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Abstract ENGL 

Di Virgilio N., 2012. LCA-GIS integrated approach for a sustainable land 

use under energy crops. Doctoral Thesis, University of Bologna, Italy. 

 

Usually, when dealing with land suitability studies for crops, only 

environmental pedo-climatic factors are used. Crop production chain also 

means impact due to agronomic practices and the environment can be 

sensible to them basing on the site-specific vulnerability. This study 

wanted to define a method to spatially relate crop impacts to the 

environment and then to include it in land suitability procedures. LCA was 

used to estimate impact indicators of few herbaceous food and energy 

crops, and were combined with vulnerability maps defined using GIS, 

through the calculation of “allocation risk” values for each crop-

vulnerable land combination. Energy crops were considered as an 

alternative land use to potentially increase the environmental 

sustainability. The case-study showed that crop allocation to minimize 

environmental risks may change basing on considered impact indicators. 

Methods for merging several impacts in one map were also defined. 

Results were as optimal crop land allocation maps combining several 

crops compared with conventional cropping systems, e.g. maize/wheat 

rotation: crops with higher impacts can be allocated in lower vulnerable 

lands, and vice versa. If impact risk is a priority, maize, rapeseed, wheat, 

sunflower and fibre sorghum should be grown only in low or moderate 

vulnerable lands, while perennial grasses can be grown in all areas, thus 

representing a possible solution to increase the sustainability of the rural 

land use. 

Developed LCA-GIS approach represents an innovative and useful decision 

support systems (DSS) for minimizing impacts for the environment when 

allocating crops. Also it represented a useful tool for understanding the 

sustainability of current land use by integrating it with crop statistics and 

land use maps.  
 

Keywords: Geographic information system (GIS), Life cycle assessment 

(LCA), Energy crops, Food crops, Wheat, Maize, Sunflower, Rapeseed, 

Fibre sorghum, Arundo donax, Cardoon, Switchgrass, Land use, 

Environmental impact, Sustainable agriculture.    
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Abstract ITA 

Di Virgilio N., 2012. Approccio integrato LCA-GIS per un uso sostenibile 

del suolo con le colture energetiche. Tesi di Dottorato, Università di 

Bologna, Italia. 
 

In genere, negli studi di vocazionalità delle colture, vengono presi in 

considerazione solo variabili ambientali pedo-climatiche. La coltivazione 

di una coltura comporta anche un impatto ambientale derivante dalle 

pratiche agronomiche ed il territorio può essere più o meno sensibile a 

questi impatti in base alla sua vulnerabilità. In questo studio si vuole 

sviluppare una metodologia per relazionare spazialmente l’impatto delle 

colture con le caratteristiche sito specifiche del territorio in modo da 

considerare anche questo aspetto nell’allocazione negli studi di 

vocazionalità. LCA è stato utilizzato per quantificare diversi impatti di 

alcune colture erbacee alimentari e da energia, relazionati a mappe di 

vulnerabilità costruite con l’utilizzo di GIS, attraverso il calcolo di 

coefficienti di rischio di allocazione per ogni combinazione coltura-area 

vulnerabile. Le colture energetiche sono state considerate come un uso 

alternativo del suolo per diminuire l’impatto ambientale. Il caso studio ha 

mostrato che l’allocazione delle colture può essere diversa in base al tipo 

e al numero di impatti  considerati. Il risultato sono delle mappe in cui 

sono riportate le distribuzioni ottimali delle colture al fine di minimizzare 

gli impatti, rispetto a mais e grano, due colture alimentari importanti 

nell’area di studio. Le colture con l’impatto più alto dovrebbero essere 

coltivate nelle aree a vulnerabilità bassa, e viceversa. Se il rischio 

ambientale è la priorità, mais, colza, grano, girasole, e sorgo da fibra 

dovrebbero essere coltivate solo nelle aree a vulnerabilità bassa o 

moderata, mentre, le colture energetiche erbacee perenni, come il 

panico, potrebbero essere coltivate anche nelle aree a vulnerabilità alta, 

rappresentando cosi una opportunità per aumentare la sostenibilità di 

uso del suolo rurale. Lo strumento LCA-GIS inoltre, integrato con mappe 

di uso attuale del suolo, può aiutare a valutarne il suo grado di 

sostenibilità ambientale. 

Parole chiave: Sistemi Informativi Territoriali (SIT), Ciclo di Vita dei 

Prodotti (LCA), colture energetiche, colture alimentari, grano, mais, 

girasole, colza, sorgo da fibra, canna comune, cardo, panico, uso del 

suolo, impatto ambientale, agricoltura sostenibile.  
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The topic of this thesis came in the framework of a project where the 

selection of high potential yield crops for energy end-use and their 

relation with the environment were among main targets. The study of the 

energy balance was of course almost foregone, as well as the assessment 

of the CO2 emissions in order to define opportunities of reductions. The 

Life Cycle Assessment approach was followed to study several selected 

dedicated biomass crops, that means to quantify input and output of the 

entire biomass production chain. Under this framework, with the support 

of commercial databases and software, the possibility to understand an 

overall impact of agro-energy chains is easily obtainable. This aspect is 

anyway very important in the case of biomass crops, because in parallel 

with the high yield capacity, a general sustainability is also required. 

Sustainability refers to several aspects of a production chain, as economy, 

sociology and environment. If from one side to select best energy crops 

also considering their overall impact to the environment is important, the 

forward step is to try to imagine how these impacts act on the 

environment, also because ones defined a more or less novel biomass 

production chain, this last will be grown in a land portion where site-

specific conditions may influence, together yield potentials and 

agronomic strategies, also the crop impact level to the environment itself. 

The topic of this work was thus to develop a method to link the 

environmental impact of an agro-energy chain to site-specific 

characteristics of the land where they are on going to be located, under a 

planning strategy that wants to minimize the impact for the environment.  

Questions erased: What’s the effect of the evaluated LCA impact of a 

crop on a territory when one of crop is really there cultivated? How the 

site-specific condition could act on the impact levels of crop production 

chains? 

In fact, the idea moved to a more general approach, i.e. crop 

production chains in general and not only energy crops, and energy crops 

were considered as an alternative land use potentially representing a tool 

for increasing land sustainability. 

We wanted this method to be easy to understand, fast and basing of 

broadly used tools, thus the LCA procedures, well know and standardized 

by ISO, and GIS were integrated and acting as DSS in order to implement 
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Introduction to the study 

Land is a resource that is used by humans to satisfy their needs: food, 

house, production of manufactures, recreation, transportation, energy, 

and so on. It must be stressed that it is a limited resource, both in term of 

space than in term of his ability to ensure functions and his state of health 

is strictly related to human wellbeing. This easily means that sustainability 

is an important concept to deal with when organizing the use of the 

territory, and of course also to be applied to agriculture, one of the main 

sector directly, and more that the others, mutually connected with the 

soil. Moreover, limitations to a sustainable use of rural areas also comes 

from competition among the several needs that must be satisfied by the 

agricultural sector (fibre, feed, food, fuel). For example the increasing 

demand of biofuels coming from EU, where the demand for energy crops 

is stimulated with the setting of targets, more than 50% of the renewable 

energy consumption should come from biomass, including crops. It is 

acknowledged that satisfying these targets could bring substantial 

sustainability risks particularly connected with the competition with food 

and with intensification practices of existing crops. Scientific community 

and governments are studying sustainability criteria for bioenergy 

developments, identifying few constraints. When dealing with land 

allocation, sustainability criteria prohibits e.g. conversion of natural 

ecosystems for biofuels production (Article  17 of the EC Directive on the 

promotion of the use of energy from renewable sources) or suggests the 

use of agricultural marginal lands.  
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All crops socio-economic functions, and also their land use efficiency, 

are strictly related with the territory and with the site-specific variability 

of main factors (climate, soil fertility, morphology, etc.). These can affect 

yields, agronomic practices, farmer’s income, input levels, use of fossil 

fuels, and so on. The study of the territory in its overall complexity, of 

available resources, site-specific conditions, current land use schemes, is a 

precondition to support the sustainability of the land use of rural areas, 

defining the place where crop can accomplish the best potential 

functions. Finding the place where most conditions are favourable brings 

to the land suitability concepts, which the main product is the land 

suitability map. In this map the propensity of a territory to host 

production chain is indicated basing on several land parameters, the 

higher the number of involved land characteristics, the higher the 

reliability. It means to find the best place for the best agro-chain, or, in 

other words, best environmental conditions for a given crop, thus 

representing a Decision Supporting Tool for sustainable choices. As also 

stressed in the next chapters, even if approaching with a multivariable 

procedure, it considers only the effect of the environment (in terms of 

temperatures, rainfalls, growing degree days, latitude, etc.) to crop 

chains. Not much can be found about environmental impact, another 

important aspect linked with the land use sustainability. A crop 

production chain intrinsically contains an impact for the environment 

linked to agronomic practises. Some studies reports that the agronomic 

phase, is the most impacting step in the food chain production, mainly 

due to the use of the recourses and of the soil ((Brentrup, Küsters et al. 
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2000); (Brentrup 2003)). There is a growing general awareness and 

consensus among politicians and farmers on the need to reduce the 

environmental loads, optimization of agronomic inputs (e.g. fertilizers, 

etc.) and natural resources, primarily water. These impacts are different, 

based on site-specific conditions, not only because the availability of 

resources can be different, but also depending by the different 

environmental sensibility to the impacts. Thus, the main idea of this study 

is to consider the environmental impact of crops in their allocation when 

dealing with land suitability studies, and not only the effect of 

environment to crop production chains. 

Life Cycle Assessment (LCA) procedures, which main definitions are 

described in the next chapters, is a useful and standardized tool for 

assessing several categories of impacts of crop production chains toward 

main environmental compartments, while the land site-specific sensibility 

(vulnerability) to those impacts can be defined with the support of 

Geographical Information Systems (GIS). Agriculture anyway is expected 

to be environmentally benign, as expressed in the “Directions towards 

sustainable agriculture of the Commission of the European Communities” 

(Communities 1999). The integration of these two tools give the 

possibility to increase the environmental sustainability of crop allocation 

(land use in rural areas): simply, where the environment shows high 

vulnerability, only crops with a low impact would be advisable.  

This approach will be applied in the current study to maize and 

wheat, two traditional cash crops, and to some herbaceous dedicated 

energy crops, seen in this study as alternative land uses for which their 
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potential integration in the traditional rotation may represent a tool for 

increasing the sustainability of the land use under a planning strategy. To 

energy crops several environmental benefits have been recognised, 

described in the next chapters. Among all, this study focalized on 

herbaceous energy crops or with dual purpose (sunflower, rapeseed, fibre 

sorghum, cynara, giant reed, miscanthus, switchgrass), for their possibility 

to be compared with two main land use herbaceous food crops, as wheat 

and maize. 

The result of this approach would give indication on which locations 

are less vulnerable to impacts, locate crops with higher impacts in less 

vulnerable areas, and thus increasing the sustainability from the 

environmental point of view. Maps of most suitable areas with a 

multivariate approach considering the socio-economic, pedoclimatic and 

environmental impact will represent a decision support system for land 

actors with attention to emission reduction, energy efficiency, economic 

returns and also to environmental impacts. 
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Aims and scope 

Main scope of this work is thus to define a method to link the impact 

of crop production chains with the site-specific vulnerability of the 

territory and using it in the allocation of crops. The tentative will include 

the following main tasks: 

• Definition of crop impacts with the use of LCA procedure 

• Impacts result comparison among food and no-food crop 

• Defining impact categories able to describe local impacts 

• Definition of the vulnerability of the territory with the use of GIS 

• Methods for the use of multiple LCA impact indicators 

• Link between the LCA impacts with the vulnerability levels of the 

environment 

• Optimal crop allocation for the minimization of the environmental 

impact 

• Sustainability assessment of current land use and the role of energy 

crops in increasing environmental sustainability 

 

Overall structure of the thesis  

First part of the thesis focuses on describing the principles behind the 

definition of the method to link impact to the vulnerability. A description 

of what LCA means and how it can be used in this  study is outlined, as 

well as how GIS can support land analysis and the production of 

vulnerability maps to be related with crop impacts. It is explained the 

concept behind the calculation of crop allocation risk values and how they 

are used in allocating crops in order to minimize the environmental 

impacts. 
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In the second part of the thesis these principles are applied to a case 

study in order to bring out critical aspects, possible implications and way 

of improvements, these last also coming out in the last part of the thesis, 

where few prospects in applications are mentioned.  
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2. Baseline principles 

 

Energy crops as alternative land uses  

Life Cycle Assessment for crop production chains 

Land suitability for energy crops and the role of Geographic Information 

Systems (GIS) 

A novel concept of optimal land allocation: from ‘environment-to-crop’ 

toward ‘crop-to-environment” approach 

Site specific impacts and definition of land vulnerability maps 

Integration between LCA and land vulnerability 

Use of multiple impact indicators to optimize crop allocation 

 

 

 

 

 

 

 

Highlights 
Herbaceous energy crops ensure few socio-environmental benefits and they are ready 

to be introduced in the traditional land use of rural areas. 

Even if land suitability studies use multivariate procedures and models, generally the 

site-specific environmental impact of crop production chains appraisable with LCA is 

not considered, but it can increase the environmental sustainability of crop allocation, 

maximized if considering as many as possible LCA impact indicators with local effect, 

following the calculation of crop allocation risks. Land vulnerability maps are the link 

between impacts and site-specific land characteristics. The use of multiple impact 

indicators brings to the need of defining integration methods for impacts and land 

vulnerability maps. 
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Energy crops as alternative land uses 

Although the approach in land suitability proposed in this study can 

be potentially applied to agro-production systems in general, in this thesis 

a particular attention is toward energy crops. One of the main task of the 

method under development is to optimize the environmental 

sustainability of the land use in agricultural areas. Dedicated energy crops 

are considered as an alternative land use able to decrease environmental 

burdens of land use in specific vulnerable locations, being part of more 

general tools i.e. conservative practices, intercropping, agro-forestry, etc. 

(see also www.fao.org/nr/land/en/ or (Dumanski, Peiretti et al. 2006)). 

Dedicated energy crops are crops that are grown for energy production, 

their main product is the energy, in the form of biofuels, or combusted for 

its energy content to generate electricity or heat. Lot of literature is 

already available, classifying them in woody or herbaceous, mainly 

producing lignocellulosic material or more simple carbohydrates, being 

annual or perennials or oil crops from which seed the bio-diesel may be 

extracted, etc. ((Zegada-Lizarazu and Monti 2011); (Hodsman, Smallwood 

et al. 2005); (El Bassam 1998); (El Bassam 1998); (Lastrico, Arnone et al. 

1990)). Among all, this study focalized on herbaceous crops, for energy or 

with dual purpose (sunflower, rapeseed, fibre sorghum, cynara, giant 

reed, miscanthus, switchgrass), mainly for their possibility to be compared 

with two main land use involving herbaceous food crop, as wheat and 

maize, and thus focalizing in sowable land portion. 

Main agronomic and physiological characteristics of most promising 

energy crops as switchgrass (Pannicum virgatum), miscanthus 
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(Miscanthus spp.), giant reed (Arundo donax) and cynara (Cynara 

cardunculus) ((Monti, Venturi et al. 2001); (Monti and Zatta 2009); 

(Cosentino, Copani et al. 2006); (Cosentino, Patane et al. 2007)),  

rapeseed for oil production (Baux, Colbach et al. 2011), sunflower oil 

quality (Yin, Ma et al. 2012), fibre sorghum, etc., have been studied in 

Europe and in most of the case the acquired knowledge is enough to 

allow those novel crops be cultivated by farmers and introduced in the 

traditional land use  ((Zegada-Lizarazu, Elbersen et al. 2010); (El Bassam 

1998); (Zegada-Lizarazu and Monti 2011)). 

In general, biomass crops are recognized to provide significant 

environmental benefits that depend on species, crop management, but 

also to land allocation, scale level and environmental characteristics 

(Tilman, Hill et al. 2006). In the following table, elaborated by (Sims, 

Hastings et al. 2006), the main benefits which make energy crops 

attractive are reported. Main interest is linked to their high yield 

potential, the high contents of lignin, cellulose and hemicelluloses, low 

inputs and their positive social and environmental benefits (tables 2.1). 

In particular, there is a growing general awareness and consensus 

among politicians and farmers on the need to reduce the environmental 

loads, optimization of agronomic inputs (e.g. fertilizers, etc.) and natural 

resources, primarily water. Examples of very positive effects by the 

cultivation of energy crops have been reported on nitrogen leaching, 

water quality and biodiversity for example in miscanthus ((Lewandowski 

and Heinz 2003); (Semere and Slater 2007)) and for switchgrass, this last 

also exceeding carbon sequestration rates in the soil of 20-30 times those 



Baseline principles 11 

of annual crops ((Samson, Mani et al. 2005); (McLaughlin and Walsh 

1998)). 

 

Table 2.1. Main benefits of biomass crops (from: (Sims, Hastings et al. 

2006)).  

Environmental benefits Socio-Economic benefits

Low requirement in water,  

fertilizers and chemicals;

development of new markets 

(e.g. biofuels and bio 

products);

reduction of soil degradation and 

erosion in the case of perennials

new sources of income and 

employment in rural areas;

low GHG emissions; biodiversity increase;

phytoremediation capacity;

potential inland renewable 

energy sources (> self energy 

production);

adaptability to marginal lands;

new educational oppurtunity 

for farmer for new managing 

stategies.

natural habits for wildlife.  

 

Again, in the case of switchgrass, benefits were assessed also on soil 

quality, recovery function of wildlife species (McLaughlin and Walsh 

1998). In particular for perennial grasses among energy crops, as 

miscanthus or switchgrass, benefits are in fact even more evident. 

Compared to traditional row annual crops, perennial crops generally 

require lower energy inputs (fertilizers, pesticides etc.), can be grown on 

marginal cropland and provide benefits in terms of soil structure and 

stability (e.g. reduce soil loss, erosion and runoff), soil quality (as increase 

organic matter and nutrient retention) and biodiversity (e.g. shelter for 

autochthonous wildlife species), surviving over prolonged dry periods, 
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acting as carbon sinks and filter systems for removing agrochemicals from 

water before these pollutants reach surface or groundwater bodies. 

Another aspect is linked with the phytoremediation (Lord, Atkinson et al. 

2008) or irrigated production with waste water, sludges (Nielsen 1994) or 

slurry (Gericke, Bornemann et al. 2012), with which the cultivation of 

energy crops can be possible.  

Selected high-yielding energy crops, producing high amount of 

vegetal biomass, can also be an important source of biomass feedstock 

for bio-based products and renewable energy, with the development of 

new and profitable markets for rural areas (biofuels, fine chemicals, bio-

materials, etc.). Lignocellulosic biomass can be converted into energy by 

several processes along with several by-products with high added values: 

consumers are increasingly looking for ‘green’ or bio-based products.  

Ultimately, it can be assumed that energy crops can provide 

important environmental benefits, thus to be considered as a possible 

tool in optimizing the sustainability of the rural land use, but, at the same 

time, also they can potentially represent an alternative source of income 

and employment for farmers, which would became the feedstock 

providers for an advanced bio-indudry of the future. 
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Life Cycle Assessment for crop production chains 

The environmental impact is a vague concept that includes such 

diverse areas as health, water pollution, soil erosion, biodiversity, CO2, 

etc. The quantification of all these aspects is quite a complicated issue. An 

help can come by the LCA (Life Cycle Assessment). LCA, also called 

ecobalancing, is a standard tool to assess all environmental impacts 

associated with a product, process or activity by accounting and 

evaluating the resource consumption and the emissions. The 

methodology of LCA has been developed to define insight in the 

environmental effects of products during the whole life cycle or process 

chain (from cradle to grave), with the quantification of the impact with 

the use of several impact categories, or indicators. LCA is generally 

accepted as a method to compare the impact of products that are used 

for the same purpose. The standard procedure is defined by ISO 14040-43 

(Standardization 1997). The LCA standard procedure contains the 

following steps: 1) Goal and scope definition, where the goal, available 

means defining the depth and the width of the analysis, are defined. In 

relation to the goal, a functional unit is chosen, that for crop production 

system can be hectares or mass unit of the product. The functional unit is 

the entity in which all impact criteria are expressed. 2) Life cycle 

inventory (LCI), where all recourses used and emissions produced which 

causes ecological effect are accounted. 3) Life cycle impact assessment 

(LCIA), where all different substances are translated to a score on certain 

environmental categories. The inventory data are multiplied by 

characterization factors (CF) to give indicators for the environmental 
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impact categories. The characterization factors represent the potential of 

a single emission or resource consumption to contribute to the respective 

impact category (Brentrup, Kusters et al. 2004). An example for such an 

impact category, or indicator, is the global warming potential (GWP) 

expressed in CO2-equivalents, which is derived from the rate of CO2, CH4, 

N2O and CFC emissions multiplied by their respective characterization 

factor (e.g. 1 for CO2, 310 for N2O). According to ISO the aggregation of 

inventory results to impact categories is mandatory in LCIA (ISO 2000).  

There could be several indicators that aggregates different substances. 

They also depend on the chosen impact method. One, as an example, 

among the most used in particular in the agricultural sector, is the CML2 

baseline 2000 (Institute of Environmental sciences, Leiden University, NL) 

which involves the following categories: abiotic depletion, global warming 

potential, ozone layer depletion, human toxicity, freshwater toxicity, 

marine water toxicity, eutrophication, and others. 4) Normalization, 

which means giving insight into the seriousness of the score on that 

specific environmental category, comparing  the score impact due to the 

life cycle of the product and the total score on that environment for 

example in the country or region during a year. The result of the 

classification step is the “environmental profile”. The resulting normalized 

indicator values give the share of the analyzed system in the defined 

reference, e.g. European values for the respective impact categories. For a 

production system under investigation, this would mean the division of 

the Global Warming Potential calculated for the system by the total 

Global Warming Potential for a defined region, e.g. Europe (Brentrup, 
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Kusters et al. 2004). 5) Evaluation. The environmental impact of the 

product can be valued, usually done qualitatively, by valuing and 

discussing the separate scores of the environmental profile in a multi-

criteria analysis. Valuation can also be done quantitatively, by attaching a 

weighing factor to each environmental category. The normalized indicator 

values can be multiplied by weighting factors, which represent the 

potential of the different environmental impact categories to harm three 

main terrestrial themes: natural ecosystems, human health and 

resources. For example the normalized indicator value for global warming 

for a production system under analysis is multiplied by a specific 

weighting factor for global warming. Subsequently, the weighted indicator 

values can be summed up to one overall environmental indicator 

(Brentrup, Kusters et al. 2004). These two last operations are optional 

element of the LCIA. 6) Improvement analysis, a step to identify areas of 

possible improvement (Biewinga and Van der Bijl 1996).  

The LCA method was elaborated for the analysis of industrial products, 

but several studies adapted this approach also to agro-production chains 

(Brentrup, Kusters et al. 2002). Application to agricultural sector raised 

several problems: the boundary between production system and 

environmental system is much more difficult to define, especially because 

the soil can be as part of both; several environmental indicators that are 

important in agriculture have to be added, such as effects on erosion and 

groundwater depletion; the contribution of agriculture to natural and 

landscape added value is hard to quantify with LCA; land use, that can be 
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a minor aspect for most industrial systems, it is dominant for agricultural 

production (Biewinga and Van der Bijl 1996).  

Agriculture anyway is expected to be environmentally benign, as 

expressed in the Directions towards sustainable agriculture of the 

Commission of the European Communities (Communities 1999). To 

evaluate the sustainability of agricultural production systems, it is 

necessary to have appropriate indicators and the answer can anyway 

come from LCA. In fact, agricultural production systems contribute to a 

wide range of environmental impacts (e.g. climate change, acidification, 

eutrophication etc.). The analysis of individual effects does not permit an 

overall conclusion from an environmental point of view on the overall 

preference of one or another production strategy (Brentrup 2003). The 

LCA procedure is in line with a multi-criteria evaluation and gives this 

possibility to quantify and also synthesize several aspects related to the 

environmental impact also for the agricultural sector. The LCA was 

established to investigate all environmental impacts related to an entire 

production process (Consoli, Allen et al. 1993), then using this 

methodology does not only determine the impacts from the field 

cultivation step, but also all impacts related to the implementation of 

production factors, such as emissions and resource consumption due to 

the production of fertilizers, chemicals, machinery, and so on. All impacts 

are related to one common unit (e.g. 1 ton of grain or 1 hectare) and 

summarized into environmental effects (such as climate change or 

acidification), directly related to the management of the production 

chain, or even aggregate them into a unique environmental index. Such 
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an index allows the ranking of different crop production chains or 

alternative management according to their overall environmental 

performance. In particular when dealing with agricultural chains, also the 

impact assessment procedure, the aggregation methods for the different 

impact categories and the final calculation of a summarizing 

environmental index, are still in debate, as well as the missing integration 

of important impacts relevant to agriculture, e.g. land use, resource 

consumption (Brentrup, Kusters et al. 2001). Details on aspects 

concerning the application of the LCA procedure to agricultural crop 

production chains with few crops case studies and specific impact 

indicators can be found in the Brentrup’s. studies ((Brentrup, Kusters et 

al. 2001); (Brentrup 2003); (Brentrup, Kusters et al. 2004); (Brentrup, 

Kusters et al. 2004)). 

Crops have different agronomic practices and the environmental 

impacts also will be equally different, more or less relevant also 

depending on site-specific conditions (Brentrup, Kusters et al. 2004). 

Some cultures, for example, can represent a danger to the health of the 

waters, others to human health, etc., these depending for example by the 

use of chemicals in the applied crop management. Furthermore, the 

evaluation of environmental effects in LCA is not specific for a certain 

location. Especially concerning agriculture, the meaning of several 

environmental effects may be very much dependent on site-specific 

situations. For example in the case of the aquatic ecotoxicity (different 

between oceans and inland waters), acidification (effects depend on 

distribution and sensitivity of areas), or ground water depletion (water is 
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not scarce everywhere) (Biewinga and Van der Bijl 1996). Ultimately, the 

environmental impact is an indicator in itself insufficient to translate the 

environmental risk associated with the crop, and therefore must be 

contextualized and commensurate to an environmental reference. This 

aspect is still under debate among LCA experts. 

LCA anyway represents a useful tool for the evaluation of the 

environmental burden. Beside the standard procedure that makes it 

valuable for comparisons, also several software managing databases and 

tools are now available giving the possibility to carry out relatively reliable 

LCA analysis very quickly. Several studies moreover applied it on crop 

production chains, adjusting several uncertain aspect related to the 

application of this method to crop production chains. In particular in 

Netherlands, three institutes (Centre for Agriculture and Environment 

(CLM), Centre for Environmental studies (CML) and Agricultural Economic 

Institute (LEI)) are working in elaborating specific LCA procedure for 

agriculture.  

Impact indicators are not linked with site-specific conditions, at least at 

a first stage of the LCA analysis. This means that the evaluation of the 

environmental impact of a crop production chain may be done 

independently by the characteristics of the territory where it will be 

located. Ones defined the impact using several indicators as descriptors, 

these lasts may be related with the vulnerability of the environment 

where the production chain is located, and thus to adjust the crop 

impacts. This link is the key aspect of this study and it will be of course 

explored in the following paragraphs.  
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Land suitability for energy crops and the role of Geographic Information 

Systems (GIS) 

There is a strict relation between crop cultivation and the site-

specificities of the territory. Same production chains located in different 

environments can give different results in term of yield production, 

incomes for farmers, cost efficiency, economic sustainability, etc. Of 

course this is also valid for energy crops, short rotation forestry or 

herbaceous, annual or perennials, greatly vary in yields, pedoclimatic 

needs, agronomic managements, shape, quality of biomass for the energy 

conversion. In general, their yield potential strictly depend on their 

capacity to adapt to site-specific pedoclimatic conditions. Moreover, the 

overall outcome of a novel agro-energy chain, which have to find a space 

in the current land use, may depend on the site-specific socio-economic 

context, namely for example as know-how availability, the possibility to 

find a market and infrastructures as a suitable mechanization and storage 

plants, the inclination of local public offices and of the public opinion to 

recognise their added values of environmental payback of agro-energy 

chains and then to stimulate their introduction in the neighbourhood. 

Another important aspect is to consider the possibility to develop a 

complete energy production chain, from raw material production to 

energy end use, within a restricted area, at local level. This may help to 

reduce GHG emissions and costs of transports, help local rural economy 

and the energy autonomy. 

All these aspects, even if maybe at different scale levels, are site-

specific dependent. The study of the territory in its overall complexity is 
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then a precondition in order to maximize benefits from the introduction 

of agro-energy chains. Finding the place where major conditions are 

favourable brings to the land suitability concept, which the main product 

is the land suitability map. In this map the propensity of a territory to 

host a novel crop chain is reported, basing on several land parameters 

(pedo-climatic, agronomic, socio-economic). The higher the number of 

involved land characteristics, the higher the benefits and returns coming 

from the crop. The suitability maps show area where environmental 

characteristics are able to satisfy crop requirements and show conditions 

for an optimal and sustainable development of the production chain. It 

means to find the best environmental conditions for a given crop. From 

this point of view, this approach is a mono-direction approach we could 

call “environment-to-crop” oriented approach. An example of land 

suitability map is reported in fig. 2.1., where land allocation of some 

perennial energy crops in Europe, proposed by (Zegada-Lizarazu, Elbersen 

et al. 2010) and (Krasuska, Cadorniga et al. 2010) is reported (fig. 2.1). The 

map indicate the climatic feasibility according to crop requirements, thus 

following an environment-to-crop oriented approach. 

The capacity to analyse the environment, understand all factors that 

characterize it, is a precognition to carry out a land suitability study, and 

main tools are represented by Geographic Information System, better 

known as GIS. GIS is a tools system designed to capture, extract, store, 

manipulate, analyze, manage, display and present all types of 

geographically referenced data, that are data from the real world. 
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Figure 2.1. Land allocation of perennial energy crops in EU according their 

climatic requirements from (Zegada-Lizarazu, Elbersen et al. 2010)). 

 

Associated with each geographic feature there is one or more 

alphanumeric descriptions, organized in table databases. Each row of this 

table contains the alphanumeric attribute, this last corresponding to the 

column of the table. With GIS it is possible to manage the characteristics 

of an area using the computer, then data are in a digital format, allowing 

to split the environment into several thematic maps, process them and 

thus to return the responses to specific needs. These tools, consisting of a 

series of hardware and software (software for spatial data management 

and analysis, visualization, database management system, descriptive 
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statistics and geostatistics, computer, Global Position System tool, etc.). 

Further details on GIS can be found in Burrough's book (Heywood, 

Cornelius et al. 2006), (Burrough and McDonnell 1998), or in the extensive 

documentation on the web. 

The management of all environmental information within a GIS 

framework allows several advantages in land suitability studies:  

• dynamically edit, correct, update and implement all the features of a 

territory; 

• information can be managed and adapted to the needs. (For example, 

the conditions set for the definition of suitable areas can be changed, 

you can add more discriminating factors or being more or less rigid in 

the definition of the optimal range for crops or modifying the accuracy 

of the suitability map);  

• Easy integration within GIS of crop’s growing models, with the 

possibility to estimate crop phenology and yields based on site-specific 

growing conditions and then to identify land portions with maximum 

potential crop yields and quality (Dalla Marta, Mancini et al. 2010). 

• allows to change map scale and provide suitability based on the needs 

of the end user;  

• offers the opportunity to focus on a smaller area, such as a 

Municipality, allowing more detailed analysis, increasing the definition 

of suitable areas and extracting specific information from the 

database.  

• can be a starting point to increase the dissemination and use of the 

suitability map as a tool to support decision for farmers and public 
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institutions operating in the territory, for example with the use of 

interactive Web GIS packages queried directly from the end user.  

 

It is worth spending a few words about the data that are used in GIS. 

Data must represent the real word and must be in a digital format. They 

can be generally acquired by the computer in a vector or raster date 

model. A vector spatial data model uses two-dimensional Cartesian (x, y) 

co-ordinates to store the shape of a spatial entity. In the vector world the 

point is the basic building from which all spatial entities are constructed. 

The simplest spatial entity, the point, is represented by a single (x, y) co-

ordinate pair. Line and areas entities are constructed by connecting a 

series of points into chains (lines) and polygons. The raster spatial data 

model is one of a family of spatial data models described as mosaics. In 

the raster world individual cells are used as building blocks for creating 

images of point, line, area and surface entities. Each entity can contain a 

value. For example the relief of the area can be modelled by giving every 

cell in the raster image an altitude value. In raster world the basic block is 

the individual grid cell, and the shape and character of an entity is 

creating by grouping of cells (fig. 2.2). 
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 The raster view of the world Spatial entities The vector view of the worldThe raster view of the world Spatial entities The vector view of the world

 

Figure 2.2. Raster and vector representation of the real world (Heywood, 

Cornelius et al. 2006). 

 

Digital data could also do not be available for a given land portion, or 

some environmental factors that it are required for the study may be not 

available. In this case the data acquisition is the most time spending 

operation: digital map can be produced starting from the traditional 

cartography or a novel survey must be planned. In general, after more 

than 30 years of development of GIS, most common data describing the 
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territory, e.g. urbanization, transportation net, hydrology, land 

morphology, land use, soil maps, climate, etc., are most of the times 

available, collected by the several private and public institutions that 

works on the territory for several purposes. Regional information offices, 

in particular, already own a good part of the spatial data base, with maps 

already digitized of land use, soil science, geology, soil, hydrology, roads 

and communication lines, administrative boundaries, contour lines and 

spot elevations, population, etc. In some cases there are already 

processed databases to obtain maps like that of the risk from landslides, 

flooding risk, population’s dynamics, etc. As the authors of data are 

generally different subjects, the homogenization of the data will be 

needed in order to overlay and correlate them each other. 

There is a huge offer of tool and software for the managing of spatial 

data, both commercially or open-source tools. In the last chapter of this 

thesis a brief paragraph dedicated to prospects linked with the use of 

open-sources GIS tools are reported.  

The main tool used in this thesis is the commercial software named 

ArcView3.2. This software is made by the Environmental Systems 

Research Institute (ESRI) and nowadays is among the most used GIS tool. 

Actually the system updated to ArcGIS systems, released by ESRI, which 

structure and approach are different, anyway the previous version 

ArcView3.2 still is a valuable tool able to carry out several and 

complicated environmental analysis.  

Among the most common operation, as coordinates transformation, 

data base editing, map editing, vector-raster transformation, map export, 
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etc., key features used in this thesis mainly deal with the topological 

overlay to relate maps of several environmental factors, contained in the 

GeoProcessing Wizard.  

The union operation combines features of an input theme with the 

polygons from an overlay theme to produce an output theme that 

contains the attributes and full extent of both themes. Before applying 

this tool, maps must be converted in vector format with the appropriate 

converting tool. This operation will be used for example to understand 

vulnerable land portions for each municipality of the province of Bologna, 

overlaying municipal borders map with land vulnerability map.  

Another used tool was the dissolve operation, that aggregates 

features that have the same value for an attribute that the user can 

specifies. For example it were used to aggregate all polygons with the 

same vulnerable score, or within a defined range, to one single polygon, 

in order to simplify the map and speed up calculations.  

Another important used tool was the map calculator, working with 

raster data formats. This tool gives the possibility to define a 

mathematical calculation when overlaying raster maps, producing a single 

resulting map which pixels are attributed the result of the defined 

calculation. This tool has been applied when defining land vulnerability 

map, for which a sum of all vulnerability scores of each involved 

environmental factors, was carried out to calculate the total score at each 

location (map cell, or pixel). 
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GIS is ultimately a useful tool in identifying suitable areas for 

cultivation of crops, with the study of all environmental factors that 

define the suitability for a given crop.  Several approaches may be used in 

land suitability studyes for crops. Basically, differences relate to the 

different weights of importance that are assigned to different 

environmental factors considered important in influencing the behavior of 

crops. Another difference is in the statistic methods and multicriteria 

analysis used to correlate environmental factors each other. In general, 

after classifying the territory into homogeneous areas according to soil 

and climatic conditions, a suitability score is attributed as the result of the 

product among the suitability scores of the various factors for a species. 

As already mentioned, several factors can be used and must be defined 

for each specific case study. In general are  environmental and climatic 

factors (e.g. morphology, altitude, rainfall, temperature, fertility, etc..) 

and socio-economic conditions (presence of towns, streets, industrial 

areas, typical production, etc.) ((Kasprzak 1992); (Krupa and Kunikowski 

2006)). Many studies report the rainfall of an area, the minimum 

temperatures, daily growing degrees, evapotranspiration, the type of soil. 

In general, the more factors are introduced, the more the suitability is 

reliable, reducing the risk of overestimating the extension of suitable 

areas ((Caldiz, Gaspari et al. 2001); (COTIR-ARSSA 2008)). 

Another scheme for land suitability can be learn from distribution of 

wild plants studies, where what is called ecological profile of a species is 

generally defined (Carpenter, Gillison et al. 1993). It is ultimately the 

territorial rules that explain the presence or absence of a species, as 
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resulting from the statistical analysis of characteristics of the stations 

where the species are naturally present. In the case of cultivated crops, 

they are the soil and climate characteristics of the places where the 

species is cultivated in an environmentally and economically 

sustainability. The definition of local variables determine the niche of the 

crop and the statistic analysys of those varaibles gives the possibility to 

find the range of variable linked to the presence of the crop. After this 

step, potential areas for growing the crop are the ones where the same 

ranges of environemental variables are found (Carpenter, Gillison et al. 

1993). 

Focusing on energy crops, a considerable number of studies, at 

different scale levels, addressed land allocation issues of under current or 

future climate conditions (Tuck, Glendining et al. 2006). These studies, 

although approaching with a multivariate procedure, have been generally 

based on only crop requirements and environmental aptitude to fit these 

needs (environment-to-crop oriented unidirectional approach). Integrated 

models also were developed considering several socio-political 

constraints, which with the help of GIS serving as spatial decision support 

system ((Rozakis, Casalegno et al. 2001), (Sàez, Varela et al. 2000)).  

Anyway GIS have been mainly used to characterize the environment 

in term of climate, soil and terrain features and then spread crops basing 

on this characterization, read it as “the best land for a given crop” 

((Fiorese and Guariso 2010), (Rozakis, Casalegno et al. 2001); (Krupa and 

Kunikowsky 2006); (Sàez, Varela et al. 2000)). Briefly, aggregating 

information coming from different data sets as digitized cartography 
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generally referring to morphology (slope, altitude), soil features (texture 

and depth, stability, drainage, pH, limestone, organic carbon, nitrogen, 

carbon to nitrogen ratio, phosphorous and calcium), climate 

(temperatures and precipitation regimes, accumulation of growing degree 

days), with description of cultivar agronomic needs from an energy crop 

catalogue. An example of an Energy Crops Characteristics Catalogue 

(ECCC) is reported in fig. 2.3.  

 
Figure 2.3. The main parameters describing an energy crop based on FAO 

Databases (ECOCROP2004 2005), (FAO).  
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The catalogue includes description of each species, of at least of the 

most common, for quantitative agro-climate conditions evaluation. 

Attention is on the evaluation of environmental requirements for each 

species. Those parameters are corresponding with the spatial databases. 

The additional information such as general description, morphology, 

distribution or common names are of additional value (Krupa and 

Kunikowsky 2006). In the Krupa’s article, the energy crops description is 

based on the FAO databases ECOCROP and ECOPORT ((ECOCROP2004 

2005); (FAO)).  

Through a digital map overlay procedures, the site and the extension 

of land to be dedicated to a specific energy crop can be defined. Usually, 

the before mentioned pedo-climatic variables were used as constraints, 

defining an optimal range able to satisfy agronomic and phytoclimatic 

characteristics of the crop, out of which land is not suitable.  
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A novel concept of optimal land allocation: from ‘environment-to-crop’ 

toward ‘crop-to-environment” approach  

As mentioned in the previous paragraph, even if few land suitability 

studies for energy crops used multivariate procedures and models, even 

considering socio-economic aspects, basically the approach is anyway 

environment-to-crop oriented. Growing a crop it also means to use 

fertilizer, chemicals, fossil fuels, machineries, etc. that also means use of 

recourses and emissions that bring to an environmental impact. One crop 

can be more impacting respect to another in relation to the inputs 

intensification of his production chain. Furthermore, also the same crop 

may result in a higher or lower impact respect to chosen agronomic 

technique (zero tillage, low fertilizer input, organic farming, etc.). The 

environmental effects of crops have been poorly considered or ignored in 

land suitability studies. As already mentioned when describing LCA for 

agro-production chain, the link of agriculture with site-specific 

characteristic of the land where the production chain is located can 

greatly influence the impact level. In the agricultural sector, the territory, 

with his variable pedo-climatic conditions, is both a resource and one of 

the emission target. Moreover, the environment can be more or less 

sensible to a specific impact, e.g. high sand content soils are more 

vulnerable to eutrophication respect to a clay soil, because the ability of 

this last to retain nutrient and then to protect groundwater. The damage 

of a crop production chain can be different based on the vulnerability 

level of the location. 

The rationale of our approach is therefore to set up a method for 

crop allocation taking into account the effects of crops to the 
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environment, thus defining a “crop-to-environment” oriented approach. 

Hence, crops will be selected for a determined environment not only for 

their productivity but also for their site-specific impacts (bidirectional 

approach). With the proposed method, the aim is taking into account the 

mutual crops/environment effect, and it can be seen as a tool to increase 

the environmental sustainability of land use, following the rule of placing 

higher impacting crop in lower vulnerable area and the lower ones in the 

higher vulnerable lands. 

Ultimately, this bidirectional approach can be presented as an 

extension of the land suitability studies, including the environmental 

impact among the pedo-climatic and socio-economic factors for the 

definition of the best land portion where to locate crops. Dedicated 

energy crop production chains will represent instead, as it will be outlined 

in the case study, a possibility in land use to optimize the environmental 

sustainability. 
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Site specific impacts and definition of land vulnerability maps 

The site-specificity of the crop impacts defined with LCA, in some 

way can be dealt with the definition of the maps of vulnerability. The LCA 

methodology applied to agricultural sector allows to obtain several 

indicators that define the impact of a crop, due to different impact 

categories (eutrophication, freshwater toxicity, human toxicity, global 

warming potential, etc.). The levels of impact of these different categories 

can be differentiated according to the characteristics of the territory. The 

tool that allows to relate the impact indicators with the territory is the 

vulnerability map. It defines the sensitivity of different areas of a territory 

against a specific impact category. 

It can be produced through overlaying land variables that define the 

land vulnerability to a specific crop impact as calculated by LCA. For each 

impact it is possible to produce a corresponding land vulnerability map; 

thereafter, crops may be allocated basing on forward and backward 

relationships between crop and environment.  

GIS is needful to analyze all land factors required to define land 

vulnerability maps to crop impacts. As for in the environment-to-crop 

oriented approach, the topological overlay tool is the main operation 

because it gives the possibility to relate several parameters and to give for 

each land portion the result of the interaction of all environmental factors 

that has been considered. Using GIS then it will be possible to identify 

areas that are sensible for a given impact typology (eutrophication, 

human toxicity, etc.). Each area may be classified basing on its vulnerable 

level that may be related to the variability of the factors used to define it. 
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The vulnerability may be a scalable parameters that can be ranked and 

also classified. Land portions may be classified for example as low, 

moderate or highly vulnerable. 

For each vulnerable map, the choose of land characteristic to define 

it, is strictly related with the impact category which the map refers. The 

lack of literature and the uncertainty in the cause-effect relationship 

between environmental factors and the vulnerability generates a 

significant component of randomness in their implementation, providing 

a quite important component of subjectivity in the method. Based on 

these premises, ample attention must be toward transparency of 

recruitment and motivations to justify choices. 

 

 

Figure 2.4. Schematic representation of the integration between LCA and 

land vulnerability. 
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Integration between LCA and land vulnerability 

Once the land vulnerability is understood and the different crops 

characterized in term of their impacts (e.g. eutrophication), one can 

allocate the more impacting crops in the less vulnerable areas and vice 

versa. Distribution may occur calculating an “allocation risk value” each 

allocation scenario. The allocation scenario is defined by a given crop 

when located in a given vulnerable land. The same crop, when located in a 

land with low level of vulnerability, to this combination will be attributed 

a lower allocation risk respect to the same crop located in land classified 

with a higher vulnerability. At the same time, the comparison is also 

among different crops. When a location with a given vulnerability level is 

cultivated with a high impacting crop, the combination will receive a 

higher allocation risk value respect to when in the same location a lower 

impacting crop is grown. This allocation risk gives the possibility to 

compare several crops in several vulnerable lands. This comparison is also 

given by the definition of the most impacting scenario, i.e. the most 

impacting crops in the high vulnerable areas. By weighting all scenarios to 

the most impacting ones gives the possibility to standardize data and 

them to compare several impacts and several crops. 

Fig. 2.5 reports a scheme with a graphical example of the allocation 

risk calculation in the case of the eutrophication risk. The eutrophication 

effect of each crop is combined with the land vulnerability and weighted 

on the worst allocation scenario (maize, the most impacting crop, in the 

high vulnerable areas). In the territory three classes of vulnerability has 

been identified (low, moderate and high) (fig. 2.5). For example, in the 
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case of rapeseed when located in the highest vulnerable areas the 

calculation is as following: 

      82.9 / 100 x 10 = 8.29  

where 89.2 % is the eutrophication impact of rapeseed weighted on 

maize, the most impacting crop. Equally, to calculate the score of 

rapeseed in the moderate vulnerable areas the formula will be:  

82.9 / 100 x 6 = 4.97 

 

 

Figure 2.5. Scheme representing the calculation of the crop allocation 

risk. 

 

The scale can be chosen as from 0 to a maximum of 10. 10 is the 

value of the worst allocation scenario, 3 and 6 will be the limits for the 

worst scenario for low and moderate vulnerability lands, respectively. This 

method is simple and immediate and it is in line with the aim of this 

study, that is using two well know tool as LCA and GIS to link the impact to 
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site-specific land characteristic. With this approach it is possible to use 

directly LCA impact results without to go inside their calculation. More 

refined methods could be developed using models to adjust the value of 

the impact based on the characteristics of the territory. This requires to 

know the effect of single emitted substance or used resource on the 

environment based on the effect of the environment itself on them, that, 

although desirable, it is still far to be realized unless for specific few of 

them (e.g. nitrogen losses) (Velthof, Oudendag et al. 2009). 

After this calculation, for each vulnerable land portion, the crop with 

the lowest allocation risk value will ensure the best option from the 

environmental point of view.  
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Use of multiple impact indicators to optimize crop allocation  

Environmental benefits resulting from combining LCA with the land 

vulnerability map can be maximized if considering as many as possible 

impact indicators that can be appraisable with LCA method. The rural area 

is extremely differentiated, it can include densely populated areas, rivers, 

farms, hills, etc. It is clear that the effectiveness of the method will be 

greater the higher the number of impact categories, and in particular 

impact categories considered relevant to the location. 

When working with LCA, there are several methods that can be used 

to convert input and outputs inventory in an impact for the environment. 

This phase is the life cycle impact assessment (LCIA), already described in 

this chapter in the “Life Cycle Assessment for crop production chains” 

paragraph. The methods available in the literature mainly differs in the 

characterization factor (CF) and in the number and typology of impact 

indicators. As already mentioned, the list of impact category indicator 

values for a production chain under investigation defines its 

environmental profile. This last, hence, will be different basing on which 

assessment method is chosen. SETAC-Europe Working Group on LCIA 

proposed for example the following categories: depletion of abiotic 

recourses, land use, climate change (global warming), stratospheric ozone 

depletion, human toxicity, ecotoxicity, photo-oxidant formation (summer 

smog), acidification, nutrification (eutrophication) ((Udo De Haes, Jolliet 

et al. 1999a); (Udo De Haes, Jolliet et al. 1999b)). Another assessment 

method is the CML2 baseline 2000 (Institute of Environmental sciences, 

Leiden University, NL), this one also selected in this study as referring to 
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the LCA on energy crops carried out in (Monti, Fazio et al. 2009). Table 2.2 

summarizes indicators and units. In general these indicators reports 

impact referring to the main environmental compartments, as water, soil, 

atmosphere and living organism. 

 

Table 2.2. Impact assessment methods, indicators and units (CML2 

baseline 2000 - Institute of Environmental sciences, Leiden University, 

NL). 

 

Impact category Units (kg equivalent) 

Abiotic depletion Antimony (Sb) 

Global warming power CO2 

Ozone layer depletion Chloro-fluoro-carbons 11(ClFCs) 

Human toxicity 1,4 dichlorobenzene 

Freshwater toxicity 1,4 dichlorobenzene 

Marine water toxicity 1,4 dichlorobenzene 

Terrestrial toxicity 1,4 dichlorobenzene 

Acidification of rainfalls SO2 

Eutrophication PO4
3-

 

 

These impacts can be, for definition, with global or local effects. For 

example the target of the global warming potential is the atmosphere at 

global level. Its effect on the environment is hardly circumscribed. In 

other words, site-specific conditions able to influence the damage can not 

be identified. In the LCA-GIS integration, is the impact relation, in terms of 

potential damage, with site-specific environmental resilience the key 

aspect and this is calculated through the vulnerability maps. For this 

reason, only impact indicators with a local effect can be used in the LCA-

GIS approach. With local effect we can imagine that a given impact 

category brings to a damage to the surrounding environmental 

compartments, i.e. soil, living organisms or water. For example the 
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eutrophication impact of a production chain can affects water and soil 

where the production chain is located and the vulnerability to 

eutrophication will depends on the ability of that location to contrast or 

facilitate damage. In other cases, the vulnerability can also be defined by 

the distance to a target, e.g. in the case of human toxicity, for which 

urban areas can be assumed as a target. The distance-to-target approach 

is a common used principle in the LCA, in particular when dealing with the 

normalization and evaluation step. Usually refers to a reference value for 

a given impact indicator decided for example by directives. For example in 

study of (Brentrup, Kusters et al. 2004), this concept is proposed for the 

evaluation step in calculating weighting factors. These were derived by 

using authorized environmental goals like the Kyoto protocol for climate 

change (Lindeijer 1996). ‘Distance-to-target’ means a comparison of the 

current level of an environmental effect in a certain region and time to a 

target level of the same effect. This concept can be also applied to the 

local effect concept of impact indicators, where the distance to target can 

be assumed as an entity geographically placeable, the more the distance 

of the production chain position, the lower the vulnerability.  

Basing on the transparency level of the selected assessment method, 

local or global effect of indicators, and also of all input and emission 

involved, is specified within the method details. 

 

Ones defined all impact indicators with local effect of the chosen 

assessment method, the use of multiple impacts in the LCA-GIS approach 

will improve at the end the suitability of crop allocation: the vulnerability 
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level of a given land will be calculated basing on more than one impact 

thus considering several environmental risks, hence increasing the 

protection level for the environment. The higher the number of impact 

indicators, the higher the sustainability level. 

When working with multiple impacts, few questions may arises: how 

to combine more than one impact category calculated with LCA? Is an 

impact more important than another? How to produce a land 

vulnerability map that considers all involved impact indicators? Looking at 

the table 2.2, it is possible to see that indicators are quite heterogeneous, 

they have different units and can not be compared without a sort of 

standardization. Something that can be compared with the need to define 

a single indicator that summarize several impacts is what is carried out in 

the evaluation step of the LCA standard procedure. Normalized values are 

grouped and weighted to contribute to harm e.g. the natural ecosystems, 

human health or resources. Results depend on the selected assessment 

method. Using this concept, it could be defined a unique indicator that 

groups together all indicators with local effect, namely for example as 

“local impacts (LI)”. This, although advisable, is difficult to obtain because 

it requires a depth study on relative impacts effects, the choose of 

weights, a deep knowledge of used assessment methods, databases and 

LCA software. Of course this aspect could be the object of a dedicated 

research study.  

A simple and fast way to let comparing different impact indicator 

with local effect it could be to relate impacy of each crop to the worst 

scenario (a sort of reference situation). Comparing crops, they can be 
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referred to the most impacting crops (e.g. as percentage). This impact 

portion of an impacting crop is without unit (being a percentage on the 

most impacting crop), and can be used to calculate a total impact index by 

making an average of all impacts' % respect to the most impacting crop. 

Making average brings to a loss of information. An alternative method, or 

one in which the calculation of a total impact index is not necessary, it 

would be preferable. The composed multiplicative method (CMM), 

defined when applying the integration of multiple impact indicators to the 

case study area (chapter 4), it could be an answer because it does not 

require the calculation of a total impact index. 

Problems in synthesizing impact indicators are the same when 

dealing with the need to define a comprehensive vulnerability map to 

relate with a total impact indicator. Again in chapter 4, three alternative 

methods are defined and tested: simple additive method (SAM); additive 

method of classified maps (AMCM); composed multiplicative method 

(CMM). Basically these methods can be grouped in two categories, i.e. 

with (SAM and AMCM) or without (CMM) an additional operation of 

synthesis. This operation refers to the calculation of the total impact 

indicator and the comprehensive vulnerability map. 
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3. LCA-GIS model design 

 

Case study area description 

LCA assessment of selected energy and food crops 

Setting up land vulnerability map to fresh water toxicity 

Crop allocation for minimizing fresh water toxicity risks 

Setting up land vulnerability map to eutrophication 

Crop allocation for minimizing eutrophication risks 

Setting up land vulnerability map to human toxicity 

Crop allocation for minimizing human toxicity risks 

 

 

 

 

 

 

 

Highlights 
Case study was composed by 3 impact indicators (freshwater toxicity, eutrophication 

and human toxicity), 3 annual and 4 perennials herbaceous energy crops, 2 food crops 

and the province of Bologna. Case study area was characterized by an intensive 

agriculture in fertile lands, by a small portion of area with underdeveloped agriculture 

and by a portion of abandoned agricultural lands, where planning strategies and 

alternative land uses may help to increase rural economy. LCA showed that 

conventional crops, as maize, resulted in clearly higher impacts than energy crops on 

all categories. Vulnerability of the province was variable for all impacts. The allocation 

risk calculation for each crop-vulnerable land combination respect to maize showed 

that optimal crop allocation to minimize the impact was different on the base of the 

selected impact indicator. GIS gives the possibility to define vulnerable land portions 

for each municipality and thus to act for increasing sustainability of land use.  
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Case study area description 

Baseline principles of the proposed method, illustrated in the 

previous chapter, were applied to a case study are in order to practically 

define its applicability, to raise criticisms and possible applications of the 

LCA-GIS integrated tools. The case-study has been limited to a small area 

(370.000 ha), the Province of Bologna (North Italy, Po Valley). The area 

was chosen for the availability of digital data readily usable in a GIS 

format. For this area a considerable number of digital geographic 

information and metadata are freely available from the digital office that 

manage the “Geographical Data Catalogue of the Province of Bologna”, 

downloadable at the website http://cst.provincia.bologna.it:81/catalogo/. 

The catalogue is organized in a web-gis format, where data may be 

displayed, zoomed and be downloaded in several file formats and 

geographic reference systems. Also available data for base cartography, 

as municipal and province borders, urban centres, roads, railways, rivers 

and lakes, toponymy, etc., which several of them used to facilitate the 

readability of produced suitability maps. 

For the case study area it is also available the “Plan of protection of 

waters” (ERMESAmbiente 2005) (Piano di Tutela delle Acque - Del. Assemblea Legislativa n. 40/2005 

(http://serviziambiente.regione.emilia-romagna.it/PTA/servlet/AdapterHTTP?ACTION_NAME=SCARICA_CARTOGRAFIA_ACTION), 

where lands sensible or  with high risk for water pollution are identified. 

Maps of this protection plan will be very useful for the definition of 

following vulnerability maps. 

Another important source of information for the case study area is 

represented by the Land use map, available for the entire Emilia Romagna 
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regional digital office. Last version is updates at 2008 and it represents an 

important tool for developing of planning strategies at regional and at 

more local level. Map legend is structured at 4 levels: the first three levels 

are the same as defined in the European Corine Land cover directives, the 

fourth is more specifically related to regional land uses. The legend 

includes more than 80 land classifications, which the minimum 

represented area, basing on the chosen scale 1.25 000, is of 1.5 ha. A 

photo book is also attached for each land use category. 

All geographical data, before to be analysed, were homogenised in 

term of reference system and resolution, in order to be each other 

related. 

 The province of Bologna is one of the 9 provinces of Emilia Romagna 

region (table 3.1). He is the province with the higher extension, 3702 km
2
, 

with most of agricultural land classified as intermediate rural area, as 

defined by the CAP 2007-2013. Small portion of the province is classified 

as rural area with problems, mainly referring to mountainous part of the 

province, with a small population density (only 1.3 % of the total residents 

in the province) and with several infrastructural problem as missing of 

viability or sleepy lands that make difficult to develop an intensive 

agriculture (table 3.1). Bologna’s province also contain one of the three 

urban districts of the whole region corresponding to the Bologna urban 

area. In general, as also indicated by the rural land classification, 

Bologna’s province can be characterized by a modern agriculture with 

intensive crop cultivation in fertile lands, and by a small portion of area 

with underdeveloped agriculture, where planning strategies and 
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alternative land uses may help to increase rural economy. Also, Bologna’s 

province hosts the higher percentage of population (table 3.1).  

 

Table 3.1. Extension (km
2
) and resident population (% respect to the total 

population of the Emilia Romagna region) of provinces and of rural areas 

as defined by the CAP 2007-2013. 
Extension (Km

2
)

Rural area Bologna Ferrara
Forli - 

Cesena
Modena Piacenza Parma Ravenna

Reggio 

Emilia
Rimini TOT

1-With development 

problems
790 - 659 947 931 1499 - 731 - 5558

2-Intermediate Rural 2772 2633 1029 463 1538 1085 323 543 269 10655

3-With specialized 

agriculture
- - 691 1095 - 863 1536 1016 266 5466

4-Urban area 141 - - 183 118 - - - - 443

Total 3702 2633 2379 2689 2588 3447 1860 2290 535 22122

Resident population (%)

1-With development 

problems
1.3 - 0.3 1.1 0.4 0.7 - 0.7 - 4.5

2-Intermediate Rural 12.5 8.4 1.4 3.2 3.9 3.1 0.4 2.4 1.1 36.4

3-With specialized 

agriculture
- - 7.2 7.2 - 6.1 8.5 8.8 5.8 43.7

4-Urban area 8.8 - - 4.3 2.4 - - - - 15.5

Total 22.6 8.4 9.0 15.9 6.6 9.9 8.8 11.9 7.0 100

 

Of course, an important amount of population is located in the urban 

area (8.8 %), but still 12.5 % is located  in the rural lands (table 3.1). The 

anthropic pression in this area is quite important, thus the role of 

agricultural lands are still more important in answering to territory needs. 

 

Prevalent morphology of the province is flat (1582.67 ha, table 3.2), 

mainly formed by alluvial soils of the fertile Po river valley. The hilly area 

is found in 1330 ha, while inland mountainous area are 790 ha (table 3.2).  
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Table 3.2. Prevalent morphology (ha) of provinces of the Emilia Romagna 

region. 

Province

inland 

mountain 

(ha)

inland 

hill 

(ha)

coastal 

hill 

(ha)

plain 

(ha)

Tot 

surface 

(ha)

Province of Piacenza 932.0 950.3 - 707.2 2589.5

Province of Parma 1499.8 1086 - 863.5 3449.3

Province of Reggio Emilia 731.8 543 - 1018.1 2292.9

Province of Modena 947.3 462.8 - 1272.9 2682.9

Province of Bologna 790.1 1330 - 1582.7 3702.4

Province of Ferrara - - - 2631.8 2631.8

Province of Ravenna - 323.3 - 1535.2 1858.5

Province of Forli-Cesena 659.0 1028 - 690.0 2376.8

Province of Rimini - 61.91 206.8 264.6 533.3

Total 5560.0 5785 206.8 10565.8 22117.3
   

 

Table 3.3. Land uses (ha) in the provinces of the Emilia Romagna region 

based on statistical data referring to the 5
Th

 National Census on 

Agriculture, carried out in 2005 by the Italian National Office of Statistic 

(ISTAT). 

Area

Total 

Agricultural 

Area (TAA)

Utilized 

Agricultural 

Area (UAA)

% on UAA of 

arable lands 

% on UAA 

of pastures
% of forests

Province of Piacenza 165 945 125 589 80.56 10.00 20.90

Province of Parma 194 470 134 125 61.39 15.30 36.85

Province of Reggio Emilia 136 180 107 429 88.56 0.35 1.12

Province of Modena 179 479 137 047 70.91 14.53 17.89

Province of Bologna 256 702 187 057 79.79 10.58 21.19

Province of Ferrara 201 148 179 173 81.80 17.06 34.49

Province of Ravenna 142 913 117 246 61.47 2.07 8.95

Province of Forli-Cesena 155 968 98 462 72.87 17.69 14.39

Province of Rimini 34 434 29 252 78.53 2.55 5.47

Total 1467239 1115380 76.23 10.10 18.14  

  

Among the provinces, Bologna also has the highest amount of 

agricultural lands (256702 ha), which 187057 ha are cultivated (table 3.3). 

Almost 80 % are arable lands, where herbaceous energy crops taken into 

account in this study may readily and easily being grown. 
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Table 3.4.  Number of farms and their total and used agricultural lands 

each province of the Emilia Romagna region based on statistical data 

referring to the 5
Th

 National Census on Agriculture, carried out in  2005 by 

the Italian National Office of Statistic (ISTAT). 

Province Farms (N°)

Total Agricultural 

Surface of farms (ha 

farm-1)

Used Agricultural 

Surface of farms (ha 

farm-1)

Bologna 17496 14,67 10,69

Forli-Cesena 14968 10,42 6,58

Ferrara 10935 18,39 16,39

Modena 14711 12,20 9,32

Piacenza 9038 18,36 13,90

Parma 11009 17,66 12,18

Ravenna 11876 12,03 9,87

Reggio Emilia 11357 11,99 9,46

Rimini 6498 5,30 4,50

Total 107888 13,60 10,34  

 

Number of registered farms in the province are 17496 (table 3.4), the 

higher in the whole region, which extensions are 14.67 ha per farm and 

10.69 ha of used agricultural lands. Farms are on averaged larger in the 

province of Ferrara (18.39 ha) and Piacenza (18.36 ha). Number of farms 

deceased of 35.38 % (table 3.5) in 10 years (from 2000 to 2010). 57.95 % 

of farms decreased in the mountain area, against 27 % in the flat area and 

36.14 % in hilly area. Used agricultural lands decreased of 7.18 % in the 

whole province, meaning that most of closed farm were incorporated by 

others, anyway in the mountain area used agricultural lands decreased of 

31.03 % and in the hilly area of 19.58 %. Apart of reasons that brought 

land abandonment, not among the aims of this study, those land portions 

could be part of a planning strategy to increase the rural income. 
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Table 3.5. Evolution of number of farms in the province of Bologna and 

per altitude class (RER 2011). Used agricultural land (UAL), total 

agricultural lands (TAL). 
http://www.regione.emilia-romagna.it/wcm/statistica/censimenti/censimenti/censagri_2010.htm  

Altitude class
Farms (N) 

2010

Farms (N) 

2000

Variaz. 

%

UAL

2010

UAL

2000

Variaz. 

%

TAL

2010

TAL

2000

Variaz. 

%

Mountain 1 287 3 061 -57.95 12 131.46 17 589.41 -31.03 23 256.29 34 648.49 -32.88

Hill 3 145 4 925 -36.14 45 163.25 56 161.15 -19.58 72 151.53 84 079.42 -14.19

Plain 6 353 8 703 -27.00 116 299.28 113 280.82 2.66 133 250.84 130 201.32 2.34

Total 10 785 16 689 -35.38 173 593.99 187 031.38 -7.18 228 658.66 248 929.23 -8.14
  

 

Table 3.6. Agriculture main land uses in the province of Bologna and for 

altitude class (RER 2011). 
http://www.regione.emilia-romagna.it/wcm/statistica/censimenti/censimenti/censagri_2010.htm   

Morphology
sowable

(ha) 2010

sowable

(ha) 2000

tree crops

(ha) 2010

tree crops

(ha) 2000

grass and 

pastures 

(ha) 2010

grass and 

pastures 

(ha) 2000

mountain 6 394,00 9 092,98 463,56 874,56 5 248,45 7 594,75

hill 32 039,11 38 551,07 6 084,59 7 594,01 6 913,59 9 944,50

plain 103 180,74 98 506,69 10 930,97 14 112,41 2 051,64 580,37

Total 141 613,85 146 150,74 17 479,12 22 580,98 14 213,68 18 119,62
 

 

The picture, updated to provisional data released by the last ISTAT 

Census on Agriculture (2010), reports 6394 ha of sowable lands in the 

mountain, 32039 ha in the hilly area, and 103180 ha in the flat area (table 

3.6). Also a good amount of grasses and pasture, that may be considered 

for alternative land uses with herbaceous energy crops, are present in the 

hilly area and mountainous. Hilly fields are maybe the one that can be 

more easily converted with biomass crops. 

In fig. 3.1 main geographic and topological characteristics of the 

province of Bologna are represented.  
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Figure 3.1. Province of Bologna (case study area).  
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LCA assessment of selected energy and food crops 

In order to test the principles of the proposed LCA-GIS integration 

approach, some herbaceous annual and perennials, among the most 

promising, energy crops were chosen. At the same time, also some LCA 

impact indicators, among the one with a local effect appraisable with LCA 

(LCA, ISO 14040-43), were used to estimate 3 impact indicators. These 

where at the end used as samples to define the method for land 

allocation taking into account both one impact indicator or integrating 

more than one environmental impact. Chosen impacts were 

eutrophication (EU), human toxicity (HUMT) and freshwater toxicity 

(FWT) charges, following the cultivation of rapeseed (Brassica napus L.), 

sunflower (Helianthus annuus L.), fibre sorghum (Sorghum bicolor L.), 

giant reed (Arundo donax L.), cynara (Cynara cardunculus L.), miscanthus 

(Miscanthus x giganteus greef & Deuter) and switchgrass (Panicum 

virgatum L.) compared to wheat (Triticum spp. L.) – maize (Zea mais L.) 

rotation. The rotation wheat-maize (50/50) was assumed as reference 

scenario of conventional cropping systems. Cradle-to-farm gate impacts 

of each crop were compared on land (hectare) basis, that allows to 

compare products with different purposes (e.g. food crops and energy 

crops). According with the standard procedures ISO 14040-43, the 

analysis was divided into four steps: (i) goal and scope definition where 

system under study is defined; (ii) inventory (LCI), input and output data 

of the crop production chains are collected and analysed; (iii) impact 

assessment (LCIA), the emissions in air, soil and water, as well as raw 

materials and energy consumptions, are standardized and translated into 
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environmental effects. CML2 baseline 2000 (Institute of Environmental 

Sciences, Leiden University, NL) was chosen as impact assessment 

method; (iv) interpretation, which aimed at identifying weak points and 

possible improvements of the processes. Details on LCA metadata and 

inventory of all crop production chains are described in (Monti, Fazio et 

al. 2009). LCA results were directly taken by that study, showing how this 

methodology could use LCA results from the bibliography, without to 

accomplish further particular work in adaptation, at least if the standard 

procedure is followed during LCA. Crops and LCA carried out in mentioned 

study (Monti, Fazio et al. 2009), referred anyway to data inventory and 

measures directly carried out in, and of tipical agronomic practices of, the 

territory chosen as case study area.  

SimaPro 7.0 (PRé Consultants, Amersfoort, NL) was adopted to model 

and analyse the different scenarios. Eutrophication, for example, was 

calculated as following: 

EPi = (Vi/Mi) • (Mref/Vref) 

where Vi and Vref (dimensionless) are the potential contribute to 

eutrophication of a generic compound (i) and the reference (expressed as 

kg ha
-1

 equivalent phosphate ions), respectively; Mi and Mref are the 

weights of i and reference, respectively. More in general, the impact 

indicator (ICi) were calculated as following:  

∑ ⋅=
j

jij CFEICi ,
 

Ej is the emission release or the consumption of the generic resource j, 

and CFi,j is the characterization factor of j substance that contributes the 

i-category. The characterization factor is the relative contribution of a 
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compound to the impact category. Details on LCA calculation results are 

reported in (Monti, Fazio et al. 2009).  

Inventory data were extracted by the widespread dataset Ecoinvent 

1.1 (Swiss Centre for Life Cycle Inventory, Zurich), that in some case was 

found too generic for some agronomic practices, therefore Ecoinvent 1.1 

integrated with other data collected by crop handbooks, interviews and 

direct measurements in the experimental of the University of Bologna, 

located in Cadriano (Monti, Fazio et al. 2009). Generally, the most 

conventional conventional agronomic practices were assumed for each 

crop. 

In table 3.7 are reported the impacts results for the case study of all 

food and no-food production chains used for the definition of the LCA-GIS 

approach and for combining multiple impact indicators. 

Conventional crops resulted in clearly higher impacts than energy 

crops on all impact categories. Maize was in general the crop that showed 

the higher impact, while switchgrass the lowest, on hectare basis. The 

relatively good performance of switchgrass (table 3.7 and 3.8) may be 

principally attributed to two main reasons: the lower incidence of P-

fertilization in this crop with respect to the other rhizomatous crops, and 

the different propagation technique, switchgrass being seedable while 

giant reed and miscanthus are not. As for switchgrass, also cynara is a 

seedable crop, however the short lifespan (five years) parallel with a low 

productivity in the case study area, determined a significant higher 

incidence of environmental loads in this crop. Again, generally, N-

fertilization, crop establishment and harvest were mainly contributed in 
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defining the impact. More details on the relevance of the major 

agronomic practices on total environmental impact are reported in 

(Monti, Fazio et al. 2009). 

 

Table 3.7. Eutrophication value (EU, expressed as kg ha
-1

 of equivalent 

phophate ions (PO4-3 eq.), human toxicity (HUMT) and toxicity to 

freshwaters (FWT), these two last expressed as kg ha
-1

 of 1,4-

diclorobenzene eq. (1,4-DC eq.), and as % respect to the highest 

impacting crop (maize). The total impact index is calculated as average of 

the % values of impacts: [EU%) + (HT%) + (FWT%)] / 3. 

Crop

FWT          

1,4-DC eq. 

(kg ha
-1

)

%

EU      

PO4
3- 

eq. 

(kg ha
-1

)

%

HUMT     

1,4-DC eq. 

(kg ha
-1

)

%

Total 

impact 

index 

%

maize 199 100 5.56 100 1810 100 100

f sorghum 128.0 64.3 4.38 78.8 1360 75.1 72.7

rapeseed 101.0 50.8 4.61 82.9 1150 63.5 65.7

wheat 99.1 49.8 4.37 78.6 1180 65.2 64.5

sunflower 90.5 45.5 4.46 80.2 1150 63.5 63.1

cynara 74.3 37.3 1.85 33.3 738 40.8 37.1

miscanthus 76.9 38.6 1.67 30.0 709 39.2 36.0

giant reed 73.9 37.1 1.64 29.5 661 36.5 34.4

switchgrass 50.3 25.3 1.37 24.6 474 26.2 25.4  

  

FWT, EU and HUMT reached the highest value for maize, meaning 

that maize can be considered as the most impacting crop. The other crop, 

therefore, can be compared to maize. The % value give an idea on how 

other crop are less impacting respect to maize. Looking at FWT,  f 

sorghum is the highest impacting crop after maize (64.3 % of maize 

impact), followed by rapeseed, wheat, sunflower, where impact are half 

of maize (table 3.7). The perennial herbaceous crops showed a lower FWT 

impact. Among these last, higher impacts are for miscanthus. Switchgrass 
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has the lower FWT impact, significantly lower than maize (25.3 % of 

maize) and in general also respect to the other perennials. EU impact is 

still the highest in the case of maize, followed by rapeseed, sunflower, 

sorghum and wheat, all representing between 78.6 % to 82.9 % of maize’s 

impact. Again perennial crops showed a significantly lower EU impact, 

from 24.6 % to 33.3 % respect to maize (table 3.7). HUMT impact was high 

for f sorghum, after maize, representing his 72.7 %. Rapeseed, wheat and 

sunflowers were around 65 % respect to maize, and still perennials 

showed a low impact respect to maize and other annual biomass and food 

crops, ranging from 25.4 % to 37.1 % (table 3.7). 

 

Among the LCA-GIS method development aims, one task is also to 

allocate crop considering at the same time more than one impact 

indicator. It could be therefore useful to define a total impact index that 

in a sort of way summarize all impacts with local effect that are used, thus 

it can be related to a comprehensive vulnerability map. The definition of 

this total indicator could follow several approaches that wants to 

compare variables with different units and of different orders. Table 3.7 

reports a total impact indicator respect to the highest impacting crop. This 

total indicator, calculated as a mean between FWT%, EU% and HUMT%, 

would represent a simple and immediate way to include in one indicator 

the freshwater toxicity, the eutrophication and the human toxicity impact, 

standardized respect to the highest impacting crop (maize). Referring to 

this total impact index, after maize, f sorghum again showed the highest 

overall impact (72.7 % respect to maize), followed by rapeseed, wheat 
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and sunflower (table 3.7). Poliennal crops resulted in a quite low impact 

respect to maize and the other annual crops, in particular switchgrass 

with 25,4 % respect to maize (table 3.7).  

In table 3.8 are reported impact values ordered from the highest to 

the lowest impact respect to each impact indicator and respect to the 

total impact index. Giant reed and switchgrass were definitely in all cases 

the lower impacting crops. Cynara was the higher impacting crop among 

the perennials except for FWT.  Perennial crops (cynara, miscanthus, giant 

reed and switchgrass) are similarly impacting in all cases. 

  

Table 3.8. Crops ordered from the higher to the lower impact value.  

FWT          

1,4-DC eq. 

(kg ha
-1

)

EU                       

PO4
3- 

eq. (kg 

ha
-1

)

HUMT       

1,4-DC eq. 

(kg ha
-1

)

Total 

impact 

index

maize maize maize maize

f sorghum rapeseed f sorghum f sorghum

rapeseed sunflower wheat repeseed

wheat f sorghum repeseed wheat

sunflower wheat sunflower sunflower

miscanthus cynara cynara cynara

cynara miscanthus miscanthus miscanthus

giant reed giant reed giant reed giant reed

switchgrass switchgrass switchgrass switchgrass  
 

Fibre sorghum resulted as the second highest impacting crop (after 

maize) if considering all impact categories, thanks to the higher value of 

human and freshwater toxicity. Rapeseed resulted in a high value of 

eutrophication that led to be in general the third highest impacting crop.  
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As already described in chapter 2 “Baseline principle”, the attempt to 

link LCA impacts with site-specific environmental characteristics includes 

the definition of land vulnerability maps of the study area to chosen 

impact indicators (FWT, EU and HUMT), described in following pages.  
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Setting up land vulnerability map to fresh water toxicity 

For the definition of the land vulnerability map referring to the 

freshwater toxicity, several land characteristics are available in a digital 

format in the “Plan for Protection of Waters“. This plan is produced at 

regional level by the Emilia Romagna Region and it provides for each 

province a map with the indication of land portions for the protection of 

fresh and underground waters (EPS 2009). The aim is to ensure an optimal 

underground water recharge and the protection of standard quality 

requirements for drinking water. Thus, defined areas in the included maps 

are directly or indirectly linked with water and for this reason they could 

be considered as sensible to substances eventually released by production 

chains, because of the potential damage to water quality and quantity, 

and then setting the vulnerability for freshwater. In general, within the 

hilly part of the province of Bologna, these vulnerable areas are 

represented by the end of the alluvial fans and foothill aquifers, while in 

hilly mountainous part of the province, these areas are identified on the 

basis of the presence of captured water for water grid destination. As 

regard to surface waters for human consumption, vulnerable areas are in 

general the ones affecting watersheds drained from drinking water 

outlets. In the plan for the protection of waters, the protected area 

delineation has been carried out considering different aspects, such as the 

analysis of qualitative and quantitative data collected from a groundwater 

monitoring network. For example, if nitrate fluctuations is fast, it means 

that there is a direct recharge of the aquifer, whereas if fluctuations are 

regular and continuous, it means that there is an indirect recharge (see 
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e.g. Type areas B in the following classification). Other used 

environmental information, among the others, were the available 

geological mapping and the isotopic geochemistry of groundwater. The 

details of the entire protection plan implementation are contained in the 

technical report accompanying the produced maps (Severi and Bonzi 

2008). 

The plan for the protection of water released by the Emilia Romagna 

region has been used as starting base for the production of the 

vulnerability map to freshwater toxicity. Through the study on the 

reported environment analysis and the integration with several factors in 

order to better fit the targets of the PhD study, the Province of Bologna 

has been classified in the following categories:  

1. Groundwater protection areas in foothill and lowland territories. 

The protection of these areas has the purpose of protecting and 

preserving the natural process of aquifer recharge, ensuring the 

preservation of the ability to rebuild the resource available for 

various uses, including use for drinking water largely bypassed by 

groundwater, and also to limit the waterproofing of areas where 

soils are permeable. These areas are ultimately areas of 

groundwater recharge, several distinct typology are listed below: 

Type D: represented by the adjacent bands to river streams 

with side prevailing feeding the under level riverbed; this area can 

not be used for the new development and then soil sealing, in 

order to maintain quantitatively the water charging function. The 

D area border is defined by considering a geometrical method, 
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250 meters around the main rivers and streams that run through 

areas of type A and B, below described. Areas with gravel 

surfacing associated with the aquifer, and the more recent alluvial 

terraces attributed to the rivers were selected. The presence of a 

plentiful and of good quality water course is a positive element 

for the maintenance of groundwater quality. The rivers have in 

fact a diluting power against pollutants eventually dissolved in the 

underground water, then the areas where there is the transfer of 

water from the river to water table should be protected, or, in 

other words, eventually only cultivated with low impacting crops. 

For their definition we have used the areas adjacent to streams 

where they were present outcrops and gravels associated with 

the aquifer, and the more recent alluvial terraces and attributed 

to the rivers. 

Type A: areas with direct recharge of the aquifer, gravel 

surfacing and continuous in the subsurface for tens of meters; 

river terraces connected ideologically, hydrogeologically 

identifiable by a single-layer system containing an aquifer in 

continuity with the surface from which it receives waters for 

infiltration. In these areas the new urbanism is strongly 

conditioning. The same could be imaged for crops that in these 

areas must release the least amount of pollutants as the direct 

connection with fresh water. Type A areas, thus, must be 

considered with high vulnerability. A greater vulnerability it may 
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be recognized to type D areas, respect to type A, for its further 

function of water charging and the diluent effect of pollutants. 

Type B: areas characterized by indirect recharge of the aquifer, 

where there is an indirect relationship with the groundwater and 

with no gravel surfacing presence. The presence of soil makes a 

filter function that it lowers the vulnerability of this area. 

Type C: catchment basins of water supply for recharge areas of 

type A and B, linked to the fact that the runoff surface waters 

toward valley are able to recharge downstream areas. The runoff 

and the distance from the target that are the charging areas of 

type A and B, allows to assign a lower vulnerability to this 

category. 

All above mentioned land categories, all part of the 

groundwater protection areas in foothill and lowland territories, 

are considered highly vulnerable to fresh water toxicity. Basing on 

the set of rules for the protection of fresh waters 

(ERMESAmbiente 2005), for example, all livestock activities, e.g. 

spreading of manure, fertilizers, sewage sludge and pesticides, 

must be regulated. For the production of the vulnerability map to 

fresh water toxicity, all the above mentioned areas has been 

organized in a map layer (ESRI shape file format) called 

“PTCP_recharge_areas_abcd.shp”. This layer will be overlaid with 

other environmental characteristics in order to produce the 

vulnerability map to freshwater toxicity. 
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2. Zones of protection of surface waters. Consists of areas of 

protection of water reserves, i.e. basins that feed reserves for 

drinking water supply wells, and of regional concern. They are 

basin at the upstream of the intake (10 km
2
 above the intake and 

5 km river along the riverbed). Regarding more specifically the 

areas of protection of surface waters, protection of these areas is 

aimed at maintaining water quality that are invoked by the 

collection systems, to avoid or mitigate the risk of spills of 

pollutants that through runoff may reach water bodies, avoiding 

the consumption of soil and protect the self purification capacity 

of rivers. Based on these reasons, the vulnerability to toxicity to 

freshwater is considered quite high for this category. These areas 

are reported in the ESRI shape file map layer called 

“PTCP_zones_derivat_prot.shp". 

3. Zones of protection of surface and groundwater in foothill and 

mountain territories. Includes rocks stock, main exploitable 

aquifers for drinking water supply (water sources), and fluvial 

terraces constituting the recharge areas that feed the river in the 

low flow periods, contributing to its flow. May be ideologically 

connected to rivers or not. In these areas, the waters runoff on 

the surface and in the lower river network end at valley and then 

actually feed the downstream rivers. Moreover, other zones of 

protection of groundwater are also indentified in the hilly and 

mountainous areas, such as natural emergence of groundwater 

(and related water sources phenomena), and the reserve areas 
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(areas within the areas of groundwater recharge, referring to 

untapped sources, but with a potential potable use). This category 

includes the following map: 

• supply_areas.shp 

• recharge_areas.shp 

• buffer_weels.shp 

• reserve_areas.shp 

• PTCP_fluvial_tut_areas.shp (areas of protection of fluvial 

terraces) 

Figure 3.2 shows all above mentioned land classification extracted 

from the Plan for Protection of Waters, and used for the definition of the 

land vulnerability map to freshwater toxicity. Reserve and recharge areas 

are mainly located in the mountainous part of the Province. Most 

vulnerable areas are anyway the ones located in foothill and lowland 

territories, zones for the protection of groundwater, referring to the 

central area of the map, corresponding to the end of the hilly morphology 

and the beginning of the flat area. Overlaying these map layers with urban 

centre map or other topographic information (not reported in this thesis), 

it is possible to see how the anthropic pressure on these areas is quite 

high. Most populated urban areas, and consequently road and transport 

infrastructure, are in general located in the central part of the province. 

Still, the agricultural land is quite integrated with the urbanization, thus 

appropriate land planning of agriculture may help in reducing land 

vulnerability or decreasing negative effects of human activities on 

freshwater. 
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Figure 3.2. Environmental layers used for the production of the vulnerability map to freshwater toxicity. Map layer 

are extracted from the “Variation to the Provincial Coordination Plan for the implementation of the Plan for the 

Protection of Waters”(EPS 2009).  

Province of Bologna 

PTCP_fluvial_tut_areas.shp 

PTCP_recharge_areas_abcd.shp  

PTCP_zones_derivat_prot.shp 

recharge_areas.sh

supply_areas.shp 

reserve_areas.sh
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As already mentioned, the limitations related to the use of all these 

areas, basing on the purposes of the plan for protection of fresh waters 

for human consumption, are in the soil consumption and waterproofing, 

in order to ensure water and springs charging. Basing on this aspect, areas 

most directly related to the aquifer and the springs have major 

limitations. The same concept can be applied against the vulnerability to 

freshwater toxicity. The areas most directly related to the groundwater, 

such as river areas, areas with gravel surfacing (type D and A), are also 

less suitable to host activities that release harmful substances for the 

aquifer, then receive a high vulnerability score to the toxicity of fresh 

water. Vice versa, to areas not directly connected with the aquifer, can be 

recognised a lower vulnerability score. The presence of soils that are 

different from the surface gravels, which the runoff water and percolation 

meet before reloading groundwater, may make a filtering mechanism and 

then decrease the damage to the aquifer, and consequently receive a 

lower value of vulnerability score (Type C and Type 3 ). 

Among the various constraints applied to identified areas in the 

Protection Plan, which are primarily related to new town planning in 

order to limit the waterproofing and contamination of groundwater by 

urban sewage, it is also required for agronomic practices to avoid the 

dispersion of nutrients and pesticides to groundwater. Spreading of liquid 

manure on agricultural land also requires compliance with related 

regional rules. 

Basing on the specific characteristics of classified lands illustrated in 

the Protection Plan, it is possible to qualitatively rank all land layers 



LCA – GIS Model design 67 

against the vulnerability level to freshwater toxicity, on the base of the 

direct link and the distance from the target (i.e. fresh surface water and 

groundwater) principle: 

 

Type D > Type A and supply_areas.shp > PTCP_zones_derivat_prot.shp 

and PTCP_fluvial_tut_ares.shp > Type B > Type C, recharge_areas.shp and 

reserve_areas.shp.  

 

In order to take into consideration the contribution of all the 

environmental variables, it is possible to assign a score of vulnerability 

according to a scale by 1 to 5, being 5 the clusters identified on the base 

of the above qualitative ranking. Assigned vulnerability scores are showed 

in table 3.9.   

 

 Table 3.9. Vulnerability scores assigned to map layers used for the 

definition of the vulnerability map to fresh water toxicity.  

Map layer Map layer attribute 
Vulnerability 

score 

PTCP_recharge_areas_abcd.shp Type D 5 

PTCP_recharge_areas_abcd.shp Type A 4 

supply_areas.shp Water supply areas 4 

PTCP_zones_derivat_prot.shp 
Zones for the derivations 

protection 
3 

PTCP_fluvial_tut_areas.shp 
Zones for the protection 

of the riverbeds 
3 

PTCP_recharge_areas_abcd.shp Type B 2 

PTCP_recharge_areas_abcd.shp Type C 1 

recharge_areas.shp Recharge areas 1 

reserve_areas.shp Reserve areas 1 
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All layers have been converted to raster map with the same resolution 

(50 m pixel) and extension (province of Bologna), and then overlaid using 

the map calculator tool of  ArcView3.2 (ESRI). 

For each pixel, the map calculator tool summed the vulnerability score. 

The resulting map is a raster map with the total vulnerability score for 

each pixel. The vector format (map_calc_vuln_FWT.shp) is showed in fig. 

3.3. Vulnerability score ranged from 0 to 11. Where value is zero, no 

limiting condition, referring to table 3.9, are present. There are no areas 

where are all limiting factors are present in the same location. Resulting 

total vulnerability scores were classified in 3 classes (low, moderate and 

high) of vulnerability in order to simplify the map visualization, following 

the equal area approach. The vector format of this map is showed in fig. 

3.4. Polygon of this map where aggregated based on the vulnerability 

classification, using the dissolve tool of the GeoProcessing Wizard of 

ArcView3.2. This operation aggregates features that have the same value 

for an attribute that user can specifies.  

Higher vulnerable area are located in the centre of the province, and 

they are linked to the riverbed track. Few small area are present in the 

Apennines (lower part of the map), mainly related to the presence of 

reserve areas.  
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Figure 3.3. Vulnerability map to fresh water toxicity. This map is the result of the topological overlay of land 

classifications extracted from the Plan  of protection of fresh waters.  

Vulnerability score  

to freshwater toxicity 
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Figure 3.4. Vulnerability map to fresh water toxicity (FWT) with classification of the total vulnerability score in 3 

classes of vulnerability: low (0 – 1); moderate (2 – 6), high (7 - 11), based on equal area classification. 
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Table 3.10. Vulnerability to freshwater toxicity (FWT) of municipalities in 

the Province of Bologna.  

Municipality
low 

(%)

moderate 

(%)

high 

(%)

Total        

(ha)

ANZOLA 81.22 18.78 0.00 3623.80

ARGELATO 91.79 8.21 0.00 3511.71

BARICELLA 88.46 11.54 0.00 4560.12

BAZZANO 0.34 92.27 7.40 1396.17

BENTIVOGLIO 86.35 13.65 0.00 5105.77

BOLOGNA 52.17 44.03 3.80 14069.01

BORGO TOSSIGNANO 82.68 16.41 0.91 2915.22

BUDRIO 89.24 10.76 0.00 12033.21

CALDERARA DI RENO 49.47 48.49 2.04 4125.39

CAMUGNANO 67.56 26.82 5.62 9658.49

CASALECCHIO DI RENO 28.10 60.92 10.98 1737.48

CASALFIUMANESE 86.84 13.01 0.14 8198.27

CASTEL D'AIANO 88.56 11.44 0.00 4524.38

CASTEL DEL RIO 74.89 24.89 0.21 5254.88

CASTEL DI CASIO 77.97 16.40 5.63 4736.48

CASTEL GUELFO 88.64 11.36 0.00 2861.29

CASTEL MAGGIORE 58.71 39.82 1.47 3096.71

CASTEL S. PIETRO TERME 61.72 34.90 3.38 14844.34

CASTELLO D'ARGILE 82.34 17.66 0.00 2906.53

CASTELLO DI SERRAVALLE 85.17 14.60 0.23 3915.96

CASTENASO 84.56 15.44 0.00 3575.25

CASTIGLIONE DEI PEPOLI 71.87 27.89 0.24 6586.26

CRESPELLANO 56.29 43.71 0.00 3783.95

CREVALCORE 92.47 7.53 0.00 10256.05

DOZZA 12.48 86.01 1.51 2421.63

FONTANELICE 87.07 12.93 0.00 3659.37

GAGGIO MONTANO 87.31 12.69 0.00 5868.17

GALLIERA 88.26 11.74 0.00 3714.86

GRANAGLIONE 78.99 18.82 2.19 3957.77

GRANAROLO 91.51 8.49 0.00 3438.51

GRIZZANA 83.44 16.56 0.00 7744.68

IMOLA 60.49 36.60 2.91 20504.03

LIZZANO IN BELVEDERE 83.53 15.67 0.80 8551.54

LOIANO 95.33 4.67 0.00 5238.77

MALALBERGO 79.22 20.78 0.00 5383.39

MARZABOTTO 67.17 31.44 1.39 7452.09

MEDICINA 80.24 19.76 0.00 15910.65

MINERBIO 89.24 10.76 0.00 4306.99

MOLINELLA 71.64 28.36 0.00 12791.60

MONGHIDORO 88.24 11.74 0.02 4813.49

MONTE S.PIETRO 83.53 16.33 0.14 7470.78

MONTERENZIO 92.98 7.02 0.00 10537.49

MONTEVEGLIO 59.22 34.24 6.54 3258.23

MONZUNO 87.81 12.17 0.01 6499.62

MORDANO 90.15 9.85 0.00 2143.36

OZZANO 68.09 31.91 0.00 6476.64

PIANORO 89.65 10.26 0.09 10717.81

PIEVE DI CENTO 66.95 33.05 0.00 1588.79

PORRETTA TERME 59.13 33.35 7.52 3392.41

S.AGATA BOLOGNESE 95.49 4.51 0.00 3478.62

S.BENEDETTO VAL DI SAM 70.28 28.35 1.37 6662.99

S.GIORGIO DI PIANO 100.00 0.00 0.00 3043.85

S.GIOVANNI IN PERSICET 90.64 9.36 0.00 11439.66

S.LAZZARO DI SAVENA 27.18 58.13 14.69 4470.66

S.PIETRO IN CASALE 99.49 0.51 0.00 6587.21

SALA BOLOGNESE 59.72 40.07 0.20 4510.65

SASSO MARCONI 65.15 30.73 4.12 9646.07

SAVIGNO 92.61 7.39 0.00 5487.76

VERGATO 87.21 12.77 0.02 5994.29

ZOLA PREDOSA 45.29 51.00 3.71 3774.95

Total 76.40 22.24 1.36 370216.05  
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Through the topological overlay of vulnerability map of fig. 3.4 with 

map of municipality borders in ArcView3.2, it has been possible to 

calculate their extension for each vulnerable area. This result is obtained 

using the union tool of the GeoProcessing Wizarz of Arcview3.2. This  

operation combines features of an input theme with the polygons from an 

overlay theme to produce an output theme that contains the attributes 

and full extent of both themes. Before applying this tool, maps must be 

converted in vector format with the appropriate converting tool. Results 

are shown in table 3.10. Only 1.36 % of the province is classified as highly 

vulnerable, 22.24 % as moderate and the major part, 76.40 %, with a low 

vulnerability. Casalecchio and San Lazzaro showed the highest extensions 

of vulnerable lands, 10.98 % and 14.69 %, respectively, representing 

anyway a small portion of the municipal extension and of course of the 

whole province. Lots of municipalities are with a low vulnerability for 

almost the entire extension, e.g. San Giorgio di Piano showed 100 % of 

land classified with a low vulnerability. 

 

Crop allocation for minimizing fresh water toxicity risks 

Land vulnerability map to freshwater toxicity can be used to distribute 

crop in order to minimize their impact in the territory.  To do this, it is 

necessary to integrate the impact value of freshwater toxicity  calculated 

using LCA, and reported in table 3.11, with the site-specific vulnerability. 

As also described in the Baseline Principle chapter, one method is to 

calculate an allocation risk value, referring to the different allocation 

scenarios, defined by a given crop when located in a given vulnerable 
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land, for each crop and for each pixel of the vulnerability map. The 

freshwater toxicity LCA impact value of each crop was combined with the 

land vulnerability and weighted on the worst allocation scenario (maize in 

the most vulnerable areas).  

 

Table 3.11. Allocation risk values of crop - land vulnerability combinations 

related to freshwater toxicity. FWT is expressed as equivalent phosphate 

ions (PO4
3-

 eq.) and as percentage of the highest impacting crop (maize). 

Impact scores are weighted on the most impacting scenario, i.e. maize 

when located in high vulnerability lands. 

Crop
FWT 1,4-DC 

eq. (kg ha
-1

)
% low moderate  high

maize 199 100.0 3 6 10

f sorghum 128.0 64.3 1.93 3.86 6.43

rapeseed 101.0 50.8 1.52 3.05 5.08

wheat 99.1 49.8 1.49 2.99 4.98

sunflower 90.5 45.5 1.36 2.73 4.55

miscanthus 76.9 38.6 1.16 2.32 3.86

cynara 74.3 37.3 1.12 2.24 3.73

giant reed 73.9 37.1 1.11 2.23 3.71

switchgrass 50.3 25.3 0.76 1.52 2.53  

 

In particular, to the worst allocation scenario was assigned a value of 

10, 6 when maize is located in the moderate vulnerable lands and 3 when 

is located in a low vulnerable land.  Allocation risk of all crops were then 

referred to maize values. For example, in the case of rapeseed when 

located in the high vulnerable lands, the calculation were as following: 

50.8 / 100 x 10 = 5.08  
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where 50.8 is the eutrophication impact of rapeseed weighted on maize, 

the most impacting crop, and 10 the allocation value of maize when 

located in the highest vulnerable areas (table 3.11).  

Equally, to calculate the allocation risk of rapeseed in the moderate 

vulnerable areas the formula will be:  

82.9 / 100 x 6 = 3.05 

Above operation repeated for each crop-vulnerable land combination 

results in values summarized in table 3.11. Crops allocation risk for each 

vulnerable area can be mapped, the allocation risk level is defined 

classifying values of table 3.11 in 3 classes, which ranges are again defined 

referring to maize scenarios. The values reported in table 3.11 were then 

polled into three classes and finally mapped (fig. 3.5). 

Sorghum and maize showed a very similar allocation risk, as well as 

for rapeseed, but this last without showing the high allocation risk. 

Sunflower, wheat, cynara, miscanthus and giant reed showed an 

allocation risk classified as moderate, respect to maize, only in high 

vulnerable lands. While switchgrass showed a low impacting risk in all 

vulnerable lands (fig. 3.5). 

The aforementioned information could be summarized in a general 

map (fig. 3.6) showing the optimal crop allocation from the environmental 

point of view, minimizing freshwater toxicity, in this case. 

Once the land vulnerability is understood and the different crops 

characterized in term of their allocation risk, one can allocate the more 

impacting crops in the less vulnerable areas and vice versa. In fig. 3.6 it is 

shown for each vulnerability area which crop may be cultivated. For the 



LCA – GIS Model design 75 

lower vulnerable areas all crops might be grown, while, at the opposite, 

for the higher vulnerability areas only switchgrass presented a low 

allocation risk, thus being cultivated. In the hypothesis of a district 

completely dedicated to energy crops, the lowest risk scenario to 

freshwater toxicity would include only switchgrass. Sunflower, wheat, 

cynara, miscanthus and giant reed could be grown in low and moderate 

vulnerable lands as they showed a low allocation risk for that areas (fig. 

3.6). 

Referring information on crop allocation reported on the map of fig. 

3.6 to table 3.10, reported percentages also indicate the land portion for 

each municipality where a given crop may be grown. For example in the 

municipality of San Lazzaro, 14.69 % of the total extension should not be 

grown with maize, which it should be grown only in the 28.10 % of the 

lands. Of course this percentages should be decreases of not agricultural 

lands portion and/or of other limitations to its cultivation. 
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Figure 3.5. Land vulnerability to freshwater toxicity (FWT): allocation risk 

of crops as classified in 3 classes (low, moderate and high).  
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Figure 3.6. Optimal crop allocation to minimize the freshwater toxicity risks (FWT). Low, moderate and high 

vulnerabilities areas are the same as in fig. 3.4.  

low: all crops 

high: switchgrass, only 

moderate: sunflower, wheat, cynara, miscanthus, giant reed 
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Links between eutrophication and freshwater toxicity in the 

vulnerability definition 

The vulnerability to eutrophication and to freshwater toxicity in both 

cases are linked to the need of protect waters (same target). 

The eutrophication is among the more impacting steps in the 

agricultural production chains and it is mainly linked to the use of 

fertilizers (Brentrup, Kusters et al. 2004). The toxicity to fresh water, 

instead, is mainly related to the use of chemicals and pesticides for weed 

and disease control. When defining the vulnerability and then allocating 

crops basing on it, it is important to consider both of them, in order to 

maintain the possibility to discriminate the impacts of crop production 

chains on the base of the amount of fertilizers and chemicals. A crop 

production chain that requires large amount of fertilizer, not necessarily 

require as well as large quantities of chemicals, and vice versa. Several 

environmental factors that are considered in the definition of the 

vulnerability map are similar for eutrophication and for freshwater 

toxicity, because in both cases the target is in general to protect  

groundwater and water sources, and also the environmental components 

that are directly or indirectly linked with them (soil, rivers, surface gravels, 

etc.).  

The use of both impacts, eutrophication and freshwater toxicity, 

increases the overall sustainability when allocating crops basing on their 

impacts. At the same time, however, there is the risk of double counting 

for some environmental components and then to overestimate the 

overall vulnerability for some locations. Several environmental factors 

may be reasonably used to define both eutrophication and freshwater 
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toxicity vulnerabilities. To avoid overestimation it is very important to try 

to assign all this factors between the two impacts trying to avoid double 

counting. As a general rule, for the vulnerability to freshwater toxicity, the 

environmental factors directly linked with the recharge of drinkable water 

may be considered, while for the vulnerability to eutrophication, factors 

linked with the quality of the water in general, also of the ones not 

directly used for human consumption may instead be used.  
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Setting up land vulnerability map to eutrophication 

The eutrophication effect refers to the overgrow of organisms due to 

extreme release of nutrients. One main effect is on water, reducing the 

oxygen concentration and thus the maintaining of biodiversity. Also the 

effect on nitrate content in waters, that has to be lower that 50 mg 

nitrate per litre, is of course affected by fertilizers uses. The agricultural 

use of fertilizer are among the main reasons. The emission of mineral 

coming from agricultural mainly involved in eutrophication are nitrogen 

and phosphate (N and P) in the form of nitrates and phosphates use  in 

agriculture. Nitrates and phosphates may reach groundwater through 

leaching and runoff (Biewinga and Van der Bijl 1996). Nitrates are quite 

movable through the soil section, phosphate are quite well captured by 

soil, anyway runoff losses contribution are quite important for 

eutrophication of surface water (Biewinga and Van der Bijl 1996).  

Basing on this aspects, the vulnerability map to eutrophication 

should consider the presence of rivers and lakes, soil characteristics, as 

texture, that may affect the nutrient leaching, nitrate effect on waters, 

soil morphology, agricultural use of fertilizers and their nutrient balance, 

rainfall pattern, etc.. In practice, the vulnerability map to the 

eutrophication has been defined mainly in agreement with the 

methodology indicated in the Plan for Water Protection (Severi, Berrè et 

al. 2002). Again, in this document, which in most of the parts also were 

the reference for the definition of the vulnerability to the freshwater 

toxicity, defined procedures followed an approach that well fit with the 

concept of land vulnerability to eutrophication. In the framework of this 
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Protection Plan, several map layers were analysed in order to build the 

Regional Map of Vulnerability to Nitrate (Determination n. 6636 of 

6/7/2011 of the Environment, soil and coast protection Office of the 

Emilia-Romagna region – Determina n. 6636 del 6/7/2001 della Direzione 

Ambiente e Difesa del SUolo e della Costa della Regione Emilia-Romagna). 

The aim however was to split the territory of the region in "vulnerable" 

and "non-vulnerable areas" including in the first ones, because of their 

hydrogeological characteristics, the areas in which there is a risk of nitrate 

pollution of groundwater by the use of agriculture manure and other 

nitrogen fertilizers. The used methodology took into account climatic and 

geological characteristics related to the use of land from agriculture (e.g. 

map of roof gravel from ground level and the map of the degree of 

protection of the system soil-crop-climate). 

Synthetically, this vulnerability map has been created by identifying 

the areas affected by the presence of gravels at a depth below 10 m from 

the ground level. In the identification of this areas, soil characteristics 

were also considered, together with the climate and the type of crop. 

Finally, zones in which the soil properties preclude or inhibit the flow of 

water to bottom where also identified. The map thus defines vulnerable 

areas of the region, from which the information at the provincial level was 

extracted, with the presence of polluted water or susceptible to pollution 

by nitrates from agricultural sources. The effect of the soil texture and the 

presence of gravel and sand on the leaching was also considered, as well 

as the amount of nitrate from agricultural activities in groundwater, in 

order to identify where the presence is already high and then deserving a 
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major protection. The topological overlay of all this maps brings to the 

definition of the vulnerable lands to nitrates showed in fig. 3.7, and it 

represents the areas of the Province where groundwater are polluted of 

susceptible of pollution of nitrate from the agricultural activities. Further 

details on the production of this vulnerability map to nitrates are 

contained in the document “Technical details on the production of the 

New Regional Vulnerability Map: methodological aspects  (Severi, Berrè et 

al. 2002). 

 

 

Figure 3.7. Vulnerable areas to nitrates in the province of Bologna, 

extracted from the regional map.  
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Vulnerable areas are mainly located at the central area of the 

province, corresponding with the beginning of the flat fertile lands. 10.95 

% (40524.95 ha) of the total province extension has been classified as 

vulnerable to nitrates. 

However, there is an overlap with those of environmental variables 

used in the map of vulnerability to freshwater toxicity, for example, this 

vulnerability map to nitrates has been used, together with the 

hydrogeological characteristics mentioned in the previous chapter, for the 

definition of the external borders of Type B areas of the "Groundwater 

protection areas in foothill and lowland territories ". 

Other land characteristic were also added to the vulnerability to 

nitrates, as identified in fig. 3.7, and in particular the soil texture map, in 

order to emphasize the texture variation of the flat area (northern part of 

the map), and the river valley maps, in order to avoid the cultivation of 

high releasing nitrogen crop in these areas. With all mentioned 

environmental layers, the agricultural use of the land were emphasized, 

while all land factors linked to the conservation of the water quality, and 

mainly referring to its potability, were only used in the definition of the 

land vulnerability map to freshwater toxicity.  
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a)    

b)  

Figure 3.8. Steps for river valley map production. a) Proximity map. 

Different colours represents different altitude values. b) Differential 

overlay map between proximity map and terrain altitudes.  

10 m 

River bed 
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Soil map 1:250000 with texture data is available from the geographic 

data catalogue of the Province of Bologna 

(http://cst.provincia.bologna.it:81/catalogo/).  

Map of river valleys were not available, thus it was elaborated within 

ArcView3.2 using several base layers. Followed procedure is briefly listed 

below: 

1. Rivers maps (polylines) converted in Rivers maps (points) 

2. Attribution to each point of the altitude value after their 

overlay with the Digital Elevation Model of the Province. 

3. Assign proximity tool of ArcView3.2. the result is a raster map 

where each pixel results in the nearest value of point’s altitude 

(fig. 3.8a). 

4. Differential overlay between the DEM with proximity map of 

fig. 3.8b) 

5. Selection of pixels where the difference is lower than 10 m 

(Fig. 3.9)  

 

Most of rivers are located between 7 and 203 m a.s.l.. In total, valley 

extension resulted 3671 ha. 
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Figure 3.8.  Map of river valleys in the Province of Bologna on DEM. Flat area in the Northern part is not 

considered. 
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Finally, all environmental layers used to define the vulnerability map 

to eutrophication, and the attributed vulnerability score, are listed in the 

table 3.12.  They involve the vulnerability map to nitrates, wet areas and 

river valleys (from the land use map and from the elaboration of river way 

and land morphology), and the soil map, with attribution of a vulnerability 

score basing on the main texture. Each map’s attribute reached a 

vulnerability score ranging from 1 to 4. This score assignment remains 

quite subjective, even if it may be supported by reliable principles: soil 

with fine texture is less vulnerable to eutrophication because of its ability 

in leaching limitation. In this phase, specific skills on eutrophication 

problems are particularly required.  

 

Table 3.12. Vulnerability score of map attributes used to define 

vulnerability to eutrophication (low=1; high=4). 

Land map Map attribute
Vulnerability 

score

Vulnerabil ity map to nitrates Vulnerable areas 4

Wet areas. Low lands generally flooded 

during winter or covered by water 

during al l seasons. Riverbeds with 

vegetation. River valleys and wet areas 

(from the Land use Map 2003 of the 

Emilia Romagna Region)

Wet areas 3

fine texture 1

medium texture 3

Soil map 1:250000 from the Emil ia 

Romagna Region Information service

 

 

Score were added for each map attribute in the attribute table as a 

new column called “addvuln” (summands of vulnerability). Before 



LCA – GIS Model design 88 

overlaying, all maps where converted in raster format and reported at the 

same resolution, fixed at 50 m each pixel. The pixel of 50 m consequently 

also identifies the minimum level of analysis. Produced raster maps have 

been overlaid and using “map calculator” tool of the GIS software 

Arcview3.2, all vulnerability scores were summed pixel by pixel. 

The resulting map is showed in fig. 3.9, which shows the vulnerable 

areas in the Province of Bologna, and fig. 3.10 where the vulnerability has 

been classified in low, moderate and high, following the equal area 

approach. Each pixel in fig. 3.9 is the sum of all the single scores 

associated to each variable. 
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Figure 3.9.Vulnerability map to eutrophication (EU). This map is the result of the topological overlay of the land 

maps listed in table  3.12  (increasing vulnerability to eutrophication from 0 to 10).  
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Figure 3.10. Classified vulnerability map to eutrophication (EU) based on equal area method.  
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The vulnerability ranged from 0 to 10 (fig. 3.9 ). The differences in the 

flat areas (Northern part) are mainly due to soil texture, while differences 

in the Southern part are mainly caused by river valleys and soil texture. 

Most vulnerable areas located in the centre of the map are mainly due to 

the presence of vulnerable lands to nitrates. This area are at the end of 

the sloping areas of Apennines. Some parameter such as slope, rainfall, or 

water table depth, that may further affect the vulnerability to 

eutrophication, were already included within the vulnerability map to 

nitrates by the Regional Office of Water Protection. 

The area was divided into 3 classes of vulnerability basing on equal 

areas approach. Insignificant areas smaller than 1 ha were eliminated. The 

map was converted into vector format for an easier layout (fig. 3.10). 

The final output was that 73.91 %, 17.36 % and 9.73 % of the whole 

province extension (almost 370.000 ha) were recognized as low, 

moderate and highly vulnerable, respectively.  

Bazzano showed the higher portion of his extension (89.67 %) 

classified with high vulnerability, followed by San Lazzaro and Imola, with 

their 59.88 % and 57.23 %, respectively, of high vulnerable lands to 

eutrophication. Higher portion of moderate vulnerable lands is located in 

Sasso Marconi (46.94 %), while low vulnerable lands are quite 

homogenously distributed in the flat and hilly area of the province. 
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Table 3.13. Vulnerability to eutrophication (EU) of municipalities in the 

Province of Bologna.  

Municipality
low    

(%)

moderate 

(%)

high 

(%)

Total      

(ha)

ANZOLA 92.08 7.92 0.00 3621.75

ARGELATO 78.11 21.75 0.15 3511.70

BARICELLA 91.63 8.37 0.00 4555.79

BAZZANO 3.50 6.82 89.67 1386.62

BENTIVOGLIO 81.29 18.71 0.00 5105.76

BOLOGNA 47.53 7.38 45.09 14069.01

BORGO TOSSIGNANO 81.19 6.97 11.84 2908.41

BUDRIO 78.68 20.86 0.46 12033.21

CALDERARA DI RENO 69.31 4.73 25.96 4125.39

CAMUGNANO 85.39 14.61 0.00 9652.65

CASALECCHIO DI RENO 39.25 15.06 45.69 1737.48

CASALFIUMANESE 80.85 15.54 3.60 8198.27

CASTEL D'AIANO 90.67 9.33 0.00 4514.23

CASTEL DEL RIO 94.73 5.27 0.00 5234.46

CASTEL DI CASIO 86.98 13.02 0.00 4732.35

CASTEL GUELFO 91.33 1.20 7.48 2861.29

CASTEL MAGGIORE 45.48 40.81 13.71 3096.71

CASTEL S. PIETRO TERME 51.93 38.02 10.05 14844.34

CASTELLO D'ARGILE 95.80 4.20 0.00 2906.38

CASTELLO DI SERRAVALLE 66.26 24.78 8.96 3911.57

CASTENASO 70.88 4.70 24.42 3575.25

CASTIGLIONE DEI PEPOLI 91.24 8.76 0.00 6572.01

CRESPELLANO 72.43 13.75 13.82 3782.45

CREVALCORE 81.48 18.46 0.06 10237.30

DOZZA 26.97 32.30 40.72 2421.63

FONTANELICE 90.47 9.53 0.00 3653.18

GAGGIO MONTANO 88.11 11.89 0.00 5863.44

GALLIERA 94.98 5.02 0.00 3704.89

GRANAGLIONE 95.42 4.58 0.00 3916.62

GRANAROLO 75.46 24.54 0.00 3438.51

GRIZZANA 89.79 10.21 0.00 7744.67

IMOLA 25.66 17.12 57.23 20455.86

LIZZANO IN BELVEDERE 95.01 4.99 0.00 8538.27

LOIANO 80.05 18.51 1.44 5238.77

MALALBERGO 87.46 12.54 0.00 5378.93

MARZABOTTO 89.66 10.31 0.03 7452.08

MEDICINA 82.02 17.60 0.39 15908.26

MINERBIO 62.17 37.83 0.00 4306.99

MOLINELLA 86.45 13.41 0.14 12765.96

MONGHIDORO 91.41 8.59 0.00 4803.25

MONTE S.PIETRO 71.23 26.55 2.23 7470.77

MONTERENZIO 88.77 10.90 0.34 10533.91

MONTEVEGLIO 49.77 28.23 22.00 3255.96

MONZUNO 79.56 19.72 0.72 6499.62

MORDANO 63.18 31.38 5.44 2133.63

OZZANO 31.05 35.58 33.37 6476.63

PIANORO 31.07 61.72 7.20 10717.79

PIEVE DI CENTO 72.46 27.54 0.00 1581.83

PORRETTA TERME 91.16 8.84 0.00 3392.28

S.AGATA BOLOGNESE 95.85 4.15 0.00 3476.10

S.BENEDETTO VAL DI SAM 91.26 8.74 0.00 6655.97

S.GIORGIO DI PIANO 94.51 5.41 0.08 3043.84

S.GIOVANNI IN PERSICET 97.61 2.39 0.00 11431.13

S.LAZZARO DI SAVENA 17.92 22.21 59.88 4470.65

S.PIETRO IN CASALE 92.14 7.82 0.04 6587.20

SALA BOLOGNESE 95.44 4.56 0.00 4510.64

SASSO MARCONI 39.08 46.94 13.98 9646.06

SAVIGNO 85.77 14.18 0.05 5484.34

VERGATO 82.49 17.51 0.00 5992.89

ZOLA PREDOSA 52.65 19.24 28.11 3774.95

Total 72.91 17.36 9.73 369901.85  
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Crop allocation for minimizing eutrophication risks 

Crops may be distributed integrating LCA eutrophication with the 

vulnerability maps of fig. 3.10. Distribution may occur calculating an 

allocation risk value each crop-vulnerable land combination, considering 

the eutrophication LCA impact values (table 3.14). 

 

Table 3.14. Allocation risk values of crop - land vulnerability combinations 

related to eutrophication (kg ha
-1

). EU is expressed as equivalent 

phosphate ions (PO4
3-

 eq.) and as percentage of the highest impacting 

crop (maize). Impact scores are weighted on the most impacting scenario, 

i.e. maize when located in high vulnerability lands. 

Crop
EU                     

PO4
3- 

eq. (kg ha
-1

)
% low moderate high

maize 5.56 100 3 6 10

rapeseed 4.61 82.9 2.49 4.97 8.29

sunflower 4.46 80.2 2.41 4.81 8.02

sorghum 4.38 78.8 2.36 4.73 7.88

wheat 4.37 78.6 2.36 4.72 7.86

cynara 1.85 33.3 1.00 2.00 3.33

miscanthus 1.67 30.0 0.90 1.80 3.00

giant reed 1.64 29.5 0.88 1.77 2.95

switchgrass 1.37 24.6 0.74 1.48 2.46  

 

The eutrophication effect of each crop was combined with the land 

vulnerability and weighted on the worst allocation scenario (maize in the 

most vulnerable areas). For example, in the case of rapeseed the 

calculation were as following: 

82.9 / 100 x 10 = 8.29  

where 89.2 is the eutrophication impact of rapeseed weighted on maize, 

the most impacting crop, when located in the highest vulnerable areas 
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(table 3.14). Equally, to calculate the score of rapeseed in the moderate 

vulnerable areas the formula will be:  

82.9 / 100 x 6 = 4.97 

Above operation repeated for each crop-land allocation result in 

values summarized in table 3.14. 

 

Crops may be distributed in the different areas basing on this 

calculated allocation risk value. The values reported in table 3.14 were 

then polled into three classes and finally mapped (fig. 3.11). 

Maize showed important eutrophication risk in all areas. Rapeseed, 

wheat, sunflower and fibre sorghum showed similar risks to maize (fig. 

3.11). Giant reed, miscanthus and switchgrass revealed much lower 

impacts than maize at each vulnerability class. Cynara showed a risk 

classified as moderate only in the high vulnerability areas in the centre of 

the Province (fig. 3.11). 

The aforementioned information could be summarized in a general 

map (fig. 3.12) showing the optimal crop allocation from the 

environmental point of view (eutrophication in this case). 
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Figure 3.11. Land vulnerability to eutrophication: allocation risk of crops 

as classified in 3 classes (low, moderate and high). 

  

maize rapeseed sunflower 

f sorghum wheat cynara 

miscanthus giant reed switchgrass 
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Once the land vulnerability is understood and the different crops 

characterized in term of their impacts (eutrophication in this example), 

one can allocate the more impacting crops in the less vulnerable areas 

and vice versa. In fig. 3.12 it is shown for each vulnerability area which 

crop may be cultivated. For the lower vulnerable areas all crops might be 

grown, while, at the opposite, for the higher vulnerability areas only giant 

reed, miscanthus and switchgrass may be cultivated. 

In the hypothesis of a district completely dedicated to energy crops 

the lowest risk scenario to eutrophication would include only giant reed, 

switchgrass and miscanthus, all perennials. Therefore, if the 

eutrophication is considered a major concern, maize should be grown 

only in the low vulnerability areas (fig. 3.12).  

Moving information on crop allocation of fig. 3.12, to table 3.13, 

reported percentages in the table also indicate the land portion for each 

municipality where a given crop may be grown. For example in the 

municipality of Imola, 57.23 % of the total extension should not be grown 

with maize, that it should be grown only in the 25.66 % of the lands. Of 

course this percentages should be decreases of not agricultural lands or 

other limitations linked with the crop cultivation. 
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Figure 3.12. Optimal crop allocation to minimize the eutrophication (EU) risks. Low, moderate and high 

vulnerabilities areas are the same as in fig. 3.10. 

moderate: giant reed, miscanthus, switchgrass and cynara 

high: giant reed, miscanthus and switchgrass, only 

low: all crops 
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Setting up land vulnerability map to human toxicity  

The human toxicity is expressed as kg ha
-1

 of 1,4-dichlorobenzene 

equivalent and it has been calculated with the USES-LCA procedure, that 

takes in consideration the fate, the exposure and the effect of several 

toxic substances to exposed persons for a indefinite time horizon (Monti, 

Fazio et al. 2009).  

Among the various components that contribute to define the human 

toxicity there are metals and fine particles that fall into the ground, or, 

when emitted into the air they can fall not far from the source. For the 

definition of the vulnerability map of to human toxicity, the approach of 

“proximity to the target” it can be followed. The target can be identified 

with the presence and the extension of urban areas. This approach then 

brings to the definition of the deposition distance of pollutants from the 

source and then the presence of the target. This could depends on several 

factors such as speed and direction of prevailing winds, surface 

roughness, which determines the turbulent motions, atmospheric 

stability, morphology of the territory, etc. (Wang, Davis et al. 2006). 

The vulnerability map should be then based on the concept of the 

climatic footprint for each of urban area, i.e. gas/particle emission 

footprint map of urban areas, which defines where potentially emission 

sources, which emissions are able to reach urban areas, can be located 

(Wang, Davis et al. 2006). Vulnerable areas can be imaged as a sort of 

buffer around the urban agglomeration. Where there is an intersection of 

more than one buffer, the vulnerability is higher, because a potential 

emission source that is there located would reach more that one target. 
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Basing on this approach this map is hard to define because lot of 

information about predominant wind direction, surface roughness, etc. 

and skills on atmospheric physics are needed.  

The population density also can be related to vulnerability, e.g. high 

population densities values increase the vulnerability level because of the 

higher presence of targets per surface unit. The vulnerability map to 

human toxicity can then be produced considering the proximity criteria 

and humans as targets. A simple and immediate method to classify the 

province of Bologna respect to its vulnerability to human toxicity is to 

calculate the population density map using municipally based resident 

data from the national statistic data service ISTAT. ISTAT releases 

information on residents for each municipality, representing then also the 

higher spatial resolution. Elaborating resident data in ArcView3.2 and 

linking them with the map of municipalities of the Province with the use 

of the identification code defined by ISTAT, it was possible to calculate the 

population density map of the Province. 

The higher the density value, the higher the vulnerability. Population 

values were then classified in three classes of vulnerability, fig. 3.13 shows 

the resulting map. Population density resulted very variable, ranging from 

21.71 persons km
-2

 to a maximum of 2651.4 persons km
-2

 (table 3.15). 

Values were aggregated in 3 classes, thus the province was classified 

as low, moderate and high vulnerable to human toxicity, on the base of an 

equal area classification approach. In other words, the vulnerability is 

defined on the base of the variation of the population density, areas with 

the highest population density reach the highest vulnerability value.  
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Figure 3.13. Land vulnerability map to human toxicity (a) and classified in 3 classes (low, moderate and high 

vulnerability) (b). This map has been obtained classifying the area in 3 vulnerability classes based on population 

density. The higher the population density, the more the vulnerability to human toxicity. 
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Table 3.15. Vulnerability to human toxicity (HUMT), population density 

and extension of municipalities in the Province of Bologna.  

ISTAT code Municipality AREA (Km
2
) Population density (p km

-2
) Vulnerbility

37001 ANZOLA 36.2380 317.07 high

37002 ARGELATO 35.1171 266.25 high

37003 BARICELLA 45.6012 134.29 low

37004 BAZZANO 13.9617 461.62 high

37005 BENTIVOGLIO 51.0577 94.11 low

37006 BOLOGNA 140.6901 2651.40 high

37007 BORGO TOSSIGNANO 29.1522 110.69 low

37008 BUDRIO 120.3321 136.23 moderate

37009 CALDERARA DI RENO 41.2539 309.55 high

37010 CAMUGNANO 96.5849 21.71 low

37011 CASALECCHIO DI RENO 17.3748 1987.02 high

37012 CASALFIUMANESE 81.9827 39.53 low

37013 CASTEL D'AIANO 45.2438 43.70 low

37014 CASTEL DEL RIO 52.5488 23.86 low

37015 CASTEL DI CASIO 47.3648 70.05 low

37016 CASTEL GUELFO 28.6129 136.09 moderate

37017 CASTELLO D'ARGILE 29.0653 209.39 moderate

37018 CASTELLO DI SERRAVALLE 39.1596 115.37 low

37019 CASTEL MAGGIORE 30.9671 539.48 high

37020 CASTEL S. PIETRO TERME 148.4434 134.87 low

37021 CASTENASO 35.7525 385.12 high

37022 CASTIGLIONE DEI PEPOLI 65.8626 89.52 low

37023 CRESPELLANO 37.8395 233.12 high

37024 CREVALCORE 102.5605 125.01 low

37025 DOZZA 24.2163 248.26 high

37026 FONTANELICE 36.5937 51.05 low

37027 GAGGIO MONTANO 58.6817 85.00 low

37028 GALLIERA 37.1486 150.13 moderate

37029 GRANAGLIONE 39.5777 56.88 low

37030 GRANAROLO 34.3850 278.23 high

37031 GRIZZANA 77.4468 52.20 low

37032 IMOLA 205.0403 325.10 high

37033 LIZZANO IN BELVEDERE 85.5154 26.95 low

37034 LOIANO 52.3877 84.98 low

37035 MALALBERGO 53.8339 151.37 moderate

37036 MARZABOTTO 74.5208 87.89 low

37037 MEDICINA 159.1065 96.33 low

37038 MINERBIO 43.0699 198.05 moderate

37039 MOLINELLA 127.9159 117.73 low

37040 MONGHIDORO 48.1349 80.81 low

37041 MONTERENZIO 105.3749 53.12 low

37042 MONTE S.PIETRO 74.7078 145.66 moderate

37043 MONTEVEGLIO 32.5823 155.48 moderate

37044 MONZUNO 64.9962 94.70 low

37045 MORDANO 21.4336 205.43 moderate

37046 OZZANO 64.7664 182.39 moderate

37047 PIANORO 107.1781 155.59 moderate

37048 PIEVE DI CENTO 15.8879 432.85 high

37049 PORRETTA TERME 33.9241 139.40 moderate

37050 SALA BOLOGNESE 45.1065 169.40 moderate

37051 S.BENEDETTO VAL DI SAM 66.6299 67.61 low

37052 S.GIORGIO DI PIANO 30.4384 241.60 high

37053 S.GIOVANNI IN PERSICET 114.3966 224.53 moderate

37054 S.LAZZARO DI SAVENA 44.7065 676.14 high

37055 S.PIETRO IN CASALE 65.8721 168.57 moderate

37056 S.AGATA BOLOGNESE 34.7862 193.41 moderate

37057 SASSO MARCONI 96.4607 149.49 moderate

37058 SAVIGNO 54.8776 49.49 low

37059 VERGATO 59.9429 123.65 low

37060 ZOLA PREDOSA 37.7495 447.48 high  
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The maximum resolution corresponds with the municipality 

extension. Such resolution can represent a weak point of this map, 

anyway acceptable: municipalities are the lower level of the territory 

government able to take decisions, thus also the rough approximation to 

municipal extension  can have a sense. 

Around 52 % of the total Province extent resulted classified with a 

low vulnerability class, while 21 % as highly vulnerable. 

More densely areas are located in the centre of the map, 

corresponding with the Bologna’s urban area and on the Eastern part of 

the map, corresponding with Imola  municipality. The southern part of the 

province has been classified with a low vulnerability. They also are the 

mountainous portion with the lower population densities of the province. 

 

Crop allocation for minimizing human toxicity risks 

Crops can be allocated in the province minimizing the human toxicity 

risks based on their allocation risk value, following the same procedure 

for eutrophication and freshwater toxicity. This value can be calculated 

for each allocation scenario. The allocation scenario in this case is defined 

by the crop and by one of the three vulnerability classes to human 

toxicity. Values are calculated respect to scenarios with the highest 

allocation risk’s values, that correspond to maize (the most impacting 

crop) when located in highly vulnerable lands (allocation risk = 10). Thus, 

for rapeseed when located in highly vulnerable areas,  

allocation risk = 63.54 (see table 3.16) / 100 * 10 (allocation risk value 

for maize in highly vulnerable areas). 
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While for rapeseed when located in low vulnerable lands,  

allocation risk = 63.54 / 100 * 3 (that is the allocation risk for maize 

when located in low vulnerable lands). 

 

Table 3.16. Allocation risk values of crop regards human toxicity (HUMT). 

% means HUMT respect to maize. Low, moderate and high refer to classes 

of land vulnerability to human toxicity. 

Crop
HUMT 1,4-DC 

eq. (kg ha
-1

)
% low moderate high

maize 1810 100 3.0 6.0 10.0

f sorghum 1360 75.14 2.3 4.5 7.5

wheat 1180 65.19 2.0 3.9 6.5

rapeseed 1150 63.54 1.9 3.8 6.4

sunflower 1150 63.54 1.9 3.8 6.4

cardoon 738 40.77 1.2 2.4 4.1

miscanthus 709 39.17 1.2 2.4 3.9

arundo 661 36.52 1.1 2.2 3.7

switchgrass 474 26.19 0.8 1.6 2.6  

 

Allocation risk values of table 3.16 were then related to the land 

vulnerability map to human toxicity and mapped for each crop (fig. 3.14).  

Maize, rapeseed, wheat, sunflower and sorghum showed a high risk 

of allocation in all vulnerable lands, while giant reed, cynara and 

miscanthus generally showed lower impacts. Their allocation risk resulted 

classified as moderate respect to maize where the vulnerability is high 

(municipality of Bologna and Imola). Switchgrass showed a negligible risk, 

classified as low, in the whole province, resulting as the crop that could be 

grown in the entire territory with a low allocation risk.  

Above consideration can be summarized in a map (fig. 3.15) showing 

possible crop allocations minimizing human toxicity impact. 
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Central area of the map (fig. 3.15) refers to the urban area of Bologna 

and Imola. Based on the proposed classification, in this part of the 

province only switchgrass should be grown, while in moderate vulnerable 

lands, giant reed, cynara, miscanthus and switchgrass may be grown, as 

they showed an allocation risk classified as low (fig. 3.14) when located in 

that areas. The rest of crops (maize, rapeseed, wheat, sunflower and 

sorghum) should be grown only on low vulnerable lands to human 

toxicity, in part of the fertile flat valley at the Northern part of the map, 

e.g. Molinella, Minerbio, Medicina and Castel San Pietro Terme, and in the 

Apennines area, where population density is lower, but were pedoclimatic 

constraints may limit their cultivation or decreasing yields. 
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Figure 3.14. Maps of allocation risk to human toxicity for each “crop-

vulnerability” area combination. 
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Figure 3.15. Optimal land allocation to minimize human toxicity risks. Low, moderate and high represent 

vulnerability classes to human toxicity.   

low: all crops 

moderate: giant reed, cynara, miscanthus and switchgrass, only  

high: switchgrass, only 
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4. Methods for crop allocation based on multiple 

impact indicators 
 

 

Introduction 

Simple additive method and crop allocation 

Additive method of classified maps and crop allocation 

Composed multiplicative method and crop allocation 

 

 

 

 

 

 

 

 

Highlights 
Environmental impact minimization of the production chain in crop allocation is 

maximized if it is possible to consider as many as possible impact indicators with local 

effects. Basically, two methods categories can be defined, i.e. with or without an 

additional operation of synthesis, that is the calculation of a total impact indicator and 

of a comprehensive vulnerability map. The distribution of vulnerable lands among 

municipalities and inside them changed when considering more than one impact 

indicator, as well as for impacts of crops. It also adds complexity and uncertainty to 

the method as increasing numbers of classifications and non objective choices. 

Methods to integrate impacts and vulnerability maps must be well defined and 

transparent. Compared with optimal allocations considering only one impact 

indicator, it is still more evident that only switchgrass can be cultivated in high 

vulnerability lands. The CMM well suits the possibility to use more than two impact 

indicators with local effect. 
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Introduction 

Crop allocation in the territory taking into account the impact 

minimization of the production chain to the environment is maximized if 

it is possible to consider at the same time as many as possible impact 

indicators with local effects, as already introduced in last paragraph of 

chapter 2 baseline principles. To integrate more than one impact indicator 

it could means to calculate a “total impact index” that in a sort of way 

summarize all impacts with local effect that are used. The definition of 

this total indicator could follow several approaches that wants to 

compare variables with different units and of different orders. In table 3.7 

of chapter 3, also reported in the following table 4.2, it is shown a total 

impact indicator respect to the highest impacting crop. This total 

indicator, calculated as a mean between FWT%, EU% and HUMT%, would 

represent a simple and immediate way to include in one indicator the 

freshwater toxicity, the eutrophication and the human toxicity impact, 

standardized respect to the highest impacting crop (maize).  

In parallel with this, it could be also useful to calculate a 

comprehensive vulnerability map, to be related with the total impact 

index. This map would include the vulnerability information to all involved 

impact indicators. Within GIS framework, a map that contains information 

coming from more than one map is obtained with the “topological 

overlay”, through the map calculator tool in the case of the Arcview3.2 

software. Maps are superimposed and the information of each location 

are operated (summed, multiplied, subtracted, divided, etc.) and the 
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resulting map will show for each location (or map pixel) the result of the 

mathematical operation. 

Several approaches may be used to integrate more than one LCA 

impact indicator with more than one land vulnerability maps. Basically 

two simple categories may be defined, i.e. with or without an additional 

operation of synthesis. This operation refers to the calculation of the total 

impact indicator and the comprehensive vulnerability map. Fresh water 

toxicity (FWT), eutrophication (EU) and human toxicity (HUMT) were then 

used as case study in order to define how to integrate them and 

consequently allocate crops minimizing all their three impacts. The three 

vulnerability maps were merged testing the following three methods: a) 

simple additive method (SAM) and b) additive method of classified maps 

(AMCM), these last providing the additional synthetic calculations; c) 

composed multiplicative method (CMM), which will not provide the 

calculation of synthetic indexes and maps. 
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Simple additive method and crop allocation 

In the first method (SAM), all thematic maps used for producing each 

single vulnerability map to eutrophication (EU), human toxicity (HUMT) 

and freshwater toxicity (FWT) were overlaid summing for each pixel the 

vulnerability value assigned to each used environmental characteristic. 

Therefore, using SAM, all environmental parameters considered inherent 

to all types of impacts are equally important and they are simply added 

together giving rise to a map representing the sum of each single score 

(table 4.1). The procedure is shown schematically in fig. 4.1.  

 

 

Figure 4.1. Schematic representation of the simple additive method 

(SAM).  
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The attribution of the vulnerability score to each land characteristic is 

in some way still subjective, unless the possibility to use cause/effects 

relationships between the environmental factor and the impact to the 

environment. The resulting map will be the resulting sum, for each 

location (or map pixel), of all impact scores of each considered 

environmental factor to build all land vulnerability maps. 

Of course it is possible to insert weighting factors in order to 

emphasize one land characteristic respect to another in contributing to 

the overall vulnerability. This aspect is again a subjective choice. One 

consideration may be done anyway to support the attribution of weights. 

For example, in the case of land vulnerability map to human toxicity, only 

one land characteristic (i.e. population density) is used to define the 

vulnerability, later or classified in three classes. While, for example, in the 

case of freshwater toxicity, the vulnerability ranged from 0 to 11 (see fig. 

3.3 in chapter 3), and from 0 to 10 (fig. 3.9 in chapter 3) in the case of 

eutrophication, because of a higher number of involved land 

characteristics. Human toxicity vulnerability scores may thus be multiplied 

by a factor >1 in order increase his weight in the case this kind of impact is 

considered as important for the territory. 
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Table 4.1. Environmental characteristic used to produce the 

comprehensive land vulnerability map to FWT, EU and HUMT. 

Vulnerability score of each layer is summed for each map pixel. 

Map layer Map layer attribute
Vulnerability 

score

Vulnerability map to FWT

PTCP_recharge_areas_abcd.shp Type D 5

PTCP_recharge_areas_abcd.shp Type A 4

supply_areas.shp Water supply areas 4

PTCP_zones_derivat_prot.shp
Zones for the derivations 

protection
3

PTCP_fluvial_tut_areas.shp
Zones for the protection of 

the riverbeds
3

PTCP_recharge_areas_abcd.shp Type B 2

PTCP_recharge_areas_abcd.shp Type C 1

recharge_areas.shp Recharge areas 1

reserve_areas.shp Reserve areas 1

Vulnerability map to EU

Vulnerability map to nitrates Vulnerable areas 4
Wet areas. Low lands generally flooded during 

winter or covered by water during all seasons. 

Riverbeds with vegetation. River valleys and wet 

areas (from the Land use Map 2003 of the Emilia 

Romagna Region)

Wet areas 3

fine texture 1

medium texture 3

Vulnerability map to HUMT

Population density (person km-2) from 21.71 to 134.87 1

from 134.87 to 224.53 2

from 224.53 to 2651.4 3

Soil map 1:250000 from the Emilia Romagna 

Region Information service

  

 

Fig. 4.2 shows graphically the overlay procedure to obtain the 

comprehensive vulnerability map following the SAM. HUMT vulnerability 

scores were increased by 4 in order to reach values comparable with the 

others vulnerability scores. The map calculator tool of ArcView3.2 was 

used to sum all map layers. 
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Figure 4.2. Land vulnerability maps overlay based on the simple additive 

methods (SAM). Each map’s pixel represents the vulnerability score 

deriving from the involved land characteristic used to define vulnerability 

(table 4.1). Vulnerability score to HUMT were multiplied by 4 as his 

starting value is lower respect to the other impacts, due to the fact that 

only one land characteristic (population density) was used to define it.  
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The resulting total vulnerability map contains vulnerability scores 

that ranged from 4 to 30 (legend of fig. 4.2).  

Ones defined the comprehensive vulnerability map, this last could be 

classified in three classes and the crop allocation risk may be calculated as 

already defined when dealing with only one impact indicator, but in this 

case the impact value to spread among the three allocation risk classes 

will be the calculated total impact index of each crop (table 3.7 in chapter 

3). The extension of the low, moderate and highly vulnerable areas will 

change on the base of the contemporary vulnerability level of each land 

factor.  

Fig. 4.3 shows the comprehensive vulnerability map to FWT, EU and 

HUMT, calculated using the SAM, classified in three classes following the 

equal area classification criteria. High vulnerability areas, still mainly 

located in the centre of the map, resulted in a higher extension respect to 

the single vulnerability maps, as well as for moderate lands. This is mainly 

due to the shape of vulnerable lands to HUMT, which present a high 

vulnerability corresponding to the Bologna and Imola municipal area, 

where the extension of highly vulnerable lands of the comprehensive 

vulnerability map (fig. 4.3) increases. 
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Figure 4.3. SAM – vulnerability map to FWT, EU and HUMT. Vulnerability score are classified in 3 classes of 

vulnerability (low, moderate and high), based on equal interval method. 
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Table 4.2. Simple additive method (SAM) vulnerability of municipalities in 

the province of Bologna. 

Municipality
low   

(%)

moderate   

(%)
high   (%)

Total       

(ha)

ANZOLA 0.00 0.07 99.93 3619.64

ARGELATO 0.03 0.12 99.85 3511.71

BARICELLA 84.55 15.43 0.01 4555.20

BAZZANO 0.00 0.02 99.98 1383.62

BENTIVOGLIO 81.85 17.94 0.21 5105.77

BOLOGNA 0.00 5.99 94.01 14069.01

BORGO TOSSIGNANO 76.48 10.63 12.89 2905.99

BUDRIO 0.06 91.64 8.30 12033.21

CALDERARA DI RENO 0.00 0.14 99.86 4125.39

CAMUGNANO 58.77 39.27 1.97 9647.47

CASALECCHIO DI RENO 0.00 0.14 99.86 1737.48

CASALFIUMANESE 77.54 17.66 4.80 8198.25

CASTEL D'AIANO 81.38 18.62 0.00 4507.19

CASTEL DEL RIO 75.18 23.43 1.39 5223.21

CASTEL DI CASIO 71.79 27.00 1.20 4729.71

CASTEL GUELFO 0.20 90.20 9.60 2861.29

CASTEL MAGGIORE 0.03 0.00 99.97 3096.71

CASTEL S. PIETRO TERME 48.85 40.78 10.37 14844.33

CASTELLO D'ARGILE 0.00 82.03 17.97 2906.29

CASTELLO DI SERRAVALLE 65.78 27.76 6.45 3907.84

CASTENASO 0.00 0.09 99.91 3575.25

CASTIGLIONE DEI PEPOLI 66.55 32.20 1.25 6563.46

CRESPELLANO 0.00 0.05 99.95 3781.12

CREVALCORE 90.89 9.09 0.02 10227.51

DOZZA 0.05 0.13 99.82 2421.63

FONTANELICE 83.52 11.80 4.68 3650.49

GAGGIO MONTANO 78.98 20.94 0.08 5860.33

GALLIERA 0.00 88.24 11.76 3704.33

GRANAGLIONE 78.58 20.26 1.16 3906.30

GRANAROLO 0.07 0.07 99.86 3438.51

GRIZZANA 78.79 19.97 1.23 7744.68

IMOLA 0.03 0.63 99.34 20434.88

LIZZANO IN BELVEDERE 80.35 19.46 0.20 8530.04

LOIANO 82.20 17.32 0.48 5238.77

MALALBERGO 0.14 85.34 14.53 5377.20

MARZABOTTO 64.31 31.23 4.46 7452.08

MEDICINA 77.92 21.73 0.35 15907.71

MINERBIO 0.08 91.94 7.99 4306.99

MOLINELLA 68.15 31.76 0.08 12756.55

MONGHIDORO 81.19 18.76 0.06 4797.47

MONTE S.PIETRO 0.12 87.89 11.98 7470.78

MONTERENZIO 86.97 12.62 0.41 10532.52

MONTEVEGLIO 0.10 52.66 47.24 3254.04

MONZUNO 74.24 25.21 0.55 6499.62

MORDANO 0.00 83.49 16.51 2128.04

OZZANO 0.09 41.40 58.50 6476.63

PIANORO 0.01 83.07 16.92 10717.80

PIEVE DI CENTO 0.00 0.31 99.69 1578.91

PORRETTA TERME 0.12 73.50 26.38 3392.27

S.AGATA BOLOGNESE 0.03 99.52 0.45 3475.07

S.BENEDETTO VAL DI SAM 70.06 29.67 0.27 6649.74

S.GIORGIO DI PIANO 0.10 0.21 99.69 3043.84

S.GIOVANNI IN PERSICET 0.02 91.73 8.25 11428.36

S.LAZZARO DI SAVENA 0.00 0.13 99.87 4470.66

S.PIETRO IN CASALE 0.03 99.25 0.72 6587.21

SALA BOLOGNESE 0.00 68.34 31.66 4510.64

SASSO MARCONI 0.03 68.24 31.73 9646.06

SAVIGNO 87.65 12.29 0.05 5483.75

VERGATO 76.74 22.65 0.61 5991.96

ZOLA PREDOSA 0.00 1.55 98.45 3774.95

Total 38.58 34.65 26.77 369757.46   
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Topological overlay of this map with municipality borders of the 

province gives the possibility to define municipal land portion classified as 

low, moderate of highly vulnerable. This result is obtained using the union 

tool of the GeoProcessing Wizarz of Arcview3.2 (table 4.2). 

Comparing results of table 4.2 with tables 3.10, 3.13 and 3.15, 

showing vulnerable land portion to FWT, EU and HUMT respectively, it is 

clear as the distribution of vulnerable lands among municipalities changes 

when considering more than one impact indicator. Multiple indicators 

vulnerability maps increase in general the vulnerability level. 26.77 % of 

the province was in fact classified as highly vulnerable, while the same in 

the case of FWT was 1.36 % (table 3.10) and 9.73 % in the case of EU only 

(table 3.13). 27.10 % was the highly vulnerable land portion when 

considering only HUMT. Naturally, also the distribution inside each 

municipality will be different. 

As already mentioned, this comprehensive vulnerability map can be 

used to allocate crop based on a calculated allocation risk value. This 

allocation value can be defined following the same procedure already 

illustrated in chapter 3, when dealing with single impact indicator. In this 

case, the impact value will be the total impact index, i.e. the average 

impact of the FWT, EU and HUMT percentage respect to maize, the most 

impacting crop. Results are reported in table 4.3. Values may be 

distributed among the most impact scenarios, i.e. maize when located in 

the low, moderate and high vulnerability lands. The resulting map in 

shown in fig. 4.4. 

 



Methods for crop al location based on multiple impact indicators 119 

Table 4.3. Allocation risks for each crop-vulnerable area combination. 

Total impact index (%) of each crop was used to assign a specific 

allocation risk value (0-10) to each vulnerability class of the 

comprehensive vulnerability maps weighted on maize (fig. 4.3). Maize 

equal to 10 when located in the most vulnerable lands. 

low moderate high

maize 100 3.0 6.0 10.0

f. sorghum 72.7 2.31 4.36 7.27

rapeseed 65.7 1.97 3.94 6.57

wheat 64.5 1.94 3.87 6.45

sunflower 63.1 1.89 3.79 6.31

cynara 37.1 1.11 2.23 3.71

miscanthus 36.0 1.08 2.16 3.60

giant reed 34.4 1.03 2.06 3.44

switchgrass 25.4 0.76 1.52 2.54

Crop

Total 

impact 

index %

Vulnerability classes of lands

 

 

Only switchgrass showed an allocation risk classified as low respect 

to maize in the whole territory. Integrating 3 impacts, with maize, 

rapeseed, sunflower, f sorghum and wheat showed the same allocation 

risk level. Cynara, miscanthus and giant reed showed a moderate 

allocation risk in highly vulnerable lands (fig.4.4).  

Ultimately, once the overall land vulnerability is understood and the 

different crops characterized in terms of their impacts (FWT, EU and 

HUMT in our case), one can allocate the more impacting crops in the less 

vulnerable areas and vice versa, following, as already defined when 

dealing with only one impact, the indications deriving from fig. 4.4, thus 

advising for each vulnerability area which crop may be cultivated (fig. 4.5) 

in order to minimize the FWT, EU and HUMT impacts. In low vulnerable 
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lands, all crops can be cultivated, while in moderate ones cynara, 

miscanthus and giant reed (and of course switchgrass also) showed a low 

allocation risk, while in high vulnerability lands only switchgrass showed a 

low allocation risk. 

Compared with optimal allocations considering only one impact 

indicator, it is still more evident that only switchgrass can be cultivated in 

high vulnerability lands. In fact, in some cases, e.g. in the case of 

eutrophication, giant reed and miscanthus were also allowed. In 

moderate vulnerability area, sunflower and wheat were allowed in the 

case of FWT, while when considering all impact indicators, they can be 

cultivated only in low vulnerable areas.  
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Figure 4.4. Maps of allocation risk of crops based on land vulnerability 

calculated using SAM as integration method for FWT, EU and HUMT. 
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Figure 4.5. Optimal crop allocation to minimize FWT, EU and HUMT risks (SAM integration method). Low, 

moderate and high vulnerabilities areas are the same as in fig. 4.3.  

 

low: all crops 

high: switchgrass, only 

moderate: cynara, miscanthus, giant reed 
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Additive method of classified maps and crop allocation 

In the additive method of classified maps (AMCM), the single 

vulnerability maps are overlaid after generating maps of constant number 

of classes, and cumulating the values of each class hereafter. Practically, 

summing classified maps of vulnerability to EU, FWT and HUMT. The final 

map will be made up of pixels whose value is this time the sum of each 

class value (low: 1; moderate: 2; high: 3). Schematically, this approach can 

be represented in fig. 4.6. 

The difference, respect to SAM, is that in this case the relative 

number of land characteristics used in building single land vulnerability 

maps are not influencing the final result, because single vulnerability map 

are firstly all reported at the same number of vulnerability level (low, 

moderate and high). 

After the comprehensive vulnerability map is produced summing 

values (from 1 to 3) of each single vulnerability map at each location, crop 

allocation risk can be calculated as for SAM or as when dealing with only 

one impact indicator, but using the calculated total impact index of table 

4.3. 

It is worth of notice that when using SAM for integrating vulnerability 

maps, each environmental characteristics used for all the vulnerability 

maps are individually considered, thus giving the possibility to introduce a 

weighting factor to each environmental characteristic if this is recognised 

as usefull to increase reliability. When cause/effect relationship between 

environmental factors and vulnerability level, and among different 
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impacts indicators, are known, SAM may be preferred for his flexibility in 

attributing relative weights. 

 

 

Figure 4.6. Schematic representation of the additive method of classified 

maps (AMCM). 

 

In the case of undefined relations among LCA impact categories, 

AMCM should be preferred because attributing the same effect of the 

different impact indicators to the environment, independently by the 

involved numbers of environmental factors, because of reporting all 

individual vulnerability maps to the same effect to the environment (low, 

moderate and high). 
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Figure 4.7. Land vulnerability map overlay based on the additive method 

of classified maps (AMCM). Each map’s pixel represent the value of one of 

the three vulnerability  classes (low =1; moderate 2; high = 3) deriving 

from the classification of single vulnerability map to each impact 

indicator.  
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Fig. 4.7 shows the overay process of classified vulnerability maps, 

carried out using map calculator of ArcView3.2. The resulting map has a 

vulnerability score that ranged from 3 to 9. Where value is 9 it means 

obviously that at that location vulnerability was high (3) for each 

vulnerability map to single impact indicator. Again, this map may be 

classified in 3 classes of vulnerability following the equal area criteria. The 

resulting map is showed in fig. 4.8. High vulnerable lands are in the centre 

of the map, closely to the Bologna and Imola municipality area, the rest of 

the flat area is prevalently classified as moderate, while higher altitude 

are prevalently low, with few strings of moderate area mainly 

corresponding to riverbeds or to other land characteristics linked with the 

vulnerability to FWT. 

Respect to map obtained using SAM, land portions classified as highly 

vulnerable are smaller, 16.22 % (table 4.4) respect to 26.77 % for SAM 

(table 4.2). This reduction mainly regards the surroundnig area of the 

Bologna municipality. Shape and extension of moderate and low 

vulnerable areas are similar to that obtained using SAM. 

Also in this case, overlaying the comprehensive vulnerability map of 

fig. 4.8 with municipal borders (union tool of ArcView3.2’s GeoProcessing 

Wizard) it is possible to calculate land vulnerable portions for each 

municipality of the Bologna’s province (table 4.4).  
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Figure 4.8. AMCM – vulnerability map to FWT, EU and HUMT. Vulnerability score are classified in 3 classes of 

vulnerability (low, moderate and high), based on equal interval method. 
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Table 4.4. Additive method of classified map (AMCM) vulnerability of 

municipalities in the Province of Bologna.  

Municipality
low      

(%)

moderate      

(%)

high      

(%)

 Total          

(ha)

ANZOLA 0.00 76.07 23.93 3619.69

ARGELATO 0.02 70.83 29.15 3511.71

BARICELLA 81.40 18.60 0.00 4555.20

BAZZANO 0.00 0.01 99.99 1383.97

BENTIVOGLIO 70.08 29.86 0.06 5105.77

BOLOGNA 0.00 41.82 58.18 14069.00

BORGO TOSSIGNANO 76.35 13.43 10.22 2906.26

BUDRIO 0.05 97.14 2.81 12033.20

CALDERARA DI RENO 0.00 47.35 52.65 4125.39

CAMUGNANO 58.24 41.49 0.26 9647.47

CASALECCHIO DI RENO 0.00 25.38 74.62 1737.48

CASALFIUMANESE 76.96 20.77 2.27 8198.25

CASTEL D'AIANO 79.64 20.36 0.00 4508.11

CASTEL DEL RIO 73.45 26.53 0.03 5223.37

CASTEL DI CASIO 71.03 28.71 0.26 4729.81

CASTEL GUELFO 0.14 92.13 7.73 2861.29

CASTEL MAGGIORE 0.01 32.39 67.60 3096.71

CASTEL S. PIETRO TERME 37.45 57.13 5.42 14844.33

CASTELLO D'ARGILE 0.00 98.14 1.86 2906.29

CASTELLO DI SERRAVALLE 62.91 31.64 5.45 3907.78

CASTENASO 0.00 60.86 39.14 3575.25

CASTIGLIONE DEI PEPOLI 66.42 33.41 0.17 6565.65

CRESPELLANO 0.00 44.68 55.32 3781.22

CREVALCORE 75.63 24.35 0.02 10227.79

DOZZA 0.01 5.70 94.29 2421.63

FONTANELICE 83.60 16.40 0.00 3650.67

GAGGIO MONTANO 78.40 21.57 0.03 5860.33

GALLIERA 0.00 97.29 2.71 3704.33

GRANAGLIONE 77.12 22.47 0.40 3905.97

GRANAROLO 0.03 69.60 30.37 3438.50

GRIZZANA 78.26 21.74 0.00 7744.68

IMOLA 0.04 20.22 79.74 20435.54

LIZZANO IN BELVEDERE 79.72 20.09 0.19 8529.81

LOIANO 78.18 21.37 0.45 5238.77

MALALBERGO 0.10 97.59 2.30 5377.19

MARZABOTTO 64.07 35.24 0.69 7452.08

MEDICINA 66.67 32.99 0.34 15907.70

MINERBIO 0.08 96.55 3.38 4306.99

MOLINELLA 63.61 36.31 0.08 12757.38

MONGHIDORO 81.09 18.89 0.02 4797.77

MONTE S.PIETRO 0.09 90.94 8.97 7470.78

MONTERENZIO 86.57 13.32 0.11 10533.08

MONTEVEGLIO 0.10 65.69 34.21 3254.11

MONZUNO 73.47 26.19 0.35 6499.62

MORDANO 0.00 93.08 6.92 2128.08

OZZANO 0.07 55.08 44.85 6476.63

PIANORO 0.01 86.19 13.80 10717.80

PIEVE DI CENTO 0.00 48.63 51.37 1579.14

PORRETTA TERME 0.09 88.54 11.37 3392.27

S.AGATA BOLOGNESE 0.02 99.74 0.24 3475.59

S.BENEDETTO VAL DI SAM 66.07 33.87 0.06 6649.99

S.GIORGIO DI PIANO 0.10 94.44 5.46 3043.84

S.GIOVANNI IN PERSICET 0.01 98.83 1.16 11428.34

S.LAZZARO DI SAVENA 0.00 15.41 84.59 4470.65

S.PIETRO IN CASALE 0.03 99.88 0.09 6587.21

SALA BOLOGNESE 0.00 95.94 4.06 4510.64

SASSO MARCONI 0.03 71.38 28.59 9646.06

SAVIGNO 81.97 17.98 0.05 5483.44

VERGATO 75.50 24.48 0.01 5992.04

ZOLA PREDOSA 0.00 32.79 67.21 3774.95

Total 36.43 47.35 16.22 369764.59  
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Obviously, in some municipalities the distribution of vulnerable lands 

will be different between the to integration methods (SAM and AMCM). 

In particular in the case of the municipality of Anzola and Argelato, highly 

vulnerable lands are around 99 % in the case of SAM (table 4.2) and 

around 24% and 29 % in the case of AMCM (table 4.4). In general, also 

comparing the comprehensive vulnerability map with the single ones, 

SAM seems to overestimate higly vulnerable lands.  

Ones obtained the vulnerability map calculated integrating all impact 

indicators, crops can be distributed based to their allocation risk, that still 

may be calculated as already mentioned in the case of the SAM 

description. Also for AMCM the total impact index is used to define 

allocation risk, thus resulting values will be the same already reported in 

table 4.2. Consequently, also their rappresentation on a map will bring to 

similar conclusion about the crop that should be grown in all vulnerable 

lands. Only the extension of vulnerable land portions respect to the ones 

defined with the AMCM will be different. Fig. 4.9 reports the map of the 

optimal crop allocation in order to minimize the allocation risk for FWT, 

EU and HUMT, on the base of the comprehensive vulnerability map 

defined using AMCM. Again, considering 3 impact indicators, only 

switchgrass presented generally a low environmental risk respect to 

maize.  
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Figure 4.9. Optimal crop allocation to minimize FWT, EU and HUMT risks (AMCM integration method). Low, 

moderate and high vulnerabilities areas are the same as in fig. 4.8.  
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In general, apart of all pedo-climatic constraints that may define the 

crop allocation and with which the bi-directional approach can be coupled 

(Di Virgilio, Fazio et al. 2010), with respect to the first step of this study 

which included only one impact indicator, merging fresh water toxicity, 

eutrophication and human toxicity into a single map resulted in a 

significant different allocation of energy crops. Rapeseed, wheat, 

sunflower and f sorghum showed similar environmental risks, while only 

switchgrass showed the lowest environmental risks. Maize confirmed the 

highest contamination risks thus to suggest a land allocation of this crop 

in the lowest vulnerability lands. When merging impacts, miscanthus and 

giant reed resulted in a higher allocation risk respect to using only 

eutrophication. 

When allocating crops basing on the environmental impact of their 

production chain, the most natural implementation of this method will be 

the definition of a unique total impact index representing all impacts with 

a local effect to be used in the SAM and AMCM integration methods. This 

operation introduce a lack of information due to the avegare operation. 

The following procedure, the composed multiplicative method (CMM), 

will calculate allocation risk of each crop without the need of a total 

impact index and of a comprehensive vulnerability map. 
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Composed multiplicative method and crop allocation 

Previously illustrated integration methods, the “simple additive 

method (SAM)” and the “additive method of classified maps (AMCM)”, 

provide the use of an additional operation to synthesize impact indexes 

and land vulnerabilities. The production of a total impact index and of a 

comprehensive vulnerability map introduces uncertainty in giving 

weighting factors or when classifying vulnerability score in the 3 

vulnerability classes. Moreover, this aspect is more evident if the number 

of environemtal indicators increases.  

The composed multiplicative method (CMM) uses vulnerability maps 

to single impact indicator and gives the possibility to allocate crops 

considering multiple indicators without building a comprehensive 

vulnerability map and then without classify the vulnerability values, and 

also without defining a total impact index. With this method the single 

vulnerability maps defined for each impact indicator are overlayed 

throught weighting factor that are the values of the impact indicators. The 

values associated with the vulnerability of an individual vulnerability map 

are multiplied by the environmental impact score of each crop with 

respect to that environmental parameter, and for each map pixel. 

Schematically, the procedure is represented in fig. 4.10.  

In order to be overlayed, again vulnerability maps should be in a 

raster format and with the same pixel resolution. The map calculator tool 

of Arcview3.2 ESRI is used to make operation. With this approach each 

crop will have its map showing its allocation risk levels. This mean that for 
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each location, it is possible to know wich crop has the lower allocation risk 

value and to suggest it for that location.  

 

 

Figure 4.10. Schematic representation of the simple multiplicative 

method (SMM). 

 

More in detail, crop may be distributed basing to a calculated crop 

impact allocation risk score when crop is located in a given vulnerable 

area, which the principle is the same when dealing with only one impact 

indicator, but in this case, for each pixel and for each crop, the allocation 

risk is calculated as: 

(LCA impact index 1 X its vulnerability score on the map 1)  

+  

(LCA impact 2 X its vulnerability score on the map 2). 

Impact category 1 

Impact category 2 

Map > attribute > Vulnerability 

score to impact 1 

Map > attribute > Vulnerability 

score to impact 2 

overlay Vulnerability  

map 1  

(3 classes) 

Impact category 1 

Impact category 2 

Crop 1 > LCA impact value 1 

Crop 1 > LCA impact value 2 

weight 

Crop 2 > LCA impact value 1 

Crop 2 > LCA impact value 2 

Vulnerability  

map 2 

(3 classes) 

overlay 

For each pixel: 

(Vulnerability 1 x Impact value 1) + 

(Vulnerability 2 x Impact value 2)  

Allocation risk 

map CROP 2 

For each pixel: 

(Vulnerability 1 x Impact 

value 1) + (Vulnerability 2 x 

Impact value 2) 

weight 

weight 

weight 
Map with lowest 

allocation risk 

values 

Allocation risk map 

CROP 1 



Methods for crop al location based on multiple impact indicators 134 

E.g. in the case of rapeseed the allocation risk map is calculated, each 

map pixel, as follow:  

[82.9 (that is the EU% in table 3.7) X Vulnerability score in the vulnerability map 

to EU (fig. 3.10)] 

+ 

[63.5 (that is the HUMT% in table 3.7) X Vulnerability score in the vulnerability 

map to HUMT (fig. 3.13)] 

+ 

[(50.8 (that is the FWT% in table 3.7) X Vulnerability score in the vulnerability 

map to FWT (fig. 3.4)] 
 

For each pixel the crop with the lowest value will represent the 

lowest impacting option.  

Vulnerability maps that can be used in this method are the ones 

reporting the vulnerable score as calculated after overlaying all used land 

characteristics, or after their classification in three classes of vulnerability. 

The uses of vulnerability scores of course would be the best option for 

this method, because the classification operation is completely avoided. 

This could be possible if a standard procedure for obatining land 

vulnerability maps are available and only if the different impact indicators 

may be in someway mutually comparable. A procedure that could be 

usefull for this purpose it could be something inspired to the 

standardization step occurring in the LCA procedure, which is described in 

chapter 2. A simple and fast way to make vulnerability maps comparable 

is to use the classified vulnerability maps, where the territory is divided in 

the same number of classes (e.g. low, moderate and high vulnerability 

level). In this way also a simpler and more immediate interpretation of the 

vulnerability maps is possible. The vulnerability value to be used in the 
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CMM may simply be 1, 2 and 3 for the low, moderate and high classes, 

respectively.  

Again, as regards for impact indicators, the use of the percentage 

respect to maize (the most impacting crop), make indicators all 

comparable. Resulting allocation risk maps of each crop will be respect to 

the worst allocation scenario (maize when located in the high vulnerable 

area). 

CMM gives the possibility to show relative levels of impact of each 

crop for a given area. As a total vulnerability map was not calculated, each 

crop may present vulnerable areas that differ in shape and extension.  

 

Already defined impact indicators FWT, EU, and HUMT, were thus 

used to apply the CMM method. Used numerical impact values of all food 

and no-food production chains considered in the case study are the % 

impact respect to maize (the most impacting crop), shown in table 3.7, 

following again reported (table 4.5) for a easier reading.  
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Table 4.5. Eutrophication value (EU, expressed as kg ha
-1

 of equivalent 

phophate ions (PO4
-3

 eq.), human toxicity (HUMT) and toxicity to 

freshwaters (FWT), these two last expressed as kg ha
-1

 of 1,4-

diclorobenzene eq. (1,4-DC eq.), and as % respect to the highest impacting 

crop (maize). The total impact index is calculated as average of the % 

values of impacts: [EU%) + (HT%) + (FWT%)] / 3. 

Crop

FWT          

1,4-DC eq. 

(kg ha
-1

)

%

EU      

PO4
3- 

eq. 

(kg ha
-1

)

%

HUMT     

1,4-DC eq. 

(kg ha
-1

)

%

Total 

impact 

index 

%

maize 199 100 5.56 100 1810 100 100

f sorghum 128.0 64.3 4.38 78.8 1360 75.1 72.7

rapeseed 101.0 50.8 4.61 82.9 1150 63.5 65.7

wheat 99.1 49.8 4.37 78.6 1180 65.2 64.5

sunflower 90.5 45.5 4.46 80.2 1150 63.5 63.1

cynara 74.3 37.3 1.85 33.3 738 40.8 37.1

miscanthus 76.9 38.6 1.67 30.0 709 39.2 36.0

giant reed 73.9 37.1 1.64 29.5 661 36.5 34.4

switchgrass 50.3 25.3 1.37 24.6 474 26.2 25.4  

 

The allocation risk for each crop and for each map pixel  is calculated 

using the map tool calculator of ArcView3.2. Inserted equations are here 

reported. The term between square branches indicates the vulnerability 

value (1, 2 or 3) at each map pixel. 

[Allocation risk of crop 1 = (EU vulnerability X EU % impact respect to maize) + (HUMT 

vulnerability X HUMT% impact respect to maize) + (FWT vulnerability X FWT% impact respect to maize)] 

- maize: ([Vuln_EU] * 100) + ([Vuln_HUMT] * 100)+ ([Vuln_FWT] * 100) 

- cynara: ([Vuln_EU] * 33.3) + ([Vuln_HUMT] * 40.8)+ ([Vuln_FWT] * 37.3) 

- rapeseed: ([Vuln_EU] * 82.9) + ([Vuln_HUMT] * 63.5)+ ([Vuln_FWT] * 50.8) 

- wheat: ([Vuln_EU] * 78.6) + ([Vuln_HUMT] * 65.2)+ ([Vuln_FWT] * 49.8) 

- sunflower: ([Vuln_EU] * 80.2) + ([Vuln_HUMT] * 63.5)+ ([Vuln_FWT] * 45.5) 

- miscanthus: ([Vuln_EU] * 30) + ([Vuln_HUMT] * 39.2)+ ([Vuln_FWT] * 38.6) 

- switchgrass: ([Vuln_EU] * 24.6) + ([Vuln_HUMT] * 26.2)+ ([Vuln_FWT] * 25.3) 

- f sorghum: ([Vuln_EU] * 78.8) + ([Vuln_HUMT] * 75.1)+ ([Vuln_FWT] * 64.3) 

- giant reed : ([Vuln_EU] * 29.5) + ([Vuln_HUMT] * 36.5)+ ([Vuln_FWT] * 37.1) 
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Table 4.6 shows the resulting variation range of values calculated 

according to above equations. Maize shows the higher variation range.  

 

Table 4.6. Allocation risk range of variation of crops in the province of 

Bologna. 

Crop min max variation

maize 300 900 600.0

f sorghum 218.2 654.6 436.4

rapeseed 197.2 591.6 394.4

wheat 193.6 580.8 387.2

sunflower 189.2 567.6 378.4

cynara 111.4 334.2 222.8

miscanthus 107.8 323.4 215.6

giant reed 103.1 309.3 206.2

switchgrass 76.1 228.3 152.2  

 

It also represents the maximum allocation risk that may be found in 

the territory. This value does not directly quantify a phenomena, but it is 

useful for defining the allocation risk classes of the other crops (fig. 4.12). 

The max and min values were used for the definition of a unique scale of 

representation in order to use the same legend for all crops (fig. 4.11), at 

the end indicating the level of their impact compared to maize. Values 

represent the allocation risk with respect to maize of a crop in a certain 

portion of land which has a vulnerability classified as low, medium or high 

according to the vulnerability map of the three considered factors (HUMT, 

FWT and EU).  

Taking into account 3 impacts (eutrophication, human toxicity and 

freshwater toxicity), sorghum, rapeseed and wheat showed higher 

allocation risk values after maize, which remains the most impacting crop. 

Among annual crops, sunflower showed in general an overall lower 
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impact. Cynara, miscanthus and giant reed showed much lower impact 

respect to annual crops, while switchgrass was found to have the lowest 

allocation risk respect to maize, represented by a general lower grey 

intensity of his allocation risk map (fig. 4.11). 

For a more useful and immediate visualization, also in this case the 

allocation risk can be classified in three classes, maps are shown in fig. 

4.12.  

After the classification, maize presented an high allocation risk in the 

central part of the Province (fig. 4.12), corresponding mainly to areas 

classified as vulnerable to nitrate by the Water Protection Plan and also as 

the most densely populated. F sorghum showed a risk classified as high in 

only a few strips, where the vulnerability to eutrophication is high and 

where are located main areas for the protection of groundwaters and 

aquifers. Rapeseed, wheat and sunflower showed an impact classified as 

medium in the central area of the territory, while switchgrass did not 

show significant impacts throughout the province, respect to maize and 

other crops. Even cynara, miscanthus and giant reed showed a low 

impact, except for the most vulnerable areas from the point of view of the 

protection of water, where these three crops showed an impact classified 

as medium. 

The elaboration of these maps within ArView3.2 gives the possibility 

to calculate land hectares and portions, reported in table 4.7.  

16.24 % (60083 ha) of the province showed an allocation risk 

classified as high if maize will be allocated, and 0.58 % (2128 ha) in the 

case of f sorghum.  
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The other crops resulted in an allocation risk classified as moderate 

and low. All perennial crops may be prevalently considered with a low 

allocation risk in the whole province.  

 

Table 4.7. Extension (ha) and % on the total province extension of lands 

where crops showed allocation risks classified as low, moderate and high 

respect to maize. 

low (ha) %
moderate 

(ha)
%

high 

(ha)
%

maize 134493 36.36 175306 47.40 60083 16.24

f sorghum 238678 64.53 129075 34.90 2128 0.58

rapeseed 239813 64.84 130068 35.16 0 0.00

wheat 239813 64.84 130068 35.16 0 0.00

sunflower 249282 67.40 120599 32.60 0 0.00

cynara 367554 99.37 2327 0.63 0 0.00

giant reed 367753 99.42 2128 0.58 0 0.00

miscanthus 367753 99.42 2128 0.58 0 0.00

switchgrass 369881 100.00 0 0.00 0 0.00   

 

Ones defined for a production district all pedoclimatic constraints, 

that means integrating the presented approach with land suitability 

studies (Di Virgilio, Fazio et al. 2010) and a sustainable food-no food crop 

balance, for each location the crop with the lowest value will ensure the 

best option under the environmental point of view, that in general is 

represented by perennial crops. This aspect deals with the integration of 

the LCS-GIS approach with the current land use and with land suitability 

studies based on pedo-climatic factors. Possibilities coming from these 

interaction are illustrated in the following chapter 6 “Prospect on 

applications”. 



Methods for crop al location based on multiple impact indicators 140 

 

 

Figure 4.11. Allocation risk considering FWT, HUMT and EU of crops in the 

province of Bologna, represented with the same gray scale. Darker 

colours indicate higher allocation risk. 
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Figure 4.12. Allocation risk for each crop respect to maize in the Province 

of Bologna. Classification of maps in three classes (low, moderate and 

high).  
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 The CMM well suits the possibility to use more than two impact 

categories. Of course considering all impact indicators appraisable with 

LCA among all existing impact assessment methods, only impacts with 

local effect can be taken into account, and omitting all impacts with global 

effect as global warming potential, because of the impossibility to relate 

their negative effects on the environment with site-specific land 

characteristics. 

With the CMM it is not possible to have a single map that 

summarizes the optimal land allocation, as the one for example of fig. 4.9, 

because the legend of fig. 4.11 (or of fig. 4.12 if classified) represents the 

allocation risk for each map pixel, and not the allocation risk each 

vulnerable land portion. For each crop that portion will be different 

because considered vulnerable area are differents each land vulnerability 

map, in other words all crops are not related to the same single 

comprehensive vulnerability map, but to 3 ones with different vulnerable 

land extensions.  

Maps of fig. 4.11 and 4.12 thus gives the indication of showing for 

each map pixel wich crop has the lowest allocation risk. Switchgrass is the 

crop that ensure the lowest allocation risk in all the territory, but of 

course other constraints could act in preferring other crops: e.g. food – no 

food competition, agronomic limitations linked to the mechanization, 

social constraints as the difficulty on accepting a novel and perennial crop, 

etc. 

Topological overlay of allocation risk map (fig. 4.12) with the map of 

municipal borders, using the union tool of the ArcView3.2’S 
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GeoProcessing Wizard, gives the possibility to calculate allocation risk 

presence for each municipality of the province. Using the allocation risk 

map of maize (fig. 4.12) representing also in the case of CMM the worst 

allocation scenarios, results are shown in table 4.8. In the case of maize, 

values are the same as  reported in table 4.4, where vulnerable land 

portions derive from the use of the AMCM. This may be repeated for each 

crop. The CMM, thus also gives the possibility to each municipality 

governmental board, to have the information of the vulnerable land 

portions for each crop and consequently taking planning decisions on land 

use. 
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 Table 4.8. Composed multiplicative method (CMM) vulnerability of 

municipalities in the Province of Bologna. Data refers to maize allocation 

risk map overlaid with municipal borders. 

Municipality
low         

(%)

moderate 

(%)

high        

(%)
Total       (ha)

ANZOLA 0.00 76.07 23.93 3619.69

ARGELATO 0.02 70.83 29.15 3511.71

BARICELLA 81.40 18.60 0.00 4555.20

BAZZANO 0.00 0.01 99.99 1383.97

BENTIVOGLIO 70.08 29.86 0.06 5105.77

BOLOGNA 0.00 41.82 58.18 14069.00

BORGO TOSSIGNANO 76.35 13.43 10.22 2906.26

BUDRIO 0.05 97.14 2.81 12033.20

CALDERARA DI RENO 0.00 47.35 52.65 4125.39

CAMUGNANO 58.24 41.49 0.26 9647.47

CASALECCHIO DI RENO 0.00 25.38 74.62 1737.48

CASALFIUMANESE 76.96 20.77 2.27 8198.25

CASTEL D'AIANO 79.64 20.36 0.00 4508.11

CASTEL DEL RIO 73.45 26.53 0.03 5223.37

CASTEL DI CASIO 71.03 28.71 0.26 4729.81

CASTEL GUELFO 0.14 92.13 7.73 2861.29

CASTEL MAGGIORE 0.01 32.39 67.60 3096.71

CASTEL S. PIETRO TERME 37.45 57.13 5.42 14844.33

CASTELLO D'ARGILE 0.00 98.14 1.86 2906.29

CASTELLO DI SERRAVALLE 62.91 31.64 5.45 3907.78

CASTENASO 0.00 60.86 39.14 3575.25

CASTIGLIONE DEI PEPOLI 66.42 33.41 0.17 6565.65

CRESPELLANO 0.00 44.68 55.32 3781.22

CREVALCORE 75.63 24.35 0.02 10227.79

DOZZA 0.01 5.70 94.29 2421.63

FONTANELICE 83.60 16.40 0.00 3650.67

GAGGIO MONTANO 78.40 21.57 0.03 5860.33

GALLIERA 0.00 97.29 2.71 3704.33

GRANAGLIONE 77.12 22.47 0.40 3905.97

GRANAROLO 0.03 69.60 30.37 3438.50

GRIZZANA 78.26 21.74 0.00 7744.68

IMOLA 0.04 20.22 79.74 20435.54

LIZZANO IN BELVEDERE 79.72 20.09 0.19 8529.81

LOIANO 78.18 21.37 0.45 5238.77

MALALBERGO 0.10 97.59 2.30 5377.19

MARZABOTTO 64.07 35.24 0.69 7452.08

MEDICINA 66.67 32.99 0.34 15907.70

MINERBIO 0.08 96.55 3.38 4306.99

MOLINELLA 63.61 36.31 0.08 12757.38

MONGHIDORO 81.09 18.89 0.02 4797.77

MONTE S.PIETRO 0.09 90.94 8.97 7470.78

MONTERENZIO 86.57 13.32 0.11 10533.08

MONTEVEGLIO 0.10 65.69 34.21 3254.11

MONZUNO 73.47 26.19 0.35 6499.62

MORDANO 0.00 93.08 6.92 2128.08

OZZANO 0.07 55.08 44.85 6476.63

PIANORO 0.01 86.19 13.80 10717.80

PIEVE DI CENTO 0.00 48.63 51.37 1579.14

PORRETTA TERME 0.09 88.54 11.37 3392.27

S.AGATA BOLOGNESE 0.02 99.74 0.24 3475.59

S.BENEDETTO VAL DI SAM 66.07 33.87 0.06 6649.99

S.GIORGIO DI PIANO 0.10 94.44 5.46 3043.84

S.GIOVANNI IN PERSICET 0.01 98.83 1.16 11428.34

S.LAZZARO DI SAVENA 0.00 15.41 84.59 4470.65

S.PIETRO IN CASALE 0.03 99.88 0.09 6587.21

SALA BOLOGNESE 0.00 95.94 4.06 4510.64

SASSO MARCONI 0.03 71.38 28.59 9646.06

SAVIGNO 81.97 17.98 0.05 5483.44

VERGATO 75.50 24.48 0.01 5992.04

ZOLA PREDOSA 0.00 32.79 67.21 3774.95

Total 36.43 47.35 16.22 369764.59  
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Highlights 
The characterization factor is the first step within LCA procedure where it may be 

possible to act in order to “adjust” the impact to the site-specific vulnerability. The 

proposed LCA-GIS approach postpones it at the end of the LCA procedure, through the 

calculation of crop-land allocation risks, thus avoiding to modify LCA database and 

software. The environmental impact of perennials was recognized as quite low, thus 

giving the possibility to introduce a new low impacting land use in order to maximixe 

the environmental sustainability. Classification it is used at several levels at it 

represents an important determinant that can also modify results. The classification 

criteria must be chosen carefully based on specific goals and circumstances. Maximum 

transparency it must be maintained, justifying as much as possible choices in order to 

ensure full traceability of the results. The definition of a standard methodology to 

provide consistent vulnerability maps and for their integration is required. 
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Main aspects related to the defined LCA-GIS approach 

The link between LCA impact values and the site specificity of the 

territory is the key aspect in the proposed approach. In the LCA, the 

impact indicator value, e.g. eutrophication, is calculated after the 

inventory of all emitted substances related to that kind of impact. After 

that, these substances are multiplied by a characterization factor, that 

quantifies the contribution of each substance to the impact indicator 

(Brentrup, Kusters et al. 2004). All production chains act on the territory, 

and the spatialization of the LCA impact indicators is very important, in 

particular for that production chains that are strictly depending to local 

environment condition, e.g. agricultural crop chains. The spatialization of 

impact indicator gives the possibility to weight the impact to local specific 

condition. The characterization factor is the first step within LCA 

procedure where it may be possible to act in order to “adjust” the impact 

level to the site-specific conditions. Thus for each substance of the 

inventory and based on the land vulnerability map, the characterization 

factor may be geographically referred to the land vulnerability, where this 

vulnerability is high, characterization factor can be increased. 

Fundamentally it could be compared to the normalization step occurring 

in the LCA procedure (Brentrup, Kusters et al. 2004), standardizing impact 

indicators to the location.  Impact indicators will be no more a single value 

for each crop, but a range of value showed in a map, thus defining a geo-

LCA tool. Moreover, within all substances and characterization factors 

that contribute to the impact indicator, only the ones with recognized 

local effect can be chosen, increasing reliability of the method.  This 
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procedure, although desirable, requires deep knowledge on impact 

definitions and about the inner running operations of the LCA software. 

The here proposed approach postpones the integration with land site-

specific characteristics at the end of the LCA procedure, through the 

calculation of different crop-land allocation risks using impact values of 

commercially ready to use LCA databases and procedures, thus represent 

a simple and fast tool. Further more, potentially, all impact indicators 

available in the bibliography may be used, without acting on the 

procedure, thus giving the possibility to use the academic recourses to 

easily have impact indicator for a huge number of crop or agro-production 

chains.  

The LCA-GIS method well fits the situation in which several crops may 

be used to satisfy the same function, as dedicated crops are for energy 

production. The environmental impact of perennials is recognized quite 

low respect to annual crops and some food crops, together their high 

level of adaptability to several pedo-climatic conditions. The crop-to-

environment allocation approach gives thus the possibility to introduce a 

new low impacting land use and to reorganize the distribution of food and 

no-food  crops in order to minimize the impact for the environment. 

When allocating crops basing on the multiple environmental impact 

of their production chain, the most natural implementation of this 

method will be the definition of a unique total impact index representing 

all impacts with a local effect to be used in the SAM and AMCM 

integration methods. The simplest way to calculate it is to make average 

of considered impacts. The average operation brings to a loss of 
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information, thus the CMM has to be preferred because it gives the 

possibility to consider all single impacts. 

The LCA-GIS approach can be considered as a factor to be added to 

pedo-climatic analysis of the environment when dealing with land 

suitability studies. This helps in bringing multicriteriale approaches also 

increasing as many as possible the  number of impact indicators with local 

effects, that are, as already mentioned, only impacts for which it is 

possible to define an area of interaction or a mutual effect with some land 

factors. This means that only few impact categories can be used in the 

LCA-GIS approach.  Anyway the multi-criteria approach should be as wide 

as possible. Also incorporating of all possible land characteristics and 

socio-economic factors, coupled with the impact or benefit for the 

environment of crops production chain, it will produce reliable maps, 

more than increasing the complexity of tools and methods, as also 

suggested by (Kalogirou 2002).  
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Classification issue 

Classification it is used at several level in this study at it represents an 

important determinant that can also modify results. As defined, the 

method requires classification operation of the vulnerable score of each 

single vulnerability or comprehensive vulnerability maps. Allocation risks 

values of crops are also classified respect to the most impacting scenarios. 

Changing min e max values of classes, results in different vulnerable land 

extensions or in different allocation risk level for a crop in a specific 

location. Several approaches can be used to classify values. Within 

ArcView3.2 legend editor there is the possibility to define number of 

classes and the classification methods, i.e. equal area, equal interval, 

natural breaks, quantile, standard deviation. Different methods brings to 

different results. 

The classification criteria must be chosen carefully based on specific 

goals and circumstances of the case. For example, if the main purpose is 

to emphasize the differences within the territory, the more appropriate 

criteria is to maintain similar amplitudes in the extension of classes (equal 

interval). However, if the main task is to minimize the impact of crops to 

the environment, a precautionary approach can be selected, increasing 

for example the range of the high vulnerability class. 
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Subjectivity of choices 

The originality of the method and the absolute lack of literature 

often obliges to remedy with subjective criteria, such as in the elaboration 

of vulnerability maps, which makes the method certainly rebuttable and 

the results questionable. Different variables may be used to define the 

land vulnerability. The choice of land variables and the score assigned to 

each map attribute is arbitrary and it greatly influences the vulnerability 

level and area extent. In the literature, the aspect that links specific 

environmental vulnerability to a specific impact, at least as indented in 

LCA procedure, is still missing. In some cases, it is possible to find some 

studies that can be adapted to the proposed methodology, in particular 

for the definition of land vulnerability maps. For example the use of 

information and the methodology reported in the Plan for protection of 

Water (Severi and Bonzi 2008) were very useful in this study in defining 

both the vulnerability to eutrophication and to fresh water toxicity. That 

study are not anyway available everywhere, or they could be defined 

using different methods. For some impacts, as for example 

eutrophication, one of he most important aspect in agriculture, maybe 

models (Velthof, Oudendag et al. 2009) and studies that want to define 

the vulnerability of the territory may be more presents, and also for larger 

scale level, e.g. EU level. For example some information can be extracted 

by the EU Nitrate Directive (91/976/EC) which required member to target 

measures to reduce agricultural nitrate within areas vulnerable to nitrate 

pollution, known as Nitrate Vulnerable Zones. These Nitrate Vulnerable 

zones can be applied in studies that want to relate the impact to the 
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environment ((Smith, Smith et al. 2004); (Lake, Lovett et al. 2003)). When 

dealing with higher spatial details, anyway, this map will be not enough to 

emphasize site-specific differences. Moreover, it must be realized that 

often the choice of factors is determined by the available information in 

digital format and not only by their actual importance in determining the 

impact. 

Subjectivity can be also found in defining classes of vulnerability and 

for the allocation risk classes or when defining the importance of each 

land factor affecting the vulnerability. The attribution of weight to the 

factors influencing the vulnerability is another aspect of uncertainty that 

deserves discussion, even more relevant in cases of applied studies in very 

different territories, for which available data can be of different types. 

Appropriate coefficients (weighing) may be also used when in the 

determination of the overall impact of a crop, in the case of one impact is 

considered more important then another. It should be emphasized that 

the choice of weighting coefficients should be very cautious and, above all 

motivated by assumptions or verified by a robust literature. The use of 

these coefficients can indeed radically change the appearance of a map of 

vulnerability or of the environmental impact of a crop in a specific 

location. Weighting coefficients, all subjective choices, can be employed 

at the end in the following cases: 

- attribution of risk values to the environmental factors that helps to 

define the vulnerability (the subjective attribution of the different values 

of risk corresponds to an assignment of different weights to different 

environmental variables); 
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- integration of multiple vulnerability maps, in the case of SAM and 

AMCM, to emphasize the land sensitivity to a particular environmental 

impact; 

- integration of multiple indicators of impact (to emphasize an impact 

category). 

In general, if the vulnerability to a particular environmental impact is 

considered as a priority, for consistency, also the corresponding LCA 

impact category of the crop production chain should be appropriately 

weighted. 

It is correct, at this preliminary stage of the LCA-GIS method 

definition, to propose basic criteria to be followed, whenever possible, for 

the elaboration of vulnerability maps that can be compared and exported 

to other situations.  

Maximum transparency it must be maintained, justifying as much as 

possible choices in order to ensure full traceability of the results.  

The definition of a standard methodology to provide consistent 

vulnerability maps for all impact categories and also for  their integration 

is required. Vulnerability has to be as much as possible related to 

measurable, not subjective and broadly available land information, thus 

to allow the reproducibility of the analysis.  

In general in the whole LCA field of study, the standardization is one 

of main topic still under development and it will be one of principal 

aspects of future studies.   
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6. Prospects on applications 

 

 

Integration of the ‘environment-to-crop’ oriented approach within land 

suitability (the bidirectional approach) 

LCA-GIS tool for the sustainability assessment of current land use  

Guideline for developments of new policy for crop chains introduction in 

rural areas. Crop yield or environmental impacts ? 

Decision Support Systems based on Open-sources GIS 

 

 

 

 

 

 

 

 

Highlights  
The crop impacts can be easily integrated into existing land suitability procedures. 

Data on the current land use may be related with the vulnerability map and thus to 

know where land use can be modified in order to increase the environmental 

sustainability. E.g. the data showed that in the Bologna plain, 7820.80 ha of summer 

crops (which includes maize) are in highly vulnerable lands. This portion may be 

substituted with low impacting energy crops in order to increase the sustainability. 

Minimize the environmental impact with crop allocation, could not potentially be the 

best choice also from the economic point of view, but it can be supported if an 

economic value will be given to the environmental protection level of alternative land 

uses. Integrate socio-economic models with the LCA-GIS approach will represent a 

Decision Support System to be applied under a sustainable planning strategy in rural 

areas.  
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Integration of the ‘environment-to-crop’ oriented approach within land 

suitability (the bidirectional approach) 

The concept of dealing with environmental impact can be integrated 

with the procedures generally used in land suitability studies. The impact 

of the crops can be considered at the same level of a soil or a climate 

variable and therefore can be easily integrated into existing procedures 

followed to build a suitability map. 

As already seen in more detail in chapter 2 “Baseline principles”, 

even when using a multicriteriale approach in land suitability studies for 

novel crops, the approach is generally environment-to-crop oriented. 

Usually the territory is characterized in terms of pedo-climatic conditions 

and the crop are located where the environment is able to satisfy crop 

needs, e.g. as the approach followed in the work of Fiorese et al. (Fiorese 

and Guariso 2010). This approach is mainly linked to ensure the maximum 

potential yield and agronomic management, that may be linked to an 

economic sustainability.  

Extending the criterion for allocation to the environmental impact of 

crops means to include a new direction in the method: not only a crop 

may be distributed basing on the capacity of the location to satisfy his 

needs, but also based on the impact of his production chain on the 

environment. Taking in the consideration the environmental impact of 

crop production chains introduce the environmental sustainability to the 

economic ones. The integration of this two approaches defines a 

bidirectional method between crop and environment (effect of 

environment on crop and the effect of crop chain to the environment) 

that increase the reliability on land suitability studies of novel crops. 
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Figure 6.1. Integration of the LCA-GIS approach with land suitability 

studies. 

 

The integration of the crop to environment approach may occur at 

different stages of a land suitability study. The effect of the crop on 

environment resembles a pedo-climatic variable. As it is shown in fig. 6.1, 

vulnerability maps (to one single impact indicator or comprehensive 

maps) may be considered as a pedo-climatic factor and then used at the 

same level in assigning suitability scores to be added to the other land 

characteristics in a topological overlay. High vulnerability score will of 

course decrease the suitability of a location to a given crop. A complete 

vulnerability map can be produced overlaying all specific impact 

to re-asses the crop land allocation basing on the 

lowest environmental impact scenario 

species 
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categories with local effects that are appraisable with LCA (erosion risk, 

water consumption, etc.), and then using this map in the land 

characterization along with pedo-climatic variables. In other words, 

optimising the land assignment considering an additional variable which is 

the crop effect on environment. 

Another approach it could be to re-asses crop land allocation defined 

using pedo-climatic conditions. After crops have been allocated in order 

to maximize their potential yield, the distribution may be adjusted 

considering their site specific impact, while trying anyway to conserve 

sustainable yields level. In other words, optimizing the land use on the 

base of productivity, and then using the vulnerability map to re-asses the 

crop land allocation basing on the lowest environmental impact scenario. 

Optimize the land assignment considering an additional variable 

which is the crop effect on environment increases the overall 

sustainability level between the land use and the environment. The 

importance of this approach could be emphasized in the future and 

gaining more and more importance if an economic value will be given to 

the environmental protection level of land uses, a not remotely possibility 

looking at future agricultural policies developments (e.g. EU Commission, 

2009/30/EC). 

A land suitability study following the environment to crop approach 

requires a deep investigation of several pedo-climatic variables that is not 

among the targets of this study. Anyway, a simple and fast method to 

locate crop based on their productivity and their suitability to be grown 

with sustainable agronomic practices it should be to select agricultural 
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lands from the land use map where herbaceous crops are grown. In these 

areas, eventually herbaceous energy crops could be easily and readily 

integrated with existing crop rotation as agronomic skills and facilities to 

manage herbaceous crops are already used. The integration of poliennal 

herbaceous energy crops requires a longer planning strategy, but anyway, 

from the pedo-climatic point of view, they could be generally suitable 

where herbaceous crops of the province of Bologna are already grown. 

Following the selected land uses from the Land Use map (2008) that 

may be interested by novel herbaceous energy crops. Within ArcGis3.2, 

using the select by query tool, it is possible to extract that categories from 

the whole land use map and convert them to a new map layer.  

Ultimately, selected lands represents all agricultural lands where 

agriculture is a normal practice. Among selected land uses, categories as 

orchards, or semi-natural forests, semi-natural lands or stable meadows 

area, anyway among agricultural lands, could be also included in order to 

the leave opened the possibility of a longer time planning strategy. 

The province of Bologna covers about 370000 ha of which, according 

to the exclusion criteria used, about 237500 ha are suitable or potentially 

suitable for cultivation, within a brief or longer term planning strategy. 

A subsequent operation called 'dissolves' has made it possible to 

classify all the polygons of the map in only two categories, as suitable or 

not for the cultivation (fig. 6.2).  
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LAND USE map 2008 - Land use Legend of Agricultural lands. 

2 Agricultural lands .  

2.1 Arable land  

2.1.1.0 Non-irrigated arable areas (Sn)  

Are considered non-irrigated perimeters those located in hilly and mountainous areas where 

irrigation is not practiced.  

2.1.2 Arable crops in irrigated areas  

Crops irrigated periodically or sporadically, usually with permanent structures.  

2.1.2.1 Arable simple (If)  

2.1.2.2 Nurseries (Sv)  

2.1.2.3 Horticultural crops in open fields, greenhouses and under plastic (I know)  

2.1.3.0 Rice (Sr.)  

2.2 Permanent crops  

Not subject to rotational crops that provide more crops and occupy the land for a long period 

prior to the burglary: it is mostly woody crops. Excluded are meadows, pastures and forests.  

2.2.1.0 Vineyards (CV)  

Areas planted with vines.  

2.2.2.0 Fruit trees and berry minor (CF)  

Plants trees or shrubs bearing. The fruit that is less than 1.5 ha, including agricultural land 

(arable land or meadows) are considered important in the class 2.4.2. The presence of 

orchards with different groups of trees are included in this class.  

2.2.3.0 Groves (Co)  

Areas planted with olive trees, including particles in mixed cultivation of olive trees and vines.  

Arboriculture for wood  

2.2.4 Area planted with trees of forest species for fast-growing timber production operations 

are subject to an agricultural crop.  

2.2.4.1 poplar cultivation (Cp)  

2.2.4.2 Other crops from wood (walnut forests, etc..) (Cl)  

2.3 Meadows Stable  

2.3.1.0 stable Meadows (PP).  Surfaces to dense herbaceous cover, mainly represented in 

the floristic composition of grasses, not subject to rotation.  

2.4 Heterogeneous agricultural areas  

2.4.1.0 Temporary crops associated with permanent crops (Zt)  

Annual crops (arable land or grassland) in association with permanent crops on the same 

surface. There are mixed areas of crops including temporary and permanent when the latter 

accounting for less than 25% of the total area.  

2.4.2.0 Cropping systems and particle complexes (Zo)  

Patchwork of individual plots is not temporary maps with various crops, permanent grassland 

and permanent crops occupying each less than 50% of the mapped element (eg vegetable 

gardens for seniors).  

2.4.3.0 areas predominantly occupied by agriculture, with important natural spaces (Ze). 

The crops occupy more than 25% and less than 75% of the total area mapped element. The 

natural areas can be represented by hedges, bushes, patches of tree line.  

3 the forest and semi-natural environments  

3.1 wooded areas  

3.1.1 Broad-leaved forest  

Plant formations, consisting mainly of trees, bushes and shrubs but also, in which species 

dominate the hardwood forest. The hardwood surface is at least 75% of the component tree 

forest, otherwise it is classified as mixed forest.  
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3.1.1.1 Forests consisting mainly of beech (Bf)  

They are usually located in an altitudinal range of more than 900 meters above sea level  

3.1.1.2 Forests consisting mainly of oak, hornbeam and chestnut (Bq)  

They are usually located in a strip less than 900 meters altitude above sea level  

3.1.1.3 Forests consisting mainly of willows and poplars (BS)  

They consist of hygrophilous species usually present in areas with plenty of water.  

3.1.1.4 Woods in flat areas with prevalence of oaks, ash, etc.. (BP)  

3.1.1.5 chestnut (Bc)  

Areas with chestnut trees which are regularly carried out activities of pruning and cleaning of 

the undergrowth.  

3.1.2.0 Coniferous forest (Ba)  

Plant formations consist mainly of trees, bushes and shrubs but also in which coniferous forest 

species dominate. The area is at least 75% conifer component of the forest tree, otherwise it 

is classified as mixed forest.  

3.1.3.0 Mixed woods of conifers and deciduous trees (WB)  

Plant formations, consisting mainly of trees, bushes and shrubs but also, where neither 

deciduous nor coniferous exceed 75% of the component tree forest.  

3.2 Environments with shrubbery and / or herbaceous evolving  

3.2.1.0 Grasslands and heath at high altitude (Tp)  

Areas with natural vegetation to herbaceous or low-shrub, located above the limit of natural 

vegetation and trees in the Emilia-Romagna region is located between 1400 and 1600 meters 

above sea level  

3.2.2.0 bushes and shrubs (Tc). Low and closed vegetation formations, mainly consisting of 

bushes, shrubs and herbaceous plants.  

3.2.3 Areas to shrubbery and trees changing  

Shrubby or herbaceous vegetation with scattered trees. Formations that may result from the 

degradation of the forest or renewal of same for recolonization of areas adjacent to non-

forest or forest areas. Differ from 3.2.2.0 to the particular situation of location (eg. Former 

agricultural land with terraces or particle boundaries) or in relation to time parameters-

cultural-specific environmental (eg. Burned areas or subject to damage of various kinds and 

origin).  

3.2.3.1 Areas with shrub vegetation and / or grass with scattered trees (Tn)  

3.2.3.2 Areas with recent forestation (Ta)  

3.3 open areas with little or no vegetation  

3.3.1.0 beaches, dunes and sands (DS)  

There are including beaches, dunes and expanses of sand and pebble beaches and continental 

environments. The dunes covered with woody or herbaceous vegetation are classified in 

entries 3.1 and 3.2.  

3.3.2.0 bare rocks, cliffs and outcrops (Dr)  

Areas with vegetation cover less than 10%.  

3.3.3 Areas with sparse vegetation  

3.3.3.1 ravines Areas (DC)  

3.3.3.2 Areas with sparse vegetation and other (right). Areas where vegetation cover is 

between 10% and 50%.  

3.3.4.0 Areas covered by fire (a) .Or semi-natural woodlands affected by recent fires. The 

charred material are still present. 
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Figure 6.2. Agricultural lands extracted from the Land Use map (2008). These areas may be considered as suitable 

for the cultivation of energy crops or for a re-assess of the land use in order to maximize its sustainability. 
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LCA-GIS tool for the sustainability assessment of current land use 

The vulnerability map provides direct information on the real 

capacity of the area to cope with the impacts generated by different types 

of crops and cultivation schemes. The link of the vulnerability map with 

the current land use may represent a tool to understand its sustainability. 

From the inventory of cultivated crops in a given area and the 

quantification of their impacts (using LCA approach), it is possible to 

understand for example whether and in what proportion the highest 

impacting crops are grown in areas classified with low or high 

vulnerability, and consequently, if possible, with the use of territorial 

planning tools to re-allocate crops in order to minimize the risk for the 

environment. As a general rule, ideally, the crop with the highest impact 

should be grown on less vulnerable areas, and vice versa. Currently, there 

are lot of political and economic constraints which hinders this principle, 

and of course this principle is more ease to implement in a developing 

area respect to regions with a well established agriculture. However, in a 

context in which sustainability is recognized and driven by fiscal policy, 

this principle may also assume and economic value, as well as social and 

environmental. This hypothesis is not so far given the increasing socio-

political perceptions towards environmental issues.  

When studying the impact of the current land use on environment, 

the first problem is encountered when searching for the availability of 

detailed maps of crop locations. Information of this nature are 

unfortunately not easy to find, especially at a high level of detail as, for 

example, the single field or farm. In the case of herbaceous annual crops 
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this appears partly explained by the fact that they usually are part of the 

crop rotation and rarely they are grown on the same field for several 

years. Again their cultivation is also more directly subjected, respect to 

tree crops, to the trade demand and prices, resulting in unstable 

cultivation during years. Usually high resolution surveys on the crop 

presence are expensive operations that are not frequently carried out. 

Much easier is to find information at higher scale level than farm 

field, e.g. hectares of crops aggregated at municipal or provincial level, or 

when crops are aggregated in categories, e.g. herbaceous, tree crops, 

fallow lands, etc.  

Some information about the crop distribution in the province of 

Bologna may be obtained by the Land Use map of the Emilia Romagna 

region, released by the Emilia Romagna regional office, and which his last 

version is updated at 2008. This map is obtained from remote sensing 

image interpretation. As a map, it indicates the location of crops, thus the 

spatial resolution of the information is not linked to administrative 

borders (municipalities, provinces, regions, etc.), that is usually the data 

format aggregation which data are released for example by statistical 

sources, and they may be spatially related to the site-specific vulnerability 

of the case study area. 

In the Land Use map, the territory is hierarchically classified in 

categories and sub categories. Concerning agricultural lands, that are part 

of the category named “lands modified by humans”, at the base of the 

hierarchical classification, i.e. the higher detail, the territory is classified in 

the following categories: 



Prospects on applications 164 

1. SN - Annual herbaceous crops in not-irrigated lands. Not irrigated 

lands are hilly and mountainous areas of the region, where the 

irrigation is not generally carried out and where there are not 

stable infrastructure to support irrigation) 

2. SI - Simple annual herbaceous crops in irrigated lands. Crops 

irrigated continuously or occasionally thanks to the presence of 

stable irrigation infrastructures. 

3. Nurseries. 

4. Horticultural crops in open fields, in greenhouses or under 

tunnels. 

5. Rice fields. 

6. Poliennal permanent crops. Crops not included in the rotation 

scheme, harvested for several years in the same field before 

ploughing. Generally tree crops as fruit crops. Not including 

meadows, pastures and forests. 

7. Vineyards. 

 

Among the above listed Land Use map classifications, maize and 

wheat, two crops currently grown in the province of Bologna and taken 

under consideration in this study, fall within the categories 1 and 2 (SN 

and SI), arable lands in irrigated and not irrigated areas. Maps of fig. 6.3 

reports localization of sowable irrigated (SI) and sowable not irrigated 

(SN). Irrigated lands are in the Northern part of the province, 

corresponding with the flat area with specialized agriculture. In practise, 

this area is completely provided by stable irrigation infrastructures. Non 

irrigated lands are in the hilly and mountainous part of the province, 

where irrigation it could be  possible but it is not a routine practice. 
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Figure 6.3. Sowable lands from the Land Use Map (2008) in the province of Bologna. 
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For this two crops aggregation, it is possible to know their impact on 

the base of the vulnerability of the case study area. In fig. 6.4 it is 

reported the comprehensive allocation risk for maize, referring to FWT, 

EU and HUMT, calculated following the CMM of classified maps. 

 

 

Figure 6.4. Allocation risk for maize in the province of Bologna (3 impact 

indicators and CMM of classified maps). 

 

Through a selection query in ArcView3.2 of irrigated and not irrigated 

arable lands (category 1 and 2 of the Land Use Map) and of their 

topological overlay with the vulnerability map of fig. 3.9, is it possible to 

define selected arable lands that are classified as low, moderate or high 

vulnerable. In fig. 6.5, the polygons indicate arable (irrigated or not) in the 

province of Bologna, and in yellow portions located in the high, medium 

and low risk of allocation for maize. Overlaying arable lands with the 

impact map for maize, polygons representing the arable land are split at 

the vulnerability borders of map 6.4. 
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a)  b)  c)  

 

Figure 6.5. Annual herbaceous crops  (in irrigated and not irrigated lands in the province of Bologna (source: Land 

Use Map, 2008). In yellow, areas located in high (a), moderate (b) and low (c) allocation risk lands, respect to 

maize.  
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At each new polygon can be assigned the vulnerability level information in 

a new attribute field of the associated database. Within ArcView3.2, area 

extensions and percentages can be calculated (table 6.1 3.5). 

 

Table 6.1. Area extension (ha) of sowable lands (in irrigated and not 

irrigated areas, from the Land Use map 2008) split based on the allocation 

risk for maize in the province of Bologna. Percentages refer to the row 

total. 

low moderate high total

SI - sowable irrigated 30252.1 78800.96 26059.45 136112.5

SN - sowable not irrigated 24124.66 16180.25 1962.8 42267.71

total 54376.75 95981.22 28022.25 178380.2

%

SI - sowable irrigated 22.2 58.6 19.2 100.0

SN - sowable not irrigated 57.1 38.3 4.6 100.0

total 30.5 53.8 15.7 100.0

Allocation riskLand use extension                

(ha)

 

 

In the province of Bologna, 15.7 % of annual herbaceous crops are 

located in lands with high allocation risk for maize, 53.8 % in lands with a 

moderate risk and 30.5 % in the low allocation risk areas (table 6.1).  

Although land use map does not indicate exactly single crops, but  

they are aggregated in the two categories SI and SN, there is a high 

probability that they include corn or wheat, two main crops in the 

province.  

The actual area of corn, wheat or other crops is still traceable from 

other sources, such as the Statistical Office of the Emilia Romagna 

(StatisticaE-R) who emits each year estimates on the base of agrarian 

regions (fig. 6.6).  The territory of Emilia-Romagna Region is subdivided 
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into 9 Provinces (NUTs3) and 341 municipalities. In addition, there are 

subprovincial territorial units called agrarian regions (46 in total) that 

group several municipalities of a given province (on average 7 

municipalities each agrarian region) to define somewhat homogenous 

regions from the agricultural perspectives and for which statistics are 

normally published. In the province of Bologna there are 8 agrarian 

regions (table 6.2). 

 

 

 

Figure 6.6. Agrarian region aggregations in the Emilia Romagna region.  
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Table 6.2. Municipalities of the agrarian regions in the province of 

Bologna. 

Agrarian region

Regione Agraria n.1 – Montagna del Castel d’Aiano, Gaggio Montano, Grizzana

Medio Reno Morandi, Monzuno, Vergato

Regione Agraria n.2 – Alto Reno Camugnano, Castel di Casio, Castiglione dei Pepoli,

Granaglione, Lizzano in Belvedere, Monghidoro,

Porretta Terme, San Benedetto Val di Sambro

Regione Agraria n.3 – Colline di Bologna, Casalecchio di Reno, Ozzano dell’Emilia,

Bologna San Lazzaro di Savena, Zola Predosa

Regione Agraria n.4 – Colline del Bazzano, Castello di Serravalle, Loiano, Marzabotto,

Reno Monte San Pietro, Monteveglio, Pianoro, Sasso

Marconi, Savigno

Regione Agraria n.5 – Colline del Borgo Tossignano, Casalfimanese, Castel del Rio,

Sillaro e del Santerno Castel San Pietro Terme, Dozza, Fontanelice,

Monterenzio

Regione Agraria n.6 – Pianura a Anzola dell’Emila, Calderara di Reno, Crespellano,

sinistra del Reno Crevalcore, Sala Bolognese, San Giovanni in

Persicelo, Sant’Agata Bolognese

Regione Agraria n.7 – Pianura a Argelato, Baricella, Bentivoglio, Castello d’Argile,

destra del Reno Castel maggiore, Galliera, Granarolo dell’Emilia,

Malalbergo, Minerbio, Pieve di Cento, San Giorgio di

Piano, San Pietro in Casale

Regione Agraria n.8 – Pianura Budrio, Castel Guelfo, Castenaso, Imola, Medicina,

dell’Idice e del Santerno Molinella, Mordano

Municipalities

  

 

The boundaries of agrarian regions follow with good approximation 

the boundaries that define the irrigated and non-irrigated arable lands, 

for which it was possible to calculate the actual values of single crops in SI 

and SN arable lands, keeping separated the two types of soils, irrigated 

and not irrigated (table 6.3).  

In the whole province, the 14.6 % of the sowable lands is represented 

by maize, 49.02 % by wheat and 1.28 % by sunflower. Among cereals, 
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wheat is most represented crop, both in irrigated lands (48.76 % of 

irrigated lands) and in no-irrigated lands (51.07 % of no-irrigated lands). 

 

After all the dislocation of crops in the province is not so far in 

assisting the vulnerability of the territory. Using land use maps, 19.2 % of 

irrigated lands are located in highly vulnerable areas and of this portion, 

only 16.05 % is represented by maize; it must be said, however, that for 

obvious reasons maize is far more present in the irrigated areas (16% of 

irrigated areas are covered with maize) and much less in non-irrigated 

(3.4% of total non-irrigated lands).  

 

Table 6.3. Presence in hectares and as % of some interesting crops related 

to this study located in the province of Bologna. (Source: data elaboration 

from aggregated statistical data 2008 on the base of agrarian regions. 

Percentage is respect the row total).  

Land use                
SI - sowable 

irrigated (ha)

SN - 

sowable not 

irrigated 

(ha)

Total 

sowable in 

the 

Province 

(ha)

SI - 

sowable 

irrigated 

(%)

SN - 

sowable 

not 

irrigated 

(%)

Total 

sowable in 

the 

Province 

(%)

cereals 67902 9572 77474 78.72 85.84 79.54

wheat 42055 5695 47750 48.76 51.07 49.02

maize 13844 376 14220 16.05 3.37 14.60

sunflower 982 268 1250 1.14 2.40 1.28

rapeseed 207 13 220 0.24 0.12 0.23

sugarbeet 8530 403 8933 9.89 3.61 9.17

tot 86255 11151 97406 100 100 100  
 

 

Basing on these conclusions, maize portion in high vulnerable lands 

could be reallocated in lower vulnerability lands.  
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Regarding wheat, his presence in the territory is higher respect to 

maize and when considering multiple impact indicators, his allocation risk 

resulted comparable with maize. This means that maybe also wheat could 

be re-allocate in lower vulnerable areas in order to increase land 

sustainability. 

The decision maker must evaluate on the one hand the 

disadvantages on eventually yield reduction, and secondly, the 

environmental benefits deriving from a more efficient allocation of maize, 

or of wheat, in an environmental key. The substitution of these food crops 

with some herbaceous perennial as switchgrass in vulnerable lands will 

reduce the overall land use impact. It is clear that the balance between 

food and no-food and the economic value attributed to the 

environmental benefits can act as a factor in selecting the planning 

strategy. 

 

More information on the actual land use and crops distribution can 

also be obtained by processing the results of the COLT project (crop 

classification through remote sensing) (Spisni and Mariani 2010), co-

funded by the Regional Environmental Agency (ARPA) and the 

Department of Agriculture of Emilia-Romagna region. COLT project is a 

tool for spatially detection and crop quantification through photo-

interpretation and analysis of multitemporal series of remote sensing 

images acquired by satellite. Acquisitions are scheduled during the period 

between November and June. The tool’s mission is primarily to address 

the estimation of water needs by integrating models on water use and 
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crop growth, and consequently the planning of water delivery in 

agriculture during the upcoming growing season. Main used model is the 

regional idrological model called CRITERIA (Marletto, Zinoni et al. 1993). 

Data are available each year at June. The project beneficiaries are 

principally Irrigation Consortiums of Emilia-Romagna region. The study 

area covers only the flat area of the region, which is the area where 

Irrigation Consortiums act, also representing the more intensive 

agricultural area in the region. The study area also coincides with the 

sowable lands in irrigated areas of the Land Use map 2008 (fig. 6.5). Crops 

are classified into aggregated categories of crops, linked to the ability to 

differentiate the crops basing on their phenology and how their appear in 

the remote sensing image at different times of the growing cycle. 

Categories are reported in fig. 6.7, which shows the location of different 

groups of crops on the province of Bologna’s plains.  
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Figure 6.7. Crops categories distribution in the flat valley of the province, data elaboration from COLT project 

(growing seasons 2009-2010). Winter crops are mainly represented by wheat; summer crops includes maize. 
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Project COLT ‘s maps have very high level of spatial resolution, 

allowing to identify the land use next to each farm field level, and for this 

reason is particularly appropriate for the comparison with vulnerability 

and allocation risk maps.  

Crops included in the 2010 aggregation are: 

- 1.EEee. Summer herbaceous annual crops (corn, sugar beet, 

sunflower, sorghum, potato, tomato, soybean, uncultivated, 

carrot, onion, cilantro, fresh beans, lettuce, melon, pea.) 

- 2.EAgc. Winter herbaceous crops (cereals, wheat, barley, rye, 

grass hay and rapeseed) 

- 3.EPpm. Poliennal herbaceous crops (pasture and alfalfa) 

- 5.EEri.Rice (from land Use Map 2008) 

- 12.LPvi.Vineyard (from land Use Map 2008) 

- 13.LPfm. Mixed fruit crops (from land Use Map 2008). Includes 

apple, kiwi, peach, pear and other fruits. 

- Clouds 

- ND. Missing area. 

 

Among identified categories, the following are of interest for the 

comparison with the vulnerability map: 

- EAgc - Vernine autumn crops: wheat, barley, rye, rapeseed; 

- EEEE - Summer crops: corn, sugar beet, sunflower, sorghum, potato, 

tomato, soybean, uncultivated, carrot, onion, cilantro, fresh beans, 

lettuce, melon, pea. 

 

COLT’s project, as for data coming from the Land Use map, is not able 

to identify individual crops, such as corn and wheat. However, it is 

possible to calculate the presence of corn and wheat with a good 

approximation linking the two main categories EAgc and EEEE with other 

databases such as, for example, the Agriculture censuses  by ISTAT (the 

Italian institute of Statistics), which provide the most updated data source 
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of available at municipal level, the greater detail in which data are 

distributed.  

Topological overlay of the map elaborated starting from COLT data 

(fig. 6.7) with those of the environmental impact of the crops, e.g. maize 

(fig. 6.4), allows to identify land uses portions that fall in areas with high, 

medium or low environmental risk (fig. 6.8 to 6.10). The processing of 

these maps in ArcView3.2 also allows to extract various additional 

information such as extensions in hectares and crops located on the 

different vulnerable land portions (table 6.4). 

 

Table 6.4. Crop categories surface extension (ha) from elaboration of 

COLT project’s data split in the 3 allocation risk classes (low, moderate 

and high) on the base of the comprehensive vulnerability map of the 

province (3 impact indicators, CMM impact integration). Percentages are 

respect to each row total.   

Crops group low moderate high total

EAgc - Winter crops 10656.79 30326.66 10867.27 51850.71

EEee - Summer crops 12950.72 28569.10 7820.80 49340.62

EPpm - Grasses and alfalfa 3908.20 10747.52 3564.85 18220.58

LPfm - Tree fruit crops 1014.03 3865.49 4783.26 9662.77

LPvi - vineyards 13.42 523.48 659.88 1196.78

Total 28543.16 74032.25 27696.06 130271.46

%

EAgc - Winter crops 20.55 58.49 20.96 100

EEee - Summer crops 26.25 57.90 15.85 100

EPpm - Grasses and alfalfa 21.45 58.99 19.56 100

LPfm - Tree fruit crops 10.49 40.00 49.50 100

LPvi - vineyards 1.12 43.74 55.14 100

Total 21.91 56.83 21.26 100   
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a)  b)  

 

Figure 6.8. EEee (summer crops) and EAgc (winter crops) location in the province of Bologna (data source: 

elaboration from COLT project 2010). In yellow, summer herbaceous crops (a) and winter herbaceous crops (b) 

located in areas with a high allocation risk. 
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a)  b)  

 

Figure 6.9. EEee (summer crops) and EAgc (winter crops) location in the province of Bologna (data source: 

elaboration from COLT project 2010). In yellow, summer herbaceous crops (a) and winter herbaceous crops (b) 

located in areas with a moderate allocation risk. 

 



Prospects on applications 179 

 

a)  b)  

 

Figure 6.10. EEee (summer crops) and EAgc (winter crops) location in the province of Bologna (data source: 

elaboration from COLT project 2010). In yellow, summer herbaceous crops (a) and winter herbaceous crops (b) 

located in areas with a low allocation risk. 
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According to COLT’s data, in the flat area of the province of Bologna, 

20.96 % (10867.27 ha) of arable winter crops (including wheat) are grown 

in areas classified as highly vulnerable. The data also shows that 15.85 % 

(7820.80 ha) of summer crops (which includes maize) are grown in areas 

classified as highly vulnerable (table 6.4); more than a half (approx. 58 %) 

of summer crops are in areas of medium impact. Values are similar to 

those previously calculated on the basis of the Land Use map.  

It is also worth noting that half of orchards and vineyards are located 

in areas with high environmental risk. It is true that the vulnerability was 

calculated thinking of herbaceous crops and that the used vulnerability 

map is related to maize, from which the highest impact on the territory 

are identified. Maize maybe requires greater use of fertilizers, but also a 

lower use of chemical treatments. It would be then interesting to assess 

the environmental impact of orchards and recalibrate the map of 

vulnerability on it, in order to quantify the actual 'environmental hazard' 

in the current orchard locations. 

 

ISTAT, the Italian National Institute of Statistic, with the 5
th

 Census on 

Agriculture carried out in 2000, collected data of crops hectares 

aggregated at municipal level. Each municipality, at national scale, has an 

identifying unique code which is used when dataset are released. Map of 

fig. 6.11 reports those ISTAT codes and the correspondence with the 

municipality name.  
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ISTAT 

code
Municipality name

ISTAT 

code
Municipality name

37001 ANZOLA 37031 GRIZZANA

37002 ARGELATO 37032 IMOLA

37003 BARICELLA 37033 LIZZANO IN BELVEDERE

37004 BAZZANO 37034 LOIANO

37005 BENTIVOGLIO 37035 MALALBERGO

37006 BOLOGNA 37036 MARZABOTTO

37007 BORGO TOSSIGNANO 37037 MEDICINA

37008 BUDRIO 37038 MINERBIO

37009 CALDERARA DI RENO 37039 MOLINELLA

37010 CAMUGNANO 37040 MONGHIDORO

37011 CASALECCHIO DI RENO 37041 MONTERENZIO

37012 CASALFIUMANESE 37042 MONTE S.PIETRO

37013 CASTEL D'AIANO 37043 MONTEVEGLIO

37014 CASTEL DEL RIO 37044 MONZUNO

37015 CASTEL DI CASIO 37045 MORDANO

37016 CASTEL GUELFO 37046 OZZANO

37017 CASTELLO D'ARGILE 37047 PIANORO

37018 CASTELLO DI SERRAVALLE 37048 PIEVE DI CENTO

37019 CASTEL MAGGIORE 37049 PORRETTA TERME

37020 CASTEL S. PIETRO TERME 37050 SALA BOLOGNESE

37021 CASTENASO 37051 S.BENEDETTO VAL DI SAM

37022 CASTIGLIONE DEI PEPOLI 37052 S.GIORGIO DI PIANO

37023 CRESPELLANO 37053 S.GIOVANNI IN PERSICET

37024 CREVALCORE 37054 S.LAZZARO DI SAVENA

37025 DOZZA 37055 S.PIETRO IN CASALE

37026 FONTANELICE 37056 S.AGATA BOLOGNESE

37027 GAGGIO MONTANO 37057 SASSO MARCONI

37028 GALLIERA 37058 SAVIGNO

37029 GRANAGLIONE 37059 VERGATO

37030 GRANAROLO 37060 ZOLA PREDOSA  

Figure 6.11. Municipalities in the Province of Bologna. Grey filled poligons represents urban areas. 
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Data from the year 2000 are available for consultation (ISTAT 2000). 

A specific dataset extracted from the national database was prepared and 

spatially linked to the map of municipalities of the province of Bologna.  

The dataset is shown in fig. 6.12 as map reporting hectares of maize and 

wheat in the municipalities. Information shown in map of fig. 6.12 can be 

integrated through overlaying, with sowable lands (irrigated and not 

irrigated) of land use maps classified based on their vulnerability (fig. 6.5). 

The same can be done using maps of fig. 6.8 to 6.10, reporting the 

classification of winter and summer crops referring to COLT project on the 

vulnerable lands. From the elaboration of these map overlays, data 

summarized in table 6.5 and 6.6, can be obtained. Since the greatest 

detail of ISTAT data is the municipal border, this will correspond to the 

resolution of the information regarding the distribution of crops in 

vulnerable areas.  

 

In summary, the province comprises approximately 28000 ha of 

sowable lands in high vulnerability zones, of which 6.49 % are covered by 

corn and 29 % by wheat (table 6.5). The municipality of Imola has the 

highest number of hectares of sowable land in high-risk areas (8054.45 

ha). However, only 3.68 % of Imola’s sowable lands are covered by maize. 

Wheat is present in the 32.88 % of Imola’s sowable lands, and as its 

impact could be compared to maize when considering multiple impact 

indicators. It could be effectively thought to partially substitute wheat or 

maize with lower impacting crop in order to minimize environmental 

impacts. 
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Figure 6.12. Extension of maize and wheat fields in the municipalities of the province of Bologna (source: 

Elaboration of the 5
th

 Census on Agriculture, 2000). 
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Table 6.5. Total sowable lands (ha) from the Land Use map located in 

each municipality with the corresponding % of maize, wheat and 

sunflower (data from the 5° ISTAT Census on Agriculture). For each 

municipality, land portions are also classified based on vulnerability map 

of maize (3 impact indicators, CMM impact integration). 
ISTAT 

code
Municipality low moderate high total

maize 

(%)

wheat 

(%)

sunflower 

(%)

37001 ANZOLA 2010.91 527.27 2538.18 5.79 32.23 0.06

37002 ARGELATO 0.27 1926.85 716.22 2643.34 6.14 38.49 0.00

37003 BARICELLA 3014.17 421.93 0.27 3436.38 10.33 31.35 0.15

37004 BAZZANO 0.13 850.15 850.29 6.74 22.83 3.13

37005 BENTIVOGLIO 2858.97 971.89 1.68 3832.55 10.53 35.66 0.00

37006 BOLOGNA 2202.63 1627.23 3829.86 5.10 35.72 2.43

37007 BORGO TOSSIGNANO 557.29 86.73 32.01 676.03 0.98 5.75 10.87

37008 BUDRIO 3.34 10073.72 215.23 10292.29 5.91 32.13 0.21

37009 CALDERARA DI RENO 1562.46 1481.47 3043.93 8.56 38.39 0.97

37010 CAMUGNANO 1572.34 514.64 0.29 2087.26 0.05 7.27 0.00

37011 CASALECCHIO DI RENO 209.14 268.18 477.32 0.06 24.97 3.78

37012 CASALFIUMANESE 1784.78 640.77 37.99 2463.53 0.79 13.71 1.07

37013 CASTEL D'AIANO 1056.55 165.31 1221.85 0.00 6.04 0.00

37014 CASTEL DEL RIO 535.61 164.45 0.00 700.06 0.09 13.62 2.48

37015 CASTEL DI CASIO 820.23 143.79 964.02 0.00 6.98 0.00

37016 CASTEL GUELFO 2.12 2184.26 114.77 2301.15 2.39 32.43 0.34

37017 CASTELLO D'ARGILE 2276.91 8.79 2285.70 18.26 35.54 0.00

37018 CASTELLO DI SERRAVALLE 917.25 446.75 107.52 1471.52 0.14 18.07 1.96

37019 CASTEL MAGGIORE 0.10 586.39 1540.10 2126.59 8.19 40.31 0.00

37020 CASTEL S. PIETRO TERME 2585.16 5783.42 405.44 8774.01 2.52 24.02 0.24

37021 CASTENASO 1709.58 1011.69 2721.27 3.61 39.33 0.00

37022 CASTIGLIONE DEI PEPOLI 1037.69 124.63 1162.32 0.00 12.58 0.00

37023 CRESPELLANO 1100.70 1281.66 2382.37 12.03 34.88 1.78

37024 CREVALCORE 6512.37 1828.15 0.41 8340.92 24.76 30.43 0.03

37025 DOZZA 0.28 60.20 1079.31 1139.80 3.34 25.34 1.03

37026 FONTANELICE 1108.07 72.12 1180.19 2.85 8.69 1.44

37027 GAGGIO MONTANO 1590.80 298.09 1888.89 0.00 5.63 0.00

37028 GALLIERA 2694.73 38.98 2733.71 14.88 34.53 0.06

37029 GRANAGLIONE 83.51 12.52 96.02 0.00 10.53 0.00

37030 GRANAROLO 0.83 1780.48 892.03 2673.34 5.74 32.66 0.00

37031 GRIZZANA 1122.14 213.41 1335.54 0.00 10.25 0.00

37032 IMOLA 3.90 1768.91 8054.45 9827.26 3.68 32.88 5.08

37033 LIZZANO IN BELVEDERE 937.91 71.13 1009.04 0.00 12.76 0.00

37034 LOIANO 1761.75 351.10 3.64 2116.49 0.08 13.76 0.10

37035 MALALBERGO 3.54 3669.61 31.60 3704.75 10.96 29.77 0.24

37036 MARZABOTTO 776.74 482.73 1.17 1260.63 0.00 14.81 1.69

37037 MEDICINA 9692.43 4072.69 21.99 13787.12 1.82 35.30 1.26

37038 MINERBIO 2.34 3284.06 117.17 3403.58 6.86 31.15 0.78

37039 MOLINELLA 6832.28 3032.52 2.77 9867.57 8.42 22.96 0.45

37040 MONGHIDORO 1020.30 125.85 1146.15 0.00 10.46 0.00

37041 MONTERENZIO 1469.11 257.90 0.97 1727.97 0.69 10.03 3.15

37042 MONTE S.PIETRO 0.50 1987.98 262.41 2250.88 0.73 19.55 2.62

37043 MONTEVEGLIO 1.94 796.98 526.11 1325.02 1.17 32.54 0.64

37044 MONZUNO 1132.21 221.67 1.34 1355.22 0.09 7.73 0.00

37045 MORDANO 744.48 57.24 801.73 4.34 36.80 1.09

37046 OZZANO 2.77 1682.68 2036.08 3721.54 2.86 29.65 2.41

37047 PIANORO 1.48 3163.88 398.06 3563.43 0.20 18.29 4.11

37048 PIEVE DI CENTO 522.76 540.99 1063.75 32.79 29.43 0.00

37049 PORRETTA TERME 514.55 1.86 516.40 0.00 8.21 0.00

37050 SALA BOLOGNESE 3411.83 33.36 3445.19 6.66 40.39 0.39

37051 S.BENEDETTO VAL DI SAMBRIO 731.55 246.55 978.09 0.00 10.27 0.00

37052 S.GIORGIO DI PIANO 1.73 2322.30 119.79 2443.81 12.40 36.29 0.00

37053 S.GIOVANNI IN PERSICET 1.41 9349.75 21.57 9372.73 12.90 33.61 0.27

37054 S.LAZZARO DI SAVENA 174.62 1872.64 2047.26 1.39 29.41 0.00

37055 S.PIETRO IN CASALE 1.44 5473.89 2.68 5478.00 12.18 32.30 1.39

37056 S.AGATA BOLOGNESE 0.19 2919.40 3.64 2923.22 6.98 36.97 1.37

37057 SASSO MARCONI 0.20 1618.56 619.82 2238.58 1.06 24.22 8.09

37058 SAVIGNO 1744.12 417.76 0.51 2162.40 0.01 7.45 0.00

37059 VERGATO 1093.10 369.31 1462.41 0.00 9.41 0.33

37060 ZOLA PREDOSA 658.11 1051.68 1709.80 3.06 40.71 3.19

Total 54376.75 95981.22 28022.25 178380.22 6.49 28.78 1.17     
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Municipalities with extended areas with a low allocation risk could 

host most impacting crops. Some of them, are located in mountainous 

areas and then it could be possible a yield reduction or even the 

impossibility to grow maize or wheat. Others are anyway locate in the flat 

areas, as Crevalcore (with 6512.37 ha of low risk lands and where maize is 

grown in the 24.76 % of arable lands), Medicina (with 9692.43 ha of low 

risk lands and where maize is currently grown in only 1.82 % of arable 

lands). 

 

Using data from the COLT project , which focuses with more details 

solely on the plain area of the province (table 6.6), 20.96 % of winter 

crops, in terms of hectares, are located in areas highly vulnerable to 

maize. Among municipalities, Bazzano, Casalecchio, Dozza, Imola and San 

Lazzaro presented almost all winter sowable areas in highly vulnerable 

zones. In table 6.6 it is also possible to identify the proportion of wheat 

that is grown in each municipality. It ranges from 43.16 % in Bazzano to 

71.57 % in Imola (the absolute values in hectares are reported in table 

6.7). Again, also with the use of COLT’s data, wheat presence in Imola 

could be optimized in order to minimize the impact. 

Again, municipalities as Baricella, Bentivoglio or Crevalcore showed a 

high percentage (from 93.80% to 71.39 %) of winter crop extension being 

cultivated in low vulnerable lands (table 6.6). In Crevalcore, in particular, 

wheat is grown in the 83.77 % of winter crop extensions, suggesting a 

quite good level of sustainability of wheat allocation for this area. 

Corresponding hectare values are reported in table 6.7. 

Table 6.7 reports hectares of winter sowable lands (EAgc) each 

municipality and their values in lands with low, moderate and high 
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allocation risk to maize. The comparison of EAgc values from COLT project 

with values calculated from the 5° ISTAT Census on Agriculture (ISTAT 

2000), in the same table also reported, shows that there are for few 

municipalities some discrepancies. Winter crops values released by COLT 

project differs from values obtained by summing all single winter crops, 

and for each municipality, contained in the ISTAT database. The reason 

could be in the fact that data are not contemporary, COLT refers to 2010 

while census to 2000 and annual crop extensions are quite unstable 

during years. Moreover COLT’s data come from the interpretation of 

remote sensing images, identifying crop and then measuring their 

extension, while the census is based on statistical survey and questions 

directly addressed to farmers. Usually extensions resulting from surveys 

are in general lower respect to image interpretation. The most updated 

value of single crops available at municipal level refers anyway at 2000, 

thus comparing winter sowable presence from the two data sources is 

useful to understand if wheat land portions, that refers to 2000, can be 

accepted as linkable to COLT data. 

 

Looking at EEee – sowable summer crops (table 6.6), 15.85 % 

(49340.62 ha) of summer sowable areas in the plains of Bologna (of which 

20.84 % cultivated with maize, 9386.83 ha) are grown in areas where 

maize showed an high allocation risk. These areas are mainly 

concentrated in the towns of Bazzano, Casalecchio, Dozza, Imola and San 

Lazzaro. In municipalities where high vulnerable areas are prevalent, 

maize presence should be reduced. This is the case for example of 

Bazzano, where even if the whole territory is classified as highly 

vulnerable, 39,56 % of summer crop extensions are on maize. To be 
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underlined the high variability of maize percentage among municipalities 

(from less than 1 % to about 58.60 % in Pieve di Cento). Correspondent 

hectare values are reported in table 6.8, where also a comparison with 

ISTAT data of 2000 is reported. 

The allocation risk map of maize (fig. 6.4) also represents the 

vulnerability map calculated considering all impacts factors 

(comprehensive vulnerability map). This map reports thus the highest 

levels of vulnerability in a certain territory. The allocation risk maps of the 

other crops are calculated in reference to maize, as this is the most 

impacting crop, and they can be useful to define their impact compared to 

maize. For this reason, the levels of impact shown in the maps are 

necessarily lower than maize. The comparison between the allocation risk 

maps of different crops can identify whether the crop are somewhat 

similar in impact and those that have a significantly lower impact and 

then, for this reason, this last possibly grown in areas where vulnerability 

is high, or as a substitute of high impacting crops when allocated in areas 

with high vulnerability.  

If the purpose is to compare the site-specific impact of crop presence 

on the territory, the use of the vulnerability map calculated using all 

impact factors, which is represented by the allocation risk map of maize, 

represents the safer situation. For example, if wheat, compared to maize, 

has a significantly lower allocation risk in the same portion of the 

territory, maize can have a high impact and wheat classified as low or 

moderate, but certainly not higher than maize. So if the presence of maize 

in a certain area is tolerated, it is certainly also that of wheat, but not vice 

versa. 
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Table 6.6. Land portion percentage of winter crops (EAgc) and summer 

crops (EEee) on total sowable (from COLT project) for each municipality of 

the flat area of the Province and classified based on the impact map of 

maize. Percentage of maize and wheat in each municipality are from the 

5° ISTAT Census on Agriculture.  

low moderate high
wheat 

%
low moderate high

maize 

%

ANZOLA DELL'EMILIA 0.00 80.07 19.93 88.86 0.00 83.66 16.34 18.11

ARGELATO 0.35 71.31 28.33 70.01 0.66 72.94 26.40 17.44

BARICELLA 93.80 6.20 0.00 76.23 94.28 5.72 0.00 23.96

BAZZANO 0.00 0.00 100.00 43.16 0.00 0.00 100.00 39.56

BENTIVOGLIO 74.29 25.70 0.01 72.23 76.83 23.10 0.08 26.13

BOLOGNA 0.00 44.94 55.06 68.48 0.00 41.72 58.28 15.31

BORGO TOSSIGNANO 41.36 46.05 12.59 22.76 26.48 73.52 0.00 5.89

BUDRIO 0.59 92.70 6.71 74.07 0.63 95.09 4.27 14.80

CALDERARA DI RENO 0.00 48.98 51.02 78.83 0.00 44.23 55.77 20.83

CASALECCHIO DI RENO 0.00 0.00 100.00 48.82 0.00 0.00 100.00 0.37

CASALFIUMANESE 0.00 0.82 99.18 51.13 - - - -

CASTEL GUELFO DI BOLOGNA 0.61 89.89 9.50 82.44 0.51 89.63 9.86 6.36

CASTEL MAGGIORE 0.76 28.63 70.61 77.58 0.05 30.05 69.90 20.32

CASTEL SAN PIETRO TERME 14.27 74.26 11.47 58.47 24.40 68.31 7.29 9.84

CASTELLO D'ARGILE 0.00 99.87 0.13 77.98 0.00 99.14 0.86 39.38

CASTELLO DI SERRAVALLE 0.00 73.67 26.33 74.56 0.00 11.64 88.36 1.53

CASTENASO 0.00 57.77 42.23 76.91 0.00 61.86 38.14 10.30

CRESPELLANO 0.00 45.49 54.51 77.65 0.00 43.38 56.62 29.89

CREVALCORE 71.39 28.54 0.07 83.77 76.21 23.79 0.00 43.63

DOZZA 0.00 0.74 99.26 57.33 0.00 0.00 100.00 17.95

GALLIERA 0.00 99.64 0.36 82.25 0.00 99.97 0.03 35.23

GRANAROLO DELL'EMILIA 0.48 70.59 28.94 69.62 1.93 66.78 31.29 14.70

IMOLA 0.00 8.54 91.46 71.57 0.00 9.41 90.59 10.87

MALALBERGO 8.42 90.90 0.68 74.45 9.05 90.20 0.75 23.56

MEDICINA 66.83 30.92 2.25 81.67 68.86 29.30 1.84 5.59

MINERBIO 2.51 93.32 4.17 77.21 2.03 94.97 3.00 16.60

MOLINELLA 64.23 35.54 0.23 69.28 68.08 31.81 0.11 20.44

MONTE SAN PIETRO 0.00 15.91 84.09 54.24 - - - -

MONTEVEGLIO 0.00 32.70 67.30 65.88 0.00 21.34 78.66 12.87

MORDANO 0.00 91.22 8.78 74.32 0.00 89.63 10.37 12.42

OZZANO DELL'EMILIA 0.00 34.23 65.77 71.57 0.03 25.50 74.48 7.65

PIANORO 0.00 58.21 41.79 49.78 - - - -

PIEVE DI CENTO 0.00 65.76 34.24 74.07 0.00 61.72 38.28 58.60

SALA BOLOGNESE 0.00 88.31 11.69 78.26 0.00 91.99 8.01 18.92

SAN GIORGIO DI PIANO 9.52 89.89 0.60 67.72 12.33 85.13 2.55 32.75

SAN GIOVANNI IN PERSICETO 0.00 99.79 0.21 75.47 0.00 99.81 0.19 32.81

SAN LAZZARO DI SAVENA 0.00 3.49 96.51 60.80 0.00 4.37 95.63 5.17

SAN PIETRO IN CASALE 2.71 97.17 0.12 73.64 4.83 95.10 0.07 28.13

SANT'AGATA BOLOGNESE 0.00 99.74 0.26 77.63 0.00 99.85 0.15 18.01

ZOLA PREDOSA 0.00 49.70 50.30 77.03 0.00 35.48 64.52 9.93

Total (%) 20.55 58.49 20.96 72.74 26.25 57.90 15.85 20.84

Municipality

% Eagc - sowable winter crops  in 

vulnerable lands and % of wheat

% EEee - sowable summer crops in 

vulnerable lands and % of maize
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Table 6.7. Hectares of winter sowable lands (EAgc) each municipality and 

their values in lands with low, moderate and high allocation risk to maize. 

Comparison of EAgc values from COLT project with values calculated from 

the 5° ISTAT Census on Agriculture. 

Municipality low moderate high

EAgc (ha) 

from COLT 

project

Eagc (ha) 

from ISTAT 

2000

wheat (ha) 

from 

ISTAT2000

wheat 

%

ANZOLA DELL'EMILIA - 1033.11 257.16 1290.26 746.08 662.97 88.86

ARGELATO 4.50 908.22 360.87 1273.59 1458.96 1021.37 70.01

BARICELLA 845.77 55.87 - 901.63 1236.48 942.57 76.23

BAZZANO - - 295.02 295.02 353.83 152.7 43.16

BENTIVOGLIO 1014.95 351.07 0.14 1366.16 1254.98 906.41 72.23

BOLOGNA - 532.01 651.93 1183.94 2143.81 1468.1 68.48

BORGO TOSSIGNANO 9.13 10.17 2.78 22.08 154.96 35.27 22.76

BUDRIO 22.25 3470.69 251.09 3744.03 4040.79 2992.88 74.07

CALDERARA DI RENO - 526.66 548.69 1075.35 1204.93 949.79 78.83

CASALECCHIO DI RENO - - 12.06 12.06 167 81.53 48.82

CASALFIUMANESE - 0.19 23.37 23.56 588.95 301.11 51.13

CASTEL GUELFO DI BOLOGNA 4.83 715.55 75.65 796.02 957.48 789.35 82.44

CASTEL MAGGIORE 5.91 222.90 549.74 778.54 887.8 688.76 77.58

CASTEL SAN PIETRO TERME 424.31 2207.68 341.04 2973.03 2908.58 1700.77 58.47

CASTELLO D'ARGILE - 793.75 1.06 794.81 980.98 764.96 77.98

CASTELLO DI SERRAVALLE - 2.05 0.73 2.78 300.43 224.01 74.56

CASTENASO - 571.43 417.67 989.10 1188.03 913.74 76.91

CRESPELLANO - 466.97 559.46 1026.43 960.44 745.78 77.65

CREVALCORE 2206.28 882.05 2.16 3090.49 2111.34 1768.73 83.77

DOZZA - 3.58 480.34 483.91 530.14 303.95 57.33

GALLIERA - 1031.96 3.74 1035.69 666.82 548.45 82.25

GRANAROLO DELL'EMILIA 5.38 796.73 326.63 1128.74 1151.2 801.52 69.62

IMOLA - 292.30 3130.95 3423.25 3572.54 2556.7 71.57

MALALBERGO 102.72 1108.64 8.32 1219.68 919.03 684.2 74.45

MEDICINA 3972.37 1837.69 133.56 5943.61 5140.74 4198.27 81.67

MINERBIO 46.97 1745.18 77.89 1870.04 1041.6 804.18 77.21

MOLINELLA 1862.75 1030.71 6.80 2900.25 2819.23 1953.27 69.28

MONTE SAN PIETRO - 2.23 11.77 14.00 406.61 220.55 54.24

MONTEVEGLIO - 16.41 33.77 50.17 488.08 321.54 65.88

MORDANO - 353.05 33.97 387.02 367.67 273.27 74.32

OZZANO DELL'EMILIA - 284.30 546.14 830.43 1278.03 914.65 71.57

PIANORO - 2.75 1.98 4.73 1144.81 569.94 49.78

PIEVE DI CENTO - 306.03 159.35 465.38 408.87 302.87 74.07

SALA BOLOGNESE - 1660.36 219.81 1880.17 1408.39 1102.19 78.26

SAN GIORGIO DI PIANO 68.84 650.29 4.33 723.45 975.43 660.55 67.72

SAN GIOVANNI IN PERSICETO - 3072.75 6.55 3079.30 3722.66 2809.4 75.47

SAN LAZZARO DI SAVENA - 37.73 1044.86 1082.59 800.31 486.58 60.80

SAN PIETRO IN CASALE 59.86 2147.52 2.67 2210.04 2562.99 1887.44 73.64

SANT'AGATA BOLOGNESE - 918.60 2.38 920.98 1081.57 839.66 77.63

ZOLA PREDOSA - 277.50 280.90 558.40 655.08 504.61 77.03

EAgc Totale 10656.79 30326.66 10867.27 51850.71 54787.65 39854.59 72.74
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Table 6.8. Hectares of summer sowable lands (EEee) each municipality 

and their values in lands with low, moderate and high allocation risk to 

maize. Comparison of EEgc values from COLT project with values 

calculated from the 5° ISTAT Census on Agriculture. 

Municipality low moderate high

EEee (ha) 

from COLT 

project

EEee (ha) 

from 

ISTAT 

2000

maize 

(ha) from 

ISTAT 

2000

maize      

%

ANZOLA DELL'EMILIA - 886.03 173.11 1059.14 657.49 119.09 18.11

ARGELATO 7.64 849.90 307.60 1165.14 934.54 163.03 17.44

BARICELLA 1134.69 68.88 - 1203.58 1295.77 310.51 23.96

BAZZANO - - 163.46 163.46 113.94 45.07 39.56

BENTIVOGLIO 831.09 249.88 0.82 1081.79 1024.33 267.7 26.13

BOLOGNA 358.46 500.73 859.19 1368.02 209.39 15.31

BORGO TOSSIGNANO - 3.88 - 5.28 102.33 6.03 5.89

BUDRIO 23.66 3545.10 159.31 3728.08 3719.08 550.57 14.80

CALDERARA DI RENO - 400.01 504.43 904.44 1017.09 211.88 20.83

CASALECCHIO DI RENO - - 4.21 4.21 54.72 0.2 0.37

CASTEL GUELFO DI BOLOGNA 4.43 771.96 84.90 861.28 915.57 58.26 6.36

CASTEL MAGGIORE 0.39 223.14 519.07 742.60 688.54 139.93 20.32

CASTEL SAN PIETRO TERME 343.84 962.37 102.72 1408.93 1816.52 178.7 9.84

CASTELLO D'ARGILE - 721.10 6.23 727.33 998.11 393.1 39.38

CASTELLO DI SERRAVALLE - 0.24 1.81 2.04 116.03 1.77 1.53

CASTENASO - 470.59 290.15 760.74 814.11 83.86 10.30

CRESPELLANO - 262.25 342.27 604.52 860.36 257.2 29.89

CREVALCORE 3311.20 1033.77 0.07 4345.05 3299.38 1439.4 43.63

DOZZA - - 176.90 176.90 222.88 40 17.95

GALLIERA - 1528.84 0.41 1529.25 670.84 236.37 35.23

GRANAROLO DELL'EMILIA 20.54 711.21 333.23 1064.98 957.96 140.79 14.70

IMOLA - 275.97 2655.82 2931.79 2632.18 286.08 10.87

MALALBERGO 136.76 1362.44 11.29 1510.49 1068.81 251.78 23.56

MEDICINA 3430.91 1459.96 91.89 4982.75 3872.21 216.61 5.59

MINERBIO 31.69 1480.84 46.74 1559.27 1066.49 177.08 16.60

MOLINELLA 3471.30 1622.07 5.52 5098.88 3505.79 716.64 20.44

MONTEVEGLIO - 4.47 16.48 20.95 90.16 11.6 12.87

MORDANO - 256.40 29.66 286.06 259.24 32.19 12.42

OZZANO DELL'EMILIA 0.17 160.19 467.93 628.29 1152.76 88.24 7.65

PIEVE DI CENTO - 350.69 217.46 568.15 575.79 337.41 58.60

SALA BOLOGNESE - 1490.73 129.81 1620.53 960.33 181.73 18.92

SAN GIORGIO DI PIANO 77.25 533.49 15.97 626.71 689.52 225.79 32.75

SAN GIOVANNI IN PERSICETO - 3145.48 6.04 3151.52 3285.34 1077.87 32.81

SAN LAZZARO DI SAVENA - 13.50 295.56 309.06 444.96 22.99 5.17

SAN PIETRO IN CASALE 123.77 2436.77 1.78 2562.32 2529.36 711.49 28.13

SANT'AGATA BOLOGNESE - 842.59 1.24 843.83 880.25 158.52 18.01

ZOLA PREDOSA - 85.90 156.20 242.11 382.23 37.96 9.93

EEee Totale 12950.72 28569.10 7820.80 49340.62 45043.03 9386.83 20.84
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Guideline for developments of new policy for crop chains introduction in 

rural areas. Crop yield or environmental impacts ? 

LCA-GIS approach takes into account the crop production chain 

effects on environment, through the integration of a well known and wide 

recognized tool as LCA with the potentials of GIS in studying the 

landscape. The environmental benefit will be as high as possible as much 

LCA impact indicators are used. This approach thus gives the possibility to 

include in the land suitability studies, mainly focused on maximizing crop 

yields, also the relation of the environmental impact of the crop 

production chain with site-specific vulnerability characteristics. This 

bidirectional approach highlights a crucial aspect in land suitability studies 

of crops (food and no food): crop allocation may be different basing on 

which aspect is considered as more important (yield or impact).  

The model in fact returns hypothesis on the optimal land use in order 

to minimize the environmental impact, that it could also be not 

potentially the best choice from the economic point of view. Yield is 

directly linked to income. This study do not take in account the incomes 

from different crops, which, things being equal, will be definitely the main 

determinant in driving the land allocation by farmers. The product prize 

defined by the market or by economic trends also defines indirectly the 

extension of crops for a given area, as it may drive farmers decision on 

growing a crop instead than another. It is also true that social perception 

of the environmental problem is more and more important in the modern 

society, thus one can expect that also benefits coming from a sustainable 

choices in land uses will become an important determinant in 

management decisions or even be related to an economic value. Basing 
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on which aspect (yield or impact), crop preference for a given location 

may be different. 

In fig. 6.13 it is schematically represented how environmental impact 

of a crop and the yield could be linked.  

 

 

Figure 6.13. Possible relationships between environmental impact and 

yield. Each colour represent a different crop. Arrow indicates best crop 

option. 

 

In the cases A, B and C, the choice about with crop it could be 

preferred is immediate. In the case A, lowest impacting crop also 

produces more yield, this choice is sustainable under the environmental 

and economic point of view. In B, impact is similar for all crops, thus the 

crop with the highest yield could be preferred. In the case C, yields are 

impact yield impact yield 

impact yield impact yield 

A) B) 

C) D) ? 
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similar, the crop with the lowest impact may be preferred. More 

complicated is the scenario of case D, where impacts and yields increment 

both increases. In this case, a high impacting crop could be preferred 

justified by his higher yield level, or, vice versa, a lower impacting crop 

could be preferred in order to protect the environment, but providing a 

lower yield. Another variable is represented by the spatial variability of 

site-specific conditions, e.g. in term of fertility or more in general in of 

pedo-climatic suitability, that could affect yields. To solve the problem it is 

necessary to model these relations in order to understand for example 

the acceptable level of environmental risk to justify high yield levels. 

Assessment of marginal increments of impact and yield in order to 

compare them, maybe giving an economic value to these marginal 

increment, it could be necessary. Other option is to attribute a cost to the 

environmental damage of a crop production chain. Ones they are known, 

a potential environmental risk could be supported since the marginal cost 

will be lower that the marginal income deriving from the yield (fig. 6.14). 

 

Impact depends by input intensification in the agronomic 

management, thus increasing the environmental cost (fig. 6.14). At the 

same time, the input intensification may increase yields following trends 

that could be different among crops (fig. 6.14). Ones defined the 

intensification level corresponding to a maximum acceptance of the 

impact (fig. 6.14), crop “B” in fig. 6.14 may be preferred in the case of 

lower agronomic inputs (e.g. nitrogen fertilization) or crop A in the case of 

higher input intensification. 
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Figure 6.14. Importance of the agronomic input on crop preference. Crop 

“A” has a more correlated answer to input intensification respect to crop 

B, which early reaches a platform. Crop “B” has lower yield at high input 

levels, but more efficient at low inputs. If maximum acceptable 

environmental risk corresponds to input levels that fall at left of the two 

crop curves intersection, crop B can be preferred, and vice versa. 

 

Definitely, the identification of the most suitable crop from the 

environmental point of view is linked to the applied agronomic practice; 

the use of different practices could bring to different choices. 

 

More over, in particular when dealing with energy crop as a possible 

alternative land use for minimizing environmental impacts, one big issue 

is the food – no food competition. Some studies limit the analysis of land 
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suitability for energy crops to marginal lands, in order to minimize current 

agriculture changes in practices and cash crops production, and thus do 

not deal with socio political problems, e.g. food – no food crop 

competition. Not necessarily this assumption ensures the best choice 

from the environmental point of view. Reasonably, food and feed crops 

will be prioritizing on energy crops, thus they should be subjected to a 

minimum size based on the needs of the society. Moreover, food crop 

cultivation should maintain a sustainable income, thus they also have to 

reach a sustainable yield. Moving high impacting food crops (e.g. maize) 

to lower vulnerable but less suitable lands will produce environmental 

benefits, but also a lower income. This last could be again supported by 

fiscal tools justified by the environmental benefits. Nonetheless a decision 

maker could decide to support the cultivation of maize in less vulnerable 

soils if the environmental benefits will entail economic returns for 

farmers. E.g. an important food crop such as maize, once defined 

pedoclimatic constraints, could be moved from more fertile lands to lower 

and less vulnerable ones. 

Commensurate environmental benefit to decrease production by 

placing incentives to support high impacting crop productions in less 

vulnerable soils, or even better, to support soil-crop combinations with  

minor environmental risks, would be a modern concept of agriculture, this 

last no longer seen as an agricultural system but as an agro-environmental 

system. 

The integration of the bidirectional approach with economical and 

land use management model is essential to answer to above aspects. 
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Economical models may be integrated at the beginning of a land 

allocation procedure to define relative food – no food hectares for crops. 

However, once the environmental benefits will be opportunely 

monetized, also in terms of subsidies, economic returns for farmers 

associated to crop-specific environmental benefits should also be taken in 

consideration. This aspect may justify new crops allocation rules, as:  

high impacting and high value crops in less vulnerable but low fertile lands; low 

impacting ligno-cellulosic crops in high vulnerable and fertile lands. 

Integrated model defining economic variable as production pricing, 

incomes, market trends, etc. linked to crop allocation scenarios and 

political choices (e.g. protected areas, Nitrate Directive, cultivation rules, 

ect.) will represent a Decision Support System to be applied under a 

sustainable planning strategy, able to understand the best land use in 

order to maximize a broad sustainability concept: implement decisions to 

be more rational and effective in reducing emissions, help in solving some 

delicate issues such as food - bioenergy competition, maximizing at the 

same time the cost-effectiveness and environmental benefits.  
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Decision Support Systems based on Open-sources GIS 

In particular when considering models and novel approaches to be 

part of a Decision Support System (DSS), the cost aspect of these tools 

sometimes is the main determinant in particular if they should be used by 

public offices or institutions. 

Currently a wide range of software for the management of spatial 

information, developed by private or public institutions such as 

universities and research centers, are available. Often consist of software 

packages specialized in dealing with various aspects of spatial data. They 

can be commercial software, whose code is copyrighted, or "open 

source", when the source code is freely distributed. These last are of a 

particular importance to be applied when building DSS tool because of 

their inexpensiveness. Open sources geo – spatial tools have been 

developed by several research institutions. Many references are now 

available in the web or in specialized journals (fig. 6.15). 
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Figure 6.15. Most common Open Sources systems for land studies. 
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In the last years they became certainly ready to accomplish each kind 

of geo-spatial task.  

Advantages are not only linked to inexpensiveness. The use of this 

type of application opens up new possibilities for development, 

implementation and "customization" in regional studies with many 

different purposes, because the source code is liberally available. The 

advantages are summarized in the great freedom for users and 

developers, free implementation, ability to modify and redistribute the 

code, compatibility with libraries of free and private data formats, 

standards compliance of the Open Geospatial Consortium (OGC) for the 

sharing and use of the Web Map Service (WMS) and Web Feature Service 

(WFS), drastic reduction in costs. Specific skills are of course required to 

work with these tools, as sometimes they could not be user-friendly as 

commercials are.  

More details may be found in the Open Geospatial Consortium (OGC) 

website (www.opengeospatial.org/ ) or at the Geospatial free and open 

Source Software community website (www.gfoss.it/drupal/).  
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7. Main conclusions 

 

 

Main conclusions from the method use 
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Main conclusions from the method use  

This study addressed the crop impact in the assessment of land use 

and the relation with energy crops. LCA-GIS approach gave the possibility 

to include the environmental impact in land suitability studies, taking into 

account the mutual effects between environment and crops, practically 

defining a bidirectional approach. LCA, a well known and standard tool, it 

was recognized to be valuable in identifying impact indicators with local 

effect to be related with site specific environmental vulnerability, this last 

resulting from a land analysis carried out with the support of GIS. 

Vulnerability maps to the involved LCA impacts represented the link of 

impacts with site-specific condition and the calculation of an “allocation 

risk” for each crop-vulnerable land combination gave the possibility to 

identify the best crop for each location. 

The LCA-GIS tool revealed that the optimal crop allocation able to 

minimize the environmental impact can be different basing on which 

impact indicator is considered. If eutrophication risk is a priority, arundo, 

miscanthus and switchgrass could be grown in all lands, while maize, 

rapeseed, wheat, sunflower and fiber sorghum could be grown only in 

identified lower vulnerable areas.  

In general perennial grasses, as miscanthus and switchgrass, can be 

cultivated in highly vulnerable lands with an allocation risk that was 

classified as low respect to maize. This aspect is even more evident when 

multiple impact indicators are considered, for which only switchgrass can 

be cultivated in high vulnerability lands. In fact, in some cases, e.g. in the 

case of eutrophication, giant reed and miscanthus were also allowed. In 
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moderate vulnerability area, sunflower and wheat were allowed in the 

case of FWT, while when considering all impact indicators, they can be 

cultivated only in low vulnerable areas. More in detail, taking into account 

3 impacts (eutrophication, human toxicity and freshwater toxicity) 

managed with the CMM, 16.24 % (60083 ha) of the province showed an 

allocation risk classified as high if maize will be there allocated, and 0.58 

% (2128 ha) in the case of f sorghum. Maize presented a high allocation 

risk in the central part of the province, corresponding mainly to areas 

classified as vulnerable to nitrate by the Water Protection Plan and also as 

the most densely populated. F sorghum showed a risk classified as high in 

only a few strips, where the vulnerability to eutrophication is high and 

where are located main areas for the protection of groundwater and 

aquifers. Rapeseed, wheat and sunflower showed an impact classified as 

medium in the central area of the territory, while switchgrass did not 

show significant impacts throughout the province, respect to maize and 

other crops. Cynara, miscanthus and giant reed showed a low impact, 

except for the most vulnerable areas from the point of view of the 

protection of water, where these three crops showed an impact classified 

as medium. In this view, perennial grasses represent and alternative land 

use to consider for high vulnerable lands when building up planning 

strategies for increasing the sustainability level of the land use in rural 

areas. Perennial grasses can also be considered as not competing for 

agricultural land because they can be grown on marginal or degraded 

lands where intensive agricultural practices harm the environment (e.g. 
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promoting soil erosion), and where the economic returns for farmers is 

not sustainable. 

 

LCA-GIS tool gave the possibility to release maps of optimal land 

allocation that overlaid with municipalities, or linked with the current land 

use, can indicate if most impacting crop production chains are grown in 

high vulnerable lands, and thus advising on how to change land uses in 

order to optimize environmental benefits. For example in the flat fertile 

area of the province of Bologna, 10867.27 ha of arable winter crops 

(including wheat) are grown in areas classified as highly vulnerable. The 

analysis also showed that 7820.80 ha of summer crops (which includes 

maize) are grown in areas classified as highly vulnerable. The municipality 

of Imola for example reported the highest number of hectares of sowable 

land in high-risk areas (8054.45 ha). Wheat is present in the 32.88 % of 

Imola’s sowable lands, and as his impact could be compared to maize 

when considering multiple impact indicators, it could be effectively 

thought to partially substitute it with lower impacting crop in order to 

minimize environmental impacts. Looking at summer crops, 49340.62 ha 

of summer sowable areas in the plains of Bologna (of which 20.84 % 

cultivated with maize, 9386.83 ha) are grown in areas where maize 

showed an high allocation risk. This land portion can be substituted with 

some grasses to increase sustainability. 

 

The use of multiple impact indicators with local effect increases the 

environmental sustainability of crop allocation, but also can introduces 
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uncertainty in giving weighting factors or when classifying vulnerability 

scores in calculating total impact indexes or total vulnerability maps.  This 

is avoided with the use of the composed multiplicative method (CMM). 

The CMM well suits the possibility to use more than two impact 

categories. Subjectivity and the issue of the classification method choice 

still remain important components of the method. The definition of a 

standard methodology to provide consistent vulnerability maps for all 

impact categories as defined in the LCA, and also for their integration, is 

required. Vulnerability has to be as much as possible related to 

measurable, not subjective and broadly available land information, thus 

to allow the reproducibility of the analysis.  The characterization factor is 

the first step within LCA procedure where it may be possible to act in 

order to “adjust” the impact level to the site-specific vulnerability. Impact 

indicators will be no more a single value for each crop, but a range of 

values showed in a map, thus defining a geo-LCA tool. This procedure, 

although desirable, requires deep knowledge on impact definitions and 

about the inner running operations of LCA procedures, that of course can 

be the subject for further studies. 

The LCA-GIS method here proposed wanted to use the standard LCA 

procedure, and thus postponing the integration with land site-specific 

characteristics at the end of the LCA procedure. In this way, potentially, all 

impact indicators available in the bibliography may be used, thus giving 

the possibility to use research recourses to understand the impact for a 

huge number of crop or agro-production chains. 
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The bidirectional approach, i.e. considering the mutual effect 

between crop and environment, highlights a crucial issue in land 

suitability studies of crops (food and no food): crop allocation may be 

different basing on which aspect is considered as more important (yield or 

impact). As a general rule, ideally, the crop with the highest impact should 

be grown on less vulnerable areas, and vice versa, crop with a low impact 

(as energy grasses), should be grown in high vulnerable areas. This not 

necessary is also the best option also from the yield (or farmer’s income) 

point of view. For example in this study an important portion of high 

vulnerable lands were also the most fertile ones. In some cases it can be 

accepted to reserve areas of greatest fertility but with height vulnerability 

usually hosting important cash crops as maize or wheat, to perennial 

ligno-cellulosic crops as switchgrass, justified by their most significant 

environmental sustainability. Currently, there are lot of political and 

economic constraints which hinders this principle, e.g. food – no food 

competition, agronomic limitations linked to the mechanization, social 

constraints as the difficulty on accepting a novel and perennial crop, etc., 

and of course this principle is more ease to implement in a developing 

area respect to regions with a well established agricultural structure. 

However, in a context in which sustainability is recognized and driven by 

fiscal policy, this principle may also assume and economic value linked to 

its environmental benefit, and then being a balance for eventually lower 

yields. 

Commensurate environmental benefits to decreased production by 

placing incentives to support high impacting crop productions in less 
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vulnerable soils, or even better, to support soil-crop combinations with  

minor environmental risks, would be a modern concept of agriculture, 

finally seen as an agro-environmental system. 

Modern Decision Supporting Systems should include as many as 

possible criteria, incorporating all possible land characteristics and socio-

economic factors, coupled with the impact or benefit for the environment 

of crops production chains. I this way reliable maps will be produced, 

more than increasing the complexity of tools and methods. 
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