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Preface

This thesis is based upon the work I performed during my graduate studies and

is basically made of two parts, corresponding to the two different projects I have

conducted as a PhD student: The first one, on entanglement entropies, dates

back to my Master thesis, where we started off by studying the Von Neumann

entropy of the XYZ spin-1/2 chain. This project has been carried on mainly at

the University of Bologna, under the guidance of Prof. F. Ravanini and Prof. E.

Ercolessi, and with the fruitful collaboration of Dr. F. Franchini, who now works

at the Massachusett Institute of Technology, USA; the second part is instead

based on the project I have conducted at the University of Oxford on the out-

of-equilibrium physics, with Prof. F.H.L. Essler (supervisor) and Dr. M. Fagotti

(post-doc). At Oxford I spent one year of my doctorate as a graduate visiting

student, member of Worcester College.
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Chapter 1

Introduction

In this thesis we shall investigate some properties of integrable one-dimensional

quantum systems. From a theoretical point of view one-dimensional models are

particularly interesting because they are strongly interacting, since particles can-

not avoid each other in their motion, and collisions can never be ignored. Further-

more, in one dimension also the role of the quantum statistics is somehow special,

since it is impossible to exchange two particles without having them interacting.

In addition to this, it has to be said that exaclty solvable models are of great

importance in physics not just from a theoretical point of view, but also from

the experimentalist’s perspective. The reason is that in such cases theoretical

and experimental results can be compared directly and without any ambiguity.

Moreover they often generate new and non-trivial situations, which could not be

found perturbatively. In this dissertation we shall focus on two important aspects

of integrable one-dimensional models: Their entanglement properties at equilib-

rium and their dynamic correlators after a quantum quench. The phenomenon of

entanglement is probably amongst the most fundamental properties of quantum

systems, distinguishing the quantum from the classical world. Even if it was first

discussed more than 75 years ago (Einstein et al. [1935] and Schrodinger [1935])

the interest in studying the entanglement, especially in many-body systems, is

still growing. Entanglement manifests itself for instance when a measurement of

an observable of a subsystem affects drastically and istantaneously the outcome

of a measurement of another part of the system, no matter how distant they are

in space. What is extremely fascinating about this effect is the fact that such

2



a correlation propagates at infinite speed. The interest in studying and under-

standing the features of entangled states has received an huge boost with the

advent of “quantum information” in the ’90, where entanglement is considered a

resource, because such entangled states are the basis for enhancing the efficiency

of quantum computation protocols (Nielsen and Chuang [2000]). Starting within

the context of quantum information a huge progress to quantify the entanglement

has been made, which has then found important applications in the study of ex-

tended many-body systems. In this other framework the entanglement entropy -

which is a popular way for quantifying the entanglement content of a quantum

system, even if, not the only one - is considered an important indicator of quan-

tum phase transitions, and its behaviour varying the system sizes, geometries

and other physical quantities such as the mass-gap uncovers universal features

characterizing the critical points (see the seminal paper Calabrese and Cardy

[2004], and also Calabrese and Cardy [2006a], Calabrese and Cardy [2009]). The

first part of this thesis will be therefore devoted to the study of the entangle-

ment entropy in one-dimensional integrable systems, with a special focus on the

XYZ spin-1/2 chain, which, in addition to being integrable is also an interacting

model. We will derive its Renyi entropies in the thermodynamic limit (and also

the Von Neumann as a special case), and its behaviour in different phases and

for different values of the mass-gap will be analysed (chapter 3 and 4). In the

second part of this thesis we will study the dynamics of correlators after a quan-

tum quench, which represent a powerful tool to measure how perturbations and

signals propagate across a quantum chain (or a continuous field theory). From an

experimental point of view the study of the out-of-equilibrium physics has been a

difficult task for many years, since genuine quantum properties of a system can-

not be preserved for a long time, because of decoherence and dissipation. Only

in the last decade the physics of ultra-cold atomic gases overcame these prob-

lems, thanks to the fact that they are high-tunable systems, weakly coupled to

the external enviroment so that quantum coherence can be preserved for larger

times. Basically they behave as “quantum simulators”, where the interactions

with external potentials may be modified dynamically. Moreover the experimen-

tal realization of low-dimensional systems has unreveiled the important role that

dimensionality and conservation laws play in quantum non-equilibrium dynamic.
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These fascinating properties have recently been addressed in an experiment on

the time-evolution of non-equilibrium Bose gases in one dimension, which is often

refered to as the equivalent of the “Newton’s cradle” (Kinoshita et al. [2006b]).

One of the most important open problems is represented by the characterization

of a system that evolves out-of-equilibrium after a sudden change of one (or more)

external parameter(s). This kind of time-evolution is commonly called quantum

quench. Even if in theory the time-evolution of local observables could be com-

puted from first principles, this is almost always an incredibly hard task, which

could be difficult to solve even numerically. For these reasons exploiting the most

advanced mathematical techniques or developing different approaches in order

to takle this problem is very important to draw general conclusion about quan-

tum quenches. For instance if local observables become stationary for long times

after a quench (although the entire system will never attain equilibrium), the

characterization of these steady states becomes a fundamental issue if we want

to compute expectation values at late times without solving the too complicated

non-equilibrium dynamics. In this regard some features of the system play a cru-

cial role, such as integrability, which means the existence of an infinite number of

independent conservation laws. The general belief is that non-integrable systems

reach a stationary state which can be described by means of a single parameter,

an effective temperature. The state at late times is to all purposes equivalent to

a thermal one with that temperature. For integrable systems a single parameter

is no longer sufficient to describe the state at late times, and it is widely believed

that the behaviour of local observables could be explained by the so called gener-

alized Gibbs ensemble (GGE) (Rigol et al. [2007]). In this dissertation a special

attention will be given to the semi-classical approach for computing quantum

correlators, which will be applied to the transverse field Ising chain (TFIC) and

the O(3) non-linear sigma model (chapter 6). In both cases we will derive the

asymptotic behavior of the two-point correlator of the order parameter after a

quench. Comparisons with other exact techniques and numerical results will be

discussed. Finally we will show that, from a general point of view, if equal-time

correlators of local observables at late times after a quench are described by a

particular statistical ensemble, then also different-times correlators are described

by the same ensemble (chapter 7). In other words when a stationary state exists,
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static and dynamic properties of a system are characterized by the same ensem-

ble, which we believe is a new and important result.

The structure of this thesis is the following: Chapters 2 and 5 are reviews on the

entanglement properties and the semi-classical method for the TFIC respectively,

and their purpose is just to introduce the reader to the content of the subsequent

chapters, which contain the original results of this dissertation. These chapters

themselves are structured like articles, with an abstract (containing the references

to the corresponding published papers) at the beginning and conclusions at the

end. In particular in the third chapter we will study in detail the entanglement

entropies of the XYZ spin-1/2 model, in the entirety of its phase diagram and

in the thermodynamic limit. We will see how these entropies signal the lines of

phase transition of the spin chain, and how points with the same value of the

entropy lying in different phases are connected by a modular transformation in

the parameter space. Yet we will discover that the entanglement entropies close

to the ferromagnetic critical points of the model describe what we call an essential

critical point. In practice in any neighbor of these points it is possible to find any

possible (real) value of the entropy. Our analytical results will be also checked

numerically by means of DMRG simulations. In the fourth chapter we will study

analytically the corrections to the leading terms in the Renyi entropy of both the

model on a lattice and the model in the continuous scaling limit, finding signif-

icant deviations from näive expectations. In particular we will show that finite

size and finite mass effects yield different contributions, and thus violate simple

scaling arguments.

In the sixth chapter the focus will turn to the semi-classical approach to the non-

equilibrium dynamics of the O(3) non-linear sigma model, where we will predict

quench-dependent relaxation times and correlation lenghts. The same method

will be also applied to the TFIC, where the semiclassics can be directly com-

pared to other exact techniques, to unveil the limits of this method. Finally in

the seventh chapter we will consider in general the problem of dynamical corre-

lations after a quantum quench in integrable systems, where we will show that

in the absence of long-range interactions in the final Hamiltonian the dynamics

is determined by the same ensemble that describes static correlators. For many

integrable models we know that these correlators of local observables after a quan-
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tum quench relax to stationary values, which are described by a GGE. Therefore

the same GGE then determines dynamical correlators and we will also see that

the basic form of the fluctuation-dissipation theorem still holds.

Finally let us notice that, even if there is a logical and chronological flow from

the first to the last chapter, each one has been kept voluntarily independent, and

can be read singularly.
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Chapter 2

Entanglement in integrable

systems

In this first chapter we will introduce the description of entanglement in many-

body systems and review the main properties of the reduce density matrices

and the entanglement entropies. Some analytical techniques for computing these

quantities will be discussed, along with a brief introduction to the Density Matrix

Renormalization Group (DMRG), which is the most efficient numerical algorithm

to obtain the low energy physics of quantum many-body systems with high accu-

racy. Both analytical and numerical approaches will be used later in this thesis

to describe the entanglement features of the XYZ spin-1/2 chain.

This chapter is based on the recent review article “Entanglement in solvable

many-particle models”, written by I. Peschel, arXiv:1109.0159 and Braz. J. Phys.

42, 267 (2012), even if the material used here has been adapted to the purpose.

2.1 The general framework

The notion of entanglement can be dated back to 1935 when it was introduced

by E. Schrödinger in a series of three articles (Schrodinger [1935]). At the same

time A. Einstein, B. Podolski and N. Rosen discussed the implication of their

famous gedankenexperiment, intended to reveal what they believed to be inade-

quacies of quantum mechanics. Nowadays the same kind of experiments is usually
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2. Entanglement in integrable systems

formulated by considering a pair of spins (the original EPR paradox considered

positions and momenta of quantum particles), and typically this is the framework

in which one encounters entanglement first. The concept of entanglement has to

do with the fundamental features of quantum mechanics and the information

content of wave functions. For a long time it was a topic discussed mainly in the

quantum optics community and for physical systems with few degrees of freedom.

However over the last three decades it has seen a revival thanks to inputs from

many different areas, such as the theory of black holes, the analytic and numerical

investigation of quantum spin chains and the field of quantum information. In the

first part of this thesis we will be interested mainly on the entanglement entropies

of spin chains, or more in general on entanglement in condensed matter physics.

In this case one almost always deals with large systems and many degrees of free-

dom. When investigating the entanglement properties of a quantum system the

protocol is usually the following: we start with the total system which has been

prepared in a given quantum state |ψ〉, then we divide the system into two parts

(in space or at the level of the Hilbert space)1, and finally we ask ourselves how

the two parts are coupled in |ψ〉. There is a general way to answer this question,

namely one must bring the quantum state |ψ〉 into a well-defined standard form,

which will explicitly display the coupling between the two parts the system has

been divided into. This technique is called Schmidt decomposition, we will de-

scibe it in detail in a moment. In practice one uses mathematical objects which

determine the properties of a subsystem, the so-called reduced density matrices

(RDMs). As we will see in the follow they also contain information on the entan-

glement and for this reason they will be the basic tool throughout the first half

of this thesis.

The quantum states we will consider are ground states of integrable models.

These models are very important in physics, not just from a theoretical point of

view but also from the experimentalist’s perspective, because in such cases ana-

lytical and experimental results can be compared without any ambiguity. As in

other contexts, they serve as point of orientation which allow to study the features

of the problem and to develop a solid feeling on the overall picture. Moreover the

1Also the multi-partite entanglement can be investigated, but this topic will not be ad-
dressed in this thesis.
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2. Entanglement in integrable systems

entanglement properties of a system turn out to be crucial for the performance

of a Density Matrix Renormalization Group simulation (DMRG), a numerical

technique which is deeply used in numerical investigations in condensed matter

physics.

2.2 The Schmidt decomposition

Let us start by considering a quantum state |ψ〉 and divide the system into parts

A and B (Alice and Bob). We can immediately expand |ψ〉 as:

|ψA∪B〉 =
∑

m,n

Am,n|ψAm〉|ψBn 〉, (2.1)

where {ψAm} and {ψBn } are orthonormal bases in the two Hilbert spaces HA and

HB. Note that the sum in (2.1) is double and in general the matrix of coeffi-

cients Am,n is rectangular, since the dimensions of the two Hilbert spaces can

differ. Nevertheless we can factorize it by using the singular value decomposition

method (SVD). This is a widely used technique to decompose a matrix into sev-

eral component matrices, exposing many of the useful and interesting properties

of the original matrix. The decomposition of a matrix is often called factoriza-

tion. In practice any rectangular matrix A (real or complex) can be written as:

A = UΛV†, (2.2)

where U is a m × m orthogonal matrix (UU† = I), V is a n × n orthogonal

matrix (VV† = I), and Λ is a m× n matrix whose off-diagonal entries are all 0’s

and whose diagonal elements satisfy:

λ1 ≥ λ2 ≥ . . . λr ≥ 0. (2.3)

This allows us to re-write equation (2.1) as:

|ψA∪B〉 =
∑

m,k,p,n

Um,kΛk,pV
†
p,n|ψAm〉|ψBn 〉. (2.4)
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2. Entanglement in integrable systems

Now by making use of the fact that Λk,p ≡ λpδk,p, and combining |ψAm〉 withU and

|ψBn 〉 with V we end up with the following representation for the state |ψA∪B〉:

|ψ〉 =
∑

k

λk|ψAk 〉|ψBk 〉, (2.5)

where k = 1, . . . , r, and r is defined in (2.3) (r ≤ min (m,n)). This representa-

tion is called the Schmidt decomposition (Schmidt [1907]), and has the following

properties:

1. |ψ〉 is expressed as a single sum, and the number of coefficients is limited

by the dimension of the smaller Hilbert space.

2. The sum of the squared of the coefficients
∑ |λk|2 = 1 if the state |ψ〉 is

normalized.

3. The state |ψ〉 is separable if and only if ∃!λi 6= 0, i = 1, . . . , r.

4. As we shall see, the entanglement is encoded in the coefficients λk.

In particular it is worth noticing that when λ1 = 1 and λk = 0 for k > 1 the quan-

tum state |ψ〉 becomes a product state, therefore there is no entanglement in the

system. On the contrary, when λk = 1/
√
r for all k all terms hold equal weight,

and this is the situation where the entaglement is maximal. A few examples for

the Schmidt decomposition in a system of two spins one-half are the following:

(a) |ψ1〉 = | ↑〉| ↓〉, this is trivially a product state, measuring the z-component

of the left spin does not interfere with a later measure done on the right one.

For this reason this state is not entangled. (b) |ψ2〉 = | ↑〉 [a| ↑〉+ b| ↓〉], again
this is a product state. (c) |ψ3〉 = a| ↑〉| ↑〉 + b| ↓〉| ↓〉, this state, differently,

is an entangled state. The result of a measure conducted on the left spin will

immediately tell us what another observer will find out after measuring the right

one.

2.3 Reduced density matrices

The Schmidt structure discussed in the previous section can be also derived from

the density matrices associated with the state |ψ〉, which is also the standard way
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2. Entanglement in integrable systems

to obtain it. Let us start by considering the total density matrix ρ of the system:

ρ = |ψ〉〈ψ|, (2.6)

and, for a chosen splitting, one can trace over the degrees of freedom of one

subsystem. This would leave us with one of the following two density matrices:

ρA = TrB(ρ), ρB = TrA(ρ), (2.7)

These hermitian operators can be used to compute arbitrary expectation values

of physical quantities in the subsystems. Assuming that the state |ψ〉 has the

Schmidt form (2.5), we can immediately re-write the density matrix ρ as:

ρ = |ψ〉〈ψ| =
∑

k,p

λkλ
∗
p|ψAk 〉|ψBk 〉〈ψAp |〈ψBp |, (2.8)

Taking now the trace over the degrees of freedom of one of the two subsystem

leaves us with the following formula for the reduced density matrices:

ρα=(A,B) =
∑

k

|λk|2|ψαk 〉〈ψαk |. (2.9)

From this equation we immediately infer that ρA and ρB have the same non-zero

eigenvalues, which are given by square of the Schmidt coefficients wk = |λk|2.
Moreover their eigenfunctions are exactly the Schmidt functions |ψαk 〉. Therefore
the eigenvalue spectrum of the ρα gives directly the weights of the Schmidt de-

composition, and a look at this spectrum shows the basic entanglement features

of the quantum state, for a chosen bipartition. For these reasons it is often re-

ferred to as entanglement spectrum (H. Li [2008]).

In general ρα describes a mixed state. A generic expectation value in subsystem

α is given by:

〈Aα〉 =
∑

k

|λk|2〈ψαk |Aα|ψαk 〉. (2.10)
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2. Entanglement in integrable systems

Since ρα is hermitian and has non-negative eigenvalues, one can always write:

ρα =
1

Z
e−Hα , (2.11)

where Z is a normalization constant and the operator Hα is called entanglement

Hamiltonian. We will encounter this form again when we will deal with the

entanglement entropy of integrable models.

Usually one has the state |ψ〉 in the form (2.1) and then

ρ = |ψ〉〈ψ| =
∑

m,n,k,p

Am,nA
∗
k,p|ψAm〉|ψBn 〉〈ψAk |〈ψBp |, (2.12)

and taking the trace over |ψBn 〉 gives n = p and we get:

ρA =
∑

m,m′

∑

n

Am,nA
†
n,m′ |ψAm〉〈ψAm′ |. (2.13)

From this expression we clearly see that ρA contains the square hermitian ma-

trix AA† and similarly ρB contains A†A. The form (2.9) in then obtained by

diagonalizing these matrices, and this is the general approach.

2.4 The DMRG algorithm

In this subsection we briefly introduce a numerical procedure called Density Ma-

trix Renormalization Group which will be used to test our analytical results for

the entanglement entropy of the XYZ spin chain. This method, which was intro-

duced by Steven White in 1992 (White [1992] and White [1993]), makes a direct

use of the Schmidt decomposition and the reduced density matrix’s properties we

introduced before.

Let us consider for simplicity a quantum spin one-half chain, with open ends.

The DMRG algorithm, in its simplest version, would execute the following steps:

I Starting point:

Start by taking a small system, let say of 5 − 10 sites. In this framework

compute the ground state exactly (by using a specific algorithm to do that).
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2. Entanglement in integrable systems

II Schmidt decomposition:

Divide the system into two halves, and calculate the corresponding RDM’s.

Diagonalize them and obtain the Schmidt coefficients and Schmidt states.

III Approximation: Keep only the m states with the largest weight wm. The

number m is normally given as an input to the program.

IV Enlargement:

Insert two additional sites in the center. Form a new Hamiltonian in the

basis of kept and additional states. Compute again the ground state.

Go back to point (II) and repeat. For the numerical scheme to work well the

form of the Schmidt spectra is crucial. In order to have good performances, a

rapid drop of the eigenvalues wn is a necessary condition, such that only a small

number of Schmidt states has to be retained. This condition is normally satisfied

by non-critical chains. In some cases even a very small number of Schmdt states

can give a fantastic accuracy for the ground state energy. It is therefore extremely

important to understand the features of the RDM spectra and this motivates us

to study them in the solvable cases, which will be one of the topics of this thesis.

2.5 Entanglement entropies

The full RDM spectra give a very clear impression of the entanglement in a

bipartite system, but nonetheless it would be desirable to have a simpler measure

through one single number. Since the eigenvalues of the RDM’s can be interpreted

as probabilities, and can consider the Shannon entropy, as used in probability

theory, to characterize the wn. In this quantum scenario this gives the so called

(von Neumann) entanglement entropy:

Sα ≡ −Tr(ρα ln ρα) = −
∑

n

wn ln(wn), (2.14)

which is the most common entanglement measure for bipartitions. The subscript

α here refers to the subsystem’s indexes. The von Neumann entropy has the

following properties:
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(a) If ρ represents a pure state then S(ρα) = 0.

(b) S(ρα) = S(U †ραU) for any unitary operator U .

(c) max S(ρα) = ln(Dα), where Dα is the dimension of the Hilbert space Hα.

(d) If λ1 + λ2 + · · ·+ λn = 1, where λi ≥ 0 for all i = 1, . . . , n, then

S(λ1ρ1 + λ2ρ2 + · · ·+ λnρn) ≥ λ1S(ρ1) + λ2S(ρ2) + · · ·+ λnS(ρn).

(e) If a system can be splitted into two subsystems A and B we have:

S(ρAB) ≤ S(ρA) + S(ρB),

and the equality holds when there is no correlation between the two subsys-

tems, that means: ρAB = ρA ⊗ ρB.

From property (c) we are led to a simple interpretation of S. Writing S = ln(Meff)

we can interpret eS as an effective number of states in the Schmidt decomposition.

Another possible measure of the entanglement is the Renyi entropy, which is

defined as (Renyi [1970]):

Sn ≡
1

1− n ln Tr(ρnα), (2.15)

where n can also be non-integer (and complex as well). Sn has similar properties

as S and the same extremal values Sn = 0 and Sn = lnDα. It is worth noticing

that in the limit n→ 1 it reduces to the von Neumann entropy. Morover varying

the parameter n in (2.15) gives us access to a lot of information on ρα, including

its full spectrum (Calabrese and Lefevre [2008] and Franchini et al. [2011]). The

important point is that both entropies measure amutual connection and in general

they are not proportional to the size of the system, as usual thermodynamics

entropies are.

2.6 Exactly solvable models

2.6.1 Free lattice models

The simplest examples of exactly solvable models are the free lattice models.

Let us consider models with a quadratic Hamiltonian in fermionic or bosonic
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operators, in their ground state. Examples belonging to this family are fermionic

hopping models with conserved number of particles, whose Hamiltonian reads as:

Hhop = −1

2

∑

<i,j>

ti,jc
†
icj, (2.16)

where the sum is over nearest neighbours. Another interesting example is the

XY spin one-half chain, which has been proven to be equivalent to free fermions

via the Jordan-Wigner transformation. The most general Hamiltonian for such

a model can be written as:

HXY =
∑

i

[
1 + γ

2
σxi σ

x
i+1 +

1− γ
2

σyi σ
y
i+1

]

− h
∑

i

σzi , (2.17)

where σαi are the Pauli matrices at site i and h is the magnetic field along the z-

direction. For γ = 0 this reduces to the XX model, corresponding to (2.16) with

nearest-neighbour hopping and can also describe a model of hard-core bosons.

For γ 6= 0 is exibits pair creation and annihilation terms. The case γ = 1 needs

special attention: in this case the XY model becomes the transverse field Ising

chain (TFIC), which can be re-written as:

HIsing = −λ
∑

i

σxi σ
x
i+1 −

∑

i

σzi . (2.18)

Despite the simplicity of this model a huge amount of physics has been learned by

analyzing the TFIC in and out-of-equilibrium. Moreover this model is a paradigm

of quantum critical behaviour and quantum phase transitions (Sachdev [2000]):

At zero temperature in the thermodynamic limit it exhibits ferromagnetic (λ > 1)

and paramegnetic (λ < 1) phases, separeted by a quantum critical point at λc = 1.

Notice that the solubility of the models in itself does not necessarily mean that the

RDM’s are easy to compute. In other integrable models, as for instance the XXZ

spin chain, the formulae turn out to be very compplicated, see (Sato and Shiroishi

[2007] and Sato et al. [2006]). However free lattice models have eigenstates with

special properties which allow us to make a simple general statement: the reduced
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density matrices for the ground state can be written as:

ρα =
1

Z
e−Hα , Hα =

L∑

i=1

εif
†
i fi, (2.19)

where L is the number of sites in subsystem α and the operatos (f †
i , fi) are

fermionic or bosonic creation and annihilation operators for single particle states

with eigenvalue εi. These operators are related to the original ones in the sub-

system by a canonical transformation. It is suggestive to notice that ρα has the

form of a thermal density matrix with an effective Hamiltonian Hα which is of

the same free-particle type as H, and also it is already in a diagonal form. The

constant Z ensures the correct normalization trρα = 1.

This form of teh RDM is rather surprising since one finds a similar situation in a

system in contact with a thermal bath. However no assumption about the relative

sizes of the two coupled systems has been made here. More importantly, the op-

erator Hα is not the Hamiltonian H restricted to the subsystem α. Hence (2.19)

is not a true Boltzmann formula. As we will see for the TFIC, Hα corresponds

to an inhomogeneous system even if the subsystem it describes is homogeneous,

and this hold true in general.

In order to explicitly obtain ρα one can basically follow three pathways: (1) the

first one consists in computing the RDM directly, tracing over the degrees of

freedom outside the subsystem α. This method can be used for instance to solve

a system of coupled quantum oscillators (Peschel and Chung [1999]).

(2) The second method to calculate the RDM ρα reduces the whole problem to

the computation of correlation functions, and it has been widely used for free-

fermion systems. An example can be a model of electrons hopping on N lattice

sites in a state described by a Slater determinant. In such a state, all many-

particle correlation functions factorize into products of one-particle functions:

〈c†ic†jckcl〉 = 〈c†ick〉〈c†jcl〉 − 〈c†icl〉〈c†jck〉, (2.20)

where the ground state | . . . 〉 is just the Fermi sea of the electrons. If all the sites

involved in these expectation values belong to the same subsystem, a calculation

using the reduced density matrix must give the same result. This is guaranteed
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by Wick’s theorem if ρα is the exponential of a free-fermion operator:

ρα ∝ exp(−
L∑

i,j=1

hi,jc
†
icj) (2.21)

where i and j are sites within the subsystem. With the analytic form of ρα fixed,

the hopping matrix h is then determined in a way that it gives the correct one-

particle correlation functions Ci,j = 〈c†icj〉. The two matrices are diagonalized by

the same transformation and one finds that the following relation holds:

h = ln[(1−C/C)]. (2.22)

The same formula also relates the eigenvalues of h and C.

(3) The third method that one can use to compute the RDM ρα exploits the

relation between one-dimensional quantum systems and two-dimensional classical

statistical models. Being this method the most relevant with regards to the results

discussed in this thesis1, it will be discussed separately in the next section.

2.6.2 Integrable models and corner transfer matrices

In one dimension one can exploit the relations between quantum chains and two-

dimensional classical statistical models. As we have already said, although these

quantum models are integrable and their ground state is know analytically, a

direct calculation of ρ is in general a difficul task. The difficulties arising in

a direct calculation ca be avoided by mapping the quantum chain onto two-

dimensional classical spin systems. This connection was firstly pointed out by

Nishino et al. (Nishino [1995]) and (Nishino and Okunishi [1997]), the density

matrix of the quantum chain is the partition function of a two-dimensional strip

with a cut perpendicular to it. In fact if the quantum Hamiltonian H and the

classical row-to-row transfer matrix T commute [H,T ] = 0 the ground state of H

is also an eigenstate of T . Therefore the reduced density matrix of a subsystem

A of the chain (ρA = TrB|ψ〉〈ψ|, with B the complement of A) is the partition

1This is the technique used in the next chapter to derive the entanglement entropy of the
XYZ 1/2-spin chain.
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Figure 2.1: Density matrices for a quantum model as a two-dimensional partition
function. Left: expression for ρ. Right: expression for ρA.

function of two half-infinite strips, one extending from −∞ to 0 and the other

from +∞ to 0, with the spins in B identified (see figure (7.5)). This procedure

works for the ground state of a number of integrable quantum chains. For instance

the TFIC can in this way be related to a two-dimansional Ising model on a square

lattice which is rotated through 45 with respect to the horizontal (Peschel et al.

[1999]). In the same way, the XY chain is connected to an Ising model on a

triangular lattice Peschel [2004]. Analogous corrispondences link the XXZ and

XYZ and higher-spin chains to vertex models, as we shall see in detail in the next

chapter. In order to use these relations, however, one needs to actually compute

the classical partition function. This is possible thanks to the help of the corner

transfer matrices (CTM’s) which have been introduced by R. Baxter (Baxter

[1982]). These are partition functions of whole quadrants as shown in figure

(7.5), or sextants when dealing with the triangular lattice. If we multiply these

transfer matrices we can then obtain the reduced density matrix for half-chain
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A B

CD

Figure 2.2: Two-dimensional system lattice built from four corner transfer ma-
trices, A, B, C and D. The arrows indicate the direction of transfer.

as:

ρα ∼ ABCD. (2.23)

Since ρα is given by an infinite strip, one also needs infinite-size CTM’s in this

expression. Luckily it is exactly in this limit that the CTM’s are known for several

non-critical integrable models and have the form:

A = e−uHCTM , (2.24)

where u is a parameter measuring the anisotropy of the two-dimensional model.

This special form is a direct consequence of the star-triangle relations (the classical

analogous of the Yang-Baxter relations) on which the integrability rests (Cardy

[1990]). The effective Hamiltonian HCTM can usually be diagonalized by means

of fermionization. According to the scheme of derivation adopted here, formula

(2.24) applies to half of an infinite chain, but in practice the chain has only to be

much longer that the correlation length.

The method outlined here is very general, however for integrable chains which

satisfy suitable Yang-Baxter equations (Peschel et al. [1999]) it is possible to

write the exponent of equation (2.24) as uHCTM = εÔ, with ε the scale giving the

distance between the energy levels, and Ô is an operator with integer eigenvalues.
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Using this property the entropy is given by:

S = −TrρA ln ρA = −TrρA ln ρA
TrρA

+ lnTrρA = −ε∂ lnZ
∂ε

+ lnZ, (2.25)

where we defined Z = TrρA = Tre−uHCTM . In the next section we will explicitly

show the results for the entanglement entropies of the TFIC, which represents

the simplest possible applications of this analytical technique.

2.6.3 The quantum Ising chain

Let us consider the Hamiltonian defined in (2.18), where the quantum transi-

tion is driven by the parameter λ. The classical equivalent of (2.18) is the two-

dimensional Ising model. For λ = 0 the ground state of the model is a quantum

paramagnet with all the spins aligned with the magnetic field in the x direction,

and 〈σzi 〉 = 0. In the opposite limit λ = ∞ the contribution of the magnetic

field to the interactions is negligible and the ground state is ferromagnetic with

〈σzi 〉 = ±1. The second-order phase transition between these two phases happens

at λ = 1, and the critical exponent characterizing the divergence of the correla-

tion length is ν = 1, that is ξ ' |λ− 1|−1. The CTM’s of the Ising model may be

diagonalized in terms of fermionic operators, and the effectve Hamiltonian reads

as (Peschel et al. [1999]):

HCTM =
∞∑

j=0

εjf
†
j fj. (2.26)

The energy levels are given by:

εj =







(2j + 1)ε forλ < 1,

2jε forλ > 1,
(2.27)

with ε = πK(
√
1−k2)

K(k)
, where K(k) is the complete elliptic integral of second kind

and k = min[λ, λ−1]. For λ < 1 we obtain the following expression for the
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2. Entanglement in integrable systems

partition function:

Z = Tre−uHCTM =
∞∏

j=0

[
1 + e−ε(2j+1)

]
, (2.28)

end the entropy from equation (2.25) becomes:

S = ε
∞∑

j=0

2j + 1

1 + e(2j+1)ε
+

∞∑

j=0

ln(1 + e−(2j+1)ε). (2.29)

The same computation in the ferromagnetic phase gives (λ > 1):

S = ε
∞∑

j=0

2j

1 + e(2j)ε
+

∞∑

j=0

ln(1 + e−(2j)ε). (2.30)

Let us notice that the limiting values of the entropy are S(0) = 0 and S(∞) = ln 2,

in agreement with the expectation that the pure ferromagnetic ground state (λ =

∞) owns two possible accessible configurations with opposite magnetization (that

is, S(∞) = ln 2) whereas the pure quantum paramagnetic ground state (λ = 0)

has only one configuration available with all the spins aligned in the direction of

the magnetic field x and therefore the resulting entropy is zero. Moreover the

entropy has a devergence at the quantum critical point λ = 1, which we want

now to analyze further. For λ → 1 ε → 0 and we can approximate the sums by

integrals:

S ≈
∫ ∞

0

dx

(
2xε

1 + e2xε
+ ln(1 + e−2xε)

)

=
π2

12ε
, (2.31)

and by ≈ we mean in the critical region. If we now use K(0) = π/2 and K(x) =

−1/2 ln(1− x) +O(1− x)0 (Abramowitz and Stegun [1964]),

S ≈ π2

12ε
∼ − 1

12
ln(1− k) = 1

12
ln ξ + C, (2.32)

where in the last step we used ξ ∝ |1− k|−1. This result agrees with the general

result of Cardy and Calabrese (Calabrese and Cardy [2004]), with central charge

c = 1/2 for the Ising model. The constant C is not universal, and as we shall see, it

contains a contribution from the boundary entropy of Affleck and Ludwig (Affleck
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2. Entanglement in integrable systems
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Figure 2.3: Entanglement entropy between two halves of the infinite TFIC as a
function of λ.

and Ludwig [1991]). This limiting case shows a logarithmic critical behaviour.

The effective number of states in the Schmidt decomposition, however, has a

standard power-law behaviour:

Meff ∼ ξ1/12, (2.33)

and in this regard the coefficient of the logarithm in (2.32) can be interpreted as

a critical exponent. The Renyi entropy for this model reads as:

Sn =
1

24
(1 + 1/n) ln ξ + C ′, (2.34)

where again C ′ is a non-univeral constant. An unusual structure is seen if one

looks at the next (subleading) corrections in the expansion. One finds that there

are terms of the form ξ−k/n with k = 1, 2, 3, . . . , where the power depends on

the Renyi index n which determines the number of windings in the path integral

form of ρnα. We will discuss this interesting phenomenon in more details in the

next chapter, where we shall use the same method developed here to derive the

entanglement entropy of the XYZ one-half spin chain (the method is applicable

to all integrable models satisfying a proper Yang-Baxter relation).
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Chapter 3

Exact entanglement entropy of

the XYZ model

In this chapter we will study the Renyi entropy of the one-dimensional XYZ spin-

1/2 chain in the entirety of its phase diagram. The model has several quantum

critical lines corresponding to rotated XXZ chains in their paramagnetic phase,

and four tri-critical points where these phases join. Moreover we will see how

to parametrize the whole phase diagram by using elliptic functions, and in par-

ticular how points with the same values of the entropy lying in different phases

are connected throught a modular transformation. This approach results to be

completely equivalent to the Baxter reparametrization procedure.

This chapter is basically a review of the following papers: “Exact entanglement

entropy of the XYZ model and its sine-Gordon limit”, E. Ercolessi, S. Evange-

listi and F. Ravanini, arXiv:0905.4000, Phys. Lett. A, 374 (2010); “Essen-

tial singularity in the Renyi entanglement entropy of the one-dimensional XYZ

spin-1/2 chain ”, E. Ercolessi, S. Evangelisti, F. Franchini and F. Ravanini,

arXiv:1008.3892, Phys. Rev. B, 83 (2011); “Modular invariance in the gapped

XYZ spin chain”, E. Ercolessi, S. Evangelisti, F. Franchini and F. Ravanini, in

preparation.
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3. Exact entanglement entropy of the XYZ model

3.1 The XYZ chain and its symmetries

The quantum spin-1
2
ferromagnetic XYZ chain can be described by the following

Hamiltonian

ĤXY Z = −
∑

n

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
, (3.1)

where the σαn (α = x, y, z) are the Pauli matrices acting on the site n, the sum

ranges over all sites n of the chain and the constants Jx, Jy and Jz take into

account the degree of anisotropy of the model.

In figure 4.1 we draw a cartoon of the phase diagram of the XYZ model in the
(
Jy
Jx
, Jz
Jx

)

plane. We divided it into 12 regions, whose role will become clear as we

proceed, named Ia,b,c,, IIa,b,c,, IIIa,b,c, . Bold (red-online) continuous lines indicate

the gapless phases. To understand better the model, let us first look at the

Jy = Jx line. Here we have the familiar XXZ model and we recognize the critical

(paramagnetic) phase for
∣
∣
∣
Jz
Jx

∣
∣
∣ < 1 and the (anti-)ferromagnetic Ising phases for

∣
∣
∣
Jz
Jx

∣
∣
∣ > 1. The same physics can be observed for Jy = −Jx. There, one can

rotate every other spin by 180 degrees around the x-axis to recover a traditional

XXZ model. Note, however, that Jz changes sign under this transformation and

therefore the ferromagnetic and anti-ferromagnetic Ising phases are reversed. If

we look at the lines Jz = ±Jx, we are observing a XYX model, i.e. a rotated

XXZ model. Thus the phases are the same as before. Finally, along the diagonals

Jy = ±Jz we have a XYY model of the form

ĤXY Y = −
∑

n

[
Jxσ

x
nσ

x
n+1 + Jy

(
σynσ

y
n+1 ± σznσzn+1

)]
. (3.2)

Thus the paramagnetic phase is for
∣
∣
∣
Jy
Jx

∣
∣
∣ > 1 and the Ising phases for

∣
∣
∣
Jy
Jx

∣
∣
∣ < 1,

with the plus sign (Jy = Jz) for Ising ferromagnet and the minus (Jy = −Jz) for
the anti-ferromagnet.

In this phase diagram we find four tri-critical points at
(
Jy
Jx
, Jz
Jx

)

= (±1,±1).
As each paramagnetic phase can be described as a sine-Gordon theory with

β2 = 8π at the anti-ferromagnetic isotropic point, flowing to a β2 = 0 theory

at the ferromagnetic Heisenberg point, the critical nature of these tri-critical
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Ia

Ib

Ic

Id

IIIa

IIa

IIc

IIb

IIb

IId

IId

IIIa IIIc

IIIc

IIId IIIb

TexPoint fonts used in EMF. 
Read the TexPoint manual before you delete this box.: A A AAA AA

Jz

Jx

Jy

Jx

E2

C1

C2

E1

Figure 3.1: Phase Diagram of the XYZ model in the
(
Jy
Jx
, Jz
Jx

)

plane.

points is quite different. Assuming Jx > 0, at C1 =
(
Jy
Jx
, Jz
Jx

)

= (1,−1) and

C2 =
(
Jy
Jx
, Jz
Jx

)

= (−1, 1) we have two conformal points dividing three equiva-

lent (rotated) sine-Gordon theories with β2 = 8π. At E1 =
(
Jy
Jx
, Jz
Jx

)

= (1, 1)

and E2 =
(
Jy
Jx
, Jz
Jx

)

= (−1,−1), we have two β2 = 0 points which are no longer

conformal, since the low energy excitations have a quadratic spectrum there.

The former points correspond to an antiferromagnetic Heisenberg chain at the

BKT transition, whilst the latter correspond to an Heisenberg ferromagnet at

its first order phase transition. The different nature of the tri-critical points has
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3. Exact entanglement entropy of the XYZ model

been highlighted from an entanglement entropy point of view in (Ercolessi et al.

[2011]) .

We have seen that the model is invariant under a π
2
rotation Rα =

∏

n e
iπ
2
σα
n

of every spin around one of the axes α = x, y, z, followed by the interchange of

the couplings εαβγR̃β,γ on the perpendicular plane (for instance, R̃y,z Jy = Jz,

R̃y,z Jz = Jy). Note that the composition of two rotations, say Ry ·Rz is compen-

sated by the exchange of the coupling in opposite order: R̃x,y · R̃x,z. Similarly,

the inversion of every other spin in a plane Pα =
∏

n σ
α
2n can be compensated by

changing the signs of the couplings on that plane εαβγP̃βγ (where, P̃y,z Jy = −Jy,
P̃y,z Jz = −Jz). Three operations are sufficient to generate all these symmetries,

for instance Rx, Ry and Px (and R̃y,z, R̃x,z and P̃y,z).

These generators relate the different regions of the phase diagram: RxIa = Ib,

RyIa = IIIa, PxIa = Ic and so on. Note that the action of the R̃α,β is to exchange

the coupling, and we have six different orderings of the three coupling constants.

The action of P̃y,z additionally doubles the possible phases given by a set of three

couplings, giving the total of twelve regions of figure 4.1. We will show that

these operators are equivalent to an extension of the modular group, acting in

parameter space.

3.2 Baxter’s solution

The Hamiltonian (3.1) commutes with the transfer matrices of the zero-field eight

vertex model (Baxter [1982]) and this means that they can be diagonalized to-

gether and they share the same eigenvectors. Indeed, as shown by Sutherland

(Sutherland [1970]), when the coupling constants of the XYZ model are related

to the parameters Γ and ∆ of the eight vertex model1 at zero external field by

the relations

Jx : Jy : Jz = 1 : Γ : ∆ , (3.3)

the row-to-row transfer matrix T of the latter model commutes with the Hamil-

tonian Ĥ of the former. In the principal regime of the eight vertex model it

1We adopt the conventions of Baxter [1982] on the relation among Γ,∆ and the Boltzmann
weights of the XYZ chain.
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3. Exact entanglement entropy of the XYZ model

is customary (Baxter [1982]) to parametrize the constants Γ and ∆ in terms of

elliptic functions

Γ =
1 + k sn2(iλ; k)

1− k sn2(iλ; k)
, ∆ = −cn(iλ; k) dn(iλ; k)

1− k sn2(iλ; k)
, (3.4)

where sn(z; k), cn(z; k) and dn(z; k) are Jacoby elliptic functions of parameter k,

while λ and k are the argument and the parameter (respectively) whose natural

regimes are

0 ≤ k ≤ 1 , 0 ≤ λ ≤ K(k′) , (3.5)

K(k′) being the complete elliptic integral of the first kind (85) of argument k′ =√
1− k2.
In light of (3.3), without loss of generality, we rescale the energy and set

Jx = 1. We recall that the parametrization (4.5) of the parameters is particu-

larly suitable to describe an anti-ferroelectric phase of the eight vertex model,

corresponding to ∆ ≤ −1, |Γ| ≤ 1. However, using the symmetries of the model

and the freedom under the rearrangement of parameters, it can be used in all

cases by re-defining the relations that hold between ∆ and Γ and the Boltzmann

weights (for more details see (Baxter [1982])). We can apply the same procedure

to extract the physical parameters of the XYZ model in the whole of the phase

diagram in a fairly compact way. In fact, when |Jy| < 1 and |Jz| < 1 we have:







Γ =
|Jz − Jy| − |Jz + Jy|
|Jz − Jy|+ |Jz + Jy|

,

∆ = − 2

|Jz − Jy|+ |Jz + Jy|
,

(3.6)

while for |Jy| > 1 or |Jz| > 1, we get:







Γ =
min

[

1,
∣
∣
∣
|Jz−Jy |−|Jz+Jy |

2

∣
∣
∣

]

max
[

1,
∣
∣
∣
|Jz−Jy |−|Jz+Jy |

2

∣
∣
∣

] · sgn
(

|Jz − Jy| − |Jz + Jy|
)

,

∆ = −1

2

|Jz − Jy|+ |Jz + Jy|
max

[

1,
∣
∣
∣
|Jz−Jy |−|Jz+Jy |

2

∣
∣
∣

] ,

(3.7)
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3. Exact entanglement entropy of the XYZ model

where Γ and ∆ are given by (4.5). For instance, for |Jy| ≤ 1 and Jz ≤ −1 we

recover Jy = Γ and Jz = ∆, while for Jy ≥ 1 and |Jz| ≤ 1 we have Jy = −∆ and

Jz = −Γ. In figure 4.1 we also divided the phase diagram in the different regions

where a given parametrization applies.

While Baxter’s procedure allows to access the full phase-diagram of the model,

it introduces artificial discontinuities at the boundaries between the regions, as

indicated by the max and min functions and the associated absolute values. In

section (3.5) we will show that, with a suitable analytical continuation of the ellip-

tic parameters, we can extend the parametrization of a given region to the whole

phase diagram in a continuous way, which numerically coincides with Baxter’s

prescription.

3.3 Von Neumann and Renyi entropies

We are now interested in studying the entanglement properties of the XYZ model

in the thermodynamic limit. To this extend, we start with its ground state

| 0 〉 ∈ H and divide the system in two parts, which we take as the semi-infinite

left and right chains, such that H = HR⊗HL (here we prefer to use the notation

R and L instead of A and B for the two subsystems). Then we introduce the

density matrix of the whole system ρ ≡| 0 〉〈 0 |, and trace out one of the two

half-chain:

ρR = TrHL
(ρ). (3.8)

According to (Nishino and Okunishi [1997], Nishino [1995] and Peschel and

Chung [1999]), in the thermodynamic limit we can calculate the reduced density

matrix ρR as product of the four Corner Transfer Matrices A = C and B = D of

the eight vertex model at zero field:

ρR(σ̄, σ̄
′) = (ABCD)σ̄,σ̄′ = (AB)2σ̄,σ̄′ , (3.9)

where σ̄ and σ̄′ are particular spin configurations of the semi-infinite chain.

Generally speaking, the above quantity does not satisfy the constraint TrρR = 1,

so we must consider a normalized version ρ′R. Notice taking the trace of the

reduced density matrix over the remaining half-line we get the normalization of
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3. Exact entanglement entropy of the XYZ model

ρR, which corresponds to the partition function of the eight vertex model:

Z ≡ TrρR. (3.10)

For the zero field eight vertex model with fixed boundary conditions, Baxter

constructed an explicit form of the Corner Transfer Matrices (CTM’s) in the ther-

modynamic limit (Baxter [1982], Baxter [1976] and Baxter [1977]). In (Ercolessi

et al. [2010]) it was shown that, using relation (3.9), the reduced density operator

can be written as

ρR =

(

1 0

0 x2

)

⊗
(

1 0

0 x4

)

⊗
(

1 0

0 x6

)

⊗ . . . , (3.11)

where x ≡ exp[−πλ/2I(k)]. We notice that ρR is a function of λ and k only

through x. Furthermore, (3.11) can be rewritten as

ρR = (AB)2 = e−εÔ . (3.12)

Ô is an operator with integer eigenvalues ( which was defined before equation

(2.25)) and also:

ε ≡ π
λ

2I(k)
. (3.13)

The Von Neumann entropy S can be calculated easily according to (2.25):

S = −Trρ′R ln ρ′R = −ε∂ lnZ
∂ε

+ lnZ , (3.14)

where the partition function can be written as

Z =
∞∏

j=1

(1 + x2j) =
∞∏

j=1

(1 + e−πjλ/I(k)) . (3.15)

Thus we obtain an exact analytic expression for the entanglement entropy of the

XYZ model as

S = 2ε
∞∑

j=1

j

(1 + e2jε)
+

∞∑

j=1

ln(1 + e−2jε) , (3.16)
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3. Exact entanglement entropy of the XYZ model

which is valid for generic values of λ and k. Another quantity of interest to

quantify the entanglement is the Renyi entropy

Sα ≡
1

1− α ln Tr[ρ′αR ] , (3.17)

where α is a parameter.

The Renyi entropy can be seen as a generalized series expansion for the von

Neumann entropy and it is directly related to the spectrum of the reduced density

matrix, see, for instance, (Franchini et al. [2011]). As we have already seen, in

the limit α→ 1 it reduces to the von Neumann entropy.

Using the factorized expression (3.11) for ρ, we can be easily write

ραR =

(

1 0

0 x2α

)

⊗
(

1 0

0 x4α

)

⊗
(

1 0

0 x6α

)

⊗ . . . . (3.18)

With this result and noting that

Trρ′αR = Tr
(ρR
Z

)α

=
TrραR
Zα

=

∏∞
j=1 (1 + e−2jαε)

Zα
, (3.19)

it is now trivial to compute the Renyi entropy of the XYZ model:

Sα =
1

1− α

[

ln
1

Zα
+

∞∑

j=1

ln
(
1 + e−2jαε

)

]

=
α

α− 1

∞∑

j=1

ln
(
1 + e−2jε

)
+

1

1− α

∞∑

j=1

ln
(
1 + e−2jαε

)
. (3.20)

Moreover, by introducting the generalized partition function:

Zα =
∞∏

j=1

(1 + e−2jαε) . (3.21)

we can re-write the Von Neumann entropy as:

S =

(

1− ∂

∂α

)

lnZα

∣
∣
∣
∣
α=1

(3.22)
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3. Exact entanglement entropy of the XYZ model

and the Renyi entropy as:

Sα = lim
β→1

β lnZα − α lnZβ
β − α . (3.23)

These two last expressions are completely equivalent to (3.16) and (4.20) respec-

tively. When ε � 1, i.e. in the scaling limit analogous to the one of (Weston

[2006]), formula (3.16) can be approximated by its Euler-Maclaurin asymptotic

expansion which was introduced in (2.31), yielding

S =

∫ ∞

0

dx

(
xε

1 + exε
+ ln(1 + e−xε)

)

− ln 2

2
+O(ε)

=
π2

6

1

ε
− ln 2

2
+O(ε) (3.24)

This will be used in the next subsection where we will check our analytic results

against some special known cases, namely the XXZ and the XY chain.

3.3.1 The XXZ and XY spin-1/2 chain limits

Let us first consider the case k = 0 (i.e. Γ = 1) and the limit λ → 0+, which

corresponds to the spin 1/2 XXZ. In this limit the eight vertex model reduces

to the six vertex model. Let us note that formula (3.24) coincides exactly with

the one proposed by Weston (Weston [2006]) which was obtained in the study of

more general spin κ/2. In this limit the approximation ε � 1 is still valid and

we can use the result of equation (3.24). From relation (4.5), it follows that

λ =
√
2
√
−∆− 1 +O

(
(−1−∆)3/2

)
(3.25)

Thus equation (3.24) gives

S =
π2

12
√
2

1√
−∆− 1

− ln(2)

2
+O

(
(−1−∆)1/2

)
(3.26)
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Figure 3.2: Decoupled anisotropic Ising lattices. Horizontal and vertical lines
belong to the original eight vertex model lattice, diagonal lines belong to the
dual Ising lattice.

which can be written in a simpler form if we recall that, when ε → 0 (i.e. ∆ →
−1−), the correlation length is given by (Baxter [1982])

ln
ξ

a
=
π2

2ε
− 2 ln(2) +O(e−π

2/ε) (3.27)

where a is the lattice spacing. Recalling that

ε =
√
2
√
−∆− 1 +O

(
(−1−∆)3/2

)
(3.28)

the expression for the entanglement entropy becomes

S =
1

6
ln
ξ

a
+ U +O

(
(−1−∆)1/2

)
(3.29)

where U = − ln(2)/6. This last expression confirms the expected S ∼ c ln(ξ) +U

with c = 1, which is exactly what one should expect, the XXZ model along its

critical line being a free massless bosonic field theory with c = 1.

As a second check, we consider the case Γ = 0, which corresponds to the XY

chain. It is convenient now to describe the corresponding eight vertex model by

using Ising-like variables which are located on the dual lattice (Baxter [1982]),

thus obtaining an anisotropic Ising lattice, rotated by π/4 with respect to the

original one, with interactions round the face with coupling constants J, J ′, as

shown in figure 3.2.

32



3. Exact entanglement entropy of the XYZ model

In our case the Ising lattice decouples into two single sublattices with inter-

actions among nearest neighbors. Now

∆ = sinh(2βJ) sinh(2βJ ′) ≡ k−1
I (3.30)

so that, using the elliptic parametrization, one has

λ =
1

2
I(k′) (3.31)

Thus ε of equation (3.13) becomes

ε =
πI(k′I)

2I(kI)
(3.32)

Let us approach the critical line of the anisotropic Ising model from the ferro-

magnetic phase, i.e. let us assume that kI → 1−. In this case it is straightforward

to write

ε = − π2

2 ln(1− kI)
+O

(
ln−2(1− kI)

)
(3.33)

so that the entanglement entropy becomes

S = −1

6
ln(1− kI) +O

(
ln−1(1− kI)

)
(3.34)

Since ξ−1 = (1− kI) +O ((1− kI)2), we can easily conclude that

S =
1

6
ln
ξ

a
+O

(
ln−1(1− kI)

)
(3.35)

where again the leading term confirms the general expected result with c = 1.

This result is in agreement with what found in previous works (Vidal et al. [2003],

Calabrese and Cardy [2004], Peschel [2004], Its et al. [2005], Jin and Korepin

[2004]) by means of different approaches.

3.3.2 The sine-Gordon limit

In (Luther [1976], Johnson et al. [1973]) it has been proposed that a particular

scaling limit of the XYZ model yields the sine-Gordon theory. In this section we
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will use this connection to compute the exact entanglement entropy between two

semi-infinite intervals of a 1+1 dimensional sine-Gordon model. In his article,

Luther (Luther [1976]) showed that in the scaling limit, where a → 0 while

keeping the mass gap constant, the parameters of the XYZ model and those of

the sine-Gordon theory are connected by the following relation (keeping Jx = 1

from the beginning)

M = 8π

(
sinµ

µ

) (
lr
4

)π/µ

(3.36)

where the parameter µ is defined as

µ ≡ π

(

1− β2

8π

)

= arccos (−Jz) (3.37)

Here M is the sine-Gordon solitonic mass, and lr = l a−µ/π, with

l2 =
1− J2

y

1− J2
z

(3.38)

These relations tell us how the coupling constant Jz is connected to the parameter

β of sine-Gordon, and how Jy scales when we take the scaling limit a→ 0. It is

clear from equation (3.38) that in this limit Jy → 1−. In the following we work

in the repulsive regime 4π < β2 < 8π (which corresponds to 0 < µ < π/2 and

−1 < Jz < 0). In this regime the mass gap of the theory is the soliton mass

M . Taking this limit we use the following parametrization of the XYZ coupling

constants

Γ =
Jz
Jy

, ∆ =
1

Jy
(3.39)

which amounts to a reparametrization of the Boltzmann weights of XYZ suitable

for the |∆| ≤ 1 disordered regime where we are working now (see chapter 10 of

(Baxter [1982]) for details). As a consequence of such reparametrization a minus

sign appears in front of both equations (4.5). Taking the sine-Gordon limit, λ

and k parametrizing Γ and ∆ must now satisfy the following constraint

sn2(iλ) = −
Jz
Jy

+ 1

k − k Jz
Jy

(3.40)
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Considering the parametrization of ∆ and using the properties of the Jacobian

elliptic functions we can write

∆2 =
cn2(iλ)dn2(iλ)

(1− k sn2(iλ))2
=

(

k(1− Jz
Jy
) + Jz

Jy
+ 1
)(

k(1 + Jz
Jy
)− Jz

Jy
+ 1
)

4k
(3.41)

Expanding around k → 1− and collecting ∆2 = 1/J2
y from both sides of the

equation we find

∆2 = 1 +
1

4
(1− J2

z )(k − 1)2 +O(k − 1)3 (3.42)

Using equation (3.36) we obtain

l2 = l2ra
2µ/π = 42−3µ/π

(
Mµa

π sinµ

)2µ/π

(3.43)

where µ is completely fixed by choosing a particular value of Jz. Now using the

definition (3.38) and (3.39) we find

∆2 = 1 + (1− J2
z )4

2−3µ/π

(
Mµa

π sinµ

)2µ/π

+O(a4µ/π) (3.44)

which is valid when a→ 0. Comparing equation (3.42) with (3.44) we can identify

in which way k scales to 1−

k = 1− 23(1−µ/π)
(
Mµa

π sinµ

)µ/π

+O(a2µ/π) (3.45)

Remembering the constraint (3.40) and using the previous expression for k we

have

sn2(iλ) =
−Jz − 1

1− Jz
+O(aµ/π) (3.46)

When k → 1 the elliptic function sn reduces to an hyperbolic tangent, thus we

obtain

tan2 λ =
1 + Jz
1− Jz

+O(aµ/π) −→ λ = arctan

√

1 + Jz
1− Jz

+O(aµ/π) (3.47)
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Now we can evaluate the expression (3.16) in this limit. Using the following

asymptotic behaviour of the elliptic integral I(x)

I(x) ≈ −1

2
ln(1− x) + 3

2
ln 2 +O(1− x), x ≈ 1− (3.48)

along with the approximation (3.24), we can write the exact entanglement entropy

of a bipartite XYZ model in the sine-Gordon limit

SsG = − π

12

ln(1− k)− 3 ln 2

arctan

√
1 + Jz
1− Jz

− ln 2

2
+O(1/ ln(a)) (3.49)

The leading correction to this expression comes from the O(ε) term of equation

(3.24). The constant Jz is connected to β by

Jz = − cos π

(

1− β2

8π

)

(3.50)

thus using this property and the scaling expression (3.46) we can write down the

entanglement entropy as

SsG =
1

6
ln

(
1

Ma

)

+
1

6
ln




sin
[

π
(

1− β2

8π

)]

(

1− β2

8π

)



+O(1/ ln(a)) (3.51)

This result confirms the general theory due to (Calabrese and Cardy [2004], Cardy

et al. [2007]), in the limit where the system is bipartite in two infinite intervals,

with the central charge equal to 1, as it should, because the sine-Gordon model

can be considered a perturbation of a c = 1 conformal field theory (described

by a free massless boson compactified on a circle of radius
√
π/β) by a relevant

operator of (left) conformal dimension β2/8π. We can write

SsG ≈
1

6
ln

(
1

Ma

)

+ U(β) a→ 0 (3.52)
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where the constant term U(β) takes the value

U(β) =
1

6
ln




sin
[

π
(

1− β2

8π

)]

(

1− β2

8π

)



 (3.53)

At β2 = 4π, when the sine-Gordon model becomes the free Dirac fermion

theory, it assumes the value U(
√
4π) = 1

6
log 2 = 0.11552453..., while at β2 = 8π,

where the theory becomes a relevant perturbation of the WZW conformal model

of level 1 by its operator of left dimension 1
4
, it becomes U(

√
8π) = 1

6
log π =

0.19078814....

We notice that formula (3.51) yields the exact value of the overall constant U(β),

since it has been derived from equation (3.24) which is exact up to terms O(ε). As

mentioned in the introduction and as observed by many authors (Bombelli et al.

[1986], Callan and Wilczek [1994], Bennet et al. [1996], Nishino and Okunishi

[1997]), U should contain a contribution from the Affleck Ludwig boundary term

as well as a model-dependent constant that will be discussed in the next chapter.

3.4 Renyi entropy in terms of theta functions

Expression (3.20) for the entropy is exact in the thermodynamic limit and it

is quite convenient for numerical evaluations. However, to better understand

the behavior of the entropy we can use a more explicitly analytical expression.

This is done by recognizing that (3.20) is essentially a sum of two q-series in the

parameter q = e−ε. These series can be conveniently expressed in terms of Jacobi

37



3. Exact entanglement entropy of the XYZ model

theta functions, which can be defined by the products

θ1(z, q) = 2q1/4 sin z
∞∏

j=1

(
1− q2j

) [
1− 2q2j cos(2z) + q4j

]
, (3.54)

θ2(z, q) = 2q1/2 cos z
∞∏

j=1

(
1− q2j

) [
1 + 2q2j cos(2z) + q4j

]
, (3.55)

θ3(z, q) =
∞∏

j=1

(
1− q2j

) [
1 + 2q2j−1 cos(2z) + q4j−2

]
, (3.56)

θ4(z, q) =
∞∏

j=1

(
1− q2j

) [
1− 2q2j−1 cos(2z) + q4j−2

]
. (3.57)

It is then easy to see that we have the identity

∞∏

j=1

(
1 + q2j

)
=

(
θ22(0, q)

4q1/2θ3(0, q)θ4(0, q)

)1/6

. (3.58)

With this help, we can write (3.20) as

Sα =
α

α− 1
ln

∞∏

j=1

(
1 + e−2jε

)
+

1

1− α ln
∞∏

j=1

(
1 + e−2jαε

)

=
α

6(α− 1)
ln

θ22(0, q)

θ3(0, q)θ4(0, q)

+
1

6(1− α) ln
θ22(0, q

α)

θ3(0, qα)θ4(0, qα)
− 1

3
ln 2 . (3.59)

and the Von Neumann entropy as

S =
1

6
ln

θ22(0, q)

θ3(0, q)θ4(0, q)
− 1

6

d

dα
ln

θ22(0, q
α)

θ3(0, qα)θ4(0, qα)

∣
∣
∣
∣
α=1

− ln(2)

3

=
1

6
ln

θ22(0, q)

4θ3(0, q)θ4(0, q)
− ln(q)

2

(
2θ43(0, q)− θ42(0, q)

)
(3.60)

These expressions for the entropies are completely equivalent to the series we

started from and might even appear more complicated. However, the advantage

of expressing them in terms of elliptic function will become apparent in the section
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(3.8), where this formulation will allow us to study their behavior.

3.5 Analytical extension of Baxter’s solution

In this section we will show that, using some simple transformations for the elliptic

functions, we can provide some more compact parametrizations for the XYZ

model. In particular we will show how to cover the entire plane (Jy, Jz) by means

of a single parametrization formula, without using the Baxter rearrangement

procedure. To streamline the computation, it is convenient to perform a Landen

transformation on (4.5) and to switch to new parameters (u, l)

l ≡ 2
√
k

1 + k
, u ≡ (1 + k)λ , (3.61)

so that1

Γ =
1 + k sn2(iλ; k)

1− k sn2(iλ; k)
=

1

dn(iu; l)
, (3.62)

∆ = −cn(iλ; k) dn(iλ; k)

1− k sn2(iλ; k)
= − cn(iu; l)

dn(iu; l)
. (3.63)

The natural domain of (λ, k) corresponds to

0 ≤ u ≤ 2K(l′) 0 ≤ l ≤ 1 . (3.64)

We also have the following identities

l′ =
√
1− l2 = 1− k

1 + k
, K(l) = (1 + k)K(k), K(l′) =

1 + k

2
K(k′), (3.65)

from which it follows that the Landen transformation doubles the elliptic pa-

rameter τ(k) = iK(k′)
K(k)

= 2iK(l′)
K(l)

= 2τ(l). Yet, we can re-write ε of (3.13) as:

ε = π
λ

2I(k)
= π

u

2I(l)
. (3.66)

1See, for instance, table 8.152 of (Gradshteyn and Ryzhik)
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Now using (94)) we have

l =

√

1− Γ2

∆2 − Γ2
. (3.67)

Furthermore, elliptic functions can be inverted in elliptic integrals and from (3.63)

we have

iu =

∫ −Γ

−1

dt
√

(1− t2)(1− l′2t2)
= i

[

K(l′)− F (arcsin Γ; l′)
]

. (3.68)

Together, (3.67, 3.68) invert (3.62, 3.63) and, together with (3.6, 3.7), give the

value of Baxter’s parameters for equivalent points of the phase diagram. It is

important to notice that these identities ensure that the domain (3.64) maps into

|Γ| ≤ 1 and ∆ ≤ −1 and vice-versa.

The idea of the analytical continuation is to use (3.67) to extend the domain

of l beyond its natural regime. To this end, let us start from a given region, let

say Ia in fig. 4.1, with |Jz| ≤ 1 and Jy ≥ 1. By (3.7) we have:

Jy(u, l) = −∆ =
cn(iu; l)

dn(iu; l)
, Jz(u, l) = −Γ = − 1

dn(iu; l)
, (3.69)

and thus

l =

√

1− J2
z

J2
y − J2

z

, iu =

∫ Jz

−1

dt
√

(1− t2)(1− l′2t2)
. (3.70)

Notice that within region Ia we can recast the second identity as

u = K(l′) + F (arcsin Jz; l
′) , (3.71)

which makes u explicitly real and 0 ≤ u ≤ 2K(l′).

We now take (3.70) as the definition of l and use it to extend it over the whole

phase diagram. For instance, in region IIa (0 ≤ Jy ≤ 1, J2
z ≤ J2

y ), using (3.70)

we find l > 1. To show that this analytical continuation gives the correct results,
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Figure 3.3: Contour lines of the parametrization of regions Ia and IIa.

we write l = 1/l̃, so that 0 ≤ l̃ ≤ 1 and use (121) in (3.69), which gives

Jy(u, l) =
dn(iũ; l̃)

cn(iũ; l̃)
, Jz(u, l) = −

1

cn(iũ; l̃)
, (3.72)

which reproduces Baxter’s definitions in (3.6): Γ = −Jz
Jy
, ∆ = − 1

Jy
. Note that we

also rescale the argument ũ = lu, so that 0 ≤ ũ ≤ 2K(l̃′). This shows that we

can use (3.69) to cover both regions Ia and IIa, by letting 0 ≤ 1 <∞ (note that

l = 1 corresponds to the boundary between the two regions). Figure 3.3 show

the contour lines obtained with this parametrization.

We can proceed similarly for the rest of the phase diagram. However, the sec-

ond part of (3.70) needs some adjustment. Since elliptic integrals are multivalued

functions of their parameters, to determine the proper branch of the integrand

one starts in the principal region and follows the analytical continuation. The
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result of this procedure can be summarized as

iu = i

[

K(l′) + F (arcsin Jz; l
′)

]

+

[

1 + sign(Jy)

]

K(l)

= F (arcsin Jy; l)−K(l) + i

[

1 + sign(Jz)

]

K(l′) , (3.73)

where all the elliptic integrals here are taken at their principal value. We did not

find a single parametrization without discontinuities in the whole phase diagram.

Close to Jz ' 0, the first line of (3.73) is continuous, while the second has a jump.

The opposite happens for Jy ' 0, but, due to the periodicity properties of (3.62,

3.63), both expressions are proper inversions of (3.69) valid everywhere.

Thus, we accomplished to invert (3.69) and to assign a pair of (u, l) to each

point of the phase diagram (Jy, Jz), modulo the periodicity in u space. The

analysis of these mappings shows an interesting structure. From (3.70) it follows

that that regions I’s have 0 ≤ l ≤ 1, while II’s have l ≥ 1, which can be written

as l = 1/l̃, with 0 ≤ l̃ ≤ 1. Finally, regions III’s have purely imaginary l = i l̃/l̃′,

with 0 ≤ l̃ ≤ 1. In each region, the argument runs along one of the sides of a

rectangle in the complex plane of sides 2K(l̃) and i2K(l̃′). Thus, we can write

Jy(z, l) =
cn(ζ u(z); l)

dn(ζ u(z); l)
, Jz(u, l) =

1

dn(ζ u(z); l)
, 0 ≤ z ≤ π, (3.74)

where ζ = 1, l̃, l̃′ in regions I’s, II’s, and III’s respectively. Moreover, u(z) =

i(π − z) 2
π
K(l̃′) for regions of type a; u(z) = (π − z) 2

π
K(l̃) for type b’s; u(z) =

2K(l̃)+ iz 2
π
K(l̃′) for regions of type c; and u(z) = i2K(l̃′)+ z 2

π
K(l̃) for regions of

type d. In figure 3.4 we draw these four paths for the argument and the directions

of the primary periods of the elliptic functions for regions of type I, II, and III.

Figure 3.5 shows the contour lines of (u, l) in (Jy, Jz) plane, as given by (3.74).

It is known that only purely real or purely imaginary arguments (modulo

a half periodicity) ensure the reality of an elliptic function (and thus that the

coupling constant are real and the Hamiltonian hermitian). We will show that this

regular structure for the the path of the argument is actually connected with the

symmetries of the model. The validity of this analytical continuation is checked,

like we just did for region IIa, using the relations connecting elliptic functions
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Figure 3.4: On the top left, in regions of type a, b, c, and d, the argument of the
elliptic functions runs along one of the sides of the rectangle. In the remaining
quadrants, the directions of the quater-periods K(l) and iK(l′) in I, II, and III
regions.

of different elliptic parameters (see 7.7 or (Lawden [1989])). These relations are

rooted in the modular invariance of the torus on which elliptic functions are

defined. In the next section, we are going to show explicitly the action of the

modular group, in covering the phase diagram of the XYZ model.

Before we proceed, we remark that, while it is possible that the validity of

Baxter parametrization outside of its natural domain has been observed before

by other author’s analysis, we did not find any reference to it in the literature and

we believe that we are the first to show in details how to construct the complete

extension to the whole phase diagram, which is condensed in Table 3.1 in the

next section.

3.6 The action of the modular group

In the previous section, we showed that Baxter’s parametrization of the parame-

ters of the XYZ chain can be analytically extended outside of the principal regime

to cover the whole phase-diagram and thus that any path in the (Jy, Jz) R
2 space
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corresponds to a continuous path of (u, l) in C
2. This extension is due to the fact

that the analytical continuation of elliptic functions in the complex plane can

be related to the action of the modular group. We refer to (Lawden [1989]) for

a detail explanation of the relation between elliptic functions and the modular

group and to 7.7 for a collection of useful identities.

Points related by a modular transformations correspond to the same (Γ,∆)

point in the mapping to the eight-vertex model (3.6,3.7). We now want to show

that the modular group can be connected to the symmetries of the model that

we discussed in section (3.1). Let us start again in region Ia, but to make the

modular structure more apparent, this time let us write the parametrization in

terms of theta functions using (82)

Jy =
θ3(0|τ)
θ2(0|τ)

θ2 [(z − π)τ |τ ]
θ3 [(z − π)τ |τ ]

, Jz =
θ3(0|τ)
θ4(0|τ)

θ4 [(z − π)τ |τ ]
θ3 [(z − π)τ |τ ]

, (3.75)

where 0 ≤ z ≤ π, and we used (74).

As the Jacobi elliptic functions are doubly-periodic, the torus on which they

are defined can be viewed as the quotient C/Z2. In region Ia, for 0 ≤ l ≤ 1, the

fundamental domain is the rectangle with sides on the real and imaginary axis,

of length respectively ω1 = 4K(l) and ω3 = i4K(l′), and the path followed by z

is a half-period along the imaginary axis. A modular transformation turns the

rectangle into a parallelogram constructed the same two-dimensional lattice, but

should leave the path of the argument untouched. To this end, we extend the

representation of the modular group to keep track of the original periods along

the axis. In Ia, let us introduce the two vectors σR = ω1

ω1
= 1 and σI = ω3

ω1
= τ

(we remind that, when using theta functions, every length is normalized by the

periodicity on the real axis, i.e. ω1). Later, we will also need to extend the

modular group and thus we introduce the additional complex number φ = −πσI ,
which is a sort of an initial phase in the path of the argument.

With these definitions, we write (3.75) as

Jy =
θ3(0|τ)
θ2(0|τ)

θ2 [z σI + φ|τ ]
θ3 [z σI + φ|τ ] , Jz =

θ3(0|τ)
θ4(0|τ)

θ4 [z σI + φ|τ ]
θ3 [z σI + φ|τ ] . (3.76)
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Regions I Regions II Regions III

Figure 3.5: Contour plots of the (u, l) lines in the different regions of the phase
diagram, as given by (3.74).

The two generators of the modular group act as

T









τ

σR

σI

φ









=









τ + 1

σR

σI

φ









, S









τ

σR

σI

φ









=









− 1
τ

−σR
τ

−σR
τ

−φ
τ









. (3.77)

A general modular transformation which gives τ ′ = c+d τ
a+b τ

also does

σR →
1

a+ b τ
= d− b τ ′, σI →

τ

a+ b τ
= −c+ a τ ′, φ→ φ

a+ b τ
, (3.78)

i.e. it expresses the original real and imaginary periods in terms of the two new

periods.

For instance, applying the S transformation Sτ = τS = − 1
τ
to region Ia we

have

SJy =
θ3(0|τS)
θ2(0|τS)

θ2 [z − π|τS]
θ3 [z − π|τS]

=
θ3(0|τ)
θ4(0|τ)

θ4 [(z − π)τ |τ ]
θ3 [(z − π)τ |τ ]

= Jz , (3.79)

SJz =
θ3(0|τS)
θ4(0|τS)

θ4 [z − π|τS]
θ3 [z − π|τS]

=
θ3(0|τ)
θ2(0|τ)

θ2 [(z − π)τ |τ ]
θ3 [(z − π)τ |τ ]

= Jy , (3.80)

which is equivalent to the Baxter’s elliptic parametrization of region Ib and

shows that

S = R̃y,z = Rx . (3.81)
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The other generator of the modular group Tτ = τT = τ + 1 gives

TJy =
θ3(0|τT )
θ2(0|τT )

θ2 [(z − π)τ |τT ]
θ3 [(z − π)τ |τT ]

=
θ4(0|τ)
θ2(0|τ)

θ2 [(z − π)τ |τ ]
θ4 [(z − π)τ |τ ]

=
Jy
Jz
, (3.82)

TJz =
θ3(0|τT )
θ4(0|τT )

θ4 [(z − π)τ |τT ]
θ3 [(z − π)τ |τT ]

=
θ4(0|τ)
θ3(0|τ)

θ3 [(z − π)τ |τ ]
θ4 [(z − π)τ |τ ]

=
1

Jz
, (3.83)

which maps Ia into region IIIa, in agreement with (3.7) and gives

T = R̃x,z = Ry , (3.84)

as can be seen by rescaling the couplings Jx, Jy, and Jz by 1/Jz.

Finally, we introduce an additional operator P:

P









τ

σR

σI

φ









=









τ

σR

σI

φ+ π [σR + σI ]









, (3.85)

which shifts by half a period in both directions the origin of the path of the

argument. Applying it to Ia gives

PJy =
θ3(0|τ)
θ2(0|τ)

θ2 [zτ + π|τ ]
θ3 [zτ + π|τ ] = −Jy , (3.86)

PJz =
θ3(0|τ)
θ4(0|τ)

θ4 [zτ + π|τ ]
θ3 [zτ + π|τ ] = −Jz , (3.87)

which covers Ic and leads to the identification

P = P̃y,z = Px . (3.88)

The three operation T, S and P generate a group, with is the direct product

G = PSL(2,Z)⊗ Z2. Thus, the group laws are

(S ·T)3 = I, S2 = I, P2 = I, P · S = S ·P, P ·T = T ·P. (3.89)

These are the same group laws satisfied by the generators of the symmetries of
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Region
Modular

σR σI φ τ l Region
Modular

σR σI φ τ l
Generator Generator

Ia I 1 τ −πτ τ l̃ Ic P 1 τ π τ l̃

Ib S 1
τ

1 −π − 1
τ

l̃′ Id SP 1
τ

1 π
τ

− 1
τ

l̃′

IIIa T 1 τ −πτ τ + 1 i l̃
l̃′

IIIc TP 1 τ π τ + 1 i l̃
l̃′

IIb TS 1
τ

1 −π τ−1
τ

1
l̃′

IId TSP 1
τ

1 π
τ

τ−1
τ

1
l̃′

IIIb ST 1
τ+1

τ
τ+1

−πτ
τ+1

−1
τ+1

i l̃
′

l̃
IIId STP 1

τ+1
τ
τ+1

π
τ+1

−1
τ+1

i l̃
′

l̃

IIa TST 1
τ+1

τ
τ+1

−πτ
τ+1

τ
τ+1

1
l̃

IIc TSTP 1
τ+1

τ
τ+1

π
τ+1

τ
τ+1

1
l̃

STS 1
τ−1

τ
τ−1

−πτ
τ−1

τ
τ−1

1
l̃

STSP 1
τ−1

τ
τ−1

π
τ−1

τ
τ−1

1
l̃

Table 3.1: List of the action of modular transformations, according to (3.77,
3.85), in mapping the phase diagram, starting from Ia with the parametrization
given by (3.76)

the XYZ chain, as discussed in the introduction, with the addition of T2 = 1. In

fact, for our purposes, T = T−1 as can be easily check, due to the periodicity

properties of the elliptic functions and the fact that the relation between τ and l

is not single-valued.

We collect in table 3.1 the action of the different transformations generated

by T, S and P in mapping region Ia in the rest of the phase diagram. It is

clear that G is isomorphic to the group generated by R̃y,z, R̃x,z, and P̃y,z, as

we anticipated, and thus, for instance, S · T = R̃y,z · R̃x,z = Rx,z · Ry,z. A few

additional comments are in order. In the previous section we gave a prescription

for the path of the argument around a rectangle, see (3.74) and figure 3.5. This

structure is explained by table 3.1: the S generator interchanges the role of the

axes and thus the path that runs along the imaginary axis in the new basis runs

along the real one, consistently with the prescription given for regions of type b

and d. The action of P is to shift the path and thus interchanges regions of type

a with c and b with d (and viceversa). The role of P can be thought of as that

of promoting the modular group to its discrete affine.

In conclusions, we see that the whole line l2 ∈ (−∞,∞) can be used in (3.74),

which divides in three parts, one for each of the regions of type I, II, or III.

It is known, that, for each point on this line, only if the argument of the elliptic

functions is purely imaginary or purely real (modulo a half periodicity) we are

guaranteed that the parameters of the model are real. Hence the two (four)
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3. Exact entanglement entropy of the XYZ model

paths, related by S (and P) duality. The paths of the argument are compact,

due to periodicity. Thus, the mapping between (u, l) and (Jy, Jz) is topologically

equivalent to R
2 → R ⊗ C ⊗ Z2 ⊗ Z2. Extending the mapping by considering a

generic complex argument u, would render the Hamiltonian non-Hermitian, but

would preserve the structure that makes it integrable.

3.7 Analysis of the entropy

For a quantitative analysis of the Renyi entropy it is now convenient to use the

definition of the parameter ε given in (3.66), as a function of the parameters (z, l).

As it is clear from (4.20), the Renyi entropy can be seen as a function of the this

parameter only. Then, it is a simple, monotonically decreasing function, such

that

lim
ε→0

Sα =∞, lim
ε→∞

Sα = 0. (3.90)

However, the behavior of the entropy as a function of the physical parameters

of the XYZ model Jy and Jz is more complicated, as they define z and l and thus

ε. It is worth remarking that the expressions for the entropy given so far apply

also for all the other integrable models generated by the R-matrix of the eight-

vertex model. For instance, for the XY model one has ε = πI(l′)/I(l) and for the

XXZ model ε = cosh−1 Jz. Compared to these example, the entropy of the XYZ

model is more interesting, since it is truly two-dimensional with its independent

l and z dependence.

To study the entropy in the (Jy, Jz) phase diagram, we thus need to use (3.6,

3.7) and to invert (3.69) to express (z, l) as a function of the two parameters

(Γ,∆). The result was already written in formula (3.67), that we recall here:







l =

√

1− Γ2

∆2 − Γ2

dn(iz; l) =
1

Γ

(3.91)

In figure we plot the Von Neumann entropy in the (Jy, Jz) plane, for −2 <
Jy < 2,−2 < Jz < 2. This is a contour plot, so regions of similar colors have

similar values of the entropy and the line dividing regions of different colors are
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Figure 3.6: Curves of constant entropy of the XYZ model in the (Jy, Jz) plane.
Regions of similar colors have similar entropy values and the line where colors
change are the lines of constant entropy. The brighter is the color, the bigger is
the entropy.

examples of line of constant entropy. We immediately see that the entropy draws

the same phase diagram we presented in figure 4.1, being singular (diverging) on

the critical lines and vanishing on the ferromagnetic Ising lines (Jy = 1, Jz > 1),

(Jy > 1, Jz = 1), (|Jy| < 1, Jz = Jy) and the Jy ↔ −Jy symmetric ones.

The four tri-critical points (Jy = ±1, Jz = ±1) are immediately recognized

as more interesting and we shall study the entropy in their neighbourhoods in

detail. Let us first look at the conformal point (Jy = 1, Jz = −1) and use (4.22)

to write l and z. If we take

Γ = 1− ρ cosφ, ∆ = −1− ρ sinφ, 0 ≤ φ ≤ π

2
, (3.92)
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Figure 3.7: Sketch of the numerical paths along which we check out the validity
of our results. Comparisons between analytical and numerical results along the
different lines drawn in this picture are shown in figures (3.8), (3.9), (3.12) and
(3.13).

we have 





l = (tan(φ) + 1)−1/2 +O(ρ) ,

snh (z; l) =
√

2cos(φ) + 2sin(φ)
√
ρ+O

(
ρ3/2

) . (3.93)

Thus, l is not defined at the tri-critical point, since its value as ρ → 0 depends

on the direction φ of approach (for φ = 0, l = 1 and for φ = π/2, l = 0). From

(3.93) we see that z → 0 as ρ→ 0 and, using sn(u, l) ' u+O(u2), we find

z =
√

2cos(φ) + 2sin(φ)
√
ρ+O

(
ρ3/2

)
. (3.94)

Thus, ε ∼ √ρ and in any neighbourhood of the conformal point the entropy is

diverging. In particular, on the direction φ = 0, since I(1) → ∞, the entropy is

divergent for any ρ (as expected, since this is a critical line).
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Figure 3.8: Comparison between analytical (solid lines) and numerical results
(DMRG data points) along the XXZ line of figure (3.7), for the Von Neumann
(VN) and Renyi (S3, S5) entropies. t is a coordinate which parametrizes the
coupling constants: Jz = −1 − t and Jy = 1. The logarithm in the definition of
the entropies has been chosen to base 2, while the numerical data are extrapolated
in the L→∞ limit.

Expanding around the other tri-critical point as

Γ = −1 + ρ cosφ, ∆ = −1− ρ sinφ, 0 ≤ φ ≤ π

2
, (3.95)

we find 





l = (tan(φ) + 1)−1/2 +O(ρ) ,

snh (z; l) = −
√

2cos(φ) + 2sin(φ)
√
ρ+O

(
ρ3/2

) . (3.96)

Thus, l has exactly the same behavior as in the previous case, while snh(z)

remains unchanged apart from the sign. However in the neighbour of this point

we must use the following expansion to extract the limit of z, sn(u, l) ' (u−2iI′)+
O ((u− 2iI′)2). This implies z ∼ 2I′ close to E1 and thus ε ∼ I(l′)/I(l), which

can take any non-negative value from 0 to ∞ for φ that goes from 0 to π/2. As

we mentioned, the behaviour of the entropy is completely determined by ε, thus

the Renyi entropy has an essential singularity at E1,2, and can take any positive

real value in any neighbourhood of it. In conclusion, we can say that the points
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Figure 3.9: Comparison between analytical (solid lines) and numerical results
(DMRG data points) along a XYZ line of figure (3.7), for the Von Neumann
(VN) and Renyi (S3, S5) entropies. Here t is defined through the equations:
Jz = 2/3 − t/2 and Jy = 1 +

√
3t/2. The logarithm in the definition of the

entropies has been chosen to base 2, while the numerical data are extrapolated
in the L→∞ limit.

C1,2 are ordinary critical points, in the sense that in vicinity of this point the

Von Neumann block entropy has the universal behavior found in (Calabrese and

Cardy [2004]). A detailed study of the entropy near these conformal critical points

(and also along the conformal critical lines will be presented in the next chapter).

The behavior of the entropy around the tri-critical points E1,2 is clearly quite

different. It can be seen directly from the plot that it is direction dependent, since

it is an accumulation point for iso-entropy curves. Moreover, it shows a strong

discontinuity crossing it along one of the critical lines, since it goes suddenly

from diverging to vanishing. In the next sections we will describe the nature of

the transition around these points and show that there the entropies have an

essential singularity. Another point with the same singular behavior was found

at the bi-critical point of the anisotropic XY model in a transverse magnetic field

in (Franchini et al. [2008]) and was named essential critical point for the singular

behavior of the entropy there.
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yJ
S

Figure 3.10: Three-dimensional plot of the Von Neumann block entropy as a
function of the coupling constants of the XYZ model. The entanglement entropy
diverges when the system is critical.

3.8 The essential critical points

Let us now analyze in more details the properties of the ferromagnetic tri-critical

points E1,2. Just looking at a blowout of the entropy plot close to this point in

figure 3.11 it is evident that depending on the direction of approach the entropy

can take any positive value arbitrarily close to it.

This point is very different from all other points along the critical line, because

it is not conformal, since low energy excitations are magnons with a quadratic

dispersion relation ε(q) = 1 − cos q. This implies a breakdown of the usual

conformal predictions by Calabrese and Cardy (Calabrese and Cardy [2004]).

We showed in the previous sections the singular behavior of the entropy close

to this point, since it can take any positive, real value arbitrarily close to it.
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Figure 3.11: Curves of constant entropy of the XYZ model in the vicinity of
(Jy = 1, Jz = 1). We can see that near the essential critical point the lines of
constant entropy grow denser.

Moreover, from figure 3.11 one sees that from any point in the phase diagram one

can reach one of the non-conformal points following a curve of constant entropy.

A point with the same singular behavior for the entropy was already described in

(Franchini et al. [2008]) as the bi-critical point of the XY model and it was also a

non-conformal point with a quadratic dispersion relation. So far, we studied this

point by means of the expressions that we have from the underlying integrable

structure. However, it is possible to understand the singular behavior of the

entropy in more qualitative, physical terms by looking at the structure of the

ground state wavefunction. At the isotropic point, the Hamiltonian is given by

ĤXXX = −
N∑

n=1

~σn · ~σn+1 . (3.97)

Since SU(2) is unbroken at this point, the Hamiltonian commutes with the gen-
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Figure 3.12: Analytical (solid lines) and numerical results (DMRG data points)
for the Von Neumann and Renyi entropies along a path surrounding the essential
critical point in regime Ia (see figure (3.7)). The parameter t parametrizes the
couplings as: Jz = 1− 1/5 cos(3/44 πt) and Jy = 1 + 1/5 sin(3/44 πt). Note that
here the logarithm in the definition of the entropies has been chosen to base 2,
while the numerical data are extrapolated in the L→∞ limit.

erators

S2 ≡ 1

4

N∑

n=1

~σn · ~σn , Sz ≡ 1

2

N∑

n=1

~σzn , S± ≡ 1

2

N∑

n=1

~σ±
n . (3.98)

Thus, the ground state is N + 1-fold degenerate, since it is in the representation

S2 = N
2

(
N
2
+ 1
)
. This corresponds to a basis of ferromagnetic states, aligned

along the different axis. Which state is realized depends on the spontaneous

symmetry breaking: a (classical) state aligned in a particular direction will have

no entanglement, but a superposition of such states will have an entanglement

growing with the number of (classical) states involved.

Hence, we understand that on one of the Ising ferromagnetic lines, the easy-

axis anisotropy singles out a classical state as the ground state. Thus, along

one of these lines, close to the critical point, the entropy will exactly vanish. In

the paramagnetic phases, we have an easy plane anisotropy and thus the ground

state is constructed by a large superposition of classical states, yielding a large
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entropy, diverging in the thermodynamic limit, as prescribed by CFT. In the rest

of the phase diagram, we will have an intermediate situation. This qualitative

picture helps in interpreting the strong discontinuity in crossing the essential

critical point.

Note that the picture is different at the anti-ferromagnetic tri-critical point,

since there the ground state always belong to a subspace without finite magne-

tization and hence it does not go under such a strong discontinuity crossing the

tri-critical point. In fact, while a classical ferromagnetic state is an eigenvector

of the Hamiltonian anywhere on a ferromagnetic Ising line, a classical Neel state

approximates an eigenstate of the AFM Ising line only far from the isotropic

point. From the examples of the XYZ chain and of the XY model (Franchini

et al. [2007]), we can infer that points of discontinuous phase transitions show a

characteristic singular behavior of the entanglement entropy, which can be easily

detected numerically and might be used as an efficient tool to distinguish, for

example, between first and higher order phase transitions in more complicated

models (Boschi et al. [2003], Franca and Capelle [2008]). It is important to re-

mark that Sα and the correlation length show very different behaviors close to

E1,2, since, as it is expected for any phase transition, ξ diverges as one approaches

the critical lines/points, without showing the essential singularity characteristic

of the entropy (Ercolessi et al. [2011]). Thus, close to the discontinuous points

E1,2 the entropy formula derived in (Calabrese and Cardy [2004]) is no longer

valid: indeed it applies in the vicinity of all conformal points of the critical lines

(including the BKT points C1,2), while it fails if we are close to non-conformal

points, such as E1,2 where the spectrum of excitations has a quadratic dispersion

relation for small momenta.

Let us now try to understand more quantitatively the behaviour of the Renyi en-

tropy in proximity of the essential critical point. Suppose we approach the point

E1 following a straght line in the (Jy, Jz)-plane:







Jz = 1− t
Jy = 1 +m · t,

(3.99)

where t is a parameter measuring the distance from E1 along a straight line, and
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m is an angular coefficient such that the path belongs to the principal regime

of figure (4.1). When t → 0 we approach the critical point. Expanding the

expressions (4.22) for z and l in this limit, we obtain the following expansion

for ε (when expanding z and l in the intermediate steps we used the Lagrange

inversion theorem):

ε =
πI
(

[(1 +m)−
1
2 ]′
)

I
(

(1 +m)−
1
2

) − π(1 +m)
1
2

√
2 I
(

(1 +m)−
1
2

) t
1
2 +O(t). (3.100)

Now we want to plug this expression into formula (3.59) to obtain the asymptotic

behaviour of the Renyi entropy:

Sα =
α ln(A)− ln(Aα)

6(α− 1)
+

(
B

A
+
Bα

Aα

)

t
1
2 +O(t), (3.101)

where we clearly see that the entropy saturates to a constant value as we approach

the essential critical point. The constants A and B are given by:

A =
θ2(0, e

a)2

θ3(0, ea)θ4(0, ea)
, a =

πI
(
[(1 +m)−1/2]′

)

I ((1 +m)−1/2)
, (3.102)

and

B = −[θ2(0, ea)θ4(0, ea)θ′3(0, ea) + θ2(0, e
a)θ3(0, e

a)θ′4(0, e
a)

− 2θ3(0, e
a)θ4(0, e

a)θ′2(0, e
a)]

b eaθ2(0, e
a)

θ3(0, ea)2θ4(0, ea)2
,

(3.103)

where θ′ is the derivative of the Jacobi theta function with respect to its second

argument and

b = − π(1 +m)1/2√
2 I((1 +m)−1/2

. (3.104)

Aα and Bα are obtained from A and B by replacing a → αa and b → αb.

Approaching the essential critical point along a straight line the correlation length

diverges as:

ξ−1 ∝ t1/2, (3.105)
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Figure 3.13: Analytical (solid lines) and numerical results (DMRG data points)
for the Von Neumann entropy along a straight path towards the essential critical
point in regime Ia (see figure (3.7)). The parameter t parametrizes the couplings
as defined in equation (3.99). Note that here the logarithm in the definition of
the entropy has been chosen to base 2, while the numerical data are extrapolated
in the L→∞ limit.

therefore the Renyi entropy goes like:

Sα ≈ c1α(m) + c2α(m) ξ−1/2, (3.106)

where c1α and c2α are constants depending on the slope m of the line approaching

the critical point. This asymptotic behaviour is very different from the one ob-

tained approaching a conformal critical point and holds true even if we get close

to the essential critical point following a parametrization curve with τ constant.

3.9 Conclusions

The solution of the XYZ chain is based on its relation with the eight-vertex model.

However, the relation between the parameters (Γ,∆) of the later is not one to

one with the coupling (Jx, Jy, Jz) (3.1) of the former (and with the Boltzmann

weights of the classical model as well) and the mapping changes in the different
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regions of the phase diagram (3.6, 3.7). We have shown that this re-arrangement

procedure is reproduced by the natural analytical extension of the solution valid

in a given region. We also gave a prescription that relates the parameter (u, l) of

the elliptic functions and the physical parameter of the XYZ model in the whole

of the phase diagram and an inversion formula valid everywhere.

The main interest of this analytical continuation lies in its connection with the

action of the modular group. This connection allowed us to show that a certain

abelian (“affine”) extension of the modular group realizes in parameter space the

physical symmetries of the model. This symmetries are in the form of dualities,

since they connect points with different coupling, related by some spin rotation.

Modular invariance plays a central role in the structure and integrability of

Conformal Field Theories in 1+1 dimension. On its critical lines, the XYZ model

is described by a c = 1 CFT and thus, in the scaling limit, its partition function is

modular invariant in real space. Our results show that, even in the gapped phase,

it is also a modular invariant in parameter space, due to the symmetries of the

model. Elliptic structures are common in the solution of integrable models and it

is tempting to speculate that their modular properties do encode in general their

symmetries and thus the class of integrability-preserving relevant perturbations

that drive the system away from criticality.

We have also studied the bipartite Renyi entropy of the 1-D XY Z spin chain

in its phase diagram, using exact analytical expressions derived from the in-

tegrability of the model. The entropy diverges on the critical lines: close to

conformal points the divergence is logarithmical in the correlation length with

power-law corrections (this point will be discussed extensively in chapter 4). At

the non-conformal points the entropy has an essential singularity. We argued

that this may be a characteristic feature of discontinuous phase transition points

that could allow to easily numerically discriminate between first and higher order

phase transitions.
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Chapter 4

Unusual corrections to the

entanglement entropy

In this chapter we study analytically the corrections to the leading terms in the

Renyi entropy of a massive lattice theory, showing significant deviations from

näıve expectations. In particular, we show that finite size and finite mass effects

give rise to different contributions (with different exponents) and thus violate a

simple scaling argument. In the specific, we look at the entanglement entropy

of a bipartite XYZ spin-1/2 chain in its ground state. When the system is di-

vided into two semi-infinite half-chains, we have an analytical expression of the

Rényi entropy as a function of a single mass parameter. In the scaling limit, we

show that the entropy as a function of the correlation length formally coincides

with that of a bulk Ising model. This should be compared with the fact that,

at criticality, the model is described by a c = 1 conformal field theory and the

corrections to the entropy due to finite size effects show exponents depending on

the compactification radius of the theory. If the lattice spacing is retained finite,

the relation between the mass parameter and the correlation length generates

new subleading terms in the entropy, whose form is path-dependent in phase-

space and whose interpretation within a field theory is not available yet. These

contributions arise as a consequence of the existence of stable bound states and

are thus a distinctive feature of truly interacting theories, such as the XYZ chain.

This chapter covers the content of the paper “Correlation Length and Unusual
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Corrections to the Entanglement Entropy”, E. Ercolessi, S. Evangelisti, F. Fran-

chini and F. Ravanini, arXiv:1201.6367, Phys. Rev. B, 85 (2012).

4.1 The problem

Let us consider the formal expression of the Renyi entropy of a bipartite quantum

system:

Sα ≡
1

1− α ln TrραA , (4.1)

Varying the parameter α in (4.1) gives us access to a lot of information on ρA,

including its full spectrum (Calabrese and Lefevre [2008], Franchini et al. [2011]).

For gapped systems, the entanglement entropy satisfies the so-called area law,

which means that its leading contribution for sufficiently large subsystems is pro-

portional to the area of the boundary separating system A from B. In 1 + 1

dimensional systems, the area law implies that the entropy asymptotically satu-

rates to a constant (the boundary between regions being made just by isolated

points).

Critical systems can present deviations from the simple area law. In one

dimension, in particular, the entanglement entropy of systems in the universality

class of a conformal field theory (CFT) is known to diverge logarithmically with

the subsystem size (Holzhey et al. [1994], Calabrese and Cardy [2004]). From

CFT, a lot is known also about the subleading corrections, which, in general,

take the unusual form (Calabrese et al. [2010b], Calabrese et al. [2010a], Cardy

and Calabrese [2010] and Calabrese and Essler [2010])

Sα(`) =
c+ c̄

12

(

1 +
1

α

)

ln
`

a0
+ c′α + bα(`) `

−2h/α + . . . , (4.2)

where c is the central charge of the CFT, ` is the length of subsystem A, a0 is a

short distance cutoff, c′α is a non-universal constants, bα(`) is a periodic function

of ` and h is the scaling dimension of the operator responsible for the correction

(relevant or irrelevant, but not marginal, since these operators generate a different

kind of correction, which will be discussed later). This result is achieved using

replicas, and thus, strictly speaking, requires α to be an integer. Moreover, it
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should be noted that in Ref. (Cardy and Calabrese [2010]) the corrections are

obtained from dimensionality arguments, by regularizing divergent correlations

by an ultra-violet cut-off a0. Thus, technically, the subleading contributions in

(4.2) are extracted from scaling properties and are all of the form `/a0.

Determining the exponents of the corrections is important both in fitting nu-

merics (where often really large ` are unobtainable) and also for a better under-

standing of the model. For instance, the scaling exponent h also determines the

large n limit of the entropy (single copy entanglement) (Calabrese et al. [2010b]).

Moreover, especially for c = 1 theories, h provides a measure of the compactifica-

tion radius of the theory (Calabrese and Essler [2010]) and thus of the decaying of

the correlation functions. Up to now, this conjecture has been checked in a vari-

ety of critical quantum spin chains models (Fagotti and Calabrese [2011], Xavier

and Alcaraz [2011], Dalmonte et al. [2011]).

Moving away from a conformal point, in the gapped phase universality still

holds for sufficiently small relevant perturbations. Simple scaling arguments guar-

antee that the leading terms survive, but with the correlation length ξ replacing

the infra-red length-scale `. Recent results, based on exactly solvable models,

indicate the appearance of the same kind of unusual corrections to the Renyi

entropies, which are now functions of the correlation length ξ with the same

exponent h (Calabrese et al. [2010b]):

Sα =
c

12

(
1 + α

α

)

ln
ξ

a0
+ Aα +Bαξ

−h/α + . . . . (4.3)

There is a factor of 2 difference in each term between (4.2) and (4.3), due to the

fact that the first is a bulk theory (with both chiralities in the CFT), while the

latter is expected to be akin to a boundary theory, were only one chirality in the

light-cone modes effectively survives.

In this chapter, we are going to investigate the subleading terms in the Renyi

entropy of the one-dimensional XYZ model. In the scaling limit we find that the
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entropy is (modulo a multiplicative redefinition of the correlation length)

Sα =
1 + α

12α
ln

ξ

a0
− 1

2
ln 2 (4.4)

− 1

1− α

∞∑

n=1

σ−1(n)

[(
ξ

a0

)− 2n
α

−
(
ξ

a0

)− 4n
α

]

+
α

1− α

∞∑

n=1

σ−1(n)

[(
ξ

a0

)−2n

−
(
ξ

a0

)−4n
]

,

where σ−1(n) is a divisor function, defined by (4.38).

While the leading term correctly reproduces a c = 1 central charge, the inter-

pretation of the scaling exponents in the subleading addenda is less straightfor-

ward. Comparing the exponent of the first correction with (4.3) would indicate

h = 2, i.e. a marginal operator. This term cannot be due to the same oper-

ator acting at the critical point since, as shown in Ref. (Cardy and Calabrese

[2010]), marginal operators give rise to logarithmic corrections. Moreover, the

critical XXZ chain is known to have relevant fields with h = K (the Luttinger

parameter) and the opening of a gap in the XYZ model implies the presence of

a h < 2 operator. We will show that the operator content that can be extracted

from (4.4) matches that of a bulk Ising model and the first correction can be

interpreted as arising from the energy field. Notice that the leading, logarithmic

term can thus be equally interpreted as c+c̄
12

with c = c̄ = 1
2
.

Furthermore, if we include also lattice effects, which vanish in the strict scal-

ing limit, additional corrections appear in (4.4) and, while they are less important

than the dominant one for sufficiently large α, they can be relevant for numer-

ical simulations in certain ranges of α. These corrections turn out to be path

dependent (probably due to the action of different operators) and many kind of

terms can arise, such as ξ−2h, ξ−2h/α, ξ−(2−h), ξ−2(1+1/α) or even 1/ ln(ξ). In light

of Ref.(Cardy and Calabrese [2010]), some of these terms were to be expected,

but the others still lack a field theoretical interpretation, which might be possible

by applying a reasoning similar to that of Ref.(Cardy and Calabrese [2010]) for

a sine-Gordon model.
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4.2 Correlation length of the XYZ spin chain

Consider the quantum spin-1
2
ferromagnetic XYZ chain, which is described by

the Hamiltonian defined in (3.1). In Fig. 4.1 we draw a cartoon of the phase

diagram of the XYZ chain. As we have already seen, the model is symmetric

under reflections along the diagonals in the (Jz, Jy) plane. The system is gapped

in the whole plane, except for six critical half-lines/segments: Jz = ±1, |Jy| ≤ 1;

Jy = ±1, |Jz| ≤ 1 and Jz = ±Jy, |Jz| ≥ 1. All of these lines correspond to the

paramagnetic phase of an XXZ chain, but with the anisotropy along different

directions. Thus, in the scaling limit they are described by a c = 1 CFT, with

compactification radius varying along the line. We will use 0 ≤ β ≤
√
8π (the

sine-Gordon parameter of the corresponding massive theory) to parametrize the

radius. The critical segments meet three by three at four “tricritical” points, two

of which are conformal, whilst the remaining are not (see the previous chapter

for further details about this important distinction).

In studying the XYZ chain, we observed in (3.9) that one can take advantage

of the fact that (3.1) commutes with the transfer matrices of the the zero-field

eight-vertex model (see for example Refs. (Sutherland [1970] and Baxter [1982]))

and thus the two systems can be solved simultaneously. The solution of the latter

is achieved through the parametrization of Jy, Jz in terms of elliptic functions

Jy = −∆ ≡ cn(iλ) dn(iλ)
1−k sn2(iλ)

Jz = −Γ ≡ −1+k sn2(iλ)

1−k sn2(iλ)
,

(4.5)

where (Γ,∆) are again the well-known Baxter parameters (Baxter [1982]), and

sn(x), cn(x) and dn(x) are Jacobian elliptic functions of parameter k. λ and k

are parameters, whose natural domains are

0 < k < 1 , 0 ≤ λ ≤ I(k′) , (4.6)

I(k′) being the complete elliptic integral of the first kind of argument k′ ≡√
1− k2.
The definition of (∆,Γ) itself is particularly suitable to describe the anti-

ferroelectric phase of the eight-vertex model (also referred to as the principal
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y
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22
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Figure 4.1: (Colored online) Phase Diagram of the XYZ model in the (Jz, Jy)
plane. The blue solid lines –Jz = ±1, |Jy| ≤ 1; Jy = ±1, |Jz| ≤ 1 and Jz = ±Jy,
|Jz| ≥ 1– correspond to the critical phase of a rotated XXZ chain. Out of the
four “tricritical” points, C1,2 are conformal and E1,2 are not. The area within
the red rectangle is the portion of the phase diagram we study in this article,
and it is completely equivalent to the principal regime of the eight-vertex model.
The yellow and green lines are the curves of constant l and µ respectively in the
(Jz, Jy) plane, according to the parametrization (4.8).

regime), corresponding to ∆ ≤ −1 and |Γ| ≤ 1. However, using the symmetries

of the model and the freedom under the rearrangement of parameters, it can be

applied to the whole of the phase diagram of the spin Hamiltonian (for more

details see Ref. (Baxter [1982])). For the sake of simplicity, in this chapter we

will focus only on the rotated principal regime: Jy ≥ 1, |Jz| ≤ 1, see Fig. 4.1.

Before we proceed, it is more convenient to switch to an elliptic parame-

trization equivalent to (4.5), where we introduce a slightly different notation

with respect to the one used in (3.61):

l ≡ 2
√
k

1 + k
, µ ≡ π

λ

I(k′)
= 2u. (4.7)
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The elliptic parameter l corresponds to a gnome τ ≡ i I(l
′)

I(l)
= i I(k

′)
2I(k)

, which is half

of the original, while u was introduced in (3.61). The relation between k and l is

known as Landen transformation. Note that 0 ≤ µ ≤ π.

In terms of these new parameters, we have

Γ =
1

dn[2iI(l′)µ/π; l]
, ∆ = − cn[2iI(l′)µ/π; l]

dn[2iI(l′)µ/π; l]
. (4.8)

Curves of constant l always run from the AFM Heisenberg point at µ = 0 to

the isotropic ferromagnetic point at µ = π. For l = 1 the curve coincides with

one of the critical lines discussed above, while for l = 0 the curve run away from

the critical one to infinity and then back. In Fig. 4.1 we draw these curves for

some values of the parameters.

For later convenience, we also recall that

x ≡ exp

[

−π λ

2I(k)

]

= eiµτ . (4.9)

Using Jacobi’s theta functions, we introduce the elliptic parameter k1 connected

to x, i.e.

k1 ≡
θ22(0, x)

θ23(0, x)
=
x

1
2

4

(−1; x2)4∞
(−x; x2)4∞

≡ k(x) , (4.10)

or, equivalently, π
I(k′1)

I(k1)
= −iµτ (i.e., l is to τ what k1 is to µτ/π). In (4.10) we

also used the q-Pochhammer symbol

(a; q)n ≡
n−1∏

k=0

(1− aqk) . (4.11)

The correlation length and the low-energy excitations of the XYZ chain were

calculated in Ref. (Johnson et al. [1973]). There are two types of excitations.

The first can be characterized as free quasi-particles (spinons). The lowest band
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is a 2-parameter continuum with

∆Efree(q1, q2) = −J sn[2I(l′)µ/π; l′]

I(l)
I(k1)× (4.12)

(√

1− k21 cos2 q1 +
√

1− k21 cos2 q2
)

.

The energy minimum of these state is achieved for q1,2 = 0,±π and gives a mass

gap

∆Efree = 2J
1

I(l)
sn
[

2I(l′)
µ

π
; l′
]

I(k1)k
′
1 . (4.13)

For µ > π/2, in addition to the free states just discussed, some bound states

become progressively stable. They are characterized by the following dispersion

relation

∆Es(q) = −2J sn[2I(l
′)µ/π; l′]

I(l)

I(k1)

sn(sy; k′1)

×
√

1− dn2(sy; k′1) cos
2
q

2

×
√

1− cn2(sy; k′1) cos
2
q

2
, (4.14)

where y ≡ iI(k1)τ
(
µ
π
− 1
)
and s counts the number of quasi-momenta in the

string state. In the scaling limit, these bound states become breathers. The

mass-gap for the bound states is (setting q = 0 above)

∆Es = ∆Efree sn(sy; k
′
1) , (4.15)

from which one sees that for µ > π/2 the s = 1 bound state becomes the lightest

excitation.

The correlation length for the XYZ chain (Fig.4.2) was also calculated in Ref.

(Johnson et al. [1973]) and it is given by:

ξ−1 =
1

a0







−1
2
ln k2 0 ≤ µ ≤ π

2
,

−1
2
ln k2

dn2[i2I(k2) τπ (µ−
π
2 );k′2]

π
2
< µ ≤ π ,

(4.16)
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Figure 4.2: Curves of constant correlation length of the XYZ model in the (Jz, Jy)
plane. Regions of similar colors correspond to the same correlation length values
and red colors are associated to higher values of ξ. It is worth stressing that the
correlation length does not show any essential critical behavior, whilst the block
entropy shows it in proximity of points E1 and E2.

where a0 is a short distance cut-off, such as the lattice spacing, that sets the

length unit and the new parameter k2 is the Landen transformed of k1:

k2 ≡ k(x2) =
1− k′1
1 + k′1

. (4.17)

The first behavior in (4.16) is due to the free particles states, while the s = 1

bound state is responsible for the second 1.

1In Ref. (Johnson et al. [1973]) the correlation length close to the critical line is calculated
for periodic boundary conditions as that of the s = 1 bound state in the disordered phase of
the 8-vertex model. In the ordered phase this state is forbidden by superselection rules and one
has to use the s = 2 bound state (both of which become breathers in the scaling limit). The
CTM construction implies fixed boundary conditions and thus we can use the s = 1 breather,
as the lightest excitation in the attractive regime of the sine-Gordon line of the XYZ model.
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4.3 The reduce density matrix in terms of char-

acters

The bipartite entanglement entropy for the ground state of the XYZ chain was

calculated in (3.59), in the limit where the infinite chain is partitioned in two

(semi-infinite) half lines. For this configuration, the reduced density matrix can

be computed as the product of the four corner transfer matrices (CTM) of the

corresponding eight-vertex model (Peschel and Chung [1999], Nishino and Oku-

nishi [1997] and Nishino [1995]). In (3.18) it was shown that it can be written as

(here for simplicity we drop the subscript R):

ρ =
1

Z

∞⊗

j=1

(

1 0

0 x2j

)

, (4.18)

where Z ≡ (−x2, x2)∞, that is, the partition function of the eight-vertex model,

is the normalization factor that ensures that Trρ = 1. Thus we have

Trρα =
(−x2α; x2α)∞
(−x2; x2)α∞

(4.19)

and for the Rényi entropy

Sα =
α

α− 1

∞∑

j=1

ln
(
1 + x2j

)
+

1

1− α

∞∑

j=1

ln
(
1 + x2jα

)
. (4.20)

The structure (Eqs. 4.18, 4.20) for the reduced density matrix of the half-line

is common to all integrable, local spin-1/2 chains (Baxter [1982]) and thus the

entanglement spectrum of these models is the same and only depends on x, which

in this context is usually parametrized as x = e−ε. For the XYZ chain, ε = −iµτ .
From (4.20), one can see that the Renyi entropy is a monotonically decreasing

function of ε:

lim
ε→0

Sα =∞ , lim
ε→∞

Sα = 0 . (4.21)
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Using (4.9) and (Baxter [1982])

l =

√

1− Γ2

∆2 − Γ2
, dn

[

2iI(l′)
µ

π
; l
]

=
1

Γ
(4.22)

we can plot the entanglement entropy in the phase diagram of the XYZ model.

In Fig 3.6 we show a contour plot of the Von Neumann entropy in the (Jz, Jy)

plane, from which one can clearly see the different behavior of the conformal and

non-conformal points.

q-products of the form (4.19) give easy access to the spectral distribution of

the reduced density matrix (Franchini et al. [2011]), since

(−q, q)∞ =
∞∏

k=1

(1 + qk) = 1 +
∞∑

n=1

p(1)(n)qn , (4.23)

where p(1)(n) is the number of partitions of n in distinct positive integers. Also

note that, since
∞∏

k=1

(1 + qk) =
∞∏

k=1

(1− q2k−1)−1 , (4.24)

p(1)(n) = pO(n), that is, the number of partitions of n into positive odd integers.

Moreover, one can recognize Z to be formally equal to the character of the

spin field of the Ising CFT. To show this, we write

Z
(
q = x2

)
=

∞∏

j=1

(1 + qj) =
∞∏

j=1

1− q2j
1− qj (4.25)

and we use the Euler’s formula for pentagonal numbers (which is a consequence

of the Jacobi triple-product Identity) (Whittaker and Watson [1927])

∞∏

j=1

(
1− q2j

)
=

∞∑

n=−∞
(−1)nqn(3n−1) (4.26)

=
∞∑

n=−∞

[
q2n(6n−1) − q(2n+1)(6n+2)

]
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to recognize that

Z = x−
1
12χIsing

1,2 (iε/π) , (4.27)

where χIsing
1,2 (τ) is the character of the spin h1,2 = 1/16 operator of a c = 1/2

CFT:

χ(p,p′)
r,s (τ) =

q−1/24

∏∞
j=1(1− qj)

∞∑

n=−∞

[

q
[2pp′n+rp−sp′]2

4pp′

−q
[2pp′n+rp+sp′]2

4pp′

]

, (4.28)

with q ≡ e2iπτ and (p, p′) = (4, 3) for the Ising minimal model. We have

Trρ̂α =
χIsing
1,2 (iαε/π)

[

χIsing
1,2 (iε/π)

]α . (4.29)

As we discussed above, the critical line of the XXZ chain is approached for

l → 1, that is, for τ → 0 and x → 1. On this line, excitations are gapless and

in the scaling limit the theory can be described by a conformal field theory with

central charge c = 1. To each 0 < µ < π it correspond a different point on

the critical line, with sine-Gordon parameter β2 = 8π
(
1− µ

π

)
(Luther [1976]).

The two endpoints are exceptions, since µ = 0, π identify the same points for

every l. However, while in the conformal one we still have x → 1, close to the

ferromagnetic point, around µ = π, both x and q can take any value between

0 and 1. Hence a very different behavior of the entanglement entropy follows.

(Ercolessi et al. [2011], Franchini et al. [2008])

In order to study the asymptotic behavior of the entanglement entropy close

to the conformal points, it is convenient to use the dual variable

x̃ ≡ e−iπ
2

µτ = e−
π2

ε . (4.30)

which is such that x̃→ 0 as l → 1.

Expressions like (4.19) involving q-products can be written in terms of elliptic

theta functions as was done in (3.59). To study the conformal limit, one performs
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a modular transformation that switches x→ x̃. Since

k(x̃) = k′(x) = k′1 =
(x; x2)4∞
(−x; x2)4∞

, (4.31)

and using (4.10), we have

(
−x2α; x2α

)

∞ =

[
k2 (xα)

16xαk′ (xα)

]1/12

=

[

k′2
(
x̃1/α

)

16xαk (x̃1/α)

]1/12

=

(
x̃1/α; x̃2/α

)

∞
21/2xα/12x̃1/24α

. (4.32)

Thus

Trρα = 2
α−1
2 x̃

α2−1
24α

(
x̃1/α; x̃2/α

)

∞
(x̃; x̃2)α∞

. (4.33)

The modular transformation that allowed us to switch from x to x̃ is the same

one that connects characters in minimal model of inverse temperature. For the

spin operator of the Ising model we have

χIsing
1,2 (τ) =

1√
2

[

χIsing
1,1 (−1/τ)− χIsing

2,1 (−1/τ)
]

. (4.34)

Using (4.28) and the identities (4.24 and 4.26) one can prove that

χIsing
1,2 (iε/π) =

1√
2
x̃−

1
24

(
x̃; x̃2

)

∞ , (4.35)

which agrees with (4.33) and implies

Trρ̂α = 2
α−1
2
χIsing
1,1 (iπ/αε)− χIsing

2,1 (iπ/αε)
[

χIsing
1,1 (iπ/ε)− χIsing

2,1 (iπ/ε)
]α . (4.36)

This agrees with what conjectured in Ref.(Calabrese et al. [2010b] and Saleur and

Bauer [1989]), but with the important difference that the characters in (4.36) are

c = 1/2 and do not belong to the infrared c = 1 bulk description of the XYZ

chain. This Ising character structure for the CTM of the eight-vertex model was

already noticed, 1see Ref. (Cardy [1990]). We also notice that, being only a
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formal equivalence, eq. (4.27) does not imply any underlying Virasoro algebra

at work for CTM (as far as we know) and it is thus important to recognize that

these manipulations stand on more general mathematical concepts.

4.4 Expansion of the entanglement entropy

Close to the conformal points, Eq. (4.20) is just a formal series, since x ' 1.

However, using (4.33), it is straightforward to write a series expansion for the

Rényi entropy (4.1) in powers of x̃� 1:

Sα = −1 + α

24α
ln x̃− 1

2
ln 2 (4.37)

− 1

1− α

∞∑

n=1

σ−1(n)
[

x̃
n
α − αx̃n − x̃ 2n

α + αx̃2n
]

,

where the coefficients

σ−1(n) ≡
1

n

∞∑

j<k=1
j·k=n

(j + k) +
∞∑

j=1
j2=n

1

j
=
σ1(n)

n
(4.38)

is a divisor function (Apostol [1976]) and takes into account the expansion of the

logarithm over a q-product and play a role similar to the partitions of integers

in (4.23). It is worth noticing that the constant term ln(2−1/2) ≡ ln(S0
1/16) -

where S0
1/16 is an element of the modular S-matrix of the Ising model - is the

contribution to the entropy due to the boundary (Affleck and Ludwig [1991]).

The α→ 1 yields the Von Neumann entropy:

S = − 1

12
ln x̃− 1

2
ln 2 (4.39)

−
∞∑

n=1

σ−1(n)
[
n
(
x̃n − 2x̃2n

)
ln x̃+ x̃n − x̃2n

]
.

We see that, contrary to what happens for α > 1, all subleading terms -which are

powers of x̃- acquire a logarithmic correction, which strictly vanishes only at the

critical points.
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4.4.1 Scaling limit

Comparing with (4.3) and coherently with (4.29), (4.37) and (4.39) can be iden-

tified with the expansion of a c = 1/2 theory. However, the parameter of this

expansion, x̃, has meaning only within Baxter’s parametrization of the model

(4.5). To gain generality, the entropy is normally measured as a function of a

universal parameter, such as the correlation length or the mass gap.

In the scaling limit, up to a multiplicative constant, one has:

x̃ ≈
(
ξ

a0

)−2

≈
(
∆E

J

)2

, (4.40)

so that, substituting this into (4.37), we get (4.4). Relation (4.40) is crucial in

turning the leading coefficient in the entropy of a c = 1/2 entropy such as (4.37)

into that of a c = 1 theory, but it also doubles all the exponents of the subdom-

inant corrections. It is reasonable to assume that this c = 1 model is some sort

of double Ising, but its operator content does not seem to match any reasonable

c = 1 model, since only even exponent states exist. Moreover, comparing (4.4)

with (4.3), one would conclude that a h = 2 operator is responsible for the first

correction. It was argued in Ref. (Cardy and Calabrese [2010]) that a marginal

field gives rise to logarithmic corrections in the entropy, thus, either this correc-

tions is due to descendant of the identity (namely, the stress-energy tensor), or

we should think of it as a 2h/α, with h = 1.

In fact, we can write the partition function of the eight-vertex model as a bulk

Ising model (i.e., quadratic in characters). Starting from (4.35), we have

Z =
1√
2
x−

1
12 ξ

1
12

∞∏

k=1

(
1− ξ1−2k

) (
1 + ξ1−2k

)

=
x−

1
12

√
2

[

χIsing
1,1

(
i

π
ln ξ

)

+ χIsing
2,1

(
i

π
ln ξ

)]

×
[

χ̄Ising
1,1

(
i

π
ln ξ

)

− χ̄Ising
2,1

(
i

π
ln ξ

)]

(4.41)

=
x−

1
12

√
2

[

|χ0|2 −
∣
∣χ1/2

∣
∣
2 − χ0χ̄1/2 + χ1/2χ̄0

]

.
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This formulation provides a simple explanation of the Renyi entropy expansion

(4.4) and its operator content. In fact, it interprets the first correction as the

Ising energy operator, and not as a descendant of the identity.

It also means that the prefactor in front of the logarithm in the entropy can be

interpreted as c+c̄
12

with c = c̄ = 1
2
.

No fundamental reason is known for which CTM spectra (and partition func-

tions) of integrable models can be written as characters in terms of the mass

parameter x or x̃. This is the case also for Eq. (4.41). Thus, so far, we can only

bring forth this observation while any connection with some underlying Virasoro

algebra remains to be discovered. To the contrary, sufficiently close to a critical

point, the CTM construction can be seen as a boundary CFT and thus its char-

acter structure as function of the size of the system is dictated by the neighboring

fix point. (Cardy [1990])

We are led to conclude that, in the scaling limit, the entropy can be written

as a function of two variables: Sα

(
`
a0
, ξ
a0

)

. When the inverse mass is larger that

the subsystem size, we have the usual expansion of the form (4.2). But when

the correlation length becomes the infrared cut-off scale, apparently a different

expansion is possible, which, unlike (4.3), can contain terms with different expo-

nents, like in (4.4). Hence, while the leading universal behavior has always the

same numerical value and scales like the logarithm of the relevant infra-red scale,

the exponents of the corrections might be in principle different for terms in ` and

in ξ.

In the scaling limit, a0 → 0, J → ∞, and x̃ → 0 in such a way to keep

physical quantities finite. In this limit, only the scaling relation (4.40) survives.

However, at any finite lattice spacing a0, there will be corrections which feed back

into the entropy and that can be relevant for numerical simulations. To discuss

these subleading terms we have to consider two regimes separately.

4.4.2 Free Excitations: 0 ≤ µ ≤ π
2

For 0 ≤ µ ≤ π
2
the lowest energy states are free, with dispersion relation (4.13).

To express the entropy as a function of the correlation length we need to invert

(4.16). This cannot be done in closed form. So we have to first expand (4.16),
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finding

a0
ξ

= 4x̃1/2
∞∑

n=0

σ−1(2n+ 1) x̃n

= 4x̃1/2 +
16

3
x̃3/2 +

24

5
x̃5/2 + . . . (4.42)

and then to invert this (by hand) to the desired order:

x̃ =
1

16

a20
ξ2

[

1− 1

6

a20
ξ2

+
7

144

a40
ξ4

+ O
(
ξ−6
)
]

. (4.43)

We get:

Sα =
1 + α

12α
ln

ξ

a0
+

1− 2α

6α
ln 2

+Bαξ
− 2

α + Cαξ
−2 1+α

α +B′
αξ

− 4
α + . . .

−αBαξ
−2 − αB′

αξ
−4 + . . . (4.44)

where the coefficients only depend on α and contain the proper power of a0 to

keep each term dimensionless [for instance Bα = 1
α−1

(
a0
4

)2/α
]. We note that a

new term has appeared (and more will be seen at higher orders) and that it is

not of the forms discussed in Ref.(Calabrese et al. [2010a]).

It is worth noticing that if we express the mass-gap (4.13) as function of

x̃, we would get a different series expansion and thus different corrections to the

entropy. These subleading terms would have a different form, compared to (4.44),

and even be path dependent on how one approaches the critical point. We prefer

not to dwell into these details now, postponing the description of this kind of

path-depended behavior with the bound state’s correlation length to the next

section.

4.4.3 Bound states: π
2 < µ < π

For µ > π/2, bound states become stable, and the lightest excitation becomes the

s = 1 state with dispersion relation (4.14). Accordingly, the expression for the

correlation length is different in this region from before. Using the dual variable x̃
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C E2 2

y
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J
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Three different approches to

           the critical line

Figure 4.3: Three different ways to approach the critical line: along the µ-constant
lines (blue line), which is referred to as renormalization group flow in the text;
along straight lines (red line); along lines that approach the criticality with zero
derivative (green line).

and the formulation of elliptic functions as infinite products, we can write (4.16)

as

a0
ξ

= ln

(

−x̃ 1+τ
2 ; x̃

)

∞

(

−x̃ 1−τ
2 ; x̃

)

∞(

x̃
1+τ
2 ; x̃

)

∞

(

x̃
1−τ
2 ; x̃

)

∞

(4.45)

= 4
∞∑

n=1

∞∑

k=1

1

2k − 1
cos

[
π2

2µ
(2k − 1)

]

x̃
(2n−1)(2k−1)

2 .

The major difference in (4.45) compared to (4.42) is that the bound state

correlation length does not depend on x̃ alone, but separately on µ and τ . This

means that in inverting (4.45) to find x̃ as a function of ξ, we have to first specify

a relation between µ and τ , i.e. to choose a path of approach to the critical line.

We will follow three different paths, that are shown in Fig. 4.3.

(a) Renormalization group flow: The first natural path is (represented in the

blue line in Fig. 4.3):

τ = is , µ = µ0 , (4.46)

where s → 0 guides our approach to the gapless point. This path, keeping
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4. Unusual corrections to the entanglement entropy

µ fixed, corresponds to the RG flow. In the scaling limit, the XYZ chain is

described by a sine-Gordon model, where µ is proportional to the compact-

ification radius (Luther [1976]). Thus, assuming (4.46) means changing the

bare mass scale, without touching β. In the (Jz, Jy) plane, this path asymp-

totically crosses the critical line with slope m = −2/ cosµ0. Substituting this

in (4.45) we get:

a0
ξ

= 4g(µ0) x̃
1/2 +

16

3
g3(µ0) x̃

3/2 + O
(
x̃5/2

)
, (4.47)

where g(µ) ≡ cos π
2

2µ
. Comparing (4.47) with the free case (4.42) we immedi-

ately conclude that the entropy retains an expansion similar to (4.44), with

the difference that all the coefficients now depend on µ0 and thus change

along the critical line:

Sα '
1 + α

12α
ln ξ + Aα(µ0) +Bα(µ0)ξ

− 2
α

−αBα(µ0)ξ
−2 + Cα(µ0)ξ

−2− 2
α + . . . (4.48)

(b) Straight lines in (Jz, Jy) space: Let us now approach a conformal critical

point exactly linearly in the (Jz, Jy) plane:

Jy = 1 +m · s , Jz = s− cosµ0 . (4.49)

This path corresponds to the following parametrization of τ and µ (an exam-

ple of which is the red line in Fig. 4.3):







τ = −i π
ln(s)

+ O
(

1
ln2 s

)
,

µ = µ0 + r(m,µ0) · s+ O(s2) ,
(4.50)

where r(m,µ) ≡ 2+m cosµ
2 sinµ

. Thus, in the limit s→ 0, the entropy parameter x̃

vanishes like x̃ ∝ sπ/µ0 . Using (4.50) in (4.45)

a0
ξ
' 4g(µ0)x̃

1
2 + 4r(m,µ0)g

′(µ0)x̃
1
2
+

µ0
π + . . . (4.51)
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Inverting this relation, we arrive at the following expansion of the Rényi

entropy along (4.49)

Sα '
1 + α

12α
ln ξ + Aα(µ0) (4.52)

+Bα(µ0)ξ
−2/α +Dα(m,µ0)ξ

−2µ0/π . . .

We notice that the last term yields a new type of correction, with a non-

constant exponent, which varies with µ. This term is of the form ξ−(2−h),

where h here is the scaling dimension of the vertex operator eiβφ of the under-

lying sine-Gordon theory. To the best of our knowledge, this is the first time

that such a correction in the Renyi entropy of gapped systems is discussed

and it also differs from those discussed in Ref. (Calabrese et al. [2010a]). It

is surprising to see the appearance of the operator content of the underly-

ing sine-Gordon field theory in the exponents of the expansion of Sα on the

lattice, whilst these operators do not enter in the scaling limit (4.4). We do

not have a satisfactory understanding of this result, but we believe that an

approach similar to that of Ref.(Cardy and Calabrese [2010]) might clarify

the point.

Since π
2
< µ0 < π, the exponent of this new correction ranges between 1

and 2 and always dominates over the ξ−2 term in (4.48) and competes with

the correction ξ−2/α for α < 2. Notice, however, that for m0 = −2/ cosµ0,

r(m0, µ0) = 0 and thus Dα(m0, µ0) = 0: this new correction disappears. This

is precisely the slope that corresponds to the RG flow we considered before.

Also, g′(π/2) = 0 and thus the coefficient in front of this new correction

vanishes at the crossing point between the free and the bound state. Thus, we

can conclude that this new term is turned on by the existence of a bound state

and it is a clear signature of a truly interacting theory. Moreover, the path

one chooses to approach criticality selects a scaling limit in which irrelevant

operators can be generated and these can modify the perturbative series that

defines the correlation length, leading to something like we observed.

(c) Straight lines in (l, µ) space: Finally, as a generalization of the first case, let
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4. Unusual corrections to the entanglement entropy

us consider the straight line

τ = is , µ = µ0 + r · s , (4.53)

where r is the slope in the (τ, µ) plane. Interestingly, this trajectory maps into

a curve in the (Jz, Jy)-plane approaching the critical point with zero deriva-

tive, i.e. with a purely quadratic relation in a small enough neighborhood

of the conformal point (see for instance the green line in Fig. 4.3). Putting

(4.53) in (4.45) we have

a0
ξ

= 4g(µ0)x̃
1/2 + 4r π

2

µ0
g′(µ0)

x̃1/2

ln x̃

+
16

3
g3(µ0)x̃

3/2+O

(
x̃1/2

ln2 x̃
, x̃

3/2

ln x̃

)

. (4.54)

We notice the appearance of a strange logarithmic correction in the expansion.

Inverting (4.54) and plugging it into the entropy we get

Sα =
1 + α

12α
ln ξ + Aα(µ) +

Eα(r, u)

ln ξ
+ . . . , (4.55)

This kind of logarithmic corrections were found also in Ref. (Calabrese et al.

[2010b]), but only in studying the limit α → ∞, i.e. the so-called single-

copy entropy. They were also predicted in Ref. (Calabrese et al. [2010a])

as signatures of marginal operators in a CFT, but with a different power.

From our results, it seems that this kind of very unusual corrections may

appear at finite α’s, by selecting a proper path approaching the critical point.

This can be due to the presence of a marginally-relevant operator in the

theory, generated when reaching the critical line through a zero-slope curve

and corresponding to a changing of the compactification radius.

4.5 Conclusions

In this chapetr by using the example of the integrable XYZ chain, we proved that,

for a massive model, the study of the corrections to the entanglement entropy as
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4. Unusual corrections to the entanglement entropy

a function of the correlation length requires a separate analysis from the one that

yields the entropy as function of the subsystem size.

For the bipartite Renyi entropy of the XYZ model of a semi-infinite half-line

we found, in the scaling limit and as a function of the correlation length, the

universal form (4.4), where all subleading contributions are explicitly written,

thanks to a novel formulation of the reduced density matrix in terms of q-products.

We argued that these corrections could be interpreted in light of a previously

unnoticed bulk Ising structure of the CTM formulation of the model. This means

that corrections as a function of the correlation length have different exponents

compared to those depending on the length of the subsystem, unlike what was

expected from previous studies. This also implies that the coefficient c+c̄
12

of the

logarithmic leading term has the same value both for c = c̄ = 1/2 of the bulk

Ising formulation in the mass parameter and for the c = 1, c̄ = 0 of the critical

chiral free boson model in the subsystem size.

In this respect, it is also interesting to note that the reduced density matrix

ρ̂ of (4.18) can be written as (Peschel et al. [1999], Peschel [2012], Peschel and

Eisler [2009] and Peschel and Chung [1999]):

ρ̂ ∝ e−HCTM , HCTM =
∞∑

j=1

2εjη
†
jηj (4.56)

where (η†j , ηj) are (Majorana) fermionic creation and annihilation operators for

single particle states with eigenvalue 2εj = 2jε (note that HCTM is not the Hamil-

tonian of the subsystem A). This representation strongly supports the interpre-

tation that the c = 1 theory is constructed in terms of c = 1/2 (Majorana)

characters.

In Refs.(Calabrese et al. [2010a] and Xavier and Alcaraz [2011]) it was shown

that the first correction in the Renyi entropy of a critical XXZ chain as a function

of the subsystem size ` goes like `−2K/α, whereK is the Luttinger parameter of the

model. This fact has also been checked in many other critical c = 1 quantum spin

chain models via DMRG simulations (Fagotti and Calabrese [2011], Xavier and

Alcaraz [2011] Dalmonte et al. [2011]). When going to the corresponding massive

model, assuming that the operators responsible for the corrections remain the
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4. Unusual corrections to the entanglement entropy

same, the simple scaling prescription (Calabrese et al. [2010b]) would give a term

of the type ξ−K/α. The results presented here would then indicate an improbable

fixed value for the Luttinger parameter K = 2. This exponent for the massive

XXZ chain was observed before (take, for instance, Ref. Calabrese et al. [2010b]),

but its nature has not been discussed. Instead, consistently with Ref. (Xavier

and Alcaraz [2011]), we found in Sec. 4.4 that the operator responsible for this

correction is the energy of the underlying bulk Ising model. As pointed out in

Ref.(Cardy and Calabrese [2010]), the leading correction in ` is of the form `−2K/α

in the one-interval case and `−K/α for the half-line, whereas for two intervals, in

the Ising case, the exponent acquires an additional factor of 2, which counts

the number of twist fields at the edge of the interval (Fagottia and Calabrese

[2010]). It would be interesting to perform a calculation for one interval with two

boundary points in our case too, to check whether a doubling of the exponent in

the correlation length would happen in this case as well. We also observe that

our results stem from the study of the formally conformal structure emerging in

the Renyi entropy of the ground state. It would be of great interest to perform a

similar analysis for some excited states.

We also showed that, if one takes into account lattice effects, there is a pro-

liferation of new standard and unusual corrections, which in general are path-

dependent, and can assume the forms: ξ−2h, ξ−2h/α, ξ−(2−h), ξ−2(1+1/α), or even

1/ ln(ξ), where h is the scaling dimension of a relevant operator of the critical

bulk theory. We conjecture that the last logarithmic correction is a consequence

of some marginally-relevant operator in the theory. In addition each of the previ-

ous terms appears multiplied by a point-dependent and α-dependent coefficient

that can vanish in even large parametric regions, preventing the corresponding

unusual correction from showing up in the scaling limit of the Renyi entropy. We

should remark that the same analysis, carried out in terms of the mass-gap in-

stead of the correlation length, would generate even different corrections. These

differences will be analyzed elsewhere for the XYZ chain, but are a general feature

of lattice models that have to be taken into account in numerical analysis.

In Ref. (Calabrese et al. [2010a]) it was given a list of possible subleading

contributions to the Renyi entropy for a CFT. From a näıve scaling argument,

one could expect the same kind of terms to appear in a massive theory sufficiently
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4. Unusual corrections to the entanglement entropy

close to criticality. However, some of the corrections we observed do not fit this

expectation. This could be due to strictly ultraviolet effects that cannot be

captured by a QFT or to a need to improve the scaling argument. We believe

that an analysis similar to that carried out for critical systems in Ref. (Cardy and

Calabrese [2010]) could be successfully applied to a massive sine-Gordon theory,

by introducing an ultra-violet cut-off (the lattice spacing) to regularize divergent

integrals and extract the corrections from the counterterms1 . This type of check

would be dual to what we have presented here: while in our approach we started

from a lattice model to infer its universal behavior, in the other, one would start

from a field theory to understand the origin of the correction. In conclusion, we

believe that further analysis are needed to provide a consistent field theoretical

interpretation of the corrections arising in massive models, especially for the

relevancy of such problem in numerical studies.

1An interesting alternative field theoretical approach to massive models has been presented
in:
J.L. Cardy, O.A. Castro-Alvaredo, and B. Doyon, J. Stat. Phys. 130 (2007) 129, O.A. Castro-
Alvaredo, and B. Doyon, J. Phys. A 41 (2008) 275203, B. Doyon, Phys. Rev. Lett. 102 (2009)
031602.
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Chapter 5

The Ising chain in a transverse

field

In this chapter we will review the quantum properties of the transverse field Ising

chain (TFIC). The idea is that of providing the reader with a general description

of this quantum model and its main features, being the TFIC a crucial paradigm

for quantum critical behaviour. Here we will focus on its properties at equilibrium,

both at zero and non-zero temperature. We will see how different techniques can

be used to compute correlators in different regimes, with emphasis on the semi-

classical method, which will be the main subject of the second part of this thesis.

In fact, in the next chapter we will generalize this simple but at the same time

powerful technique to the out-of-equilibrium case.

Part of this chapter has been inspired by chapter 4 of the book “Quantum phase

transitions” (first edition) written by Subir Sachdev. The semi-classical approach

presented here was first introduced by S. Sachdev and A.P. Young in the article

“Low temperature relaxation dynamics of the Ising chain in transverse field”,

Physical Review Letters, 78, 2220 (1997).
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5. The Ising chain in a transverse field

5.1 General properties

Let us consider the TFIC Hamiltonian in one dimension:

HI = −J
N∑

j

[σzjσ
z
j+1 + gσxj ]. (5.1)

As we have discussed in the chapter 2 and will establish on a more solid ground in

this one, HI exhibits a phase transition at zero temperature between a ferromag-

netic phase with the Z2 symmetry broken and a quantum paramagnetic phase

where the symmetry remains unbroken. The universality class of this transition is

that of the two-dimensional classical Ising model, thanks to the quantum-classical

mapping between these two models.

Apart from its spectrum we will mainly focus on the dynamic two-point correla-

tions of the order parameter σz, which is defined as:

C(xi, t) ≡ 〈σz(xi, t)σ(0, 0)〉
= Tr

(
e−HI/T eiHIt σzxi e

−iHIt σz0/Z
)
,

(5.2)

where Z = Tr(e−HI/T ) is the partition function, xi = ia is the spatial coordinate of

the ith spin with a the lattice spacing. Here t is the real physical time. Sometimes

we will also find it convenient to consider correlations at imaginary time τ , which

is defined by the analytical continuation it→ τ :

C(xi, τ) = Tr
(
e−HI/T eHIτ σzxi e

−HIτ σz0/Z
)
, (5.3)

where now the correlator C can be interpreted as the correlator of the classical

two-dimensional Ising model on an infinite strip of width 1/T and periodic bound-

ary conditions along the imaginary time direction. Another important quantity

is the dynamic structure factor S(k, w), which is simply defined as the Fourier

trasform of C(x, t) to wavevectors and frequencies:

S(k, w) =

∫

dx

∫

dtC(x, t) e−i(kx−wt). (5.4)
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5. The Ising chain in a transverse field

This quantity is particularly useful because it is directly proportional to the cross

section in scattering experiments in which the probe couples to σz. If we integrate

over the energy we have that the cross section is proportional to the equal-time

structure factor S(k), namely:

S(k) =

∫
dw

2π
S(k, w), (5.5)

which is also the Fourier transform of C(x, 0)1. Finally another quantity that it

is worth recalling is the dynamic susceptibily χ(k, wn), which can be computed

as:

χ(k, wn) =

∫ 1/T

0

dτ

∫

dxC(x, τ) e−i(kx−wnτ), (5.6)

where wn = 2πnT , with n integer, is the Matsubara imaginary frequency coming

from the restriction to periodic functions along the imaginary time direction. The

analytical continuation to real frequencies may be done by iwn → w+ iδ, where δ

is a positive and infinitesimal. The dynamic susceptibility measures the response

of the magnetization σz to an external field that couples linearly to σz. From (5.6)

and (5.4) it is clear that there is a relationship between S(k, w) and χ(k, w), called

fluctuation-dissipation theorem, and it will be discussed in detail in chapter (7).

We will begin this chapter by describing a simple physical picture of the ground

state of the TFIC by examining the large- and small-g limits, where two very

different physical scenarios emerge. The exact solution, which will be discussed

later, shows that there is a critical point at g = 1 but that the qualitative features

of the ground state in the two limiting cases describe very well the properties of

both phases for any g 6= 1. One of the two limiting descriptions is therefore

always appropriate, and only the critical point g = 1 has real different properties

at T = 0.

5.1.1 Strong coupling

In the g → ∞ limit the ground state of the TFIC is a quantum paramagnet,

invariant under the Z2 symmetry σzi → −σzi , with exponentially decaying σz

1The identity (σz

i
)2 = 1 implies that C(0, 0) = 1 and consequently leads to the following

sum rule for the dynamic structure factor:
∫

dkdw

(2π)2S(k,w) = 1
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correlators (Sachdev [2000]). In this limit we can also list the exact eigenstates.

The lowest excited states are:

|i〉 = | ←〉i
∏

j 6=i
| →〉j, (5.7)

which is obtained by flipping the state on site i to the other direction on σx. All

such states are degenerate, and we will refer to them as the single particle states.

In the same way the next degenerate manifold of states are the two-particle states

|i, j〉, where we have flipped the spins at sites i and j, and so forth to the general

n-particle states. Studying the perturbation to first order in 1/g we can neglet

the mixing between states with a different number of particles and just analyse

how the degeneracy within each subspace is lifted. In the case of the one particle

states, the exchange term σzi σ
z
i+1 in the Hamiltonian is not diagonal in the basis

of the | ←〉, | →〉 states and leads only to the off-diagonal matrix element:

〈i|HI|i+ 1〉 = −J (5.8)

which has the effect of hopping the particle between nearest neighbor sites. As

what happens in the tight-binding models of solid state physics, the Hamiltonian

is therefore diagonalized by Fourier-transformed basis:

|k〉 = 1√
N

∑

j

e ikxj |j〉, (5.9)

where N is the total number of sites. This eigenstate has energy:

εk = Jg[2− (2/g) cos(ka) +O(1/g2)], (5.10)

where a is the lattice spacing and where we have added an overall constant to

the original Hamiltonian to make the energy of the ground state zero.

Let now focus on the two-particle states. At g =∞ this subspace is spanned by

the following states:

|i, j〉 = | ←〉i| ←〉j
∏

p 6=i,j
| →〉p, (5.11)
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5. The Ising chain in a transverse field

where i 6= j. Noticing that |i, j〉 = |j, i〉 we can restrict our attention to the

case i > j, which also means that this state is symmetric under the exchange

of the particle positions, and so we can treat particles as bosons. At first order

in 1/g these states will be mixed by the matrix element (5.8): this will couple

|i, j〉 to |i ± 1, j〉 and |i, j ± 1〉 for all i > j + 1, while |i, i − 1〉 will couple only

to |i + 1, i − 1〉 and |i, i − 2〉. When i and j are well separeted we can ignore

this last case and consider the two particle independent of each other. Let say

that the particles acquire momenta k1 and k2 and the total energy of this two-

particle state will be Ek = εk1 + εk2 with total momentum k = k1 + k2. However

when the two particle approach each other we have to consider the mixing between

these momentum states arising from the restrictions in the matrix elements noted

above. In practice we have to study the scattering problem associated with the

dynamics of these excitations along the quantum Ising chain. The scattering of

two incoming particles with momenta k1 and k2 will conserve total energy and,

up to a reciprocal lattice vector, total momentum. In the limit of small momenta,

these conservation laws allow only one solution in d = 1: The momenta of the

particle in the final state are also k1 and k2. The uniqueness of the solution is

a special feature of the one-dimensional case, which is lost in higher dimensions.

Following this reasoning we can conclude that the wavefunction of teh two-particle

state will have the form for i� j:

(
e i(k1xi+k2xj) + Sk1k2e

i(k2xi+k1xj)
)
|i, j〉, (5.12)

where Sk1k2 is the S-matrix for the two-particle scattering, which for the TFIC is

Sk1k2 = −1 for all momenta k1, k2 (Sachdev [2000]). Notice that, for fixed total

momentum k, there is still an arbitraruness in the single-particle momenta k1,2,

and therefore the total energy Ek can take a range of values. There is thus no

definite energy momentum relation, instead we have a “two-particle continuum”,

with a threshold at 2ε0. Similar considerations apply to the n-particle continua,

which have thresholds at nε0. At higher oreder in 1/g we have to take into

consideration the mixing between states with different number of particles, such
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as the following matrix element:

〈0|HI|i, i+ 1〉 = −J, (5.13)

which introduces a coupling between n and n + 2 particle states. However, also

at higher orders qualitative features of the spectrum does not change, and we will

have renormalized one-particle states with a definite energy-momentum relation-

ship and renormalized n ≥ 2 particle continua with thresholds at nε0. Further-

more it has to be noticed that the integrability and stability of the one-particle

states is not modified at any order in 1/g: The one particle state with energy εk

is the lowest energy state with momentum k, and this protects it from decay.

As already noted below equation (5.12), the S-matrix of the TFIC assumes a very

simple form for all values of the momenta and at all orders in 1/g (the number of

outgoing particles is always equal to the number of ingoing ones, being the model

integrable). This remarkable fact appears to be quite mysterious at this stage

but will be clearer when we will map the Hamiltonian HI to fermionic variables.

The features of the spectrum described above have important consequences for

the dynamic structure factor S(k, w). If one inserts a complete sets of states

between the operators in (5.4) we see that at T = 0:

S(k, w) = 2π
∑

s

|〈σz(k)〉|2δ(w − Es), (5.14)

where the sum over s extends over all eigenstates of HI with energy Es > 0, there-

fore at zero temperature we have that S(k, w) is non-zero only for w > 0 (the

energy of the ground state was chosen to be zero). The dynamical susceptibility

can be obtained from the structure factor thanks to the fluctuation-dissipation

theorem, Imχ(k, w) = (sgn(w)/2)S(k, w). The eigenstates and energies described

above allow us to simply deduce the main features of S(k, w), which are sketched

in figure (5.1). The operator σz flips a single site, hence the matrix element

in (5.14) is nonzero for the single particle states: only the state with momen-

tum k contributes, and there is an infinitely sharp delta function contribution

to S(k, w) ∼ δ(k, w). This delta function represents the “quasiparticle peak”,

and its coefficient is called quasiparticle amplitude. In the limit g = ∞ this

89



5. The Ising chain in a transverse field

ωεk

S(ω)

Figure 5.1: Sketch of the dynamic structure factor S(k, w) of HI as a function
of w at zero temperature and small momentum. A quasiparticle delta function
at w = εk and a three-particle continuum at higher frequencies are shown in the
picture. There are additional n-particle continua for n ≥ 5 and odd, which are
not displayed here.

peak comprises the entire spectral density and saturates the sum rule of equation

5.14. For smaller g the quasiparticle amplitude decreases and the multiparticle

states also contribute the the spectral density. The mixing between the one- and

three-particle states which occurs in general for q 6=∞ means that the next con-

tribution to S(k, w) appears above the three-particle threshold w > 3ε0; in this

case the contribution is no longer a delta-function because there is a continuum

of such states. Therefore the shape of S(k, w) is rather a smooth function of w

(see figure (5.1)). Similarly there are continua above higher odd number particle

thresholds, and only odd number of particle contribute due to the fact that the

matrix element in (5.14) vanishes for even numbers of particles.

5.1.2 Weak coupling

The g = 0 ground states are those states where all the spins are aligned along

the positive (or negative) z-direction. They are twofold degenerate and posses
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long-range correlations in the magnetic order parameter σz:

lim
|x|→∞

C(x, 0) = N2
0 6= 0, (5.15)

where C(x, t) is the correlator defined in (5.2). The spontaneous magnetization

N0 is equal to ±〈σz〉 in the two ground states, corresponding to spontaneous

breaking of the Z2 symmetry. The excited states can be described in terms of

elementary domain wall (or kinks) excitations. For instance the state:

. . . | ↑〉i| ↑〉i+1| ↑〉i+2| ↓〉i+3| ↓〉i+4| ↓〉i+5 . . . (5.16)

has one domain wall, that is a pair of spins with opposite momenta. At g = 0

the energy of this state is clearly 2J (and for a state with n domain walls it

would be 2J × n). What happens when g is small but non zero is very similar to

what happens in the paramagnetic phase when g is large but finite: The domain

walls becomes particles, which can hop and form momentum eigenstates with

excitation energy:

εk = J(2− 2g cos(ka) +O(g)2). (5.17)

In the ferromagnetic phase the spectrum can be interpreted in terms of n-particle

states, although it must be said that the interpretation of the particle in this

case is very different from that in the large-g limit. Again, the perturbation

theory in g only mixes states that differ by an even number of particles, although

the matrix element in (5.14) is non zero only for states with an even number

of particles (this statement can be easily cheked in parturbation theory). The

structure factor S(k, w) will have a delta function at k = 0 and w = 0, from the

term in (5.14) where s is one of the ground states, which indicates the presence of

long-range order. In addition, there is no single particle contribution, and the first

finite w spectral density is represented by the continuum above the two-particle

threshold. To summarize we can say that:

S(k, w) = (2π)2N2
0 δ(k)δ(w) + continua of even particles. (5.18)
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The S-matrix for the collision of two domain walls can be computed in a per-

turbation theory in g, and the results are very similar to those found in the

paramagnetic phase where we expanded in 1/g: there is no particle production,

and Skk′ = −1 at all momenta to all orders in g.

5.2 Exact spectrum

All the qualitative considerations of the previous sections allow us to develop an

intuitive physical picture. We now want to take a different route and set up a

formalism that will lead us to an exact determination of many physical properties

of the TFIC, and that will eventually confirm the approximate methods we have

used to study the limiting cases for g > 1, g < 1 and will also provide a clear

understanding of the novel physics at the quantum critical point g = 1. In this

section we basically follow the approach and notation of (Essler [2012]).

The essential point in this exact solution is the Jordan-Wigner transformation,

which is a powerful mapping between models with spin-1/2 degrees of freedom and

spinless fermion. The central observation here is that there is a simple mapping

between the Hilbert space of a system with a spin-1/2 degree of freedom per site

and that of a spinless fermion hopping between sites with single orbitals. We

could associate the spin-up state with an empty orbital on the site and a spin-

down state with an occupied one. If the canonical fermion operator ci annihilates

a spinless fermion on site i, then this intuitive mapping immediately implies the

operator relation:

σz1 = 1− 2c†ici. (5.19)

Although this equivalence works for a single site, we cannot extend it to the case of

many sites, because while two fermionic operators on different sites anticommute,

two spin operators commute. The solution to this dilemma was found by Jordan

and Wigner, and it will be shown in the next to sections for the case of periodic

and open boundary conditions on the TFIC.
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5.2.1 Periodic boundary conditions

Let us consider the Ising ferromagnet with Hamiltonian given by (5.1), where g

is dimensionless and we impose periodic boundary consitions:

σαN+1 ≡ σα1 . (5.20)

As we said the quantum Ising chain can be mapped to a model of spinless fermions

by the Jordan-Wigner transformation:

σzx = 1− 2c†jcj

σzj = −
j−1
∏

l=1

(1− 2c†l cl)(cj + c†j).
(5.21)

In terms of these spinless fermions the Hamiltonian (5.1) reads:

HI = −J
N−1∑

j=1

c†j[cj+1 + c†j+1] + h.c.

− Jg
N∑

j=1

(1− 2c†jcj)

− Je iπN̂(cN − c†N)(c1 + c†1),

(5.22)

where N̂ is the number operator:

N̂ =
N∑

j=1

c†jcj. (5.23)

Before diagonalizing the full Hamiltonian it is crucial to observe that:

[H, e iπN̂ ] = 0, (5.24)

which means that the Hamiltonian is in fact block-diagonal in the eigenbasis of

e iπN̂ . Therefore we can split the Hilbert space as:

H = H+ +H−. (5.25)
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A basis of H+ is given by states of the form:

|m1, . . . ,m2n〉 =
2n∏

j=1

c†mj
|0〉, n = 0, . . . , N/2, (5.26)

while H− is spanned by states of the form:

|m1, . . . ,m2n−1〉 =
2n−1∏

j=1

c†mj
|0〉, n = 1, . . . , N/2. (5.27)

The corresponding blocks of the Hamiltonian are (σ = ±):

Hσ = −J
N−1∑

j=1

c†j,σ[cj+1,σ + c†j+1,σ] + h.c.

+ 2gJ
N∑

j=1

c†j,σcj,σ − gJN,
(5.28)

where the fermionic creation/annihilation operators are subject to the boundary

conditions:
cN+1,− = c1,−

cN+1,+ = −c1,+.
(5.29)

Let us denote the constant by C = −gJN . The Hamiltonians H± may now

be diagonalized by a Fourier transform followed by a Bogoliubov rotation. The

momentum spaces Fermi operators with the appropriate boundary conditions are:

cσ(kσ,n) =
1√
N

N∑

j=1

cje
−ikσ,nj, (5.30)

where

k−,n =
2πn

N
, n = −N

2
+ 1, . . . , N

2
,

k+,n =
2π(n+ 1/2)

N
, n = −N

2
, . . . , N

2
− 1.

(5.31)
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5. The Ising chain in a transverse field

In either sector we then carry out a Bogoliubov transformation:

(

cσ(kσ,n)

c†σ(−kσ,n)

)

= Rg(kσ,n)

(

αkσ,n

α†
−kσ,n

)

, (5.32)

where the matrix Rg is given by:

Rg(k) =

(

cos(θk/2) i sin(θk/2)

i sin(θk/2) cos(θk/2)

)

. (5.33)

In the − sector we have to treat the modes with momenta k0 and k−N/2 = −π
separately as they do not get paired up under the Bogoliubov transformation.

The Bogoliubov angle is found to be:

θk = arctan
[

sin(ka)
cos(ka)−g

]

+ πθH(1− g)sgn(k)θH(|k| − arccos(g)),
(5.34)

where θH is the Heaviside step function and where we always choose the principal

branch of the arctan. With this choice of the Bogoliubov angle we find:

H+ =

N/2−1
∑

n=−N/2
εg(k+,n)α

†
k+,n

αk+,n + C+, (5.35)

where the dispersion relation is:

εg(k) = 2J
√

1 + g2 − 2g cos(k). (5.36)

The constant contribution is found to be:

C+ = C +

N/2−1
∑

n=0

[−εg(k+,n)− 2J cos(k+,n) + 2gJ ]. (5.37)
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The analogous calculation for H− gives:

H− =

N/2−1
∑

n=−N/2−1, n 6=0

εg(k−,n)α
†
k−,n

αk−,n

− 2J(1− g)α†
0α0 + 2J(1 + g)α†

−πα−π + C−,

(5.38)

where the constant contribution is equal to:

C− = C +

N/2−1
∑

n=1

[−εg(k−,n)− 2J cos(k−,n) + 2gJ ]. (5.39)

Before proceeding it is useful to introduce the two vacua:

αkσ,n|0, σ〉 = 0, ∀ kσ,n. (5.40)

The ground state in the + sector is simply the + vacuum with energy:

EGS,+ = C+. (5.41)

In the − sector the lowest energy state in the ordered phase g < 1 is:

α†
0|0,−〉 (5.42)

with energy EGS,− = C− − 2J(1− g). Let us now consider the case of large N :

C+ − C− = −
N/2−1
∑

n=0

2j
[
cos
(
2π
N
(n+ 1

2
)
)
− cos

(
2π
N
n
)
+ ε(k+,n)

− ε(k−,n)]− [ε(0) + 2J(1− g)]
= J

∫ π

0

dx sin(x)− 1
2

∫ π

0

dxε′(x)− [ε(0) + 2J(1− g)] +O(N−1).

(5.43)

In the ordered phase we have ε(0) = 2J(1− g) and hence:

C+ − C− = −2J(1− g) +O(N−1). (5.44)
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As we expected this result shows that in the infinite volume of the ordered phase

limit we have two degenerate ground states. On the other hand, in the disordered

phase we have ε(0) = 2J(g − 1) and therefore we obtain:

C+ − C− = O(N−1), (5.45)

which means that there is a unique ground state, which lies in the + sector. A

basis of the full Hilbert space is provided by:

|n1, . . . , n2m,+〉 =
2m∏

j=1

α†
k+,nj
|0,+〉,

|n1, . . . , n2m+1,−〉 =
2m+1∏

j=1

α†
k−,nj
|0,−〉.

(5.46)

As σzj changes the fermion number by one, we conclude that it can have a non-

zero expectation value only between states that are linear combinations of states

involving the + and the − sectors. In the ordered phase the two ground states

are therefore:

|0〉NS ± |0〉R, (5.47)

where we define
|0〉NS = |0,+〉,
|0〉R = α†

0|0,−〉.
(5.48)

In order to simplify the notation we can carry out a particle-hole transformation

on the α0 fermion α0 → α†
0. After this we have for both the R and NS sectors:

|k1, . . . , k2m〉R =
2m∏

kj∈R
α†
kj
|0〉R,

|p1, . . . , p2m〉NS =
2m∏

pj∈NS
α†
pj
|0〉NS.

(5.49)

We can now understand why it is not trivial to determine the expectation value

of σzj . Firstly we have:

[σzj , e
iπN̂ ] 6= 0, (5.50)
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so σzj connects the two sectors. Still, we can express σzj in terms of our Bogoliubov

fermions of either sector. However, the problem is that the action of say the +

Boliubov fermions on the − vacuum is non-trivial:

αk+,n |0,−〉 6= 0. (5.51)

Therefore even the matrix element 〈0,+|σz1|0,−〉 cannot be simply computed by

using Wick’s theorem.

In the disordered phase the ground state is |0〉NS, while a complete set of states

is then given by:

|k1, . . . , k2m+1〉R =
2m+1∏

kj∈R
α†
kj
|0〉R,

|p1, . . . , p2m〉NS =
2m∏

pj∈NS
α†
pj
|0〉NS.

(5.52)

The above structure of the spectrum confirms the approximate considerations of

the previous section: We have found that the particles are in fact free fermions,

and two fermions will not scatter even when the get close to each other. Alterna-

tively they can be considered as hard-core bosons, which have an S-matrix that

does not allow particle production and that equals −1 at all momenta. We will

see that the latter point of view is much more useful, as the bosonic particles

have a simple, local interpretation in terms of the underlying spin excitations:

For g � 1 the bosons are simply spins oriented in the | ←〉 direction, whereas
for g � 1 they are domain walls between two ground states. The fermionic rep-

resentation is useful for certain technical manipulations, but the bosonic point of

view is much more useful for making physical arguments, as we shall see.

5.2.2 Open boundary conditions

Let us now consider the Ising ferromagnet on an open chain with N sites:

HI = −J
N−1∑

j

[σzjσ
z
j+1 + gσxj ]. (5.53)
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In terms of the spinless Jordan-Wigner fermions the Hamiltonian reads:

Hσ = −J
N−1∑

j=1

c†j[cj+1 + c†j+1] + h.c.

− gJ
N∑

j=1

(1− 2c†jcj).

(5.54)

The appropriate Bogoliubov transformation can be worked out following Lieb,

Shulz and Mattis:

αk =
N∑

j=1

φk,j + ψk,j
2

cj +
φk,j − ψk,j

2
c†j, (5.55)

where we have introduced

φk,n = Nk[g sin(nk)− sin((n− 1)k)],

ψk,n =
2JNk

ε(k)
sin(nk).

(5.56)

The normalization factor is given by

N2
k =

8J2

ε(k)2
1

N + 1

(

1− sin(2Nk)

2g(N + 1) sin(k)

)−1

, (5.57)

while as before εg(k) = 2J
√

1 + g2 − 2g cos(k). The k’s are solutions to the

following set of quantization conditions:

sin(Nk)− g sin((N + 1)k) = 0. (5.58)

The solutions of this equation are all real with one exception in the case of

0 < g < 1. Finally the Hamiltonian becomes:

HI =
∑

k

ε(k)α†
kαk + C. (5.59)
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The two lowest energy states in the ordered phase are the fermion vacuum |0〉
and the boundary bound state

|k0〉 = α†
k0
|0〉, (5.60)

where k0 fulfils the equation:

sinh(Nk0)− g sinh((N + 1)k0) = 0. (5.61)

For large N and k0 > 0 we obtain:

k0 = −i ln(g) +O(e−γN), (5.62)

therefore we have:

ε(k0) ≈ 2J
√

1 + g2 − g(g + 1/g) = 0, (5.63)

which shows that the two states are degenerate up to terms exponentially small

in the system size. Let us return to teh quantization condition (5.58). They can

be written in logarithmic form as:

kn =
πn

N
+

1

N
arctan

(
g sin(kn)

1− g cos(kn)

)

, (5.64)

where n = 1, 2, . . . , N − 1. Remember that for large N we can turn sums into

integrals using the Euler-Maclaurin sum formula:

1

N

N−1∑

j=1

f(kn) =

∫ π

0

dk

π
f(k) +O(N−1). (5.65)

The boundary phase shift does not affect the O(1) term of such expressions.

It is now convenient to introduce the operators:

Aj = cj + c†j Bj = cj − c†j, (5.66)
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which satisfy the following commutation relations:

{Aj, Al} = 2δj,l

{Bj, Bl} = −2δj,l
{Aj, Bl} = 0.

(5.67)

Using these operators we can re-write the magnetization operator as:

σzn = −
n−1∑

j=1

AjBjAn, (5.68)

while the fact that the φk’s and ψk’s form orthonormal set of vectors we have:

Aj =
∑

k φk[αk + α†
k]

Bj =
∑

k ψk[αk − α
†
k].

(5.69)

We are now ready to compute two-point functions of A’s and B’s. From the

anticommutation relations of the Aj’s and Bj’s we can easy compute the following

correlators:
〈0|AjAl|0〉 = δj,l,

〈0|BjBl|0〉 = −δj,l,
(5.70)

Now we want to calculate the correlator between Aj and Bj:

〈0|AjBl|0〉 = −
N−1∑

n=0

φk,jψk,l

'
∫ π

−π

dk

2π

(g − e−ik)[e ik(j−l) − e ik(j+l)]
√

1 + g2 − 2g cos(k)
.

(5.71)

Here we have assumed that j, l � N . In particular this assumption allows us

to drop the contribution from the k0 mode, and the remaining integral can in

principle be carried out to yield a regularized generalized hypergeometric function
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using the integral:

∫ π

−π

dk

2π
eikm

√

1 + g2 − 2g cos(k)

=
3F2(

1
2
, 1
2
, 1; 1−m, 1 +m; 4g

(1+g)2
)

(1 + g)Γ(1−m)Γ(1 +m)
.

(5.72)

The magnetization at site n is given by:

〈0|σzn|k0〉 = − 1
2

N∑

l=1

φk0,l〈0|
n−1∑

j=1

AjBjAnAl|〉

+ 1
2

N∑

l=1

ψk0,l〈0|
n−1∑

j=1

AjBjAnBl|〉.
(5.73)

Using Wick’s theorem we find that:

〈0|
n−1∑

j=1

AjBjAnAl|0〉 = det(G1),

〈0|
n−1∑

j=1

AjBjAnBl|0〉 = θH(l + 1− n)det(G2),

(5.74)

where we have introduced the matrices:

(G1)ij = (G2)ij = 〈AjBi〉, i = 1, . . . , n− 1,

(G1)n,j = δj,l, (G2)n,j = −δij.
(5.75)

So apart from the last row both G1 and G2 are sums of Toeplitz and Hankel

matrices.

5.3 Equal-time Correlations of the order

parameter at finite T

In this section we shall outline one of the possible techniques to compute equal-

time correlations of the order parameter at finite temperature. We will use the

symbol 〈Ô〉 to indicate the statistical average at temperature T of the operator
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Ô, and we will also assume all the operators involved in the matrix element to

be equal-time. Using the fermionic representation of σzi we can write:

〈σzi σzi+n〉 =

〈

(c†i + ci)

[
i+n−1∏

j=i

(c†j + cj)(c
†
j − cj)

]

(c†i+n + ci+n)

〉

=

〈

(c†i − ci)
[
i+n−1∏

j=i+1

(c†j + cj)(c
†
j − cj)

]

(c†i+n + ci+n)

〉

.

(5.76)

Let us notice that the string in the previous equation only extends between the

sites i and i+n, with the operators on site to the left of i heving cancelled between

the two strings. Now, using the notation introduced in (5.66) we have:

〈σzi σzi+n〉 = 〈BiAi+1Bi+1 . . . Ai+n−1Bi+n−1Ai+n〉. (5.77)

Since these expectation values are computed with respect to a free Fermi theory,

the term on the right-hand side can be computed by the finite-temperature Wick’s

theorem, which connects it to a sum over products of expectation values of pairs

of operators, which can be easily calculated:

〈AiAj〉 = δij

〈BiBj〉 = −δij
〈BiAj〉 = −〈AjBi〉 = Di−j+1,

(5.78)

where we have introduced Dn:

Dn ≡
∫ 2π

0

dφ

2π
e−inφD̃(e iφ), (5.79)

and

D̃(z = e iφ) ≡
(

1− gz
1− g/z

)1/2

tanh

[
J

T
((1− gz)(1− g/z))1/2

]

. (5.80)

In order to determine 〈BiAj〉 we have used the representation (5.32) and evaluated

expectation values of the αk under the free fermion Hamiltonian defined in (5.25),
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in the thermodynamic limit. Collecting the terms in the Wick expansion we find:

〈σzi σzi+n〉 = Tn ≡

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

D0 D−1 . . . D−n+1

D1

·
· D0 D−1

Dn−1 D1 D0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (5.81)

Now the problem is to evaluate the determinant Tn: To obtain the universal

scaling limit answer we need to take the limit n → ∞. The expression for

Tn belongs to a special class of determinants known as Toeplitz determinants,

and the limit n → ∞ can indeed be computed in closed form using a rather

sophisticated mathematical theory. In the next section we will see how to use the

same techniques to write an algorithm to compute the non-equal time correlations

at zero temperature, which will be the main target of the next chapters. However

the details of these techniques will not be discussed here, but refer the reader to

the literature (Sachdev [2000]).

5.4 Time-dependent correlation function after a

quench at T = 0

In this section we will introduce the protocol for a quench in the TFIC, and

see how the to compute time-dependent correlators in this framework. Let us

consider the situation where we quench the transverse field from hJ to h′J . The

system then starts out in the ground state |0〉 of the original Hamiltonian, defined

by:

αk|0〉 = 0. (5.82)

The time evolution of this state is:

e−iH
′t|0〉, (5.83)
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where H ′ is the new Hamiltonian corresponding to the transverse field h′J . The

latter can be diagonalized in terms of new Bogoliubov fermions:

H(h′) =
∑

k

εh′(k)

[

β†
kβk −

1

2

]

. (5.84)

The new and old Bogoliubov fermions are related by:

(

βk

β†
−k

)

= U(k)

(

αk

α†
−k

)

(5.85)

where the matrix U is given by:

U(k) = RT
h′(k)Rh(k) =




cos
(
θk−θ′k

2

)

i sin
(
θk−θ′k

2

)

i sin
(
θk−θ′k

2

)

cos
(
θk−θ′k

2

)



 . (5.86)

This relationship allows us to link the two vacua. Starting with:

|0′〉 =
∞∑

n=0

∑

k1,...,kn

fk1,...,knα
†
k1
. . . α†

kn
|0〉, (5.87)

and then imposing the condition:

0 = βk|0′〉 =
[

U11(k)αk + U12(k)α
†
−k

]

, (5.88)

we conclude that up to a normalization factor the new vacuum cna be expressed

in terms of the old one as:

|0′〉 = exp

(

− i
2

∑

k

tan

[
θk − θ′k

2

]

α†
kα

†
−k

)

. (5.89)

This kind of state is sometimes called boundary state or squeezed-state, ex-

pecially in the context of integrable quantum field theory.

Solving the Heisenberg equation of motion we have:

βk(t) = e−iεh′ tβk. (5.90)
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This allows us to derive an expression for the transverse magnetization σzj in terms

of the “old” Bogoliubov fermions, which represents a first pedagogical example

of time-dependent expectation value:

σxj (t) = −
1

L

∑

k,p

e−i(k−p)j(α†
k, α−k)S(k, p, t)

(

αp

α†
−p

)

(5.91)

where S(k, p, t) is a 2× 2 matrix:

S(k, p, t) = UT (k)D†
h′(k)R

†
h′(k)σ

zRh′(p)Dh′(p)U(p). (5.92)

with:

Dh′(k) =

(

e iεh(k)t 0

0 e−iεh(k)t

)

. (5.93)

Let us now determine the time evolution of the expectation value of σxj after the

quench, namely:

〈σxj (t)〉 = 〈0|e iH(h′)tσxj e
−iH(h′)t|0〉, (5.94)

which, using translational invariance, can immediately re-written as:

〈σxj (t)〉 = 1− 2
∑

j

〈0|e iH(h′)tc†jcje
−iH(h′)t|0〉

= 1− 2

N

∑

k

〈0|e iH(h′)tc†(k)c(k)e−iH(h′)t|0〉.
(5.95)

This can be evaluated as follows:

〈σxj (t)〉 = − 1

N

∑

k

〈0|e iH(h′)t(c†(k), c(−k))σz
(

ck

c†−k

)

e−iH(h′)t|0〉

= − 1

N

∑

k

〈0|e iH(h′)t(β†
k, βk)R

†
hσ

zRh

(

βk

β†
−k

)

e−iH(h′)t|0〉

= − 1

N

∑

k

〈0|(α†
k, α−k)S(k, t)

(

αk

α†
−k

)

|0〉.

(5.96)
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After a little algebra we find the following result:

〈σxj (t)〉 =
1

N

∑

k

S22(k, t)

=

∫ π

−π

dk

2π

[
cos(θk) cos

2(εh′(k)t) + cos(θk − 2θ′k) sin
2(εh′(k)t)

]
.

(5.97)

Let us now focus on the computation of the two-point correlation function of the

order parameter of the TFIC, following the approach of (Fagotti [2012]). Let us

consider again the Ising ferromagnet on an open chain with L sites1:

H = −
L−1∑

j=1

J
[

σzjσ
z
j+1 + hσxj

]

. (5.98)

The Hamiltonian can be written in terms of the Majorana fermions Aj and Bj,

where the spin operators read as:

σxl =
∏

j<l

(AjBj)Al σyl = i
∏

j<l

(AjBj)Bl. (5.99)

Because of this, the spin correlation functions can be obtained by means of the

Wick’s theorem both at finite temperature and at temperature zero, when the

system is in the ground state. In addition, Wick’s theorem can be also used when

we consider the evolution of the system after a quantum quench in which both

the initial and the final Hamiltonians are Ising ferromagnets, i.e. a quench in

which the magnetic field is abruptly changed from Jh0 to Jh.

We are interested in the time dependent two-point correlation function of the

order parameter

〈σxn(t2)σxn+`(t1)〉 〈σxn+`(t2)σxn(t1)〉 , (5.100)

where t2 ≥ t1 and as usual we indicated with σx(t) the time dependent operator

in the Heisenberg picture

σx(t) = eiHtσxe−iHt. (5.101)

1Here we prefer to use L instead of N to indicate the total number of spins, in order to
avoid confusing it with Nk, another parameter we shall define later.
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Now we consider the first expectation value of (5.100). In terms of the Majorana

fermions we get

〈σxn(t2)σxn+`(t1)〉 = 〈
∏

j<n

(Aj(t2)Bj(t2))An(t2)
∏

j<n+`

(Aj(t1)Bj(t1))An+`(t1)〉 .

(5.102)

This expectation value can be written as the Pfaffian of a matrix (up to a sign):

〈σxn(t2)σxn+`(t1)〉 = Pf[Γ], (5.103)

where Γ is the (4n + 2` − 2) × (4n + 2` − 2) skew-symmetric matrix, with the

upper triangular part given by

Γij =













〈A i+1
2
(t2)A j+1

2
(t2)〉 i, j odd

〈A i+1
2
(t2)B j

2
(t2)〉 i odd, j even

〈B i
2
(t2)A j+1

2
(t2)〉 i even, j odd

〈B i
2
(t2)B j

2
(t2)〉 i, j even

i < j < 2n







〈A i
2
−n+1(t1)A j

2
−n+1(t1)〉 i, j even

〈A i
2
−n+1(t1)B j+1

2
−n(t1)〉 i even, j odd

〈B i+1
2

−n(t1)A j
2
−n+1(t1)〉 i odd, j even

〈B i+1
2

−n(t1)B j+1
2

−n(t1)〉 i, j odd

2n ≤ i < j







〈A i+1
2
(t2)A j

2
−n+1(t1)〉 i odd, j even

〈A i+1
2
(t2)B j+1

2
−n(t1)〉 i, j odd

〈B i
2
(t2)A j

2
−n+1(t1)〉 i, j even

〈B i
2
(t2)B j+1

2
−n(t1)〉 i even, j odd

i < 2n, 2n ≤ j

(5.104)

The other correlation function of (5.100) can be obtained by substituting n with

n+ ` in the matrix above. Thus, the basic ingredients to compute the two-point

correlation function are the fermionic correlations

〈Al(t2)An(t1)〉 , 〈Bl(t2)Bn(t1)〉 , and 〈Al(t2)Bn(t1)〉 (5.105)
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and the corresponding equal-time ones. Before the quench operators A’s are only

correlated with operators B’s, indeed

〈Al(0)An(0)〉 = δln 〈Bl(0)Bn(0)〉 = −δln . (5.106)

In order to write the other fermionic correlations before and after the quench it

is convenient to define the functions

φ
(h)
kj ,n

= (−1)nNkj

[

sin((n− 1)kj)− h sin(nkj)
]

ψ
(h)
kj ,n

= (−1)L−jφkj ,L+1−n

j = 0, . . . , L− 1

n = 1, . . . , L .
(5.107)

where

N2
k =

2

L+ h2(1 + L)− h(1 + 2L) cos k
(5.108)

and kj are the L momenta, solutions of the equation

sin(Lkj)− h sin((L+ 1)kj) = 0 . (5.109)

We observe that in the disordered phase (h > 1) all momenta are real. We also

write eq. (5.109) in logarithmic form

kj =
πj

L
+

1

L
arctan

( h sin(kj)

1− h cos(kj)
)

. (5.110)

The following orthogonality conditions hold:

∑

n

φkj ,nφkj′ ,n = δjj′
∑

j

φkj ,nφkj ,l = δln (5.111)

and analogously for ψ.

Let us now define

G ≡ 〈A(0)⊗B(0)〉 (5.112)

the fermionic correlations at the initial time; Jh0 is the magnetic field before the

quench Jh0 → Jh and 〈v ⊗ w〉 denotes the matrix with elements

〈v ⊗ w〉ln = 〈vlwn〉 . (5.113)
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In particular we have

Gln = −
L−1∑

j=0

φ
(h0)
kj ,l

ψ
(h0)
kj ,n

, (5.114)

where (h0) indicates that φ and ψ are the functions defined in eq. (5.107) for the

magnetic field Jh0 (the magnetic field modifies the momenta). We now consider

the fermionic correlations after the quench. For simplifying the notation we define

the auxiliary matrices

Qφφ
ln (t) =

L−1∑

j=0

φ
(h)
kj ,l
φ
(h)
kj ,n

cos(εkj t)

Qψφ
ln (t) = QφψT

ln(t) =
L−1∑

j=0

ψ
(h)
kj ,l
φ
(h)
kj ,n

sin(εkj t)

Qψψ
ln (t) =

L−1∑

j=0

ψ
(h)
kj ,l
ψ

(h)
kj ,n

cos(εkj t)

(5.115)

and the vectors

[~Φj]l = φ
(h0)
kj ,l

[~Ψj]l = ψ
(h0)
kj ,l

, (5.116)

which satisfy the relations

G~Ψj = −~Φj

GT ~Φj = −~Ψj .
(5.117)

The evolution after the quench of the operators A and B in the Heisenberg picture

can be written as follows

A(t) = QφφA+ iQφψB

B(t) = iQψφA+QψψB ,
(5.118)

and hence the two-point functions become:

〈A(t2)⊗ A(t1)〉 = 〈(Qφφ(t2)A+ iQφψ(t2)B)⊗ (AQφφ(t1) + iBQψφ(t1))〉 =
Qφφ(t2)Q

φφ(t1) +Qφψ(t2)Q
ψφ(t1) + iQφφ(t2)GQ

ψφ(t1)− iQφψ(t2)G
TQφφ(t1)

(5.119)
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〈B(t2)⊗B(t1)〉 = 〈(iQψφA+QψψB)⊗ (iAQφψ +BQψψ)〉 =
−Qψφ(t2)Q

φψ(t1)−Qψψ(t2)Q
ψψ(t1) + iQψφ(t2)GQ

ψψ(t1)− iQψψ(t2)G
TQφψ(t1)

(5.120)

〈A(t2)⊗B(t1)〉 = 〈(Qφφ(t2)A+ iQφψ(t2)B)⊗ (iAQφψ +BQψψ)〉 =
iQφφ(t2)Q

φψ(t1)− iQφψ(t2)Q
ψψ(t1) +Qφφ(t2)GQ

ψψ(t1) +Qφψ(t2)G
TQφψ(t1)

(5.121)

〈B(t2)⊗ A(t1)〉 = 〈(iQψφA+QψψB)⊗ (AQφφ(t1) + iBQψφ(t1))〉 =
iQψφ(t2)Q

φφ(t1)− iQψψ(t2)Q
ψφ(t1)−Qψφ(t2)GQ

ψφ(t1)−Qψψ(t2)G
TQφφ(t1)

(5.122)

By substituting these correlations into eq. (5.104) we obtain the two-point func-

tion of the order parameter. The orthogonality relations could be useful to sim-

plify the fermionic correlations when t2 = t1 or t1 = 0. These results will be

used to compute the dynamic correlators at T = 0 numerically, and the resulting

Mathematica code based upon them is listed in appendix (7.7). Using this numer-

ical code we will check our analytical results on the dynamics of the TFIC, that

will be based on a semi-classical approach, as we shall see in the next chapter.

5.5 The semi-classical method at finite T

In this section we will introduce the semi-classical method to study real time,

T 6= 0 correlations of the one-dimensional TFIC. This method was first introduced

by S. Sachdev and P. Young (Sachdev and Young [1997]), and the following review

is based upon chapter 4 of (Sachdev [2000]). The semi-classical method will be

used here to obtain the exact asymptotics of order parameter correlations in the

two low T regions on either side of its quantum critical point (see figure (5.2)). We

will see that in these low T regimes the spin correlation function can be expressed

as a product of two factors. The fisrt one, arising from quantum effects, gives the

T = 0 value of the correlation function, and the second one, which comes from a
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Figure 5.2: Finite-T phase diagram of the TFIC, as a function of the coupling
g and temperature T . There is a quantum phase transition at g = gc = 1.
Magnetic long-range order (N0 6= 0) is present only at zero temperature and
g < gc, while the ground state for g > gc is a quantum paramagnet. The dashed
lines are crossovers at |∆| ∼ T . The low-T regions on both the ferromagnetic and
paramagnetic side are studied in section (5.5), whilst the continuum high-T region
is not discussed here because its description would require a different toolbox
(a detailed analysis of this conformal critical point can be found in (Sachdev
[2000])). Its properties are universal and determined by the continuum theory
which describes this quantum critical point. Finally there is also a “lattice high-
T” region with T � J where properties are not universal and determined by the
lattice scale Hamiltonian.

classical theory, describes the effects of temperature.

5.5.1 Ferromagnetic side

Let us start by analysing the low-T magnetically ordered side. The excitations

consist of particles (the so called kinks) whose main separation (ξ ∼ e∆/T , where

ξ is the correlation length and ∆ the mass-gap) is much larger than their de

Broglie wavelength (∼ (c2/∆T )1/2, where c is the maximal propagation velocity

in the system) as T → 0, which corresponds exactly to the canonical condition

for the applicability of classical physics. The energy of a domain wall when the
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momentum is small is ∆ + c2k2/2∆, and hence the density ρ can be written by

using classical Boltzman statistics as:

ρ =

∫
dk

2π
e−(∆+c2k2/2∆)/T =

(
T∆

2πc2

)1/2

e−∆/T . (5.123)

Now if we computed the correlator C(x, 0) using the determinant technique which

was introduced in section (5.3), we would get:

C(x, 0) = N2
0 e

−|x|/ξ, (5.124)

where N2
0 ∝ ∆1/4 and ξ−1 =

(
2T |∆|
πc2

)1/2

e−∆/T , therefore ξ = 1/2ρ. This result

can also be understood if we assume that the domain walls are classical point

particles, distributed independently with a density ρ. Consider now a system of

size L� |x|, and let it contain M thermally excited particles, so that ρ =M/L.

Let q be the probability for a particle to be located between 0 and x, that is

q = |x|/L. Now the probability that a given set of j particles are the only ones

between the points 0 and x is the qj(1 − q)M−j. As in this picture each particle

reverses the orientation of the ground state, we have:

σz(x, 0)σz(0, 0) = N2
0 (−1)j, (5.125)

and summing over all possibilities we obtain:

C(x, 0) = N2
0

M∑

j=0

(−1)jqj(1− q)M−j M !

j!(M − j)!
= N2

0 (1− 2q)M ≈ N2
0 e

−2qM = N2
0 e

−2ρ|x|,

(5.126)

which is exactly the result we would have obtained if we had done the whole calcu-

lation using the determinant technique of section (5.3). The semi-classical picture

can also be extended to compute unequal-time correlations, where one has to take

into account collisions between the particles. Even though the particles are very

dilute, in one dimension they cannot really avoid each other, and neighbor parti-

cles will always eventually collide (this is not the case in higher dimensions where

sufficiently dilute particles can be treated as noninteracting). During any colli-
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Figure 5.3: A typical semi-classsical configuration contributing to the double
path integral for 〈σz(x, t)σz(0, 0)〉. Red lines are thermally excited particles that
propagate forward and backwards in time. The ± are significant only in the fer-
romagnetically ordered phase, and denote the orientation of the order parameter.
In the paramagnetic phase the black line is a particle propagating only forward
in time from (0, 0) to (x, t).

sion particles are certainly closer than their di Broglie wavelengths, and therefore

we must treat the scattering process quantum mechanically. To do that we will

consider the two-particle S-matrix, and due to the diluteness of the particles in

the system we will consider collisions of only pairs of particles.

In order to study dynamic correlations, let us reexamine the explicit expression

for C(x, t) in (5.2). This quantity can be evaluated exactly using some sim-

ple physical arguments. The key idea is that classical mechanics emerges from

quantum mechanics as a stationary phase evaluation of a first-quantized Feyman

path integral. Let us notice that the integral is over a set of trajectories moving

forward in time, representing the operator e−iHt, and a second set moving back-

wards in time, corresponding to the action of e iHt. In the semi-classical limit,

stationary phase is achieved when the backwards paths are simply the reverse of

the forward ones, and both sets represent the classical trajectories. An exam-

ple of such paths is shown in figure (5.3). Let us now notice that the classical
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trajectories remain straight lines across collisions because the momenta before

and after the scatetring process are the same. This observation follows from the

requirement of conservation of total momentum (k1 + k2 = k′1 + k′2) and energy

(εk1 + εk2 = εk′1 + εk′2) in each two-particle collision, which has the unique solution

k1 = k′1 and k2 = k′2 (or a permutation of the indices, but this last solution do

not need to be considered separately because the particles are identical) in one

dimension. Moreover for each collision the amplitude of the path acquire a phase

Sk1k2 along the forward path and its complex conjugate along the backwards path.

Therefore the net factor after the collision is |Sk1,k2 |2 = 1. These two facts imply

that the trajectories of the particles are simply independently distributed straight

lines, with a uniform density ρ along the x-axis, with an inverse slope given by:

vk ≡
dεk
dk

, (5.127)

where the value of the momenta are chosen with the Boltzmann probability den-

sity e−ε/T . In practice now computing dynamic correlatos is an exercise in clas-

sical probabilities. As each particle line is the boundary between domains with

opposite orientations of the spins, the value of σz(x, t)σz(0, 0) is the square of the

magnetization renormalized by quantum fluctuations (N2
0 ) times (−1)j, where

j is the number of different trajectories inserting the black line in figure (5.3).

What is left now is the average of N2
0 (−1)j over the classical ensemble of paths

defined above. Let us choose again a system size L � |x| with M particles, the

probability q that a given particle with velocity vk is between the points (0, 0)

and (x, t) is:

q =
|x− vkt|

L
. (5.128)

Averaging over velocities and then evaluating the summation in (5.126) gives us

the following result:

C(x, t) = N2
0 exp

(

−
∫
dk

π
e−εk/T |x− vkt|

)

. (5.129)
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The equal-time or equal-space form of the relaxation function R(x, t) is simply

given by:

R(x, 0) = e−|x|/ξ, R(0, t) = e−|t|/τ , (5.130)

whilst for general x, t the function R also is a monotonically decreasing function

with increasing |x| or |t|, but the decay is no longer exponential. The spatial

correlation length ξ was given in (5.124), while we can determine τ from (5.130):

τ−1 =
2

π

∫ ∞

0

dk dεk
dk
e−εk/T

=
2

π

∫ ∞

|∆|
dεke

−εk/T

=
2T

π
e−|∆|/T .

(5.131)

The correlator C(x, t) can also be written as:

C(x, t) = N2
0φR

(
x

ξ
,
t

τ

)

, (5.132)

where the relaxation function R(x, t) satisfies the scaling form:

R(x, t) = φR

(
x

ξ
,
t

τ

)

. (5.133)

This scaling function is valid only for T � ∆, and can be explicitly written as:

lnφR(x̄, t̄) = −x̄erf
(

x̄

t̄
√
π

)

− t̄e−x̄2/(πt̄2). (5.134)

All these results have been compared with exact numerical computations and

the agreement was found to be perfect (see figure (5.4) and also (Sachdev and

Young [1997], Sachdev [2000]) and references therein). This agreement gives

us confidence that the physical semi-classical approach to dynamical properties

outilined above is in fact exact.
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Figure 5.4: The points show numerical data for the TFIC in the ferromagnetic
region, obtained for a lattice size of L = 256 with free boundary conditions (from
(Sachdev and Young [1997])). Printed with permission of the authors.

5.5.2 Paramagnetic side

We have already argued in the strong-coupling analysis of section (5.1.1) that

an important feature of the spectral density of the quantum paramagnet was

the quasi-particle delta function which was shown in figure (5.1). It is natural

to expect that the leading term in the large-x dependence of the correlator at

zero temperature is determined simply by the contribution of this pole, plus the

relativistic invariance of the continuum theory which can be defined in the proper

scaling limit (for more details see (Sachdev [2000])). The dynamical suceptibilty

must therefore have the form:

χ(k, w) =
A

c2k2 +∆2 − (w − iδ)2 + . . . , T = 0, (5.135)
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where A is the quasi-particle residue and δ is a positive infinitesimal. The contin-

uum of excitations above the three-particle threshold is represented by the ellipses

in (5.135). Let us use (5.135) to deduce the T = 0 equal-time correlations. This

can be easily done by analytically continuing (5.135) to imaginary frequencies

wn, and then using the inverse of definition (5.6), which gives:

C(x, 0) = A

∫
dw

2π

∫
dk

2π

e−ikx

w2 + c2k2 +∆2

=
A

√

8πc|∆||x|
e−∆|x|/c, |x| → ∞ at T = 0,

(5.136)

To determine the value of A one has to do a microscopic lattice calculation, which

would give (see for instance (Johnson et al. [1973])):

A = 2cJ−1/4|∆|1/4. (5.137)

We immediately see that the residue vanishes at the critical point ∆ = 0, where

the quasiparticle picture breaks down, and we will have a completely different

structure of excitations. Nonetheless the above is a complete description of the

correlations and excitations of the quantum paramagnetic ground state. We now

turn to the dynamic properties at T > 0, where there will be a small density of

quasiparticle excitations that will behave classically for the same reason as in sec-

tion (5.5.1): their main distance is much larger that their de Broglie wavelength.

The scattering processes of these thermally excited quasiparticle will lead to a

broadening of the delta function poli in (5.135). The specif form of this broad-

ening can be computed exactly in the limit of low temperature T � |∆| using a

semi-classical approach similar to that employed fro the ordered side. Here the

key observation is that we may consider the operator σz to be given by:

σz(x, t) =
√
A(ψ(x, t) + ψ†(x, t)) + . . . , (5.138)

where ψ† is the operator that creates a single-particle excitation from the ground

state, and the ellipses represent multiparticle creation or annihilation terms,

which are subdominant in the long-time limit. This representation may also

be understood from the g � 1 picture discussed before, in which the single
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particle excitations were | →〉 spins: The σz operator flips spins between the

±x directions, and therefore creates and annihilates quasiparticles. Because the

computation of the nonzero T relaxation is best done in real space and time, let

us first write down the T = 0 correlations in this framework. We define K(x, t)

as the T = 0 correlator of the order parameter (in the continuum and relativistic

limit):

K(x, t) ≡ 〈σz(x, t)σz(0, 0)〉T=0

=

∫
dk

2π

c|∆|1/4
J1/4εk

e i(kx−εkt)

=
|∆|1/4
J1/4π

K0

(
|∆|(x2 − c2t2)1/2/c

)
,

(5.139)

where K0 is the modified Bessel function. This result has been obtained by the

Fourier transform of (5.135). The first step of the previous calculation is valid

in general (also for the lattice theory), whilst the second one makes use of the

relativistic invariance of the continuum theory (see (Sachdev [2000])). Our main

interest now is the T > 0 properties of the correlations within the light-cone

(x < ct), where the correlations are large and oscillatory (corresponding of the

propagation of real particle) and display semi-classical dynamics. Let us now

focus on the T 6= 0 evolution, in the same semi-classical path integral approach

that was employed earlier in section (5.5.1). As before we are dealing with semi-

classical particles, even though the physical interpretation of these particles is

quite different: They are quasiparticles excitations above a quantum paramagnet,

no longer domain walls between magnetically ordered regions. Nevertheless the

path-integral representation of (5.2) leads to two sets of paths: one forward and

the other backward in time. However there is a special trajectory that propagates

only forward in time, that is the trajectory representing the particle created

by the first σz0 and annihilated by the second one. The inverse process will

not be considerated here, because the probability for the fisrt σz to destroy an

already present one is negligible, being the density of thermally excited particle

exponentially small. Yet, as in the semi-classical limit, the forward and backward

trajectories of the excitations are expected to be the same; the particle on the

trajectory created by the first σz0 must be annihilated at the σzi , otherwise the

initial and final states in the trace of (5.2) will not be the same.

This reasoning leads us to a spacetime snapshot of the paths that is the same
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5. The Ising chain in a transverse field

Figure 5.5: The numerical data for the TFIC with J = 1, in the paramagnetic
region for a lattice of L = 512 with free boundary conditions (from (Sachdev and
Young [1997])). The numerical has a ringing at high frequency, which is due to
the upper energy cut-off in the dispersion relation, that is present in the lattice
model but not in the continuum theory. The inset shows a part of the same data
on a larger scale for sake of clarity. Printed with permission of the authors.

as in figure (5.3), but its physical meaning is very different. The ± signs in

the domains should be ignored. In the absence of any thermally excited particle

the black line represents the propagation of a free particle moving from (0, 0)

to (x, t), and will contribute the T = 0 Feyman propagator above, K(x, t), to

〈σz(x, t)σz(0, 0)〉. The scattering of the background thermally excited particles

(the red lines in figure (5.3)) introduces factors of the S matrix at each collision;

as the black line only propagates forward in time, the S matrix elements for

collisions between this line and the red ones are not neutralized by their complex

conjugate partner. All other collisions occur both forward and backward in time,

therefore they contribute |Sk1,k2 |2 = 1.

Using the low momentuum value Sk1,k2 = −1, we see that the contribution to
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5. The Ising chain in a transverse field

〈σz(x, t)σz(0, 0)〉 from the set of trajectories equals (−1)jK(x, t), where j is the

number of red lines intersecting the black one. Remarkably the (−1)j factor is

exactly the same we found in the magnetically ordered phase case, although for

very different physical reasons. Carrying out the average over all trajectories we

obtain the low-T dynamic correlator in the paramagnetic side:

C(x, t) = K(x, t)R(x, t), (5.140)

where the relaxation function is the same as in (5.133). An interesting feature of

this result is that it clearly displays the separation in scales at which quantum

and thermal effects act. Quantum fluctuations determine teh oscillatory,complex

function K(x, t), which gives the T = 0 value of the correlator. Exponetial

relaxation of spin correlations occurs at longer scales ∼ ξ, τ and is controlled by

the classical motion of particles. This classical relazation is expected to broaden

the quasiparticle pole with widths of order ξ−1 and τ−1 in momentum and energy

space.

These analytical prediction have been tested numerically (see figure (5.5) and also

the article (Sachdev and Young [1997])) and again the agreement is very good.

Same differences appear outside the light-cone, but this is outisde the domain

of validity of the semi-classical approach. We will find a similar behaviour in

the next chapter, when we will deal with dynamic correlations after a quantum

quench.
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Chapter 6

Semi-classical theory for

quantum quenches in the O(3)

non-linear sigma-model

In this chapter we use the semi-classical approach to study the non-equilibrium

dynamics of the O(3) non-linear sigma model. For a class of quenches defined

below in the text, we obtain the order-parameter dynamical correlator in the

thermodynamic limit. In particular we predict quench-dependent relaxation times

and correlation lengths. The approach developed for the O(3) non-linear sigma

model can also be applied to the transverse field Ising chain, where the semi-

classical results can be directly compared to both the exact and the numerical

ones, revealing the limits of the method.

This chapter basically covers the content of the analogous article “Semi-classical

theory for quantum quenches in the O(3) non-linear sigma-model” written by S.

Evangelisti, arXiv:1210.4028, submitted to Journal of Statistical Mechanics.

6.1 Introduction to the problem

The out-of-equilibrium physics of many-body systems has attracted a lot of inter-

est in recent years, not least because of the experimental realizations of ultracold

atomic gases in optical lattices (Greiner et al. [2002], Kinoshita et al. [2006a],
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6. Semi-classical theory for the O(3) non-linear sigma-model

Hofferberth et al. [2007], Trotzky et al. [2012], Cheneau et al. [2012], Gring et al.

[2012]). These experiments have observed the dynamics of many-body systems

on a long time scale after a quantum quench, finding essentially unitary time-

evolution. In three-dimensional systems fast relaxation towards a thermal steady

state has been observed. On the contrary, in quasi-one-dimensional systems the

relaxation process is normally much slower and leads to a peculiar non-thermal

stationary state (Kinoshita et al. [2006a]). These results have led to a huge

theoretical push (Hofferberth et al. [2007], Trotzky et al. [2012], Cheneau et al.

[2012], Gring et al. [2012], Polkovnikov et al. [2011], Rigol et al. [2007], Rigol et al.

[2008], Calabrese and Cardy [2007], Cazalilla [2006], Inucci and Cazalilla [2010],

Inucci and Cazalilla [2009], Cazalilla et al. [2012], Barthel and Schollwock [2008],

Rossini et al. [2009], Rossini et al. [2010], Fioretto and Mussardo [2010], Biroli

et al. [2010], M.C. Banulus and Hastings [2011], Gogolin et al. [2011], Rigol and

Fitzpatrick [2011], Mossel and Caux [2012b], Caux and Konik [a], Manmana et al.

[2009]) to address fundamental questions such as whether there is an asymptotic

stationary state, and, if it exists, which ensemble characterizes it. The belief is

that observables of non-integrable systems effectively thermalize, which implies

that their stationary state is characterized by a thermal Gibbs ensemble. Nu-

merical works on non-integrable systems confirm this expectation, even if some

contradictory results point out that some issues have not been completely under-

stood yet (Biroli et al. [2010],M.C. Banulus and Hastings [2011], Gogolin et al.

[2011], Kollath et al. [2007]). On the other hand, in integrable systems, because

of the existence of local integrals of motion, the stationary state is expected to

be described by a generalized Gibbs ensemble (GGE), where each mode associ-

ated with a conseved quantity is characterized by its own temperature. So far

results on integrable systems have been focussed on free fermion models, such as

the transverse field Ising chain and the quantum XY chain (Barouch et al. [1970],

Barouch and McCoy [1971a], Barouch and McCoy [1971b], Igloi and Reiger [2000],

Sengupta et al. [2004], Fagotti and Calabrese [2008], Silva [2008], Gambassi and

Silva, Venuti and Zanardi [2010], Venuti et al. [2011], Igloi and Reiger [2011],

Foini et al. [2011], Reiger and Igloi [2011], Calabrese et al. [2011], Schuricht and

Essler [2012], Calabrese et al. [2012a], Calabrese et al. [2012b], Blass et al. [2012]).

For the transverse field Ising chain in thermal equilibrium Sachdev and Young
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6. Semi-classical theory for the O(3) non-linear sigma-model

first introduced a semi-classical description of the physical properties of the model

in terms of ballistically moving quasi-particles (Sachdev and Young [1997]). This

approach turned out to be incredibly accurate in predicting the temperature

dependence of correlation length, relaxation time and in general to compute

the order-parameter two point function in the ferromagnetic and paramagnetic

phases. For global quenches this technique has been used to describe the dynam-

ics of the transverse field Ising chain and the quantum XY model, with great

accuracy (Igloi and Reiger [2000], Igloi and Reiger [2011], Reiger and Igloi [2011],

Blass et al. [2012]). In these works quantitative features of the relaxation process

have been explained with a quasi-particle picture, which had been introduced

before in particular to study the evolution of the entanglement entropy (Fagotti

and Calabrese [2008], Calabrese and Cardy [2005], Calabrese and Cardy [2006b],

V. Eisler and Peschel [2009]). In practice the quench injects an extensive amount

of energy into the system, which creates quasi-particles homogeneously in space,

that then move ballistically with constant velocity. Because of momentum con-

servation, these quasi-particles are created in pairs with opposite momenta and

are quantum entangled (within each pair). Their dynamics can be treated clas-

sically as long as they do not collide. But since collisions are unavoidable in

one dimension, every scattering process has to be treated quantum mechanically.

We shall use this semi-classical approach to calculate the dynamical correlation

functions analytically for the O(3) non-linear sigma model. The dynamics of this

model have already been studied at finite temperature in equilibrium (Sachdev

and Damle [1997], Sachdev [2000] and Rapp and Zarand [2009]), where the order-

parameter correlation function shows a universal form. Here we shall study its

behaviour after a quantum quench, preparing the system in a state which is not

an eigenstate of the Hamiltonian. In addition a section will be dedicated to the

case of the transverse field Ising chain, whose order-parameter two-point correla-

tion function can be derived straightforwardly from the general one obtained for

the O(3) non-linear sigma model.

The chapter is organized as follows: first we introduce the model and the gen-

eral form of the initial states we shall consider throughout the whole article,

before introducing and commenting the main result of the paper, concerning the

O(3) non-linear sigma model. Then we describe the basic ideas behind the semi-
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6. Semi-classical theory for the O(3) non-linear sigma-model

classical technique and see in detail how to apply them in the present case.

6.2 The Model

Let us start by considering the one-dimensional O(3) quantum rotor chain, which

is described by the following Hamiltonian:

Ĥrotor =
Jg

2

∑

i

L̂2
i − J

∑

i

n̂in̂i+1, (6.1)

where n̂i is the position operator of the rotor on site i = 1, . . . , L with the con-

straint n̂2
i = 1∀i, and L̂i = n̂i×p̂i is the angular momentum operator. J is an over-

all energy scale and g is a positive coupling constant. The operators which appear

in the Hamiltonian satisfy the usual commutation relations [L̂αi , L̂
β
i ] = iεαβγL̂

γ
i

and [L̂αi , n̂
β
i ] = iεαβγn̂

γ
i , where α, β, γ represent the three spatial directions. The

continuum limit of this lattice model is the O(3) non-linear sigma model (nlσm),

whose Lagrangian density reads:

L =
1

2g̃
(∂µñi)

2, ñ2
i = 1, (6.2)

where ñi = ñi(x, t) are three scalar fields and g̃ is a (bare) coupling constant.

Here we have already set the maximal propagation velocity c = 1. This model is

O(3)-symmetric, renormalizable and asymptotically free, and it has three mas-

sive particles in the O(3)-multiplet. The exact S-matrix of this model is known

(Zamolodchikov and Zamolodchikov [1979]), with any scattering event involv-

ing no particle production and the general n-particle S-matrix factorizes into a

product of two-particle amplitudes. It is worth noticing that the O(3) non-linear

sigma model also provides a description of the low-energy excitations of the one-

dimensional antiferromagnetic S = 1 Heisenberg chain (Haldane [1983]), whose

dynamical correlation functions’ lineshape can be measured experimentally. In

the g � 1 limit, in the ground state of Hamiltonian (6.1) all rotors must be

in the L2
i = 0 state to minimize the kinetic energy. The low-energy excitations

above the ground state form a triplet with quantum numbers Lzi = (−1, 0, 1). It
is worth remarking that the structure of the low-energy spectrum is the same for
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any g > 0 and the system has a gap ∆(g). A finite gap is a necessary condition

to apply a semiclassical approximation, as we shall see in the next section (for

a deeper introduction to the semi-classical method and its range of applicability

see (Sachdev [2000]) and references therein).

In this article we study the dynamical correlator of the order parameter ñz after

having prepared the system in a squeezed coherent state, namely1:

|ψ〉 = exp

(
∑

a,b

∫ ∞

0

dk

2π
Kab(k)Z†

a(−k)Z†
b (k)

)

|0〉, (6.3)

where |0〉 is the ground state of the model, Kab(k) is the amplitude relative to

the creation of a pair of particles with equal and opposite momenta, Z†
a(k) are

creation operators of an excitation with quantum number a = (−1, 0, 1) (the z-
component of the angular momentum) and momentum k. The main reason for

choosing such an initial state comes from its relation with boundary integrable

states: as shown by (Calabrese and Cardy [2007],Calabrese and Cardy [2006b])

some dynamical problems can be mapped into an equilibrium boundary problem

defined in a strip geometry, where the initial state |ψ〉 acts as a boundary condi-

tion. In integrable field theories the most natural boundary states preserve the

integrability of the bulk model, or in other words, do not spoil the integrals of

motion. These boundary states were originally studied by Ghoshal and Zamolod-

chikov (Ghoshal and Zamolodchikov [1994]), and are supposed to capture the

universal behaviour of all quantum quenches in integrable models. Furthermore

in (Fioretto and Mussardo [2010]) it was shown that any quantum quench of an

integrable field theory with this kind of initial states leads to a steady state which

is described by a GGE ensemble. Precisely they show that long time limit of the

one point function of a local operator can be described by a generalized Gibbs

ensemble2. In short, their result is strong evidence that Rigol et al.’s conjecture

1Here for a matter of simplicity we ignore the existence of zero-rapidity terms in the defi-
nition of |ψ〉. In addition it is known that an integrable boundary state as written in equation
(6.3) is typically not normalizable, because the amplitude K does not go to zero for large mo-
menta. Therefore one has to introduce an extrapolation time in order to make the norm of the
state finite, as was done for instance in (Fioretto and Mussardo [2010]).

2A rigorous proof that the LeClair-Mussardo series work for the one-point functions in the
case of a quench has been obtained in (Pozsgay [2011]).
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does hold for integrable field theories.

The amplitude Kab(k) in expression (6.3) is a regular function which must sat-

isfy a set of constraints that depend on the S-matrix, such as crossing equations,

boundary unitarity and boundary Yang Baxter equation. Different solutions of

these equations form the set of integrable boundary conditions of the theory.1

The integrable boundary states belong to the class (6.3), but the semi-classical

approach applies to the larger class of quenches whose initial states are expressed

by a coherent superposition of particle pairs. The order parameter ñz(x) may be

written as (Sachdev [2000]):

ñz(x, t) ∝ (Z†
0(x, t) + Z0(x, t)) + . . . (6.4)

where Z0(x, t) is the (time-dependent) Fourier transform of Z0(k) and the ellipses

represent multiparticle creation or annihilation terms, which will be considered

negligible because they are subdominat in the long-time limit. Relation (6.4)

comes from the observation that the operator ñz(x) either creates a quasiparticle

(Li = 1) with Lzi = 0 at position x with some velocity v or destroys one already

present in the system, as will be discussed in the section (6.4).

The quench protocol is the following: At time t = 0 we prepare the system in the

initial state (6.3) and for t > 0 this state evolves according to the Hamiltonian

(6.1):

|ψ(t)〉 = exp (−iĤt)|ψ〉 (6.5)

On the other side the time-evolution of an operator is written as:

Ô(x, t) = exp (iĤt)Ô(x) exp (−iĤt). (6.6)

We are going to analyze the two-point correlator:

Cnlσm(x1, t1; x2, t2) = 〈ψ|ñz(x2, t2)ñz(x1, t1)|ψ〉. (6.7)

The autocorrelation function is obtained for x1 = x2 = x′, whereas the equal-

time correlation function is defined by imposing t1 = t2 = t′, even though in this

1For instance for the case of the O(3) non-linear sigma model with free and fixed boundary
conditions these states have been studied in (Ghoshal [1994]).
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chapter the emphasis will be given to the non-equal time case.

6.3 Summary and discussion of the results

In this section we summarize the main result of the chapter. The semi-classical

method is based upon the existence of a small parameter, namely the average

density of excitation pairs with quantum numbers (a, b) nab(k), in the initial

state |ψ〉:
〈ψ|nab(k)|ψ〉
〈ψ|ψ〉 ≡ fabk ≈ |Kab(k)|2, (6.8)

which is valid in the limit maxk |Kab(k)|2 � 1, ∀a, b. This limit also defines what

we call small quench. The explicit computation of (6.8) will be carried out in

section (6.6). In the limit of small quenches we obtain the following expressions

for the (non-equal time) two-point function of the order-parameter of the O(3)

non-linear sigma model (6.7) in the limit T ≡ t2 + t1 →∞:

Cnlσm(x; t) = Cpropag(x, t)R(x; t), (6.9)

where Cpropag(x, t) corresponds to the coherent propagation of a quasipaticle,

while R(x; t) is the relaxation function, which describes the scattering with the

excited quasiparticles. By definition t ≡ t2− t1 and x = x2−x1 (without any loss

of generality we assume both (x, t) to be positive). The pre-factor in (6.9) reads:

Cpropag(x, t) ∝ K0(∆
√
x2 − t2), (6.10)
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where K0 is the modified Bessel function of the second kind and ∆ is the mass-

gap. The relaxation function R(x; t) is given by:

R(x; t) =

∫ π

−π

dφ

2π
exp

(

−t(1− cosφ)

∫ ∞

0

dk

π
fk vkΘ[vkt− x]

)

× exp

(

−x(1− cosφ)

∫ ∞

0

dk

π
fkΘ[x− vkt]

)

cos

(

x sinφ

∫ ∞

0

dk

π
fk

)

× 1 + 2 cos(φ)(P 00 − 1)Q+ cos(2φ)(Q2 − P 00)− P 00Q2

1− 2P 00 cos(2φ) + (P 00)2
.

(6.11)

Q is defined by Q =
∑

λ=±1,0 P
0λ, fk =

∑

a,b f
ab
k , vk is the velocity of the particle

with momentum k and P ab =
∫∞
0

dk
2π
P ab(k), where

P ab(k) =
fabk

∑

a,b

∫ ∞

0

dk

2π
fabk

. (6.12)

Formula (6.11) is the main result of this chapter, and it describes the long-time

behaviour of any initial state of the form (6.3). Nonetheless if we want the state

|ψ〉 to respect the O(3)-symmetry we must impose P 00 = P 1,−1 = P−1,1 = 1/3

(Q = 1/3), and all other probabilities equal to zero.

The most general expression for the relaxation function R(x; t, T ) for generic

values of the times (t1, t2) will be given in the section (6.5). Formula (6.11)

defines the quench-specific time and length scales:

τ−1 =

∫ ∞

0

dk

π
vk fk ξ−1 =

∫ ∞

0

dk

π
fk. (6.13)

We also note that the correlator of equation (6.11) is never thermal unless one

prepares the system at t = 0 in a thermal inital state. This result confirms

the belief that one-dimensional integrable systems relax towards a peculiar non-

thermal distribution, namely the generalized Gibbs ensemble (GGE).

129



6. Semi-classical theory for the O(3) non-linear sigma-model

6.4 The Semi-classical Theory

The main idea behind the semi-classical approach to the computation of out-of-

the-equilibrium correlators is basically encoded in the following representation of

the correlator (6.7):

Cnlσm(x1, t1; x2, t2) ≈
∑

{λν}

∫ N∏

ν

dxν

N∏

ν

dkν

× [P ({xν , kν , λν})〈{xν , kν , λν}|ñz(x2, t2)ñz(x1, t1)|{xν , kν , λν}〉] ,
(6.14)

where the function P ({xν , kν , λν}) is the probability density of having quasipar-

ticles at postion xν at time t = 0 with momentum kν and quantum number λν .

The matrix element in the equation represents the value of the correlator once we

specify the particular configuration {xν , kν , λν}. N in (6.7) is the total number of

particles, and of course in the above equation an average over N should be taken.

The summation over {λν} averages over all possible quantum numbers of the N

particles, which are the three possible values of Lzi = (−1, 0, 1). We will start by

assuming the system to be finite with free boundary conditions, and only later

will we take the thermodynamic limit. In spite of this we will assume the system

to be translationally invariant, corrispondingly corrections due to the presence

of boundaries will be considered negligible (for large enough systems). Therefore

the correlator of equation (6.7) becomes a function of |x2 − x1|, whilst the same

cannot be said for the time dependence, as was true in the equilibrium case.

In equation (6.14) we have substituted a complicated time-dependent matrix el-

ement with a sum over all possibile initial states, which can be represented by

pairs of ballistically-moving quasiparticles. This technique has already been used

extensively to compute finite-temperature correlators (see for example (Rapp and

Zarand [2009], Sachdev [2000], Rapp and Zarand [2006])), and dynamical corre-

lation functions (Igloi and Reiger [2011], Reiger and Igloi [2011]). The general

idea is the following: each quasiparticle carries a momentum k and a quantum

number λν , and it is created at time t = 0 together with a partner with equal

and opposite momentum. If the squared modulus of Fourier transform |K̃ab(x)|2
of the amplitude Kab(k) is a fast enough decreasing function as |x| → ∞, the
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Figure 6.1: Graphical representation of the probability function P ab(k).

probability of creating these quasiparticles far apart from each other becomes

negligible. For this reason in the follow we will always assume quasiparticles to

be created in pairs in the same position xν , where the index ν labels the quasi-

particle pairs.

We start by considering this gas of quasiparticles to be very dilute by tuning

the amplitudes Kab(k), therefore the quasiparticle are entangled only within each

single Cooper pair. This means that the probability of a particular initial state

{xν , kν , λν} can be factorized in a product of single-pair probabilities:

P ({xν , kν , λν}) =
M∏

ν=1

P (xν , kν , λν)

=
1

LM

M∏

ν=1

P (kν , λν),

(6.15)

where in the last equality we made use that the system is homogeneous in space

(corrections will be present close to the boundaries, but they are negligible in

the thermodynmic limit). The quantity 1
L
P (kν , λν) is the probability for a single

pair to be created at a certain position xν with momenta (kν ,−kν) and quantum

numbers (λν , λ
′
ν), which is graphically represented in figure (7.5). Without any

loss of generality we can suppose x1 = 0, thanks to the (quasi)-translational

invariance of the system.

Calculating the matrix elements for the operator ñz (∝ cos θ) with the first few

sherical harmonics, one finds that either creates a quasiparticle with Lzi = λ = 0

(Li = 1) at x = x1 and t = t1 with some velocity v or destroys one already present
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in the initial state {xν , kν , λν}. We assume the latter to be negligible, because

the excitations are very dilute in space and therefore their density is very small

(in other words we will use Kab(k) as an expansion parameter). This adjoint

particle can be created by ñz(x1, t1) either inbetween two different quasiparticle

pairs or within two quasiparticle that belong to the same Cooper pair (i.e., two

quasiparticles that originated in the same point xν at time t = 0). A possible

dynamical scenario is pictured in figure (7.5). Due to the collisions with the

other excited particles there are only certain configurations where the quantum

mechanical overlap in 〈ψ|ñz(x2, t2)ñz(x1, t1)|ψ〉 will be non-zero. Similar to other

models the O(3) non-linear sigma model in the long-wavelength limit has a purely

reflective scattering matrix:

S
λ′1λ

′
2

λ1λ2
−→ (−1) δλ

′
2
λ1
δ
λ′1
λ2
. (6.16)

This means that in this limit the particles are impenetrable and the sequence of

{λν} does not change in time (see figure (7.5)). Here we are implicitly assuming

that the momentum distribution fk is a peaked function around zero. The oper-

ator ñz(x1, t1) creates a quasiparticle with a probability amplitude e0(v), where

the subscript 0 refers to the quantum number of the created particle and v is

its velocity. This particle, together with the other quasiparticles, propagates un-

der the action of exp (−iĤt) and collides with them (in one-dimensional systems

collisions amongst particles can never be ignored). The S-matrix takes on an

exchange form (6.16), and therefore particles only exchange their velocities while

conserving their internal quantum numbers (see figure (7.5)).

As a consequence, at any time t ≥ t1 precisely one of the particles will have the

velocity v of the particle which was created by ñz(x1, t1), and will be at position

x1 + v(t − t1). This very particle must be annihilated at time t2 by ñz(x2, t2),

otherwise the final state after the action of exp (iĤt) will be orthogonal to the

initial one. The probability amplitude that this particle is annihilated is pro-

portional to (eλ′(v))
∗eik(x2−x1), where λ′ is the quantum number of the particle

that is removed by ñz(x2, t2). As we shall see below, λ′ has to be equal to zero.

This request is automatically guaranteed by another requirement, namely that

the internal quantum numbers in the final state be exactly the same as those of

132



6. Semi-classical theory for the O(3) non-linear sigma-model

t

0

p p+1 p+2p-1

p p+1

p+2

e
-iHt

pp-1 p+1

iHt
e

-

 Backward 

Propagation 

Forward

Propagation

 

Space

T ime

X=0

X2

t1

0

p+3

p+3

p+4

p+4

Figure 6.2: Propagation and scattering of quasiparticles in the semi-classical pic-
ture of the O(3) non-linear sigma model. Lines drawn with different colours
represent trajectories of different particles. The two states before and after the
forward and backward time evolution must be identical, and this imposes con-
straints on the quantum numbers of the particles. Notice that in this example
the particle with label p+ 2 is removed at time t2.

the initial one. If this does not happen the final state is orthogonal to the initial

one, and that particular configuration of quasiparticles does not contribute to the

average (6.14).

Let us now consider the case in which at time t = 0 the point x1 = 0 is located

inbetween particle λp and λp+1 (see figure (7.5)). Consider now a line connecting

the points (0, 0) and (0, t1) (this line does not correspond to any real particle

trajectory). Define n′ = N ′
+ − N ′

− as the number of intersections between this

line and the other lines which correspond to particle trajectories, where N ′
+ are

intersections from the right and N ′
− those from the left. By definition n′ is given
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by:

n′ =
N∑

ν

{Θ[0− xν(t1)]−Θ[0− xν ]}

=
M∑

ν

{Θ[0− x1ν(t1)] + Θ[0− x2ν(t1)]− 2Θ[0− xν ]} ,
(6.17)

where the labels (1,2) correspond to the trajectories of two quasiparticle originated

at the same point, and N is the number of pairs N =M/2. Θ’s are Heaviside step

functions. Then at time t = t1 the operator ñz(0, t1) creates a quasiparticle (Lν =

1) with Lzν = λν = 0 at x1 = 0 with some momentum k. The adjoint particle

will be created inbetween particles λ′p+n′ and λ′p+n′+1. Suppose that n′ ≥ 0. The

generalization of the following results to the case of negative n′ is straightforward.

The scattering S-matrix takes on the exchange form (6.16), therefore during the

motion particles only exchange their velocities while conserving their internal

quantum numbers. This also means that the order of quantum number in each

configuration from the left to the right never changes in time. The action of the

operator ñz(0, t1) on the initial sequence of quantum numbers may be written as:

ñz(0, t1) : {. . . , λp+n′ , λp+n′+1, . . . }
7→ {. . . , λp+n′ , λ0, λp+n′+1, . . . }.

(6.18)

At time t = t2 the operator ñz(x, t2) will remove the particle with label p +

n′ + n from the set of excitations, where n = N+ −N− is the difference between

the number of intersections from the right and those from the left of the line

connecting points (0, t1) and (x, t2). This quantity is given by:

n =
N∑

ν

{Θ[x− xν(t2)]−Θ[0− xν(t1)]} ,

=
M∑

ν

{
Θ[x− x1ν(t2)] + Θ[x− x2ν(t2)]−Θ[0− x1ν(t1)]−Θ[0− x2ν(t1)]

}
.(6.19)
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This number tells us which particle is moving along this line at time t = t2,

particle that will be removed by the action of ñz(x, t2):

ñz(x, t2) : {. . . , λp+n′ , λ0, λp+n′+1, . . . , λp+n′+n−1, λp+n′+n, λp+n′+n+1, . . . }
7→ {. . . , λp+n′ , λ0, λp+n′+1, . . . , λp+n′+n−1, λp+n′+n+1, . . . }.

(6.20)

Comparing the very last sequence of quantum numbers with the initial one (that

at time t = 0), we end up with the following constraint on the set of quantum

numbers:

λ0 ≡ λp+n′+1 ≡ λp+n′+2 · · · ≡ λp+n′+n (6.21)

In practice we have a sequence of n quantum numbers that must all be equal to

λ0 = 0, which starts at position p+n′. To identify the contribution of a particular

configuration of quasiparticles we must consider the phase factors. Quasiparticles

in the initial state generate a phase factor exp (−it2
∑

ν ε(vν)) under the action

of exp (−it2Ĥ) (ε(v) being the particle energy). This phase factor, however, com-

pletely cancels under the action of exp (it2Ĥ), except for the quasiparticle added

by the operator ñz(0, t1). This gives a factor exp (−i(t2 − t1)ε(v)). Moreover

every collision results in a sign change of the many-body wave function, but all

these signs cancel under the forward and backward propagations, except those

that are associated with collisions with the extra particle. These give an extra

sign (−1)N++N− , which can be conveniently re-expressed as:

(−1)N++N− = (−1)N+−N− = (−1)n. (6.22)

Collecting all these pieces together we obtain the following expression for the

general correlation function (6.7):

Cnlσm(x1, t1; x2, t2) =

(∫

(e0(k)
∗e0(k))e

−i(k(x2−x1)−ε(k)(t2−t1))dk

)

×R(x1, t1; x2, t2),
(6.23)
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where e0(k) is the probability creation amplitude and R(x1, t1; x2, t2) is the re-

laxation function, which is given by:

R(x1, t1; x2, t2) = 〈
+∞∑

n=−∞

+∞∑

n′=−∞
(−1)nδn′,

∑
ν1

[... ]δn,∑ν2
[... ] (6.24)

×
[

δλ0,λp+n′+1
δλp+n′+1,λp+n′+2

. . . δλp+n′+n−1,λp+n′+n

]

〉{xν ,kν ,λν}, (6.25)

where the sums with indices ν1 and ν2 are given by equations (6.17) and (6.19)

respectively. The (−1)n appearing in the previous equation is exactly that in-

troduced in (6.22). From the previous average we can immediately see that only

those configurations which have a sequence of n quantum numbers all equal to

λ0 ≡ 0 contribute to the correlator (6.7). We now face the problem of computing

an average of the form 〈Ô〉{xν ,kν ,λν}, where Ô is a generic local operator, and the

distribution probability takes into account all possible initial conditions. Solv-

ing this problem will enable us to compute the correlator (6.14). Due to the

assumption of equation (6.15) we can write the average as:

∫ L/2

−L/2

dx1
L

dx2
L

. . .
dxM
L

∑

a(1),b(1)

k1>0

∑

a(2),b(2)

k2>0

· · ·
∑

a(M),b(M)

kM>0

M∏

ν=1

P (kν , λν) Ô({xν , kν , λν}).

(6.26)

We will consider separately the cases in which (n′, n) are even and/or odd num-

bers.

• (n′ = even and n = even): when n′ is an even integer the adjoint particle is

created inbetween two different quasiparticle pairs, thus we have a sequence

of n/2 quasiparticle pairs which are all forced to have their quantum num-

bers equal to λ0 ≡ 0. The average over the set of quantum numbers can be

written as:

P1({kν}) =
∑

a(1),b(1)

∑

a(2),b(2)

· · ·
∑

a(M),b(M)

M∏

ν=1

P aν ,bν (kν)

×
[

δ0,λp+n′+1
δλp+n′+1,λp+n′+2

. . . δλp+n′+n−1,λp+n′+n

]

,

(6.27)

where we have introduced the notation P aν ,bν (kν) ≡ P (kν , λν) (see figure
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n' even

n = 6 

Adjoint 

particle

Figure 6.3: Computation of P1({kν}): an example with n = 6. Red trajectories
represent those particles whose quantum number must be equal to λ0 = 0.

(6.3)).

It is worth noticing that the labels in the Kronecker deltas in the previous

equation refer to the quasiparticles, while the labels in the summations and

in the integrals refer to quasiparticle pairs. In order not to mix up these two

different notations we recognize that in this case p+ n′ is an even number,

therefore particle with label p+ n′ + 1 belongs to the p+n′

2
+ 1 pair, and so

on. From this pair to the right we have a sequence of n/2 quasiparticle pairs

all with quantum numbers λ = 0. In addition the probability distribution

factorizes into single-pair probabilities. Let us remember that the average

is taken over all possible initial conditions, therefore kν specifies the value of

the momentum of the particle at time t = 0+ ε, where ε is a small positive

quantity. Roughly speaking kν is the value of the momentum of a particle

right after time t = 0 and before the first scattering process. Equation

(6.27) can be easily evaluated to give:

P1({kν}) = P (k1) . . . P
(

k p+n′

2

)

P 00
(

k p+n′

2
+1

)

. . . P 00
(

k p+n′

2
+n

2

)

︸ ︷︷ ︸
|n|
2
times

×P
(

k p+n′

2
+n

2
+1

)

. . . P (kM),

(6.28)

where P (k) =
∑

a,b P
ab(k).

• (n′ = even and n = odd): also in this case the adjoint particle is created

inbetween two different pairs, but when n is odd the result of equation
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(6.27) becomes:

P2({kν}) = P (k1) . . . P
(

k p+n′

2

)

P 00
(

k p+n′

2
+1

)

. . . P 00
(

k p+n′

2
+n−1

2

)

︸ ︷︷ ︸
|n|−1

2
times

×
∑

λ=0,±1

P 0λ
(

k p+n′

2
+n−1

2
+1

)

P
(

k p+n′

2
+n−1

2
+2

)

. . . P (kM).

(6.29)

In practice the last particle of the sequence of λν = 0 belongs to a pair

whose right-side partner can carry all possible quantum numbers.

• (n′ = odd and n = even): let us consider the case in which n′ is an odd

integer. In this case the adjoint particle is created within a quasiparticle

pair, and the average over quantum numbers gives (n 6= 0):

P3({kν}) = P (k1) . . . P
(

k p+n′−1
2

) ∑

λ=0,±1

P λ0
(

k p+n′−1
2

+1

)

× P 00
(

k p+n′−1
2

+2

)

. . . P 00
(

k p+n′−1
2

+n
2

)

︸ ︷︷ ︸
|n|
2
−1times

×
∑

λ=0,±1

P 0λ
(

k p+n′−1
2

+n
2
+1

)

P
(

k p+n′−1
2

+n
2
+2

)

. . . P (kM).

(6.30)

The case n = 0 simply gives a sequence of M different P (kν)’s. When n′

is odd and n even in the sequence of quantum numbers with λν = 0 the

first and the last one belong to pairs whose partner has no constraint on

its quantum number λ. This is the reason for the factors
∑

λ P
0λ(k) and

∑

λ P
λ0(k) in the previous expression.

• (n′ = odd and n = odd): in this case the average over the set of quantum

numbers gives:

P4({kν}) = P (k1) . . . P
(

k p+n′−1
2

) ∑

λ=0,±1

P λ0
(

k p+n′−1
2

+1

)

× P 00
(

k p+n′−1
2

+2

)

. . . P 00
(

k p+n′−1
2

+n−1
2

+1

)

︸ ︷︷ ︸
|n|−1

2
times

× P
(

k p+n′−1
2

+n−1
2

+2

)

. . . P (kM).

(6.31)
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Figure 6.4: Computation of P2({kν}): an example with n = 5.

We are now ready to write down the global expression for the quantum number

average:

∑

a(1),b(1)

∑

a(2),b(2)

· · ·
∑

a(M),b(M)

M∏

ν=1

P aν ,bν (kν) δ0,λp+n′+1
δλp+n′+1,λp+n′+2

. . . δλp+n′+n−1,λp+n′+n

=
1 + (−1)n′

2

[
1 + (−1)n

2
P1({kν}) +

1− (−1)n
2

P2({kν})
]

+
1− (−1)n′

2

[
1 + (−1)n

2
P3({kν}) +

1− (−1)n
2

P4({kν})
]

.

(6.32)

This expression is a function of (n, n′) and the set of quantum momenta of a

particular quasiparticle configuration. It is worth noticing that n and n′ enter

the expression for Pi, i = 1, . . . , 4 in different ways. While n tells us how long

the sequence is, n′ gives us information about the starting point of the sequence

and can easily be absorbed into the definition of p. As we shall see, for the actual

computation of the relaxation function R the starting position of the sequence

is not important, what matters is only the length of the sequence itself. We

must now compute the average of the previous quantity over all possible initial

positions and momenta. Namely we must take the following average:

∫ L/2

−L/2

dx1
L

. . .
dxM
L

∑

k1>0

· · ·
∑

kM>0

+∞∑

n=−∞
(−1)nδn,∑ν2

[. . . ]
+∞∑

n′=−∞
δn′,

∑
ν1
[. . . ] , (6.33)

where the quantity in the square brackets is given by equation (6.32). We can

split this average into four pieces, let us call them A,B,C and D, one for each
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Pi({kν}) respectively, where i = 1, . . . , 4. We shall do the computation of the

term which contains P1({kν}) in some detail; the other cases are straightforward

modifications.

Let us compute explicity A, the first addend of the right side of equation (6.32),

where the first summation over n′ gets immediately canceled out by the corre-

sponding Kronecker delta because n′ itself enters the function P1({kν}) trivially,
therefore we have:

A =

∫ L/2

−L/2

dx1
L

. . .
dxM
L

∑

k1>0

· · ·
∑

kM>0

+∞∑

n=−∞
(−1)nδn,∑ν2

[. . . ]

×
(

1 + (−1)
∑

ν1
[... ]

2

1 + (−1)n
2

P1({kν})
)

,

(6.34)

where
∑

ν1
[. . . ] is specified by (6.17). A can itself be splitted into two pieces, say

A1 and A2, which correspond to the two contributions to the integration of the

terms into the bracket, namely:

1

2
+

(−1)
∑

ν1

2
−→ A1 + A2. (6.35)

Let us start by computing the contribution of A1. By making use of the following

integral representation of the Kronecker delta

δn,∑ν [... ]
=

1

2π

∫ π

−π
dφ eiφ(n−

∑
ν [... ]), (6.36)

we can write A as:

∫ π

−π

dφ

2π

+∞∑

n=−∞
(−1)neinφ1 + (−1)n

2

∑

k1>0

· · ·
∑

kM>0

∫ L/2

−L/2

dx1
L

. . .
dxM
L

e−iφ
∑

ν2
[... ] P1({kν})

2
.

(6.37)

Now we want to compute the spatial integral, remembering that the sum
∑

ν2
[. . . ]

is specified in equation (6.19). We begin by considering x > 0, t2 > t1 and

x < vmax(t2 − t1), where vmax is the maximal velocity of the excitations of the

model (in the section (6.5) we will show the general result for arbitrary times and

distances). We will refer to this situation as the within-the-light-cone case. The

140



6. Semi-classical theory for the O(3) non-linear sigma-model

n' 
' ( (

n = 
)
 

Ad
* ' +
n

,
 - . / , + 0 1 2

Figure 6.5: Computation of P3({kν}): an example with n′ odd and n = 4.

spatial integral factorizes in a straightforward way, thus we can write:

∫ L/2

−L/2

dx1
L

. . .
dxM
L

e−iφ
∑

ν2
[... ] =

M∏

ν=1

{

1− 2vkν t

L
(1− cosφ)Θ[vkν t− x]

−2ix sinφ
L

Θ[vkν t− x]− 2x
L

(
i sinφ+ 2 sin2(φ/2)

)
Θ[x− vkν t]Θ[vkνT − x]

−
(
vkνT

L
(1 + cos(2φ)− i sin(2φ)− cosφ+ i sinφ)

+ x
L
(i sin(2φ) + 2 sin2 φ)

)
Θ[x− vkνT ]

}
,

(6.38)

where vkν is the particle velocity defined by vk ≡ ∂ε(k)
∂k

, t ≡ t2− t1 and T ≡ t2+ t1.

Let us notice the following definition of the probability P (k):

P (k) ≡ fk
M
, M =

∑

k>0

fk, (6.39)

where fk is the occupation number of the k-mode. Furthermore, the following

identities can be useful in taking the thermodynamic limit:

∑

k>0

P (k)vk

L
≡

∑

k>0

fkvk

L
∑

k>0

fk
−→

∫ ∞

0

dk

2π
fkvk

M
,

∑

k>0

P (k)

L
≡

∑

k>0

fk

L
∑

k>0

fk
−→

∫ ∞

0

dk

2π
fk

M
.

(6.40)

Let us now compute the average over the momenta of the previous result, taking
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Figure 6.6: Computation of P4({kν}): an example with n′ odd and n = 5.

the limit L,M →∞ (M/L ≡ ρ fixed):

lim
M,L→∞

∑

k1>0

· · ·
∑

kM>0

P1({kν})
M∏

ν=1

{. . . } , (6.41)

where P1({kν}) is given by (6.28) and the {. . . } are the right-hand terms of

equation (6.38). This expression can be evaluated to yield:

lim
M,L→∞

∑

{kν>0}
P1({kν})

M∏

ν=1

(. . . )

= exp

{

−t(1− cosφ)

∫ ∞

0

dk
π
fk vkΘ[vkt− x]− 2x sin2(φ/2)

∫ ∞

0

dk
π
fkΘ[x− vkt]Θ[vkT − x]

}

× exp

{

−T (1 + cos(2φ)− i sin(2φ)− 2 cosφ+ 2i sinφ)

∫ ∞

0

dk
2π
fkΘ[x− vkT ]

}

× exp

{

−ix sinφ
∫ ∞

0

dk
π
fk (Θ[vkt− x] + Θ[x− vkt]Θ[vkT − x])

}

× exp

{

−x(2 sin2 φ+ i sin(2φ))

∫ ∞

0

dk
2π
fkΘ[x− vkT ]

}

(P 00)|n|/2,

(6.42)

where P 00 =
∫∞
0

dk
2π
P 00(k) and P 00(k) is now a probability density. We can now

take the limit when T is very large (x/T � vmax), assuming that T
∫∞
0

dk
2π
fkvkΘ[x−
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vkT ]→ 0, so the previous expression simplifies, giving:

. . . = exp

{

−t(1− cosφ)

∫ ∞

0

dk
π
fk vkΘ[vkt− x]− 2x sin2(φ/2)

∫ ∞

0

dk
π
fkΘ[x− vkt]

}

× exp

{

−ix sinφ
∫ ∞

0

dk
π
fk

}

(P 00)|n|/2.

(6.43)

Before computing the sum over n it is convenient to obtain the analogy of equation

(6.43) for the case A2, and see which contributions survive in the limit of T very

large . For A2 we start with:

∑

k1>0

· · ·
∑

kM>0

∫ L/2

−L/2

dx1
L

. . .
dxM
L

e−iφ
∑

ν2
[... ] P1({kν}) (−1)

∑
ν1

[... ], (6.44)

then by repeating the same steps we end up with:

lim
M→∞

∑

k1>0

· · ·
∑

kM>0

P1({kν})
M∏

ν=1

(. . . )

= exp

(

−(T − t cosφ)
∫ ∞

0

dk

2π
fkvk − ix sinφ

∫ ∞

0

dk

2π
fkΘ[vkt− x]

)

× exp

(

−it sinφ
∫ ∞

0

dk

2π
fkvkΘ[x− vkt]

)

(P 00)|n|/2.

(6.45)

We immediately see that this contribution is exponentially decreasing as T be-

comes large, therefore we neglect it in this limit. We have already computed all

the ingredients we need to do the sum over n, recalling that only even values of

n give non-zero contribution, as can be seen from (6.37). Performing the sum-

mation, the global contribution from term A to the relaxation function (6.24) is

given by:

A = lim
L,M→∞

〈
+∞∑

n=−∞
(−1)nδn,∑ν2

[... ]

(
1+(−1)

∑
ν1

2
1+(−1)n

2
P1({kν})

)
〉

{xν ,kν}

=

∫ +π

−π

dφ

4π
e−t(1−cosφ)

∫∞
0

dk
π
fk vkΘ[vkt−x] e−2x sin2(φ/2)

∫∞
0

dk
π
fk Θ[x−vkt]

× cos
(
x sinφ

∫∞
0

dk
π
fk
) 1− (P 00)2

1− 2P 00 cos(2φ) + (P 00)2
,

(6.46)
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which in the large T limit depends only on t. Repeating all the steps we did for

the term containing P1({kν}), we can then compute the contributions from the

terms containing P2({kν}), P3({kν}) and P4({kν}) (namely B, C, and D). Here

we list the results of these computations (always in the limit x/T � vmax):

B = lim
L,M→∞

〈
+∞∑

n=−∞
(−1)nδn,∑ν2

[... ]

(
1+(−1)

∑
ν1

2
1−(−1)n

2
P2({kν})

)
〉

{xν ,kν}

=

∫ +π

−π

dφ

4π
e−t(1−cosφ)

∫∞
0

dk
π
fk vkΘ[vkt−x] e−2x sin2(φ/2)

∫∞
0

dk
π
fk Θ[x−vkt]

× cos
(
x sinφ

∫∞
0

dk
π
fk
) 2 cosφ(P 00 − 1)

1− 2P 00 cos(2φ) + (P 00)2

∑

λ

P 0λ,

(6.47)

and

C = lim
L,M→∞

〈
+∞∑

n=−∞
(−1)nδn,∑ν2

[... ]

(
1−(−1)

∑
ν1

2
1+(−1)n

2
P3({kν})

)
〉

{xν ,kν}

=

∫ +π

−π

dφ

4π
e−t(1−cosφ)

∫∞
0

dk
π
fk vkΘ[vkt−x] e−2x sin2(φ/2)

∫∞
0

dk
π
fk Θ[x−vkt]

× cos
(
x sinφ

∫∞
0

dk
π
fk
) 1 + 2 cos(2φ)[(

∑

λ P
0λ)2 − P 00]− 2P 00(

∑

λ P
0λ)2 + (P 00)2

1− 2P 00 cos(2φ) + (P 00)2
,

(6.48)

where we have assumed P 0λ ≡ P λ0, and finally

D = lim
L,M→∞

〈
+∞∑

n=−∞
(−1)nδn,∑ν2

(
1−(−1)

∑
ν1

2
1−(−1)n

2
P4({kν})

)
〉

{xν ,kν}

=

∫ +π

−π

dφ

4π
e−t(1−cosφ)

∫∞
0

dk
π
fk vkΘ[vkt−x] e−2x sin2(φ/2)

∫∞
0

dk
π
fk Θ[x−vkt]

× cos
(
x sinφ

∫∞
0

dk
π
fk
) 2 cosφ(P 00 − 1)

1− 2P 00 cos(2φ) + (P 00)2

∑

λ

P 0λ.

(6.49)

Plugging all the pieces together, A+B+C+D, we end up with the expression

(6.11) for the relaxation function :
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R(x; t) =

∫ π

−π

dφ

2π
exp

(

−t(1− cosφ)

∫ ∞

0

dk

π
fk vkΘ[vkt− x]

)

× exp

(

−x(1− cosφ)

∫ ∞

0

dk

π
fkΘ[x− vkt]

)

cos

(

x sinφ

∫ ∞

0

dk

π
fk

)

× 1 + 2 cos(φ)(P 00 − 1)Q+ cos(2φ)(Q2 − P 00)− P 00Q2

1− 2P 00 cos(2φ) + (P 00)2
,

(6.50)

where Q =
∑

λ=±1,0 P
0λ. It would be useful to have an obvious comparison

between this semi-classical result and a direct GGE computation of the same

correlator for the case of the O(3) non-linear sigma model, as was done for the

transverse field Ising model and the XY chain in transverse field. The new ap-

proach to these kinds of problems introduced in (Mossel and Caux [2012a],Caux

and Konik [b] and Demler and Tvelik) may be a missing tool in this respect.

Formula (6.50) can be tested in several ways, for instance by choosing a thermally-

populated initial state, with fk ∝ e−βk
2
, and the same probability for each quan-

tum number to appear. This check can be done both analytically and numerically.

In the former case, starting from expression (6.50) and plugging in a thermal dis-

tribution for fk and the quantum numbers, we find the same universal analytical

result of Reference (Rapp and Zarand [2006]), whereas in the latter case we have

performed a numerical average in the same spirit as that in Reference (Damle and

Sachdev [1998]). The results are shown in figure (6.7), which indicates a perfect

agreement between the analitycal and numerical prediction.

6.5 General expression of the relaxation func-

tion R(x, t, T )

In this esction we show the form of the relaxation function for the O(3) non-

linear sigma model when the times T and t are arbitrary, with the only constraint

T > t > 0. This expression can be written as:

R(x; t, T ) = R1(x; t, T ) +R2(x; t, T ), (6.51)
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Figure 6.7: The relaxation function R(x̄, t̄) for fk = A e−βk
2
(where A = 0.1 and

β = 0.8 have been used in this case) and P a,b = 1/9 for any choice of quantum
numbers. Space and time are measured in unit of ξ and τ respectively. Data
points are numerical results and the solid line is the analytical prediction for the
two-point function of a thermal initial state, see Eq. (6.50).

where the fisrt addend reads as:

R1(x; t, T ) =

∫ π

−π

dφ

2π
exp

(

−t(1− cosφ)

∫ ∞

0

dk

π
fk vkΘ[vkt− x]

)

× exp

(

−T (1 + cos 2φ− 2 cosφ)

∫ ∞

0

dk

2π
fkvkΘ[x− vkT ]

)

× exp

(

−x(1− cosφ)

∫ ∞

0

dk

π
fkΘ[x− vkt]Θ[vkT − x]

)

× exp

(

−x(1− cos 2φ)

∫ ∞

0

dk

2π
fkΘ[x− vkT ]

)

× cos

{

x sin 2φ

∫ ∞

0

dk

2π
fkΘ[x− vkT ] + x sinφ

∫ ∞

0

dk

π
fkΘ[vkT − x]

+ 2T (sinφ− sin 2φ)

∫ ∞

0

dk

2π
fkvkΘ[x− vkT ]

}

×1 + 2 cos(φ)(P 00 − 1)Q+ cos(2φ)(Q2 − P 00)− P 00Q2

1− 2P 00 cos(2φ) + (P 00)2

,

(6.52)
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and the second term is given by

R2(x; t, T ) =

∫ π

−π

dφ

2π
exp

(

−2(T − t cosφ)
∫ ∞

0

dk

2π
fk vkΘ[vkT − x]

)

× exp

(

−x(1− cos 2φ)

∫ ∞

0

dk

2π
fkΘ[x− vkT ]

)

× exp

(

[−T (1 + cos 2φ) + 2t cosφ]

∫ ∞

0

dk

2π
fkvkΘ[x− vkT ]

)

× cos

{

2x sinφ

∫ ∞

0

dk

2π
fkΘ[vkt− x] + 2t sinφ

∫ ∞

0

dk

2π
fkvkΘ[x− vkt]Θ[vkT − x]

+ (−T sin 2φ+ t sinφ)

∫ ∞

0

dk

2π
fkvkΘ[x− vkT ] + x sin 2φ

∫ ∞

0

dk

2π
fkΘ[x− vkT ]

}

×P
00Q2 − (P 00)2 − cos(2φ)(Q2 − P 00)

1− 2P 00 cos(2φ) + (P 00)2
.

(6.53)

This formula represents the leading order of the semi-classical approach to the

nz − nz correlator in the O(3) non-linear sigma model. From this expression all

subcases can be derived straightforwardly.

6.6 Occupation numbers and mode

probabilities

In this section we compute the occupation numbers and the probability distribu-

tions for each mode, starting from the definition of the squeezed coherent state

(6.3) and the operator algebra of the operators (Z,Z†). Let us recall the definition

of the initial state |ψ〉:

|ψ〉 = exp

(
∑

a,b

∫ ∞

0

dk

2π
Kab(k)Z†

a(−k)Z†
b (k)

)

|0〉, (6.54)

The Z operators obey the Zamolodchikov-Faddeev (ZF) algebra, namely:

Za(k1)Zb(k2)− Scdab(k1, k2)Zd(k2)Zc(k1) = 0

Z†
a(k1)Z

†
b (k2)− Scdab(k1, k2)Z

†
d(k2)Z

†
c (k1) = 0

Za(k1)Z
†
b (k2)− Sadcb (k1, k2)Z

†
d(k2)Zc(k1) = δab δ(k1 − k2).

(6.55)
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Intuitively this means that the exchange of two quasiparticle is realized by the

two-particle scattering matrix S(k1, k2). In the present case we assume the form

(6.16) for the S matrix, and thus the ZF algebra becomes:

Za(k1)Zb(k2) + Za(k2)Zb(k1) = 0

Z†
a(k1)Z

†
b (k2) + Z†

a(k2)Z
†
b (k1) = 0

Za(k1)Z
†
b (k2) = [−∑c Z

†
c (k2)Zc(k1) + δ(k1 − k2)]δab.

(6.56)

The ground state |0〉 satisfies Za(k)|0〉 = 0, ∀a ∀k. From equations (6.55) it is

clear that this algebra encodes the fact that the order of quantum number is

preserved in time. The main quantities we want to compute are the occupation

numbers fabk , which are defined by:

〈ψ|Z†
a(−k)Z†

b (k)Zb(k)Za(−k)|ψ〉
〈ψ|ψ〉 ≡ fabk . (6.57)

This quantity is exactly the number of quasiparticle pairs of kind (a, b) with

momenta (−k, k) (see figure (6.3)), and it is directly connected to the probabilities

P λλ′ we defined in the body of the chapter. The idea is to treat the K-matrix as

an expansion parameter, but working from the beginning in the thermodynamic

limit the squeezed state does not have a good expansion. Divergences appear

in the expansion terms, in the form of squared Dirac delta-functions. In general

there are two different methods of regularizing these divergences: one directly

regulates the integral expressions in the infinite volume whereas the other operates

through subtracting divergences in a large, finite volume. These two techniques

were proposed and compared in (Essler and Konik [2009]). In the follow we shall

use the second method.

Let us start by analysing the expansion of the denominator of (6.57). First Taylor

expand the squezeed state as:

|ψ〉 = (1 +
∑

k>0
a,b

Kab(k)Z†
a(−k)Z†

b (k) +
1

2!
(
∑

k>0
a,b

Kab(k)Z†
a(−k)Z†

b (k))
2 + . . . )|0〉,

(6.58)
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therefore we have:

〈ψ|ψ〉 = 1 + Z1 + Z2 + . . . , (6.59)

where

Z1 =
∑

k>0
a,b

∑

ξ>0

c,d

(Kab(k))∗Kcd(ξ)〈0|Zb(k)Za(−k)Z†
c (−ξ)Z†

d(ξ)|0〉 =
∑

k>0
a,b

|Kab(k)|2.

(6.60)

As expected this term is proportional to the volume L. the higher orders will be

proportional to L2, L3 et cetera. Let us consider the expansion of the numerator

of (6.57):

〈ψ|Z†
α(−ξ)Z†

β(ξ)Zβ(ξ)Zα(−ξ)|ψ〉 = W1 +
1

4
W2 + . . . , (6.61)

where the first term W1is given by:

W1 =
∑

k1>0

a,b

∑

k2>0

c,d

〈0|Zc(k2)Zd(−k2)Z†
α(−ξ)Z†

β(ξ)Zβ(ξ)Zα(−ξ)Z†
a(−k1)Z†

b (k1)|0〉

= |Kαβ(ξ)|2.
(6.62)

This quantity is finite, also in the infinite volume limit L → ∞, whilst W2 is

proportional to L. We now need the expression ofW2 to see how these divergences

cancel against the normalization of the boundary state. By definition we have:

W2 =
∑

k1>0

a,b

∑

k2>0

c,d

∑

k3>0

e,f

∑

k4>0

g,h

〈0|Za(k1)Zb(−k1)Zc(k2)Zd(−k2)Z†
α(−ξ)Z†

β(ξ)

×Zβ(ξ)Zα(−ξ)Z†
e(−k3)Z†

f (k3)Z
†
g(−k4)Z†

h(k4)|0〉
(6.63)

After a bit of algebra we end up with the following result for W2:

W2 = 4|Kαβ(ξ)|2
∑

k>0
a,b

|Kab(k)|2 + 2|Kαβ(ξ)|2
∑

a,b

|Kab(ξ)|2, (6.64)

where we immediately see that the first term is of order L. In particular the

first term of (6.63) can be written as 4W1Z1, thus the first correction in equation
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(6.57) is given by:

〈ψ|Z†
a(−k)Z†

b (k)Zb(k)Za(−k)|ψ〉
〈ψ|ψ〉 =

W1(1 + Z1)

1 + Z1

+ · · · = W1 + o(W1). (6.65)

We see that the divergent term indeed cancels against the normalization factor,

and this happens order by order. We conclude that as long as Kab(k) is small we

can calculate the matrix elements like (6.57) by expanding the squeezed state.

The final result can be written as:

fabk = |Kab(k)|2 + o(|Kab(k)|2) (6.66)

which explains the name amplitudes for the matrix elements Kab(k). The mo-

mentum occupation numbers fk are given by:

fk =
∑

a,b

fabk , (6.67)

while for the probability densities P ab(k) -which are defined in the thermodynamic

limit- we have:

P ab(k) =
fabk

∑

a,b

∫ ∞

0

dk

2π
fabk

, (6.68)

which makes the normalization condition
∑

a,b

∫∞
0

dk
2π
P ab(k) = 1 explicit. The

probability P ab is defined by P ab =
∫∞
0

dk
2π
P ab(k).

6.7 The dynamics of the transverse field Ising

chain

6.7.1 The paramagnetic phase

Another important check of formula (6.50) is represented by the transverse field

Ising chain limit (TFIC). Briefly, we now focus on the dynamics after a quantum
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quench in the TFIC, whose Hamiltonian reads:

Ĥ = −J
(
L−1∑

i=1

σxi σ
x
i+1 − h

L∑

i=1

σzi

)

, (6.69)

where σαi are the Pauli matrices at site i, J > 0 is the energy scale, h the transverse

magnetic field, and we impose free boundary conditions (for the moment we

assume the system to be large but finite). The goal is to determine the dynamical

order-parameter two-point function:

CIsing(x, T, t) = 〈ψ|σxx2(t2)σ
x
x1
(t1)|ψ〉, (6.70)

where x = x2 − x1, T = t1 + t2 and t = t2 − t1. The action of the operator

σxi (t) on the paramagnetic ground state is akin to that of the operator ñz in the

O(3) non-linear sigma model, that is, it either creates an excitation or it destroys

one already present. For this reason the semi-classical approach developed in

the previous section is easily generalizable. For this model the K matrix in the

definition of |ψ〉 is known and equal to K(k) = − i
2
tan
[
θk−θk′

2

]

, where the θ’s are

the Bogoliubov angles defined in (6.73) before and after the quench respectively.

In order to obtain (6.70), without rederiving everything from the beginning, one

should formally replace P a,b = 1/(q−1)2 and then take the limit q → 2. Otherwise

we can start again from (6.32), and take into account that for the TFIC excitations

do not have internal quantum numbers (this is true both in the ordered and

disordered phases). This feature greatly simplifies the algebra of the derivation,

and we end up with the following general expression for the correlator of equation

(6.70), valid in the thermodynamic limit:

CIsing(x, T, t) = CIsing
T=0 (x, t) exp

(

−2t
∫ π

0

dk

π
fkvkΘ[vkt− x]

)

× exp

(

−2T
∫ π

0

dk

π
fkvkΘ[x− vkT ]

)

exp

(

−2x
∫ π

0

dk

π
fkΘ[x− vkt]Θ[vkT − x]

)

,

(6.71)

where CIsing
T=0 (x, t) is given by:

CIsing
T=0 (x, t) ∝

∫ π

−π

dk

2π

e−iε(k)t+ikx

ε(k)
, (6.72)
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Figure 6.8: The real part of the non-equal-time two point function after a quan-
tum quench in the disordered phase, from h0 = 5 to h = 2. By definition t̄ = t/tf
and T̄ = T/tf . Data points represent the numerical data extrapolated in the
thermodynamic limit (L → ∞), while the solid line is given by equation (6.71).
If we look at the inset in the plot, we notice that the semi-classical formula does
not capture well the behaviour of the correlator outside of the light-cone (the
same plot for the imaginary part shows a better agreement, even if at very small
values of t̄ numerical errors do not allow us to compare analytical result with the
numerical ones).

where again as long as we work on the lattice the energy-momentum relation

is ε(k) = [(h − cos(k))2 + sin2(k)]1/2. Once you take the proper scaling limit

a → 0, then ε(k) becomes relativistic and you can replace the general prefactor

with a Bessel function K0. Comparisons between theory and numerical data are

shown in figures (6.9,6.8) and (6.10, 6.11). We note that in expression (6.71) T is

arbitrary (with the constraint T > t > 0), and not necessarily much longer than

the Fermi time tf = x/vmax, as was in (6.50).

For larger quenches the semiclassical prediction, with fk equal to |K(k)|2/(1+
|K(k)|2) is not accurate. Indeed one has to take into account that for arbitrary

values of the magnetic field h > 1 generic excitations are no longer single spin-flips

(even if this is not the only source of error, see below).
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Figure 6.9: The imaginary part of the non-equal-time two point function after a
quantum quench in the disordered phase, from h0 = 5 to h = 2. By definition
t̄ = t/tf and T̄ = T/tf . Data points represent the numerical data extrapolated
in the thermodynamic limit (L → ∞), while the solid line is given by equation
(6.71).

In general their shape is given by a superposition of states with an arbitrary

number of spin-flips, with coefficients depending on the value of h itself. Only

when h � 1 are single excitations well-approximated by single-spin flips, as you

treat them in the semi-classical approach. A first correction to the semiclassical

results corresponds to substituting fk → −1/2 log | cos(∆k)|, where ∆k is the

Bogoliubov angle given by:

cos(∆k) =
h0h− (h0 + h) cos(k) + 1

εh0(k)εh(k)
. (6.73)

This substitution, which follows from asymptotically exact techniques (see (Cal-

abrese et al. [2012a])), increases the agreement between the theoretical predictions

and numerical data, expecially close to the quantum critical point h = 1 where

excitations are no longer localized objects. However in some plots mismatch be-

tween theory and numerics is still present, and we believe that it is due to the
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Figure 6.10: The real part of the non-equal-time two point function after a quan-
tum quench in the disordered phase, from h0 = 3 to h = 1.2. By definition
t̄ = t/tf and T̄ /tf � 1. Data points represent the numerical data extrapolated
in the thermodynamic limit (L → ∞), while the solid line is given by equation
(6.71). The same considerations made for (6.9) hold true here. In addition we
notice that as this quench is closer to the critical point, the agreement is only qual-
itative at small t̄, despite the substitution fk → −1/2 log | cos(∆k)|. To improve
the agreement we should correct the expression for the pre-factor of equation
(6.71), following the exact results of reference (Essler et al. [2012]).

hypothesis of particle-number conservation of the pure semi-classical approach

(i.e., the number of quasiparticles is conserved during the dynamical evolution of

any configuration). If we considered the possibility of creating or destroying par-

ticles during the time evolution (which is realized by an operator insertion), we

would get time-dependent corrections to the prefactor (6.72). Roughly speaking

this would mean going beyond the leading order in the semi-classical approxima-

tion, a topic that is not addressed in detail in this paper. In the recent article

(Essler et al. [2012]) the dynamic correlators after a quantum quench were stud-

ied by using the form-factor technique, finding that the prefactor of expression
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Figure 6.11: Theimaginary part of the non-equal-time two point function after a
quantum quench in the disordered phase, from h0 = 3 to h = 1.2. By definition
t̄ = t/tf and T̄ /tf � 1. Data points represent the numerical data extrapolated
in the thermodynamic limit (L → ∞), while the solid line is given by equation
(6.71). The same considerations made for (6.9) hold true here.

(6.71) can be written as:

CIsing
T=0 (x, t) ∝

∫ π

−π

dk

2π

eikx

ε(k)

[

e−iεkt + 2i tan(
∆k

2
) cos(εk(T ))sgn(x− ε′kt)

]

. (6.74)

Outside the light-cone (when x > vmaxt) the first contribution in (6.74) is expo-

nentially small, whereas the second one behaves as a power law. This observation

explains in turn why the pure semi-classical approximation typically fails when

applied to this regime. In particular the semi-classics is not able to capture the

behaviour of the equal-time correlator, that represents the extreme out-of-the

light-cone case.
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6.7.2 The ferromagnetic phase

Formula (6.50) cannot be directly used to derive the correlator of the Ising model

in the ferromagnetic phase. In this case excitations are no longer spin-flips, in

fact when h < 1 these are domain walls (kinks). Following the general approach

of F. Igloi and H. Reiger (Igloi and Reiger [2011], Reiger and Igloi [2011]) we can

easily obtain the two-point correlation function for arbitrary value of times and

distances. The key ideas of this method have already been extensively discussed in

their works (even if these authors did not consider explicitly the case of dynamical

correlators), here we will just quickly review the main steps. Let us start by

recalling that when in Eq. (6.69) h = 0 the system is identical to the classical

Ising spin chain. The ground state is two-fold degenerate and given by |ψ0〉 =
| + + + · · ·+〉 and |ψ0〉 = | − − − · · · −〉, where (+,−) refer to the alignment

along the x-direction, and the first excited states are the L − 1-fold degenerate

given by the single kink states |n〉 = | + + + · · · + + − − · · · − −−〉 where n
denotes the kink position. If we switch on a small transverse field h > 0, the

low-lying excitations are, at first order in perturbation theory, superposition of

these kink states. In practice, they are Fourier transforms of localized single kink

states. Analogously freely moving single kinks are therefore wave packets of the

aformentioned low-lying excitations. Their energy agrees at first order in h with

the free fermion energies of Eq. (5.36), and their velocity is given by:

vk =
∂εk
∂k

=
h sin(k)

εk
. (6.75)

Ballistically moving kinks are then the fermionic quasi-particle which we will use

to formulate our semi-classical theory of the quantum quench dynamics of the

transverse Ising model. Since by definition these quasi-particle are well-defined

only at small fields in the ferromagnetic phase, we expect the theory to work for

quenches only in the ordered phase. We will see that it actually works very well

in the whole ferromagnetic phase not too close to the transition point h = 1.

Immediatiately after the quench, for small h and small t, the time-evolution of
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the system is given by:

|ψ(t)〉 ≈ exp

(

ith
∑

i

σzi

)

|ψ0〉

=
∏

i

[cos(th) + i sin(th)σzi ]|ψ0〉.
(6.76)

This shows that by the action of the σzi operators initially single spins are flipped

and therefore pairs of kinks are created at each lattice point, which then move

ballistically with a speed proportional to the transverse magnetic field h. In this

phase the maximal velocity is vmax ≈ h.

In translationally invariant systems the creation probability of quasi-particles is

uniformand will be denoted by fk(h0, h). In the case of open boundary conditions

there are corrections to a uniform creation probability close to the boundaries,

which we will consider negligible for sufficiently large system sizes.

In a system at equilibrium at temperature T , this would be f eq
k (h0, h) = e−εk/T ,

while for relaxation at zero temperature fk(h0, h) is the probability with which

the modes with momentum number k are occupied in the initial state |ψ0〉, that
is:

fk(h0, h) = 〈ψ0|η†kηk|ψ0〉, T = 0. (6.77)

Due to conservation of momenta after a global quench quasi-particles emerge

pairwise at random position with velocities +vk and −vk, as indicated in Figure

(7.5). Since quasi-particles represent kinks or domain walls, σx changes sign each

time a quasi-particle crosses the line connecting the points (r1, t1) and (r2, t2).

Hence the correlation function in Eq. (6.70) can be evaluated in terms of classical

particles moving ballistically by using a similar reasoning as in equilibrium, the

difference being that here:

• Quasi-particles come always in pairs from a common off-spring at t = 0;

• The occupation number of quasi-particle states is not thermal.

In these note we consider only the case when L → ∞, when we can avoid con-

sidering reflections by the boundaries.

At leading order in the semi-classical approach the number of quasi-particles is
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Figure 6.12: Typical semi-classical contribution to the two-point correlator func-
tion C(r1, t1; r2, t2). It is worth noting that the eight trajectories of the four
quasi-particles pairs intersect the line (r1, t1; r2, t2) five times, i.e. an odd number
of times, which implies that σxr1(t1) and σ

x
r2
(t2) have opposite orientation.

conserved during the time evolution of the system. In order to go beyond this

order of approximation one has to consider quasi-particle creation and annihila-

tion, phenomenon that can happen along the line (r1, t1; r2, t2) with a probability

given by a form-factor. In these notes we will not consider these corrections, that

are negligible if the gas of excitations is enough dilute.

The idea behind the computation of the two-point function in the semi-classical

approach is the following: if the quasi-particle trajectories intersect the line

(r1, t1; r2, t2) an odd number of times, the spins at (r1, t1) and (r2, t2) have op-

posite orientations (that is, σxr1(t1) = −σxr2(t2)), which contributes to the decay

of the correlation between the two spins themselves. On the contrary, if the

quasi-particle trajectories pass an even number of times, the spin have the same

orientation, as if the trajectories did not pass the line (r1, t1) and (r2, t2) at all.

Let Q(r1, t1; r2, t2) be the probability that a pair of quasi-particles that started

from the same site at t = 0 have passed the line (r1, t1; r2, t2) a total odd number

of times. Therefore the probability that for a given set of n sites the kinks

have passed (for each site a total odd number of times) this line is exactly:

Qn(1 − Q)L−n, where L is the total number of sites. Summing over all possi-
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ble cases we get:

C(r1, t1; r2, t2)

Ceq(r1, r2)
=

L∑

n=0

(−1)nQn(1−Q)L−n L!

n!(L− n)!

= (1− 2Q)L ≈ e−2Q(r1,t1;r2,t2)L,

(6.78)

where Ceq(r1, r2) is the equilibrium correlation function in the initial state and in

the last step we have assumed the the probability Q is small. In order to calculate

Q one should average over the quasi-particles with momenta k ∈ (−π, π), or

equivalently over quasi-particle pairs which means a restriction to k ∈ (0, π). By

using the second method we have the expression:

Q(r1, t1; r2, t2) =
1

2π

∫ π

0

dk fk(h0, h) · qk(r1, t1; r2, t2) (6.79)

in terms of the occupation probability of equation (6.77) and the passing prob-

ability qk(r1, t1; r2, t2). This latter quantity measures the probability that the

two trajectories of any quasi-particle pair with momentum k intersect the line

(r1, t1; r2, t2) together an odd number of times. Let us evaluate the passing prob-

ability qk(r1, t1; r2, t2) for t1 6= t2, when L� |r2−r1| (we do not want to take into

account reflections against the boundaries, even if, for the time being, we consider

the system large but finite). We call t ≡ t2 − t1, T ≡ t2 + t1 and x = |r2 − r1|.
We have to consider three different cases, depending on the actual values of (t, T )

and x. We can summarize the general case as follows:

qk(r1, t1; r2, t2) =







2vkT/L x ≥ vkT

2x/L x < vkT, x ≥ vkt

2vkt/L x < vkt.

(6.80)

Now we have all ingredients to write down the expression for the two-point cor-

relator, and in particular the relaxation function in the ferromegnetic phase can
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Figure 6.13: The passing probability qk(r1, t1; r2, t2) is given by the ratio between
the blue area in figure and the total size of the system L.

eventually be written as:

C(x, T, t)

C(h0, h)
≡ R(x, T, t)

= exp

(

−2t
∫ π

0

dk

π
fkvkΘ[vkt− x]

)

× exp

(

−2T
∫ π

0

dk

π
fkvkΘ[x− vkT ]

)

× exp

(

−2x
∫ π

0

dk

π
fkΘ[x− vkt]Θ[vkT − x]

)

.

(6.81)

where we se that the relaxation function in the ferromegnetic phase is equal to

that in the paramagnetic phase while the multiplicative constant, as introduced

in (Calabrese et al. [2012a], Calabrese et al. [2012b]) reads as:

C(h0, h) =
1− hh0 +

√

(1− h2)(1− h20)
2
√
1− hh0 4

√

1− h20
. (6.82)
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Figure 6.14: Panel (inset): real part of the non-equal-time (equal-time) two point
function in the ordered phase. Again the numerical data are extrapolated in the
thermodynamic limit (L → ∞). In this phase, unlike in the paramagnetic one,
the agreement between the semi-classics and the numerics works well also for the
equal-time correlator

In addition it is worth noticing that the semi-classical two-point correlator in the

ordered phase of the Ising model is always a real function, as was the dominant

contribution of the form-factor result at large (x, T ) in (Essler et al. [2012]). In

the ferromagnetic phase the equal-time correlators can also be described by the

semi-classic approach, in contrast to the paramagnetic phase, as is shown in the

inset of figure (6.14, 6.15).

6.8 Conclusions

In this chapter we have developed a semi-classical theory for the out-of-equilibrium

quantum relaxation of the O(3) non-linear sigma model, after having prepared

the system in a coherent superposition of Cooper pairs, a structure that is in

agreement with the integrability of the theory in the bulk. For such quenches

we analyzed the two-point function of the order parameter ñz and argued that,
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Figure 6.15: Spatial correlation at equal times.

in the long time limit its expression is given by formula (6.50), while for arbi-

trary times by equation (6.51). The method employed here is a generalization

of that used for studying the finite-temperature behaviour of a series of one-

dimensional chains (Rapp and Zarand [2009], Sachdev [2000], Rapp and Zarand

[2006]). As was already observed in other integrable models, the long-time be-

haviour of this two-point function after a quantum quench is not thermal. For

equal times (t2 = t1 � x/vmax) the relaxation (6.50) reaches a stationary state,

while for non-equal times (t2 6= t1) it is expressed as a function of the time dif-

ference t. These features are strong indications that the long-time limit of the

two-point function (6.7) can be described by a statistical ensemble, and we expect

it to be the GGE, being the model integrable. It would be interesting to have

an independent and explicit result in the GGE framework, in order to check the

general belief also for the O(3) non-linear sigma model. The main difficulty here

consists in finding an analytical expression for the lagrangian parameters of the

GGE Hamiltonian, in order to explicitly carry out the statistical average.

The semi-classical approach has also been applied to predict the dynamics of the

order-parameter two-point function of the transverse field Ising chain, in both
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phases. In this case results for the auto-correlation and for the equal-time corre-

lation are already present in literature (Igloi and Reiger [2000], Igloi and Reiger

[2011]), the novelty here is the generalization of the semi-classical method to the

case of different-times correlators. Yet, the exact results recently obtained in

Essler et al. [2012], have allowed us to explore the limit of the pure semi-classics.

This technique works very well within the ferromagnetic phase (also for pretty

large quenches), whilst it is in the paramagnetic phase where it shows its real

limits: it fails in predicting the equal-time two-point correlation functions, and in

general the agreement in the out-of-the-light-cone case (see the insets of figures

(6.9) and (6.10)) is only qualitative. Furthermore in the proximity of the critical

point, the method - which in general is supposed to work well only for small

quenches - needs to be improved with the substitution fk → −1/2 log | cos(∆k)|,
which takes into account the real shape of the excitations.

Nevertheless, our semi-classical theory can be applied straightforwardly to several

other models, integrable and non-integrable, including the q-Potts model and the

sine-Gordon theory, in order to compute correlators. These models will gener-

ate different combinatorial problems (the nature of the excitations is, of course,

model-dependent), but the main ideas remain the same.
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Chapter 7

Dynamical correlation after a

quantum quench in integrable

systems

In this chapter we consider dynamic (non equal time) correlation functions of local

observables after a quantum quench. We show that in the absence of long-range

interactions in the final Hamiltonian, the dynamics is determined by the same

ensemble that describes static (equal time) correlations. For many integrable

models static correlation functions of local observables after a quantum quench

relax to stationary values, which are described by a generalized Gibbs ensemble

(GGE). The same GGE then determines dynamic correlation functions and the

basic form of the fluctuation dissipation theorem holds, although the absorption

and emission spectra are not simply related as in the thermal case. For quenches

in the transverse field Ising chain (TFIC) we derive explicit expressions for the

time evolution of dynamic order parameter correlators after a quench.

This chapter is essentially an expanded version of the article “Dynamical correla-

tion after a quantum quench” written by F. Essler, S. Evangelisti and M. Fagotti,

arXiv:1208.1961, to be published on Physical Review Letter (2013).
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7. Dynamical correlation after a quantum quench

7.1 Introduction to the problem

By virtue of their weak coupling to the environment ultra-cold atomic gases pro-

vide ideal testing grounds for studying nonequilibrium dynamics in isolated many-

particle quantum systems. Recent experiments (Greiner et al. [2002],Kinoshita

et al. [2006a], Hofferberth et al. [2007],Trotzky et al. [2012], Cheneau et al. [2012],

Gring et al. [2012]) have observed essentially unitary time evolution on long time

scales. This has stimulated much theoretical research on fundamental questions

such as whether observables generically relax to time independent values, and if

they do, what principles determine their stationary properties. Relaxational be-

haviour at first may appear surprising, because unitary time evolution maintains

the system in a pure state at all times. However, it can be understood intuitively

as a property of a given finite subsystem in the thermodynamic limit, with the

role of the bath being played by the rest of the system.

Dimensionality and conservation laws strongly affect the out-of-equilibrium

dynamics. Ground breaking experiments by Kinoshita, Wenger and Weiss (Ki-

noshita et al. [2006a]) on trapped 87Rb atoms established that three dimen-

sional condensates “thermalize” rapidly, i.e. relax quickly to a stationary state

characterized by an effective temperature, whereas the relaxation of quasi one-

dimensional systems is slow and towards an unusual non-thermal distribution.

This difference has been attributed to the presence of approximate conservation

laws in the quasi-1D case, which are argued to constrain the dynamics. The

findings of Ref. (Kinoshita et al. [2006a]) sparked a tremendous theoretical effort

aimed at clarifying the effects of quantum integrability on the non-equilibrium

evolution in many-particle quantum systems, see e.g. Refs (Polkovnikov et al.

[2011],Rigol et al. [2007], Rigol et al. [2008], Calabrese and Cardy [2007], Inucci

and Cazalilla [2009], Barthel and Schollwock [2008], Rossini et al. [2009], Rossini

et al. [2010], Fioretto and Mussardo [2010], Biroli et al. [2010], M.C. Banulus and

Hastings [2011], Gogolin et al. [2011], Rigol and Fitzpatrick [2011], Cazalilla et al.

[2012], Mossel and Caux [2012b], Caux and Konik [a]) and references therein. A

widely held view, that has emerged from these studies, is that the reduced den-

sity matrix of any subsystem (which determines correlation functions of all local

observables within the subsystem) is described in terms of either an effective ther-
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mal (Gibbs) distribution or a so-called generalized Gibbs ensemble (GGE) (Rigol

et al. [2007]). The former is believed to represent the generic case, while substan-

tial evidence suggests that the latter arises for integrable models.

Theoretical research so far has focussed on static properties in the stationary

state. A question of both great experimental relevance and theoretical interest is

what characterizes the dynamical properties at late times after a quench. These

can be accessed by experimental probes at finite energies, such as photoemission

spectroscopy (Fröhlich et al. [2011]). In the first part of this chapter we prove

quite generally, that dynamical correlations of local operators acting within a

given subsystem in the stationary state after a quantum quench are determined

by the same distribution function as static correlations. In particular this means

that whenever the GGE describes static correlations in the stationary state, it

also applies to the dynamics.

7.2 Stationary state dynamics after a quantum

quench

We consider the following quench protocol. The system is prepared in the ground

state |Ψ0〉 of a lattice Hamiltonian H(h0) with local interactions, where h0 is a

system parameter such as a magnetic field. At time t = 0 we suddenly change

h0 to h and the system time evolves unitarily with Hamiltonian H(h) thereafter.

We are interested in expectation values of the form (t1, . . . , tn > 0)

〈Ψ0(t)|O1(t1) . . .On(tn)|Ψ0(t)〉, (7.1)

where Oj are local observables. We wish to demonstrate the following. If the

stationary state of a quantum many-body system after a quantum quench is

described by a density matrix ρstat such that for observables Oj acting only within

a subsystem S one has

lim
t→∞
〈Ψ0(t)|O1 . . .On|Ψ0(t)〉 = Tr

(
ρstatO1 . . .On

)
, (7.2)
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then dynamical correlations are described by the same density matrix, i.e. for

t1, . . . , tn fixed we have

lim
t→∞
〈Ψ0(t)|O1(t1) . . .On(tn)|Ψ0(t)〉
= Tr (ρstatO1(t1) . . .On(tn)) . (7.3)

The proof of this statement is based on the Lieb-Robinson bound (Lieb and

Robinson [1972]) and more specifically the following theorem by Bravyi, Hastings

and Verstraete (Bravyi et al. [2006]): let OA be an operator that differs from the

identity only within a local region A. Now define the projection of the (non-local)

operator OA(t) to the subsystem S ⊃ A by

O
(S)
A (t) ≡ trS̄[OA(t)]⊗ IS̄

trS̄[IS̄]
, (7.4)

where S̄ is the complement of S. If the time evolution is induced by a short-range

lattice Hamiltonian, then

‖OA(t)−O(S)
A (t)‖ ≤ c|A|e−

d−v|t|
ξ , (7.5)

where ‖.‖ is the operator norm, v is the maximal velocity at which information

propagates (Lieb and Robinson [1972]), d is the (smallest) distance between S̄ and

A, |A| is the number of vertices in set A, and ξ, c positive constants. Assuming

the operator O2 to be bounded, ||O2|| ≤ κ, we therefore have

|〈δO1(t1)O2(t2)〉t| ≤ ‖δO1(t1)O2(t2)‖
≤ ‖δO1(t1)‖ ‖O2(t2)‖ ≤ c1|A1|κ e−

d1−v|t1|
ξ , (7.6)

where 〈.〉t denotes expectation value with respect to |Ψ0(t)〉 and δO1(t) = O1(t)−
OS

1 (t). The first inequality holds because the operator norm is an upper bound for

the expectation value on any state, while in the last step we used (7.5). Eqn (7.6)

implies that

〈
2∏

j=1

Oj(tj)〉t = 〈OS
1 (t1)O2(t2)〉t + a1(t1, t2, t)e

− d1−v|t1|
ξ , (7.7)
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where a1(t1, t2, t) is a bounded function. By repeating the steps leading to

(7.7) for the operators O2(t2) we arrive at 〈O1(t1)O2(t2)〉t = 〈OS
1 (t1)O

S
2 (t2)〉t +

∑2
i=1 ai(t1, t2, t) exp

(
− di−v|ti|

ξ

)
, where a2(t1, t2, t) is another bounded function.

We may now use the assumption (7.2) for the expectation value on the right hand

side since all operators act within subsystem S

lim
t→∞
〈O1(t1)O2(t2)〉t = Tr(ρstatO

S
1 (t1)O

S
2 (t2)) +

2∑

i=1

ai(t1, t2)e
− di−v|ti|

ξ , (7.8)

where limt→∞ ai(t1, t2, t) = ai(t1, t2) is assumed to exists for simplicity1. The

chain of inequalities (7.6) also holds for the average with respect to the density

matrix ρstat, i.e.

Tr
(
ρstatO1(t1)O2(t2)

)
= Tr

(
ρstatO

S
1 (t1)O

S
2 (t2)

)
+

2∑

i=1

bi(t1, t2)e
− di−v|ti|

ξ , (7.9)

where bi(t1, t2) are bounded functions of t1,2. Finally, combining (7.8) and (7.9)

and then taking the size of the subsystem S to be infinite we obtain (7.3) in the

case n = 2. The generalization to arbitrary n is straightforward.

7.3 Generalized Gibbs ensemble.

We now concentrate on a quantum quench in an integrable model in one di-

mension with Hamiltonian H(h) ≡ I1 and local conservation laws In≥1, i.e.

[Im, In] = 0. The full (reduced) density matrix of the system (of a subsystem

A) at time t after the quench is

ρ(t) = |Ψ0(t)〉〈Ψ0(t)|, ρA(t) = TrĀ
(
ρ(t)

)
, (7.10)

where Ā is the complement of A. It is widely believed, and was shown for quenches

of the transverse field in the TFIC in Refs (Calabrese et al. [2011], Calabrese et al.

1We can drop this assumption and bound the sum on the r.h.s. in a t-independent way
instead. The corresponding contributions then vanish in the limit of an infinitely large subsys-
tem.
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[2012b]), that

lim
t→∞

ρA(t) = TrĀ
(
ρGGE

)
, (7.11)

where

ρGGE =
1

ZGGE

e−
∑

m λmIm , (7.12)

is the density matrix of the GGE and ZGGE ensures the normalization tr
(
ρGGE

)
=

1. Eqn (7.11) establishes that all local, equal time correlation functions of a given

subsystem in the stationary state are determined by the GGE (7.12). Apply-

ing our result (7.3) to the case at hand, we conclude that dynamic correlation

functions are also given by the GGE, i.e.

lim
t→∞
〈Ψ0(t)|O1(t1) . . .On(tn)|Ψ0(t)〉 = Tr

(
ρGGEO1(t1) . . .On(tn)

)
. (7.13)

7.4 Fluctuation Dissipation relation (FDR)

A key question regarding dynamical properties in the stationary state after a

quench is whether a FDR holds (Foini et al. [2011]). Given the result (7.13), we

can answer this question for cases where the stationary state is either described

by a thermal distribution with effective temperature Teff or by a GGE. In the

former case, the standard thermal FDR with temperature Teff applies. In this

section we will set up the problem in a quite general way, in order to obtain a

weak version of the fluctuation-dissipation theorem which is still valid when the

steady state of the system is described by a GGE.

Let us consider the system described by a time-independent Hamiltonian Ĥ, to

which we add an external time-dependent field F (t) that couples linearly to an

observable B̂ of the system. In the case of the transverse field Ising chain the role

of F (t) is played for instance by the magnetic field, and B̂ can be both σxi or σzi .

The complete time-dependent Hamiltonian is therefore

ĤF (t) = Ĥ + F (t)B̂, (7.14)
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when we assume that the external field F (t) vanishes for t earlier than a certain

initial time t0
1. In general we would be interested in analysing the response to

a superposition of external fields, but since in the linear response approximation

the response to different perturbing terms add up independently, there is no loss

of generality in considering the response to only one of them, as we did in (7.14).

For t ≤ t0 the system is assumed to be in a stationary state which is described by

a generalized Gibbs ensemble. For this reason it is now convenient to introduce

a set of eigenstates of ĤGGE ≡
∑
λkIk , {|ψGGEn 〉}, with eigenvalues EGGE

n . This

generalized Hamiltonian comes from the definition of the GGE density matrix

ρGGE ≡ exp(−
∑

λkIk)/ZGGE = exp(− ˆHGGE)/ZGGE, (7.15)

and commutes with the real Hamiltonian Ĥ, therefore there exists a set of eigen-

states diagonalizing both Hamiltonians. We will indicate with En the eigenvalues

of the latter, and Pn are the probabilities defined by

Pn ≡
e−E

GGE
n

ZGGE
, (7.16)

where ZGGE is the GGE partition function. The time-evolution of the system, in

the Schrodinger picture is determined by the usual equation

i~
∂

∂t
|ψGGEn (t)〉 = ĤF (t)|ψGGEn (t)〉, (7.17)

with the initial condition |ψGGEn (t0)〉 = |ψGGEn 〉. The solution of this linear equa-

tion can be written in the following form

|ψGGEn (t)〉 = Û(t, t0)|ψGGEn (t0)〉, (7.18)

where Û(t, t0) is the unitary time-evolution operator, which gives the dynamical

evolution from time t0 to time t. In the absence of any perturbation the time-

1This time must be very late if compared to the time scale of the previous section, because
all this reasoning is valid when the system has already reached its stationary state for long
times. In all this section we assume the unperturbed system to be stationary and characterized
by a GGE.
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evolution of the system would be given by

Û(t, t0) = e−
i
~
Ĥ(t−t0). (7.19)

In order to set up a perturbative expansion of Û in powers of F (t) it is useful to

re-write the previous equation as

Û(t, t0) = e−
i
~
Ĥ(t−t0)ÛF (t, t0) (7.20)

where ÛF (t, t0) is the part of the time-evolution that is due to the external field

F (t) and it obeys the equation of motion

i~
∂

∂t
ÛF (t, t0) = F (t)B̂(t− t0)ÛF (t, t0) (7.21)

with initial condition ÛF (t, t0) = 1̂. The time-dependent operator

B̂(t) = e
i
~
ĤtB̂e−

i
~
Ĥt, (7.22)

is the Heisenberg representation of the operator B̂. Equation (7.20) is useful be-

cause the time dependence of ÛF is entirely due to the perturbation. Furthermore,

substituting the zero-order approximation ÛF (t, t0) = 1̂ on the right-hand side

of equation (7.21) and integrating with respect to the time we get the first-order

approximation to ÛF (t, t0) in the following form

ÛF,1(t, t0) =

[

1̂− i

~

∫ t

t0

B̂(t′ − t0)F (t′)dt′
]

. (7.23)

Hence, the complete time-evolution operator, to first order in F , takes the form

Û1(t, t0) = e−i/~Ĥ(t−t0)
[

1̂− i

~

∫ t

t0

B̂(t′ − t0)F (t′)dt′
]

. (7.24)
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Let us consider a second observable Â which, up to the time t0, had the average

equilibrium value

〈Â〉GGE =
∑

n

Pn〈ψGGEn |Â|ψGGEn 〉, t ≤ t0. (7.25)

Our next goal is to compute the expectation value of Â at time s later than t0,

under the influence of the perturbation. Formally it is given by

〈Â〉GGE(t) =
∑

n

Pn〈ψGGEn |Â(t)|ψGGEn 〉, (7.26)

where Â(t) is the time-dependent operator which evolves under the action of the

full Hamiltonian ĤF . Since we are interested only in the linear response to the

external perturbation F (t) we can make use of the linearized form of the time-

evolution operator (7.24) and its hermitian conjugate. After some algebra we get

the important result

〈Â〉GGE(t)− 〈Â〉GGE = − i
~

∫ t

t0

〈[Â(t), B̂(t′)]〉GGEF (t′)dt′, (7.27)

where both Â(t) and B̂(t) are calculated via equation (7.22), [Â, B̂] is the com-

mutator of the two operators, and 〈. . . 〉GGE denotes the average in the GGE.

Using again the time-independence of the unperturbed Ĥ we can write

〈[Â(t), B̂(t′)]〉GGE = 〈[Â(τ), B̂]〉GGE (7.28)

where τ ≡ t− t′ > 0. Now let us consider the retarded response function χAB(τ)

which is defined as follows:

χAB(t1, t0) ≡
δ〈AĤF (t)(t1)〉

δF (t0)
|F=0, (7.29)

where now τ = t1 − t0, function that can also be re-written in the following way

by using the Kubo formula (see for instance Kubo et al. [1988] and references
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therein):

χAB(τ) = −
i

~
Θ(τ)〈[Â(τ), B̂]〉GGE, (7.30)

where Θ is the step function. Let us now make the change of variable t′ = t−τ in

equation (7.27), thus we can finally write the linear response for the observable

Â in the form
〈Â〉1(t) ≡ 〈Â〉GGE(t)− 〈Â〉GGE

=

∫ t−t0

0

χAB(τ)F (t− τ)dτ.
(7.31)

From this equation it is evident that χAB(τ) describes the response function of

the observable Â at time t to an impulse that couples to the observable B̂ at

an earlier time t − τ . Because it describes the after-effect of a perturbation,

it is appropriately called retarded, or even casual response function. Since the

formula for the response function makes no reference to the initial time t0, we

can therefore let t0 tend to −∞, and all formulas still holds provided that the

perturbing field approches zero for t → −∞ in such a way that the system can

be assumed to have been in the unperturbed stationary state in the far past1:

〈Â〉1(t) =
∫ ∞

0

χAB(τ)F (t− τ)dτ. (7.32)

It is worth noticing that, if Â and B̂ are hermitian operators, then χAB(τ) is

also real and it connects two real quantities. In many pratical applications of the

linear response formalism a central role is played by the response to a periodic

perturbation of the type

F (t) = Fwe
−iwt + c.c., (7.33)

where Fw stands for a complex amplitude and c.c. is the complex conjugate. We

consider such perturbations because it is well known that every ”good” function

of time can be written as a superposition of periodic functions according to

F (t) =

∫ ∞

−∞
F̃ (w)e−iwt

dw

2π
, (7.34)

1State which is described by a GGE
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where

F̃ (w) =

∫ ∞

−∞
F (t)eiwtdw. (7.35)

Knowledge of the linear response to the first term of equation (7.33) will therefore

suffice to determine the response to a general well behaved function F (t). There

is, however, a subtle point: the periodic potential we defined before does not

vanish for t → −∞, and, for this reason, it seems that we are not entitled to

assume that the system was in a stationary state in the far past. The standard

trick by which we can skip this problem is the so called ”adiabatic switching-on” of

the perturbation: we assume that the amplitude of the periodic potential is slowly

turned on according the the law eηt, where η is positive, and η−1 represents a time

scale much longer than the period of the perturbation. as long as the convergence

factor is present, the whole formalism is applicable in the form already described.

We will take the limit η → 0+ at the end of the calculation. If this limit exists, we

are confident to describe the physical response of the system to a steady periodic

perturbation field, that is, a periodic field that has been going on long enough

to erase any memory of the artificial switching-on process. Mathematically we

write F (t) as

F (t) =

∫ ∞

−∞
F̃ (w)e−i(w+iη)t

dw

2π
, (7.36)

and inserting (7.33) into equation (7.32) yields:

〈Â〉1(t) = 〈Â〉1(w)e−iwt + c.c., (7.37)

where

〈Â〉1(w) = χAB(w)Fw, (7.38)

and

χAB(w) = −
i

~
lim
η→0

∫ ∞

0

〈[Â(τ), B̂]〉GGE ei(w+iη)τdτ (7.39)

is the Fourier transform of the response function. Equation (7.39) defines a

frequency dependent response function for any pair of operators Â and B̂.

Let us now expand the commutator in equation (7.39) in a complete set of exact
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eigenstates |ψGGEn 〉 of ĤGGE (which are eigenstates of Ĥ as well):

〈[Â(τ), B̂]〉GGE =
∑

mn

Pm (eiwmnτAmnBnm − eiwnmτBmnAnm)

=
∑

mn

(Pm − Pn)eiwmnτAmnBnm

(7.40)

where the notation Onm ≡ 〈ψGGEn |Ô|ψGGEm 〉 has been introduced to denote the

matrix elements of an operator Ô, and wnm = En−Em

~
= −wmn are the excitation

frequancies of the system, while En’s are the eigenvalues of |ψGGEn 〉 with respect

to Ĥ. If we now insert equation (7.40) into equation (7.39) and perform the time

integration, we obtain the exact eigenstate representation - also known as Lehman

representation- of the response function:

χAB(w) =
1

~

∑

mn

Pm − Pn
w − wnm + iη

AmnBnm (7.41)

where it is implicit that η → 0+. Notice that χAB(w) is analytic in the upper

half of the complex plane and has only simpe poles in the lower half. Let us now

separate the real and imaginary part of the response function, with the help of

the following formula:

lim
η→0+

1

w − x+ iη
= P

1

w − x − iπδ(w − x), (7.42)

where the first term is the Cauchy-Hadamard principal value distribution. By

using this formula we can immediately get the following two results:

ReχAB(w) =
1

~
P

∑

mn

Pm − Pn
w − wnm

AmnBnm, (7.43)

and

ImχAB(w) = −π
~

∑

mn

(Pm − Pn)AmnBnm δ(w − wnm)

= −π
~

∑

mn

Pm[AmnBnm δ(w − wnm)−BmnAnm δ(w + wnm)]

≡ −π
~
[SAB(w)− SBA(−w)],

(7.44)
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where in the last line we have introduced the so-called dynamical structure factor

SAB(w) =
1

2π

∫ ∞

−∞
〈Â(t)B̂〉GGE eiwtdt, (7.45)

which can also be written as:

SAB(w) =
∑

mn

PmAmnBnm δ(w − wnm). (7.46)

Equation (7.44) can be considered as a weak version of the well-known fluctuation-

dissipation theorem, which remains valid for a generic choice of the probabilities

Pm, therefore it is also applicable to the GGE. The only important assumption

we have made about the probabilities Pn throughout these notes is that the op-

erator that appears at the exponent of the density matrix must commute with

the Hamiltonian Ĥ (this is surely the case for the TFIC). We also notice that

the imaginary part of the response function is always negative for positive w and

positive for negative w.

If we wanted to explicitly show the momentum dependence of the previous quan-

tities we would start by writing the linear response function of observables Aj

and Bl acting on sites j and l as

χAB(ω,q) = −
i

~L

∑

j,l

∫ ∞

0

dτeiωτ−iq(rj−rl)

× tr[ρGGE[Aj(τ), Bl]]. (7.47)

On the other hand, the spectral function (dynamic structure factor) of the same

two observables in the stationary state would be given by

SAB(ω,q) =
1

L

∑

j,l

∫ ∞

−∞

dτ

2π
eiωτ−iq·(rl−rj)

× tr[ρGGEAl(τ)Bj]. (7.48)
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Again using a Lehmann representation in terms of Hamiltonian eigenstates it is

straightforward to show that

−~

π
Im χAB(ω,q) = SAB(ω,q)− SBA(−ω,−q). (7.49)

However, as was already noted in Ref. (Foini et al. [2011]) for the TFIC, unlike in

the thermal (Gibbs) case, the negative frequency part SBA(−ω,−q) is not related
to the positive frequency part by a simple relation of the form SAB(−ω,−q) =
f(ω)SBA(ω,q), where f(ω) is independent of A and B.

7.5 Transverse field Ising chain

We now focus on the dynamics after a quantum quench in a particular example,

the TFIC described by the Hamiltonian

H(h) = −J
L∑

j=1

[

σxj σ
x
j+1 + hσzj

]

, (7.50)

where σαj are the Pauli matrices at site j, J > 0 and we impose periodic bound-

ary conditions σαL+1 = σα1 . The model (7.50) is a crucial paradigm of quantum

critical behaviour and quantum phase transitions (Sachdev [2000]). At zero tem-

perature and in the thermodynamic limit it exhibits ferromagnetic (h < 1) and

paramagnetic (h > 1) phases, separated by a quantum critical point at hc = 1.

For h < 1 and L → ∞ there are two degenerate ground states. Spontaneous

symmetry breaking selects a unique ground state, in which spins align along the

x-direction. On the other hand, for magnetic fields h > 1 the ground state is

non-degenerate and, as the magnetic field h is increased, spins align more and

more along the z-direction. The order parameter for the quantum phase transi-

tion is the ground state expectation value 〈σxj 〉. We note that the model (7.50)

is (approximately) realized in systems of cold Rb atoms confined in an optical

lattice (Simon et al. [2011]).

Two point dynamical correlation functions are of particular importance due to
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their relationships to response functions measured in photoemission and scatter-

ing experiments. The two-point function of transverse spins 〈Ψ0(t)|σzj+`(τ1)σzj (τ2)|Ψ0(t)〉
in the TFIC can be calculated by elementary means (Barouch et al. [1970]) as

it is local in terms of Jordan-Wigner fermions. Our goal is to determine the

dynamical order-parameter two-point function

ρxx(`, t+ τ1, t+ τ2) = 〈Ψ0(t)|σx1+`(τ1)σx1 (τ2)|Ψ0(t)〉, (7.51)

after quenching the transverse field at time t = 0 from h0 to h for times τ1,2 ≥ 0.

This can be achieved by employing a generalization of the form factor methods

recently developed in Ref. (Calabrese et al. [2012a]) to the non-equal-time case,

and augmenting the results obtained in this way by exploiting the knowledge

of exact limiting behaviours derived in Refs (Calabrese et al. [2012a], Calabrese

et al. [2012b]). Our approach is outlined in (7.6). For quenches within the ordered

phase (h0, h < 1) we obtain for large positive `, t

ρxx(`, t+ τ, t) ' Cx
FF(h0, h) R(`, τ, t), (7.52)

where

R(`, τ, t) = exp
[
∫ π

0

dk

π
log
(
cos∆k

)
×min {max{ε′h(k)τ, `}, ε′h(k)(2t+ τ)}

]
,

(7.53)

and

Cx
FF(h0, h) =

1− hh0 +
√

(1− h2)(1− h20)
2
√
1− hh0 4

√

1− h20
. (7.54)

Here εh(k) = 2J
√
1 + h2 − 2h cos k is the dispersion relation of elementary excita-

tions of the HamiltonianH(h), cos∆k = 4J2(1 + hh0 − (h+ h0) cos k)/εh(k)εh0(k)

and ε′h(k) = dεh(k)/dk. An important scale in the problem is given by the “Fermi-

time”

tF =
`

2vmax

, vmax = maxk ε
′
h(k), (7.55)

where vmax is the maximal propagation velocity of the elementary excitations of

the post-quench Hamiltonian H(h). We note that the dominant contribution at

large `, t (7.53) has a vanishing imaginary part. This is similar to the correspond-
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Figure 7.1: Non-equal-time two point function after a quench in the ordered phase
from h0 = 1/3 to h = 2/3. The distance and time T are fixed at ` = 20 and
T/tF = 16/3 respectively.

ing correlator at finite temperature in equilibrium (Sachdev [2000]). In order

to assess the accuracy of the asymptotic result (7.53) at short and intermediate

times and distances we have computed the correlator (7.52) numerically on large,

open chains by means of a determinant representation and then extrapolated the

results to the thermodynamic limit. A comparison between (7.52) and the nu-

merical results for a quench from h0 = 1/3 to h = 2/3 and distance ` = 20 is

shown in Fig. 7.5. The agreement is clearly excellent. The qualitative behaviour

of ρxx(`, T + τ, T − τ) is as follows: τ = 0 corresponds to the known (Calabrese

et al. [2012a]) equal-time correlator at time T after the quench. The correlator

remains essentially unchanged until τ = tF (corresponding to τ1 − τ2 = 2tF in

7.52), where a horizon effect occurs. At later times τ > tF the correlator decays

exponentially.

For quenches within the disordered phase (h0, h > 1), we obtain for

vmax(2t+ τ) > `

ρxx(`, t+ τ, t) ' hCx
FF(h

−1
0 , h−1)F (`, τ, t)R(`, τ, t), (7.56)
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where R(`, τ, t) and Cx
FF are given by (7.53) and

F (`, τ, t) =

∫ π

−π

dkJei`k

πεh(k)

[

e−iεkτ+2i tan
(∆k

2

)
cos
(
εk(2t+τ)

)
sgn
(
`−ε′kτ

)]

. (7.57)

In the complementary regime vmax(2t + τ) < ` the correlator is exponentially

small and the expressions (7.56, 7.57) no longer apply. Outside the “light-cone”

vmaxτ < ` the first contribution in (7.57) is exponentially small, whereas the sec-

ond one decays as a power-law. The result (7.56) is obtained by a generalization

of the form factor (Gehlen et al. [2008], Iorgov et al. [2011]) approach developed

in Ref. (Calabrese et al. [2012b]) and is based on an expansion in the density of

excitations of H(h) in the initial state after the quench. Hence it is most accu-

rate for quenches where this density is low and breaks down for quenches from/to

the quantum critical point. In Figs 7.5 and 7.5 we compare the asymptotic re-

sult (7.52) to numerics obtained in the way described above. The agreement for

the chosen set of parameters (` = 30, h0 = 2, h = 3 and T/tF = 16/3) is seen

to be excellent. The value of ρxx(`, T + τ, T − τ) at τ = 0 equals the known

equal-time correlator at time T after the quench (Calabrese et al. [2012b]), which

is small in the case considered. The correlator remains largely unchanged up to

a horizon at τ = tF (corresponding to t = tF/2 in (7.52)), and for times τ > tF

exhibits an oscillatory τ−1/2 power-law decay. We note that the result (7.52, 7.53)

can be obtained in an alternative way by generalizing the semiclassical approach

of Ref. (Rieger and Igloi [2011]) (see also Sachdev [2000], Rossini et al. [2009],

Rossini et al. [2010]) to the non-equal time case, and then elevating it using exact

limiting results of Refs (Calabrese et al. [2012a], Calabrese et al. [2012b]). While

this method fails to reproduce the result for quenches in the disordered phase

outside the light-cone, i.e. vmaxτ < `, it provides a physical picture. The be-

haviour is similar to the finite temperature case Sachdev [2000] and for h0, h < 1

can be understood in terms of classical motion of domain walls. For h0, h > 1

(and within the light-cone), quantum fluctuations (associated with the function

F in (7.57)) give rise to the oscillatory behaviour seen in Fig. 7.5, while relaxation

occurs at longer scales and is again driven by classical motion of particles (spin

flips) (Sachdev [2000]). A simple picture emerges when we Fourier transform

ρxx(`, t + τ, t) at t → ∞ for small quenches. As a function of ω for fixed q the
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Figure 7.2: Real part of the non-equal-time two point function after a quench in
the disordered phase from h0 = 2 to h = 3. The distance and time T are fixed at
` = 30 and T/tF = 16/3 respectively. Data points are numerical results (see the
text for details) and the solid line is eqn (7.56).

resulting “dynamical structure factor” for quenches within the disodered phase is

dominated by a narrow, asymmetric peak around ω = εh(q), while for h0, h < 1

we observe a broadening of the δ-function peak associated with the ferromagnetic

order in the initial state. Both of these are qualitatively similar to the finite-T

equilibrium response (Sachdev [2000],Essler and Konik [2008]). Having estab-

lished in the first part of this work that the t → ∞ limit of ρxx(`, t + τ1, t + τ2)

is described by the GGE, an important question is how quickly this limiting be-

haviour is approached. It follows from (7.52, 7.56) that for quenches within the

ordered (disordered) phase the limiting value for fixed τ1,2 and ` is approached as

a t−3 (t−3/2) power law.

7.6 Form Factor approach

The dynamical two-point functions (7.52, 7.56) are determined by a generalization

of the form factor approach recently developed in Ref. (Calabrese et al. [2012a]).

181



7. Dynamical correlation after a quantum quench

Figure 7.3: Imaginary part of the non-equal-time two point function after a
quench in the disordered phase from h0 = 2 to h = 3. The distance and time
T are fixed at ` = 30 and T/tF = 16/3 respectively. Data points are numerical
results (see the text for details) and the solid line is eqn (7.56).

The latter is based on a Lehmann representation of two-point functions in terms

of simultaneous eigenstates of the momentum operator P and the post-quench

Hamiltonian H(h)

H(h)|k1, . . . , kn〉a =
[ n∑

j=1

εh(kj)
]

|k1, . . . , kn〉a ,

P |k1, . . . , kn〉a =
[ n∑

j=1

kj

]

|k1, . . . , kn〉a, (7.58)

where a = R,NS correspond to periodic/antiperiodic boundary conditions on

the Jordan-Wigner fermions (Calabrese et al. [2012a]). For a quench within the

disordered phase the state |Ψ0(t)〉 has the following representation in a large, but

finite volume L

|Ψ0(t)〉 =
|B(t)〉NS

√

NS〈B(t)|B(t)〉NS

, (7.59)

182



7. Dynamical correlation after a quantum quench

where

|B(t)〉NS =
∞∑

n=0

in

n!

∑

0<p1,...,pn∈NS

n∏

j=1

K(pj)e
−2iεh(pj)t

× | − p1, p1, . . . ,−pn, pn〉NS , (7.60)

K(k) =
sin(k) (h0 − h)

εh0 (k)εh(k)

(2J)2
+ 1 + hh0 − (h+ h0) cos(k)

. (7.61)

The function K(p) is related to the quantity cos(∆p) defined in the main text by

K(p) = tan(∆p/2). The dynamical order parameter two-point function

ρxx(`, t+ τ1, t+ τ2) =
NS〈B(t)|σxm+`(τ1)σ

x
m(τ2)|B(t)〉NS

NS〈B|B〉NS

(7.62)

has the following Lehmann representation

NS〈B(t)|σx`+m(τ1)σxm(τ2)|B(t)〉NS=

∞∑

m,n=0

in−m

n!m!

∑

0<p1,...,pn∈NS
0<k1,...,km∈NS

[
n∏

j=1

K(pj)e
−2i(t+τ2)εh(pj)

][
m∏

l=1

K(kl)e
2i(t+τ1)εh(kl)

]

×
∞∑

s=0

∑

q1,...,qs∈R

∏s
r=1 e

i(τ2−τ1)εh(qr)+iqr`

s!
〈km,−km, . . . , k1 − k1|σxm|q1, . . . , qs〉

× 〈qs, . . . , q1|σxm| − p1, p1, . . . ,−pn, pn〉, (7.63)

NS〈B|B〉NS = exp
[ ∑

0<q∈NS

log
(
1 +K2(q)

)]

. (7.64)

The form factors

〈km,−km, . . . , k1 − k1|σxm|q1, . . . , qs〉 (7.65)

are known exactly (Gehlen et al. [2008], Iorgov et al. [2011]) see eqns (109)-(111)

of Ref. (Calabrese et al. [2012a]). The leading behaviour of (7.63) is evaluated by

considering it as a formal expansion in powers of the function K(p). As shown in

Ref. (Calabrese et al. [2012a]) this corresponds to an expansion, where the small
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parameter is the density of excitations of the post-quench Hamiltonian H(h) in

the initial state |Ψ0(0)〉. We determine the dominant contributions at large `, t

and |τ1−τ2| to (7.63) for a given order in the formal expansion in powers of K(p),

and then sum these to all orders. The structure of this calculation is similar to

the equal time case (τ1 = τ2) considered in Ref. (Calabrese et al. [2012a]), but

the details differ substantially and will be reported elsewhere. The result of the

form factor calculation for quenches within the disordered phase is

ρxx(`, t+ τ, t) ' 2J
√
h(h2 − 1)

1
4F (`, τ, t)R0(`, τ, t) , (7.66)

where the function F is given in (7.57) and

R0(`, τ, t) = exp
[

− 2

∫ π

0

dk

π
K2(k)

×min
{

max{ε′h(k)τ, `}, ε′h(k)(2t+ τ)
}]

. (7.67)

We now use that the general structure of the resummation for τ1,2 6= 0 is the

same as for τ1,2 = 0. This allows us to go beyond the low-density expansion

by exploiting results obtained in Refs (Calabrese et al. [2012a], Calabrese et al.

[2012b]) for τ1 = τ2 = 0 by means of determinant techniques. In this way we

arrive at eqn (7.56). Quenches within the ordered phase are analyzed in the same

way.

7.7 Conclusions

In this chapter we have considered dynamical correlation functions of local ob-

servables after a quantum quench. We have shown, that dynamical correlators of

local observables in the stationary state are governed by the same ensemble that

describes static correlations. For quenches in the TFIC this implies that they are

given by a GGE, for which the basic form of the fluctuation dissipation theorem

holds. We have obtained explicit expressions for the time evolution of dynamic

order parameter correlators after a quench in the TFIC.
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Appendix A

Elliptic functions are the extensions of the trigonometric functions to work with

doubly periodic expressions, i.e. such that

f (z + 2nω1 + 2mω3) = f (z + 2nω1) = f(z) , (68)

where ω1, ω3 are two different complex numbers and n,m are integers (following

Lawden [1989], we have ω1 + ω2 + ω3 = 0).

The Jacobi elliptic functions are usually defined through the pseudo-periodic

theta functions:

θ1(z; q) = 2
∞∑

n=0

(−1)nq(n+1/2)2 sin[(2n+ 1)z] , (69)

θ2(z; q) = 2
∞∑

n=0

q(n+1/2)2 cos[(2n+ 1)z] , (70)

θ3(z; q) = 1 + 2
∞∑

n=1

qn
2

cos(2nz) , (71)

θ4(z; q) = 1 + 2
∞∑

n=1

(−1)nqn2

cos(2nz) , (72)

where the elliptic nome q is usually written as q ≡ eiπτ in terms of the elliptic

parameter τ and accordingly

θj(z|τ) ≡ θj(z; q) . (73)
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The periodicity properties of the theta functions are

θ1(z|τ) = −θ1(z + π|τ) = −λθ1(z + πτ |τ) = λθ1(z + π + πτ |τ) , (74)

θ2(z|τ) = −θ2(z + π|τ) = λθ2(z + πτ |τ) = −λθ2(z + π + πτ |τ) , (75)

θ3(z|τ) = θ3(z + π|τ) = λθ3(z + πτ |τ) = λθ3(z + π + πτ |τ) , (76)

θ4(z|τ) = θ4(z + π|τ) = −λθ4(z + πτ |τ) = −λθ4(z + π + πτ |τ) , (77)

where λ ≡ qe2iz.

Moreover, incrementation of z by the half periods 1
2
π, 1

2
πτ , and 1

2
π(1+τ) leads

to

θ1(z|τ) = −θ2(z + 1
2
π|τ) = −iµθ4(z + 1

2
πτ |τ) = −iµθ3(z + 1

2
π + 1

2
πτ |τ) , (78)

θ2(z|τ) = θ1(z +
1
2
π|τ) = µθ3(z +

1
2
πτ |τ) = µθ4(z +

1
2
π + 1

2
πτ |τ) , (79)

θ3(z|τ) = θ4(z +
1
2
π|τ) = µθ2(z +

1
2
πτ |τ) = µθ1(z +

1
2
π + 1

2
πτ |τ) , (80)

θ4(z|τ) = θ3(z +
1
2
π|τ) = −iµθ1(z + 1

2
πτ |τ) = iµθ2(z +

1
2
π + 1

2
πτ |τ) , (81)

with µ ≡ q1/4eiz.

The Jacobi elliptic functions are then defined as

sn(u; k) =
θ3(0|τ)
θ2(0|τ)

θ1(z|τ)
θ4(z|τ)

, (82)

cn(u; k) =
θ4(0|τ)
θ2(0|τ)

θ2(z|τ)
θ4(z|τ)

, (83)

dn(u; k) =
θ4(0|τ)
θ3(0|τ)

θ3(z|τ)
θ4(z|τ)

, (84)

where u = θ23(0|τ) z = 2
π
K(k) z, τ ≡ iK(k′)

K(k)
, k′ ≡

√
1− k2, and

K(k) ≡
∫ 1

0

dt
√

(1− t2)(1− k2t2)
=

∫ π
2

0

dθ
√

1− k2 sin2 θ
(85)

is the elliptic integral of the first type. Additional elliptic functions can be gen-

erated with the following two rules: denote with p, q the letters s, n, c, d, then
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pq(u; k) ≡ 1

qp(u; k)
, pq(u; k) ≡ pn(u; k)

qn(u; k)
. (86)

For 0 ≤ k ≤ 1, K(k) is real, iK ′(k) ≡ iK(k′) is purely imaginary and together

they are called quater-periods. The Jacobi elliptic functions inherit their periodic

properties from the theta functions, thus:

sn(u; k) = −sn(u+ 2K; k) = sn(u+ 2iK ′; k) = −sn(u+ 2K + 2iK ′; k) , (87)

cn(u; k) = −cn(u+ 2K; k) = −cn(u+ 2iK ′; k) = cn(u+ 2K + 2iK ′; k) , (88)

dn(u; k) = dn(u+ 2K; k) = −dn(u+ 2iK ′; k) = −dn(u+ 2K + 2iK ′; k) . (89)

The inverse of an elliptic function is an elliptic integral. The incomplete elliptic

integral of the first type is usually written as

F (φ; k) =

∫ φ

0

dθ
√

1− k2 sin2 θ
= sn−1 (sinφ; k) , (90)

and it is the inverse of the elliptic sn. Clearly, F
(
π
2
; k
)
= K(k). Further inversion

formulae for the elliptic functions can be found in Lawden [1989].

Additional important identities include

k = k(τ) =
θ22(0|τ)
θ23(0|τ)

, k′ = k′(τ) =
θ24(0|τ)
θ23(0|τ)

, (91)

and

sn2(u; k) + cn2(u; k) = 1 , (92)

dn2(u; k) + k2sn2(u; k) = 1 , (93)

dn2(u; k)− k2cn2(u; k) = k′2 . (94)

Taken together, the elliptic functions have common periods 2ω1 = 4K(k)

and 2ω3 = 4iK ′(k). These periods draw a lattice in C, which has the topology

of a torus. While the natural domain is given by the rectangle with corners

(0, 0), (4K, 0), (4K, 4iK ′), (0, 4iK ′), any other choice would be exactly equivalent.
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Thus, the parallelogram defined by the half-periods

ω′
1 = aω1 + b ω3 , ω′

3 = c ω1 + dω3 , (95)

with a, b, c, d integers such that ad − bc = 1, can suit as a fundamental domain.

This transformation, which also changes the elliptic parameter as

τ ′ =
ω′
3

ω′
1

=
c+ d τ

a+ b τ
, (96)

can be casted in a matrix form as

(

ω′
1

ω′
3

)

=

(

a b

c d

)(

ω1

ω3

)

(97)

and defines a modular transformation. The modular transformations generate

the modular group PSL(2,Z). Each element of this group can be represented (in

a not unique way) by a combination of the two transformations

S =

(

0 1

−1 0

)

−→ τ ′ = −1

τ
, (98)

T =

(

1 0

1 1

)

−→ τ ′ = τ + 1 , (99)

which satisfy the defining relations

S2 = 1 , (ST)3 = 1 . (100)
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The transformation properties for the S transformation are

θ1

(

z| − 1

τ

)

= −i(iτ) 1
2 e

iτz2

π θ1(τz|τ) , (101)

θ2

(

z| − 1

τ

)

= (−iτ) 1
2 e

iτz2

π θ4(τz|τ) , (102)

θ3

(

z| − 1

τ

)

= (−iτ) 1
2 e

iτz2

π θ3(τz|τ) , (103)

θ4

(

z| − 1

τ

)

= (−iτ) 1
2 e

iτz2

π θ2(τz|τ) . (104)

From which follows

k

(

−1

τ

)

= k′(τ) , k′
(

−1

τ

)

= k(τ) , (105)

and

K

(

−1

τ

)

= K ′(τ) = K(k′) , iK ′
(

−1

τ

)

= iK(τ) = iK(k) . (106)

Moreover,

sn(u; k′) = −i sn(iu; k)
cn(iu; k)

, cn(u; k′) =
1

cn(iu; k)
,

dn(u; k′) =
dn(iu; k)

cn(iu; k)
, . . . (107)

For the T transformation we have

θ1 (z|τ + 1) = eiπ/4θ1(z|τ) , (108)

θ2 (z|τ + 1) = eiπ/4θ2(z|τ) , (109)

θ3 (z|τ + 1) = θ4(z|τ) , (110)

θ4 (z|τ + 1) = θ3(z|τ) , (111)

and thus

k(τ + 1) = i
k(τ)

k′(τ)
, k′(τ + 1) =

1

k′(τ)
, (112)
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and

K(τ + 1) = k′(τ)K(τ) , iK ′(τ + 1) = k′ [K(τ) + iK ′(τ)] . (113)

Finally

sn

(

u; i
k

k′

)

= k − sn(u/k′; k)

dn(u/k′; k)
, cn

(

u; i
k

k′

)

=
cn(u/k′; k)

dn(u/k′; k)
,

dn

(

u; i
k

k′

)

=
1

dn(u/k′; k)
, . . . (114)

While it is true that by composing these two transformations we can gen-

erate the whole group, for convenience we collect here the formulae for another

transformation we use in the body of the paper: τ → τ
1−τ , corresponding to STS

θ1

(

z| τ

1− τ

)

= i
1
2F θ1

(

(1− τ)z|τ
)

, (115)

θ2

(

z| τ

1− τ

)

= F θ3

(

(1− τ)z|τ
)

, (116)

θ3

(

z| τ

1− τ

)

= F θ2

(

(1− τ)z|τ
)

, (117)

θ4

(

z| τ

1− τ

)

= i
1
2F θ4

(

(1− τ)z|τ
)

, (118)

where F = (1− τ) 1
2 ei

(τ−1)z2

π . We have

k

(
τ

1− τ

)

=
1

k(τ)
=

1

k
, k′

(
τ

1− τ

)

= i
k′(τ)

k(τ)
= i

k′

k
, (119)

and

K

(
τ

1− τ

)

= k [K(τ)− iK ′(τ)] , iK ′
(

τ

1− τ

)

= ikK ′(τ) . (120)
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Moreover,

sn

(

u;
1

k

)

= k sn
(u

k
; k
)

, cn

(

u;
1

k

)

= dn
(u

k
; k
)

,

dn

(

u;
1

k

)

= cn
(u

k
; k
)

. (121)
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Appendix B

In this appendix we list the code we have used to compute the two-point function

of the order parameter in the TFIC, in both the ferromagnetic and paramagnetic

phase, with open boundary conditions (OBC). In particular this version of the

code computes the equal-time correlator, but its extension to the non-equal time

is straightforward.

(∗Beginning o f the programme∗)

s11 = {{1 , 0} , {0 , 0}} ;
s12 = {{0 , 1} , {0 , 0}} ;
s21 = {{0 , 0} , {1 , 0}} ;
s22 = {{0 , 0} , {0 , 1}} ;

L = 512 ; (∗ S i z e o f the system ∗)

h = 3/4 ; (∗ I n i t i a l Magnetic f i e l d ∗)

h0 = 1/3 ; (∗ Fina l magnetic f i e l d ∗)

l = 30 ; (∗ Spa t i a l d i s t anc e between ope ra to r s ∗)

Tmax = 100 ; (∗Maximal s imulated time ∗)
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Solve [ h0 == (h − 2 eps + h eps ˆ2)/(1 − 2 h eps + eps ˆ2 ) , eps ]

(∗The prev ious ‘ ‘ so lve ’ ’ g i v e s us a measure ∗)
(∗ o f the s i z e o f the quench ∗)

f = {} ;

I f [ h > 1 , Monitor [ For [ j = 1 , j <= L, j++,

AppendTo [ f , k / . FindRoot [ ( Sin [ L k ] == h Sin [ ( L + 1) k ] ) ,

{k , Pi∗ j /(L + 1 ) } ] ] ; ] , j ] ; , Monitor [ AppendTo [ f , I k / .

FindRoot [ ( Sinh [L k ] == h Sinh [ ( L + 1) k ] ) , {k , −Log [ h ] } ] ] ;
For [ j = 1 , j <= L − 1 , j++, AppendTo [ f , k / . FindRoot [

( Sin [ L k ] == h Sin [ ( L + 1) k ] ) , { k , Pi∗ j /(L ) } ] ] ; ] , j ] ;
]

I f [ Length [ Union [ f ] ] != L , Pr int [ ”Warning : degenerate r oo t s ! ” ] ] ;

f 0 = {} ;

I f [ h0 > 1 , Monitor [ For [ j =1, j <= L, j++,

AppendTo [ f0 , k / . FindRoot [ ( Sin [ L k ] == h0 Sin [ ( L+1) k ] ) ,

{k , Pi∗ j /(L+1 ) } ] ] ; ] , j ] ; , Monitor [ AppendTo [ f0 , I k / .

FindRoot [ ( Sinh [L k]==h0 Sinh [ ( L+1) k ] ) , {k , −Log [ h0 ] } ] ] ;
For [ j =1, j<= L−1, j++, AppendTo [ f0 , k / . FindRoot [

( Sin [ L k]==h0 Sin [ ( L+1) k ] ) , {k , Pi∗ j /(L ) } ] ] ; ] , j ] ;
]

I f [ Length [ Union [ f 0 ] ] != L , Pr int [ ”Warning : degenerate r oo t s ! ” ] ] ;

[ e p s i l o n ]=Sqrt [ 1 + hˆ2 − 2 h Cos [ f ] ] ;

Nk = Sqrt [ 2 / (L+hˆ2 (L+1)−h (1+2 L) Cos [ f ] ) ] ;
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Nk0 = Sqrt [ 2 / (L+h0ˆ2 (L+1)−h0 (1+2 L) Cos [ f 0 ] ) ] ;

C l ea rAl l [ phi , phi0 , ps i , ps i0 , [ Phi ] , [ Phi ] 0 , [ Ps i ] , [ Ps i ] 0 ] ;

phi [ j , i ] = ”UnDefined ” ;

[ Phi ]=

Function [ I f [ phi [#1,#2]==”UnDefined ” , I f [ h>1,

phi [#1 , #2]=(−1)ˆ#2 Nk [ [# 1 ] ] ( Sin [(#2−1)
f [ [#1 ] ] ] −h Sin [#2∗ f [ [ # 1 ] ] ] ) , phi [#1,#2]=

I f [(#1==1)&&(Abs [ Cos [ f [ [#1] ] ]−(1+hˆ2)/2/h]<

10ˆ(−7)) ,− Sqrt [1−hˆ2 ]/h∗(−h)ˆ#2,(−1)ˆ#2

Nk[ [#1] ]∗(−h∗Sin [#2∗ f [ [#1 ] ] ]+ Sin [(#2−1)
∗ f [ [ # 1 ] ] ] ) ] ] ] ; phi [#1 , #2 ] ] ;

phi0 [ j , i ] = ”UnDefined ” ;

[ Phi ]0=

Function [ I f [ phi0 [#1 , #2]==”UnDefined ” , I f [ h0>1,

phi0 [#1 , #2]=(−1)ˆ#2 Nk0 [ [# 1 ] ] ( Sin [(#2−1)
f 0 [ [#1 ] ] ] − h0 Sin [#2∗ f 0 [ [ # 1 ] ] ] ) , phi0 [#1,#2]=

I f [(#1==1)&&(Abs [ Cos [ f 0 [ [#1] ] ]−(1+h0ˆ2)/2/h0]<

10ˆ(−7)) ,− Sqrt [1−h0 ˆ2 ]/ h0∗(−h0)ˆ#2,(−1)ˆ#2

Nk0[ [#1] ]∗(−h0∗Sin [#2∗ f 0 [ [#1 ] ] ]+ Sin [(#2−1)∗
f 0 [ [ # 1 ] ] ] ) ] ] ] ; phi0 [#1 , #2 ] ] ;

p s i [ j , i ]= ”UnDefined ” ;

[ Ps i ] = Function [ I f [ p s i [#1,#2]==”UnDefined ” , p s i [#1,#2]=

(−1)ˆ(L−#1)[Phi ] [#1 ,L+1−#2]]; p s i [#1 ,#2];

p s i 0 [ j , i ] = ”UnDefined ” ;
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[ Ps i ] 0 = Function [ I f [ p s i 0 [#1,#2]==”UnDefined ” , p s i 0 [#1,#2]=

(−1)ˆ(L−#1)[Phi ]0 [#1 ,L+1−#2]]; p s i 0 [#1 ,#2] ] ;

Phi = Array [ [ Phi ] , {L , L } ] ;
Phi0 = Array [ [ Phi ] 0 , {L , L } ] ;
Ps i = Array [ [ Ps i ] , {L , L } ] ;
Ps i0 = Array [ [ Ps i ] 0 , {L , L } ] ;

G = −Transpose [ Phi0 ] . Ps i0 ;

Gt = Transpose [G] ;

SetSharedVar iab le [ c o r r e l ] ;

c o r r e l = {} ;
Monitor [

Para l l e lDo [

t2 = t ;

t1 = t ;

C1 = DiagonalMatrix [ Cos [ [ Eps i lon ]∗ t1 ] ] ;

C2 = DiagonalMatrix [ Cos [ [ Eps i lon ]∗ t2 ] ] ;

S1 = DiagonalMatrix [ Sin [ [ Eps i lon ]∗ t1 ] ] ;

S2 = DiagonalMatrix [ Sin [ [ Eps i lon ]∗ t2 ] ] ;

Q11 = Transpose [ Phi ] . C1 . Phi ;

Q12 = Transpose [ Phi ] . C2 . Phi ;

Q21 = Transpose [ Ps i ] . S1 . Phi ;

Q21t = Transpose [Q21 ] ;

Q22 = Transpose [ Ps i ] . S2 . Phi ;

Q22t = Transpose [Q22 ] ;

Q31 = Transpose [ Ps i ] . C1 . Ps i ;

Q32 = Transpose [ Ps i ] . C2 . Ps i ;

195



A2A2 = Q12 .Q12 + Q22t .Q22 + I Q12 .G.Q22 − I Q22t .Gt .Q12 ;

A1A1 = Q11 .Q11 + Q21t .Q21 + I Q11 .G.Q21 − I Q21t .Gt .Q11 ;

A2A1 = Q12 .Q11 + Q22t .Q21 + I Q12 .G.Q21 − I Q22t .Gt .Q11 ;

B2B2 = − Q22 . Q22t − Q32 .Q32 + I Q22 .G.Q32 − I Q32 .Gt . Q22t ;

B1B1 = − Q21 . Q21t − Q31 .Q31 + I Q21 .G.Q31 − I Q31 .Gt . Q21t ;

B2B1 = − Q22 . Q21t − Q32 .Q31 + I Q22 .G.Q31 − I Q32 .Gt . Q21t ;

A2B2 = I Q12 . Q22t − I Q22t .Q32 + Q12 .G.Q32 + Q22t .Gt . Q22t ;

A1B1 = I Q11 . Q21t − I Q21t .Q31 + Q11 .G.Q31 + Q21t .Gt . Q21t ;

A2B1 = I Q12 . Q21t − I Q22t .Q31 + Q12 .G.Q31 + Q22t .Gt . Q21t ;

B2A2 = I Q22 .Q12 − I Q32 .Q22 − Q22 .G.Q22 − Q32 .Gt .Q12 ;

B1A1 = I Q21 .Q11 − I Q31 .Q21 − Q21 .G.Q21 − Q31 .Gt .Q11 ;

B2A1 = I Q22 .Q11 − I Q32 .Q21 − Q22 .G.Q21 − Q32 .Gt .Q11 ;

n = L/2 − l /2 ; (∗ Pos i t i on o f the f i r s t operator ∗)

Gamma1 = UpperTr iangu lar i ze [

Join [ Join [

KroneckerProduct [A2A2 [ [ ; ; n , ; ; n ] ] , s11 ] [ [ ; ; 2 n − 1 , ; ;

2 n − 1 ] ] +

KroneckerProduct [A2B2 [ [ ; ; n , ; ; n ] ] , s12 ] [ [ ; ; 2 n − 1 , ; ;

2 n − 1 ] ] +

KroneckerProduct [B2A2 [ [ ; ; n , ; ; n ] ] , s21 ] [ [ ; ; 2 n − 1 , ; ;

2 n − 1 ] ] +

KroneckerProduct [B2B2 [ [ ; ; n , ; ; n ] ] , s22 ] [ [ ; ; 2 n − 1 , ; ;

2 n − 1 ] ] ,

KroneckerProduct [A2A1 [ [ ; ; n , ; ; n + l ] ] , s11 ] [ [ ; ; 2 n − 1 , ; ;

2 n + 2 l − 1 ] ] +

KroneckerProduct [A2B1 [ [ ; ; n , ; ; n + l ] ] , s12 ] [ [ ; ; 2 n − 1 , ; ;

2 n + 2 l − 1 ] ] +

KroneckerProduct [B2A1 [ [ ; ; n , ; ; n + l ] ] , s21 ] [ [ ; ; 2 n − 1 , ; ;

2 n + 2 l − 1 ] ] +

KroneckerProduct [B2B1 [ [ ; ; n , ; ; n + l ] ] , s22 ] [ [ ; ; 2 n − 1 , ; ;
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2 n + 2 l − 1 ] ] , 2 ] ,

Jo in [ ConstantArray [ 0 , {2 n + 2 l − 1 , 2 n − 1} ] ,

KroneckerProduct [A1A1 [ [ ; ; n + l , ; ; n + l ] ] , s11 ] [ [ ; ;

2 n + 2 l − 1 , ; ; 2 n + 2 l − 1 ] ] +

KroneckerProduct [A1B1 [ [ ; ; n + l , ; ; n + l ] ] , s12 ] [ [ ; ;

2 n + 2 l − 1 , ; ; 2 n + 2 l − 1 ] ] +

KroneckerProduct [B1A1 [ [ ; ; n + l , ; ; n + l ] ] , s21 ] [ [ ; ;

2 n + 2 l − 1 , ; ; 2 n + 2 l − 1 ] ] +

KroneckerProduct [B1B1 [ [ ; ; n + l , ; ; n + l ] ] , s22 ] [ [ ; ;

2 n + 2 l − 1 , ; ; 2 n + 2 l − 1 ] ] , 2 ] ] , 1 ] ;

Gamma2 = Transpose [Gamma1] ;

GGamma = Gamma1 − Gamma2;

AppendTo [ c o r r e l , {t , Sqrt [ Det [GGamma] ] } ] ;

(∗Here we compute the square o f the Det o f Gamma∗)
(∗ because i t i s much f a s t e r than the P f a f f i a n code ∗)

, {t , 0 , Tmax, 0 .5}

] ; ,

{L i s tP l o t [{
Table [{ Sort [ c o r r e l ] [ [ l , 1 ] ] , Re [ Sort [ c o r r e l ] [ [ l , 2 ] ] ] } ,
{ l , Length [ c o r r e l ] } ] ,
Table [{ Sort [ c o r r e l ] [ [ l , 1 ] ] , −Re [ Sort [ c o r r e l ] [ [ l , 2 ] ] ] } ,
{ l , Length [ c o r r e l ] } ]
}
, Joined −> True ] ,

L i s tP l o t [{ Table [{ Sort [ c o r r e l ] [ [ l , 1 ] ] ,

Im [ Sort [ c o r r e l ] [ [ l , 2 ] ] ] } , { l , Length [ c o r r e l ] } ] ,
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Table [{ Sort [ c o r r e l ] [ [ l , 1 ] ] , −Im [ Sort [ c o r r e l ] [ [ l , 2 ] ] ] } ,
{ l , Length [ c o r r e l ] } ] } , Joined −> True ] } ]

c o r r e l = Sort [ c o r r e l ] ;

(∗End o f the programme∗)

Notice that [Phi] as a variable is different from phi, and also [Phi]0 is another

variables with respect to phi0 (the same for all the variable psi-like).
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