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Introduction

Apparently, the universe that we observe is just composed by ordinary matter.
This fact may sound trivial, but indeed it hides one of the most intriguing
questions that still deserve a convincing answer from the scientific community.
In fact, it is believed that, before the Big Bang, not space nor time existed. The
Big Bang then acted as a singularity from which time, space and all the matter
were originated. Since in every High Energy Physics process equal amounts of
matter and anti-matter are created, it is likely that during the first instants
after the Big Bang, matter and anti-matter were equally populating the early
universe. Then, matter and anti-matter started to annihilate each-other through
the ordinary processes that we study every day in particle physics, and thus the
question: why matter is still there surviving nowadays, but anti-matter seems
to have disappeared completely? The most plausible answer is that matter and
anti-matter have not a symmetric behaviour: they should somehow be different!

The first experiments pointing out the different behaviour of matter and
anti-matter date back to the 1960’s, when for the first time a break of the CP
symmetry — i.e. the symmetry which transforms a particle into its anti-particle
in the framework of particle field theory — was observed in the decays of the
neutral kaons. Since then, many experiments with improving precision were
carried out, confirming such spectacular phenomena and culminating with the
measurement of the violation of the CP symmetry in the decays of the neutral
B-mesons, by the BaBar and Belle collaborations at the beginning of the new
century.

It is worth to mention that the first measurement of the CP violation in
the B-meson sector by BaBar and Belle has been one of the most important
discoveries of the modern particle physics. Until this discovery, which is con-
firming so far the spectacular consistency of the Standard Model, CP violation
remained, during almost 40 years, confined in the kaon sector. It was then of
paramount importance to verify whether the description of the CP violation
in the Standard Model, which was able to explain the measurements for the
kaons, was also able to correctly predict the existence of the CP violation in the
B-meson sector, i.e. confirming that the flavour sector of the Standard Model
was a general theory for these phenomena.

The fact that such measurements needed almost 40 years to be performed
can be explained by considering that it was required to overcome a technological
challenge. In fact, as it will be discussed throughout this thesis, the measure-
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ment of the CP violation in the B-meson sector requires the determination of
the proper decay time of the B-mesons themselves. In order to do that, very
accurate silicon detectors were required, capable of a spazial resolution on the
decay vertices of the order of 100 pym. At the same time, due to the small
branching ratios of the interesting decays involved, very high luminosities were
required in order to produce a sufficient number of B-mesons, from e.g. ete™
collisions at the Y(4S) energy, at the level of 10325 tem~2. These two chal-
lenges were solved for the first time together at the asymmetric B-factories,
were the BaBar and Belle detectors are still operating.

It is known that the Standard Model is not the ultimate description of el-
ementary particle dynamics, but an effective field theory valid to the energy
scale explored so far. There are indeed already available experimental evidence
of phenomena that cannot be described within the Standard Model, like for
instance neutrino oscillations. Finding and identifying hints of New Physics in
the quark flavour dynamics still represents a great challenge at the colliders. In
order to distinguish among several scenarios of New Physics depicted by differ-
ent theoretical models, it is very important to study CP violation phenomena
and rare decays with high precision. In general a more precise knowledge of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix, responsible in the Standard
Model for the quark flavour mixing, may reveal new sources of CP violation,
e.g. due to the presence of New Physics particles in higher order processes.

The LHCb (Large Hadron Collider beauty) experiment is one of the four
experiments at the LHC, and is specifically dedicated to explore the B-meson
dynamics. To this end, LHCb will exploit the large beauty production cross
section, expected to be about 500 ub at 14 TeV p-p collisions. Differently from
the B-factory case, the hadronization of the b-quarks at LHC will generate all
the possible B-hadrons, remarkably the Bs; and B. mesons, where the present
experimental knowledge is still rather poor. The number of bb pairs produced
at the LHCD interaction point will be of the order of 10'? per year, allowing
for the search of extremely rare decays, with branching fractions at the level of
1072, In order to reduce the acquisition rate to a sustainable level (order of 2
kHz), maintaining at the same time a high efficiency on the signals of interest,
LHCD is provided with an efficient and flexible trigger system. LHCb, by means
of its vertex detector, will be able to reconstruct the proper time of decays with
a great accuracy (~ 40 fs) and therefore it is well suitable to study minutely CP
violation for the very fast oscillating Bs mesons. Moreover the features of the
LHCDb detector are also suitable to study the charm and 7 decays, which also
offer another great opportunity to find out New Physics.

For my Ph.D thesis, I developed a new procedure (called the FITPull method)
to monitor and check the measurement of the B decay proper time and its error.
The procedure is based on the use of the kinematical constraints between the
track parameters of the particles involved in the B decays, without relying on
Monte Carlo information. The method can be calibrated on the decay mode
J/¥ — pp, which will be exploited by LHCb as a general monitor channel
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for the charged tracks calibration, with the aim of identifying and eventually
recovering imperfect measurements of the track parameters. I applied the FIT-
Pull method to two different reference channels: B — h*™h~™ and By — D,,
evaluating its performance in correcting track measurement errors. I have also
contributed to the implementation of a software tool, the GlobalFitter, that
is used to compute the FITPull distributions of the input track parameters, and
I released the package that will be used in the official LHCb analysis framework.

The thesis is organized in 4 chapters. In Chapter 1 the LHCb experiment,
its sub-detectors and trigger system are described. Chapter 2 introduces the
theoretical framework of the B-meson mixing and CP violation in the Standard
Model, with some details of the relevant measurements that LHCb will perform.
In Chapter 3 the FITPull method is described, and finally Chapter 4 gathers
the results of some studies on Monte Carlo simulated data, by investigating the
impact of the calibration method on the physical quantities which are mostly
affected by the precision of the B proper time measurement.
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Chapter 1

The LHCb experiment

In the introduction it has been pointed out that the aim of the LHCDb experiment
is the exploration with high precision of the C'P violation in B sector. In order
to identify B decays LHCb must fulfill a series of requirements:

1. Accurate reconstruction of the primary and secondary vertexes and precise
proper time measurements.

2. Good particle tracking, even with high occupancy.
3. Accurate particle identification in a wide momentum range (1-150 GeV /c).

4. Trigger system with high efficiency and high background rejection power.

The LHCb spectrometer (fig.1.1) was designed to reach all the forementioned
requirements.

In the next sections, I will give you a short description of the LHC charac-
teristics and then I will describe the LHCb detector with its components.

1.1 The LHC environment

The LHC supplies two interacting beams of protons with an energy in the center
mass of /s = 14 TeV at the bunch crossing rate of 40 MHz with a luminosity £ of
2-10%2em 257!, In the LHC accelerator the particles are gathered in bunches,
each one containing about 10! particles. Hence 40 MHz is the fundamental
frequency for the LHC and its associated electronics. The number and the
structure of bunches in each beam is:

3564 =12 x 297 =

=11 x [3 x (81b+ 8¢) + 30¢] + [2 x (81b + 8¢) + 119¢]

where b means a full bunch whereas e stands for an empty one. There are 3564
space bunches, 2835 are occupied and 729 are empty. The interaction frequency
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of the 2 beams is not the same in all the interaction points of the LHC due the
presence of the empty bunches. Indeed the collisions happen only when the 2
beams are in phase, i.e. when two full bunches cross each others.

ECAL
SED/PS

Magnet

Figure 1.1: The LHCD detector is composed by several subdetectors.

The position of the interaction point of LHCb ensures 2622 crossing bunches
that represents only the 73.6% of the total full bunches in the rings, therefore
the effective interaction frequency of LHCb will be vy = 29.5 MHz.

The Monte Carlo simulations, based on the current knowledge, have shown
that the bb mesons are produced predominantly at low polar angles. For this rea-
son a single-arm detector covering the high rapidity space can detect efficiently
both b and b decay products. LHCb was designed according this criteria.

Its acceptance extends out to 300 mrad in the horizontal (bending) plane
and 250 mrad in the vertical plane (with a lower cut due to the beampipe of 20
mrad). We expect, in one year data taken (107s), we will collect about 10'2 bb
events, since the expected quark b production cross section is about 500ub. In
fact the rate production of the bb events is:

Ryp = oL (1.1)

The inelastic cross section has been estimated close to 80 mb. So, unfortunately,
the ratio between the rate of bb and inelastic events will be ~ 0.6%. Due to
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pT of B-hadron
=

10

2 4 6
eta of B-hadron

Figure 1.2: LHCb was designed to maximize the B acceptance within cost and
space constraints. The forward spectrometer relies on much softer pr triggers,
efficient also for purely hadronic B decays.

| Cross Section[mb] |

OTot 100
Oinel 80
Onon—radiative inelastic 55
Ovisible cross section LHCb 68
Opb 0.500
Occ 1.5

Table 1.1: Cross sections for LHCDb experiment.
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Figure 1.3: The beam pipe in a lateral view.

the LHCb design the best environment is reached with few primary interactions
per bunch crossing. The distribution of p-p interactions occurred per bunch
crossing can be described by a Poisson distribution:

n

P(p,n) = %67“ (1.2)

where the average is given by:
o Lo't.ot

= =t (13)
Veff

1.2 The LHCDb detector
1.2.1 The Beam Pipe

The proton beams circulate in the accelerator inside ultra vacuum pipes, in
order to minimize the collisions with the residual gas in the pipe. The pipe has
to be sufficiently strong to stand the difference in pressure between the vacuum
inside it and the air outside in the cavern. Close to the IP, the pipe has to be
sufficiently transparent to all the primary particles to reduce multiple scattering
effects. The best material, that has the mechanical requirements to stand the
pression and to ensure the high radiation transparency, is beryllium. Beryllium
is used pure in several parts of the beam pipe, as well disguised as aluminium
alloy.

The beam pipe, within the LHCb detector, is composed by three different
parts. The first one, placed around the interaction point, is cylindrical with a
radius of approximately of 120 cm and 1.8 m long. This cylinder is followed by
two conical sections. The first one has aperture of 25 mrad and it is 1.4 m long.
The latter section has an aperture angle of 10 mrad and it is 17.3 m long.

1.2.2 The VELO

The presence of displaced secondary vertices respect to the primary vertex at
the IP is a remarkable and distinctive feature of the b-hadron decays. For this
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Figure 1.4: In this picture is depicted the Velo structure.

reason the VErtex LOcator has to provide precise measurements of the track
coordinates close the interaction region. The VELO was optimized for the
best impact parameter resolution, the low cost of fabrication, a high thermal
conductivity and the less material budget’.

To minimize the impact parameter error, the extrapolation to primary vertex
has to be as short as possible. Thus it requires detector stations as close as
possible to the beam pipe.

This detector is composed by 21 silicon stations placed along the beam di-
rection, each one composed by two strip sensors, with 220um thickness, for the
r and ¢ measurements.

Also in order to minimize the material in the interaction region, the VELO
is enclosed in a thin aluminium box with a pressure of less than 10~* mbar.
The detector vacuum box is equipped with corrugated foils to limit the amount
of material seen by detected particles. In these conditions the typical resolution
for the primary vertex will be, along the z axis, about 40um, whereas along the
x and the y axes will be 10 pm. For the secondary vertices the spatial resolution
depends on the number of the tracks involved in the reconstruction process and
can fluctuate from 100 to 300 pm depending on the decay under study.

1.2.3 The RICH

In LHCb, the hadron identification, over a wide momentum range (1-150GeV/¢),
will be performed by two Ring Imaging Cherenkov detectors (RICH) equipped
with 3 different radiators (Aerogel, CFy, C4Fip). These detectors exploit the
Cherenkov effect to identify the particles. The RICH1 is placed before the TT
station, after the VELO (fig. 1.6).

IThe resolution is dominated by multiple scattering thus a minimisation of material budget
is an important design parameter to reach a better performance.
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Figure 1.5: A picture with the projection of the Velo and the beam pipe, ob-
tained observing the secondary interactions in a Monte Carlo simulation.
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Figure 1.6: The Velo sealed to RICH1 detector.

It contains two radiators: silica aerogel and fluorocarbon gas CyFig. It is
fundamental to the particle identification of the low momentum range and it
plays an important role for the b flavour tagging through the b — ¢ — s quark
decay chain.

The high momentum particles, up to 150GeV/c are measured by the RICH2
placed between the T3 station and the M1 chamber. filled with C'Fy gas.

Cherenkov radiation is emitted when a charged particle traverses a medium
with a velocity greater than the velocity of light in that medium. If the mo-
mentum of a certain particle exceeds a threshold, depending on its mass, a cone
of light is emitted in the forward direction. The focusing of the light is ac-
complished using spherical mirrors. They are tilted to bring the image out of
the detector acceptance (fig.1.9 and fig.1.7). In this manner the cones of light
appear as circles on the focal plane where a matrix of a pixeled photodetectors
HPD (Hybrid Photomultiplier Detector) is placed: 168 for the RICH1 and 262
for the RICH2. Each HPD tube has 1024 pixels of size 0.5 x 0.5 mm?. Using
the momentum of the reconstructed tracks, the mass and thus the particle type
can be determined. The basic equation that relates the angle 6. and the particle
momentum is:

1
0. = — 1.4
cos Y (1.4)
with n being the refraction index of the radiator medium. Particles start to
radiate Cherenkov light above a threshold 3y, = 1/n. A large refractive index
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Figure 1.7: The particle, if its momentum goes over the threshold, emits a
Cherenkov light cone which is projected by the mirrors on the HPD plane. In
such way each track is associated to a circle on the plane. The radius determines,
with the knowledge of the momentum, the mass of the particle.

| | RICH2 | RICH1 |
CFy CyFyo | aerogel

n 1.0005 | 1.0014 | 1.03
Orrax [mrad] 32 53 242
pthreshold(ﬂ') [GeV/c] 4.4 2.6 0.6
pthreshold(K) [GeV/c] 15.6 9.3 2.0
ogmIssion [mrad] 0.31 0.71 0.66
oghromaticlmrad] 0.42 0.81 1.61
o7 lmrad] 0.18 0.83 0.78
ol e mrad] 0.20 0.42 0.26
obotal [mrad] 0.58 1.45 2.00
Npe 19.1 35.3 6.9

Table 1.2: The table contains the main characteristics of the three radiators and
the principal errors introduced in the Cherenkov angle measurement.
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| | RICH2 | RICH1 |

CFy CyFio aerogel
0.03157 | 0.05286 | 0.24194
0.03101 | 0.05252 | 0.24187
0.02936 | 0.05157 | 0.24167
0.03162 | 0.05288 | 0.24195
0.03159 | 0.05287 | 0.24194

= o= =

Table 1.3: Cherenkov angles for the three radiators for a particle momentum of
80GeV /¢, with different mass hypotheses.

allows to identify particles in the low-momentum range, while a small index is
useful in the high-momentum range.
Therefore as a function of the mass m

p

p=cmfy == ——r— =
v /m2c2 1 p?
I ym2c2+p2 1 m2c? (1.6)

cosflp=—  +—— = —. —+1
n D n D
The Cherenkov-angle resolution is limited by the finite pixel size of the HPD,
the variations in gas pressure, the knowledge of the trajectory of the incident
particle, the photon emission point, the effects of chromatic aberration and the
photoelectrons statistics.
The expected number of detected photoelectrons from a track coming through
a Cherenkov radiator of length L is given by

(1.5)

«

_ 12
Npe = ( hc) Lean / QRTsin? 0,dE, (1.7)

where Q is the HDP quantum efficiency, R the mirror reflectivity and T is the

quartz cap window transmittance (typical values are reported in table 1.2).

An event in the RICH is a set of ring images, which may overlap where there
is a high track density. The Cherenkov rings are not perfect circles but they are
elliptical in shape due to the direction of the track in the acceptance. Instead of
attempting to fit these circles, a great simplification is achieved by reconstruct-
ing the Cherenkov angles at emission for each hit under the assumption that it
is originated from a given track.

A pattern recognition algorithm is performed in order to individuate the
exact particle mass. It has been conceived structured in two different steps.
The first step is to decide from which track has originated each detected photon.
Then the second step is to fit those hits with a ring originated by that track.
The ring radius allows to calculate 6..

The pattern of hit pixels observed in the RICH photodetector is compared
to the pattern that would be expected under a given set of mass hypotheses for

20



24 .l .
P .
Origin of hit b
20 F . e % —_— S
oty = Track 1 bt L 5
=" L Track 2 . o
- x =°g = Track 3 2 ¥ .
=l L & cw % o . = . o
B s . 2 = Other tracks = S e .
~ . a = L a ®
e ‘r - b n . ‘I p .
N @ & » & . . %o
- A oo 2
& " - Ll .
10 F g
LI - S
e | i .
o e 80 T -.
Sk s Beod T
L L h 0 I " 1 y 1 1
20 -15 -10 -5 0 x (em) 0 20 40 60 80 100 B (mrad)

Figure 1.8: Example of a RICH event. The first image is a zoom of a region of
the detection plane. Assuming that the truly hits are coming out from the track
1, it can be noticed the uniform distribution of the azimuthal angle ¢. against
the polar angle 6.

the reconstructed tracks passing through the detectors, using the knowledge of
the RICH optics. A likelihood is determined from this comparison and then the
track mass-hypotheses are varied to maximize the likelihood. The RICH systems
give as output a set of probabilities for each single particle type hypothesis.

Figure 1.9: RICH1. The Cherenkov radiation is emitted and led by the spherical
mirrors to the photomultipliers array.

The expected performances of the RICH system has been evaluated using
the simulated data. The performances are quantified in terms of efficiency e
(the fraction of true particles of a given type that are identified correctly) and
the purity P (the fraction of tracks that have been correctly identified). The
efficiencies are higher than 80% and the purities are also high but for muons we
have some contamination from pions [16].
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Figure 1.10: B-Field in the detector.

1.2.4 The Magnet

LHCb exploits the forward region of the pp collisions and requires a dipole
field with a free aperture of 300 mrad horizontally and +250 mrad vertically.
Tracking detectors in and near the magnetic field have to provide momentum
measurement for charged particles with a precision of about 0.6% for momenta
up to 140 GeV/c. This demands an integrated field of 4 Tm for tracks originating
near the primary interaction point.

The LHCb magnet is a warm magnet due to the significantly lower costs,
the faster construction and the lower risks. It also provides the possibility of a
rapid ramping up of the field, synchronous to ramping up of LHC magnets, as
well as regular field inversion.

The central field is 1.1 T and it provides a bending power along the beam
axis of 4T'm.

As shown in fig.1.10, theB field is not confined within the magnet region. A
non negligible contribution is recorded in the TT station. This feature allows to
estimate, with a rough precision, the momenta of the tracks in a very short time,
at trigger level. A more complete and precise estimation needs the information
from the T stations, but it would take too much time for the trigger system.

In the VELO region the B field contribution is very small and limited to the
last detector planes.

1.2.5 Silicon tracker and straw tubes: the TT chamber
and the T1-T3 tracker chambers

The LHCDb Silicon Tracker is a large-surface silicon microstrip detector which
constitutes an important part of the LHCb tracking system. It uses single-sided
silicon strip detectors with a strip pitch of approximately 200 pm, produced from
6 inches wafers and arranged into up to 38 cm long readout strips. The tracking
stations are optimized for momentum measurement so they have a good spatial
resolution in the bending plane and sufficient pattern-recognition capabilities in

22



Figure 1.11: The installation of the magnet in the LHCb cavern.

the non-bending plane of the magnet.

The Silicon Tracker collects two parts: the "Trigger Tracker" (TT) station,
placed between RICH1 and the LHCb dipole magnet, and the "Inner Tracker"
(IT) that covers the innermost region of the tracking stations T1-T3, between
the LHCD dipole magnet and RICH2. (fig.1.13). Outside the T1-T3 stations,
the OT (Outer tracker) is placed and it covers a great part of the tracking vol-
ume. The OT system is constituted by straw tubes.

The TT chamber is devoted to two different purposes. Firstly, it will be

used in the trigger to assign transverse-momentum information of large impact
parameter tracks. Secondly, it will be used in the offline tracking. Moreover it
is fundamental to reconstruct the long living neutral particles (K) that decay
outside of the pertinent region of the VELO and tracking the low momentum
particles that are bent out of the acceptance before reaching the tracking sta-
tions T1-T3.
The TT chamber is constituted by four planes, gathered in groups of two, called
TTa and TTbh, of wide pitch silicon microstrip sensors and covers an area of
about 7 m2. The orientation of the strips for the first plane is vertical, the 2nd
plane has strips rotated by —5° around the beam axis, the 3rd plane by +5°,
and for the last plane the strips are again vertical. The layout of this detector
is shown in fig.1.12.

The particle fluxes are very high near the LHCb beam pipe, but fall off
rapidly with increasing distance, therefore the tracking system behind the mag-
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Figure 1.13: Inner Tracker: the cross shape of the detector
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net, composed by the T1-T3 stations, is divided in two parts: in the highest
particle flux region there is a small silicon detector at high rapidity and high
granularity (the inner tracker). The second part is a drift chamber detector
using straw-tube technology, the outer tracker OT, that covers the most of the
LHCb acceptance surrounding the inner tracker. Every tube has a radius of
5mm and it is filled with a mixture of gases like Ar/CF;/COy. This config-
uration achieves a drift time about 25ns. Each outer tracker station consists
of multiple layers of wires with both vertical orientation and +5 degree stereo
angles.

1.2.6 The calorimeter system: ECAL and the HCAL

The calorimeter system is very important for the experiment since it can select at
trigger level 0 high transverse energy hadron, electron, photon candidates. Also
the calorimeter system provides the electron identification that is fundamental
for flavour tagging with the semileptonic electron decays. Another qualifying
feature is the precision requested to reconstruct all the B-decays that contains
prompt y or 0.

As seen in fig.1.1, the calorimeter system is composed by the electromagnetic
(ECAL) and the hadronic (HCAL) calorimeters. To improve the e/ discrim-
ination the ECAL is preceded by the SPD (scintillator pad detector) and the
PS (preshower) devices.

To get optimal energy resolution for high energy photon showers, the ECAL
must be thick enough. In the [15] was proposed a 25 X;. Whereas the trigger
requirements on the HCAL resolution allow 5.6 interaction lengths.

e ECAL: The ECAL will be built with the shashlik technology. That allows
to reach a resolution for the electromagnetic shower of :

o(E)/E =10%/VE ®1.5% (1.8)

which, with the preshower information, provides a good electron/hadron
separation at trigger and at reconstruction stage. This device has to pro-
vide a wide range of digital measurements from a few 10 MeV up to 200
GeV to cover the broad momentum range of the B products.

e HCAL: It is composed by iron/scintillating tiles readout by WLS? fibers.
Its task is measuring the energy of the hadronic showers. The granularity
of this calorimeter is lower then the ECAL and also the energy resolution
obtained is:

o(E)/E = 80%/VE ® 10%

2Wave Length Shifter
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Figure 1.14: Lateral segmentation of HCAL.

Outer section :

1212 mm cells

2688 channels

Figure 1.15: SPD/PS and ECAL transverse granularity

e SPD/PS: Before the ECAL there is a 12 mm lead wall. Just before and
just after there are two detecting plastic scintillator plane the SPD and
the PS. The SPD detector provides the discrimination between neutral
and charged particles, whereas the PS contributes to the pion/electrons
discrimination.

1.2.7 The muon chambers

The purpose of the LHCb Muon System is to provide fast (L0) triggering and
offline muon identification. The system is made of five Stations (M1-M5) of
rectangular shape, covering an acceptance of +300 mrad (horizontally) and
+200 mrad (vertically). M1 is placed in front of the SPD/PS. M2-M5 are
located downstream the Hadron Calorimeter (HCAL) and are separated by iron
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filters. The stations cover an area of 435 m?. The total absorber (including the
calorimeters) is approximately 20 interaction lengths.

The acceptance of the Muon System is about 20 % for muons from inclusive
b decays.

Each station is divided into four regions, R1 to R4, with increasing distance
from the beam axis. All the regions have approximately the same acceptance,
and their granularity is tuned in order to keep occupancy roughly constant over
the detector. The granularity of the readout is higher in the bending plane, in
order to give a rough measurement of the track momentum and pp at trigger
level.

The information must be gathered within 20 ns, so the detectors are opti-
mized for speed. Therefore the choice went to Multi Wire Proportional Cham-
bers (MWPC) with 2 mm wire spacing and a small gas gap (5 mm). Triple-GEM
detectors are used in the innermost region (R1) of Station M1. This choice was
dictated by the better aging properties of this kind of detector. There are 1380
chambers in the Muon System, of 20 different sizes.

The detector readout is made on cathod pads giving a binary (yes/no) in-
formation.

The Muon Trigger is based on a five-fold coincidence of the stations. There-
fore its efficiency scales as €, where ¢ is the efficiency of each station. In order
to ensure the necessary high efficiency and adequate redundancy, four layers of
detectors are used in M2-M5. Two layers are used in M1 (this is a compro-
mise between performances and material budget before the ECAL/PS/SPD).
In practice, since we work at fixed Minimum Bias rate, the dependence on € is
less steep (approximately like ¢3°). In normal operating conditions ¢ = 46 %
for b — pX events inside the acceptance.

1.2.8 The LHCDb trigger

The trigger system is one of the most challenging points of the whole experiment.
It is projected in order to discriminate the B meson events from the minimum-
bias events. This selection is implemented by looking for particles having a large
transverse momentum (pr) and by the presence of secondary vertices.

The trigger of LHCD is constituted by two different and sequentially lev-
els. The first one (LO) is a hardware selector, whereas the second one (HLT)
implements a decision software algorithm.

1.2.8.1 The first level LO

The trigger LO has an input rate of 40 MHz and an output rate of 1 MHz. It is
based on the identification of leptons, hadrons and photons with high-transverse
momentum (pr) in calorimeters (scintillanting pad detector, preshower, elec-
tromagnetic and hadronic calorimeters) and muon chambers, combined with a
pile-up veto. The pile-up velo unit identifies bunch crossings with more than
one pp interaction using a dedicated part of the vertex detector system and the
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calorimeters. The pp thresholds for the hadrons and muons can be adjusted
according to physics needs.

In case of a positive answer, the L0 decision, the L0 decision unit passes the
information on the high pr particle to the following trigger.

1.2.8.2 The second level of trigger, HLT

After the hardware trigger L0, there is an another trigger device which is a
software trigger devoted to a further event discrimination in order to draw the
pure B events out.

In the Trigger TDR [14]the original schema of the trigger system placed after
the LO level is described. It was composed by two different data streams:

e Level 1 with a latency of about 58 ms at maximum LO-accept rate of 1.1
MHz. The event size was dominated by VELO and TT for a total rate of
5 GByte/s.

e HLT with no latency limitation. It runs on the Ll-accept rate of 40 kHz
with a LHCb event size of approximately 5 GByte/s.

The two streams shared the same readout network and the Event Farm Filter
The new project adopted recently foresees a single data stream at the LO-
accept rate of nearly 56 GByte/s. This change provides these advantages:

1. Only one data-flow through the system.

2. Elimination of the subfarm controllers which were charged of the event
building and data distribution over the EFF nodes.

3. Cut out of the L1 Trigger Receiver Module and the decision sorter with
the relative software.

4. No latency limitations for event processing.

5. Combination of the L1 and HLT trigger processes running over each EFF
node into a single program doing away the context switching between
them.

There are four streams in the HLT, for a total of 2 kHz output rate. Some

select specificB decay streams for physics studies, other trigger for calibration
and efficiency studies.

28



| Rate[Hz] |

GENERIC STREAM

DiMuon

600

Dimuons with a mass above 2.5
GeV and no IP cuts. These
events are used to measure the
uncertainty on lifetime
measurements.

GENERIC STREAM

Inclusive B

900

Events with one high PT and
high-TP muon, used for
systematic studies of the trigger
efficiency and for data mining.
Because of the muon, this
sample is highly
tagging-enriched.

EXCLUSIVE

Exclusive B

200

The core physics stream with
exclusively reconstructed decays
including sidebands and control
channels.

INCLUSIVE

Inclusive D*

300

PID-blind D* events with

DY — hh and no D mass cut.
These events allow to measure
the PID efficiency and mis-ID
rate. Can also be used for CP
measurements in D decays.

INCLUSIVE

Optional streams

Other optional inclusive
selections are available. For
instance the inclusive Phi or
high-TP dilepton selections.

Table 1.4: HLT data stream partition
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Figure 1.16: Simplified data flow in the HLT.

The main steps of the HLT are described in fig.1.16:

1.

Velo Tracking The velo R and 3D tracking are performed and the PV
is built.

. Generic HLT and full tracking First the veloTT algorithm is run and

the muon pattern recognition is made. The forward tracking is done for
selected tracks and muons candidates. The errors from the tracking are
not used, but recomputed from a parameterization. > Events with good
muon candidates and heavy dimuons lead to a HLT accept for the inclusive
B and dimuon streams. For the others, the generic HLT decision is made
looking for separated 2-track vertices of high-PT tracks.

. PID and particle making The TrgParticleMaker is executed to make

pion and kaon candidates. By default every track is a kaon candidate, but
one can use the RICH to refine the selection.

. Resonances building After they pass some loose preselection cuts, these

kaons and pions are combined to make K*, DO, Phi and D* intermediate
states.

. Exclusive selections Finally the resonances are combined to make Bcandidates

for all the 10 core physics channels (see documentation). This step can
lead to a HLT accept for the exclusive B or Dx streams. The HLT will
run at 40 kHz in 10 ms (average) on a 2007 CPU.

(a)

T'rgInsertTrackErrParam.opts
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1.3 LHCDb performances

In this section I summarize the main performances of the detector related to the
recostructing capabilities taking in account the various subdetector information.

1.3.1 The tracking performances

The main task of the tracking system is to provide efficient reconstruction of
charged-particle tracks with a precise estimates of the track parameters and
their corresponding covariances*. In the event reconstruction these estimates
are used to match the various information coming from all subdetectors: RICH
rings, calorimeter clusters and muon candidates.
The running environment of LHCb will be hadronic, so there will be a great
number of tracks per event. The fraction of B mesons produced that decays
within the LHCb acceptance is foreseen about the 35%, due to the impossibility
of detection up to 10 mrad given rise to the presence of the beam pipe. Also the
geometrical acceptance varies according to the kind of decay. In these delicate
conditions the track reconstruction will be very challenging.

Every reconstructed track state is a 5-component vector (z,y, ‘é—i, %, %),
defined by a position and a tangent direction at given z.
Depending on which parts of detector are traversed by the particle flight, each
track is classified as (fig.1.17):

e Long track: traverse the full tracking setup from the VELO to the T
stations. They are the most important set of tracks for Bdecay recon-
struction.

e Upstream track: traverse only the VELO and TT stations. They are in
general lower momentum tracks that do not traverse the magnet. However.
they pass through the RICH1 detector and may generate Cherenkov pho-
tons. They are therefore used to understand backgrounds in the particle-
identification algorithm of the RICH. They may also be used for B decay
reconstruction or tagging, although their momentum resolution is rather
poor (20%).

e Downstream track: traverse only the TT and T stations. The most
relevant cases are the decay products of K? and A that decay outside the
VELO acceptance.

e T track: are only measured in the T stations. They are typically produced
in secondary interactions due the conversion of the neutral particles, but
useful for the global pattern recognition in RICH2.

4A track is defined ghost when less of 70% of its hits are associated to a Monte Carlo
particle
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e Velo track: are measured in the VELO only and are typically large angle
or backward tracks, useful for the primary vertex reconstruction. They
don’t own any measurement for the momentum.
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Figure 1.17: Classification of the tracks.

1.3.1.1 The reconstruction method

A track is modeled by a set of straight line segment, tangent to the trajectory
of the particle. In LHCD these lines are called track states. As seen before, the
state vector chosen is:

T
Y Ox dy

t=| t ty = = t,=—2 :

. ¢ 0z Y 0z (1.9)
Yy

q/

and also there is associated a 5 X 5 covariance matrix. The location of the
track states can be chosen anywhere along the trajectory. Usually the states
are determined at the measurement planes.

The track reconstruction starts with a search for track “seeds” that are the
initial track candidates. The combination of the measurement and the track
state is referred to as a node. A measurement can be transport from a node to
another one. This procedure, called transport, exploits

T = fr(Zr—1) + Wi (1.10)
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where k represents the index of a node, fi is the track propagation function and
Wy, is the process noise as the multiple scattering effects.

Figure 1.18: Tracking and reconstruction

The VELO and T seeds that have not been used as part of either a long,
upstream, or downstream track, are defined to be of type VELO or T track.

The hits used by the forward algorithm are neglected in the hit search of any
subsequent algorithm. Moreover the VELO and T seeds that are used by either
the forward or track matching algorithm are not considered by the upstream
or downstream tracking algorithms. This cooperative strategy, referred to as
the filtered mode, avoids as much as possible the creation of clone tracks, i.e.,
tracks which share a large fraction of their hits. The filtered mode is the default
tracking strategy.

While, the concurrent mode refers to the case in which each algorithm con-
siders all possible hits and seeds. This means, for instance, that the T seeding
will also find segments of long tracks that are already found by the forward
tracking algorithm.

Thereafter, the track matching algorithm will consider all these VELO and
T seeds to find mostly the same tracks as the forward tracking.

In details, starting with a VELO seed, an algorithm runs to form a track
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with each of the hits in the following T stations (TT, T1, T2, T3). This is the
forward tracking algorithm that has an efficiency of reconstruction of about 90%.
With an enough number of hit along the trajectory, the track is reconstructed.

The leftover hits are treated in the same way but in opposite direction,
starting from T stations to the VELO region. The backward tracking has an
efficiency of 5%.

Then the algorithm switches to the search of upstream tracks (VELO and
TT). The remainder VELO seeds and the T seeds are matched to the TT station
hits.

Remaining VELO and T seeds are stored as VELO and T tracks. After that,
all found trajectories are refitted by a Kalman filter, in order to determine more
precisely the track parameters. The quality of a reconstructed track resides in
the y?and in the residuals pull distribution of the tracks’ parameters.

The track matching algorithm makes combinations of T seeds and VELO
seeds in order to fit long tracks. Firstly the momentum of the T seed is esti-
mated. Then the momentum is used to extrapolate the T seed to the matching
plane. The VELO tracks are extrapolated with a straight line to the same place.
A yZcriterion is used to select the correct match between the VELO and the T
seeds. For every successful match, TT hits are searched for and assigned to the
track.

The momentum of a T seed can be estimated assuming that the particle orig-
inated from the interaction point. This method, also known as p-kick method,
involves a basic simplification. It assumes, at first approximation, that all the
effects of the B field are concentrated in a single point on z = zpqgnet in the
center of the magnet, where the kick is exerted. The total integrated magnetic
field along the z axis is 4.2 Tm and the 2z,,qgne: is placed where the integrated
field is half.

By means of the Lorentz force, the actual momentum kick assumes the form

Ap = q/dfx B (1.11)

and in terms of track parameters, for the main component Ap,, we obtain
[11, 10]:

=p to s — o :q/’dfxg
\/1+t§7f+t§1f \/1+ti)i+t§)i

(1.12)
where t, ; and ¢, s are the slopes measured in the T region and t,; and ¢, ;
are the unknown slopes before the magnet. The trajectory of the particle can
be approximated by two intersecting straight lines as illustrated in fig. 1.19.
The path starts from the T seed and it is extrapolated to the 2,,qgne:. Here the
path makes a kink towards the nominal interaction point giving a first estimate
of the slope before the magnet. Then along this path, the integrated field is
calculated and a second focal plane at z = z. is determined. The new values

Apz = Px,f — Px,i

x
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Z magnet

¥

p-kick method

Bdf~43Tm 2+ T stations > T seed

Figure 1.19: The effect of the magnet is approximate by an instant kick at
Zmagnet- Along this trajectory the integrated field is estimated and a new value
for the centre of the magnetic field z. is obtained.

for the slopes before the magnet and the magnetic field value are substituted in
the eq.1.12 obtaining an estimation for the momentum p.

From this value of the momentum, the T seeds are extrapolated to a plane
placed behind the last VELO station where they are matched to the VELO
seeds. In order to select only the combinations that match correctly the T and
VELO seeds, a x? cut is applied. At last the TT hits have to be added to each
matched track.

The T-tracking algorithm is implemented in C+-+ code running within the
Gaudi software framework[12].

1.3.1.2 Performances of the tracking system and the particle iden-
tification

The tracking system is devoted to provide the necessary information for the
reconstruction of the charged particles trajectories and their momenta. Tracking
performances can be represented by several quantities

e efficiency: that is the probability to correctly reconstruct a particle in the
detector acceptance

e ghost rate: that is
e momentum resolution:

e [P resolution

Geometrical acceptance represents a limit for the tracking system since only
35% of the B decay products are contained within the detector. As we have
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| Decays vs. Mass Resolution [MeV/c’] | ATLAS | CMS | LHCb || |

By — up 80 46 18

By — Dgym 43 14

Bs — J/¥¢ (without J/¥ mass constraint) 36 32 16
Bs — J/¥¢ (with J/¥ mass constraint) 16 13 8

Table 1.5: Mass resolutions in ATLAS, CMS and LHCDb experiments.

already seen one of the greater dangers is the ghost track, i.e. the . For the
long tracks we can see the expected ghost rate and efficiency in the figurel.20.
However we can state that for B decay the predicted efficiency is greater than
the 95%.

1
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Figure 1.20: Long track performances and ghost rates expressed as the ratios

.- _ #Correct _ #Ghosts
Effzczency — #True and Ghost = #Ghosts+3$Correct*

The figure 1.21 points out the shape of the momentum resolution and the
impact track parameter as a function of the momentum. The resolution of
the impact parameter can be expressed as a linear function of the transverse
momentum pr :

35GeV
pr

orp =14+ um (1.13)

The performances of the tracking system also can be summed up observing
some other features. The first result is, with any doubt, the excellent mass res-
olution as shown in tab.1.5. Another critical point is the proper time resolution
that is indispensable for all the time dependent Bs measurements (table 1.6).

The particle identification process exploits the information coming from the
tracking system. The great discrimination power of pions/kaons is one of the
prestigious features of the LHCDb detector given by the RICH. In the figure
1.22 is depicted the reconstruction efficiency of kaons in the quark decay chain
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Figure 1.21: Momentum Resolution and its impact parameter as a function of
the track momentum.

| | Otime [fs] |
ATLAS ~ 95
CMS ~ 100

LHCb ~ 40

Table 1.6: Proper time resolution in the By, — Dgm at LHC.
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Figure 1.22: Kaon efficiency.
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Figure 1.23: The invariant mass in By — 77 hypothesis with or without the
RICH.
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| Hypot. | AlnL | Efficiency |

muon AlnL(p—7) < -8 90%
electron AlnL(e—p) >0 95%
kaon | AlnL(K —7)>2, AlnL(K —p)> -2 88%

Table 1.7: Aln L for some particle hypothesis

b — ¢ — s fundamental in the tagging procedure(par.1.3.2). For kaons, with
momentum from 2 to 100 GeV /¢, we have an efficiency of 90%.

The electrons are recognized with the ECAL device. The efficiency of the
electron identification is about 95% and the mis-identification 7 /e is nearly 0.7%
for the decay J/¥ — eTe™ coming from the B decay By — J/VK; .

Finally the muons efficiency is approximately 94% in a Monte Carlo sample
of By — J/VPK, with a mis-identification u/m nearly 3%.

In practice the particle identification is implemented combining all the in-
formation coming from the subdetectors. Every detector provides a particle
probability for a certain track. With these hypothesis and probability, a log-
likelihood function is computed. For example the probability for an electron is
calculated as

L(e) = LEICH () x LECAL(e) x LMUON (non — 1) (1.14)

while for a muon

L) = LEICH (1) x LFOAL (non — e) x LMUON (1) (1.15)

Thus the identification is performed evaluating

AlnL(e — p) =1n[L(e)/L(1)] (1.16)

1.3.2 The B flavour tagging

The B mesons can oscillate and can decay with a different value of flavour. The
locution flavour tagging means the identification of the initial flavour of the
B-mesons reconstructed. This capability is very important in order to study
decays involving CP asymmetries and flavour oscillations. The flavour tagging
performances is expressed by the formula:

Ecff = EtagD?® = Etag (1 — 2u;)2 (1.17)
where the w is the wrong tag fraction whereas the €444 is the probability that
the tagging method retrieves a result:

L _R+w W
e T BRI WU VT RAW
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where W represent the wrong tagged fraction, R the right one and U the un-
tagged fraction.

The tagging algorithm exploits the B decay characteristics. Two main meth-
ods are implemented: the opposite-side tagging and the same-side tagging.

The opposite side tagging determine the characteristics of the b/hadron
which accompanies the B/signal under study. by looking at the charge of the
decaying lepton in semileptonic decays, or the kaon in b/c/s transitions. In case
the opposite B is charged the reconstructed vertex charge tags the event.

The same side tagging algorithms determine directly the flavour of the signal
B meson exploiting the correlation in the fragmentation decay chain. The pro-
cedure of flavour tagging is implemented by several algorithms, all using long
tracks and particle identification for leptons and kaons based on optimized cuts
on the combined AlnL quantities.
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Chapter 2

CP wviolation in B mesons

2.1 Prologue

The CP violation is one of the most astonishing phenomena in particles’ physics.
In 1957 it was demonstrated that the electroweak interactions are C (charge
conjugation) and P (parity) not conserving. For example in the process

+

™ —>€+

Vel Lo e Vel PN N e Ver (2.1)
a Ter left-handed, never seen in nature, appears after the C' transformation.
Then, applying the parity, a truly process is obtained therefore the combination
of the two operators, CP!, is conserved this electroweak process.

However in 1964 it was observed in the neutral K kaons decay a plain CP
violation. In particular, Christenson, studied the decay K; — w7~ and he
found out that the mass eigenstates Ky and K are not eigenstates for the
electroweak Hamiltonian for the KO — K. Up to 2001 the CP violation was
observed only in the kaon system, but, in the last years it was observed also in
the B sector with unambiguous evidences.

2.2 A short introduction: CKM matrix

In the standard model, the electromagnetic and weak interactions are unified
into a single electroweak theory accomplished under an SU(2) ® U(1) gauge
group. This theory is based on spontaneous break (the SBB scheme):

SU@2)®U(l)y — SBB — U(1)g

The corresponding gauge bosons are the photon of the electromagnetic interac-
tion and the W and Z bosons of the weak force. In the SM, the weak gauge

IThe CP operation transform a particle in antiparticle trading off their helicity and their
momenta. The weak interactions break separately the C' and the P symmetry, but they
preserve the C'P with a good approximation.
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bosons get their mass from the spontaneous symmetry breaking of the elec-
troweak symmetry from SU(2) x U(1)y to U(1)g, caused by the Higgs mecha-
nism, i.e. they obtain their masses in Yukawa couplings to the Higgs field

Ly = ~YIQT ¢dh,; — YEQL e uby, + h.c. (2.2)

where Y%%are 3 x 3 complex matrices, ¢ is the Higgs field, i,j are generation
labels and € is the 2x 2 antisymmetric tensor. Q! are left-handed quark doublets,
and d% and u{% are right-handed down and up type quark singlets, respectively,
in the weak-eigenstate basis. When the field ¢ acquires a vacuum expectation
value, < ¢ >= (0,v/v/2), the lagrangian in eq.2.2 yields mass terms for the
quarks. Diagonalizing Y% by four unitary matrices, V; ’I‘% as

ML, =VIVIViiw/ /@)  f=ud (2.3)

the physical states are obtained. As an important result the charged currents
W# interactions couple to physical u rj and dr quarks with coupling given by

Vud Vus Vub
VCKM:VLuVLdT: Vcd chs Vcb
Via Vis Vw

The couplings of the quarks to the Higgs field are not diagonal, for every
weak basis. To diagonalize the Yukawa couplings, the CKM matrix has been
introduced [8]. The CKM matrix connects the electroweak eigenstates (d', s ,b")
of the down type quarks with their mass eigenstates (d, s, b) through the follow-
ing unitary transformation:

/

d Vud Vus Vub d
Sl = ‘/cd ‘/cs ‘/cb S
b Via Vis Vb b

In fact for the quarks, the weak flavour eigenstates are different from the mass
eigenstates and can be expressed as a superposition of them. By convention,
the phases are defined so that the isospin +1/2 quarks u, ¢, ¢ are identical to
the mass eigenstates. Therefore the three doublets(weak eigenstates) are:

(), (), (0),

where the d’ s’ b’ are linear superpositions of the mass eigenstates d s b. In
the new basis the charged current (CC) interactions mediated by W= bosons
are purely left-handed and they are responsible for parity violation. Also, the
lack of flavour changing neutral current at the tree level is due to the unitary of
the CKM matrix, since the Z,, interaction terms are now flavour diagonal. The
lagrangian that gives a description the interactions between the quarks and the
W bosons can be written as

L= - (JEW, + JW)) (2.4)

_'g
\/_
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where the charged current is

»
—~

N

ot
~—

Jf=(uct)y v Voxm

and W, describes the vector boson.

Applying the C'P operator, the lagrangian
C’P,CZC(CP)*1

has the same density if the Vognar = Vi, » i-e. the CP is conserved only if
the elements are real.

However the C'PT invariance, which is a more general condition, requires the
Ve i v unitarity (Voras - VCT s = 1), thus, with three quark families, complex
elements and C'P violation are allowed.

The CKM matrix is a n X n complex matrix, where n = 3, so it contains 2n?
real numbers. The constraint of unitarity requires

Z Vit Vi) = 0ij
%

i.e. for the diagonal terms there are N constraints, and for the off diagonal
terms there are n(n — 1) constraints. In this matrix there are four independent
parameters2. One of the most popular parametrization for the CKM matrix is
the Wolfenstein one:

“¥-% A AN (p — im)
AN2
AN {1 —a-)p+ in)] —AN (L= )14+ 2(p+in)] 11— A

2
Verar = | —A+ 222(1 = 2p) —iA2\5y 1- 2 - a4(L 4 4h
(2.6)

where the four independent parameters are: A, n, A, p.

The condition of unitarity Vo g ar VC]:KM = VCtKMVCKM = I originates 9 vec-
torial equations which are functions of the four independent parameters. Fatally
only two equations are, from an experimentalist point of view, significantly.

VadViiy + VeV, + ViV, = O(N) + O(X%) + O(A*) = 0 (2.7)

ViVia + ViVie + Vi Vip = OO + O(X3) + O(X%) =0 (2.8)

2In a generic n X n matrix, there are 2n? independent real values. The CKM matrix is also
unitary then the number of independent parameters is reduced to n2. Moreover we have to
take account the number 2n of the quarks’ fields. We can redefine the fields choosing 2n — 1

arbitrary relative phases. In this case we obtain at last n? — (2n — 1) = (n — 1)2.
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Ry = p+iij

1=p=in A* = (N%p, M)
Ry =1-XN(p+in+1/2)
N (p + in) 5
= (0,0) B=(1,0) C==(0,0) B®=(1-X%/2)

Figure 2.1: Graphical representation, in the complex plane p-7, of the equations
2.7 and 2.8.

For the sake of the simplicity we analyse only the eq.2.7 (see the left picture in

fig. 2.1). In the complex plane this equation can be represented as a triangle
with the three sides:

Via Vi, = AN (p + in)
VeaVii = —AN®
ViaViy = AN} (1 — p—in)
where the p = p(1 — A\?/2) and 7 = (1 — A?/2). Dividing the three equations

by the complex quantity Vi4V; we transform the triangle in the plane and the
new vertexes are C'(0,0) B(0,1) A(p,7). The sides C A and AB have length of:

CA=R, = WVuaVi| =vpr+ir=(1 >\2/2)1 V| (2.9)
VeV | ol A Ve
ViaVipl 1 [Vial
AB = R, = 1—p2+i2= 2.10
VoV~ V=740 = 3100 (210

The unitarity condition can be at last summarized as

Rye ™ + Rye " =1

ViaVi 1
B = arg (éii{) = arctan (1%/7)

v = arg (—VUdV€b> = arctan (2)
VeV P

Within the SM, all the physical measurements, depending on the Vo ma-

with

trix elements (decay rates, CP asymmetries...), have to be consistent with this
complex triangle.
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p

Figure 2.2: Graphical representation of the CKM unitarity triangle, obtained
exploiting the present experimental results.

2.2.1 The present knowledge of CKM

The SM validity is addressed to a precise knowledge of the unitary triangle.
The combination of the present experimental results are represented in fig. 2.2
obtained by the UTFit group.

Several physical observables contribute to the definition of the CKM picture:

e a By — pr, as well as B — 77~ gives access to sin(2a) but the second

decay requires the knowledge of the “penguin pollution”, which can be
extracted from By — K*r¥

e 3 The B° /EO mixing phase ¢4 turns out to be equal to 20 and can be
extracted from Bg — J/UK, and similar channels. Bg — ¢K, also
allows the measurement of 23 but it is dominated by penguin loops. Both
measurements giving different results could show signs of New Physics.

e 7 This angle can be accessed by the By — D™ 7 channels, which give
v+ ¢4 obtained from the measurement described above. There is also the
BY — D, K channel, which is sensitive to y+!d,.

e \ This angle can be estimated with the B; mixing phase, ¢s, which is
equal to —2x in the SM and can be extracted from asymmetries in B? —
J/V¢, BY — J/Un, BY — n.¢ or BY — J/¥n
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Figure 2.3: Box Diagrams illustrating the B,/B, mixing.

e |Ry| This is the length of the CA side of the unitarity triangle (db) which
involves the ratio|Vyp|/|Vep|. Both the numerator and the denominator
can be obtained via semileptonic decays of B-mesons, e.g. b — ulv or
b — wuclv decay processes.

e |R;| This is the length of the AB side of the unitarity triangle (db), |Rt| =
1 [ Vil
X [Veal
with the help of the mass difference Amg s of the mass eigenstates of the

Ams _ mBp, 2 |Vis|?
Amyg mp, [Vial®

order unity) expresses hadronic structure functions. More specifically the
ratio Amg/Amyis independent of m; and short distance QCD corrections.
In principle, this ratio is affected by much smaller theoretical uncertainties
than the hadronic matrix elements appearing in Am, and Amgseparately.
The determination of |V;4/|Vis| can also be done with rare decays through
b — transitions.

, where the problematic term is V;4. However it can be determined

neutral By and B meson systems with

where € (of

Up to now the experimental results show an agreement with the SM theoretical
framework. A more precise determination of the sides and the angles of the
unitarity triangle can show up inconsistencies due to NP effects.

2.3 The Particle-antiParticle system

The neutral B, mesons (bound states of bg quarks) can oscillate and decay (fig.
2.3). They decay through electroweak processes (AB = 1) , while they can
oscillate to its antiparticles via flavour violation transitions (AB = 2).

The time evolution of a particle-antiparticle system P? « PV is defined with
a vector in the Hilbert space:

W () = a(t) | P°) +b(t) |[P°) + > If) (2.11)
according to the Schroedinger equation:
0
zhg |U) =H |T) (2.12)

where H is an infinite-dimensional Hermitian matrix in the Hilbert space and it
describes the electro-weak and the strong interactions:

H = Huyeak + Hstrong + Hem (213)
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. To treat in some ways this equation, we need to make some assumptions.
1. The initial state is a linear combination of P and P9
2. We analize only the coefficient a(t) and b(t).

3. We use the WeissKopf-Wigner® approximation|14]

we obtain a new matricial equation:
i —4iT —ir
H=M— T = miy ) 11 M2 2 12 (2.14)
2 mo1 — 521 maog — 5T

Assuming the CPT invariance, considerable simplifications arise from

H = H'. To find the solutions we diagonalize H and solve eq.2.12. The
two states are

|P1) =p|P°) +q|P°)
— 2.15
P2} = p|P) — g |PO) (2.15)
are the mass eigenstates with eigenvalues:
my — %1—‘1 =mi — %1—‘11 + 4 (maz — %F12) (2.16)
mg — 5l =my — 5T — 1 (m12 — $T12) '
with
2 * i Tk
(2) _ Mz~ 5l% (2.17)
P miz — 5012

The two mass eigenstates have different masses and widths which depend on
the off diagonal elements of the matrix H (eq.2.14):

Am = mo —my = —2Re (g (m12 — %Fm)) (218)
p

—ATl' = FQ - Fl =4Im (g (m12 — %1—‘12)) (219)
p

While we can observe that p and ¢ terms are bound by the normalization

3We can make use of the WeissKopt-Wigner approximation, namely given the times ¢ in
which we are interested are much larger than the typical strong interaction scale, we can
neglect the weak interactions between the final states, i.e. we simply set (fi| Huweak |fz/> =0.
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| | B. | B |

mass|MeV /c?] | 5279.3+0.7 | 5369.6 + 2.4

T[ps] 1.530 £ 0.009 | 1.466 + 0.059

Am[ps~T] | 0.507£0.005 | 17.77 % 0.69
AT/T 0.009+0.037 | 0.317073

Table 2.1: Main differences between the By and By systems.

condition
2 2
" +qI” =1 (2.20)

The assignment of the the labels 1 and 2 is an arbitrary choice, with no physical
meaning. In the case of the By mesons the lifetime difference is too small to be
observed, so the classification is made observing which one is heavier. Therefore
the mass difference is defined as

Am=mpyg —myp >0 (2.21)
whereas the lifetime difference is
ATl'=Tyg -T1 <0 (222)

A comparison of the present knowledge of the By and By properties are re-
ported in tab.2.1. We can notice that the B have a higher oscillation frequency
Am and a bigger AT

The time evolution of the mass eigenstates is ruled by these equations:

|BY(t)) = e~™ite™ %" |BY), j=H,L (2.23)

so due to the mixing they become ( 2.16) the general time evolution formulas:

Tyt

‘qu(t)> = e MagT 2 {cos ( Amg

t> \Bg’>+z‘§sm< : t) |BS>} (2.24)

t) |BY) +i§sin <A72”‘1t) ]Bf;)} (2.25)

Amyg
2

‘Bg(t)> — emimag— {cos (

2.3.1 Time dependent decay rates

Let us consider a specific decay of the neutral B, /Eq mesons to final states f/f.
The transition amplitudes are expressed by the following relations:

Ap = [(fIT|BYY|, Af=|(]|T|BY)|
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A= [(FITIB)| . Ap = [(FIT|By)]

where |f) is the generic final state. In the next paragraph we will see how
the decay amplitudes can be computed within the SM considering all the pos-
sible hadronic contributions. The relevant fact is that the previous transition
amplitudes depend on the CKM elements.

From the eq.2.25 and the eq.2.24 we can calculate the time dependent decay
rates. For an initial | BY) meson is:

Iyt

A[BYt) — f] = [{fIT|BY)| = e "mate™ =" [cos (A;nqt> A+ ig sin (%t) Af}

likewise, for a meson that borns aS‘Bg>, the decay amplitude is:

A [Bg(t) - f] = |<f |7 B2>| = eﬂ'mqte*% {cos (A;nqt> flf + zg sin <A;nqt) Aj}

(2.27)

If f # f we have four different decay rates:
P (B0 - 1) = AL ) + 1) (2.28)

0 ‘Af’2 p ? Tt 7 7
I (BYt)— f) = 5 ql € [L(t) — I_(t)] (2.29)
r (850 - )= 5 Bl e - L) (2.30)
R0 ’Af}Q Tt [7 7
I (BY(t)— f) = e [I(t) — I-(t)] (2.31)
with

I (1) = (1 + |Af|2) cosh %t — 2Re()\;) sinh %t (2.32)
I_(t)= (1 + |)\f|2> cos Amt — 2Im(A ) sin Amit (2.33)
I.(t) = (1 + }Xf|2) cosh %t — 2Re(} ;) sinh %t (2.34)
I_(t)= (1 + D\f,}?) cos Amt — 2Im(Af) sin Amt (2.35)
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2.3.2 Classification of CP violation (CPV)

Depending on the decay considered, three possible mechanisms can lead to a
C'P violation.

1. CP Violation in the mixing
2. CP Violation in the decay
3. CP Violation in the interference of mixing and decay

Since the amplitude phase is convention dependent, any CPV can be manifested
if at least two amplitudes with different C'P behaviors interfere.

CP violation in mixing This CPV in mixing is originated by

lp/al #1 (2.37)

that implies that the probability for initial pure B, to decay as B, or initial
Bgto decay as B, at time t are different.
This CPV can be well isolated in semileptonic decays of neutral B:

D(BO(t) = v X) —T(B°(t) = 17vX) _ 1—lg/pl* _, T

L(BO(t) — ItvX) +D(BY(t) — I-0X) 1+ |q/p]* mM12 (2.38)

even if this asymmetry can be measured, since the M5 and I'15 are affected by

large hadronic uncertainties, no precise extraction of CKM parameters can be
performed from this type of decays.

CP violation in decay(or direct) This kind of CPV borns from when the
two amplitudes which are different. As shown in the following equations, they
depend on the strong ¢ and the weak phases ¢y :

Af* = <f7’ Hweak ’Bi> = Z Akei(5k7¢k) (239)
k=1,2

Af+ = <f+‘ Hweak ‘B+> = Z Akei(5k+¢k) (240)
k=1,2

This CPV can be best isolated in charged B decays since mixing effects do not
enter in this process. The asymmetry is given by
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(BT = fH)=T(B" = f) 1-|Ap AP

Dir(pt _ pEy _ - A
A¢p (B ) (Bt — ft)+ (B~ — ) 1"’|AJ‘*/AJ‘+|2

(2.41)

This asymmetry is non zero if there is weak or a strong phase difference, hence

—2A1A2 sin(51 - 62) Sin(d)l - ¢2)

ADir _
or A% + A% +2A, Ay cos(61 — 02) cos(¢y — ¢2)

(2.42)

The sign of strong phases J; are the same because CP is conserved by strong

interactions. The weak phases, instead, have opposite signs.

CP violation in the interference and in the decay This type of CPV can
be observed only in neutral B meson decays to C'P eigenstates (f = f) when
Im(Ay) # 0. This CP violation can be turn out as well in absence of direct
CPV with |p/q| = 1 since B
P Af’

n] =[5 (2.43)
It contains aspects of both direct and indirect C'P violation. In fact, in this
case, the CPV is originated from the interference of a decay with mixing a
decay without.
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2.4 Theoretical Framework

The C'P asymmetries, shown in the previous paragraph, represent a valid tools
to evaluate the CPV within the SM. Unfortunately the hadronic uncertainties
of the decay transition limit the accuracy of the measurements of the C KM
elements. In some cases they even prevent any estimate. However a theoretical
tool exists and it can be employed with profit. The most complicated b-hadron
decays are non-leptonic transitions, that are mediated by b — ¢1G,d(s) with
a1,q2 € {u,c} and q1,¢2 € {d, s}.

The starting point for the study of the weak decays of hadrons is the effective
weak Hamiltonian which has the following generic structure [26]:

Gr
\/5
where the G is the Fermi constant and the (); are the relevant local operators
which control the decays. The Wilson coefficients C; and the CKM elements

describe the strength of each local operator @);. The simplest decay that we can
analize is the beta decay:

Heps = Z VCiKMCi (1)Qi (2-44)

G
Hfff = TI; cos O [uy, (1 —v5)d ® ey"'ve] (2.45)

where V.4 has been expressed in terms of cosf.. In this case the Wilson co-
efficient is equal to unity and the local operator @); is the term between the
brackets given by a two V' — A currents product. In this context the formula
2.44 can be regarded as a generalization of of the Fermi Theory to include all
quarks and leptons. Thus the effective hamiltonian can be thought as a simply
series, known also the operator product expansion (OPE), of effective vertexes
multiplied by effective coupling constants C;.

Likewise the transition amplitudes for non-leptonic decays are calculated
using low energy effective Hamiltonian which are expressed using OPE which
factorizes QCD and weak effects. The OPE technique allows to separate the
short distance contributions C; from the long distance contributions @);. The
coefficient C;(p) are the scale dependent couplings of the hadronic matrix el-
ements (f]Q;(n)|?) and they are perturbative quantities. The short distance
part contains the information on the integrated heavy fields which are treated
as dynamical degrees of freedom.

For the B decays there are six classes of hadronic operators, as reported in
fig.2.4:

Current-Current (Tree processes)
Q1 = (Cabg)v-a(3pca)v—a Q2 = (b)v_a(sc)v—a (2.46)
QCD Penguins

Q3= (SD)v-ay—nascp(@Dv-a Qs= (5abp)v-a 2 1—u.ds.c(@3a)v-a
(2.47)
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Qs = (S0)v-a iy ascp(@Dv+a Qs = (5abg)v-4 2 y—u.d.s.c5(03a)v+a

(2.48)
Electroweak Penguins
Q7 = %(gb)V—A Zq:u,d,s,c,b €q (QQ)V-FA Q8 = %(gabB)V—A Zq:u,d,s,c,b €q (Cjﬁqa)V‘FA
(2.49)
Q9 = %(gb)va Eq:u,d,s,c,b eq(@Q)VfA Q1o = %(gabﬁ)va Zq:u,d,s,c,b eq(‘iﬁ‘]a)VfA
(2.50)
Magnetic Penguins
Q7'y - #mbgagﬂy(l + 75)b0cF,u1/ Q8G - #mbgaoﬂuy(l + WS)Tgﬁb(an,;
2.51

AS =2 and AB =2 Operators

Q(AS =2)=(Bd)v-a(3d)v-a  QAB=2)= (bd)y_a(bd)v_a (2:52)

Semileptonic Operators
Qov = (8b)v—a(piit)v Q104 = (58b)v_a(pipe) a (2.53)

Qo = (Sb)v-a(wv)v-a  Quu=(Sb)v_alfip)v-a (2.54)
The Wilson coefficients C; (1) depend on the energy scale . They express the

physics contributions from scales higher than p and due to the asymptotically
freedom of QCD; they can be calculated in perturbation theory as long as u
is not too small. C; include the contributions from heavy particles such as
W, Z bosons, top quark and also from the supersymmetric particles in the
supersymmetric extension of the SM. For this reason the Wilson coefficients
depend generally on m; and also on the masses of new particles, if extensions of
SM are considered. An amplitude for a decay of a given meson M into a final
state F' is expressed

A(M — F) = (F| Mo [M) = % S ViserrCili) (FI Qi) [M)  (255)

The p value can be chosen arbitrarily and it achieves the separation of the
physics contributions to a given decay amplitude into short-distance contribu-
tions, at scales higher than p, and long-distance contributions, corresponding to
scales lower than p. Usually p is chosen at the scale mass of the decaying hadron.

So the most important feature of the OPE is, without any doubts, the pos-
sibility to separate the amplitude in two distinct parts: the short distance (per-
turbative) C; (1) and the long-distance (generally non-perturbative) calculation
of the matrix elements(Q;(u)). These ones involve long distance, no perturba-
tive contributions, so we have to employ some non-perturbative method such

o4



as lattice calculations, QCD sum rules, the 1/N expansion and so on. Any-
way these approximations have some limitations. Without a reliable estimate
of these elements, we cannot determine accurately the CKM matrix in order to
observe some hints of new physics, beyond the SM.

The formula 2.55 can be transformed in a more intuitive master formula for
the weak decays amplitudes in the SM:

A(Decay) = Binpep Ve Fi(ar) (2.56)

where x; = m?/M{,. The B; are the matrix elements, non perturbative, of
local operators and the ngcp are the QCD factors from the RG-analysis. The
F;(xz;) are the Inami-Lim functions and they are from the calculation of the
box and penguin diagrams in the SM. The most likely B meson decays are the
semileptonic and hadronic decays.

The above formula can be modified to contain the new physics models:

A(Decay) = Z BingepVéxm[Fén + Fiew) + Z BY e plView Giew)

(2.57)
New physics can contribute to the master formula in two ways. It can modify
the role of an operator, present already in SM, summing a new short distance
functions Fj,,, that depend on on the new parameters in the SM extension (for
example the masses of charginos and squarks).
Also there is a second way that is described by the second term of eq. 2.57
where the matrix V};,,, describes new sources of flavour and CP violation beyond
the CKM matrix.

2.4.1 Classification of elementary processes

Non leptonic B decays can be thought as a combination of the tree and the
penguin diagrams. We can have:

b — q132d(s) b — qqd(s)

for the tree and the penguin diagrams. We can divide the transitions in three
classes:

e both tree and penguin diagrams are involved. ¢ = ¢ = ¢ =u,c

b — ccs b—ced b— uus b — uud (2.58)

e only tree diagrams are present. ¢; # g2 € {c,u}

b — cus b— cud b— ucs b — ued (2.59)

e only the penguin diagrams contribute. ¢ = d:

b — sss b— s5d b— dds b — ddd (2.60)
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Figure 2.4: Typical penguin and box diagrams:(a) Current-Current; (b) QCD

Penguins; (¢) Electroweak Penguins; (d) Magnetic Penguins; (e) Box Diagram;
(f) Semileptonic Operators
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2.5 LHCDb Physics program

LHCDb can fully exploit the large B meson yields at LHC from the start up with
an excellent mass and decay time resolution and particle ID. Also it will have a
flexible and robust trigger dedicated to B physics. In next lines I would like to
list the main physics tasks that LHCb is going to face.

2.5.1 Am, , Al'y and ~ extraction from B, — D,

The frequency of the B mesons oscillations is determined by the Am value. The
frequency has different values for the By and the B, systems (tab. 2.1).

One of the first target that LHCb will accomplish, it will be the Am extraction
from the By — Dgm. We foresee about 80,000 events in one year of data taken
(2fb™1). For details see the par. 4.4.2.3. The study of this channel also it will
provide the C'P angle v+ ¢ and the AI'y value. The angle ¢, is an unmeasured
quantity that will be retrieved by the B; — J/¥¢ and the By — J/¥n channels,
so in this way the angle v will be determined. Since the decay originates from
tree diagram processes, the v measurement is not affected from the presence
of new particles. A second way to reach the v angle is described in the next
paragraph.

2.5.2 B — h™h™ for v extraction

Fleischer, following|28|, we apply the U-spin symmetry in order to extract the
7 angle. We analise the behavior of the decay channels By — hth'~ where
h,h, = 7w, K. From these decays the extraction of the CKM phases should
be rather complicated due the hadronic uncertainties coming from the penguin
pollution, but the U-spin symmetry can lead to a plain reduction. The strategy
is only limited by theoretical uncertainties introduced by the U-spin breaking
corrections [?].

Folding in the information coming from the different h™h~ cases, we can
state that:

C(By — 7)) = f1(d,0,7)

S(By — nm) = f2(d, 0,7, da)
C(B? — KK) = f5(d,0,7)
S(B? = KK) = fi(d.0,7,¢s)

where 2 -
L= [As q Ay
Cp=—72I =221 2.61
21+ PR T A (2.61)
and Tk
mMAf
Sp=2—"J 2.62
NPV (2:62)

and the index f represents the final states 7 and K K. So there are 4 equations
with 7 unknowns. The mixing phases can be extracted from the By — J/WU K|
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and By — J/U¢ and, relying on Uspin symmetry we can eliminate two further
unknowns. Four equation for 3 unknowns.

Also the B — KTn~ and B? — 77 K~ decays differ only in the spectator
quarks from the BY — KTK~ and B’ — 77 channels. So we can assume

AHy ~ Agr (2.63)

AL~ A g (2.64)

where A is the charge asymmetry for the B — K7~ and A,k is the charge
asymmetry for B — 7T K.

Effects of new Physics can be revealed by the extraction of v observing the

large sample of B — hTh™ thanks to the great PID and vertexing capabilities
of LHCb detector.

2.5.3 B* — D2,K* for v, the GLW method

The ~ measurement in charged B decays exploits the interference between two

amplitudes to B~ — D’K~ and B~ — DK~ , that occurs when D° and D’
decay to common final states. In the GLW method, the interference effect is
searched by looking at the DY, decays to C'P eigenstates (K K, mm, Km°, ...).
The decay rate is given by:

T(B* — DApK*:) 1+ 1% +nep - 2rp cos(dp +7) (2.65)
if we neglect the effects due to the D mixing and to the C PV in the D° decays.
The rp and §p parameters are the ratio magnitude of the amplitudes for the

processes B~ — D’K~ and B~ — DK~ and the strong phase. Since rz can
be small, the interference could be small and difficult to measure precisely.

2.5.4 B* — D(Kr)K*for v, the ADS method

To enhance the interference effects, a technique, called ADS method, was pro-
posed in 1996 in [?] by Atwood, Dunietz and Soni. In this case the D from the
favoured b — ¢ amplitude is reconstructed in the doubly-Cabibbo suppressed
final state K7 ~, while the D’ from the b — u suppressed amplitude is re-
constructed in the favoured final state K7~ the particular amplitudes of the
neutral D meson transitions. [30] The experimental observables depend on four
additional parameters: rp the ratio magnitude of the amplitudes for the pro-
cesses B~ — D K~ and B~ — DK~ (Fig. 1), the rp, the ratio magnitude
between the D' — K+7~ and D° — K~ 7t amplitudes and their relative strong
phases d5,0p -
By measuring the four rates (fig.2.5):

F(37 — (K77T+)DK7) ox 1+ (’I’BTD)2 + 2rgrp COS(5B —0p — "y) (266)
(BT — (K7 )pK") o<1+ (rgrp)* 4+ 2rgrpcos(dp —6p +7)  (2.67)
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I'(B™ — (Kt7m )pK~) ocrs 4 (rp)? + 2rprp cos(dp + 6p — ) (2.68)
(BT — (K 7")pK") ocr% + (rp)? + 2rprp cos(dp + dp +7) (2.69)

it is possible to extract the v angle given the rp and rp, values measured
independently. The Monte Carlo simulations show that LHCb will produce,
every year, about 56000 favoured events, the first two decay rates, while only
700 of suppressed events.

Actually the LHCb strategy will be combined the GLW and the ADS meth-
ods in order to exploit the common parameters and to improve the sensitivity
of the v angle. In tab.2.2 are summarized the expected performances of the
different measurements that LHCb will study.

2.5.5 B* - DY(K,m"r~,...)K* with Dalitz plot

This method is the same ADS applied to a multibody D decays. In the case of
the three body decay, the Dalitz analysis can directly measure the v angle from
the interference pattern. Introducing the two invariant mass:

m3 =m*(K,nh) m? =m?(K,n™) (2.70)

all the “mass combinations” are reported in a 2D plot, like fig.2.6 . The total B

—0
decay amplitude is the sum of the contributions from D° and D", as reported
in the following lines

A™ = f(m®,m3) +rpe’ 7T f(mim?) (2.71)
At = f(m%,m2) _i_,r.Bei('Y'f‘lsB)f(mimz_) (2.72)
where
N } .
f(m%,m?) = Zajew‘fAj(mi,mz_) + be'? (2.73)
j=1

with N the number of resonances, a; and «; amplitude and phase parameters
from the B factories and A; model dependent parametrization of the matrix
element. ) )
2 2 2 2 2 2 2
F(mfvar): ‘f(m77m+)| +TB‘f(m+7m7)‘ +

+2rpRe [f(mQ_,mi)f*(mi,mz_)ei(77+53)] (2.74)

Thus the interference contains the + dependence. At present the preliminary
studies with Monte Carlo have shown a good precision for the v measurement,
as reported in the tab. 2.2.

The same idea can be applied in some decays where the D° decays in four
bodies, like the B* — DY(KKrm)K*.
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Figure 2.5: Favoured and suppressed decays in B¥ — DK™ channel. They give
the same final state.
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Figure 2.6: The Dalitz plot of the decay D° — K atn—.
higher density are the resonance of this decay.

The regions with

| Bmode D mode Method a(vy)
Bt — DK* | Kn+ KK/rm+ Knrw ADS+GLW 5°-15°
BT — D*K* Kr ADS+GLW under study
BT — DK™ Ky Dalitz 15°
BT — DK™ KKnr 4-body “Dalitz” 15°
Bt — DK™ Knnr 4-body “Dalitz” | under study
B — DK*0 Kr+ KK + 7w ADS+GLW 7°-10°
BY — DK*0 Ky Dalitz under study
Bs — DgK KKr tagged, A(t) 13°

Table 2.2: Expected -y sensibilities for the LHCDb experiment in various B — DK

channels.
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Channels | o(¢s)[rad | | Weight (o/04)* [ %] |

Bs — J/Un(rt 7= 70) 0.142 2.3

Bs — DDy 0.133 2.6

By — J/Un(vy) 0.109 3.9

Bs — n:¢ 0.108 3.9

Combined sensitivity for pure CP eigenstates 0.060 12.7
Bs — J/¥¢ 0.023 87.3
Combined sensitivity for all CP eigenstates 0.022 100.0

Table 2.3: Expected sensibility to ¢s measurement for different decay channel
in LHCb.

2.5.6 B, — J/U¢, B, — J/In,B, — n.¢ and B, — D,D, for
2x

Both B, B, can decay to the same final state J/W¢. Due to the By mixing,

this process follows two different quantum paths. Their interference, originates

a time dependent C'P asymmetry, which can point out the phase difference

between the B,/Bj oscillation amplitude. The phase difference ¢, within the
SM, is estimated as

VesVeb
?s 2x = 2arg (‘/}:V}b ) (2.75)
with a little approximation* already used in the golden plated decay channel
By — J/UK.

The Wolfenstein parametrization ensures that the phase of the decay am-
plitude is zero, so the observed phase can be wholly ascribed to the B,/B,
oscillation amplitude. Also the SM foresees a small value for the phase ¢,’and
thus, if there is new physics in the b — s transitions, it will be clearly visible in
the C'P asymmetry, since

A" — sin ¢ (2.76)

Despite the By — J/WK, channel, the analysis of the By — J/WU¢ is more
challenging since both particles J/¥ and ¢ are vectors and the decay proceeds
with three different interfering amplitudes, 2 CP even and 1 CP odd. So a
completely angular analysis is required (for details see the par. 2.5.8.1). At
last the observable time asymmetry is dependent on the AI's and Amgvalues,
therefore a great proper time resolution is required.

In case of the By — J/W¥n channel only one CP eigenstate contributes, so the
analysis is simpler but the statistics will be about a factor 10 less. Some other
minor channels can contribute to the ¢s measurement. In tab. 2.3 are sum-
marized the expected performances in one year of data taking, for the different
measurements that LHCDb will study.

4In a similar way as in the By — J/WK there are some penguin contributions, but the
leading penguin term has the same phase as the tree diagram. So they can be neglected.
52x = 2nA? = 0(0.04)
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2.5.7 By — ntn 7 and B — pp with Dalitz analysis for o
extraction

The time dependent analysis of the B — 7%zt 7~ Dalitz space provides enough
observables to fit the different tree and Penguin graph contributions, and hence
determine the unitarity triangle angle o with precision of o(«) < 10 degrees in
one year of data taking.

The extraction of a from the CP asymmetry in B — ptp~ is directly
analogous to the method first investigated in the 777~ system. In contrast
to 777 ~, however, the isospin analysis proposed by Gronau and London here
provides significant constraints on « because of the small branching ratio for
B — p%p°. The main contribution of LHCb to the B — pp analysis could be
the B — p°p° measurement since the annual yield of the LHCb will be not
competitive with the present production of the other B experiments.5

In general the final state is composed by two vectors and then an angular
analysis is required. Furthermore, any complications brought about by the
vector-vector final state are minor, since the longitudinal polarization is found
to be almost maximal.

2.5.8 Looking for New Physics: Rare Decays

Beside the study of B decay asymmetries and rates, to measure the unitarity
triangle angles, thanks to the high statistics and precision, LHCb will be able to
measure several rare decays. Some of these processes are particularly important
to test new physics contributions.

2.5.8.1 By — ¢¢ for new Physics

This decay is a FCNC (flavour changing neutral current) process, that is medi-
ated by loop diagrams as is shown in fig.2.7. For this reason the process is a rare
decay. New physics contributions, due to supersymmetric particle exchange in
the loop, can contribute significantly to the asymmetry. Within the SM the C' P
asymmetry is expected < 1% since

\SM _ aAss _ VaVie ViVis
PP T pAge  ViVie VaVi

=1 (2.77)

So a large asymmetry will be a clear sign of new physics.

The final state is composed by two vectors so an angular analysis is required
in order to extract the C'P asymmetries. The helicity amplitudes are exploited
to calculate the differential decay distributions

dr(t)
o
d cos 61d cos Oadpadpy

> HA()DYy(¢1,01,0)DY (b2, 02,0)|  (2.78)
A=0,%+1

SExpected annual yields in LHCb (2fb~1) : BE — p*p% 9000 events (B/S~ 1); B — p~—pt
2000 events (B/S< 5@ 90%C.L.).
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Figure 2.7: FCNC processes govern the By — ¢¢ decay.

where
Ho(t) = Ao(t) Hua(t) = (A + AL) /V2 H_1(t) = (A — AL) /V2

with A9 A CP even states and A, the odd one. So the time dependent
differential description is

dr(t)
d cos 01d cos Oz dpadpy

HAL®) f13(01, 02, x) + Im(A] () AL(£)) fa(01, 02, x)+
+Re(Aj(t) Ao(1)) f5 (61, 02, x) + Im(Ag(t) AL()) f6 (61, 62, x) (2.79)

where f;(01,02,x) are six symmetric angular functions under ¢ meson inter-
change. Assuming the branching fraction determined by the CDF collaboration
(~ 1079), in the LHCb detector will detect about 4000 events for one year of
data taking and reach sensitivity of new physics phase o(¢np) = 0.10.

o [Ao () f1(01, 02, x) + [ Ay ()] f2 (01, 02, x)+

2.5.8.2 A rare decay: B; — uu

The Bs — ppu is a very suppressed decay in the SM (BR(Bs; — pp) of about
3.8-107Y). There are various extensions to the SM that foresee an enhancement
of this branching ratio by 1 to 3 orders of magnitude. In details within the SUSY
theory, the branching ratio is enhanced by a tan® 3 factor. For this reason, the
branching ratio measurements of the decay Bs — pup can be a powerful tool
to probe for physics beyond the SM. Thank to the great number of bb events
produced and the LHCDb performances, in a year of data taking, a 3 sigmas
measurement of the SM value will be possible (fig.2.9). At present the CDF
limit is: BR( Bs — pp ) < 2.0x10-7 @95% CL.
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Figure 2.8: Current best limits on the branching ratio By — uu from CDF and
DO data.

LHCb sensitivity
(signal+bkg is observed)

LHCb limit on BR at 90% CL

(only bkg is observed)

\\ Expected final CDF+DO limit

\\-...,__ LUncertainty in

1
bke-prediciton
(=1

iy
N

plbo v T v Lo e Lo L s
0 01 02 03 04 05 0 1

Integrated luminosity (fb~1) Integrated luminosity (fb™1)

Figure 2.9: Branching ratios limits for By — uu explored by LHCb experiment.
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Figure 2.10: After 1 year of data taking, LHCb will collect about 2fb~'. The
CKM triangle is

2.5.9 LHCDb impact on the CKM fits

In next years, LHCb will collect a great amount of data, about 2 fb~!/year.
The fig. 2.10. shows how our knowledge about the unitarity triangle will be
improved due to the increased precision on the measurement of 5 and ~, and
maybe to a less extent of a. The present precisions relate to the triangle apex
are o(p)/p = 17% and o(7)/7 = 4.7%. After one year of data taking this limit
will be shift in order to reach a precision of o(p)/p = 7.1% and o(7) /7 = 3.9%.
As shown in fig. 2.10, the CKM triangle is well constrained and it is compatible
to the SM forecasts, will be very small. For this reason, in order to distinguish
new physics, it will become absolutely important an auspicious improvement in
the precision of the theoretical model and in the experimental analysis skill.

66



Chapter 3

Experimental method for
proper time calibration

3.1 Introduction

One of the main features of the LHCb experiment is the possibility to measure
the B proper time very accurately (o, & 40fs) which is one of the necessary
requirements to measure the fast B/B; oscillations and to study precisely the
time dependent CP asymmetries.

For this reason the correct measurement of B proper time and the evaluation of
its resolution are key points in LHCDb physics analyses.

B lifetime can be calculated knowing its distance of flight (from the production
vertex, PV to the decay vertex, SV) and its momentum (p):

_ Mg (PV-8V)

5= T 3.1)

PV sV

Figure 3.1: Schematic representation of decay channel B; — nm: in black are
indicated measurable quantities (PV and track parameters), while in red are
the unmeasured ones (secondary vertex PV and By parameters).
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PV is indirectly measured with a common vertex fit of all track segments in
the Vertex Locator (VELO), while SV and B momentum are determined by a
common vertex fit of the stable B decay products.

In general we can say that the proper time is a function of measured quantities
75(m1, ma,---my) and its error can be obtained merely by error propagation
in case m; are gaussian distributed:

2 > T
oz =J; - cov(m)-J; (3.2)
where J = (272 975 = 975 ) g the Jacobian and cou(i) is the covariance
omy?’ Oms’ Y Omy,

matrix associated to the measurements.
Within the validity limits of the equations above, for each event we can calculate
B proper time and its error, which estimates the resolution event by event.
From Monte Carlo data it is quite easy to check the correctness of the proper
time: by comparing the reconstructed value with the true B decay (75) we can
calculate the statistical quantity:

B —TB

MC pyli(rg) = (3.3)

or
which is distributed as a normal gaussian if the measurement and the error are
correct.
On real data we cannot apply this statistical test, since the true B decay is
unknown. For this reason it is very important to develop some experimental
tools which, at least indirectly, test or study the reliability of measurements and
resolutions.
The LHCD collaboration studied different strategies to retrieve proper time res-
olution from real data, for example by studying the proper time distribution
of J/1p — pTpu~ produced directly in pp collisions [32, 33] . The aim of these
studies is to find a parametrization of the resolution as a function of kinematical
observables.
In this chapter we discuss the possibility to use a kinematical /vertex fitter as
a tool to test the input measurements and, at least indirectly, the reliability of
proper time measurements. Running such tool on experimental data, would be
a fundamental starting point for LHCb analyses, devoted to measure precise
time dependent CP violation effects in B/, decays. This work summarizes sev-
eral contributions given to the Proper Time & Mixing working group meetings
that are quoted in references [34].

3.2 Constrained kinematical and geometrical fit

Constrained fits are widely used in high energy physics experiments to get the
best estimates of some relevant information from a set of measurements, or for
testing the compatibility of data with a given hypothesis. They can be used for
track reconstruction, vertex reconstruction or physics analyses, where one needs
to select events of a given decay. Depending on the specific application, the in-
put measurements and the constraints applied can be very different. Despite
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the differences, from a statistical/mathematical point of view all the constrained
fits can be solved by looking for the set of unknown parameters which minimize
the x? according to the measurements and to the given constraints. The math-
ematical /statistical formalism used is based on the least squares (maximum
likelihood) and the Lagrange multiplier method, which will be briefly summa-
rized in the next section.

Beyond the above functionalities, in some cases constrained fits can also be
useful to test the correctness of the measurements. If the error distributions
are gaussian and the constraint equations are “quasi-linear” within the errors,
the distribution normalized residuals (namely FITPull) are normal gaussians
(mean=0, sigma=1). Any deviation from the expected shape can be ascribed
to a wrong input measurement: i. e. a BIASed value or a scale factor (SF)
multiplying the covariance matrix. In this context constrained fits can also be
useful in data and resolution calibration.

3.2.1 A statistics reminder: Least squares and Lagrange
multipliers method.

Let us consider a set of N measurements m; of a given observable. Due to
the finite experimental accuracy the measured values deviate from the “true”
ones, ¥, by a random amount which is measured by its error ;. If the error
distribution E; = m; —y is gaussian with sigma o; the best estimate of the true
value gy can be found by maximizing the likelihood as a function of y:

N Y
) = [[ e~ 220 (3.4

or, equivalently, by minimizing the weighted sum of the distance squared (least
squares):

2

sy =y 0k (3.5)
i=1 i

In a more general approach we can consider several measurements of different

observables that are related by functional relationships. In this case each mea-

surement m; corresponds to a true value y; that satisfies a set of constraint

equations f.. A dependence on additional parameters a;, for which no direct

measurement exists, can also be present:

fc(yla"'ayNaala"'aap):0 C:1,"',k (36)

The chisquare in equation (3.5) in this case transforms to the more generic
expression:

S(y) = (m—y)"W(m-y) = Ay’ WAy y' =@ un) (3.7
where W is the inverse covariance matrix associated to the measurements mT =
(my,---my) (W = cov_!(m) ).
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A simple way to include the equation constraints (3.6) in the least square
search is the Lagrange multiplier method: introducing a new unknown scalar
variable, the Lagrange multiplier A, for each constraint, the method looks for
the minimum of a linear combination of S(¥) and f(¥, &) involving the multi-
pliers as coefficients.

min ((S(y) - 2X7£(y, a) ) X' = (At o, ) (3.8)
o(s(y)-23"f(y.a ))_O 1N
ayl - - b b)
a(S(y)—2XTf(y,a
o et ;=o j= 1o (39
a(S(y)— )\Tfya
(or2trewa) oy,

If the constraint equations have a linear dependence on the parameters they
can be rewritten in the matrix form:

f(y,a) =By +Aa=0 (3.10)

where B and A are k£ x N and k X p matrices respectively. In this case the
solution of the constrained least square can be found in one step by solving the
linear system:

WAy +BTX = 0
ATX = 0 (3.11)
By + Aa =0

In the case of non linear constraints they can be linearized by using a Taylor
expansion close to a “good enough” solution (¥°,&°) and the problem can be
solved iteratively. In this case the matrices B and A assume respectively the
meaning of first derivative with respect to 3 and a:

afy afY afe afo
f(y,a) =~ f(y’,a")+ e + :
of of A af of A
Ty? Oy; YN Buj ﬁ ( ) Qp
3.12

If we are close enough to the solution, at each iteration cycle a we can linearise
the equations around the values found at the previous step:

f(y®,a®) + B¥(Ay® — Ay* 1) + A%(Aa® — Aa® 1) ~ 0
B*Ay* + A*Aa* = ¢ (3.13)
c=B*Ay* ! + A®Aa“~! — f(y“, a®)
where € is a “residual” value which stops the iteration when the desired accuracy
is reached. In this case the best estimates of the parameters are found by solving
the linear system:
WAy +B7X = 0
ATX =0 (3.14)
BAy +AAa = ¢
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The solution of this system is searched by iterating the calculation:

Ay W o B"\ '/o Ci1 Cai” Cai” 0
Aa = O 0 AT O == C21 sz C32T O 315)
A B A 0 C C31 C32 C33 C

When the desired accuracy is reached (|¢;| < €) we get the best estimate of the
parameters ¥ = Ay +y’ = Ay + m and 4 = Aa + a’.

3.2.2 Definition of Pull quantities.

Once the solution of the least square minimization is found, it is possible to
calculate also the covariance matrix of the parameters by propagating the errors
according to the Jacobian (see Appendix for details)[35].

The covariance matrix has the form :

Ci1 Ca” 0
= Ca1 Cag 0 (316)
0 0 —Ca3s3

Vv

> W <

In particular we are interested in the covariance matrix of the parameters y:

VE) =W '1-W'B " WgBW '+ W 'BTWg AW, ‘AT Wg BW!
(3.17)
and in the covariance matrix of Ay which turns out to be:

V(Ay) =W -V(y) (3.18)
At this point we can define the normalized “stretch values” or “FITPulls” as:

Ay;
FIT pylls(y;) = Y (3.19)
Cov,; — V(S’)n‘

If the measured data are gaussian distributed and the linearization of the equa-
tion constraint is a good approximation within the range spread by the mea-
surements, FITPulls turn out to be distributed as normal gaussians (1 = 0,
o = 1). Likewise, it is reasonable to expect that if one of the conditions above
is not satisfied a deviation from normality of their shape should appear. This
feature represents the key point of the calibration method we are proposing in
this note.

3.3 Some useful cases in LHCb analyses and the
GlobalFitter Tool

We have shown that constrained least squares provide not only the best esti-
mates of some parameters and the x? value but they also allow the calculation
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of the normalized FITPull quantities which, under precise conditions, have a
well known distribution.

We want to use the FITPull distributions to check if the measurements (m)
and their corresponding errors (cov) are correctly determined. Of course the
method has to be first validated on specific useful cases which LHCb will work
on. In particular we have to understand if the hypothesis about the linearization
of the constraint equations or the gaussian distribution of the measurements are
valid assumptions.

The LHCb collaboration developed several kinematical /geometrical fitters which
implement in different ways the constraint equations. In this note we will con-
sider the Global Fitter Tool which was developed by V.Vagnoni, A.Carbone,
G. Balbi and S.Vecchi since it was the only tool suitable to calculate the FIT-
Pulls and the proper time error by correctly considering the correlations given
by the constraints and the full covariance matrices of the input measurements.

3.3.1 The GlobalFitter Tool

The GlobalFitter is a general purpose fit tool which aims at fitting in one call
a complete multi vertex decay tree. This approach leads to similar results of the
other tools, which fit the decay tree step by step in cascade. The main differ-
ence to the other fitters is that the GlobalFitter retrieves all the kinematical
parameters, adjusted after the fitting procedure. Depending on the complexity
of the decay tree, the constraint equations may change.

During the first draft of this thesis, in LHCb a particle was defined by 5
track parameters® (x, y coordinates at a given reference plane z = Z, slopes
ty, ty in (z, z) and (y, z) planes and the momenta p ). From these definition it
is easy to obtain p,, py,, p. components and the energy F.

_ to — ly — 1 — /m2 2
Pz =D T2 iz Py =D T2 iz Pz=P e E=+\m*+p
(3.20)
Any B decay can be described by a nested tree of decays, each one defined by a
vertex and two or more decaying particles. Vertices and particles may or may
not be measured and the particles can decay themselves to other particles. For
each decay the equations are:

x?—xv—t;(,%—zv) =0

Y —yv —ty(F—2v) =0

’, _ 3.21
Px =27 =0 ‘ (3-21)
M3 - (2 B+ 12, p'?=0

where the first two equations request the particle i to originate from (or de-
cay to) the vertex V, the third apply momentum conservation and the last one
constraint the origin particle mass Mx. Of course momentum and mass conser-
vation are applied only if the considered decay-unit request the constraint (in

INow in the experiment we use a parametrization with 7 quantities.
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case of inclusive decays or large resonance decays this doesn’t happen).
We can immediately note that constraint equations couple quasi independent
groups of parameters:

e 1) vertex constraints couple track parameters z¢, t% (y', t; ) with vertex
ones zv, zv (yv, 2v)

e 2) mass and momentum conservation constraints couple only slopes t%, t;
and momentum p’ of the particles involved in the decay .

e 3) constraint equations are not linear. A Taylor linear expansion is per-
formed close to a first estimate of the solution which is calculated from
the measured values.

This feature will be shown up and discussed later on during the examples ex-
planation.

The number of degrees of freedom of the fit depends on the complexity of the
decay tree, which is defined by the number of constraints C' and by the number
of unmeasured parameters U and is given by Ngoy = C' —U.

In the following to validate the FITPull method we will consider in detail the
channel Bg — 77—, which is rather simple to reconstruct, since it originates
two high pr pions detached from the interaction vertex. The decay diagram is
represented in figure .... where in black are the measured quantities and in red
the unmeasured ones. In this decay topology we apply 12 constraints (7~
common vertex SV, B originating in PV and decaying in SV, and mass and
momentum conservation) and we have 8 unknown parameters (SV and B track
parameters), so the fit has 4 degrees of freedom.

During the FITPull method test we also considered the channel B — D (K K)x
. In this is a case the complexity of the decay tree is higher, the number of con-
straints is 24 (K K7 common vertex DV, D m common vertex BV, B originating
in PV and decaying in BV, and mass and momentum conservation in each decay)
and we have 16 unknown parameters (DV, BV and B and D track parameters),
so the fit has 8 degrees of freedom. Since the results obtained are very similar
to the BY — 7, for shortness we only report the simple case ones.

Starting from the measured values by satisfying the constraint equations,
it is possible to determine the unknowns; this fitting procedure also achieves
the improvements of the measured input track parameters. The GlobalFitter
employs an iterative procedure to find out the solution.

3.3.2 Inside the GlobalFitter. The B — 77 case

As we have seen in the previous paragraph, the starting step for the GlobalFitter
Tool is the logical decay tree definition, where the B decay is described by a
nested tree of decays, each one defined by a vertex object with two or more
decaying particles objects.

In the fig.3.1 a By — 7w event has been depicted and it can help us to
understand how the GlobalFitter works.
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The tree construction, in this specific case, can be summarized in these
following actions:

e take the two pions (measured values)
e create a new initialized vertex object, that we call decay vertex SV
e attach the pions to SV

e create a new particle object that is the B particle. It is completely un-
known.

e attach the SV to the B particle as its decay vertex

e attach the production vertex PV to the B particle

After this process we obtain a complete logical decay tree where there are mea-
sured (values and their errors) and unmeasured quantities. In this tree object
there are implicitly declared some kinematical constraints.

The GlobalFitter, for the fitting procedure, searches for a solution which min-
imize the eq.3.7. To fulfill this minimization, the program applies the theory of
the Lagrange multipliers method with constraints.

If the conditions are linear, the solution is determined in one step with a
simple matrix inversion, whereas in case of nonlinear constraints the solution is
reduced to a sequence of linear problems by the linearization of the conditions.
Coming back to our example, in case of a fit with a mass constraint in the
secondary vertex, (SV in fig.3.1) the geometrical conditions are represented by:

xo—tj(z—zo)—ﬁ =0
zo—ty (2 —20) —a~ =0

Yo —t (2 —20) —y* (3.22)
Yo —ty (2 —20) —y~

These 4 lines are the conditions for the trajectories of the two outgoing particles
to pass through the SV, while the mass constraint and the conservation of the
momentum, applied to the decay vertex:

— ot -
PB =P +P

3.23

(BY+B7) — (0" +p)’ — Mj =0 (323)

In this example the measured quantities are the input track parameters of the

two trajectories (z*,y™,p*, tf ¢ and =,y ,p~, ¢, ,t, ) , while the unmea-
sured ones are the secondary vertex coordinates. The incidental knowledge of

the primary vertex achieves the employment of new four equations:
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rpy — tf(z - va) - xB =0
ypv —t)(z = zpv) —y® =0
xo — tf(z —z0) — 2P =0 (3.24)

yo —t(z—2) —y® =0

Adding these new constraints, we have to face five new unknowns, i.e. the
B track parameters.

The twelve equations point out the necessity to linearize the constraints.

Linearization technique requires starting values for the variables. For the
measured variables, the measurement itself is taken as starting approximation.
For unmeasured parameters starting values have to be determined in a way de-
pending on the specific kind of problem. The starting values for the parameters
are denoted by a. Moreover the linearization is expressed in each iteration in
terms of corrections Ay and Aa to the starting values y and a. The corrections
Ay, Aa and \ are obtained by the multiplication:

Ay=CHc=(W1IlBTW5-WIBTW5 AW, 'ATWg)c
Aa=Clc=W," ATWgc (3.25)
X=Cac=(-Wp+Wp AW, ATWg)c

whereas the new covariance matrix for the combined vector y, a, \ is defined

in eq.3.16.

At the end of each iteration, the GlobalFitter retrieves the vectors of cor-
rections for measured and unmeasured quantities, to be applied to the initial
values. After several iterations the convergence is reached and then the pro-
gram retrieves a vector which contains the the estimated parameters (unknown
measurements) and the corrected measured quantities.

3.4 Validation of the FITPull method with input
gaussian distributions.

In order to prove that the FITPull can be a valid tool to calibrate tracks and
vertices in LHCb we first have to show that in controlled situations they are
distributed as normal gaussians. For this reason we need to work with perfectly
gaussian distributed measurements and pure signal events, so we can avoid the
problem of background contamination, or non gaussian dependence.

3.4.1 Fake measurement generation

For each test we consider a sample of ~ 40000 Monte Carlo events generated by
the LHCb collaboration during DC04 data production. For each event with a
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single pp collision we generate fake measurements by smearing the particle and
vertex true information corresponding to the specific signal channel considered
(B — m"7m~) according to a gaussian resolution model. Correlation between
different measurement can also be described. Then we apply the GlobalFitter
vertex tool configured to test the specific decay tree. For each measurement
we compute the FITPull, which is plotted on a histogram to study its statisti-
cal distribution. Since we only process signal events whose errors are perfectly
gaussian distributed, we apply a loose x? cut (x? < 1000) to select events.
The use of fake measurement generation offers the advantage to test the FITPull
method also in different situations, for example in the presence of systematic
errors, knowing exactly the input variable distribution.
In case we want gaussian distributed ‘“fake measurements”, each mea-
surement m; is obtained by smearing the Monte Carlo true value t; with the
following equation:
m; =ti+0i-GI=)
COV4; = pPij 04 0j

(3.26)

where G;‘;(l) is the normal gaussian random generator and cov is the covariance
matrix. Its elements are set to realistic values or parametric functions, which
were obtained by Monte Carlo studies on reconstructed particles and vertices:

0p =0y =2 = St/ 0y~ 0014mm  C) = 0.035mm GeV

V2 V2
ot, = ot, = Cy = 0.0004 mrad
op = Cslp| C3 = 0.004
v, Zva :C4 C4=O.010mm
oy, =Cs C5 = 0.040 mm

(3.27)
If needed the generation of correlated measurements is done with a simple linear
transformation of independent measurements.

3.4.1.1 Adding a scale factor to the covariance matrix or a bias to a
measurement.

In case we want to simulate the effect of a BIASED measurement m; or a scaling
factor (SF) to the covariance matrix, equations (3.26) transform to:

m; =t +0;- (Gzz(l) + BIASi)

covi; =pij-0;-0;/(SF;-SF}) (3.28)

In some of the tests performed, a linear dependence of BIAS or SF of particles
measurements on p is also introduced and a charge dependence on the BIAS
included (BIAS; and/or SF; =q(a + bp)). SF; > 1 simulates underestimated

covariance matrix element.
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Figure 3.2: Fake measurement generation in case of single gaussian (a) or double
gaussian distributions (b) (w = 0.9 in red, w = 0.8 in blue), for uncorrelated

(c) or correlated measurements (d).
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3.4.1.2 Non gaussian distributions.

In our studies we want to identify the validity limits of the method if input
measurements are not perfect gaussians. In particular we consider the case of a
generation of fake measurements according a double gaussian distribution:

m; zti—i—oi-(w-GZil—i-(l—w)- ZES—FBIASZ-)

covyj =pij-0;-0;/(SF;-SF;) (3.29)

which simulates the effect of tails in the measurement distribution (see figure).

3.4.2 Results

In this section we test the FITPull method in a variety of input conditions in
order to study the validity of the tool and characterize its performances. We
start with very simple tests and then we add complexity.

3.4.2.1 Correct input data.

By generating fake measurements according to equations 3.26 with SF=1 and
BIAS=0 we test the fit performances in the ideal case. In this case, if the method
is valid, we expect that the FITPulls follow a normal gaussian distribution. In
figure for each input measurement (pion track parameters z, y, ts, t,, p and PV
coordinates V, V,, and V) the mean (left) and sigma (right) values that fit the
corresponding FITPull distributions are represented. The results are in good
agreement with zero mean and unit sigma, proving the validity of the method
we are proposing. In this situation the B proper time and error are correctly
determined, as can be inferred by a comparison with the MC true information.
Figure 3.3, also reports the mean and sigma values of the MCPull on proper
time, which are in perfect agreement with the values y =0 and o =1.

This first test allows us to conclude that if input measurements and errors are
correct FITPulls are canonically distributed (normalized gaussian) and proper
time value and error are correctly calculated. This result is achieved both in
the case we consider correlation betweeen the measurements or not.

3.4.2.2 Biased input data.

If a vertex or a particle measurement is BIASed we would be able to identify it
in the real data only if the FITPull associated to the corrupted measurement
deviates from the canonical distribution. Following equation (??) we first test
the effect of a single BIASed measurement to the FITPull distributions. In fig-
ure are shown the results of different tests where a BIAS on the particle = (top),
t, (middle) and p (bottom) are considered. As one can see, in case of a single
biased measurement without correlations, FITPulls easily show the corrupted
variable (mean value # 0). The sign of the mean is correctly found, but the
value is not equal to the BIAS one: it depends on which measurement is cor-
rupted, being 0.6, 0.4 and 1.2 in case of x, t, or p BIAS. The input BIAS affects
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Figure 3.3: Graphical representation of the FITPull parameters: mean values
(left) and sigma (right) of the FITPulls associated to each measurement asso-
ciated to track (z, y, tg, ty, p) and PV (V,, V,, V), obtained by a gaussian fit
to the distributions. In case of track measurements red and black points corre-
spond to positive and negative pions. On yellow background are MCPull values
of the B proper time calculated with the fitted values. Input fake measurements
are independently generated according to BIAS=0 and SF=1.

also FITPull variances, some of these now deviate significantly from unity, even
if the input SF is 1. We have to keep in mind this effect in order to correctly
interpret the FITPull outputs. Later on we will discuss this problem in more
detail.

A bias on y (t,) gives results equal to the = (f;) case, since the constraint equa-
tions are exactly symmetric.

From these tests it is also evident that B proper time is not BIASed but, es-
pecially in the case of the x BIAS, the calculated error shows a SF#1. These
results remark the importance of a calibration method based on real data only,
able to spot any incorrect measurement.

If correlations between x — t, and y — ¢, in track parameters are considered?
the FITPull output changes (see figure 3.5 ). Although the BIAS is only on «
(correlated measurements don’t necessarily mean correlated BIASes), FITPull
distributions present a meanz 0 on both x and ¢, with reversed signs. The
same thing happens in case of a biased t,. The reason for this behavior is the
almost 100% correlation between the two measurements®, which makes the fit
mean values correlated even if the input ones are not. In fact we have to re-
member that in this way we are testing the constrained least square method

20n Monte Carlo data, by studying MCPull correlations corresponding to different track
measurements at point on track reference position, we get pz 1, = py,t, = —0.95. (F**¥*)

3The correlation between z and t is introduced by the transport mechanism in the tracking
software, which takes their two initially independent measurements and it projects them to
the minimal distance point close to the 2 tracks following the relation

Ttransp — tj(ztransp - ZO) -2t =
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in an unconventional way, since one of the hypothesis is not fulfilled being the
input measurements gaussian distributed around the true value, . Even in this
case proper time error show a SF.

The effects of a BIAS on PV measurements are plotted in figure 3.6. A
BIAS on V,, also modifies FITPulls x and ¢,, while in case of a BIAS on V., only
FITPull V, is affected. This is due to the coupling introduced by the vertex
constraint equations which, as we noticed above, strictly group x and t, to V.
As a result B proper time is biased if V, is BIASed.

From the tests performed so far we can conclude that a BIAS on a measurement
will make FITPulls appear not canonical. In some cases the corrupted FITPull
identifies the corrupted measurement, but, due to the couplings between vari-
ables, this statement is not valid in general. In some cases, as expected, a BIAS
on a measurement affects also the B proper time in a relevant way.

3.4.2.3 Scale Factor in the covariance matrix.

In order to simulate an incorrect resolution we introduce a SF = 2 to the covari-
ance matrix elements of z, ., p, V,, and V, separately. FITPull distributions are
sensitive to SF: in this case their sigma deviates from 1 as it is shown in figure ,
especially in the cases of SF on x, p and V. It should be noticed that the mean
values are still compatible with 0. The one-to-one correspondence between the
wrong FITPull and the corrupted measurement is possible only in some cases,
and in general any observed deviation from canonical FITPull distributions can
be ascribed to a wrong measurement error.

Figure also shows the effect on B proper time resolution, which in the cases of
SF on z, p and V., turns out to be affected significantly.

3.4.2.4 Double Gaussian error distribution.

Usually the distribution of real measurements are only approximately gaussian,
since tails commonly show up. To be able to use the FITPull method on real
data, we have to prove that tails do not modify the output distributions too
much, or if they do, we need to establish the validity limits of our proposal.

In this case fake measurements were generated by smearing Monte Carlo truth
informations according to double gaussian distributions (see equation 3.29),
where a fraction w of events have correct measurements, while the remaining
ones have under-estimated errors (by a factor 3). In this test all track parame-
ters are modified simultaneously. In previous tests we have seen that SFs in the
covariance matrix affect FITPull variances, so we expect that FITPull distribu-
tions are deviated by an amount which depends on the tail contribution. Indeed
in cases of w # 1 FITPulls show a double gaussian shape. The important result
is that their main components are still canonical if the tail contribution does not
exceed 10 — 15% , while they start to deviate significantly for larger amounts
(see figure ). So we can state that the method is still a good tool provided that
the tail contributions are less than ~ 10%. Concerning the B proper time, figure
summarizes the dependence of its main and second gaussian contribution as a
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function of w. Also in this case for w < 10% most of the events have correct
proper time and error.

We have to underline that the second gaussian contribution to the FITPull or
to the B proper time MCPull distributions are ascribed to the presence of in-
correct measured data (i.e. with under estimated errors). The FITPull method,
being a "statistical" method, can only control a sample of several measurements
and indicate whether most of the events are well measured. Nothing can be done
to eliminate or correct data populating the second gaussian. A cut on the fit
x? can only eliminate part of these events (the one populating the tails that
contribute to larger x?).

3.5 Validation of the FITPull method with re-
constructed tracks.

In the previous sections we have shown that the FITPull method is a valid mon-
itor of the input measured quantities. Real tracks will be a much less controlled
environment to work with: phase space dependence, non gaussianity, correla-
tion and background are some possible “complications” that can invalidate the
FITPull method capability to test measurements.

For this reason in this section we test the FITPull method in a more realistic
scenario, by using reconstructed Monte-Carlo tracks. The plot in figure 3.10
shows the MCPull mean and variances as a function of the reconstructed mo-
menta, for the pions produced in B} — n+ 7~ decays?. Indeed in DC04 data, for
a simulation accident [36], tracks were unproperly reconstructed (****) even
if track fitting pulls gave satisfactory results. In particular z, t, and p show
momentum and charge dependent BIASes. A slight SF is also affecting recon-
structed momentum. We can take advantage of this error to see if the FITPull
method monitor is able to put in evidence this effect. From a sample of 100000
(***) BY — mTm~ Monte Carlo data we combine all reconstructed 77~ pairs
and perform a fit with the hypothesis of BY — 777~ with the By originated
from the primary vertex®. The combinatorial background is the only source of
background we considered. Most of of it is suppressed by choosing x? < 10, but
still a fraction B/(S + B) ~ 0.067 is present. For simplicity we consider events
with only one pp collision with the PV coordinates generated randomly around
the true values, like in the previous section.

The FITPulls corresponding to each measurement were fitted with a double
gaussian shape in momentum slices and the parameters of the main gaussian
are represented in figure. As we hoped the BIAS on x, ¢, and p shows up mod-
ifying FITPull mean values. Both z and p BIASes are found with the correct
sign, while in the case of ¢, it appears with opposite sign. The reason for this
can be addressed to the z — t, correlation and the dominance of the x BIAS
with respect to the ¢, one. In fact simple tests with fake measurements have

4in this case the cheated selection is necessary in order to evaluate MCPulls correctly
5In this case no cheated selection is performed, as it will be with real data analysis
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shown that a bias on x modifies  and ¢, FITPull mean values by almost the
same quantity with opposite sign (see fig.). The same thing happens in the case
of a BIAS on t,. Quantitatively the absolute FITPull shift is smaller, so we
can expect that the overall effect is dominated by the x BIAS and correlation.
The SF # 1 present in the FITPulls can also be explained as due to the input
BIAS. In fact tests of section 4.2.2 have shown that input BIASes modified also
FITPull variances.

Therefore we can conclude that also in this case the FITPull method succeeds in
discovering some measurement errors. In this case also the B proper time would
be incorrectly reconstructed: in figure 3.12, the left pad shows the MCPull
distribution of the reconstructed proper time. It can be fitted with a double
gaussian distribution (w-G1+ (1 —w) - G2), where the G2 component is mostly
due to combinatorial background. The main component G1 shows an overall
SF ~ 1.27 (parameter p3) which suggests that proper time error is underesti-
mated, while the BIAS is negligible 0.040pr ~ 1.6fs (parameter p2). In the
left plot it is evident that the SF indeed depends on the pion momenta, like
input measurement BIASes.

3.6 Recovery potential of the measurement.

All the tests done so far demonstrated that the FITPull method can be used
on real data to test the correctness of measurement values and errors down to
fraction of resolution scale. Therefore it is a rather sensitive monitor of the
measurement reliability. With some limits, FITPulls can also indicate which
kind of problem (BIAS or SF) the measurements have. If the problem concerns
track parameters we can hope that a further optimization of track fitting will
recover it. But if this does not happen, we can investigate the possibility to use
the FITPull method to recover the wrong measurements.
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Figure 3.10: MCPull mean values (left) and sigma (right) associated to recon-
structed track (z, v, tz, t,, p) measure8fents, obtained by a double gaussian fit
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tion for 7 and 7~ respectively.



Mean x pi+ Sigma x pi+

2 5 1.4 5
155 13F :I:
! E_ i —|—++-o— ¢ 1'25_ :i: +¢ i -I_
0.5 ——— 1.4
S HHET 4 T
0 o e — 1 E
E e E
0.5 — 0.9
E . - -+ E
AE == 0.8f
A5F 07f
B ogb—
0 20 40 60 B0 100 [+] 20 40 60 BO 100
p [GeVic] p [GeVic]
1E 1.4¢
08 1.3 —
0.6} i
04
02f 11E +:': :L|'
oF 1
et ] | i |
L osf
0.4 E
E 0.8
0.6 E
0.85 07F
_.I:...l...l...l...\“. u_s:...l...l...l“‘l...
0 20 40 60 B0 100 [+] 20 40 60 B8O 100
p [GeVic] p [GeVic]
1 ] M4
(1= +t 13f
0.8 12E :I: _I_ _|_
el +F+ g +¢:i: :I: +
0.2F —-— = 1.1
=+ -+ E +
o, E
0.2 "“"‘-w+_,_++ osf
04p it 0.8F
06 + + g
-0.8f 4+ T o7E
| S TN SR NSNS SN S [ S S S L P SR T S T S SN S S L TR SR S [N SN S TR N S S
) h 20 40 60 B0 100 D.Gu 20 40 &0 B0 100
p [GeVic] p [GeVic]
Meant y g
1 E 1.4 E
08F 13 f—
0.6 E
= 1.2
3 fr_|_
oz + 1.1— +:|_j|::|::|:+=|= :I:
o;;|_"'=l=|==l="':|::|:"_-|==|=_|_++=|=:|::':=|=='_—_t 1E -|'+
0.2 09F
0.4F E
F 0.8
-0.6 E E
0.8 e
_.I:|||I|||I|||I|||\ww| 0.5:...|...|...|“‘|...
0 20 40 60 B0 100 [+] 20 40 60 B0 100
p [GeVic] p [GeVic]
1F 14F
08 13E
0.6 E
= 1.2
Lot Lt
02b ¢¢++:|::|: U R IZIZJF
D j: _,_...,=|=""+=|=:I:‘=|= + ++ S
0.2 09fF
04F osf
06f g9 °8F
085 07E
7] S O S ogE—— L
0 20 40 60 BO 100 [ 20 40 60 B0 100
p [GeVic] p [GeVic]

Figure 3.11: FITPull mean values (left) and sigma (right) associated to recon-
structed track (z, v, tz, t,, p) measurements, obtained by a double gaussian fit
to the distributions: red and black data correspond to main gaussian contribu-
tion for 7+ and 7~ respectively.



Proper Time MCPull "I ndf 6268138 MCPull mean G1 MCPull sigma G1
i 22 234 0.6 T8
»l 09691+ 0.0034 F o
L 004293 1 0.00934 F =k
10 ] 1.266 + 0.008 04r 1.6E
P <2.468  0.366 r 1.58
P 3.904 £ 0308 0.2 ° I
¥ F T4p —|—++ +
of| = —+ 1.3F
F —— -+ —
F 1.2
10 02 + 5 [
[ _|_ - —_——
0.4F 1| =——
- o 0.9F
L L L 0.6 C L L L 0.8 L L L
10 -5 L] 5 10 (1] 40 &0 100 1] 20 100
g?Ge\ﬂl:f g?Ger:f

Figure 3.12: B proper time MCPull distribution (left) of By — w7~ events
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MCPull parameters of the main gaussian as a function of the pion momenta.

Given the correlation between the FITPull output we observed, and the fact
that quantitatively the FITPulls do not represent the input BIAS or SF, we
choose to apply iteratively correction cycles in which, at each step, an input
measurement is corrected by the FITPull parameters:

k _ k—1 k-1 / k—1
m; = m;  +Bj covy;

covk = S%‘fl S}‘fl covgf1

(3.30)

where Bi‘_l and S%‘_l indicate the FITPull BIAS and corresponding SF mea-
sured at iteration cycle k — 1 for measurement i. During iterations BIASes
cumulate by adding up, while SFs are multiplied.

Driven by the experience matured with tests on fake measurements, we decide
to apply first corrections to fix the BIASes, then to recover the SFs. Moreover,
given the self correlations between track measurements, we choose to correct x
first, then ¢, and p. With these criteria, we consider the case of reconstructed
tracks of the previous section. The BIASes shown in figure 3.11 are linearly fitted
and the best parameters fed to the correction cycles. During BIAS correction we
also observe an improvement of the sigmas. After a few (= 10) correction cycles
the FITPull parameters are reasonably compatible with BIAS=0 and SF=1. In
this situation, we can judge if the correction worked by looking at the MCPull
distributions: figure summarizes all the track measurements. We can see that,
except t, bias, which is still slightly biased, all the other measurements recov-
ered almost completely. In this situation also B proper time value and error are
better calculated, as is shown in figure 3.14 .

3.7 The J/¥ — pp channel for FITPull calibra-
tion and generalization

The FITPull method, as seen in the previous sections, is quite promising, spe-
cially with simple decay topology. Up to now we have discussed about the
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Figure 3.13: MCPull mean values (left) and sigma (right) associated to re-
constructed tracks measurements afte®the correction cycles based on FITPull
distributions. Values are obtained by a double gaussian fit to the distributions:
red and black data correspond to main gaussian contribution for 7+ and 7~
respectively.
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Figure 3.14: B proper time MCPull distribution and parameters after correction.

FITPull method applied to the By — 77~ decay, but the facts are much more
complicated. If the FITPull reasoning is correct, the method shouldn’t depend
on the decay considered.

In our studies we explore in details a possible control channel in order to
tune the FITPull capabilities of recovery and detection, since making a calibra-
tion for the FITPulls with only a sample of signal should generate a correction
method too much “greedy” and focused only on the sample under study. Also a
precise determination of the FITPull parameters requires large statistics (espe-
cially if one wants to study their phase space dependence) and low background
contamination but in LHCb experiment, signals as B — mw, will not own a
large statistics. For all these reasons the use of the FITPull method to monitor
or to recover BIASed /SF measurements cannot be performed on the signal de-
cay itself. Thus we have thought to use a control channel that allows FITPull
method to become independent from the signal. This approach has the advan-
tage that a high statistic and low background sample can be processed. In case
the control sample analysis puts in evidence tracks or vertices BIASes or SFs,
the correction found can be exported to the physics channel case.

Therefore our idea is to look for a FITPull parameters (mean, variance)
dependence on the input track parameters as a function of the input particle
phase space. In this way we can think a correction strategy, built on an clean
channel, but exportable to others channels.

We chose the J/¥ — ptp~channel since the prompt J/W¥ will be a strong
signal in dimuon triggered events (T170Hz@QLHCb) with a low background
level (B/S724%). The only kinematical difference between J/¢ — pp and
B — 7 is that the J/v is generated in the primary vertex. So we fit prompt
J/W — ptp~with common vertex and mass constraint to extract a careful map-
ping to the corrections of the track parameters as a function of momentum of
the particle. We have prepared an iterative method to extract, starting from the
FITPull distributions, a map of the adjustments of the input track parameters
as a momentum function in the decay J/¥ — ptu~.

Applying this iterative procedure, with a shell script, we obtain 10 maps (or
histograms) of corrections for the input track parameters. At first itera-
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tion the program takes the muons form the DSTs and performs, by means of
GlobalFitter, the vertex fit for each muon couple and the FITPulls for each
input parameter. All the fit informations are stored in a big root file. At the
next iteration, the DST data is adjusted, before the GlobalFitter, taking into
account the correction coming from the foregoing iteration. The work sequence
of the script is structured in wise to recovery firstly the BIASes and then the
SFEs.

This loop is iterated until the FITPulls are all corrected®. With our sample
of 200000 events J/W¥ — ut = we reach the desired convergence’ after 33 itera-
tions. The final product of this procedure is a set of histograms® which contains
all the corrective factors to be applied to the DST data in order to obtain gaus-
sian FITPulls from the GlobalFitter. The following step was applying the
correction histograms, obtained from the 33" iteration on the .J/¢) sample, to
two different samples: By — 77~ (200.000 events) and the By — Dyw(300.000
events) and evaluating the effects. The figure 3.18 demonstrates that it is pos-
sible to export the correction found out with the J/v sample to other channels.
The validity of this method can be stated observing the consequences on the
MCPulls for the propertime before and after the corrections.

6The conditions of convergence have to be defined in relation to physical requirements.
Thus the next chapter can help us.

"For the J/v¢ — uu we chose to stop the script just as soon as all the track parameters
x,Y, tz, ty, p have been recovered.

8Instead of the histograms, we could generate a mathematical function for each parameter,
which contains the dependence of the BIAS or the SF from the momentum of the decaying
particles.
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3.8 B proper time resolution and calibration

So far we have shown that FITPulls can test the correctness of the measurements
in a given decay channel. If they are canonically distributed they guarantee that
input measurements are correct and, indirectly, that the B proper time measure-
ment is reliable. On the other hand, if FITPulls are not canonical it means that
some input measurements have a problem, which probably also affect proper
time measurement. In this section we want to give some more quantitative
study on the dependence of proper time calculation on the input measurement
BIAS or SF. For this reason, taking advantage of the fake measurement gen-
eration, we vary the SF and the BIAS of the most relevant measurements and
we plot the proper time MCPull parameters mean and sigma. The plots on the
left column in figure 3.19 summarize the proper time dependence on the input
BIAS (ranging from —2.0 to 2.0) of single measurements V., z, t, and p. Like
before, in case of x and t, the bias is charge dependent. Correspondingly in the
right column are plotted the results of SF dependence (with values 0.2, 0.5, 1.0,
2.0 and 5.0).

As we already noticed in section 4 proper time has a different response to differ-
ent variables BIAS or SF. If one decides that a BIAS < 0.1 and SF' —1 < 0.1
correspond to a good proper time measurement, these plots can help us to to fix
some limits to the input BIAS or SF which then can be translated to require-
ments on the FITPulls parameters.

3.9 Some considerations about the FITPulls

In this note we have described the possibility to use kinematical/geometrical fits
and their output FITPull distributions to check the correctness of input mea-
surements and errors on real data. In fact the FITPulls are normal gaussians
if the input measurements and errors are correctly defined, while they deviate
from being normal gaussians in presence of BIASes or Scale Factors in the input
measurements or errors. Unfortunately the determination of the affected mea-
surement is not always unique due to the correlations between measurements
and the fit constraints.

The validity of this method has been proved in several tests performed with
Monte Carlo data corresponding to the decay channel Bg — mt7~. The stud-
ies made on data generated according a well known distribution (fake measure-
ments) allowed us to understand the features and the limits of the method in
a simple way. The test on reconstructed Monte Carlo data have demonstrated
that also in a more realistic case the FITPull monitor can be useful to discover
incorrect measurements. In this case we have also shown that an almost total
recovery of the corrupted measurements can be obtained by means of an iter-
ative correction procedure obtained from an independent J/v¢) — p+p~ analysis.
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Chapter 4

B proper time importance for
time dependent analysis

4.1 Time dependent CP asymmetries and decay
rates: from theory to experiment

The most general formula for the time dependent C'P asymmetry in a generic
B — g decay, where g is the a generic final state, is given by:

L (B(t) »g)—T (B(t) — g)
L(B(t) = g)+ T (B(t) — 9)

From an experimental point of view the asymmetry can be measured as:

Acp(t) =

_ Ng(t) = Ni(t)
~ Np(t)+Np(t)
where N and N are the number of tagged B (B) events that decay at the time
t. Three factors fix the experimental capability to evaluate this asymmetry:

AZE(1) (4.1)

1. the B flavour tagging;
2. the statistics of the observed events (signal + background);
3. the B decay proper time resolution .

The knowledge of the initial flavour of the reconstructed B meson is necessary
and this task is performed by means of the tagging procedure described in par.
1.3.2.

The sensitivity to the Acp measurements is determined undoubtedly, by the
statistics and the ratio B/S as reported in [24].

Finally there is another element which plays an important role in this general
description: the proper time resolution. In the next paragraph we will see how
the proper time determines a reduction of the asymmetry and a phase shift of
the A¢p trigonometric components.
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4.2 Time dependent analyses of decay rates or
CP asymmetries

In this section I give an analytical description of all the detector contributions
which contribute to the B decay rates and hence in the Agp calculuses. Gen-
erally, given a B decay channel, considering the decay and the mixing effects,
we can study 4 different decay transitions':

the(B(t) - g)

Ftrue(B(t) - g)
the(B(t) - g)
Ftrue(B(t) - g)

In order to obtain the observed decay rates as a function of the measured proper
time (7), the true rates are convolved for the proper time resolution. If we as-
sume a gaussian resolution model G(t — 7,0, ), the equations become :

L (B(r) = g) = G(t — 750:) @ [Dirue(B(t) — g)) (4.2)
Tops(B(7) = §) = G(t = 707) @ [Tirue(B(t) — )] (4.3)
Tops(B(7) = §) = G(t = 7:07) @ [Cirue(B(t) — )] (4.4)
Tops(B(7) = g) = G(t = 7307) @ [Tirue(B(t) — g)] (4.5)
Moreover T, are multiplied by the ¢(7), in order to take into account the

experimental acceptance, that, due to the trigger system, shows a dependence
on the proper time.

As seen in par.1.3.2, the B flavour tagging is characterized by an efficiency
€tag and a mistag probability w:q,. For the tagged events, the four foregoing
equations are mixed giving the four observed rates:

Lo (tagged B(r) = g) = (1) €tag [(1 = wiag) Topa(B(T) = 9) + 1ag T (B(7) = 9)

Poss(tagged B(r) = §) = () etag |(1 = w1ag) Do (B(T) = §) + wrag T (B(7) — 3)]
(4.7)

IThe subscript “true” refers to values without experimental uncertainties, while the sub-
script “obs” refers to observed values.
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Pons(tagged B(r) = g) = €(7)-€tag |(1 — @iag) Do (B(7) = 9) + wrag T B(7) = 9)]
(4.8)

Pas(tagged B(r) = g) = (7) €tag [(1 = @1ag) Copa (B() = 9) + wiagTips(B(7) = 9)]
(4.9)

while the untagged events follow the formulas:

’

Poss(untagged B/B(r) — g) = e(7)-(1=¢tag) [Ty (B(r) = ) + Topa( B(r) = )|
(4.10)

Pons(untagged B/B(r) = §) = e(r)-(1=1ag) [Topa(B() = 9) + Topa(B(7) = 9)]
(4.11)

Therefore with the foregoing equations we have shown the actual rates that
we will observe experimentally. With a set of this information, we can turn our
attention to two different applications. We will study how the decay rates are
modified in virtue of the physical properties of the two different cases.

4.2.1 Flavour specific decay: B; — D

In a flavour specific process, like BY — D77 and Eg — Dfr~, only B® — ¢
and B? — g are allowed, whereas the B® — g and B® — g events are forbidden.
These features involve some simplifications in the 'y, expressions. Reminding
the par. 2.3.1 we can set -

Af=Af= (4.12)

and the equations 2.33, 2.32, 2.35, 2.34 can be simplified:
AT’
I+(t) = +(t) = cosh Tt (413)
I_(t) = I_(t) = cos Amt (4.14)
Thus the time dependence of the tagged B decay rate is given by:
—Tt Al
Tops (tagged B(T) — g) x e cosh Tt + (1 — 2wiqg) cos Amt | QG (t—T; 07)

and similarly for the tagged B rate.
In this formula we can notice three main elements:

101



1. A damping factor e~'* | given by the B decay, with mean lifetime 1/T.

2. A hyperbolic cosine term that takes into account of the width differences
AT between B and B.

3. An oscillatory term cos Am ¢ that modulates the shape of the decay expo-
nential due to the mixing B/B. The oscillation amplitude is determined
by the experimental factor wi,q(namely w in the following).

The proper time resolution effects are accounted by the convolution with the
function G, that transforms the true proper lifetime ¢ into the observed one 7,

1 _(r=t?

e 2% 4.15
\V2mo, ( )

Developing the integration, the decay rate of B — g becomes

2.

e AT 1
T'ops (tagged B x e Tt [cosh (—t) + (1 — 2w) cos Amt]-
o tagged B(r) = g) o [ )+ (1-20) Ve
2(7,2 202
— /3. T {e+FTT+AF8 ~ cosh (% T % .I‘.UZ) +
+(1-2w)-e e cos (tAm — FAmaf)} (4.16)

where the rate is a function of I'; A", Am, w, o,. Comparing this formula with
the one without the convolution, we can notice that the resolution adds phases
in the cos and cosh terms and it also adds two corresponding dilution factors:
o2 Am?2 2
z 3

=5 4 ozar
e 7 and eT s
computation.

We will see its importance in the CP asymmetry

If the measured B decay proper time is affected by a bias b

b=o,-%

The equation above is modified as following;:

2

o3r? =z, o%ar? AT AT
Tops (B(T) = g) cc V2 e Im ez o +F‘TTE-{6+ 8 cosh( 27———-1“

2 Am?2

+(1—-2w)-e” T2 cos (rAm —T'Amo? — AmUTE)} (4.17)

2For details see in Appendix
012_1‘2
3The factor e~ 2 is negligible since it is very close to 1.
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that is very similar to eq. 4.16. In this case the rate is a function of I, AT';, Am, w, o,
and also of ¥. So the bias introduces a further phase in the cosine arguments
and a further common damping factor e~ FEFTor®

With this knowledge, the time dependent C'P asymmetry, for this channel,

has been transformed from the theoretical expression

Amt)
At (5 — cos(
cr(t) cosh(AT - ¢/2)
to the experimental form:
_o2am? _o2ar? (1 —2w)-cos (TAm —TAmo?2 — Amo, X
Acp(r) =e =7 -emms AT (AF Ao, S b )
cosh( T —T-I‘-UE—+—;—T)

(4.18)

4.2.2 B decays in C'P eigenstates

In this section we consider the general neutral B decay into a final C'P eigen-
state | f), satisfying the condition

CP(f)y=mnlf) (4.19)

The quantity under study, independent on any phase conventions and full of
physical meaning, is Ay as reported in eq. 2.36. If C'P is violated if Ay # =£1,
even if [Af| = 1.

For the B neutral system, C'P violation in the interference between decays
with and without mixing can be observed by comparing decays into final C' P
eigenstates of a time-evolving neutral state that begins B? at time zero as to

those of the state that begins as a B’ (see [15]):
Tt 412 2 AT 2
Tirue(B(t) — f) e FAf] (1+|/\f| )coshTt—i— (1—|)\f| )cosAmt—i—

AT
—2Re(A) sinh Tt —2Im(As) sin Am t)

2
Cirue(B(t) — f) oc e A2 g’ ((1 + |/\f|2) cosh %t - (1 - |/\f|2) cos Amt+

AT
—2Re(A) sinh Tt + 2Im(Af) sin Am t)
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Assuming the simplification |p/g| = 1, we can introduce the contribution due to
the proper time resolution and the mistag effects w:

Tops (tagged B(t) — f) oc e Tt ((1 + |)\f|2> cosh %t + (1 —2w) (1 - |)\f|2> cos Am i+

AT 1 a9t
—2Re(\) sinh —t — (1 — 2w) 2Im(\¢)sin Amt | ® e 297 =
() sinh S5 = (1= 2) 2m (g sin At ) @

o2Ar? | o2r? AT AT AT AT
—e Tyt 7Fr.(<1+|)\f|2>cosh(77——71" )—2Rc()\f)sinh(77—71" ))—i—

r2 0'72,

o m2
+ (1 —2w) eT’#iFT ((1 - |)\f|2) cos (AmT — AmI'o2) — 2Im(\f) sin (Am T — AmFUE))
(4.20)

Tops (taggedE — f) x e 1t ((1 + |)\f|2> cosh %t —(1-2w) (1 - |)\f|2> cos Am t+

AT —aoy?
—2Re(A) sinh Tt + (1 = 2w) 2Im(Ay) sin Amt) ® e 202 —

2wor

_ o2ar? o212 AT AT AT AT
Tops (taggedB—>f)o<e 8 P -((1+|)\f|2) cosh (TT——F ) — 2Re(Ay) sinh (_T_TF ))+

2
z

2,2 o2 Am2
_(1—2w)eFTT* A2 —Ir ((1— |)\f|2> cos (A')’)’LT—AT)’LFUE) — 2Im(Ay)sin (AmT—AmFUED
(4.21)

The time dependent C'P asymmetry, for this channel, has been transformed
from the theoretical expression

0

A (1) = Lirue(BO(t) — f) = Tirue(B () — f) _ AT cos(Amt) + AR sin(Am t)
Tirue(BO(t) — f) + the(ﬁo(t) — 1) cosh(AT - t/2) — AZp sinh(AT - £/2)
where
Adzr _ 1- |)\f|2 mixr __ 2Im()\f) A 2Re(/\f)
L+ |Af|? S EAIWIE ST VE

to the experimental form:

U$§m2 7n3§r2 A&, - cos (AmT — Aml"ag) + AP sin (AmT — Am 1"03)
cosh (—T — —Fcrz) A& p sinh ( T— AQFFGZ)

AZR(r) =(1—2w)e”

We can conclude observing that, in the case of a bias in the proper time distri-
bution, A&} is modified as:
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z

o2am2 02412 A‘é}; - cos (AmT - Aml"og + Am%) + Am”” sin (AmT — Aml"cr + Am—)
-8 .

AZP(T)y = (1 —2w)e™ — 2
CcP
cosh (ET— %FU%—F%E&,—) — Psm (

2
(4.2

4.2.3 Considerations

Summing up briefly the results from the foregoing paragraphs, we can notice how
the proper time resolution affects the A¢Z75(7) measurements in both the flavour
specific decay (Bs — Dg7) and CP eigenstates (for example By — KTK~
By — 7w decays).

The experimental effects of mistag fraction w and B proper time resolution
determine the equations 4.18 and 4.22. Both the equations contain a common
dilution factor D which represents how much the oscillations amplitudes, and
thus the observed CP, are reduced due to experimental effects.

(7'72_ Am? o7 AF2
2

(1 - 2w) (4.23)

Also the proper time resolution put in new phases in the sin, sinh, cos, and cosh
terms.

The damping factor expression is valid for the Acp asymmetry of B, and
Bg. Given that LHCb will measure B proper time with a typical resolution of

40 fs, in case of the By, due to the small value for Amyg, the factor e~ 7 s

negligible. In case of the By system it amounts to ~ 0.8. Moreover Al'y and

AT are small so the factor e*# can be neglected.

In figure 4.1 is shown the o, dependence of the damping factor in case of
Bs. This picture can help understanding how the damping factor changes if
the proper time resolution is distributed over a range. Up to now we have
not advanced any hypothesis about the behavior of the proper time resolution
o,. In par. 3.1 we have shown that the resolution o, can be measured by the
proper time error that can be calculated event by event. Indeed depending on
the event considered, the resolution can vary considerably. For example, from
the By — Dgm decay, I pull the B meson proper time error out (fig.4.2) where
it can be noticed that the values range from 10 and 60 fs. .

The time dependent analyses can take advantage of this additional observ-
able to improve the parameters determination. In fact, this information can
be used to re-weight the events according to the errors, in a similar way we
calculate mean or weighted mean.
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2
Figure 4.1: The damping factor e_# as function of the proper time error o.
The time resolution can reduce significantly the Acp amplitude. The present
mean value for the proper time error in LHCb is estimated about ~ 40 fs and
for this reason the damping factor is still quite close to 0.8. Otherwise an error
value near ~ 100 fs will reduce outrageously the Acp amplitude.

ePT ePT
Entries 21243
900 Mean 0.03169
- [RMS __ 0.01123
800
700
600
500—
400
300
200
100
DE'—U 2 1 e kI U e Y R
0 o1 (005 203 002 048 Cos 2.0] G .08 04

Figure 4.2: The picture represents the B proper time error distribution in the

B — 7w decay channel. It can be noticed that the values range from 10 and 60
fs.
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4.3 RooFit studies: impact of B decay proper
time measurement in time-dependent anal-
yses

Up to now we have met the meaningful physical values C'P asymmetries Acp(7),
which are time dependent quantities. Moreover the equations 4.22, 4.18 show
clearly how the proper time resolution can influence the measurements. LHCb
will measure the B meson proper time with an excellent mean resolution of ~ 40
fs [15]. Nevertheless this error is a mean value of a distribution which can be
calculated experimentally. In this section we study how this information can
improve the fit results.

In order to evaluate the advantages of using the B meson proper time mea-
surements in time dependent analyses, we have prepared a set of trials with
the RooFit package [23]. RooFit allows to simulate entirely the life of the B
mesons, paying attention to taggers, proper time resolution and statistics. With
these studies we can also evaluate the limits on biases and on scaling factors in
proper time measurements to achieve good physics results.

We studied in depth the usage of the event by event proper time error and
also the utilization of a fixed resolution, understanding the incidental improve-
ments in the physical measurements with these two different approaches.

The time resolution is a measurable value which can be correctly evaluated
by error propagation (see par. 3.1) provided that the input measurements own
normally distributed FITPull distributions. By applying the event by event
proper time resolution could we improve the goodness of the physical parame-
ters?

4.3.1 Signal and background, probability density functions
(Pdf ) definition

The package RooFit allows to study any B decay analysis by means of a Monte
Carlo simulation. It allows to generate samples of signal and background events
with realistic proportions, each one following a specific model that represents the
data. The model is based on the physical decay process (time dependent rate)
and it takes into account several experimental effects(resolutions, tag efficiency
and acceptance).

The generated data can be analyzed by the same program, with a fit pro-
cedure, in order to retrieve all the useful information. The advantage of this
approach is the possibility to study the analysis potentialities as a function of
the input parameters.

The necessary model to generate or fit the data is based on a probability den-

sity function which depends on several observables. In the case of CP analysis
the observables are
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e the invariant mass m of the B candidate
e the flavour tag response tag
e the reconstructed B proper time 7 and corresponding error o,

e in case of flavour specific decays, the final state rec
The most general Pdf , for signal and background events, can be expressed by
Pdf(m,T,0., tag, rec) = Pdfsignal(m, 7,04, tag, rec)+Pdf gacr(m, 7,07, tag, rec)

The probability density function Pdfgigna that describes the observed signal
events, depends on the theoretical rate 'y () (see equation 2.28, 2.29, 2.30,
2.31) and on the mass distribution: *

Pdfsignal(mu T, Or, taga ’f'eC) =

e(7) / dt (I'(¢, tag, rec) @ Gauss(t — 7;0,)) Pdfsignai (07 )Pdfsignai(m) (4.24)

where €(7) is an effective function due to the detector efficiency. Its parametriza-
tion is studied on Monte Carlo data and it is given by:

(at)°®

T

The term Gauss(t — 7;0,) represents the resolution model that transforms the
true proper lifetime ¢ into the observed one 7, given the resolution o.

For the Pdfgignai(m) we consider a gaussian distribution centered at the B
mass with resolution o,,.

_(m-mp)?
e 2‘77211

\V2mom,

If the o, is an observable, Pdf(c;) represents the probability density function
of the proper time error drawn from real data® . While, in case we assume a
fixed value for proper time resolution, we have to omit completely the Pdf(c) .

Pdeignal (m) =

Pdfsignal(m, 7, tag, rec) = (1) / dt (Typye(t, tag, rec) @ Gauss(t — 7;0;)) Pdf signai(m)
and o.becomes a parameter.

Concerning the background, since the time and mass evolution has different
origin, it is described by different functions:

4Inn case of Bs — Dsm we have tag O=untagged, tag +1 = tagged and for the reconstructed
channel (rec=1 (KtK~7T)r~ or rec=-1 (Kt K7~ )rt)
5In this case we obtained the error distributions from Monte Carlo, as reported in fig. 4.2.
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Pdfgack(m, T,0-, tag, rec) = T pack (T, tag, rec)PAl ack (M) PdfBack (o)

The T gacr(7) is an effective function describing the proper time dependence of
the background rate. Its functional form can be extracted from data by studying
the proper time distribution in the side bands mass spectrum. In our studies
we consider the following form for every tag and rec combinations:

TBack(T) = n(7) - e~ “BackT (4.25)
while the mass distribution assume the form:
Pdfpack(m) = e~ Prackm (4.26)

Similarly to the signal case, the Pdfpack(0;) represents the probability den-
sity function of the time error that can be extracted by the side bands mass
distribution.

As shown the Pdf depends on several parameters (physical or experimental
quantities) that they can be freed during the fit optimization.

4.3.2 Proper time error distribution vs fixed value

In this section we want to give a direct estimate of how much the time dependent
analyses can benefit by using the proper time error as an observable respect the
case in which a fixed resolution is assumed. We start considering the simplified
case of a pure signal time dependent amplitude like:

T(r;Amp,Tp,A)=¢"27. (1. + A-cos(Amp - 7)) (4.27)

where Ampg, ' are the B mass difference and decay width and A is the ampli-
tude.

With the RooFit package we generate 50.000 events according the Pdf distri-
bution 4.24 (for the moment we assume the acceptance function is e(7) = 1,
with the input parameters 'y = 1/1.5, Amp = 17.8ps~ !, A = 1 and different
proper time resolutions) defining a sample of 7¢ and o measurements. RooFit
exploits, for the data generation, a library function that implements the equa-
tions 4.2, 4.3, 4.4, 4.5, by including also the gaussian resolution model chosen.

To make the comparison, we fit the data generated according two different
approaches:

1. two observables (7% and o%) and the Pdf depending on 7 and o ;

2. we neglect the information on o? and fit with a time dependent Pdf with
a fixed resolution value given by the mean value of the proper time error.
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input values | Fit time and error Fit time
Fit parameters | ., 0o, A B/S A B/S
(fs)  (fs)
Signal data sample
Gauss narrow 40 8 1.001 £ 0.007 1.002 + 0.007
Gauss wide 100 25 1.01 £0.02 1.15+0.03
Landau narrow | 40 8 1.002 £ 0.007 1.002 + 0.009
Landau wide 100 25 0.99 £0.02 1.69 £ 0.09
Signal + Background data sample
Gauss 40 8 1.00+0.01  0.25 1.09£0.01  0.37
60 10
Landau 40 8 1.01£0.01  0.28 1.07+£0.01  0.25
60 10

Table 4.1: The generation parameters of the Pdf(o;) are reported in the
first column. In case of gaussian(Landau) generation, they represent the
mean(maximum) and sigma of the distribution. The first four rows gather
the fit output in case of pure signal, whereas the last lines refer to the signal
and background case. The comparison indicates the improvement obtained con-
sidering the time dependent analysis with (second column) and without (last
column) the event by event resolution description. In case of signal+background
data sample both Pdfg;gnai/Back (o) parameters are quoted.

The comparison will indicate the improvement obtained considering the error in
the time dependent analysis. This comparison is made in four cases correspond-
ing to different Pdf(c,) (gaussian or Landau) and parameters. The fit results
are represented in figure 4.3, and the corresponding values are reported in table
4.1. In case of good resolutions (7, = 40fs) there is not too much improvement
in fitting with time and error per event: the two fit strategies give similar values
and errors for amplitude in agreement to the input value A = 1. Otherwise, in
case of "unprecise" measurements (7, = 100 fs), by fixing the resolution to the
mean error leads to an incorrect amplitude value.

The same behavior is present in case we consider a Landau error distribution.
Within the limits of this speculations, we can say that in case of "precise" res-
olution, the linearity of the problem and the limit central theorem allows to
simplify the time dependent analysis by considering the mean error.

Of course the conclusions may change dramatically if background is considered.
In fact if the error time distribution of the background differs from the signal
one, the analysis of 7 and o, observables gives better results. This fact is shown
in fig. 4.4. In these cases the data are generated with a fraction B/S = 0.25
of background events whose time error distributions are given by a Gaussian
(tr, = 60fs, u,, = 10fs, top plots) or a Landau (max,. = 60fs, p,,,, = 10fs,
bottom plots). The corresponding fit parameters are compared in table 4.1.
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Figure 4.3: Comparison between the fit results of 50.000 events generated ac-
cording to the amplitude 4.24, a gaussian time resolution model and different
proper time error distributions. The second column represent the fit using time
and error( event by event) , while the third column shows the fit results em-
ploying only the time observable. From top to bottom: a narrow gaussian, a

wide gaussian, a narrow landau and a wide landau distributions.
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Figure 4.4: Comparison between the results of a fit of time and error per event
(second column) and only time (third column) of 50.000 events with B/S = 0.25,
a gaussian time resolution model and different proper time error distributions:
top, a narrow gaussian; bottom a narrow Landau distributions.
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4.4 Examples

In this section we give a description of two time dependent analyses that LHCb
will perform giving emphasis to the proper time measurements.

4.4.1 Am, measurement: the channel B,(B,) — DF(Kt*K 7%)n¥.

This channel is a self-tagged process, since the charge of the pion in Dy decay
defines uniquely the flavour of the B particle. For this reason this channel will
be used to determine not only the mixing frequency Amg of BY/BY | but also
the wrong tag fraction wy,y. The sample of untagged events can also be useful
to determine the with difference AI'.

The theoretical amplitude of the decay process are reported in eq. 4.6, 4.7,
4.8, 4.9 where the first two (second two) equations have the same amplitudes
and correspond to the unmixed (mixed) decay amplitudes. For the untagged
events (tag=0), depending on the reconstructed channel (rec=1 (K+*K~7")r~
or rec=—1 (KTK -7~ )x"), the observed amplitudes are reported in equations
4.10 and 4.11 . These amplitudes are the bases for the signal Pdf, whereas for
the background we follow the indications given in the par.4.3.1.

LHCDb will be able to collect about 110.000 By — Dg7 signal events in one
year of data taking (2fb~!) with an estimated background contamination of
B/S = 0.83(£0.09) and a tagging performances of €;,, = (60.22 £ 0.18)% and
Wiag = (30.26 = 0.23)%. As already mentioned, besides the measurement of
Amyg the analysis of this channel will provide an experimental determination
of the wiqq, provided that the proper time resolution is known. In fact in
eq. 4.23 we have shown that the effects of proper time resolution and wrong
tag are indistinguishable since they are factorized. Nevertheless if the proper
time error is distributed over a sufficiently large range independently from the
tagging performances, the analysis of time and proper time error will allow
to disentangle the two contributions. Of course in this case it is extremely
important that proper time error is well calibrated, for example by means of
the FITPull method.

4.4.1.1 Proper time resolution dependence of Am; and w;,, measure-
ments

In this section we study how the measurements of Amg and wy,g depend on the
proper time resolution. Exploiting the RooFit capabilities, we generate several
data samples corresponding to one year of data taking at LHCb. Each sample
corresponds to different values of the parameters that define the proper time
error distribution for the signal and the background events (quoted in tab. 4.2).
Two different fits are performed:

1. Pdf;- fit to all observables (m, tag, rec, 7,0, ): in this case the proper time
error calculated event by event is included and has a different distribution
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Figure 4.5: Graphical representation of the fit output for the wy,y and Amg as
a function of the input mean proper time resolution. Black (green) corresponds
to Pdf; fits to data generated with a o, gaussian(Landau) distribution. Red
(blue) corresponds to Pdf; fits to data generated with a o, gaussian(Landau)
distribution. The dashed blue line represents the input generation value.

for signal or background events;

2. Pdfy- fit to the (m,tag,rec,7) observables: in this case we neglect the
proper time error o, and we assume a fixed resolution value for all the
events, which is extracted from the data.

In table 4.2 are reported the values of Amg and wy,y found with the two fit
approaches: independently on the Pdf(o;), the fit approach using Pdf; finds
the wiqy and Amg values in agreement with the input ones(wiqqy = 30.3% and
Amg = 17.77ps™'). The approach based on Pdf; finds the right ws, value
only for small resolution values (p,. < 60 fs), while it fails for worse resolutions.
Concerning the Am, the values found are in agreement with the input.

4.4.1.2 BIAS dependence of Am, and w;,, measurements

In this section we study the dependence on the proper time bias of the Amy
and wy,g parameters. We generate several data samples with a resolution model
modified by the following equation

_ (t—7+bor)?
e 2(7'72_

V2mo,

In table 4.3 and figure 4.6 are reported the fitter results . The bias affects
both Amg and wyeg , in particular Am, measurements show a strong linear

Gt—1+bor;o.) =
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signal background Fit time and error Fit time (Fixed Resolution)
Mo OgT Mo OgT Wtag Ams Wtag ATnfs
(fs) (fs) | (fs) (fs) %0 (ps)* %o (ps)*

Gaussian distribution
30 6 45 7.5 | 30.54+0.2 17.7744+0.005 | 30.3+0.5 17.774 4+ 0.005
40 8 60 10 30.1£0.2 17.7734+0.005 | 29.5+0.5 17.776 £ 0.01
50 10 75 12,5 | 30.24+0.4 17.76240.006 | 29.4£0.5 17.76 £0.01
60 12 90 15 30.6 0.5 17.7654+0.009 | 29.5+0.4 17.72 +0.01
80 16 120 20 30.0+0.5 17.76 + 0.02 26.6 = 0.5 17.77 £+ 0.01
100 20 150 25 30.4+0.6 17.79 + 0.02 24.1+1.0 17.81 + 0.02
120 24 180 30 30.6 1.0 17.73 £0.02 14.9+ 2.5 17.73 £0.03
140 28 210 35 30.3+£1.5 17.78 £0.03 7.1+4.0 17.87 £ 0.05

Landau distribution
30 6 45 7.5 | 30.64+0.2 17.76140.005 | 30.2+0.3 17.765 £+ 0.006
40 8 60 10 30.4+0.3 17.7604+0.006 | 29.04+0.4 17.762 4 0.007
50 10 75 12.5 | 29.8+0.4 17.7724+0.007 | 25.8 0.7 17.787 4 0.008
60 12 90 15 30.2+0.5 17.7724+0.008 | 22.6 0.9 17.780+0.014
80 16 120 20 30.3+£1.2 17.755+£0.012 | 6.3£1.0 17.80 £ 0.02
100 20 150 25 30.1£1.2 17.760£0.02 | 5.0 % £1.0 17.80 £0.2
120 24 180 30 30.7+ 1.8 17.74 +0.03 5.0 % £2.0 17.9+£0.2
140 28 210 35 30.7+2.3 17.78 + 0.04 5.0 % £2.0 17.9+£0.2

Table 4.2: Fit parameters wyq, and Amg obtained by a fit to generated data with (Fit time and error columns) or without
(Fit time columns) considering proper time error event by event in the Pdf . The input parameters used to generate Pdf (o,
according to a Gaussian or a Landau distribution are also quoted. .. represent the mean (max probability in case of the
Landau) and o, the sigma of the distribution.
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Figure 4.6: Graphical representation of the fit output for the w,y and Amy
as a function of the input bias to the proper time. Black (green) corresponds
to Pdf, fits to data generated with a o, gaussian(Landau) distribution. Red
(blue) corresponds to Pdfs fits to data generated with a o, gaussian(Landau)
distribution. The dashed blue line represents the input generation value.

dependence on the bias. This fact demonstrates the importance of a good
proper time calibration for a correct and precise measurements.

4.4.1.3 Scaling Factor dependence of Am, and w;,; measurements

In this section we study the effect of a scale factor to the proper time error on
the Am, and wyqy parameters. This fact allows us to simulate the cases where
the errors are over/under estimated. We generate several data samples with a
resolution model modified by the following equation

=72
e 2(crxSF)?

G(t—T;UTXSF):m

and the Pdf (o;) that does not include the scale factor SF. In table 4.4 and
figure 4.7 are reported the fitter results. As expected, wiqq strongly depends on
SF, while Amis independent. This fact demonstrates the importance of a good
proper time error calibration for correct wy,, measurement.

4.4.2 A CP asymmetry measurement: the channel B,/ —
hth~

As seen in the second chapter, provided that the hypothesis of the U spin sym-
metry is valid, the physical interpretation of the analyses of the decay channels
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signal background Fit time and error Fit time (Fixed Resolution)
BIAS Mo O, Mo O, Wtag Amg Wtag Amy
(f5) (F9) | (F9) (s) | % (ps)~! % (ps)~!
Gaussian distribution
—2.0 | 40 8 60 10 | 33.7+£0.3 18.295+0.008 | 32.7+0.3 18.290 4+ 0.008
—1.5 | 40 8 60 10 | 32.7+£0.3 18.177+0.008 | 31.7+0.3 18.177 4+ 0.007
—1.0 | 40 8 60 10 | 30.1£0.3 18.045+0.007 | 30.1 +£0.3 18.041 4+ 0.006
—0.5 40 8 60 10 30.1+£0.3 17.908£0.007 | 29.0+0.3 17.909 + 0.005
0.0 40 8 60 10 30.2+0.3 17.779+£0.007 | 29.24+0.3 17.780 + 0.007
0.5 40 8 60 10 30.5+0.3 17.626£0.007 | 29.6 0.3 17.638 & 0.005
1.0 40 8 60 10 | 31.6+£0.3 17.520+0.007 | 30.7+0.3 17.525 4 0.006
1.5 40 8 60 10 | 32.6+£0.3 17.380+0.008 | 31.9+0.4 17.390 4+ 0.008
2.0 40 8 60 10 34.04+0.3 17.2444+0.008 | 33.54+0.4 17.251+£0.007

Table 4.3: Fit parameters in case of BIAS to the proper time measurement (expressed in sigma units) for the By — Dy

channel. Input bias and resolution parameters are listed together with the fit outputs Amg and wyqg.
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signal background Fit time and error Fit time (Fixed Resolution)

SE | o, 00, | o, 0o, Wtag Amg Wiag Amyg
(fs) (fs) | (fs) (fs) 7 (ps)”" % (ps)”"

Gaussian distribution
0.5 | 40 8 60 10 | 26.8+£0.2 17.779+£0.004 | 25.8£0.2 17.781 £ 0.006
0.6 | 40 8 60 10 | 27.5+£0.2 17.777+0.004 | 26.6 £0.2 17.778 £ 0.006
0.7 | 40 8 60 10 | 279+£0.2 17.776+0.005 | 27.1£0.2  17.777 £ 0.006
0.8 | 40 8 60 10 | 283+£0.2 17.765+0.005 | 27.4+£0.2 17.765 =+ 0.006
0.9 | 40 8 60 10 | 29.4+£0.2 17.770£0.006 | 28.8£0.2 17.771 £ 0.007
1.0 | 40 8 60 10 | 30.1£0.2 17.773+£0.007 | 29.5£0.2 17.776 £ 0.007
1.1 ] 40 8 60 10 | 31.2+£0.2 17.767+0.007 | 30.7£0.2 17.766 £ 0.007
1.2 | 40 8 60 10 | 326+£0.2 17.761+£0.008 | 32.2+£0.2 17.762 £ 0.007
1.3 ] 40 8 60 10 | 33.4+£02 17.769+0.008 | 33.1£0.2 17.770 £ 0.008
1.4 ] 40 8 60 10 | 344+£0.2 17.765+£0.009 | 34.2+£0.2 17.763 £ 0.008
1.5 | 40 8 60 10 | 35.2+£0.2 17.757+£0.009 | 35.2+£0.2 17.754 £ 0.009
1.6 | 40 8 60 10 | 36.4+£0.2 17.7564£0.010 | 36.3£0.2 17.757 £ 0.009
1.7 1 40 8 60 10 | 37.1+£0.2 17.766+0.010 | 37.2+£0.2 17.767+0.010
1.8 | 40 8 60 10 | 382+£0.2 17.765+0.010 | 38.3+£0.2 17.768 £0.010
1.9 ] 40 8 60 10 | 39.1+£0.2 17.761£0.010 | 39.4+£0.2 17.761£0.010
2.0 | 40 8 60 10 | 40.3£0.2 17.742£0.011 | 40.5£0.2 17.745£0.011

Table 4.4: Fit parameters in case of a SF of the proper time error measurement (expressed in sigma units) for the By — Dy
channel. Input bias and resolution parameters are listed together with the fit outputs Amg and wqg.
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Figure 4.7: Graphical representation of the fit output for the w:qy, and Amg
as a function of the input scaling factor SF of the proper time. Black corre-
sponds to Pdf; fits to data generated with a o, gaussian(Landau) distribution.
Red corresponds to Pdfs fits to data generated with a o, gaussian(Landau)
distribution.

By — wtn~ and B, — KTK~, allows an independent measurement of the ~
angle.

LHCb put the simultaneous analyses of the By/s — hTh~ channels forward,
in guise to earn in a single step all the C'P parameters involved. This approach
shows the advantage in evaluating, with the most suitable way, the signals
By/s — Kme By — mr , that, due to the incidental particles mis-identification,
can contribute to the overall background. For a detailed description see reference
(A.Sarti B2hh note in preparation).

In the next subsection we will limit the discussion of the proper time error
incidence on the Adci} and ’C’?}f parameters and in presence of biases or scaling
factors as well.

The physical relevant parameters to determine from these channels are the
CP asymmetries g}ﬁ” in the mixing , 14%12 in the decay and the charge asym-
metry A of By/; — mK respect to By, — mK decays (the parameter Am
is supposed fixed by the dedicated measurement described above). The experi-
mental asymmetries depend also on the tagging power w;q, and on the proper
time resolution.

Some useful considerations can be made:

1. as already mentioned the dilution effects given by proper time resolution
are more important for the fast oscillating Bs channels, while they can be
neglected in case of By channels.

2. all the By/s — hTh~ channels share the same decay topology and trigger.
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For this reason, in the limit of the opposite side tagging, we can assume
that the wyqg is the same in all the channels. The same side tagging, on
the other side is different for By and By decays.

3. The By, — K are self-tagging decays, so their oscillation amplitude
depends only on the w;qy and the proper time resolution.

These features can help us defining the fit strategy. A separated fit of By decays
assuming a fixed resolution model will measure ’C’?‘}} , A%?ITD and Ay, in the By
sector. The control channels B; — K7 also provide a direct measurement of
the wiqg value. If this is done on the events selected by opposite side tagging,
the fit result on wi,y can be used to fit the By channels. In this case proper
time resolution play an important rule, so a per event resolution model is rec-
ommended. In this case the control channels B, — K7 can be useful to find any
possible adjustments to the experimental proper time resolution, in particular
any Scale Factors.

Given this analysis framework I will discuss the analysis of the only Bschannels
given that we are considering the only opposite tagged events, the wyqq is known
from a fit to the B4 — hth~ channels and Amg is measured.

Studies on DC04 Monte-Carlo have allowed to give an estimate of the event
yield, the background contamination B/S and the tagging performances of the
channels. In table are reported the values corresponding to one year of data
taking.
4.4.2.1 Proper time resolution dependence of A%} and AZ¥ mea-

surements

In this section we want to study the precision of the physical parameters A%
and A‘éilrg as a function of the proper time resolution and fit strategy. As
par.4.4.1.1 we consider the two fit strategies based on Pdf, and Pdfs.

In table 4.6 are reported the values of A% and AT found with the two
fit approaches: independently on the Pdf(o;), and the fit approach, the fitted
values are in agreement with the input ones(A%% = 0.347 and AXT, = —0.123).
We can notice that the precision of these parameters worsens for decreasing

resolution values.

4.4.2.2 BIAS dependence of A%", and A% measurements

In this section we study the dependence on the proper time bias of theACé?ITD and
mieparameters. We generate several data samples in the same way as reported
in par.4.4.1.2.
In table 4.7 and figure 4.9 are reported the fitter results . Adci} measurement
shows a significant dependence on the bias, while the Ag‘}ﬁ” does not exhibit a
clear one. Anyways both fits approaches give similar results.
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Channel Branching ratio  event yield B/S B/S Wiag
(1079) L=2fb"' (specific) (bbinclusive) (opposite side)
BY — nT K~ 4.8 9800 1.92 0.54 32.84+0.3%
BY - KTK- 18.5 35900 < 0.06 0.08 32.84+0.3%

Table 4.5: Untagged annual yield and background-to-signal ratio from specific and bb-inclusive background for the decays
Bs — hTh™. The B/S values are computed without applying the trigger in order to increase the effective statistics.



Figure 4.8: Graphical representation of the fit output for the Adci}; and A as
a function of the input mean proper time resolution. Black (green) corresponds
to Pdf, fits to data generated with a o, gaussian(Landau) distribution. Red
(blue) corresponds to Pdfs fits to data generated with a o, gaussian(Landau)

distribution.

Figure 4.9: Graphical representation of the fit output for the ALY, and AZE
as a function of the input bias to the proper time. Black (green) corresponds
to Pdf, fits to data generated with a o, gaussian(Landau) distribution. Red
(blue) corresponds to Pdfs fits to data generated with a o, gaussian(Landau)
distribution. The dashed blue line represents the input generation value.
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signal background Fit time and error Fit time (Fixed Resolution)
Moo Oor | fHor 07 AZp AZD AZp AZp
(fs) (fs) | (Fs) (fs)

Gaussian distribution
30 6 45 75 | —0.11+0.03 0.354+0.03 | —0.12+£0.03 0.34£0.03
40 8 60 10 —-0.09£0.03 0.32+£0.03 | —0.10£0.03 0.32+0.03
50 10 75 12,5 | —0.16 £0.04 0.36+0.03 | —0.16 £0.04  0.35£0.03
60 12 90 15 —0.14£0.04 0.38+£0.04 | —0.14+0.06 0.40=£0.04
80 16 | 120 20 | —0.15+0.06 0.33+0.05 | —0.21+0.08 0.34+0.06
100 20 150 25 —0.11£0.09 0.29+0.08 | —=0.19+0.13 0.28£0.12
120 24 180 30 —-0.02+£0.13 0.28£0.11 | 0.10£0.19 0.24£0.19
140 28 210 35 —-0.33£0.20 0.32£0.20 0.0+0.5 0.5£0.3

Landau distribution
30 6 45 7.5 | —0.10+0.03 0.344+0.03 | —0.08£0.03 0.36 £0.03
40 8 60 10 | —0.13+0.03 0.36£0.03 | —0.14+0.04 0.38+0.03
50 10 75 12,5 | =0.12£0.04 0.35+0.04 | —0.05+0.04 0.32+£0.04
60 12 90 15 | —0.06+£0.04 0.33+0.04 | —0.04+£0.05 0.37+0.04
80 16 120 20 —0.13£0.06 0.34+£0.05 | —0.18+0.08 0.37 +£0.07
100 20 150 25 —0.15£0.08 0.21+0.08 | —0.044+0.15 0.24+0.14
120 24 180 30 —-0.10£0.12 0.23+£0.12 | 0.37£0.34 0.32£0.37
140 28 210 35 —0.08£0.21 0.55+0.16 | 0.16£0.45 0.25£0.42

Table 4.6: Values of A‘g} and A‘g} obtained by a fit with a per event proper time resolution (Fit time and error columns)
or with a fixed resolution (Fit time), to several data samples generated with different resolution distributions and parameters.
All the generated samples have input values: A‘ézlrg = —0.123 and AZF = 0.347
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signal background Fit time and error Fit time (Fixed Resolution)
BIAS | por  0or | pior  Oor AZ‘ZID ABE AZ‘ZID AL
(fs) (f5) | (fs)  (f9)
Gaussian distribution
—2.0 40 8 60 10 0.07£0.03 0.34+£0.03 0.09 £0.04 0.34 £0.03
—-1.5 40 8 60 10 0.02+£0.03 0.30£0.03 0.07£0.04 0.31 +£0.03
—1.0 | 40 8 60 10 | —0.02+0.03 0.36 £0.03 0.02 £0.04 0.37£0.03
—-0.5 | 40 8 60 10 | —0.02+0.03 0.38£0.03 | —0.015+0.030 0.37 +0.03
0.0 40 8 60 10 | —=0.12+0.03 0.36£0.03 | —0.12+0.03  0.36 +0.03
0.5 40 8 60 10 —-0.19+£0.03 0.25£0.03 —0.17£0.03  0.26 = 0.03
1.0 40 8 60 10 —-0.22+£0.03 0.25£0.03 —0.23£0.03 0.24£0.03
1.5 40 8 60 10 —0.24£0.03 0.204+0.03 —-0.28+0.03 0.16 £ 0.03
2.0 40 8 60 10 | —0.22+0.03 0.21+£0.03 | —0.24+0.03 0.194+0.03

Table 4.7: Fit parameters in case of BIAS to the proper time measurement (expressed in sigma units) for the B; — hh channel.

Input bias and resolution parameters are listed together with the fit outputs A‘éilrg and A




Figure 4.10: Graphical representation of the fit output for the A%7, and A&
as a function of the input scaling factor SF of the proper time. Black corre-
sponds to Pdf; fits to data generated with a o, gaussian(Landau) distribution.
Red corresponds to Pdf; fits to data generated with a o, gaussian(Landau)
distribution.

4.4.2.3 Scaling Factor dependence of A%", and A& measurements
In this section we study the effect of a scale factor to the proper time error on
the A%, and A2 parameters. This fact allows us to simulate the cases where
the errors are over/under estimated. We generate several data samples with a
resolution model modified as described in par. 4.4.1.3.

In table 4.8 and figure 4.10 are reported the fitter results. Adci}; seems to
be only slightly affected by scaling factor for SF' < 2 | while for bigger scaling
factors the fitted values are incompatible with the generated one. Concerning
the A4 parameter, the dependence is more evident. Both fits approaches,
anyways, give similar results.
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signal background Fit time and error Fit time (Fixed Resolution)

SF | por  0or | por fo A‘é?lrg ABE Adcl; ABE
(fs) ()| (Fs) (fs)

Gaussian distribution
0.5 | 40 8 60 10 —0.12+0.03 0.35£0.03 —0.14£0.04 0.40£0.03
0.6 | 40 8 60 10 —0.11+£0.03 0.42+0.03 —0.12+0.04 0.41£0.03
0.7 ] 40 8 60 10 —0.13+0.03 0.40 £0.03 —0.10+£0.04 0.40£0.03
0.8 | 40 8 60 10 —0.11+0.03 0.35£0.03 —0.11+£0.04 0.35+0.03
0.9 | 40 8 60 10 —0.17+£0.03 0.38 £0.03 —0.16 £0.04 0.37£0.03
1.0 | 40 8 60 10 —0.14 £ 0.03 0.39 £0.03 —0.14£0.04 0.39£0.03
1.1 40 8 60 10 —0.15+0.03 0.34 +£0.03 —0.14£0.03 0.33£0.03
1.2 40 8 60 10 —0.14+0.03 0.29 £0.03 —0.144+0.03  0.29+£0.03
1.3 | 40 8 60 10 —0.15+0.03 0.26 £0.03 —0.174+0.03  0.24 £0.03
1.4 | 40 8 60 10 —0.11 £+ 0.03 0.30 £0.03 —0.11+0.03 0.30£0.03
1.5 | 40 8 60 10 —0.10 £ 0.03 0.28 £0.03 —-0.09+£0.03 0.28£0.03
1.6 | 40 8 60 10 —0.10 £ 0.03 0.28 £0.03 —0.11£0.04 0.27£0.03
1.7 40 8 60 10 —0.08 £ 0.03 0.18 £0.03 —0.08+0.03 0.16 £0.03
1.8 | 40 8 60 10 —0.05+0.03 0.26 £0.03 —0.07+£0.03  0.26 £0.03
1.9 | 40 8 60 10 —0.14+0.03 0.20 £0.03 —0.144+0.03 0.18 £0.03
2.0 | 40 8 60 10 —0.12+0.03 0.35£0.03 —-0.09+£0.03 0.17£0.03
2.5 | 40 8 60 10 —0.19+0.03 0.10 £0.03 0.00 £ 0.03 0.09 £0.03
3.0 40 8 60 10 —0.00 £+ 0.03 0.04 £0.03 —0.01+£0.03 0.04 +£0.03
3.5 | 40 8 60 10 —0.04+0.03 0.03 £0.03 —0.04+0.03 0.03+0.03
4.0 | 40 8 60 10 | —0.124+0.08(*) 0.35+£0.08 (*) | —0.02+0.03 0.01 £0.03

Table 4.8: Fit parameters in case of SF to the proper time measurement (expressed in sigma units) for the B; — hh channel.
Input bias and resolution parameters are listed together with the fit outputs A‘ézlrg and A%, The values indicated by the (*)
symbol



Conclusions

The time dependent analyses of B decays play a key role in the study of the CP
violation. In my thesis I focused the attention on the measurements of the B
proper decay time, which is a crucial element in time dependent CP analyses.
B lifetime can be calculated knowing its distance of flight (from the produc-
tion vertex PV, to the decay vertex SV) and its momentum p. The PV is
measured with a common vertex fit of all track segments reconstructed in the
vertex detector, while SV and the B momentum are determined by a common
vertex fit of the stable B decay products. For a generic measurement of a track
parameter or vertex coordinate yj, adjusted by a fit procedure with kinematical
constraints, we can define the normalized “stretch values” or “FITPulls”, given
by:
Ay;

covii — V(¥)ii

FITPulls(yi) =

where Ay; represents the difference between value of the measurement before
and after the fit process, whereas in the denominator we put in the difference
of the two variances, the two corresponding variances. If the measured data are
gaussian distributed and the linearization of the equations constraints exploited
in the fit is a good approximation within the range spread by the measurements,
FITPulls turn out to be distributed as normal gaussians (u = 0, ¢ = 1). It
is reasonable to expect that if one of the conditions above is not satisfied a
deviation from normality of their shape should appear.

On real data, the method can be used on the control channel J/U — pupu,
— chosen since the prompt J/¥ will be a strong signal in dimuon triggered
events (T 170HzQLHCb) with a low background level (B/S724%) — as a general
monitor for the charged tracks calibration and to recover systematic effects that
can compromise the B proper time measurement. In this way we can think of a
correction strategy, built on a clean channel, but exportable to others physical
decays.

Thanks to the results of this thesis, the FITPull method will be adopted by
the LHCb Collaboration to monitor and calibrate the quality of the tracking
algorithms. I have developed an iterative method to extract, starting from the
FITPull distributions, a map of the corrections of the track parameters as a
function of the momentum of the input charged tracks. In order to perform
these tasks, I developed a kinematical fitter as a general software tool, the
GlobalFitter, that has been included in the official LHCDb software analysis
framework. The GlobalFitter has been explicitly designed to compute the
FITPulls and the proper time error by taking into account the full covariance
matrices of the input measurements.

Furthermore, by using the RooFit package (a software tool for statistical
modelizations and fits), I have evaluated the effects of the proper time resolu-
tion on CP violation parameters. In order to do that I have generated several
data samples of B decays by means of a fast Monte Carlo technique, and then
fitted the theoretical expressions of the decay rates to the simulated data. I
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considered two different cases, Bs — Dsm and B — h™h™ (where h stands for
7 or K), to quantify how biasies and scale factors, applied to the proper time
error distribution, can affect the fit output values. The former channel is used
to measure the mass difference of the Bs mass eigenstates Amg and the mistag
probability w¢qy, Whereas the second one provides relevant C'P violation mea-
surements. By means of these tests, I estimated how much the time dependent
analyses improve by using the proper time error as an event-by-event observable
with respect to the case in which a fixed resolution is assumed for all the events.

A strong dependence of wqq on the presence of a scale factor in the proper
time measurement has been observed. It demonstrates the importance of a good
estimation of the proper time error in order to obtain a correct w;,, measure-
ment. Similarly, an important dependence of the Amg measurement on the bias
has been demonstrated.

The fit results for the B — h™h™ decays show that the direct C P asymmetry
coefficient A&, is only slightly affected, if the scaling factor is less than 2 units,
while for bigger values the fit results are no longer statistically compatible to
the generated ones. Concerning the mixing-induced C' P asymmetry parameter
Ag}?, the dependence on the scaling factor is even larger.

The conclusion of these studies is that it will be very important to provide
a correct proper time measurement, and thus it will be absolutely necessary to
provide a reliable calibration technique running on experimental data. For this
reason the FITPull method has been adopted by the LHCb Collaboration.
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Appendix A

The Least Squares Principle

Least squares is a mathematical optimization technique which, when given a
series of measured data, attempts to find a function which closely approximates
the data (a "best fit"). It attempts to minimize the sum of the squares of the
ordinate differences (called residuals) between points generated by the function
and corresponding points in the data.

Given a random variable with an expectation value defined as:

y(x) = f(z,a) (4.28)

where the function f depends linearly on parameters aj—1, .. p.

f(zi,a) = arfi(w:) + agfa(zi) + ... + apfp(i)

Taken a set of measurements y;—1, ., we have an expectation value for each
measurement that is according to eq.4.28

Ely:] = f(zi,)

where @ represents the true values of the parameters.
We establish the term “residual” the difference between the true value and
the measured one:

ri = f(xi,@) —yi (4.29)
that has an expectation value
E[r;]=0 (4.30)

Then, the principle of least squares requires a minimization of the sum of the
residuals above shown

S=Y ri=min=) (f(z:ia)-y)
1=1 1=1

The essential property for the minimization of .S is that the derivatives vanish:

S5 =230 fi(@:) (aafa(@:) + as fo(@i) + - + ap fy(wi) — yi)
52 =230 fo(@i) (ar fa(@:) + as fo(@i) + - + ap fy(w:) — yi)

é‘%sp =230 fol@) (arfpl(@i) + azfp(@i) + oo + apfol@:) — yi)?

In a matricial form we can write

fl(ﬂCl) fz(iﬂl) fp(xl) ay

A= fo(z1)  folze) .o fp(z2) a=|
as

fizn)  fozn) - f;v(xn) Qaq
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and
r=Aa—vy
hence
S =rTr
=(Ada—y)" (Aa—y) (4.31)
=yTy —2aT ATy + aT AT Aa

The minimization is fulfilled by
24Ty +24TAa=0 = a=(ATA)1ATy (4.32)
Then inserting the eq.4.32 in eq.??

S=yly—2aTATy+aTATAATA) ATy = yTy —aTATy = Ty — yT Aa
(4.33)
To calculate the expectation value we have to express the above expression in
terms of @ (true vector of parameters) instead & (estimated parameters). The
least squares @ = (AT A)~t ATy are unbiased estimates of @:

E[&] = (ATA)flATE[y] _ (ATA)flATAE —g
since the expectation value for the quantity Aa — y is:
FE[Aa —y]|=0 = E[y] = Aa

Hence R
S=Aa-y)" (I, -ACT'AT) (AT —y) = :"TU> (4.34)

Also we can notice that
(4.35)

so we can observe that
V(z] = E[2}] = ¢* Elzizj] =0
Then the expectation value of S is given by:

E[S] = Z Ui E[2%] = 0*Trace(U)

The trace of a square matrix is the sum of its diagonal elements that in this
case is

Trace(U)=n—p
and therefore

E[S] = o*(n —p) (4.36)
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Appendix B

MCPull and FITPull theory

Given a decay to be reconstructed, the GlobalFitter provides the measured
quantities corrected and the estimated unknown parameters. with their errors.
The reliability of the results are guaranteed by some new mathematical quanti-
ties.

Working with Monte Carlo data, it achieves to verify if the solutions found
are consistent with Monte Carlo truth. We introduce the concept of “stretch

Sfunction”:
ti —m;

MCE pyll; = (4.37)

Om,

i

where t; stands for the Monte Carlo truth, whereas the m; and are the measured
(or fitted) quantities and their errors. For example the proper time value is
returned with its error, so the stretch function is

ty — 7
MC pyil. — T

(4.38)

or
If the propertime and the proper time error are correct, the stretch function
MC Pyl follows a normal distribution with ¢ = 0 and ¢ = 1 for the central
limit theorem [22]. This stretch function has only one problem. It stresses the
Monte Carlo information which, in the real world, it doesn’t exist. We need a
mathematical tool, which has to be independent of the Monte Carlo information.
We propose the 71T Pyll function:

mi —Yi

FIT pyll; = (4.39)

0k, — 05

where m; and o,,, are the measurement and its error, and ¢; and oy, are the
same quantities but calculated after the fitting procedure. How is distributed
this mathematical value? We can write

g=m—Ay cov(y) = Jg -cov(m) - Jy (4.40)
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The conditions for the linearization are expressed as:

gk(a7y)+2%(Aag‘—Aa)+Z%(ij—Ay)%0 (4.41)
J j J]

J

where the functions and the derivatives are computed in a* = a + Aa™ and
y* =y + Ay*. In a matricial form we can summarize:

g+ A(Aa—Aad")+ B(Ay — Ay*)=0=

A-Aa+B-Ay=c c=A-Aa*+B-Ay*—g

and

991 O 991

8&1 8&2 8&;0
A=

99m  Ogm 09m

Jay  Oax "7 Oayp

991 Oq1 991

Gy Oy g
B =

99m  Ogm Ym

Oy1  Oy2 *°° Oay,
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gm(a*, y*)

So the new function to be minimized can be written as

A=Ay" W Ay +2)\T (A-Aa+ B- Ay —c)

oA =0 =
J(Ay, \, Aa)
WAy +BTA=0 w o BT Ay
AT\ =0 - 0 0 AT .| Aa | =
BAy + AAa =c¢ B A 0 A

(4.42)

(4.43)

This linear system can be solved through the standard numerical methods by

the inversion

w o BT\ ' cn choch
G'=| o o AT = Cu Co CL
B A 0 C31 C32 (s

Introducing the abbreviations

Wy = (BW'BT)"
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1

Wit = (A"WgA)~ (4.45)

We can solve the inversion ( for more details [19], [20]) and if we realize that

the matrix G is a sparse matrix. Applying the

Cri=W1'—W 1B WgBW '+ W BT Wg AW AT W BW~!
Oy =Wt ATWp BW!
Cop =Wyt
C31 =W BW™t — W AW ' ATW5 BW 1
Cyp = WpAW !
C33 = —-Wpg + WBAngATWB
(4.46)

From the eq.4.43
WIWAy+ BT ) =0 = Ay=-Ww BT\ (4.47)

hence
~BW BTN+ AAa=c = M= (BW 'BT")"(AAa )
ATN=0=AT(BW'BT)"Y(AAa—c)) = AT'BW'BT)'AAa=AT(BW BT ¢
WalAa = AT Wge = Aa = W;lATWBc

Ay =-WBT(BW BTy 1AW P ATWE—1)c = W BT Wpe—W ' BT W5 AW ;' AT Wie
Ergo

d(Ay)
dy

= -W'BTWgB+ W 'B"WpAW [ 'ATWEB =
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V(Ay) = (-W'B"WgB + W BT W AW ;' ATWgB) V (y)-

(=W BTWEB+ W BTWe AW ATWEB)"

= (-W'BT"WB+ W 'BTW5 AW ' ATWgB) V(y)-
(=B"WpBW ! + BTWp AW [ ' ATWBW ) =

=W 'BTWpWL ' W BW ! — W BT W AW ' AT W W5 ' W BW 1+
~WIBTW AW P AT W W ' W BW 4+ W BT W AW [ P AT W W ' W AW P AT W BW 1

=W 'B"WpBW ' - W' BTWpAW [ ' ATWEBW ! (4.48)
~WIBTW AW P AT W BW 1+ W BT W AW ' WaAW P AT W BW ! =

=W 'BTWgBW ! - W' BTWp AW [ ATWBW ! (4.49)
So the covariance of Ay is just the difference between V(y) and V(§):
V(Ay) =V(y) = V() (4.50)

thus the normalized stretch function is

Ay; i — Ui
FIT pyjj; = Y = yi Y (4.51)

V@i = V(@) V)i —V(9)a)

where y; is the measurement and the ¢; is the same measurement but after
the fitting procedure. This is the equation 4.39. If the measured data are
normally distributed and the condition are linear, the FITPulls should
follows the standardized Gaussian distribution (mean=0, sigma=1) [19].
In fact we can consider the Ay as the deviation from the zero, i.e. we are
substituting the “truth” with “0” and the measurements with Ay in the eq.
4.37.
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Appendix C

The GlobalFitter Tool

In this section I report summarily the LagrangeGlobalFitter class definition
with its most important methods. The GlobalFitter can be invoked by means
of three overloaded public methods, StatusCode fit(....). Depending on the
passed arguments, a different output can be chosen. Nevertheless all the three
methods are based on the common function fitFromEverything(....) which
implements the matrix inversion as described in par. 3.3.1.

class LagrangeGlobalFitter : public GaudiTool, virtual public IGlobalFitter {
public:

///Standard constructor
LagrangeGlobalFitter( const std::string& type, const std::string& name,
const IInterface* parent);

///Destructor

“LagrangeGlobalFitter() {
MParStore.clear();
UNParStore.clear();
MVtxStore.clear();
UNVtxStore.clear();
SelectParticle.clear();
ProductionVertex.clear();
DecayVertex.clear();

}

StatusCode initialize();
StatusCode finalize();

StatusCode fit(Vertex &WorkingVertex); ///< Fit from a Vertex
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///Fit from a Vertex and retrieve the proper time and its error
//of the particle/particles selected
StatusCode fit(Vertex &WorkingVertex, std::vector < double >&,
std::vector < double >&);

StatusCode fit(Particle &WorkingParticle); ///< Fit from a Particle

//Retrieve Pulls
///Retrieve the function FitPULL for measured particle computed
//with all the track parameters transported in the z

StatusCode getFitPull(Particle &previousP, Particle &afterP, HepVector &pull);

/// Retrieve the function FitPULL for a measured particle
StatusCode getFitPull(Vertex &previousV, Vertex &afterP, HepVector &pull);

///Set which particle to compute the lifetime
void setWhichParticleLifetime(Particle *);

StatusCode LagrangeGlobalFitter::fit(Vertex &inVertex) {

//Fit From Vertex

HepMatrix Minv;

int nm;

Particle dummy;

StatusCode sc=fitFromEverything(inVertex, dummy, true, Minv, nm);
if (sc.isFailure()) return StatusCode::FAILURE;

return StatusCode: :SUCCESS;
}

StatusCode LagrangeGlobalFitter::fit(Vertex &inVertex, std::vector
< double > &lifeTime, std::vector <double > &lifeTimeErr)
{
//Fit from Vertex and retrieve lifetime and its error
double 1fTime, 1fTimeErr;
HepMatrix Minv;
int nm;
Particle dummy;
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StatusCode sc=fitFromEverything(inVertex, dummy, true, Minv, nm);
if (sc.isFailure()) return StatusCode::FAILURE;

for (unsigned int i=0; i< SelectParticle.size(); i++)

{
lifeTimeCalculator(inVertex, Minv, i, nm, 1fTime, 1fTimeErr);
lifeTime.push_back(1fTime) ;
lifeTimeErr.push_back(1lfTimeErr) ;

}

resetVars();

return StatusCode: :SUCCESS;

}

StatusCode LagrangeGlobalFitter::fit(Particle &inParticle) {
debug() << "fit from Particle..." << endmsg;
HepMatrix Minv;
int nm;

Vertex dummy;
return fitFromEverything(dummy, inParticle, false, Minv, nm);

}

StatusCode LagrangeGlobalFitter::fitFromEverything(Vertex &inVertex,
Particle &inParticle, bool isFromVertex,HepMatrix &V, int& num_m) {

info() << "Starting global fit ...." << endmsg;
StatusCode sc;

Vertex *workingVertex=&inVertex;
Particle *workingParticle=&inParticle;

debug() << "Compute NdF" << endmsg;
// then compute number of measurements, of unmeasurements, of contraints;
int nm, nu, nc;
if (isFromVertex) {
sc = computeDoF (*workingVertex, nm, nu, nc);
} else {
sc = computeDoF (*workingParticle, nm, nu, nc);
}
if (sc.isFailure()) {
error() << "cannot compute DoF" << endmsg;
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resetVars() ;
return StatusCode: :FAILURE;

b

debug() << "Number of measured variables " << nm << endmsg;
debug() << "Number of unmeasured variables " << nu << endmsg;
debug() << "Number of constraints " << nc << endmsg;
debug() << "Number of degrees of freedom " << nc-nu << endmsg;
num_m=nm;

// Second get initial estimate of unmeasured variables and transport measurements
//to approximate vertices
// (in the meanwhile fill vector of measurements, its
//covariance and vector of unmeasured
HepSymMatrix Ce(nm, 0);
HepVector e(am,0);
HepVector u(au,0);
if (isFromVertex) {
sc = estimateAndTransport(Ce, e, u, *workingVertex);
} else {
sc = estimateAndTransport(Ce, e, u, *workingParticle);
}
if(sc.isFailure()) {
error() << "cannot get initial estimates" << endmsg;
resetVars();

return StatusCode: :FAILURE;
}
sc = checkCovariance(Ce, nm);
if (sc.isFailure() ) {
error() << "covariance matrix after transport check
failed... something fishy"
<< endmsg;

resetVars() ;
return StatusCode: :FAILURE;
}

debug()<< "e " << e << endmsg;
debug ()<< "u " << u << endmsg;

// copy parameter vector to save initial values (later used to compute chi2)
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HepVector e0(e);
// save covariance matrix to be used for chi2 calculation
HepSymMatrix Ce0O(Ce) ;

HepMatrix B_m(nc, nm, 0);
HepMatrix C_m(nc, nu, 0);
HepMatrix Minv_m(nm+nu+nc, nm+nut+nc, 0);

// now start loop of linearized constraints
bool final = false; // convergence flag
int dicount= 0; // number of iterations counter
// iterate with linearized constraints until convergence
[ = iterate over icount
while (icount < m_maxIterations) {

// get constraint unmbalance and check them
HepVector constraint(nc,0); // vector of non linear constraints
if (isFromVertex) {
final=computeConstraint(e, u, *workingVertex, constraint);
} else {
final=computeConstraint (e, u, *workingParticle, constraint) ;

}

// check that momenta are physical
if (isFromVertex) {
sc = checkMomenta (*workingVertex, e, u);
} else {
sc = checkMomenta(*workingParticle, e, u);

}

if ( sc.isFailure() )

{
error() << "momenta out of range " << endmsg;
resetVars();
return StatusCode: :FAILURE;

}

// converged !!
if (final) break;

// update variables e and u with linearized constraints
HepMatrix B(nc, nm, 0);

HepMatrix C(nc, nu, 0);

HepMatrix Minv(nm+nu+nc, nm+nu+nc, 0);
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if (isFromVertex) {
sc = iterateWithLinearConstraint
(Ce, e, u, nm, nu, nc, *workingVertex, constraint, B, C, Minv);
} else {
sc = iterateWithLinearConstraint
(Ce, e, u, nm, nu, nc, *workingParticle, constraint, B, C, Minv);
}
if ( sc.isFailure() ) {
error() << "iteration " << icount+l << " failed" << endmsg;
resetVars();
return StatusCode: :FAILURE;

// save maxtrices for subsequent usage
B_m=B;

C_m=C;

Minv_m=Minv;

icount = icount + 1;

debug ()<< "Treasure Map" << endmsg;

debug ()<< "Measured Particles " << endmsg;

for (std::map<Particle*,int>::iterator i=MParStore.begin();i!=MParStore.end
debug() << i->second << " " << " " << j->first << endmsg;

debug ()<< "UnMeasured Particles " << endmsg;
for (std::map<Particle*,int>::iterator i=UNParStore.begin() ;i!=UNParStore.e:
debug() << i->second << " " << " " << j->first << endmsg;

debug ()<< "Measured Vertexes " << endmsg;
for (std::map<Vertex*,int>::iterator i=MVtxStore.begin();i!=MVtxStore.end()
debug() << i->second << " " << " " << i->first << endmsg;

debug ()<< "UnMeasured Vertexes " << endmsg;

for (std::map<Vertex*,int>::iterator i=UNVtxStore.begin() ;i!=UNVtxStore.end
debug() << i->second << " " << " " << i->first << endmsg;

// if not converged, return
if (1final) {
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error() << "Sorry, no convergence" << endmsg;
error ()<< "Reached maximum number of iterations = "<< icount << endmsg;
error() <<"If you think this event

should be reconstructed and if you have a huge number of constraints,";

error() << "try to increase maxIterations in job options" << endmsg;

error() << "If it doesn’t help, please contact experts" << endmsg;
return StatusCode: :FAILURE;

} else {

info() << "GlobalFitter converged after " << icount << " iterations!" << endmsg;

}

// update the covariance matrix
HepSymMatrix Cu(nu,0);

updateCovariance(Ce, Cu, Minv_m, nm, nu);

// check the covariance matrix

sc = checkCovariance(Ce, Cu, nm, nu);

if (sc.isFailure() ) {
error() << "covariance matrix check failed... something fishy" << endmsg;
resetVars() ;
return StatusCode: :FAILURE;

}

// build up output graph

if (isFromVertex) {
////8V
for (SmartRefVector<Particle>::iterator it=workingVertex->products() .begin()
it!=workingVertex->products().end();
it++) {
debug() << " z Particle" << (*it)->pointOnTrack().z()<<" zo "<< u(3;

}

sc=fillDecayGraph(Ce0, €0, Ce, e, Cu, u, *workingVertex, nc-nu);
if (sc.isFailure())
{

resetVars() ;

return StatusCode: :FAILURE;
}

} else {
sc=fillDecayGraph(Ce0, €0, Ce, e, Cu, u, *workingParticle, nc-nu);
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if(sc.isFailure())

{

resetVars() ;

return StatusCode: :FAILURE;
}

V=Minv_m;
// exit with deserved success!
return StatusCode: :SUCCESS;
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Appendix D

A little algebra for Acp asymmetries

We have seen that, for a flavour specific process, the decay ratio of a neutral B
meson in its final state f is calculated as indicated in these lines:

R (B — f) = It [cosh <£t> + (1 —2w) cos Amst} ® ;e_ (72;?2
2 V2ro

(4.52)

> AF 1 T—1)2
= / e Tt {cosh <—t> + (1 — 2w) cos Amst] e S d =
oo 2 V2o

Really the convolution should be computed between 0 and +oc because the time
is not defined for negative values. Notwithstanding this reasoning, we chose to
compute the integral, for mathematical simplicity, from —oo. The result should
not be so much modified since due to the acceptance function, that cancels the
integral for values near zero.

00 e e%t _’_e—%t eiAmSt +e—iAmst 1 (r—?
= e — + (1 - 2w) : e 22 dl =
o 2 2 V2ro
1 Rl
_ o Tt
V2o J-—x

_-n? _@=n? ) (=12 . (-7

e%t-e T—}—e_%t-e 202 etAmst | o T—}—e_lAmSt-e 202
+(1—-2w)-

2 2
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Figure 4.11: On the left there are the true proper lifetime distributions for
Bs — D77t and B — Dfr~ . On the right column there arethe same
distributions after the acceptance, resolution and mistag effects were applied.
The last line, picture (e) and (f), contains the untagged distributions before and
after.

146



oo

1 /OO B T R (= 4 1 / T i
= e e e 2o e e -e 20
2V 2wo 2V21o J_so

— 00

I (1 —2w) / 0Tt gilm.t .e—% i (1—-2w) / e*Ft-e’mmst-e—(t;z)z _
2V2r0 J-wo 2vV2mo J_oo

1 /OO &t + L /OO —4&F¢ +
= — e 2 ... ey e 2 ...
2V2m0 J—oo 2V2mo J oo
Iz

13 14
1 > AT (r—t)2 1 ° AD -2 2 ot
Li2= 7/ et T lhe e 7 dt = 7/ et Zte e 27 e 202 002 dt
' 2V21o J_oo 2V21o J_oo
(4.53)

2
)t-e_;?dt

Y

T2 00 7—2 50
T 202 2 , T 552
_° £88¢ Tt o~y gp — & —(r4F-
e e e e e

2V 2o 2210 J_ o

— 00

2 2
e 202 o0 2 e 202 o (s )2 2o
I, = / e_Ct-e_;?dtzi/ e (x/faer/fU) et T dt =
2V2mo J - 2V27mo J -0

147



(7’2 C202)
S R
o 2\/%0’ /—ooe 2 2 t

22 2,2
. o (2=%") /°° 25 - d c V202

- - e o - = (o} ™=
1,2 2\/%0 e Y 2V 2mo

_ . _ (4.54)
(F-(-¥-2F)  (F-+¥F-2)'F)
L +1= * -
1+ 1 /2 V2
_T2
_ e 202 |:e+(r+%_ﬁ)2022 +e+(l—‘—%_”_72)0_22:| =
V2
2
i +|:F2+(%)2+(U%)2+F'AF_2I‘.UL2_AF»ﬁ:| 22 . +[r2+(%)2+(U%)Q_F.Ar—zr.a%JrAr-a%]%2
. e e
V2
5 2 \2 T ]2
i (AR H(F)Per ﬁ]T.[e%fUz&-@fwue—f-;za%%”f =
V2



7,2

— o0 . t—T1 2 —_ . 77 o . e t

I34 = (1 2(.«)) / eth_e:tzAmst_ef(zag) dt = (1 2“}) e 207 / eft(F:FzAmsfﬁ)Ef%dt _
' 2V21o J_so 2V 2mo o

g= (I‘$iAms—£)

R Y
134:w/ e—gt.e—gdt:w/ o (Ft50) o+ g
’ 2V 270 oo 2V 270 oo

2 252 2 2,2

(1—2(.«))-6_;7-8 2 /°° ) (1—2w)~e_2ra_2~e2
— e % dz = V20 -V2r =
2V 2mo —oo 2\ 2mo

(1 -2w)-e 27 - 2 (1 —2w) e 27 22 (PFidm,— %) _

V2 - V2

,,_2
(1-2w)-e W-6%2(r2—Am§+;§¢2irAms—2rﬁi2i%)

V2

149



. . 2
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212 o2 Am?2

I3 +Ia=v2-(1-2w)-e 772 ¢ 2 cos (TAm, — TAmgo?) (4.56)
= R(B—>f)211+12+13+14:

= \/§'€_FT {€+I‘2+AFSCOSh (T T — T '].—"0'2) +

2 2
o212 o Am

+(1—2w)-e"7 e 72 " cos (tAm, — I‘Amsaz)} (4.57)

In case of bias in our model, we have to substitute the term 7 with the 7 — b ,

where b is the bias expressed in ¢ units:

=V2.¢ Tr—o) {6+F2+MS cosh <7 (r—0-8)——-T- 02) +

S272 o2am?

+(1—-2w)-e 2 '6_2COS((T—O’-E)'AmS—FAmSU2)}:
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+(1—-2w)-e = = . cos (TA’ITLS —T'Amgo? — AmsoE)} (4.61)
So the relative C P asymmetry is obtained by the ratio:

I(B° - f)-I'(B’ = f)

ACP(t) = —5 =
(B — f)+T(B —f)
_o2am2 _2ar2 (1 —2w) - cos (TAmS —T'Amgo? — AmSJE)
—¢ 3 .e 3 .

Alr _ AL p, 2 _ Alg® _ 7%
cosh(2 5 I' o 5 U)

Now I want to apply the same technique to the B decay to C'P eigenstates

case. In spite of the flavour specific decay, in this case there are only two decay
mode:

(B — f)oce A <(1 + |)\f|2) cosh %t +(1- |)\f|2) cos Amt — 2Re(\) sinh %t — 2Im(Ay) sin Amt)

2

F(§—> ) x eiFt|Af|2 g

((1 + |)\f|2) cosh %t - (1= |)\f|2) cos Amt — 2Re()) sinh %t + 2Im(Ay) sin Amt)

By applying the convolution theory and the mistag effects, and assuming |p/q| =
1, we can introduce the dependence to the distribution of the proper time reso-
lution:

AT AT
R(B— f)oxe It ((1 + |)\f\2) cosh Tt + (1 —2w) (1 - |)\f\2) cos Amt — 2Re(A) sinh Tt — (1 —2w) 2I'm(Ay)sin Am t)

1 (=12
®\/ﬁoe 252 (4.62)

o0 AT AT
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1 (r=t)?
. e 202 dt =
V2mo

:Il+12+13+14

where
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+o0o A eth (r—t)2
I, =— 1—2w)2Im(M¢)sin Amt - e 202 dt =
4 ~/700 ( ) ( f) \/%U

r2,2 o2Aam?

=—2v2Im(\f) (1 —2w)e 2 ~ "2 TTsin (Am7 — AmTo?) (4.66)

Hence
S2AT2 | o212
R(B — f) e%+TF*FTv(<1 + |,\f|2) cosh (ET - £F02) — 2Re(\y)sinh (E - £1“cr2)) +
2 2 2 2
1202 _ o2Am? T 2 2 2
+(1—-2w)e 2~ 2 7 ((1— [As] )COS (AmT — AmI'o?) — 2Im(Ag) sin (AmT — AmT'c ))
(4.67)
S2AT2 | o212
R(B—f) x 3 *FT-<<1 + {)\f{2> cosh <%T - %1"02) — 2Re(\f) sinh (% T— %FUZ)) +
2(7'2 02 ’7712
—(1- 2w)er2 —eSme Ty ((1 — {)\f{2> cos (AmT — AmFUz) —2Im(Af)sin (AmT — AmF02)>
(4.68)

So the CP asymmetry can be computed

2Am? o2 A2 (1 - |>\f|2) cos (Am 1 — AmI'6?) — 2Im(Ay) sin (AmT — AmTI'c?)
Acp(t) =—(1—-2w)e™ 2 ~ 8 - 5 —
(1 + |Af] ) cosh (%T - %FO’Z) — 2Re(Af) sinh (% T — %FJZ)

o2am? _ o2Ar? A%T . cos (AmT — AmIo®) + AZE sin (AmT — AmT'o?)
cosh (4F7 — &L T0?) — A8psinh (&8 7 — %Fc(rz) :
4.69

=(1-2w)e”

analogously for a bias b = Yo on the time resolution distribution

Adcil’; - cos (Amr — AmI'c? + Am%) + Ag}}fc sin (Amr — AmTo? + Am%)

o2Am?2 _ o2Ar2
(1—2w)e™ 2 ~ 8 .
cosh (%T - %1"02 + %Ea) - Aép sinh (% T — %FOQ + %Zo)

(4.70)
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Appendix D

Mass Difference

Mixing occurs when eigenstates of one observable-flavour, are not pure mass
eigenstates but formed by superposition of mass eigenstates. The flavour states
will alter over time in two distinct ways. First the amplitudes of the different
mass eigenstate components will decay at different rates, given by the width
difference.

Second the phases of the components will vary at different frequencies ac-
cording to their mass eigenvalues. This evolution of relative phase drives flavour
oscillation at the beat frequency.

Starting from the eq.2.17 we can see that

- = — 1——=Im|— 4.71
D | M| 2 Mo (471)

Since in the By mesons |Mjs| > |T'12|, the approximation

a_ M7,
D | M|

is quite good. Also we can take in account that, within the standard model,

Mig o (ViVis)? o (V732 (4.72)
Therefore the
q Vt% 238y ’q’
=W _—5 — =1 =1 4.73
P VisVi D (4.73)

can be assumed to within O(1073). The measurements of the mass difference

in the By system achieve an improvement about the knowledge of the Vg s
element Vis. Actually the |Mya| > |T'12|, then
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Ams ~ 2|M12| (474)
therefore we can extract the value of Vi through the eq.4.72.

Another way to measure the validity of the C K M matrix is estimating the
ratio:

A, _ Ve
Amg | Via

where the Ryy contains a set of parameter almost valued.

- Raa (4.75)

Present situation on Am,

The first attempts to measure the Amg have yielded a lower limit Am, >
14.5 ps—! with a confidence level of 95%. Recently DO collaboration reported
the interval 17 ps—! < Am, < 21 ps—'at 90% C.L. using a large sample of B,
semileptonic decays.

However the most recently result comes from the CDF experiment which
has published [17] [18] these results:

Amg =17.77 £ 0.10(stat) £+ 0.07 (sys) (4.76)

= 0.206079:95% + 0.0007(exp) T8 (theor) (4.77)

Via
Vis

To reach these value the CDF Collaboration has employed 1 fb~! of data from
pp collisions at /s = 1.96TeV collected with the CDF II detector at the Fermi-
lab Tevatron. The sample contains signals of 5600 fully reconstructed hadronic
By decays. 3100 partially reconstructed hadronic B decays, and 61500 par-
tially reconstructed semileptonic By decays. The probability was measured as
a function of proper decay time that the By decays with the same, or opposite,
flavour as the flavour at production. To fulfill the measurements of the value of
the Amg has been employed the amplitude scan technique.

The amplitude scan

This methods exploits the likelihood technique. In fact the likelihood term
describing the tagged proper decay time of a Bg,s meson is modified by including
an additional parameter multiplying the cosine term. This parameter is called
the amplitude A

Lx1+A-D-cos(Am-t) (4.78)

where the A parameter is left free during the fit, while D is fixed and known in
the scan procedure. In this wise we calculate an A value for each Am. In case
of infinite statistics, optimal resolution and perfect tagging, one would expect
A to be unity for the true Amg value. In practice a set of fitted values (A,04)
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CDF Run Il L=1.0fb"

] - datat 1o
-1 ] I data+ 1.645¢G
data £+ 1.645 ¢ (stat. only)
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{16450 1 WY
2 @ sensitivity: 25.8 ps’ \
30 — data
20 1 ---- significance=1%

Figure 4.12: (Upper) The measured amplitude values and uncertainties versus
B, B,oscillation frequency Amg. At 17.77 ps~'the amplitude is consistent with
one and inconsistent with zero at 3.7 . (Lower) The logarithm of the ratio
of likelihoods for amplitude equal to zero and amplitude equal to one, A =
log [£A=0/ LA=1 (Amy)], versus the oscillation frequency. The dashed horizontal
line indicates the value of A that corresponds to a probability of 1% in the case
of randomly tagged data.
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Figure 4.13: The amplitude scan for the By system at CDF II.
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for each Am, hypothesis is obtained. A Am, hypothesis is excluded to a 95%
confidence level in case the following relation is observed

A+1.64504 < 1

The sensitivity of a mixing measurement is defined as the Am value for which
1.64504 = 1. The figure 4.13 shows the result of the amplitude scan to By
mesons at CDF II.

LHCDb technique

Another approach to extract directly the Amg value is to zero in on the shape of
the CP asymmetry generated by the proper time distributions of the events that
have been flavour-tagged as having oscillated. In LHCb the decay Bs — D, m"
will be used to determine the oscillation frequency Am.

The decay channel By/B, — DFr* is self tagging, i.e. the charge of DF
identifies univocal the flavour of the B meson at the decay instant. This decay
is very important in the delta mass determination. Thus Ay = Ay = A=\ =0

and with % = 1 the flavour asymmetry can be defined as
F B—s - ]-—‘ —f A st
Aflav — B f(t) B j(t) — _D . COS( m ) (479)
FBHf(t) —+ FB—»f(t) COSh(AFSt)

where D is a dilution factor that comes under the wrong tag fraction w with

the equality D = (1 — 2w). This observable provides also information about the
AT.

The DF doesn’t have a favoured decay channel. The highest rate, (10.8 £
3.1)%, decay channel is Dy — n°(7tn~7%)p~ (7~ 7). It is easy to understand
that the reconstruction of this channel quite difficult, since the neutral particles
among the final states that increase the v combinatorial background.

Also DF can decay into the K™K~ 7T final state with a branching fraction
of (4.4+1.2)% and thus this decay mode is more convenient since there are less
final states and no neutral particles and it is a resonant decay mode.

The observed distribution proper time is quite different from the true distri-
bution due the acceptance and the time resolution. The selection of the events
requires that a By travels at least 2.5 mm downstream. This condition, not
only suppresses the background level, but also it cuts all the signal events which
have a true lifetime smaller than 2ps. With Monte Carlo studies, we obtain a
fitted function, in term of 7, of the form:

B (aT)®
e(r) = ]\771  (ar ) (4.80)

where N and a are the fitted parameters. N is the asymptotically acceptance

reached for great values of proper time.
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Another pejorative term is the time resolution. The proper lifetime of a B
meson is calculated from its momentum and the separation of the primary and
secondary vertexes as shown in eq. 3.1. The uncertainty in the secondary vertex
dominates the accuracy of the measurement.
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