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Introduction 

The cardiac cell is a complex biological system where various processes interact to 

generate electrical excitation (the action potential, AP) and contraction. During AP 

generation, membrane ion channels interact nonlinearly varying transmembrane voltage 

that in turn depends on the ionic fluxes through the cell membrane, and are subject to 

regulatory processes. In recent years, a large body of knowledge has accumulated on the 

molecular structure of cardiac ion channels, their function, and disfunction due to genetic 

mutations that are associated with cardiac arrhythmias and sudden death. However, ion 

channels are typically studied in isolation (in expression systems or isolated membrane 

patches), away from the physiological environment of the cell where they interact to 

generate the AP. A major challenge remains the integration of ion-channel properties into 

the functioning, complex and highly interactive cell system, with the objective to relate 

molecular-level processes and their modification by disease to whole-cell function and 

clinical phenotype. In the present thesis, it is shown how computational biology can be 

used to achieve such integration. 

Abnormal repolarization of the cell membrane provides a substrate for life threatening 

cardiac arrhythmias. The dependence of repolarization on a delicate balance between 

various currents makes it vulnerable to perturbation by disease or drugs. Mutations in 

genes that encode cardiac ion channels can lead to abnormal channel function 

(“channelopathy”) which perturbs the AP to cause arrhythmias (Keating & Sanguinetti, 

1996; Priori et al., 1999a; Priori et al., 1999b). Mutation-induced alterations in ion 

channel function are studied in expression systems (e.g. Xenopus Oocyte) in isolation 

from the physiological environment of the cardiac cell where the channels interact to 

generate the AP. Computational biology can be used to integrate this information into the 

functioning cardiac cell in order to relate these molecular-level findings to whole-cell 

function and to the clinical phenotype. In the present thesis examples are provided from 

the hereditary Long QT syndrome (LQT) that clinically appears as prolongation of the 

QT interval on the electrocardiogram and the occurrence of life-threatening arrhythmias 

and sudden death. Specifically, the LQT type 3 (LQT3) that is associated with mutations 

in SCN5A (the gene that encodes the cardiac sodium channel) was simulated. The 
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Brugada syndrome (Brugada et al., 1998), that is characterized by ST segment elevation 

in the right precordial leads of the electrocardiogram and is also associated with severe 

arrhythmias and sudden death, was also simulated. Amino acid 1795 site in the C-

terminus of SCN5A is intriguing because one human mutation (Y1795C) causes a gain of 

function and LQT3, while a different human mutation at this same site (Y1795H) causes 

loss of function and Brugada Syndrome. Intriguingly, a single human mutation at this site 

(1795InsD) in SCN5A is linked to simultaneous LQT3 and BrS features depending on the 

heart rate. Because mutations affect specific structural elements and kinetic states of the 

channel and their interdependencies, single-channel based Markov models are required to 

conduct these simulations. 

The heritable channelopathies have yielded important insights into the 

pathophysiology of some far more common, acquired diseases. Heart failure (HF) is a 

case in point. This disease afflicts hundreds of millions of people worldwide. We now 

know that heart failure represents a common, acquired form of channelopathy, 

specifically of long-QT syndrome. Myocytes from failing hearts show prolongation of 

action potentials, and repolarization in vivo is abnormally labile. Several are the ion 

channels and signaling pathways involved in HF alteration of cardiac excitability.  

Emerging evidences now also link Na+ channel gating alterations to acquired diseases, 

e.g. drug-induced LQTS, cardiac ischemia and HF. In HF an enhanced persistent Na+ 

current contribute to a propensity to arrhythmias. Altered Na+ channel regulation may 

also occur in HF, causing a widespread form of acquired Na+ channel dysfunction. For 

example, Ca-Calmodulin dependent protein kinase II (CaMKII) is upregulated in HF and 

is more active (Maier and Bers, 2006). Wagner et al. (2006a) showed that CaMKII 

regulates Na+ channel gating, and that upregulation of CaMKII in cardiac myocytes 

causes an extremely similar spectrum of gating changes to those seen for the combined 

LQT/Brugada phenotype seen with 1795InsD. However, increased levels of CaMKII in 

HF may target several proteins in the ventricle. CaMKII phosphorylates Ca transport 

proteins such as phospholamban, ryanodine receptors and L-type calcium channels. In 

addition novel data suggest that other ion channels, including sarcolemmal Na+ and K+ 

channels, may be regulated by this CaMKII. 
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To assess how CaMKII alters Na+ channel gating and how it may participate in 

arrhythmogenesis, we used a Markov model of the Na current to isolate the impact of 

altered Na channel gating on the action potential morphology and duration in HF. A more 

comprehensive in silico study, accounting for the effects of CaMKII on the other 

sarcolemmal channels was also carried out. 

Given the complexity of cardiac arrhythmias, such in silico simulations will 

undoubtedly feature more prominently in future investigations.  

 VI



CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

1 Cardiac Action Potential and Na+ channel 

Functioning of the heart 

The heart is a complex electrical, chemical, and mechanical system which is 

designed to pump blood efficiently based on the metabolic needs of the body. Many of 

the properties of the whole heart arise from the properties of individual myocytes, each 

of which may be considered a miniature, but still rather complex, electrical, chemical, 

and mechanical system. Meticulously timed opening and closing of cardiac ion 

channels result in cardiac electrical excitation and relaxation that is coupled to rhythmic 

contraction of the heart. Cardiac excitation originates in the sinoatrial node and 

propagates through the atria into the atrial-ventricular node. The impulse then enters 

the Purkinje conduction system, which delivers the excitatory wave to the ventricles. 

Ventricular excitation spreads from the endocardium to the epicardium and is coupled 

to the contraction of the ventricles that generates systolic blood pressure. The wave of 

excitation that spreads over the heart reflects membrane depolarization of cardiac 

myocytes. The contraction of heart tissue is a direct consequence of a process known as 

excitation/contraction (EC) coupling. The electrical excitation of a single myocyte 

produces an action potential (Fig. 1.1), the characteristic depolarization of the cell 

membrane that occurs as a result of the passage of ionic currents across the cell 

membrane. In response to excitation, there is an increase in the intracellular Ca2+ 

concentration, which in turn leads to activation of the myofilaments, and ultimately 

results in cell shortening. The coordinated activation and shortening of myocytes 

throughout the heart produce contraction of the whole organ. Defects in EC coupling 

are thought to play an important role in reducing the ability of the heart to pump 

effectively in diseased states. Since whole heart function, both in physiological and 

diseased states, often reflects the processes that occur in individual myocytes, it is 

critical to understand the physiological properties of single cardiac myocytes.  
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

 

Figure 1.1 

Figure 1.1: Panel A) Ion channels on the cell membrane. Panel B) Ion currents that underlie the 
cardiac action potential. Top, depolarizing currents as a function of time; Middle, a prototypical 
ventricular action potential; Bottom, repolarizing currents as a function of time. Figure from 
Marban, 2002.  
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

A characteristic feature of the cardiac myocyte is its action potential (AP). The AP is 

a transient depolarization of the cell membrane which arises as a result of the dynamic 

behavior of a diverse population of membrane ion channels. A prototypical ventricular 

myocyte AP is shown in Fig. 1.1 (Marban, 2002). The AP exhibits a steep upstroke, 

followed by a sustained slowly decaying plateau phase, which eventually gives way to 

repolarization. Above the AP are shown the associated depolarizing currents, which are 

carried by inward Na+ and Ca2+ currents. Under physiological conditions, the Na+
 

current (INa) activates rapidly, producing the AP upstroke, and then inactivates 

completely (Marban et al., 1998). L-type Ca2+ current (ICaL) inactivates a bit more 

slowly, and incompletely, allowing for the inward Ca2+ current to maintain the plateau 

phase of the AP (Zeng and Rudy, 1995). The influx of Ca2+ via the L-type Ca2+ 

channels triggers the release of Ca2+ from the sarcoplasmic reticulum (SR), an internal 

Ca2+ storage compartment. This EC coupling event (Fig. 1.2) is known as Ca2+-induced 

Ca2+-release (CICR). The SR is a subcellular organelle that releases the majority of 

Ca2+ during each heartbeat (Bers, 2001). The rise in cytosolic Ca2+ ultimately leads to 

cell contraction. The SR also actively sequesters Ca2+, which is the primary mechanism 

by which Ca2+ is removed from the cytosol in order to allow relaxation in between 

heartbeats (Bassani et al., 1994). The intracellular Ca2+ signal is not only triggered by 

membrane depolarization, but also feeds back on the L-type Ca2+ channel, mediating 

inactivation of the current, and therefore plays a role in influencing the AP shape. The 

lower part of Fig 1.1 shows the various types of K+ channels (and a Cl- channel) that 

are involved in membrane repolarization. The inward rectifier current (IK1) maintains 

and stabilizes the resting potential, the transient outward currents (Ito1 and Ito2), carried 

by K+ and Cl- respectively (Näbauer et al., 1993; Collier et al., 1996), contribute to the 

notch that follows the upstroke, and the components of the delayed rectifier K+ current 

(IKr and IKs) as well as the plateau K+ current (IKp) contribute to the repolarization of the 

AP (Yue and Marban, 1988). Each of these electrical processes can be detected on the 

body surface electrocardiogram (ECG) as a signal average of the temporal and spatial 
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

gradients generated during each phase (Fig. 1.3). Electrical excitation in the atria (atrial 

depolarization) manifests on the ECG as P waves, while ventricular depolarization is 

seen as the QRS complex. Ventricular repolarization is reflected in the T wave.  

 
Figure 1.2: EC coupling.  

ECG abnormalities are related to changes in cellular AP morphologies, which may be 

due to altered cell-to-cell coupling, heart disease, congenital ion channel abnormalities, 

drug intervention, or electrolyte imbalance. In general, membrane potential, 

extracellular and intracellular ion concentrations, as well as regulatory proteins that 

modulate the activity of ion channels influence ionic currents. The shape and duration 

of the AP is therefore an integrative cellular feature that is influenced by the interaction 

of many underlying cellular processes. For example, AP configurations display 

characteristic features in different regions of the mammalian heart as a result of the 

regional variation in underlying currents (reviewed in Katz, 1992). 

Conduction abnormalities can be detected as changes in the QRS complex. 

Widening of the QRS reflects reduced conduction velocity, which typically stems from 

altered Na+ channel function (Tan et al. 2001). ST segment elevation reflects 
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

transmural voltage differences during the AP plateau, a hallmark of congenital forms or 

drug-provoked Brugada syndrome (Yan and Antzelevitch 1999). Prolongation of the 

action potential duration (APD) (delayed repolarization) results in long QT intervals 

and may result in morphological changes in the T wave that can provide insight as to 

the underlying cellular mechanism of APD prolongation (Yan and Antzelevitch 1998). 

 

Figure 1.3: Electrical gradients in the myocardium can be detected on the body surface 
electrocardiogram (ECG) and reflect underlying cellular ionic current gradients. Up: illustration 
of a single cardiac cycle ECG detected as electrical gradients on the body surface. Down: 
schematic representation of the ventricular action potential gradients detected on the body 
surface ECG. 
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

Cardiac Na+ channel 

Voltage-gated sodium channels 

Voltage-gated sodium channels (NaVChs) are important for the generation and 

propagation of signals in electrically excitable tissues like muscle, the heart, and nerve. 

Activation of NaVChs in these tissues causes the initial upstroke of the action potential, 

which in turn triggers other physiological events leading to muscular contraction and 

neuronal firing. NaVChs are also important targets for local anesthetics, 

anticonvulsants, and antiarrhythmic agents. 

Structure 

Sodium channels are heteromultimeric, integral membrane proteins belonging to a 

superfamily of ion channels that are gated (opened and closed) by changes in 

membrane potential. Sodium channel proteins from mammalian brain, muscle, and 

myocardium consist of a single large (approximately 260 kDa) pore-forming α subunit 

complexed with 1 or 2 smaller accessory β subunits (in Figure 1.4 the cardiac isoforms 

are shown). Nine genes (SCN1A, SCN2A, etc.) encoding distinct α subunit isoforms and 

4 β subunit genes (SCN1B, SCN2B, etc.) have been identified in the human genome. 

Many isoforms are expressed in the central and peripheral nervous system, while 

skeletal muscle and cardiac muscle express more restricted NaVCh repertoires. The α 

subunits are constructed with a 4-fold symmetry consisting of structurally homologous 

domains (DI–DIV) each containing 6 membrane-spanning segments (S1–S6) and a 

region (S5–S6 pore loop) controlling ion selectivity and permeation (Figure 1.4). The 

S4 segment (green bars in Figure), which functions as a voltage sensor, is amphipathic 

with multiple basic amino acids (arginine or lysine) at every third position surrounded 

by hydrophobic residues. 

Gating 

NaVChs switch between 3 functional states depending on the membrane potential 

(Figure 1.5) (Hodgkin and Huxley, 1952). In excitable membranes, a sudden membrane  
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

 
Figure 1.4: (A) Schematic representation of the α subunit of Nav1.5, the two associated β 
subunits, and interacting proteins. The predicted membrane topology of the α subunit of Nav1.5 
is illustrated together with the β1 and β2 subunits (in red). DI–DIV indicate the four 
homologous domains of the α subunit; segments 5 and 6 are the pore-lining segments and the 
S4 helices (green) serve as voltage sensors. The isoleucine-phenylalanine-methionine (IFM) 
residues are key amino acids for fast inactivation gating. Five proteins that have been reported 
to interact with Nav1.5 are represented schematically with their approximate binding sites. The 
red arrow indicates the intramolecular interaction between the III–IV linker and the C terminus 
(C-T) domain (Motoike et al. 2004). (B) Scheme of the C-T of Nav1.5 and interacting proteins. 
The proximal part of the Nav1.5 C-T (structured region) has been proposed to be composed of 
six α helices (gray boxes H1–H5, plus the box comprising the IQ motif) (Cormier et al. 2002). 
The distal part seems to be unstructured. Four regions have been reported to be implicated in 
protein–protein interactions. The N terminus of FH1FB interacts with the proximal C-T 
domain. Figure from Abriel and Kass 2005. 
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

depolarization causes a rapid rise in local Na+ permeability due to the opening 

(activation) of NaVChs from their resting closed state. For this to occur, voltage 

sensors (the 4 S4 segments) within the NaVCh protein must move in an outward 

direction, propelled by the change in membrane potential, and then translate this 

conformational energy to other structures (most likely S6 segments) that swing out of 

the way of incoming Na+ ions. 

This increase in Na+ permeability causes the sudden membrane depolarization that 

characterizes the initial phase of an action potential. Normally, activation of NaVChs is 

transient owing to inactivation, another gating process mediated by structures located 

on the cytoplasmic face of the channel protein (mainly the DIII–DIV linker). NaVChs 

cannot reopen until the membrane is repolarized and they undergo recovery from 

inactivation. Membrane repolarization is achieved by fast inactivation of NaVChs and 

activation of voltage-gated potassium channels. During recovery from inactivation, 

NaVChs may undergo deactivation, the transition from the open to the closed state. 

Activation, inactivation, and recovery from inactivation occur within a few 

milliseconds. In addition to these rapid gating transitions, NaVChs are also susceptible 

to closing by slower inactivating processes (slow inactivation) if the membrane remains 

depolarized for a longer time. These slower events may contribute to determining the 

availability of active channels under various physiological conditions. 

Cardiac isoform 

The cardiac Na+ channel is a glycosylated membrane protein consisting of the main 

α subunit Nav1.5—which consists of 2016 residues, with an apparent molecular mass 

of ~240 kDa—and auxiliary β subunits (~30–35 kDa, β1–β4 subunits). All four β 

subunits have been shown to be expressed in heart. However, the α subunit is the 

principal component of the cardiac Na+ channel forming the pore and all essential 

gating elements (Figure 1.4A), and is sufficient by itself for generating voltage-

dependent Na+ currents (INa) in heterologous expression systems. As the other NaVChs, 

the Nav1.5 protein has four homologous domains (DI–DIV, Figure 1.4A) each made up 
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

of six transmembrane segments (S1–S6). The three interdomain regions (linker loops) 

and both N and C termini of the channel are cytoplasmic. The charged S4 

transmembrane segments are involved in activation gating of the channel (Figure 1.4A, 

in green), and a cluster of three hydrophobic residues (isoleucine-phenylalanine-

methionine [IFM]) in the III–IV linker facilitates intramolecular interactions that 

underlie fast inactivation gating (Figure 1.4A, in red). The C terminus (C-T) segment 

of Nav1.5 has 243 residues, and has been only recently recognized as an important part 

of the channel (Cormier et al., 2002, Mantegazza et al., 2001). The C-T domain is 

involved in the inactivation gating, and contains sequences of amino acids forming 

consensus protein–protein interaction domains (Figure 1.4B). Furthermore, 

intramolecular interactions between the C-T domain and the cytoplasmic III–IV linker 

region have recently been demonstrated (Motoike et al. 2004). Based on modeling and 

experimental data, Cormier et al. (2002) proposed that the proximal 150 residues of the 

C-T form a well-structured region comprising six α helices (Figure 1.4B, gray boxes). 

The protein interaction sites are a calmodulin (CaM)-binding IQ motif found in I1908-

R1918 (Tan et al., 2002), a PY motif in P1974-Y1977 (Abriel et al., 2000), and a 

postsynaptic density protein-95 large/zona occludens-1 (PDZ)-binding domain 

represented by the last three residues serine-isoleucine-valine (Ou et al., 2003). A less 

well-characterized proximal segment interacts with the protein FHF1B (Liu et al. 

2003). In addition, underlining the importance of this region, many mutations 

associated with LQTS, BrS, or conduction defects have been found in the Nav1.5 C-T 

tail (Tan et al. 2003).  

Na+ channelopathies 

The essential nature of NaVChs is emphasized by the existence of inherited 

disorders (sodium “channelopathies”) caused by mutations in genes that encode these 

vital proteins. Nearly 20 disorders affecting skeletal muscle contraction, cardiac 

rhythm, or neuronal function and ranging in severity from mild or latent disease to life-

threatening or incapacitating conditions have been linked to mutations in human 
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CHAPTER 1 – CARDIAC ACTION POTENTIAL AND Na+ CHANNEL 

NaVCh genes. Most sodium channelopathies are dominantly inherited, but some are 

transmitted by recessive inheritance or appear sporadic. Additionally, certain 

pharmacogenetic syndromes have been traced to variants in NaVCh genes. The clinical 

manifestations of these disorders depend primarily on the expression pattern of the 

mutant gene at the tissue level and the biophysical character of NaVCh dysfunction at 

the molecular level. 

 
Figure 1.5: Functional properties of NaVChs. (A) Schematic representation of an NaVCh 
undergoing the major gating transitions. (B) Voltage-clamp recording of NaVCh activity in 
response to membrane depolarization. Downward deflection of the current trace (red) 
corresponds to inward movement of Na+. Figure from George 2005. 

Mutations in SCN5A, the gene encoding the Nav1.5 protein, cause inherited 

susceptibility to ventricular arrhythmia and impaired cardiac conduction. In chapter 3, a 

review of the Na+ channelopathies in the heart is provided.  
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CHAPTER 2 – MODELING OF THE MYOCYTE 

2 Mathematical modeling of the myocyte 

Given the highly integrative nature of the dynamic processes which occur during 

excitation and contraction of a cardiac myocyte, the approach of integrative modeling 

is used in order to address fundamental questions about the function of the heart. This 

is accomplished by developing experimentally based, biophysically detailed, 

mathematical descriptions of individual cellular components, such as ion channels, 

pumps, exchangers, and subcellular compartments. Mathematical models of each 

cellular component are developed based on separate sets of experiments obtained under 

conditions designed to isolate and characterize a particular current or other subcellular 

component. Models of each individual system component are then incorporated into 

single integrative myocyte model in which these subcellular systems can interact. The 

power and utility of an integrative model stems from the fact that it is “transparent” 

under all conditions. Transparency refers to the fact that all variables of interest (e.g. 

membrane potential, ionic concentrations, ionic currents, channel open probability) can 

be monitored simultaneously at all times during any simulation, i.e. one can “see” into 

the cell and observe every aspect of the subcellular processes. This is obviously not 

possible in experimental approaches. Experimental techniques generally isolate and 

characterize the properties of a single subcellular component. The manipulations that 

are necessary to perform such experiments often require the presence of 

pharmacological agents, exogenous buffers, and/or non-physiological solutions. 

Integrative modeling can therefore be an important tool in interpreting experimental 

data by helping to elucidate mechanisms underlying phenomena which may otherwise 

be difficult to understand based on experiments alone. Moreover, models can be used 

as an exploratory tool to make quantitative predictions, and to guide the design of 

future experiments. While the transparency of integrative models is their key 

empowering feature, it is important to recognize that the predictive ability of any model 

 11



CHAPTER 2 – MODELING OF THE MYOCYTE 

is limited by the fact that there are likely to be mechanisms and/or components that are 

missing or incompletely characterized. Taken together, the components of a fully 

comprehensive integrative model represent the collection of the actual body of 

knowledge obtained from experiments (and possibly previous models). The inability of 

a model to reproduce phenomena observed in experiments indicates that there are gaps 

in our knowledge of the system. However, the model may yield clues as to where these 

gaps are, and consequently would help guiding the necessary experiments designed to 

obtain new data and fill such gaps. The model can then be updated based on newly 

obtained data, and may then be used to make further predictions. This iterative 

interaction between experiment and simulation has been key to the broadening of our 

knowledge of the underlying mechanisms of the cardiac ventricular action potential 

(reviewed in Noble, 2001).  

Much of the current knowledge regarding ion channel kinetics and functional 

current density in excitable tissues has been obtained using the voltage clamp 

technique. This approach was pioneered by Hodgkin, Huxley, and Katz (1949) now 

more than five decades ago, and continues to be the best biophysical technique for the 

study of ion channels (Hille, 1992). “Clamping” of the membrane potential to a 

constant value using a feedback amplifier with current passing electrodes allows for the 

quantitative characterization of voltage dependent ion channel gating kinetics. The 

development of this technique paved the way for the use of integrative modeling as an 

approach to understanding excitable cells.  

In 1952, Hodgkin and Huxley published a series of papers (Hodgkin and Huxley, 

1952d; Hodgkin and Huxley, 1952b; Hodgkin and Huxley, 1952a; Hodgkin and 

Huxley, 1952c) describing both voltage clamp measurements of membrane currents 

and an integrative model of the action potential for the squid giant axon (Fig. 2.1, left). 

The researchers successfully formulated simple quantitative descriptions of Na+ and K+ 

currents. Their modeling approach postulated that membrane permeability was 

regulated by gating mechanisms, whereby distinct entities (i.e., gates) controlled the 
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CHAPTER 2 – MODELING OF THE MYOCYTE 

flux of both Na+ and K+ ions. The position of these gates defined three functional states 

of the channel: a closed resting state, an open state, and a closed refractory state. By 

combining their descriptions of the Na+ and K+ currents with a leak conductance into 

an integrative model, Hodgkin and Huxley were able to describe in detail how the 

interaction of these elements combine to generate an AP. The spectacular success of the 

Hodgkin-Huxley (HH) model is evident in the fact that, to this day, it serves as a 

paradigm for describing cell membrane excitability. 

 
Figure 2.1: The basic Hodgkin and Huxley representation of the squid axon (left) was modified 
to represent the Purkinje cell (right). In the latter K+ current is assumed to flow through two 
non-linear resistances. The conductance gK1 is assumed to be an instantaneous function of the 
membrane potential, while gK2 slowly rises when membrane is depolarized. Figure from Puglisi 
et al. 2004. 

Soon after Hodgkin and Huxley laid the foundation for the use of integrative models 

in biology, the first cardiac cell models were developed using a similar approach. The 

models of Fitzhugh (1960) and Noble (1962) addressed the issue of whether Na+ and 

K+ current descriptions similar to those of Hodgkin and Huxley could be employed to 

account for the long plateau of the cardiac AP in Purkinje fibers (Figure 2.1, right, 

reviewed in Noble, 2001 and Puglisi et al., 2004). Modifications to Na+ and K+ current 

kinetics were able to generate a plateau, which was supported by the inward Na+ 

current. These early models could therefore reproduce APs, but not other relevant 

features of cardiac cells, in part, due to the fact that Ca2+ currents had not yet been 

discovered. 
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Figure 2.2: The Di Francesco & Noble Model. Besides the ionic currents it incorporated ionic 
pumps and exchanger mechanisms. It also included a description for Ca2+ movement inside of 
the cell (in the sarcoplasmic reticulum, SR). An energy-consuming pump was assumed to 
transport Ca2+ inside the SR uptake store which then reprimes a release store. Release was 
assumed to be activated by cytoplasmic Ca2+. Figure from Puglisi et al. 2004. 

The continued interactive iteration between experiments and simulations has led to 

improved mechanistic insights into cardiac myocyte electrophysiology. Aspects of 

intracellular Ca2+ handling were introduced in the DiFrancesco-Noble Purkinje cell 

(Fig. 2.2 DiFrancesco and Noble, 1985) and the Luo-Rudy ventricular cell (Fig. 2.3 

Luo and Rudy, 1994) models. New features of these models were the inclusion of the 

intracellular SR compartment, time varying intracellular and extracellular ion 

concentrations, and ion pumps and exchangers. Whereas each of these models generate 

APs using detailed kinetic descriptions of membrane currents, the Ca2+ subsystem in 

each is represented by a phenomenological model that mimics the process of Ca2+-

induced Ca2+ release, but fails to capture the biophysical details involved. More recent 

models of the guinea pig (Jafri et al., 1998) and dog (Winslow et al., 1999) cardiac 

ventricular myocyte attempted to improve upon it predecessors by incorporating 

detailed descriptions of Ca2+ handling processes. Several computational models have 

been developed to investigate properties of local Ca2+ release at the level of the cardiac 

dyad (Rice et al., 1999; Stern et al., 1999; Langer and Peskoff, 1996; Cannell and 

Soeller, 1997; Soeller and Cannell, 1997). In 2002 Greenstein and Winslow developed 
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a comprehensive model of the ventricular myocyte based on the theory of local control 

of SR Ca2+ release. 

 
Figure 2.3: The Luo and Rudy Model. Schematic diagram showing the ionic currents, pumps 
and exchangers. The intracellular compartment is the SR, which is divided into two 
subcompartments the network SR (NSR) and the junctional SR (JSR). Dotted areas indicate the 
presence of Ca2+ buffers. (Figure from Puglisi et al. 2004) 

Moving from a general to a species-dependent model 

The availability of experimental data led also to the development of model of 

ventricular myocytes of different species. In fact, in the mid-1990s, the emphasis 

shifted from general models integrating voltage–clamp data from several species to 

more detailed models based on data obtained from isolated cells from one particular 

species. By 1995, electrophysiological studies had shown species differences in AP 

waveforms and ionic currents, e.g., mouse and rat APs have no phase 2 plateau, but 

exhibit rapid repolarization and very short AP duration if compared with the prominent 

plateau phase and long AP seen in humans, rabbit, guinea-pig and dog. 

Mouse models are becoming increasingly important, too, as genetic manipulation in 

mice has proven to be a powerful tool to study the physiological effects of gene 

mutations, knockouts and transgenesis. Relevant computer models are important to 

understand the effects of these genetic manipulations, and to enable inferences to be 

made concerning the effects expected in other species. Rat models have been 

developed (Demir et al.,1994; Pandit et al 2001 and Pandit et al 2003); the same group 
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further utilized the rat ventricular myocyte model to develop a model for the mouse left 

ventricular cells (Demir 2004). A computer model of action potential of mouse 

ventricular myocytes was proposed by Rasmusson’s group (Bondarenko et al., 2004). 

Several models of rabbit sinoatrial (SA) node are available in the literature, e.g. 

Zang et al., 2000, Oehmen et al., 2002. A ventricular model was published by Puglisi 

and Bers in 2001 (LabHEART). A more recent model of the ventricular rabbit AP was 

published by Bers’group in 2004 (Shannon et al., 2004). 

Canine models have been published by several groups, including Winslow 

(ventricular cell, Winslow et al., 1999; Greenstein et al., 2000), Nattel (atrial model, 

Ramirez et al., 2000; Kneller et al., 2002), Cabo and Boyden (epicardial cell, Cabo and 

Boyden, 2003), Rudy (Hund and Rudy, 2004).  

As the accuracy of models depends critically on the quality and extent of 

experimental data available for validation, during the 1990s development of a human 

myocyte model has proven elusive, due to the relative paucity of experimental data, 

specially from normal heart (Beuckelman et al., 1992 and Beuckelman et al., 1993; Li 

et al., 1996; Piacentino et al., 2003). Human models were published by Nygren et al. 

(1998, from Giles’ group), Courtmanche et al. (1998, from Nattel's group) and Priebe 

and Beuckelmann (1998). 

In recent years more and more data on human ionic currents have been gathered 

from human cardiomyocytes. In addition, a new technique has been developed, 

involving the cloning of human ion channels and heterologously expressing them in 

another cell type from which then voltage clamp measurements can be made. As a 

consequence, in recent years, several models for human ventricular cells have been 

formulated. The Priebe-Beuckelmann (1998) model and simplifications thereof (Bernus 

et al., 2002) are the first human ventricular myocyte models developed. Their model 

was largely based on the Luo–Rudy phase 2 model for guinea pig ventricular cells (Luo 

and Rudy, 1994) in which formulations for the major ionic currents were adjusted to 

the scarce data available for human ventricular cells at that time. Early 2004, a new 
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model for human ventricular myocytes by Ten Tusscher et al. appeared (Ten Tusscher 

et al., 2004). This model uses new formulations for all major ionic currents based on a 

now much wider set of experimental data, largely from human ventricular cell 

experiments but also from ion channel expression experiments.  

Later on in 2004 another model for human ventricular myocytes by Iyer et al. (2004) 

was published. As compared to the Ten Tusscher model, the Iyer model is more 

strongly based on expression data on human cardiac ion channels than on data on 

human ventricular cells. 

Recently, Ten Tusscher and Panfilov (2006) developed a new version of their human 

ventricular cell model, which is based on recent experimental measurements of human 

APD restitution and includes a more extensive description of intracellular calcium 

dynamics. 

Single vs. multi-compartment models 

An important issue in modeling the isolated cardiaomyocyte is intracellular calcium 

cycling. Calcium dynamics can be very important for arrhythmia initiation and its 

subsequent dynamics, given its involvement in early- and delayed- afterdepolarization 

(EAD and DAD) formation, alternans and wave instability.  

The existence of microdomains of Ca2+ inside the cell was proposed and modeled by 

several authors (Leblanc and Hume, 1990; Bers and Peskoff, 1991; Stern and Lakatta, 

1992). At this time, the requirement for modeling subcellular compartments to address 

essential features of the excitation–contraction coupling became evident. In 1993, 

Nordin published a guinea-pig model (Fig. 2.4) where the myoplasm was divided into 

three regions: superficial, medium and deep (Nordin, 1993). Ion flux between these 

compartments followed a simple gradient diffusion law and the volumes of each 

compartment were empirically adjusted. Although a heuristic idea this division 

matched experimental data related to rates of change in myoplasmic [Ca2+] (Nordin and 

Ming, 1995).  
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Figure 2.4: The Nordin Model. Myoplasm have been subdivided into superficial, middle, and 
deep compartments, separated by weak permeability barriers. The SR has been divided into two 
compartments. Ca2+ flux between superficial myoplasm and SR occurs through SR Ca2+ 
ATPase, Ca2+ -sensitive Ca2+ release channels and leakage fluxes from both SR compartments. 
Figure from Puglisi et al. 2004. 

A similar approach was adopted by Nygren et al. (1998) in their model of human 

atrial cell. Based on the DiFrancesco and Noble formulation for ionic currents and SR 

uptake and release, a cleft and an intracellular space were used to represent ionic 

movement. Winslow's group worked with a more specific subspace: a restricted volume 

located between the junctional sarcoplasmic reticulum and the T-tubule. It possessed a 

buffer (calmodulin) and was the place where the L-type Ca2+ channel and the ryanodine 

receptors interacted (Jafri et al., 1998). This representation allowed the study of 

phenomena such as adaptation of the ryaonide receptors (RyR).  

An analogous scheme was adopted by Pandit et al. (2001 and 2003) for their model 

of rat ventricular myocyte. Shannon and Bers (2001) added a subsarcolemmal space 

(Fig. 2.5) based on experimental evidence that the Na+/Ca2+ exchanger (NaCaX), INa, 

and Na/K-ATPase sense local ionic concentrations differing from both the bulk [Ca2+]i 

and that in the junctional cleft. The design of these three compartments seems to be 

more suited to represent the essential steps in EC coupling; it possesses a dedicated 

volume for the L-type Ca2+-channel and RyR interactions (the cleft), another volume 
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beneath the cell membrane for the interactions between transporters and their 

corresponding ions (the subsarcolemma space) and a cytosolic space where Ca2+ binds 

to myofilaments to generate force.  

 
Figure 2.5: Shannon and Bers model. It included three compartments: (1) a junctional cleft 
where E–C coupling occurs, (2) a subsarcolemmal space where INa, NaCaX and Na/K-ATPase 
sense ion concentrations and (3) a cytosolic volume where Ca2+ interacts with the 
myofilaments. Redrawn from Shannon and Bers, 2004. 

In this regard, modeling the cleft space is crucial to represent accurately basic 

aspects of the EC coupling. The critical Ca2+-induced Ca2+-release takes place in this 

minute volume (~0.06% of the total cell volume, Shannon et al., 2001) and modelers 

have been challenged to find an adequate representation for a system with high gain, 

graded response and under a tight control of the ICaL. Mechanistic models describing 

the interaction between RyR and the L-type Ca2+ channel (e.g. Soeller and Cannel, 

1997) have proven extremely useful to provide us with insights that are far from 

intuitive.  

Even if in recent years models of intracellular calcium handling have become 

increasingly complex, modeling individual L-type calcium channels, ryanodine 

channels, calcium release subunits, and their local, stochastic interactions (Rice et al., 

1999 and Greenstein and Winslow, 2002), their computational complexity caused 

modelers to use incorporate simplified models of intracellular calcium dynamics, by 

formulating an empirical description of Ca2+ release as a function of SR load and Ca2+ 
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influx (e.g. Luo and Rudy, 1994, used a fixed release time that starts 2 ms after the 

onset of ICaL). In addition, despite ongoing experimental and modeling research 

important knowledge on the exact mechanisms as for example calcium release 

termination and recovery is still lacking. To model the role of calcium dynamics in 

arrhythmia initiation and progression, a model of calcium dynamics that is able to 

accurately describe both normal stable and abnormal alternating or spontaneously 

active behavior is needed. 
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Markov models of ion channel kinetics 

Hodgkin and Huxley provided important insights into the mechanisms of cell 

excitability with the understanding that membrane permeability changes with the 

membrane potential, and they formulate a mathematical model to demonstrate that 

voltage dependent changes in the membrane permeability could justify the generation 

of an action potential. Further studies led to the following interpretation of their model 

based on voltage dependent ion conductances and open cannel probabilities. 

In the original Hodgkin and Huxley model of the action potential, each current is 

calculated using Ohm’s law. For example, the equation for INa is 

( )NaNaNa EVgI −⋅=  

where INa is the transmembrane Na+ current density (µA/cm2), gNa is the Na+ 

conductance (mS/cm2), V is the membrane potential and ENa is the reversal potential 

(computed using the Nernst equation). Thus (V-ENa) is the driving force. 

The conductance for each current can be considered as a function of the open 

probability of a series of hypothetical gates and the maximum conductance of the 

membrane for each ion species. The gates provide the voltage and time dependence of 

the conductance, and the maximum conductance is simply the conductance when all 

gates are open. Each gate can go through a first-order voltage-dependent transition 

from a closed to an open position or from an open to a closed position at a rate that is 

independent of the positions of all other gates. An ion can pass through the gate only in 

its open position. Na+ current activation (increasing conductance) is accurately modeled 

by three identical activation gates that move from closed to open positions at 

depolarized V. The open probability of the activation gate is typically assigned the 

variable m that ranges from 0 (all gates closed) to 1 (all gates open), and the time-

dependent change in m is described by the following first-order differential equation:  

( ) mm
dt
dm

⋅−−⋅= βα 1  
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where m and (1-m) are the gate open and closed probabilities, t is time (ms), and α and 

β are V-dependent opening and closing transition rates (ms-1). 

Since the transitions are assumed to be independent, the probability that all three 

gates are open is m3. At positive V all three gates transition rapidly (within 

milliseconds even at 6–7 °C, Fig. 2.6) to the open state, providing the depolarizing 

current necessary for the AP upstroke. 

 
Figure 2.6: Hodgkin–Huxley model-simulated sodium conductance, gNa, (solid line) is 
superimposed on experimental data (open circles). V values (mV) are indicated by numbers on 
each trace; conductance scales (mMho/cm2) are provided on the right. 

The voltage-clamp recordings (Fig. 2.6) also show a decrease in current shortly after 

activation. This process was termed inactivation, and was modeled by using a single 

first-order inactivation gate with open probability h. At hyperpolarized potentials, h is 

fully open. When the membrane is depolarized, the inactivation gate closes to cause the 

 22



CHAPTER 2 – MODELING OF THE MYOCYTE 

monoexponential decrease observed in INa. Since h operates independently of m, the 

open probability for the Na+ gates is m3h, and the conductance is 

hmgg NaNa ⋅⋅= 3
max,  

where gNa,max is the maximum esperimental conductance (mS/µF). 

As more information about ion-channel gating has been obtained, it has become 

clear that models with explicit representation of single ion-channel states are required. 

In the Hodgkin–Huxley formulation, the gating parameters (e.g. m, h) do not represent 

specific kinetic states of ion channels. It has also become apparent that the Hodgkin–

Huxley formulation is not sufficient to describe various aspects of channel behavior. 

One such aspect is the inactivation of the Na+ channel, which has a greater probability 

of occurring when the channel is open (Armstrong & Bezanilla, 1977; Bezanilla & 

Armstrong, 1977). If this is the case, then inactivation depends on activation and the 

assumption of independent gating that allows us to multiply m3 and h to compute 

conductance no longer holds. What we require is a class of models that can accurately 

represent the dependence of a given transition on the occupancy of different states of 

the channel. For sodium channel inactivation, the model must account for the 

dependence of the inactivation transition on the probability that the channel occupies 

the open state. Markov-type models fit this profile, and are based on the assumption 

that transitions between channel states depend on the present conformation of the 

channel, but not on previous behavior. Because the molecular interactions of channels 

are often state dependent, Markov model transitions typically represent specific 

channel movements that have been characterized experimentally. This section describes 

the application of Markov-type models to simulate such interactions (from Rudy and 

Silva, 2006). 

We begin by describing a simple hypothetical channel with a single open (O) and a 

single closed (C) state (Fig. 2.7a). The following first-order equations describe the rate 

of change of occupancy in the closed and open states : 
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OC
dt
dC

⋅+⋅−= βα  

OC
dt
dO

⋅−⋅= βα  

where O and C are the probabilities that the channel resides in the open or closed state; 

α and β are voltage dependent transition rates (ms-1) between these states. 

In addition to activation, many channels undergo inactivation. A hypothetical four-

state model (closed, open, and two inactivated states) with two sets of forward and 

reverse transition rates is shown in Fig. 2.7b. One set of rates, α and β, describes 

movement between states where the channel is open (O) or closed (C) (states that are 

not inactivated), and between the two inactivated states IO and IC. In the Markov 

scheme of Fig. 2.7b, these are horizontal transitions. The second set, γ and δ, describes 

vertical transitions to and from the inactivated states. Channels are only open when the 

channel is both activated and not inactivated, in state O. If differential equations are 

used to compute the occupancy of each state they take the following form: 

CIO
dt
dC

C ⋅+−⋅+⋅= )( γαδβ  

OIC
dt
dO

O ⋅+−⋅+⋅= )( γβδα  

CO
C ICI

dt
dI

⋅+−⋅+⋅= )( δαγβ  

OC
O IOI

dt
dI

⋅+−⋅+⋅= )( δβγα  

where α, β, γ and δ are transition rates, as shown in Figure 2.7b. 

Because each state represents a channel conformation, calculating the occupancies 

of these states can provide mechanistic insight into how transitions within the channel 

itself govern its behavior and participation in the AP. For example, channels that move 

during depolarization from C to IC to IO are not available to conduct current and do not 

participate in the AP. In contrast, channels that arrive at IO through O are available to 
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conduct current while occupying the open state and have an effect on the AP. Thus, the 

Markov formulation can be used to relate AP morphology and properties to specific 

kinetic states of ion channels and the transitions between them during the different AP 

phases. 

 
Figure 2.7: Examples of Markov and equivalent Hodgkin–Huxley (HH) models of ionic 
currents. (a) A two state closed (C) – open (O) model with a and b as forward and reverse 
transition rates. In the equivalent HH-type formulation, current activation is described by a 
single gating variable, such as m. (b) A four-state model with two independent transitions. C, 
Closed; O, open; IC, closed-inactivated; IO, open-inactivated. The transition rates α, β between 
IC and IO and between C and O are identical, as are transition rates γ, δ between C and IC and 
between O and IO. Thus activation and inactivation transitions are independent in this model. 
Independent transitions are readily modeled using the HH formulation. The probability for 
current activation is m and the probability that it is not inactivated is h; the open probability is 
m h. (c) A three-state model with dependent transitions from C to O and O to I. There is no HH 
equivalent because of the dependent transitions. 
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When using Hodgkin–Huxley type formulations, the occupancy for each state is not 

explicitly calculated. Instead, these models assume independent gating, an assumption 

that improves computational efficiency, which was certainly necessary in 1952 when 

the Hodgkin–Huxley model was published. In the Markov model of Fig. 2.7b the 

vertical transitions (C to IC and O to IO) have identical transition rates (α and β). This 

implies that channel inactivation can be represented by a single gate. Similarly, the 

horizontal transition rates between IC and IO are identical to the transition rates between 

C and O, and can be represented by a single gate. Horizontal movement from [C, IC] to 

[O, IO] represents channel activation; we can assign an activation gate m to describe 

these transitions. Similarly, we assign a second gate, h, to the inactivation process. 

Because the rates of inactivation transitions from C or O are identical, inactivation does 

not depend on the position of the activation gate (i.e. whether it is in the C or O 

position). The probability that the channel is in C or in O is h, and the probability that 

the channel is in O or in IO is m. Because the gates are independent, the open 

probability (O) is calculated as their product (m h). This expression is the same as 

would have been derived for the Hodgkin–Huxley formulation. Thus, under the 

assumption of independent gating the Markov formalism and the Hodgkin–Huxley 

formalism are interchangeable. 

However, experiments have shown that typically channel activation and inactivation 

processes are not independent, but coupled. A simple version of activation and 

inactivation coupling, in a hypothetical channel, is shown in Fig. 2.7c. In this scheme, 

channel inactivation can only occur from the open state, and channel activation and 

inactivation do not involve independent transitions (such as the independent movement 

of several voltage sensors). Therefore, the state-to-state transitions are dependent, the 

assumption of independent gating is no longer valid, and the Hodgkin–Huxley 

formalism in terms of gating variables can not be applied ; each state must be described 

individually by a differential equation: 
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OC
dt
dC

⋅−⋅= βα  

( ) OIC
dt
dO

⋅+−⋅+⋅= γβδα  

IO
dt
dI

⋅−⋅= δγ  

where α, β, γ and δ and d are transition rates, as shown in Fig. 2.7c. 

The Markov models compute occupancy of the channel in its various kinetic states 

as a function of voltage and time (and possibly other factors such as ligand binding). 

The channel conducts ions when it occupies its open state (or, in some cases, multiple 

open states). Therefore, the macroscopic current density through an ensemble of such 

channels is described by the following equation: 

( )XxscX EVOngI −⋅⋅⋅= ,  

where for an arbitrary channel X, gsc,x is the single channel conductance, n is the 

number of channels per unit membrane area, O is the probability that a channel 

occupies the open state, and (V-EX) is the driving force. 

This equation specifically accounts for the fact that current is generated by a 

population of ion channels that reside in the open state with a probability that depends 

on time and voltage. This single-channel based formulation of the current density can 

be incorporated into a model of the AP. Because in this scheme discrete channel states 

(i.e. open, closed, inactivated) are represented explicitly, the model can be used to 

describe not only the macroscopic current during the AP, but also the occupancies and 

transitions of channel states. This approach provides a mechanistic link between the 

whole-cell AP and the structure/function of ion channels. 
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The Luo-Rudy phase 2 model (guinea pig) 

The dynamic Luo and Rudy model (LRd) was developed on the basis of the first 

formulation model of the guinea pig ventricular action potential by Luo and Rudy 

(LR91, Luo and Rudy 1991), inspired by Beeler & Reuter (1977). Figure 2.8 shows the 

flowchart of the model development. 

 
Figure 2.8: Development flowchart of the LRd model. [Figure from 
http://rudylab.wustl.edu/research/cell/LRD.htm] 
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The LR91 model, shaping the ventricular myocyte as a cylinder of 100 µm in length 

and 11 µm in radius, implements six transmembrane currents and, like the Beeler-

Reuter model, takes into account concentration changes of intracellular Ca2+ only. The 

subsequent LR94 (Luo and Rudy 1994) includes formulation for most of the 

sarcolemmal currents, pumps and exchangers. It implements cell compartmentalization 

(myoplasm and sarcoplasmic reticulum). The sarcoplasmatic reticulum is functionally 

and structurally divided into two compartments the junctional sarcoplasmatic reticulum 

(JSR) and the network sarcoplasmatic reticulum (NSR). The volume of the SR is 6% of 

the cell volume, the NSR is the 92% of the SR while the JSR is the 8% of the SR. The 

mitochondria volume is the 26%, while the myoplasm is the 68% of the cell volume. 

Ca2+ buffers in the myoplasm (troponin, calmodulin) and in the junctional sarcoplasmic 

reticulum (calsequestrin), and Ca2+-induced release (CICR) are described. Ca2+ ions 

enter the NSR from the myoplasm through the uptake process, they translocate from 

the NSR to the JSR where they are released into the myoplasm by means of the CICR 

process. The LR94 model takes into account myoplasmic concentration changes of Na+ 

and K+ as well as Ca2+ concentration changes in all three compartments. LR95 (Zeng et 

al 1995) incorporates two components (rapid and slow) of the delayed rectifier K+ 

current (IKr and IKs). In the LR99 model (Viswanathan et al. 1999), the formulation of 

the Ca2+ release process and IKs are modified, and the heterogeneity of the ventricular 

wall is included, by differentiating three different cell types: epi-, mid- and endocardial. 

Finally, in LR00 (Faber and Rudy 2000, schematic representation in Fig. 2.9) CICR 

and INaCa are re-formulated, and the Na+ -activated K+ current is added. 

The ionic currents are described by Hodgkin and Huxley formalism (i.e. gating 

model), therefore they change the membrane voltage which subsequently affects ionic 

gates and currents (Tab. 2.1). 

The action potential is calculated by numerically solving the differential equation 

describing the rate of change of the membrane potential (V), that is  
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where Ist is the stimuli applied to the cell and C the cell membrane capacity (1 µF). 

 
Figure 2.9: Schematic diagram of ventricular cell of Luo-Rudy model. INa - fast sodium current 
INa,b - background sodium current ICa(L) - L-type calcium current INaCa - sodium-calcium exchage 
current Ip(Ca) - calcium pump current ICa(T) - T-type calcium current ICa,b - background calcium 
current IKr - rapid delayed rectifier potassium current IKs - slow delayed rectifier potassium 
current IK1 - time-independant potassium current IKp - plateau potassium current (ultra-rapid, 
IKur )Ito - transient outward current INaK - sodium-potassium pump current IK(Na) - sodium 
activated potassium current IK(ATP) - ATP activated potassium current Ins(Ca) - non-specific 
calcium activated current NSR - network sarcolplasmic reticulum JSR - junctional 
sarcoplasmic reticulum Iup - calcium uptake from myoplasm to NSR Itr - calcium transfer from 
NSR to JSR Ileak - calcium leak from NSR to myoplasm Irel - calcium release from JSR to 
myoplasm Troponin, Calmodulin, Calseqeustrin - calcium buffers  

Figure 2.10 shows the main ionic currents that are involved in the AP development. 

The Na+
 current (INa, shown on an expanded time scale in the inset) activates rapidly, 

producing the AP upstroke (phase 0), and rapidly inactivates. The transient outward 

potassium current (Ito) contributes to the notch that follows the upstroke (not shown); 

the L-type Ca2+ current (ICaL) inactivates more slowly than INa, and incompletely, 

allowing for the inward Ca2+ current to maintain the plateau phase of the AP (Zeng and 

Rudy, 1995). The INaK current increases during depolarization and pumps Na+ ions out 

of the cell and K+ ion into the cell. The slow and rapid components of the delayed  
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Table 2.1 Dependence of current conductance of membrane currents on intra- and extracellular 
ion concentrations, voltage and time(Luo and Rudy, 1994a; Luo and Rudy, 1994b; Zeng et al., 
1995; Viswanathan et al., 1999; Dumaine et al., 1999). 

Current Time independent Time dependent 

 Voltage Concentration Voltage Concentration 

INa   

Activation  
(m) 
Inactivation  
(j,h) 

 

ICaL GHK model [Ca2+]i [Ca2+]o

Activation  
(d) 
Inactivation  
(f) 

Inactivation 
(fca([Ca2+]i)) 

ICa(T)   

Activation  
(b) 
Inactivation  
(g) 

 

ITo   

Activation  
(z) 
Inactivation  
(y) 

 

IKr
Inactivation  
(R) 

[K+]o
Activation  
(Xr) 

 

IKs  [Ca2+]i
Activation 
(Xs1,Xs2) 

 

IKp
Activation  
(Kp) 

   

INaCa GHK model 
[Ca2+]i[Ca2+]o 

[Na+]i[Na+]o
  

INaK Activation (fNaK) [K+]o [Na+]i   

IK(Na)
Inactivation 
(PoV) 

[Na+]i   

IK1
Inactivation 
(K1∞) 

[K+]o   

Ins(Ca) GHK model [Ca2+]i[Ca2+]o   
Ip(Ca)  [Ca2+]i   

ICab     

INab     

GHK=Goldman-Hodgkin-Katz 

rectifier current (IKs and IKr) as well as the plateau K+ current (IKp) display voltage- 

and time-dependent properties that contribute to the repolarization of the AP (Yue and 

Marban, 1988). The INaCa extrudes Ca2+ ions out of the cell and intrude Na+ ions into 

the cell mainly in late repolarization phase and diastole, constitutes an additional 
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inward current. The inward rectifier current (IK1) maintains and stabilizes the resting 

potential.  

 
Figure 2.10: Tracing of the major ionic currents that determine the shape of AP. 

Upon depolarization, Ca2+ entering the cell through the L-type current (ICaL) triggers 

the release of Ca2+ from the JSR (Irel), thus leading to the increase of the cytosolic 
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calcium concentration (Fig. 2.8, [Ca2+]i). Then, Ca2+ ions are removed from the cytosol 

to the NSR by means of the uptake process (Iup) and to the extracellular compartment 

through the Na+/Ca2+ exchanger. The translocation process of Ca2+ from NSR to JSR is 

mediated by Itr. There is also a small flux (Ileak) due to Ca2+ ions that move from NSR to 

myoplasm. The intracellular Ca2+ signal also feeds back on the L-type Ca2+ channel, 

mediating inactivation of the current, and therefore plays a role in influencing AP 

shape. 

The complete list of equations for all ionic currents and other processes described in 

the dynamic Luo and Rudy model of the guinea pig ventricular action potential (Luo 

and Rudy 1994) and its subsequent releases (Faber and Rudy 2000; Viswanatan et al. 

1999; Zeng et al. 1995) is available on http://rudylab.wustl.edu/research/cell/LRD.htm. 
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The Shannon et al. model (rabbit) 

In 2004 Bers’ group published a new model of rabbit cardiac myocyte Ca2+ and Na+ 

homeostasis. Their goals were: [i] to track ion influx and efflux such that the model 

comes to steady-state with a realistic balance of Ca2+ fluxes, [ii] to incorporate a form 

of Ca2+-induced Ca2+ release (CICR), [iii] to use parameters which are consistent with 

laboratory observations, [iv] to be able to simulate basic physiological phenomena 

when all of the components are combined and [v] to incorporate reasonable 

compromises to allow the model to be solved numerically on a desktop computer. The 

model includes the following novel features: [i] the addition of a subsarcolemmal 

compartment along with the junctional and bulk cytosolic compartments (Fig. 2.11) to 

allow proteins in the membrane to sense ion concentrations which differ from bulk, [ii] 

the use of realistic cytosolic Ca2+ buffering parameters, [iii] a reversible SR Ca2+ pump 

as suggested by the results of Shannon et al. (2000a), [iv] a [Na+]i-dependent Na+-Ca2+ 

exchanger which is physiologically regulated by Ca2+ as proposed by Hilgemann et al. 

(1992, see also Weber et al. 2001) and [v] a model of SR Ca2+ release (Fabiato, 1985) 

including both inactivation/adaptation (Cheng et al., 1995; Stern et al., 1999) and SR 

Ca2+ load dependence (Shannon et al., 2000b). The model data describes Ca2+ handling 

characteristics of the cardiac myocyte and the SR Ca2+ load dependence of these 

processes is accounted for. The model includes a realistic balance of cellular Ca2+ 

removal mechanisms (Bassani et al., 1994; Puglisi et al., 1999), and the phenomena of 

rest decay and frequency-dependent inotropy. A particular emphasis is placed upon 

reproducing the non-linear dependence of gain and fractional SR Ca2+ release upon SR 

Ca2+ load (Shannon et al., 2000a).  

The model is composed of a series of differential equations describing changes in 

[Ca2+], [Na+], and membrane voltage over time. The AP (Fig. 2.10) is generally 

reconstructed from individual equations representing sarcolemmal (SL) membrane 
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channels (Figures 2.11 and 2.12) as in Luo and Rudy (1994a,b) with variations in and 

additions to individual equations and parameters (see also Puglisi and Bers, 2001).  

 
Figure 2.11: A: Diagram of the cell with Ca2+- and Na+-dependent components of the model. 

Combined, the currents produce a relatively normal AP waveform with duration of 

235 ms at 1 Hz (Figure 2.10 and 2.11). 

Cellular Structure 

The cell (volume 33 pL) is separated into four lumped compartments (Figure 2.11): 

[i] the SR (Page et al., 1971, 3.5% of the cell volume), [ii] the junctional cleft (Page 

and Surdyk-Droske, 1979; Soeller and Cannell, 1997, 0.077% assuming 11% of the cell 

membrane is junctional and that the cleft is 15 nm deep), [iii] the subsarcolemmal 

space (2% assuming 89% of the membrane is nonjunctinal SL and by making the space 

45 nm deep), and [iv] the bulk cytosolic space (Page et al., 1971, 65% with the 

remainder of the volume accounted for by mitochondria). The accessible cleft volume 

is reduced by an additional third to 0.051% due to the occupation of this space by 

protein (Soeller and Cannell, 1997). 
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Na+ buffers are located only in the junction and SL compartment and are modeled as 

rapidly binding molecules with the standard Hill equation. Parameters are taken from 

Bers et al. (1986). 

 
Figure 2.12: (upper panel) An action potential and the accompanying bulk cytosolic Ca2+ 
transient. (lower panel) Relevant K+ and Cl- currents. 

Ca2+ buffers are distributed in each compartment as appropriate (Fig. 2.14). SR Ca2+ 

buffers (primarily calsequestrin) are modeled as rapidly binding molecules. Parameters 

are from Shannon et al. (1997, 2000). Cytosolic Ca2+ binding molecules are modeled in 

a time-dependent manner. 

Ca2+ Currents 

Ca current (Fig. 2.13) is formulated as previously described (Luo and Rudy, 1994a; 

Luo and Rudy, 1994b; Puglisi and Bers, 2001) with modifications. The formulations 

are based upon the Goldman-Hodgkin-Katz equation. Ca2+-dependent inactivation was 

 36



CHAPTER 2 – MODELING OF THE MYOCYTE 

modified to be calmodulin-dependent (Peterson et al., 1999; Qin et al., 1999). Ninety 

percent of the channels are located in the junctional cleft membrane (Scriven et al., 

2000), as shown in Figure 2.13A. 

 
Figure 2.13: A. Diagram of the way in which the L-type Ca2+ channel operates. The model 
includes Ca-dependent inactivation which is Ca-calmodulin (CaM)-dependent. Most of the 
channels (90%) are in the cleft space (Scriven et al., 2002). B. L-type Ca2+ current generated 
during the AP (right). The currents of Puglisi et al. (1999) are shown for comparison (left). 

The SL Ca2+ leak flux is adjusted to match that calculated from Negretti et al. 

(1993). 

The SL Ca2+ pump is formulated using the standard Hill equation and approximates 

cellular estimates of Bassani et al. (1994). 
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The Na+-Ca2+ exchanger is formulated essentially as described in Weber et al. 

(2001). The scheme is a general improvement over other models in that it is [Na+]i-

dependent and allosterically regulated by Ca2+. 

Sarcoplasmic Reticulum Ca2+ Transport 

The SR Ca pump is a reversible enzyme formulated as in Shannon et al. (2000a). 

 

 
Figure 2.14: A. Ca2+ buffers in each compartment. B. Bulk cytosolic Ca2+ transient. C. Ca2+ 
transients in each of the three non-SR compartments. Data is compared to that of Weber et al. 
(2002). 

The cytosolic Ca2+ dependence of the SR Ca2+ release channel (RyR) was modeled 

in a steady-state manner as in Stern et al. (1999, see Figure 2.15, based upon Fabiato, 

1985 and Cheng et al., 1995) with the addition of a dependence of RyR gating upon 

[Ca2+]SR. The model has four states: resting or closed (R), open (O), inactivated (I) and 

resting inactivated. All of the SR Ca2+ release takes place in the junctional 
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compartment. A passive leak from the SR into the junctional compartment was also 

added to give a total diastolic leak (passive and diastolic RyR leak) of ~4 µM/s 

(Shannon et al., 2001). 

Other Currents 

The equations used for the Na+ and K+ currents are based upon those of Luo and 

Rudy (1994a, b) with some modifications (Jafri et al., 1998; Puglisi and Bers, 2001;  

 

 
Figure 2.15: A. Markovian state model of the ryanodine receptor. The model was developed 
from that of Stern et al. (1999) with the addition of SR Ca2+ load dependence to the binding of 
Ca2+ to the activation and inactivation cytosolic sites. B. SR Ca2+ release flux with RyR-
dependent SR Ca2+ leak (inset). Total leak is equal to this diastolic release plus the passive leak 
flux (4 µM/s). B. Profile of the four channel states over the course of an AP. C. Time-
dependent profile of the channel open state with changes in the kon for Ca2+ binding with 
[Ca2+]SR (inset). 

Bassani et al., 2004). Two notable exceptions are in the IKs current and the Ca-

dependent Cl current (ICl). IKs was modeled to resemble the data of Tohse (1990). Cl- 
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currents were added to the model and scaled to approximate those of Zygmunt and 

Gibbons (1991) and Puglisi et al. (1996). 

All of the channels and transporters (with the exception of the L-type Ca2+ channel) 

are evenly distributed through out the cell membrane, 89% in the SL compartment and 

11% in the junctional membrane.  
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3 Arrhythmogenic Syndromes and Na+ channelopathies 

Cardiac arrhythmias are a leading cause of morbidity and mortality. More than 

300,000 individuals in the United States die suddenly every year, and in most cases it is 

assumed that the underlying cause of sudden death is ventricular tachyarrhythmia 

(Kannel et al., 1987; Willich et al., 1987). Despite their importance, until recently the 

understanding of the molecular mechanisms underlying life-threatening ventricular 

tachyarrhythmias was poor. The ability to predict, prevent, and treat these disorders 

remains a major scientific and medical challenge.  

 

 

Figure 3.1: Cardiac ion channels and genes associated to arrhythmia susceptibility. 
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Mutations in cardiac ion channel genes have been shown to contribute to arrhythmia 

susceptibility. Over the last six years 14 genes related to cardiac arrhythmias were 

discovered (Fig.3.1). Mutations in KCNQ1, KCNH2, SCN5A, ANK2, KCNE1, KCNE2, 

KCNJ2, CACNA1, CAV3, SCN4B (see Table 3.1) cause Long QT syndrome (LQTS), a 

cardiac disease characterized by prolongation of the QT interval on the ECG. SCN5A, 

mutations can cause both LQTS and Brugada syndrome (Brugada et al., 1997), that has 

a distinct electrocardiographic feature of elevation of the ST segment (recently, 

mutations in GPD1-L, CACNA1 and CACNA2 gene have been discovered in BrS 

families). A third familial cardiac arrhythmia, catecholaminergic ventricular 

tachycardia, is caused by mutations in RYR2 - the ryanodine receptor gene (Priori et al., 

2000), and in CASQ2 - the gene encoding the Ca2+ buffering protein in the lumen of 

SR. Mutations in KCNQ1, KCNH2 and KCNJ2 have been associated to Short QT 

syndrome (SQTS). 

In general, arrhythmia susceptibility is more severe in homozygotes than in 

heterozygotes. Although some familial forms of arrhythmia susceptibility are 

associated with additional obvious phenotypic abnormalities (e.g., congenital neural 

deafness in Jervell and Lange-Nielsen syndrome, see Table 3.1), most of these 

individuals appear grossly normal and go undetected until their first arrhythmia strikes. 

Long QT syndrome (reviewed in Ching et al. 2006) 

Inherited LQTS is an uncommon cardiac disorder that affects 1 to 5,000-10,000 

people (Ching et al., 2006). LQTS causes 3,000-4,000 death/year in children and young 

adults in USA (Wehrens et al. 2002). 

Long QT syndrome is a genetically heterogeneous disorder caused by various 

defects in ion channels (see Table 3.1), which result in prolongation of ventricular 

repolarization (QTc>440-460 ms). LQTS is usually inherited with only approximately 

10% of cases being sporadic. Besides the congenital form, acquired LQTS can be 

caused by exposure to drugs, electrolyte abnormalities and cardiomyopathies. The 
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inherited LQTS, which was firstly associated to genetic defect in 1991 (Keating et al., 

1991), is present in two forms: i) the Romano-Ward syndrome is the most common and 

is transmitted as an autosomal dominant trait, i.e. the mutant gene is transmitted to 50% 

of the offspring of an affected individual. Mutations associated to Romano-Ward 

syndrome has been identified in 10 chromosomes: LQT1 to LQT10; ii) the Jerwell and 

Lange-Nielsen syndrome is relatively uncommon and is transmitted as an autosomal 

recessive trait (LQT1 and LQT5). It is associated to deafness (Wehrens et al. 2002).  

Genetic Bases 

The 10 forms of Long QT syndrome (Tab. 3.1) are related to specific ionic channel 

functional alterations. The pathogenic mutations lead to either a loss of function in 

potassium channels or a gain of function in sodium and calcium channel. The most 

common form of LQTS is LQT1 (~50%), followed by LQT2 (45%) and LQT3 (~10%) 

(Ching et al. 2006). 

Table 3.1 - Summary of gene information for the various types of LQTS 

Type Locus Channel Gene Transmission Frequency 
among 
genotypes 

LQT1 11p15 IKs KCNQ1 AD 42–50% 
LQT2 7q35 IKr KCHN2 AD 45% 
LQT3 3p21–24 INa SCN5A AD or M 7–8% 
LQT4 4q25–27 Na/Ca ANK2 AD Rare 
LQT5 21q22 IKs KCNE1 AD 3% 
LQT6 21q22 IKr KCNE2 AD 2% 
LQT7 
(Andersen’s 
syndrome) 

17q23 IK1 KCNJ2 AD Rare 

LQT8 (Timothy 
syndrome) 

12q13.3 ICaL CACNA1C AD or M Rare 

LQT9 3p25.3 INa CAV3 AD Rare 
LQT10 11q23.3 INa SCN4B AD Rare 
JLN Type I 11p15 IKs KCNQ1 AR Rare 
JLN Type II 21q22 IKs KCNE1 AR Rare 

AD: Autosomal dominant; AR: Autosomal recessive; JLN: Jervell–Lange-Nielsen; 
LQT: Long QT; M: Mosaicism documented. 
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Phenotype and Symptoms 

The congenital form of LQTS is characterized by prolonged QT interval in the 

surface ECG (Fig. 3.2), increased risk of a typical polymorphic ventricular tachycardia, 

termed Torsade de Pointes (Fig. 3.2), and high risk of sudden cardiac death (SCD). 

 
Figure 3.2: Panel A) LQTS is characterized by an action potential prolongation and is 
associated to mutations that lead to a loss of function in potassium channels or gain of function 
in sodium and calcium channel. Panel B) Time correspondence between representative ECG 
and atrial and ventricular action potentials. Prolongation of the ventricular action potential is 
reflected in the lengthening of the QT interval (blue line). The presence of early 
afterdepolarizations (EADs) leads to the development of Torsades de Pointes and ventricular 
fibrillation (red line). 

Many patients with LQTS suffer from severe cardiac events, such as syncope and/or 

SCD, which are most often during physical exercise or emotional stress. However, a 

great number of patients with LQTS are asymptomatic, and diagnosis is usually 

incidental based on the ECG. There are some correlations between cardiac events and 

genotype. Cardiac events occur in LQT1 patients mainly during exercise (62%) being 

adrenergic stimulation a typical trigger of cardiac events in this LQTS type, and only in 3% of 
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cases they occur during sleep. The opposite pattern is shown in LQT3 carriers that 

display 39% of events during sleep and 13% during exercise. LQT3 carriers die mostly 

during low heart rate condition. LQT2 patients principally encounter events during 

emotional stress (49%) ( Schwartz et al., 2001). 

Treatment 

As most of cardiac events arise by an increment of sympathetic activity, anti-

adrenergic treatments (beta-blockers and if necessary cardiac denervation) are 

recommended. Implantable cardioverter defibrillator (ICD) is indicated for patients 

with a high recurrence of cardiac events. However, responsiveness to pharmacotherapy 

also correlates with genotype, as beta-blocker seems to be less effective in LQT3 

patients (Wehrens et al. 2002), while they are effective for LQT1 and LQT2 patients. 

In patients in which anti-adrenergic therapies are not effective genetic specific 

intervention may be adopted, for example sodium channel blockers assumption in 

LQT3 carriers or oral potassium supplement in LQT2 patients (Etheridge et al. 2003, 

Bloise et al. 2002). 

Multiple mutations 

Recently, molecular screenings showed that, within LQTS families, some 

individuals may carry more than a single mutation and the presence of compound 

mutations is more frequent than expected (Schwartz et al. 2003, Westenskow et al. 

2004). These studies showed interesting genotype-phenotype correlations, being 

striking the differences in the clinical manifestations of the carriers of compound 

mutations and their family members carriers of a single mutation only. Symptoms as 

syncope and cardiac arrest are observed almost in all carriers of compound mutations 

but in only a small percentage of patients with only one mutation.  

There is considerable variation in the clinical presentation of LQTS, ranging from 

no symptoms to cardiac arrest , even among members of the same family. Depending 

on the genetic defect, there are differences in the age of onset, severity of symptoms, 

and number of cardiac events and triggers. With advances in gene technology, it is now 
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feasible to perform genetic testing for LQTS, especially for those with family history. 

Identification of the mutations will lead to better management of symptoms and more 

targeted treatment, hopefully resulting in a reduction of mortality and cardiac events.  

Brugada syndrome (reviewed in Shimizu 2005) 

Brugada Syndrome (BrS) is responsible for 4% to 12% of all sudden cardiac deaths 

and nearly 20 % of deaths in patients with structurally normal heart. The incidence of 

the disease is on the order of 5 per 10,000 subjects and it is one of the leading cause of 

death of men under the age of 40 in regions (South Asia) where the syndrome is 

endemic (Antzelevitch et al. 2003). 

 

 
Figure 3.3: Type 2 ECG (not diagnostic) displaying a saddleback-type ST-segment elevation is 
observed in V2; diagnostic Type 1 ECG, which consists of a coved-type ST-segment elevation 
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Genetic Bases 

In 1998, Chen and co-workers identified the first mutation leading to BrS in SCN5A, 

the gene encoding the alpha subunit of the Na+ channel (Chen et al., 1998). SCN5A 

mutations account for only 18-30% of clinically diagnosed BrS patients at present, and 

more than 2/3 of BrS patients cannot be genotyped, suggesting the existing of genetic 

heterogeneity (Shimizu et al., 2005). Recently, mutations in GPD1-L (London et al., 

2006), CACNA1 and CACNA2 gene have been discovered in BrS families 

Phenotype 

Brugada syndrome is characterized by ST-segment elevation in the right precordial 

leads (V1-V3) and episodes of ventricular fibrillation (VF) in absence of structural heart 

disease. Cardiac events due to VF often occur at night or during sleep as a form of 

sudden unexpected nocturnal death or syncope in approximately 70-80% of patients 

with BrS. Two specific types of ST segment elevation, coved and saddleback, are 

observed in this syndrome, the former of which is reported to relate to a higher 

incidence of VF and sudden cardiac death. However, the coved type ST segment 

elevation is more frequently recognized just before and after episodes of VF (Fig. 3.3). 

Drug challenge 

The electrocardiographic features of BrS are dynamic and often concealed. Sodium 

channel blockers amplify or unmask ST segment elevation, and are used as diagnostic 

tool in latent BrS with transient or no spontaneous ST segment elevation. Class IC 

sodium channel blockers (flecainide, pilsicainide, ecc.) and ajmaline (class IA) produce 

the most pronounced ST segment elevation. In addition to sodium channel blockers, 

many agents and conditions are reported or expected to unmask Brugada phenotype, a 

coved type ST segment elevation. As an example, calcium channel blockers 

(verapamil, etc.) decrease L-type calcium current (ICaL) and are expected to induce BrS-

type ST segment elevation. In addition, psychotropic agents, K+ channel openers, 

febrile state (hyperthermia), electrolyte disturbances, etc. are reported to amplify ST 

segment elevation. 
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Treatment 

Among symptomatic patients, individuals experiencing aborted cardiac arrest are at 

high risk for recurrence (69%) while those who display spontaneous BrS 

electrocardiographic features and experience syncope have a recurrence of 19%. 

Asymptomatic patients at higher risk are those showing Brugada signs spontaneously, 

those in which BrS signs are provoked by drugs are at very low risk (Antzelevitch et al. 

2003). ICDs are often recommended in patients experiencing cardiac arrest. 
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Na+ CHANNELOPATHIES (reviewed in Clancy and Kass 2005) 

Voltage-gated Na+ channels cause the rapid depolarization that marks the rising 

phase of APs in the majority of excitable cells. At negative membrane potentials, 

channels typically reside in closed and available resting states that represent a 

nonconducting conformation. Depolarization results in activation of the voltage sensors 

and channel opening, allowing for ion passage. Subsequent to channel activation, 

channels enter inactivated states that are nonconducting and refractory. Repolarization 

is required to alleviate inactivation with isoform-specific time and voltage dependence. 

 
Figure 3.4. The cardiac Na+ channel is involved in multiple arrhythmogenic syndromes. Shown 
is a schematic representation of the voltage-gated cardiac Na+ channel (NaV1.5), in which 
mutations can lead to the LQT3 form of long QT syndrome (LQTS), Brugada syndrome (BrS), 
and isolated cardiac conduction disorder (ICCD) or mixed combinations of disorders. 

SCN5A encodes the cardiac isoform (NaV1.5) of the voltage-gated Na+ channel, 

which is a heteromultimeric protein complex consisting of four heterologous domains, 

each containing six transmembrane spanning segments. Positive residues are clustered 

in the S4 segments and comprise the voltage sensor (Kontis and Goldin 1997, Stuhmer 

et al. 1989) (Fig. 3.4). The intracellular linker between domains three and four, 

DIII/DIV, includes a hydrophobic isoleucine-phenylalanine-methionine (IFM) motif, 

which acts as a blocking inactivation particle and occludes the channel pore, resulting 
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in channel inactivation subsequent to channel opening (Stuhmer et al. 1989). Recent 

studies also suggest a role for the COOH terminus in channel inactivation in brain and 

cardiac isoforms (NaV1.1 and NaV1.5, respectively) (Cormier et al. 2002, Mantegazza 

et al 2001). The S5 and S6 transmembrane segments of each domain comprise the 

putative channel pore and associated ion selectivity filter (Sun et al 1997). 

There has been renewed interest in the study of voltage-gated Na+ channels since the 

recent realization that genetic defects in Na+ channels can underlie idiopathic clinical 

syndromes (Goldin 2001). Interestingly, all Na+ channel-linked syndromes are 

characterized by episodic attacks and heterogeneous phenotypic manifestations.  

Many mutations in the cardiac voltage-gated Na+ channel isoform NaV1.5 have been 

shown to underlie several disease phenotypes including the Long QT Syndrome type 3 

(LQT3), Brugada syndrome (BrS), and isolated cardiac conduction disease (ICCD). 

Mutations underlying these clinical syndromes are scattered throughout the channel, as 

shown in Figure 3.4. 

Genetic defects in membrane ion channels can disrupt the delicate balance of 

dynamic interactions between the ion channels and the cellular environment, leading to 

altered cell function. As ion-channel defects are typically studied in isolated expression 

systems, away from the cellular environment where they function physiologically, a 

connection between molecular findings and the physiology and pathophysiology of the 

cell is rarely established. Computational modeling has proven useful to analyze the 

consequences of mutations on cardiac electrophysiology. Incorporating the results of 

electrophysiological characterization of mutant ion channels in a model makes it 

possible to investigate the alterations of channel kinetic properties due to genetic 

mutations. Computer models of the mutant currents allow to simulate the effects of 

mutations on the action potential morphology (Clancy et al., 2002a; Clancy et al., 

2002b; Clancy et al., 1999; Vecchietti et al., 2007), in order to fill the gap between the 

genotype and the phenotype and to gain new insights into the underlying mechanisms 

of cardiac arrhythmias.  
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Figure 3.5. The effect of ∆KPQ mutation on the whole cell action potential. Wild-type (WT) 
Na+ channels activate and then rapidly enter nonconducting inactivation states where they 
remain throughout the action potential plateau (I). The ∆KPQ mutation results in a fraction of 
channels that transiently fail to inactivate resulting in persistent Na+ current (INa) during the 
action potential plateau (II), which prolongs the action potential duration (compare with WT on 
left). With slowing of the pacing rate, an EAD occurs (III). [Modified from Clancy and Rudy 
(1999).] 

Long QT Syndrome 

In general, Na+ channel-linked LQTS stems from mutation-induced disruption of 

channel inactivation, as was originally identified in the ∆KPQ mutation, a three-amino 

acid deletion in the intracellular linker between domains III and IV of NaV1.5. This 

motif is known to be critical for fast inactivation of the channel. Indeed, it was 

observed experimentally in expression systems that this structural defect leads to two 

modifications of channel function: 1) faster activation and recovery from inactivation, 

and 2) transient complete failure of inactivation in some of the channels; the mutation 

results in persistent noninactivating current (Chandra et al. 1998). The noninactivating 

component of INa acts to prolong the plateau of the AP and may allow for the 

development of arrhythmogenic triggered activity, referred to as early 

afterdepolarizations (EADs), as it was suggested by the simulation study of Clancy and 

Rudy (1999, Fig. 3.5). They simulated the modifications of Na+ channel gating by the 
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∆KPQ mutation in a Markov model of INa, and they introduce the current model in the 

LRd ventricular cell model paced at various rate. During an AP the additive effects of 

channel reopenings in the background mode and bursting in the burst mode of ∆KPQ 

result in a late component of macroscopic current during the plateau phase. In the 

simulations, the APD of the mutant cell is markedly prolonged, and with slowing of the 

pacing rate, a secondary depolarization occurs before the completion of ventricular 

repolarization (EAD). In the context of arrhythmogenesis, regional delays of the 

repolarization process by AP prolongation and/or EADs can create spatial 

nonuniformities of excitability (“dispersion of repolarization”) that provide a substrate 

for the development of unidirectional block and reentry. Moreover, under certain 

conditions EADs can elicit an excitatory response that provides the trigger for 

arrhythmic activity. 

While ∆KPQ is one example of altered gating, several recent studies suggest that 

mutation-induced gain of function in cardiac INa can exist in at least three distinct forms 

(Fig. 3.6). The most common is due to transient inactivation failure as in ∆KPQ, which 

underlies sustained Na+ channel activity over the plateau voltage range (Antzelevitch et 

al. 2000). A second is due to steady-state channel reopening called window current 

(Chandra et al. 1998), because reopening occurs over voltage ranges for which steady- 

state inactivation and activation overlap. A third original mechanism was demonstrated 

in channels containing the I1768V mutation, which does not result in an obvious gain 

of channel function (Clancy et al. 2003, Groenewegen et al. 2003). However, under 

nonequilibrium conditions during repolarization, channel reopening results from faster 

recovery from inactivation at membrane potentials that facilitate the activation 

transition (Clancy et al. 2003). Mutation-induced faster recovery from inactivation 

results in channels that reopen during repolarization, and the resulting current 

amplitude rivals that of bursting channels. Simulations have demonstrated that late 

current due to channel reopening causes severe prolongation of the AP plateau and 

arrhythmic triggers (Clancy et al. 2003). 
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Recently, several studies have focused on the role of the intracellular COOH 

terminus of the Na+ channel in voltage-gated Na+ channel inactivation. Notably, gene 

defects associated with LQT3 located in this region disrupt inactivation in a manner 

similar to mutations that affect the DIII/DIV linker inactivation gate. LQT3 mutations 

in this region (E1784K, 1795insD, Y1795C) evoke small, sustained currents similar to 

∆KPQ (An et al., 1998, Rivolta et al., 2001, Veldkamp et al., 2000). 

 

 

Figure 3.6: Na+ channel-linked LQTS mutations result in a gain of function and can stem from 
at least three distinct mechanisms. A: the most common is due to transient inactivation failure 
as in ∆KPQ, readily seen in the single-channel gating, which underlies sustained Na+ channel 
activity over the plateau voltage range. Wild-type (WT) and ∆KPQ mutant channels are shown 
in the top four and bottom five traces, respectively. Mutant channels exhibit two distinct forms 
of abnormal gating compared with WT. [From Clancy and Rudy 2001.] B: the E1295K 
mutation shifts the voltage dependence of steady-state channel reopening called window 
current into voltages relevant during the action potential plateau. Reopening occurs over 
voltage ranges for which steady-state inactivation and activation overlap (top). Window current 
is easily observable by implementing a slow positive voltage ramp. [From Abriel et al., 2001.] 
C: a third original mechanism was demonstrated in channels containing the I1768V mutation, 
which does not result in an obvious gain of channel function. However, under nonequilibrium 
conditions during repolarization, channel recovery from inactivation states that occur 
subsequent to opening is faster at membrane potentials that facilitate the activation transition. 
Mutation induced faster recovery from inactivation results in channels that reopen during 
repolarization and that the resulting current amplitude rivals that of bursting channels. Figure 
from Clancy et al., 2003. 
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Brugada Syndrome 

Unlike LQTS that is associated with a gain of Na+ channel function, loss of Na+ 

channel function underlies the BrS phenotype. Mutations in NaV1.5 have been linked to 

BrS and characteristically cause a reduction in INa (Grant et al., 2002). This reduction 

in INa has been shown to occur by several mechanisms in BrS, including reduced rates 

of recovery from inactivation, faster inactivation subsequent to channel opening, and 

protein trafficking defects (Dumaine et al., 1999; Rivolta et al., 2001; Veldkamp et al., 

2000; Wang et al., 2000). 

Isolated Cardiac Conduction Disease 

ICCD is observed on the ECG in a widening of the QRS complex, indicating delays 

in ventricular excitation (Grant et al. 2002). They are associated with bradycardia and 

may manifest as syncope. Mutations in NaV1.5 have been shown to cause ICCD and 

typically result from a depolarizing shift of the Na+ channel activation curve (Grant et 

al., 2002). This shift most likely results from a reduction in the rate of channel 

activation or decreased channel sensitivity to the voltage required for activation. 

Mutant channels may require a greater amount of time to reach depolarized membrane 

potentials at which the maximum INa occurs. The lag in activation of ICCD mutant Na+ 

channels would result in a reduction of the AP upstroke velocity, a primary determinant 

of conduction velocity. 

Mutations Can Result in Multiple Phenotypes  

The relationship between genetic mutations and clinical syndromes is becoming 

increasingly complex as the revelation of novel mutations suggests paradoxical 

phenotypic overlap or exclusivity. Recently, at least four loci in the cardiac sodium 

channel have been identified where the same mutation can result in different disease 

phenotypes. An insertion of an aspartic acid residue (1795insD) in the COOH terminus 

of NaV1.5 showed simultaneous LQT3-like and Brugada-like clinical manifestations in 

the same patients (Veldkamp et al., 2000). Mutant 1795insD Na channels expressed in 

mammalian cells exhibit a shift in steady-state inactivation to negative potentials (with 
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unaltered activation), disrupted fast inactivation, persistent INa, augmented slow 

inactivation and delayed recovery from inactivation. The authors suggested that the net 

effect of both changes would be heart rate-dependent. At low frequencies, impaired fast 

inactivation and persistent INa outweigh the slowed recovery from inactivation because 

of long lasting diastolic intervals. This would favor AP prolongation consistent with 

LQT3 phenotype. However, at higher heart rates, the shorter recovery interval 

hindering complete Na+ channel recovery results in a reduction of Na+ channel 

availability and shortens AP duration. The consequent loss of Na+ channel function 

would then slow propagation and increase dispersion of repolarization, generally 

considered to underlie Brugada Syndrome. This dual scenario was also demonstrated 

by computational simulations that incorporate the measured altered Na+ channel gating 

properties (Fig. 3.7; Clancy and Rudy, 2002). 

 
Figure 3.7: Rate-Dependent Effect of 1795insD on Epicardial Cell AP. At fast pacing (A) the 
AP morphology alternates between “loss of dome” (black arrows) and a prolonged notch 
(“coved dome”, gray arrow). At intermediate rate (B) the AP has a coved-dome morphology on 
every beat. At slow rate (C) WT and mutant AP morphologies are similar. Figure from Clancy 
& Rudy, 2002. 
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Additionally, mutation of the same residue to a histidine (Y1795H) or cysteine 

(Y1795C) results in BrS and LQTS, respectively, indicating the proximal region of the 

COOH terminus as a potentially important structure in Na+ channel function (Rivolta et 

al., 2001). We investigated the effects of the two mutations by means of numerical 

modelling of ventricular action potential (Chapter 4, Vecchietti et al., 2007). A Markov 

model capable of reproducing wild type as well as mutant INa was previously identified 

and was included into the Luo-Rudy ventricular cell model for AP simulation. Y1795C 

prolonged AP in a rate dependent manner and early afterdepolarizations (EADs) 

appeared during bradycardia. Y1795H resulted in minimal changes in the APs. 

A mixed INa phenotype was reported in a mutant Na+ channel (Cormier et al., 2002) 

with the C-terminal truncated at S1885 exhibiting negative shifted reduced channel 

availability (unchanged activation) and a tenfold increase in the fraction of channels 

that fail to inactivate (slowed inactivation). 

The mutation of a glycine to arginine (G1406R) DIII-S5 linker region to DIII-S6 

resulted in either BrS or ICCD in several families (Kyndt et al. 2001). Expression 

studies resulted in no current, although no trafficking errors were detected, suggesting a 

potential modifier gene or genes affecting NaV1.5 function.  

The deletion of a lysine (∆K1500) in the III-IV linker of NaV1.5 is associated with 

BrS, LQTS, and ICCD (Grant et al. 2002).  

LQTS is typically associated with gain-of-function Na+ channel mutations while BrS 

and ICCD are typically associated with loss-of-function resulting in reduced INa. The 

fact that single mutations can underlie disparate phenotypes begs the question of 

underlying mechanisms. How can a single mutation simultaneously result in seemingly 

paradoxical syndromes (i.e., gain-of-function LQTs and loss-of-function BrS)?  

The Heterogeneous Myocardial Substrate 

One explanation may stem from the intrinsic heterogeneity of the underlying 

myocardial substrate with which mutant Na+ channels interact. The ventricular 

myocardium is comprised of at least three distinct cell types referred to as epicardial, 
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midmyocardial (M), and endocardial cells, which exhibit distinct electrophysiological 

properties (Liu et al. 1993). Epicardial cells display a characteristic spike and dome 

morphology due to large transient outward K+ current (Ito) and short APD resulting 

from a high density of the slowly activating component of the delayed rectifier K+ 

current (IKs) (Liu et al. 1993). Mutations that act to reduce INa in the presence of large 

repolarizing currents (Ito and IKs) may result in premature plateau repolarization (BrS 

phenotype) and APs with distinctive triangular morphology or in APs with prominent 

coved domes (Liu et al. 1993). Ito
 and IKs are smaller in M cells and are unable to 

overwhelm the mutation induced by reduced INa. Selective loss of the AP plateau in 

epicaridal cells results in dispersion of plateau potentials across the ventricular wall. 

This gradient generates ST segment elevation on the ECG, which is a diagnostic 

indicator of BrS (Yan and Antzelevitch 1999). Clinically, ST segment elevation is 

observed in right precordial leads of BrS patients, consistent with the large Ito density in 

right ventricular epicardium (Yan and Antzelevitch 1999, Figure 3.7, left). In M cells, 

the noninactivating component of INa, in the presence of smaller repolarizing currents, 

acts to prolong the plateau of the AP and may allow for the development of 

arrhythmogenic EADs (LQT phenotype, Figure 3.7, right). APD prolongation is 

reflected in a prolonged QT interval on the ECG, indicative of the LQTS. 

 
Figure 3.7. Cellular electrical abnormalities manifest as clinical syndromes. A: mutation-
induced changes in epicardial action potential (AP) morphologies (thick line) cause dispersion 
of plateau potentials and a voltage gradient ( Vm, arrows) (WT, thin line). This gradient will 
manifest on the ECG as ST segment elevation, indicative of BrS. B: mutations may prolong AP 
duration (APD) in myocardial (M) cells (thick line) compared with WT (thin line). The delay in 
repolarization (∆APD = 60 ms) is reflected as QT prolongation on the ECG, a hallmark of 
LQTS. (Modified from Clancy CE and Kass RS. J Clin Invest 110: 1075–1077, 2002). 
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Polymorphisms May Increase Susceptibility to Drug-Induced Arrhythmias 
Within the context of arrhythmia, pharmacogenomic considerations are important to 

determine the potential for genetic heterogeneity to directly affect drug targets and 

interfere with drug interactions. Mutations or polymorphisms may directly interfere 

with drug binding or can result in a physiological substrate that increases predisposition 

to drug-induced arrhythmia.  

Use-dependent block of voltage-gated Na+ channels results in preferential reduction 

of current at fast pacing rates (Liu et. al 2002). This property is potentially useful in 

reducing runaway excitation by reducing Na+ current and thereby decreasing the 

likelihood of reexcitation. The unpredictable outcomes of pharmacological intervention 

with mutant channels must be investigated to develop appropriate treatments, since a 

Na+ channel blocker may be ineffective, or overly effective, in interacting with mutant 

channels.  

Genetic mutations or polymorphisms may affect drug binding by altering the length 

of time that a channel resides in a particular state. For example, the epilepsy associated 

R1648H mutation in NaV1.1 reduces the likelihood that a mutant channel will 

inactivate and increases the channel open probability (Lossin et al. 2002). Hence, an 

anticonvulsant that interacts with open channels will have increased efficacy, while one 

that interacts with inactivation states may have reduced efficacy. However, even this 

type of analysis may not predict actual drug-receptor interactions (Liu et al. 2002). The 

I1768V mutation increases the cardiac Na+ channel isoform propensity for opening, 

suggesting that an open channel blocker would be more effective, but in fact, the 

mutation is in close proximity to the drug-binding site, which may render open channel 

blockers nontherapeutic (Liu et al. 2002).  

Local anesthetic molecules such as lidocaine and flecainide block Na+ channels and 

have been used therapeutically to manage cardiac arrhythmias. Despite the prospective 

therapeutic value of the inherent voltage- and use-dependent properties of channel 

block by these drugs in the treatment of tachyarrhythmias, their potential has been 
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overshadowed by toxic side effects. However, Na+ channel blockers have proven useful 

as a diagnostic tool and in treatment of BrS and LQT3 (Brugada et al. 2000). Na+ 

channel blockade by flecainide is of particular interest as it had been shown to reduce 

QT prolongation in carriers of some LQT3 mutations and to evoke ST segment 

elevation, a hallmark of the BrS, in patients with a predisposition to the disease 

(Brugada et al. 2000). Thus, in the case of LQT3, flecainide has a potential therapeutic 

application, whereas for BrS it has proven useful as a diagnostic tool. However, in 

some cases, flecainide has been reported to provoke BrS symptoms (ST segment 

elevation) in patients carrying LQT3 mutations (Priori et al. 2000). Investigation of the 

drug interaction with these and other LQT3 and BrS linked mutations may indicate the 

usefulness of flecainide in the detection and management of these disorders and 

determine whether or not it is reasonable to use this drug to identify potential disease-

specific mutations.  

In the present study (Chapter 4) the administration of two class IC antiarrhythmic 

drugs (flecainide and mexiletine) on WT and mutant (Y1795C and Y1795H) was 

simulated. Flecainide and Mexiletine shortened AP and abolished EADs. Flecainide but 

not Mexiletine induced APs heterogeneity across the ventricular wall that accounts for 

the ST segment elevation induced by Flecainide in Y1795H carriers (Vecchietti et al., 

2007). 

Recent findings revealed the differential properties of certain drugs on mutant and 

wild-type cardiac Na+ channels. One such example is the preferential blockade by 

flecainide of persistent INa in the ∆KPQ Na+ channel mutant (Nagatomo et al. 2000). It 

was also shown that some LQT-associated mutations were more sensitive to blockade 

by mexilitene, a drug with similar properties to lidocaine, than wild-type channels 

(Wang et al. 1997). In three mutations, ∆KPQ, N1325S, and R1644H, mexilitene 

displayed a higher potency for blocking late Na+ current than peak Na+ current (Wang 

et al. 1997).  
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Liu et al. (2002) found that flecainide, but not lidocaine, showed a more potent 

interaction with a COOH-terminal D1790G LQT3 mutant than with wild-type channels 

and a correction of the disease phenotype. The precise mechanism underlying these 

differences is unclear. Lidocaine has a pKa of 7.6–8.0 and thus may be up to 50% 

neutral at physiological pH. In contrast, flecainide has a pKa of 9.3, leaving <1% 

neutral at pH 7.4. Thus one possibility underlying differences in the voltage 

dependence of flecainide- and lidocaine-induced modulation of cardiac Na+ channels is 

restricted access to a common site that is caused by the ionized group of flecainide. 

Another possibility is that distinctive inactivation gating defects in the D1790G channel 

may underlie these selective pharmacological effects. Indeed, Liu et al. recently found 

mutations that promote inactivation (shift channel availability in the hyperpolarizing 

direction) enhance flecainide block. Interestingly, their data also showed that flecainide 

sensitivity is mutation, but not disease, specific (Liu et al. 2002).  

These studies are important in the demonstration that effects of flecainide segregate 

in a mutation-specific manner that is not correlated with disease phenotype, suggesting 

that it may not be an effective agent for diagnosing or treating genetically based 

disease. The nature of the interaction between pharmacological agents and wild-type 

cardiac Na+ channels has been extensively investigated. However, the new findings of 

drug action on mutant channels in LQTS and BrS have stimulated a renewed interest in 

a more detailed understanding of the molecular determinants of drug action, with the 

specific aim of developing precise, disease-specific therapy for patients with inherited 

arrhythmias. 
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4 In silico assessment of Na+ channelopaties 

Cardiac sodium channel gene (SCN5A) mutations are associated with two inherited 

arrhythmogenic disorders, Long QT syndrome type 3 (LQT3) and Brugada syndrome 

(BrS). Both syndromes predispose to life threatening ventricular arrhythmias and 

sudden death that most often occurring during sleep or at rest (Priori et al., 2000; 

Brugada and Brugada, 1992; Schwartz et al., 2001). However, they present distinctive 

ECG phenotypes: the hallmark of LQT3 is the prolongation of QT interval (Schwartz et 

al., 2000a; Priori et al., 2003) whereas BrS typically shows an ST segment elevation in 

the right precordial leads, often accompanied by right bundle branch block (Brugada 

and Brugada, 1992). The response to Class I antiarrhythmic drugs in the two diseases is 

also remarkably different. In BrS Flecainide (Brugada and Brugada, 1992) but not 

Mexiletine (Shimizu et al., 2000) allows unmasking an overt phenotype, while in 

LQT3 both Mexiletine (Priori et al., 1996; Schwartz et al., 1995) and Flecainide 

(Benhorin et al., 2000; Priori et al., 2000) may shorten the QT interval. Functional 

characterization of mutants has demonstrated that LQT3 is associated with a gain of 

function mainly caused by a defective current inactivation, while BrS mutations 

produce a loss of function through a variety of different biophysical mechanisms (Priori 

et al., 2003). So far, expressions studies in heterologous cell lines have provided 

critical information for the understanding of the biophysical consequences of mutation 

at the channel/current level, but they have given little insights into the arrhythmogenic 

mechanisms that initiate and sustain arrhythmias. In the recent years computer 

modelling of cardiac excitability has emerged as a most valuable tool to study the 

effects of mutations on ventricular action potential (Viswanathan and Rudy, 1999; 

Clancy and Rudy, 1999; Clancy and Rudy, 2001; Clancy and Rudy, 2002). 

Here we report the results of in silico experiments concerning two SCN5A mutants 

that have been identified in families with LQT3 (Y1795C) and BrS (Y1795H) (Fig. 
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4.1). Extensive in vitro characterization of both allelic variants had been previously 

carried out (Rivolta et al., 2001). The Y1795C mutation exhibited a significant 

sustained current when expressed in heterologous cell lines. A light maintained current 

was also observe in Y1795H. In addition, both mutations caused a significant shift of 

the inactivation process towards negative potentials. In a previous study performed by 

our research group (Vecchietti et al., 2006), a nine state Markov model was identified 

to simulate the Na+ current in wild-type Na+ cardiac channel and the current alterations 

observed in Y1795C and Y1795H mutant channels. In this model-based study, we 

analyzed the simulated mutation-dependent AP shape and duration abnormalities and 

the effects of mexiletine and flecainide on wild-type and mutant APs, in order to gather 

insights on the electrophysiologic mechanisms underlying the ECG phenotypes and the 

responses to these drugs observed in LQT3 and BrS patients. 

 
Figure 4.1: Pedigrees and representative ECGs of the Y1795C (panel A) and Y1795H (panel B) 
families. Filled symbols represent genetically and clinically affected individuals (black) or 
silent mutation carriers (grey). The effect of Flecainide intravenous administration is depicted 
at the bottom. QTc (QT interval corrected for heart rate, Bazett’s formula) shortening was 
observed in the Y1795C ECG (from 530 ms to 470 ms) while 2 mm ST segment elevation was 
elicited by this drug in Y1795H. Figure from Vecchietti et al., 2007. 
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Materials and Methods 

Markov model of the Na+ current 

The cardiac INa was modelled by a nine state Markov chain (Fig. 4.2) already 

proposed by Clancy and Rudy (Clancy and Rudy, 2002). The model included three 

distinct closed states, a conducting open state, and five inactivation states (one fast-, 

two intermediate- and two closed-inactivation). The expression of transition rates are 

reported in Tab. 4.1. The parameters of transition rates were previously identified as 

extensively reported in (Vecchietti et al., 2006) to reproduce by the Markov model the 

whole-cell current measured by Rivolta et al (Rivolta et al., 2001) in WT and mutant 

channels expressed in HEK293 cells.  

 
Figure 4.2: Diagram of the nine state Markov Model of the cardiac Na+ current. The model 
includes three closed states (C1, C2, C3), a conducting open state (O), two closed inactivation 
states (IC3, IC2), one fast inactivation state (IF) and two intermediate inactivation states (IM1, 
IM2). The expressions of the transition rates and the assignment of the parameters for WT and 
mutant channels are reported in Tabb 4.1 and 4.2. Figure from Vecchietti et al., 2007. 

Ventricular cell computer model 

The ventricular AP simulator was based on the Luo-Rudy (LRd) model (Chapter 2) 

that was implemented in Simulink 5 (The MathWorks. Inc- Natick, Mass; USA). Intra- 

and extra-cellular ion concentrations were set to constant values ([K+]o = 4.5 mmol/L, 

[K+]i = 141.2 mmol/L, [Na+]o = 140 mmol/L, [Na+]i = 10 mmol/L and [Ca2+]o= 1.2 
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mmol/L), except for intracellular Ca2+ concentration for which dynamic changes were 

simulated.  

Table 4.1 - Transition rate expressions (ms-1). 

Transition rates 
a11=(α exp(-V/17)+β exp(-V /150))-1

a12=(α exp(-V /15)+β exp(-V /150))-1

a13=(α exp(-V /12)+β exp(-V /150))-1

b11=ε exp(-V /20.3) 
b12=ζ exp(-V /20.3) 
b13=η exp(-V /20.3) 
a111=(θ exp(-V /17)+ω exp(-V /150)) -1

a112=(θ exp(-V /15)+ω exp(-V /150)) -1

b111=ϕ exp(-V /20.3) 
b112=κ exp(-V /20.3) 
a3=λ exp(-V / µ) 
b3=ν (8.4 10-3+2.0 10-5 V) 
a2=(ξ exp(-V /16.5)+υ exp(-V /200)) -1

b2=a13 a2 a3/b13 b3

a4=π a2

b4=ρ a3

a5=σ a2

b5=τ exp(-V / 7.7) 
 

The transient outward current (ITo) was modelled according to Dumaine et al (Dumaine 

et al., 1999). The original formulation of the INa current was replaced with the nine-

state Markov model. In order to reproduce the heterozygous condition of Y1795C and 

Y1795H patients 50% mutant and 50% WT channels were simulated. The maximum 

Na+ conductance (GNa) was set to 16 mS/µF for WT, in agreement with Faber and 

Rudy (Faber and Rudy, 2000). GNa was set to 29.46 mS/µF for Y1795C and 5.96 

mS/µF for Y1795H in order to account for the experimentally measured ratios (mutants 

vs WT) of INa current peaks (Rivolta et al., 2001). All the kinetic rates were normalized 

to 37°C with a Q10 of 2.1 (Benndorf and Nilius, 1987; Schwarz, 1986).  
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Transmural heterogeneity (Liu et al., 1993; Sicouri et al., 1996) (epicardium, 

endocardium and midmyocardium -cells) of the AP was modelled by setting the ITo 

expression level (Clancy and Rudy, 2002) and the density ratio between slow and rapid 

components of the delayed-rectifier potassium current (IKs/IKr) (Liu and Antzelevitch, 

1995). In epicardial (Epi) cells the maximal ITo conductance (GTo) was set to 1.1 mS/µF 

and the IKs / IKr density ratio was set to 63. In midmyocardial (M) cells, GTo 0.5 mS/µF 

and IKs/ IKr 23.3. In endocardial (Endo) cells, GTo 0.05 mS/µF and IKs/ IKr 29.6. 

Table 4.2 - Na channel model parameters for WT and mutant channels 

Parameters Y1795H WT Y1795C 
(40 bpm) 

Y1795C  
(115 bpm) 

Α 0.0141 0.0378 0.0077 0.0196 
β 0.0345 0.0925 0.2663 0.168 
ε 0.5751 0.2492 0.3962 0.4409 
ζ 0.7676 0.3326 0.5287 0.5885 
η 1.0801 0.4681 0.7442 0.8281 
θ 0.0313 0.1093 0.0240 0.0435 
ω 0.0558 0.1949 0.7617 0.3684 
ϕ 0.5751 0.1917 0.1278 0.4409 
κ 0.7676 0.2559 0.1705 0.5885 
λ 1.1380 10-6 3.7933 10-7 4.0000 10-7 13.800 10-7

µ 7.6029 6.1839 7.1839 7.1839 
ν 3.0000 1.0000 0.6667 2.3000 
ξ 0.0133 0.0159 4.0661 10-6 0.0024 
υ 0.0607 0.0722 0.1275 0.0676 
π 4.8000 10-4 0.0022 0.0001 0.0009 
ρ 0.2400 0.1000 0.1125 0.1000 
σ 0.1737 10-4 0.0924 10-4 0.0024 10-4 0.1053 10-4

τ 0.4097 10-7 0.0854 10-7 0.0004 10-7 0.1133 10-7

 
This setting allowed a numerical reconstruction of Epi, M and Endo cells APs. The 

maximum conductance of the L-Type calcium current was decreased by 20% with 

respect to the original LRd formulation in all cells (Banyasz et al., 2003), in accordance 

with (Dumaine et al., 1999). 
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Pacing was simulated by a 1 ms pulse train of 50 A/F in amplitude with frequency 

of 40, 70 and 115 bpm. Rosenbrock variable step algorithm (max step 10 µs) was used 

to numerically solve the model equations (Shampine and Reichelt, 1997). In order to 

ensure a steady state condition, 180 s long simulations were performed; all the data 

shown refer to the last beat. AP duration was measured at 90% of repolarization 

(APD90). 

Table 4.3 – Percentage of current blocking used to mimic Flecainide and Mexiletine 
administration. In parentheses the bibliographic references are indicated. 

Blocking (%) Current 
Flecainide Mexiletine 

INa 50 ((Liu et al., 2002)) 50 ((Hering et al., 1983))

ICaL 45 ((Hatem et al., 1992))(Hancox and Convery, 1997) 25 ((Ono et al., 1986))(Mitcheson and Hancox, 1997)

ITo 10 ((Akar et al., 2004; Slawsky and Castle, 1994)) - 

IKr 10 ((Follmer et al., 1992))(Wang et al., 1996; Paul et al., 2002) - 

 

Table 4.4 - Modification of the parameters of kinetic rate a3 = λ exp(-V / µ) to reproduce the 
negative shift of availability curve induced by Flecainide (10 µM). The parameter µ was set to 
6.0773 in all cases. 

 Λ 
WT 7.021 10-8

Y1795C (40 bpm) 1.388 10-8

Y1795C (115 bpm) 2.916 10-8

Y1795H 1.112 10-8

 

Flecainide and Mexiletine Simulation  

The effects of Flecainide and Mexiletine were mimicked by reducing the maximal 

conductance of INa, ICaL, ITo and IKr currents (Tab. 4.3). 

According to our experimental data (not shown), Flecainide-induces mild negative 

shift of the availability curve of the INa current (WT: 3 mV, Y1795C: 7 mV, Y1795H: 8 
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mV). The parameter assignment for the kinetic rate a3 in the Markov model was 

modified accordingly (see Tab. 4.4). 

Results 

Simulated WT action potential 

When the WT INa Markov model was included in the ventricular cell model, the 

simulated APs shape resembled the typical reported waveforms (Antzelevitch and Fish, 

2001) for the three cell types (Fig. 4.3 left panels). The AP durations at 70 bpm were 

Endo: 162 ms, Epi: 157 ms, M: 181 ms. The AP durations at 40 and 115 bpm are 

reported in Table 4.5. AP morphology did not vary with changes in pacing frequency 

(40 up to 115 bpm).  

 
Figure 4.3: Y1795C mutation (middle panels) affects AP of the three cells composing the 
ventricular wall (epicardial, M and endocardial cells) in a rate dependent manner. The major 
effect is shown at the pacing frequency of 40 bpm when EADs appear in epicardial and M cell 
AP. Y1795H mutation (right panels) has not remarkable effects on the AP of the three 
myocardial layers. Figure from Vecchietti et al., 2007. 
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Figure 4.4: Effect of Flecainide (left panels) and Mexiletine (right panels) on ventricular cell 
AP in presence of Y1795C mutation at the pacing rate of 40 bpm. Both drugs reduce APD in 
endocardial cell and suppress EADs in epicardial and M cell. Figure from Vecchietti et al., 
2007. 

Effects of Y1795C mutation on action potential  

The simulated Y1795C APs were longer as compared with WT in all cell layers 

(Endo: 6%, Epi: 10%, M: 16% at a pacing rate of 70 bpm), and showed remarkable 

increase of the APD sensitivity of to heart rate (Fig. 4.3 and Table 4.5). This effect was 

more prominent in Epi and in M cells, in which early afterdepolarizations (EADs) 

appeared at 40 bpm (Fig. 4.3, middle panel). 

Effects of Y1795H mutation on action potential 

The heterozygous condition for the Y1795H mutant channel only slightly changed 

the AP morphology (Fig. 4.3, right panels) and duration (Table 4.5) with respect to the 
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WT. Albeit in vitro characterization show that Y1795H induce a small sustained Na+ 

current (Rivolta et al., 2001), the resulting AP prolongation was negligible in all cell 

types (Endo: 1.2%, Epi: 1.5%, M: 1.7% at a pacing rate of 70 bpm). The reduced 

current availability of the Y1795H channel resulted in a mild reduction of the AP 

upstroke amplitude (10%in Epi cell) as compared to the WT. 

 
Figure 4.5 Effect of Flecainide (left panels) and Mexiletine (right panels) on ventricular cell AP 
in presence of Y1795H mutation at the pacing rate of 40 bpm. Flecainide but not Mexiletine 
causes the appearance of a domeless AP in epicardial cell. Figure from Vecchietti et al., 2007. 

Effects of Flecainide and Mexiletine on the WT action potential  

The in silico simulation of Flecainide induced a transmural opposite response in WT 

APD (Table 4.5). At 40 bpm: 13% prolongation of the APD90 in Epi and 11% 

shortening of APD90 (Tab. 4.5) in Endo. This finding is in agreement with experimental 
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results (Krishnan and Antzelevitch, 1991). Mexiletine slightly shortened APD90 both in 

Epi and in Endo cells (Epi: 2%, Endo: 6% at 40 bpm). Both drugs caused an AP 

shortening in M cell (Flecainide: 15%, Mexiletine: 10% at 40 bpm). 

Effects of Flecainide and Mexiletine on the Y1795C action potential 

In bradycardia Flecainide and Mexiletine caused APD90 to shorten in the Y1795C 

mutant cell but with a stronger effect in the case of Flecainide (Table 4.5): -22.5% vs.  -

13.5% in Endo cell at 40 bpm. Notably, both drugs inhibit the onset of EADs in Epi 

and M cells (Fig. 4.4). As already shown for WT, at 115 bpm Flecainide caused the 

lengthening of APD in the Epi cell (see Table 4.5). 

 
Figure 4.6: AP morphology changes due to different levels of Flecainide-induced INa blockade 
in epicardial cell in presence of Y1795H mutation. At a blocking level of 40% an alternation of 
prolonged and domeless AP appeared; the AP dome was stably restored at 30% INa reduction. 
Figure from Vecchietti et al., 2007. 
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Effects of Flecainide and Mexiletine on the Y1795H action potential 

Flecainide also elicited a myocardial layer-specific response in the case of Y1795H 

mutant (Fig. 4.5, left panels). Flecainide reduced APD in Endo and M cells (Table 4.5); 

in Epi cell a striking complete loss of the AP dome occurred at 40 bpm (APD90: from 

166 ms to 116 ms) whereas at 115 bpm an alternating pattern appeared (see Table 4.5). 

Conversely, Mexiletine caused modest AP changes (Fig. 4.5, right panels and Table 

4.5) with APD decreasing in M and Endo cells and increasing in Epi cell. 

Interestingly, the effect of Flecainide on AP morphology of the Epi cell was 

dependent upon the amount of INa blockade (Fig. 4.6). For a 40% block, domeless APs 

alternatively separated by long APs were predicted (Fig. 4.6, middle panel). The 

oscillatory pattern was stable overtime. For a 30% current reduction, oscillations in the 

APD disappeared and a stable pattern of long markedly notched APs was reproduced 

(Fig. 4.6, lower panel). Similar transitions through different AP waveforms were 

observed when raising the pacing frequency up to 115 bpm by maintaining the 50% of 

INa blockade (Table 4.5). 

Since the different response elicited by Flecainide and Mexiletine on the Epi cell AP 

(Fig. 4.5) was obtained by simulating the same (50%) INa reduction for the two drugs, 

the simultaneous different block of the other ion currents (Tab. 4.3) seems to take part 

in differentiating drug-induced AP alterations. To investigate the role of each current 

we analysed the AP sensitivity to different levels of ICaL, ITo and IKr block (Fig. 4.7). 

The loss of the AP dome in Epi cell, characterizing the Flecainide simulation (Fig. 4.7, 

BL1 curve), persisted also when IKr was either completely blocked (data not shown) or 

not blocked at all (Fig. 4.7, BL2 curve) If IKr and ITo were not blocked (Fig. 4.7, BL3 

curve) the AP duration was further reduced. The AP was still dome-less when the ICaL 

blockade was reduced from 45% to 35% (Fig. 4.7, BL4 curve). In a condition of 35% 

ICaL blocking, the 10% ITo blockade caused the appearance of the AP dome with a 

markedly pronounced notch (Fig. 4.7, BL5 curve). Without the block of IKr and ITo, the 

restoring of the AP morphology with dome occurred when a 25% ICaL blockade was 
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simulated (Fig. 4.7, BL6 curve). The last condition corresponds to the simulation of 

Mexiletine. Notably, the abrupt changes in AP morphology with respect to the degree 

of block enlightens on the “all or none” nature of this phenomenon. 

 
Figure 4.7: AP morphology changes induced by different levels of INa, ICaL, ITo and IKr blocking 
in presence of Y1795H mutation (Epi cell, 40 bpm). Figure from Vecchietti et al., 2007. 

Discussion 

In the present study we investigated with numerical experiments the effect of two 

mutations of residue 1795 (Y1795C and Y1795H) of the cardiac sodium channel 

protein that cause LQT3 and BrS respectively. The heterologous expression of both 

mutants demonstrated that they modify the biophysical properties of the INa
 current 

(Rivolta et al., 2001). Specifically, Y1795C leads to a residual sustained inward Na+ 

current that is consistent with the LQT3 phenotype while Y1795H accelerates 

inactivation thus reducing current availability.  

Here we numerically reproduced the biophysical properties of WT and mutant 

sodium channels by a Markov model of INa and we implemented these data in the Luo-

Rudy ventricular action potential model (Faber and Rudy, 2000; Dumaine et al., 1999) 

in order to assess: 1) the mutation-dependent AP abnormalities in Epi, Endo and M 

cells and 2) the response to sodium channel blocking drugs known to modify the ECG 
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in LQT3 and BrS patients. On the basis of such analyses we show how the mutation-

dependent AP alterations account for the patients’ electrocardiographic phenotype and 

provide clues for the understanding of arrhythmogenic mechanisms associated with 

these mutations.  

Table 4.5 - APD90 values (ms) in the different cell types with and without drugs resulting from 
simulations with the pacing rate of 40 bpm and 115 bpm. 

  40 bpm 115 bpm 
  Epi M Endo Epi M Endo 

WT 161 185 167 146 163 148 
LQTS EADs EADs 201 150 167 150 No drug 
BrS 166 187 170 151 169 151 
WT 182 157 149 168 155 141 

LQTS 180 165 156 187 155 141 Flecainide 
BrS 116 165 156 (*) 158 144 
WT 158 167 157 146 158 144 

LQTS 180 205 174 147 158 143 Mexiletine 

BrS 168 172 168 153 159 145 

(*) Alternating pattern: a long epicardial AP (APD90= 227 ms) was followed by two 
shorter activations (loss of dome) of different duration (97 ms and 125 ms), and by 
another long-short AP sequence (APD90= 225 ms and APD90=97 ms). 

Effects of Y1795C and Y1795H on AP in the three myocardial layers 

We took advantage from previously published data (Sicouri et al., 1996) to simulate 

the transmural heterogeneity of the AP by modulating the amount of the transient 

outward current (ITo) and the ratio between the slow (IKs) and the rapid (IKr) 

components of the delayed-rectifier current (Clancy and Rudy, 2002; Liu et al., 1993; 

Liu and Antzelevitch, 1995). We then characterized the alterations induced by each of 

the mutants on the AP of epicardial, endocardial and midmyocardial cells at different 

pacing rates. 

Numerical simulation confirmed the observation made by Clancy et al (Clancy et 

al., 2002) in their model of endocardial cells that bradycardia accentuates the APD 
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prolongation as a consequence of an increased sustained INa current at slower rates (Fig. 

4.3). In addition, we showed that the effect of the late INa current during bradycardia 

was more pronounced in Epi/M cells than in Endo cell. While Y1795C induced in the 

Endo cell model only APD prolongation (Clancy et al., 2002), in the Epi and M cell 

models the mutation also induced EADs (Fig. 4.3, middle panels). In Epi cell EADs 

developed despite of a shorter basal AP in this cell type with respect to Endo cell. This 

is due to the presence of a larger ITo in this layer. The prominent notch in AP phase 1 of 

the Epi cells due to the ITo determines a different balance of currents in the subsequent 

phases of the action potential, allowing the sustained INa to trigger EADs. In fact, we 

did not find EADs by simulating Y1795C Epi cell with GIto=50 S/F (as Endo cell, data 

not shown). These results are in agreement with the LQT3 phenotype observed in the 

Y1795C carriers and with the fact that three life-threatening events (three sudden 

deaths and one cardiac arrest) occurred during sleep (Fig. 1).  

At variance with Y1795C, the Y1795H mutation induced only negligible changes of 

AP morphology in the three myocardial layers, in agreement with the clinical findings 

that the Brugada Syndrome phenotype observed in the carriers of the mutation was 

only evident upon pharmacological challenge with Flecainide (Fig. 1).  

Response of mutants to sodium channel blockers 

The Y1795C model displayed a reduction of Endo APD by 22% with Flecainide and 

by 13% with Mexiletine. Interestingly in the clinical setting Flecainide administration 

(2 mg/Kg) reduced the QT interval to the same extent (Priori et al., 1996; Benhorin et 

al., 2000) (Fig 1). These data are consistent with what shown in LQT3 patients in 

whom class I antiarrhythmic drugs clearly shortened QT interval (Schwartz et al., 

1995). In our simulations both drugs suppressed the EADs in M and Epi cells. The 

efficacy of the two drugs in suppressing EADs is consistent with the observation made 

in a mouse model of LQT3 (Tian et al., 2004) and provides a mechanistic explanation 

for the prevention of lethal arrhythmias observed over 5 year follow up in a 5-year old 
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LQT3 patients who experienced a cardiac arrest on beta-blockers but was subsequently 

protected by mexiletine treatment (Schwartz et al., 2000b). 

The simulation of Flecainide administration in the case of Y1795H experiments 

induced shortening of the APD in Endo and in M cells, while in Epi cells AP 

alterations of both duration and morphology were observed (see Fig. 4.5, left panels, 

and Fig. 4.6). The beat to beat action potential alteration shown in Fig. 4.6 (middle 

panel) could be the cellular counterpart of T wave alternans (TWA) (Morita et al., 

2006). In fact, TWA have been reported in BrS patients upon class Ic drug 

administration (Ohkubo et al., 2003) and they may be a marker of electrical instability 

(Morita et al., 2002). Thus, our finding support the pro-arrhythmic potential of class Ic 

drug administration in BrS patients.  

In the Epi cells the action potential showed a loss of the AP dome: this phenomenon 

has been suggested as the substrate for the ST segment elevation observed in Brugada 

Syndrome. Accordingly, our in silico analysis predicts that carriers of the Y1795H 

mutation would have minimal ECG changes at baseline but would respond to 

Flecainide with a prominent ST segment elevation and electrical instability. Once again 

this is in agreement with the clinical findings showing a “coved type” ST segment 

elevation only after Flecainide administration (Fig 1). Antzelevitch and coworkers 

(Yan and Antzelevitch, 1999) suggested that the strong ITo current of epicardial cells in 

the presence of a reduced inward current is responsible for the loss of AP dome. 

Coherently with this hypothesis we observed prompt AP morphology normalization 

when ITo was decreased by 50%. At variance with Flecainide, Mexiletine induced only 

a slight APD reduction with no loss of the AP dome. This is in agreement with clinical 

observations by Shimizu et al (Shimizu et al., 2000) who showed that Mexiletine did 

not elicit ST segment elevation in BrS patients. 

As of today, a conclusive explanation of the differential effect of Flecainide and 

Mexiletine in the BrS patients is not available. Our data suggest that Flecainide but not 

Mexiletine unmasked BrS silent mutation mainly because of their differential blocking 
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effect on the inward current (greater extent the ICaL current block). Thus, we suggest 

that in presence of sodium channel blockers the balance between ICaL and ITo currents 

has to be crucially important for unmasking the arrhythmogenic substrate in BrS 

patients. This hypothesis is in accordance with the experimental findings of Fish and 

Antzelevitch (Fish and Antzelevitch, 2004), whose data suggested that combined 

calcium channel block may be more effective than sodium channel block alone in 

unmasking the Brugada syndrome and that pharmacological agents that inhibit ITo may 

be useful in preventing arrhythmias in BrS patients. 

Study limitations 

We used a computer model based on the well-established LRd model that has been 

already used to assess the impact of mutations on AP in patients with inherited 

arrhythmogenic disorders (Clancy and Rudy, 2002; Clancy and Rudy, 2001; Clancy 

and Rudy, 1999; Gima and Rudy, 2002). Qualities and limitations of this model, which 

is mostly based on guinea pig experimental data, have been extensively discussed (Luo 

and Rudy, 1994a; Clancy and Rudy, 1999; ten Tusscher et al., 2004). It is worth to note 

that for the present analysis we considered as control the APs computed by model with 

the WT human cardiac Na channel and we focused on the impact of mutations on the 

AP with respect to this condition. Thus, the dependence of the results from the model 

setting should be limited. Nevertheless, models of human ventricular cells recently 

published (ten Tusscher et al., 2004) (Iyer et al., 2004) should be used in further 

investigations. 

The present simulation analysis assumes the existence of transmural heterogeneity 

of repolarization to an extent similar to that observed in animal studies (Antzelevitch 

and Fish, 2001). It is fair to note that the role of transmural dispersion of repolarization 

in the human heart is still under debate(Drouin et al., 1995). Our simulation results 

support the hypothesis that transmural heterogeneity can play a crucial role in the ECG 

phenotype of INa mutations.  

We did not consider the rate-dependent Na channel binding properties of Flecainide 
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and Mexiletine. In fact, the recovery from drug block is rapid with mexiletine and slow 

for flecainide. Liu et al. (Liu et al., 2002) showed a 10% increase of  Flecainide-

induced blocking when pacing rate was changed in a physiologic range from 1 to 2 Hz. 

A lower variation of the blocking degree is expected for Mexiletine. In spite of the 

variations of drug blocking due to heart rate changes are modest, they could influence 

AP morphology and duration. 

The assignment of current blocking is not without uncertainties because of the lack 

of consistent experimental data assessing the effects of the two drugs. However, the 

sensitivity analysis reported in Fig. 4.7 makes the assignment less critical 

demonstrating that the loss of AP dome kept on also when limited block extents were 

tested.  

Conclusion 

In this study we investigated by computer simulation the effects of two SCN5A 

mutations on the action potential of endocardial, epicardial and midmyocardial cells 

and we mimicked their response to Flecainide and Mexiletine. We demonstrate that 

there is a remarkable agreement between the cellular abnormalities and the 

electrocardiographic manifestations observed in the carriers of the two genetic defects. 

Furthermore, we show that a “gain of function” mutation of SCN5A induces 

bradycardia-dependent APD prolongation in epicardial and midmyocardial cells 

leading to development of EADs. In this framework, both Mexiletine and Flecainide 

reverse the APD prolongation and prevent the EADs. This effect is likely to be a direct 

consequence of the blockade of the late sodium current. Interestingly, our data show for 

the first time that a loss of function SCN5A mutation may induce only minimal effect 

on the shape of the APD across the myocardium and is therefore consistent with a 

normal ECG. It is only in the presence of selective perturbation of other currents that it 

is possible to reveal such a concealed arrhythmogenic syndrome. This evidence 

accounts for the variability of the ST segment elevation at ECG and for the paroxysmal 

nature of the arrhythmic events in Brugada Syndrome.  
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5 CaMKII effects on the Na+ channel gating 

Ca/Calmodulin-dependent protein kinase II 

Intracellular Ca2+ is the central second messenger in the translation of electrical signals 

(i.e. action potentials) into mechanical activity of the heart (i.e. contractions). Recently it 

has become clear that several Ca2+ dependent proteins contribute to the fine tuning of this 

highly coordinated process of excitation/contraction coupling. One of these intracellular 

proteins is the Ca/Calmodulin-dependent protein kinase (CaMK) of which CaMKII is the 

predominant isoform in the heart. 

CaMKII is one of the targets for calmodulin (CaM) binding. CaMKII is a 

multifunctional CaMK, because it can phosphorylate and alter the function of a variety of 

substrates. After CaMKII was initially identified in the nervous system, CaMKII has been 

found to exist in almost all tissue types, including heart (Jett et al., 1987; Edman and 

Schulman, 1994; Uemura et al., 1995). CaMKII is a particularly interesting enzyme in 

the heart, where Ca2+ is the key regulator of cardiac contraction. In fact, this signaling 

pathway regulates cardiac myocyte excitability and contractility in a very complex way 

affecting many different targets (Maier and Bers, 2002). CaMKIIδ is the predominant 

isoform in the heart (Edman and Schulman, 1994). In human heart failure (HF) and in an 

animal HF model, expression and activity of CaMKII are enhanced 2-3 fold (Kirchhefer 

et al., 1999; Hoch et al., 1999). It has been shown that transgenic overexpression of the 

cytosolic isoform CaMKIIδC induces dilated cardiomyopathy and HF (Zhang et al., 2003; 

Maier et al., 2003). Inhibition of CaMKII was shown to prevent remodeling after 

myocardial infarction and excessive beta-adrenergic stimulation (Zhang et al., 2005). 

CaMKII has also been linked to VT in a mouse model of hypertrophy (Wu et al., 2002). 

CaMKII phosphorylates several proteins in the heart in response to Ca signals, 

including Ca transport proteins such as RyR (Witcher et al., 1991; Hain et al., 1995) and 

phospholamban (PLB) (Davis et al., 1983; Simmerman et al., 1986). CaMKII stimulates 

the L-type calcium channels and under disease conditions marked by a high risk for 

arrhythmic sudden death, CaMKII activity and Ca2+ channel openings are increased 

(Anderson 2004). In addition, novel data suggest that non-Ca2+ transporters, such as 
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sarcolemmal Na+ (Wagner et al., 2006) and K+ channels (fast component of the transient 

outward current Ito,f and inward rectifier IK1, Li et al., 2006) may be regulated by CaMKII 

and thus be sensitive to Ca2+ handling properties and also influence them via 

electrophysiological effects. 

Stucture and function 

There are four distinct but closely related CaMKII genes (α, β, γ, δ) (Braun and 

Schulman, 1995). The α and β isoforms are restricted to nervous tissue, whereas γ and δ 

are more ubiquitous, with δ as the predominant isoform in heart (Edman and Schulman, 

1994). Distinct splice variants of the δ isoform have different intracellular localization: 

subcellular localizations of CaMKIIδ were found with δB being specifically 

compartmentalized to the nucleus due to an eleven amino acid nuclear localization 

sequence (NLS) and with δC being the cytosolic isoform without NLS.  

The multimeric CaMKII holoenzyme consists of homo- or heteromultimers of 6-12 

kinase subunits (Braun and Schulman, 1995) forming a wheel-like structure (Fig. 5.1). 

Each CaMKII monomer contains an amino-terminal catalytic domain, a central 

regulatory domain (containing partially overlapping autoinhibitory and CaM binding 

regions) and a carboxy-terminal association domain responsible for oligomerization (Fig. 

5.1, Braun and Schulman, 1995). The autoinhibitory region close to the active site of the 

catalytic domain sterically blocks access to substrates. During CaMKII activation (when 

[Ca2+]i increases, as during systole), Ca-CaM displaces the auto-inhibitory domain on 

CaMKII by wrapping around it and thereby activating the enzyme. The kinase can then 

lock itself into the activated state by auto-phosphorylation on the conserved Thr-286 on 

the auto-inhibitory segment of an adjacent CaMKII monomer. Auto-phosphorylation is 

thus critical in creating memory in CaMKII and maintaining the enzyme active after [Ca]i 

declines (e.g. during diastole). Phosphorylation of Thr-286 is not essential for kinase 

activity, but it does have important consequences, i.e. by increasing the affinity of the 

kinase- CaM complex. This effect traps CaM on the autophosphorylated subunit. At high 

[Ca], the affinity of CaM to CaMKII increases ~700 fold (from an affinity of 45 nM to 60 

pM). Even when [Ca]i declines to resting levels, CaM is still trapped on the kinase for 

several seconds. As a result, the kinase retains 100% activity as long as CaM is trapped, 

regardless of the [Ca]i level. Furthermore, autophosphorylation is itself sufficient to 
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disrupt the autoinhibitory domain, and the kinase remains partially active (20-80%) even 

after CaM dissociates from this autonomous state. For complete inactivation to occur, 

autophosphorylated CaMKII can be dephosphorylated by protein phopshatases (PP1, 

PP2A and PP2C). Several CaMKII inhibitors have been used in heart cells, including the 

organic inhibitors KN62 and KN93 which competitively inhibit CaM binding to CaMKII 

(Ki~370 nM) and are quite selective. Unfortunately, some of these agents appear to have 

direct ion channel effects that may be independent of CaMKII actions. Peptide inhibitors 

are not known to directly alter ion channels. Some useful examples include autocamtide-

2 related inhibitory peptide (AIP) and autocamtide-2 inhibitory peptide (AC3-I). 

 
Figure 5.1: Domain layout and oligomeric organization of CaMKII. The three main domains of 
the CaMKII monomer are indicated in cartoon and linear layout (top). Middle left shows that 
CaMKII forms homo- or heteromultimers (6-12 monomers) in wheel-like structures (a second 
one may sit on top of the one shown, forming a double wheel). Lower middle and right panels 
show activation of CaMKII by Ca-CaM binding and subsequent autophosphorylation at Thr286 
(P). CaM binding is sufficient to activate CaMKII so the active site (ATP) can interact and 
phosphorylation target proteins, but autophosphorylation makes CaMKII active (20-80%) even 
after CaM dissociates. Figure from Maier and Bers, 2002 (adapted from a Figure by Braun and 
Schulman, 1995). 
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CaMKII regulates cardiac Na+ channels 

Many ion channels use CaM as their constitutive or transient Ca2+-sensing partner, and 

Ca2+ clearly plays a crucial role in regulation of cardiac excitability and contraction 

(Maier and Bers 2002). It is known that calmodulin regulates Na+ channel gating through 

binding to an IQ-like motif at the C-terminus (Tan et al., 2002). Downstream signaling 

through Ca/CaM-dependent protein kinase II (CaMKII) may be of relevance.  

Recently, the role of CaMKIIδC (the predominant isoform in the heart) on Na channel 

function was explored using two models. First, Na+ channel function and expression were 

assessed in CaMKIIδC overexpressing-transgenic (Tg) mice (which develop HF). Second, 

acute CaMKIIδC overexpression (rabbit myocytes, compared to myocytes transfected 

with βGal as control) was investigated to avoid developmental changes in transgenic 

animals and unspecific adaptations occurring in HF. Wagner et al. (2006a) showed that 

CaMKIIδC regulates Na channel gating and [Na+]i which may have an implication in HF. 

These results are here summarized. 

Steady-state inactivation and activation 

Figure 5.2 shows the development of steady state inactivation as a function of 

m mbrane potential in rabbit myocytes ([Nae +]o=10mM). CaMKIIδC overexpression (vs. 
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Figure 5.2: CaMKIIδc enhances steady-state inactivation of Na+ channels in rabbit myocytes (10 
mmol/l [Na+]o). Mean data acquired using the depicted protocol (inset). Left, in CaMKIIδc 
myocytes there was a significant leftward shift vs. βGal (P<0.05) which could be reversed by 
CaMKII-inhibition using KN93 (P<0.05) or AIP (P<0.05). Right, mean data for the voltage-
current relation corresponding to the pre-pulses are shown for CaMKIIδc vs. βGal. Figure from 
Wagner et al. (2006a). 
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Figure 5.3: Voltage dependence of activation in rabbit myocytes (10 mmol/l [Na+]o). Above, 
analysis of voltage-current (I-V) relation using the indicated pulse protocol (inset) for CaMKIIδc 
myocytes vs. control (βGal). Below, relative channel conductance derived from the I-V relation. 
Figure from Wagner et al. (2006a). 

βGal) caused a negative voltage shift in INa availability, which reduces the fraction of 

available Na+ channels at a given membrane voltage. This effect was clearly Ca-

dependent. When [Ca]i was increased to 500 nmol/l, V1/2 was significantly shifted 

towards more negative potentials. All effects were reversed using CaMKII inhibitors 

KN93 (1 µmol/l) or AIP (100 nmol/l) (Fig 5.2). Similar results were observed using more 

physiologic [Na+]o and when investigating CaMKIIδC transgenic mice.  

The current-voltage (I-V) relation of Na channels in CaMKIIδC overexpressing 

myocytes was assessed (Fig 5.3). There was no difference in maximal current density. 

Analyzing the voltage-dependence of channel conductance G, there was no difference for 
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Figure 5.4: CaMKIIδc increases intermediate inactivation (IIM) of Na+ channels in rabbit 
myocytes (10 mmol/l [Na+]o). (Left) Data was acquired using a two pulse protocol (above). 
Increasing durations of the conditioning pulse (P1) resulted in progressively reduced peak INa 
assessed with a second pulse (P2) consistent with intermediate inactivation of a small fraction of 
Na+ channels (mean data, below). This fraction was significantly increased when CaMKIIδc was 
overexpressed (P<0.05 vs. βGal) and could be reduced by KN93 (P<0.05) or AIP (P<0.05). 
(Right) Original traces show with increasing duration of P1 peak INa upon P2 was progressively 
reduced. Compared to control (βGal, above), this reduction was markedly enhanced when 
CaMKIIδc was overexpressed (below). Figure from Wagner et al. (2006a). 

the relative conductance at any given membrane voltage, suggesting that Na+ channel 

activation is not altered by CaMKII. Therefore, the differences in steady-state 

inactivation are almost exclusively ascrivable to altered inactivation. 

Intermediate inactivation and recovery from inactivation 

Intermediate inactivation (IIM), a form of Na+ channel inactivation that accumulates 

over a few hundred milliseconds (after fast inactivation, Ifast) and recovers much more 

slowly at negative Em than Ifast, was additionally investigated. Enhanced IIM has been 

implicated in Brugada syndrome (Wang et al., 2000) and has been suggested to be a 

consequence of CaM-dependent Na+ channel regulation (Tan et al., 2002). IIM was 

measured using depolarizations of variable duration (P1) followed by a 20-ms recovery 

period at –140 mV, allowing for recovery from fast inactivation but not from IIM. The 

following test pulse (P2) to –20 mV activated all channels not in IIM (Figure 5.4).  
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Figure 5.5: CaMKIIδc slows the recovery from inactivation in rabbit myocytes (10 mmol/l 
[Na+]o). (Left) Mean data acquired using the two pulse protocol (above). Increasing durations of 
the recovery interval between the conditioning pulse (P1) generating Na+ channel inactivation and 
the test pulse (P2) measuring Na+ channel activity resulted in a progressively increased peak 
current upon the test pulse. This is consistent with the progressive recovery of Na+ channel 
activity after inactivation was established. Compared to control (βGal), this recovery was 
significantly prolonged in CaMKIIδc myocytes (P<0.05) and could be enhanced back to control 
values upon CaMKIIδc inhibition (KN93, P<0.05, AIP, P<0.05). (Right) Original traces of INa 
show with increasing duration of the recovery interval between P1 and P2 peak INa upon P2 was 
progressively increased. Compared to control (βGal, above), this increase was markedly slowed 
when CaMKIIδc was overexpressed (below). Figure from Wagner et al. (2006a). 

Physiologically, only a small fraction of Na+ channels undergo IIM and reduce the 

amount of channels available for the second excitation. Figure 5.4 shows that CaMKIIδC 

overexpression significantly increased the fraction of channels undergoing IIM. Again, 

this effect was Ca2+ dependent. At high [Ca2+]i (500 nM), the amplitude of IIM was 

significantly increased. All effects were reversible with the CaMKII inhibitors KN93 or 

AIP. A similarly enhanced IIM was observed using a more physiologic [Na+]o and in 

CaMKIIδC transgenics. 

Recovery from inactivation was investigated using a sustained depolarization at a time 

scale that initiates fast and IIM (1,000 ms), followed by recovery intervals of increasing 

durations and a subsequent test pulse (Figure 5.5). In comparison to that of control, 

recovery from inactivation was slowed in CaMKIIδC myocytes (Figure 5.5). The effect of  
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Figure 5
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Figure 5.6: CaMKIIδc slows fast decay of INa. As evident from the original trace and its 
magnification (inset), CaMKIIδc slows fast Na channel inactivation in rabbit CaMKIIδC 
myocytes compared to βGal. The Na+ current decay (first 50 ms) was fitted with a double 
exponential function. Fits to the original traces and corresponding parameters τ1 and τ 2 (ms) are 
shown in red (βGal) and blue (CaMKIIδc). The deceleration of current decay was most prominent 
in the late component (right). τ2 was significantly longer compared to control, whereas τ1 
appeared to be unchanged. In the presence of KN93, the late component of Na+ channel decay 
could be accelerated back to control values. Interestingly, KN93 also significantly hastened 
current decay in βGal. Figure from Wagner et al. (2006a). 

CaMKIIδC on recovery from inactivation was Ca2+ dependent. These results indicate that 

CaMKIIδC activity substantially slows INa recovery from inactivation. This may reflect, in 

part, slower recovery from IIM, as there was more IIM in the cases where recovery was 

prolonged. The slower INa recovery could also limit INa availability, especially at high 

heart rates. The CaMKIIδC-dependent slowing of Na+ channel recovery was also seen in 

physiologic [Na+]o, and the effect could be measured in CaMKII transgenics. 

Consistently, the effect of CaMKIIδC overexpression was completely reversible with 

CaMKII inhibition. 

Fast, open-state inactivation and [Na+]i

When Na+ channels open, they close very rapidly, within 10–20 ms, a process called 

fast or open-state inactivation. In contrast to IIM, for which no structural correlate has 

been found yet, the cytoplasmic linker between domains III and IV and the C terminus of 

the Na+ channel protein has been suggested to underlie Ifast. Mutations in these regions 

are known to disrupt this process, leading to LQT3. Since the putative target of CaMKII-

dependent regulation could be located there, the authors investigated the effect of 

CaMKIIδC on fast INa decay. Acute CaMKIIδC overexpression significantly slowed the 

late component of fast INa inactivation (see τ2, Figure 5.6), which was sensitive to KN93.  
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Figure 5.7: CaMKIIδc enhances late INa. Currents were elicited at -20 mV (from -140 mV resting 
potential, duration 1000 ms), leakage subtracted and normalized to peak current. The current 
integral was calculated between 50 and 500 ms and displayed relative to the INa integral if no 
inactivation had occurred. Left, original traces. Right, mean data of the normalized current 
integral. Compared to control, adenovirus-mediated CaMKIIδC overexpression resulted in a 
significantly increased late INa which could be restored back to control using KN93. Figure from 
Wagner et al. (2006a). 
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Figure 5.8: Mean data for [Na]i at different stimulation frequencies (left) and at 1 Hz (right) in 
rabbit myocytes. CaMKIIδc overexpressing myocytes displayed a higher [Na+]i at all stimulation 
frequencies (P<0.05) that could be reduced using KN93 (P<0.05). There was a trend towards a 
lower [Na+]i in βGal-transfected myocytes upon CaMKII-inhibition (KN93). Figure from Wagner 
et al. (2006a). 

Incomplete INa inactivation during the AP can influence AP duration and [Na+]i and 

can also be arrhythmogenic. A distinct persistent INa component was recorded in both 

acute (Figure 5.7) and chronic CaMKII overexpression, whereas it was not seen in β-gal 

rabbit or WT mouse myocytes. Again, KN93 prevented this persistent INa in CaMKIIδC 

rabbit myocytes.  
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To assess the impact of these alterations in late INa on Na+ influx, the late INa (50–500 

ms) was integrated and normalized to the cytosolic volume. Interestingly, the increased 

amount of Na+ influx upon CaMKII overexpression strikingly resembles the TTX-

sensitive Na+ entry suggested to cause elevated [Na]i in an HF model with increased 

CaMKII activity (Despa et al., 2002; Hoch et al., 1999).  

To assess whether the CaMKII-dependent alterations in INa gating cause increased 

[Na+]i, [Na+]i was measured in field-stimulated myocytes. In CaMKIIδC-overexpressing 

rabbit myocytes, [Na+]i was significantly increased at all stimulation frequencies 

compared with that in control. This increase was completely reversed by KN93 (Figure 

5.8). 

CaMKII and arrhythmias 

To test whether CaMKIIδC mice were prone to VT, electrophysiological 

measurements in vivo were performed (Figure 5.9). Application of 2 consecutive 

premature beats via programmed electrical stimulation induced monomorphic and 

polymorphic VT. In addition, 1 Tg mouse died because of spontaneous ventricular 

fibrillation immediately after recordings were started. In contrast, no arrhythmias were 

observed in WT mice (Figure 8, A and C). In separate experiments, application of 

isoproterenol increased heart rate in WT mice, but no arrhythmias were observed (Figure 

5.9, B and C). In contrast, in Tg mice, isoproterenol infusion induced monomorphic VT. 

Analysis of resting ECG parameters (Figure 5.9D) revealed that the corrected QT (QTc) 

interval and QRS duration were significantly prolonged in Tg versus WT mice. 

Interestingly, the PR interval was significantly shortened in Tg mice. CaMKII has been 

previously implicated in AV nodal conduction (Li et al., 1998). To assess whether 

CaMKIIδC overexpression alters AP duration depending on the heart rate, monophasic 

APs (MAPs) were recorded in isolated perfused hearts. After AV node ablation, Tg 

hearts had higher intrinsic ventricular heart rates. At high pacing frequencies (BCL, 100 

ms), MAP duration was not significantly different for Tg versus WT hearts (Figure 5.9, E 

and F). It is possible that enhanced steady-state Na+ channel inactivation and disturbed 

open-state inactivation may counterbalance each other. At lower pacing frequencies 

physiological for mice, MAP duration was significantly prolonged in Tg hearts. This was 
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not reversible by CaMK inhibition, suggesting that other effects, possibly related to 

adaptation or HF, also affect repolarization in the chronic CaMKII expression model.  

 
Figure 5.9: Arrhythmias in CaMKIIδC-transgenic mice. (A) Programmed electrical stimulation in 
vivo; original ECG-traces are shown. (B) Representative ECG-traces are shown before (left) and 
after isoproterenol (Iso) administration. (C) Frequency of arrhythmia induction for programmed 
electrical stimulation (left) and isoproterenol (right). (D) Summary of resting ECG parameter data 
(RR interval, QTc interval, QRS duration and PR interval). (E) Original recordings of right 
ventricular monophasic action potentials (MAP) from hearts paced at cycle lengths of 100 
(above) and 150 ms (below) for WT (left), TG (middle) and TG+KN93 (right). Bars reflect 1 mV 
and 100 ms. (F) Mean MAP durations at 90% repolarization (APD90). Figure from Wagner et al. 
(2006a). 
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Figure 5.10: Voltage-dependent properties of 1795insD channel gating. A, Voltage dependence of 
activation and inactivation The mutation caused a negative shift in the voltage dependence of 
inactivation but did not alter activation. B, Separation of steady-state inactivation into fast and 
slow inactivation using the voltage-clamp protocols inset. A larger fraction of channels 
underwent slow inactivation when depolarized. Figure from Veldkamp et al., 2000. 

The effective refractory period (ERP) was decreased in Tg hearts, resulting in 

progressive encroachment of excitation, a scenario known to cause VT (Wagner et al., 

2003). 

Discussion 

Wagner et al. (2006a) showed that acute CaMKIIδC overexpression slows INa 

inactivation (both fast and slow phases), increases [Na+]i, enhances intermediate INa 

inactivation and slows recovery there from, shifts steady-state inactivation of Na+ 

channels to more negative Em in a Ca2+-dependent manner, and all of these effects could 

be reversed with CaMKII inhibition. Overall, these CaMKIIδC effects tend to prolong 

Na+ influx during depolarization (which may explain the enhanced [Na+]i), but increase 

steady-state inactivation of Na+ channels at shorter diastolic intervals. This combination 
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of effects could be particularly arrhythmogenic, and since CaMKII is elevated in HF 

(Kirchhefer et  

 
Figure 5.11: Enhanced slow kinetic component of inactivation for 1795insD. A, Development of 
slow inactivation was evaluated using the voltage-clamp protocol inset. B, Recovery from 
inactivation was also examined in the same cells using the protocol inset. Figure from Veldkamp 
et al., 2000. 

al., 1999; Hoch et al., 1999), these effects could cause an acquired form of 

arrhythmogenesis. CaMKIIδC enhances intermediate inactivation and reduces 

availability, while at the same time impairing fast inactivation and enhancing persistent 

INa. These divergent alterations of Na+ channel function cause a paradoxical phenotypic 

overlap of LQT3 (where INa inactivation is slowed or incomplete) and Brugada syndrome 

(where available INa is reduced), both thought to underlie arrhythmias. Indeed, the altered 

Na channel phenotype caused by CaMKII is very similar to that caused by 1795InsD 

mutation in human Nav1.5 that is linked with simultaneous LQT3 and Brugada syndrome 

features (Veldkamp et al. 2000, see chapter 3). As already discussed in chapter 3, the 

mutation disrupts fast inactivation, causing sustained Na+ current throughout the action 
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potential plateau and prolonging cardiac repolarization at slow heart rates (Figures 5.10 

and 5.12). At the same time, 1795insD augments slow inactivation, delaying recovery of 

Na+ channel availability between stimuli and reducing the Na+ current at rapid heart rates 

(Figures 5.11 amd 5.12). Therefore, it is conceivable that increased CaMKIIδC activity in 

HF (Kirchhefer et al., 1999; Hoch et al., 1999) may alter Na+ channel gating thereby 

generating the substrate for life-threathening VT. In fact, the study shows that Tg mice 

are prone to VT. Surrogate parameters of the propensity for VT such as reduced effective 

refractory period, slowed intraventricular conduction and disturbed repolarization affirm 

these findings, albeit the underlying arrhythmic mechanisms remains to be elucidated. 

 
Figure 5.12: Rate-dependent changes in INa availability and the ECG phenotype. A, Wild-type 
(left) and mutant (right) INa recorded during the 1st, 2nd, and 20th depolarizations in a train of 
0.5-second depolarizing pulses from -100 to 0 mV, at cycle lengths of 2.5 seconds (top) and 0.52 
second (bottom). B, Plot shows normalized wild-type and mutant peak INa as a function of 
stimulus number for the rapid (0.52 second) and slow (2.5 seconds) stimulus rates. Currents were 
normalized to the first stimulus. C, ECG recorded during rest (top) and during an exercise test 
(bottom). Note the marked increase in ST-segment elevation during exercise. ST-segment 
elevation was measured at the J point (second vertical marker) with respect to the isoelectric line 
(indicated by the first vertical marker). Velocity was 25 mm/s, and the scale bars indicate 1 mV. 
D, Plot shows changes in ST-segment elevation (top) and heart rate (bottom) over time in 
response to exercise. E, QT interval is plotted against heart rate in the carrier and a family 
member of the same gender and similar age who does not carry the mutant allele. The QT interval 
was measured by hand in lead V2 at 1-minute intervals during the same exercise test as in panels 
C and D. In the carrier, at the longest R-R intervals, the QT interval is markedly prolonged (QT 
interval/[R-R interval]0.5>450 ms). Figure from Veldkamp et al., 2000. 
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6 Cardiac INa Markov Model Identification 

Introduction 

Mathematical models have been widely used to reproduce the voltage-dependent 

gating of ion channels. Modeling the results of electrophysiological characterization of 

ion channels allows the investigation of the effects of alterations of channel kinetic 

properties on the cell electrical activity by incorporating the current formulation in a 

comprehensive model of the cardiac action potential (Clancy et al., 2002; Clancy and 

Rudy, 2002; Clancy and Rudy, 1999; Vecchietti et al., 2005; Vecchietti et al., 2006). 

In order to obtain a Na+ current model suited to analyze the effects of CaMKIIδC 

overexpression at the action potential level, we used a Markov model structure, which 

has been proposed by Clancy (Clancy et al., 2002; Clancy and Rudy, 2002), to reproduce 

the electrophysiologic characteristics of the Na+ current measured in βGal as well as in 

CaMKIIδC overexpressing rabbit myocytes. Experimental data from Wagner et al., 2006 

(presented in the previous Chapter) were used to identify the transition rates between the 

states of the Markov model.  

A description and the results of the model parameter identification are provided in the 

present Chapter. Then, the effects of the CaMKIIδC-altered INa current on action potential 

and intracellular Na+ concentration were assessed by incorporating the Markov model in 

the Shannon model of the rabbit ventricular myocyte described in Chapter 2. 

Methods 

The Markov model of INa is shown in Figure 6.1. The model contains two possible 

modes of gating, a background mode and a burst mode. The background mode reflects 

the normal sequence of activation and inactivation that most of the channels undergoes 

after voltage stimulation, whereas the burst mode reflects a small population of channels 

that transiently fail to inactivate. The background mode includes the upper nine states, 

consisting of three closed states (UC3, UC2, UC1), a conducting open state (UO), a fast 

inactivation state (UIF), and two intermediate inactivation states (UIM1 and UIM2) that 

are required to reproduce the complex fast and slow recovery features of inactivation. 

The UIM1 state acts as a channel “sink” in which the majority of channels reside but are 
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unable to recover and reopen during depolarization. Channels enter the UIM2 state via 

slow transitions. Channel closed-state inactivation is achieved via the inclusion of two 

closed-inactivation states (UIC2 and UIC3).  

Since INa activation is a cooperative process (Chanda, Asamoah & Bezanilla, 2004) 

(activation of a voltage sensor in one domain influences activation in the other domains), 

three closed states, each representing a putative channel conformation are used, rather 

than modeling the activation of voltage sensors in each domain separately. Fast 

inactivation takes place preferentially from the open state reflecting its dependence on 

channel activation (Armstrong & Bezanilla, 1977; Bezanilla & Armstrong, 1977). 

Inactivation can then be stabilized by a transition from IF to an intermediate inactivated 

state IM1, which reflects participation of the C-terminus (Veldkamp et al., 2000), and 

channels that are slowly inactivated reside in IM2. Finally, closed-state inactivation has 

been included by movement from C3 and C2 into the inactivated tier (IC3 and IC2) to 

correctly simulate channel availability (Clancy and Rudy, 2002). 
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Figure 6.1: Markov model of the cardiac Na+ channel. The channel model contains background 
(upper nine states) and burst (lower four states) gating modes. The burst mode reflects a 
population of channels that transiently fail to inactivate. 

The lower four states in Figure 6.1 (prefixed with “L,” denoting “lower”) correspond 

to a burst mode of gating of channels that lack inactivation. Single channel experiments 

suggest that transitions between these modes are voltage independent since bursting may 
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persist through a series of pulses, depolarizing to –30 mV (over a period of 100 

milliseconds) and repolarizing to –120 mV (over a period of 400 milliseconds). Hence 

transition rates between upper and lower states represent a probability of transition 

between the two modes of gating. 

All the other transition rates depend on the membrane potential in a non-linear 

fashion. A full list of transition rates is reported in Table 6.1. They have been slightly 

changed with respect to the original Clancy’s formulation (Clancy et al., 2002; Clancy 

and Rudy, 2002). 

Table 6.1 - Transition rate expressions (ms-1). 

Transition rates 
a11= (P1a1/(P2a1 exp(-V/17)+0.20 exp(-V/150))) 
a12= (P1a1/(P2a1 exp(-V/15)+0.23 exp(-V/150))) 
a13= (P1a1/(P2a1 exp(-V/12)+0.25 exp(-V/150))) 
b11= P1b1 exp(-V/P2b1) 
b12= P1b12 exp(-(V-P2b12)/(P2b1)) 
b13= (P1b13 exp(-(V-P2b13)/(P2b1))) 
a3= P1a3 exp(-V/P2a3) 
b3=(P1b3+P2b3 V) 
a2= (P1a2 exp(V/P2a2)) 
b2=(a13 a2 a3)/(b13 b3) 
a4= a2/P1a4

b4=a3

a5=(P1a5 exp(V/P2a5)) 
b5= P1b5 exp(-V/P2b5) 
a6= 4.7e-7 for βGal; a6==11.75e-7 for CaMKII 
b6=9.5e-4

 

Macroscopic current density is given by:  

( ) NaNaNaoNaNa gGwhereEVPGI ⋅=−⋅⋅= σ   

The variable PO is the sum of all channel open probabilities (PUO+PLO), V is the 

membrane potential, and ENa is the Na reversal potential. GNa is the maximum membrane 

conductance: channel density (σ) times the unitary channel conductance (gNa). The 

changes in channel state probabilities are described by first order differential equations.  
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Table 6.2 - Transition rates maximally influencing each voltage clamp protocol. 

Protocol Transition rates 
Activation; Tau a2

Inactivation  a3/b3

Recovery from Inactivation a4/b4, a5/b5

Late current a6/b6

Intermediate Inactivation a4/b4, a5/b5

 

Table 6.3 – Na+ channel model parameters for βGal and CaMKII channels 

Parameters βGal CaMKII 
P1a1 3.802 
P2a1 0.1027 
P1a2 9.178 
P2a2 25 
P1a3 3.7933e-7

P2a3 7.7 
P1b1 0.1917 
P2b1 20.3 
P1b12 0.2 
P2b12 5 
P1b13 0.22 
P2b13 10 
P1b3 0.0042 0.0067 
P2b3 2e-6

P1a4 100 
P1a5 0.3543e-3 0.6377 e-3

P2a5 23.2696 
P1b5 0.2868e-3 4.57e-5

P2b5 35.9898 
 

Assuming N discrete channel states (N=13 in the present model), the probability of the 

channel residing in a particular state Pi at any time satisfies: 
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The voltage-dependent (V-dependent) rate constants kij describe the transition from 

state i to state j. Initial conditions are obtained by finding values for state probabilities 

from the steady-state equation: 

0=
dt
dPi  

Microscopic reversibility is ensured by fixing the products of the forward and reverse 

transition rates of closed loops in the model.  

Parameters, which appear in the expressions of transition rates listed in Table 6.1, 

were identified by a fitting procedure to reproduce with the Markov model the results of 

the electrophysiological characterization of cardiac Na+ cardiac channel in βGal and in 

CaMKIIδC overexpressing rabbit myocytes. Experimental voltage-clamp data used in the 

present study have been reported in Wagner et al. (Wagner et al., 2006) and summarized 

in the previous Chapter. The following voltage-clamp protocols were considered for 

parameter identification: steady-state activation, steady-state inactivation, intermediate 

inactivation, recovery from inactivation, late current and fast and slow time constants of 

current decay. Each voltage-clamp protocol, briefly described in the Results section as 

well as in the previous Chapter, was simulated. Afterwards, the representative curves for 

each protocol were obtained from the simulated currents as well as from the experimental 

ones. Simulated data were interpolated to obtain continuous curves and compared with 

the experimental data. A preliminary sensitivity analysis was performed to establish the 

transition rates that maximally influence the simulated data for each voltage-clamp 

protocol (Table 6.2). Then, the parameters of the transition rates were identified with an 

automatic procedure considering for each protocol only the group of transition rates 

disclosed by the sensitivity analysis. The Nelder-Mead simplex direct algorithm 

(Lagarias et al., 1998) was used to find the parameter values minimizing the sum of the 

least-square errors between model predictions and experimental data. The parameters of 

the transition rates, that influence more than one protocol (see Table 6.2), were then 

manually tuned to have a good fitting on all the experimental data under analysis. The 

parameter values proposed by Clancy and Rudy (Clancy and Rudy 2002) were chosen as 

initial guesses in the minimization procedure to identify the transition rate parameters that 

allowed the best fitting of our βGal data. The identified βGal set (Table 6.3) was 
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subsequently used as initial guess to identify the CaMKIIδC channel parameters. A full 

list of the parameters is reported in Table 6.3. Matlab R2006a and Simulink (The 

MathWorks Inc.- Natick, Mass) were used for all the numerical computations. 

Results 

In Chapter 5, the voltage clamp protocols assessing steady-state inactivation, 

activation, recovery from inactication and intermediate were applied to the cells by using 

an extracellular solution containing 10 mM extracellular Na+. The parameter 

identification presented in this section is based on the data collected with a physiological 

extracellular Na+ concentration of 140 mM (squares in Fig. 6). At this concentration, the 

activation curve is not available because the huge Na+ currents evoked at 140 mM 

external Na+ led to the loss of voltage control and thus to unreliable data. To overcome 

such limitation, the activation curve was fitted on experimental and simulated data 

available in the literature (Shannon et al., 2004; Clancy and Rudy, 2002).  

GNa was set to 9 pA/pF to fit the value of INa peak amplitude. 

Steady-state inactivation and activation  

To assess the voltage dependence of steady state inactivation, current were measured 

upon test pulses to -20 mV (20 ms) after pre-pulses (500 ms) to -120:-20 mV (10 mV 

increment). According to experimental results, CaMKIIδC overexpression shifts the 

inactivation curve to more negative potentials with respect to βGal (see Fig. 6.2A).  

Steady-state activation was assessed by stimulating the cell with 40 ms long voltage 

steps from a holding potential of -140 mV to -80:+60 mV (10 mV increment). The 

relative channel conductance was calculated by dividing peak current at a given 

membrane voltage by the driving force (Vm-ENa). The resulting conductance was 

normalized to the maximal chord conductance. In accordance with the experimental data, 

simulated CaMKIIδC overexpression does not affect channel activation with respect to 

βGal (see Fig. 6.2B, βGal and CaMKIIδC traces are superimposed).  

Recovery from inactivation 

Recovery from inactivation was investigated using a sustained depolarization at a time 

scale that initiates fast and intermediate inactivation (1000 ms) followed by a recovery 

interval of incremental duration and a consecutive test pulse. CaMKIIδC slows the 
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recovery from inactivation in our simulations, as well as in the experimental results (see 

Fig. 6.2C). 
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Figure 6.2: Experimental (squares) and simulated (solid lines) data at 140 mM external Na+ 
concentration. A) Steady-state inactivation. CaMKIIδC overexpression shifts the availability 
curve towards negative potentials. B) Activation. Na+ channel activation is not affected by 
CaMKIIδC overexpression (traces are superimposed). CaMKIIδC slows the recovery from 
inactivation (C) and enhances the Intermediate Inactivation (D). 

Intermediate inactivation 

IIM was measured using depolarizations of variable duration (P1) followed by a 20 ms 

recovery period at -140 mV making all Na+ channels that are not in IIM available at the 

test pulse P2 to -20 mV. In the computer simulation IM is enhanced in CaMKIIδC model 

(see Fig. 6.2D). 

Fast and slow time constants of current decay 

As evident from the simulated traces (Fig. 6.3A), CaMKIIδc slows fast Na+ channel 

inactivation in rabbit CaMKIIδc myocytes compared to βGal. The Na+ current decay 

(first 50 ms) was fitted with a double exponential function. Fits (dotted lines) to the 

simulated traces (solid lines) and corresponding parameters τ1 and τ2 (ms) are shown in 
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black (βGal) and grey (CaMKIIδc). The deceleration of current decay was most 

prominent in the late component (right). τ2 was longer compared to control (7.8 vs. 5.6 

ms), whereas τ1 appeared to be unchanged (1.3 ms). These data are in accordance with 

experimental results published by Wagner at al. (2006) and illustrated in Chapter 5 

(compare with Fig. 5.6). 
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Figure 6.3: Fast and slow time constants of INa decay. Acute CaMKIIδC overexpression slows the 
late component of fast INa inactivation. 
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Figure 6.4: Late INa is enhanced by CaMKIIδC overexpression. Left, simulated traces. Right, 
normalized current integral. 

Late current 

CaMKIIδc enhances late INa. Currents were elicited at -20 mV (from -140 mV resting 

potential, duration 1000 ms), and normalized to peak current. The current integral was 

calculated between 50 and 500 ms (see Fig. 6.4) and displayed relative to the INa integral 

if no inactivation had occurred. As shown in Fig. 6.4, compared to control, adenovirus-

mediated CaMKIIδC overexpression resulted in a larger late INa. These results fit the 

experimental data shown in Chapter 5 (compare with Fig. 5.7, Wagner et al., 2006) 
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Discussion 

In this study we used a hidden Markov model to analyze the Na+ current measured 

using whole-cell patch-clamp procedures in both βGal and CaMKIIδC overexpressing 

rabbit cardiomyocytes (Wagner et al., 2006). The effects of CaMKIIδC overexpression on 

the Na+ current were accounted by assigning different values to model parameters with 

respect to the βGal Na+ channel.  

Even if there is little experimental evidence for the existence of these distinct sodium 

channel states, the model proposed by Clancy and Rudy has been successfully used to 

simulate several Na+ current features (Clancy et al., 2002; Clancy and Rudy, 2002; 

Bondarenko et al., 2004; Rivolta et al., 2002). Irvine et al. (Irvine et al., 1999) proposed a 

more sophisticated Na+ channel model, which explicitly takes into account the influence 

of temperature. Clancy and Rudy (2002) used the nine state model only for the WT Na+ 

channel, whereas they proposed a modified structure in which a ‘burst mode’ was 

introduced for Y1795C channels (Clancy et al., 2002). Such modification was based on 

their observation that a very small Y1795C channel population (less than 0.02% 

(Tateyama et al., 2003)) transiently fails to inactivate giving rise to single channel 

currents with very long mean open time (2.5 s (Clancy et al., 2002)). To depict this 

behavior of Y1795C mutant channels they introduced in the model a second (long-lasting 

and non-inactivating) open state. This behavior (long-lasting bursts) has been shown to 

cause a whole-cell persistent current in presence of mutant cardiac Na+ channels 

(Dumaine et al., 1996). Thus the burst layer was incorporated both in βGal and 

CaMKIIδC Na+ channel models. The transition rate a6 (from the background to the burst 

level) has been set smaller in βGal than in CaMKIIδC to reproduce a smaller late current. 

The resulting model satisfactorily reproduces the main dynamic characteristics 

highlighted by standard whole-cell electrophysiology protocols and seems suited to 

analyze the effects of CaMKIIδC overexpression at the action potential level. 

Conclusions 

The Markov model structure presented in this study, with different assignment of 

transition rates, is able to reproduce the main electrophysiological features characterizing 

cardiac Na+ current in case of βGal and CaMKIIδC overexpression respectively. In 

particular, the model reproduces the enhanced sustained current as well as the 
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enhancement of fast and intermediate inactivation shown by the CaMKIIδC 

overexpression. The proposed model can be a useful tool to analyze the effects of 

CaMKIIδC-induced altered currents on action potential and Na+ influx, even if the effects 

of this protein on other transporters have to be taken into account. 
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7 Effects of CaMKII over-expression on cardiac excitability 

Na+ Current 

The Markov model of INa was incorporated in a comprehensive action potential model 

to investigate the consequences of the altered Na+ channel gating on myocyte electrical 

activity. The effects on the AP morphology and duration, as well as the alteration in the 

intracellular sodium concentration ([Na+]i) were investigated.  

Methods 

The ventricular AP was simulated by using the Shannon model of rabbit ventricular 

myocyte (Shannon et al., 2004) implemented in Matlab R2006a (The MathWorks. Inc- 

Natick, Mass; USA).  

The model was adjusted to correctly describe the ratio between slow and fast 

component of ITo to reproduce the experimental APD adaptation to the pacing rate 

observed in rabbit myocytes (Podgwizd et al., 2001). To this purpose, the conductances 

of ITo,fast and ITo,slow were set to 0.02 and 0.06 mS/µF respectively. 

The original formulation of the INa current was replaced with the Markov model. The 

maximal conductance GNa at 37°C was calculated as 16.5 mS/µF both for βGal and 

CaMKII (Q10=1.5 (Milburn et al., 1995; Correa et al., 1991) for Na+ channel 

conductance). However, Wagner et al. collected data from cultured myocytes (the culture 

is necessary to overexpress CaMKII) rather than from freshly isolated myocytes. It is 

well known that the culture conditions lead to a reduction of the number of t-tubules and 

thus ot the Na+ channel density (that are located on the t-tubules). A reduction of the peak 

INa by 40-50% is reported in cultured myocytes. To simulate the condition of freshly 

isolated myocytes, the maximal conductance GNa was set to 23 mS/µF. All the kinetic 

rates were normalized to 37°C with a Q10 of 2.1. (Maltsev and Undrovinas, 2006).  

Pacing was obtained by a current pulse train (pulses of 5 ms in duration) of 9.5 A/F in 

amplitude with different pacing rates. A variable order solver (ode15s) based on the 

numerical differentiation formulas (NDFs) was used to numerically solve the model 

equations (Shampine and Reichelt, 1997; Shampine et al., 1999). The digital cell was 
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paced until a steady AP was reached. The APD was assessed at 90% of repolarization 

(APD90). 

Table 7.1 – Simulated APDs for βGal and CaMKIIδC overexpression at different pacing rates. 

 APD90 (ms) 
 βGal CaMKII 

0.25 Hz 326 583 
0.5 Hz 310 474 

1 Hz 262 323 
2 Hz 203 213 
3 Hz 175 179 

 

Results 

The ventricular cell computer model was used to analyze the effects of CaMKIIδC-

modulated Na+ channels on action potential morphology and duration and on the 

intracellular Na+ concentration. The effects of the Na+ channel kinetic alterations due to 

CaMKII overexpession on the ventricular action potential are shown in 7.1 for three 

pacing rates of 3 Hz (A), 1 Hz (B), and 0.25 Hz (C). The CaMKII mutant channel did not 

induce significant changes in AP morphology with respect to βGal. The βGal AP (black 

line) exhibits a characteristic spike-and-dome morphology and durations of 175, 262 and 

326 ms respectively. In contrast, the CaMKII APs (grey line) exhibit distinctive rate-

dependent durations. At fast rates (3 Hz), the CaMKII is completely superimposable with 

the control (Figure 7A, APD90=179 ms). At slower rates (1 [Figure 7B] and 0.25 Hz 

[Figure 7C]), cell APs exhibit a significant prolongation that is enhanced as pacing is 

slowed (APD90=323 ms at 1 Hz and APD90=583 ms at 3 Hz). At low frequencies, 

impaired fast inactivation and persistent INa outweigh the slowed recovery from 

inactivation because of long lasting diastolic intervals. This favors AP prolongation. The 

CaMKIIδC -induced AP prolongation is due to the presence of a larger inward late Na+ 

current during phases 2 and 3 of the AP (also βGal induced a sustained Na+ current that is 

smaller than in the CaMKIIδC case). However, at higher heart rates, the shorter recovery 

interval preventing complete Na+ channel recovery results in a reduction of Na+ channel 

availability (loss of function), that reduces the peak and abolishes the sustained current 

without evident effects on the AP duration. Indeed, the reduced availability of the Na+ 
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channel is reflected in the decreased velocity of the AP upstroke (Figure 7.1A, inset). In 

Table 7.1 the APD90 at pacing rate of 0.25, 0.5, 1, 2 and 3 Hz are summarized.  
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Figure 7.1: CaMKII effects on Na+ channel gating affects AP in a rate-dependent manner. At 
lower heart rates, the enhanced late INa prolongs the AP (B, C); this effect is completely blunted at 
higher rates (A), where the reduced channel availability slows down the AP upstroke (inset). 

In Table 7.2, the influence of CaMKIIδC overexpression on Na+ influx is shown. The 

higher sustained Na+ current in CaMKIIδC myocytes leads to an increase in the 

intracellular Na+ concentration for low frequencies (where there is a significant 

contribution of the sustained Na+ current), whereas no differences are predicted at high 

frequencies. In addition, the observed increase is very small with respect to the higher 

[Na+]i observed by Wagner et al. (2006a) in CaMKII overexpressing rabbit myocytes 

(Chapter 5, Figure 5).  
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Discussion 

CaMKIIδC enhances intermediate inactivation and reduces availability, while at the 

same time impairing fast inactivation and enhancing persistent INa. These divergent 

alterations of Na+ channel function cause a paradoxical phenotypic overlap of Long QT 

type 3 (LQT3, where INa inactivation is slowed or incomplete) and Brugada syndrome 

(where available INa is reduced), both thought to underlie arrhythmias. Indeed, the altered 

Na+ channel phenotype caused by CaMKII is very similar to that caused by 1795InsD 

mutation in human Nav1.5 that is linked with simultaneous LQT3 and Brugada syndrome 

features (Veldkamp et al., 2000). The mutation disrupts fast inactivation, causing 

sustained Na+ current throughout the action potential plateau and prolonging cardiac 

repolarization at slow heart rates. At the same time, 1795insD augments slow 

inactivation, delaying recovery of Na channel availability between stimuli and reducing 

the Na current at rapid heart rates (Clancy and Rudy, 2002; Veldkamp 2000).  

Table 7.2 – Simulated intracellular Na+ concentrations for βGal and CaMKIIδC overexpression at 
different pacing rates. 

 
 [Na+]i (mM) 

 βGal CaMKIIδC

0.25 Hz 7.2 7.8 
0.5 Hz 8.0 8.7 

1 Hz 9 9.4 
2 Hz 10.5 10.5 
3 Hz 11.6 11.6 

 

Similarly, the effects of CaMKII on the Na+ channel gating have a differential impact 

on the AP depending on the pacing rate. At low frequencies the simulations show a gain 

of function of the Na+ current, with the presence of a late current that prolongs the 

repolarization. The sustained current decreases with the increase in the pacing rate, where 

a loss of function (reduced peak current) is predicted. This loss of Na+ channel function, 

due to the reduction in the channel availability, would slow propagation and increase 

dispersion of repolarization. The intriguing thing with respect to CaMKII is that CaMKII-

dependent INa regulation due to upregulated CaMKII in heart failure could constitute a 

common acquired form of arrhythmia (combined Long QT and Brugada syndrome), in 
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otherwise normal Na+ channels. Such an acquired Na+ channel disfunction may 

contribute to arrhythmia under conditions where CaMKII effects are enhanced, as in HF. 

Interestingly, CaMKII has already been linked to casually to ventricular arrhythmias in a 

mouse model of cardiac hypertrophy and failure by Anderson’s group (Wu et al., 2002; 

Zhang et al., 2005). 

However, increased levels of CaMKII in HF may target several proteins in the 

ventricle (Maier and Bers, 2006). As already discussed (Chapter 5), CaMKII 

phosphorylates Ca2+ transport proteins such as phospholamban, ryanodine receptors and 

L-type calcium channels. In addition, other ion channels, including sarcolemmal Na+ and 

K+ channels are regulated by this CaMKII. 

The further step of the study (see next sections) was then to incorporate the reported 

effects of CaMKII on the other sarcolemmal targets: the L-type channels (responsible for 

the L-type Ca2+ current ICaL) and the K+ channels KV1.4 and KV4.3 (respectively 

responsible for slow and fast component the transient outward K current ITo). 

The model excludes the possibility that the alteration reported by Wagner on Na+ 

channel gating might account for the higher Na+ concentration in CaMKII overexpressing 

rabbit myocytes. Further experiments should be performed (e.g. using the specific Na 

channel blocker tetrodoxitin, TTX) to assess whether a window current at diastolic 

membrane potentials, accounting for a persistent sodium influx at the physiological 

resting potential, may occur. Another possibility is that additional Na+ transportes, other 

than the voltage-dependent sodium channel, may be involved in the CaMKII-mediated 

increase in [Na+]i, even if a role of the Na+/K+ pump, the primary responsible of Na+ 

extrusion form the cell, has been previously ruled out (Despa et al., 2001). 
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L-type Ca2+ and K+ Transient Outward Current 

CaMKII modulates voltage gated L type Ca2+ channels and thereby Ca2+ current (ICaL). 

Several groups independently demonstrated that Ca-dependent ICaL facilitation (positive 

staircase of ICaL with repeated depolarizations) is mediated by CaMKII-dependent 

phosphorylation (Anderson et al. 1994; Yuan and Bers, 1994). By overexpressing 

CaMKIIδC in adenovirus-mediated rabbit ventricular myocytes ICaL amplitude was 

increased and inactivation was slowed (Kohlhaas et al. 2006).  

Table 7.3 – Parameter changes for ICaL and ITo. [Ca2+]c is the Ca concentration in the actual 
compartment (either subsarcolemma or junction). 

 βGal CaMKII 
ICaL   
GCaL 100% 115% 

dfCa/dt 1.7[Ca2+]c(1-fCa)-11.9e-3 fCa 1.2[Ca2+]c(1-fCa)-11.9e-3 fCa

Ito,slow   
GTo,slow 0.06 mS/µF 0.09 mS/µF 
XTosinff 1/(1+exp(-(V+3)/15)) 
YTosinff 1/(1+exp((V+33.5)/10)) 
RTosinff 1/(1+exp((V+33.5)/10)) 

TauXTos 9/(1+exp((V+3)/15))+0.5 
TauYTos 182/(1+exp((V+33.5)/10))+1 15/(1+exp((V+33.5)/10))+1 
TauRTos 8085/(1+exp((V+33.5)/10))+313 3600/(1+exp((V+33.5)/10))+500 

Ito,fast unchanged 
 

ITo currents are generally classified in two different types, "fast" (ITo,f) and "slow" 

(ITo,s), with different recovery from inactivation time constants. A general consensus 

exists that whereas ITo,f is mediated by Kv4.2 and/or Kv4.3 channels, ITo,s is generated 

primarily by Kv1.4 channels. Several signaling systems have been shown to modulate ITo, 

including some using CaMKII. In preliminary studies in rabbit ventricular myocytes 

acutely overexpressing CaMKII, Wagner et al. (Wagner et al. 2006b) found a CaMKII-

dependent enhancement of ITo consistent with increased Kv1.4 function and AP 

shortening.  

The modulation of ICaL (larger current amplitude and slower inactivation) and ITo by 

CaMKII (enhancement of the slow component and faster recovery form inactivation) was 
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incorporated in the model of rabbit ventricular AP to investigate the impact these 

CaMKII effects on the AP (that was expected to be prolonged by the sole effect of INa). 

Methods 

The L-type Ca2+ current was modified to reproduce the effects of CaMKII as follow: 

the channel maximal conductance was increased by 15% and the Ca2+ dependent 

inactivation was modified as shown in Table 7.3.  

The formulations (Table 7.3) of the slow and fast component of ITo were adapted to 

account for the increased expression levels of Kv1.4 channels (GTo,slow was increased by 

50%) and for the enhanced recovery from inactivation in CaMKII overexpressing rabbit 

myocytes (the time constants of inactivation were modified accordingly). 

The AP simulations and APD measurements were performed as previously described 

in this chapter. 
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Figure 7.2: CaMKII effects on ICaL. Experimental (A) and simulated (C) traces recorded upon a 
depolarization pulse. Experimental (B) and simulated (D) I-V relations. ICaL is significantly 
increased in CaMKIIδC vs control (LacZ). Inactivation is slowed by CaMKIIδC. Experimental 
data (upper panel) are from Kohlhaas et al., 2006. 
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Figure 7.3: CaMKII effects on ITo. Experimental (left) and simulated (middle panel) I-V relations 
for total (A, D), slow (B, E) and fast (C, F) ITo. CaMKIIδC (close symbols) mediated increase of 
the total current is mainly due to CaMKIIδC effects on the slow component. G) Representative 
current traces during under voltage clamp activation protocol for experimental (upper) and 
simulated (lower) CaMKII mediated ITo. H) Recovery from inactivation was investigated using a 
500 ms depolarization pulse (from -80 mV holding potential to +50 mV) followed by recovery 
intervals of increasing durations and a subsequent test pulse. Recovery from inactivation is 
significantly increased by CaMKIIδC. Symbols represent experimental data, lines represent 
simulation results for βGal (black) and CaMKII (grey). Experimental data are from Wagner et al. 
(unpublished). 
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Results 

ICaL 

Figure 7.2 shows experimental and simulated ICaL–voltage relationships, where peak 

ICaL is increased in CaMKIIδC versus control. Also, the ICaL decay time constant was 

prolonged in CaMKIIδC versus control myocytes. 
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Figure 7.4: Simulated (A, B) and experimental (C, D) action potentials and APD-frequency 
relations in bGal and CaMKIIδC overexpressing cardiac myocytes. 

The APD shows the typical dependence on the pacing frequency in rabbit myocytes, 

with an ascending phase to 0.25-0.5 Hz and a descending phase to higher frequencies. 

ITo

The agreement between the simulated and experimental transient outward currents is 

shown in Figure 7.3. The total ITo current was significantly larger in rabbit myocytes 

overexpressing CaMKIIδC both in experimental and simulated data (Figure 7.3 A, D). 

The increase of total ITo appears to be mainly due to a significant increase of ITo,slow 

(Figure 7.3 B, E), whereas CaMKIIδC overexpression does not significantly alter ITo,fast 

(Figure 7.3 C, F). Representative traces of total ITo are shown in Figure 7.3 (G) for 
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experimental and simulated CaMKIIδC overexpression. Recovery from inactivation was 

significantly enhanced in CaMKIIδC overexpressing rabbit myocytes (Figure 7.3 H). 

Action Potential Simulations 

The effects of the Na+, Ca2+ and K+ current alterations due to CaMKII overexpession 

on the ventricular action potential are shown in 7.4 for the pacing rate of 1 Hz (A), as 

well as the APD dependence on pacing frequency (B). Experimental data from Wagner et 

al. (unpublished) are also shown for comparison (C, D). The combination of CaMKIIδC 

effects on the sarcolemmal currents leads to the shortening of the AP, in accordance with 

the APs recorded from CaMKIIδC overexpressing rabbit myocytes. 

The CaMKII-dependent enhancement in the repolarizing current ITo (in particular its 

slow inactivating component) is shown to counterbalance and reverse the effects of AP 

prolongation that would occur if only the depolarizing currents INa and ICaL were affected. 
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Concluding remarks 

The present study aimed to show the contribution of mathematical modelling and 

numerical simulation in the understanding of the interplay among the several factors 

playing a role in cardiac cell excitability. The attention was focused on the cardiac 

sodium (Na+) channel that controls cardiac excitability and the velocity of impulse 

propagation by initiating the action potential (AP). Different disorders in heart 

excitability have been related to derangements of the cardiac Na+ channel due to either 

genetic mutations or acquired diseases, such as heart failure (HF). These disorders are 

characterized by enhanced arrhythmia susceptibility. A number of inherited diseases 

associated to mutations in SCN5A, the gene encoding the alpha subunit of the cardiac Na 

channel, have been discovered and linked to Long QT type 3 (LQT3) and Brugada (BrS) 

syndromes, conduction diseases and structural defects. Notably, mutations showing 

overlapping phenotypes have been characterized. As an example, 1795InsD mutation in 

human SCN5A is linked with simultaneous LQT3 and BrS features. 

A 9-state Markov model of the cardiac Na+ current was used to investigate two 

mutations in the C-terminus of the Na+ channel associated to LQT3 and BrS (Y1795C 

and Y1795H respectively). The dynamic Luo-Rudy model of the ventricular AP was used 

to analyse their influence on action potential and the administration of sodium channel 

blockers (flecainide and mexiletine) was simulated. The model predicted that the Na+ 

current alteration induced by Y1796C mutation prolonged the action potential in a cell 

type and frequency dependent fashion, confirming the higher susceptibility of M cells 

and the dangerousness of bradycardia for LQT3 patients. 

Conversely, Na+ current alteration induced by Y1795H mutation, associated to BrS, 

did not alter action potential morphology in agreement with mild electrocardiographic 

manifestations at baseline of the patients harbouring this mutation.  

Flecainide and Mexiletine are antiarrhythmic drugs used to restore physiological QT 

interval duration in LQT3 subjects, while Flecainide but not Mexiletine unmask BrS 

carriers in which ST segment elevation is not evident. In agreement with clinical 

 112



CONCLUDING REMARKS 

observation, the model predicted that both Flecainide and Mexiletine shorten action 

potential in LQT3 cells, but only Flecainide caused an ‘all or none’ AP in BrS epicardial 

cell that may be responsible of the ST segment displacement observed in BrS patients 

after the administration of Flecainide. The study also suggests that Flecainide is able to 

unmasked concealed BrS patients as it blocks more markedly the L-Type calcium current 

(ICaL) than Mexiletine. 

Na+ channel gating modifications have been recently linked also to acquired diseases, 

such as drug-induced Long QT syndrome, cardiac ischemia and HF. It has recently been 

shown that the calcium/calmodulin-dependent protein kinase II (CaMKII) regulates Na 

channel gating, which may underlie the propensity to arrhythmia in HF where CaMKII 

expression is increased. Interestingly, the modulation of Na+ current upon CaMKII 

overexpression shows striking similarities with the alterations in the kinetic properties of 

the Na+ channel caused by the 1795InsD mutation (overlapping LQT3 and BrS). 

To assess whether its effects on the Na+ channel may participate to a proarrhythmic 

substrate, a 13-state model of the Na+ current was implemented to isolate the sole impact 

of Na channel gating alterations on the action potential morphology and duration in HF. 

CaMKIIδC enhances intermediate inactivation and reduces availability, while at the same 

time impairing fast inactivation and enhancing persistent INa. These divergent alterations 

of Na+ channel function cause a paradoxical phenotypic overlap of LQT3 (where INa 

inactivation is slowed or incomplete) and Brugada syndrome (where available INa is 

reduced): the effects of CaMKII on the Na+ channel gating have a differential impact on 

the AP depending on the pacing rate. At low frequencies the simulations show a gain of 

function of the Na+ current, with the presence of a late current that prolongs the 

repolarization (Long QT-like). With the increase in the pacing rate a loss of function 

(reduced peak current) is predicted. This loss of Na+ channel function, due to the 

reduction in the channel availability, would slow propagation and increase dispersion of 

repolarization (BrS-like). The intriguing thing with respect to CaMKII is that CaMKII-

dependent INa regulation due to upregulated CaMKII in heart failure could constitute a 

common acquired form of arrhythmia (combined Long QT and Brugada syndrome), in 

otherwise normal Na+ channels. Such an acquired Na+ channel disfunction may 

contribute to arrhythmia under conditions where CaMKII effects are enhanced, as in HF. 
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CONCLUDING REMARKS 

The increased levels of CaMKII in HF may target several proteins in the ventricle: 

Ca2+ transporter, such as ryanodine receptors, phospholamban and L-type calcium 

channels, but also non-Ca2+ transporters, such as sarcolemmal Na+ and K+ channels. The 

effects of CaMKII on the other sarcolemmal targets were incorporated into the model: the 

L-type channels (responsible for the L-type Ca2+ current ICaL) and the K+ channels KV1.4 

and KV4.3 (respectively responsible for slow and fast component the transient outward K 

current ITo). The model showed that a gain of function of ITo,slow due to CaMKIIδC 

overexpression is sufficient to explain the AP shortening observed in CaMKIIδC 

overexpressing rabbit cardiomyocytes. 

On the basis of such analyses the present thesis shows how a mathematical approach is 

suitable to provide clues for understanding arrhythmogenic mechanisms associated with 

mutation-dependent or acquired channelopathies.  
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