);
(2) define k as the minimum j such that pj > α/(N − j + 1); and (3)
reject all H0(j) for j = 1, ..., (k − 1). This procedure is more powerful
than the Bonferroni method because the bound for this method se-
quentially increases whereas the Bonferroni bound remains fixed. The
Holm method controls the FWER in the strong sense, but cannot be
used to obtain confidence intervals.

• Hochberg (1988) [29] developed a step-up procedure that involves se-
quential testing where p-values are ordered from largest to smallest
(rather than vice versa as for the Holm test). The method first defines
k as the maximum j such that pj ≤ α/(N − j + 1), and then rejec-
ts all H0(j) for j = 1, ..., k. This procedure is more powerful than the
Holm method, but the control of the FWER is not guaranteed for all
situations in which the test statistics are dependent (although simula-
tion studies have shown that it is conservative under many dependency
structures).

• Bootstrap and permutation resampling methods are alternative, computer-
intensive methods that provide strong control of the FWER ([56]).
These methods incorporate distributional and correlational structures
across tests, so they tend to be less conservative than the other general-
purpose methods and, hence, may have more power. Furthermore, they
are applicable in many testing situations.
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Methods for FDR Control

Benjamini and Hochberg ([3]) showed that when conducting N tests, the
following four-step procedure will control the FDR at the α level:

1. Conduct Nseparate t-tests, each at the common significance level α.

2. Order the p-values of the N tests from smallest to largest, where p1∗ ≤
p2 ≤ ... ≤ pN are the ordered p-values.

3. Define k as the maximum j for which pj ≤
j

N
α

4. Reject all null hypotheses H0(j)j = 1, 2, ..., k.. If no such kexists, then
no hypotheses are rejected.

This step-up sequential procedure, which has become increasingly popular
in the literature, is easy to use because it is based solely on p-values from the
individual tests. Benjamini and Hochberg [3] first proved that this procedure
(BH procedure) controls the FDR for continuous test statistics and Benjamini
and then proved that this procedure also controls the FDR for discrete test
statistics [4].

The original result was proved assuming independent tests corresponding
to the true null hypotheses (although independence was not required for
test statistics corresponding to the false null hypotheses). More research is
needed to assess whether the BH procedure is robust when independence and
positive regression dependency are violated.

6.3.2 Related problems

There are two related concerns with the adjustment procedures discussed
above:

1. they result in tests with reduced statistical power

2. they could result in tests with even less power when the test statistics
are correlated (dependent).

Loss in Statistical Power

The statistical procedures that control for multiplicity reduce type I error
rates for individual tests. Consequently, these adjustment procedures result
in tests with reduced statistical power. the probability of rejecting the null
hypothesis given that the null hypothesis is false. Stated differently, these
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adjustment methods reduce the likelihood that the tests will identify true dif-
ferences between the contrasted groups. The more conservative the multiple
testing strategy, the greater the power loss.

Multiplicity adjustments involve a trade-off between type I and type II
error rates. Conservative testing strategies, such as the Bonferroni and similar
methods, can result in considerable losses in the statistical power of the tests,
even if only a small number of tests are performed. The less conservative BH
test has noticeably more power if a high percentage of all null hypotheses are
false.

Dependent Test Statistics

Individual test statistics are likely to be related in many situations.
Some of the adjustment methods discussed above (such as the Bonferroni

and Holm methods) control the FWER at a given α level when tests are
correlated. However, for some forms of dependency, these methods may adjust
significance levels for individual tests by more than is necessary to control
the FWER. This could lead to further reductions in the statistical power of
the tests. For example, if test correlations are positive and large, each test
statistic is providing similar information about intervention effects, and thus,
would likely produce similar p-values. Consequently, in these situations, fewer
adjustments to type I error rates are needed to control the FWER.

Finally, the BH method controls the FDR under certain forms of depen-
dency and for certain test statistics, but not for others.
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Capitolo 7

Conclusions

The objective of this thesis was to characterize the genome of the entire chro-
mosome 1 of A.thaliana, a small flowering plants used as a model organism in
studies of biology and genetics, on the basis of a recent mathematical model
of the genetic code.

First I have reviewed the main mathematical features of the model and
its symmetry properties. Then, I have analyzed the whole chromosome 1 of
A.thaliana by creating specific routines that, by using genome annotations,
extract and build seven groups of sequences: genes, exons, introns, coding
sequences (CDS), intergenes, untranslated regions (UTR) and regulatory se-
quences. Then I created fictitious sequences called long introns in order to
have a type of sequence to be compared with CDS.

The nucleotide sequences were then transformed into binary sequences
based on the definition of the three different dichotomic classes: Rumer, hid-
den and parity. So I generated 18 random variables corresponding to the
proportion of 1 in each one of the binary string computed in and out of fra-
me 1 and 2 on both the sense and the antisense strand . These 18 variables,
along with the 4 variables relating to the proportions of A, C, G and T of
each sequence, were used to conduct three different types of analysis.

First, it is carried out a descriptive analysis with the aim to characterize
the different portions of the genome on the basis of 22 variables described
above. Results indicate the presence of regularities in each portion of the
genome considered. In particular intergenes, DNA sequences present between
two successive genes that have no apparent biological or regulating function,
show an impressive regularity given by:

p ' 60% r ' 31% h ' 49%
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in all binary sequences analyzed (computed on both the sense and the anti-
sense strand, and undergone to all the transformations).

Moreover we can observe the presence of remarkable differences between
coding sequences (CDS and exons) and non-coding sequences. Since mean
values of dichotomic classes variables vary with frame only for coding se-
quences, frame seems to be important only for them. This effect is higher
in CDS than exons, suggesting a sort of “union effect” that occurs when
fragments of coding sequences (exons) join together to form a CDS.

For what concerns the specific role of each dichotomic class, we could
assume that parity class is important in order to distinguish between coding
sequences in sense and antisense strand while Rumer and hidden classes seem
to be useful in order to discriminate different kinds of non-coding sequences.
In particular introns seem to minimize hidden class mean values.

In a second moment I wanted to verify if the dichotomic classes were able to
discriminate between the different portions of the genome. So I created a set
of logistic regression models in order to discriminate between pairs of portions
of the genome using, as regressors, different combinations of the variables
previously created. The results obtained show that dichotomic classes seem to
be useful in order to discriminate between coding and non-coding sequences,
as to underline the importance of frame. Once again there seems to be a sort
of ”union effect” that enhance, when we consider CDS, the features observed
in exons. However I realized the use of dichotomic classes does not improve,
almost always, the ability of discriminating different portions of the genome
respect to what is obtained using only proportion of bases.

Finally, I wanted to check the existence of short-range dependence between
binary sequences computed on the basis of the different dichotomic classes.
I used three different measures of dependence: the well-known χ2 − test and
two indices derived from the concept of entropy i.e. Mutual Information (MI)
and Sρ, a normalized form of “Bhattacharya Hellinger Matusita distance”.
The results obtained show that there is a significant short-range dependence
structure only for the coding sequences. This dependence involves in particu-
lar CDS, highlighting once again the existence of a sort of ”union effect” when
the exons join together to form a CDS. The existence of such a dependence
structure is a clue of an underlying error detection nd correction mechani-
sm, whose biological bases are partly known (for example the proofreading
process by DNA polymerase).

I have also compared the results obtained using the different indices of
dependence. It is clear that both Sρ and mutual information are better than
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χ2 in detecting dependence structures between binary sequences. All three
indices, in fact, reveal a dependence between the same combinations of dicho-
tomic classes. However, MI and Sρ do it in a significantly higher percentage
of sequences analyzed with respect to what χ2 do. However, it is not possible
to define which is the best between MI and Sρ as they seem to have the same
ability to detect dependence structures .

In conclusion of my thesis work, I can say that the mathematical model
here described is a useful tool for interpreting the different portions of the
genetic code of A.thaliana. Dichotomic classes seem in fact useful in discrimi-
nating the coding portions of the genome (sequences which are transcribed
and translated) from the non-coding ones. They also seem to characterize
the different non-coding portions of the genome. The presence of a short-
range dependence structure and the enhanced effect that is observed in CDS
compared to exons suggest that this mathematical structure of the genetic
code can be the basis of both the recognition of the different portions of co-
ding sequences present within a same gene and the error detection/correction
mechanism.

No doubt, further studies are needed in order to assess how the infor-
mation carried by dichotomic classes could discriminate between coding and
noncoding sequence and, therefore, contribute to unveil the role of the ma-
thematical structure in error detection and correction mechanisms. Still, I
have shown the potential of the approach presented for the understanding
the management of genetic information.

It will be interesting to perform the same type of analysis on the genome
of other organisms considered as models for studies of molecular biology and
genetics such as the nematode Caenorabditis elegans, the fruitfly Drosphila
melanogaster, the bacterium Escherichia coli and the mouse Mus musculus.

The main long term objective of this research is the understanding, in
informational terms, of the coding/decoding strategies that govern the accu-
racy of genetic processing, with particular emphasis on the error detection
and correction mechanisms and its possible implementation in terms of dy-
namical molecular machines. I believe that this approach could help to keep
the promises and hopes related to molecular biology and the Human Genome
Project.
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Appendice A

Dichotomic class tables
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A.1 Normal sequences

A.1.1 Median values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 56.05 38.04 47.66 56.25 37.97 47.76 56.88 37.79 46.94
CDS 50.25 43.88 51.85 51.57 41.04 54.84 58.78 38.23 45.94

Exons 52.00 41.94 50.82 52.63 39.62 52.00 56.52 38.98 47.54
Introns 61.11 34.48 38.89 60.50 32.99 38.46 59.38 32.56 37.93

Long Int 60.44 33.42 41.07 60.29 33.16 40.94 60.00 33.13 40.78
IG 60.85 30.59 49.42 60.82 30.56 49.40 60.84 30.54 49.35

UTR 60.00 34.58 43.61 60.00 34.55 43.57 60.00 34.55 43.66
Reg 60.00 34.55 45.00 60.00 34.52 44.65 60.00 34.97 45.10

Tabella A.1: Median values of dichotomic class percentages computed in sense
strand for each sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 56.80 37.55 51.36 56.88 38.15 51.32 56.52 37.85 51.15
CDS 54.62 38.24 48.87 56.90 49.33 49.35 51.30 43.10 44.08

Exons 54.84 40.00 48.94 56.00 45.78 49.12 53.23 42.58 46.67
Introns 60.61 29.17 60.82 61.54 26.76 61.54 61.71 28.57 61.29

Long Int 60.45 29.12 58.91 60.69 28.62 59.05 60.71 29.17 59.05
IG 60.86 30.67 49.40 60.78 30.75 49.41 60.85 30.65 49.44

UTR 60.00 31.58 53.73 60.00 31.65 53.95 59.81 31.58 53.95
Reg 60.00 32.69 50.46 60.00 33.33 50.23 59.00 32.35 50.00

Tabella A.2: Median values of dichotomic class percentages computed in
antisense strand for each sequence class
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A.1.2 Mean values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 55.19 38.87 48.00 55.86 38.66 48.18 56.84 38.56 47.17
CDS 50.13 44.09 51.88 51.63 41.74 54.78 58.67 38.81 45.90

Exons 52.13 42.17 50.58 52.71 39.93 51.44 56.26 39.47 47.41
Introns 61.21 34.85 38.74 60.40 33.06 38.33 59.29 32.82 37.83

Long Int 60.67 33.22 41.04 60.42 32.74 40.87 60.05 32.56 40.76
IG 60.62 31.48 49.19 60.53 31.43 49.07 60.42 31.49 49.13

UTR 60.22 35.27 44.55 60.01 35.24 44.23 60.15 35.25 44.31
Reg 59.67 35.86 44.08 59.72 35.84 43.56 60.19 36.53 43.45

Tabella A.3: Mean values of dichotomic class percentages computed in sense
strand for each sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 56.29 38.60 51.04 56.33 39.33 51.01 56.01 39.09 50.59
CDS 54.61 39.05 48.66 56.33 49.32 49.39 51.06 43.64 44.14

Exons 54.85 40.75 49.09 55.92 45.28 49.27 53.29 42.76 47.06
Introns 60.45 29.38 61.01 61.58 26.75 61.68 61.74 28.64 61.36

Long Int 60.57 29.15 58.66 60.92 28.43 58.85 60.94 29.04 58.78
IG 60.56 31.56 49.12 60.47 31.56 49.09 60.54 31.53 49.14

UTR 60.12 32.16 52.20 59.70 32.40 52.30 59.71 32.19 52.65
Reg 60.39 32.61 49.50 59.74 33.28 48.97 59.18 33.15 49.13

Tabella A.4: Mean values of dichotomic class percentages computed in
antisense strand for each sequence class
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A.2 Complementary sequences

A.2.1 Median values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 56.67 40.54 52.16 55.96 40.07 52.10 56.37 41.00 52.88
CDS 59.76 46.42 47.81 48.21 41.08 44.82 52.63 53.85 53.74

Exons 56.99 46.15 48.15 50.54 43.48 47.00 53.57 50.00 51.43
Introns 59.38 30.43 61.11 60.71 30.30 61.54 60.87 30.30 62.07

Long Int 60.00 31.25 58.93 60.36 31.13 59.06 60.38 31.05 59.22
IG 60.79 31.96 50.22 60.80 32.08 50.28 60.85 32.00 50.29

UTR 60.00 33.33 55.19 60.00 33.33 55.22 60.00 33.52 55.10
Reg 60.00 33.33 52.09 60.00 33.64 51.82 60.00 33.45 51.69

Tabella A.5: Median values of dichotomic class percentages computed in sense
strand for each complement sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 56.43 40.69 48.49 56.57 40.51 48.48 57.13 40.99 48.71
CDS 48.77 43.46 50.90 53.31 41.28 50.41 60.64 49.01 55.67

Exons 51.35 43.33 50.00 54.05 42.86 50.00 57.89 46.81 52.63
Introns 60.00 34.78 39.18 60.39 36.00 38.46 61.11 35.71 38.71

Long Int 60.29 35.25 41.09 60.46 35.48 40.95 60.66 35.42 40.95
IG 60.77 31.89 50.25 60.87 31.95 50.22 60.77 31.92 50.19

UTR 60.00 36.64 45.24 60.00 36.36 45.00 60.00 36.54 44.93
Reg 60.00 36.59 46.99 60.00 36.67 46.83 60.00 36.36 46.76

Tabella A.6: Median values of dichotomic class percentages computed in
antisense strand for each complement sequence class
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A.2.2 Mean values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 56.43 41.27 51.78 55.33 40.97 51.61 56.07 42.43 52.62
CDS 59.40 46.45 47.72 48.28 41.51 44.82 52.40 54.02 53.70

Exons 56.68 46.36 48.08 50.94 44.24 47.10 53.60 50.05 51.13
Introns 59.38 30.37 61.25 60.66 30.20 61.67 60.88 30.25 62.17

Long Int 60.09 30.84 58.96 60.52 30.78 59.13 60.53 30.84 59.24
IG 60.56 32.64 50.00 60.46 32.70 50.03 60.68 32.67 49.97

UTR 59.98 33.95 53.82 60.09 33.99 54.00 60.10 34.11 53.92
Reg 59.69 33.91 51.29 60.01 34.71 50.60 59.81 34.40 50.71

Tabella A.7: Mean values of dichotomic class percentages computed in sense
strand for each complement sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 55.90 41.21 48.74 55.97 40.90 48.77 56.74 41.62 49.19
CDS 48.77 43.97 51.02 52.98 41.58 50.29 60.44 49.19 55.55

Exons 51.72 43.59 50.08 54.12 43.32 49.83 57.55 46.78 52.04
Introns 59.69 34.92 38.99 60.21 36.10 38.32 61.06 35.82 38.64

Long Int 60.19 34.58 41.34 60.52 34.93 41.15 60.83 34.86 41.22
IG 60.64 32.51 50.05 60.61 32.62 49.97 60.44 32.62 49.93

UTR 59.63 37.18 46.23 59.95 36.96 45.98 59.82 36.97 45.62
Reg 59.96 38.05 46.34 59.86 37.64 45.85 60.23 37.15 45.69

Tabella A.8: Mean values of dichotomic class percentages computed in
antisense strand for each complement sequence class
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A.3 Reverted sequences

A.3.1 Median values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 56.43 40.69 48.49 56.57 40.51 48.48 57.13 40.99 48.71
CDS 48.77 43.46 50.90 53.31 41.28 50.41 60.64 49.01 55.67

Exons 51.35 43.33 50.00 54.05 42.86 50.00 57.89 46.81 52.63
Introns 60.00 34.78 39.18 60.39 36.00 38.46 61.11 35.71 38.71

Long Int 60.29 35.25 41.09 60.46 35.48 40.95 60.66 35.42 40.95
IG 60.77 31.89 50.25 60.87 31.95 50.22 60.77 31.92 50.19

UTR 60.00 36.64 45.24 60.00 36.36 45.00 60.00 36.54 44.93
Reg 60.00 36.59 46.99 60.00 36.67 46.83 60.00 36.36 46.76

Tabella A.9: Median values of dichotomic class percentages computed in sense
strand for each reverted sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 56.67 40.54 52.16 55.96 40.07 52.10 56.37 41.00 52.88
CDS 59.76 46.42 47.81 48.21 41.08 44.82 52.63 53.85 53.74

Exons 56.99 46.15 48.15 50.54 43.48 47.00 53.57 50.00 51.43
Introns 59.38 30.43 61.11 60.71 30.30 61.54 60.87 30.30 62.07

Long Int 60.00 31.25 58.93 60.36 31.13 59.06 60.38 31.05 59.22
IG 60.79 31.96 50.22 60.80 32.08 50.28 60.85 32.00 50.29

UTR 60.00 33.33 55.19 60.00 33.33 55.22 60.00 33.52 55.10
Reg 60.00 33.33 52.09 60.00 33.64 51.82 60.00 33.45 51.69

Tabella A.10: Median values of dichotomic class percentages computed in
antisense strand for each reverted sequence class
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A.3.2 Mean values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 55.90 41.21 48.74 55.97 40.90 48.77 56.74 41.62 49.19
CDS 48.77 43.97 51.02 52.98 41.58 50.29 60.44 49.19 55.55

Exons 51.72 43.59 50.08 54.12 43.32 49.83 57.55 46.78 52.04
Introns 59.69 34.92 38.99 60.21 36.10 38.32 61.06 35.82 38.64

Long Int 60.19 34.58 41.34 60.52 34.93 41.15 60.83 34.86 41.22
IG 60.64 32.51 50.05 60.61 32.62 49.97 60.44 32.62 49.93

UTR 59.63 37.18 46.23 59.95 36.96 45.98 59.82 36.97 45.62
Reg 59.96 38.05 46.34 59.86 37.64 45.85 60.23 37.15 45.69

Tabella A.11: Mean values of dichotomic class percentages computed in sense
strand for each reverted sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 56.43 41.27 51.78 55.33 40.97 51.61 56.07 42.43 52.62
CDS 59.40 46.45 47.72 48.28 41.51 44.82 52.40 54.02 53.70

Exons 56.68 46.36 48.08 50.94 44.24 47.10 53.60 50.05 51.13
Introns 59.38 30.37 61.25 60.66 30.20 61.67 60.88 30.25 62.17

Long Int 60.09 30.84 58.96 60.52 30.78 59.13 60.53 30.84 59.24
IG 60.56 32.64 50.00 60.46 32.70 50.03 60.68 32.67 49.97

UTR 59.98 33.95 53.82 60.09 33.99 54.00 60.10 34.11 53.92
Reg 59.69 33.91 51.29 60.01 34.71 50.60 59.81 34.40 50.71

Tabella A.12: Mean values of dichotomic class percentages computed in
antisense strand for each reverted sequence class

121



A.4 Global transformation 1
Here is median values tables for sequences undergone to keto/amino global
transformation :

A.4.1 Median values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 43.33 61.99 48.63 44.04 62.08 48.59 43.63 62.23 48.94
CDS 40.24 56.12 44.23 51.79 59.10 45.25 47.37 61.77 49.77

Exons 43.01 58.33 45.16 49.46 60.87 45.83 46.43 61.29 47.83
Introns 40.62 65.71 53.12 39.29 67.57 52.78 39.13 67.74 52.94

Long Int 40.00 66.67 52.81 39.64 66.91 52.63 39.62 66.95 52.68
IG 39.21 69.49 49.52 39.20 69.57 49.54 39.15 69.57 49.49

UTR 40.00 65.74 51.16 40.00 65.71 51.35 40.00 65.79 51.35
Reg 40.00 66.15 50.59 40.00 66.28 50.73 40.00 65.71 50.91

Tabella A.13: Median values of dichotomic class percentages computed in
sense strand for each gt1 sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 43.57 62.48 50.26 43.43 61.89 49.65 42.87 62.19 50.24
CDS 51.23 61.76 56.83 46.69 50.84 45.76 39.36 56.90 53.88

Exons 48.65 60.09 53.85 45.95 54.79 47.83 42.11 57.75 52.11
Introns 40.00 71.43 43.75 39.61 73.91 44.00 38.89 72.00 43.40

Long Int 39.71 71.01 46.58 39.54 71.49 46.67 39.34 70.97 46.43
IG 39.23 69.43 49.51 39.13 69.34 49.53 39.23 69.45 49.61

UTR 40.00 68.75 47.06 40.00 68.57 46.75 40.00 68.67 46.99
Reg 40.00 68.18 47.06 40.00 67.69 47.34 40.00 68.33 47.37

Tabella A.14: Median values of dichotomic class percentages computed in
antisense strand for each gt1 sequence class
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A.4.2 Mean values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 43.57 61.17 48.05 44.67 61.42 48.27 43.93 61.51 48.72
CDS 40.60 55.92 44.39 51.72 58.43 45.40 47.60 61.19 49.85

Exons 43.32 58.13 45.47 49.06 60.61 46.13 46.40 60.86 48.08
Introns 40.62 65.47 53.21 39.34 67.23 52.84 39.12 67.47 52.95

Long Int 39.91 66.89 52.43 39.48 67.36 52.33 39.47 67.54 52.40
IG 39.44 68.68 49.46 39.54 68.75 49.52 39.32 68.68 49.55

UTR 40.02 65.11 51.35 39.91 65.15 51.53 39.90 65.15 51.49
Reg 40.31 65.00 51.49 39.99 65.26 51.75 40.19 64.71 51.62

Tabella A.15: Mean values of dichotomic class percentages computed in sense
strand for each gt1 sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 44.10 61.43 50.60 44.03 60.75 49.80 43.26 60.97 50.50
CDS 51.23 60.95 56.47 47.02 50.87 45.76 39.56 56.36 53.84

Exons 48.28 59.60 53.11 45.88 55.36 47.84 42.45 57.64 51.37
Introns 40.31 71.27 43.31 39.79 73.91 43.58 38.94 72.02 42.90

Long Int 39.81 71.06 46.24 39.48 71.79 46.36 39.17 71.17 46.09
IG 39.36 68.60 49.52 39.39 68.60 49.68 39.56 68.65 49.68

UTR 40.37 68.21 46.58 40.05 67.98 46.16 40.18 68.21 46.32
Reg 40.04 68.15 46.20 40.14 67.74 45.87 39.77 68.05 45.66

Tabella A.16: Mean values of dichotomic class percentages computed in
antisense strand for each gt1 sequence class
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A.5 Global transformation 2
Here is median values tables for sequences undergone to purine/pyrimidine
global transformation :

A.5.1 Median values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 43.95 59.50 51.29 43.75 60.00 51.32 43.12 59.03 50.88
CDS 49.75 53.58 55.77 48.43 59.08 54.75 41.22 46.15 50.23

Exons 48.00 54.10 53.57 47.37 57.14 52.94 43.48 50.00 50.82
Introns 38.89 70.21 44.44 39.50 70.37 44.68 40.62 70.37 44.44

Long Int 39.56 68.89 46.64 39.71 69.05 46.78 40.00 69.07 46.72
IG 39.15 68.14 50.34 39.18 68.00 50.33 39.16 68.10 50.35

UTR 40.00 66.67 48.18 40.00 66.67 47.95 40.00 66.67 47.95
Reg 40.00 66.67 48.15 40.00 66.67 47.51 40.00 66.67 47.46

Tabella A.17: Median values of dichotomic class percentages computed in
sense strand for each gt2 sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 43.20 59.33 49.67 43.12 59.53 50.28 43.48 59.05 49.68
CDS 45.38 56.54 43.08 43.10 58.87 54.16 48.70 50.99 46.05

Exons 45.16 56.97 44.44 44.00 57.69 50.00 46.77 53.49 46.21
Introns 39.39 65.45 53.68 38.46 64.29 53.57 38.29 64.52 53.91

Long Int 39.55 64.85 52.90 39.31 64.60 52.78 39.29 64.63 53.02
IG 39.14 68.18 50.33 39.22 68.13 50.34 39.15 68.14 50.23

UTR 40.00 63.64 52.24 40.00 63.92 52.55 40.19 63.64 52.17
Reg 40.00 63.71 51.06 40.00 63.93 50.53 41.00 64.29 50.87

Tabella A.18: Median values of dichotomic class percentages computed in
antisense strand for each gt2 sequence class
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A.5.2 Mean values

p0 r0 h0 p1 r1 h1 p2 r2 h2
Genes 44.81 58.77 51.75 44.14 59.11 51.52 43.16 57.62 51.07
CDS 49.87 53.55 55.61 48.37 58.70 54.60 41.33 45.98 50.15

Exons 47.87 54.00 53.08 47.29 56.46 52.33 43.74 50.35 50.37
Introns 38.79 70.28 44.02 39.60 70.44 44.30 40.71 70.40 44.19

Long Int 39.33 69.37 46.68 39.58 69.43 46.76 39.95 69.36 46.69
IG 39.38 67.51 50.21 39.47 67.46 50.12 39.58 67.50 50.08

UTR 39.78 66.44 47.67 39.99 66.40 47.39 39.85 66.30 47.43
Reg 40.33 66.90 46.41 40.28 66.26 45.58 39.81 66.65 45.71

Tabella A.19: Mean values of dichotomic class percentages computed in sense
strand for each gt2 sequence class

p0a r0a h0a p1a r1a h1a p2a r2a h2a
Genes 43.71 58.83 49.20 43.67 59.18 50.00 43.99 58.46 49.30
CDS 45.39 56.03 43.45 43.67 58.59 54.16 48.94 50.81 46.08

Exons 45.15 56.73 44.93 44.08 57.28 50.07 46.71 53.59 46.54
Introns 39.55 65.40 53.92 38.42 64.23 53.55 38.26 64.52 54.24

Long Int 39.43 65.52 52.87 39.08 65.18 52.73 39.06 65.24 52.99
IG 39.44 67.64 50.18 39.53 67.53 50.00 39.46 67.56 50.00

UTR 39.88 63.20 52.39 40.30 63.40 52.72 40.29 63.41 52.56
Reg 39.61 62.77 51.22 40.26 63.44 50.81 40.82 63.78 51.02

Tabella A.20: Mean values of dichotomic class percentages computed in
antisense strand for each gt2 sequence class
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Appendice B

Distributions
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B.1 Dichotomic classes distributions

Figura B.1: proportions of dichotomic classes (sense) in gene sequences
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Figura B.2: proportions of dichotomic classes (sense) in intergene sequences
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Figura B.3: proportions of dichotomic classes (sense) in exon sequences
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Figura B.4: proportions of dichotomic classes (sense) in CDS sequences
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Figura B.5: proportions of dichotomic classes (sense) in intron sequences
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Figura B.6: proportions of dichotomic classes (sense) in long intron sequences
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Figura B.7: proportions of dichotomic classes (sense) in UTR sequences
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Figura B.8: proportions of dichotomic classes (sense) in regulatory sequences
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Figura B.9: proportions of dichotomic classes (antisense) in gene sequences
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Figura B.10: proportions of dichotomic classes (antisense) in intergene
sequences
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Figura B.11: proportions of dichotomic classes (antisense) in exon sequences
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Figura B.12: proportions of dichotomic classes (antisense) in CDS sequences
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Figura B.13: proportions of dichotomic classes (antisense) in intron sequences
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Figura B.14: proportions of dichotomic classes (antisense) in long intron
sequences
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Figura B.15: proportions of dichotomic classes (antisense) in UTR sequences
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Figura B.16: proportions of dichotomic classes (antisense) in regulatory
sequences
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B.2 Base distribution

Figura B.17: proportions of bases in gene sequences
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Figura B.18: proportions of bases in intergene sequences
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Figura B.19: proportions of bases in exon sequences
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Figura B.20: proportions of bases in coding sequences (CDS)
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Figura B.21: proportions of bases in intron sequences
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Figura B.22: proportions of bases in long intron sequences
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Figura B.23: proportions of bases in UTR sequences
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Figura B.24: proportions of bases in regulatory sequences
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