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1.ABSTRACT 

The objective of the study was to investigate the sensitivity of primary blasts from AML 

patients to PI3K/Akt/mTor inhibitors through reverse-phase protein microarray. 

Reverse-phase microarray assays using phosphospecific antibodies (RPPA) can directly 

measure levels of phosphorylated protein isoforms. Mapping of deregulated kinases and 

protein signaling networks within tumors can provide a means to stratify patients with 

shared biological characteristics to the most optimal treatment, and identify drug targets. 

In particular, the PI3K/AKT/mTOR signaling pathways are frequently activated in blast 

cells from patients with acute myelogenous leukemia (AML), a neoplastic disorder 

characterized by the accumulation of genetically altered myelogenous cells displaying 

deregulated intracellular signalling pathways and aggressive clinical behavior with poor 

prognosis. By RPPA, we have analyzed the phosphorylome of 55 fresh peripheral blood 

and bone marrow specimens with newly diagnosed AML. Patients are diagnosed 

according to blast content, FAB classification and cytogenetic analysis. Samples are 

enriched for leukemic cells by performing Ficoll separation to yield a mononuclear 

fraction, followed by lymphocyte depletion. Only samples with > 80% blast cells were 

subjected to RPPA analysis. Collectively, our results indicate that: i) In good agreement 

with previous reports, by unsupervised hierarchical clustering our data validate a strong 

phosphorylation/activity of most members of the PI3K/Akt/mTOR pathway in >70% of 

samples from AML patients. This confirms that this pathway might indeed represent a 

pharmacological target in many patients. ii) In addition, our data indicate that the Akt 

pathway is hyper-activated in M4, M5 patients, compared to M0, M2 patients. iii) 

Furthermore, on the above basis, blast samples with high phosphoAkt were grown for 16 

h either untreated or treated with the PI3K/Akt inhibitors Perifosine (phase II), Akt 

Inhibitor VIII (phase I), Triciribine (phase I), all at nanomolar-low micromolar dose. Akt 

allosteric inhibitors were used, so that Akt phosphorylation might be used as a read-out of 

inhibitor efficacy. Then cells were centrifuged and proteins extracted with a buffer 

suitable for both RPPA and western blotting analysis. Treatment with the above inhibitors 

had no effect on the phosphorylation of other selected targets, demonstrating the 

specificity of the above results (more than one different inhibitor was used to avoid off-

target effects). Remarkably, the drugs were very effective in inducing apoptosis in all 

samples, though to a different degree. Unexpectedly, we observed that more than 50% 



samples were characterized by paradoxical Akt phosphorylation upon drug 

administration.  

iv) We therefore addressed the question why Akt inhibitors do not block Akt 

phosphorylation in those samples, and how do they trigger apoptosis short-circuiting Akt. 

First, we repeated the experiments at shorter time-points and observed that all drugs 

targeting Akt were able to abrogate phosphorylation at 2 and 4 hours treatment. However, 

this effect was followed by complete recovery and hyper-phosphorylation of Akt, far 

above basal level, after 20 hours. v) Next we asked whether initial Akt inhibition might 

trigger feedback signaling through its downstream effector mTORC1. To explore this 

possibility, blast samples with high phosphoAkt were grown for 2, 4 and 20 h either 

untreated or treated with the mTORC1 inhibitor rapamycin or with the mTOR dual kinase 

inhibitor Torin1, alone or in combination with the Akt inhibitor Perifosine. Although 

combined inhibition of both Akt and mTOR was not sufficient to reduce Akt 

phosphorylation below basal level after 20 hours, we observed that apoptosis was further 

increased. Thus, we conclude that there are Akt-regulated feedback pathways that are not 

sensitive to mTOR inhibition. In particular, we observed that catalytic inhibition of mTOR 

kinase leads to a new steady state, with Akt characterized by phosphorylation at T308 

even in the absence of phosphorylation at S473.vi) We considered that Akt is the main 

effector of PI3K, which in turn is activated by most RTKs. Consequently we asked 

whether Akt inhibition unleashes Akt-dependent inhibition of RTKs expression. 

Expression of RTKs such as IR and IRS-1, was monitored accordingly. We found that in 

samples non responsive to the above drugs Akt phosphorylation is paralleled by high IRS-

1. It is known that phosphorylation of the Akt direct target FOXO3a, leading to its 

degradation, down-regulates FOXO-dependent genes, such as IRS-1 and possibly other 

RTKs. Importantly, our results indicate that abrogation of Akt-dependent phosphorylation 

and degradation of FOXO3a leads to increased expression of IRS-1, hence reactivating 

PI3K and Akt signaling. vii) Based on the abovementioned result, samples were then 

treated with Perifosine in combination with the broad RTK inhibitor Sunitinib, known to 

block both IGF-1R and other RTKs upstream of PI3K, such as Flt-3, often activated in 

AML blasts. Strikingly, this drug combination blunted Akt phosphorylation after 20 hours 

also in those samples that were not sensitive to previous treatments, and triggered 

apoptosis extensively. Collectively, our results demonstrate that activation of PI3K/Akt in 



leukemia is modulated by negative feedback mechanisms, including mTOR and RTKs-

mediated signaling. We show that indeed, in more than 50% primary blasts from AML 

patients, blocking of Akt activity triggers release of Akt-dependent inhibition of RTKs 

expression, such as IR or IRS-1. Combined treatment with drugs targeting both Akt and 

mTOR is not sufficient to by-pass feedback mechanisms, although RTKs induction in 

these conditions is considerably weaker than that triggered by Akt inhibition alone. We 

further highlight that reduction of RTKs-dependent signaling by Sunitinib, in combination 

with Perifosine and Torin 1, very effectively blunts PI3K/Akt signaling, and trigger 

apoptosis. In conclusion, by means of selective inhibitors we have revealed that in 

primary leukemia blasts the PI3K/Akt/mTOR pathway possesses adaptive capabilities that 

disqualify administration of inhibitors of the above pathway as monotherapy for AML, 

but suggest that they could be very effective if administered in combination with RTKs 

inhibitors such as Sunitinib. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. INTRODUCTION 

 

2.1 ACUTE MYELOID LEUKEMIA 

 

Acute Myeoloid Leukemia is an hematological disease originated by a block in 

differentiation of hematopoietic stem cells resulting in growth of a clonal population of 

neoplastic cells or blasts. (Fig 1) The overproduction of immature white cells interferes 

with the normal hematopoiesis.  

 

 

 

Fig 1 

 

 

 

 



This disorder affects adults and its incidence increases with age. Remission rate with 

standard chemotherapy range from 50% to 80%. Nevertheless in most cases the patients 

have a relapse and die within 2 years from remission. (1) There are several subtypes of 

AML which are identified based on characteristics of the leukemia cells. Two systems 

have been used to classify AML into subtype the French-American-British (FAB) 

classification and the newer World Health Organization (WHO) classification. The 

different AML subtypes are classified according to French American British system into 

subtypes, M0 through M7, based on the type of cell from which the leukemia developed 

and how mature the cells are. This was based largely on how the leukemia cells looked 

under the microscope after staining. It is of note that acute promyelocytic leukemia is one 

of the most curable forms of AML. More than 70% of people with acute promyelocytic 

leukemia are sensible to ATRA therapy. The different FAB subtype are listed below: 

Table 1 

 

 

The World Health Organization (WHO) classification of acute myeloid leukemia attempts 

to be more clinically useful and to produce more meaningful prognostic information than 

the FAB criteria. Each of the WHO categories contains numerous descriptive sub-

categories of interest to the hematopathologist and oncologist; however, most of the 

http://www.news-medical.net/health/Acute-Myeloid-Leukemia-What-is-Acute-Myeloid-Leukemia.aspx


clinically significant information in the WHO schema is communicated via categorization 

into one of the subtypes listed below.. 

The WHO subtypes of AML are listed in table 2.  

Table 2 

 

 

 

 

 



2.2 PROGNOSIS AND GENETICS  

 

 

Acute Myueloid leukemia remission rate and survival percentage depend on a number of 

features, including age of the patient, cytogenetics, previous bone morrow disease (e.g 

myelodisplasia [MDS] or myeloproliferative disease). Prognosis and chromosomal 

aberration are linked very tightly. The classification of AML based on cytogenetics 

analysis divided patients in three main groups, those with favorable, intermediate, poor 

prognosis. People who have the poorest prognosis are those older than 60, those who have 

certain subtypes of AML, and those who develop AML after undergoing chemotherapy or 

radiation therapy for other cancers. About 40% to 50% of patients with AML have a 

normal karyotype and represent the largest subset of AML. (2). This subset has many 

difficulties in prognosis interpretation since not all patients have the same response to 

treatment. This is a result of the variability in gene mutations and gene expression in this 

population. Core-bonding factor (CBF) AML is a frequent subtype of AML with 

approximately favorable prognosis. This mutation t(8;21) results from translocations 

involving either AML1 or CBF, and is associated with FAB M2 subtype. In inv (16) 

mutation CBF on chromosome 16 is fused to MYH11 gene on chromosome 16 and is 

associated with FAB M4 subtype.(3,4,5) Mutations in the nucleophosmin 1(NPM1) gene 

and the CCAAT enhancer binding protein gene seems to confer a better prognosis, 

whereas FMS-like tyrosine kinase 3 related mutations are considered to have a very poor 

prognosis. Of note, the presence of c-KIT mutations in patients with otherwise favorable 

cytogenetic markers (eg, t(8:21), inv(16)) confers a higher risk of relapse and would place 

an otherwise better-risk patient into the intermediate-risk category.(5)
 
 Other molecular 

markers, such as isocitrate dehydrogenase 1 and 2 (IDH1, IDH2), and methyltransferase 

gene, DNMT3A have been suggested to be predictive of risk and response to treatment, 

but the relationship between these markers and risk of relapse/death has not been fully 

elucidated.(6)  
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2.3 DEREGULATED SIGNAL TRANSDUCTION PATHWAYS IN ACUTE 

MYELOID LEUKEMIA 

Most of patients treated with chemotherapy get to complete remission. 

Nevertheless the relapse percentage is very high and the 5 year survival rate for Acute 

Myeloid leukemia is only at 20%. (7) 

There is therefore urgent need to develop a more potent and effective drugs able to 

completely eliminate the aberrant growth of leukemic cells. 

This uncontrolled blast growth is associated to a deregulated signal transduction 

pathways . Recent papers highlighted the importance of Receptor Tyrosine Kinase  

signaling pathways in leukemogenesis process (8)  

The complex signaling networks downstream from RTKs and how alterations in these 

networks are translated into cellular responses especially when the cells are subjected 

to treatment are now under deep investigation. In this context it has been demonstrated 

that mutations in FLT3, cKit and RAS are frequent in Acute Myeloid Leukemia. 

The activation status of growth and survival pathways including PI3K/Akt/mTor has 

also been found to be increased in AML blast cells. 

 

2.4 PI3K/AKT/MTOR SIGNAL TRANSDUCTION PATHWAY  

IN ACUTE MYELOID LEUKEMIA 

 

Constitutive activation of PI3K/Akt/mTor pathway is detectable in 50-80% of Acute 

Myeloid Leukemia patients (9 10) This aberrant activation is related to a very poor 

prognosis with a low complete remission rate. (11,12,13) 

Moreover this unfavorable outcome caused by deregulation of PI3K/Akt/mTOR 

pathway is associated with the expression on leukemia cells surface of ATP binding 

cassette transporter MRP-1, involved in multi drug resistance (14,15). 

A more recent report suggested that Akt constitutive activation could be associated to a 

favorable outcome. The authors in this paper explain that the myeloid precursor of 

blast cells population are led by this pathway to a S phase where are more susceptible 

to chemotherapy (16). 

 



Constitutive PI3K/Akt/mTor activation is the results of several molecular factor such 

as activating mutations occurred to different Tyrosine Kinase receptor such as FLT3, 

C-kit and N-K- Ras (17,18,19,) or overexpression of the catalytic subunity of PI3K 

(20,21) , low level of PP2A and autocrine production of growth factor as IGF-1 and 

VEGF (22,23, 24,). 

In 66 AML patients PDK1 expression was been analyzed and in 45% of patients it was 

found overexpressed and this upregulation was correlated with PKC activation, 

whereas Akt phosphorylation at T308 it was not analyzed. (25) 

Furthermore interaction between stromal fibronectin and B1 integrin can activate 

PI3K/Akt/mTor pathway possibly through ILK1 upregulation (25,27) ILK1 seems to 

be correlated with phosphorylation of Akt at S473 throughout a direct interaction 

between mTorc2 and ILK1 in Acute Myeloid Leukemia cells. (28) Activating 

mutations at P110 PI3K or at PH domain of Akt were not detectable in Acute Myeloid 

Leukemia (29,30) 

Despite PTEN deletions are very frequent in solid tumors and also in several cases of 

Acute Lymphoblastic Leukemia , in AML patients these genetic alterations are very 

rare. However  PTEN activation can be mediated also by phosphorylation at its c-

terminal domain. 

This modification is able to stabilize PTEN and activate Akt (31).  The complex 

mTORC2 is activated in primary AML cells and might control S473 Akt 

phosphorylation. Long term treatments with rapamycin and its derivative can disrupt 

the mTORC2 complex leading a decrease in Akt activity in leukemic cells.(32). It is 

noteworthy that PI3K/mTOR/Akt signaling pathway is central to a plethora of cellular 

mechanisms in a wide variety of cells including leukocyte Proteins within the 

PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic 

intervention and drug development. 

 
 

 

 

 



 

2.2 PHOSPHOINOSITIDE 3-KINASE 

 

Phosphoinositides 3–kinases are a family of enzymes that play a pivotal role in 

important cellular regulatory mechanisms. 

PI3K’s are capable of phosphorylating the 3-OH position of phosphoinositide lipids 

(PIs) generating lipid second messangers. (32). Their function has been linked to the 

regulation of numerous biological processes including cell growth, differentiation, 

survival proliferation and migration. On the basis of structural similarities and 

substrates specificity, the PI3K family is divided into three classes termed I, II and III. 

All human class I members are heterodimers consisting of a catalytic subunit and a non 

catalytic subunit. They are known to phosphorylate PI, PIP, PIP2 in vitro but have a 

strong preference for PIP2 in vivo. Class I members are further subdivided into class IA 

and IB PI3Ks. Class IA consists of three isoforms (p110, p110 and p110) whereas 

the only class IB member is termed p110 

Class IA PI3Ks are commonly activated by tyrosine kinases, which generate docking 

sites for the p85/p55 adaptor subunit by phosphorylating tyrosines within p85/p55 

consensus binding motifs on al large number of proteins. Effectors of class I PI3Ks are 

pleckstrin homology domain containing proteins such as Akt/PKB, BTK, TEC, ITK, 

BAM32 and small GTPase. 

The action of PI3K’s is antagonized by the PIP3 phosphatases SHIP and PTEN 

 



        

Fig 2 Schematic representation of the phosphoinositide 3-kinases (PI3Ks). 

 

 

 

 

2.2.1 Akt/PKB 

Akt is a 57-kDa serine/threonine protein kinase that plays a key role in multiple 

cellular processes such as glucose metabolism, apoptosis, cell proliferation, 

transcription and cell migration. The Akt family comprises three highly conserved 

isoforms : Akt1/a Akt2/b and Akt 3/g, which display a high degree of sequence 

homology (34). However functional differences exist between Akt isoforms, Akt1 is 

involved in cellular survival pathways , by inhibiting apoptotic processes(35), Akt2 is 

an important signaling molecule in the Insulin signaling pathway (36) and the role of 

Akt3 is less clear, though it appears to be predominantly expressed in the brain. Akt 

possesses a protein domain known as a PH domain, or Pleckstrin Homology domain. 

This domain binds to phosphoinositides with high affinity.  

 

http://en.wikipedia.org/wiki/Apoptosis
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http://en.wikipedia.org/wiki/Protein_domain
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In the case of the PH domain of Akt, it binds either PIP3 (phosphatidylinositol (3,4,5)-

trisphosphate, PtdIns(3,4,5)P3) or PIP2 (phosphatidylinositol (3,4)-bisphosphate, 

PtdIns(3,4)P2).(37) Once correctly positioned at the membrane via binding of PIP3, 

Akt can then be phosphorylated by its activating kinases, phosphoinositide dependent 

kinase 1 (PDK1) at threonine 308 and mTORC2 at serine 473 (38) Activated Akt can 

then go on to activate or deactivate its myriad substrates (e.g. mTOR) via its kinase 

activity. So far, over 100 Akt substrates have been identified (39) Each of these 

substrates has a key role in the regulation of cell survival and proliferation, either 

directly or through an intermediary (40). 

 

 

 

Yap TA et al.,Curr Opin Pharmacol. 2008  

 

Fig 3 Schematic representation of PI3K–AKT pathway substrates and associated cellular 

functions.  
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2.2.2 mTOR 

 

The target of rapamycin (TOR) was originally discovered in the budding yeast 

Saccharomyces cerevisiae, as a target of the macrolide fungicide rapamycin, through 

mutants that showed growth resistance to rapamycin (41). The structurally and 

functionally conserved mammalian counterpart (Mtor) was subsequently discovered 

biochemically based on its rapamycin inhibitory properties.  

mTOR (the mammalian target of rapamycin) is a 289 kDa serine/threonine kinase that 

belongs to the PI3K-related protein kinase (PIKKs) family, since its c-terminus shares 

strong homology to the catalytic domain of PI3K. mTOR exists as two complexes 

referred to as MTORC1 and MTORC2. (Fig.4) 

 

Xuemin Wang, et al., Trends in Cell Biology, 2009 

 

Fig 4 Domain structure of mTOR. The N-terminus of mTOR contains two tandem repeated HEAT 

motifs (protein interaction domains found in Huntington,Elongation factor 3, PR65/A and TOR), 

followed by a FAT (domain shared by FRAP,Ataxia telangiectasia mutated, and TRRAP, all of 

which are PIKK family members) domain , a FRB (FKBP12-rapamycin-binding site,found in all 

eukaryotic TOR orthologs) domain, a PtdIns 3-kinase related catalytic domain , an auto inhibitory 

(repressor domain or RD domain) and a FATC (FAT C terminus) that is located at the C-terminus of 

the protein. The FRB domain forms a deep hydrophobic cleft that serves as the high affinity binding 

site for the inhibitory complex FKBP12-rapamycin 

http://www.sciencedirect.com/science/article/pii/S0962892409000816


 

mTORC1 consists of mTOR, raptor, mlst8, and two negative regulators, PRAS40 and 

DEPTOR. This complex is characterized by the classic features of mTOR by 

functioning as a nutrient/energy/redox sensor and controlling protein synthesis. The 

activity of this complex is stimulated by insulin, growth factors, serum, phosphatidic 

acid, amino acids (particularly leucine), and oxidative stress.  

mTORC1 is activated by the PI3K/AKT pathway (Fig 5) through the TSC1/TSC2 

complex; Akt inhibits tuberous sclerosis 2 (TSC2 or hamartin) function through direct 

phosphorylation. 

TSC2 is a GTPase-activating protein (GAP) that functions in association with the 

putative tuberous sclerosis1 (TSC1 or tuberin) to inactivate the small G protein Rheb  

TSC2 phosphorylation by Akt represses GAP activity of the TSC1/TSC2 complex, 

allowing Rheb to accumulate in a GTP-bound state. Rheb-GTP then activates, through 

a mechanism not yet fully elucidated, the protein kinase mTOR. 

Akt also phosphorylates proline-rich Akt-substrate-40 (PRAS40), an inhibitor of 

mTORC1, and by doing so, it prevents the ability of PRAS40 to suppress mTORC1 

signalling. Thus, this could be yet another mechanism by which Akt activates 

mTORC1. Moreover, PRAS40 is a substrate of mTORC1 itself, and it has been 

demonstrated that mTORC1-mediated phosphorylation of PRAS40 facilitates the 

removal of its inhibition on downstream signaling of mTORC1. 

mTORC1 is a major regulator of ribosomal biogenesis and protein synthesis through 

the phosphorylation and activation of S6K and the phosphorylation and inactivation of 

the repressor of mRNA translation 4EBP1. Since they are the best characterized 

downstream targets of mTOR, the phosphorylation status of S6K and 4EBP1 are 

commonly used to evaluated mTorc1 activity in vivo. Activated mTORC1 

phosphorylates S6K1, which phosphorylates S6 (40S ribosomal protein S6), 

enhancing the translation of  mRNAs with a 5'-terminal oligopoly pyrimidine (5'-

TOP). The targets of S6K1 include ribosomal proteins, elongation factors (eEF), and 

insulin growth factor II (IGF-II). 
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4EBP1 phosphorylation by mTORC1 on several amino acidic residues results in the 

release of the eukaryotic initiation factor 4E (eIF4E), that promote the translation of 

several proteins , such as c-Myc, cyclin D1, Cdk2, Rb protein, p27Kip1, VEGF and 

STAT3.(42,43,44) mTORC2 contains mTOR, rictor, Mlst8, Msin1, and the newly 

identified components Protor, Hsp70 and DEPTOR. Rictor is an mTOR-associated 

protein that is exclusive from mTORC2.  

mTORC2 is activated by grow factors, phosphorylates PKC-, AKT (ser473) and 

paxillin (focal adhesion-associated adaptor protein), and regulates the activity of the 

small GTPase Rac and Rho related to cell survival, migration, and regulation of the 

actin cytoskeleton. Hence mTORC1 and mTORC2 have different physiological 

functions. The complexes differ in their sensitivity to rapamycin: mTORC1 is sensitive 

and mTORC2 is resistant.  

Several studies suggest the existence of a negative feedback loop from the mTOR-

S6K1 pathway to the upstream IRS pathway (45) Activation of mTORC1 and S6K1 

regulates IRS-1 both at the transcriptional level and through direct phosphorylation 

on specific residues which prevent its recruitment and binding to RTKs, leading to a 

negative feedback regulation of PI3K .This negative regulation of Akt activity by 

mTORC1 is a consequence of P70S6K mediated phosphorylation of insulin receptor 

substrates (IRS) 1 adapter protein, downstream of insulin receptor and/or Insulin-like 

Growth Factor-1 Receptor (IGF-1R). Indeed IRS-1 phosphorylation by p70S6K targets 

the adapter protein to proteasomal degradation. (46). Therefore at least in principle, 

inhibition of mTORC1 activity by rapamycin/rapalogs could results in hyperactivation 

of Akt and its substrates. 

 



 

David Secko , The scientist, December 1, 2006  

 

Fig 5 PI3K/Akt/ mTOR pathway mTOR exists in association with two different complexes, mTORC1 

and mTORC2. mTORC1 consists of mTOR and regulatory associated protein of mTOR (Raptor), while 

mTORC2 consists of mTOR and rapamycin-independent companion of mTOR (Rictor). In the mTORC1 

pathway, PI3K converts PIP2 into PIP3, which localizes Akt to the membrane. The TSC1 (hamartin) and 

TSC2 (tuberin) complex is inactivated by Akt-dependent phosphorylation. Inactivation of TSC2 results 

in activation of mTOR via the GTPase, Rheb. mTOR phosphorylates both p70 S6 kinase (p70S6K) and 

4E-BP1 via independent pathways that promote cell proliferation. In the mTORC2 pathway, there is 

downstream signaling to the AGC kinases Akt, PKCα, and SGK1. Phosphorylation of Akt at Serine 473 

by mTORC2 primes Akt for further phosphorylation at Threonine 308. 

 



2.2.3 NEGATIVE REGULATION OFPI3K/AKT/mTOR PATHWAY 

Negative regulation of the PI3K pathway is primarily accomplished through the 

action of the phosphatase and tensin homologue deleted on chromosome ten (PTEN) 

tumor suppressor proteins. PTEN encodes a lipid and protein phosphatase whose 

primary lipid substrate is PtdIns[3,4,5]P3 (47). PTEN protein acts as a phosphatase to 

dephosphorylate phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5)P3 or 

PIP3). PTEN specifically catalyses the dephosporylation of the 3` phosphate of the 

inositol ring in PIP3, resulting in the biphosphate product PIP2 (PtdIns(4,5)P2). This 

dephosphorylation is important because it results in inhibition of the AKT signaling 

pathway. (48). Another negative regulator of the PI3K pathway is the PH domain 

leucine-rich repeat protein phosphatase (PHLPP). The phosphatases in the PHLPP 

family, PHLPP1 and PHLPP2 have been shown to directly dephosphorylate, and 

therefore inactivate, distinct Akt isoforms, at one of the two critical phosphorylation 

sites required for activation: S473. PHLPP2 dephosphorylates AKT1 and AKT3, 

whereas PHLPP1 is specific for AKT2 and AKT3. Lack of PHLPP appears to have 

effects on growth factor-induced Akt phosphorylation. When both PHLPP1 and 

PHLPP2 are knocked down using siRNA and cells are stimulated using epidermal 

growth factor, Akt phosphorylation at both S473 and T308 is increased dramatically.
 
 

(49) Two other phosphatases, SH2 domain-containing inositol 5'phosphatase 

(SHIP)-1 and SHIP-2, remove the 5-phosphate from PtdIns[3,4,5]P3 to produce 

PtdIns[3,4]P2 and inactivate Akt (50). Mutations in these phosphatases, which 

eliminate their activity, can lead to tumor progression.  

2.2.4 PI3K/AKT/mTOR PATHWAY AND SURVIVAL 

This pathway regulate the activity of many proteins involved in apoptosis. Many of 

the effects of the /PI3K/Akt/mTOR pathway on apoptosis are mediated by Akt 

phosphorylation of key apoptotic effector molecules (e.g., Bcl-2, Mcl-1, Bad, Bim, 

CREB, Foxo, Caspase-9 and many others) (51). Akt can directly phosphorylate BAD 

on S136, causing its inactivation preventing it from interacting with anti-apoptotic 

http://en.wikipedia.org/wiki/Phosphatase
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http://en.wikipedia.org/wiki/Inositol
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members of the Bcl-2 family of proteins (Bcl-2, Bcl-XL) . Activated Akt can inhibit 

the release of cytochrome c from the mitochondria, which is a potent activator of the 

apoptotic caspases cascade. The Akt target, Foxo-3 is capable of upregulating Fas 

ligand (Fas-L) and Bim, two very important molecules that are potent inducers of 

apoptosis; however, when inactivated by Akt, Foxo-3 is localized to the cytosol 

where it is unable to increase expression of these genes (52). Akt can also 

phosphorylate Bim which inhibits its proapoptotic activity (53) p53 plays a key role 

in DNA damage-induced apoptosis. Recent studies have reported that the PI3K/AKT 

pathway inhibits p53-mediated transcription and apoptosis through the degradation of 

p53. Mdm2, a ubiquitin ligase for p53, plays a central role in regulation of the 

stability of p53 and serves as a good substrate for Akt. Akt phosphorylates Mdm2 at 

Ser
186

 and increased Mdm2 ubiquitination of p53. (54). Akt and mTor also control the 

activation of the NF-κB transcription factor. NF-κB is broadly associated with 

oncogenesis through its ability to control cell proliferation and to suppress apoptosis. 

It is shown that mTOR downstream from Akt controls NF-κB activity in PTEN-

null/inactive prostate cancer cells via interaction with and stimulation of IKK. The 

mTOR-associated protein Raptor is required for the ability of Akt to induce NF-κB 

activity. Correspondingly, the mTOR inhibitor rapamycin is shown to suppress IKK 

activity in PTEN-deficient prostate cancer cells through a mechanism that may 

involve dissociation of Raptor from mTOR.(55). Moreover mTOR has been 

described as a key signaling regulator of autophagy. Autophagy is a highly conserved 

eukaryotic intracellular homeostatic process carrying out degradation of cytoplasm 

components, including damaged or superfluous organelles, toxic protein aggregates, 

and intracellular pathogens in lysosome.(56). Autophagy can be upregulated during 

metabolic, genotoxic or hypoxic stress conditions in order to ensure cell survival. 

Inhibition of mTOR kinase by specific inhibitors, rapamycin or nutrient deprivation, 

induces activation of autophagy. The role of mTOR in autophagy is conserved from 

yeast to mammals, and regulates the induction of autophagy process. In mammals the 

process may be mediated in part through mTOR-dependent phosphorylation of 



eEF2K (eukaryotic translation elongation factor 2 kinase), where mTOR inhibition 

leads to activation of eEF2K and induction of autophagy.(57) The release of amino 

acids from autophagic degradation leads to the reactivation of mTORC1 and to the 

restoration of the cellular lysosomal population. In concert, these events caused by 

Akt/mTOR activation affect the survival status of the cell. 

 

2.2.5 PI3K/AKT/MTOR PATHWAY AND CELL CYCLE 

Once activated Akt/mTOR pathway has the ability to control the access to the cell 

cycle check point. Recent studies have investigated the mechanisms underlying the 

tumor-promoting effects of this pathway. Akt triggers a network that positively 

regulates G1/S cell cycle progression through direct phosphorylation and 

consequently inactivation of GSK3-beta, leading to increased cyclin D1. Cyclin D 

initiates the phosphorylation of pRB which facilitates subsequent pRB 

phosphorylation by Cyclin E. Moreover Akt inhibits the Forkhead family of 

transcription factors and the tumor suppressor tuberin (TSC2), leading to reduction of 

p27Kip1. High level of P27
KIP1 

 are required to maintain many cell types in 

quiescence. P27 translation and its protein stability decrease in response to mitogenic 

signaling. P27 degradation may be regulated through a Akt mediated upregulation of 

SKP2, a key component of the SCF 
SKP2 

ubiquitin ligase complex that mediates 

ubiquitination and degradation of p27. (58) Akt can also direct phosphorylates the 

cyclin dependent kinase inhibitors p21
cip1/waf1 

. This phosphorylation caused 

cytoplasmic accumulation of p21, preventing its access to nuclear Cyclin dependent 

kinases targets. The identification of p21Waf1/Cip1 and p27Kip1 as novel substrates 

of Akt provided new insights into mechanisms whereby hyperactivation of this lipid 

signaling pathway may lead to cell cycle deregulation in human cancers.(59). 

MTORC complexes integrates nutrient and mitogen signals to regulate cell growth 

and cell division. Rapamycin inhibits cell cycle progression via inhibition of mTOR. 

The activities of both the S6K1 and 4E-BP1/eIF4E pathways are required for mTOR 



dependent G1-phase progression. Overexpression of constitutively active mutants of 

S6K1 or wild type eIF4E accelerates serum stimulated G1-phase progression and 

stable expression of wild type S6K1 confers a proliferative advantages in low-serum-

containing media, suggesting that the activity of each of these pathways is limiting 

for cell proliferation. (60) 

 

2.2.6 PI3K/AKT/MTOR PATHWAY AND METABOLISM 

Among its many roles, Akt appears to be common to signaling pathways that mediate 

the metabolic effects of insulin in several physiologically important target tissues. 

The regulation of glucose homeostasis is one of the best-characterized Akt-mediated 

processes with strong isoform specificity. Insulin regulates whole body glucose 

homeostasis by inducing the uptake of glucose into muscle and fat cells and by 

inhibiting hepatic glucose output, both of which are under the regulation of Akt 

signaling. To regulate glucose disposal insulin-induces the redistribution of the 

GLUT4 glucose transporter from intracellular compartments to the plasma membrane 

of fat and muscle cells (61) . The increase in plasma membrane of GLUT4 promotes 

increased flux of glucose into those cells in a concentration dependent manner. Akt2 

is the isoforms mainly involved in this mechanism. Deletion of Akt2 in mice, but not 

Akt1 or Akt3, results in fasting hyperglycemia, hyperinsulinemia, glucose intolerance 

and impaired glucose uptake by fat and muscle cells (61). The best characterized 

downstream effector of Akt required for regulation of GLUT4 trafficking to the 

plasma membrane is the RabGAP AS160. Phosphorylation by Akt leads to inhibition 

of the AS160 GAP activity towards Rab proteins, including Rab8, Rab10, and Rab14 

(62). The subsequent activation of these Rab proteins facilitates the translocation of 

GLUT4 to the plasma membrane of adipocytes and muscle cells. Akt has been shown 

to regulate also the localization of the glucose transporter GLUT1 through the GSK-3 

activity .Inhibition of basal GSK-3 activity (8–24 h) in several cell types, resulted in 

an approximately twofold increase in glucose uptake due to a similar increase in 



protein expression of the facilitative glucose transporter 1 (GLUT1).(63) In addiction, 

Akt may indirectly activate the glycolysis rate-controlling enzyme 

phosphofructokinase-1 (PFK1) by directly phosphorylating phosphofructokinase 2 

(PFK2), which produces the product, fructose-2.6-bisphosphate (Fru-1,6-P2), which 

is the most potent allosteric activator of PFK1(64). Hyperactive Akt activates 

MTORC1, which promotes HIF1a accumulation under normoxic conditions and 

increases GLUT1, HKII (hexokinase II) and lactate dehydrogenase (LDH) 

abundance.  Moreover, insulin triggers the phosphorylation of 4E-BP1 and S6K1 in a 

rapamycin sensitive way. This provides evidence for a link between mTOR and 

glucose modulation. Activation of mTOR by glucose needs support from amino 

acids, and glucose increase DNA synthesis, a process that can be blocked by 

rapamycin. Phosphorylation of mTOR downstream targets triggered by insulin may 

be mediated by metabolites or energy generated from glucose and not glucose per se. 

mTOR controls the translation of Hypoxia-inducible transcription factor1 mRNA. 

HIF-1a upregulation leads to increased expression of angiogenic factors such as 

vascular endhotelial growth factor (VEGF) and platelet-derived growth 

factor.(PDGF) Moreover HIF-1a regulates the glycolytic pathway by controlling the 

expression of glucose-sensing molecules such as glucose transporter GLUT1 and 

GLUT3 (65). The impact of fatty acid on mTOR signaling is proposed to be tissue 

dependent. Free fatty acid (FFA)- modulated phosphorylation of mTOR downstream 

targets S6K1 and 4E-BP1 appears in tissues that depend on oxidative metabolism, but 

not in the ones that rely on glycolytic metabolism. Phosphatidic acid which harbors 

fatty acid chains, has been implicated in mitogenic activation of mTOR  

mRNA translation and ribosomal biogenesis, two processes that are strongly affected 

by mTOR, consume high levels of cellular energy. This raises the possibility that 

mTOR activity is linked to cellular energy status. The ability of insulin to activate 

mTOR is impaired upon a reduction in cellular ATP levels by reduced glucose 

availability or the inhibition of mitochondrial respiration, suggesting that cellular 



energy impacts mTOR activity . The effect of intracellular ATP levels on mTOR 

activity has been attributed to high dissociation constant of mTOR for ATP (66). The 

5′AMP-activated protein kinase (AMPK) is regulated by even moderate changes in 

ATP levels and can sense the cellular AMP/ATP ratio. AMPK activity increases upon 

decline of the intracellular ATP. AMPK activation leads to a decrease in mTOR 

activity as measured by S6K1 phosphorylation (67). Also TSC2 contains multiple 

AMPK consensus phosphorylation sites, and two of these sites are phosphorylated by 

AMPK, both in vitro and in vivo.  mTOR activity in TSC2 null cells is more 

refractive to energy deprivation compared with wild-type cells, and expression of a 

TSC2 mutant in which AMPK-targeted residues are substituted by alanine renders the 

phosphorylation of S6K1 more resistant to glucose deprivation. These results suggest 

that AMPK activates TSC2 (68) and these results imply that energy metabolism and 

protein synthesis are tightly coupled. This coupling is mediated by AMPK via 

activation of TSC2.  

 

2.3. PI3K/AKT/mTOR INHIBITION 

The PI3K/Akt/mTOR cascades are often activated by genetic alterations in upstream 

signaling molecules such as receptor tyrosine kinases (RTK). Some of the principal 

components of this pathways, are also activated/inactivated by mutations. This 

pathways have profound effects on proliferative, apoptotic and differentiation 

pathways. Dysregulation of this pathway can contribute to chemotherapeutic drug 

resistance and  proliferation of cancer initiating cells There are many agents available  

that affect the PI3K pathway include monoclonal antibodies and tyrosine kinase 

inhibitors, as well as PI3K inhibitors, Akt inhibitors, rapamycin analogs, and 

mammalian target of rapamycin (mTOR) catalytic inhibitors. compounds that block 

both PI3K and mTOR (dual inhibitors).  

 

http://genesdev.cshlp.org/content/18/16/1926.long#ref-81


2.3.1 PI3K INHIBITORS 

LY294002 is a PI3K inhibitor for p110α, p110δ and p110β with IC50 of 0.5 μM, 

0.57 μM and 0.97 μM, respectively. LY294002 has been used extensively to study 

the role of PI3K/Akt pathway in normal and transformed cells. Inactivation of PI3K 

using LY294002 has been demonstrated to lead to the dephosphorylation of Akt at 

both T308 and S473, inducing specific G1 arrest in cell growth and finally to cell 

apoptosis . LY294002 also have antitumor activity in vitro and in vivo in a variety of 

tumor types. LY294002 is currently in Phase I clinical trials in patients with cancers 

(69) 

 

2.3.2 AKT INHIBITORS 

Perifosine is a synthetic novel alkylphospholipid (ALP), a new class of antitumor 

agents which targets cell membranes of active proliferating cells and inhibits PH 

domain mediated AKT membrane recruitment and activation. Importantly, Perifosine 

does not directly affect either activity of PI3K or phosphoinositide-dependent kinase 

1 (PDK1). Perifosine has displayed significant anti-proliferative activity in vitro and 

in vivo in several human tumour model systems and is currently being tested in 

different clinical trials.(70)  Perifosine exerts Akt-dependent and Akt-independent 

effects, indeed recent papers have documented that Perifosine targets both MTORC1 

and MTORC2 by down regulating mTOR. (71) Perifosine reduced cell proliferation 

and induced apoptosis in several tumors type, including hematological disease as 

AML. 

 

 

 



Triciribine 

A cell-permeable and reversible tricyclic nucleoside that selectively inhibits the 

cellular phosphorylation/activation of Akt1/2/3. It does not inhibit known upstream 

activators of Akt  i.e. PI3K or PDK. Exhibits little effect towards cellular signaling 

pathways mediated by PKC, PKA, SGK, Stat3, p38, ERK1/2, or JNK. It is shown to 

preferentially induce apoptosis and growth arrest in cancer cells with aberrant Akt 

activity both in vitro . and in vivo. Triciribine potently inhibits Akt signaling in 

human tumor cells with aberrant Akt, leading to inhibition of cell growth and 

induction of apoptosis. In a xenograft nude mice model, Triciribine significantly 

inhibits tumor growth in Akt-overexpressing cells but not in the tumors with low 

levels of Akt.  (72) 

 

VIII  

Akt Inhibitor VIII is a cell-permeable quinoxaline compound that has been shown to 

potently, selectively, allosterically, and reversibly inhibit Akt1 and Akt2 isoforms. 

The inhibition appears to be pleckstrin homology (PH) domain-dependent and the 

Akt1/2 kinase inhibitor has no inhibitory effect against PH domain-lacking Akt, or 

other closely related AGC family kinases, PKA, PKC, and SGK, even at 

concentrations as high as 50 μM. Akt 1 / 2 is a isoform specific inhibitor that forms a 

PH domain-dependent inactive conformation with Akt1 and Akt2.(73) 

2.3.3 mTOR INHIBITORS 

Rapamycin 

Sirolimus, also known as rapamycin, was originally developed as an antifungal 

agent. This use was abandoned when it was discovered to have potent 

immunosuppressive and antiproliferative properties. Rapamycin and analogue have 

http://en.wikipedia.org/wiki/Antifungal_medication


shown remarkable efficacies in preclinical and clinical trials treating organ transplant 

rejection, autoimmune diseases as well as tumors. The mode of action of rapamycin 

is to bind the cytosolic protein FK-binding protein 12 (FKBP12) The coupled RPM-

FKBP12 complex then targets the FKBP12-rapamycin binding region (FRB) in the 

C-terminus of target of rapamycin (TOR) protein and thereby decreases their 

activities and inhibits the downstream signaling events. 

Rapamycin and a number of analogs are currently in Phase II AML trials, alone or 

with others chemotherapeutics. As a monotherapy rapamycin induced significant 

clinical responses in 4 out of 9 patients with either refractory or relapsed AML.(74) 

However, the effects of rapalogs, as previously reported, are limited and only 

cytostatic in vitro. More efficient anti leukemic activity in vitro and in vivo will 

probably be achieved with second generation mTOR inhibitors, now designated as 

TORC inhibitors . 

 

Torin 1 

Torin 1 is a potent and selective ATP-competitive mammalian target of rapamycin 

inhibitor. Torin1 inhibits phosphorylation of mTORC1 and mTORC2 substrates in 

cells at concentrations of 2 and 10 nM, respectively Torin1 causes cell cycle arrest 

through a rapamycin-resistant mechanism that is also independent of mTORC2. 

Torin1 disrupts mTORC1-dependent phenotypes more completely than rapamycin. 

Rapamycin-resistant functions of mTORC1 are required for cap-dependent 

translation. (75) 
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2.4  TYROSINE KINASE RECEPTORS 

Tyrosine kinase receptors are a family of receptors with a similar structure. They 

each have a tyrosine kinase domain (which phosphorylates proteins on tyrosine 

residues), a hormone binding domain, and a carboxyl terminal segment with multiple 

tyrosines for auto phosphorylation.  When hormone binds to the extracellular domain 

the receptors aggregate and the tyrosine kinase domains phosphorylate the C terminal 

tyrosine residues. The phosphorylation of specific tyrosine residues within the 

activated receptor creates binding sites for Src homology 2 (SH2) domain- and 

phosphotyrosine binding (PTB) domain-containing proteins  Specific proteins 

containing these domains include Src and phospholipase Cγ. Phosphorylation and 

activation of these two proteins on receptor binding lead to the initiation of signal 

transduction pathways. Other proteins that interact with the activated receptor act as 

adaptor proteins and have no intrinsic enzymatic activity of their own. These adaptor 

proteins link RTK activation to downstream signal transduction pathways. 

 

Fig 6 Receptor Tyrosine Kinases contain multiple tyrosine residues and are inactive in monomer 

state. Binding of signal molecules such as insulin causes 2 monomers to form a dimer. ATP donate 

a phosphate to each of the tyrosines. Relay proteins bind to the phosphorylated tyrosines and trigger 

different cellular responses 

http://en.wikipedia.org/wiki/Tyrosine
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http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Adaptor_protein
http://en.wikipedia.org/wiki/Signal_transduction


2.4.1 RTK’s in Acute Myeloid Leukemia 

In every receptor with tyrosine kinase activity there is an oncogenic potential. 

Structural modifications can lead to constitutive activation of RTKs and alterations in 

signal transduction. Deletions within the extracellular ligand-binding domain alter 

ligand responsiveness, and also point mutations are able to induce overall-ligand-

independent conformational alterations and activate RTKs. 

In Acute Myeloid Leukemia are extremely common mutations at RTKs or their 

downstream effector.  

FLT3: the FMS-like tyrosine kinase 3 (FLT3) is the most frequently mutated gene in 

AML. FLT3 is a transmembrane receptor that has crucial role in normal 

hematopoiesis and in the control of cell proliferation. About one-third of all patients 

show either internal tandem duplications (ITDs) within the juxtamembrane domain of 

FLT3, or mutations within the activation loop. 

FMS: FMS is a cell surface RTK and specific point mutations in this receptor have 

been implicated in neoplastic transformation by inducing ligand independence and 

constitutive activation of the tyrosine kinase activity. Patients with myeloplastic 

syndrome harboring FMS mutations were shown to have a significantly increased 

frequency of transformation to AML. 

C-KIT: C-kit encodes a transmembrane receptor that is activated by stem cell factor 

(SCF). Activation of c-Kit correlates with the rate of proliferation of myeloid 

leukemia cells and with the excessive proliferation and aberrant differentiation of 

these cells. 

IGF-1R . Insulin like growth factors has been described to be important for AML cell 

growth and autocrine IGF-1 production has been suggested to influence drug 

resistance .Activation of PI3K/Akt signaling pathway has been detected in blast cells 



with IGF-1 mutations, and this contributes to survival and proliferation of leukemia 

cells. 

 

3. AIMS 

Signaling network maps and phosphoprotein profiles in cancer cells are considered 

powerful tools not only to understand precise molecular mechanisms, but also to 

determine molecular signatures of kinase activation, very helpful to identify new drug 

targets and to sort patients that do not respond to conventional treatments towards 

tailored therapy. Indeed, a major drawback of conventional therapies is drug 

resistance. Therefore, the definition of deregulated, functionally important, molecular 

network associated to defined subpopulation of patients is a potential solution to this 

problem.  

Therefore, our broad objective is to investigate, by the use of Reverse Phase Protein 

Array, the responsiveness of AML patients to drugs targeting the PI3K/Akt/mTOR 

pathway, frequently hyperactivated in leukemia. 

The specific aims are 

a) to describe the phosphorylome (90 epitopes) of a large cohort (80) of 

AML patients and describe deregulated signaling patterns and aberrant protein 

phosphorylation, by means of reverse phase protein array and western blotting 

analysis; 

b) to investigate the sensitivity of primary blasts from leukemia patients to 

PI3K/Akt/mTOR inhibitors, namely LY294002, Perifosine, Triciribine, Akt1/2 

Inhibitor VIII, Rapamycin, Torin 1; 

c) to explore the key regulatory events mediating the efficacy of the drugs. 

 

 

 



4. MATERIALS AND METHODS 

 

4.1 PATIENTS DEMOGRAPHICS AND CLINICAL CHARACTERISTICS 

We generated a Reverse Phase Protein Array (RPPA) using protein derived from the 

leukemia cells enriched fraction from 80 AML patients at diagnosis. Diagnosis was 

made according to standard cytomorphology, cytochemistry and immunophenotyping 

criteria. (82) Samples were collected at the Oncohematology Laboratory (Modena, 

Italy, Director Prof. Mario Luppi), between 2008-2011 and stored in a BioBank in 

liquid nitrogen. The percentage of peripheral blood blasts was between 70% and 

98%. Clinical details are resumed in  

Table S1. 

 

 

Samples were collected from bone marrow and peripheral blood. Same day bone 

marrow and peripheral blood samples were available for 8 patients and were used to 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958847/#pone.0013552.s003


compare proteins expression between peripheral blood and bone marrow. 

Immediately after collection the samples were purified by centrifugation on a Ficoll-

Hypaque density gradient. Samples with less than 70% blasts were depleted of B and 

T lymphocytes using magnetic sorting with antibody conjugated anti CD3+ and anti 

CD19+. The samples were frozen in a cryoprotective solution containing 10% DMSO 

+ 20% RPMI + 70% FBS and stored in liquid nitrogen. 

4.2 CELL CULTURE AND DRUG TREATMENT 

Human leukemia cell lines THP1, HL60, K562, Jurkat, CCRF CEM, CCRF 

CEM/ADR (Multi Drug Resistance phenotype obtained by continuous exposure to 

doxorubicin as described by Cenni et al(83)), were used as positive controls for 

correct staining, background and loading variation across the slides. Cells were 

cultured in RPMI 1640 (Euroclone LTD, UK) with 10% FCS, penicillin (100U/ml) 

(SIGMA ALDRICH) and streptomycin (100 µg/ml) (SIGMA ALDRICH), and 

maintained at 37°C in a humidified atmosphere with 5% CO2.Where indicated 

primary AML blast cells were treated with kinase inhibitors are listed below: 

 

 

 

 



4.3 ARRAY ASSEMBLY AND PRINTING. 

Reverse-phase protein arrays. Primary blast cells were thawed and cultured in RPMI 

additioned with 20% fetal bovine serum for 20 hours. Cells were washed with ice–

cold PBS 1X and lysed on ice for 20minutes in an appropriate lysis buffer: TPER 

Reagent (Pierce, Rockford, IL), 300 mM NaCl, 1 mM Na orthovanadate, 200 mM 

PEFABLOC (AEBSF) (Roche, Basel, Switzerland), 1ug/mL Aprotinin (Sigma, St. 

Louis, MO), 5 mg/mL Pepstatin A (Sigma), 1 mg/mL Leupeptin (Sigma). All 

samples were diluted to a final concentration of 0.5 mg/ml and then 30 μl of each 

sample, arrayed in a series of 6-fold dilutions, was printed in duplicate on slides. 

Commercial lysates derived from A431+EGF, Hela+Pervanadate and Jurkat 

Apoptotic cell lysates (BD Biosciences, Franklin Lakes, NJ). were also printed on 

each slide as low and high phosphorylation controls, respectively. The slides 

were then subjected to immunostaining with a panel of 90 commercially available 

antibodies primarily directed against specific phosphorylated or cleaved proteins, 

including PI-3K/Akt, ERK/MAPK, PKCs and caspase-dependent apoptosis. Each of 

these antibodies had previously undergone extensive validation for both 

phosphorylation and protein specificity using single band detection at the appropriate 

MW by Western blotting. To estimate the total protein amount, selected arrays were 

stained with Sypro Ruby protein blot stain (Molecular Probes, Eugene, OR, USA) 

and visualized on a Fluorchemk imaging system (Alpha Innotech, San Leandro, 

CA, USA). Slides were stained on an automated slide stainer (Dako, Carpinteria, 

CA, USA) using a biotin-linked peroxidase catalyzed signal amplification. Finally, 

the primary antibodies at concentrations ranging from 1:50 to 1:1000 were applied 

for 30 min followed by the secondary link antibody for 30 min (concentration 1:10 

for anti-mouse antibodies and 1:5000 for anti-rabbit antibodies). For the complete 

list of the 92 stained antibodies with RPPA, please see Table S2. Each antibody was 

previously subjected to extensive validation for single band specificity by Western 

Blot (WB). For phospho-specific antibodies, each antibody was checked for 

specificity using cell extracts with and without appropriate ligand induction. The 92 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0013552#pone.0013552.s004


antibodies used in this study were carefully selected based on both their extensive 

validation for specificity as well as detecting key signalling molecules known for 

their involvement in motility, invasion, pro-survival, and growth factor signaling. To 

allow normalization of total protein on printed arrays, one to two slides in each print 

run were stained with Sypro Ruby protein blot stain (Invitrogen) and the value of 

these stained arrays used for normalization of all end-point values. The intensity 

value for each end point was determined by identifying spots for each duplicate 

dilution curve for each sample that were within the linear dynamic range of the 

staining after background subtraction with each spot (within slide local background 

and also against a slide stained with secondary antibody only). Single intensity values 

were obtained by multiplying each spot in the linear range by its dilution factor and 

averaging candidate linear points. Finally, each value was normalized relative to 

the total protein intensity value for that sample derived from the Sypro Ruby-

stained slide. 

 

 

 

 

 

 

 

 

 

 

 



Table S2 

 

 

 



 



5. RESULTS 

 

5.1 PHOSPHOPROTEIN ANALYSIS OF AML BLAST CELLS REVEALS 

DIFFERENT PROTEINS SIGNATURES CORRELATED WITH FAB 

CLASSIFICATION AND PROGNOSIS 

 

A broad survey of multiple signaling pathways was initially performed on a 

population of 53 newly diagnosed AML patients, through RPPA analysis of 90 native 

and phosphorylated key endpoints related to cell growth, proliferation, survival and 

metabolism (Table 2, see MATERIALS AND METHODS). Blasts cells were 

obtained from bone marrow and/or pheripheral blood, at diagnosis (30 samples of 

pheripheral blood cells and 23 samples from bone marrow). 8 same patients blood 

and bone marrow specimens were available, and were therefore analyzed and 

compared, showing equivalent expression and phosphorylation of sampled proteins. 

Therefore in our analysis bone marrow and peripheral blood specimens were utilized 

interchangeably (Fig.1a,1b). Furthermore, 35 samples were fresh, collected and 

treated immediately after blood draw, whereas 18 were DMSO cryopreserved, 

obtained from a biobank at Policlinico di Modena. Thus protein profiles of fresh vs 

cryopreserved samples were compared by Western Blot and RPPA analysis. 

Overlapping profiles were observed in fresh samples and samples subjected to one 

freeze/thaw cycle. However, cleaved PARP and Caspase 3 were detectable in 

samples after repeated freeze/thaw cycles. (Fig. 1c,1d). Thus, in our study sets frozen 

samples were thawed only once. All samples were lysed in a buffer suitable to both 

RPPA and western blotting, then protein extracts were printed on nitrocellulose 

covered glass slides and proteins/phosphoproteins were detected with previously 

validated antibodies. By Microvigene software analysis a heatmap was generated, 

graphically representing the 90 endpoints scaled so that green represents low 

expression and red represents high expression (Fig. 2). 



Because the FAB classification distinguish leukemia based on the degree of 

maturation, it is conceivable to expect different expression signatures for different 

FAB subtypes. FAB subtype comparison by unsupervised hierachical clustering 

analysis showed two groups of proteins tracking similarly. The first cluster by early 

myeloid M01-M2 patients was characterized by low levels of phosphorylated 

proteins involved in prosurvial pathways as pAkt-pPKC-pmTOR-pP70-pERK1/2, 

whereas signals related to proteins involved in proapoptotic functions are very high. 

The second cluster is enriched for apoptosis (pBAD, pBCL2, pFADD, pFOXO ). 

These proteins have significantly higher expression/phosphorylation in myeloid M4-

M5 subtype.(Fig.3a,3b,3c) This difference might help to explain the poor prognosis 

associated to M4-M5 patients as well as the better outcome of M1-M2 patients. 

 

 

 

a) 

b) 

c) 

d) 



Fig. 1 a) Western blot shows expression of  some of the proteins measured in one representative samples with 

matched blood (PB) and marrow (BM). HL60 cell lines were used as positive controls. b)  Blast cells lysates from one 

sample, P2 representative of the 8  samples available, were printed onto RPPA arrays and assayed with 20 antibodies. 

The signal strength for each protein was similar regardless of source (blood or marrow). c) Western Blotting analysis 

shows that  phosphorylation of Akt and Erk is not modified upon one freeze/thaw cycle (lane C1). However, repeated 

freeze/thaw cycles cause increase of  cleaved PARP  (lane C2). d) Blast cells lysates from one fresh sample  and one 

sample subjected to repeated freeze/thaw cycles   were analyzed through RPPA for apoptosis related proteins 

 

 

Fig. 2 

AML phosphoproteome 

Through RPPA technology we analyzed about 90 endpoints involved in different signaling pathways: survival, 

apoptosis, oxidative-stress and metabolism. A heatmap generetad from Microvigene software is generated, graphically 

representing the 90 endpoints scaled so that green represents low expression and red represents high expression  



 

Fig.3 a) supervised Heat map based on FAM classification b)  the reported signal intensities for each endpoint are 

expressed as a ratio between a mean value calculated in M4-M5patients and a mean value calculated in M1-M2 

patients.Vertical bars indicate standard deviations c) Analysis of   apoptosis related proteins.  The signal intensity of  

one patient  representative of the M2 and one patient representative of the M5 FAB subtype are shown. 

 

a) 
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c) 



5.2 AKT INHIBITION TRIGGERS PARADOXICAL AKT S473 

PHOSPHORYLATION AS WELL AS SUSTAINED APOPTOSIS 

 

Furthermore, the abovementioned unsupervised clustering of the 90 endpoints 

revealed two major classes of samples: one cluster with high Akt/mTOR pathway 

activation/phosphorylation and the other with a comparatively low level of signaling 

(Fig. 2). This result was not unexpected, as it is known that Akt phosphorylation at 

Ser473 can be detected in 50-60% of AML patients (30,78), and Akt/mTOR 

inhibitors are being developed as potential therapeutic (79). To get more insight into 

this important aspect, 10 samples with constitutive activation of PI3K/Akt were 

selected, and the effectiveness of PI3K/Akt inhibitors to diminish Akt 

phosphorylation and trigger apoptosis was studied. First, blast cells were grown for 

20 hours in a medium additioned with either DMSO 0,01% (vehicle) or with the 

powerful ATP competitor of PI3K-p110  and  isoforms, LY294002 (1M). 

Although cytotoxicity and low solubility prevented clinical development, LY294002 

remains very useful in biochemical and pharmacological analysis. Samples were 

analyzed by western blotting and RPPA. Unexpectedly, PI3K inhibition had almost 

no effect on the phosphorylation of Akt S473 and its substrates GSK3, PRAS40 and 

FoxO 01/03. Phosphorylation at T308, as well as that of PDK1 S241, declined only 

slightly in most samples. Consequently the Akt kinase was not blocked by LY294002 

(Fig 4a,4b) Remarkably however the drug was able to trigger cell death, as monitored 

by the increase of apoptosis related proteins such as cleaved caspase 9 and 6 (Fig. 

4a). Hence, in a new study we explored whether this paradoxical Akt activity is a 

consequence of inhibitor binding to the ATP binding site of PI3K. We tested the 

following Akt inhibitors, already in clinical trials: Perifosine (phase II), Akt inhibitor 

VIII (phase I) and Triciribine (phase I).More than one inhibitor was used to avoid off  

targets effects. After 20 hours of drug administration, all the inhibitors were very 

effective in inducing apoptosis, though to a different degree (Fig. 5a). However, 

similarly to LY294002, these drugs caused paradoxical hyperphosphorylation of Akt 



at its two regulatory sites Thr308 and Ser473, as well as high phosphorylation of its 

substrates pGSK3 (S21/9) pPRAS40 T246 in more than 70% samples (Fig. 5b). 

Interestingly, investigating this pathway by means of selective inhibitors allowed us 

to stratify blasts from AML patients in a group of responders, in which 

phosphorylation of Akt is blunted and cells undergo apoptosis, and one of not 

responders, characterized by persistent Akt activity above basal level. However it is 

important to mention that also the second group of samples undergo cell death in 

response to Akt inhibitors. Next, we investigated whether paradoxical Akt S473 

phosphorylation in the non responder cluster might be due to the inactivation of the 

drug in water medium after 20 hours, or whether more complicated feedback 

mechanisms sustained Akt activity. To confirm this hypotesis, we repeated treatments 

at shorter times. Blast samples were cultured for 2 or 4 hours in a medium containing 

20M Perifosine. Figure 6 clearly shows that these short time treatments blunted Akt 

phosphorylation both at S473 and T308. In contrast, after 20 hours Akt was again 

hyperphosphorylated. The transient Akt inhibition suggests that feedback 

mechanisms promote reinduction of Akt activity. 

 

 

 

 

 

 

 

 

 



 

 

Fig.4  

a)The signal intensity values shown in the graphic are normalized against the untreated samples. 

The dotted line indicates CTRL baseline of 1. 

 b) Western Blotting analysis shows expression of phosphoproteins involved in Akt signaling 

 pathway in 3 representative samples treated with LY294002
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Fig.5 a) b) y-axis of the histograms represents signal intensity values obtained by Microvigene 

software. Y-axis, FOLD CHANGE VARIATION is calculated as a means value of ratio treatment 

versus vehicle(DMSO) . 
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Fig. 6 

 

5.3 COMBINED INHIBITION OF MTOR AND AKT ENHANCES CELL 

DEATH BUT DOES NOT COMPLETELY BLUNTS AKT ACTIVATION. 

 

The mTOR complexes mTORC1 and mTORC2 function both upstream and 

downstream of Akt. mTORC1 is sensitive to rapamycin and inhibits Akt via a 

negative feedback loop which involves its substrate p70S6K. mTORC2 is rapamycin 

insensitive and directly phosphorylates Akt at S473. To explore the involvement of 

mTORC1/2 complexes in the rapid reinduction of Akt activity, we used the mTORC1 

inhibitor rapamycin and the mTOR kinase inhibitor Torin 1. on 10 primary blast 

samples were tested. Sustained Akt S473 phosphorylation was observed in 60% 

samples after addition of Rapamycin for 20 hours (Fig 7). However, Rapamycin 

efficiently inhibited mTORC1, as from the low phosphorylation of its direct targets 

p70S6K and eIF4EBP1. Therefore, inactivation of p70S6K relieves feedback 

inhibition on IRS expression, which in turn might sustain Akt phosphorylation, as 

described recently by Tamburini et al., (75) and Shi Y et al. (76). Next, we reasoned 

that ATP competitive inhibitors of mTOR kinase, able to block both mTORC1 and 



mTORC2, might be useful. Torin1 is an ATP-competitive mTOR inhibitor able to 

induce a significant decrease in the phosphorylation level of direct substrates of 

mTORC1 such as p70S6K and 4EBP1, and it also blocks the phosphorylation of Akt 

at S473 mediated by mTORC2. Therefore Torin 1 was used alone or in combination 

with Perifosine for 20 hours and protein extracts were analyzed by RPPA on 10 

patients samples. Although reduction was only slightly below basal level, Torin1 

inhibited Akt pS473 and abrogated the parodoxical phosphorylation observed above 

upon treatment with Perifosine alone. Of note, the combination triggered apoptosis 

very effectively (Fig 8). On the other hand, residual phosphorylation of Akt can be 

observed, sensitive neither to Akt inhibitors nor to mTOR inhibitors, indicating that 

alternative mechanisms exist that sustain Akt activity and maintain cell survival 

despite the block of a major survival pathway. 
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Fig. 8 

 

5.4 RTK’S INHIBITION BLUNTS THE NEW STEADY STATE OF AKT 

ACTIVITY ORIGINATED FROM DRUGS TARGETING AKT/MTOR. 

 

It was recently reported that mTORC1 inhibition can lead to activation of upstream 

receptor tyrosine kinase (RTK) signaling (80). In particular the Authors showed that 

mTOR and Akt inhibition induces expression and activation of multiple RTKs 

(80,81). We considered therefore that Akt is the main effector of PI3K,which in turn 

is activated by most RTK’s.Thus, based on these reports, and on the results described 

above, we asked whether the inhibitor induced hyperactivation of Akt signaling in 

primary AML blast cells can be mediated by activation of growth factor receptor. 

Indeed, from previous analysis we knew that phosphorylation of the IRS-1 increased 

after Akt/mTOR inhibition (Fig. 8), in parallel with phosphorylation of Akt, therefore 

it is conceivable that the two events are finely balanced (Fig. 10). Tyrosine 

phosphorylation of the insulin receptors (IR) or IGF-1 receptors (IGF-1R) upon 

extracellular ligand binding induces the cytoplasmic binding of IRS-1 to these 

receptors. IRS-1 is an adapter molecules that provide docking sites for different SH2-

http://en.wikipedia.org/wiki/Phosphorylation
http://en.wikipedia.org/wiki/Ligand_%28biochemistry%29


domain-containing proteins such as the phosphatidylinositol (PI) 3-kinase prompting 

it to a rapid activation. The protein levels of IRS-1 are regulated by the p70S6K, 

which targets IRS-1 for ubiquitin mediated degradation by the proteasome. We 

reasoned that the increased phosphorylation of IRS-1 observed in samples treated 

with Akt/mTOR inhibitors might result from the block of  p70-mediated degradation 

of IRS-1 protein (76). Therefore, to confirm the existence of an alternative 

mechanism, dependent on RTKs such as IR/IRS-1, a further analysis of RPPA was 

carried out on 10 primary AML blasts specimens exposed to the broad RTKs 

inhibitor Sunitinib. Inibition of RTKs by Sunitinib at low concentration in 

combination with Perifosine or Torin1 very potently suppresses Akt signaling also in 

long time treatments (20 hours) (Fig. 9). We conclude that in cells where mTOR is 

inhibited, Akt signaling is dependent on the activation of upstream RTKs. In 

particular, it is known that phosphorylation of the Akt direct target Foxo03, leading to 

its degradation, down-regulates FOXO-dependent genes, such as IRS-1, IR and IGF-

1 and possibly other RTKs. Conversely inhibition of Akt should abrogate FoxO 

degradation, resulting in up-regulation of Foxo-dependent RTKs. All together, we 

conclude that inhibition of Akt, accumulating FoxO3a into the nucleus, leads to 

increased expression of IRS-1, which in turn reactivates PI3K and Akt signaling. 
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Fig 9 

 

 

 



 

 

Fig 10 a) Feedback mechanism elicited by Akt and mTOR b) Akt/mTOR inhibition blocks the 

feedback mechanism and induces up-regulation of FoxO3a target genes. 
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6.DISCUSSION 

 

The PI3K/Akt/mTOR pathway regulates several normal cellular functions that are 

also critical for tumorigenesis, including cellular proliferation, growth, survival and 

mobility. Components of this pathway are frequently abnormal in a variety of tumors, 

making them an attractive target for anti-cancer therapy. We show here that in 

primary Acute Myeloid Leukemia cells selective allosteric Akt inhibitors induced 

massive apoptosis. Paradoxically, however, this was not paralleled by decreased Akt 

phosphorylation. On the contrary, after 20 hours of drug addition to the medium, Akt 

S473 was hyperphosphorylated. We speculated that feedback signaling reactivates or 

maintains Akt activity by unknown mechanisms. This is likely to occur also in vivo 

in patients and can decrease the therapeutic effect of the drug. It is increasingly clear 

from recent reports that dysregulation of signaling by sustained activation/expression 

of receptor tyrosine kinases in cancer cells drives feedback inhibition of signaling 

network. Anticancer drugs inhibiting RTKs can relieve feedback mechanisms and 

reactivate signaling (81). The PI3K/Akt pathway is a key downstream physiological 

effector of growth factor receptors such as the Insulin receptor, IR, or the IGF-IR. 

Mutation or overexpression of other RTKs such as Flt3 or c-Kit may lead to 

dysregulation not only of PI3K/Akt but also of closely interconnected pathways, such 

as the mTOR pathway (80). Availability of specific drugs targeting these pathways 

may allow feedback mechanisms dissection. We show here experiments that reveal 

the extent and clinical implications of feedback mechanisms that allow leukemia cells 

to adapt to drugs targeting the Akt pathway over time. Experiments with Rapamycin 

in primary AML blasts indicate that one such feedback may be represented by 

mTOR. Indeed, the mTORC1 inhibitor Rapamycin potently reduced phosphorylation 

of its direct substrates p70S6K and 4EBP1, but elicited paradoxical Akt 

phosphorylation, most probably mediated by mTORC2. Moreover, prolonged 

inhibition of mTORC1 turns off p70S6K-mediated degradation of IRS-1, thus 

reactivating PI3K/Akt signaling. 



We reasoned that the mTOR kinase inhibitor Torin 1, that blocks both mTORC1 and 

mTORC2 and therefore cannot cause the abovementioned feedback effects, should be 

more effective. However, Torin-1 reduced Akt phosphorylation only slightly below 

basal level. These results make it conceivable that other feedback mechanisms 

contribute to sustain Akt activity. Next we considered that inhibition of Akt kinase 

abrogates phosphorylation, and subsequent degradation, of its direct target Foxo. The 

transcription factor thus can accumulate in the nucleus and transactivate expression of 

its target gene, such as IR, IRS-1, IGF-IR as well as other RTKs. IRS-1 is an adaptor 

molecule that binds IGF-1 or Insulin receptors, upon extracellular ligand binding, 

through its SH2 domains. This binding allows IRS-1 to activate PI3K signaling. In 

our analysis, we observed that phosphorylation of IRS-1 increased in samples treated 

with Akt and mTOR inhibitors, consistent with the idea of an RTKs mediated 

feedback mechanism underlying persistent Akt activity. We used the broad tyrosine 

kinase inhibitor Sunitinib to confirm whether Akt feedback signaling involved RTKs. 

Remarkably, the inhibitor blocked phosphorylation of Akt deeply, and rescued the 

ability of Perifosine to flatten Akt activity.  In conclusion, these findings demonstrate 

for the first time that Akt and mTOR inhibitors can trigger paradoxical Akt 

phosphorylation in leukemia blasts. The reason why this observation was missed by 

previous studies possibly resides in the use of either leukemic cell lines or few 

primary cells. It should be remembered, indeed, that around 40% samples do respond 

to Akt or mTOR inhibitors by decreasing Akt phosphorylation. In this study, by 

means of drugs selectively targeting either Akt or mTOR pathways, we have been 

able to relieve different aspects of the PI3K-dependent feedback and to demonstrate 

the existence of adaptative capabilities of leukemic cells, enabling them to escape Akt 

inhibition. This is an important finding, of consequence both for the biology of 

leukemia cells and for therapeutical strategy, as it demonstrates that Akt or mTOR 

inhibitors should not be proposed as monotherapy for the cure of AML. Conversely, 

in combination with RTKs inhibitors they very potently block Akt and avoid 

feedback signaling, while triggering massive apoptosis. 
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