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Chapter 1

Introduction

This thesis consists of four self-contained chapters and its contribution to the literature

splits between financial econometrics and the microstructure of financial markets. In

the past years, the growing interest for the analysis of financial markets has fostered a

considerable amount of theoretical and empirical research in these fields.

In the first chapter, we consider the joint estimation of objective and risk-neutral

parameters for stochastic volatility option pricing models using both stock and option

prices. This topic has been broadly investigated and it is particularly relevant for pricing

and hedging of derivatives. A common strategy simplifies the task by limiting the analysis

to some proxy of the latent volatility state or to a single option per date, by assuming that

its price is observed without measurement error. This approach is particularly appealing

as it allows to straightforwardly evaluate the loglikelihood with an application of the

Jacobian formula. However, it presents some drawbacks and limitations, and we show

that the estimates of the parameters highly depend on the choice of the option exempt

from observation noise. Therefore, we propose an alternative strategy which exploits the

wealth of information contained in large heterogeneous panels of options, and we apply

it to S&P 500 index and index call options data. Our approach breaks the stochastic

singularity between contemporaneous option prices by assuming that every observation

is affected by measurement error. In this case, the evaluation of the likelihood function

1



poses some non trivial numerical challenges, but we successfully overcome them by using a

MC-IS strategy combined with a Particle Filter algorithm. The results we obtain confirm

the validity of our method, though some significant improvements could be achieved by

using a more flexible specification which allows jumps or regime switching in the volatility

dynamics.

The second chapter examines the impact of different categories of traders on market

transactions, which represents a subject of primary interest for the research devoted to

informational issues in financial markets. We split market participants between informed

traders, who are associated with institutional operators, and uninformed traders who

embrace retail investors. We estimate a model which takes into account traders’ iden-

tities at the transaction level, and we find that the stock prices follow the direction of

institutional trading. Our results show that informed buyers exert a positive pressure

to market prices when they trade with uninformed sellers, while the opposite holds for

informed sellers trading with uniformed buyers. These results are particularly appealing

as our empirical application is carried out with data from Euronext Paris which operates

in a regime of anonymity. To explain our estimates, we examine the informativeness of

a wide set of observed market variables and we find that most of them are highly and

unambiguously significant to infer the identity of traders.

The third chapter provides an empirical contribution where particular emphasis is

placed on the arrival time of market events. The analysis of financial durations has at-

tracted considerable research attention and it represents an additional area of investiga-

tion for the study of informational issues. In this chapter, we investigate the relationship

between the categories of market traders and three alternative definitions of financial

durations. We consider trade durations, which are indicative of market activity, as well

as price and volume durations which are well-suited for the testing of microstructure

hypotheses. We adopt a Log-ACD model where we include information on traders at the

transaction level, and we explore how informed traders and the liquidity provider affect

the arrival of market events. As to trade durations, we observe an increase of the trading
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frequency when informed traders and the liquidity provider intensify their presence in the

market. On the other hand, we find that the same effect for price and volume durations

depends on the state of the market activity. Indeed, informed traders and the liquidity

provider foster the arrival of the next (price or volume) spell, but only during periods

of high trading frequency. These results provides an empirical confirmation of informa-

tion models which theorize an accelerating effect for informed trading. Our estimates

prove to be robust across alternative distributions, as well as when they are tested with

supplementary microstructure variables.

Finally, in the fourth chapter we focus on orders aggressiveness at Euronext Paris.

In the empirical microstructure literature, there exists a plenty of contributions which

examine this topic in several financial markets worldwide. Aggressiveness is strictly

related to the strategy of order submission and it is commonly evaluated through the

classification introduced by Biais et al. (1995). A standard approach applies discrete

response models to this ranking and it is particularly attractive for its simplicity, but

also because it allows to deal with price discreteness. However, when the last issue is

negligible, the use of categorical models is quite restrictive, as it collapses both price and

volume informativeness. Therefore, we propose an alternative strategy where we replicate

the classification of Biais et al. (1995), but we express order aggressiveness in quantitative

terms. We consider a simultaneous equation model for price and volume aggressiveness

at Euronext Paris that represents an interesting microstructure setting for the study of

order aggressiveness. Indeed, our research is the first to investigate this topic in an order-

driven market with liquidity providers and hidden identities. We examine a wide set

of order book variables and we find evidence of autocorrelation patterns and intraday

cycles for price and volume aggressiveness. Results show that price aggressiveness is

mainly influenced by depth at best quotes, volatility, spread, and return, while volume

aggressiveness is especially affected by volatility and spread. In the end, we also find the

most aggressive orders to exert a higher impact on the stock prices.
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Chapter 2

Estimating and Testing Non-Affine

Option Pricing Models With a Large

Unbalanced Panel of Options

Fabrizio Ferriani and Sergio Pastorello

JEL codes: C15, C58, G13

Keywords: Stochastic volatility, Jump-diffusion, Option pricing, Simulated Maximum

Likelihood, Importance Sampling, Generalized residuals

2.1 Introduction

In this paper, we consider joint estimation of objective and risk-neutral parameters for

non-affine jump-diffusion stochastic volatility (SV) option pricing models using both stock

and option prices. This problem has been the subject of much work in recent empirical

financial econometrics.

A common strategy simplifies the task by limiting the analysis to just one option per

date, instead of the full cross-section, and assuming that its price is observed without

measurement error. In this set up, there exists a one-to-one relationship between the
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observed variables and the state variables, and this makes the latter effectively observable.

As a consequence, the loglikelihood can be evaluated using the Jacobian formula. The

same result can be obtained using, instead of a single option price, some proxy of the

latent volatility state, that can e.g. be derived using the VIX index as a proxy of the risk-

neutral expectation of the integrated variance, and neglecting any noise it may contain.

The simplicity of this approach explains its widespread adoption in the literature – see

e.g. Aı̈t-Sahalia and Kimmel (2007) and (2010) for an application to SV models and to

term structure models, respectively.

It should be noted, however, that the assumption about which specific option is ex-

empt from observation noise is essentially arbitrary, and that in principle many alternative

and equally reasonable decisions would be possible. Some recent papers (e.g., Jiang and

Tian, 2007), moreover, point to some systematic biases in the VIX. In either case, the

estimates of the model parameters, and the filtered state variables and pricing errors, will

in general depend on the assumptions made to recover the latent variables by inverting

the model-implied expressions of the observable variables. This approach can also be

problematic to implement in models in which the latent state variables are restricted to

belong to a subset of the real line, a constraint that is not automatically satisfied by the

inversion technique. Finally, it does not allow to price an option conditioning on more

than just one option observed at the same date.

In this paper, we develop an alternative inference strategy that does not need as-

sumptions of this kind. Such a procedure has already been advocated by Tauchen (2002)

and Bates (2003). Its features can be summarized as follows. We break the stochastic

singularity between contemporaneous option prices by assuming that every observation

is affected by measurement error. We deem this assumption more appealing than the

above one. The price to pay for this increased flexibility is that the evaluation of the like-

lihood function poses some non trivial numerical challenges, but we overcome them using

a MC-IS strategy, combined with a Particle Filter algorithm along the lines suggested

by Durham and Gallant (2002) and Durham (2007). We approximate the theoretical
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model-implied option prices using a highly flexible parametric model, which allows us to

compute quickly and accurately a huge number of prices.

For readability, the discussion is based on a set of simplifying assumptions, but it is

important to remark that many of these could be relaxed without difficulties, as they are

not essential for the implementation of our approach. In particular, different assumptions

concerning risk premia structures or jump intensities and size distributions could be

handled fairly easily, and ML inference would still be feasible. Notice, however, that a

few existing contributions already considered some of these extensions with mixed results.

For example, Bates (2000) considers a specification in which the jump intensity can be

an affine function of the volatility state, but fails to reject the null of a zero slope. A

constant jump intensities is also supported by Chernov et al. (2003) and Andersen et al.

(2001).

The paper is structured as follows. The following section outlines the option pricing

model, and provides details on the specification that we actually consider in the empirical

analysis. It also discusses some problems that are commonly encountered in the literature

of empirical option pricing, such as the need to approximate the transition density of the

state variables and the model-implied theoretical option pricing formula. Section 2.3

discusses the simpler strategy based on the assumption that one option at each date is

devoid of measurement error, and on the Jacobian formula to compute the loglikelihood.

We highlight its drawbacks and provide an empirical illustration. Section 2.4 outlines

the alternative approach which assumes measurement errors on each option. We first

describe the strategy we use to approximate the loglikelihood, and show that with some

minor modifications of the same techniques we can also easily compute filtered values of

the state variables and of functions thereof that can be extremely useful in testing the

specification of the model and in using it for pricing purposes. Section 2.5 illustrates an

application of this approach to a sample of call options on the S&P 500 equity index.

Finally, section 2.6 concludes. Details about the sample and the methodology employed

in the paper are provided in the appendices.
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2.2 Option pricing under jump-diffusion stochastic

volatility

2.2.1 The model

In a jump-diffusion SV model, the dynamics under the risk-neutral probability measure

Q of the price St of the underlying asset and the associated volatility state Vt is described

by:

dSt

St

= (rt − dt) dt+ σS(Vt) dW
Q
St + (eJ

Q
t − 1) dNQ

t − λQJ (e
ν
Q
J − 1) dt (2.1)

dVt = µQ
V (Vt)dt+ σV (Vt)dW

Q
V t (2.2)

where rt and dt are the instantaneous riskless interest rate and dividend rate, respec-

tively, and, under Q, WQ
St and W

Q
V t are standard Brownian motions with instantaneous

correlation ρ, NQ
t is a Poisson process with intensity λQJ , and JQ

t is the jump size. We

assume that the jump intensity and the jump size are independent from each other and

from every other variable in the model, and that JQ
t ∼ N (µQ

J , σ
Q
J

2
). Finally, we denote

νQJ = µQ
J + σQ

J

2
/2.

To derive the dynamics of the state variables under the objective measure P, we need

some assumptions about the structure of the risk premia. In this paper, we assume that

the return risk premium on the Brownian shocks is given by ησS(Vt), where σS(Vt) is the

diffusion coefficient in the price process – see (2.3) below – and η is a constant parameter.

The volatility and jumps-related risk premia could also be specified explicitly; however,

following Broadie et al. (2007), we simply specify a different dynamics of V, as well

as different jump intensity and jump size distribution, and we interpret the difference

between the P and Q parameters as risk premia.

We do not impose a priori any constraint on the volatility risk premium; the specific

functional forms of µQ
V (Vt) and µV (Vt) adopted in the empirical applications below allow

to keep some simplicity in the model and are coherent with previous work in the field.
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Under the previous assumptions, the dynamics of the state variables under P is given

by:

dSt

St

= [(rt − dt) + ησS(Vt)
2 − λQJ (e

ν
Q
J − 1)]dt+ σS(Vt)dWSt + (eJt − 1) dNt, (2.3)

dVt = µV (Vt)dt+ σV (Vt)dWV t, (2.4)

where, under P, WSt and WV t are standard Brownian motions with instantaneous corre-

lation ρ, Nt is a Poisson process with intensity λJ , and Jt ∼ N (µJ , σ
2
J). For estimation

purposes, it is convenient to work with the log price Pt, whose dynamics can be easily

derived from (2.3):

dPt = [(rt − dt) + (η − 1/2)σP (Vt)
2 − λQJ (e

ν
Q
J − 1)]dt+ σP (Vt)dWSt + Jt dNt, (2.5)

notice that σP (Vt) = σS(Vt). For further reference, let us denote with µP (Vt) = (rt −

dt) + (η − 1/2)σP (Vt)
2 − λQJ (e

ν
Q
J − 1) the drift coefficient in (2.5).

Previous work in this area focussed mainly on models in the affine class due to

tractability considerations and to the existence of quasi-closed form expressions for op-

tion prices. Several works, however, emphasized the conclusion that affine models can

be frequently badly misspecified; see, among others, Christoffersen et al. (2010). In this

paper, we consider non-affine models that seem to provide a better fit to the data, either

thanks to a different assumption on the volatility process (the log volatility model), or

to increased flexibility (the CEV model). More precisely, the models we consider can be

obtained from the general specification above if we impose the following constraints on

the unspecified drift and diffusion coefficients:

• Log volatility (LOG-J) model:

σS(Vt) = exp(Vt/2), µV (Vt) = α + βVt, µV
Q(Vt) = αQ + βQVt, σV (Vt) = γ

9



• Constant elasticity of variance (CEV-J) model:

σS(Vt) =
√
Vt, µV (Vt) = α + βVt, µQ

V (Vt) = αQ + βQVt, σV (Vt) = γV ϕ
t

In both models the volatility drift is linear under either P and Q. Many studies based

on this model assumed a single free parameter in the volatility risk premium, which

implies that both drift parameters change between P and Q, but not independently.

On the contrary, we adopt a more flexible specification with two free parameters in the

volatility risk premium. This allows α and β to vary independently across probability

measures.

The CEV-J model collapses to an affine specification under the constraint ϕ = 1/2.

Affine models have attracted a huge amount of attention in the literature, and we also

considered this specification in the analysis. Given that this specification is overwhelm-

ingly rejected by the data, and to save space, we do not report the corresponding results,

and we limit our discussion to the LOG-J and CEV-J models. Finally, it should be

noted that the LOG-J and CEV-J specifications can not be embedded into the affine

class through the use of an augmented state, as it is the case, for example, for the Linear

Quadratic Jump Diffusion models examined in Cheng and Scaillet (2007).

These specifications are more general than those that have been considered in the

literature so far; for example, Broadie et al. (2007) fit on a large cross-section of S&P

futures option prices from 1987 to 2003 an affine model in which the jump risk premia

are similar to ours, but with a constrained risk premium specification on the volatility

process; Durham (2010) considers the same non-affine models we do, but constrains the

jump related parameters to be the same across the two probability measures. In the

empirical implementations we will also sometimes consider constrained specifications in

which some of the jump parameters coincide under the two measures. The analysis in

Durham (2010) is also based on the time series of S&P 500 index returns and the VIX

index, and neglects the cross-sectional dimension in options data.
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For the non-affine processes we consider the transition density f(Pt, Vt|Pt−1, Vt−1) is

unknown, and must be approximated. Several strategies have been advanced to solve this

problem, the most successful two being the closed-form Hermite polynomials expansion

of Aı̈t-Sahalia (2008) or the IS strategy developed by Durham and Gallant (2002). This

paper is based on the latter because of its greater flexibility, which will be particularly

convenient in the approach illustrated in section 2.4. Details on the IS approach we use

are provided in Appendix 2.B.

2.2.2 Numerical evaluation of theoretical option prices

Since volatility is not observable, we use option prices to extract information on the latent

state. Our sample is a highly unbalanced panel of prices of European call options that

for each observation date differ by strike price and/or time to maturity. Following Bates

(2000), we focus on option prices normalized by the underlying asset price discounted at

the dividend rate. Consider the generic i-th option observed at date t, and let Cit, Kit

and τit denote its price, strike and time to maturity, respectively. Moreover, let rt and

dt be the instantaneous riskless interest rate and dividend rate. The option’s normalized

price (NP) is then defined as:

Hit =
Cit

Ste−dtτit
.

We collect in Ht = (Hit, i = 1, . . . , Nt) the (Nt × 1) NPs at date t. Define Xit =

ln(St/Kit) + (rt − dt)τit as the log discounted moneyness of the option, and let χit =

(Xit, τit)
′ be the vector of the option’s characteristics. We denote with h(Vt,χit) the model

implied theoretical NP. Notice that to simplify the notation we omit the occurrence of θ

in h.

Appendix 2.C illustrates a numerical technique that can be used to evaluate option

prices in non-affine jump diffusion SV models. Even if relatively fast, this approach

is still too slow for our sample size. For this reason we approximate h(Vt,χit) using

a polynomial interpolation scheme. We first construct a fixed three-dimensional grid
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{(Vg,χ
′
g)

′ = (Vg, Xg, τg)
′, g = 1, . . . , G} combining three univariate grids, spanning the

range of variation of the corresponding variable. Given a value for θ, we evaluate the

theoretical option price at each point on the grid, Hg, using the approach described

in Appendix 2.C. We then use the set {(Hg, Vg, Xg, τg)
′, g = 1, . . . , G} to construct

an interpolation scheme that approximates logHg with a polynomial in (log Vg, Xg, τg)
′

for several reasons. First, its coefficients can be computed very quickly and accurately

by OLS. Second, given the estimates, it is immediate to compute an approximation

of h(Vt,χit) and of its derivative with respect to Vt, which is needed in the empirical

applications below. We use a polynomial of order four with 35 parameters. To estimate

them, we consider equally spaced univariate grids with 10 points for log V , and 6 points

for τ and X. The three-dimensional grid contains G = 360 points. The R2 coefficient of

the interpolating regression is always larger than 0.998.

A natural alternative to numerical schemes would be to use one of the recently ad-

vanced analytical approximations of the theoretical NPs in jump diffusion SV models (see

e.g. Lewis, 2000, Sircar and Papanicolau, 1999, Lee, 2001, and Medvedev and Scaillet,

2007), which provide extremely fast tools to evaluate theoretical NPs. In this paper, how-

ever, we prefer the latter because some preliminary Monte Carlo experiments highlighted

that the quality of approximation characterizing the analytical expansions is lower than

that of the numerical scheme.

2.2.3 Measurement errors

For any candidate Q, the pricing model states that the NP of any option is a function

of (St, Vt)
′, which in turn implies the existence of a set of exact relations between the

NPs of different options at the same date. This conclusion is rejected in any data set.

To overcome this issue we could consider just one option per date, but this amounts to

neglect a huge amount of information on the latent state. Moreover, the choice of the

specific single option to be considered at each date would be, to a large extent, essentially

arbitrary.

12



Alternatively, the stochastic singularity can be broken by introducing additional

sources of statistical uncertainty. Increasing the dimension of the state vector would

be theoretically sound but extremely complicated. For this reason, the solution usually

adopted is to assume that option prices are observed with an error that can be due to

microstructure effects (e.g., bid-ask spreads and tick-by-tick price variations) and data

issues (e.g., non synchronous or only approximate observation of the relevant variables).

Measurement errors in option prices can be assumed implicitly, e.g. when parameters are

estimated through least squares techniques, or explicitly, as a component of the estimation

strategy.

ML inference requires an assumption about the stochastic structure of the observation

errors. In this paper, we assume additive measurement errors in log NPs, defined by:

εit = logHit − log h(Vt,χit),

distributed independently through time and across options according to a Gaussian dis-

tribution with mean zero. We also allow for some heteroskedasticity by maintaining

that:

ω2
it = Var(εit|Vt,χit) = exp[ψ0 + ψXXit + ψX2X2

it + ψτ (τit/365) + ψτ2(τit/365)
2].

We merge in θ the parameters appearing in the measurement error distribution. The

assumption of independence across dates and options is not essential, but we think that

it is reasonable: (i) it limits the number of nuisance parameters, and (ii) we believe

that any correlation between options should be accounted for by the pricing model, and

not by the measurement errors. Our assumptions are also largely confirmed by the

empirical results below. Finally, the techniques we analyze could be extended to handle

different definitions of the errors or of their distribution, including alternative forms of

heteroskedasticity depending on Vt.

13



2.3 Volatility filtering by option prices inversion

2.3.1 Loglikelihood derivation using the Jacobian formula

A common approach assumes that at each date exactly one option is observed without er-

ror, whereas the remainingNt−1 are affected by measurement noise. This choice equalizes

the dimensions of the augmented vector of latent variables (volatility and measurement

errors) and of the observed option prices, allowing to derive the likelihood contribution

with an application of the Jacobian formula.

To illustrate this strategy, let us partition the observed NPs as in Ht = (H1t,H
′
2t)

′,

where, without loss of generality, H1t is assumed to be noise free, whereas H2t are Nt − 1

NPs affected by error. Furthermore, let us denote with fPV (Pt, Vt|Pt−1, Vt−1) the tran-

sition density of the log price and its volatility derived from (2.5)-(2.4). The Jacobian

formula then states that the transition density of the observables is given by:

f(Pt, H1t|Pt−1, H1t−1) = fPV [Pt, h
−1(H1t,χ1t)|Pt−1, h

−1(H1t−1,χ1t−1)]×

∣∣∣∣
∂h−1(H1t,χ1t)

∂H1t

∣∣∣∣

which is the date t likelihood contribution of Pt and H1t. The exact expression of the

transition pdf is generally unknown, and in this paper we approximate it using the IS

approach in Appendix 2.B. To derive the likelihood contribution of the remaining NPs,

we observe that the measurement error on the options 2 to Nt is given by:

εit = logHit − log h[h−1(H1t,χ1t),χit].

Given our assumption of independent N (0, ω2
it) measurement errors, the density of H2t

conditional on Vt, or equivalently on H1t, is given by
∏Nt

i=2 φ(εit; 0, ω
2
it). The sample

loglikelihood is then given by

ℓT (θ,ψ) =
T∑

t=1

[
log f(Pt, H1t|Pt−1, H1t−1) +

Nt∑

i=2

log φ(εit; 0, ω
2
it)

]
. (2.6)
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2.3.2 Issues

The simplicity of this approach explains its widespread adoption – see e.g. Aı̈t-Sahalia

and Kimmel (2007) and (2010) for an application to SV models and to term structure

models. Notice, however, that the choice of the option exempt from observation noise

is arbitrary. In principle, many alternative and equally reasonable decisions would be

possible. Moreover, the estimates of the parameters will in general depend on this choice;

see the next section for an illustration in option pricing models. Finally, this approach can

be problematic to implement in models in which the latent state variables are restricted

to belong to a subset of the real line.

To elaborate on the latter point, notice that in a SV model the normalized price of

an option can not be smaller than some lower bound. In the Black and Scholes model

this lower bound is max[0, 1−exp(−X)], and it is attained for a zero diffusion coefficient.

When volatility is stochastic the bound is still attained for a zero Vt, but it is higher, and

it depends on θ. For an option with characteristics χit, we denote the lower bound for

the NP with HLB(χit,θ). The crucial step in the previous approach, which effectively

makes V observable, is to compute the solution of the T + 1 nonlinear equations

H1t = h(Vt,χ1t), for t = 0, 1, . . . , T.

However, for these equations to admit a solution it is necessary that the following non-

linear inequality constraints be satisfied:

H1t ≥ HLB(χ1t,θ), for t = 0, 1, . . . , T. (2.7)

Hence the ML estimation problem must be formulated as an optimization under T + 1

nonlinear inequality constraints:

(θ̂
′
, ψ̂

′
)′ = arg max

(θ′,ψ′)′: {H1t≥HLB(χ1t,θ), t=0,1,...,T}
ℓT (θ,ψ)
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The presence of a T + 1 nonlinear constraints on the parameters greatly complicates

inference; see Duffee (2002) for a discussion in affine term structure models. In practice,

it is impossible to solve the estimation problem using standard techniques of maximization

under constraints. The only feasible strategy consists in imposing a huge penalty to the

loglikelihood whenever θ does not satisfy some of the inequality constraints. In turn,

this introduces large discontinuities in the objective function, which essentially prevent

the use of derivative-based optimization algorithms. Even algorithms that do not require

derivatives (such as the Simplex method we use) almost always get stuck on the boundary

of the parameter space generated by one of the constraints; as a consequence, the end

result is usually a boundary local maximum.

We now provide an empirical illustration of the above discussion. For simplicity, we

focus on the effect of the choice of the option observed without error, and we neglect the

numerical issues posed by the presence of the huge number of nonlinear constraints (2.7).

2.3.3 An application to S&P 500 options

In this section, we apply the NP inversion approach to a sample of options on the S&P500

stock index. We defer to appendix 2.A for a description of the data set. As option pricing

models, we consider the LOG-J and the CEV-J jump diffusion SV models discussed in

section 2.2.1.

Our purpose is to illustrate the impact on the parameters estimates and derived

quantities of 5 possible criteria used to identify the noise free contract. For each criterion,

we first select the options with time to maturity closest to some target value τ∗, and then

pick among them the one with discounted moneyness closest to some value X∗. Different

criteria correspond to different choices about the target τ∗ and X∗.

• Criterion 1: τ∗ = 30, X∗ = 0

• Criterion 2: τ∗ = 15, X∗ = 0

• Criterion 3: τ∗ = 60, X∗ = 0
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• Criterion 4: τ∗ = 30, X∗ = −1%

• Criterion 5: τ∗ = 30, X∗ = +1%

The first criterion is a slight modification of the selection rule used by Pan (2002);

its targets τ∗ and X∗ identify at-the-money short-lived options. Criteria 2 and 3 allow to

appreciate the effect of a different choice of τ∗, while criteria 4 and 5 set the target time

to maturity at 30 days, and consider slightly out-of-the-money and in-the-money options,

respectively. Notice that the subsamples of options used to recover the volatility states

by the 5 criteria partially overlap; in particular, criterion 2 selects just 99 (3.9%) different

contracts with respect to criterion 1. The other criteria overlap to a lesser degree: the

numbers (percentages) of different options for criteria 3, 4 and 5 are 1,309 (52%), 2,321

(92.2%) and 2,286 (90.8%), respectively.

Tables 2.1 and 2.2 illustrate the parameter estimates for the LOG-J and CEV-J mod-

els. The tables contain five columns, one for each of the criteria used to identify the NPs

to be inverted. For each parameter, we report the SML estimates and the corresponding

asymptotic standard error (in parenthesis) derived from the outer product of gradients

estimate of the asymptotic variance matrix. To save space, we omit the estimates of the

heteroskedasticity ψ parameters, but they are available at request. The parameter esti-

mates are generally quite accurate, and in line with results reported elsewhere. The R2

coefficients of the polynomial interpolation used to approximate option prices are always

larger than 0.998.

Given the amount of information contained in our sample of options, it is not surpris-

ing that the drift and jump parameters under Q are estimated with much higher precision

than the corresponding parameters under P. For the CEV-J model, the estimates of ϕ

are always significantly larger than 1, which is coherent with the results in Jones (2003),

although our estimates are somewhat lower. As shown by Conley et al. (1997), a value

of ϕ higher than 1 implies that the stationarity of the Vt process is “volatility-induced”

irrespectively of the sign of β, provided that α is positive. The latter condition is always
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Table 2.1: Estimates of the parameters for the LOG-J option pricing model on the sample
of options on the S&P 500 index observed on each day from Jan. 4, 1996 to Dec. 30,
2005. Each column contains the estimates obtained by selecting the NPs to be inverted
following one of the five criteria detailed in section 2.3.3. Asymptotic standard errors in
parentheses.

τ∗ = 30 τ∗ = 15 τ∗ = 60 τ∗ = 30 τ∗ = 30
X∗ = 0% X∗ = 0% X∗ = 0% X∗ = −1% X∗ = 1%

λ 3.67 3.01 7.86 -0.90 11.32
(2.55) (2.61) (2.71) (2.24) (3.47)

α -2.11×10−2 -2.88×10−2 -1.03×10−2 -1.63×10−2 -8.95×10−2

(7.25×10−3) (9.21×10−3) (4.48×10−3) (6.12×10−3) (1.75×10−2)
β -4.10×10−2 -4.66×10−2 -2.85×10−2 -2.68×10−2 -6.57×10−2

(8.24×10−3) (8.63×10−3) (5.75×10−3) (7.81×10−3) (9.42×10−3)
γ 0.28 0.33 0.20 0.25 0.48

(1.90×10−3) (2.35×10−3) (1.04×10−3) (1.67×10−3) (2.99×10−3)
ρ -0.78 -0.75 -0.88 -0.75 -0.84

(3.99×10−3) (3.78×10−3) (3.73×10−3) (4.12×10−3) (2.75×10−3)
αQ -8.56×10−3 -1.71×10−2 3.51×10−3 -1.00×10−2 6.77×10−3

(2.83×10−4) (4.01×10−4) (9.61×10−5) (2.56×10−4) (7.08×10−4)
βQ -1.29×10−2 -1.51×10−2 -1.64×10−2 -8.27×10−3 -3.20×10−2

(4.35×10−5) (5.90×10−5) (4.31×10−5) (5.12×10−5) (6.48×10−5)

λQJ 3.51×10−2 4.03×10−2 2.82×10−2 1.91×10−2 0.24
(4.19×10−4) (4.41×10−4) (3.41×10−4) (5.50×10−5) (8.87×10−4)

µQJ -0.54 -0.54 -0.32 -1.52 0.14
(7.03×10−3) (5.52×10−3) (6.58×10−3) (4.49×10−3) (1.71×10−3)

λJ 0.39 0.36 0.93 0.18 1.85
(2.43×10−2) (2.22×10−2) (5.07×10−2) (1.43×10−2) (9.92×10−2)

µJ -8.81×10−2 -8.38×10−2 -0.10 2.07×10−2 -9.14×10−3

(0.12) (0.15) (5.33×10−2) (0.35) (3.48×10−2)
σJ 1.81 1.98 1.18 2.88 1.02

(2.03×10−2) (1.94×10−2) (1.18×10−2) (5.56×10−3) (2.34×10−3)

loglik. 32040.3 31599.6 30839.5 32428.9 29473.5

satisfied under P, but violated under Q. Hence, according to the estimates in table 2.2,

the volatility process is nonstationary under the risk-neutral measure.

Inspection of tables 2.1 and 2.2 highlights several discrepancies in parameter estimates

across measurement errors structures. As expected, given the percentage of non overlap-

ping observations outlined above, the size of the discrepancies is minimum for the first

two columns, it increases when one compares columns 1 and 3, and it is maximum when

considering the last two columns. It is also not surprising that the parameters most af-
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Table 2.2: Estimates of the parameters for the CEV-J option pricing model on the sample
of options on the S&P 500 index observed on each day from Jan. 4, 1996 to Dec. 30,
2005. Each column contains the estimates obtained by selecting the NPs to be inverted
following one of the five criteria detailed in section 2.3.3. Asymptotic standard errors in
parentheses.

τ∗ = 30 τ∗ = 15 τ∗ = 60 τ∗ = 30 τ∗ = 30
X∗ = 0% X∗ = 0% X∗ = 0% X∗ = −1% X∗ = 1%

λ -0.98 -1.34 -1.16 -2.01 2.33
(2.52) (2.55) (2.50) (2.54) (2.32)

α 2.57×10−3 1.93×10−3 2.27×10−3 5.69×10−3 2.59×10−3

(7.49×10−4) (6.22×10−4) (1.12×10−3) (2.28×10−3) (6.09×10−4)
β 2.72×10−2 2.80×10−2 2.45×10−2 2.12×10−2 2.57×10−2

(1.03×10−2) (7.11×10−3) (9.94×10−3) (1.76×10−2) (6.38×10−3)
γ 0.27 0.27 0.26 0.26 0.29

(8.41×10−4) (8.09×10−4) (1.03×10−3) (5.69×10−4) (5.75×10−4)
ϕ 1.20 1.21 1.21 1.16 1.22

(6.49×10−4) (6.17×10−4) (1.03×10−3) (5.61×10−4) (5.41×10−4)
ρ -0.77 -0.79 -0.73 -0.77 -0.93

(1.79×10−3) (2.16×10−3) (2.76×10−3) (1.44×10−3) (1.41×10−3)
αQ -9.21×10−4 -9.81×10−4 -6.20×10−4 -4.42×10−4 -6.05×10−4

(1.57×10−5) (2.15×10−5) (1.88×10−5) (2.32×10−5) (1.31×10−5)
βQ 4.26×10−2 4.26×10−2 4.33×10−2 3.16×10−2 7.02×10−2

(1.68×10−4) (1.68×10−4) (1.98×10−4) (1.51×10−4) (1.78×10−4)

λQJ 4.22×10−2 4.64×10−2 1.59×10−2 5.40×10−2 0.20
(3.90×10−4) (4.44×10−4) (7.41×10−5) (4.18×10−4) (1.16×10−3)

µQJ -0.74 -0.69 -1.48 -0.70 8.77×10−2

(5.77×10−3) (5.99×10−3) (9.59×10−3) (3.05×10−3) (1.68×10−3)
λJ 0.44 0.50 0.29 0.58 2.38

(2.54×10−2) (2.73×10−2) (1.82×10−2) (4.20×10−2) (0.16)
µJ -5.43×10−2 -4.71×10−2 -4.00×10−2 -3.08×10−2 3.95×10−3

(0.11) (9.87×10−2) (0.22) (5.98×10−2) (3.19×10−2)
σJ 1.72 1.69 2.56 0.99 0.91

(1.52×10−2) (1.46×10−2) (9.00×10−3) (3.17×10−3) (2.07×10−3)

loglik. 31579.9 30600.7 26681.1 32691.9 28037.1

fected by the assumption about the measurement error structure are those characterizing

the risk-neutral measure, i.e. the diffusion coefficient parameters (with the lone exception

of ϕ), the risk-neutral drift and jump process.

The impact of the measurement error structure on the model’s implications can also

be evaluated by looking at the filtered volatility trajectories and the option pricing resid-

uals. For simplicity, we focus here on the LOG-J model (analogous results for the CEV-J
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Table 2.3: Summary statistics of the filtered volatilities for the LOG-J option pricing
model estimated on the sample of options on the S&P 500 index observed on each day
from Jan. 4, 1996 to Dec. 30, 2005. q(p) denotes the p-th percentile.

Volatilities Percentage differences
(×104) w.r.t. τ∗ = 30, X∗ = 0%

τ∗ 30 15 60 30 30 15 60 30 30
X∗ 0% 0% 0% -1% 1% 0% 0% -1% 1%

Avg. 0.941 0.925 0.978 0.917 0.546 -10.0 9.9 -0.7 -57.9
Std.Dev. 0.913 0.989 0.915 0.851 0.824 12.7 19.4 13.5 18.0
RMSE na na na na na 16.2 21.8 13.6 60.6
Min 0.027 0.013 0.047 0.020 0.003 -50.8 -75.7 -47.8 -90.6
q(0.05) 0.102 0.069 0.129 0.094 0.021 -33.8 -13.1 -15.4 -80.6
q(0.25) 0.318 0.263 0.354 0.320 0.094 -18.0 -3.0 -7.2 -71.7
Median 0.702 0.642 0.737 0.715 0.273 -7.4 4.6 -2.3 -60.6
q(0.75) 1.173 1.147 1.219 1.157 0.606 -1.2 19.5 4.2 -48.0
q(0.95) 2.722 2.866 2.798 2.618 2.065 5.9 48.3 17.8 -21.8
Max 6.705 7.638 6.828 6.588 8.247 143.8 152.7 280.5 23.6

model are available at request). Table 2.3 reports summary statistics computed on the

filtered volatilities, along with their percentage differences with respect to the volatil-

ity filtered using the first criterion. It is apparent that the specific assumption about

the measurement error structure can be quite relevant, and somewhat systematic. For

example, the volatilities derived from out-of-the-money (in-the-money) options tend to

be systematically higher (lower) than those derived under the baseline criterion; never-

theless, some notable exceptions can be spotted at dates in which the volatility marks

(according to some criterion) a sharp increase.

Table 2.4 reports the average option pricing residuals by discounted moneyness X and

time to maturity τ . Overall, the model tends to systematically underprice (overprice)

short (long) maturity options, irrespectively of the assumption about τ∗ andX∗. However,

it is apparent that the extent of the pricing errors depend on the characteristics of the

contract used to infer the volatility status. For example, the overpricing in medium-to-

long maturity, in-the money options almost vanishes when using criterion 5, replaced by a

symmetric overpricing for out-of-the-money contracts. Using criterion 3 generates larger

underpricing errors for short maturity options. In general, moving from one criterion to
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Table 2.4: Average option pricing residuals (×104) by discounted moneyness and matu-
rity, for the LOG-J model and alternative assumptions about τ∗ and X∗.

Time to Discounted Moneyness X
Maturity τ (-5%,-3%) (-3%,-1%) (-1%,1%) (1%,3%) (3%,5%) All

τ∗ = 30, X∗ = 0%

(15,24) 4.7 0.6 0.2 3.0 4.7 2.4
(25,33) 0.2 -0.9 0.3 0.9 -0.6 0.0
(34,42) 0.3 -0.7 -0.1 -2.5 -6.0 -1.3
(43,51) -0.5 -1.5 -0.9 -4.4 -8.7 -2.3
(52,60) -3.3 -3.2 -2.4 -8.0 -12.9 -4.6
All 1.0 -0.8 -0.5 -0.9 -2.1 -0.5

τ∗ = 15, X∗ = 0%

(15,24) 4.4 0.5 -0.2 2.1 3.6 2.0
(25,33) -0.2 -1.1 0.0 0.4 -1.1 -0.4
(34,42) 0.2 -0.4 0.3 -2.0 -5.5 -1.1
(43,51) -0.3 -1.3 -0.6 -3.4 -7.4 -1.8
(52,60) -3.2 -2.9 -1.8 -6.4 -10.6 -3.9
All 0.9 -0.8 -0.5 -0.8 -2.1 -0.5

τ∗ = 60, X∗ = 0%

(15,24) 4.2 1.2 2.8 6.5 8.0 3.9
(25,33) -0.2 -0.3 2.3 4.0 3.0 1.5
(34,42) 1.0 0.9 2.4 1.2 -1.0 1.1
(43,51) -0.3 -0.3 0.4 -2.2 -5.0 -1.0
(52,60) -3.7 -3.6 -4.0 -9.0 -12.5 -5.6
All 0.9 -0.1 1.6 1.9 1.2 1.0

τ∗ = 30, X∗ = −1%

(15,24) 3.1 -0.7 -2.3 -0.1 3.2 0.4
(25,33) -0.4 -1.1 -0.7 -0.3 0.0 -0.6
(34,42) 0.9 0.7 0.2 -1.6 -2.8 -0.2
(43,51) -0.2 -0.5 -0.2 -2.8 -4.5 -1.1
(52,60) -2.6 -1.6 -0.3 -5.2 -6.1 -2.4
All 0.6 -0.7 -0.9 -1.4 -0.7 -0.6

τ∗ = 30, X∗ = +1%

(15,24) 6.7 2.1 0.9 4.4 5.1 3.6
(25,33) 0.5 -1.8 -0.9 1.6 1.3 -0.1
(34,42) -0.7 -2.7 -1.9 -0.4 -1.2 -1.5
(43,51) -2.1 -3.6 -1.5 -0.4 -0.2 -1.9
(52,60) -3.6 -3.2 0.3 1.3 3.3 -1.0
All 1.3 -1.2 -0.4 1.9 2.2 0.4

another tends to reduce the errors for contracts close to τ∗ and X∗, and to increase those

for contracts with very different characteristics.

Overall, these results suggest that the specific assumption about the measurement
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error structure is critical both on parameter estimates, volatility filtering and option

pricing. We now turn our attention to an alternative inference strategy.

2.4 Estimation by nonlinear filtering

In this section, we illustrate an alternative approach which does not require to assume

the existence of an option observed without measurement error. Assuming that each

observed NP is affected by observation noise is less arbitrary, and seems more natural,

but it complicates the evaluation of the sample loglikelihood, because when there are more

sources of uncertainty than observed quantities, the likelihood can not be computed using

the Jacobian formula, but requires the evaluation of a high-dimensional integral. In some

special cases, e.g. affine term structure models, the problem can be simplified by casting

it in a Gaussian state space model and exploiting the Kalman filter recursions, as in De

Jong (2000), but in general its solution requires Importance Sampling (IS) techniques.

This is the avenue followed e.g. by Brandt and He (2005) in their analysis of affine term

structure models.

In this paper, we show how to evaluate the loglikelihood by combining an IS scheme

and a Particle Filter algorithm, along the lines suggested by Durham and Gallant (2002,

sect. 7); we present it in detail in section 2.4.1. In particular, we highlight that including

option prices in the observation sample significantly improves the performance of the sim-

ulated maximum likelihood (SML) estimator because of the huge amount of information

they convey about the latent state variable, i.e. the volatility.

2.4.1 Likelihood evaluation

Let Ft be the filtration generated by the variables observed up to time t, i.e. {Ps, s =

0, 1, ..., t}, and {Hs = (His), i = 1, ..., Ns; s = 0, 1, ..., t}. The likelihood function is given
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by:

L(θ,ψ) =
T∏

t=1

f(Ht, Pt|Ft−1)

=
T∏

t=1

∫
f(Ht|Pt, Vt) f(Pt, Vt|Pt−1, Vt−1) f(Vt−1|Ft−1) d Vt d Vt−1. (2.8)

The second equality derives from the Markov property of the diffusion and the indepen-

dence of measurement errors. The initial condition P0 is known, and V0 will be integrated

out (see below). Consider the time t contribution to L(θ,ψ):

f(Ht, Pt|Ft−1) =

∫
f(Ht|Pt, Vt) f(Pt, Vt|Pt−1, Vt−1) f(Vt−1|Ft−1) d Vt d Vt−1. (2.9)

This two-dimensional integral can be interpreted as an expected value with respect to

Vt, Vt−1 under the distribution implicitly defined by the integrand. Its value can be

approximated using an IS scheme by specifying a sampling density for the integration

variables. However, the transition pdf f(Pt, Vt|Pt−1, Vt−1) is unknown, and must be ap-

proximated using the Modified Brownian Bridge (MBB) strategy outlined in Appendix

2.B. Luckily, the two IS schemes can be merged into a single one. To see how, let

t − 1 = τ0 < τ1 < ... < τM = t, and V = (Vτ1 , . . . , VτM−1
)′. Following (B-1), the integral

on the rhs of (2.9) can be approximated with:

∫
f(Ht|Pt, Vt) f

a(Pt|Pt−1, Vt,V , Vt−1) f
a(Vt,V |Vt−1)f(Vt−1|Ft−1) d Vt dV d Vt−1. (2.10)

where fa(Pt|Pt−1, Vt,V , Vt−1) and f
a(Vt,V |Vt−1) are defined in Appendix 2.B. According

to (2.10), the likelihood evaluation requires to numerically approximate T integrals whose

dimension equals M + 1. This can be done using a single IS scheme. Let q(Vt,V |Vt−1)
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be a pdf on RM , and rewrite (2.10) as follows:

∫
f(Ht|Pt, Vt) f

a(Pt|Pt−1, Vt,V , Vt−1) f
a(Vt,V |Vt−1)

q(Vt,V |Vt−1)
q(Vt,V |Vt−1) f(Vt−1|Ft−1) d Vt dV d Vt−1.

(2.11)

(2.11) highlights that f(Ht, Pt|Ft−1) can be seen as the expected value with respect

to Vt,V , Vt−1 of the ratio in the integrand under the joint distribution defined by the

product q(Vt,V |Vt−1) f(Vt−1|Ft−1). Let (Ṽ l
t , Ṽ

l
, Ṽ l

t−1) be L independent draws from

q(Vt,V |Vt−1) f(Vt−1|Ft−1). The IS estimate of (2.11) is given by:

f̃ (L)(Ht, Pt|Ft−1) =
1

L

L∑

l=1

f(Ht|Pt, Ṽ
l
t ) f

a(Pt|Pt−1, Ṽ
l
t , Ṽ

l
, Ṽ l

t−1) f
a(Ṽ l

t , Ṽ
l
|Ṽ l

t−1)

q(Ṽ l
t , Ṽ

l
|Ṽ l

t−1)
. (2.12)

To implement (2.12), we need to specify (i) which density to choose as q(Vt,V |Vt−1), and

how to draw from it; and (ii) how to draw from f(Vt−1|Ft−1). The next sections consider

these points in turn.

2.4.1.1 The auxiliary density q(Vt,V |Vt−1)

Let Vt−1 be a generic lagged value of the latent volatility drawn from f(Vt−1|Ft−1) (we

will show how to simulate from this distribution in section 2.4.1.2). In this section, we

propose a sampling density q(Vt,V |Vt−1) for Vt,V which has a simple functional form, is

easy to sample from, and provides accurate estimates of the likelihood.

To keep low the MC variance of (2.12), the sampling density q(Vt,V |Vt−1) should

be as much as possible proportional to f(Ht|Pt, Vt) f
a(Pt|Pt−1, Vt,V , Vt−1) f

a(Vt,V |Vt−1)

over the whole support of Vt and V . This product is informative about the uncertainty

surrounding Vt and V in two ways: it reflects (i) the information about Vt in the observed

cross-section of NPs Ht through the measurement error density f(Ht|Pt, Vt), and (ii) the

information about both Vt and V contained in fa(Pt, Vt,V |Pt−1, Vt−1). In our framework,

the second source of information is clearly dominated by the information in the option

prices, and this remark suggests that, instead of the usual recursive factorization, it is
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more convenient to factorize the auxiliary sampling density as:

q(Vt,V |Vt−1) = q(Vt|Vt−1) q(V |Vt, Vt−1).

Consider first q(Vt|Vt−1). Ideally, this density should equal fa(Vt|Ht, Pt, Pt−1, Vt−1), which

is unavailable, but can be approximated by noting that:

fa(Vt|Ht, Pt, Pt−1, Vt−1) ∝ f(Ht|Pt, Vt) f
a(Pt, Vt|Pt−1, Vt−1), (2.13)

where the two densities on the rhs correspond to the two sources of information about Vt

discussed above.

In this paper, we use as q(Vt|Vt−1) the Laplace approximation to (2.13). The Laplace

approximation is a powerful and accurate strategy widely used in mathematics and statis-

tics to represent unknown densities; see Gelman et al. (1995) for a general presentation,

and Durham (2006) and Huber at al. (2009) for two applications in financial economet-

rics. In a nutshell, it consists of a Gaussian pdf centered at the mode of the target

density, with dispersion given by minus the inverse of the Hessian matrix of the log of

target, evaluated at the mode. In practice, we proceed as follows. Let us approximate

fa(Pt, Vt|Pt−1, Vt−1) with the Gaussian distribution derived from the Euler discretization

over the whole interval (t− 1, t) – i.e., ignoring the subintervals defined above. We first

compute

V̂t = argmax
Vt

[log f(Ht|Pt, Vt) + log fa(Pt, Vt|Pt−1, Vt−1)]

using Newton’s Method, and

Υ̂t =
∂2

∂V 2
t

[
log f(Ht|Pt, V̂t) + log fa(Pt, V̂t|Pt−1, Vt−1)

]
.

The Laplace sampling density for Vt is then Gaussian, with mean V̂t and variance −1/Υ̂t.

Notice that both V̂t and Υ̂t depend on Vt−1. In practice, this implies that the Laplace

approximation must be computed for each simulated value of the lagged volatility. While
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this might seem complicated, it should be noted that the whole procedure amounts to

solve a large number of straightforward univariate maximization problems, given the

availability of good initial points and of analytical expressions of the derivatives of the

function to be maximized. Usually (see e.g. Durham, 2006, 2007), the Laplace approxi-

mation is computed with respect to the whole trajectory of the volatility state because the

likelihood is not sequentially factorized as in (2.8), but rather defined as a single integral

with respect to the volatility trajectory, whose dimension is equal to T . In this paper, we

prefer to work with the factorized loglikelihood for several reasons. The whole-trajectory

strategy is well-suited for discrete-time models, but becomes much more complicated in

a continuous-time setting, in which there are multiple “intermediate” volatility values to

integrate out. Moreover, the sequential strategy naturally provides a way to compute the

generalized residuals that we will use later to conduct a specification analysis.

A couple of remarks about this result are in order. First, the usefulness of our sam-

pling density depends on the validity of two simplifying approximations: using the Euler

discretization instead of the true transition density to derive V̂t and Υ̂t, assuming at most

one jump between t − 1 and t. These steps, however, can be easily checked ex post by

examining the MC variance of (2.12), and checking that this estimate has finite variance.

We show in section 2.5 that this variance is actually very low in all our applications.

Second, a similar approach could be used also to approximate the pdf f(V0|F0) =

f(V0|H0, P0) which is needed in order to integrate out V0 in (2.11) for t = 1. To this end,

given the lack of a lagged volatility, we use a Gaussian density computed as the Laplace

approximation above, but based on a target density that neglects the transition density,

and focuses exclusively on the measurement errors density f(H0|P0, V0).

It remains to discuss our choice of q(V |Vt, Vt−1), which is a pdf for the “intermediate”

volatility states V given Vt−1 and Vt. The ideal pdf would be fa(V |Ht, Pt, Vt, Pt−1, Vt−1),

which is unknown. However, given the density used to draw Vt, we argue that no infor-

mation about V is lost if we drop the conditioning on Ht, Pt and Pt−1. This allows to
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factorize q(V |Vt, Vt−1) as:

q(V |Vt, Vt−1) =
M−1∏

m=1

q(Vm|Vt, Vm−1).

We set each pdf in the product of the rhs as a Gaussian density with moments computed

in the same way as the MBB strategy discussed in Appendix 2.B. Notice however that,

unlike the “pure ” MBB approach, the simulated V trajectories do not start from the

same volatility state Vt−1, and do not end up in the same volatility state Vt, as both these

values are simulated by f(Vt−1|Ft−1) and q(Vt|Vt−1), respectively.

2.4.1.2 Drawing from f(Vt|Ft)

In this section, we show how to randomly draw from f(Vt|Ft) for t ≥ 1; the case t = 0 was

already discussed in section 2.4.1.1. The approach we adopt is basically the application

of the Particle Filter discussed by Durham and Gallant (2002, sect. 7).

Let {(Ṽ l
t , Ṽ

l
, Ṽ l

t−1), l = 1, ..., L} be L independent draws from q(Vt,V |Vt−1) f(Vt−1|Ft−1),

and

ηlt =
f(Ht|Pt, Ṽ

l
t ) f

a(Pt|Pt−1, Ṽ
l
t , Ṽ

l
, Ṽ l

t−1) f
a(Ṽ l

t , Ṽ
l
|Ṽ l

t−1)

q(Ṽ l
t , Ṽ

l
|Ṽ l

t−1)
, l = 1, ..., L

be the L simulated values of the ratio under integration used in (2.12). Define the

normalized weights:

ηlt =
ηlt∑L

k=1 η
k
t

.

By construction, ηlt ∈ (0, 1) and
L∑

l=1

ηlt = 1. By Theorem 1 in Geweke (1989), the

collection {[(Ṽ l
t , Ṽ

l
, Ṽ l

t−1), η
l
t], l = 1, ..., L} can be seen as a discrete approximation of

f(Vt,V , Vt−1|Ft), in the sense that, by a Law of Large Numbers:

L∑

l=1

ηlt g(Ṽ
l
t , Ṽ

l
, Ṽ l

t−1)
p
→

∫
g(Vt,V , Vt−1) f(Vt,V , Vt−1|Ft) dVt dV dVt−1,

for any function g for which the expectation on the rhs exists and is finite.
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There are various different ways to exploit this result to draw Vt from f(Vt|Ft). The

simplest one, advanced by Rubin (1988), consists in drawing with replacement from

{Ṽ l
t , l = 1, ..., L}, where ηlt is the probability that each Ṽ l

t is drawn. The resulting

likelihood, however, would not be continuous in the parameters, causing difficulties to

the numerical optimizer. Durham and Gallant (2002, sect. 7) prefer to use the collection

{(Ṽ l
t , η

l
t), l = 1, ..., L} to build a Hermite approximation of f(Vt|Ft), and draw from it. In

this paper, we use the bootstrap procedure based on univariate linear spline advanced by

Pitt (2002) to get an approximated likelihood which is smooth in the parameters. With a

multivariate latent state some other kind of multivariate interpolation technique should

be used.

2.4.2 Diagnostic testing and filtered (generalized) residuals

Given the ML estimates of the parameters, we use simulation based techniques to estimate

sequences of filtered estimates of the latent volatility Vt and of functions of Vt. These

estimates can be used to assess the validity of the models specification and to get some

intuition about their deficiencies.

We consider filtering with respect to 4 alternative kinds of information sets. The first

one is Ft−1, and it contains, at date t, only the observations up to date t−1. Conditioning

on this information set, the filtered estimate of a generic function ζ(·, ·) is defined by:

E[ζ(Pt, Vt)|Ft−1] =

∫
ζ(Pt, Vt)f(Pt, Vt|Ft−1)dPt dVt

=

∫
ζ(Pt, Vt)f(Pt|Pt−1, Vt,V , Vt−1)f(Vt,V |Vt−1)f(Vt−1|Ft−1)dPt dVt dV dVt−1.

To estimate these quantities, we first use the particle filter technique outlined in section

2.4.1.2 to generate draws from f(Vt−1|Ft−1), and then simulate the couple (V , Vt) from

f(Vt,V |Vt−1) by drawing blindly from the Euler discretization of the Vt process. Finally,

Pt is drawn from the conditional distribution f(Pt|Pt−1, Vt,V , Vt−1) derived in Appendix

2.B. We label “predicted” values of ζ(Pt, Vt) the results of this procedure. They can be
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useful in diagnostic checking, but they do not represent the best way to predict the price

of an option, in particular when some information about the forward date is available.

To this end, we consider some alternative information sets Fa
t that contain Ft−1, Pt

and a subset Ha
t of the whole set of options Ht observed at date t. In this case, the filtered

value of a generic function of the volatility Vt (notice that since Pt is known conditionally

on Fa
t , we can omit it from the arguments of ζ) is defined by:

E[ζ(Vt)|F
a
t ] =

∫
ζ(Vt)f(Vt|F

a
t )dVt

=

∫
ζ(Vt)f(H

a
t |Pt, Vt)f(Pt|Pt−1, Vt,V , Vt−1)f(Vt,V |Vt−1)f(Vt−1|Ft−1) dVt dV dVt−1

∫
f(Ha

t |Pt, Vt)f(Pt|Pt−1, Vt,V , Vt−1)f(Vt,V |Vt−1)f(Vt−1|Ft−1) dVt dV dVt−1

These integrals can be evaluated following the procedure described in section 2.4.1. Notice

that the denominator is equivalent to (2.10) using only the subset Ha
t of options instead

of the full vector Ht; if F
a
t does not contain options at date t, then the f(Ha

t |Pt, Vt) factor

disappears from both integrals. To evaluate the numerator, we use the same simulated

values of the denominator integrand, multiplied by ζ(·) evaluated at the simulated Vt

value. Geweke (1989) shows that the simulation variance of the estimate of the ratio is

reduced if the same draws are used in the numerator and the denominator.

We consider three kinds of augmented information sets: (i) FP
t = (Pt,Ft−1); (ii)

F∗
t = (Pt, H

∗
t ,Ft−1), where H

∗
t is the date t option selected according to criterion 1,

as defined in section 2.3.3; and finally, (iii) Ft = (Pt,Ht,Ft−1). Case (i) considers the

predicted values of ζ(Vt) given past observations and the current value of the stock index.

Knowledge of the latter carries some information on the current Vt value, and should allow

more accurate predictions. We label “updated given Pt” the results of this procedure.

Case (ii) further enlarges the information set by including a single option at each

date. Since the latter is a monotone function of Vt, this inclusion significantly increases

the available information on the latent variable, and generates dramatically improved

predictions of ζ(Vt), that we label “updated given Pt and H
∗
t ”. This kind of conditioning
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is very interesting from an operational point of view, as it allows to price any date t

option conditionally on the observed price H∗
t .

It should be noted that pricing some options relative to one observed option is also

possible in the approach of section 2.3, in which one option at each date was assumed to

be free of measurement error. The two procedures, however, are fundamentally different.

On one hand, volatility is filtered by inverting an observed option price; on the other,

it is filtered by estimating a conditional expectation given an option which is observed

with error. It is likely that, if such error actually exists, neglecting it might induce biased

volatility and option prices estimates. Furthermore, in our approach, there is no need

to condition on just one option at each date; we might as well condition on all but one

of the observed options, and compute the predicted price of the contract left over. This

should further enhance the accuracy of the predictions, and it is of course impossible to

do under the assumptions of the approach of section 2.3.

Case (iii) considers the widest information set comprising the log stock price and

all the options observed at each date. We label the values of ζ(Vt) predicted in this

way as “fully updated”. Notice that their computation can be done using the volatility

trajectories used in the likelihood evaluation discussed in section 2.4.1. In all cases,

100,000 trajectories were used to approximate the above expressions using Monte Carlo

integration techniques.

In our set up, predicted values can be computed for the options NPs and the log

stock index price. In the case of options, they allow to compute residuals that, according

to our hypothesis about measurement errors, should conform to a Gaussian distribution

independent across dates. This can be checked using standard test procedures, such as the

Box-Pierce test, either applied to the residuals or to their squares, and the Jarque-Bera

test.

In the case of the log stock prices, the assumed distribution is not Gaussian; rather,

it is a mixture of conditionally heteroskedastic Gaussian densities. To perform diagnostic

checking, we computed the associated generalized residuals as follows. Consider the

30



first kind of filtering rule discussed above, based on the conditioning information set

Ft−1, and the predicted values for ζ(Pt, Vt) = F (Pt|Pt−1, Vt, Vt−1), the conditional cdf

corresponding to the pdf derived in Appendix 2.B. If the model specification is correct,

these predicted values should be IID uniformly distributed in [0,1]. If we further transform

these uniform generalized residuals using the inverse standard Gaussian cdf, we obtain

generalized residuals that, under the null hypothesis of correct specification, should be

IID standard Gaussian. This can be tested using, as in the case of options, the Box-Pierce

or the Jarque-Bera tests.

2.5 Implementing the SML estimator

2.5.1 Parameter estimation

We estimated a few variants of the LOG-J and the CEV-J models, differing by the

parameterization of the volatility and the jump risk premia, along with the corresponding

affine specifications. We limit our discussion to the two versions of the LOG-J and

the CEV-J models, which, according to information criteria, should be preferred. The

“baseline” LOG-J and CEV-J models coincide with the specification estimated in section

2.3.3; the “augmented” versions labelled LOG-Ja and CEV-Ja assume different jump size

variances under the actual and the risk-neutral measures.

Table 2.5 reports the results. For each parameter, the table contains the ML estimate,

the estimated asymptotic standard error (in parentheses), and the numerical standard

error (in brackets). The latter is also computed for the loglikelihood at the optimum,

and it is based on 100 estimates using independent draws. The R2 coefficients of the

polynomial interpolation that we use to approximate option prices are equal to 0.9998

for each model, and suggest that the approximation is reliable.

The comparison between the asymptotic and the numerical standard errors weights

the relative importance of the “statistical” sampling uncertainty vs. the “numerical” one

induced by simulations. The latter is smaller than the former by at least two orders of
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Table 2.5: Estimates of parameters for the LOG-J and CEV-J option pricing models on
the sample of options on the S&P 500 index observed on each day from Jan. 4, 1996 to
Dec. 30, 2005. Asymptotic (statistical) standard errors in parentheses; numerical (Monte
Carlo) standard errors in brackets.

CEV-J CEV-Ja LOG-J LOG-Ja

λ -3.68 -2.29 1.19 4.86
(2.15) (2.86) (2.47) (2.59)

[1.29×10−2] [1.21×10−2] [8.15×10−3] [3.40×10−2]
α 1.43×10−3 8.15×10−4 -2.45×10−2 -2.07×10−2

(5.45×10−4) (4.59×10−4) (8.33×10−3) (7.30×10−3)
[8.99×10−6] [1.11×10−5] [2.19×10−5] [3.72×10−5]

β 3.08×10−2 3.27×10−2 -3.23×10−2 -2.74×10−2

(2.69×10−2) (3.16×10−2) (9.32×10−3) (8.80×10−3)
[3.98×10−5] [2.95×10−5] [4.88×10−5] [4.97×10−5]

γ 0.27 0.27 0.29 0.27
(8.64×10−4) (9.55×10−4) (2.24×10−3) (1.73×10−3)
[6.01×10−6] [3.43×10−6] [7.56×10−6] [9.00×10−6]

φ 1.08 1.09 n.a. n.a.
(3.62×10−4) (4.26×10−4)
[2.73×10−5] [2.81×10−6]

ρ -0.75 -0.77 -0.80 -0.85
(2.06×10−3) (2.28×10−3) (4.29×10−3) (3.91×10−3)
[2.44×10−5] [1.76×10−5] [1.81×10−5] [2.69×10−5]

λJ 0.17 1.34 0.28 1.68
(1.27×10−2) (0.16) (1.68×10−2) (0.14)
[1.36×10−4] [2.96×10−4] [8.55×10−5] [4.61×10−4]

µJ -0.23 -1.10×10−2 -1.75×10−2 -2.20×10−2

(5.89×10−2) (1.83×10−2) (0.25) (9.63×10−3)
[1.06×10−3] [7.77×10−5] [1.49×10−4] [2.45×10−4]

σJ 3.59 0.53 3.15 0.53
(3.13×10−2) (3.28×10−2) (3.27×10−2) (2.01×10−2)
[1.53×10−4] [9.82×10−5] [9.59×10−5] [1.02×10−4]

magnitude; apparently, our IS strategy succeeds in reducing simulation variance to an

acceptable level. We also conducted the tests of the null that the IS estimate (2.12) has

finite variance proposed by Monahan (1993) and Koopman et al. (2009), which consider

an inequality restriction on a parameter of a Generalized Pareto density, and can be based

on a nonparametric procedure (Monahan, 1993) or on the trilogy of ML tests (Koopman

et al., 2009). In both cases, these tests must be conducted separately for each integral,

which means that in our sample the procedure must be repeated T = 2516. A joint
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Table 2.5: Continued from the previous page.

CEV-J CEV-Ja LOG-J LOG-Ja

αQ 9.52×10−4 7.89×10−4 -1.40×10−2 -1.09×10−2

(3.61×10−5) (3.59×10−5) (3.57×10−4) (2.54×10−4)
[3.79×10−7] [2.00×10−7] [1.20×10−6] [1.28×10−6]

βQ 2.01×10−2 2.02×10−2 -8.91×10−3 -9.01×10−3

(1.51×10−4) (1.60×10−4) (4.77×10−5) (4.66×10−5)
[9.65×10−7] [5.65×10−7] [5.29×10−7] [4.39×10−7]

λQJ 2.05×10−2 1.99×10−2 2.63×10−2 2.22×10−2

(2.95×10−4) (2.90×10−4) (4.38×10−4) (3.59×10−4)
[2.05×10−6] [8.37×10−7] [1.29×10−6] [8.14×10−7]

µQJ -1.05 -1.07 -0.79 -0.83
(8.64×10−3) (8.39×10−3) (7.39×10−3) (7.84×10−3)
[9.63×10−5] [5.09×10−5] [5.37×10−5] [4.44×10−5]

σQJ n.a. 3.75 n.a. 3.53
(3.26×10−2) (3.59×10−2)
[1.22×10−4] [9.43×10−5]

ψ0 -2.16 -2.20 -2.12 -2.24
(2.38×10−2) (2.38×10−2) (2.38×10−2) (2.36×10−2)
[1.21×10−4] [1.30×10−4] [9.13×10−5] [9.74×10−5]

ψX 18.90 19.41 18.45 19.06
(0.26) (0.27) (0.26) (0.26)

[2.34×10−3] [1.38×10−3] [1.45×10−3] [1.31×10−3]
ψX2 5.92×102 5.93×102 6.09×102 6.05×102

(8.64) (8.72) (8.41) (8.48)
[8.33×10−2] [5.50×10−2] [3.99×10−2] [4.84×10−2]

ψτ -85.47 -85.08 -88.98 -86.96
(0.55) (0.55) (0.54) (0.54)

[1.58×10−3] [1.30×10−3] [1.05×10−3] [1.33×10−3]
ψτ2 4.51×102 4.51×102 4.75×102 4.68×102

(2.76) (2.77) (2.77) (2.77)
[9.36×10−3] [6.04×10−3] [8.71×10−3] [7.38×10−3]

loglik. 40385.3 40840.0 40971.7 41589.0
[0.30] [0.31] [0.12] [0.17]

statistic can then be formed by aggregating the univariate test results as in Rao (1952,

p. 44). To save space, we do not report the results, but they support the null hypothesis

of finite variance of the sample weights.

The estimates of the parameters are in line with results reported elsewhere, obtained

using different estimation procedures and data. Some differences can be spotted for the

parameters that appear both in P and in Q, such as those in the volatility diffusion
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coefficient, in the correlation coefficient ρ or in the jump size variance; in general, our

estimates are closer to those obtained using only option prices (see, e.g., Bakshi et al.,

1997), than to those obtained when the analysis is limited to just one option per day.

The reason for this is simply the larger size of the option sample with respect to the stock

price sample. The same feature implies that risk neutral parameters are estimated more

accurately than their historical counterparts.

With the only exception of λ, all estimates are very accurate and highly significant,

in particular for the risk-neutral parameters. This is due to the fact that we completely

exploit the large cross-sectional dimension of the sample, instead of focussing only on a

single option per day. The estimates imply a stationary volatility process under both P

and Q and for every specification, which stands in contrast with the nonstationarity of

the CEV-J Vt process under Q suggested by the parameter estimates reported in table

2.2 using the approach of section 2.3.

The estimated jump intensities and jump size distributions are quite different under

P and Q. The comparison between the baseline LOG-J and CEV-J models, and their

augmented LOG-Ja and CEV-Ja versions, highlights the importance of allowing different

jump size variances under the two measures. The loglikelihood of the augmented specifi-

cation is higher by 455 points in the CEV-Ja case, and by 618 points in the LOG-Ja case;

the constraint σJ = σQ
J is clearly rejected by a LR test. The augmented specifications

suggest that the jumps are very frequent, essentially zero on average with low dispersion

under P, and much rarer, but around -1% on average and with a standard deviation of

about 3-3.5% under Q. Overall, these results suggest that the the jump component is

less important than what is usually acknowledged in previous works, with the partial

exception of Durham (2010). This discrepancy could be due to a different sample or

model, as non-affine models could capture features of the distribution that a less flexible

affine specification would attribute to jumps.

The comparison between the LOG-Ja and the CEV-Ja models is not as simple as that

between the baseline and the augmented specifications, since the former are not nested.
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Figure 2.1: Average and 95% interquantile range for filtered volatility in the LOG-Ja
model for the sample of options on the S&P 500 index, Jan. 4, 1996 to Dec. 30, 2005.

 0

 1

 2

 3

 4

 5

 6

 7

 1996  1997  1998  1999  2000  2001  2002  2003  2004  2005  2006

U
pd

at
e 

vo
la

til
ity

 a
nd

 9
5%

 in
te

rq
ua

nt
ile

 r
an

ge

Date

Updated volatility
95% interquantile range

We prefer the log volatility model, not only because of the higher loglikelihood value,

but also on the basis of its goodness of fit and of the diagnostic checks based on filtered

option prices residuals and log stock price generalized residuals described in section 2.4.2.

For this reason, we limit our discussion of analysis of the filtered (generalized) residuals

to the LOG-Ja model.

2.5.2 Predicted values and diagnostic tests

Figure 2.1 illustrates the updated latent volatility Vt in the LOG-Ja model. The plot

also depicts the 95% interquantile range of the updated volatilities, which witnesses the

accuracy of the filtering procedure; actually, the narrowness of the range makes it neces-

sary to plot it as a separate line, instead of a band surrounding the sample average. The

shape of the filtered volatility trajectory is in line with similar plots relative to the same

period reported elsewhere.

As a way to cross-validate the filtered volatility trajectory, figure 2.2 compares the
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Figure 2.2: Observed daily VIX and predicted daily VIX computed on the basis of the
average filtered volatility in the LOG-Ja model for the sample of options on the S&P 500
index, Jan. 4, 1996 to Dec. 30, 2005.
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observed VIX contract price over the same period (in daily percentage volatility) with the

same quantity implied by the LOG-Ja model and computed numerically as in Jiang and

Tian (2005) and Durham (2010). The two trajectories are strikingly similar in shape and

very close to each other, although some differences can be spotted at some high-volatility

periods: the Asian currency crisis in July 1997 and the mini-crash of October 27, 1997;

the LTCM bailout around mid-1998 and the Russian Default in August of the same year;

and the period from October 2002 to April 2003, marked by the escalation of the Iraq

crisis and the break out of the second Gulf War. In spite of these discrepancies, the

correlation between the two series is 0.973.

Inspection of the time series of the predicted generalized residuals of the log index

price highlights a few notable outliers, the most striking of which is the large negative

value corresponding to the October 27, 1997 mini-crash. This anomaly is shared by all

the specifications we examined, and points to the need of a more flexible specification.
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Figure 2.3: Gaussian Q-Q plot of the S & P 500 log stock index price predicted generalized
residuals from Jan. 4, 1996 to Dec. 30, 2005.
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Given the outliers, it is not surprising that a Jarque-Bera test of normality rejects the

null overwhelmingly (the test statistic is equal to 73.1, with p-value equal to 6.5×10−26).

Figure 2.3 illustrates the Gaussian Q-Q plot of the predicted residuals, in order to get

a visual interpretation of this conclusion. The plot clearly points to the left tail as the

major source of misspecification.

The correlograms of the predicted residuals and of their squares are illustrated in

figure 2.4. The residuals look fairly uncorrelated over time, but not their squares, which

is coherent with unexplained conditional heteroskedasticity. A more sophisticated speci-

fication of the volatility process – e.g., a two factor volatility model – could help solving

this issue.

Finally, we examine the various generalized residuals given by the difference between

observed option NPs and model implied NPs estimated conditionally on four information

sets. The most useful for diagnostic checking are the predicted residuals, computed

conditionally on the previous period information set; for pricing purposes, conditioning
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Figure 2.4: Autocorrelation functions (with 95% confidence intervals) of the S & P 500
log stock index price predicted generalized residuals from Jan. 4, 1996 to Dec. 30, 2005.
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on enlarged information sets may be more interesting. Given the wealth of our sample,

the descriptive statistics of the options NPs residuals take several tables. Tables 2.6

and 2.7 report the sample averages and standard deviations computed for the residuals

conditioned on the four information sets, and disaggregated by time to maturity and

discounted moneyness. In general, average residuals are small and close to results reported

in other work – see e.g. table 3 of Bates (2000), which is closest in spirit with the fourth

panel. Average residuals decrease with the amount of conditioning information (moving

from the top to the bottom panel); moreover, the predicted residuals suggest that the

model systematically overprices (underprices) out-of-the-money (in-the-money) options,

but this bias seems to vanish in the remaining panels.

The effect of an augmented information set is clearer for standard deviations. On

average, standard deviations of option residuals decrease by 73% by conditioning on
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Table 2.6: Sample averages (×104) of option pricing residuals computed according to
different filtering rules by discounted moneyness and maturity for the LOG-Ja model.

Time to Discounted Moneyness X
Maturity τ (-5%,-3%) (-3%,-1%) (-1%,1%) (1%,3%) (3%,5%) All

Predicted residuals

(15,24) -2.5 -7.2 -5.9 6.4 15.4 -0.9
(25,33) -5.5 -9.2 -7.9 3.8 8.7 -3.6
(34,42) -3.8 -8.2 -4.9 3.0 7.9 -2.7
(43,51) -2.5 -4.6 0.2 7.7 4.5 0.1
(52,60) -7.2 -8.2 -7.6 1.6 4.6 -5.2
All -4.2 -7.7 -5.6 4.6 9.4 -2.4

Updated residuals given Pt

(15,24) 3.0 0.5 0.4 2.9 4.7 1.9
(25,33) -1.6 -2.2 -1.2 0.3 -0.2 -1.1
(34,42) -0.1 -0.5 0.3 -0.5 -1.8 -0.3
(43,51) 0.0 0.4 1.8 -0.2 -3.7 0.2
(52,60) -3.3 -2.6 -1.2 -4.2 -6.7 -3.0
All -0.1 -0.8 -0.1 0.2 -0.3 -0.3

Updated residuals given Pt and H
∗
t

(15,24) 2.5 0.0 -0.2 2.2 4.0 1.4
(25,33) -1.8 -2.3 -1.2 -0.5 -1.2 -1.5
(34,42) -0.9 -1.2 -0.6 -2.1 -3.7 -1.5
(43,51) -0.9 -0.5 0.8 -2.0 -5.3 -1.0
(52,60) -4.0 -3.0 -1.8 -5.8 -8.4 -3.8
All -0.7 -1.3 -0.7 -1.0 -1.6 -1.0

Fully updated residuals

(15,24) 2.9 0.3 -0.1 1.9 3.5 1.4
(25,33) -0.2 -0.6 0.5 0.9 0.1 0.1
(34,42) 0.1 -0.1 0.6 -1.1 -2.9 -0.3
(43,51) -0.2 0.0 0.7 -2.2 -5.4 -0.7
(52,60) -2.1 -1.1 0.0 -4.6 -7.3 -2.1
All 0.4 -0.3 0.3 -0.4 -1.1 -0.1

the current stock index price in addition to last period’s information. This decrease is

further enhanced to 81% by adding an option, and reaches 86% for fully updated values.

All panels show that pricing errors for options with longer time to maturity are more

dispersed; the same is true with respect to discounted moneyness, but this is probably

due to higher prices of deep in-the-money options.

Table 2.8 reports sample correlations between contemporaneous option residuals and

their squares by time to maturity and discounted moneyness. To save space, we limit the
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Table 2.7: Sample standard deviations (×104) of option pricing residuals computed ac-
cording to different filtering rules by discounted moneyness and maturity for the LOG-Ja
model.

Time to Discounted Moneyness X
Maturity τ (-5%,-3%) (-3%,-1%) (-1%,1%) (1%,3%) (3%,5%) All

Predicted residuals

(15,24) 31.2 43.7 60.9 79.7 89.0 60.6
(25,33) 34.5 45.4 62.1 76.3 84.8 60.4
(34,42) 39.1 48.8 62.6 78.7 84.1 61.8
(43,51) 41.6 50.7 61.3 76.3 83.6 60.9
(52,60) 46.9 51.0 63.4 78.6 81.5 62.1
All 37.8 47.3 62.1 78.0 85.4 61.1

Updated residuals given Pt

(15,24) 10.4 11.9 14.5 16.8 19.0 14.3
(25,33) 11.0 12.7 15.0 17.1 19.6 14.8
(34,42) 11.5 13.1 14.9 17.6 18.6 14.8
(43,51) 13.4 16.1 17.7 20.0 21.4 17.4
(52,60) 16.4 18.3 21.2 24.3 23.6 20.4
All 12.5 14.2 16.5 18.8 20.4 16.1

Updated residuals given Pt and H
∗
t

(15,24) 8.1 7.6 9.2 12.0 15.0 10.2
(25,33) 8.2 6.6 6.8 9.3 15.9 9.2
(34,42) 7.2 5.9 5.8 8.4 11.5 7.6
(43,51) 10.5 11.4 13.1 14.4 15.5 12.8
(52,60) 18.2 15.5 18.0 18.0 20.2 17.8
All 10.9 9.6 11.7 12.5 16.1 11.8

Fully updated residuals

(15,24) 7.1 6.2 6.8 9.5 13.0 8.3
(25,33) 6.0 4.5 4.6 7.9 12.2 6.9
(34,42) 5.0 3.1 3.3 6.5 10.5 5.6
(43,51) 5.9 4.9 5.5 8.4 11.4 7.0
(52,60) 11.7 10.9 12.3 14.0 16.0 12.7
All 7.6 6.3 7.0 9.6 13.2 8.3

table to the predicted residuals and to three classes of time to maturity and discounted

moneyness. Consider the top left entry in the top panel: 0.94 is the sample correlation

between pricing residuals observed at each date for short-lived deep out-of-the-money

options. Since this computation is not limited to one option per date, the result is not

equal to 1, as it is for standard correlation matrices; notice, however, that these matrices

are symmetric. Any other entry should be interpreted as the sample correlation between
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Table 2.8: Sample contemporaneous correlations of predicted option pricing residuals
and squared residuals by discounted moneyness and maturity for the LOG-Ja model. τk,
k = h,m, l means that time to maturity belongs to (15,30), (31,45), (46,60), resp. Xk,
k = h,m, l means that discounted moneyness belongs to (-5%,-1.66%), (-1.66%,1.66%),
(1.66%,5%), respectively.

Time to maturity τ
τl τm τh

Discounted Moneyness X
τ X Xl Xm Xh Xl Xm Xh Xl Xm Xh

Residuals

Xl 0.94 0.90 0.86 0.88 0.86 0.83 0.91 0.87 0.82
τl Xm 0.97 0.96 0.92 0.96 0.95 0.92 0.95 0.93

Xh 0.99 0.92 0.97 0.98 0.87 0.95 0.97

Xl 0.96 0.94 0.90 0.91 0.90 0.90
τm Xm 0.98 0.97 0.93 0.96 0.97

Xh 1.00 0.91 0.96 0.98

Xl 0.98 0.95 0.88
τh Xm 0.99 0.97

Xh 1.00

Squared residuals

Xl 0.91 0.83 0.61 0.76 0.74 0.65 0.86 0.76 0.50
τl Xm 0.93 0.78 0.76 0.87 0.83 0.79 0.86 0.63

Xh 0.96 0.80 0.89 0.94 0.55 0.75 0.91

Xl 0.93 0.88 0.77 0.85 0.79 0.81
τm Xm 0.96 0.89 0.87 0.90 0.92

Xh 0.97 0.82 0.90 0.94

Xl 0.94 0.89 0.54
τh Xm 0.95 0.78

Xh 0.98

contemporaneous pricing residuals associated to contracts with characteristics belonging

to different classes.

The predicted residuals and their squares are very correlated; the lowest entry in the

top panel is 0.82, corresponding to contracts with completely opposite characteristics.

The correlations are lower for squared predicted residuals, but still very high. A plausible

explanation of these results is that the model lacks jumps in volatility. In this case,

predictive filtering can not anticipate the occurrence of a jump in the latent state, inducing

large price residuals of the same sign, which in turn are reflected in large and positive
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Table 2.9: Sample statistics of predicted option pricing residuals by discounted moneyness
and maturity for the LOG-Ja model.

Time to Discounted Moneyness X
Maturity τ (-5%,-3%) (-3%,-1%) (-1%,1%) (1%,3%) (3%,5%) All

Skewness

(15,24) -2.1 -1.9 -0.6 -0.3 0.0 -1.1
(25,33) -0.3 -0.9 -0.6 -0.3 0.0 -0.5
(34,42) 0.4 -0.9 -0.8 -0.4 0.3 -0.4
(43,51) -0.8 -0.9 -0.4 -0.3 0.2 -0.5
(52,60) -0.9 -0.6 -0.5 -0.1 0.2 -0.5
All -0.9 -1.1 -0.6 -0.3 0.1 -0.6

Excess kurtosis

(15,24) 19.1 13.4 1.8 0.7 0.3 8.0
(25,33) 8.4 2.7 1.0 0.4 0.1 2.8
(34,42) 13.3 5.0 3.2 1.2 0.8 5.1
(43,51) 12.8 5.7 1.2 0.7 0.1 4.6
(52,60) 12.9 4.1 1.9 0.1 0.1 4.5
All 13.5 6.7 1.8 0.6 0.3 5.1

First lag autocorrelations

(15,24) 0.12 0.03 0.00 -0.03 -0.03 0.02
(25,33) 0.13 0.02 -0.01 -0.03 0.03 0.02
(34,42) 0.07 -0.01 0.01 0.01 0.04 0.02
(43,51) 0.06 0.00 -0.10 -0.01 0.00 -0.02
(52,60) 0.07 0.00 0.01 -0.04 -0.01 0.01
All 0.10 0.01 -0.01 -0.02 0.00 0.02

First lag autocorrelations of the squares

(15,24) 0.13 0.07 0.09 0.10 0.01 0.09
(25,33) 0.27 0.13 0.13 0.07 0.06 0.14
(34,42) 0.11 0.06 0.05 0.03 0.06 0.06
(43,51) 0.08 0.14 0.12 0.10 -0.11 0.10
(52,60) 0.20 0.06 0.09 0.12 0.07 0.11
All 0.17 0.09 0.10 0.08 0.02 0.10

correlations across all contracts.

The first two panels of Table 2.9 consider the sample skewness and excess kurtosis

of the pricing residuals. The estimates based on predicted residuals can be used to test

the normality hypothesis of the measurement errors. Normality does not seem to be

completely at odd with the data, with the exception of out-of-the-money options, for

which the symptoms of negative skewness and leptokurtosis are clear.

Finally, the last two panels of Table 2.9 report the first order sample autocorrelations
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between the pricing errors and their values lagged one period, as well as autocorrelations

between consecutive squared pricing residuals. The results for predictive residuals high-

light some dynamic misspecification for deep out-of-the-money options; the evidence is

fairly coherent to the IID hypothesis in the other cases. Autocorrelations are much higher

for residuals filtered conditionally on augmented information sets (not reported), but our

results are again coherent with those reported elsewhere – see e.g. the two columns under

the heading “Autocorrelations” in table 2 of Bates (2000).

To summarize: the analysis of the generalized residuals suggests that the stock price

model is probably misspecified, and should allow at least for a more flexible form of

heteroskedasticity. The filtered predicted option pricing residuals are not incompatible

with the IID assumption, but point to the need to extend the model in order to explain

the very high contemporaneous correlations reported in table 2.8. Finally, dramatic

improvements in predicting option prices can be obtained by pricing options relative to

other options at the same date. Using the results in tables 2.6 and 2.7, it can be seen

that conditioning on all the other options at the same date reduces the RMSE by a factor

ranging from 9% to 58%, depending on the class of moneyness and time to maturity, with

respect to prices computed conditioning on just one option.

2.6 Conclusions

In this paper, we consider joint estimation of objective and risk-neutral parameters for SV

option pricing models using both stock and option prices. A common strategy simplifies

the task by limiting the analysis to just one option per date. We first discuss its drawbacks

on the basis of model interpretation, estimation results and pricing exercises. We then

turn the attention to a more flexible approach, that successfully exploits the wealth of

information contained in large heterogeneous panels of options, and we apply it to actual

S&P 500 index and index call options data.

Our approach has two crucial features. First, we break the stochastic singularity
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between contemporaneous option prices by assuming that every observation is affected by

measurement error. We deem this assumption much more appealing that the alternative

one, in which at each date one specific option is observed without measurement error. The

price to pay for this increased flexibility is that the evaluation of the likelihood function

poses some non trivial numerical challenges, but we successfully overcome them using a

MC-IS strategy, combined with a Particle Filter algorithm. Second, we approximate the

theoretical model-implied option prices using a highly flexible parametric model, which

allows us to compute very quickly and accurately a huge number of implied volatilities.

The results we obtain suggests that the model is misspecified, but that some significant

improvements could probably be obtained by extending it in the direction of including

jumps or regime switching in the volatility dynamics. Other extensions can be envisioned,

but we leave them to future research.
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2.A The data

The sample contains data on the spot price of the S&P500 index and daily call prices

on the index. It consists of 2,517 daily observations from January 4, 1996 to December

30, 2005. For each date, we extracted from the population of all exchanged call options

on the index (179,176 over the whole 10 years interval) those with discounted moneyness

|Xit| ≤ 5%, time to maturity 15 ≤ τit ≤ 60 days, and transaction volume of at least

5 contracts, leaving us with a total of 40,211 observed options. The constraints were

imposed to exclude from the sample illiquid or seldom traded contracts. The number of

call options observed at each date varies from 3 to 44, with an average of almost 16. It also

appears that the cross-sectional dimension steadily grew over the last four observation

years.

Table 2.10: Sample frequencies of option observations computed according to different
sample selection rules by discounted moneyness and maturity.

Time to Discounted Moneyness X
Maturity τ (-5%,-3%) (-3%,-1%) (-1%,1%) (1%,3%) (3%,5%) All

(15,24) 2,384 2,647 2,693 1,965 1,219 10,908
(25,33) 2,205 2,414 2,540 1,878 1,213 10,250
(34,42) 1,472 1,702 1,872 1,249 766 7,061
(43,51) 1,200 1,422 1,588 966 534 5,710
(52,60) 1,406 1,564 1,760 1,018 534 6,282
All 8,667 9,749 1,0453 7,076 4,266 40,211

Table 2.10 reports the sample frequencies of options observations by discounted money-

ness and maturity. This table highlights that the sample contains a clear prevalence of

short maturity options, and an even clearer majority of at- and out-of-the-money options.

2.B The MC-IS approximation of the transition den-

sity

To illustrate the IS approach we use, we follow Durham (2010, sect. 3.2).
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Let t − 1 = τ0 < τ1 < ... < τM = t be a partition of the interval [t − 1, t], where for

simplicity we assume that for all m, τm − τm−1 = ∆/M = δ, where ∆ is the length of the

interval between observations at dates t− 1 and t. Let us for simplicity denote Pm = Pτm

and Vm = Vτm , m = 0, 1, . . . ,M , and P = (P1, . . . , PM−1)
′ and V = (V1, . . . , VM−1)

′. By

the Chapman-Kolmogorov property and the Markov nature of the bivariate diffusion:

f(Pt, Vt|Pt−1, Vt−1) =

∫ M∏

m=1

f(Pm, Vm|Pm−1, Vm−1) dP dV .

This integral can be approximated using

f (M)(Pt, Vt|Pt−1, Vt−1) =

∫ M∏

m=1

fa(Pm, Vm|Pm−1, Vm−1) dP dV .

where fa is the transition density implied by an approximate discretization scheme of

(2.5) - (2.4); in this paper, we use the first order Euler scheme, which implies that fa

is bivariate Gaussian. Apart from its simplicity, this choice also allows to analytically

compute the integral with respect to P , leaving us with:

f (M)(Pt, Vt|Pt−1, Vt−1) =

∫
fa(PM |P0, VM ,V , V0) f

a(VM ,V |V0) dV (B-1)

where fa(VM ,V |V0) is the product of M Gaussian densities:

fa(VM ,V |V0) =
M∏

m=1

φ[Vm;Vm−1 + µV (Vm−1) δ, σ
2
V (Vm−1) δ]

where φ is the Gaussian density, and fa(PM |P0, VM ,V , V0) is the conditional distribution

of PM given P0, VM ,V and V0 implied by the Euler discretization. Under our assumptions

about the jump process, this density is a mixture of Gaussian pdfs, with the number of

jumps being the mixing variable:

fa(PM |P0, VM ,V , V0) =
∞∑

n=0

e−λJ∆(λJ∆)n

n!
φ[PM ;P0 + k(VM ,V ) + nµJ , s

2(V ) + nσ2
J ]
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where:

k(VM ,V ) =
M∑

m=1

µP |V (Vm, Vm−1)δ, s2(V ) =
M∑

m=1

σ2
P |V (Vm−1)δ,

with:

µP |V (Vm, Vm−1)δ = µP (Vm−1)δ +
ρσP (Vm−1)

σV (Vm−1)
[Vm − Vm−1 − µV (Vm−1)δ] ,

σ2
P |V (Vm−1)δ = σ2

P (Vm−1)δ (1− ρ2).

The (M − 1)-dimensional integral in (B-1) can be evaluated using a IS approach. Let

q(V ) be a pdf on RM−1, and rewrite (B-1) as follows:

f (M)(Pt, Vt|Pt−1, Vt−1) =

∫
fa(PM |P0, VM ,V , V0)

fa(VM ,V |V0)

q(V )
q(V )dV . (B-2)

Let Ṽ
l
= (Ṽ l

1 , ..., Ṽ
l
M−1), l = 1, ..., L, be independent draws from q. The IS estimate of

(B-2) is then given by

f̃ (M,L)(Pt, Vt|Pt−1, Vt−1) =
1

L

L∑

l=1

fa(PM |P0, VM , Ṽ
l
, V0)

fa(VM , Ṽ
l
|V0)

q(Ṽ
l
)

. (B-3)

Durham and Gallant (2002) showed that to reduce the bias in (B-3) it is important

to transform the original diffusion into another one characterized by a constant diffusion

coefficient. In our framework, it is sufficient to consider the Lamperti transform of Vt,

which is defined as:

Yt =

∫ Vt 1

σV (u)
du

where the lower bound is irrelevant. By Itô’s Lemma:

dYt =

[
µV (Vt)

σV (Vt)
−

1

2

∂σV (Vt)

∂Vt

]
dt+ dWV t.

The variance of the simulation noise can be reduced by carefully choosing q. In this
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respect, a very efficient sampling strategy, labelled Modified Brownian Bridge (MBB) by

Durham and Gallant (2002), suggests to recursively draw Ṽm for m = 1, ...,M − 1 from

a Gaussian density based on the Euler discretization of the process and conditional to

VM and Vm−1. With a minor approximation, this density is Gaussian with mean equal to

Vm−1+(VM−Vm−1)/(M−m+1), and variance given by [(M−m)/(M−m+1)] σ2
V (Vm−1) δ.

The product of these M − 1 Gaussian densities defines the auxiliary density which is

used as the denominator in (B-3), and as the distribution from which the simulated Ṽ
l
,

l = 1, ..., L are drawn. Sampling from it is extremely fast and can be combined with

other variance reduction techniques. On the basis of the analysis in Durham (2010), we

implement the MBB approach usingM = 8 subintervals, and L = 256 simulated volatility

trajectories. A comparison across parameter estimates of the unavoidable sampling noise

with the simulation noise confirms the adequacy of these settings.

2.C Numerical evaluation of option prices in non-

affine jump-diffusion models

Apart a few special cases, theoretical option prices are not known in closed-form in a

general jump-diffusion SV model, and need to be evaluated numerically. In the absence

of jumps, a particularly efficient pricing strategy was advanced by Willard (1997), based

on conditional Monte Carlo technique combined with quasi random sequences. This

strategy is based on the observation that, in a pure SV model, the price of a call can be

computed by first conditioning on the trajectory of the volatility Brownian motion during

the life of the option, and then numerically evaluating the expectation with respect to

the distribution of the trajectory. The resulting pricing formula CSV (St, Vt) is then given

by:

CSV (St, Vt) = E
W

Q

V [t,t+τ ]

{
CBS

[
Stξ[t,t+τ ], (1− ρ2)σ̃2

[t,t+τ ]

]}
,
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where CBS(S, σ
2) is the Black and Scholes formula for price S and volatility σ2 (and

where for simplicity we neglect the remaining arguments), and:

ξ[t,t+τ ] = exp

[
−
ρ2

2

∫ t+τ

t

σ2
S(Vu) du+ ρ

∫ t+τ

t

σS(Vu) dW
Q
V u

]
,

σ̃2
[t,t+τ ] =

1

τ

∫ t+τ

t

σ2
S(Vu) du.

Merton (1976) used a similar argument to price options with (i) Poisson jumps in the

St process with intensity λQJ and size independent from the Brownian processes, and (ii)

relative jump size equal to eJ
Q

− 1, where JQ ∼ N (µQ
J , σ

Q
J

2
). In our case, it is possible

to proceed by conditioning on n of jumps during the life τ of the option, compute the

price using the Willard (1997) approach with modified arguments, and then compute the

expectation with respect to a Poisson distribution with parameter λQJ τ :

CSV J =
∞∑

n=0

e−λ
Q
J
τ (λQJ τ)

n

n!
E
W

Q

V [t,t+τ ]

{
CBS

[
Stξ[t,t+τ ]cn, (1− ρ2)σ̃2

[t,t+τ ] +
nσQ

J

2

τ

]}
, (C-1)

where:

cn = exp
[
nνQJ − λQJ τ(e

ν
Q
J − 1)

]
.

A truncated version of (C-1) provides a viable strategy to compute the option price.
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Chapter 3

Informed and Uninformed Traders

at Work: Evidence from the French

Market

Fabrizio Ferriani

JEL codes: C10, G10, G14

Keywords: Market microstructure, Euronext Paris, Informational asymmetries,

Price impact, Trader identities

3.1 Introduction

In recent years, there has been an increasing attention given to the field of market mi-

crostructure as evidenced by the significant amount of contributions to theoretical and

empirical literature. Several factors facilitated this process, including the availability of

high-quality data sets with transaction-level information, the diffusion of new markets,

and the interest for the trading strategies of market participants. This paper adds to

the existing literature by investigating how different categories of traders affect market

transactions in a high-frequency context. In particular, we distinguish between informed
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and uninformed traders, and we analyze their impacts on market prices. This topic is

of primary interest for the empirical research devoted to informational issues in finan-

cial markets, which represents a significant concern for traders and market regulators

worldwide.

Theoretically speaking, we trace back to Kyle (1985) for a first relevant study of the

traders’ behaviour in an order-driven market. Kyle (1985) derives a model where a risk-

neutral market maker operates with an insider and a group of liquidity traders. The

market maker observes the whole order flow and he sets an equilibrium price that inter-

nalizes the presence of informed traders. An extension of this setting is found in Admati

and Pfleiderer (1988) who propose a similar framework, but they distinguish between two

groups of liquidity traders. Conversely, Glosten and Milgrom (1985) introduce a sequen-

tial model where information asymmetries take place in a quote-driven protocol. In their

model, the risk of trading with informed agents forces the dealers to widen the distance

between the bid and the ask quote. Indeed, the spread operates as a protection for the

adverse selection cost and its width is proportional to the fraction of informed traders in

the market. This model is extended by Easley and O’Hara (1987) to take into account the

order size. The authors emphasize the information effect driven by the trading volume,

with insiders submitting large transaction volumes to exploit their private signal.

In the field of empirical research, Glosten and Harris (1988) study the components

of the bid-ask spread on a sample of stocks from the NYSE. They find the information

asymmetries to significantly affect the bid-ask spread width. Easley et al. (1996) and

Easley et al. (1997) introduce the concept of PIN, which offers a measure of the informed

traders’ presence in the market. In their model, only some agents receive an information

signal; a bayesian market maker observes the sequence and the frequency of trades, then

he updates the quotes according to his belief on the type of information event. Their

model has been very successful and it has been widely tested in different markets and

extended in several ways, e.g. Easley et al. (2002) or Easley et al. (2008). The activity of

informed traders is also investigated by Barclay and Warner (1993), Chakravarty (2001)

57



and Alexander and Peterson (2007) in the field of the stealth trading literature. These

papers examine the relationship between order size and information asymmetries and they

find that informed traders tend to submit medium-sized orders to disguise their identity.

In fact, and because of volume informativeness, large orders are easily interpreted as an

attempt to quickly maximize the profits of a private information signal; on the contrary,

small volumes would be inconvenient because of transaction and time costs. Finally,

Foucault et al. (2007) examine the effects of a switch from a fully-disclosed market to a

regime with hidden identities, in which the informed traders are not explicitly detectable.

They consider the market reform that has interested Euronext Paris in 2001, and they

find that the switch to the new market setting reduces the average spread, increases the

liquidity of the market, and diminishes the informativeness of the limit order book (LOB)

variables.

In this paper, we explore informational issues at Euronext Paris and we base our

empirical research on Hausman et al. (1992), who propose an ordered probit scheme to

analyse the transaction prices. We extend their approach to exploit the information on

traders’ identities at the transaction level. We find that informed traders significantly

affect the stock price when trading with uninformed agents. This result may seem sur-

prising after the introduction of the anonymous regime in 2001. Therefore, to explain our

findings, we dedicate the second part of this research to analyse the informativeness of a

wide set of LOB variables, and we find that most of them are highly and unambiguously

significant to infer the identity of traders.

The paper is organized as follows. Section 3.2 presents the model employed in the

estimation, while Section 3.3 describes the data used for the empirical analysis. Section

3.4 details the variables included in the empirical specification and how the trader effect

is incorporated in the model. Section 3.5 examines the parameter estimates, Section

3.6 focuses on postestimation issues and marginal effects, while Section 3.7 presents the

robustness tests. Section 3.8 discusses the informativeness of LOB variables for the

inference of traders’ identities. Lastly, Section 3.9 concludes.
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3.2 The Model

As anticipated in the Introduction, we generalize Hausman et al. (1992), hereafter HLM

(1992), to evaluate the impact of trader categories on the transaction prices. In the

following lines, we briefly review the original approach, but we refer the reader to HLM

(1992) for a more exhaustive exposition. We consider a sequence of transaction prices

Pt0 , Pt1 , ..., Ptn , observed at times t0, t1, ..., tn, where each ti corresponds to the effective

transaction time, without reference to a fixed sampling frequency. We define the variable

tick Dtk as the difference between two consecutive prices multiplied by 100, i.e. Dtk =

(Ptk − Ptk−1
) ∗ 1001. For our sampling period, the tick size at Euronext Paris equals to

0.01 Euro; hence, Dk provides the price change expressed in Euro cents. In an ordered

probit model, Dk can be thought of as the observed realization of a latent continuous

random variable:

D∗
k = X′

kβ + ǫk (3.1)

where Xk includes the variables that influence the mean of D∗
k, while ǫk is a Gaussian

noise with zero mean and variance equal to σ2
k = W′

kθ, with Wk including the variables

that affect the variance. The two vectors β and θ collect the parameters associated

with the mean and the variance regressors, respectively. The relationship linking the

observed variableDk with its latent counterpartD∗
k is governed by the subsequent interval

classification

Dk =





d1, if D∗
k ∈ A1 = ]−∞;α1],

d2, if D∗
k ∈ A2 = ]α1;α2],

...
...

dm, if D∗
k ∈ Am = ]αm−1;∞[

where α1 < α2 < ... < αm−1 represent non-overlapping cut points dividing the whole

data range of D∗
k into m distinct intervals Aj, j = 1, ...,m, while dj identifies the possible

1In the following, we will use only k instead of tk to simplify the notation.
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outcomes of the observed price change Dk. Under the assumption of conditional inde-

pendence and Gaussianity of the error distribution, the model may be easily estimated

by ML. We define γ′ = [β′, θ′, α1, ..., αm−1] as the vector of all the parameters included

in the model together with D∗
k thresholds. The likelihood function to be maximized is

described by

n∑

k=1

{
Y1k · log Φ

(
α1 −X′

kβ

σk

)
+

m−1∑

i=2

Yik · log

[
Φ

(
αi −X′

kβ

σk

)
− Φ

(
αi−1 −X′

kβ

σk

)]

+Ymk · log

[
1− Φ

(
αm−1 −X′

kβ

σk

)]}

(3.2)

where Yik is an indicator variable equal to one if Dk belongs to the i− th interval, and Φ

is the standard normal cumulative distribution function.

The ordered probit model represents the reference estimation tool adopted in this

paper, though Section 3.5 also considers different specifications to verify the robustness

of results. As an alternative choice among the feasible estimation frameworks, we could

have considered the interval regression model, which exhibits a remarkable similarity

with the ordered probit. Nevertheless, this correspondence is only apparent and some

substantial differences exist between the two approaches. First, the dependent variable in

the ordered probit model does not have a quantitative connotation, and the interpretation

of the marginal effects does not coincide in the two cases. In fact, the marginal effect

in the ordered probit is nonlinearly related to the whole set of regressors; conversely,

the estimated coefficients in the interval regression model directly express the marginal

contribution of each variable under the ceteris paribus condition. This aspect is also

reflected in the diagnostics of interest between the two models: interval regression is more

suitable to study the effect of the explanatory variables on the conditional mean, while the

ordered probit is more appropriate to examine the impact on the conditional probability
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distribution of D∗
k. Second, a relevant distinction between the two approaches concerns

the dimension of the γ′ vector. In the interval regression, the cut points do not enter

in the set of parameters to be estimated, but they are pre-determined by the researcher

or by the sampling procedure. Indeed, this last point is far from being a minor issue.

Excluding the cut points from γ′ is a practicable choice only if the range of variation

of D∗
k is defined without ambiguity or arbitrariness. Moreover, as emphasized by HLM

(1992), the estimation of the cut points together with the other model parameters allows

to fully describe the (nonlinear) relationship between the observed realizations and the

latent variable. All these motivate us to adopt the ordered probit as the basic estimation

tool.

3.3 The Data

3.3.1 Descriptive analysis

The data set for the empirical analysis is provided by Eurofidai, and it consists of all

the transactions registered for the stocks of the CAC 40 index at Euronext Paris from 3

February 2008 to 31 March 2008. We remove the records relative to the opening and the

closing auctions, and we only focus on the transactions executed during the continuous

trading session, i.e. from 9.00 a.m. to 5.30 p.m..

In Table 3.1, we report some descriptive statistics for the stocks included in the

CAC 40 index. The first column displays the market capitalization, while the other four

columns exhibit the total amount of transactions, the daily average number of transac-

tions, the average transaction volume, and the average price, respectively. In Figure 3.1

and 3.2, we also provide some descriptive plots for Bouygues and BNP; for the sake of

brevity, we limit the exposition to these two stocks, as the rest of the sample presents

similar patterns.
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Table 3.1: Descriptive statistics for CAC40 index stocks. Stocks are ordered according
to market capitalization on 3 February 2008. The market capitalization is expressed in
Euro millions.

Market Cap Num. of Trans. Avg. Trans. Avg. Vol. Avg. Pr.

Capgemini 5,245 258,998 6,475 306 35.89
Technip 5,289 181,423 4,536 206 51.02
AF-KLM 5,686 206,466 5,162 469 17.56
STM 6,135 121,228 3,031 2,130 7.66
Lagardere 6,352 122,307 3,058 211 49.53
Vallourec 8,155 330,792 8,270 91 139.81
Alcatel 8,387 205,301 5,133 3,524 3.90
Essilor 8,744 134,672 3,453 232 39.15

Michelin 9,521 296,959 7,424 218 63.38
Accor 10,635 236,324 5,908 265 48.00
Peugeot 11,505 278,311 6,958 308 49.41
Ppr 12,020 175,130 4,378 153 90.85
Eads 12,218 270,256 6,756 704 16.67
Unibail 13,329 189,694 4,742 106 162.10
Bouygues 13,983 274,566 6,864 269 45.72
Pernod 14,301 186,605 4,665 172 69.19

Lafarge 19,009 281,096 7,027 110 151.13
Saint Gobain 19,328 379,089 9,477 274 51.15
Alstom 19,367 324,377 8,109 101 138.57
Renault 19,974 404,396 10,110 241 69.50
Schneider 20,093 346,825 8,671 186 77.65
Veolia 20,786 383,532 9,588 289 51.30
Vinci 22,299 310,050 7,751 276 45.03
Air Liquide 22,795 261,579 6,539 134 93.25

Vivendi 28,827 389,910 9,748 660 25.82
Danone 29,047 355,751 8,894 317 53.67
Crédit Agricole 32,727 399,358 9,978 777 18.45
Carrefour 34,448 308,801 7,720 361 47.13
Lvmh 34,540 310,584 7,764 228 68.57
Société Generale 36,174 803,620 20,090 407 70.80
Gdf 37,623 219,327 5,483 269 37.44
Axa 47,376 537,978 13,449 1,035 21.80

L’Oréal 49,131 279,003 6,975 194 80.39
Suez 54,333 422,244 10,556 435 41.48
France Télécom 55,568 492,229 12,306 1,034 22.47
BNP 57,864 690,621 17,266 353 60.57
Sanofi-Aventis 64,908 440,472 11,012 439 49.91
Arcelor 75,165 366,871 9,172 568 49.13
Edf 100,419 411,595 10,290 235 63.10
Total 112,685 591,689 14,792 545 48.79
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Figure 3.1: Frequency distribution of Dk (price change) and ∆tk (trade durations). The vertical scale has been reduced to make
the figure more intelligible; the bold number indicates either the frequency of Dk = 0 or the one of ∆tk = 0.

−10 −5 0 5 10
0

0.1

0.2

Ticks

R
el

a
ti

v
e

fr
eq

u
en

cy

Frequency plot of Dk - Bouygues

0.631

−10 −5 0 5 10
0

0.1

0.2

Ticks

R
el

a
ti

v
e

fr
eq

u
en

cy

Frequency plot of Dk - BNP

0.613

5 10 15 20 25 30
0

0.1

0.2

Seconds

R
el

a
ti

v
e

fr
eq

u
en

cy

Frequency plot of ∆tk - Bouygues

0.537

5 10 15 20 25 30
0

0.1

0.2

Seconds

R
el

a
ti

v
e

fr
eq

u
en

cy

Frequency plot of ∆tk - BNP

0.608

63



Figure 3.2: 30-lag correlogram of Dk. The straight lines represent confidence interval at
99%.
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The upper panel of Figure 3.1 displays the frequency distribution of the price variation

Dk, while the lower panel shows the frequency distribution of trade durations (∆tk)

expressed in seconds. The upper panel of Figure 3.1 shows a noticeable concentration

of values corresponding to Dk = 0, similar to previous researches in this field, such as

Liesenfeld et al. (2006). This stylized fact is related to the specificity of high-frequency

financial data, which report transactions occurring within very short time intervals. This

feature clearly rules out the possibility of large and frequent jumps in prices, especially

for highly liquid stocks where the depth of the LOB assures the order execution within

limited price skips. Some stocks exhibit certain peculiarities, wherein the distributions

are either slightly skewed or they are characterized by thicker tails and higher dispersion.

Then, the lower panel of Figure 3.1 presents the frequency distribution of trade du-

rations. High-frequency data usually display very short durations between consecutive

transactions2, which is particularly true for liquid stocks as the ones of the CAC 40 in-

dex. The two plots in the lower panel exhibit a remarkable left-skewness, with a high

concentration of transactions occurring simultaneously or within very small time inter-

vals. Finally, Figure 3.2 provides the 30-lag correlogram of Dk that clearly shows a

2Transaction time is expressed as ‘hh:mm:ss’. For simultaneous observations at the level of time
seconds, the data set provides a code to chronologically sort the transactions, independently of the time
of execution.
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negative autocorrelation pattern, at least for the first lags. This negative autocorrelation

is a standard feature that occurs in the whole sample, and it has been normally justified

through the fluctuations between bid and ask quotes (Roll, 1984).

3.3.2 The categories of traders

For each observation, the data set displays a code to identify the different categories of

traders:

• ‘1’ is the code that is attributed to transactions executed on behalf of retail investors;

• ‘2’ is the code that refers to transactions executed by operators authorized to trade

in the Paris Bourse. This code includes banks or other financial intermediaries,

called ‘Sociétés de Bourse’;

• ‘6’ is the code that classify transactions executed by ‘fournisseurs de la liquidité’,

i.e. agents with liquidity duties;

• ‘7’ is the code that categorizes the transactions executed by another kind of fi-

nancial intermediaries called ‘Filiales de la Société de Bourse’. They are financial

institutions similar to the traders classified with code ‘2’.

Generally speaking, all the transactions are executed by authorized operators, i.e. stock

members, but only trades coded with ‘1’ are executed on behalf of retail investors. Obser-

vations classified with ‘2’ or ‘7’ refer to transactions executed by financial intermediaries

in their own interest. The code is available for both sides of the market, such that the

buyer and the seller can be of the same kind of operator or they can belong to different

categories. Since this data set involves highly liquid stocks, there is usually no need for

a liquidity provider, and the number of transactions registered with code ‘6’ is generally

absent or extremely limited. All the transactions registered with ‘1’ are attributed to

retail or uninformed traders, while all the transactions registered with ‘2’ and ‘7’ are

placed in the category of institutional or informed traders. This is a plausible distinction
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that follows the one proposed by Chakravarty (2001) in his analysis of stealth trading at

the NYSE. For our analysis, we recall that Euronext LOB has been completely anony-

mous starting from 2001, and the traders have no longer been able to view, not even

with delay, the operator that is actually trading or the category he belongs to. Then,

this classification represents an ex-post sorting, as traders’ identity is concealed to all the

market participants.

To minimize the presence of outliers in the data, we exclude from the sample all the

records where Dk is larger than 35 in absolute value. Moreover, we also eliminate the

observations where at least one trader is the liquidity provider. Indeed, the liquidity

provider may be called to trade because of contractual duties and his attribution to the

category of informed or uninformed agents would be questionable. However, this choice

should not affect the results, as it involves a very small amount of observations, sometimes

even none3.

3.4 The Empirical Specification

This section details the empirical specification and describes the methodology used to

estimate the trader effect. We employ, as far as possible, a homogeneous specification for

the whole sample, though each stock exhibits some specific peculiarities with respect to

either the distribution of Dk or the significant lags of the explanatory variables.

3.4.1 Preliminary issues

As emphasized by HLM (1992), the first point to be examined concerns the number

of m intervals used to classify the price changes. The objective is to find the optimal

compromise between price resolution and estimation issues. Indeed, a large m turns

out to be problematic for threshold estimation in extreme classes that collect only a

3For each stock, the maximum percentage of dropped observations is less than 0.05%. On the other
hand, and to maintain uniformity within the data set, we fully exclude Dexia because of a significant
number of transactions classified with ‘6’.
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few observations. Conversely, selecting a small m makes price resolution unintelligible.

Taking this trade-off into account, a feasible strategy to single out the optimal m consists

of being driven by graphical and descriptive analysis. The aggregation of data in classes

of Dk is performed according to the frequency plot and the distribution percentiles, with

intervals that replicate the data dispersion around the central values, see Figure 3.1. For

the whole sample, the number of m intervals is set equal to 5, 7 or 9, according to the

distribution of Dk; a distinct class is always reserved to Dk = 0, as it includes most of

the observations4.

A second point to be discussed is related to the frequency used for sampling the data.

The possible options are the clock-time convention, where data are selected according

to a fixed sampling frequency (such as 5-minute intervals) or the event-time convention

where all the transactions are included in the sample. In the last case, the inference

is complicated by the fact that transaction times cannot be considered as independent

and identically distributed. However, Easley et al. (1997) point out that clock-time

stationarity in studies that examine information-based issues could seriously affect the

results: a fixed sampling approach implies the loss of the information content included in

the time pattern between market transactions. Since the main objective of this paper is

to examine the impact on transaction prices caused by informed and uninformed traders,

the transaction-time approach seems to be the natural choice. This is coherent with

Hasbrouck (2007) who states that neither of the two approaches is preferable, and he

suggests to set the sampling frequency according to the aim of the research.

3.4.2 Model regressors

For the empirical specification, the most relevant issue is regarding the explanatory vari-

ables used to express the impact of traders on transactions prices. For this purpose, we

introduce a model regressor that combines the transaction volume and the trader cate-

4We also replicate the estimation by using different partitions for each stocks, and the results are only
qualitatively affected.
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Table 3.2: Transaction volumes and dummies for traders’ identities. Data are from BNP.

Buyer Seller
Volume U I U I

38 1 0 0 1
62 1 0 1 0
113 0 1 1 0
2,950 0 1 0 1

Table 3.3: Transaction volumes and trader combinations. Data are from BNP.

Trader combinations
Volume BUSUVol BUSIVol BISUVol BISIVol

38 0.000 38 0.000 0.000
62 62 0.000 0.000 0.000
113 0.000 0.000 113 0.000
2,950 0.000 0.000 0.000 2,950

gories. More precisely, for each observation we create four new variables according to the

following steps:

• We generate two dummy variables, ‘I’ and ‘U’, that are equal to one if the transac-

tion was executed by an informed-institutional trader or an uniformed-retail agent,

respectively. These variables are defined for both sides of the market in order to

specify whether the agent acts as a buyer or as a seller; obviously, the trader cate-

gory of the two market sides may be the same or different.

• For each transaction, we multiply the volume by the trader dummies for the two

market sides. In this way, we obtain four new variables which simultaneously express

the traded volume and the types of investors behind each transaction.

As an example, consider Table 3.2 where we list four representative transactions from

BNP; the table shows the volume, expressed as the number of exchanged shares, and

the two dummy variables which identify the type of trader5. The first row of the table

5For the empirical application, we mean-normalize the transaction volume in order to moderate the
scale effect on the coefficients.
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displays a transaction volume equal to 38, the buyer is uninformed (U=1), and the seller

is informed (I=1). The second row shows an exchanged volume of 62, with uninformed

agents (U=1) on both market sides, and so on. By matching all the potential combina-

tions of traders, we obtain Table 3.3, where BUSUVol refers to transactions in which both

the buyer and the seller are uninformed, BUSIVol is for transactions where the buyer is

uninformed and the seller is informed, BISUVol is for transactions where the buyer is

informed and the seller uninformed, and BISIVol for transactions where both agents are

informed traders. The first row of Table 3.3 displays the case of an uninformed buyer and

an informed seller: BUSIVol is set equal to the traded volume, while the other variables

are equal to zero. An analogous association is easily extended to the other three rows.

It is immediately noticeable that only one combination of traders is responsible for the

execution of each transaction, while the other combinations are marked as inactive, with

zero volume. In this way, we emphasize the information content of volume, meanwhile

associating a sort of sign to each observation. Under a broader perspective, this strategy

reminds of the empirical papers where observed volume is connoted by the market direc-

tion (e.g. Hasbrouck , 1991). We label the impact of traders on transaction prices as the

‘trader effect ’, and we distinguish the four variables just described between ‘cross trading’

and ‘parallel trading’ variables. Cross trading is the circumstance where the operators on

the two sides of the market are different (BUSIVol and BISUVol), while parallel trading

(BUSUVol and BISIVol) considers the case of the same trader category.

The following regressors are included as controls in the mean specification:

• Inter-trade durations (∆tk = tk − tk−1) expressed in seconds. The aim of this

variable is to account for clock-time effects on the conditional mean of D∗
k. This

is in line with HLM (1992), who use transaction-time events, but they allow for

clock-time effects by including the inter-trade durations.

• Seasonality. The presence of an intraday pattern is modelled by means of a Fourier
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series according to the following sum

p∑

i=1

cos(2πiδk) + sin(2πiδk).

where δk expresses the daily ratio between the time elapsed from 9.00 A.M. and

the total duration of the continuous auction. The intraday seasonality has been

especially noticed for volume or volatility patterns and it has been widely analyzed

in the previous research, see Easley and O’Hara (1997) among others. Nevertheless,

we also add a Fourier term in the conditional mean specification to account for

possible nonlinearities in the evolution of price variations.

• Init, which identifies the sign of each transaction. In the empirical microstructure

literature, several measures exist to determine the direction of a trade, i.e. to define

if a transaction was initiated by a buyer or a seller. In this paper, we adopt the ‘tick-

test’ algorithm proposed by Lee and Ready (1991), which represents the reference

approach in this field. Init is equal to +1 when the transaction is buyer-initiated,

and equal to -1 when it is seller-initiated.

3.4.3 Model specification and identification issues

This part discusses the exact specification of the mean and of the variance of the model,

as well as the constraints required for a full identification of the parameter vector γ′. The

optimal specification is selected according to model parsimony, parameters significance,

and information criteria. We choose four lags of Dk, two lags of Init, a p = 2 for the

seasonal component, and two lags of the four variables created to capture the trader

effect. We adopt information criteria also to define the best specification for the trader

effect in terms of lags to be accounted for, with possible alternatives between lags 1-2 or

lags 2-3. We exclude contemporaneous values because of the endogeneity between volume

and price. We limit to these two options, as including more than three lags is difficult

to justify even in a high-frequency context, where algorithmic trading assures real time

70



reactions to new information. Moreover, lags greater than three are often not significant

anyway. The choice between the two couples of lags is mainly dictated by the better fit

of the model indicated by the information criteria; however, the estimates are generally

similar even under the discarded option.

Finally, the issue relative to identification constraints is strictly related to the variance

specification. In the basic model, we employ a variance normalization that assumes no

explicit design for σk. Without any restriction, it is impossible to achieve the model

identification, provided that there exist multiple combinations of the parameters which

leave the likelihood unchanged. When an explicit form of heteroskedasticity is not taken

into account, model identification is achieved by excluding the constant from the list of the

regressors, or by fixing a threshold, αj. We prefer to exclude the constant, in line with

the discussion on interval regression. The identification constraints get slightly more

complicated whenever one decides to consider a set of explanatory variables affecting

the variance σk. Indeed, the inclusion of the scale dimension increases the number of

parameter combinations that could generate the same value of the objective function. In

this case, the issue of identification is solved by fixing two thresholds or by excluding the

constant both from the mean and from the variance of the error term. This last option

is the one adopted in Section 3.7, where some alternative specifications are considered as

a robustness test.

3.5 Results

This section analyses the ML estimates of the basic ordered probit model, and all the

following discussion is based on a significance level of 1%. The choice of such a threshold

is motivated by the size of the data set used in this research and it is not a minor point.

In fact, it becomes easier to reject any null hypothesis when the number of observations

is so impressive; however, our findings are generally confirmed even at lower significance

thresholds. Table 3.4 displays the estimates for two representative stocks, Bouygues and
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Table 3.4: ML estimates of the ordered probit model, with p-values in parentheses. The
table shows the results for Bouygues and BNP. The lags used for the estimation of the
trader effect are indicated in brackets.

Bouygues BNP
Variable Estimate[1,2] P-value Estimate[2,3] P-value
Dk−1 -4.01e-02 (0.00) -4.41e-02 (0.00)
Dk−1 -3.48e-02 (0.00) -3.48e-02 (0.00)
Dk−3 -1.51e-02 (0.00) -1.24e-02 (0.00)
Dk−4 -4.43e-03 (0.00) -5.11e-03 (0.00)
∆tk -7.89e-04 (0.00) 5.78e-04 (0.03)
Initk−1 -6.70e-02 (0.00) -6.90e-02 (0.00)
Initk−2 6.79e-02 (0.00) 6.65e-02 (0.00)
Cos(2πδ) -5.44e-03 (0.08) 1.93e-03 (0.31)
Cos(4πδ) -4.23e-03 (0.16) -1.92e-03 (0.31)
Sin(2πδ) -4.36e-03 (0.15) 6.06e-04 (0.75)
Sin(4πδ) -7.29e-03 (0.00) -1.91e-03 (0.31)
BUSUVol(k-i) 3.16e-03 (0.11) 4.19e-04 (0.72)
BUSUVol(k-j) -1.94e-03 (0.35) -5.25e-04 (0.66)
BUSIVol(k-i) -1.30e-02 (0.00) -7.29e-03 (0.00)
BUSIVol(k-j) -1.64e-02 (0.00) -8.75e-03 (0.00)
BISUVol(k-i) 2.24e-02 (0.00) 1.20e-02 (0.00)
BISUVol(k-j) 1.72e-02 (0.00) 1.26e-02 (0.00)
BISIVol(k-i) 1.54e-03 (0.44) 1.00e-04 (0.93)
BISIVol(k-j) -1.71e-03 (0.39) -6.95e-04 (0.57)

BNP. We select these two stocks to illustrate the two lag alternatives, but the results can

be generalized to the rest of the sample. The complete set of estimates is available upon

request. The main findings are summarized as follows:

• At least three of the four lags of Dk included in the mean are negative and sta-

tistically significant. This appears to be a general outcome which holds for the

whole sample. This result is not unexpected and it reflects the pattern displayed

by the correlogram of Dk; as highlighted in previous studies (e.g. Roll, 1984), this

is consistent with the occurrence of reversals in transaction prices.

• The interpretation of ∆tk is not immediate as there is no homogeneous outcome

in the whole sample. Generally speaking, it is hard to clearly outline the direction

of duration effects on the conditional mean. This is evident in Table 3.4, where
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Bouygues exhibits a negative coefficient for ∆tk, while for BNP it becomes positive,

though not statistically significant at 1%. These results can be extended to the

full data set, and they match the ones provided in HLM (1992) who also find an

ambiguous impact for clock-time effects.

• Table 3.4 shows that the coefficients of the Fourier series are almost never significant

at 1%. A LR test to fully exclude the seasonal component from the conditional mean

rejects the null hypothesis only for a limited number of cases (e.g. Bouygues, Vinci,

or Crédit Agricole). On the whole, the seasonality effect for price variations seems

definitely weak, at least with respect to the intraday pattern which is traditionally

observed for trade durations or transaction volume.

• The variable Init always displays a negative coefficient for the first lag, and either

a positive or a non-significant coefficient for the second lag. The inclusion of Init in

the list of regressors should account for the effect of the bid-ask bounce, and in HLM

(1992) all the lags of this variable exhibit a negative coefficient. This discrepancy

could be attributed to the different approaches adopted to classify the transactions.

HLM (1992) employ an indicator variable that discriminates using quote data, while

we adopt the tick-test algorithm, since only the transaction data are available in

our sample. Actually, this could reduce the capacity of Init to capture the bid-ask

bounce.

• As to trader effect variables, Table 3.4 presents a homogeneous outcome for the two

stocks, which can be generalized to the whole sample. Table 3.4 shows that cross

trading is always significant at 1%, while parallel trading exhibits no significant

estimates for both lags. However, it is particularly interesting to note the sign dis-

played by BUSIVol and BISUVol. According to our estimates, when an informed

agent sells to an uninformed one, the effect on the conditional mean is negative;

the opposite holds when an informed trader buys from an uninformed one. Table

3.5 summarizes these findings for the whole sample: the rows indicate the number
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Table 3.5: Whole sample results for trader effect variables. The table provides the
percentage of stocks falling in each row-column combination.

# Signif. Lags BUSUVol BUSIVol BISUVol BISIVol
0 97.44 2.56 7.69 89.74
1 2.56 10.26 7.69 10.26
2 0 87.18 84.62 0

of significant lags, while the columns report the trader effect variables. The cells

report the percentage of stocks falling in each row-column combination; obviously,

the table is built by considering the case of a negative coefficient for BUSIVol and

a positive one for BISUVol. For parallel trading, Table 3.5 shows that both lags of

BUSUVol are never significant in 97.44% of the sample, while BISIVol is not signif-

icant for both lags in 89.74% of the cases, and it exhibits one significant coefficient

only for a small fraction of the series. On the other hand, cross trading displays the

opposite result. Indeed, more than 80% of the stocks presents a significant coeffi-

cient for both lags of BISUVol, and this percentage almost reaches the 90% in the

case of BUSIVol; additionally, the fraction of stocks in which both lags of cross trad-

ing are not significant is generally marginal6. Altogether, the estimates in Tables

3.4 and 3.5 provide evidence of a trader-related effect, with stock prices following

the direction of institutional trading. By reasonably assuming that institutional

investors benefit from a large amount of information (e.g. Chakravarty, 2001), our

results are coherent with a price effect generated by informed-based trading. Quite

interestingly, we find no significant result for BISIVol; in this case, it seems that

the market does not single out a prevailing impact between the two institutional

pressures. On this basis, it is not surprising to get non-significant estimates when

both traders are uninformed, as these investors are mostly liquidity-motivated. In

terms of market efficiency, these findings show that private information is rapidly

incorporated into market prices. The effect does not only involve the conditional

6EdF is the only stock with two non-significant lags of BUSIVol (2.5%), while Alcatel, Ppr, and STM
are the three stocks with two non-significant lags of BISUVol (7.69%).
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mean, but the full conditional distribution, as will be discussed in Section 3.6.

Generally speaking, these results may appear puzzling since the traders’ identity is

concealed to all market operators. Even though the market ‘absorbs’ the behaviour

of informed traders, the resulting impact cannot be explicitly driven by an imitat-

ing strategy. Then, different sources of information should be useful to detect the

trading by institutional agents (e.g. clustering of transactions, transaction volume),

and we postpone this issue to Section 3.8, where it is examined further.

3.6 Postestimation results

This section concentrates on postestimation issues for the basic ordered probit. Particular

attention is given to test the presence of serial dependence in the residuals, in order to

evaluate the dynamic specification of the model. Moreover, we also discuss the marginal

effects associated with the traders’ activity. In particular, we examine the marginal

response probabilities for the ordered probit model, and we simulate the price impact

under different market scenarios.

3.6.1 Autocorrelation issues

The investigation of residual diagnostics is not immediate in the case of latent variable

models, as the dependent variable is not observed. The approach that is usually adopted

refers to the concept of generalized residuals defined in Gourieroux et al. (1985). In the

case of the ordered probit model, given that Dk = dj, the generalized residuals ǫ̂k are

computed as:

ǫ̂k = E[ǫk|Dk = dj, Xk,Wk; γ̂] = σ̂k
φ(c1)− φ(c2)

Φ(c2)− Φ(c1)
,

c1 =
1

σ̂k

(
α̂j−1 −X′

k
β̂
)

c2 =
1

σ̂k

(
α̂j −X′

k
β̂
)
.
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where γ̂ is the ML estimation of the parameters, and φ represents the standard nor-

mal probability density function. From the previous formula, it is straightforward to

compute a test that verifies the presence of autocorrelation in the residuals, and a full

description about the score statistics of interest can be found in HLM (1992). Under the

null hypothesis of no serial correlation, the score statistics has a χ2
1 distribution:

ξ̂j =

(∑n

k=j+1 D̂k−j ǫ̂k

)2

∑n

k=j+1 D̂
2
k−j ǫ̂

2
k

(3.3)

D̂k = X ′
kβ̂ + ǫ̂k.

Equation 3.3 can be used to test any order j of serial correlation in the residuals, and

it keeps the same number of degrees of freedom, regardless of the value of j. Table 3.6

displays the values of ξ̂j, j = 1, ..., 8 for Bouygues and BNP. For j = 1, ..., 4, the table

shows that ξ̂j is always less than 6.635, which represents the critical value at 1% for a χ2
1

distribution. After the fourth lag, the outcome of the score statistics is not as uniform,

though we generally find a rejection of the null hypothesis of no serial correlation. This

result is not surprising if associated with the presence of four lags of Dk in the mean

specification, as HLM (1992) similarly pointed out. In considering the whole sample, a

joint test for the absence of autocorrelation at lag 4 is rejected for almost half of the

stocks. HLM (1992) obtain similar findings, even though our research uses a number

of observations that is considerably larger. The size of the data set could represent a

first explanation for the failure to reject the null hypothesis, suggesting that a smaller

significance level is more appropriate. Alternatively, this finding could be attributed to

the excessively limited dynamics of the estimated model, and Section 3.7 checks for this

possibility. We compute the score statistics in the case of an extended probit model,

considering a larger number of lags for all the mean regressors, as well as powers of the

trader effect variables. However, even in this case, almost half of the sample still rejects

the null of no serial correlation for the first 4 lags. Moreover, the small benefit observed
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Table 3.6: Score statistics ξ̂j for the null hypothesis of no serial correlation in the ordered
probit disturbances.

Lags Bouygues BNP

ξ̂1 0.245 0.925

ξ̂2 2.300 5.081

ξ̂3 6.105 3.687

ξ̂4 4.570 1.456

ξ̂5 6.405 19.842

ξ̂6 8.388 25.431

ξ̂7 17.533 24.996

ξ̂8 2.173 44.843

in terms of less autocorrelated residuals is generally overwhelmed by the loss of model

parsimony, and the extended probit is usually rejected by a LR test with respect to the

basic specification.

3.6.2 Marginal effects

For the basic ordered probit, we present the change in the response probability as marginal

effects. Indeed, when the dependent variable has not a quantitative value, the marginal

response probability is more appropriate than the marginal effect on the conditional

mean. This is the case of a discrete dependent variable model as the ordered probit, for

which we compute the marginal response probabilities as:

∂p(D = dj|X̄, β̂)

∂Xv

=





−β̂vφ(αj − X̄′β̂) if j = 1,

β̂vφ(αj − X̄′β̂) if j = m,

β̂v[φ(αj−1 − X̄′β̂)− φ(αj − X̄′β̂)] if 1 < j < m

(3.4)

where X̄ represents the vector of means of the model regressors, Xv stands for a generic

v − th explanatory variable, and β̂v serves as the corresponding estimated coefficient.

For a marginal variation in any of the regressors, the marginal response probabilities
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Table 3.7: Marginal response probabilities for Bouygues. The table displays the estimates for the trader effect variables; p-values
are reported in parentheses. The headers indicate the j − th interval of the Dk distribution.

1st Interv. 2nd Interv. 3rd Interv. 4th Interv.

Marg. P-value Marg. P-value Marg. P-value Marg. P-value

BUSUVol(t-1) -2.51E-04 (0.11) -2.93E-04 (0.11) -3.00E-04 (0.11) 1.28E-05 (0.14)
BUSUVol(t-2) 1.54E-04 (0.35) 1.80E-04 (0.35) 1.84E-04 (0.35) -7.85E-06 (0.36)
BUSIVol(t-1) 1.04E-03 (0.00) 1.21E-03 (0.00) 1.24E-03 (0.00) -5.29E-05 (0.00)
BUSIVol(t-2) 1.31E-03 (0.00) 1.53E-03 (0.00) 1.56E-03 (0.00) -6.67E-05 (0.00)
BISUVol(t-1) -1.78E-03 (0.00) -2.08E-03 (0.00) -2.13E-03 (0.00) 9.09E-05 (0.00)
BISUVol(t-2) -1.36E-03 (0.00) -1.59E-03 (0.00) -1.63E-03 (0.00) 6.96E-05 (0.00)
BISIVol(t-1) -1.22E-04 (0.44) -1.43E-04 (0.44) -1.46E-04 (0.44) 6.23E-06 (0.45)
BISIVol(t-2) 1.36E-04 (0.39) 1.59E-04 (0.39) 1.63E-04 (0.39) -6.93E-06 (0.40)

5th Interv. 6th Interv. 7th Interv.

Marg. P-value Marg. P-value Marg. P-value

BUSUVol(t-1) 2.87E-04 (0.11) 2.91E-04 (0.11) 2.53E-04 (0.11)
BUSUVol(t-2) -1.76E-04 (0.35) -1.78E-04 (0.35) -1.55E-04 (0.35)
BUSIVol(t-1) -1.19E-03 (0.00) -1.20E-03 (0.00) -1.05E-03 (0.00)
BUSIVol(t-2) -1.50E-03 (0.00) -1.51E-03 (0.00) -1.32E-03 (0.00)
BISUVol(t-1) 2.04E-03 (0.00) 2.06E-03 (0.00) 1.80E-03 (0.00)
BISUVol(t-2) 1.56E-03 (0.00) 1.58E-03 (0.00) 1.38E-03 (0.00)
BISIVol(t-1) 1.40E-04 (0.44) 1.42E-04 (0.44) 1.23E-04 (0.44)
BISIVol(t-2) -1.56E-04 (0.39) -1.57E-04 (0.39) -1.37E-04 (0.39)
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measure the change in the probability of observing a specific outcome dj. Table 3.7

shows the marginal response probabilities for Bouygues, but the results can be extended

in a similar way to the whole sample and they are available upon request. We only

consider the variables of interest for this research, i.e. the ones which refer to the trader

effect. Table 3.7 consists of seven columns, one for each interval used to classify the

price variations of Bouygues. Clearly, the number of marginal response probabilities to

be computed depends on the intervals used to partition the frequency distribution of Dk.

In the case of Table 3.7, the first three columns consider the marginal effect for negative

price variations, column 4 refers to null price variations, while the last three columns are

devoted to positive values of Dk. According to Table 3.7, the response probability is not

significant for parallel trading across all the seven intervals, which confirms the estimation

results provided in Table 3.4. When parallel trading occurs, there is no significant impact

on the direction of the trading process. This supports the conclusion that the market

does not recognize an informative signal when both traders are uninformed, or it is unable

to distinguish a leading trading path when both buyer and seller are informed agents.

Conversely, the marginal effect for cross trading is significant, but with opposite patterns

for BUSIVol and BISUVol. BUSIVol exhibits a positive sign in the first classes which

collect negative price variations, while the marginal effect becomes negative for intervals

that include positive price variations; the opposite pattern is observed in the case of

BISUVol. The implication in terms of market direction is coherent with the previous

analysis. When an informed trader buys, the probability of a positive price variation

augments in the following transactions; meanwhile, the probability of a negative price

change decreases. Clearly, the reverse conclusion is valid when informed traders sell to

an uninformed buyer. As to the central class, the marginal effect for cross trading is

not uniform in the whole sample; however, it is generally small or even not significant.

On the whole, the estimates confirm the presence of a significant trader effect, with the

market moving along the trading direction of informed agents.

The previous analysis is more easily appreciated by looking at Figures 3.3 and 3.4.
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Figure 3.3: Plot of marginal response probabilities for lagged values of BUSUVol and BISIVol, across distribution intervals of Dk.
The plots are referred to Bouygues. The central solid line represents the estimated marginal effect, while the two dashed lines define
confidence intervals at 99%.
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Figure 3.4: Marginal response probabilities for lagged values of BISUVol and BUSIVol, across distribution intervals of Dk. The
plots are referred to Bouygues. The central solid line represents the estimated marginal effect, while the two dashed lines define
confidence intervals at 99%.
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The former plots the marginal response probabilities for BUSUVol and BISIVol; the lat-

ter displays the same statistics for BUSIVol and BISUVol. The four panels in Figure 3.3

shows that the marginal effect is never significant, and it fluctuates between wide confi-

dence intervals. On the other hand, in the case of cross trading, the marginal effects are

estimated quite accurately and they exhibit an opposite swinging path in correspondence

of Dk = 0. From Figure 3.4, we also notice that the response probability computed for

the class Dk = 0 is very close to zero, but still significant, at least for Bouygues. Al-

though the marginal effects could appear fairly small in terms of the size of the impact,

we recall that our estimates are based on mean-normalized transaction volumes, and the

marginal effects represent probability variations, which partially explains the small im-

pact. Moreover, the response probabilities are obtained by considering just a few lags of

marginal variation in the explanatory variables. Looking at the average number of daily

transactions in Table 3.1, it would be unreasonable to expect a sizeable impact, even in

the case of large transactions.

3.6.3 Price impact analysis

Besides the response probabilities, we also examine the price impact as the effect of a

current transaction on the conditional distribution of the following price change. We

adopt the approach described in HLM (1992), i.e. we assume some specific values of

the model regressors and we compute the conditional probabilities of observing Dk = dj.

Then, we use the conditional probabilities to evaluate the impact of a particular trading

sequence both on the conditional mean and the distribution of Dk. To proceed, we set

∆tk and the variables of the Fourier series to their sample mean, while for lag of Dk

and for Init we consider three alternative scenarios, as defined in Table 3.8. We follow a

similar strategy for BUSUVol, BUSIVol, BISUVol and BISIVol, bearing in mind that only

one combination is different from zero for each transaction. Without loss of generality, we

consider a sequence of two lags of the same regressor, and we assume five distinct values

from the distribution of transaction volume, corresponding to the 5th, 25th, 50th, 75th,
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Table 3.8: Scenarios for the price impact analysis.

Variable Scenario 1 Scenario 2 Scenario 3
Dk−1 0 2 1
Dk−2 -1 0 -1
Dk−3 0 0 0
Dk−4 1 -3 0
Initk−1 -1 1 -1
Initk−2 1 -1 -1

Table 3.9: Distribution percentiles of transaction volume. The table reports the number
of shares.

Percentile
Stock 5th 25th 50th 75th 95th
Bouygues 15 84 190 302 804
BNP 16 97 200 400 1,083

and 95th percentile; Table 3.9 reports the percentiles for Bouygues and BNP. Clearly, the

data set does not generally display two consecutive lags of the same regressor with an

identical transaction volume; however, this is just a simplifying assumption for illustrative

purposes. Indeed, we also try different values and alternative combinations of the lags

of BUSUVol, BUSIVol, BISUVol, and BISIVol. The price impact of cross trading is

still evident, though it is obviously less remarkable for a small transaction size or for a

combination of lags between cross trading and parallel trading. Table 3.10 presents the

effect on the conditional mean evaluated under the three scenarios. Each column provides

the price impact as the conditional mean difference with respect to the 5th percentile;

the difference is expressed as the percentage of the average transaction price displayed

in Table 3.1. As an example, the first entry of Table 3.10 is 0.001 which corresponds

to
E[D25th

k
]−E[D5th

k
]

45.72
· 100. Table 3.10 confirms the results discussed in Section 3.5 for cross

and parallel trading. Informed traders affect the conditional mean when the counterpart

of the exchange is an uninformed agent. The sign of the impact follows the direction of

institutional trading, while the size of the effect increases along with transaction volume.

On the other hand, the effect of parallel trading is very small, even for a large volume
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Table 3.10: Price impact on the conditional mean. The table shows the conditional mean difference with respect to the 5th
percentile; the difference is expressed as the percentage of the average transaction price. The column header indicates the trader
effect variable used for the price impact analysis.

Scenario 1
Bouygues BNP

BUSUVol BUSIVol BISUVol BISIVol BUSUVol BUSIVol BISUVol BISIVol
25th perc. 0.001 -0.017 0.023 0.000 0.000 -0.006 0.010 0.000
50th perc. 0.002 -0.044 0.059 0.000 0.000 -0.014 0.022 -0.001
75th perc. 0.003 -0.071 0.096 0.000 0.000 -0.030 0.046 -0.001
95th perc. 0.008 -0.196 0.266 -0.001 -0.001 -0.083 0.128 -0.003

Scenario 2
Bouygues BNP

BUSUVol BUSIVol BISUVol BISIVol BUSUVol BUSIVol BISUVol BISIVol
25th perc. 0.001 -0.017 0.023 0.000 0.000 -0.006 0.010 0.000
50th perc. 0.002 -0.044 0.059 0.000 0.000 -0.014 0.022 -0.001
75th perc. 0.003 -0.072 0.096 0.000 0.000 -0.030 0.046 -0.001
95th perc. 0.008 -0.198 0.264 -0.001 -0.001 -0.084 0.128 -0.003

Scenario 3
Bouygues BNP

BUSUVol BUSIVol BISUVol BISIVol BUSUVol BUSIVol BISUVol BISIVol
25th perc. 0.001 -0.017 0.023 0.000 0.000 -0.006 0.010 0.000
50th perc. 0.002 -0.043 0.058 0.000 0.000 -0.014 0.022 -0.001
75th perc. 0.003 -0.071 0.096 0.000 0.000 -0.030 0.046 -0.001
95th perc. 0.008 -0.195 0.263 -0.001 -0.001 -0.083 0.127 -0.003
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size. Actually, we recognize that the price impact is generally small for cross trading too.

Nevertheless, the magnitude of our estimates seems in line with the results reported in

HLM (1992); moreover, the previous remark on the size of marginal response probabilities

also applies in this case. Interestingly, the results reported in Table 3.10 appear mostly

influenced by the trader effect variables. In fact, under the same combination of traders,

the estimates are quite similar across the three scenarios.

Finally, we display in Figure 3.5 and 3.6 the price impact on the whole conditional

distribution. The two figures provide the estimated conditional probabilities for Bouygues

and BNP, and we reduce the scale of the y-axis to make the effect on the tails of the

distribution more appreciable. Actually, this is not a big loss as the price impact for

the central interval is almost negligible, in line with the previous discussion for marginal

effects. To emphasize our results, we show the conditional probabilities computed for a

transaction volume equal to the 5th and the 95th percentile. We focus on these percentiles

as they represent two opposite cases in terms of transaction size. Nevertheless, the

principle of our analysis also extends to other trading volumes, though the magnitude of

the effect is clearly smaller. The upper plots of Figure 3.5 and 3.6 display the price impact

for BUSUVol and BISIVol; the effect is proven to be extremely small, independently of

the transaction size. Conversely, when cross trading is taken into account, we observe

a shift in the conditional distribution of price variations. The impact exhibits the usual

asymmetric pattern for BUSIVol and BISUVol, and it is particularly evident in the tails of

the distribution. When informed traders sell, an increasing volume moves the conditional

distribution to the left, i.e. towards negative price variations. The opposite holds when

an informed traders buy from an uniformed agent; in this case, a higher volume shifts

the conditional distribution towards positive values of Dk.
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Figure 3.5: Price impact of a simulated trading pattern (Scenario 1). The graphs report the estimated ordered probit conditional
probabilities. The green bar is referred to the 5th percentile of the transaction volume distribution, while the orange bar is referred
to the 95th percentile.
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Figure 3.6: Price impact of a simulated trading pattern (Scenario 2). The graphs report the estimated ordered probit conditional
probabilities. The green bar is referred to the 5th percentile of the transaction volume distribution, while the orange bar is referred
to the 95th percentile.
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3.7 Robustness Tests

In this section, we examine three alternative empirical specifications to test the robustness

of our findings. More precisely, we re-estimate the model using an interval regression, an

ordered probit with an extended set of regressors, and an ordered probit with an explicit

form of heteroskedasticity. We take out OLS from the set of potential alternatives, the

motivation for which is twofold (see HLM, 1992). First, using OLS is equivalent to

assuming that the dependent variable has a continuous attribute, thus neglecting the

presence of price discreteness. Second, unlike the ordered probit, OLS does not capture

the nonlinearities present in the data. All the three specifications are only employed for

robustness purposes, and they are disregarded as models of reference. Indeed, the LR test

and the information criteria point to the basic ordered probit being preferable in terms

of model parsimony. Furthermore, when an explicit form of heteroskedasticity is taken

into account, the estimation time sensibly increases, though no quantitatively relevant

impact is encountered with respect to the basic findings.

The interval regression model simply replicates the original ordered probit specifi-

cation, but it excludes the partition thresholds from the vector of parameters to be

estimated. With respect to the basic model, the extended ordered probit includes seven

lags for Dk, two lags for ∆tk, an additional lag for the variables which measure the trader

effect, together with the corresponding squared values. The resulting mean specification

for a representative stock is7:

Xkβ =
7∑

i=1

βiDk−i + β8∆tk + β9∆tk−1 + β10Initk−1 + β11Initk−2+

β12cos(2πδk) + β13cos(4πδk) + β14sin(2πδk) + β15sin(4πδk)+

2∑

i=0

β16+iBUSUV olk−i−1 +
2∑

i=0

β19+iBUSIV olk−i−1 +
2∑

i=0

β22+iBISUV olk−i−1+

7The following formula refers to the case of lags [1,2]. It is immediate to extend it to the case of lags
[2,3].
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2∑

i=0

β25+iBISIV olk−i−1 +
2∑

i=0

β28+iBUSUV ol
2
k−i−1 +

2∑

i=0

β31+iBUSIV ol
2
k−i−1+

2∑

i=0

β34+iBISUV ol
2
k−i−1 +

2∑

i=0

β37+iBISIV ol
2
k−i−1. (3.5)

Equation (3.5) displays a considerable number of parameters to be estimated, which

contrasts with the principle of model parsimony. However, the inclusion of additional

regressors is motivated by robustness purposes. More precisely, we expect the trader

effect to persist even when the mean specification is enriched with additional lags or with

the second power of the explanatory variables.

The last specification employed as robustness check considers the following structure

for the variance of the error distribution:

Wkθ = θ1Dk−1 + θ2Dk−2 + θ3∆tk+

θ4cos(2πδk) + θ5cos(4πδk) + θ6sin(2πδk) + θ7sin(4πδk).

(3.6)

Equation (3.6) serves to verify that the inclusion of a scale factor only affects the mag-

nitude of the estimates, keeping the direction of the marginal effect unchanged8. We

include a seasonal component defined as the Fourier series adopted for the mean; this

helps to recover the stylized pattern displayed by the intraday volatility. The presence of

∆tk should account for clock-time effects in the variance, and similarly the lagged values

of Dk control for the impact of price variations. We consider the possibility of testing

the trader effect also in the variance, but some preliminary estimates show the absence

of a clear and unambiguous outcome. Moreover, the estimates are often non-significant,

suggesting that the asymmetric effect related to trader identity only influences the con-

ditional mean.

Table 3.11 shows the estimates for the three specifications discussed in this section,

limitedly to the trader effect variables. We still restrict the exposition to Bouygues and

8STATA OGLM routine developed by Richard Williams is employed to achieve ML estimates for this
model specification. The corresponding estimates are labelled as OGLM.
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Table 3.11: Estimates of the model specifications adopted for robustness check; p-values
are in parentheses. “OGLM” refers to the heteroskedastic ordered probit, “Interval”
to interval regression, and “Extended” to the extended ordered probit. The table only
displays the trader effect variables (the first two lags for the extended ordered probit
model). The lags used for the estimation are indicated in brackets.

Bouygues[1,2] BNP[2,3]

OGLM Interval Extended OGLM Interval Extended

BUSUVol(t-i) 2.80e-03 3.82e-03 3.50e-03 4.26e-04 9.71e-04 -8.19e-04
(0.21) (0.19) (0.25) (0.74) (0.55) (0.59)

BUSUVol(t-j) -1.48e-03 -1.93e-03 -3.74e-03 -1.07e-03 -1.39e-03 -6.07e-05
(0.50) (0.50) (0.22) (0.40) (0.39) (0.97)

BUSIVol(t-i) -1.02e-02 -2.34e-02 -1.57e-02 -5.19e-03 -1.17e-02 -1.03e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BUSIVol(t-j) -1.60e-02 -2.37e-02 -2.04e-02 -7.81e-03 -1.36e-02 -1.18e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BISUVol(t-i) 1.99e-02 3.66e-02 3.02e-02 9.82e-03 1.90e-02 1.55e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BISUVol(t-j) 1.57e-02 2.50e-02 2.04e-02 1.21e-02 1.97e-02 1.44e-02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

BISIVol(t-i) 1.49e-03 2.62e-03 4.25e-03 3.33e-04 7.34e-05 2.02e-03
(0.48) (0.35) (0.10) (0.80) (0.97) (0.20)

BISIVol(t-j) -1.91e-03 -2.61e-03 -2.71e-03 -4.87e-04 -9.64e-04 -1.13e-03
(0.36) (0.35) (0.30) (0.70) (0.57) (0.48)

BNP, though our findings extend to the whole sample. Table 3.11 displays the parameter

estimates for OGLM and interval regression, while the marginal effect on the conditional

mean is provided for the extended probit. We differentiate the extended probit model

because it also includes squared variables, so displaying only the coefficients of first-order

variables is essentially meaningless. Although the estimates are not comparable in terms

of magnitude, Table 3.11 shows full uniformity with the results displayed in Table 3.4.

For all the three specifications, the sole cross trading is significant, with a negative sign

for BUSIVol and a positive sign for BISUVol. On the contrary, parallel trading is never

significant, which reinforces the results discussed in Section 3.5 for the basic model. In the

extended probit model, cross trading variables generally present a significant estimate also

in the additional lag (not displayed in the table). However, and in line with the analysis

of Section 3.4, the rejection of the null hypothesis for cross trading at higher lags is not

so strong; on the other hand, the further lags included for parallel trading are almost
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always not significant. The two lags of Dk included in the variance of the heteroskedastic

ordered probit do not exhibit a homogeneous pattern in the whole sample, and a general

conclusion on the significance of these variables cannot be drawn. Conversely, and more

interestingly, the time and the seasonality components are generally significant for all the

stocks. Time always exhibits a positive sign, which is in line with the results discussed in

HLM (1992). This implies a positive clock-time effect for the conditional variance of D∗
k,

with time elapsing that is associated with an increasing variance. As to seasonality, a LR

test to jointly exclude the terms of the Fourier series is usually rejected, which confirms

the presence of some form of periodicity for the intraday volatility.

3.8 Informative Content of Observed Market Vari-

ables

Section 3.5 discussed the impact of informed and uninformed traders on market transac-

tions, and it shows that a significant effect exists only when the type of traders is different

on the two sides of the market. Since traders’ identities at Euronext are not available to

operators, neither in real time nor with delay, it is worth investigating more accurately

the possible causes of this result. In this section, we examine a wide set of LOB variables

and we explore their informativeness to detect informed-based trading.

3.8.1 The bivariate probit model for the identity of traders

In the case of anonymous markets, the investors cannot build their trading strategies by

replicating the behaviour of informed operators who are not identifiable; however, they

can extract the relevant information behind a specific trading pattern. To form a guess

on traders’ identities, we consider a comprehensive list of variables including inter-trade

durations, intraday trading patterns, market prices, and transaction volumes. Easley and

O’Hara (1992), Biais et al. (1995), Gourieroux et al. (1999), and Foucault et al. (2007)

91



among others, have highlighted the role of volume, time, stock price, spread, volatility,

and daily periodicity to identify the origin of transactions. All these variables represent

public information, as long as they are visible to market members, or easily recoverable

from the LOB. Some of these variables act as driving elements for automated trading

algorithms like the volume-weighted average price (VWAP) or the time-weighted average

price (TWAP), see Bialkowski et al. (2008) or Brownlees et al. (2010). To examine how

these variables can convey information on the traders’ identity, we adopt the following

bivariate probit model:

Pr(Dbk = 1|Xk) = Φ(X′
kβb + ǫ1k)

Pr(Dsk = 1|Xk) = Φ(X′
kβs + ǫ2k)

Cov(ǫ1k, ǫ2k) = ρ

where Xk includes the set of explanatory variables, βb and βs represent the parameter

vectors, ǫ1k and ǫ2k are Gaussian noises with correlation coefficient ρ, while Dbk and

Dsk are two dummy variables that are equal to one when the trader is informed on the

buy side and on the sell side, respectively. According to the classification introduced in

Section 3.3, Dbk = 1 when the buyer is coded with ‘2’ or ‘7’, while Dbk = 0 when the

buyer is coded with ‘1’; the same sorting immediately applies to the case of sellers as

well. As explanatory variables we consider:

• A set of time indicators which distinguish some specific moments of the continuous

trading session: Dopen, Dlunch, DSP , and Dclos. The variable Dopen identifies a

transaction that occurs between 9.00 A.M. and 9.30 A.M., Dlunch between 00.30

P.M. and 1.30 P.M., DSP between 3.30 P.M. and 4.00 P.M. and Dclos between

5.00 P.M. and 5.30 P.M.. These time dummies are associated with some critical

periods of the trading session and they have been frequently used to test different

microstructure hypotheses, see Dufour and Engle (2000) or Lo and Sapp (2010).

The opening and the closing 30 minutes (Dopen, Dclos) are usually characterized by
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high price volatility and frequent transactions, while the opposite generally holds

for the lunch time (Dlunch). DSP individuates the trades occurring within the first

30 minutes from the opening of the NYSE, when trading from institutional investors

is more frequent. We also include a variable δk, going from zero to one, as discussed

in Section 3.4 for daily seasonality; this regressor is intended to measure the time

evolution throughout the continuous auction.

• The time between consecutive transactions, ∆tk. In their seminal work, Easley and

O’Hara (1992) analyzed the informativeness of trade durations and conclude that

a lower trading frequency is usually associated with a lower presence of informed

investors in the market. This is explained by the fact that informed traders are

impatient to profit from their informational privilege; thus, a long trade duration

is likely to be associated with no private information in the market. This issue

has been widely tested (e.g. Dufour and Engle, 2000 or Manganelli, 2005) and we

expect ∆tk to exhibit a negative impact on the probability of informed trading.

• Transaction volume, wherein informativeness is expressed through V olume and

Dbig. A large order represents a sort of bet for traders, as it exposes the investors

to a higher potential loss; therefore, the volume is perceived by the market as a

reliable support for a particular trading strategy. It is commonly accepted in the

literature that institutional traders post larger orders compared to retail investors

(Easley and O’Hara, 1987). This stylized fact is confirmed in our sample, and the

average volume per category of investor is omitted only to save space. Several

reasons are behind this observation, e.g. institutional traders want to extensively

profit from their private information or they enter the market with larger orders, as

for the investment funds (Biais et al., 1995). Generally speaking, this means that

transactions displaying a sizeable volume are more likely executed by institutional

agents, and we expect a positive sign for both regressors. The variable Volume

captures the impact of quantity by including the number of shares per transaction,
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while the dummy variable Dbig explicitly identifies the sizeable transactions, as it is

equal to 1 if a transaction displays a volume larger than the average of the previous

15 minutes.

• Squared variation, SV . It is related to the definition of realized variance, which

represents one of the standard volatility measure with high-frequency data, see

Andersen et al. (2003). To define SV , we partition the trading session into intervals

of 15 minutes each, wherein SV is computed as the squared log difference between

transaction prices at the beginning and the end of each interval. SV is included

with one lag to avoid simultaneity bias, and it is multiplied by 100 to obtain a

comparable estimate in terms of magnitude. Clearly, the purpose of SV is far from

representing a perfect measure of the intraday volatility; however, we adopt SV

to investigate the relationship between large price variations and the presence of

informed-based trading. Several papers has examined this topic, see Daigler and

Wiley (1999), Ahn et al. (2001) or Manganelli (2005). Given that informed-based

trading tends to be highly clustered, if the price variation is mainly driven by the

liquidity traders, we expect a negative sign for SV , while the opposite holds when

the price variation is generated by a private information signal.

• The variable that identifies the side of the market which initiates a transaction Init,

defined exactly as in Section 3.4. The previous empirical research has emphasized

the role of informed traders as initiators of the market transactions, see Chakravarty

(2001). We expect Init to display an opposite effect on Dbk and Dsk , according

to the side of the market that has generated the transaction. Indeed, when the

transaction is buyer initiated, it should more likely have originated from an informed

buyer and the symmetrical hypothesis clearly holds for the sell side.

From the whole set of regressors, we distinguish time-related variables (Dopen, Dlunch,

DSP , Dclos, δk, and ∆tk), volume-related variables (V olume and Dbig), and, in a broader

sense, price-related variables (SV and Init). To proceed in the estimation, we split the
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time series of each stock into two subsamples, in order to produce in-sample and out-of-

sample estimates; without loss of generality, the first 80% of the observations is dedicated

to achieve in-sample results. We evaluate the forecasting performance of our model with

the quadratic probability score (QPS) defined by Diebold and Rudebusch (1989):

QPS = 1/T
T∑

k=1

2(Pk −Dk)
2 (3.7)

where Pk represents the bivariate probit probability forecast, and Dk is the corresponding

observed realization. The QPS ranges from 0 to 2, where 0 stands for the perfect model

prediction; this measure has been applied for bivariate probit model by Nyberg (2009).

In our context, what actually matters is detecting the presence of institutional trading

on at least one of the two market sides. This can be done by computing the following

marginal conditional probabilities:

Pbk = P11k + P10k

Psk = P11k + P01k

where Pbk measures the marginal conditional probability that the buyer is an informed

traders, while Psk measures the same statistics for the sell side. More precisely, Pbk is

the sum of two probabilities: P11k that expresses the likelihood of observing an informed

agent on both market sides, and P10k that considers the case of an informed buyer and

an uninformed seller. An analogous definition straightforwardly follows for Psk . We use

the two probability forecasts Pbk and Psk in Equation (3.7) to assess the accuracy of the

bivariate probit estimates.

3.8.2 The bivariate probit model: results

Table 3.12 provides the parameter estimates of the bivariate probit model for Bouygues

and BNP. A discussion of the results limited to these two stocks would not offer an
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Table 3.12: Bivariate probit estimates for Bouygues and BNP, with p-values in paren-
theses. The bottom lines display goodness-of-fit statistics.

Bouygues BNP
Buy Sell Buy Sell

Dopen -9.94e-02 -1.45e-01 -6.37e-02 7.60e-02
(0.00) (0.00) (0.00) (0.00)

Dlunch -3.93e-02 -4.28e-02 4.85e-02 2.06e-02
(0.00) (0.00) (0.00) (0.00)

DSP -1.37e-02 6.52e-02 -3.75e-02 -2.78e-04
(0.21) (0.00) (0.00) (0.97)

Dclos -6.89e-02 1.05e-01 4.57e-04 -7.51e-02
(0.00) (0.00) (0.95) (0.00)

δk 3.72e-06 3.27e-06 7.49e-06 1.08e-05
(0.00) (0.00) (0.00) (0.00)

∆tk -1.69e-03 -1.58e-03 -6.68e-03 -5.70e-03
(0.00) (0.00) (0.00) (0.00)

Volume 3.54e-06 2.17e-05 -1.73e-05 -3.59e-05
(0.64) (0.01) (0.00) (0.00)

Dbig 1.14e-01 8.59e-02 7.64e-02 5.77e-02
(0.00) (0.00) (0.00) (0.00)

Init 1.49e-01 -9.28e-02 4.33e-02 -4.84e-02
(0.00) (0.00) (0.00) (0.00)

SV -7.84e+00 -1.81e-01 -2.05e+00 -1.72e+00
(0.00) (0.61) (0.00) (0.00)

Constant 9.36e-02 1.85e-01 -7.09e-03 6.53e-02
(0.00) (0.00) (0.11) (0.00)

QPSin 0.48 0.47 0.49 0.48
QPSout 0.49 0.51 0.49 0.49

exhaustive analysis, so the following examination is also addressed on the basis of Table

3.13 where the results for the whole sample (39 stock series) are summarized. Table

3.13 splits the whole-sample results for both sides of the market and it provides the

percentages of significant and non-significant estimates; a positive sign is supportive of

informed-based trading, while the opposite holds for a negative estimate.

Except for Dopen, it is quite difficult to draw a general conclusion on the impact of

the time dummy variables. Indeed, Dopen is the only time dummy that exhibits a fairly

homogeneous result, with a negative and statistically significant coefficient for around

two-thirds of the series on the buy side, and almost half of the series on the sell side.
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Table 3.13: Bivariate probit estimates for the whole sample. The first column exhibits the
percentage of negative and significant estimates, the central column shows the percentage
of non-significant coefficients, while the last one reports the percentage of positive and
significant estimates.

Buy side
Negative Significant Non-significant Positive Significant

Dopen 66.67 28.21 5.13
Dlunch 28.21 28.21 43.59
Dsp 30.77 53.85 15.38
Dclos 38.46 28.21 33.33
δk 5.13 0.00 94.87
∆tk 74.36 23.08 2.56
Volume 33.33 38.46 28.21
Dbig 10.26 12.82 76.92
Init 0.00 0.00 100.00
SV 76.92 15.38 7.69

Sell side
Negative Significant Non-significant Positive Significant

Dopen 48.72 30.77 20.51
Dlunch 25.64 41.03 33.33
Dsp 15.38 51.28 33.33
Dclos 35.90 30.77 33.33
δk 2.56 5.13 92.31
∆tk 84.62 15.38 0.00
Volume 38.46 33.33 28.21
Dbig 7.69 7.69 84.62
Init 100.00 0.00 0.00
SV 74.36 17.95 7.69

On the other hand, the positive estimates are extremely marginal for the buy side and

around 20% for the sell side, with both sides displaying almost one-third of non-significant

coefficients. On the whole, these results suggest a strong occurrence of transactions

executed on behalf of retail investors during the first 30 minutes of the continuous auction,

which is in line with Biais et al. (1995) or Gourieroux et al. (1999). Biais et al. (1995)

showed that smaller trades usually occur during the morning, while larger trades are

more frequent in the late afternoon. As an explanation, they suggest that financial
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intermediaries prefer to trade retail orders at the beginning of the day, postponing their

own trading in the afternoon because of price discovery. This is particularly true at the

end of the continous auction, when the necessity to close open positions is more urgent.

However, we only find a partial confirmation of the last point, as the effect of Dclos is

split almost equally between informed, uninformed and non-significant estimates, and the

likelihood of observing a higher concentration of informed traders in the last 30 minutes

is unclear. The estimates of Dlunch for the buy side are consistent with a large fraction

of institutional investors on the market; the same effect is less apparent for the sell side,

though it still reveals a higher presence of informed agents. The general decrease in the

trading frequency observed at lunch time seems counterbalanced by a higher number of

institutional transactions; in any case, the fraction of non-significant estimates is quite

high, at approximately one-third of the sample. The findings for DSP are different for the

two sides of the market. For Dsk , transactions occurring immediately after the opening

of the US Exchange are coherent with the presence of institutional investors for one-third

of the sample, with a large partition of the stocks exhibiting non-significant estimates.

On the contrary, in the case of Dbk , transactions executed from 3.30 P.M. and 4.00 P.M.

are more likely to be implemented by uninformed investors. Generally, the high fraction

of non-significant estimates for Dlunch and DSP actually prevents us from drawing any

specific conclusion for both regressors. On the other hand, the result relative to δk is

noticeable: in more than 90% of the sample, the likelihood of informed-based trading

increases as time elapses during the continuous auction. This result holds for both Dbk

and Dsk , and it perfectly matches Biais et al. (1995) who emphasize the increase of

institutional trading when moving towards the closing time. Although Dclos shows that

these findings are not confirmed for the last 30 minutes of the continuous session, we do

not deem this outcome as self-contradictory: indeed, institutional investors may just be

willing to reduce their trading in periods of high price volatility, such as the one very

close to the end of the day.

The results concerning trade durations strongly support the thesis of Easley and
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O’Hara (1992) and our estimates report that the increase of inter-trade durations is

generally associated with a lower presence of informed agents. This result is evident from

Table 3.13, where a negative sign is found for almost 75% of the stocks on the buy side

and more than 80% on the sell side. These conclusions also hold when an additional lag

of ∆tk is included in the bivariate probit specification (not reported), though the strength

of the effect is generally weaker.

Volume andDbig are the two variables deputed to evaluate the volume informativeness,

but the inspection of Table 3.13 delivers an equivocal result for the role of volume as a

signal of informed-based trading. First of all, the actual transaction volume exhibits a

high fraction of non-significant estimates, larger than 30% of the series for both sides of

the market. Moreover, it is hard to clearly state if the actual volume has a positive or

a negative effect, though the negative estimates are more frequent, especially for the sell

side. On the contrary, the behaviour of Dbig is quite homogeneous in the whole sample.

For the 76.92% of the stocks on the buy side and 84.62% on the sell side, the probability

of informed trading increases when the market presents transactions with a larger-than-

average volume. These findings may appear misleading at first glance, but they do not

seem so unreasonable. The estimates show that the dimension of market transactions

per se is not very much informative. Nevertheless, when the transaction size proves to

be larger than its recent average, the volume becomes highly revealing of the traders’

identities, in line with the theoretical model of Easley and O’Hara (1987).

As for price-related variables, Table 3.12 shows that SV has a negative influence on

the probability of trading by informed agents. The result is also validated by Table 3.13

where, more than the 70% of the series displays a negative estimate on both market sides.

The negative sign of SV shows that informed-based trading is unlikely to be associated

with periods of large price variations, as it was already mentioned in the previous analysis

of the time dummies Dopen and Dclos. Rather, by following the distinction in Dufour and

Engle (2000) or Wong et al. (2008), our findings indicate that the large price variations

are mostly generated by liquidity traders.
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With respect to Init, Table 3.12 displays a positive coefficient for Dbk and a negative

coefficient for Dsk ; this result spreads over all the stock series as it is evident from Table

3.13. For buyer-initiated transactions, the positive coefficient for Dbk indicates a higher

probability of informed trading on the buy side. Conversely, the opposite interpretation

holds for Dsk , and in the case of buyer-initiated transactions, it is unlikely that the seller

is an informed agent. Besides, these results highlight the role of institutional operators as

trade initiators and they are consistent with the assumption that retail investors mainly

act as liquidity traders.

Finally, at the bottom of Table 3.12, the QPS values for in- and out-of-sample esti-

mates are provided. The two values are around 0.50, suggesting a quite appropriate fit.

These numbers refer only to Bouygues and BNP, but they extend similarly to the whole

data set, where we reasonably find a better prediction for the in-sample estimates.

3.9 Conclusions

Using high-frequency data from Euronext Paris, we analyse the impact of informed and

uninformed traders on market transactions. We adapt the framework described in HLM

(1992) to verify the presence of a trader effect at the transaction level. Our results

show that institutional investors affect market prices when they are matched with retail

investors. Informed buyers transmit a positive pressure to the market when they trade

with an uninformed seller, while the opposite holds when an institutional seller trades

with an uniformed buyer. On the other hand, no significant effect is encountered when

the traders coincide on the two sides of the market. Our findings are robust to alternative

model specifications, and generally extend to the whole data set; nevertheless, they are

not fully expected, since traders’ identities are concealed at Euronext Paris. Therefore,

in the last part of the paper, we also examine the informativeness of a wide set of market

variables, and we explore their usefulness to infer the identity of investors. We find

informed trading to be more likely to occur as time elapses during the continuous auction

100



and in periods of high-frequency of transactions. Conversely, informed trading is usually

absent at the start of the trading day and during periods of large price variations. Finally,

informed traders generally operate with larger-than-the-average volumes and they are

found to act as initiators of the market transactions.
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4.1 Introduction

The microstructure of financial markets offers several areas of investigation for researchers

and regulators. One of the most promising fields concerns the analysis of financial du-

rations, which has recently benefited from an increasing quality in data recording. With

the expression ‘financial durations’, we are referring to a time interval between two con-

secutive market events. As an example, trade durations measure the time between two

subsequent transactions, while volume durations quantify the time necessary to exchange

a specific amount of shares. Theoretically speaking, the interest on time and its informa-

tional implications was firstly recognized by Diamond and Verecchia (1987) and Easley

and O’Hara (1992). Diamond and Verecchia (1987) propose a model that excludes the
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possibility of short selling by informed agents, such that the absence of trading is associ-

ated with the existence of bad news. Conversely, in the Easley and O’Hara (1992) setting,

the traders are not subjected to sell constraints and a long duration is interpreted as a

lack of information in the market.

In the empirical analysis of financial durations, a highly relevant contribution is ad-

vanced by Engle and Russell (1998) who introduce the autoregressive conditional duration

(ACD) model. They examine the IBM trade durations and observe a clustering pattern

similar to the one occurring in price volatilities. Therefore, they suggest the study of trade

durations with a dynamic approach, which essentially imitates the original ARCH model

proposed by Engle (1982). From that moment on, the empirical research on financial

durations has been widely extended by following two main, and sometimes overlapping,

directions. A first line of research concentrates on the definition of a more flexible speci-

fication with respect to the basic ACD model, which proves to be not particularly suited

to fit market data. This vein includes the logarithmic ACD model (Bauwens and Giot,

2000) which breaks the linearity between the current duration and its previous (condi-

tional) lags or the stochastic conditional duration model (Bauwens and Veredas, 2004)

which assumes a non-deterministic structure for the conditional duration; a further con-

tribution is also given by the threshold ACD model (Zhang et al., 2001) which introduces

a mechanism of switching regimes in the modelling of financial durations. Along this

first line of research, some papers also seek for alternative distributions to the original

exponential and Weibull densities that generally exhibit a clear misspecification in the

diagnostic tests. This is the case of Lunde (1999) and Bauwens (2006) who consider the

Generalized Gamma distribution, or Grammig and Maurer (2000) who adapt the ACD

model to the Burr distribution. On the other hand, a second line of empirical investi-

gation dedicates to the testing of various microstructure hypotheses. In this case, the

usual strategy consists of augmenting one of the previous models with a set of additional

variables, such as transaction volume, bid-ask spread, trading intensity, or some volatility

proxy. Most of the time, this approach is applied to the so-called aggregated durations
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(e.g. volume or price durations) because of their relationship with some market features;

some examples may be found in Bauwens and Giot (2000), Bauwens and Giot (2003),

Bauwens and Veredas (2004), and Wong et al. (2008).

Our analysis extends the last vein of research and it explores a new microstructure

hypothesis. Indeed, the main and original contribution of this paper is to study the im-

pact of traders on time. This is made possible by the information available in our data

set, where we can identify the different categories of traders operating in the market,

in particular the so-called informed traders and the liquidity provider. The motivation

behind their presence in the market is obviously different, as the former want to exploit

private information, while the latter trades because of contractual constraints. Never-

theless, we expect that the overall market activity is fostered by the increasing presence

of these traders. Our assumption is tested and confirmed on three distinct definitions of

financial durations. The findings prove to be robust across alternative distributions, as

well as when we augment the basic model with additional microstructure variables.

The paper is organized as follows. Section 4.2 reviews the fundamental econometric

models which are traditionally used for the analysis of financial durations and it examines

the distributional assumptions. Section 4.3 describes the data, while Section 4.4 intro-

duces the three types of financial durations and it provides some descriptive statistics.

Section 4.5 presents the estimation strategy and illustrates the empirical specification.

Section 4.6 discusses the main results, while Section 4.7 presents some robustness tests

and estimation diagnostics. Finally, Section 4.8 offers our conclusions.

4.2 Econometric models

4.2.1 The basic setting

Without loss of generality, we define a duration di = ti− ti−1 as the time interval between

two consecutive market events, whether they be trades or not. Engle and Russell (1998)

propose a model where the serial dependence in trade durations is captured through the
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conditional expectation Ψi = E(di|Ωi−1), with Ωi−1 representing the filtration at time

i− 1. Their framework is based on two equations; the first one specifies a multiplicative

error term structure for the observed duration di:

di = Ψiǫi (4.1)

where ǫi are positive IID random variables, with E(ǫi) = 1 and V ar(ǫi) = σ2. The hypoth-

esis about E(ǫi) is consistent with Ψi = E(di|Ωi−1), although a simple reparametrization

also allows for E(ǫi) = µ 6= 1. The second equation is used to explain how the time de-

pendence is transmitted through the conditional duration Ψi. Engle and Russell (1998)

suggest a linear autoregressive structure for the conditional mean function:

Ψi = ω + αdi−1 + βΨi−1 (4.2)

which requires ω > 0, α ≥ 0 and β ≥ 0 as constraints to ensure the positivity of Ψi.

Equation (4.2) refers to the case of an ACD (1,1) model, but it can be straightforwardly

extended to include additional lags of di and Ψi.

Engle and Russell (1998) originally adopt the exponential and the Weibull distribu-

tion to estimate their ACD model. The exponential distribution delivers QML estimates

under the assumption of correct specification of the conditional mean Ψi. The Weibull

distribution introduces some form of flexibility, and it allows a non-constant hazard func-

tion according to the unconstrained shape parameter. Once the innovation density for ǫi

is defined, the full vector of model parameters may be estimated through the loglikelihood

function:

l(θ1; θ2) =
n∑

i=1

[
ln fǫ

(
di

Ψi(θ2)
; θ1

)
− lnΨi(θ2)

]
(4.3)

where fǫ represents the error term distribution, θ1 collects its associated parameters, and

θ2 groups the parameters of the conditional duration Ψi.
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4.2.2 Extended frameworks

The original setting proposed by Engle and Russell (1998) subsequently evolves to meet

the multiple requirements coming from the market microstructure research. A first exten-

sion, which we also adopt in this paper, is represented by the Log-ACD model described

in Bauwens and Giot (2000). The ACD model could raise some concerns if equation (4.2)

is augmented by a vector of variables zi to study their impact on financial durations.

Actually, such an issue is problematic whenever the variables included in zi exhibit a

negative coefficient; in this case, the conditional duration Ψi could turn out to be neg-

ative, which is not acceptable for a strictly positive variable. The easiest solution is to

impose some positivity constraints on the zi coefficients; however, this is clearly con-

flicting with the purpose of testing some microstructure hypotheses. As a way to solve

this problem, Bauwens and Giot (2000) suggest a specification which reminds of Nelson

(1991) EGARCH model. More precisely, they rewrite equation (4.1) as:

di = exp(ψi)ǫi (4.4)

where ψi = lnΨi represents the logarithm of the conditional duration. A thorough

review of the Log-ACD model, as well as the definition of its moments and stationarity

conditions, is out of the scope of this research, and we refer the interested reader to

Bauwens and Giot (2000), Bauwens and Giot (2001), and Bauwens et al. (2003). Here,

we only outline the two possible specifications for lnΨi described in Bauwens and Giot

(2000):

lnΨi = ω + α ln ǫi−1 + β lnΨi−1 (4.5)

= ω + α ln di−1 + (β − α) lnΨi−1
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and

lnΨi = ω + αǫi−1 + βΨi−1 (4.6)

= ω + α(di−1/Ψi−1) + β lnΨi−1

where the first one is traditionally labelled as Log-ACD1, while the second one is referred

to as Log-ACD2. Again, Equations (4.5) and (4.6) show the basic dynamic setting, which

can be easily extended to include additional lags of di or ψi. The two specifications deliver

similar estimates and do not require any sign restrictions to ensure positivity, making the

Log-ACD model particularly suited for testing the impact of microstructure variables1.

As was anticipated in the Introduction, a further line of improvement with respect to

Engle and Russell (1998) is regarding the choice of the innovation density for ǫi. Indeed,

the exponential and the Weibull distributions prove to be inappropriate to replicate the

patterns observed for financial duration series. As an example, Bauwens et al. (2004)

show that the exponential and the Weibull distributions tend to overestimate small du-

rations and underestimate very small durations. This essentially happens because these

distributions present a too much restrictive hazard function that is not satisfactorily rec-

oncilable with market data. The literature generally concentrates on just a few options

as possible substitutes for the exponential and the Weibull distributions. In this paper,

we provide estimates based on the Burr and the Generalized Gamma distributions which

both encompass the exponential and the Weibull specifications as special cases. The Burr

distribution is defined as:

fB(ǫt) =
γ

c

(ǫt
c

)γ−1 [
1 + λ

(ǫt
c

)γ]−(1+λ−1)

1For the testing of microstructure hypotheses, there exist alternative specifications which could be
used instead of the Log-ACD model. Nevertheless, as shown in Bauwens et al. (2004), a more complex
and time-demanding framework does not generally perform better than a Log-ACD model estimated
with a flexible distribution. Coherently, we adopt the Log-ACD specification and we complement our
estimates with a comprehensive section of robustness tests and diagnostics.
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where γ > 0, λ > 0, and c > 0 are parameters. By setting

c = λ(1+λ−1) Γ(1 + λ−1)

[Γ(1 + γ−1)Γ(λ−1 − γ−1)]

the mean is equal to one and the density reduces to a two parameter distribution, fB(γ, λ).

The Generalized Gamma distribution has a density function:

fGG(ǫt) =
γ

cνγΓ(ν)
ǫνγ−1
t exp

[
−
(ǫt
c

)γ]

where ν > 0, γ > 0 and c > 0 are parameters, while Γ(ν) is the gamma function. If c is

set equal to Γ(ν)
Γ(ν+γ−1)

, then E(ǫt) = 1 and the Generalized Gamma may also be written as

a two parameter distribution, fGG(ν, γ). Some previous contributions (e.g. Bauwens et

al., 2004) highlighted that these two densities increase the model flexibility, as they are

able to break the one-to-one correspondence between the durations and the properties of

the hazard function.

4.3 Data

The data set for the empirical analysis is supplied by Eurofidai and it spans over a

two-month period, from 1 September 2009 to 30 October 2009. It provides exhaustive

information for five stocks belonging to the CAC40 index, namely: Alstom, Axa, Crédit

Agricole, Sanofi-Aventis, and Schneider. The data set reports a wide set of variables

concerning market transactions as well as some valuable information to qualify the market

participants. More precisely, the data set presents a variable to distinguish the categories

of traders operating in the market, according to the same codes discussed in Ferriani

(2012):

• ‘1’ is the code that refers to transactions executed on behalf of retail investors;

• ‘2’ is the code that refers to transactions executed by operators authorized to trade
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in the Paris Bourse (banks or other financial intermediaries, called ‘Sociétés de

Bourse’);

• ‘6’ is the code that refers to transactions executed by ‘fournisseurs de la liquidité’,

i.e. agents with liquidity duties;

• ‘7’ is the code that refers to transactions executed by another kind of financial in-

termediaries called ‘Filiales de la Société de Bourse’. They are financial institutions

similar to the ones classified with ‘2’.

For each transaction, the data set displays a code for both sides of the market, such

that the buyer and the seller can either belong to the same category of traders or they can

be different. To distinguish among traders, we adopt a classification which is standard

in the empirical microstructure literature (see Chakravarty, 2001). The observations

coded with ‘1’ are associated with transactions executed on behalf of retail investors,

while observations classified with ‘2’ or ‘7’ refer to transactions executed by financial

intermediaries in their own interest. Conversely to Ferriani (2012), the liquidity provider

exhibits an active role in this data set, and a considerable amount of transactions (around

15-20%) is marked with code ‘6’, either on the buy or on the sell side. Indeed, though

Euronext Paris is essentially an order-driven market, the Stock Exchange admits the

presence of a liquidity provider who facilitates the trading activity by posting trade

proposals on both market sides.

Finally, for the purpose of this research, we have to mention the reform which intro-

duced anonimity at Euronext Paris in 2001. Under the new market regime, the traders

are no longer able to view, not even with delay, the operator who is trading or the cate-

gory he belongs to. This aspect is also discussed in Foucault et al. (2007) who analyze the

effects of the switch from a fully disclosed market to a regime with hidden identities. As

a matter of fact, anonymity in financial markets is not a secondary issue, as it excludes

a ‘direct’ imitation effect among market participants. More precisely, the presence of

hidden identities rules out the strategies that exactly replicate the behaviour of informed
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traders, as the latter are not unambiguously identifiable through an ID code2.

4.4 Financial durations

4.4.1 Definitions

We recover three definitions of financial durations from the data set; in the following,

unless otherwise specified, we adopt di to refer to any of them. First of all, we consider

trade durations, which measure the time elapsed between two consecutive transactions.

Transaction time is registered at microsecond-level precision, but we choose to round

off microseconds at the third decimal digit. This leaves the main results unaffected,

meanwhile reducing the risk that extremely small durations prevent the optimization al-

gorithm from finding a solution. The microseconds also influence the occurrence of null

durations, which take place when a single large order is almost simultaneously matched

with multiple orders on the opposite market side. This splitting generates a sequence

of transactions recorded at the same time second, which conflicts with the positivity re-

quired to estimate duration models. The literature proposes different approaches to deal

with null durations, though a prevailing strategy is not clear. As an example, in Dufour

and Engle (2000a) zero durations are simply discarded, while Dufour and Engle (2000b)

indistinctly add one second to each observation. Bauwens (2006) similarly includes an ad-

ditional second, but only to simultaneous transactions. Conversely, Veredas et al. (2002)

suggest a procedure to equally distribute time across consecutive null durations. The

availability of observations registered at microsecond-level precision sensibly downsizes

the problem of null durations; nevertheless, the rounding-off introduced to estimate our

model still leaves some simultaneous observations. Therefore, we choose to group simul-

taneous transactions that presumably belong to the same unique trade according to these

2Clearly, several microstructure variables may be helpful to detect the categories of investors, though
most of the times these variables are valuable for just shaping a hypothesis about the trader identity.
Conversely, here we are considering a more revealing information, i.e. the exact identification of the
trader or of the category he belongs to.
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steps:

• First, the time stamp expressed as ‘hh:mm:ss’ has to be the same, i.e. observations

must be simultaneous at least with respect to seconds;

• Second, simultaneous observations are cumulated only if they are generated by the

same side of the market3;

• Finally, simultaneous observations are cumulated only if they display a uniform

trader code (1, 2, 6 or 7) on the side of the market which initiates the transaction.

At the end of this procedure, we have grouped all the simultaneous observations that

come from the same side of the market and are attributed to the same trader category.

Similar to Veredas et al. (2002), we find that the amount of contemporaneous observations

is around 20-25% of the original sample, depending on the stock. Clearly, our approach

does not solve the arbitrariness issue related to null durations, though at least it takes

into account the three critical attributes of a trade: time, market direction, and trader

identity (category). Starting from trade durations, we complement our analysis with two

additional types of durations that have drawn the attention of microstructure researchers:

• Price durations are defined as the time necessary to observe a cumulative price

change not less than a certain threshold. More precisely, a price duration is gener-

ated by selecting two points in time such that:

|pi − pi−k| ≥ c

where pi represents the transaction price, c is an exogenous constant used as ref-

erence threshold, and k ≥ 1. As it was stressed by Engle and Russell (1998), the

study of price durations is particularly appealing because of their relationship with

instantaneous volatility. We adopt the midquote in place of transaction price to

avoid the bias caused by the bid-ask bounce (Roll, 1984). We set the values of the

3The data set provides a variable to determine the side of the market which initiates a transaction.
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threshold c equal to 0.015 and 0.025 Euro, which correspond to three and five times

the minimum tick size (0.005 Euro) allowed at Euronext Paris. We label the first

case ‘Low threshold’ and the second one ‘High threshold’.

• Volume durations are defined as the time necessary to trade a specific aggregate

volume. Volume durations are generated by retaining two following points in time,

i− k and i, such that:
i∑

i−k

volumei ≥ c

where c represents the exogenous threshold for the amount of traded shares. The

interest for volume durations is justified as they represent a simple proxy for market

liquidity: a long volume duration is indicative of a market characterized by a low

level of liquidity, while the opposite holds for short volume durations. For each

stock, we choose a threshold c which is equal to 10 and 20 times the average number

of exchanged shares. As before, we label the first case ‘Low threshold’ and the

second one ‘High threshold’.

4.4.2 Descriptive statistics

Some descriptive statistics for trade, price, and volume durations are summarized in Table

4.1. For trade durations, the table evidences a coefficient of variation (CV) larger than the

one reported in other researches, though some stocks in Hautsch (2004) present similar

values. Such a CV confirms the overdispersion that is typical of trade durations, as well as

the inadequacy of the exponential distribution to fit these data. A plausible explanation

for the high CV may be related to the minimum value of trade durations, which is

apparently small for all the stocks. Indeed, the use of microseconds assures a higher level

of precision, but it increases the proportion of extremely small durations and the overall

dispersion of the series. Contrary to previous empirical researches, volume durations

exhibit a vague underdispersion, which is actually apparent only for the high threshold
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case. Indeed, the same stylized fact is not observed for low-threshold volume durations4.

Volume durations present a remarkably high autocorrelation, sometimes displaying an

autocorrelation coefficient ρ larger than 0.5 at the first lag. This is not unexpected and

it may be partially attributed to volume clustering itself; in any case, the values are in

line with other contributions (e.g. Hautsch, 2004, and Bauwens and Veredas, 2004). As

to price durations, they prove to be considerably overdispersed, as in Engle and Russell

(1998) or Bauwens and Giot (2003). Moreover, price durations also exhibit a considerable

autocorrelation pattern, though the ρ coefficient is generally lower, especially for the high

threshold case. Given the remarkable value of the first autocorrelation coefficients, it is

not surprising to find a strong rejection of the null of serial uncorrelation for all types of

durations at the first 30 lags.

The descriptive analysis is supplemented by Figures 4.1 and 4.2 that provide an illus-

trative comparison of the financial durations examined in this paper. We choose Alstom

as representative stock, but similar patterns are also exhibited by the remaining series.

The upper panel of Figure 4.1 displays the time series plots which emphasize the cluster-

ing behaviour common to all kinds of durations. Figure 4.1 also confirms the parallelism

between (G)ARCH and ACD models, and it evidences the generally high level of data

dispersion. The lower panel of Figure 4.1 shows the 30-lag correlogram that highlights the

exceptionally slow decline of the autocorrelation function. In some cases, several lags are

necessary before attaining a non-significant autocorrelation value and Figure 4.1 makes

clear the different persistence among the three durations. In fact, in spite of a higher

starting value, the correlogram of volume durations tends toward zero at a faster rate

with respect to the one of price and trade durations.

In the upper panel of Figure 4.2, we provide the empirical density estimation, com-

puted through Epanechnicov kernel with optimal bandwidth. To make the figure intelli-

gible, we reduce the scale to a maximum value of 1200 seconds, even though the upper

4In the preliminary analysis of data, we have tried different thresholds for volume durations, and we
have noticed that the degree of underdispersion increases by augmenting the value of c. This matches
with the descriptive statistics provided in Hautsch (2004) for Eurex and ASX, where volume durations
turn out to be underdispersed when the aggregation threshold is raised.

118



Table 4.1: Descriptive statistics for trade, price and volume durations. For each type of du-
ration, the table reports the number of observations, the average, the standard deviation, the
coefficient of variation (CV), the minimum, the maximum, and the 1-lag and 10-lag autocorre-
lation coefficient.

Trade durations

Alstom Axa Crédit A. Sanofi-A. Schneider

Observations 160,170 230,073 187,947 247,581 153,729
Avg. Duration 8.43 5.87 7.18 5.46 8.78
St. Dev. 16.99 10.91 13.99 10.47 18.89
CV 2.02 1.86 1.95 1.92 2.15
Min 0.002 0.002 0.002 0.002 0.002
Max 498.96 293.46 315.75 280.04 379.05
ρ1 0.20 0.20 0.19 0.19 0.17
ρ10 0.10 0.12 0.10 0.10 0.09

Price durations - Low threshold

Alstom Axa Crédit A. Sanofi-A. Schneider

Observations 33,664 13,771 11,855 30,464 35,173
Avg. Duration 40.01 96.70 111.47 44.27 38.34
St. Dev. 62.53 154.14 173.65 69.50 60.52
CV 1.56 1.59 1.56 1.57 1.58
Min 0.012 0.044 0.018 0.012 0.012
Max 1218.90 2636.40 2527.50 2314.00 1915.30
ρ1 0.21 0.29 0.26 0.23 0.20
ρ10 0.15 0.18 0.15 0.14 0.13

Price durations - High threshold

Alstom Axa Crédit A. Sanofi-A. Schneider

Observations 22,142 6,680 11,855 18,032 26,870
Avg. Duration 60.62 198.33 111.47 74.82 49.99
St. Dev. 92.74 308.46 173.65 113.57 78.65
CV 1.53 1.56 1.56 1.52 1.57
Min 0.012 0.096 0.018 0.016 0.012
Max 1605.60 6308.50 2527.50 2885.40 2191.60
ρ1 0.23 0.29 0.26 0.27 0.21
ρ10 0.16 0.15 0.15 0.14 0.15

Volume durations - Low threshold

Alstom Axa Crédit A. Sanofi-A. Schneider

Observations 13,985 19,815 16,474 21,361 13,790
Avg. Duration 104.08 73.47 88.87 68.22 106.27
St. Dev. 116.03 79.81 94.55 72.05 116.81
CV 1.11 1.09 1.06 1.06 1.09
Min 0.032 0.024 0.028 0.060 0.052
Max 1186.30 1119.20 1284.70 862.16 1351.80
ρ1 0.49 0.50 0.47 0.49 0.47
ρ10 0.24 0.26 0.25 0.28 0.23
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Table 4.1: Continued from the previous page.

Volume durations - High threshold

Alstom Axa Crédit A. Sanofi-A. Schneider

Observations 7,412 10,579 8,775 11,570 7,065
Avg. Duration 189.60 132.81 160.27 121.50 198.35
St. Dev. 189.70 130.40 151.43 114.59 192.48
CV 1.00 0.98 0.94 0.94 0.97
Min 0.064 0.068 0.084 0.058 0.176
Max 1834.00 1643.50 1649.90 1081.90 1886.90
ρ1 0.52 0.55 0.50 0.55 0.52
ρ10 0.22 0.27 0.24 0.30 0.21

bound of some series is definitely higher. All the durations exhibit a non-surprising

right-skewed shape, which is representative of the high concentration of relatively small

durations. This feature is particularly evident for trade durations, while it is less marked

for price and volume durations because of the aggregation effect. The lower panel of Fig-

ure 4.2 displays the intraday seasonality plot that is estimated by means of a cubic spline

function. The presence of some intraday cycles is a standard commonality of several

microstructure variables, such as spread, volume, and volatility, and it has been widely

discussed in previous researches. Figure 4.2 shows the typical inverted U-shape pattern,

with a more intense trading activity in the early morning and in the late afternoon, and

a drop of the trading frequency around midday. The intraday periodicity directly affects

the degree of autocorrelation of the series, and several approaches have been proposed to

take this effect into account.

As an example, Andersen and Bollerslev (1998) suggest to model the seasonal trend

through a Fourier series approximation, while Veredas et al. (2002) advance a semipara-

metric method which makes use of the Nadaraya-Watson kernel to jointly estimate the

seasonal component and the parameters of the ACD model. In this paper, we follow the

original, and probably most popular, approach by Engle and Russell (1998) who assume
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Figure 4.1: Time series plot and correlogram for trade, price and volume durations. The figure displays the high threshold series
for aggregate durations; all graphs refer to Alstom.
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Figure 4.2: Density estimate and seasonality plot for trade, price and volume durations. The figure displays the high threshold
series for aggregate durations; all graphs refer to Alstom.
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a deterministic seasonal component affecting the duration series multiplicatively:

di = xis(i)

where di is a generic financial duration, xi is the corresponding seasonally adjusted vari-

able, and s(i) is the seasonality component which is function of time i. Also in this

case, we refer to xi as the seasonally adjusted variable, independent of a specific type

of duration. To proceed in the estimation, we first compute the expectation of di con-

ditional on the time of day, i.e. we average di over 30-minute intervals; then, we use a

cubic spline to filter out the seasonal effect5. We choose a two-step procedure and we

separately filter out the series before estimating ML parameters. When the number of

observations is sufficiently large, Engle and Russell (1998) show that this approach does

not significantly affect the results. All the results presented in Section 5 and 6 are based

on the deseasonalized series xi.

4.5 Empirical specification

In this section, we describe our strategy to augment the specification of ψ in the Log-

ACD model, in order to study the impact of traders on financial durations. As was

previously discussed, the Log-ACD model does not require any positivity constraint on

the conditional mean parameters, which makes it particularly suited for the testing of

microstructure hypotheses. We choose a distinct specification for trade durations with

respect to price and volume durations; this comes as a result of using aggregate series

too.

5We apply this method to extract the intraday cycle from all the variables displaying such a similar
pattern, like the spread or the volume.
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4.5.1 Trade durations

In the case of trade durations, we add some explanatory variables to ψi along the

scheme presented in Tables 4.2 and 4.3. The former shows the transaction volume and

the information on trader identities expressed as a categorical variable; the latter displays

the straightforward combination of the two variables. As an example, InfoB equals the

transaction volume when the buyer is an informed agent, i.e. he exhibits a ‘2’ or a ‘7’

as agent code; on the other hand, LiqprovS equals the transaction volume when the

seller coincides with the liquidity provider (code ‘6’). A similar association also holds

for the remaining cases. All these variables are meant to measure the volume-weighted

impact on time of the different categories of investors. We believe that the combination of

transaction volume and traders’ identities represents a more reliable approach than simply

considering the categorical dummies for market participants; this choice is motivated by

the acknowledged informativeness of the trading volume (Easley and O’Hara, 1987). As

to the lag structure, we adopt a Log-ACD1 model with two lags for xi and one lag for ψi.

Preliminary estimates have found in this specification the optimal compromise among

computation time, information criteria, model parsimony, and autocorrelation issues;

however, our results are qualitatively similar even with the more parsimonious Log-ACD1

(1,1) model. In the end, the new specification of ψi for trade durations becomes:

ψi = ω + α1 ln xi−1 + α2 ln xi−2 + (β − α1 − α2)ψi−1

+δ1 InfoBi−1 + δ2 LiqprovBi−1 + δ3 InfoSi−1 + δ4 LiqprovSi−1

(4.7)

where δ1, δ2, δ3, and δ4 are the parameters that measure the impact of traders on time.

Clearly, we exclude from Equation (4.9) the variables measuring the contribution of un-

informed traders to avoid collinearity. Independently of the market side, we expect both

informed traders and the liquidity provider to reduce the time intervals between consecu-

tive transactions, though we believe that this effect is driven by distinct motivations. For

the liquidity provider, the speeding up of the trading process may be easily attributed to
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Table 4.2: Transaction volumes and dummies for traders’ identities. Data are from
Alstom.

Volume Buyer Seller

Uninf. Inf. Liq. Provider Uninf. Inf. Liq. Provider

530 0 1 0 1 0 0
1,000 1 0 0 0 1 0
15 0 0 1 1 0 0
78 0 1 0 0 0 1

Table 4.3: Transaction volumes and trader combinations. Data are from Alstom.

Volume Buyer Seller

UninfoB InfoB LiqprovB UninfoS InfoS LiqprovS

530 0 530 0 530 0 0
1,000 1,000 0 0 0 1,000 0
15 0 0 15 15 0 0
78 0 78 0 0 0 78

his contractual duties. On the other hand, a similar impact for informed traders is more

likely explained by means of theoretical information models such as Easley and O’Hara

(1987) or Easley and O’Hara (1992). When entering the market, informed traders try to

quickly maximize their informational privilege via a trading strategy which combines an

intense market activity with a high transaction volume.

4.5.2 The case of aggregate durations

Unfortunately, the previous approach is not suitable to be pursued for price and volume

durations, at least for two reasons. First of all, we generally collapse several observations

to define the aggregate series, which is fairly easy to appreciate from the descriptive

statistics displayed in Table 4.1. In this case, we cannot assess the impact of traders on

each single transaction by following the same method proposed for trade durations. We

solve this issue by computing, for each spell, the fraction of volume attributed to each

category of investor. As an example, we measure the contribution of informed traders on

the buy side as:

InfoBi =
Buy Informed V olumei

Total volumei
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where, with a little abuse of notation, we denote with Buy Informed V olumei the total

transaction volume exchanged by informed buyers during the aggregated duration xi,

while Total volumei represents the overall number of shares exchanged during the same

interval. Similar definitions are straightforward to derive for the remaining categories of

traders, as well as for the sell side of the market. Generally speaking, we measure the

impact on time by means of a volume-weighted proxy of the traders’ activity.

The second reason to modify the specification of Equation (4.9) still concerns the ag-

gregation criterion employed to define price and volume durations. Actually, a dissimilar

number of transactions is normally required to generate each spell of aggregate durations;

this is clearly evident from Figure 4.2 which shows the seasonal pattern during the contin-

uous auction. Neglecting this point is a failing strategy, as it disregards the informational

content of transaction frequency within each spell. As an example, a volume duration

generated through a single ‘informed’ transaction is clearly different from a volume du-

ration which collapses several small-sized transactions executed by distinct categories of

traders. This is in line with Easley and O’Hara (1992) who theoretically recognize the

relationship between the presence of informed traders in the market and the intensity of

trading. Therefore, we adapt the structure of Equation (4.7) to characterize the state of

the market on the basis of the trading frequency. To identify two alternative regimes, we

define the dummy variable ξi = 1 when the number of transactions in the spell xi is larger

than the average of the whole series; this almost splits the distribution of the number

of transactions per spell into two fairly equal partitions6. Our strategy partially follows

Wong et al. (2008), though their paper investigates a completely different hypothesis.

6The frequency distribution of price durations is generally left-skewed. We estimate the Log-ACD
models for price durations by also applying the median as a threshold for ξi, and we obtain qualitatively
similar results. Therefore, we keep a homogeneous approach in the whole sample and adopt the average
number of transactions for price durations too.
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Then, we make use of ξi to propose the following nonlinear specification of ψi:

ψi = ω + α1 ln xi−1 + α2 ln xi−2 + (β − α1 − α2)ψi−1+

ξi−1(δ1 InfoBHi−1 + δ2 LiqprovBHi−1 + δ3 InfoSHi−1 + δ4 LiqprovSHi−1)+

(1− ξi−1)(δ5 InfoBLi−1 + δ6 LiqprovBLi−1 + δ7 InfoSLi−1 + δ8 LiqprovSLi−1)

(4.8)

where we add the suffix −H and −L to distinguish between the two states of the market.

In this way, we duplicate the specification of Equation (4.7) in order to test the existence

of a regime-specific impact of traders7. For informed traders, we expect a negative impact

on aggregate durations when the market is found in an intense state of trading activity.

In fact, on the basis of the theoretical models, the information-driven trading should be

effective only when it is associated with a high frequency of transactions. On the other

hand, and because of his contractual duties, the liquidity provider should significantly

reduce the length of a spell under both market regimes. As a consequence of our spec-

ification, we should therefore expect a negative impact when the average trading size is

lower. This is quite obvious for volume durations given that the threshold c adopted to

define a series is fixed; however, simple descriptive statistics generally confirm the inverse

relationship between trading intensity and transaction size for price durations too. At

a first sight, this appears to contradict the hypothesis on volume informativeness (see

Easley and O’Hara, 1987), but this is not actually the case. In fact, the informational

content of volume has to be distinctly evaluated within each state of the market, not

between. The variables measuring the weighted participation of traders are successful in

doing that, as they ponder the presence of traders within each of the two market regimes.

7Coherent with the specification adopted for trade durations, we exclude the contribution of unin-
formed traders from Equation (4.8) to avoid collinearity in the estimation.
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4.6 Results

This section analyses the ML estimates of the basic specifications defined in Section

4.5. The structure outlined in Equation (4.7) represents the reference model for trade

durations, while Equation (4.8) provides the empirical specification for price and vol-

ume durations. To save space, we only report the variables that measure the impact

of traders on financial durations; the complete list of results is available upon request.

The estimates are based on the Burr and the Generalized Gamma distributions8, and all

our considerations rely on a significance level which is adjusted according to the sample

size. For trade durations, we use an α-level equal to 1%, while we adopt a significance

threshold equal to 5% for the smaller samples of aggregate durations. In this way, we

minimize the possibility that a large sample size radically affects the significance of our

results, see Hausman et al. (1992). On the whole, this choice is coherent with previous

empirical researches, and sometimes it appears even more restrictive (see Hautsch, 2003

or Bauwens and Veredas, 2004). Table 4.4 displays the results for trade durations and

with respect to both innovation densities. The estimates for price and volume durations

based on the Burr distribution are collected in Table 4.5, while the results based on the

Generalized Gamma distribution are provided in Table 4.6.

4.6.1 Trade durations

In the case of trade durations, the estimates exhibit a striking uniformity across the

whole sample and with respect to both distributions taken into account for ML esti-

mation. Table 4.4 shows that an increase in the volume-weighted activity generated by

informed traders and the liquidity provider reduces the inter-trade spell and accelerates

the trading frequency. This result holds for both sides of the market and it may be eas-

ily appreciated by looking at the negative coefficients of InfoB, InfoS, LiqprovB, and

8We omit the results based on the exponential density, though they are generally in line with the ones
derived through the more flexible distributions. Our choice is motivated by the strong misspecification
displayed by the exponential density when it is tested along the lines discussed in Section 4.7. This is
not totally unexpected given the high level of overdispersion exhibited by the data.

128



Table 4.4: ML estimates for trade durations, with robust standard errors in parentheses.

Trade durations - Burr distribution
Alstom Axa Crédit A.

Coeff. (Std. Error) Coeff. (Std. Error) Coeff. (Std. Error)

InfoB -1.13E-02*** (1.28E-03) -1.26E-03*** (2.72E-04) -3.50E-03*** (3.43E-04)
LiqprovB -1.95E-02*** (1.85E-03) -6.06E-03*** (4.16E-04) -6.89E-03*** (4.47E-04)
InfoS -1.96E-02*** (1.26E-03) -3.16E-03*** (2.73E-04) -4.16E-03*** (3.40E-04)
LiqprovS -2.45E-02*** (1.67E-03) -8.94E-03*** (4.44E-04) -7.35E-03*** (5.37E-04)

Trade durations - Burr distribution
Sanofi-A. Schneider

Coeff. (Std. Error) Coeff. (Std. Error)

InfoB -7.82E-03*** (1.23E-03) -6.41E-05*** (2.07E-05)
LiqprovB -2.29E-02*** (2.27E-03) -1.41E-04*** (4.34E-05)
InfoS -1.38E-02*** (1.39E-03) -1.65E-04*** (2.30E-05)
LiqprovS -3.04E-02*** (2.47E-03) -3.14E-04*** (4.22E-05)

Trade durations - Generalized Gamma distribution
Alstom Axa Crédit A.

Coeff. (Std. Error) Coeff. (Std. Error) Coeff. (Std. Error)
InfoB -1.22E-02*** (1.40E-03) -2.16E-03*** (4.04E-04) -3.96E-03*** (6.22E-04)
LiqprovB -2.06E-02*** (2.01E-03) -7.79E-03*** (8.53E-04) -8.06E-03*** (1.06E-03)
InfoS -2.13E-02*** (1.39E-03) -4.19E-03*** (4.20E-04) -4.63E-03*** (5.97E-04)
LiqprovS -2.56E-02*** (1.84E-03) -1.04E-02*** (6.81E-04) -8.07E-03*** (1.06E-03)

Trade durations - Generalized Gamma distribution
Sanofi-A. Schneider

Coeff. (Std. Error) Coeff. (Std. Error)
InfoB -8.83E-03*** (1.56E-03) -6.14E-05*** (2.16E-05)
LiqprovB -2.77E-02*** (4.94E-03) -1.56E-04*** (4.53E-05)
InfoS -1.58E-02*** (2.27E-03) -1.60E-04*** (2.44E-05)
LiqprovS -3.47E-02*** (4.62E-03) -3.17E-04*** (4.71E-05)
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LiqprovS. Coherent with the discussion in Section 4.5.1, we believe that two distinct

explanations exist for these findings. On the one hand, the liquidity provider enters the

LOB to facilitate the transactions among market operators and our estimates confirm

his effective role in the provision of market liquidity. On the other hand, the clustering

pattern generated by informed-based trading is more likely explained by the theoretical

information models as Easley and O’Hara (1992). In this latter case, two motivations

concur to the negative impact associated with InfoB and InfoS. First, informed agents

hurry to exploit their short-lived private signal; thus, they trade more aggressively in

terms of submission frequency. Second, a large informed trade is generally matched with

multiple orders to be fully executed; the consequence of this splitting is a sequence of

small and almost simultaneous transactions. Clearly, some overlap subsists between these

two motivations, but we leave the analysis of the prevailing effect behind informed-based

trading for future research.

4.6.2 Aggregate durations

The nonlinear specification defined in Equation (4.8) provides evidence of a regime-

specific effect for aggregate durations. According to Tables 4.5 and 4.6, when the market

is found in the fast-trading regime, a more intense activity coming from informed traders

and the liquidity provider has a negative impact on time. On the contrary, such effect is

generally not observed for the state of the market characterized by a low trading frequency.

This result is a bit more evident for the sell side of the market and it may be appreciated

by looking at the negative and significant coefficients of InfoBH, LiqprovBH, InfoSH,

and LiqprovSH. On the whole, these findings comply with the estimates presented for

trade durations9.

9Although Easley and O’Hara (1992) directly refer to transaction frequency, their model also extends
to price and volume durations which actually represent an aggregation of multiple transactions (see
Bauwens and Giot, 2003 or Bauwens and Veredas, 2004).
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4.6.2.1 Price durations

As to price durations, LiqprovSH is the only variable that always displays a negative and

statistically significant coefficient. On the other hand, and considering both price series,

InfoBH is negative and significant in the 70% of cases, LiqprovBH in the 60% (50%)

of cases for Generalized Gamma (Burr) distribution, and InfoSH in the 80% of cases.

No coefficients exhibit a positive and significant sign when the market is found in the in-

tense trading regime. Conversely, the large majority of the estimates are not statistically

significant when the market is characterized by a low frequency of transactions. In a few

marginal cases, we find a positive and statistically significant coefficient for InfoBL and

a negative one for LiqprovSL; nevertheless, these estimates are generally quite close to

the critical value, and an unambiguous pattern may be spotted at most for LiqprovSL.

On the whole, Tables 4.5 and 4.6 confirm the existence of a trader-related effect for price

durations too, though this time, the impact turns out to be highly dependent on the

intensity of the market activity. These findings may be worth an additional interpreta-

tion on the basis of the inverse relationship between price durations and instantaneous

volatility (Engle and Russell, 1998). The motivation for a higher volatility in the market

is generally twofold. On the one hand, the high volatility can be explained through the

noise produced by the liquidity traders, on the other hand it can be attributed to a great

concentration of informed traders in the market (Dufour and Engle, 2000a, Wong et al.,

2008). According to the sign of InfoBH and InfoSH, the estimates for price durations

seem to validate the second hypothesis. In other words, a higher presence of informed

traders reduces the length of price durations, and it increases the instantaneous volatil-

ity because of an informational-driven pressure. On the contrary, we believe that the

estimates for the liquidity provider are more easily associated with his role in ensuring

market liquidity, especially at less favorable price levels. This explanation seems more

plausible when looking at the negative and significant coefficients that are sometimes

encountered for LiqprovSL.
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Table 4.5: ML estimates for price and volume durations; robust standard errors in parentheses. The estimates are based on the
Burr distribution.

Price durations - Low threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.059** (2.68E-02) -0.068 (3.91E-02) -0.100** (4.87E-02) -0.058*** (1.97E-02) -0.058*** (1.28E-02)
LiqprovBH -0.050 (3.25E-02) -0.097 (5.76E-02) -0.014 (6.42E-02) -0.077*** (3.09E-02) -0.079*** (2.19E-02)
InfoSH -0.089*** (2.63E-02) -0.116*** (2.68E-02) -0.112*** (4.78E-02) -0.063** (2.04E-02) -0.032** (1.32E-02)
LiqprovSH -0.145*** (3.78E-02) -0.109*** (3.81E-02) -0.191*** (6.67E-02) -0.104*** (3.37E-02) -0.065*** (2.25E-02)
InfoBL -0.006 (2.91E-02) 0.061** (3.03E-02) 0.049 (2.70E-02) 0.013 (1.11E-02) 0.023** (9.56E-03)
LiqprovBL 0.077 (4.02E-02) 0.034 (3.07E-02) 0.004 (2.77E-02) 0.021 (1.34E-02) 0.023 (1.30E-02)
InfoSL -0.037 (3.09E-02) -0.006 (4.85E-02) 0.021 (2.68E-02) -0.012 (1.09E-02) 0.004 (9.47E-03)
LiqprovSL -0.079 (4.95E-02) -0.059 (5.18E-02) -0.016 (2.69E-02) -0.034** (1.41E-02) -0.026** (1.31E-02)

Price durations - High threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.060*** (2.06E-02) -0.069 (8.61E-02) -0.047 (7.90E-02) -0.074** (3.41E-02) -0.077*** (1.98E-02)
LiqprovBH -0.062 (3.71E-02) -0.314** (1.16E-01) -0.008 (1.02E-01) -0.112** (5.29E-02) -0.077** (3.64E-02)
InfoSH -0.076*** (2.24E-02) -0.345*** (8.86E-02) -0.166** (7.81E-02) -0.061 (3.60E-02) -0.019 (2.04E-02)
LiqprovSH -0.129*** (3.40E-02) -0.283** (1.25E-01) -0.426*** (1.03E-01) -0.184*** (5.61E-02) -0.081*** (3.77E-02)
InfoBL 0.005 (1.22E-02) 0.002 (4.81E-02) -0.031 (5.36E-02) 0.024 (2.02E-02) 0.025** (1.05E-02)
LiqprovBL 0.014 (9.78E-03) -0.026 (5.34E-02) -0.003 (5.81E-02) 0.058** (2.47E-02) 0.014 (1.40E-02)
InfoSL 0.003 (1.70E-02) -0.065 (5.04E-02) 0.038 (5.46E-02) -0.034 (1.92E-02) -0.003 (1.04E-02)
LiqprovSL -0.032 (2.18E-02) -0.085 (5.60E-02) 0.089 (5.85E-02) -0.022 (2.55E-02) -0.029** (1.44E-02)

Volume durations - Low threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.046*** (1.63E-02) -0.015 (1.58E-02) -0.107*** (1.64E-02) -0.041*** (1.31E-02) -0.052*** (1.95E-02)
LiqprovBH -0.051** (2.43E-02) -0.017 (2.13E-02) -0.043** (2.04E-02) -0.048** (1.55E-02) -0.041 (3.49E-02)
InfoSH -0.050*** (1.56E-02) -0.038** (1.59E-02) -0.014 (4.71E-02) -0.033*** (1.30E-02) -0.013 (2.03E-02)
LiqprovSH -0.122*** (2.37E-02) -0.105*** (2.17E-02) -0.030 (5.29E-02) -0.063*** (2.09E-02) -0.124*** (3.70E-02)
InfoBL 0.020 (1.46E-02) 0.012 (8.48E-03) 0.023** (9.28E-03) 0.006 (9.76E-03) 0.026 (1.38E-02)
LiqprovBL 0.042 (2.47E-02) -0.009 (1.26E-02) 0.007 (1.64E-02) -0.024 (1.32E-02) 0.005 (2.19E-02)
InfoSL -0.017 (1.44E-02) 0.018** (8.11E-03) 0.017 (1.15E-02) 0.015 (1.14E-02) -0.010 (1.35E-02)
LiqprovSL 0.008 (2.37E-02) 0.016 (1.38E-02) -0.068*** (1.48E-02) -0.069 (1.86E-02) -0.065*** (2.49E-02)

Volume durations - High threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.055** (2.81E-02) -0.024 (1.44E-02) -7.95E-02*** (2.94E-02) -0.036** (1.49E-02) -0.041 (3.34E-02)
LiqprovBH -0.050 (3.91E-02) 0.007 (3.00E-02) -6.49E-02 (4.38E-02) -0.089*** (3.06E-02) -0.071 (6.48E-02)
InfoSH -0.091*** (3.01E-02) -0.069*** (1.83E-02) -2.11E-02 (2.16E-02) -0.041** (1.84E-02) -0.032 (3.33E-02)
LiqprovSH -0.149*** (4.00E-02) -0.141*** (2.90E-02) -7.68E-02** (3.84E-02) -0.033 (3.00E-02) -0.190*** (6.65E-02)
InfoBL -0.008 (2.96E-02) 0.017 (1.24E-02) 2.77E-02 (2.36E-02) -0.009 (2.20E-02) 0.014 (2.47E-02)
LiqprovBL 0.075 (4.33E-02) 0.004 (2.95E-02) 3.29E-02 (3.94E-02) 0.030 (2.11E-02) -0.039 (3.72E-02)
InfoSL -0.036 (2.92E-02) 0.016 (1.13E-02) 3.53E-02 (2.52E-02) 0.020 (1.51E-02) -0.021 (2.44E-02)
LiqprovSL -0.073 (4.55E-02) 0.046 (2.95E-02) -1.10E-01*** (3.61E-02) -0.103*** (3.82E-02) -0.075 (4.43E-02)
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Table 4.6: ML estimates for price and volume durations; robust standard errors in parentheses. The estimates are based on the
Generalized Gamma distribution.

Price durations - Low threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.049*** (1.79E-02) -0.065 (3.56E-02) -0.106** (5.21E-02) -0.053** (2.01E-02) -0.058** (1.30E-02)
LiqprovBH -0.037 (2.72E-02) -0.101** (4.46E-02) -0.042 (7.28E-02) -0.074** (3.12E-02) -0.077** (2.23E-02)
InfoSH -0.078*** (1.74E-02) -0.120*** (3.27E-02) -0.113*** (5.23E-02) -0.062*** (2.08E-02) -0.032*** (1.34E-02)
LiqprovSH -0.108*** (2.65E-02) -0.110** (4.69E-02) -0.190*** (7.27E-02) -0.099*** (3.41E-02) -0.060*** (2.30E-02)
InfoBL 0.010 (8.98E-03) 0.064** (2.43E-02) 0.051 (2.63E-02) 0.016 (1.12E-02) 0.023** (9.73E-03)
LiqprovBL 0.013 (1.01E-02) 0.038 (2.52E-02) 0.008 (2.71E-02) 0.021 (1.36E-02) 0.024 (1.33E-02)
InfoSL 0.003 (8.66E-03) -0.009 (2.89E-02) 0.002 (2.59E-02) -0.010 (1.11E-02) 0.003 (9.66E-03)
LiqprovSL -0.039*** (9.76E-03) -0.059 (3.11E-02) -0.025 (2.63E-02) -0.032** (1.43E-02) -0.024 (1.34E-02)

Price durations - High threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.059** (2.98E-02) -0.074 (8.73E-02) -0.047 (7.83E-02) -0.071** (3.49E-02) -0.076*** (2.01E-02)
LiqprovBH -0.061 (7.71E-02) -0.349*** (1.15E-01) -0.009 (9.95E-02) -0.108** (5.33E-02) -0.076** (3.70E-02)
InfoSH -0.080*** (2.51E-02) -0.362*** (9.02E-02) -0.153** (7.61E-02) -0.056 (3.66E-02) -0.021 (2.08E-02)
LiqprovSH -0.132** (5.58E-02) -0.248** (1.25E-01) -0.425*** (1.03E-01) -0.174*** (5.67E-02) -0.077** (3.85E-02)
InfoBL 0.003 (1.46E-02) 0.010 (4.91E-02) -0.028 (5.15E-02) 0.033 (2.04E-02) 0.024** (1.07E-02)
LiqprovBL 0.016 (2.71E-02) -0.031 (5.46E-02) -0.009 (5.74E-02) 0.063** (2.48E-02) 0.015 (1.43E-02)
InfoSL 0.004 (2.21E-02) -0.086 (5.15E-02) 0.040 (5.36E-02) -0.033 (1.93E-02) -0.002 (1.05E-02)
LiqprovSL -0.029 (4.70E-02) -0.091 (5.71E-02) 0.083 (5.82E-02) -0.018 (2.56E-02) -0.028 (1.47E-02)

Volume durations - Low threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.050** (2.20E-02) -0.013 (1.54E-02) -0.116*** (2.67E-02) -0.044** (1.38E-02) -0.060*** (1.93E-02)
LiqprovBH -0.060** (2.75E-02) -0.019 (2.11E-02) -0.049*** (1.68E-02) -0.049** (1.73E-02) -0.054 (3.49E-02)
InfoSH -0.053*** (1.58E-02) -0.037** (1.53E-02) -0.010 (2.52E-02) -0.035*** (1.41E-02) -0.015 (2.02E-02)
LiqprovSH -0.140*** (2.63E-02) -0.110*** (2.12E-02) -0.037 (2.69E-02) -0.074*** (2.63E-02) -0.141*** (3.70E-02)
InfoBL 0.009 (2.12E-02) 0.019** (7.79E-03) 0.022 (1.35E-02) 0.009 (1.13E-02) 0.024 (1.26E-02)
LiqprovBL 0.034 (4.79E-02) -0.010 (1.20E-02) 0.006 (1.58E-02) -0.036 (2.20E-02) 0.020 (1.93E-02)
InfoSL -0.029 (2.16E-02) 0.015** (7.09E-03) 0.012 (6.42E-03) 0.012 (7.97E-03) -0.018 (1.20E-02)
LiqprovSL 0.014 (3.53E-02) 0.009 (1.29E-02) -0.076*** (1.46E-02) -0.075 (2.55E-02) -0.074*** (2.22E-02)

Volume durations - High threshold
Alstom Axa Crédit A. Sanofi-A. Schneider

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error
InfoBH -0.070** (2.80E-02) -0.026 (3.27E-02) -8.45E-02*** (3.02E-02) -0.037 (2.04E-02) -0.032 (3.09E-02)
LiqprovBH -0.032 (3.77E-02) 0.018 (1.83E-02) -6.95E-02** (3.48E-02) -0.087*** (3.04E-02) -0.104 (6.23E-02)
InfoSH -0.093*** (2.54E-02) -0.070*** (2.49E-02) -1.99E-02 (2.17E-02) -0.057** (2.44E-02) -0.041 (3.16E-02)
LiqprovSH -0.170*** (3.81E-02) -0.146*** (3.26E-02) -8.81E-02*** (3.31E-02) -0.033 (2.91E-02) -0.196*** (6.50E-02)
InfoBL 0.011 (1.66E-02) 0.019 (2.06E-02) 3.24E-02 (1.83E-02) 0.002 (2.28E-02) 0.002 (2.22E-02)
LiqprovBL 0.049 (4.10E-02) 0.016 (1.95E-02) 3.75E-02 (2.84E-02) 0.009 (3.19E-02) 0.009 (3.01E-02)
InfoSL -0.055 (3.25E-02) 0.021 (1.92E-02) 3.25E-02 (1.92E-02) 0.011 (1.45E-02) -0.025 (2.13E-02)
LiqprovSL -0.088 (4.73E-02) 0.039 (2.76E-02) -1.15E-01*** (3.97E-02) -0.117*** (4.02E-02) -0.105*** (4.01E-02)
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4.6.2.2 Volume durations

By examining the ML estimates for volume durations, we notice that InfoBH is nega-

tive and significant in 60% (70%) of cases for Generalized Gamma (Burr) distribution,

LiqprovBH in the 50% (40%) for Generalized Gamma (Burr) distribution, InfoSH in

the 60%, and LiqprovSH in the 80%. Contrary to price durations, the effect of LiqprovSL

seems more robust, as this variable displays a significant coefficient in 50% (40%) of the

estimates based on the Generalized Gamma (Burr) distribution. No unambiguous effect

can be identified for the few remaining variables exhibiting a significant coefficient. To

interpret the results, we recall that volume durations may be thought of as a proxy of

market liquidity. According to Tables 4.5 and 4.6, the liquidity provider is once more

acknowledged as an accelerator of the exchanges in the market, sometimes even dur-

ing the periods of slow trading activity. As before, we believe that this result is more

likely attributed to his contractual constraints. The explanation for informed traders is

clearly different, and we emphasize that our estimates are significant when the average

transaction volume is lower. In our opinion, this result comes as a direct consequence

of volume informativeness. When full information is not disclosed in the market, an un-

expected large order could be revealing of a private signal. Informed traders prefer to

disguise their identity by submitting close sequences of smaller size orders, which par-

tially explains the strong clustering pattern displayed by volume durations. This kind

of trading strategies is analyzed in the stealth trading literature (see Chakravarty, 2001)

which finds that informed traders submit medium size orders to hide their private in-

formation. Hautsch (2004) adapts the stealth trading hypothesis to the study of trade

durations, but he does not find any convincing result. In our empirical specification, we

do not distinguish among classes of trade size as in Chakravarty (2001), and we check

the robustness of our findings along the lines discussed in the next section. However, we

recognize a certain empirical soundness, and we leave the relationship between financial

durations and stealth trading literature as a vein for future research.
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4.7 Robustness checks and diagnostics

In this section, we examine some robustness checks to minimize the possibility that our

findings are mainly driven by the huge size of the data set. We consider some augmented

specifications for all the series, and we especially focus on aggregated durations as they

are traditionally devoted to the testing of microstructure hypotheses (e.g. Bauwens and

Giot, 2000 or Bauwens and Giot, 2003).

4.7.1 Trade durations

We start with trade durations and we augment Equation (4.7) as:

ψi = ω + α1 ln xi−1 + α2 ln xi−2 + (β − α1 − α2)ψi−1

+δ1 InfoBi−1 + δ2 LiqprovBi−1 + δ3 InfoSi−1 + δ4 LiqprovSi−1

+δ5Dspreadi−1 + δ6Bigi−1 + δ7 InitSi−1

(4.9)

where Dspreadi−1 = spreadi−1 − spreadi−2, Big is a dummy variable indicating a trans-

action size larger than the average, and InitS is a dummy variable that identifies the

transactions initiated by the sell side of the market. We use Dspread to measure the

impact of the bid-ask spread on financial durations. Some theoretical contributions (e.g.

Glosten and Milgrom, 1985 or Easley and O’Hara, 1992) have illustrated the relationship

between the width of the spread and the presence of informed traders in the market. In-

formed traders foster the trading frequency in order to exploit their private signal; in this

context, the market maker widens the spread to protect himself from the risk of a loss due

to informed-based trading. Therefore, we expect a negative relationship between time

and spread, though this hypothesis has been mainly tested in quote-driven markets and

for aggregate durations. Big is used to spot particularly large transactions, in order to

check the microstructure hypothesis that assumes a negative relationship between trade

durations and transaction volume (Easley and O’Hara, 1987). This is because a large

transaction volume is generally perceived as a signal for the presence of informed traders
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in the market; coherent with the previous point, a higher percentage of informed traders

is associated with an increasing frequency of transactions. Finally, InitS is employed to

check for the existence of an asymmetric effect between the two sides of the market. As an

example, if there exists a panic effect related to clustered sequences of sell transactions,

then we expect a negative coefficient for this variable.

Table 4.7 provides the estimates of the robust specification presented in Equation

(4.9). To save space, we limit the exposition to the results obtained for Alstom; however,

the rest of the sample displays similar findings and the complete set of estimates is

available upon request. First of all, we notice that the previous results for trade durations

are fully validated, both in terms of significance and of direction of the effect. Secondly, as

to the additional variables, we find a partial confirmation of the previous microstructure

hypotheses. The coefficient for Dspread is always positive and significant for all the

stocks, which is contradictory to theoretical models on informed trading. Nevertheless,

our results are in line with Hautsch (2004) who also find a positive coefficient for the

bid-ask spread. As an explanation for that, he suggests that the widening of the spread

discourages the market activity because of higher transaction costs. On the other hand,

we find a negative and significant estimate for Big, which is in line with the assumption

that a larger volume accelerates the trading frequency (Wong et al., 2008 or Hautsch,

2004). Finally, we generally do not find a significant estimate for InitS, which excludes

the presence of an asymmetric effect between the two sides of the market10.

4.7.2 Aggregate durations

As to aggregated durations, the selection of additional regressors is facilitated by the

previous empirical research that widely concentrates on the testing of microstructure

hypotheses, see Bauwens and Giot (2003) or Bauwens and Veredas (2004). In this paper,

10We also try a specification where we disentangle the transaction volume from the trader identity, to
exclude that our findings are mainly driven by the negative impact attributed to the trade size. The
results are in line with Section 4.6.1. To save space, we do not report the estimates, also because we
consider this specification as less relevant, provided that it does not “weight” the activity of traders with
the volume informational content.
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Table 4.7: ML estimates for trade durations; robust standard errors in parentheses. The
results refer to the augmented specification defined in Section 4.7. The table provides
the estimates for Alstom.

Trade durations

Burr distribution G.G. distribution

Coeff Std.Error Coeff Std.Error

InfoB -4.69E-05*** (9.73E-06) -4.60E-05*** (1.00E-05)
LiqprovB -6.62E-05*** (1.48E-05) -6.07E-05*** (1.53E-05)
InfoS -7.56E-05*** (9.45E-06) -7.38E-05*** (9.73E-06)
LiqprovS -1.05E-04*** (1.44E-05) -9.42E-05*** (1.49E-05)
DSpread 3.01E-01*** (3.07E-03) 3.17E-01*** (3.03E-03)
Big -2.12E-02*** (4.11E-03) -2.16E-02*** (4.23E-03)
InitS -1.81E-03 (2.97E-03) -1.79E-03 (3.05E-03)

we limit the analysis to two supplementary variables and for price durations we augment

the specification introduced in Equation (4.8) as follows:

ψi = ω + α1 lnxi−1 + α2 lnxi−2 + (β − α1 − α2)ψi−1+

ξi−1(δ1 InfoBHi−1 + δ2 LiqprovBHi−1 + δ3 InfoSHi−1 + δ4 LiqprovSHi−1)+

(1− ξi−1)(δ5 InfoBLi−1 + δ6 LiqprovBLi−1 + δ7 InfoSLi−1 + δ8 LiqprovSLi−1)+

+δ9Dspreadi−1 + δ10Avgvoli−1

(4.10)

where Avgvoli−1 represents the average transaction volume in the previous spell and

Dspreadi−1 is defined as before. Contrary to other empirical contributions (Bauwens and

Giot, 2000, Bauwens and Giot, 2003), we exclude the number of transactions occurring in

the previous spell from the variables to be tested; nevertheless, a simpler version of this

regressor is implicitly taken into account through the nonlinear specification adopted for

ψi. The inverse relationship between transaction volume and price durations is justified by

the theoretical information models discussed in Section 4.7.1, and it has been confirmed

by plenty of empirical contributions (e.g. Bauwens and Veredas, 2004). Coherent with the

previous literature, we expect a higher average volume to speed up the price adjustment

process.

For volume durations, we distinguish the contribution of the supplementary regressors

on the basis of the trading activity. Indeed, some preliminary results show that even the
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additional microstructure variables may be affected by the state of the market. Therefore,

we augment the basic specification as follows:

ψi = ω + α1 lnxi−1 + α2 lnxi−2 + (β − α1 − α2)ψi−1+

ξi−1(δ1 InfoBHi−1 + δ2 LiqprovBHi−1 + δ3 InfoSHi−1 + δ4 LiqprovSHi−1+

+δ9DspreadHi−1 + δ10DmidpointHi−1)+

(1− ξi−1)(δ5 InfoBLi−1 + δ6 LiqprovBLi−1 + δ7 InfoSLi−1 + δ8 LiqprovSLi−1+

+δ11DspreadLi−1 + δ12DmidpointLi−1)

(4.11)

where DmidpointHi−1 = midpointi−1 − midpointi−2 represents the absolute midquote

change, and, as before, we use the suffix −H and −L to differentiate the two states of

the market. Dmidpoint measures the price impact over each volume duration, and it is

associated with the market reaction curve . Given a specific volume size, the price impact

is an increasing function of the amount of information in the market, and we expect a

negative effect of Dmidpoint on the length of volume durations. In fact, when the price

impact is higher, the market should be characterized by an intense activity coming from

informed traders, see Hautsch (2003).

The estimates based on the robust specifications for price and volume durations are

reported in Tables 4.8 and 4.9. We do not spend too much effort in a detailed analysis of

the two tables, and we limit our discussion to a few principal results. First of all, also in

this case, we recognize that our findings are in line with the estimates displayed in Table

4.5 and 4.6 for the basic model. Second, and particularly interesting, we observe that the

additional regressors present a different outcome for price and volume durations. As to

price durations, Tables 4.8 and 4.9 actually display the expected negative sign forDspread

and for Avgvol. The sign of Avgvol is in line with the estimates of trade durations, while

the impact of spread turns out to be negative, similar to Engle and Russell (1998) or

Bauwens and Veredas (2004); in this case, the informational effect related to the bid-

ask spread seems to prevail over the increase of transaction costs. Conversely, the effect

of Dspread and Dmidpoint is mostly found to be non-significant for volume durations.

Given the surprising result, we further investigate on this point and we re-estimate the
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Table 4.8: ML estimates for price and volume durations; robust standard errors in paren-
theses. The results are based on the Burr distribution and they refer to the augmented
specifications defined in Section 4.7. The tables provide the estimates for Alstom.

Price durations
Low threshold High threshold

Coeff Std.Error Coeff Std.Error
InfoBH -4.90E-02*** (1.65E-02) -6.21E-02** (2.60E-02)
LiqprovBH -4.21E-02 (2.39E-02) -6.39E-02 (3.99E-02)
InfoSH -8.08E-02*** (1.64E-02) -7.61E-02*** (2.54E-02)
LiqprovSH -1.20E-01*** (2.36E-02) -1.39E-01*** (3.78E-02)
InfoBL 1.51E-02 (1.02E-02) 3.47E-03 (1.26E-02)
LiqprovBL 1.96E-02 (1.15E-02) 1.71E-02 (1.43E-02)
InfoSL 8.54E-03 (9.84E-03) 2.60E-03 (1.22E-02)
LiqprovSL -3.79E-02*** (1.12E-02) -3.19E-02** (1.39E-02)
Dspread -3.70E-02*** (2.94E-03) -3.67E-02*** (3.40E-03)
Avgvol -8.16E-05*** (2.06E-05) -5.88E-05** (2.77E-05)

Volume durations
Low threshold High threshold

Coeff Std.Error Coeff Std.Error
InfoBH -3.94E-02** (1.84E-02) -5.02E-02** (2.90E-02)
LiqprovBH -4.95E-02** (2.44E-02) -5.25E-02 (5.52E-02)
InfoSH -3.81E-02** (1.41E-02) -8.79E-02*** (3.05E-02)
LiqprovSH -1.20E-01*** (2.36E-02) -1.53E-01*** (4.70E-02)
DspreadH 1.30E-02 (2.00E-02) -1.41E-02 (3.30E-02)
DmidpointH 3.13E-02 (3.76E-02) 6.45E-02 (4.36E-02)
InfoBL -2.97E-02 (3.07E-02) -4.20E-02 (2.75E-02)
LiqprovBL -8.83E-03 (3.41E-02) -8.66E-02 (4.55E-02)
InfoSL -6.03E-01 (4.56E-01) -6.21E-01 (5.22E-01)
LiqprovSL -1.94E-02 (3.01E-02) 1.16E-01 (1.65E-01)
DspreadL 2.64E-01 (4.46E-01) -3.31E-01 (5.07E-01)
DmidpointL 2.21E-01 (1.56E-01) 2.90E-01 (1.57E-01)

Volume durations - Microstructure variables
Low threshold High threshold

Coeff Std.Error Coeff Std.Error
DspreadH -8.36E-01*** (2.61E-01) -9.69E-01*** (3.24E-01)
DmidpointH -3.10E-01*** (9.26E-02) -1.86E-01** (8.69E-02)
DspreadL 1.44E+00*** (2.77E-01) 7.55E-01** (3.68E-01)
DmidpointL 3.85E-01*** (1.24E-01) 4.64E-01*** (1.39E-01)
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Table 4.9: ML estimates for price and volume durations; robust standard errors in paren-
theses. The results are based on the Generalized Gamma distribution and they refer to
the augmented specifications defined in Section 4.7. The tables provide the estimates for
Alstom.

Price durations
Low threshold High threshold

Coeff Std.Error Coeff Std.Error
InfoBH -4.95E-02*** (1.67E-02) -6.02E-02** (2.67E-02)
LiqprovBH -3.96E-02 (2.43E-02) -6.32E-02 (4.08E-02)
InfoSH -7.98E-02*** (1.65E-02) -8.00E-02*** (2.60E-02)
LiqprovSH -1.13E-01*** (2.40E-02) -1.42E-01*** (3.84E-02)
InfoBL 1.52E-02 (1.03E-02) 1.25E-03 (1.28E-02)
LiqprovBL 2.12E-02 (1.17E-02) 1.85E-02 (1.46E-02)
InfoSL 8.42E-03 (9.98E-03) 3.46E-03 (1.25E-02)
LiqprovSL -3.56E-02*** (1.13E-02) -2.80E-02** (1.42E-02)
Dspread -3.67E-02*** (2.98E-03) -3.62E-02*** (3.45E-03)
Avgvol -7.79E-05*** (2.10E-05) -5.85E-05** (2.82E-05)

Volume durations
Low threshold High threshold

Coeff Std.Error Coeff Std.Error
InfoBH -4.35E-02** (1.82E-02) -6.78E-02** (3.30E-02)
LiqprovBH -5.83E-02** (2.60E-02) -3.87E-02 (5.18E-02)
InfoSH -4.24E-02*** (1.47E-02) -9.33E-02*** (3.26E-02)
LiqprovSH -1.40E-01*** (2.28E-02) -1.79E-01*** (4.01E-02)
DspreadH 1.15E-03 (2.09E-02) 7.39E-03 (3.58E-02)
DmidpointH 2.04E-02 (2.22E-02) 3.84E-02 (4.68E-02)
InfoBL -3.89E-02 (2.23E-02) -5.88E-02 (3.68E-02)
LiqprovBL -1.01E-03 (3.42E-02) -1.03E-01 (6.35E-02)
InfoSL -7.21E-01** (3.18E-01) -6.87E-01 (5.67E-01)
LiqprovSL -4.91E-02 (1.27E-01) 1.13E-01 (1.98E-01)
DspreadL 1.18E-01 (3.57E-01) -6.72E-01 (6.90E-01)
DmidpointL 1.79E-01 (1.72E-01) 2.64E-01 (1.63E-01)

Volume durations-Microstructure variables
Low threshold High threshold

Coeff Std.Error Coeff Std.Error
DspreadH -8.84E-01** (3.36E-01) -1.04E+00*** (3.59E-01)
DmidpointH -3.66E-01*** (1.42E-01) -2.17E-01** (1.03E-01)
DspreadL 1.33E+00*** (3.78E-01) 5.33E-01 (2.79E-01)
DmidpointL 3.70E-01** (1.80E-01) 4.49E-01*** (1.24E-01)
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model by only taking into account Dspread and Dmidpoint in the specification of ψ; the

results are reported in the last panel of Tables 4.8 and 4.9. The two tables show that

Dspread and Dmidpoint are significant only when we exclude the variables for trader

impact from the definition of the conditional duration.

This is particularly interesting, as it attributes a dominant explicative power to the

fraction of volume traded by informed traders and the liquidity provider. Furthermore,

the coefficients at the bottom of Tables 4.8 and 4.9 display an opposite result according

to the state of the market. Indeed, the increase of Dspread and Dmidpoint negatively

impacts the future volume spell only when the trading intensity is high. On the contrary,

the same variables reduce or marginally influence the demand for market liquidity in

the slow trading regime. In other words, a wider spread or an increasing price impact

affect the length of volume durations only when the informed-based trading is more likely

to occur; otherwise, both variables lose most of their significance. On the whole, these

findings are coherent, though unexpected, with the theoretical models that consider the

relationship between the trading frequency and the presence of informed agents in the

market (Easley and O’Hara, 1992).

4.7.3 Residuals

We end this section with a brief examination of residual diagnostics based on the density

forecast technique. We follow the same approach introduced by Diebold et al. (1998)

in the context of GARCH models, and we refer to Bauwens et al. (2004) for a more

exhaustive coverage of the topic. Diebold et al. (1998) essentially propose to test the

correct specification of a model by means of the probability integral transforms:

zi =

∫ xi

−∞

fi(u)du (4.12)

where fi(u) represents the density forecast implied by the duration model. Under the as-

sumption of correct specification, the distribution of the empirical sequence of probability
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integral transform is IID U(0, 1). We show the results of residual diagnostics through a

set of z-histograms, as it is common practice in the previous empirical contributions. To

save space, we limit the analysis to Alstom, but the rest of the sample exhibit a similar

outcome.

A few comments are in order with respect to the six plots presented in Figure 4.3. First

of all, we notice a quite remarkable similitude between the z-histograms based on the Burr

and on the Generalized Gamma distributions, such that a superior performance of one

of the two distributions is not clearly spot. Second, the z-histograms for trade durations

display a slightly pronounced U-shaped pattern, putting too much weight on the tails of

the distribution and over-representing the very small and the very high durations. The

z-histograms for aggregated durations appear more uniformly distributed, with the only

exception of the very high durations which are generally over-represented. On the whole,

our z-histograms are in line with the plots showed in some previous works, as Bauwens et

al. (2004) or Vuorenmaa (2011); nevertheless, a formal χ2 test for goodness of fit accepts

the two distributions only in a few marginal cases.

Finally, we use the sequence of probability integral transforms to check for the absence

of serial correlation in model residuals, and we report the graphs for Alstom in Figure

4.4. With the only exception of trade durations, the plots show that our models manage

to extract most of the serial dependence from the original series, which is also confirmed

by the Ljung-Box statistics for the first 30 lags. We believe that the opposite findings

for trade and aggregate durations should be attributed to the high level of persistence

displayed by trade durations, which is moreover emphasized by the use of microseconds.

Indeed, the presence of microseconds assures a more accurate measurement of time, but

it also increases the autocorrelation of the series.
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Figure 4.3: Z-histograms for trade, volume, and price durations. The figure displays the high threshold series for aggregate durations;
all graphs refer to Alstom.
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Figure 4.4: Z-residual correlogram for trade, price and volume durations. The figure displays the high threshold series for aggregate
durations; all graphs refer to Alstom.
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4.8 Conclusions

In this research, we adopt a Log-ACD model to analyse the impact of traders on financial

durations. We test our hypothesis on trade, price, and volume durations, and we find

that informed traders and the liquidity provider foster the arrival of future market events.

This result is unequivocally true for trade durations, while for price and volume durations,

our estimates are proven to depend on the state of the market activity. Indeed, the

impact of informed traders and the liquidity provider is effective when their presence is

combined with a high trading frequency. On the whole, our estimates are coherent with

the standard theoretical models discussed in financial market microstructure, and they

confirm the dominant role of informed traders and of the liquidity provider in driving

the market activity. The results are robust across alternative distributions, as well as

when they are tested with supplementary microstructure variables. On the other hand,

residual diagnostics show that the lag specification and the distributional assumptions

are only partially successful in fitting the duration series.
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Chapter 5

Far Away from the Best: Order

Aggressiveness at Euronext Paris

Fabrizio Ferriani

JEL codes: C10, G10, G14

Keywords: Market microstructure, Order aggressiveness, Limit order book,

Simultaneous equation model, Euronext Paris

5.1 Introduction

In an order-driven market, a trader essentially submits two typologies of orders that

generate an opposite impact on the liquidity of the limit order book (LOB). A trader

enhances the market liquidity by choosing a limit order, and conversely subtracts liquid-

ity from the LOB by submitting a market order. The diffusion of order-driven markets

worldwide has increased the attention of market microstructure research on the determi-

nants of order submission strategies. Generally speaking, traders decide which order to

place on the basis of a trade-off between profitability and the probability of execution.

When a market order is submitted to the LOB, then it is immediately executed; however,

the matching may occur at unfavourable execution prices, especially in illiquid markets.
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On the other hand, the traders satisfy their price preferences in the case of limit orders,

but they lose the certainty of execution; in fact, there could be no proposals in the LOB

to meet their price constraints. Limit orders also face an adverse selection risk, given

that their prices are fixed and market monitoring is a costly activity. As a matter of fact,

when new information arrives in the market, the informed traders may profit from their

private signal by picking off a standing limit order that is then executed at unfavourable

price conditions (Copeland and Galai, 1983, Biais et al., 1995).

Biais et al. (1995), hereafter BHS (1995), analyse the Paris Stock Exchange, and the

relationship between the order flow and the state of the LOB. They propose a ranking

where market and limit orders are classified according to different levels of aggressive-

ness. Order aggressiveness represents a measure of traders’ impatience and it is directly

related to the probability of execution. The most aggressive traders submit market orders

or marketable limit orders that are promptly matched and guarantee an immediate exe-

cution. Conversely, the less impatient traders place limit orders that are associated with

progressively decreasing levels of aggressiveness: as an extreme case, the lowest level of

aggressiveness collects buy (ask) orders with a limit price below (above) the best bid (ask)

quote. BHS’s (1995) seminal contribution has widely influenced the following research

on empirical market microstructure, and their scheme has been used to test order aggres-

siveness in several financial markets, especially by means of discrete response models. As

a few examples, their approach is adopted by Ranaldo (2004) in the analysis of the Swiss

Stock Exchange, while Ellul et al. (2003) and Cao et al. (2009) replicate BHS’s (1995)

classification for the NYSE and the Australian Stock Exchange, respectively. All these

papers examine order aggressiveness through ordered probit or multinomial logit models,

which are easily implemented and also allow to deal with price discreteness issues.

An in-depth investigation of order aggressiveness is also provided by Duong et al.

(2009) who extend the previous research by taking into account the categories of traders.

They use an ordered probit model to examine the order flow at the Australian Stock Ex-

change, differentiating between institutional and individual (retail) order flows. Pascual
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and Veredas (2009) propose a two-stage sequential ordered probit to study order aggres-

siveness at the Spanish Stock Exchange. In the first step, each trader is classified with

respect to the decision of providing or consuming market liquidity. In the second step,

the trader chooses the best submission strategy according to the level of aggressiveness

determined previously. Hall and Hautsch (2006) adopt BHS’s (1995) ranking to examine

the order arrival process through an autoregressive conditional intensity model, and they

find support for a multivariate dynamics of order arrivals; in a way, their paper follows

the previous research by Bisière and Kamionka (2000). Lo and Sapp (2010) present a

simultaneous equation model to evaluate order aggressiveness in the currency markets.

Their paper is sensibly appealing for two reasons. First, they consider a market that is

traditionally neglected by the empirical microstructure literature. Second, and also more

relevant, they split order aggressiveness into two components: price and quantity. The

price component is clearly dominant in determining the traders’ impatience given that

markets are traditionally organized in order to enhance a strict price priority. However,

all conditions being equal, previous theoretical contributions (e.g. Easley and O’Hara,

1987) recognize a strong informational content to the trading volume. On this point, Bae

et al. (2003) stress the relevance of quantity for the analysis of order submission strate-

gies, and they suggest the examination of its relationship with market microstructure

variables.

In this research, we partially replicate Lo and Sapp (2010) approach to study order

aggressiveness, and we investigate the impact of LOB variables on the price-quantity

decision at Euronext Paris. This paper is not the first attempt to study order aggressive-

ness at Euronext Paris, since BHS (1995) seminal contribution or Bisière and Kamionka

(2000) also focus on the French Stock Exchange. Nevertheless, our data set presents some

peculiarities that are worth a more in-depth investigation. A first point concerns the mar-

ket reform introduced on 23 April 2001, when Euronext Paris switched to an anonymous

trading regime. In a fully disclosed market, the behaviour of institutional investors is usu-

ally subject to a strong imitation effect (BHS 1995, Duong et al., 2009). Conversely, the
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informativeness of a trading strategy is obviously weaker in the case of hidden identities.

This research looks for a confirmation of the preceding results on order aggressiveness,

and it follows Foucault et al. (2007) who examine the LOB post market reform and find a

decrease of the bid-ask spread informativeness in the new setting. Furthermore, our data

set allows for a comparison with studies on non-anonymous markets, as Cao et al. (2008)

who examine the Australian Stock Exchange where institutional investors have full access

to the identities of traders. A second point concerns the categories of traders operating

at Euronext Paris. The Paris Bourse presents some intermediaries called ‘animateurs’

who enhance the market liquidity by assuring a maximum spread size and a minimum

level of depth. Aitken et al. (2007) study the role of these operators at Euronext Paris

and find a limited contribution to the overall liquidity of the LOB. Although Euronext

Paris may be mainly regarded as an order-driven market, the presence of agents who

assure contractual levels of liquidity is a challenge with respect to the results obtained in

pure order-driven markets (see Ranaldo, 2004 or Cao et al., 2009). Finally, the last point

regards the traditional approach to study order aggressiveness. As a matter of fact, most

of the previous empirical contributions simply apply the scheme in BHS (1995) by means

of discrete choice models. This strategy is particularly appealing, but we show that it

disregards relevant quantitative differences within the same order category. Therefore,

we still adopt the BHS’s (1995) classification that represents the leading reference in this

topic, but we propose an alternative approach to capture the heterogeneity of orders and

to fully exploit the informativeness of price and volume.

This paper is organized as follows. Section 5.2 reviews the original BHS’s (1995)

ranking and it introduces our approach to measure order aggressiveness. Section 5.3

presents the data set used in this paper and provides some descriptive statistics for order

aggressiveness. Section 5.4 describes the model adopted for the empirical analysis and

discusses the microstructure hypotheses. Section 5.5 presents the empirical results and

examines the price impact for different categories of orders. Finally, Section 5.6 concludes.
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5.2 Order Aggressiveness

5.2.1 Ranking order aggressiveness

Most of the empirical papers on order aggressiveness use or slightly adapts the scheme

in BHS (1995) to measure traders’ impatience. BHS (1995) essentially rank each order

according to its price position with respect to the best quotes. For an agent entering the

market as a buyer, BHS (1995) sort the aggressiveness of his order as follows:

1. Large buy: when the agent specifies a limit price above BASK1 and demands a

quantity larger than that available at BASK;

2. Market buy: is a market order demanding a quantity larger than that available

at BASK;

3. Small buy: when the agent specifies a limit price above BASK, but demands a

quantity smaller than that available at BASK;

4. Limit order within the quotes: when the agent submits a limit order with a

price improving BBID, but that is under BASK;

5. Limit order at the quote: when the buyer specifies a limit order with a price at

BBID;

6. Limit order below the quote: when the trader submits a buy limit order with

a price below BBID;

The approach can be easily extended to the case of sell orders, by considering the sym-

metrical ranking. The BHS’s (1995) scheme splits all the orders into two broad groups:

classes 1-3 include orders that result in an immediate matching and subtract liquidity

from the market (market orders and marketable limit orders). On the other hand, the

last three classes collect less aggressive orders that enhance market liquidity and do not

1To simplify the exposition, in the following we refer to the two prevailing quotes as BASK (best ask)
and BBID (best bid).
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imply an instantaneous execution. From the ranking, it is immediate to recover the two

components that determine the level of aggressiveness: the price and the volume. Clearly,

the price of an order represents the leading indicator in markets ruled under a price pri-

ority system; this is also suggested by the fact that the volume is a discriminant factor

only for the first three categories. Nevertheless, which is coherent with the previous lit-

erature emphasizing the role of volume for order aggressiveness (Lo and Sapp, 2010), we

differentiate between price aggressiveness and volume aggressiveness.

5.2.2 An alternative approach

The simplicity of BHS’s (1995) classification and the necessity to deal with price discrete-

ness explain why most of the previous contributions have investigated order aggressiveness

using a categorical variable approach. However, despite the widespread diffusion of this

method, the application of discrete variable models does not seem to be a binding choice

for our sample where the tick size equals to 0.005 Euro. As Aitken et al. (2005) highlight

for the Australian Stock Exchange, such a tick size makes the price discreteness issue

less relevant for the study of market microstructure hypotheses. This is not a secondary

point, as BHS’s (1995) ranking is essentially based on a quasi -qualitative criterion. In-

deed, BHS (1995) do not categorize orders on the basis of a quantitative scale, and this

inexorably collapses the informativeness of both price and volume. To realize this point

for price aggressiveness, it is sufficient to consider the first class, assuming that BASK is

50 Euros and the quantity available is 200 shares. If two buyers submit two limit orders

for 500 shares at a price of 50.005 and 53 Euros respectively, both orders will be assigned

to the same class according to BHS (1995). However, it seems quite questionable to

associate the same level of price aggressiveness to the two orders, as the second trader is

disposed to buy at a price that is considerably higher than the first limit price. Therefore,

we propose to measure price aggressiveness as the reservation price of a trader, and we

introduce the following variable ∆pt:
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∆pt =





BASKt − pt for buy orders

pt −BBIDt for sell orders

(5.1)

where pt is the price of an order submitted at time t, and BASKt and BBIDt represent

the prevailing quotes at time t. In this way, price aggressiveness is expressed as a contin-

uous variable that measures the distance from the best quote on the opposite side of the

market. According to the type of order, ∆pt assumes the following values:

∆pt





< 0 for marketable limit orders

= 0 for market orders

> 0 for limit orders.

(5.2)

Regardless of the quantity, ∆pt assumes a negative value for buy (sell) orders displaying

a limit price higher (lower) than BASK (BBID). On the other hand, ∆pt is equal to zero

when the traders submit a market order, and it assumes a positive value for limit orders

that belong to the classes 4 to 6 of BHS’s (1995) ranking. By means of ∆pt, we measure

the price aggressiveness under an ex-ante perspective, i.e. as a sort of willingness to

pay. Generally speaking, it is the relative price position which matters to evaluate the

price aggressiveness of an order and the corresponding probability of execution. When

a trader submits a buy order, his level of aggressiveness will be directly related to how

much he is likely to pay over the standing BASK, and similarly for a sell order. Then,

the likelihood of execution progressively decreases for orders submitted at less favourable

price conditions: for a buy order this corresponds to a price lower than BASK, for a sell

order this is consistent with a price higher than BBID.

With respect to BHS’s (1995) ranking, our approach diminishes the number of order

categories and it also collapses the marketable limit orders in a unique class. Now, some

considerations are in order to motivate this choice. First of all, the lower number of classes
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is actually compensated by the quantitative measurement of price aggressiveness and

Section 5.3.2 offers a comprehensive discussion on this point. Second, though BHS (1995)

represents the primary reference in this field, several papers adopt some modifications of

it. As an example, Duong et al. (2009) propose a classification which is fairly similar to

the one implied by ∆pt, but they still adopt a categorical variable model. Third, even

though we collect all the marketable limit orders in a unique category, we assess the

impact of volume via a distinct equation, in line with Lo and Sapp (2010). Finally, our

approach seems more coherent with Euronext trading rules. In fact, the traders are aware

that a marketable limit order incurs in less favourable prices when it walks down (up) the

book to be fully matched. Conversely, in the case of market orders, Euronext sets a highly

narrow price collar which prevents to walk far away from the best quotes. Therefore, the

price tolerance that a trader is willing to accept seems a better measurement of the level

of aggressiveness, especially when the LOB is not deep or when the traders submit large

quantities.

As it concerns volume aggressiveness, we recognize that the order size is not explicitly

modelled in BHS (1995), and similarly in most of the following empirical contributions.

This choice seems coherent with market priority rules, but it disregards the informational

content of quantity. We believe that a separate measurement of volume represents a more

suitable alternative, rather than simply considering a few discriminant thresholds. This

is particularly true for aggressive orders, and to figure out this point we re-consider the

previous example with a BASK of 50 Euros and a standing volume of 200 shares. Then,

we assume two incoming buy orders with a limit price equal to 50.1 Euros and a quantity

which is 300 and 5000 shares, respectively. By neglecting the quantitative impact of

volume, we would assign the two orders to the same ranking class, though the association

would be fairly questionable also in this case. Such an issue is even more problematic

in the case of market orders where the volume represents the only condition which is set

by traders. All this suggests that a single dimension is not sufficient to classify order

aggressiveness; therefore, we adapt the model in Lo and Sapp (2010) to simultaneously
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study the two principal terms of an order submission strategy.

5.3 Data

5.3.1 The sample

The data set used in this paper is provided by Eurofidai and it includes all the orders

submitted to Euronext Paris LOB2, between 1 September 2009 and 30 October 2009, for

six stocks of the CAC 40 index, namely: Alstom, Axa, Crédit Agricole, Eads, Essilor,

and Sanofi-Aventis. We single out three main categories of orders from the data set:

1. The marketable limit orders, which are limit orders with a price improving the

best quotes; these orders are promptly matched and fully executed as long as price

conditions are satisfied.

2. The market orders, which are immediately filled at the best quotes standing on

the market. If the quantity available at the best quotes is not sufficient, the order

is fulfilled at different prices, but the traded price has to fit within highly narrow

collars set by the Exchange.

3. The limit orders wherein the price does not improve the best quotes; these orders

fill the LOB and increase the market liquidity without resulting in a trade.

Similar to Ranaldo (2004), the data set only supplies information on the prevailing quotes,

and no data are available for the rest of the LOB. Empirical microstructure literature

has long discussed the LOB informativeness outside the best quotes, and a final answer

is yet to be given. For instance, Cao et al. (2008) find a limited informational content

for the lower levels of the LOB, while Lo and Sapp (2010) find mixed results for the

informativeness of quotes behind the best prices, and Pascual and Veredas (2009) show

that the model goodness-of-fit increases by considering the whole LOB. Nevertheless, most

2There is no information on hidden orders. For the empirical analysis, we only consider orders
submitted during the continuous auction, i.e. between 9.00 a.m. and 5.30 p.m..
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Table 5.1: Descriptive statistics for orders submitted to Euronext LOB between 1
September and 30 October 2009.

Volume Ask Bid Midpoint Spread Volatility Time Observations

Alstom 562.2 494.9 482.8 49.80 0.035 0.0094 0.944 1,423,163
Axa 1212.4 2114.5 2029.2 17.85 0.012 0.0031 0.644 2,090,483
Crédit A. 1453.2 2365.8 2237.6 13.89 0.012 0.0034 0.911 1,477,359
Eads 1271.2 1796.1 1732.8 14.86 0.019 0.0036 1.396 963,960
Essilor 362.4 594.2 589.2 38.62 0.030 0.0058 1.759 764,576
Sanofi-A. 560.5 799.2 774.0 49.64 0.022 0.0052 0.545 2,468,192

Table 5.2: Descriptive statistics for order size with respect to ∆pt intervals.

Alstom

Buy Sell

Volume ∆pt < 0 ∆pt = 0 ∆pt > 0 ∆pt < 0 ∆pt = 0 ∆pt > 0

0.25 perc. 90 84 200 100 81 200
0.5 perc. 177 173 216 190 171 204
0.75 perc. 318 325 400 345 318 400
Mean 307.01 276.71 582.69 329.13 267.76 607.58
S.D. 547.31 430.63 3,267.41 599.61 415.74 3,384.31

Relat. frequency 0.023 0.084 0.893 0.022 0.082 0.896

Eads

Buy Sell

Volume ∆pt < 0 ∆pt = 0 ∆pt > 0 ∆pt < 0 ∆pt = 0 ∆pt > 0

0.25 perc. 109 199 300 119 163 300
0.5 perc. 310 452 500 348 420 500
0.75 perc. 771 900 898 810 863 900
Mean 674.61 707.49 1,295.20 758.91 695.77 1,383.17
S.D. 1,257.09 921.07 6,644.63 1,812.47 955.97 7,001.68

Relat. frequency 0.018 0.087 0.895 0.018 0.091 0.891

of the literature unanimously recognize the two best quotes as the principal repository

of the market information, and our measure of price aggressiveness is coherent with this

hypothesis. We exclude from the original data set the orders registered as applications

(trades internally executed by financial institutions) and the marketable limit orders with

a price improving the best quote by more than 5 Euros. As a whole, this corresponds to

a very marginal part of the observations (always less than 0.5 %), while it contributes to

minimize the inclusion of outliers due to order processing.
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Table 5.1 presents some descriptive statistics. The first three columns exhibit the

average order volume and the average quantity available at the best quotes. The fourth

and the fifth columns report the average midpoint and the average absolute spread, re-

spectively. The sixth column displays the 5-minute standard deviation computed on the

midpoint, the seventh column provides the inter-order duration expressed in seconds,

while the last column shows the number of observations. Table 5.2 reports some descrip-

tive statistics for the order size with respect to ∆pt intervals, and it also indicates the

frequency of each category of orders. For the sake of brevity, we limit the presentation

only to Alstom and Eads, but our findings extend to the rest of the sample and are avail-

able upon request. According to Table 5.2, around 10% of the orders submitted to the

LOB result in a trade; this percentage is a bit lower than the one reported in previous

empirical studies of Euronext Paris (e.g. De Winne and D’Hond, 2005). Table 5.2 also

indicates that limit orders are usually larger than marketable limit orders or market or-

ders; this result is valid for the whole sample and it is in line with previous contributions,

see Harris and Hasbrouck (1996), Bae et al. (2003), Lo and Sapp (2010). The inverse

relationship between price aggressiveness and order size is coherent with the hypothesis

of volume informativeness (Easley and O’Hara, 1987). As a matter of fact, the traders

internalize that large aggressive orders are more revealing of a private signal, and they

place a smaller volume for market orders and marketable limit orders. Finally, Figure 5.1

exhibits the intraday seasonality pattern for price and volume aggressiveness; both plots

only take into account market orders and marketable limit orders. The figure display

the usual U-shaped pattern for the average volume size. On the other hand, the trend

of order submission differs between Alstom and Eads, even though both stocks display a

remarkable intraday periodicity with respect to ∆pt.

5.3.2 Heterogeneity in order aggressiveness

We examine the degree of heterogeneity for orders that belong to the same class according

to the BHS’s (1995) ranking and we find that they are not always collapsed in uniform
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Figure 5.1: Intraday plots for ∆pt and order size. The plots report the percentage of
market and marketable limit orders together with the corresponding average volume. The
x-axis provides the 30-minute intervals of the continuous auction.
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categories. In this context, a quantitative measurement of order aggressiveness is proven

to be a preferable strategy. Tables 5.3 to 5.8 provide the contingency tables for classes of

order aggressiveness with respect to ∆pt and order size. The tables follow the sequence

of BHS’s (1995) ranking and, to save space, we limit to buy orders for Alstom and Eads;

nevertheless, our findings also extend to the remaining stocks and to the sell side of the

market as well. Any multiple of the tick size away from the best quote is considered as

a distinct level of traders’ impatience, in line with the discussion in Section 5.2. Our

analysis is similar to Cao et al. (2008) who classify the position of orders in the LOB in

terms of steps. We adopt the tick size as the step to determine the distance of an order

from the best quotes, and we sort the values of ∆pt into five intervals. The first interval

includes orders that are just one tick away from the best quotes. The second collects

orders that are between two and five ticks away; the third has between six and ten ticks,

the fourth between eleven and fifteen ticks, while the fifth interval includes all the orders

that are more than fifteen ticks away from the best quotes. The volume is also sorted

into five intervals that classify the order size on the basis of the number of shares.

Table 5.3 refers to marketable limit orders demanding a volume larger than that avail-

able at BASK, and it can be compared with Table 5.5 that considers fully executed limit

orders improving BASK. As to price aggressiveness, both tables display a remarkable

portion of observations in the first interval, i.e. just one tick above BASK. This outcome
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is not unexpected, since the data set consists of extremely liquid stocks and a relevant

percentage of transactions generally occurs around the best quotes. The result is particu-

larly evident for Eads which exhibits a lower average price; thus, less ticks are required to

generate a specific price improvement in relative terms. However, and independently of

the order size, Table 5.3 shows that around 80 (50) percent of the observations for Alstom

(Eads) improves BASK by more than one tick; the proportion is even higher in Table 5.5

and it equals to 85 (65) percent for Alstom (Eads). The frequency of the observations

clearly diminishes in extreme ∆pt intervals, though some remarkable percentages are still

evident, especially in Table 5.5 where around 40 (20) percent of Alstom (Eads) orders are

placed at more than five ticks from BASK3. According to both tables, a relevant amount

of price informativeness would be lost by limiting to a threshold criterion to discriminate

the observations, as in BHS (1995). Conversely, with ∆pt we quantitatively evaluate the

maximum level of price tolerance that a trader is willing to accept. This seems more

suitable when there is price heterogeneity within a class or when the orders encounter

a multi-price execution by walking down (up) the book. As it concerns the order size,

Tables 5.3 and 5.5 exhibit a wide dispersion among all the classes, with the only excep-

tion of extremely large orders (>5000); the effect is particularly evident for Eads and

for less aggressive submissions (∆pt > −0.05). These figures confirm the existence of a

fair volume heterogeneity, and they seem coherent with our simultaneous model for the

price-quantity decision.

Table 5.4 displays the marginal frequencies for volume intervals in the case of market

orders. We limit to volume aggressiveness as ∆pt always equals to zero for market orders4;

therefore, the degree of heterogeneity for market orders is essentially measured by the

3The results for small buys show that a higher frequency of observations is placed in the more negative
intervals of ∆pt. Although an in-depth analysis on this point is out of the scope of this research, our
findings may be traced back to volume informativeness. The traders, especially the informed ones, do
not have any incentive to combine price aggressive orders with a large order size, as it could be revealing
of their private information. A contribution on this topic is provided by the stealth trading literature,
see Chakravarty (2001).

4Though a market order can walk the book to be completely filled, the price tolerance allowed by
Euronext is very limited and these orders are generally matched around the best quotes, especially for
highly liquid stocks. This matches with the choice to set ∆pt = 0 for market orders, also because we
measure the ex-ante price tolerance and not the ex-post execution price.
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Table 5.3: Contingency table for Volume and ∆pt intervals. The frequencies refer to Large buys for Alstom and Eads.

Alstom ∆pt Eads ∆pt
Volume [-5;-0.08] [-0.075;-0.055] [-0.05;-0.03] [-0.025;-0.01] [-0.005] Total [-5;-0.08] [-0.075;-0.055] [-0.05;-0.03] [-0.025;-0.01] [-0.005] Total
[1;100] 2.14 0.92 3.63 8.38 3.00 18.07 0.03 0.15 1.52 4.91 3.65 10.26

]100;500] 2.47 2.55 8.77 33.82 13.20 60.80 0.31 0.54 3.01 14.33 17.31 35.50

]500;1000] 1.28 0.80 1.94 7.48 2.43 13.93 0.62 0.31 1.41 8.67 13.79 24.80

]1000;5000] 1.47 0.47 1.07 2.97 0.94 6.92 0.72 0.57 2.68 10.21 12.97 27.14

>5000 0.14 0.02 0.01 0.07 0.04 0.28 0.10 0.08 0.51 1.00 0.59 2.29

Total 7.50 4.76 15.42 52.72 19.61 100.00 1.78 1.65 9.13 39.12 48.31 100.00

Table 5.4: Marginal frequencies of Volume for Alstom and Eads. The frequencies refer to Market buys.
Alstom Eads

Volume Realtive Frequency Relative Frequency
[1;100] 32.36 15.96
]100;500] 55.05 39.54
]500;1000] 9.16 24.47
]1000;5000] 3.37 19.45
>5000 0.05 0.58
Total 100.00 100.00

Table 5.5: Contingency table for Volume and ∆pt intervals for Alstom and Eads. The frequencies refer to Small buys.
Alstom ∆pt Eads ∆pt

Volume [-5;-0.08] [-0.075;-0.055] [-0.05;-0.03] [-0.025;-0.01] [-0.005] Total [-5;-0.08] [-0.075;-0.055] [-0.05;-0.03] [-0.025;-0.01] [-0.005] Total
[1;100] 14.04 4.43 9.21 19.95 5.18 52.80 2.97 2.54 3.87 15.53 9.57 34.47

]100;500] 3.85 2.04 5.50 23.26 8.20 42.85 2.21 1.84 2.93 18.96 17.04 42.98

]500;1000] 0.25 0.10 0.22 2.23 0.68 3.49 0.43 0.16 1.06 7.51 7.02 16.18

]1000;5000] 0.01 0.03 0.06 0.59 0.15 0.85 0.14 0.23 0.59 3.13 2.19 6.28

>5000 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.06 0.08

Total 18.15 6.60 14.99 46.04 14.21 100.00 5.77 4.77 8.45 45.13 35.88 100.00
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Table 5.6: Contingency table for Volume and ∆pt intervals for Alstom and Eads. The frequencies refer to Limit (buy) orders within
the best bid and the best ask.

Alstom ∆pt Eads ∆pt
Volume [0.005] [0.010;0.025] [0.03;0.05] [0.055;0.075] [0.08;5] Total [0.005] [0.010;0.025] [0.03;0.05] [0.055;0.075] [0.08;5] Total
[1;100] 2.94 11.18 5.69 1.07 0.30 21.17 7.29 3.73 0.43 0.09 0.00 11.53

]100;500] 7.29 36.02 23.18 4.16 0.71 71.36 25.11 16.17 4.02 0.46 0.12 45.88

]500;1000] 0.77 3.22 1.16 0.52 0.16 5.84 14.90 7.37 1.87 0.14 0.05 24.33

]1000;5000] 0.23 0.98 0.23 0.09 0.07 1.59 12.39 4.36 1.06 0.07 0.02 17.89

>5000 0.00 0.02 0.00 0.00 0.01 0.03 0.22 0.12 0.03 0.00 0.00 0.37

Total 11.23 51.42 30.26 5.84 1.25 100.00 59.91 31.75 7.41 0.76 0.19 100.00

Table 5.7: Contingency table for Volume and ∆pt intervals for Alstom and Eads. The frequencies refer to Limit (buy) orders at
the best bid.

Alstom ∆pt Eads ∆pt
Volume [0.005] [0.010;0.025] [0.03;0.05] [0.055;0.075] [0.08;5] Total [0.005] [0.010;0.025] [0.03;0.05] [0.055;0.075] [0.08;5] Total
[1;100] 0.85 8.67 9.10 3.01 1.13 22.76 2.43 4.92 1.41 0.64 0.64 10.03

]100;500] 2.20 18.64 25.20 16.75 5.28 68.07 9.86 23.31 14.12 1.40 0.86 49.54

]500;1000] 0.41 1.78 1.51 1.05 1.26 6.01 5.28 11.17 7.13 1.19 0.98 25.76

]1000;5000] 0.25 1.14 0.60 0.27 0.67 2.93 3.38 5.65 2.45 1.28 1.00 13.75

>5000 0.02 0.12 0.05 0.03 0.01 0.23 0.44 0.26 0.07 0.03 0.12 0.91

Total 3.73 30.35 36.46 21.11 8.35 100.00 21.39 45.31 25.18 4.54 3.60 100.00

Table 5.8: Contingency table for Volume and ∆pt intervals for Alstom and Eads. The frequencies refer to Limit (buy) orders below
the best bid.

Alstom ∆pt Eads ∆pt
Volume [0.005] [0.010;0.025] [0.03;0.05] [0.055;0.075] [0.08;5] Total [0.005] [0.010;0.025] [0.03;0.05] [0.055;0.075] [0.08;5] Total
[1;100] 0.87 0.50 2.39 2.53 3.35 9.63 0.34 0.57 0.82 0.78 1.56 4.07

]100;500] 0.55 2.66 21.23 30.01 15.71 70.16 0.39 15.95 24.99 3.40 2.08 46.81

]500;1000] 0.13 0.16 1.05 2.33 11.31 14.98 0.16 6.05 15.78 3.81 1.81 27.61

]1000;5000] 0.05 0.03 0.09 0.17 3.70 4.04 0.13 2.03 8.33 3.00 5.18 18.67

>5000 0.00 0.00 0.00 0.01 1.18 1.19 0.01 0.02 0.08 0.13 2.60 2.85

Total 1.60 3.35 24.76 35.05 35.25 100.00 1.03 24.62 50.00 11.12 13.23 100.00
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amount of shares requested to the market. Also in this case, extremely large orders

represent a small proportion of the observations, while there exists a fair heterogeneity

for the remaining classes. A plain application of BHS (1995) ranking would imply a

unique classification, irrespective of the number of shares of each order. Conversely, the

approach suggested by Lo and Sapp (2010) seems more appropriate, especially when the

volume represents the main indicator to discriminate the aggressiveness of traders.

Tables 5.6 to 5.8 provide joint and marginal frequencies for orders that do not im-

mediately result in a transaction. For these classes, ∆pt is always strictly positive, with

larger values corresponding to lower levels of impatience. Table 5.6 offers the descriptive

statistics for buy limit orders which improve BBID but are below BASK. For limit orders

submitted within the quotes or directly at the quotes (see Table 5.7), ∆pt is proportional

to the spread width and it measures the minimum price improvement required to match

an order. In Table 5.6, we notice the high concentration of orders within few ticks from

BASK, especially for Eads. This finding is not striking as the stocks of the CAC 40

index comply with high liquidity standards and it would be unlikely to observe a large

spread and, consequently, a high value of ∆pt. Nevertheless, around 35 (8) percent of

Alstom (Eads) orders are placed in the three most positive intervals of ∆pt. Therefore,

our approach seems particularly appropriate during periods of large spreads, when the

submission of orders within the quotes does not imply a higher probability of execu-

tion per se. With regard to volume heterogeneity, Table 5.6 exhibits a certain level of

data dispersion, which is still more apparent for Eads. Similar to market orders, this

again emphasizes the role of volume to fully describe order aggressiveness when the price

informational content is limited.

Table 5.7 displays the descriptive statistics for orders submitted at BBID. In this

case, ∆pt intervals provide an indirect measure of the bid-ask spread and, coherent with

the previous discussion, it is not surprising that a relevant concentration of orders is

submitted just a few ticks away from BASK. Nevertheless, more than 65 (35) percent of

Alstom (Eads) orders are placed at more than five ticks from BASK. As to volume, Table
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5.7 still exhibits a noticeable variability, despite the dominant fraction of orders between

100 and 500 shares and the marginal presence of extremely large orders.

Frequency statistics for buy limit orders with price below BBID are collected in Table

5.8. The table presents a remarkable variability for price and volume aggressiveness, with

a striking percentage of orders placed at higher values of ∆pt. On the basis of BHS’s

(1995) ranking, we should collapse both the few orders submitted close to BASK and

the high percentage of orders placed at more than 15 ticks from BASK into the same

class, though the latter are clearly less likely to be executed. According to Table 5.8, the

traders also provide liquidity far behind from the best quotes, and this feature would not

be fully captured by using discrete variable models. Finally, the quantity is also fairly

distributed among the five classes, though the range ]100;500] is still dominant.

5.4 Model and Empirical Specification

5.4.1 The model

We separately examine the two components of order aggressiveness and we model the

volume and the price of each order by means of a simultaneous equation system

∆pt = fp(xt; θp) + φqt + ǫ1 (5.3)

qt = fq(xt; θq) + γ∆pt + ǫ2 (5.4)

ρ = Corr(ǫ1, ǫ2)

where fp(xt; θp) is a function of a set of regressors xt with associated parameters θp, and

an analogous specification holds for the volume of each order, qt. The parameter ρ allows

for the presence of correlation between the two error components, ǫ1 and ǫ2. This setting

slightly differs from the one proposed by Lo and Sapp (2010) who consider an ordered

probit for price aggressiveness and a censored regression for the quantity. In the previous

sections, we have widely discussed the reasons to exclude a discrete variable model for
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price aggressiveness. As to quantity, Lo and Sapp (2010) employ a censored regression

model to account for the clustering of volume which characterizes their data set; however,

no empirical evidence suggests to use the same approach for our sample.

The endogeneity that affects the price-quantity decision is solved through a two-

stage least squares estimation where the lagged dependent variables are employed as

instruments. As emphasized by Lo and Sapp (2010), the endogeneity between price and

volume has not just an econometric implication, but it also relates to the two fundamental

components of the traders’ submission strategies. In fact, when a trader chooses the price

and the quantity of his order, he faces a trade-off between instantaneous matching and

costs of execution. On the one hand, he ensures a prompt execution by submitting price

aggressive orders. On the other hand, he exposes to private information disclosure or

to unfavourable price execution when his order has to walk down the book to be fully

matched. As a solution, the traders generally combine price aggressiveness with the

splitting of sizeable orders into smaller quantities.

5.4.2 Explanatory variables and microstructure hypotheses

For the empirical analysis, we consider a wide set of explanatory variables that define the

status of the LOB and that may influence the aggressiveness of traders. These variables

are included as regressors in the system (5.3)-(5.4) and may be thought as the investor

information set (Beber and Caglio, 2005). The full list of variables includes:

• Bid-ask spread. It is defined as the difference between the standing BASK and

BBID at the time of order submission. The width of the spread is affected by

multiple factors, as informational asymmetries or inventory costs, but the first

component is clearly dominant in an order-driven market. The spread measures

the gap between the two sides of the market and it is inversely related to the level

of competition and liquidity. As a matter of fact, the spread widens in case of

less liquid stocks or when market participants perceive an increasing likelihood of
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informed trading (see Glosten and Milgrom, 1985, Easley and O’Hara, 1987). In

this context, the uninformed traders are exposed to the risk of being picked off by

informed agents and the submission of market orders becomes a costly strategy, as

the traders would pay the whole distance between the best quotes. Coherent with

previous empirical studies (e.g. Biais et al., 1995, Bae et al., 2003, and Ranaldo,

2004), we expect the spread to be negatively related to price aggressiveness, with

traders being less impatient when the spread increases. As to quantity, when the

spread is high the trader prefer to submit smaller orders to minimize the loss in case

of trading with informed agents. On the other hand, the traders are also encour-

aged to gain from the provision of market liquidity through the submission of large

limit orders. Despite of this opposite pressure, Lo and Sapp (2010) find a negative

relationship between order size and spread, though their estimates are not always

significant.

• Same side depth. For each buy (sell) order, the depth on the same market side

is measured as the number of shares standing at BBID (BASK). Parlour (1998)

proposes a model where the probability of execution of each order depends on the

future order arrivals and on the volume available in the LOB. Unless of a price

improvement, rational agents know that submitting a limit order on a thick mar-

ket increases the execution risk because of time priority rules. When a considerable

amount of volume is available at BBID (BASK), the buyer (seller) has to force price

aggressiveness in order to jump over the queue of preceding orders. The competi-

tion among traders in terms of price improvement and the resulting submission of

aggressive orders is referred to as the crowding-out effect. Generally speaking, the

greater the depth at BBID (BASK), the higher is the aggressiveness of an incoming

buyer (seller). Therefore, we expect to find a positive relationship between price

aggressiveness and volume available at the same side of the market, as in Ranaldo

(2004) or Pascual and Veredas (2009). As to volume aggressiveness, we expect

a negative relationship between order size and depth on the own side, since the
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traders seeking for a faster execution combine the high price aggressiveness with a

small quantity (see Lo and Sapp, 2010 or Hall and Hautsch, 2006).

• Opposite side depth. It is measured as the number of shares available at BASK

(BBID) for a buy (sell) order, similar to the previous regressor. When the buy (sell)

side is thick, the execution risk for sellers (buyers) is reduced and the traders are not

obliged to implement price aggressive strategies to execute their orders. In Parlour

(1998), this is known as the strategic effect and we expect a negative relationship

between the opposite side depth and the price aggressiveness of an incoming order.

Conversely, we expect a positive impact on volume aggressiveness, as a high depth

on the opposite side of the market reduces the execution risk of submitting a large

quantity.

• Volatility. We measure price volatility as the 5-minute standard deviation of

midquote log returns, partially following Ranaldo (2004). The relationship between

volatility and order submission has received a large attention in the literature, see

Handa and Schwartz (1996), Foucault (1999), and Foucault et al. (2005). In general,

price volatility has two main sources, i.e. liquidity trading and information asym-

metries; however, the traders are clearly more concerned with the latter, as they

may face agents with superior information. Therefore, in the case of information-

driven volatility we expect a positive impact of volatility on ∆pt, as the traders

submit less aggressive orders to protect themselves from the pick-off risk. The ef-

fect of volatility on quantity is examined by Ahn et al. (2001), Bae et al. (2003),

Hasbrouck and Saar (2002), and Lo and Sapp (2010), among others. The previous

contributions provide evidence of a mixed result for this regressor, which is found

both positively and negatively associated with liquidity.

• Return. It is defined as the 5-minute-midquote log return, similar to Ellul et al.

(2003). Technical analysts look at stock returns as a signal of market direction:

a positive return is considered as a proxy for good news, while negative returns
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are associated with bad news. A trader seeking for momentum strategies submits

price aggressive orders in line with the market direction to profit from short-lived

investment opportunities. Clearly, stock returns have an asymmetrical impact on

the two sides of the market. For the buy side, we expect to observe a positive

relationship between returns and price aggressiveness, while the contrary holds for

the sell side. On the other hand, the effect for volume aggressiveness is expected

to be the reverse of that described for ∆pt. In fact, technical traders combine price

aggressiveness with small quantity to ensure a fast execution. In case of positive

returns, this implies a negative impact for the volume of buy orders, while the

opposite holds for sell orders.

• Time. Time is measured as the number of seconds between two consecutive orders.

Easley and O’Hara (1992) attribute an informational content to time intervals, such

that a high frequency of transactions is consistent with an increasing presence of

informed agents. Actually, a faster order submission process is perceived as a trust-

worthy signal of the presence of information asymmetries; these asymmetries lead

to a widening of the spread and discourage the submission of price aggressive orders.

Coherent with Easley and O’Hara (1992), we expect the time to be positively cor-

related with price aggressiveness. As to volume, the frequency of order submission

should exert a negative effect on the order size, in line with the previous discussion

for the bid-ask spread.

• Temporal patterns. The presence of a daily periodicity in order submission has

been widely documented since BHS (1995) seminal paper, and it is also fairly evi-

dent from Figure 5.1. According to Bloomfield et al. (2005), the informed traders

submit aggressive orders at the start of the continuous trading session to profit

from the uncertainty which characterizes the market opening. Subsequently, price

discovery and public information disclosure are expected to reduce price aggres-

siveness throughout the day. At the end of the day, temporal constraints and the
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arrival of new information push the traders to close their open positions, and a new

rising in price aggressiveness is more likely to occur (BHS, 1995 or Lo and Sapp,

2010). To account for the presence of daily patterns in price aggressiveness, we

consider a specification for time-of-day effects which replicates the one in Ferriani

(2012). First of all, we model the daily seasonality by means of the variable δk

evolving from zero to one throughout the continuous auction. Secondly, we try to

single out an intraday pattern by means of four dummies that identify some critical

periods during the continuous auction, namely Dopen, Dlunch, DSP , and Dclos. The

variable Dopen is equal to one for orders submitted between 9.00 A.M. and 9.30

A.M., Dlunch between 00.00 P.M. and 02.00 P.M., DSP between 3.00 P.M. and 4.30

P.M., and finally Dclos between 5.00 P.M. and 5.30 P.M.. We include these intervals

to highlight some stylized facts of a traditional trading day. The opening and the

closing periods usually display a higher frequency of transactions as well as a re-

markable proportion of institutional trading. The lunch period is characterized by

a strong decrease in the trading activity, while DSP coincides with the opening of

the U.S. Stock Exchange and it singles out a period of market pressure. All these

variables are also included in the equation for quantity, given the broad literature

that documents the existence of intraday seasonality in the order volume. Volume

aggressiveness is expected to follow an inverse path with respect to ∆pt, since it is

inconvenient to submit large price aggressive orders because of volume informative-

ness; nevertheless, the graphical analysis of Figure 5.1 shows that this is not always

the case.

• Lagged dependent variable. The existence of a strong autocorrelation pattern

in the order submission process has been broadly discussed in the literature, as

in BHS (1995), Al-Suhaibani and Kryzanowski (2000), and Pascual and Veredas

(2009). BHS (1995) explain this serial correlation by referring to the strategic order

splitting and to the imitation effect that characterizes the investment strategies of

traders. The autocorrelation pattern involves both price and volume aggressiveness
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and we expect a positive relationship between current and previous submissions,

both in terms of price and volume.

• Signed cumulative volume. This variable is computed as the 5-minute signed

cumulative volume, according to the following expression:

Sigcumt =
∑

5min

signt

√
V olumet (5.5)

where signt is a variable that identifies the market direction and it equals to +1 for

buy orders and -1 for sell orders. Sigcumt evaluates the impact of a directional de-

mand for liquidity arising from the trading pressure on a specific side of the market.

The signed cumulative volume has been employed by Hasbrouck (2009), Goyenko

et al. (2009), and Cao et al. (2009) to measure the price impact of trades. To be

consistent with their analysis, we only consider market orders and marketable limit

orders, i.e. the orders that effectively result in a trade. In terms of price aggres-

siveness, when Sigcumt increases (decreases), the market participants perceive a

bullish (bearish) tendency, and are willing to submit more aggressive orders on the

buy (sell) side. This is similar to the momentum-type effect described for the stock

return. Consequently, the volume is expected to follow the inverse pattern, with

price aggressive orders associated with a small quantity.

• Book imbalance. It is defined as the difference between the amounts of shares

available at the best quotes, expressed in absolute value. Book imbalance does

not take into account the market direction, it simply augments whenever there

exists a disequilibrium in the depth between BBID and BASK. In terms of price

aggressiveness, Parlour (1998) shows that an increasing book imbalance should

encourage the traders to submit less aggressive orders on the thin side and more

aggressive orders on the thick side; then, the overall impact on ∆pt should reflect

the dominant pressure between the two. As to quantity, we expect to find an inverse

relationship with price aggressiveness, on the basis of the previous discussion for
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depth at the best quotes.

5.5 Empirical results

5.5.1 The simultaneous equation model

This section discusses the results of the simultaneous equation model introduced in Sec-

tion 5.4.1. Table 5.9 displays the parameter estimates and the p-values for price ag-

gressiveness, while Table 5.10 reports the same statistics for quantity. We estimate the

model for buy and sell orders separately, as it is standard in the literature on order ag-

gressiveness. Because of the relevant sample size, we base the following analysis on a 1%

significance level, in line with Hausman et al. (1992)5. Generally speaking, our estimates

confirm most of the microstructure hypotheses described in Section 5.4.2. This is a first

relevant result, which extends the previous empirical findings to the trading features of

Euronext. In fact, as was anticipated in the Introduction, the prior research has disre-

garded some of the peculiarities of Euronext, such as the anonymous trading regime or

the presence of market operators acting as liquidity providers (see Ranaldo, 2004 and

Cao et al., 2009). Our principal results may be summarized as follows:

• Trade-off between price and quantity. The estimates provide evidence for a unidi-

rectional effect between the two components of order aggressiveness. Most of qt

coefficients in Table 5.9 are not significant, while Table 5.10 always exhibits a posi-

tive and significant impact of ∆pt on the order size. Once controlled for the relevant

LOB variables, our findings indicate that price aggressiveness is only marginally af-

fected by quantity. Conversely, Lo and Sapp (2010) find a negative and significant

impact of quantity on price aggressiveness. Although the direction of the price-

volume decision is conflicting in the two papers, the inverse relationship between

price and volume aggressiveness is definitely similar. Actually, the trade-off between

5Volume, volume at the best quotes, book imbalance, and signed cumulative volume are expressed in
thousands of shares, in order to display homogeneous estimates in terms of magnitude.
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Table 5.9: Price aggressiveness: parameter estimates and p-values.

Alstom Axa Crédit Agricole
Buy Sell Buy Sell Buy Sell

Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value
Constant 4.81E-02 0.00 5.9E-02 0.00 8.68E-03 0.00 1.1E-02 0.00 1.08E-02 0.00 1.3E-02 0.00
qt -3.58E-03 0.06 -3.2E-02 0.00 -3.24E-03 0.00 2.5E-03 0.00 7.18E-04 0.16 9.2E-05 0.86
∆pt−1 1.89E-01 0.00 2.7E-01 0.00 1.94E-01 0.00 8.9E-02 0.00 1.67E-01 0.00 1.3E-01 0.00
∆pt−2 7.20E-02 0.00 1.3E-01 0.00 1.00E-01 0.00 6.2E-02 0.00 7.10E-02 0.00 8.3E-02 0.00
∆pt−3 5.30E-02 0.00 1.1E-01 0.00 8.20E-02 0.00 4.0E-02 0.00 7.10E-02 0.00 6.3E-02 0.00
∆pt−4 5.60E-02 0.00 1.1E-01 0.00 7.80E-02 0.00 3.6E-02 0.00 4.50E-02 0.00 5.8E-02 0.00
Same side -8.43E-03 0.00 -1.1E-02 0.00 -3.17E-04 0.00 -4.3E-04 0.00 -2.72E-04 0.00 -2.6E-04 0.00
Opp. side 1.59E-03 0.00 -5.3E-04 0.38 2.06E-04 0.00 1.5E-04 0.00 1.22E-04 0.00 1.0E-04 0.00
Sigcum -1.60E-02 0.00 1.1E-02 0.00 -1.32E-03 0.00 1.0E-03 0.00 -1.88E-03 0.00 1.8E-03 0.00
Spread 4.50E-01 0.00 4.6E-01 0.00 3.59E-01 0.00 5.1E-01 0.00 4.42E-01 0.00 4.4E-01 0.00
Volatility 1.23E+00 0.00 1.8E+00 0.00 3.37E+00 0.00 9.7E-01 0.00 1.60E+00 0.00 8.3E-01 0.00
Return -1.97E+00 0.00 1.4E+00 0.00 -3.58E-01 0.00 -9.7E-02 0.02 -1.09E-01 0.01 -1.7E-01 0.00
Time -2.00E-03 0.00 -3.0E-03 0.00 -5.77E-04 0.00 -2.2E-04 0.01 -6.00E-04 0.00 -2.3E-04 0.00
δt -1.90E-02 0.00 -3.2E-02 0.00 -5.10E-03 0.00 -6.8E-03 0.00 -5.65E-03 0.00 -7.4E-03 0.00
Dopen 1.81E-02 0.00 7.9E-03 0.01 5.59E-03 0.00 7.0E-03 0.00 4.32E-03 0.00 4.8E-03 0.00
Dlunch -5.34E-04 0.51 -1.5E-04 0.89 1.10E-03 0.00 -1.1E-03 0.00 9.47E-04 0.00 -2.8E-04 0.39
DSP -2.30E-03 0.00 6.9E-03 0.00 -1.79E-04 0.37 7.6E-04 0.00 5.20E-04 0.01 6.2E-04 0.02
Dclos 3.94E-03 0.00 1.6E-02 0.00 1.44E-03 0.00 1.6E-03 0.00 5.14E-03 0.00 9.2E-03 0.00
Imbalance 1.11E-03 0.00 3.9E-03 0.00 2.83E-04 0.00 8.4E-05 0.00 -3.05E-05 0.18 9.6E-05 0.00
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Table 5.9: Continued from the previous page.

Eads Essilor Sanofi-Aventis
Buy Sell Buy Sell Buy Sell

Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value
Constant 1.44E-02 0.00 1.2E-02 0.00 7.03E-03 0.01 1.5E-02 0.00 2.17E-02 0.00 2.7E-02 0.00
qt 4.47E-03 0.00 2.2E-03 0.02 1.57E-02 0.11 3.0E-02 0.00 4.71E-03 0.02 9.9E-04 0.51
∆pt−1 1.17E-01 0.00 1.5E-01 0.00 2.31E-01 0.00 1.3E-01 0.00 1.45E-01 0.00 1.4E-01 0.00
∆pt−2 4.90E-02 0.00 5.5E-02 0.00 1.09E-01 0.00 5.9E-02 0.00 4.70E-02 0.00 6.9E-02 0.00
∆pt−3 2.60E-02 0.00 4.8E-02 0.00 7.20E-02 0.00 4.9E-02 0.00 4.80E-02 0.00 5.1E-02 0.00
∆pt−4 1.80E-02 0.00 3.7E-02 0.00 4.60E-02 0.00 3.8E-02 0.00 4.30E-02 0.00 4.4E-02 0.00
Same side -1.01E-03 0.00 -1.1E-03 0.00 -4.23E-03 0.00 -3.8E-03 0.00 -2.67E-03 0.00 -2.5E-03 0.00
Opp. side 3.20E-04 0.00 3.4E-04 0.00 2.02E-03 0.00 1.2E-03 0.00 1.92E-03 0.00 6.4E-04 0.00
Sigcum -4.98E-03 0.00 4.6E-03 0.00 -1.05E-02 0.00 4.6E-03 0.01 -5.16E-03 0.00 2.1E-03 0.00
Spread 5.23E-01 0.00 5.5E-01 0.00 2.70E-01 0.00 4.0E-01 0.00 4.46E-01 0.00 5.4E-01 0.00
Volatility 8.51E-01 0.00 1.6E+00 0.00 1.63E+00 0.00 7.5E-01 0.00 1.30E+00 0.00 9.6E-01 0.00
Return 2.11E-01 0.00 1.5E-01 0.00 1.00E-01 0.71 -9.6E-01 0.00 -8.50E-02 0.45 6.0E-03 0.95
Time -3.91E-04 0.00 -4.7E-04 0.00 -4.92E-04 0.00 -2.8E-04 0.00 -1.57E-03 0.00 -2.3E-03 0.00
δt -5.65E-03 0.00 -6.4E-03 0.00 -5.87E-03 0.00 -1.3E-02 0.00 -6.45E-03 0.00 -5.4E-03 0.00
Dopen 6.72E-03 0.00 4.8E-03 0.00 2.58E-02 0.00 1.9E-02 0.00 1.55E-02 0.00 1.4E-02 0.00
Dlunch 2.43E-04 0.33 -5.3E-04 0.15 5.14E-04 0.24 -8.4E-04 0.10 -9.94E-04 0.01 3.1E-03 0.00
DSP 6.34E-04 0.02 1.2E-04 0.74 1.42E-03 0.00 8.2E-04 0.09 -5.03E-04 0.15 2.0E-04 0.49
Dclos -1.24E-03 0.01 5.3E-04 0.47 -4.43E-03 0.01 -9.7E-05 0.96 1.29E-03 0.06 -1.4E-05 0.98
Imbalance -5.28E-05 0.34 2.1E-04 0.00 2.48E-04 0.47 1.7E-03 0.00 6.22E-04 0.00 4.5E-04 0.00
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quantity and price was already evident from Table 5.1 and it can be attributed to

the order submission strategies. As it was previously discussed, the traders combine

high price aggressiveness with small quantity to protect their private information

and to ensure a fast and certain execution.

• Bid-ask spread. Table 5.9 uniformly exhibits a positive coefficient for the bid-ask

spread, implying that a larger spread is associated with the submission of less ag-

gressive orders. The result holds for both sides of the market and it is coherent

with previous researches in this field (e.g. Ellul et al., 2003 or Ranaldo, 2004). The

spread is perceived as a reliable measure of the presence of informational asymme-

tries. Therefore, a wider bid-ask spread induces the traders to submit less aggressive

orders to minimize the risk of being picked off by agents with superior information.

As to quantity, Table 5.10 mostly shows negative estimates, though no significant

effect is found for Axa and Sanofi-Aventis. The estimates in Lo and Sapp (2010)

also show that a wider spread is combined with a smaller order size. This confirms

the assumption that traders are more likely to reduce their exposition in terms of

quantity when the adverse selection risk is a reliable menace.

• Same side depth. Table 5.9 presents a negative and significant estimate for the

variable that measures the depth on the own side of the market. This result is

consistent with empirical contributions testing the crowding-out hypothesis (e.g.

Beber and Caglio, 2005 or Duong et al., 2009), and it confirms the existence of a

competition effect among traders. The result for quantity is more ambiguous, and

it is non-significant to a large extent. Generally speaking, it is quite hard to identify

a clear effect on the order size. The few significant estimates display a positive sign

as in Lo and Sapp (2010); however, this does not match the negative impact that

would be expected to speed up the order execution process.

• Opposite side depth. Coherent with the theoretical assumptions, the depth on the

opposite side of the market is inversely related to price aggressiveness. The result
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is clearly shown in Table 5.9, which always exhibits a positive and significant co-

efficient for this regressor. These findings confirm the strategic effect described in

Parlour (1998), and already encountered in Pascual and Veredas (2009) or Ranaldo

(2004), among others. For the quantity, the percentage of significant estimates is

slightly larger with respect to depth on the own side. In this case, the positive

coefficients indicate that the traders submit larger orders to fully exploit the depth

on the opposite side of the market.

• Volatility. We find evidence of a negative relationship between volatility and price

aggressiveness, with Table 5.9 displaying a striking uniformity of results. All the

coefficients are positive and significant, which is consistent with most of the previous

empirical contributions as Bae et al. (2003) and Ahn et al. (2001); conversely, Cao

et al. (2008) find a minimal effect for this variable. When market uncertainty is

high, the traders submit less aggressive orders in terms of price, to minimize the risk

of suffering a loss by trading with informed agents. The effect on quantity is also

uniform across the six stocks, and Table 5.10 always presents positive and significant

estimates, coherently with Ahn et al. (2001) and partially with Lo and Sapp (2010).

These results are also in line with Handa and Schwartz (1996) who show that traders

provide more liquidity when the transitory volatility is high. Actually, this would

not match with the assumption of informed-based volatility that has been accounted

for price aggressiveness. In any case, as anticipated in Section 5.4.2, the empirical

literature has found alternative results for the relationship between volatility and

quantity.

• Return. Our estimates are in line with Cao et al. (2008) who find a minimal effect

of return over price aggressiveness, while they are contrary to Ellul et al. (2003)

who find evidence of a momentum strategy. Table 5.9 exhibits four out of ten

non-significant coefficients, and the remaining estimates do not display a uniform

sign direction; nevertheless, the momentum effect seems slightly more prevalent.
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Table 5.10: Volume aggressiveness: parameter estimates and p-values.

Alstom Axa Crédit Agricole
Buy Sell Buy Sell Buy Sell

Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value
Constant 3.25E-01 0.00 4.44E-01 0.00 1.07E+00 0.00 6.33E-01 0.00 9.42E-01 0.00 7.25E-01 0.00
∆pt 9.94E-01 0.00 2.09E-01 0.00 4.43E+00 0.00 8.60E+00 0.00 1.85E+01 0.00 1.43E+01 0.00
Qt−1 8.90E-02 0.00 8.90E-02 0.00 6.90E-02 0.00 1.10E-01 0.00 4.90E-02 0.00 5.00E-02 0.00
Qt−2 3.00E-02 0.00 3.30E-02 0.00 1.40E-02 0.00 2.00E-02 0.00 1.00E-02 0.00 2.20E-02 0.00
Qt−3 1.90E-02 0.00 2.00E-02 0.00 8.00E-03 0.00 1.90E-02 0.00 9.00E-03 0.00 1.20E-02 0.00
Qt−4 1.40E-02 0.00 7.00E-03 0.00 1.00E-02 0.00 1.70E-02 0.00 8.00E-03 0.00 1.40E-02 0.00
Same side -1.20E-02 0.10 -1.70E-02 0.03 3.00E-03 0.24 5.00E-03 0.01 -1.00E-02 0.03 3.00E-03 0.40
Opp. side 3.00E-03 0.63 2.50E-02 0.01 1.00E-02 0.00 2.00E-03 0.25 -7.00E-03 0.07 -5.00E-03 0.12
Sigcum -3.80E-02 0.00 3.70E-02 0.01 -6.00E-03 0.48 2.70E-02 0.01 -1.00E-03 0.98 5.10E-02 0.01
Spread -1.15E+00 0.00 -6.58E-01 0.00 -7.21E-01 0.41 -3.23E-01 0.82 -9.94E+00 0.00 -6.96E+00 0.00
Volatility 1.58E+01 0.00 1.75E+01 0.00 5.34E+01 0.00 3.32E+01 0.00 1.08E+02 0.00 3.67E+01 0.00
Return -6.72E-01 0.78 2.87E+00 0.21 -2.14E+01 0.00 -2.01E+01 0.00 3.29E+00 0.58 -1.62E+01 0.00
Time -9.00E-03 0.00 -1.30E-02 0.00 -4.00E-03 0.03 2.00E-03 0.48 -2.50E-02 0.00 -7.00E-03 0.00
δt -1.34E-01 0.00 -2.34E-01 0.00 -3.85E-01 0.00 -1.59E-01 0.00 -3.92E-01 0.00 -1.92E-01 0.00
Dopen 1.92E-01 0.00 1.86E-01 0.00 -9.00E-02 0.01 -1.11E-01 0.00 1.39E-01 0.06 3.10E-02 0.53
Dlunch 3.00E-03 0.78 -4.00E-03 0.76 7.70E-02 0.00 2.30E-02 0.18 1.35E-01 0.00 8.00E-02 0.00
DSP -1.50E-02 0.06 -2.40E-02 0.00 3.00E-03 0.83 -2.10E-02 0.15 -1.20E-02 0.71 -8.00E-02 0.00
Dclos 5.00E-02 0.00 5.10E-02 0.00 1.24E-01 0.00 -2.40E-02 0.20 -3.70E-02 0.41 -1.71E-01 0.00
Imbalance 4.40E-02 0.00 5.20E-02 0.00 1.30E-02 0.00 1.00E-02 0.00 2.60E-02 0.00 1.30E-02 0.00
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Table 5.10: Continued from the previous page.

Eads Essilor Sanofi-Aventis
Buy Sell Buy Sell Buy Sell

Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value
Constant 3.58E-01 0.00 5.50E-01 0.00 1.91E-01 0.00 1.65E-01 0.00 2.75E-01 0.00 3.21E-01 0.00
∆pt 1.73E+01 0.00 1.18E+01 0.00 1.04E+00 0.00 1.44E+00 0.00 1.96E+00 0.00 9.39E-01 0.00
Qt−1 8.30E-02 0.00 9.20E-02 0.00 1.21E-01 0.00 1.10E-01 0.00 8.20E-02 0.00 1.21E-01 0.00
Qt−2 3.00E-02 0.00 2.20E-02 0.00 2.40E-02 0.00 3.70E-02 0.00 2.10E-02 0.00 3.10E-02 0.00
Qt−3 8.00E-03 0.02 1.10E-02 0.00 2.70E-02 0.00 1.60E-02 0.00 1.20E-02 0.00 2.60E-02 0.00
Qt−4 2.00E-03 0.54 8.00E-03 0.01 -3.00E-03 0.52 1.40E-02 0.01 1.10E-02 0.00 8.00E-03 0.00
Same side -2.73E-03 0.71 -6.14E-03 0.25 9.36E-03 0.00 1.77E-03 0.85 6.24E-03 0.09 7.76E-03 0.00
Opp. side 1.52E-04 0.98 1.96E-02 0.00 1.28E-02 0.00 1.41E-02 0.00 1.05E-02 0.00 1.48E-03 0.68
Sigcum -9.10E-02 0.01 -7.50E-02 0.02 -1.02E-01 0.00 5.00E-02 0.00 -1.30E-02 0.00 2.50E-02 0.00
Spread -1.19E+01 0.00 -1.01E+01 0.00 -5.39E-01 0.00 -4.96E-01 0.01 2.78E-01 0.21 1.87E-01 0.33
Volatility 5.89E+01 0.00 7.06E+01 0.00 5.83E+00 0.00 6.12E+00 0.00 1.01E+01 0.00 1.16E+01 0.00
Return 2.99E+00 0.41 9.27E+00 0.03 3.75E+00 0.04 2.95E+00 0.14 -7.99E+00 0.00 4.36E+00 0.00
Time -5.00E-03 0.00 -9.00E-03 0.00 0.00E+00 0.57 0.00E+00 0.06 4.00E-03 0.00 1.00E-03 0.37
δt 1.09E-01 0.01 3.50E-02 0.44 5.00E-02 0.00 4.80E-02 0.00 1.50E-02 0.11 -3.00E-02 0.00
Dopen 2.70E-02 0.57 1.37E-01 0.00 3.40E-02 0.00 5.60E-02 0.00 -2.00E-03 0.83 1.10E-02 0.35
Dlunch -4.20E-02 0.08 -2.90E-02 0.26 -2.20E-02 0.00 -1.00E-03 0.81 -4.00E-03 0.50 0.00E+00 0.99
DSP -1.18E-01 0.00 -8.10E-02 0.00 -1.60E-02 0.00 -1.50E-02 0.00 -8.00E-03 0.06 -1.10E-02 0.01
Dclos 1.00E-03 0.97 -1.40E-02 0.68 9.80E-02 0.00 6.90E-02 0.00 9.00E-02 0.00 6.20E-02 0.00
Imbalance 4.00E-02 0.00 2.80E-02 0.00 1.00E-03 0.79 1.30E-02 0.14 2.20E-02 0.00 2.60E-02 0.00
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As to quantity, Table 5.10 displays a large majority of non-significant estimates;

moreover, the few existing exceptions are not combined with significant estimates

in terms of price aggressiveness. Generally speaking, it is fairly hard to single out

an effect of return over the order size.

• Time. The results for time are partially in line with Ranaldo (2004). The traders

usually associate a faster trading process with a high proportion of informed agents

in the market; in this context, they are less likely to submit aggressive orders, since

they are more exposed to the risk of being picked off by informed traders. Table

5.9 exhibits a negative coefficient for ∆pt in the majority of cases, though the effect

is sometimes contrary to the predicted one. On the other hand, the impact on

quantity is generally negative, as shown in Table 5.10. In general, when the trading

frequency decreases and the presence of informed traders is presumably lower, we

recover the usual combination of high price aggressiveness and small order size.

• Temporal patterns. The results reported in Table 5.9 validate the empirical findings

for price aggressiveness discussed in Harris (1998) or BHS (1995). Our estimates

strongly support the assumption that price aggressiveness increases throughout

the day, with δk always displaying a negative and significant coefficient, see also

Beber and Caglio (2005). This effect can be justified by the necessity, especially

for institutional traders, of closing the open positions towards the end of the day.

The estimate of δk is also mostly negative for volume aggressiveness, which confirms

the tendency to combine a small order size with price aggressive orders to foster

the execution process. On the other hand, the four time dummies exhibit a non-

homogeneous outcome. Tables 5.9 and 5.10 show that Dopen is usually associated

with large limit orders, as in Bae et al. (2003) or Al-Suhaibani and Kryzanowski

(2000). Conversely, it is not immediate to recover a clear effect for Dlunch and

DSP , both in terms of price and volume aggressiveness. DSP generally display a

negative effect on quantity, coherent with the fast execution process during the
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opening of the U.S. market; however, it is generally not combined with a higher

price aggressiveness. Finally, and quite interestingly, Dclos mostly exhibits a positive

coefficient for both ∆pt and volume aggressiveness. This result seems contradictory

with respect to our findings for δk; however, a plausible explanation may be related

to the high probability of informed-based trading in the last 30 minutes of the

auction, which discourages the submission of price aggressive orders.

• Lagged dependent variable. Tables 5.9 and 5.10 display a striking homogeneity of

results for the lagged dependent variables, with positive and strongly significant

coefficients for all the lags. This result matches the previous findings on order

autocorrelation (e.g. BHS, 1995, Pascual and Veredas, 2009) both in terms of price

and volume.

• Signed cumulative volume. The signed cumulative volume shows an opposite effect

for the two sides of the market. As expected, a positive pressure generates a negative

effect on ∆pt for the bid side, and a positive impact for the ask side. This result is in

line with the imitation effect and the momentum strategy documented in previous

studies (e.g. BHS, 1995 or Ellul et al., 2003). Table 5.10 shows an analogous pattern

for quantity: the estimates generally exhibit a negative sign for the buy side and a

positive sign for the sell side. The traders combine their decisions in terms of price

and volume, and submit more aggressive orders with smaller quantity to reduce the

risk of non-execution.

• Book imbalance. In terms of price aggressiveness, Table 5.9 mostly shows positive

estimates, which is consistent with a dominant strategic effect. Indeed, when the

depth asymmetry increases, the traders are found to submit more limit orders,

coherent with Parlour (1998). The result for quantity strictly follows, as a higher

imbalance is generally associated with a larger order size, in line with the findings

obtained for the opposite side depth. On the whole, both effects push to reduce the

disequilibrium between the two sides of the market.
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5.5.2 Order aggressiveness and price impact

As a final contribution of this research, we examine the price impact for different cate-

gories of orders. Our approach follows the one described in Beber and Caglio (2005) and

Hopman (2007), among others. The price impact PI is computed as the absolute log

return evaluated at the mid-quotes:

PIt+k = |ln(mt+k)− ln(mt)|

wheremt is the mid-quote at time t, and k represents the time horizon. In our analysis, we

separately compute the price impact for buy and sell orders, and we select four increasing

time intervals k, corresponding to 1, 5, 15, and 30 minutes. The price impact is strictly

related to the amount of information in the market, and it includes both a transient and

a permanent component, see e.g. Hasbrouck and Seppi (1991). The former identifies

the short-term effect related to temporary variations in the liquidity of the LOB; the

latter spots a stable variation generated by the arrival of new information in the market.

We separately compute the price impact for each category of order, on the basis of the

∆pt distribution intervals. To test the hypothesis that each category of order conveys a

different amount of information, we assume that informed traders also adopt limit orders;

this is in line with some previous findings (e.g. Anand et al., 2005), and it implies that

not only trades may permanently affect the stock price. Moreover, we also check the

assumption that most aggressive orders exert a greater price impact, coherent with the

empirical findings in Beber and Caglio (2005) and Hopman (2007).

The results of our investigation are presented in Figures 5.2 and 5.3, which report

the price impact as a non-parametric function of the order volume. We select Alstom

(sell orders) and Eads (buy orders) as representative cases, though the remaining series

exhibit similar patterns. For the sake of immediacy, we opt for a graphical representation

of our findings, coherent with Potters and Bouchaud (2003) and Hopman (2007), among

others. As a robustness check, we estimate a nonlinear regression of the price impact on
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Figure 5.2: Price impact for Alstom buy orders. Each dot is a percentile of the volume distribution for a specific category of order. The
green dots correspond to marketable limit orders, the red dots to market orders and the blue dots to limit orders. The curve is estimated
as kernel regression with Epanechnikov kernel. The vertical axis displays the price variation expressed as the number of ticks, the horizontal
axis provides the volume expressed as the number of shares.
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Figure 5.3: Price impact for Eads sell orders. Each dot is a percentile of the volume distribution for a specific category of order. The
green dots correspond to marketable limit orders, the red dots to market orders and the blue dots to limit orders. The curve is estimated
as kernel regression with Epanechnikov kernel. The vertical axis displays the price variation expressed as the number of ticks, the horizontal
axis provides the volume expressed as the number of shares
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order volume and dummies for ∆pt intervals, as in Hopman (2007). Our estimates show

that marketable limit orders and market orders produce a larger pressure on prices with

respect to limit orders; the results are available upon request. By observing the plots

in Figures 5.2 and 5.3, we retrieve two main results. First, the higher the level of order

aggressiveness, the larger the price impact; this holds constantly and independently of the

time interval k. Beber and Caglio (2005) attribute this finding to the fact that marketable

limit orders and market orders exercise a direct and immediate effect on the standing

quotes and the depth of the LOB, while limit orders only exert an indirect pressure on the

stock prices. Clearly, when price aggressive orders are only liquidity motivated, the price

should revert to its previous value and the price impact should be rapidly absorbed by the

market. Second, the price impact increases with larger quantity and longer time horizons.

The direct relationship between the price impact and the order size is coherent with the

previous empirical results and it is likely to be attributed to volume informativeness (see

Easley and O’Hara, 1987). On the other hand, the relationship between price impact and

time shows that there exists a (larger) long-term effect beyond the one in the short-run

described by Beber and Caglio (2005). This long-term effect is mainly related to the

informational content of the order flow, which is proven to be slowly absorbed by the

market. Quite interestingly, we notice that the whole PI curve shifts upwards in the

long term, i.e. when the price impact is more easily attributed to the presence of new

information in the market. This is true even in the case of limit orders, which seems

to further confirm that informed traders also adopt this type of orders. However, this

last point, as well as the analysis of the price impact components with respect to order

categories is left for future research.

5.6 Conclusions

This paper analyses the submission of orders at Euronext Paris, both in terms of price

and volume. We propose a simple approach to express price aggressiveness in quantitative
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terms, which is made possible by the fact that price discreteness is a negligible issue in our

data set. Our classification allows for a better representation of the order heterogeneity,

since it quantitatively measures the price aggressiveness on the basis of the contingent

market conditions. Although Euronext is ruled by strict price priority, this paper also

examines the role of quantity, which represents a relevant indicator of order aggressiveness

when the price informational content is limited. We adopt a simultaneous equations model

to investigate the impact of a wide set of LOB variables on the order submission strategies.

The empirical results confirm the theoretical assumptions of the literature, especially the

presence of a strong autocorrelation pattern and the existence of daily cycles in both price

and volume aggressiveness. Our estimates also confirm the inverse relationship between

price aggressiveness and order size, with a one-way effect from price to quantity. We find

price aggressiveness to be inversely related to the presence of informational asymmetries

in the market, being mainly influenced by depth at best quotes, spread, volatility, and

return. On the other hand, and as a probable consequence of the market trading rules,

the volume plays a minor role in determining the overall level of aggressiveness. In fact,

it is only marginally affected by LOB variables, with the main exception of spread and

volatility. Finally, we also find the most aggressive orders to exert a higher impact on

the stock prices.
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