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Introduction

Local Earthquakes Tomography (LET) is a non-linear inversion problem that allows
the joint determination of earthquakes parameters and velocity structure from arrival
times of waves generated by local sources.

The non-linearity of the equation that relates the arrival times to velocity and
earthquakes parameters arises from the dependence of the ray-paths on both the
medium velocity and earthquakes location. Since the early developments of seismic
tomography, about 40 years ago, several inversion methods have been developed to
solve this problem in a linearized way or by consecutive iterative linearized steps.
Of course, in the past, the linear approximation was required by the huge amount
of unknown parameters to be estimated if compared to the poor performance of the
available computers.

In this PhD dissertation, I describe my contribution to the development of a
trans- dimensional Monte Carlo algorithm focused on the LET problem. In the
framework of Monte Carlo sampling, we use the Reversible Jump Markov Chain
Monte Carlo method (Rj-McMc). It is a trans-dimensional Bayesian (probabilistic)
approach of parameters estimation, in which the number of unknowns, and thus the
model parameterization, is treated as one of the unknowns. I show that the use of
an efficient Monte Carlo sampling algorithm allows overcoming major limitations of
linearized tomography, opening a new perspective in seismic imaging.

In linearized tomography, the non-linear equation that relates the arrival times to
the model parameters is linearized around a starting reference model. The lineariza-
tion requires assuming that the sought model is closed enough to the reference start-
ing model. The tomographic images that we obtained are thus dependent on how
much the starting reference model is closed to the true. In regions where insufficient
a-priori information is available, the linearized approach may produce misleading
results. With a fully non-linear approach this problem is clearly overcome.
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Introduction

Another factor that causes a loss of information in linearized tomography is the
need to regularize the inversion problem in order to deal with the non-uniqueness
of the solution. Since both sources and receivers are usually un-evenly distributed
in space, the data information content is heterogeneous and the model is charac-
terized by both well and ill-constrained regions. With a model parameterization
fixed a-priori, the existence of ill-constraint parameters is the source of solution
non-uniqueness and requires some kind of global regularization. The consequence
is that a unique “optimum” solution is obtained at the expense of the resolution of
the well-constraint regions. If the parametrization is directly extracted from data,
the regularization is not required.

Finally, regularization introduces a bias in the estimation of uncertainties about
the model parameters. A great advantage of the Bayesian approach is that we
obtain a posterior probability density distribution instead of just one “best fit” or
“maximum likelihood point” model. For instance, if the marginal probability density
is available, we can evaluate how much variation or dispersion there is from the mean
value. This provides a powerful tool to derive absolute errors related to the estimated
model parameters.

In Chapter 1 I describe the new LET tomographic code developed by Nicola Piana
Agostinetti, Alberto Malinverno and me.

In Chapter 2 I highlight the performance of the new code by showing the results
of some synthetic tests. More, the results obtained with the new code are compared
with those obtained by using Simulps, a linearized tomographic code widely used in
Local Earthquake Tomography.

In Chapter 3 and Chapter 4 the new code is applied to real data gathered in the
Alto Tiberina region (Umbria-Marche, Italy) and around the Parkfield segment of
the San Andreas Fault (California, USA). The two datasets have been chosen be-
cause they have already been used to produce velocity models with the Simulps to-
mographic code, allowing a straightforward comparison with our results. Moreover,
in both the places there are boreholes that provide sonic log data to be compared
with the velocity models.
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1 A new code for Local
Earthquake tomography

1.1 Local Earthquake tomography

Local Earthquake tomography (LET, Kissling, 1988) is a primary “passive” method
of imaging the crustal structure. LET allows the joint determination of source
parameters and 3D velocity structure by inverting the arrival times of P-waves and
S-waves generated by local earthquakes and observed at the stations network.

Following Thurber (1993), in agreement with the ray-theory, the body-wave travel
time Tij from a source i to a station j can be computed by integrating the velocity
field (v) along the ray-path (γij):

Tij =

ˆ
γij

1

v(s)
ds (1.1)

The observed arrival times (tij) can be related to the travel times (Tij) by knowing
the earthquake origin time (τi):

tij = τi + Tij (1.2)

The unknown model parameters in the equations 1.1 and 1.2 are the velocity
field (v) and the earthquakes coordinates and origin times (τi). The observed data
are the arrival times tij. The LET problem is then highly non linear because of
the dependence of the ray-path γij on both the velocity field and the earthquake
locations. Given the velocity field, the stations coordinates and the earthquakes
coordinates, the ray-tracing algorithm allows solving numerically the integral in
equation 1.1 and to calculate ray-paths and travel times.
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1 A new code for Local Earthquake tomography

1.1.1 Toward a fully non-linear LET: state of art

Being the LET problem highly non-linear, Monte Carlo simulations are suitable to
overcome major drawbacks related to the linear approximation. The number of
model parameters to be estimated in a seismic tomography investigation is huge
and performing a Monte Carlo simulation may require a lot of time. Nevertheless,
there are fast algorithms, such as the Markov Chain sampling (e.g., Mosegard and
Tarantola 1995), which allow a smart and fast sampling of the parameter space.
More, the computation resources have been highly improved in the paste decades,
after the implementation of the linearized LET inversion codes.

Up to date, the Markov Chain Monte Carlo sampling method (MCMC) has been
successfully applied to seismic tomography by Bodin and Sambridge (2009), Bodin
et al. (2012) and by Debski (2010). Bodin and Sambridge focused on the 2D problem
of surface wave tomography, introducing in the more recent version of the code, the
possibility to invert also for the noise in the data. More, the sampling procedure is
trans-dimensional: an ensemble of Voronoi’s cells whose number and positions are
treated as unknown parameterizes the velocity structure. Debski (2010) represents
the first application of this sampling method to a simplified LET problem. It is a
simplified LET problem because the earthquake locations and origin times are not
considered as unknown parameters. Moreover, the parameterization is fixed and
mirrors that used in standard linearized tomography.

In the follow I describe the new algorithm, designed by Nicola Piana Agostinetti,
Alberto Malinverno and me. Differently from the Debsky’s code, our new code
solves the full LET problem and allows the appropriate model parameterization to
be directly extracted from data, instead of being a-priori fixed.

1.2 Principles of Rj-McMc LET

1.2.1 Model parameterization

An important drawback of the LET is the non-uniform earthquakes distribution that
causes a strong variability in the model sampling. Fine-scale resolution is potentially
high in regions with dense ray coverage but rather low in other regions. Therefore,
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1.2 Principles of Rj-McMc LET

Figure 1.1: Example of Voronoi’s 2D tessellation. p1, p2 and p3 are the nuclei of the
three cells highlighted by colors. The bisectors define the cells bound-
aries. Each cell encloses all the points that are closer to its nucleus and
has a constant velocity value.

an appropriate parameterization should account for the spatial variability in the
information provided by the data.

Many available LET codes use regular grids fixed in advance because of the com-
putational efficiency. Seismic velocity is then inverted in correspondence to each
of the grid nodes. The drawback of this method is that an appropriate choice of
the inter-nodal spacing is essential because it yields the compromise between model
resolution and model uncertainties. The wider is the grid spacing, the lower will
be the model resolution and smaller the model uncertainties. By reducing the grid-
spacing, the model resolution is potentially higher but the data uncertainties led
to greater uncertainties in the model parameters and the solution becomes quickly
non-unique. In this situation a kind of regularization is required to solve the non-
uniqueness of the solution. It is worthy to note that the regularization is global,
i.e. it affects uniformly all the parameters, with the consequence that the resolution
of well-constrained parameters will be partially lowered together with that of the
ill-constrained parameters. More, the estimate of model parameters uncertainties
is biased by the regularization. In both the strategies, i.e., by increasing the grid-
spacing or by applying regularization, the outcomes are a loss of data information
and a biased estimate of uncertainties of model parameters.

7



1 A new code for Local Earthquake tomography

In order to deal with this problem, some seismologists have used irregular meshes
adapted to the resolving power of data (see Sambridge and Rawlinson 2005 and
references therein). Zhang and Thurber (2005) proposed the use of Voronoi’ cells
for LET tomography but with a parameterization fixed in advance and not directly
extracted and determined by data.

Conversely, we follow the strategy by Bodin and Sambridge (2009a,b) to parame-
terize the 3D velocity structure by and ensemble of non-overlapping Voronoi’s cells
(Okabe et al., 1992) whose number and spatial locations are treated as unknown
parameters. Each Voronoi’s cell is defined by the position of its nucleus and it is
characterized by a constant value of P-wave velocity (Vp) and Vp/Vs ratio. Perpen-
dicular bisectors of each pair of neighboring nuclei form the cell boundaries (Figure
1.2.1). Each of the N cells is then defined by 5 unknown model parameters: the
three space coordinates and the Vp and Vp/Vs values. The algorithm described
by Sambridge et al. (1995) is used for the geometrical calculation of the Voronoi’s
tessellation.

Summing up the earthquake parameters (the three space coordinates and the ori-
gin times of M earthquakes), the total number of model parameters to be estimated
amount to 5N + 4M + 1.

More, the code allows treating some earthquake as shots or blasts, i.e. events
with known source parameters or with known source location but unknown origin
time. This can be suitable when arrival time data derived from “active” seismic
experiments, such as refraction seismology or borehole explosions, are available.

1.2.2 Forward solution

In our code we employ the pseudo-bending ray-tracing algorithm (Um and Thurber,
1987). The algorithm allows the computation of travel times and ray paths in a 3D
heterogeneous medium, by applying the high-frequency approximation of the ray
theory (Cerveny and Brown, 2003). The computation is performed in a Cartesian
coordinates system with units in km. The velocity model is defined by the inter-
section points of 3 sets of orthogonal planes positioned at constant values of x,y,z.
Then, the forward computation requires a rasterization of the Voronoi’s tessellation
on this regular grid. At each of the intersection points of the regular grid the Vp and
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1.2 Principles of Rj-McMc LET

Vp/Vs values of the corresponding Voronoi’s cell are associated. Then, the tri-linear
interpolation is used to find the velocity value along each segment of the ray path.

1.2.3 The Bayesian approach to inversion problems

The Bayesian approach has been successfully applied to geophysical investigations
(see Tarantola and Valette, 1982); Mosegard and Tarantol, 1995). In the Bayesian
(or probabilistic) approach all information are represented by probability density
functions. The solution of the LET problem is then the a posteriori probability dis-
tribution (or posterior density function PDF, Smith, 1991), which is the probability
density of the model parameters (m) given the observed data (dobs). The PDF,
function of the unknown model parameters, is taken as the complete solution of the
inversion problem. The PDF (p(m | dobs)) can be defined by the Bayes’ theorem
(Bayes, 1763). Written in therms of proportionality relationship:

p(m | dobs) ∝ p(dobs | m)p(m) (1.3)

The probability density function p(m) describes the a-priori information about
model parameters. This probabilistic representation of our a-prior knowledge about
model parameters, that is independent from the measured data, has the advantage
of include also the uncertainties. In the particular case in which the observed data
provide no information about the model parameters, the posterior coincides with the
prior density function. Otherwise, the PDF represents how our a-priori information
about model parameters is updated by the new measured data (see Figure 1.2).

The probability density function p(dobs | m) is the likelihood function that de-
scribes the probability of observing the measured data given a particular model. It
is notable that the probabilistic approach includes an appropriate treatment of the
uncertainties related to the model parameters, allowing an exhaustive error analy-
sis. Our “solution” is not just a single model, but an ensemble of models distributed
according to the PDF. Conversely, with the optimization approach used in standard
linearized tomography, the solution of the damped least square inversion problem is
a single best-fitting likelihood model.

Once the PDF is obtained, it is straightforward to derive properties and estimators
such as mean or median values of individual parameters and the associated errors.

9



1 A new code for Local Earthquake tomography

This is achieved by constructing 1D marginal probability functions, i.e., the density
function obtained by integrating out all but one parameter from the PDF. The
correlation between parameters can be assessed in a similar way by constructing
multidimensional marginal PDFs.

Figure 1.2: Simplified relationship between the prior p(m), the likelihood p(d | m)
and the posterior p(m | d) probability density functions. In this case the
maximum probability models in the prior and in the posterior differ. The
likelihood is the function that allows updating the prior to the posterior
(modified from Gallagher et al., 2009).
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1.2 Principles of Rj-McMc LET

1.2.4 The likelihood function

We use a likelihood based on a simple least squares misfit:

φ(m) = (d− g(m))TC−1
d (d− g(m)) ⇒ p(dobs | m) =

1

2πN |Cd|1/2
e

−φ(m)
2 (1.4)

where g(m) is the calculated data, d the observed data vector of dimension N and
Cd the data covariance matrix.

1.2.5 The Reversible Jump Markov chain Monte Carlo
sampling

The PDF cannot be expressed in an analytical form and then must be evaluate
at different positions in the model space. More, a global search is not possible in
the case of seismic tomography because of the huge amount of parameters to be
estimated. The Markov chain Monte Carlo (McMc) sampling method allows over-
coming these problems. The McMc is one of the more flexible and popular sampling
algorithms to generate samples of the PDF (see Sisson, 2005 for a review; Gallagher
et al. 2009). It is based on a short memory random walk to produce a sequence of
models from the model space. Along the random walk, the new generated model
is conditional to the previous one but independent of how the previous model was
arrived at. It uses a stochastic approach to efficiently and preferentially sample
regions of the model space characterized by a high value of the target PDF. This
method was first applied in the geophysical problems by Malinverno and Leaney,
(2000; 2005).

The generation of sample of the PDF occurs in this way (see Figure 1.3):

1. The Markov chain starts from a random model sampled from the prior distri-
bution and it is considered as the first current model (m).

2. A candidate model (m�) is drawn by perturbing the current model according
to a proposal probability distribution (q(m� | m)) that only depends on the
current model. It described the probability of having m

� when m is fixed.

11



1 A new code for Local Earthquake tomography

Figure 1.3: Simplified chart flow of the Markov Chain sampling

12



1.2 Principles of Rj-McMc LET

In other words, the proposal distribution states which parameter is perturbed
and in which way. It is worthy to note that it is arbitrary, that is, it doesn’t
affect the form of the target PDF distribution at which the algorithm will
converge. Nevertheless, it controls the time required by the Markov chain to
reach the convergence state.

3. The arrival times are determined in the current and candidate models using the
pseudo-bending ray tracing code, allowing the computation of the likelihood
function given by the equation 1.4.

4. An extension of the well-known Metropolis-Hasting algorithm (Metropolis et
al., 1953; Hastings, 1970; Green, 1995) is then applied in order to accept
or reject the candidate model. The Metropolis-Hasting algorithm has been
extended by Green (1995; 2003) to account for the transition between states
(i.e. models) with a different number of dimensions. In this way, the Reversible
Jump McMc sampling method (Rj-McMc) allows inferences of both model
parameters and model dimensionality. The probability to accept a candidate
model α(m� | m) depends on the ratio between the prior density functions, the
proposal density functions and the likelihood functions of the candidate and
current models (Gallagher et al., 2009):

α(m
� | m) = min

�
1,

p(m
�
)

p(m)
× p(dobs | m

�
)

p(dobs | m)
× q(m | m�

)

q(m� | m)
× |J|

�
(1.5)

The matrix J is the Jacobian of the transformation from m to m
� . In our case

it is equal to 1, as demonstrated by Bodin and Sambridge (2009b), and can
be ignored (see also Piana Agostinetti and Malinverno, 2010). Following the
sampling strategy of Mosegaard and Tarantola (1995), the proposal distribu-
tion equals the prior distribution and the acceptance probability reduces to
the ratio of the likelihood functions:

α(m
� | m) = min

�
1,

p(dobs | m
�
)

p(dobs | m)

�
(1.6)

13



1 A new code for Local Earthquake tomography

Then, after proposing a candidate model, it is only required to compute the
travel times in the candidate model and calculate the ratio of the likelihood
functions. The candidate model is accepted if α(m� | m) ≥ r, with r a random
number generated from a uniform distribution between 0 and 1. According
to this criterion, a candidate model will be always accepted if its likelihood
is higher than that of the current model and it will be accepted with the
probability α(m

� | m) if its likelihood is lower.

It has been demonstrated that models generated along the Markov chain ac-
cording to the probability α(m

� | m) will converge to the target transdi-
mensional posterior distribution (see Green, 2003; Tierney, 1994). As noted
by several authors (e.g., Bodin and Sambridge, 2009; Malinverno, 2000), the
trans-dimensional acceptance probability reveals the self-regularizing property
of the Bayesian approach, which always favors the simpler model when two
models have roughly the same likelihood function.

5. If the candidate model is accepted, it becomes the current one and the chain
moves to the next step (→ 6. → 2.). If the candidate model is rejected,
the current model is retained and another candidate model is drawn from it
(→ 2.).

6. Models generated and accepted in the first part of the chain (named burn-in
phase) are then not collected until the chain reaches a stationary state. Then,
all the accepted and collected models can be considered as individual samples
of the target PDF. The assessment of stationarity is subject of ongoing research
and a general, well-accepted, rule for the Rj-McMc sampling is still lacking
(e.g., Sisson, 2005). Bodin and Sambridge, (2009b) consider the stationary
state to be achieved when the velocity value at a given point or the model
dimension remain stationary. We prefer to look also at the misfit evolution.
We start to collect samples of the PDF when the misfit becomes stationary.
It is notable that at this stage, the number of models accepted because of a
decrease in the data misfit is similar to the number of models accepted because
of an increase in the data misfit.

14



1.2 Principles of Rj-McMc LET

Simulated annealing burn-in In order to shortening the burn-in phase and start
to collect samples of the PDF, we use a method derived from the simulated annealing
optimization scheme (Vinnik et al., 2004). The acceptance probability α is greater
in the first part of the chain and decays exponentially to the value of 1 used in
the standard Metropolis rule. The user must set the starting “temperature” of the
simulated annealing (To) and the decay rate (KS) (Figure 1.4):

α(m
� | m) ∝





e−

1
2 (φ(m

�
)−φ(m)) if im > K post burn− in phase

e−
1
2

(φ(m
�
)−φ(m))

fact if im ≤ K burn− in phase
(1.7)

fact = 1 + Toexp

�
−im
KS

�
(1.8)

where im is the number of already generated models, K is the total number of
generated models for which the simulated annealing is applied.

Figure 1.4: Example of decaying temperature computed with To = 1000 and Ks =
1000.
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1 A new code for Local Earthquake tomography

Multiple chains and starting models To sample a higher region of the model
space, we don’t use a single Markov chains but many chains (usually 20) starting
in different points of the model space. Each chain starts with a different number of
Voronoi’s cells (extracted from a uniform prior distribution) with different velocity
and different values of earthquakes coordinates. When each chain reaches the sta-
tionary state, the collected samples are merged together. During the collection of
models, each chain is thinned, that is, only every 10th or 100th models are retained.

1.2.6 A-priori information on model parameters

In the Bayesian approach, our a-priori knowledge about model parameters must be
expressed as probability distributions. Here, I describe the prior functions related
to each of the unknown model parameters used in our Rj-McMc LET code.

• Number n of Voronoi’s partition: we use a uniform continuous prior distribu-
tion over the interval I = {1 ≤ n ≤ N}, with N chosen by the user.

• Position of the nuclei of the Voronoi’s cells: we use a uniform prior distribution
for each of the nucleus coordinates cnuci (i = 1, 2, 3) over the interval I =

{cnuci ∈ R | 0 ≤ cnuci ≤ 1}. The coordinate system is then a-dimensional.

• Elastic parameters: a prior Gaussian distribution is defined for both Vp and
Vp/Vs values at each node of the regular grid used for the forward computation.
In this way, the prior distribution on the Vp or Vp/Vs of a Voronoi’s cell
corresponds to the prior distribution of the nearest node of the regular grid.
With the normal distribution, the user must assign mean values (v1, v2) and
standard deviations (σ1, σ2) of the distributions at each of the nodes of the
regular grid.

• Events parameters: a prior 3D Gaussian distribution is defined for each event.
Similar to the elastic parameters, the user must define mean and standard
deviation values for each coordinate of each earthquake. A uniform prior
distribution is instead associated to event origin time. The boundaries of the
distribution must be set by the user.

16



1.2 Principles of Rj-McMc LET

1.2.7 Analysis of the PDF

Once the convergence has been achieved, the collected models represent an ensemble
of models distributed according to the PDF. Due to the huge amount of estimated
parameters, the analysis of the whole PDF is extremely difficult. We then analyze
the 1D marginal PDF, that is, the probability distribution obtained by integrating
out all but one parameter from the PDF. The numerical evaluation of the marginal
PDF corresponds to a frequency distribution. For example, the mean posterior value
of the parameter mi can be estimated as:

mi =
1

Ns

Ns�

j

mj
i (1.9)

where Ns is the number of collected samples.

After checking that the marginal PDF is unimodal, a suitable representation of
the tomographic results can be achieved by computing mean and standard deviation
values of the marginal PDF for each of the parameters. Since the models don’t have
the same dimension, each Voronoi’s tessellation is rasterized on the underground
regular grid. Then, the mean Vp and Vp/Vs values, together with the associated
standard deviations, can be computed at each point of the regular grid and imaged
using standard tomographic horizontal or vertical cross-sections. The basic differ-
ence is that we show a velocity model that is averaged over a huge amount of models
(generally some millions) and provide also tomograms of unbiased uncertainties as-
sociated to the velocity structure. Conversely, tomograms obtained from traditional
linearized tomography show one single model and the uncertainties are biased by
the regularization required to solve the inversion problem. The same can be said for
the earthquake locations.

17



1 A new code for Local Earthquake tomography

1.3 Looking for a suitable recipe for Rj-McMc LET

Along the Markov chain, the new candidate model is drawn from the current model
according to the proposal distribution (Figure 1.5). It is worthy to note that the
proposal distribution is arbitrary, that is, it doesn’t affect the form of the target
PDF distribution at which the algorithm will converge. Nevertheless, it controls the
time required by the Markov chain to reach the convergence state.

As noted by many authors (e.g., Malinverno, 2002; Mosegard and Tarantola,
1995; Piana Agostinetti and Malinverno, 2010), numerical experiments are needed
to choose a recipe suitable for a particular inverse problem. The search of an ap-
propriate recipe to apply to the LET inversion problem has been carried out with
a trial and error strategy that is, by looking at the different convergence rate and
acceptance ratio (the ratio between the number of accepted models and the number
of proposed models) when different recipes are applied.

We call “move” a specific type of transition between model m and model m� along
the Markov chain. A certain probability to occur is assigned to each move. The
probability of each move must be set by the user, together with the parameters
and the scale factors that define how much a certain parameter is perturbed in the
transition from the current to the candidate model. In the case that the current
and the candidate models have the same number of dimensions, the proposal is a
multi-dimension Gaussian distribution centered on the current model and with a
diagonal covariance matrix C = diag(σ2

i ). The user must define the variances σ2
i of

the proposal distribution for each model parameter (typically a small fraction of the
variance of the prior distribution).

To generate a candidate model m� from the current model m, the ith component
of m is perturbed by drawing a random variable u from a normal distribution N(0, 1)

and setting m
�
= m + uσiei, where ei is the unit vector in the ith direction and

σi is the variance of the proposal for the ith parameter. The ith parameter can
be the Vp or Vp/Vs value of a Voronoi’s cell, a coordinate of an earthquake, or
a coordinate of a nucleus of one of the Voronoi’s cells. If many parameters are
perturbed simultaneously the proposal takes the form:

q(m
� | m) ∝ exp

�
−1

2
(m−m

�
)TC−1(m−m

�
)

�
(1.10)
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1.3 Looking for a suitable recipe for Rj-McMc LET

Figure 1.5: Implementation of the proposal density function. The initial random
model is drawn from the prior distribution (vertical arrow) and its like-
lihood value can be computed (Lm1). The likelihood function is marked
by the thin line. The candidate model is drawn from the proposal dis-
tribution q(mi | mi−1), that is a Gaussian distribution centered on mi−1.
The wideness of the proposal distribution is defined by the user and de-
termines the amplitude of the move from the current model (modified
from Gallagher et al., 2009).
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1 A new code for Local Earthquake tomography

When the transition between m and m
� involves the creation of a new Voronoi’s

cell, the values of the two elastic parameters Vp and Vp/Vs are associated to the
new cell by perturbing the elastic parameters that exist in the same position in the
current model. Otherwise, the code allows drawing the new elastic parameters of
the newly generated cell directly from the prior distribution.

The criteria according to which I chose the appropriate recipe are the following:

• The amount of perturbation of each parameter shouldn’t be too strong or too
weak. If a perturbation is too strong, the probability of the candidate model to
be accepted will be very low because the perturbation causes a strong variation
in the likelihood of the candidate model with respect to the current model. A
strong move may then become extremely inefficient. Conversely, if the move is
too week, the acceptance rate will be high but the sampling of the parameters
will be very slow and then computationally expensive. Note that in both
the extreme cases the convergence will be strongly inhibited (Hopcroft et al.,
2007). The user understand that a move is too strong or too weak looking at
the acceptance ratio (the ratio between the number of accepted models and the
number of proposed models for the given move). Experience has shown that
the acceptance ratio should be in the range 0.25-0.5 (Mosegaard, 2006) or even
less in the trans-dimensional sampling (Rosenthal, 2009, Piana Agostinetti and
Malinverno, 2010).

• The probability of the moves should be as much as possible balanced in order
that all parameters reach the convergence in a similar time. The probabil-
ity associated to each move cannot be too low because the sampling of the
parameters involved in the move will be too slow. In the case of the LET
inversion problem, if the probability to perturb parameters related to the ve-
locity structure is much higher that the probability to perturb the earthquakes
hypocenters, the Rj-McMc sampling will reach a state in which the velocity
structure is well sampled while the events locations are very poorly sampled.
At this state, the achievement of a stationary state in the misfit evolution will
be very slow, because the probability to perturb the earthquakes is still very
low. More, in the case of LET problems, a well-known trade-off exists be-
tween velocity, earthquake locations and origin times. This kind of trade-off,
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1.3 Looking for a suitable recipe for Rj-McMc LET

together with an unbalanced sampling of velocity and earthquakes parameters
may guide and trap the sampling into a local minimum.

• It is preferable that a move don’t involve perturbation of parameters character-
ized by a strong difference in affecting the likelihood function. If, for instance, I
perturb both an earthquake hypocenter and the velocity of a Voronoi’s cell, the
perturbation of the earthquake generally has a greater effect on the predicted
travel times than the perturbation of one cell. Then, the stronger perturbation
hides in some way the weaker one. On the contrary, some parameters may be
grouped together and updated in a block, especially when it is easy to de-
sign a proper multi-parameters proposal distribution (for example perturbing
together the three spatial coordinates of the nucleus of a Voronoi’s cell).

On the base of these criteria, given a current model m, the generation of a new
model m� occurs by one of the following moves:

1. ELASTIC PARAMETER move: perturb the Vp and Vp/Vs values of one
Voronoi’s cell every 100 cells existing in the current model. The cells to be
perturbed are randomly selected.

2. NUCLEUS move: perturb the three space coordinates of one Voronoi’s cell.
In this case the move involves the perturbation of three parameters.

3. BIRTH move: randomly select free points in the space and create up to 5 new
Voronoi’s cells. The number of newly created cells is randomly selected from
a uniform distribution in between 1-5. Vp and Vp/Vs values are associated to
the new cells by perturbing the elastic parameters that are present in the same
locations of the current model. The position of the newly created nucleus is
randomly selected using a uniform continuous distribution over the region of
the model. Once a nucleus with a new position is proposed for a candidate
model, the code checks if the new nucleus is too near to the nuclei that already
exist in the current model. The minimum distance between two nuclei is locally
defined by the inter-nodal spacing of the underground regular grid.

4. DEATH move: randomly select up to 5 Voronoi’s cells and delete them.
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1 A new code for Local Earthquake tomography

5. EVENT epicenter move: perturb the latitude and longitude of one earthquake.

6. EVENT depth move: perturb the depth of one earthquake.

Moves 3. and 4. involve a change in model dimension. The best origin times of the
earthquakes are estimated independently for each one of the candidate models. The
reason will be discussed at the end of this chapter.

1.3.1 The minimum origin-time method

I performed many synthetic tests in order to tune the code and make it suitable for
the LET inversion problem. The synthetic test described here represents an extreme
case but it is also substantial for understanding how much one must be careful
in designing the optimal recipe of sampling for the particular inversion problem.
Further synthetic tests are shown in the next chapter.

A well-known trade-off exists in the LET inversion problem between velocity and
event parameters, especially event depth and origin time. As previously noted, if
the sampling of the events parameters is not well balanced against the sampling of
elastic parameters, the sampling may be trapped in a local minimum of the complex-
shaped misfit function. In other words, what happens is that the improvement in
data-fit is achieved preferentially by changing the velocity values instead of the event
locations.

To test this hypothesis, I properly designed a simple synthetic test to evaluate the
effect of the trade-off between the event parameters and the elastic parameters. I
created a synthetic model (Figure 1.6a), with 6 events and a simple 1D Vp structure.
After adding some noise to the predicted synthetic data, I used them as input-data
for the rj-McMc LET tomography.

The prior information is summarized in Figure 1.6b. At each point of the back-
ground grid, the prior distribution is a normal distribution with the mean value cor-
responding to the Vp at the considered depth and with standard deviation equals to
0.5 km/s. Note that, in this case, the mean values of the prior distribution of the Vp
parameters are the same Vp values given in the input structure. This is not the case
for the hypocentral depths that are 2.5 km deeper than in the synthetic structure.
The standard deviation of the prior for the earthquakes depth amounts to 2 km.

22



1.3 Looking for a suitable recipe for Rj-McMc LET

The prior normal distribution for both the elastic parameters and the earthquake
parameters are sampled in the range ±4σ.

We run 10 Markov chains, starting from random models drawn from the prior
distribution. The recipe of sampling is that described in the previous section, except
for the origin time that it is sampled together with the earthquake depth in MOVE
n. 6. The convergence has been achieved after about 300000 models (see Figure
1.7). The following 100000 models are considered as samples of the PDF. Figure 1.7c
shows the mean Vp value of the 1D marginal PDF at each node of the background
grid. The recovered structure is far from similar to the input synthetic velocity
structure. More, the earthquake locations are very similar to the mean values of the
prior, testifying that the misfit decrease shown in Figure 1.7 is accomplished by an
almost pure adjustment of the velocity parameters.

To overcome this problem, following Billings et al. (1994), we separate the sam-
pling of the event spatial coordinates from the sampling of the origin time and
compute the optimum origin time of all the events for each candidate model. In
other words, independently from the type of transition between the current and
candidate model (i.e., the type of MOVE), the origin time of all the events are per-
turbed in order to obtain the set of origin times that minimize the misfit function.
All the other settings of the Rj-McMc are kept identical to the previous test.

In this way the correct estimate of the event depth and velocity structure can be
easily achieved (Figure 1.7d). This happens because the independent estimate of the
origin time allows the sampling to jump outside from the local minima of the misfit
function. In the case that the misfit reduction has been achieved by a variation in
the velocity, as in our case, if we propose a candidate model by keeping fixed the
origin time and perturbing the event depth, the probability of the candidate model
to be accepted will be very low even if the candidate event depth approaches its real
value. Conversely, if we perturb the event depth and at the same time allow the
origin time to change, the probability of the candidate model to be accepted will be
higher, as such as the probability to jump outside from the misfit local minimum
(see Figure 1.8).

In Figures 1.9 and 1.10, I show posterior mean and standard deviation values for
two earthquakes depth and two nodes of the Vp model. The posterior values are
obtained from the first 200000 accepted models, i.e. during the burn-in phase of the
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1 A new code for Local Earthquake tomography

parameter sampling. Therefore, these models shouldn’t be considered as individual
samples of the PDF but their analysis is useful to understand what happens during
the sampling of the parameter space without or with the application of the method
by Billings et al. (1994). In the two cases, the sampling starts in the same region
of the model space (the first generated models are identical). Then, the misfit
reduction in the first case is achieved by a fast increase in Vp values, instead of
a deepening of the earthquake depth. Once this situation is established, there is
no way for the sampling to escape the local minimum of the misfit function. It is
worthy to note that the standard deviations related to the earthquakes depth are
low, especially for events n. 2, highlighting the existence of a narrow local minimum.
In the second case, the continuous change of the origin time allows both the velocity
and earthquakes to be correctly recovered.
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1.3 Looking for a suitable recipe for Rj-McMc LET

Figure 1.6: a) Synthetic Vp model shown on a vertical 2D cross-section. b) Mean val-
ues of the prior distributions for both Vp and earthquake locations. Black
crosses represent the nodes of the background regular grid at which prior
and posterior distributions for the elastic parameters are calculated. c-d)
mean values of 1D marginal PDFs of both Vp and earthquake locations
before (c) and after (d) the implementation of the optimum origin time
method. Full-color areas correspond to model regions where the poste-
rior standard deviation is less than half of the prior standard deviation.
Green dots mark the location of the 6 earthquakes. Red symbols mark
parameters described in the text (red crosses mark Vp at two points of
the model and red circles two earthquakes).
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1 A new code for Local Earthquake tomography

Figure 1.7: Misfit evolution along 10 Markov chains. Note that convergence has
been achieved after about 300000 models (30000 mods/chain).

Figure 1.8: Misfit evolution along 10 Markov chains before (red) and after (blue) the
application of the optimum origin time method. Note the convergence
rates and misfit levels achieved in the two cases.
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1.3 Looking for a suitable recipe for Rj-McMc LET

Figure 1.9: Evolution of the posterior mean (upper panel) and standard deviation
(lower panel) of hypocentral depth (see encircled events in Figure 1.6).
Blue and red colors correspond respectively to the results obtained with
and without the application of the minimum origin time method. The
depth shift indicates the shift of the earthquake depth with respect to
the mean prior value. Note that the exact depth of the input model is
recovered if the shift value amounts to 2.5. See text for more explanation.
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1 A new code for Local Earthquake tomography

Figure 1.10: Evolution of the posterior mean (upper panel) and standard deviation
(lower panel) of Vp for the two nodes marked by a red cross in Figure
1.6. Blue and red colors correspond respectively to the results obtained
with and without the application of the minimum origin time method.
The dashed lines indicate the corresponding values in the input velocity
model. See text for more explanation.
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2 Inversion of synthetic data

In this chapter I show the performance of the newly developed code and make a com-
parison with the Simulps code (Thurber, 1993; Eberhart-Phillips, 1993; Eberhart-
Phillips and Reyners,1997;1999), which is widely used in standard linearized tomog-
raphy.

2.0.2 Synthetic test setup

Dataset and input velocity structure The dataset consists of a subset of the
P-wave and S-wave arrival times data gathered during an experiment in 2000-2001
in the Alto Tiberina region (Chiaraluce et al., 2007; Moretti et al., 2009). I selected
228 earthquakes recorded at 58 seismic stations (Figure 2.1), corresponding to 3405
P-phases and 3265 S-phases. I used this small dataset because it ensured the speed-
iness of performing the synthetic tests and allows testing many different recipes of
sampling of the parameter space.

The input velocity structure used to compute synthetic data is shown in Figures
2.2 and 2.3. The input structure is characterized by a 3D heterogeneous field for
both the Vp and the Vp/Vs. It has been designed in order to test the capability
of our code and the available data to recover high velocity bodies and a strong
separation between shallow high Vp/Vs and deep low Vp/Vs regions retrieved by
Moretti et al. (2009) by inverting the real data. I added to the background 1D Vp
model a shallow basin-shaped anomaly with a velocity of about 20% lower than the
average background model and two high Vp anomalies have velocity of 10% greater
than the local average background model. The Vp/Vs model is characterized by a
steep transition from −5% to +5% of the background Vp/Vs value (1.84).

The bseudo-bending ray-tracing algorithm by Um and Thurber (1987) is used to
compute ray paths and travel times of both the P-waves and S-waves across the
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2 Inversion of synthetic data

input models. A Gaussian noise is added to the predicted data, based on the SAC
weighs (0-4) associated to the observed data (Moretti et al., 2009). These weights
correspond to standard deviations of 0.025s (0), 0.05s (1), 0.1s (2) and 0.3s (3).

Figure 2.1: Map relief and distribution of stations (red triangles) and earthquakes
(green points) used in the synthetic tests.
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Figure 2.2: Synthetic Vp and Vp/Vs structures shown on horizontal layers at some
selected depth.
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2 Inversion of synthetic data

Figure 2.3: Synthetic Vp and Vp/Vs structures plotted on a vertical cross-section
(see Figures 2.1 and 2.2 for the location). Black circles and red triangles
mark respectively earthquakes and stations located in between 2 km
from the section.

2.1 Rj-McMc LET

Prior information Two 1D Gaussian distributions have been associated to each
node of the background grid (see Figure 2.4). Mean values of the Vp prior distribu-
tions are defined in order to create a 1D model. The standard deviation is equal to
0.5 km/s for each node of the grid. The prior distribution for the Vp/Vs parameter
is also of Gaussian type, with mean value equal to 1.84 and standard deviation equal
to 0.1.

The prior location of the earthquakes have been defined in this way: the three
coordinates of each event and the origin times used to calculate the synthetic arrival
times have been randomly perturbed, using Gaussian distributions with zero mean
and standard deviation equal to 1.5-2.5 km and 0.25 s. These newly perturbed
event parameters have been considered as mean values in the prior Gaussian distri-
bution. The prior standard deviations are equal to 1.5 km for latitude and longitude
parameters, 2.5 km for depth parameters and 0.25 s for origin time parameters.

Finally, the prior distribution for the number of Voronoi’s cells is a uniform dis-
tribution in between 1 and 1000. As previously described, the prior distributions
related to the spatial position of the nuclei are uniform distributions in between
0-1, because we use normalized coordinates. The real spatial extension of the LET
problem, defined by the size of the background regular grid, is 90 km x 90 km x 16
km.
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2.1 Rj-McMc LET

Figure 2.4: Mean values of the prior distributions for both elastic and event param-
eters plotted on the vertical cross-section. Black points and red triangles
mark respectively the earthquakes and the stations located in between 2
km from the section. Black crosses indicate the nodes of the background
regular grid. A Gaussian distribution with mean equals to the corre-
sponding Vp and standard deviation equals to 0.5 km/s is associated to
each node of the grid.

Rj-McMc recipe of sampling I used 20 Markov chains, each one starting from
a different model drawn from the prior distribution. During the sampling of the
model space, the candidate models are designed according to the moves and the
proposal distributions described in the previous chapter. Several different recipes
of sampling of the parameter space have been tested. The recipe that allowed a
faster achievement of the convergence and a balanced sampling between elastic and
earthquakes parameters is the following one:

• MOVE 1 (probability 0.25): perturbation of both the Vp and the Vp/Vs of
1 Voronoi’s cell every 100 cells existing in the current model. The proposal
distributions are of Gaussian type, centered on the Vp and Vp/Vs values of the
current model and of standard deviation that amounts to 25% of the standard
deviation of the priors.

• MOVE 2 (probability 0.20): perturbation of the spatial location of one ran-
domly selected nucleus. Each one of the nucleus coordinates is drawn from
a uniform proposal distribution in the interval xi − 0.005 < xi < xi + 0.005,
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2 Inversion of synthetic data

where xi is the correspondent coordinate value in the current model. In di-
mensional coordinates, this means that each coordinates is moved from the
current position up to about 450 m.

• MOVE 3 (probability 0.075): birth of up to 5 nuclei whose positions are ran-
domly choose in the space. The values of Vp and Vp/Vs are extracted from
the background regular grid and then perturbed in the same way described
for MOVE 1.

• MOVE 4 (probability 0.075): death of up to 5 nuclei.

• MOVE 5 (probability 0.20): perturbation of the epicentral coordinates of one
earthquakes according to a proposal distribution of Gaussian type, centered on
the correspondent values in the current model and with standard deviations
equal to 10% of the standard deviation of the priors.

• MOVE 6 (probability 0.20): perturbation of the depth of one earthquake with
a proposal similar to that described for MOVE 5.

The origin times of the earthquakes are estimated for each candidate model in order
to minimize the misfit between calculated and observed travel times.

2.1.1 Misfit evolution and convergence assessment

The simulated annealing scheme is applied to increase the acceptance rate during
the first part (about 100000 models/chain) of the sampling (see Figure 2.5). Conver-
gence has been achieved after about 200000 models/chain, as testified by both the
misfit evolution and the difference in the acceptance ratios between models accepted
by a decrease of the misfit and models accepted by an increase of the misfit. After
the convergence, the overall acceptance ratio is equal to 0.21 and the acceptance
ratio related to a misfit increase is equal to 0.09, i.e., almost the half of the total
acceptance ratio. Every 20th models of the 250000 models/chain accepted during
the post burn-in phase have been collected to produce the PDF. The thinning of
the chain is required in order to reduce the dependence between the collected mod-
els. The misfit level reached by the chains during the post burn-in phase is in the
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range 5200-6200. The estimated parameters are 912 event parameters (4 parameters
for each of the 228 events) and 5 parameters (x, y, z, Vp, Vp/Vs) for a number of
Voronoi’s cells in the range 200-300, depending on both the chain and the individual
model. Since the total number of estimated parameters is in the range 1100-1600
and the number of data is 6670, this misfit level corresponds to a normalized χ2

misfit measure in the range 0.93-1.22.

Figure 2.5: Misfit function evolution during the sampling of the parameters space.
Each series of points represents the misfit related to the models accepted
along one of the 20 Markov chain. The inset highlights the effects of the
simulated annealing scheme, with a higher oscillating trend in the misfit
due to the higher probability to accept candidate models characterized
by a likelihood function value lower than that of the current model. The
vertical red line divides models generated during the BIRN-IN phase,
that are not considered samples of the PDF, from models generated
when the misfit has reached a stationary state, that are considered as
distributed according to the PDF.
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2.1.2 Analyses of marginal PDF and errors estimate accuracy

Once the PDF has been obtained, we can estimate the values of the target pa-
rameters by computing the 1D marginal PDFs, i.e. by computing the frequency
distributions of the parameters and derive some estimators, such as posterior mean
and standard deviation values. Figures 2.7 and 2.6 show the mean values of the 1D
marginal PDFs plotted on the same vertical and horizontal sections of Figures 2.3
and 2.2. The overall velocity structure is well recovered for both the Vp and Vp/Vs
and also the earthquake locations are very close to those in the input model.

Figure 2.6: Mean posterior values (upper panels) and standard deviations (lower
panels) of Vp (left panels), Vp/Vs (right panels) and earthquake
hypocentral coordinates. The red and green crosses mark the location
of the two nodes whose frequency distributions are image in Figure 2.8.
In the upper panels the white regions correspond to not-resolved region
(posterior standard deviation higher than prior standard deviation), the
shaded area correspond to regions where the posterior standard deviation
is less than the prior standard deviation and full color region correspond
to well-resolved regions where the prior standard deviation amounts to
less than half of the prior standard deviation.
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Figure 2.7: Mean posterior values of Vp (left panels) and Vp/Vs (right panels) at
selected depth. The white regions correspond to not-resolved regions
(posterior standard deviation higher than prior standard deviation), the
shaded areas correspond to regions where the posterior standard devi-
ation is less than the prior standard deviation and full color regions
correspond to well-resolved regions, where the prior standard deviation
amounts to less than half of the prior standard deviation.
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a)

b)

Figure 2.8: 1D marginal PDFs (red curves) of the Vp (to the left) and Vp/Vs (to
the right) at two different nodes of the background regular grid. The
position of the two nodes is highlighted by two crosses in Figure 2.7.
The black Gaussian curves represent the prior density functions. The
coordinate x represents the difference between posterior and prior values.
Red vertical line mark the mean posterior values whereas black vertical
lines the values in the input synthetic model (i.e. the target values).
a) node 1: V p = 7.06km/s, σ = 0.14km/s (input value = 6.9km/s),
Vp/Vs = 1.85, σ = 0.01 (input value = 1.84); b) node 2: V p = 7.1km/s,
σ = 0.28km/s (input value = 6.9km/s), Vp/Vs = 1.79, σ = 0.05 (input
value = 1.74).
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Figure 2.9: 1D marginal PDFs (red curves) on the 4 event parameters related to one
earthquake. The black Gaussian lines represent the prior density func-
tions. The coordinate x represents the difference between posterior and
prior values. Red vertical line mark the mean posterior values whereas
black vertical lines the values in the input synthetic model.

Figure 2.8 shows the frequency distributions of the Vp and Vp/Vs at two points
of the background regular grid, together with the prior distributions.

The parameters Vp and Vp/Vs shown in the Figure 2.8a have unimodal frequency
distributions. The distributions are narrow and the mean posterior values are near
the maximum probability values. The mean posterior Vp and Vp/Vs are very close to
that in the input model. It is worthy to note that the estimate of the Vp is good even
if the value corresponds to low a very low probability region in the prior distribution
(black curve centered on x = 0). The frequency distributions are sometimes multi-
modals and the computation of the mean and standard deviations values may be
meaningless. Nevertheless, as in the case of the parameters shown in the Figure
2.8b, the mean posterior value represents a more reliable estimate than the higher
probability value. The double pick has the effect to increase the value of the standard
deviation. In this case, for all the four parameters, the input values are proper
recovered in the range ±1σ where σ is the posterior standard deviation.

It is worthy to note that the posterior standard deviation can approach or exceed
the prior standard deviation in two cases. The first one happens when data provide
no additional information of the parameters. The second one may happen when the

39



2 Inversion of synthetic data

Figure 2.10: Difference between the mean posterior value of each event parameter
and the corresponding value in the input synthetic model.

posterior distribution is not unimodal. In this second case it would be suitable to
investigate the whole posterior distribution and not just the mean and standard de-
viation values. Nevertheless, because of the high number of parameters to estimate
in the LET inversion problem, the visual inspection of every posterior distribution is
impossible. Then, we considered as “resolved” those parameters that are character-
ized by a substantial reduction in the standard deviation of the posterior distribution
with respect to the prior one.

Figure 2.9 shows the frequency distributions for the 4 parameters of one earth-
quake. In this case the 1D marginal PDFs are very narrow, clearly unimodal and
the posterior mean values are very similar to that used in the input synthetic model.
Figure 2.10 shows the difference between the mean posterior value of each earthquake
parameter and the corresponding value in the input model.
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2.2 Simulps LET

The same synthetic test described in the previous section has been performed with
the SIMULPS13 code (Thurber, 1993; Eberhart-Phillips, 1993; Eberhart-Phillips
and Reyners,1997;1999). Since the synthetic data and the ray-tracing algorithm (Um
and Thurber, 1987) are the same, every difference in the results must be attributed to
the different approach to both parameters estimation and model parameterization.

2.2.1 Standard linearized approach to LET

Given starting earthquake locations and a starting model of velocity field, the ray
tracing allows computing theoretical arrival times. Then, the differences between the
observed arrival times and the arrival times calculated in the initial model (named
residuals, rij) are used as observed data in the inversion procedure. The residuals
can then be related to perturbations of the earthquake coordinates (∆xi), the origin
time (∆τi) and the velocity structure (∆m). By assuming that the travel time
anomaly is stationary for a small perturbation of the ray-path:
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With an iterative scheme for solution, the linearized inversion code improves the
estimates of the velocity structure and model parameters by perturbing them in
order to minimize the weighted root-mean-square misfit. This goal is achieved by
applying iteratively the damped least square method, with the appropriate damping
parameter found using a trade-off analyses (Menke, 1986).

2.2.2 Model parameterization and starting models

The resolution of linearized tomography strongly depends on the particular choices
about model parameterization. The travel-times data are inverted for the Vp and
Vp/Vs values at the nodes of a 3D regular grid. The grid is regular but not constant
in spacing, with a finer spacing in the regions with a better ray-coverage and coarser
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Figure 2.11: Three examples of model parameterization. The grid geometry is the
same on the horizontal layers (right panel) but differ in the vertical
direction (left panels). Green model (M1): inter-nodal vertical spacing
of 3 km. Black model (M2): vertical spacing of 2 km down to 4 km
and 3-4 km for the deeper layers. Red model (M3): vertical spacing of
2 km down to 6 km and 3 km for the deeper layer.

elsewhere. Each layer of nodes shares the same grid spacing but the distance between
different layers can be different. Usually the vertical spacing increases at increasing
depth, because at depth the resolution is potentially lower. More, data are inverted
only for those nodes that are characterized by a derivative weight sum greater that
a certain thresholds. The DWS represents an estimate of the ray density around
each of the grid nodes (Thurber, 1993). Velocity values are assigned to nodes of a
3-D grid and the velocity is continuously defined within the volume by using a linear
interpolation with the surrounding eight neighboring nodes.

As previously seen, the wider is the grid spacing, the lower will be the model
resolution and smaller the model uncertainties. By reducing the spacing, the model
resolution is potentially higher but the solution becomes quickly non-unique and
some regularization is required to get a unique solution. The regularization method
employed in the simulps13 code is the constraint of minimizing the L2-norm of the
model parameters, with the appropriate damping value selected according to a trade-
off between data and solution variance (Menke, 1989; Eberhart- Phillips, 1986). I
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choose the more suitable parameterization after some trial inversions, looking at the
resulting model, the final data misfit and the resolution matrix. To find the best
damping parameter, I run some single-iteration inversions varying the damping until
the correct balance of misfit reduction and model complexity was found.

Three different trial parameterizations are shown in Figure 2.11. The grids of
nodes are identical in the horizontal planes but they differ for the vertical node
spacing. As I shall show afterwards, the three parameterizations allow obtaining
roughly the same data misfit but the reliability of the resulting velocity models is
different.

For each model, all inversion parameters are identical, except for the appropriate
damping value, selected according to the different trade-off curves.

Starting models The starting models for Vp and Vp/Vs and the starting earth-
quake parameters are equal to the mean values of the prior distributions used in the
Rj-McMc LET synthetic test (see Figure 2.4).

2.2.3 Data misfit and resolution analysis

For each of the three different parameterizations, the best-fit model is obtained after
5 iterations. In the first iteration the data have been inverted to adjust the earth-
quake locations. During the subsequent 4 iterations the data have been inverted
simultaneously for both the Vp, Vp/Vs and earthquakes parameters. At each iter-
ation the solution model of the previous iteration is used as starting model. The
number of iterations has been chosen according to the f-test results, i.e., iterations
stop when the further reduction in data variance is negligible according to the f-test
statistic. The data variance reductions, i.e. the difference between the data variance
computed in the starting model and the data variance computed in the final mode,
are in the range 85-87%, for the three models.

The analysis of the uncertainty associated to every inverted parameter could be
done by the inspection of the standard errors. Nevertheless, the estimate of the
standard errors is biased by the regularization applied to the inversion. Usually, the
higher the damping value is, the lower is the estimated standard errors. The real
values of standard errors could be derived by setting the damping values close to
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2 Inversion of synthetic data

zero. But in this case the inversion becomes extremely unstable.

A way to overcome this problem and to assess the resolution of the results is to
analyze the full model resolution matrix (Menke, 1989). At this scope, I computed
the averaging vectors of the model resolution matrix for each of the inverted nodes
and the correspondent value of the spread function. For a node to be adequately
resolved, its row of the resolution matrix should be peaked on the diagonal, without
a significant contribution from off-diagonal nodes. The relative size and pattern of
the off-diagonal elements show how much a given parameter is smeared on the sur-
rounding nodes (i.e., the correlation between the given parameter and the others).
A compact way of estimating how strong and peaked the resolution is for a given in-
version node is the spread function (Michelini & McEvilly, 1991; Toomey & Foulger,
1989). The spread function SPFj for a node j is computed from all the elements
Rjk of the corresponding row of the resolution matrix R, weighted depending on the
distance Djk between the node j and the surrounding k nodes (k = 1, 2, ..., N):

SPFj = Log

�
�Rj� −1

N�

k=1

�
Rjk

�Rj�

�2

Djk

�
(2.2)

For each node (i.e. for each averaging vector), the contour of the volume where
the resolution is 70 per cent of the off-diagonal element allows easily to visualize
the directionality of the smearing between each parameter and the surrounding
parameters (Figure 2.12). Note for example the vertical smearing of velocity between
nodes located at 0 and 3 km depth. By the inspection of resolution plots like that
shown in Figure 2.12 a certain threshold for the SPF can be chosen. Parameters
characterized by an SPF value less than the threshold should be considered as not
resolved. Conversely, if the SPF value is greater than the threshold the parameter
can be consider as well resolved. Clearly the choice of the threshold is arbitrary.
Anyway, the best way to assess the resolution is by comparing the resulting models
with the input synthetic models.
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2.2 Simulps LET

Figure 2.12: Model resolution for the Vp parameters of model M1 plotted on 4 verti-
cal sections. The 70% smearing contouring for inverted nodes (crosses)
with spread function ≤2.5 is shown. The nodes with SPFj ≤ 2 and
with 2.0 < SPFj ≤ 2.5 have red and grey crosses, respectively.
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2 Inversion of synthetic data

2.2.4 Best-fit Vp and Vp/Vs models

In Figure 2.13 the Vp models obtained with the three different parameterizations
are plotted on a vertical cross-section, together with the input synthetic Vp model.
The main Vp features are recovered in all the three models, except for the deeper
high Vp anomaly, where the Vp is notably lower than in the input model. Model
M2 is characterized by the relative better correspondence with the input synthetic
model. Figure 2.14 shows the Vp and Vp/Vs parameters of model M2 plotted on
the horizontal layers. Figure 2.15 (bottom panels) shows the vertical cross-section
for both the Vp and Vp/Vs structure of model M2. Also not well recovered is the
shallow Vp/Vs model, where the high Vp/Vs region in the synthetic model is visibly
smeared at shallower depth.

Effect of the regularization constraint In all the three models, the shallower high
Vp anomaly is recovered better than the deeper one (see Figure 2.13). This is likely
a consequence of the different ray coverage and density in the two model regions.
The difference in data resolution power of the two model regions is enhanced by the
regularization constraint, which over damps the deeper anomaly, further reducing
the data resolution power. The low Vp basin-shaped anomaly at shallow depth is
characterized by a similar over-damping in all the three models, with the Vp locally
approaching the starting value. Consequently, the lateral continuity of the low Vp
basin in the synthetic model can’t be correctly recovered. A similar reason can
be advocated for the smearing of the high Vp/Vs regions into shallower depth (see
Figure 2.15 bottom right panel). In this case the regularization constraints has
the effect to enhance the correlation between parameters, as also suggested by the
analysis of the model resolution matrix.

Dependence of the model on the parameterization The location of the shallow
high Vp anomaly depends on where the grid nodes are placed. Models M2 (a) and
M3 (b) have the grid nodes in locations similar to those used to construct the input
synthetic model and the high Vp anomaly is correctly placed. Conversely, in model
M1 (c) the correspondent grid nodes are located at higher depth and the high Vp
anomaly is shifted accordingly.
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2.2 Simulps LET

Figure 2.13: Best-fit Vp models plotted on a vertical cross-section (see Figure 2.14
for the location); a) model M2, b) model M3, c) model M1, d) synthetic
input model. The black rectangles highlight the correct location of the
high Vp anomalies.
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2 Inversion of synthetic data

Figure 2.14: Best-fit Vp (right panels) and Vp/Vs (left panels) models. White re-
gions correspond to not-resolved region (SPF>2.5), shaded areas corre-
spond to regions where the resolution could be questionable (SPF>2)
and full color region correspond to resolved regions (SPF < 2.0).
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2.2 Simulps LET

Figure 2.15: Vp (right panel) and Vp/Vs (left panel) models plotted on a vertical
cross-section (see Figure 2.14 for the location). Top panels: synthetic
input models; central panels: mean posterior models of the RjMcMc
LET (see Figure 2.8); bottom panels: best-fit model M2 of Simulps13
LET. The white regions correspond to not-resolved region (SPF>2.5),
the shaded areas correspond to regions where the resolution is poor
(SPF>2) and full color regions correspond to well-resolved regions (SPF
< 2).
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2 Inversion of synthetic data

2.3 Comparison between Simulps and Rj-McMc
results

2.3.1 Data fitting

The final misfit, calculated according to REF, is in the range 8100-9050 for the three
models obtained with SIMULPS. The data fitting in SIMULPS is usually given in
terms of data variance reduction.

I chose to use the simple least square data misfit for the comparison because
the data variance computed by SIMULPS is weighted and the weighting scheme is
different between the two inversion methods. Conversely, the least squares misfit
depends only on the data uncertainties. For example, no different weight is given
for travel-time residuals greater than a certain threshold. The least square misfit
obtain with SIMULPS is about about 30% greater than the misfit obtain with our
code. The better performance of the Rj-McMc code is notable also by comparing
the resulting velocity models (Figure 2.15).

2.3.2 Dependence on parametrization and regularization

The number of inverted parameters for the three models is in the range 2200-2832
(1288-1920 velocity parameters and 912 event parameters). It is notable that with
our code, although the locations of the cells are unknown, the total number of param-
eter describing the velocity structure is less than the number of velocity parameter
inverted by SIMULPS.

In Figure 2.15 both the Vp and the Vp/Vs models are shown, together with
the mean Vp and Vp/Vs models obtained from the Rj-McMc code. Looking at
the Figure, the velocity structure is better resolved by the Rj-McMc tomography
than by the linearized tomography, for both the Vp and Vp/Vs structures. The
Rj-McMc models don’t depend on the particular choice about parameterization,
because the best parameterization is directly extracted by the data. More, the
intensity of the high Vp anomalies is well recovered for both the shallower and
deeper anomalies, independently of the difference in the density of ray-coverage.
This improvement is essentially due to the absence of any global regularization
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2.3 Comparison between Simulps and Rj-McMc results

applied to the inversion technique. The absence of regularization strongly reduces
the smearing of the individual parameters toward the surrounding volume and allows
the Rj-McMc tomography to recover both the lateral continuity of the low Vp shallow
basin and the absence of Vp/Vs anomalies down to 3 km depth.

Finally, the earthquakes locations are better recovered too. To show this, I com-
puted, for each parameter of every earthquakes, the difference between the values
obtained after the inversion and the corresponding values in the input synthetic
model (Figure 2.16). The input synthetic locations are better recovered by the
Rj-McMc tomography than by the Simulps13 tomography for all the four events
parameters.

Figure 2.16: Frequency distributions of the differences between recovered and input
earthquake parameters.
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2.3.3 Dependence on starting model

To test the dependence of the inversion solution from the starting model and prior
information, the synthetic test previously described has been repeated by changing
only the starting Vp model in the Simulps13 inversion and the mean values of the
prior distribution in the Rj-McMc tomography. The synthetic input structure is
unchanged. The only difference between the two synthetic tests is the 1D starting
Vp model that in TEST2 has an additional low velocity layer between 5 and 7 km
depth.

Figure 2.17 shows the Vp model obtained with the two different starting models
by the two inversion codes. As expected, the mean posterior model obtained by the
Rj-McMc code is quite similar in the two cases. Conversely, the two Simulps13 model
solutions have notable differences, showing a strong dependence on the starting Vp
structure. The shallower high Vp anomaly in the SIMUPS solution, for example,
is reduced in thickness and increased in intensity because of the existence of the
low velocity layer in the starting model. In the Rj-McMc tomography, the Vp value
is sampled in between ±4σ from the mean value of the prior distribution. At 6
km depth, the mean values in the two cases are 6.2 km/s and 5.2 km/s and the
Vp parameter is sampled in the ranges 4.2-8.2 km/s and 3.2-7.2 km/s, respectively.
In the correspondence of the high Vp anomaly the value is 6.9 km/s, which is in
inside the ranges of the prior distribution. Therefore, the correct value of the Vp
is recovered despite the difference in the prior distributions. The only difference in
the two cases is that the real value corresponds to a region of the prior distribution
with a lower probability in the second case. Nevertheless, this doesn’t prevent the
value to be correctly recovered.

Finally, it is remarkable that also the recovered earthquakes locations are charac-
terized by notable differences for the models obtained by the Simulps13 tomography.
The more notable effect is that the depth of the hypocenters is shifted downward
because of the existence of the low velocity layer.
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Figure 2.17: Vp structure and earthquake locations a) starting SIMULPS model
and mean prior information for the Rj-McMc tomography; note that
the two TESTs differ only for the low Vp channel at about 6 km depth,
b) models obtained with the Rj-McMc code, c) models obtained with
the SIMULPS code.
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3 Rj-McMc LET of the Alto
Tiberina Fault

The Alto Tiberina Fault (ATF) is the more recent and eastern one of the low-angle
normal faults (LANs) that drives the regional scale evolution of the extensional
basins in the northern Apennines (Figure 3.1; Pialli et al., 1998; Chiaraluce et
al., 2007; Collettini, 2011). LANs are recognized to accommodate extension of
continental crust and are widely debated in the published literature (Wernicke, 1995,
and reference therein) because of their unusual low dip compared to the typical
rupture criteria (Anderson, 1951), which require a very weak detachment fault.

The potentially higher resolution at depth allowed by our new tomographic code
(see the results of synthetic tests in Chapter 2) can provide new insights into the
relationship between the seismicity distribution along the ATF and the rheological
properties of the rocks intersected by the detachment. The deep velocity structure
is still uncertain, mainly because of the low resolution at depth of the reflection
seismic profiles.

More, the availability of high-resolution seismic reflection profiles and boreholes
data provides the opportunity to test the reliability of the shallow velocity structure
obtained with our new tomographic code.

Finally, the ATF is a possible target for an International Continental Scientific
Drilling Program (ICDP) project aimed at drilling the fault in order to sample the
fault core at seismogenic depths (Cocco et al., 2009) and our velocity model may
provide suitable information for an intelligent drilling strategy.

55



3 Rj-McMc LET of the Alto Tiberina Fault

Figure 3.1: Top panel: relief map and seismicity distribution of study area. Red sym-
bols show the epicenters of the earthquakes recorded during the 2000 –
2001 seismic survey (this study); Orange and blue symbols indicate the
aftershocks of the 1984 Gubbio (Mw 5.1) and the 1998 Gualdo Tadino
(Mw 5.1) earthquakes, respectively. Green symbols indicate the seis-
micity during the 1997 Colfiorito sequence, consisting of several normal
faulting main shocks. Bottom panel: crustal-scale cross-section interpre-
tation of the CROP03 seismic profile running from the Tyrrhenian to the
Adriatic coasts (Barchi et al., 1998; Collettini and Barchi, 2004). The
ATF is drawn in red, while other low-angle normal faults in the Tyrrhe-
nian and Tuscany sectors are shown in blue. (Modified from Chiaraluce
et al., 2007).
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Figure 3.2: Geologic map of the study area (modified from Mirabella et al., 2011).
White circles mark the boreholes sites: Mt. Civitello (Civ.), Burano 1
(Br1) , Perugia2 (Pg), San Donato (SD).
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3 Rj-McMc LET of the Alto Tiberina Fault

3.1 Tectonic setting and velocity constraints

Since the Early Miocene, the Apennine belt has been characterized by the eastward
migration of two NW-SE striking, active deformation belts, with compressional tec-
tonic followed by a later extension (e.g., Barchi et al., 2006; Bonini and Tanini, 2009;
Sani et al., 2009).

The main geological units in the investigated region belong to the Western Um-
bria Unit and from bottom to top consist of (Figure 3.2, Mirabella et al., 2011
and references therein): (i) late Paleozoic-middle-triassic clastic and metasedimen-
tary rocks forming the top of the basement, (ii) late Triassic evaporites, (iii) lower
Jurassic-Oligocene carbonates multilayer and (iv) Umbrian turbidites.

The Umbria unit is characterized by contractional structures at variable scales,
the greater one involving the entire succession. Compressional structures are evident
west of the Tiber valley, where a regional-scale thrust caused the doubling of the
evaporitic and the underlying uppermost basement, as also testified by the stratig-
raphy found in Perugia2 and S. Donato boreholes. To the east, other thrust faults
involve the Umbria Unit and are visible around the Calcareous ridge. The tectonic
pile has been dissected by extensional deformation accommodated by a complex
set of normal faults since the Pliocene. East-dipping and west-dipping high-angle
normal faults have been generally interpreted as synthetic and antithetic secondary
faults of the ATF system. The most important, both west-dipping, are the Gubbio
and the Sansepolcro faults (e.g., Boncio et al., 2000; Barchi et al., 1999; Mirabella
et al., 2004; Barchi and Ciaccio, 2009).

Borehole data provide useful constraints on the thickness and velocity of the main
lithological units (see Mariucci et al., 2008 and references therein):

The sedimentary succession The Umbria sedimentary sequence, where not dou-
bled, is about 4 km thick. The Quaternary continental sediments outcropping
in the Tiber Valley and in the Gubbio and Sansepolcro basins have very low Vp
(Vp<3km/s). The Miocene foredeep succession is characterized by Vp in the range
3.4-4 km/s, the carbonates multilayer has Vp in the range 5-6 km/s and higher veloc-
ity has been measured for the underlying Triassic evaporites formation that is about
1.5-2 km thick. As regard the evaporites, P-wave and S-wave velocities have been
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3.1 Tectonic setting and velocity constraints

measured on both outcrops and borehole samples (Trippetta et al., 2010). Both Vp
and Vp/Vs show a strong variability, depending on the composition, pressure and
fluids saturation. The average laboratory P-wave velocity is 6-7 km/s for dolostone,
4.6-5.3 km/s for gypsum–dolostone and 5.8-6.4 km/s for anhydrite (Vp is given at
pressure ranging in between 0-100 MPa, corresponding to about 0-4 km). Vp/Vs
ratios appear to be independent of confining pressure, with average values of 1.8 to
2.2 for sulphates and 1.9 to 2.2 for dolostone, respectively, for dry and saturated
conditions.

The basement The uppermost sheet of the basement has been encountered at
the base of the triassic evaporites in two boreholes (Perugia2 and San Donato, see
Figure 3.2) and consists of phylladic and metamorphosed siliciclastic rocks. Bore-
hole sonic log measurements indicate P-wave velocity in the range 4.8-5.2 km/s,
significantly lower than the overlying evaporites. No S-wave velocity measurements
are available. Nevertheless, both phyllites and metamorphosed siliciclastic rocks
are expected to have low Vp/Vs ratio (<1.76, Christensen, 1996). The maximum
thickness penetrated by the boreholes is 1.5 km but the real thickness is still uncon-
strained (Mirabella et al., 2008a,b). Boreholes have never reached the underlying
crystalline basement and its nature is unknown. Refraction DSS data indicate that
it is characterized by Vp values of about 6 km/s (Ponziani et al., 1995). Therefore,
what we expected to image by tomographic investigation is a low velocity layer in
between the high Vp triassic evaporites and the bulk crystalline basement.

The ATF The ATF bounds the western flank of the high Tiber Quaternary basin,
is about 70 km long and dips NE-ward at an angle of 15°– 20°. Its activity started
at about 3 Ma and is documented in a large geological and geophysical dataset (e.g.,
Barchi et al., 1998; Boncio et al., 2000; Collettini and Barchi, 2002; Brozzetti et al.,
2009), with the maximum offset, although not well-constrained, reaching about 4-8
km (Barchi et al., 1998; Mirabella et al., 2011).

The presently active extension is in the order of 2.5–3.0 mm/yr (D’Agostino et al.,
2009), accommodated by moderate-magnitude earthquakes along high angle normal
faults and by microseismicity (Piccinini et al., 2003; Chiaraluce et al., 2007) and
creep (Hreinsdóttir and Bennett, 2009) along the ATF. The ATF appears not pro-
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duce large earthquakes (M > 5.5), at least in the past 2000 yrs., and is characterized
by a diffuse seismicity (Collettini and Sibson, 2001; Chiaraluce et al., 2007). The
ATF seismicity rate is high (about 3 events per day) and mainly constant with time,
suggesting that the ATF releases stress continuously with time (Chiaraluce et al.,
2007). More, the observed microseismicity is not enough to achieve the observed
slip rate and part of the displacement must be accommodated a-seismically.

The weakness of the ATF can be partly explained by high pore fluid pressure,
by the presence of phyllosilicates in the gouge or by a combined effect of the two
because fluids-rocks interactions favor the development of the phyllosilicates (e.g.,
Collettini and Sibson, 2001; Collettini, 2011). It has been suggested that fault
weakening can result from CO2-rich hydrous fluids reacting with the fault zone,
causing a decrease in the friction coefficient and frictional-viscous creep along the
fault (e.g., Holdsworth, 2004; Collettini and Holdsworth, 2004).

3.2 Rj-McMc tomography

3.2.1 Seismic data and networks

The arrival times data-set has been collected during an experiment run in 2000-2001
(Piccinini et al., 2003; Chiaraluce et al., 2007; Moretti et al., 2009) and consists of
more than 2000 ML < 2.5 earthquakes, which represents the background seismicity
of the area, detected at 58 stations (Figure 3.3). From this dataset we selected 1262
events characterized by a back-azimuth gap less than 150°. The arrival time dataset
consists of 14839 P-phases and 14343 S-wave phases.

We derived arrival times uncertainties from the SAC weighting scheme (0-4),
by associating to these weights standard deviation of 0.025s (weight=0), 0.05s

(weight=1), 0.1s (weight=2) and 0.3s (weight=3). Readings with SAC weight equals
to 4 are discarded.
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Figure 3.3: Relief map showing seismic stations (red triangles) and earthquakes
(black points). Yellow circles mark the location of the Civitello (Civ.),
Burano 1 (Br. 1), San Donato (SD) and Perugia2 (Pg2) boreholes. Blue
triangles mark the main towns: Città di Castello (C.d.C.), Gubbio (Gb.)
and Umbertide (Umb).
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3.2.2 Prior information

We used Gaussian prior distributions for both velocity and earthquakes parameters.
The prior model of Vp and Vp/Vs is the same used for the synthetic tests described
in the Chapter 2. The background nodes grid is characterized by a vertical spacing
of 1 km, down to 8 km depth, and 2 km at greater depth. The horizontal spacing
is 2 km in both latitude and longitude directions. The background grid defines the
maximum spatial resolution to be 2 km in the horizontal plane and 1 km in the
vertical plane. The size of the model is 90 km in the xy plane and 16 km in the z

direction.

Two prior Gaussian distributions (one for the Vp parameter and one for the Vp/Vs
parameter) are associated to each one of the grid nodes. The mean prior values of
earthquake parameters are the approximate locations obtained with Hypoellipse
(Lahr, 1989) by Moretti at al. (2009). Approximate locations are used as prior
information over the earthquake parameters in order to speed-up the convergence of
the Rj-McMc sampling. Standard deviations are set equal to 1 km in latitude and
longitude and 2 km in depth.

3.2.3 RjMcMc sampling of the PDF and data misfit

We run 20 Markov chains of about 300000 models/chain. After a burn-in phase of
200000 models/chain, when the sampling algorithm has been judged to have con-
verged, we collected every 20th models/chain of the generated 100000 models/chain
(Figure 4.6). Then, the total number of PDF samples is 100000. The recipe of sam-
pling and the convergence assessment criteria are the same described in Chapter
2. The misfit level reached by the chains during the post burn-in phase is in the
range 30000-34000. We estimated 4 parameters (x, y, z, ot) of 1262 events and 5
parameters (x, y, z, Vp, Vp/Vs) of a number of Voronoi’s cells in the range 800-1100
(Figure 4.7), depending on both the chain and the individual model. Since the total
number of estimated parameters is in the range 9000-10500 and the number of data
is 29182, this misfit level corresponds to a normalized χ2 misfit measure in the range
1.5-1.8.
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3.2 Rj-McMc tomography

Figure 3.4: Misfit evolution during the Rj-McMc sampling.

The 1D marginal PDFs for each one of the sampled parameters are derived from
the ensemble of PDFs collected models. In the following discussion we analyze and
discuss mean and standard deviation values related to every model parameters. As
previously described, the individual models characterized by different Voronoi’s tes-
sellation are all rasterized on the regular grid and the mean and standard deviation
value of the 1D marginal PDFs over the velocity parameters (Vp and Vp/Vs) are
computed for each one of the grid nodes. If the posterior standard deviation is less
than the prior standard deviation, some new information over the model parameter
is added by the data to the prior information. Otherwise, if the posterior standard
deviation is less or equal the prior, no additional information has been added to our
a-priori knowledge of the model parameter. We interpret Vp and Vp/Vs anomalies
with standard deviation less than 0.4 km/s and 0.07, respectively.

As regard the event parameters, the posterior standard deviations are always less
than the prior standard deviations for all the 4 hypocentral parameters. Posterior
standard deviations amount to 80-150 m for event latitude and longitude and 200-
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500 m for event depth. About 50 earthquakes have posterior standard deviation of
at least one of the hypocentral coordinates greater than 0.5 km and are not shown
in the Figures.

Figure 3.5: 1D marginal PDF describing the sampling of the number of Voronoi’s
cells. The prior distribution is uniform in between 1 and 1500.
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3.2.4 Discussion on the Vp and Vp/Vs mean posterior models

Vp and Vp/Vs horizontal cross-sections The shallower Vp structure (1 km
depth, Figure 4.8) is strongly correlated to the rocks outcropping in the area. The
basins hosting Quaternary continental deposits (Tiber, Gubbio and Sansepolcro
basins) are characterized by very low Vp (<3.5 km/s). The low Vp correlates with
relatively high Vp/Vs and the higher Vp/Vs anomalies are found in the Gubbio and
Sansepolcro basins, bounded to the east by high-angle west-dipping normal faults.
Conversely, the higher Vp is found below the NW-SE-trending carbonatic ridge
(Vp=5-5.7 km/s) and in the SW part of the model, well matching the geometry of
the outcropping carbonates.

The most seismicity down to 5 km depth occurs in a region of Vp/Vs>1.9 and Vp
of about 5.5-6.0 km/s. At 3 km depth the hypocenters are distributed along two
parallel NW-SE alignments (3 km depth, 4.8). The eastern one is approximately
located below the northern sector of the mapped Gubbio fault.

The NW-SE-elongated high Vp belt found below the Calcareous ridge is visible
down to about 7 km (Figure 4.9). More discontinuous high Vp anomalies are present
also in the SW region of the resolved model. At greater depth there is an evident
separation between low Vp to the north and high Vp to the south, with the velocity
difference increasing at increasing depth.

The most hypocenters below 5 km depth are located in low Vp regions and define
NW-SE alignments facing the high Vp belt. At increasing depth the Vp/Vs decreases
on average, higher Vp/Vs regions are correlated with higher Vp regions and lower
Vp/Vs regions are correlated with lower Vp regions.

Across-ATF Vp and Vp/Vs cross-sections The cross-sections a and b in Figure
4.10 allow a straightforward correlation between seismic velocity, borehole data and
seismic reflection profiles. Our Vp model near the Burano1 well is consistent with
the sonic log measurements of the evaporites encountered at 600 m depth (Vp=5
km/s, Trippetta et al., 2010). The up warping of the contour lines highlights the
compressional structure beneath the Calcareous ridge and is consistent with both
the seismic profile by Tavani et al. (2008) (supplementary Figure 3.16) and the
location of the outcropping carbonates.
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Figure 3.6: Vp (left panels) and Vp/Vs (right panels) on horizontal cross-sections
at 1, 3 and 5 km depth. Full color regions are areas where the pos-
terior standard deviation is less than the prior standard deviation (see
supplementary Figure 4.19).
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Figure 3.7: Same of Figure 4.8 for horizontal cross-sections between 7 and 12 km
depth. Full color regions are areas where the posterior standard deviation
is less than the prior standard deviation (see supplementary Figure 4.20)
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The Mt. Civitello well penetrates the top of the Marne a fucoidi formation at
about 800 m depth and the evaporites layer at 2.2 km depth (see supplementary
Figure 3.14). Our Vp model shows constant velocity of 3.8-4 km/s down to 1 km, a
steep velocity gradient in between 1 and 2 depth and a Vp in the range 5.5-6.2 km/s
down to the base of the well (about 5 km). The Vp values are consistent with log
data for the Marnoso Arenacea formation. It is about 0.5 km/s lower than the sonic
log (-9%) for the carbonates multilayer and about 0.25 km/s on average lower for the
triassic evaporites (-4%). Standard deviations are in the range 0.15-0.25 km/s. Our
model detects the steep velocity gradient between the Marnoso Arenacea formation
and the carbonates multilayer but has clearly too low vertical resolution to recover
a change of 1.5 km/s in less than 0.5 km. The discrepancy between velocity data
and sonic log measurements are in the order expected for the different frequency
of investigation and the occurring of velocity dispersion. Velocity dispersion in the
seismic and sonic frequency bands is substantial (about 5-10% as minimum), except
for the cases of dry rocks or 100% saturated rocks (Batzle et al., 2006 and references
therein).

Moreover, the different units encountered by the Mt. Civitello well show peculiar
Vp/Vs ratio. The turbiditic formation has generally very low Vp/Vs (<1.75) that
can be explained by the main siliciclastic composition. The higher Vp/Vs (1.85-1.90)
is found within the evaporite formation and corresponds to values found in not fluid
saturated evaporites (Trippetta et al., 2010). Intermediate values are found for the
Carbonates multilayer.

On the base of the constraints derived by borehole data and seismic profiles
(Mirabella et al., 2004; 2008; 2011, see also supplementary Figure 3.15), we ex-
trapolated the location in our model of the top of the carbonates multilayer and the
top of the evaporites formation. The shallow Vp structure (0-4 km) shows similar
features in all the six cross-sections, highlighting the folded and faulted structure of
the Umbria sedimentary sequence. The down warping of the Vp contour lines reveals
the SW-ward displacement related to the Gubbio fault, while the up warping of the
contour lines delineates the thrust tectonic below the Calcareous ridge.

Conversely, the Vp/Vs model at shallow depth shows notable variation between
the different cross-sections. In the northern sections (a-c, Figure 4.10) the Vp/Vs
appears to be directly related to the lithology, as already described for the Mt.

68



3.2 Rj-McMc tomography

Figure 3.8: Mean Vp (left panels) and Vp/Vs models (right panels) plotted on ver-
tical cross-sections. See Figure 4.8 for the locations. Full color regions
are areas where the posterior standard deviation is less than the prior
standard deviation.

69



3 Rj-McMc LET of the Alto Tiberina Fault

Figure 3.9: Mean Vp (left panels) and Vp/Vs models (right panels) plotted on ver-
tical cross-sections. See Figure 4.8 for the locations. Full color regions
are areas where the posterior standard deviation is less than the prior
standard deviation.
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Civitello well stratigraphy. In the southern sections (d-e, Figure 3.9), a strong high
Vp/Vs ratio (>1.95-2.2) is found to the west of the Gubbio fault from surface to
about 4-5 km depth. The micro-seismicity delineates the Gubbio SW-dipping high-
angle normal fault and also a NE-dipping high-angle synthetic fault (see section d).
A similar high Vp/Vs ratio has been previously found in the hanging wall of the
high-angle normal faults of the northern Apennines (Chiarabba and Amato, 2003;
Moretti et al., 2009; Chiarabba et al., 2009) and was interpreted as being the result
of a up-ward fluid migration during major earthquakes, which nucleated within the
evaporites unit (Miller et al., 2004; Mirabella et al., 2008). More, the presence of
overpressured fluids inside the low permeability evaporites unit is thought to favor
the reactivation of the high angle normal faults in the region (Chiaraluce et al.,
2003). Consistently, the shallow cluster of seismicity occurs whitin the high Vp/Vs
evaporites unit in all the six sections but only in the sections across the Gubbio fault
the Vp/Vs is very high and extends up to the ground surface.

The depth of the top of basement is the more questionable. Seismic reflection
and borehole data suggest that the top of the low Vp basement is located at about
5-7 km depth. We performed a synthetic test similar to those described in Chapter
2, in order to understand what is the minimum resolvable thickness of the inferred
low Vp upper sheet of basement. The results (see supplementary Figure 3.17) show
that we are able to resolve a low Vp layer of minimum thickness of about 1.5 km.
Since the evaporites formation is the only lithological unit for which the Vp/Vs ratio
has been estimated for a wide range of composition, fractures and fluids pressure
(Trippetta et al., 2010), and the Vp/Vs ratio is always > 1.8, we attempted to locate
the evaporites-basement interface across the entire resolved model by considering the
Vp/Vs=1.80 contour line. In this way we found a good correlation with the top of
the basement inferred from the migrated seismic reflection profiles (Mirabella et al.,
2004; 2008; 2011). We suggest that regions where a velocity reversal occurs and
very low Vp/Vs correlates with low Vp, correspond to the philladic or siliciclastic
uppermost sheet of basement (i.e. the acoustic basement, more visible in the cross-
sections a-c), whereas the normal-to-low Vp/Vs regions correlated with high Vp
correspond to the crystalline basement which composition is still unknown (more
visible in the cross-sections d-f). An outcome of the suggested location for the top
of the basement is that the evaporites unit is at least doubled by thrust tectonic
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below the Calcareous ridge. Otherwise, the top of the basement should be located
shallower, inside the high Vp/Vs region. We don’t exclude this second hypothesis.
What it is notable is that our Vp/Vs model provides a useful constraint on the
maximum thickness of the evaporites layer at depth.

The inferred top of basement corresponds also to a strong decrease in seismicity, in
agreement with the existence of basement rocks that are weaker than the overlying
brittle dolostone. More, the low Vp and Vp/Vs basement underlying the shallow
seismicity defines a lens-shaped NE-dipping structure similar to the lens-shaped
structure formed by a package of reflectors identified in the CROP03 profile (Barchi
et al., 1998) and associated to a an extensional duplex.

Seismicity along the ATF detachment Our velocity model provides a unique
opportunity to address the relationship between seismicity distribution and velocity
structure, adding new information to previous analyses of ATF seismicity (Piccinini
et al., 2003; Chiaraluce et al al., 2007; Moretti et al., 2009). The hypocenters along
the ATF detachment don’t define a narrow planar fault, but rather they diffuse into
a ca. 1.5-2 km thick region, too thick to be considered as a single detachment plane.
Since we plotted only hypocenters with depth error (i.e. standard deviation) less
than 0.5 km, it seems unlikely that this can be due entirely to errors in hypocenter
locations. More, the average dip is about 15° but the hypocenter distribution shows
a staircase geometry.

The NE-dipping alignment of hypocenters is not highlighted by a simple pattern of
Vp and Vp/Vs anomalies. On the base of a widespread low Vp/Vs anomaly, Moretti
et al. (2009) suggest the existence of CO2-saturation in the rock volume around the
ATF and that the detachment acts as an impermeable barrier to deeper fluids from
the crust. This interpretation mainly derives by the following evidences: i) CO2
local over-pressure is able to explain the weakness of the ATF and the occurrence
of microseismicity (Collettini and Barchi, 2002; Chiaraluce et al., 2007); ii) CO2-
overpressure has been found at 4-5 km within the evaporites in two deep boreholes
(Perugia2 and San Donato) located in the footwall of the ATF (Chiodini et al.,
2004; Heinicke et al. 2006); iii) a very low permeability has been found in the fault
core of the Zuccale fault, an older analogue to the ATF (Collettini et al., 2006).
It is reasonable to suppose that if the ATF acts as an impermeable barrier, the
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evidences of fluid overpressure should concentrate in the footwall and not all around
the fault. Strikingly, in our velocity model the most footwall volume of the ATF
is characterized by a low Vp (dashed yellow contour line in Figures 4.10 and 3.9),
corroborating the existence of fluid overpressure in the footwall of the fault. The
increase in pore pressure increases the porosity volume of the rocks at low effective
stresses and, consequently, both the Vp and Vs decrease. The relative decrease of
Vp and Vs, and thus the change in Vp/Vs depends, on fluid phase, saturation and
pore geometry (e.g., Dvorkin et al., 1999; Takei, 2002; Wilkens et al., 2004). In
our model the low Vp correlates with relatively high Vp/Vs. We are not confident
in the reliability of the Vp/Vs found in the footwall because all the ray-paths are
parallel to the ATF, i.e. likely parallel to the fabric of the rocks and can be biased
by anisotropic effects (Wang et al., 2012).

The low Vp in the footwall of the ATF is visible in all the six cross-sections but it
vanishes in the deeper part of the ATF, in correspondence of a very high Vp body. In
correspondence to the same high velocity body, the hypocenters distribution flattens
to horizontal. The nature of this body is unknown and the cause of the flattening
is difficult to unravel. Nevertheless, the spatial correlation is notable and points
to a link between the change in the dip and a rheological transition in the rocks
intersected by the ATF.

All these evidences point to a complex architecture of the ATF, with deformation
distributed within a wide and thick fault zone, where fluids play a key role and with
rocks adjacent to the fault characterized by different rheological properties.
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3.3 Comparison with previous models

The dataset used in this study has been already inverted with the Simulps code by
Moretti et al. (2009). In addition, we performed a second linearized inversion with
a different Vp starting model, which lacks of the velocity reversal existing in the
starting Vp structure by Moretti et al. (2009). A second difference is in the model
parameterization, with a vertical spacing of 2 km instead of 3 km. The two solutions
are quite similar in the well-resolved region of the model, whereas some differences
exist in poor resolved regions, where the respective starting reference models affect
the two models. In Figure 3.10 the two Simulps solutions are compared with the
model obtained with our new code.

The three Vp models share the main Vp anomalies: (i) the up-warping of the
contour lines below the Calcareous ridge and the underlying high Vp body (anomaly
A), (ii) the velocity reversal below the Mt. Civitello borehole (anomaly B), (iii) the
up-warping of contour lines to the NE of the Mt. Civitello well. Anomaly A is a
different depth in the two Simulps solutions and is more intense in the model by
Moretti et al. (2009). The reason can be found in the different parameterization and
different starting models used in the inversion, as shown in Chapter 2. The main
differences between the Simulps and the Rj-McMc Vp models are in the shallower
structure. The Rj-McMc model is more consistent with sonic-log data form the Mt.
Civitello well and reveals the steep Vp gradient in correspondence of the transition
between the Marnoso-Arenacea formation and the Carbonates multilayer. The fixed
parameterization prevents to detect steep velocity gradients. Similarly, the up-
warping of the Vp contour lines is more evident in the non-linear solution and the
Vp at the surface is higher, consistent with the outcropping carbonates.

The Vp/Vs models show more notable differences. The two models obtained with
the Simulps code show strong differences where their respective starting Vp models
differ (see the region below the anomaly A). The lower Vp/Vs ratio in model by
Moretti et al. (2009) may be reliable or it may be partially caused by the lower Vp
existing in the starting model in between 4.5-7.5 km. Moreover, both the models
lack of visible difference between the shallow Marnoso-Arenacea formation and the
underlying carbonates and evaporites formations found in the model obtained with
the Rj-McMc code.
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Figure 3.10: Comparison between models obtained with the Rj-McMc code (a) and
with the Simulps code (b-c). b) our best Simulps solution; c) solution
by Moretti et al. (2009).

Finally, we compared the data misfit in the two models. In the model obtained
with the Rj-McMc code, the data misfit is computed by considering the mean pos-
terior model for both the earthquake parameters and the velocity parameters. We
use the simple least square data misfit (φ =

�
i((d

obs
i − dcalci )/σi)2) for the com-

parison because it doesn’t depend on the data weighting scheme, which is different
between the two inversion methods. It depends only on data uncertainties, which
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have been defined on the base of the SAC weights: standard deviations of 0.025s
(weight=0), 0.05s (weight=1), 0.1s (weight=2) and 0.3s (weight=3). The data misfit
is much higher for the model obtained with Simulps (Rj-McMc model: φp = 15000;
φs = 18000; Simulps model; φp = 22000; φs = 67000), with the greater difference
found for the S-wave data. The histograms of P and S arrival-time residuals are
shown for both the two different models in Figure 4.17.

Figure 3.11: P- and S- residuals between observed and theoretical arrival times; a)
theoretical arrival times computed in the Rj-McMc model, b) theoreti-
cal arrival times computed in Simulps model.
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Supplementary Figures

Figure 3.12: Standard deviations of the Vp (left panels) and Vp/Vs (right panels)
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Figure 3.13: Standard deviations of the Vp (left panels) and Vp/Vs (right panels) of
the grid nodes at 7, 10 and 12 km depth.
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Figure 3.14: Mt. Civitello seismic image, geological sketch and log data. Num-
bered units are: 2) late Triassic evaporites, 3) transitional facies be-
tween the evaporites and the Calcare Massiccio formation (Lias); 4)
Calcare Massiccio formation; 5) marly carbonates; 6) pelagic carbon-
ates (Maiolica formation); 7) Marne a Fucoidi formation; 8) upper
Cretaceous-Oligocene carbonates (Scaglia formation); 9) Marnoso Are-
nacea formation. (Modified after Mirabella et al., 2011)
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Figure 3.15: Original seismic profile (top panel), interpreted profile (central panel)
and migrated section (bottom panel) by Mirabella et al. (2011). For
the location see profile S3 in Figure 3.2.
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Figure 3.16: Map (upper panel) and interpreted balanced cross-section of the Car-
bonaceous ridge near the Burano1 (modified from Tavani et al., 2008).
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Figure 3.17: Synthetic test showing the capabilities to resolve the velocity reversal
at the top of the basement, which is 1.5 km thick. a) Synthetic input Vp
structure, b) recovered Vp structure. Note that the test has been per-
formed with a subset of data (230 events) and represents a conservative
estimate of the regions where a low Vp zone can be detected.
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There are many challenging aspects of the application of the RjMcMc LET to the
Parkfield area. First, all previously published tomographic models (e.g., Miche-
lini and McEvilly, 1991; Eberhart-Phillips and Michael, 1993; Thurber et al., 2003;
2004; Zhang et al., 2005; Roecker et al. 2004; 2006; Zhang et al., 2009) revealed the
existence of large velocity contrasts (up to 20-25%) across the San Andreas Fault.
Therefore, a non-linear tomographic code could be demonstrated able to detect such
large velocity heterogeneities without the necessity to have accurate starting velocity
models. This is important because our new code would be demonstrated suitable for
tomographic investigations in poorly known regions, where designing accurate start-
ing models is not possible. Second, the amount of tomographic investigations in the
area allows a proper comparison between velocity models obtained from the same
data by applying different local earthquake tomography techniques and ray-tracing
algorithms. Third, the SAFOD drilling site (San Andreas Fault Observatory at
Depth; http:/www.icdp-online.de/sites/sanandreas/index/) provides velocity data
by sonic log measurements to be compared with absolute velocity data obtained
from tomography. Fourth, the San Andreas Fault (SAF) near Parkfield has been in-
tensively studied for decades, providing independent constraint to the interpretation
of the velocity structure.

4.1 Tectonic setting

The San Andreas Fault (SAF) is a right-lateral, strike-slip fault system that extends
approximately 1100 km from near the U.S.–Mexican border to northwest of Cape
Mendicino, California, and forms the boundary between the Pacific plate to the
southwest and the North American plate to the northeast (Figure 4.1). The trans-
form motion began about 29 Ma and has right-laterally displaced rocks at least
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300 km (Ross 1984; Irwin 1990). The region is dominated by the NW-SE-trending
Southern Coast Ranges, lying between the Pacific coast and the Great Valley, from
the San Francisco Bay to the Transverse Range. The range building occurred by
folding and thrusting starting at ca. 3.5 Ma, induced by the convergence motion
between the two plates, and by subsequent late Quaternary uplift (e.g., Page at al.,
1998).

Figure 4.1: Map of California showing the tectonic setting of Parkfield, CA, at the
transition between the locked and creeping segments of the San Andreas
Fault and the location of SAFOD at the northern end of the Parkfield
segment. The inset shows the region investigated in this study.
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The Parkfield area is located at the northeastern end of the seismogenic Parkfield
segment and adjacent to the creeping segment to the northwest. The historical
seismicity is characterized by moderate-magnitude (M 5.5–6) earthquakes occurring,
on average, every few decades (e.g., Bakun and McEvilly, 1984; Bakun and Lindh,
1985). However, small to moderate earthquakes (Mw<4) occur more frequently
(Nadeau and McEvilly, 1995; Waldhauser et al., 2004).

Figure 4.2: Simpliefied geological map of the Parkfield area (modified from Dibblee
Jr.1980; Bradbury et al. 2007; Ryberg et al., 2012). BCF: Buzzard
Canyon fault, GHF: Gold Hill fault.

The long history of strike-slip movement along the SAF created a tectonic contact
between continental blocks, which are different in both the tectonic setting where
they originated and in their original latitudinal locations (Figure 4.2). Four Mesozoic
complexes overlapping in age are present in the Parkfield region: (1) the Salinian
block, (2) the Franciscan Complex, (3) the Great Valley sedimentary sequence, and
(4) serpentine and ophiolites.
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(1) The Salinian block consists of allochthonous late Cretaceous plutonic (mainly
granitic and granodioritic rocks) and metamorphic rocks from the axial portion of the
western Cordilleran plutonic belt (e.g., Ross, 1978). In the Parkfield area it is locally
covered by a maximum of 2 km of Mio-Pleistocene clastic marine and non-marine
rocks, dipping westward away from the Cholame Hills high, a Salinian basement
uplift that lies some kilometers SW and parallel to the SAF. Metasedimentary rocks
(schists) are found at the base of the Salinian pluton in Sierra de Salinas. Seismic
reflection imaging (Bleibinhaus et al., 2007) near SAFOD suggests that the base of
the Salinian block and the base of the underlying metamorphic rocks are located
at about 8.5 and 12 km depth. The location of metasedimentary rocks below the
pluton may be a result of tectonic wedging in the latest Cretaceous and Palaeocene
(Barth et al., 2003; Grove et al., 2003).

(2) The Franciscan accreted subduction zone melange is widely exposed to the NE
of the SAF. The melange, much weaker than the Salinian block, consists of oceanic
mantle remnants, oceanic crustal blocks and sedimentary rocks, all included in a
strongly sheared argillaceous matrix and in large coherent units of graywacke and
metagraywacke. In the Parkfield area, it consists in a southeast-plunging anticlinoria
(corresponding to the Parkfield grade, Figure 4.4) cored by serpentine bodies and
metasedimentary rocks (Ross, 1978; Page, 1998; Rymer et al., 2003).

(3) The Jurassic-to-Cretaceous rocks of the Great Valley forearc sediments se-
quence (SVG, Dickinson, 1966; Page, 1998) are dominated by sandstone and mud-
stone and include ophiolitic rocks at its base, which correspond to the oceanic floor
upon which the Great Valley sequence sediments were deposited. Small volumes of
SVG rocks are sampled by the SAFOD main hole (Bradbury et al., 2007) but they
are widely exposed to the east of the Parkfield grade, about 10 km from the SAF.

(4) Serpentinite bodies derived from peridotite are distributed into the Francis-
can complex and are locally present near secondary faults or compose large diapirs,
considered to be extruded by solid flowage from fissures along the crest of a pre-
existing ridge (e.g., Table Mountain serpentinite, Dickingson, 1966). Serpentiniza-
tion and mobilization were probably promoted by the transfer and pressurization of
water during subduction and later re-activated by transverse compression (Coleman,
1996). Near SAFOD, the existence of a subsurface flat-lying sheet of serpentinite
inside the Fransiscan basement has been hypothesized on the base of gravity and
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magnetic data (McPhee et al., 2004).

Finally, the shallower stratigraphy consists in Miocene-Pliocene sandstone and
mudstone locally overlain by Pleistocene-Quaternary alluvial fan deposit (Dibblee,
1980).

At the surface, the SAF is characterized by a complex zone of faulting that is a
few km wide (Dickinson, 1966; Rymer et al., 2006; Thayer, 2006), with 2-3 upwardly
flaring flower structures (Catchings et al., 2002; Rymer et al., 2003). The SAFOD
drill site lies 1.8 km southwest of the surface trace of the active strand of the San
Andreas Fault. The drill site is located on a portion of the SAF characterized
by aseismic creep and repeating micro-earthquakes, lying at the northern end of
the rupture zone of the 1966 Mw6 Parkfield earthquake. Lithologies and faults
encountered by the SAFOD borehole are summarized in Figure 4.3.

Figure 4.3: Across-fault cross sections of the geology near SAFOD (Bradbury et al.,
2007)
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4.2 Rj-McMc tomography

4.2.1 Seismic data and Networks

The arrival times data set was analyzed by several investigations (Roecker et al.,
2004; 2006; Thurber et al., 2003; 2004; Zhang et al., 2005). The main data was
acquired by the Parkfield Area Seismic Observatory (PASO), a dense seismic array
of 59 stations that operated for nearly two years (2000-2002) in a region of about
15 km around the SAFOD drilling site (Figure 4.4).

Figure 4.4: Relief map of the study area showing the location of the SAFOD drill
site, the PASO array (blue triangles), shots (stars) and the PSINE seis-
mic profile (green triangles). The red line marks the trace of the SAF.
Seismicity with starting locations is shown by black points.
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Additional data gathered during the same period come from the HRSN (UC-
Berkeley’s High Resolution Seismic Network), from the USGS CALNET seismic
network, from the 32 three-component sensors installed in the SAFOD pilot hole
and from 17 shot points set off in the region. More, we used data gathered during
the 1998 PSINE survey by Catchings et al. (2002) and explosions from the field
projects in 1994 (Li et al., 1997).

In total we used 861 events, 72 blasts and 82 shots. Shots are explosions from
the survey by Catchings et al. (2002). The blasts group is composed of 66 shots
detonated in October 2002 and acquired by the PASO network and by the borehole
sensors and 6 explosions detonated in 1994. The locations are known, but the origin
time is permitted to vary to allow for timing errors or near-source delays. The
overall arrival time dataset consists of 43948 P-phase arrival times and 29158 S-
wave arrival times. For 18689 S-phases, two readings are observed as result of some
anisotropy in the crust. When two readings are observed, only the arrival time with
the lower picking error is included in the inversion. If the errors are identical, the
earlier arrival time is chosen.

We derived data uncertainties from the SAC weighting scheme 0-4. We associ-
ated to these weights standard deviation of 0.025s (weight=0), 0.05s (weight=1),
0.1s (weight=2) and 0.3s (weight=3). No different weights are associated to earth-
quake and shot/blast data. With these data uncertainties, the differences between
arrival times of the faster and slower S-phases are less than 1σ in the 95% of cases.
Furthermore, we are confident that the effect of anisotropy on S-wave arrivals can
be considered as included in the picking errors.

4.2.2 Prior information

Although some a-priori information can be extracted by the published velocity
models and from the SAFOD data, we prefer to start from very rough a priori-
information. We used Gaussian prior distributions for both velocity and earthquakes
parameters. The mean prior model of P-wave velocity is shown in Figure 4.5, to-
gether with the background nodes grid. The background nodes grid is characterized
by a vertical spacing of 0.5 km, down to 5 km depth and 1-2 km at greater depth.
The size of the model is about 25 km in the horizontal plane and 16 km in the
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vertical direction. The uneven grid spacing is due to the necessity of reducing the
computing time since the great amount of data to deal with.

Two prior Gaussian distributions (one for the Vp parameter and one for the Vp/Vs
parameter) are associated to each one of the grid nodes. The prior mean Vp/Vs
model is constant throughout the investigate volume, with mean 1.65 and standard
deviation equal to 0.15. Standard deviations for the Vp parameters are all equal to
0.5 km/s.

The mean prior values of the earthquake parameters are identical to those used
by Thurber et al. (2004) as starting model for the linearized tomography. Standard
deviations are set equal to 1 km in latitude and longitude and 2 km in depth. The
origin time parameters are uniformly sampled in between ±1s from the mean prior
values.

Figure 4.5: Prior mean Vp model plotted on a horizontal section at 3 km depth
(left panel) and on a vertical cross-section (right panel). Red triangles:
seismic stations; black circles: mean prior event locations. Note the
string of borehole receivers deployed in the SAFOD pilot hole in July
2002.
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4.2.3 RjMcMc sampling of the PDF and data misfit

We run 20 Markov chains of about 600000 models/chain. After a burn-in phase
of 350000 models/chain, when the sampling algorithm has been judged to have
converged, we collected every 20th models of the 250000 models/chain generated
during the post burn-in phase (Figure 4.6). Then, the total number of PDF samples
consists of 250000 models. The recipe of sampling and the convergence assessment
criteria are the same described in Chapter 2.

The misfit level reached by the chains during the post burn-in phase is in the
range 80000-90000. The number of estimated event parameters amount to 3516 (4
parameters of 861 earthquakes and 72 blasts origin times). The number of velocity
parameters is in the range 1750-3250 (5 parameters for each one of the Voronoi’s
cells), depending on both the chain and the individual model (Figure 4.7). Since
the total number of estimated parameters is in the range 5500-6500 and the number
of data is 73106, this misfit level corresponds to a normalized χ2 misfit measure in
the range 1.2-1.3.

Since the huge amount of estimated parameters, the inspection of the PDF distri-
bution for every parameter is not possible. Therefore, we analyze and discuss only
the mean and standard deviation values of the 1D marginal PDF and compare them
to the prior mean and standard deviation values. New information regarding the
model parameter is added by the data to the prior information if the posterior stan-
dard deviation is less than the prior standard deviation. As previously described,
the individual models are characterized by different Voronoi’s tessellations and are
all rasterized on the same regular grid (Figure 4.5). Then, mean and standard devi-
ation values of the 1D marginal PDF over the velocity parameters (Vp and Vp/Vs)
are computed for each one of the grid nodes. Full maps showing the distribution of
the standard deviations across the Vp and Vp/Vs models are provided as supplemen-
tary Figures 4.19 and 4.20. As regard the event parameters, the posterior standard
deviations are less than the prior standard deviations for every event and all the 4
hypocentral parameters. Posterior standard deviations are in the range 100-200 m
for event latitude and longitude and a factor of two greater for event depth. About
80 earthquakes have posterior standard deviation greater than 500 m and are not
shown in the Figures.
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Figure 4.6: Misfit evolution during the Rj-McMc sampling.

Figure 4.7: 1D marginal PDF over the number of Voronoi’s cells.
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4.2.4 Discussion on the Vp and Vp/Vs mean posterior models

Shallow layers (0-2 km, Figure 4.8) The Vp structure is dominated by the
velocity contrast across the SAF, with the southwest side on average about 1.0
km/s faster than the northeast side. At 1 km depth, the seismicity is localized on
the northern part of the SAF trace, well-matching the steeper Vp gradient. The
most seismicity appears below 2 km depth and is evenly distributed along the trace
of the SAF, delineating a very narrow active fault region. Seismicity at this depth
occurs inside a high Vp/Vs region.

At the surface (see layer at 0 km depth), a NW-SE elongated low Vp (<3 km/s)
and high Vp/Vs belt is present to the east of SAFOD hole (PH) and around the SAF
trace (red line), well-matching the LWZ found by shallow high resolution seismic
surveys (Catchings et al., 2002). The low Vp belt corresponds to shallow sediments
on the SE of the fault and to weathered, highly fractured Franciscan rocks mapped
on the NE of the fault.

To the east of the SAF, the Vp is everywhere lower than 4.5-5 km/s, with velocity
in average higher to the NW of the SAFOD borehole. In this depth range, velocity
in the range 3-4 km/s has been reported for weathered crystalline rocks and well-
cemented sedimentary rocks in southern California and velocity in excess of 4 km/s
are found for Franciscan crystalline rocks (Gandhok et al., 1999; Catchings et al.,
2002). The stronger high Vp/Vs region is characterized by two elongated belts. One
high Vp/Vs belt is around and slightly parallel to the SAF, in correspondence of the
steepest velocity gradient. The southern portion is located directly below Middle
Mountain and appears to be bounded to the east by the Gold Hill fault (GHF) and
to the west by the Buzzard Canyon Fault (BCF). The other one follows the shape
of the Parkfield grade and corresponds to Franciscan rocks.

To the west of the SAF the velocity is everywhere higher than 4.5-5 km/s and
correlated with Vp/Vs values lower than 1.9. Generally higher Vp regions corre-
late with lower Vp/Vs regions (<1.8), highlighting structural highs of the Salinian
granitic basement. Conversely, regions with lower Vp and higher Vp/Vs (>1.9)
are spatially correlated with thickened Cenozoic sedimentary rocks to the west of
Cholame Hills (Hole et al., 2006).
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Figure 4.8: Vp (left panels) and Vp/Vs (right panels) on horizontal cross-sections at
0, 1 and 2 km depth. Full color marks regions where the posterior stan-
dard deviation is less than the prior standard deviation. BCF: Buzzard
Canyon Fault, GHF; Gold Hills Fault.94
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Figure 4.9: Same of Figure 4.8 for horizontal cross-sections between 3.5 and 9.5 km
depth. See Figure 4.20 for the standard deviation values. The yellow
star is the approximate location of the Mw6 1966 Parkfield earthquake.
The red circle indicates the location of the SAFOD borehole.
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Deep layers (3-10 km, Figure 4.9) The strong velocity contrast across the SAF
is visible down to about 10 km depth and the steepest gradient is located along the
seismic SAF.

To the southwest of, and parallel to the SAF there is a high Vp belt (6-7 km/s).
More to the SW, lower Vp values are found (5-6 km/s). The Vp/Vs is almost ev-
erywhere less than 1.75, except for the layer at 3.5 km depth, where some relatively
high Vp/Vs (up to 1.90) regions are visible. The standard deviation values in the
region are on average 0.2-0.3 km/s, not sufficient to account for a 1 km/s of Vp dif-
ference. This suggests strong heterogeneities inside the Salinian composite terrane,
because Vp in excess of 6.2 km/s is too high for granites or granodiorites. Both
the higher Vp and the low Vp/Vs are consistent with some of the sedimentary rocks
metamorphosed to upper amphibolite facies and locally granulite facies intruded by
the Mesozoic granitic rocks (Compton, 1966).

To the east of the SAF the Vp sharply decreases to values of about 5.5 km/s. The
lowermost Vp regions at depth greater than about 5 km forms a NW-SE-elongated
belt localized just to the NE of the seismicity. It is associated with Vp/Vs >1.75,
relatively higher than the Vp/Vs found in correspondence of the hypocenters. If the
low Vp, higher Vp/Vs belt marks the broad damage zone, a strong asymmetry of
the damage zone would be suggested, with the seismicity occurring only at its SW
boundary.

Regions of high Vp (>6.5 km/s) are present also to the NE of the SAF, at depth
greater than 5-6 km. Similar high Vp anomalies have been identified by Thurber et
al. (2006) about 10 km more to the south, and are associated to the Permanente
Terrane sequence (Brocher, 2005), an oceanic sequence of mafic rocks. We note that
the high Vp regions in our model are not correlated with particular Vp/Vs anomalies,
preventing us to infer the nature of these bodies.

Finally, notable differences are visible in both the Vp and Vp/Vs models between
the creeping segment to the NW of the SAFOD borehole and the locked segment
to the SE. To the NW the Vp contrast across the SAF is higher than to the SE
down to 3.5 km depth, and lower at greater depth. More, the average Vp/Vs to the
NW of SAFOD is lower in the entire depth range with respect to the SE. Here, a
remarkable low Vp and high Vp/Vs volume is present, just to the north of the 1966
Parkfield hypocenter.
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Across-fault Vp and Vp/Vs cross sections Vertical sections across the SAF
(Figure 4.10) provide additional information on the velocity structure.

(i) The sediment-basement transition to the west of the SAFOD well occurs in
correspondence of a steep velocity gradient at about 0-0.5 km depth, consistent with
seismic refraction studies (e.g., Hole et al., 2001; 2006) and gravity-magnetic data
modeling (McPhee et al., 2004). The high Vp, low Vp/Vs basement (Vp 5.8 km/s,
Vp/Vs 1.75 on average) correlates with a relatively higher resistivity zone (Unsworth
et al., 2000) and can be spatially associated to the slice of granitic basement en-
countered by the SAFOD borehole at about 0.1 km depth b.s.l. (e.g., Bradbury et
al., 2007). The Vp/Vs is slightly too high for typical granites or granodiorites (1.7,
Christensen, 1996), suggesting the presence of fluids.

(ii) A velocity reversal is clearly visible at about 5 km SW of the SAF in all the
four cross sections. In between 2 and 5 km depth there is a lower Vp channel (Vp
reaches a minimum of 5 km/s), slightly westward-dipping, characterized by higher
Vp/Vs relative to the overlaying granites. The velocity reversal can be due to gradual
differences in rocks structure and composition of the Salinian pluton, as also testified
by the different reflectivity found by Bleibinhaus et al. (2007), who reported strong
near-vertical reflectors in between 0.5-2 km depth, perhaps indicative of multiple
intrusion cycles, overlying almost transparent rocks. The nature of the transparent
low Vp, high Vp/Vs channel is uncertain. The velocity reversal encounters the
SAFOD borehole near the BCF. Since the deep structure of the BCF is still unknown,
we hypothesize that the velocity reversal can be located in correspondence of the
SW-ward prolongation of this fault. Ryberg et al. (2012), on the base of correlation
between Vp and Vp/Vs clusters and lithology, suggest a similar interpretation. These
Authors found that the velocity structure is consistent with granitic Salinian rocks
overlaying serpentinite near the SAFOD main hole. The Vp and Vp/Vs in our model
are consistent with serpentinites. Moreover, the presence of a serpentinite body
provides an alternative explanation to the magnetic and gravity anomaly analyzed
by McPhee et al. (2004), associated by the same Authors to the presence of an
unusually magnetic granitic body. Finally, More and Rymer (2007), by analyzing
SAFOD borehole cuttings, found evidence of interactions between silica-saturate
hydrothermal fluids and serpentine minerals.
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4 Rj-McMc LET at Parkfield

Figure 4.10: Mean Vp (left panels) and Vp/Vs models (right panels) plotted on ver-
tical cross-sections. See Figure 4.8 for the locations. Full color regions
are areas where the posterior standard deviation is less than the prior
standard deviation.
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(iii) A steep Vp and Vp/Vs discontinuity is visible just to the east of the SAFOD
borehole. Here, a low Vp, very high Vp/Vs (Vp/Vs > 2.2) region extends down to
about 2 km between the SAFOD borehole and the GHF (more evident in sections c-
d, see also Figure 4.12). Magnetotelluric data show a vertical zone of low-resistivity
rocks (FZC: Unsworth et al., 2000; Unsworth and Bedrosian, 2004; Becken et al.,
2008) associated with a combination of cracks, interconnected pore fluids and clay
minerals existing in the damage zone of the SAF (Ritter et al., 2005). The high
fluid content may account for the very high Vp/Vs value we have found. The most
seismicity concentrates below the high Vp/Vs region, suggesting that microseismicity
begins where the rocks have accumulated sufficient stress for brittle failure to occur
(see also Nadeau and McEvilly, 1997; Waldhauser and Ellsworth, 1999).

(iv) To the east of the SAF, the low Vp, high Vp/Vs region (Vp < 5km/s, Vp/Vs
> 2), deepens toward the Parkfield grade, reaching depth of about 3-4 km. This
anomaly is spatially correlated with a low resistivity region, called eastern conductor
(EC), found by MT investigations (Unsworth et al., 2000; Unsworth and Bedrosian,
2004; Becken et al., 2008). The EC has been inferred to be due to the high fluid
content of the Franciscan melange. It has also been suggested (e.g. Becken et al.,
2008) that fluids of the Franciscan complex enter from NE into the SAF damage zone
at shallow depth. With the exception of section d, the high Vp/Vs region is laterally
connected with the very high Vp/Vs region previously described, in agreement with
this idea.

(vi) At depth grater than 3 km low Vp/Vs values are dominant and show no spa-
tial correlation with the location of the SAF. Low Vp/Vs can result both in the case
of dry rocks and gas-bearing rocks (Dvorkin et al. 1999). In the second hypotheses
a low Vp is expected, because of the higher compressibility of the gas phase. Both
the hypotheses are in agreement with the high resistivity found below 3 km depth
(Unsworth et al., 2000; Unsworth and Bedrosian, 2004; Becken et al., 2008). Our
model is not sufficient to distinguish between the two different hypotheses. Con-
versely, the low Vp/Vs is not consistent with the hypothesis of fluid overpressure
along the SAF because in this case an increased Vp/Vs ratio is expected.
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Figure 4.11: Mean posterior Vp (upper panel) and Vp/Vs models (bottom panel)
plotted on a fault-parallel vertical cross-section e). See Figure 4.8 for
the locations.
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Vp, Vp/Vs models and seismicity The seismicity relocated in our velocity model
and shown on a fault-parallel cross-section (Figure 4.11) forms the ’streaks’ (hor-
izontal alignments of hypocenters) and the ’holes’ (regions devoid of earthquakes)
found by Waldhaueser at al. (2004) by relocating the whole 1969-2002 dataset. It
is noteworthy that the background seismicity is similarly distributed during this
time period. More, the moderate-size earthquakes occurred in 1966 and 2004 didn’t
change the overall distribution of earthquakes in the region (see also Thurber et
al., 2006) with aftershocks of both the earthquakes following the distribution of
the background seismicity. Thus, the highly organized structures of earthquakes
shown in Figure 4.11, although limited to the period 2000-2002, can be considered
as representative of the seismicity in the regions.

The ’Big Streak’ is particularly evident along the creeping segment northwest of
SAFOD. Here, the seismicity forms a slightly SE-dipping alignment of hypocenters
at about 3-4 km depth. The ’Big Streak’, characterized by frequent repeated events
that occur in the same locations and with the same magnitude (e.g., Waldhauser et
al., 2004), is located inside and atop a high Vp (6-7 km/s) with a similar SE-dipping
geometry. It also corresponds to the transition at increasing depth from high (> 1.9)
to low (< 1.9) Vp/Vs. This suggests that the seismicity occurs at the intersection
between the SAF and transition between different rocks strata, as also suggested by
Waldhauser et al. (2004) on the base of the active fault patches complexity. If this is
true, the low Vp zone below the ’Big Streak’, characterized by scarce seismicity, is not
related to the damage zone of the SAF, but highlights a different rocks composition
and rheology of rocks intersected by the SAF. As previously noted, the regions where
the P-wave velocity exceeds 6.2-6.5 km/s are more consistent with amphibolitic or
granulitic rocks than with granitic rocks.

To the SE of SAFOD, at the northwest end of the locked segment, the seismicity
is deeper and the dip of the fault appears to decrease (see Figure 4.10). In addition
to seismicity around 3 km depth, occurring at the transition from high to low Vp/Vs
ratio, there are two well-defined streaks at about 7 and 10.5 km depth, interrupted
by a region devoid of seismicity (’hole’). Both the streaks are spatially correlated
with relatively higher Vp and lower Vp/Vs regions. The microseismicity of the two
streaks is not characterized by multiples as the ’Big Streak’ and are thought to
concentrates at the transition between creeping (’streak’) and locked (’hole’) fault
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patches, representing narrow zones of steep slip rate (Waldhauser et al., 2004). The
Mw6 1966 and the 1934 earthquakes (e.g., Bakun and McEvilly,1979; 1984) initiated
beneath Middle Mountain approximately in the ’hole’ and propagated toward SE
with the main slip zone located outside of our resolved region. Trilateration and
GPS data indicate that the ’hole’ containing the 1966 event is the area of transition
between the NE creeping segment and the SE locked segment of the SAF (Murray
et al., 2001). More, the foreshocks of both the 1934 and 1966 events, some moderate
size earthquakes (4<Mw<5) occurred between 1992-1994 and two M5 aftershocks
of the Mw6 2004 event nucleated within the “deep streak” and propagated in the
’hole’.

Another notable difference between the creeping and the partially looked SAF
segments is found in the Vp/Vs structure. The creeping segment is characterized
by relatively lower high Vp/Vs ratio in the shallow region (0-3 km) and strong low
Vp/Vs ratio in the deeper region. Conversely, the looked segment has very high
Vp/Vs ratio at shallow depth but the deeper low Vp/Vs region is less intense. The
lower intensity is located in the correspondence of the seismic ’hole’, site of the 1966
earthquake.

The physical relationship between the Vp and Vp/Vs variations and the seismicity
is difficult to unravel. The creeping section is characterized by aseismic slip and
microearthquakes. Since no great earthquakes occurred in the past in this region,
the apparent weakness of this segment cannot be explained through some dynamic
weakening process accompanying a major earthquake. The creeping section of the
San Andreas fault located to the north of SAFOD is considered to be the best
evidence for a weak fault embedded in a strong crust (e.g., Williams et al., 2004;
Titus et al., 2006) and this is in agreement with the very low Vp/Vs found in our
model. The fault zone weakening is either explained by an unusually low friction
coefficient of the fault zone rocks, or by over pressured fluids, which can reduce the
apparent shear stress (Hickman et al., 1995). Nevertheless, both the SAFOD data
(e.g., Zoback et al., 2011) and the lack of high Vp/Vs anomalies in our velocity
model provide no evidence of high pore-pressure along the SAF.

This suggests that the mode of deformation is primary controlled by the different
rheology of the rocks intersected by the SAF with fluids perhaps playing a secondary
role, especially at greater depth.
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4.2.5 Comparison with borehole data

The Vp and Vp/Vs structures found around the SAFOD borehole are consistent
with both geological and borehole data (Figures 4.12 and 4.13). The main Vp and
Vp/Vs trends along the borehole are both well recovered. Standard deviations are
in the ranges 0.15-0.25 km/s and 0.025-0.125 for the Vp and Vp/Vs, respectively.

More in detail, both the Vp and Vp/Vs in our models are slightly higher than the
borehole measurements. Our model fails in detecting the velocity drop at the base of
the borehole. Some discrepancy between velocity data and sonic log measurements
is expected because of the different frequency of investigation and the occurring of
velocity dispersion. Nevertheless, velocity dispersion usually occurs with seismic
velocity lower than sonic-log velocity (Batzle et al., 2006 and references therein).
Therefore, the more likely explanation for the higher Vp found around 2 km depth
is in the lower spatial resolution of our model (the grid on which we project the
Voronoi’s tessellation has a inter-nodal spacing of 500 m). A finer grid is currently
not practicable because it would require too much computation time. Otherwise we
should re-compute the model in a smaller region. Of sure this would be interesting,
but actually it goes beyond our purpose. What it is worthy to note is that the
first-order correspondence between our velocity models and the sonic data confirms
the capability of the newly developed code to resolve fine details of the velocity
field, without the need to impose a-priori constraints like those often used in the
previous tomographic investigations at Parkfield. Finally, the better correspondence
with sonic log data of the Vp model by Zhang et al. (2009) is likely due to the huge
amount of data used if compared with our study.

As regard the Vp/Vs values, the anisotropy of rocks encountered by the hole
(Boness and Zoback, 2006) may be the cause of the general higher Vp/Vs of our
model with respect to sonic log data. Moreover, near the borehole the resolution
of the Vp and Vs models are quite different because both the shot and blast data
provide only the P-wave arrival times.
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Figure 4.12: Comparison between Vp, Vp/Vs models and geology around SAFOD;
a) geological section by Bradbury et al. (2007); b) velocity structure;
c) error maps.
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Figure 4.13: Borehole velocity logs in the main SAFOD hole (blue, modified from
Zhang et al., 2009); Vp and Vp/Vs values derived from our model (green
curves) with vertical error bars equal to ±3σ; red curves and from
models by Zhang et al. (2009) (red curves).

4.3 Comparison with previous models

Previous LET models Arrival-time data from local earthquakes in the Parkfield
area have been inverted by employing different inversion techniques, different ray
tracing algorithms and different parameterization of the Earth structure. Previ-
ous tomographic models were published by Lees and Malin (1990); Michelini and
McEvilly (1991); Eberhart-Phillips and Michael (1993); Thurber et al. (2003).
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Here we focus on the velocity models obtained with the same dataset used in the
Rj-McMc tomography. Thurber et al. (2004) compared the results obtained with
three different tomographic codes applied to the same dataset: Simul2000 (Thurber
and Eberhart-Phillips, 1999), tomoDD (Zhang and Thurber, 2003) and tomoGRAD
(Roecker et al., 2004; 2006). In all the tomographic codes the data inversion is
carried out using a standard damped least squares technique and including the
hypocenters in the inversion problem. Moreover, these models include a velocity
contrast of about 0.6 km/s across the SAF in the starting Vp model and use borehole
sonic-log measurements of Vp and Vs as strong or soft constraints on the inversion.

The Simul2000 inversion code (Thurber and Eberhart-Phillips, 1999) uses the
approximate pseudo-bending ray tracer by Um and Thurber (1987).

The Double-Difference tomographic code (tomoDD) uses both absolute and dif-
ferential arrival times and is able to produce more accurate event locations and
velocity structure near the source region.

The tomoGRAD code jointly fits arrival time data and gravity residuals using a
local velocity-density relationship. Since the gravity data were obtained at much
more closely spaced points than the available seismic network, they provide addi-
tional constraints to the Vp model in areas with sparse seismic data. Moreover, the
theoretical arrival times are computed with a different finite different ray-tracing
algorithm (Vidale, 1988; Hole and Zelt, 1995), which allows greater accuracy in
strongly heterogeneous media.

Finally, Zhang et al. (2005) used an adaptive parameterization to improve the
resolution of the velocity models. The last published model is that by Zhang et al.
(2009), but it has been obtained with much more earthquakes and explosions than
our model.

Despite the differences in ray-tracing, parameterization and treatment of earth-
quake locations, these models show no notable differences in the Vp structure. The
main result is a sharp horizontal Vp contrast (up to 1km/s) across the SAF below
2-3 km depth that is the depth at which the seismicity begins. A relative low Vp
region down 4-8 km is found to the NE of the SAF and a relative high Vp body
is found adjacent to the seismicity to the SW of the SAF, showing an offset about
4 km on the SW side of the SAF. Substantial differences appear only in the joint
gravity-velocity model by Roeckers et al. (2004; 2006), which shows a velocity re-

106



4.3 Comparison with previous models

versal to the SW of the SAF in between 3 and 5 km depth. More, both the velocity
contrast across the SAF and the low Vp region to the NE of the SAF extend to a
significantly greater depth.

Conversely, notable differences are present in the Vp/Vs models, maybe because
of the different S-wave data used and/or the different damping parameter used in
the inversion. As previously noted, we are confident that the difference in multiple
S-waves arrival times due to crustal anisotropy are inside the picking errors we have
associated to the readings. Nevertheless, if the picking errors used in the inversion
are smaller, the choice about which S-wave arrivals to use in the inversion can have
a strong effect on the final Vp/Vs model. This could explain the main differences
between the models by Thurber et al. (2004) and Roeckers et al. (2006).

In the Figures 4.14, 4.15 and 4.16 we compare our Vp ad Vp/Vs models with
those by Thurber et al. (2004). The models are derived by using the same starting
earthquakes locations and ray-tracing parameters. In addition to the different inver-
sion method, the main differences are the starting Vp model and the treatment of
S-wave data. Thurber et al. (2004) use a 3D starting model with velocity fixed along
the SAFOD pilot hole (Figure 4.14a). This prevents the comparison with sonic-log
data. Concerning the S-wave data, they use the whole S-wave dataset and invert
P-S arrivals instead of S-wave arrivals. Instead, we use the S-wave arrivals with the
lower picking errors, an approach similar to Roeckers et al. (2004; 2006). This can
only partially explain the strong and notable differences between our Vp/Vs model
and the Thurber’s one. Conversely, the Vp models are similar, testifying that our
new method is able to recover the strong velocity contrast across the SAF without
any a-priori information about it and that the 3D starting model used by Thurber
et al. (2004) is reliable and close to the true model. The main differences between
the two models are: (i) the velocity reversal to the SW of the SAF is more evident
in our model, in agreement with gravity data (Roeckers et al., 2004), (ii) the adap-
tive parameterization allows us to better define the shallow Vp structure, which is
very similar in both the shape and Vp values to those found by the high resolution
refraction profile by Hole et al. (2006), (iii) the Vp to the NE of the SAF is generally
lower in our model and (iv) the deeper high and low Vp anomalies are more evident
in our model, likely because of the lack of damping regularization.
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Comparison between data fitting Data misfit in our model is calculated by
considering the mean posterior model for both the earthquake parameters and the
velocity parameters. We use the simple least square data misfit (φ =

�
i((d

obs
i −

dcalci )/σi)2) for the comparison because it doesn’t depend on the data-weighting
scheme, which is different between the two inversion methods. It depends only
on data uncertainties, which have been defined on the base of the SAC weights:
standard deviations of 0.025s (weight=0), 0.05s (weight=1), 0.1s (weight=2) and
0.3s (weight=3).

The histograms of P, S and P-S arrival-time residuals are shown for both the two
different models in Figures 4.17 and 4.18. Surprisingly, the data misfit is on average
4 times higher for the model by Thurber et al. (2004) (our model: φp = 51932;
φs = 32468; φs−p = 34976; Thurber et al. (2004) model; φp = 166310; φs = 173470;
φs−p = 205390).

A huge difference in data fitting is found for the S-wave data. It is worthy to
note that Thurber’s model is derived by considering all the S-wave arrivals and by
inverted S-P arrivals instead of S-wave arrivals. Nevertheless our model fits also the
S-P data better than the simul2000 model. We also recompute the misfit for all the
available S-phases and not only for those used in the inversion but the difference in
data misfit is still very large. As previously shown, the affect of anisotropy on the
S-wave arrival times is likely included in the reading uncertainties.

Finally, we note that our tomographic code and simul2000 use very different
weighting schemes. Outliers in the Simul2000 code are down-weighted and the
weights given to data with different uncertainties are different from those used in
our code. Then, data misfit has been re-computed with only P-wave data charac-
terized by residuals lower than 0.5s and SAC weights equals to 0. The difference in
P-wave data misfit is still substantial (our model: φP = 31026, simul2000 model:
φP = 97732).

The analysis of the difference in data fit testifies that the fully non-linear approach
to the LET tomography, the use of a parameterization directly determined by data
and the lack of any damping regularization allow to extract more information from
the overall time arrivals data.
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Figure 4.14: a) Starting Vp model by Thurber et al. (2004); b) Vp (left panel) and
Vp/Vs (right panel) final models by Thurber et al. (2004); c) our Vp
(left panel) and Vp/Vs (right panel).
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Figure 4.15: Vp model by Thurber et al. (2004) (left panels) and our model (right
panels).
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Figure 4.16: Vp/Vs model by Thurber et al. (2004) (left panels) and our model
(right panels).
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Figure 4.17: P- and S- residuals between observed and theoretical arrival times; a)
theoretical arrival times computed in our model; b) theoretical arrival
times computed in model by Thurber et al. (2004).
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Figure 4.18: S-P residuals between observed and theoretical arrival times; a) theo-
retical arrival times computed in our model; b) theoretical arrival times
computed in model by Thurber et al. (2004)
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Supplementary Figures

Figure 4.19: Standard deviations of the Vp (left panels) and Vp/Vs (right panels) at
0,1 and 2 km depth.
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Figure 4.20: Standard deviations of the Vp (left panels) and Vp/Vs (right panels)
between 3.5 and 9.5 km depth.
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Conclusions

This thesis aimed at presenting a new, fully non-linear, approach to Local Earth-
quake Tomography.

First, I described the trans-dimensional Monte Carlo sampling applied to seismic
tomography. Synthetic tests demonstrated that our algorithm is able to produce
a more robust and reliable tomography than standard linearized inversion codes,
without the need to make subjective assumptions about starting models and pa-
rameterization. Moreover the Bayesian approach provides a more accurate estimate
of uncertainties about the model parameters. Synthetic tests also revealed that the
lack of any regularization constraints allows extracting more information from the
observed data and that the velocity structure can be detected also in regions where
the density of rays is low and standard linearized codes fails.

Because of the fully non-linear approach, our code is less dependent on available
a-priori information over model parameters. Therefore, it is very suitable for inves-
tigating the velocity structure in regions that lack of accurate a-priori information.

Second, I produced high-resolution Vp and Vp/Vs models in two widespread inves-
tigated regions: the Parkfield segment of the San Andreas Fault (California, USA)
and the area around the Alto Tiberina low angle normal fault (Umbria-Marche,
Italy). In both the cases, the models obtained with our new code show a substan-
tial improvement in the data fit, if compared with the models obtained from the
same data set with the Simulps linearized inversion code. Because of the parame-
terization directly determined by data, the new code has revealed to be effective in
detecting the very shallow velocity structure, where strong velocity heterogeneities
and gradients are expected.
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Of sure, our code can be further improved:

(i) The ray-tracing algorithm can be substituted by a more accurate and versatile
one; actually the ray-tracing is not able to proper compute ray-paths and travel-
times of head-waves and this limits the use of data from active seismic investigations.

(ii) A spherical coordinates system can be replaced the Cartesian coordinates
system, allowing an extension of the code to regional tomography.

(iii) The speediness of the code can be optimized. For both the Parkfield and the
Alto Tiberina test sites, the Rj-McMc tomography required about a week of parallel
computing time on a cluster of 250 CPUs. Up to date, the rasterization of the
Voronoi’s tessellation on the regular grid requires a lot of time. More, the maximum
number of grid nodes in the three direction is limited to about 30 by restriction on
memory allocation. Since the number of nodes affects the spatial resolution of the
resulting velocity model, technical improvements of the code can further enhance
the resolution of our models.

(iv) Data noise can be treated as unknown in the Rj-McMc sampling, as shown by
Bodin et al. (2012). Absolute picking errors are difficult to estimate because usually
the onset of the P- or S-wave is detect only one time. Moreover, picking errors are
likely different from Gaussian type. When SAC weights are available, the estimate
of absolute errors is arbitrary. It is worthy to note that the size of picking errors
is important because it affects the smoothness of the misfit function, the sampling
of the parameters space, the convergence achievement and also the posterior errors
associated to model parameters.

Finally, our working group is also developing a fully 4D tomography, by allowing
the change in time of the medium elastic properties.
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