
Alma Mater Studiorum
Università degli Studi di Bologna

Dottorato di Ricerca in

Ingegneria Energetica, Nucleare e del Controllo

Ambientale

Ciclo XXIV

Spectrum reconstruction from a scattering

measurement using the adjoint Boltzmann

transport equation for photons

Jonathan BARE

Coordinatore Dottorato:

Prof. Antonio Barletta

Relatore:

Prof. Jorge Fernandez

Correlatore:

Prof. François Tondeur

Settore concorsuale di afferenza: 09/C3

Settore scientifico disciplinare: ING-IND/18

Esame finale anno 2012







Acknowledgement

First, I would like to thank Prof. Jorge E. Fernandez, who introduced to me

a different perspective of photon transport calculations and to an interesting

and innovative approach of inverse problems. I also would like to thank him for

having accepted to manage this thesis at distance.

I also would like to express my gratitude to Viviana Scot, for all the ideas

and advices developed and proposed during the thesis, for the countless explana-

tions she gave me, for the interesting discussions – about photon transport and

inverse calculations, or not – and for her exceptional speed in answering all my

emails!

En français maintenant, je profite de ces quelques lignes pour adresser mes

plus vifs remerciements à Jean-Michel Mattens pour les très nombreuses heures

passées à discuter analyse numérique, pour ses remarques et suggestions pleines

de sens, pour sa patience et son intérêt dans la mise en œuvre des différentes

méthodes numériques, ainsi que pour toutes les relectures du manuscrit avec

son point de vue de mathématicien, parfois un peu décalé, mais toujours très

pertinent!

Je souhaite ici également remercier François Tondeur, pour ses conseils

avisés lors des relectures du manuscrit de thèse, mais aussi pour les nombreuses

discussions scientifiques menées à l’ISIB dans le cadre de cette thèse, ainsi que

dans bien d’autres circonstances.

i



ii

Dans un registre quelque peu différent, j’exprime ici toute mon amitié à

Damien Grobet, toujours prêt à mettre la main à la pâte (informatique, mais

pâte quand même), toujours motivé à mettre ses capacités techniques à mon

service, mais aussi pour la mise à disposition de son super ordinateur, ainsi

que pour tous les programmes intitulés ’Matrice’ qu’on a pu réaliser pendant

ces trois années. J’ose d’ailleurs espérer que je n’aurai jamais à les trier, ces

programmes. . . Enfin, un merci particulier à Nicolas Maurissen pour la mise à

disposition de ses très intéressants talents de graphiste, de même que pour sa

patience face à mes exigences de qualité.

Pour terminer, je tiens à remercier mon entourage proche pour ses en-

couragements, ainsi que pour son soutien presqu’inconditionnel!



Summary of the thesis

Today, the quality control of medical and industrial radiological systems is

of fundamental importance for evident questions of safety. Therefore, efficient

methods for the systematic practical and accurate evaluation of the X-ray source

spectrum are required.

The straightforward measurement of an X-ray source spectrum in standard

operating conditions is very complicated since the photon flux is very high. At

these fluence rates, common detectors cease to work properly and a pile-up effect

can be observed. This undesired effet may jeopardize the instrument ability to

correctly recognize events and to assign them proper energies. This often leads

to distorsions in the measured X-ray spectrum.

In order to overcome experimental difficulties, particular straightforward

measurement techniques are necessary. The very high photon flux may be lim-

ited by modifying the geometry of the experimental set-up, having for example

recourse to pinhole collimators and / or by increasing the distance between

the X-ray source and the detector. However, such a geometrical set-up is not

sufficient and the fluency has to be reduced further by keeping the current of

the X-ray tube at very low values. The resulting measurement is consequently

wandering away from the real operating conditions, and the design of efficient

systems becomes necessary.

In the past, different techniques have been developed for this purpose.

In particular, a specific indirect technique based on the measurement of the

iii



iv

photon beam scattered by a target inserted into the path of the X-ray source

beam, was developed. Using that method, the photon fluence is reduced up

to three orders of magnitude. However, when such a spectrometer is used, the

pulse height distribution recorded by the detector does not reproduce the source

beam spectrum because of different physical phenomena occurring during the

beam scattering or the detection process. The measured spectrum then presents

a lack of the original beam information for the complete characterization of the

X-ray source.

When using such a spectrometer, the formal problem may be mathemat-

ically represented by a matrix equation whose solution gives the source spec-

trum. However, in most physical situations, the resulting algebraic system of

equations is extremely ill-posed. The resolution of the matrix system can then

be very complicated. Numerous attempts have already been made to solve this

problem by using matrix regularization techniques. These methods are based

on purely mathematical criteria to discriminate between signal and noise, not

on physical criteria. In addition, the problem has always been considered as a

whole, without any distinction between the different physical steps occurring

during the photon transport. The physics of the problem has then not been

considered in the resolution.

In this thesis, a more physical point of view has been adopted to solve

the problem. The forward measurement of an X-ray spectrum by means of a

spectrometer may be divided in two successive physical stages: the photon scat-

tering on the target, and the detection process while using a classical HPGe

detector. The innovative inverse method described in the following intends to

solve the problem in two different steps: the unfolding from the detector re-

sponse functions, and the inverse scattering on the target of the spectrometer.

In the first step of the procedure, classical unfolding techniques are applied on

the measured spectra to suppress the detector’s influences. For the inverse scat-

tering, our method is based on both the forward and the adjoint solutions of

the Boltzmann transport equation for photons to generate - if necessary - a
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better conditioned linear algebraic system. Both the forward and the adjoint

scattering terms are computed from the analytical solution to the transport

equation for finite thickness specimens

In a first part of the thesis, the theory of interactions between photons

and matter is outlined for the range of energies of interest, the Boltzmann

transport equation for photons is constructed and some emphasis is made on the

signification and the formal description of the adjoint Boltzmann equation.

The complete inverse calculation strategy is then exposed. This explanation

serves as groundwork for the next chapters. Unfolding techniques and some

selected numerical methods are theoretically described.

Secondly, a numerical approach of the inverse scattering problem has been

considered. This numerical approach aimed at both evaluating the consistency

of the numerical methods, and characterizing two possible target materials. In

order to focus this study on the mathematical aspects of the problem, artificial

X-ray spectra have been considered. The accuracy in the reconstruction has

been evaluated on a purely mathematical basis, and a very interesting char-

acterization of the scattering materials has been deduced. This validation on

theoretical X-ray source spectra has provided excellent results.

Finally, the complete inverse strategy has been tested on two different

spectra obtained by using an experimental prototype built at the Operational

Unit of Health Physics of the University of Bologna (Italy). The

system was based on a Tungsten X-ray tube, operated until 150 kV. A finite

thickness target of graphite has been used for the scattering. The detector was a

10mm diameter and 10mm thickness ORTEC HPGe detector, in a POP-TOP

configuration. The entering window was constituted by a thin beryllium foil. A

comparison of the reconstructed source spectra with direct measurements of the

X-ray tube has been performed, using a standard radiological device modified to

generate a primary beam with a lower intensity, showing very good agreements.



Résumé de la thèse

Pour des raisons évidentes de protection des patients, le contrôle optimal des

systèmes radiologiques médicaux et industriels est un souci permanent. Afin

d’en assurer la qualité, il est nécessaire de pouvoir recourir à des méthodes

efficaces permettant une évaluation précise des spectres d’émission des rayons X

dans les conditions normales d’utilisation.

Les mesures directes des spectres d’émission X dans les conditions courantes

d’utilisation se révèlent être particulièrement complexes, en raison du flux élevé

rendant les détecteurs courants peu efficaces. A ces fluences élevées, un effet

d’accumulation peut survenir dans le détecteur. Cet effet, fortement indésir-

able, peut compromettre plus ou moins fortement la capacité de l’instrument à

discriminer les différents événements liés à la détection du rayonnement. Il en

résulte généralement une distorsion du spectre mesuré.

Afin d’outrepasser cette difficulté expérimentale majeure, il est impératif

de recourir à des techniques particulières de mesure. Le flux élevé de photons

peut, par exemple, être limité par une modification de la géométrie du système

de mesure, par l’utilisation de collimateurs étroits et / ou par une augmentation

de la distance entre la source de rayons X et le détecteur. Bien que permettant

une limitation significative de la fluence photonique, un tel dispositif n’est sou-

vent pas suffisant, et la fluence doit encore être diminuée en réduisant le courant

et la tension de fonctionnement du tube. Dans ces circonstances, les spectres

mesurés sont néanmoins trop différents de ceux obtenus dans les conditions

réelles d’utilisation. Ce type de mesure présente donc un intérêt quelque peu
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limité. En outre, les effets de vieillissement du tube à rayons X occasionnent

constamment des modifications du spectre d’émission tout au long du cycle de

vie du tube, exigeant des contrôles fréquents et périodiques. Ces facteurs de

fréquence, de périodicité et de complexité ont induit de manière naturelle la

nécessité de disposer de techniques performantes pour la mesure, et ont été un

appui majeur dans le développement de celles-ci.

Dans le passé, diverses techniques de mesure ont été développées. En par-

ticulier, une technique indirecte basée sur la détection des photons diffusés par

une cible solide insérée dans la trajectoire du faisceau primaire a pu être mise

en œuvre. L’utilisation de cette technique de diffusion du flux de photons per-

met une réduction de la fluence initiale pouvant aller jusqu’à trois ordres de

grandeur, autorisant dès lors l’utilisation de détecteurs classiques. Cependant,

lorsqu’un tel spectromètre est utilisé, le spectre différentiel ne reproduit pas

le faisceau source de façon exacte en raison d’une multitude de phénomènes

physiques pouvant survenir durant le transport des photons, spécifiquement

lors de la diffusion sur la cible. Il en résulte que le spectre mesuré présente

un manque plus ou moins conséquent d’informations pour la caractérisation

complète et précise du spectre source.

Lorsqu’une mesure est réalisée au moyen d’un spectromètre, le transport

des photons peut être modélisé mathématiquement par un système d’équations

linéaires. Dans la plupart des situations physiques cependant, la matrice de

transport des photons est extrêmement mal conditionnée, rendant la résolution

du système mal aisée, voire même particulièrement complexe. De nombreuses

tentatives, plus ou moins fructueuses, ont été réalisées dans le passé afin de

résoudre ce problème en mettant en œuvre différentes méthodes, en particulier

les techniques de régularisation matricielle. Pour la plupart, ces méthodes four-

nissent des solutions approchées acceptables dans la majorité des cas envisagés,

sauf aux basses énergies. De plus, elles ne se basent que sur des critères pure-

ment mathématiques pour réaliser la discrimination entre le signal et le bruit,

en tronquant par exemple les matrices de calcul, ou en imposant de manière
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plus ou moins arbitraire des critères de stabilité. La physique du problème n’est

donc pas prise en considération dans la résolution du système.

Ce travail de thèse se propose de résoudre le problème en adoptant un point

de vue plus physique, innovant, afin d’améliorer la qualité de la reconstruction

du spectre d’émission du tube à rayons X. Le processus de mesure au moyen

d’un spectromètre peut être divisé en deux étapes physiques successives: la

diffusion des photons sur la cible solide du spectromètre, et la détection au

moyen d’un détecteur HPGe. La méthode inverse décrite dans la suite se base

sur la différenciation de ces deux étapes afin d’apporter une solution physique

au problème. Dans un premier temps, les effets du détecteur sont supprimés des

spectres mesurés par les techniques classiques de déconvolution spectrale. Cette

première étape de calcul permet d’obtenir le spectre incident au détecteur, avant

perturbation due à l’instrument, et après diffusion sur la cible du spectromètre.

Dans un second temps, la diffusion inverse du spectre incident au détecteur sur la

cible solide est réalisée. La méthode développée dans la thèse pour cette diffusion

inverse se base sur les solutions analytiques directes et adjointes de l’équation

de Boltzmann, décrivant le transport des photons. Ces solutions permettent

de générer, lorsque nécessaire, un système d’équations linéaires dont le nombre

de condition spectrale est réduit par rapport à celui du système original.

Dans la première partie de la thèse, la théorie des interactions entre les

photons et la matière est décrite pour les énergies présentant un intérêt pratique

dans notre cadre de travail. L’équation de Boltzmann pour le transport des

photons est également construite, et une attention toute particulière est donnée

à la signification et à la description formelle de l’équation adjointe. La stratégie

mise en place pour le calcul inverse est ensuite développée. Cette explication sert

de point de référence aux chapitres suivants. Pour clôturer la partie théorique

du travail, un choix de techniques de déconvolution et une sélection de méthodes

numériques sont décrits.

Dans la deuxième partie du travail, une approche purement numérique
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du problème a été envisagée, en ayant pour but d’évaluer la consistance math-

ématique des méthodes numériques choisies sur le type de spectre considéré

et de caractériser deux diffuseurs soigneusement sélectionnés. Afin de focaliser

l’étude sur les aspects mathématiques du problème, des spectres RX ont été

numériquement construits. La précision de la reconstruction spectrale a été éval-

uée au moyen de critères mathématiques, et une caractérisation intéressante des

matériaux cibles a pu être réalisée. Cette première validation, partielle, de la

méthode a fourni d’excellents résultats.

Enfin, la stratégie de calcul inverse a été testée sur trois mesures obtenues

via un spectromètre construit à l’Unité de Physique Médicale Opéra-

tionnelle de l’Université de Bologne (Italie). Le système de mesure était

basé sur un tube à rayons X composé d’un filament de tungstène et d’une cible

solide de graphite, d’épaisseur égale à 2mm, assurant ainsi une faible proportion

de diffusions multiples. La détection du rayonnement diffusé a été réalisée avec

un détecteur HPGe de marque ORTEC (diamètre 10mm, épaisseur 10mm),

en configuration POP-TOP, avec une fenêtre d’entrée en béryllium. Afin de

vérifier la validité du modèle de calcul inverse, les spectres reconstruits ont été

comparés à des mesures directes, réalisées grâce à une modification des circuits

d’alimentation du tube permettant de générer un faisceau primaire avec une

intensité de courant réduite. Une excellente correspondance entre les spectres

mesurés et calculés a pu être observée.
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Chapter

1
General introduction

Since W. Röntgen accidentally discovered X-rays in the late 19th century,

they have been widely used in various fields, ranging material analysis and

crystallography to security and border controls. Today among the very large

panel of applications, X-rays are used for medical imaging, where they are of

crucial importance in structural diagnosis. For evident questions of safety, the

quality control of radiological systems is of fundamental importance. Therefore,

efficient methods for the systematic practical and accurate evaluation of the

X-ray source spectrum in normal operating conditions are necessary.

Straightforward measurements of X-ray spectra in standard operating con-

ditions (current and voltage) require high-performance laboratory spectrome-

ters. In this type of measurements, the number of incident photons per time

unit reaching the detector must necessarily be strongly limited. Indeed, at high

fluence rates typical for medical X-ray tubes, common detectors cease to work

properly and a pile-up effect, i.e. the quasi simultaneous accumulation of pulses

in the detection crystal, can be observed. This undesired effect may jeopardize

the instrument’s ability to correctly recognize events and to assign them proper

energies, leading to distorsions in the measured X-ray spectrum.

In order to reach appropriate count rates, and to overcome experimen-

tal problems due to the pulse pile-up, particular straightforward measurement

techniques are necessary. Some of them are based on the photon beam attenu-

ation (e.g. [1, 2, 3]), or on the reduction of the detection efficiency by using low

intrinsic efficiency detectors or very thin detectors (e.g. [4, 5]). The high photon

fluence rate may also be limited by modifying the geometry of the experimental

1
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set-up, having for example recourse to small diameter (pinhole) collimators and

/ or by increasing the distance between the X-ray tube and the detector. How-

ever, such a geometrical set-up does not decrease the photon flux sufficiently,

and the fluence has to be reduced further by keeping the current of the tube

at very low values. The resulting measurement is consequently wandering away

from the real operating conditions. Since aging effects on the X-ray tube pro-

duce changes in the spectrum during the tube life, regular controls are required.

Laboratory measurements are then very impractical for these controls, and the

necessity of designing portable systems for in situ measurements is real.

In the past, a specific indirect technique for the X-ray source measure-

ment, based on the measurement of the photon beam scattered by a target

inserted into the path of the source beam, was developed [6]. This technique,

falling into the energy-dispersive spectrometers category [7, 8], is usually known

as Compton spectrometry [9, 10]. Using that method, the X-ray source beam

fluency is reduced up to three orders of magnitude, and the device can be made

portable. However, when such a spectrometer is used, the pulse height spec-

trum recorded by the detection system does not reproduce the source beam

distribution correctly because of different physical phenomena occurring during

the beam scattering or the detection process [11]. These phenomena are, for

example, the photon interactions in the scatterer, the detector’s physical and

statistical influences, the multiple influences of the surrounding environment or

the perturbations produced by the electronic devices. Consequently, the mea-

sured spectrum does not contain all the physical information available in the

source spectrum [12].

When using such a spectrometer, the formal scattering problem may be

mathematically represented by a matrix equation whose solution is the source

spectrum. In most physical situations, the resulting algebraic system of equa-

tions is extremely ill-posed [13, 14]. Generally, the ill-posedness of the problem is

a direct consequence of the ill-conditioning of the coefficient matrix (the forward

transport matrix, in our case). Practically, the solution to the matrix problem
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may be extremely sensitive to small variations in the data of the problem, and

classical mathematical methods are often completely inefficient for solving the

system of equations [15, 16]. In order to obtain a stable and physically meaning-

ful solution, special strategies are necessary to circumvent the ill-posedness of

the forward transport algebraic system. Some attempts have already been made

to reconstruct the X-ray source spectrum by using matrix regularization tech-

niques (e.g. [17, 18, 19, 20, 21]). The major drawback of these methods is that

they are only based on purely mathematical criteria to discriminate between

the signal and the noise, not on physical parameters. In addition, all authors

have always treated this inverse problem as a whole. However, the scattering of

X-ray photons on the target and their subsequent detection in the crystal are

not ruled by similar principles. While the first is a physical scattering on the

material, governed by the fundamental interactions between X-ray photons and

matter, the second results from the convolution of the incident spectrum to the

detector by the detector response function. By considering the inverse problem

as a whole, the physics of the photon transport is then not respected.

In this thesis, the problem has been solved by adopting a more physical

point of view. The method proposed here is based on a detailed modeling of

the X-ray photon scattering in the target material of the spectrometer. This

scattering problem may be equivalently represented by the direct or by the

adjoint Boltzmann transport equations. In our method, both forward and ad-

joint scattering terms are computed from the analytical solution to the photon

transport equation for finite thickness specimens, and used to generate a bet-

ter conditioned linear algebraic system whose solution is the source spectrum.

The method has first been validated on numerical X-ray spectra, providing

excellent results. The technique has secondly been tested on two different spec-

tra obtained with a simple experimental prototype built at the Operational

Unit of Health Physics of the University of Bologna (Italy). This ex-

perimental set-up allows the measurement of X-ray photons scattered inside a

narrow cone with its axis at a 90◦ angle with respect to the primary beam direc-
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tion. The X-ray source distribution has been reconstructed starting with both

measurements by using the full inverse technique, after cleaning the measured

spectra from the detector response functions. A comparison of the reconstructed

spectra with direct measurements of the X-ray tube has been performed, using a

standard radiological device modified to generate a primary beam with a lower

intensity, showing very good agreements.

1.1 Objectives of the thesis

The thesis has for main objective the complete characterization of an X-ray

source spectrum from scattering measurements in normal operating conditions,

by performing inverse calculation. A complete characterization of an X-ray beam

should ideally include a precise evaluation of the photon fluence and provide

information about the quality of the radiation, specifying its spectral energy

distribution in particular. This information is of fundamental importance in

medical physics for:

− assessing the dose absorbed by a patient;

− obtaining an evaluation of the kerma from the source photon distribution;

− the design and the calibration of dosimeters;

− the design of radiological equipment.

An improvement in the characterization quality of X-ray tubes spectral distri-

bution then aims at improving both the quality of the medical imaging and the

patient protection.

The characterization of the X-ray source is made through inverse calcula-

tion. An innovative inverse strategy based on the solutions of the forward and

adjoint transport equations for photons has been developed. This strategy aims

at taking into consideration the inherent physics of the problem, moving away

from most of the actual resolution techniques. For that purpose, the following

operational objectives have been defined:
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− the conceptual design of a complete inverse calculation strategy, respecting

the physics of the problem, deduced from the understanding of a forward

measurement procedure;

− the derivation of the forward and adjoint transport operators for numerical

calculations (in the general and in the monochromatic beam model);

− the computation of the forward and adjoint scattering matrices by using a

deterministic code, for two different scattering materials, with a particular

discretization;

− the numerical characterization of the two scattering matrices;

− the selection of a consistent numerical method for solving the inverse

scattering problem;

− the validation of the complete inverse method by comparing reconstructed

source spectra to direct measurements performed in non-standard oper-

ating conditions.

1.2 Organization of the thesis

After this general introduction, where the thesis has been situated in the general

context of the quality controls of medical equipments, and where the objectives

have been outlined, this document is organized as follows:

− in Chapter 2, the main photon-matter interactions occurring in the X-

ray regime are described. Even if the interactions between matter and

electromagnetic radiations form one of the most diversified classes of phe-

nomena arising in experimental physics, it is possible to identify the three

most probable characteristic interactions. First, what is considered as an

interaction is explained, and the kernel of a generic interaction is given.

Secondly, the three main interaction processes are described, using both

physical and mathematical descriptions of the processes;

− in Chapter 3, a general form of the Boltzmann transport equation for

photons is constructed. Consideration is also given to the equation that is
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adjoint to the transport equation. In this context, the concept of adjoint

function is formally explained. Both the forward and adjoint transport

equations are then derived in the general and in the monochromatic beam

model, and discretized for numerical calculations;

− in Chapter 4, the global inverse strategy for reconstructing the X-ray

source vector from a scattering measurement is described. Based on the

general description of the forward measurement procedure, the complete

inverse technique, developed in this thesis, is outlined with some emphasis

on the physics of the problem;

− in Chapter 5, the concept of inverse problems is introduced. Inverse prob-

lems are well known to be ill-posed in most physical situations, and form

a very complicated class of physical problems. The main difficulties in

solving ill-posed problem are due to a cluster of small singular values

of the coefficient matrix (said to be ill-conditioned). The singular value

decomposition (SVD) is a powerful tool to analyze the anatomy of an ill-

conditioned matrix. This decomposition is linked to the condition number,

a characteristic value of the scattering matrix, that gives an asymptotical

evaluation of the problem stability. Both the SVD and the condition num-

ber of the matrix are studied in this chapter, because they are of major

importance in practical numerical analysis;

− in Chapter 6, some selected algorithms for the cleaning of measured spec-

tra from the detector response function are introduced theoretically. Mea-

sured spectra result from the convolution of the detection system response

function with the spectrum hitting the detector. In order to suppress the

effects of the detector, unfolding techniques may be applied. Three classes

of unfolding methods have been selected. The algorithms are discussed,

and the advantages / disadvantages of the techniques are outlined;

− in Chapter 7, numerical methods for solving the inverse scattering problem

are detailed. They are classified in two major categories: direct methods

and iterative methods. The choice of a particular method depends on the
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characteristics of the coefficient matrix. In this chapter, some well-adapted

numerical techniques are described theoretically;

− in Chapter 8, the characterization of two selected scatterers - aluminium

and carbon - is made by using some artificial spectra. This characteri-

zation is a fundamental aspect of the method since the material proper-

ties are strongly related to the mathematical performances of the inverse

method through the scattering matrix characteristics. The mathematical

consistency of the numerical methods exposed in chapter 7 is evaluated. In

order to avoid the additional difficulties coming from the unavoidable ex-

perimental noise of the measurement, numerical X-ray spectra have been

constructed as a first approach to the inverse scattering problem;

− in Chapter 9, the application of the full inverse procedure is made on real

experiments obtained at the Operational Unit of Health Physics of

the University of Bologna. Different X-ray scattering measurements

have been performed, for various current intensities. The complete inverse

technique has been applied, and the reconstructed source vectors are com-

pared with direct measurements performed in non-standard geometrical

and operating conditions;

− in Chapter 10, the conclusions of the thesis are given, and some future

prospects are outlined.



Chapter

2
Photon–matter interactions

Interactions between matter and electromagnetic radiation represent one of the

most diversified classes of phenomena in the whole of experimental physics [22].

Even within the energy range usually associated to the X-ray regime, i.e. the

energy range between 1 keV to 100 keV, many different processes can occur, all

of which having their own individual characteristics. The nature of the matter

with which the radiations interact offers almost as wide a range of phenomena

as does the nature of radiation itself. This is also true in the relatively restricted

domain of X-ray physics.

In the present work, the main interest concerns situations in which the

overall behavior of an absorber or scatterer can be deduced by regarding them as

a collection of individual atoms, each one absorbing or scattering independently

of its surroundings. In such cases, we can assert that interactions between X-

ray photons and matter are single identifiable processes, each associated with

an individual atom. This is true as long as the response of an atom is not

considerably distorted by chemical / molecular forces, and this condition will

be implicitly accepted in the following. Such an interaction may be primarily

a scattering event, or an absorption process. In the case of scattering, little or

no energy is imparted to the atom in question. In the case of an absorption

process, the great majority of the incident photon energy is transferred to the

atom.

Most of this chapter follows the description in reference [23].

The way X-ray photons interact with matter fundamentally depends on

their own energy [24, 25, 26]. In the considered range of energy, X-ray photons

8
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interact exclusively with the electron shells surrounding the atomic nucleus. The

nucleus itself does not contribute to the scattering or absorption of photons.

The interaction of a photon of energy hν with an isolated atom A has the

effect of changing the atom state. Denoting the initial state by |i〉 and the final

state by |f〉, a general interaction can be expressed as:

Ai + hνi −→ Af + hνf (2.1)

Equation 2.1 indicates in a mathematical way the photon–atom interaction of

interest in this work, having one initial photon and only one resulting photon.

The term Af in the right side of equation 2.1 denotes the atom in its final state

plus all the non-photonic particles produced during the reaction.

Although a large number of possible interaction mechanisms are known

for X-rays in matter, three major processes play an important role in the X-ray

regime. These mechanisms of interest are:

− the photoelectric effect, during which an initial photon undergoes an in-

teraction with an atom, causing the ejection of an electron from one of

the atom’s internal shells, leaving a vacancy in the electronic structure.

The vacancy is quickly filled by an electron from upper energetic shells of

the atom during a reorganization mechanism. This rearrangement process

is accompanied by the emission of a characteristic fluorescence photon;

− the incoherent or Compton scattering, where the incident photon under-

goes an inelastic collision with an atom external electron, causing both

momentum and energy transfer to the electron in question;

− the coherent or Rayleigh scattering, during which the photon undergoes

an elastic collision with an atomic electron, changing its momentum, but

not its energy.

The term ’interaction’ has not to be considered here in a restrictive way. Any

sequence of physical processes occurring in rapid succession, originated by a

photon and producing another (other) photon(s), can be statistically considered
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as an unique interaction. This is the case with the photoelectric effect, for

example. Then, what is called interaction in the following does not strictly refer

to as a single process.

During photon-atom interactions, not only photons are produced: the pho-

toelectric effect and the Compton scattering also produce electrons. These elec-

trons are governed by other kinds of interaction laws, and can as well produce

new photons. Since the electron contributions render the transport problem

considerably more complicated because of the coupling between photons and

electrons, we shall neglect in this work Bremsstrahlung of the Compton and

photoelectric electrons [27], and also other photon sources such as anomalous

scattering [28].

The photon resulting from interaction 2.1 may in turn interact with an-

other atom of the matter, starting a multiple chain of events. However, the

single-process kernel plays a very major role in the photon transport theory.

They represent the probability - by wavelength, solid angle and path unit - that

the process changes the phase-space variables from direction −→ω ′ and wavelength

λ′ to direction −→ω and wavelength λ. Therefore a kernel is directly related to

the atomic double differential cross-section of the interaction. The integrated

cross-section for the process T can thus be obtained from:

σT (λ′,−→ω ′) =
∫ ∞

0

∫
4π
kT (−→ω , λ,−→ω ′, λ′) d−→ω dλ (2.2)

allowing the comparison with experimental or theoretical data.

Since the three processes of interest are statistically independent [22, 24]

and since they constitute the main part of the total cross-section [29, 30], the

total cross-section µ may be defined as the sum of the photon cross-sections of

the processes of interest:

µ = σC + σR + τ (2.3)
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where:

− σC is the Compton (incoherent) integral cross-section;

− σR is the Rayleigh (coherent) integral cross-section;

− τ is the photoelectric cross-section.

The relative probabilities of the different interaction processes depend on the

photon energy, as illustrated for pure carbon, pure aluminium and pure germa-

nium in Figure 2.1, in Figure 2.2, and in Figure 2.3 respectively [31]. Graphs are

given for a large range of energy (i.e. 1 keV to 1MeV), in a logarithmic scale.
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Figure 2.1: Mass attenuation coefficient for pure carbon with different contributing

factors of attenuation: Compton scattering, Rayleigh scattering and photoelectric

absorption. Graph data coming from NIST’s XCOM database.

Considering the photon attenuation, Figures 2.1 to 2.3 indicate that the

atomic photoelectric effect predominates for low energies, while the Compton

scattering dominates for intermediate energies. Considering only scattering pro-

cesses, they also show a high probability of Rayleigh scattering for low ener-

gies or forward angles, while the Compton scattering probability of interaction

dominates for higher energies or larger angles.
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Figure 2.2: Mass attenuation coefficient for pure aluminium with different contribut-

ing factors of attenuation: Compton scattering, Rayleigh scattering and photoelec-

tric absorption. Graph data coming from NIST’s XCOM database.
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Figure 2.3: Mass attenuation coefficient for pure germanium with different contribut-

ing factors of attenuation: Compton scattering, Rayleigh scattering and photoelec-

tric absorption. Graph data coming from NIST’s XCOM database.
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2.1 The photoelectric effect

During the photoelectric effect, illustrated in Figure 2.4, a photon of energy

Eγ = hν0 undergoes an interaction with an entire atom. This interaction process

results in the emission of a photoelectron, usually from the most internal shells

of the atom, leaving a vacancy in the atom electronic structure. The generic

equation of this interaction is given by:

γ + (atom) −→ (atom)∗ + e− (2.4)

Figure 2.4: Schematic illustration of the photoelectric effect.

During the photoelectric interaction, a photon transfers almost the to-

tality of its energy hν0 to an atomic electron, and completely disappears. If

the incident photon energy is higher than the binding energy of the electron

in its original shell, Bi, the photoelectron is ejected from this particular shell,

resulting in the atom ionization. The probability of photoelectric absorption is

greater the more tightly bound the electron. Therefore, K-electrons are most

affected, provided the X-ray energy exceeds the K-electron binding energy. As

the photon energy drops below Bk, the cross-section drops discontinuously. As

the energy decreases further, the cross-section increases until the first L edge

is reached, at which energy the cross-section drops again, then rices once more,

and so on for the remaining edges. The difference of energy between the incident

photon energy hν0 and the electron binding energy Bi is distributed between

the electron (kinetic energy) and the atom (recoil energy), with respect to the

energy and momentum principles. However, because of the comparatively small

electron mass, it can be approximated that the entire incident photon energy

is carried out as kinetic energy by the photoelectron. In a first approximation,
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the recoil energy of the atom can effectively be neglected. Thanks to the energy

conservation principle, the kinetic energy of the photoelectron is given by:

Ee− = hν0 −Bi (2.5)

where Ee− is the energy of the emitted photoelectron. The index i of the electron

binding energy Bi stands for the different electronic shells (K, L, M ,. . . ) of the

atom.

The cross-section of the photoelectric effect cannot be described by a sim-

ple general mathematical expression. However, empirical descriptions are avail-

able. The cross-section approximately varies as:

− E −n, where n ' 3 for energies less than about 150 keV, and n ' 1 for

energies greater than about 5MeV;

− Zm, where m varies from about 4 at E = 100 keV to 4,6 at E = 3 MeV.

As a crude approximation, in the energy region for which the photoelectric effect

is dominant, the cross-section is proportional to:

τ ∝ Zm

E n
(2.6)

For light nuclei, K-shell electrons are responsible for almost all photoelectric

interactions. For heavy nuclei, however, about 80% of photoelectric interactions

result in the ejection of a K-shell electron [32].

The vacancy left by the photoelectron in the electronic structure of the

atom is quickly filled (time delay between 10−17 s to 10−14 s) by a reorganization

mechanism in which an electron comes from an outer shell to the incomplete one.

This reorganization process is accompanied by the liberation of a well defined

quantity of energy, under the form of characteristic fluorescence X-ray photons.

In some cases, the emission of an Auger or a Coster-Kronig electron may

substitute for the fluorescence X-ray lines in carrying away the atomic excitation

energy. The competition between these two processes is given by the fluorescence

yield, i.e. the probability that an atom in an excited state will emit an X-ray
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photon in its first transition rather than an Auger electron. For the K-shell,

fluorescence yields vary from 0.005 for Z = 8 to 0.965 for Z = 90 [33, 34], as

illustrated in Figure 2.5. Although X-ray photons of various energies may be

emitted, the approximation is often made that only one fluorescence photon or

one Auger electron is emitted, with an energy equal to the binding energy of

the photoelectron.

Figure 2.5: Variation of the K-shell fluorescence yield in function of the atomic num-

ber, Z.

Statistically, the two combined processes of photon absorption and sub-

sequent X-ray or electron emission may be considered as a single interaction.

It is worth noting that the interaction takes place with the atom as a whole,

and cannot occur with a free electron, otherwise the energy and momentum

conservation principles would not be borne out. The electron must necessarily

be bound to an atom: the interaction is then global.
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2.1.1 The scalar photoelectric kernel

The scalar kernel, k, for a single X-ray fluorescence characteristic line of wave-

length λ emitted by a pure element target s as the consequence of the photoelec-

tric absorption of photons with wavelength λ′ may be mathematically described

by [35]:

kPλi

(
λ′ → λ,−→ω ′ → −→ω

)
=

1
4π
Qλi(λ

′) δ (λ− λi)
[
1−H(λ′ − λei)

]
(2.7)

with:

− Qλi(λ
′), the X-ray fluorescence emission probability density (in cm−1) for

the single line of wavelength λi;

− λei , the wavelength of the absorption edge;

− H, the Heaviside function.

A particular line can only be emitted when λ′ is lower than the threshold wave-

length of the absorption edge λei of the series to which the line belongs [36, 37],

as expressed by the Heaviside function in equation 2.7. The line is assumed to

be monochromatic, and its natural width is not taken into account. The isotropy

of the fluorescence in the photoelectric process is expressed by the independence

of the kernel on the direction −→ω and by the 4π normalization factor.

The X-ray fluorescence emission probability density of the the single wave-

length λi, Qλi(λ
′), is a quantity related to the photoelectric attenuation coeffi-

cient τs(λ′) of the emitter element s, to the absorption edge jump Jei [38, 36],

to the fluorescence yield ωei and to the line emission probability Γλi of the line

at wavelegnth λi into its own spectral series, by the probability relationship:

Qλi(λ
′) = τs(λ′)

(
1− 1

Jei

)
ωei Γλi (2.8)

where the parameters Jei and ωei are series dependent. They will therefore be

identical for all the individual lines belonging to a particular series. The radiative

fraction for a given series of transitions is commonly denoted by gei . The fraction
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of vacancies produced in theK-subshell will be filled with transitions from outer

shells giving:

gK =
(

1− 1
JK

)
ωK (2.9)

The allowed transitions for the filling of the vacancy created by the photo-

electron ejection can be either radiative or radiationless. Radiative transitions

lead to the characteristic fluorescence photon emission. Radiationless transitions

can be of two similar types: Auger and Coster-Kronig. If an electron of an

external shell moves to a lower energy level to fill the vacancy, an amount of en-

ergy equal to the difference in orbital energies, i.e. from the original to the final

electron shells, is lost. The transition energy can be retrieved by an outer shell

electron, which is subsequently ejected from the atom if the transferred energy

is greater than the orbital binding energy. This is an Auger electron, and this

process produces a double ionization of the atom, without any photon emission.

During the Coster-Kronig process, the electron makes a transition from one

subshell to a vacancy in another subshell of the same electronic shell. The small

difference in binding energies may be transferred to an outer-electron, in this

case called a Coster-Kronig electron. Auger and Coster-Kronig transi-

tions are schematically illustrated and compared with radiative transitions in

Figure 2.6.

The complete emission spectrum of an element s, containing many lines,

is obtained by the summation of one term such as equation 2.8 for each single

line belonging to the spectrum. The complete emission spectrum is then given

by:

kP
(
λ′ → λ,−→ω ′ → −→ω

)
=

1
4π

∑
i

Qλi(λ
′) δ
(
λ− λ′

) [
1−H(λ′ − λei)

]
(2.10)

In equation 2.10, each term represents the emission after absorption of an initial

radiation of wavelength λ′, resulting in the emission of a single characteristic

XRF line.
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Figure 2.6: Schematic comparison between radiative, Auger and Coster-Kronig

transitions.

2.2 The Rayleigh scattering

Named for the 3rd Lord Rayleigh, J. W. Strutt, coherent scattering is a

process where the photon changes its direction (momentum transfer) without

any change of energy [39]. This scattering takes place with the more tightly

bound electrons of the atom which behave rigidly during the collision, and the

recoil momentum is taken up by the atom as a whole. The scattering is mainly

in the forward direction, and the energy loss is then slight.

Coherent scattering has been treated in a first approximation by J. J.

Thomson, using the classical theory of radiation. The electron in the electro-

magnetic field of the incident radiation vibrates with the same frequency as

that of the incident radiation, thereby giving rise to the emission of secondary

electromagnetic radiation of the same frequency. For unpolarized radiation, the



Chapter 2: Photon–matter interactions 19

electronic cross-section per steradian is given by [26]:(
d2σ

dΩ dλ

)
Thomson

=
r2
e

2
[
1 + (−→ω .−→ω ′)2

]
δ(λ− λ′) (2.11)

where re is the classical radius of the electron:

re =
1

4πε0

e2

mec2
= 2.81794 10−15 m (2.12)

with:

− e and me, respectively the electric charge (1.602 10−19 C) and the mass of

the electron (9.109 10−31 kg);

− c, the speed of the light;

− ε0, the permittivity of the free space (8.854 10−14 F cm−1).

The δ function in equation 2.11 expresses the monochromaticity of the scat-

tering. In many atoms, however, a cooperative effect from all the electrons

belonging to the electronic structure can be verified. Since the scattering is co-

herent, the amplitudes must be added before squaring to obtain the intensity.

Therefore, the cross-section for electron results non-additive, and it is necessary

to define an atomic differential cross-section by:(
d2σR
dΩ dλ

)
at.

= F 2(λ′,−→ω .−→ω ′, Z)
(

d2σ

dΩ dλ

)
Thomson

=
r2
e

2
[
1 + (−→ω .−→ω ′)2

]
F 2(λ′,−→ω .−→ω ′, Z) δ(λ− λ′) (2.13)

The square form factor F 2(λ′,−→ω .−→ω ′, Z) can produce atomic contributions sig-

nificantly greater than Z times the single electronic contribution. In terms of

transferred momentum −→q , the form factor for an atom containing Z electrons

has been defined as the matrix element [40]:

F (−→q , Z) =
Z∑
n=1

〈Ψ0|ei
−→q .−→r n |Ψ0〉 (2.14)

where −→r n denotes the instantaneous position of the n-th electron, respectively,

and Ψ0 the ground-state wave function. By defining the momentum-transfer

parameter as:

x = λ
[
Å
]−1 sin

θ

2
(2.15)
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for given wavelength and scattering angle, form factors F (x, Z) were computed

for all elements of the periodic table. An exhaustive review of the form factor’s

computation has been done by Hubbell et al. [41]. Some special limits of the

form factor are F (0, Z) = Z and F (∞, Z) = 0. Experimental data and other

tables may be found in different publications by Hubbell and Overbø [42],

Schaupp et al. [43], Kane et al. [44] or Chantler et al. [45].

2.2.1 Scalar kernel

The Rayleigh scalar atomic kernel for incident unpolarized photons, with

space-phase coordinates (−→ω ′, λ′) scattered by a pure element target s of atomic

number Z into the coordinates (−→ω , λ) is described by:

kR
(
λ′ → λ,−→ω ′ → −→ω

)
=

ρNZr2
e

2A

(
d2σR
dΩ dλ

)
at.

= σ
[
1 + (−→ω .−→ω ′)2

]
×

F 2(λ′,−→ω .−→ω ′, Z)
Z

δ
(
λ− λ′

)
(2.16)

where:

σ =
ρNZr2

e

2A
(2.17)

is the macroscopic attenuation coefficient with N , the Avogadro number,

re the classical radius of the electron and A the atomic weight. The angular

dependance of the scalar kernel given by equation 2.16 is due to:

− the Thomson angular factor, representing an average polarisation state;

− the square of the atomic form factor F comprising the constructive inter-

ference from the whole charge distribution.

2.3 The Compton scattering

The Compton scattering, also known as incoherent scattering, has been discov-

ered in 1922 by A. H. Compton, and described one year later in two publica-

tions [46, 47]. During the scattering, an incoming photon transfers a fraction of
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its energy to an outer electron of an atom. During the interaction, the photon is

deflected through an angle θ with respect to its original direction, and the elec-

tron (sometimes called recoil electron) is ejected from its orbital position with

an angle θe− , as illustrated in Figure 2.7. In normal scattering conditions, all

scattering angles are possible. Therefore, the energy transferred to the electron

can vary from zero to a large proportion of the initial photon energy. During

this interaction mechanism, both energy and momentum of the X-ray photon

are modified.

Figure 2.7: Schematic illustration of the Compton scattering.

In a first approximation, the atomic Compton cross-section for incoherent

scattering may be evaluated by the product between the atomic number Z and

the electronic cross-section for the scattering by a free electron. Let us consider

the collision of a photon carrying an energy hν ′, momentum p′ = hν ′/c, and

with a direction −→ω ′ against a free electron at rest (electron mass energy at rest

mec
2 = 511 keV, null momentum). Energy and momentum conservation princi-

ples during the collision establish that, if the photon scatters with a scattering

angle θ, it has a wavelength:

λ = λ′ + λC (1− cos θ) (2.18)

with:

− cos θ = −→ω ′.−→ω ;

− λC =
h

mec
= 0.0242631Å, the Compton wavelength.
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The validity of this approximation is generally considered as a proof of the

particle nature of the photon. In agreement with the approximation, scattering

experiments for a narrowly defined scattering angle show a well defined peak at

a higher wavelength than the incident one. The computation of the differential

electronic cross-section for the described collision has been made in 1929 by

O. Klein and Y. Nishina, having recourse to Relativistic Quantum Mechanics

theories [48]. The analytical expression for the differential cross-section for a

photon in an average polarization state, based on the Dirac’s theory, is given

by:

d2σ

dΩ dλ
=
r2
e

2
KKN

(
λ, λ′

) 1
λC

δ

(
1−−→ω .−→ω ′ + λ′ − λ

λC

)
(2.19)

where:

KKN

(
λ, λ′

)
=

(
λ′

λ

)2 [ λ
λ′

+
λ′

λ
+
λ− λ′

λC

(
λ− λ′

λC
− 2
)]

=
(
λ′

λ

)2 [ λ
λ′

+
λ′

λ
− sin2 θ

]
(2.20)

is known as the Klein-Nishina function. The direction-wavelength δ in equa-

tion 2.19 fixes the integration path in the phase space along the line (1−−→ω .−→ω ′+

(λ′ − λ)/λC = 0).

2.3.1 Compton kernel in the Waller-Hartree approxima-

tion

A departure from the Klein-Nishina cross section is verified as soon as the

energy of the exciting photons becomes comparable with the binding energy

of the inner-shell electrons of the target. Waller and Hartree used non-

relativistic wave mechanics to consider the effect of electron binding for the

whole atom [49], laying the groundwork for extensive computations.

It is actually customary to define the Waller-Hartree incoherent scat-
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tering function SWH(−→q , Z) by:

SWH(−→q , Z) =
Z∑

m=1

Z∑
n=1

〈Ψ0|ei
−→q .(−→r m−−→r n)|Ψ0〉

−

∣∣∣∣∣
Z∑

m=1

〈Ψ0|ei
−→q .−→r m |Ψ0〉

∣∣∣∣∣
2

(2.21)

where −→q denotes the transferred momentum during the collision, −→r m and −→r n
the instantaneous position of the m-th and n-th electrons respectively, and Ψ0

the ground-state wave function.

The computational techniques for obtaining the scattering function were

reviewed exhaustively by Hubbell et al., in 1975 [41]. By defining the trans-

ferred momentum as in equation 2.15, tables of SWH(x, Z) were computed for

all the elements in the periodic table. Special limits of the scattering function

are SWH(0, Z) = 0 and SWH(∞, Z) = Z. The double differential atomic cross-

section for incident photons, with phase-space coordinates (−→ω ′, λ′) scattered by

a pure element target s of atomic number Z into the coordinates (−→ω , λ), is

expressed as:(
d2σ

dΩ dλ

)WH

at.

=
r2
e

2
KKN

(
λ, λ′

)
SWH(x, Z)

1
λC

×δ
(

1−−→ω .−→ω ′ + λ′ − λ
λC

)
(2.22)

Therefore, the Compton kernel in the Waller-Hartree approximation is

described by:

kWH
C

(
λ′ → λ,−→ω ′ → −→ω

)
=
ρN

A

(
d2σ

dΩ dλ

)WH

at.

= σKKN

(
λ, λ′

)
SWH(x, Z)

1
λC

× δ
(

1−−→ω .−→ω ′ + λ′ − λ
λC

)
(2.23)

The statistical model of the atomic charge density developed by Thomas

[50] and Fermi [51] may considerably simplify the calculation. Using this model,
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known as the Thomas-Fermi model, a simpler approximated expression for

SWH has been obtained by Veigele et al. [52]:

SWH(V ) = Z
[
1− e−4.88V 0.856

]
(2.24)

with:

V =
2
3

137
Z2/3

λC
λ

sin
θ

2
(2.25)

More precise values of SWH(x, Z) can be computed using semi-empirical for-

mulas and fitting coefficients to theoretical calculations [53].

2.3.2 Compton kernel in the Impulse Approximation

In the Waller-Hartree approximation, the pre-collision motion of the elec-

trons has been ignored. Therefore, the kernel of equation 2.23 limits the Comp-

ton peak to a monochromatic line. Because of the Compton profile, i.e. the

projection of the electron momentum distribution on the z-axis, the width of

the scattered peak is larger than the instrumental width [54]. A more rigorous

theoretical treatment associated with the Compton profile is then necessary,

as given for example in [23].

Defining as pz = −→p .−→q /q, the projection of the momentum of the inter-

acting electron on the scattering vector −→q =
−→
k −
−→
k ′ where

−→
k and

−→
k ′ are the

momenta of the scattered and incident photons, it can be demonstrated that

the Compton shift produced by a moving electron is also a function of pz:

λ = λ′ + λC
(
1−−→ω .−→ω ′

)
− pz
mc

√
λ′2 + λ2 − 2λλ′−→ω .−→ω ′ (2.26)

It is customary to use the dimensionless variable Q [55] defined as:

pz
mc

=
e2

4πε0h̄c
Q ≈ Q

137
(2.27)

in place of pz in equation 2.26. However, a bound electron in the atom do

not hold a definite state of momentum like the one shown in 2.26, but has a

momentum distribution that depends on the subshell occupied by the electron.
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Denoting with an index i the subshell occupied by the electron, the Compton

profile is related to the momentum distribution ρ(p) of the scatterer before the

collision through the relationship:

Ji(Q) =
1
2

∫ ∞
Q

ρ(p)p dp (2.28)

As a consequence of wave-function normalisation, the integrated profile must

satisfy the normalization condition:

2
∫ ∞

0
Ji(Q) dQ = 1 (2.29)

In order to deduce the Compton intensity in the Impulse Approximation (IA),

the following relations are used:(
dσ

dΩ

)
at.

=
∫ ∞

0

(
d2σ

dΩ dλ

)
at.

dλ (2.30)

and (
dσ

dΩ

)WH

at.

'
(
dσ

dΩ

)IA
at.

(2.31)

implying that the scattering function should be equivalent in both representa-

tions [56]:

SWH = S IA (2.32)

From equations 2.23 and 2.29 to 2.32 we obtain:

ρN

A

(
dσ

dΩ

)WH

at.

= σKKN

(
λp, λ

′)SWH

(
1
λ′

√
1−−→ω .−→ω ′

2
, Z

)
≈ σKKN

(
λp, λ

′)S IA
(
λ′,−→ω .−→ω ′, Z

)
(2.33)

where λp = λ′ + λC (1−−→ω .−→ω ′) is the peak wavelength. Since in the Impulse

Approximation the scattering function for the atom is obtained as a sum of the

contributions from all the subshells, we have:

S IA
(
λ′,−→ω .−→ω ′, Z

)
=

Shell Number∑
i=1

ni

∫ Qi,max

−∞
Ji(Q) dQ (2.34)
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where ni is the number of electrons in the shell i, and Qi,max is obtained by

putting λ = hc/E = hc/(E′ −Bi) (with Bi the binding energy of the subshell)

in the expression:

Q = 137
[λ′ + λC (1−−→ω .−→ω ′)− λ]√
λ′2 + λ2 − 2λλ′−→ω .−→ω ′

(2.35)

which is obtained straightforwardly from equation 2.26:

Q = 137

[
(E′ −Bi)E′

mc2
(1− cosθ)−Bi

]
[(E′ −Bi)2 + E′2 − 2 (E′ −Bi)E′ cos θ]1/2

(2.36)

The integral in the right side of equation 2.34 represents the contribution

of one electron in the subshell i to the scattering function. Being such a con-

tribution upper-limited by Qi,max, it is equivalent to integrate with a higher

upper limit the subshell profile truncated at Qi,max, i.e.:∫ Qi,max

−∞
Ji(Q) dQ =

∫ ∞
−∞

Ji(Q,Qi,max) dQ (2.37)

The sum over the occupied states in the right side of equation 2.34 can be shifted

into the integral. In this way we can define the whole profile at (λ′, −→ω .−→ω ′) and

Z as the overlapping of the truncated profiles of the Z electrons of the element,

i.e.:

Ji(Q,λ′,−→ω .−→ω ′, Z) =
OCC∑
i=1

Ji [Q,Qi,max] (2.38)

Equation 2.34 can be rewritten in an other way, using a change of variable in

the integral:

S IA
(
λ′,−→ω .−→ω ′, Z

)
=
∫ ∞

0
J
[
Q(λ), λ′,−→ω .−→ω ′, Z

] dQ

dλ
dλ (2.39)

From equations 2.26, 2.33 and 2.39 we can write the Compton kernel in the

Impulse Approximation as:

k IAC
(
λ′ → λ,−→ω ′ → −→ω

)
=

ρN

A

(
d2σ

dΩ dλ

)IA
at.

' σKKN

(
λp, λ

′) ×
J
[
Q(λ), λ′,−→ω .−→ω ′, Z

] dQ
dλ

(2.40)
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where:

dQ

dλ
= −137

(
1−−→ω .−→ω ′

) [λ′ [λ′ − λC(−→ω .−→ω ′)] + λ(λ′ + λC)]
(λ′2 + λ′ − 2λλ′−→ω .−→ω ′)3/2

(2.41)

is obtained from equation 2.35. Equation 2.40 is the alternative to equation 2.23

using Compton profiles. Since the broadening of the Compton peak is con-

siderably large, the Impulse Approximation gives a much more precise estimate

of the intensity distribution of the Compton peak, especially in relation with

spectrum build-up in the X-ray regime.
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3
Forward and adjoint Boltz-

mann transport equations

for photons

The X-ray photon flux can be described by a scalar integro-differential transport

equation, known as Boltzmann equation. In the following, the Boltzmann

transport equation for photons will first be constructed in its most general for-

mulation, and the equation related to a simplified physical beam model – an in-

finite thickness target irradiated with a monochromatic collimated X-ray beam

– will secondly be deduced. From these mathematical expressions of the photon

transport, the equation that is adjoint to the Boltzmann equation will be de-

rived in both the general formulation and the simplified physical beam model.

In the framework of photon transport theory, the adjoint transport equation

has a very particular significance of importance, and will be considered as a

significant help in the resolution of the inverse scattering problem previously

introduced and more precisely developed in the next chapter.

3.1 The forward Boltzmann equation

An X-ray flux can be completely determined as the solution to a transport

equation describing the balance between the number of photons of determined

wavelength and direction entering and leaving an infinitesimal volume element.

The balance may be formulated for conditions where the X-ray source is con-

28
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stant with time and, therefore, the photon flow through the medium is also

constant in time [35].

Let us denote the position of a point in a cartesian frame of reference by
−→r . Let us consider also the infinitesimal cylinder, centered in −→r , characterized

by:

− a base area dA;

− a height dl;

− a lateral surface parallel to a direction −→ω .

The conceptual setup of this infinitesimal cylinder is illustrated in Figure 3.1.

Figure 3.1: Illustration of the infinitesimal cylinder used for the construction of the

Boltzmann transport equation.

The photon flux f(−→r ,−→ω , λ) dλ dω passing through the cylinder is defined

as the number of photons with wavelength included in the interval [λ, λ + dλ]

and within a direction in the range [−→ω ,−→ω + −→ω ], which goes through the base

dA of the cylinder per unit time. The wavelength λ is used here in place of the

energy E for the sake of convenience, but the use of the energy E is entirely
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equivalent. The link between wavelength λ and energy E is given by:

λ =
hc

E
(3.1)

where h is the Planck constant, and c the speed of light in vacuum.

The net rate of photons with specified direction and energy leaving the

infinitesimal cylinder through the surface dA per unit time is given by:

f(−→r +−→ω dl,−→ω , λ) dA− f(−→r ,−→ω , λ)dA (3.2)

or, under differential form:

−→ω .f(−→r ,−→ω , λ) dAdl (3.3)

Three factors contribute to this net outflow [35]:

1. the narrow-beam attenuation in the whole volume of the cylinder. This at-

tenuation is ruled by the well-known Beer-Lambert law (one-dimensional

exponential attenuation law), and is expressed by:

−µ(λ) f(−→r ,−→ω , λ) dAdl (3.4)

where µ(λ) is the total attenuation coefficient of the sample. This coeffi-

cient is strongly wavelength dependent, but completely independent of the

geometry. The coefficient is linear, i.e. we assume that, after absorption,

the photon is simply removed from the beam.

2. the photon scattering in the cylinder, from wavelength λ′ and direction ω′

to wavelength λ and direction ω. If the scattering happens in the volume

of the cylinder, it contributes to a positive outflow from the cylinder. The

term of scattering has here to be considered in its largest sense, making

reference to any atomic process sparking off a photon of a determined

wavelength and direction into an other photon with different (or eventu-

ally equal) wavelength and direction. This second factor depends on the

product of the flow f(−→r ,−→ω , λ) by the probability distribution function
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k (λ′ → λ,−→ω ′ → −→ω ), i.e. the probability that a photon with initial wave-

length λ′ and direction −→ω ′ has the new set λ and −→ω per unit path through

the medium and per unit d−→ω and dλ after the scattering. The whole scat-

tering contribution can be obtained after integrating the product with

respect to the direction −→ω ′ and the wavelength λ′. The entire scattering

contributions is given by:∫ ∞
0

∫
4π
k
(
λ′ → λ,−→ω ′ → −→ω

)
f(−→r ,−→ω , λ) d−→ω ′ dλ′ (3.5)

Note that the scattering probability depends only upon the scattering

angle, i.e. the scalar product −→ω ′.−→ω , and not upon the directions before

and after the event −→ω ′ and −→ω .

3. the production rate, i.e. the source contribution of photons with given

wavelength and direction within the infinitesimal cylinder previously de-

fined. This contribution can be denoted by:

S (−→r ,−→ω , λ) (3.6)

where S is a general source term given per unit volume, time, wavelength

and per steradian. This factor is of course not necessarily present in all

situations.

The expression of the photon transport equation is finally obtained by

equating the net rate of photons passing through the surface dA per unit time

(equation 3.3) with the three factors (equations 3.4, 3.5 and 3.6) contributing

to this net outflow:

−→ω .∇f(−→r ,−→ω , λ) = − µ(λ) f(−→r ,−→ω , λ)

+
∫ ∞

0

∫
4π
k
(
λ′ → λ,−→ω ′ → −→ω

)
f(−→r ,−→ω ′, λ′) d−→ω ′ dλ′

+ S(−→r ,−→ω , λ) (3.7)

Equation 3.7 is a very general formulation of the transport equation, containing

all the possible aspects of the photon transport. The functions µ, k and S

depend on the process taken into consideration, on the range of the variables
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which are of interest and on the required degree of precision. The mathematical

difficulty in obtaining a complete analytical solution to the integro-differential

equation is in most cases extremely high. If the shapes of the functions µ,

k and S do not allow significant simplifications that make the calculation of

an analytical solution possible, the only way to solve it is to use approximate

numerical methods. It is worth noting that, although this equation is a very

general transport situation, the subtle assumption of an infinite homogeneous

space is still present in it [35].

For the sake of simplicity, equation 3.7 may also be written in the following

condensed way:

Lf = S (3.8)

where f is the forward angular flux, S the forward source distribution and L

the integro-differential operator defined by [57]:

Lf = −→ω .∇f(−→r ,−→ω , λ) + µ(λ) f(−→r ,−→ω , λ)

−
∫ ∞

0

∫
4π
k
(
λ′ → λ,−→ω ′ → −→ω

)
f(−→r ,−→ω ′, λ′) d−→ω ′dλ′ (3.9)

The operator L is not symmetric due to both the first-order differential operator

in the streaming term and the energy dependance of the integral operator kernel.

3.2 The adjoint Boltzmann transport equation

In this section, consideration will be given to the equation which is adjoint to

the photon transport equation. The solutions to the adjoint transport equation

are orthogonal to the ones of the forward transport equation. Moreover, the

former has a clear significance of photon ’importance’ within a particular system

[58, 59], as it will be explained later.

3.2.1 The adjoint function

The first step in this development is to define certain quantities which will be

used in the following. Let ϕ(ξ) and ψ(ξ) be two functions of the same variable,
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represented by the same general symbol ξ. The inner product of these two

functions is then expressed and defined by:

(ϕ,ψ) ≡
∫
ϕ(ξ)ψ(ξ) dξ (3.10)

where the integration is carried over the whole accessible range of variables. If

ϕ and ψ are two acceptable and well-behaved functions, in the sense that they

satisfy certain boundary and smoothness conditions, then a hermitian (or self-

adjoint) operator M is one for which the inner products (ψ,Mϕ) and (ϕ,Mψ)

are equal, i.e.:

(ψ,Mϕ) = (ϕ,Mψ) (3.11)

The eigenfunctions of hermitian operators are orthogonal, and the eigenvalues

are always real.

In quantum mechanics for example, operators representing physical quan-

tities are hermitian and they operate on the wave functions. Both the operators

and the wave functions in quantum mechanics are complex, and so complex

conjugates are used in defining the inner product. In the treatment of pho-

ton transport theory, the operators and the functions on which they operate

are real. Complex conjugates are therefore not required. However, the operator

associated with the transport equation is not self-adjoint.

If the operator L is no self-adjoint, it is possible to define an operator L†

that is adjoint to L. The operator L† will operate on functions ψ†, often called

adjoint functions, which may satisfy boundary conditions different from those

satisfied by the functions ϕ on which L operates. The adjoint operator, L†, is

naturally defined by the requirement that:

(ψ†,Lϕ) = (ϕ,L†ψ†) (3.12)

for any acceptable functions ϕ and ψ†. The eigenfunctions of the adjoint oper-

ator, L†, are then orthogonal to those of the operator L.
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3.2.2 The adjoint to the transport operator

Since in this work L will operate on the forward photon angular flux f , the

adjoint operator L† will be defined by the requirement that:

(f †,Lf) = (f,L†f †) (3.13)

where f † is referred to as the adjoint angular flux or as the adjoint function.

The functions f and f † are two functions satisfying appropriate boundary and

continuity conditions for the angular flux and its adjoint, respectively.

In accordance with the definition in equation 3.13, the adjoint transport

operator L† is given by [57]:

L†f † = − −→ω .∇f †(−→r ,−→ω , λ) + µ(λ) f †(−→r ,−→ω , λ)

−
∫ ∞

0

∫
4π
k
(
λ→ λ′,−→ω → −→ω ′

)
f †(−→r ,−→ω ′, λ′) d−→ω ′dλ′ (3.14)

The following differences should be noted between L† as given by equation 3.14

and L as defined by equation 3.9:

− the gradient terms have opposite signs;

− the initial and final states in the interaction kernel within the scattering

term have been interchanged, i.e. (λ′,−→ω ′) → (λ,−→ω ) in L is replaced by

(λ,−→ω )→ (λ′,−→ω ′) in L†.

The adjoint Boltzmann transport equation may then be written as:

−−→ω .∇f †(−→r ,−→ω , λ) = − µ(λ) f †(−→r ,−→ω , λ)

+
∫ ∞

0

∫
4π
k
(
λ→ λ′,−→ω → −→ω ′

)
f †(−→r ,−→ω ′, λ′) d−→ω ′ dλ′

+ S†(−→r ,−→ω , λ) (3.15)

or in its condensed form:

L†f † = S† (3.16)
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where f † is the adjoint angular flux, S† the adjoint source distribution and L†

the adjoint operator defined by equation 3.14.

Since their integral responses are equal, i.e.:(
f †, S

)
=
(
f, S†

)
(3.17)

linear neutral particle transport can then be described either by the adjoint

transport equation 3.16 or by the forward transport equation 3.8. Both de-

scription are the identical, even if a different point of view is adopted for the

description.

3.3 Forward and adjoint transport equations in the

monochromatic beam model

Let us consider now the simple backscattering model for a plane monochromatic

X-ray source on an infinitely thick sample, as shown in Figure 3.2.

This model assumes that photons only interact in the target, i.e. the pho-

tons escaping towards the empty half-space may only be subjected to a total

absorption, and cannot be sent back to the target. It represents fairly well the

radiation behavior in two media of different density (the density of the sam-

ple being much greater than the density of the surrounding environment). The

scalar Boltzmann equation for this model is [35]:

η
∂f(z,−→ω , λ)

∂z
= − µ(λ) f(z,−→ω , λ)

+
∫ ∞

0

∫
4π
k
(
λ′ → λ,−→ω ′ → −→ω

)
H(z) f(z,−→ω ′, λ′) d−→ω ′ dλ′

+ I0 δ(z) δ
(−→ω −−→ω ′) δ (λ− λ0) (3.18)

where η is used for the directional cosine ωz, dω′ = dη′dφ′ is the differential of

solid angle in the direction of the unitary vector −→ω ′ and H(z) is the unitary step

Heaviside function. The term I0 δ(z) δ(−→ω − −→ω 0) δ(λ − λ0) represents a plane

slant source of intensity I0 (photons/cm2.s) uniformly distributed and producing
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Figure 3.2: Photon backscattering model for a plane monochromatic X-ray beam in

a homogeneous infinitely thick specimen.

an incident beam of parallel rays with flight direction −→ω ′ and wavelength λ′,

hitting the infinite sample surface at z = 0.

Although the scalar transport equation 3.18 is one-dimensional in the space

coordinates, the flux maintains all the angular information through its depen-

dence on −→ω . According to the model, the empty semi-space in equation 3.18

is figured through its non-restitution property, rather than by a change in the

density or in the absorption coefficient. This choice allows us to consider the

attenuation coefficient µ(λ) independent from −→r in the transport equation.

Thanks to the linearity of equation 3.18, analytical solutions may be ob-

tained by computing separately the contributions fk(−→r ,−→ω , λ) for different or-

ders of collisions (k = 1, 2, . . . , n). The complete solution is obtained by adding

all the individual scattering contributions corresponding to each order of colli-

sion.
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The forward transport operator L in this model of an infinitely thick target

excited with a monochromatic and collimated X-ray beam becomes:

Lf(z,−→ω , λ) = η
∂f(z,−→ω , λ)

∂z
+ µ(λ) f(z,−→ω , λ)

−
∫ ∞

0

∫
4π
k
(
λ′ → λ,−→ω ′ → −→ω

)
H(z)

× f(z,−→ω ′, λ′) d−→ω ′ dλ′ (3.19)

with a source density S (photons/cm2.s) given by:

S (z,−→ω , λ) = δ(z) δ (−→ω −−→ω 0) δ (λ− λ0) (3.20)

The adjoint operator L† is therefore given by:

L†f †(z,−→ω , λ) = − η ∂f
†(z,−→ω , λ)
∂z

+ µ(λ) f †(z,−→ω , λ)

−
∫ ∞

0

∫
4π
k
(
λ→ λ′,−→ω → −→ω ′

)
H(z)

× f †(z,−→ω ′, λ′) d−→ω ′ dλ′ (3.21)

As already mentioned in the general model, the gradient terms have opposite

signs, and the initial / final states in the interaction kernel within the scattering

terms are interchanged.

Let us assume now a point detector looking at the photons with direction
−→ω 1 and wavelength λ1. Let us suppose also a unitary adjoint source expressed

by:

S† (z,−→ω , λ) = δ(z) δ(−→ω −−→ω 1) δ(λ− λ1) (3.22)

The sources defined by equation 3.20 and 3.22 may be replaced in equation 3.17.

From this operation results the following equality:

f † (0,−→ω 0, λ0;−→ω 1, λ1) = f (0,−→ω 1, λ1;−→ω 0, λ0) (3.23)

Equation 3.23 stresses the equivalence between the forward albedo angular flux

at (−→ω 1, λ1) produced by a unitary source at (−→ω 0, λ0), and the adjoint albedo

angular flux at (−→ω 0, λ0) produced by an analogous source at (−→ω 1, λ1).
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The adjoint flux f † (0,−→ω 0, λ0) then has a meaning of importance with

which a beam of λ0-wavelength monochromatic photons, oriented along −→ω 0,

contributes to a reading of one photon/cm.s in a counter placed at z = 0 and

sensitive to photons with phase-space variables −→ω 1 and λ1. Equation 3.23 allows

immediate knowledge of the importance function to be obtained once the albedo

angular flux is known.

3.4 Discretization of the forward and adjoint trans-

port equations for numerical calculations

For a unitary monochromatic excitation of wavelength λk, the forward transport

equation 3.8 becomes:

Lf(k) = δ (λ− λk) (3.24)

For all practical purposes, the continuous transport equation should be dis-

cretized in order to allow its computation. In the discrete monochromatic prob-

lem, the function f(k) becomes:

f(k) = (f1, . . . , fn)T (3.25)

and the monochromatic source may be defined by:

−→s (k) = (0, . . . , 1︸︷︷︸
k

, . . . , 0)T (3.26)

Since the Boltzmann transport equation is linear, a polychromatic source can

be expressed as the linear overlapping of monochromatic unitary excitations
−→s (k), weighted by coefficients α(k):

−→s =
∑
k

αk
−→s (k) (3.27)

The corresponding scattering vector is:

−→
f =

∑
k

αk
−→
f (k) (3.28)
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Finally, for polychromatic excitation, the forward discretized system is given

by:

F−→s =
−→
f (3.29)

where F is the discrete forward matrix. It is important to note that the k-th

column of the forward matrix F represents the k-th discrete solution to the

forward problem corresponding to a unitary monochromatic excitation −→s (k).

The size of the matrix F is strongly linked to the discretization of the scattered

and source vectors. For the sake of simplicity, the same even discretization for

both vectors will be considered in the following.

For a unitary monochromatic reading at the wavelength λk, the adjoint

transport equation 3.16 becomes:

L†f †(k) = δ (λ− λk) (3.30)

Using the notation introduced above, the adjoint discretized system is:

F †−→s † =
−→
f † (3.31)

where
−→
f † represents the discretized importance, −→s † is the discretized reading

and F † is the discrete adjoint matrix. Again, it is worthwhile noting that the

k-th column of the adjoint matrix F † represents the k-th discrete solution to

the adjoint problem, which corresponds to a unitary monochromatic reading
−→s †.

Broadly speaking, the adjoint matrix of an n×m matrix F is the m× n

matrix F † obtained by taking the transpose and then the complexe conjugate of

each entries of the matrix. In our situation, the discrete adjoint matrix simply

corresponds to the transpose of the discrete forward matrix:

F † = F T (3.32)



Chapter

4
The complete inverse calcu-

lation strategy

In this chapter, the full inverse strategy for reconstructing the unknown X-ray

source spectrum is designed. A general description of a forward measurement

carried out when using a spectrometer is first given. In this description, the

photon course is voluntarily divided into two well-marked parts. This division

is related to the physical phenomena occurring during the photon transport:

the scattering on the solid target inside the spectrometer, and the detection

of the scattered photon beam. From these considerations, an inverse calcula-

tion strategy respecting the physics of the problem is proposed. The inverse

problem is then also divided into two successive physical steps: the cleaning of

the measurement from the detector influence, and the inverse scattering on the

target.

4.1 Description of the forward measurement proce-

dure

The complete forward procedure for the measurement of an X-ray source spec-

trum by using a Compton spectrometer may be broken down in two major

distinguishable physical steps.

Photons are initially emitted from the X-ray tube, and their starting en-

ergy distribution forms the source vector −→s . They secondly hit a solid target

of light material interposed at 45 ◦ in the path of the primary photon beam,

40
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undergoing scattering on it, through Rayleigh (elastic scattering) and Comp-

ton (inelastic scattering) interactions with the outer electrons of the atoms.

The photons scattered at a (90 ± 1.5) ◦ angle with respect to the initial pho-

ton beam axis are selected by passing through the spectrometer. Photons that

are not scattered within this particular direction are assumed to be completely

absorbed in the spectrometer. They consequently completely disappear, having

no influence on the detection process. The resulting secondary photon beam

description, just after the scattering on the target, is called in the following

scattered vector
−→
b .

The scattered photon beam passes through the spectrometer and ends its

flight by hitting a detector placed inside the spectrometer. Inside the detector,

the scattered photons undergo different kinds of fundamental interactions lead-

ing to their detection. During the detection process, the energy distribution of

the scattered beam suffer modifications in two different ways. The first one is

due to the detector’s inherent physical response to an external excitation. The

second modification arises from the statistical uncertainty associated to the de-

tection process, leading to a global broadening of the detector response. Both

these effects are included in the so-called detector response function. The final

pulse height distribution results from the convolution of the incident energy

distribution hitting the detector, i.e. the scattered vector, with the characteris-

tic response function of the detector. This pulse height distribution is the only

measurable information of the whole process, and is referred to as measured

vector −→m in the following.

This description of the complete forward measurement procedure is schemat-

ically illustrated in Figure 4.1. A complete cross-section view of a Compton

spectrometer is given in Figure 4.2. The different vectors of interest are situated

on the schema, and the different materials are symbolized by a color code (see

caption for the color code description).

Using a Compton spectrometer for the measurement of an X-ray tube,

the measured vector −→m does not correctly reproduce the X-ray source vector
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Figure 4.1: Schematic view of the forward measurement procedure, including the

specific notations of the source, scattered and measured vectors.

−→s because of a multitude of physical phenomena occurring during the pho-

ton transport: scattering on the target, detector influence and the influence of

the surrounding environment.The measured spectrum then presents a lack of

information, and is not convenient to fully characterize the source vector.
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4.2 Description of the complete inverse procedure

In order to fully and accurately characterize the X-ray source spectrum, it is

fundamental to find a way to reconstruct the source spectrum starting from the

measurement. The inverse procedure described in the following aims to recover

the source vector −→s starting from the measured vector −→m, by reversing the

photon course.

Similarly to the division in physical steps of the forward measurement

procedure, the inverse procedure may also be divided in two different successive

stages:

− the cleaning of the measured spectrum from both physical and statistical

detector influences, i.e. from the detector response functions. The aim of

this step is to obtain the scattered vector
−→
b starting from the measured

vector −→m;

− the reverse scattering of the photons on the target, through the resolu-

tion of the linear system of equations that models the scattering process.

Starting from the scattered vector
−→
b , the result of this second step is the

reconstructed source vector −→s .

First, the cleaning of the measured spectrum from the detector influences is

typically an ill-posed problem. The concept of ill-posed problem will be rigor-

ously explained in section 5. It is however interesting to already introduce them

as a class of mathematical problems whose solutions are potentially extremely

sensitive to small variations in the data of the problem. Successful solutions

of inverse ill-posed problems then require particular methods and specially de-

signed algorithms that can support errors in the measured data, in order to

circumvent the ill-posedness of the problem. Very often, these methods involve

including additional assumptions to the initial problem, such as the smoothness,

the positivity or the minimal entropy of the expected solution. The unfolding

problem (and its resolution mechanisms) will be discussed in Chapter 6.
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Secondly the inverse scattering on the target may also lead to a highly ill-

posed system of equations, due to the ill-conditioning of the coefficient matrix.

For numerical treatment, this part of the problem has often to be reformu-

lated in a way allowing a reduction of the ill-conditioning (cf. section 5.2), by

preconditioning the matrix system of equations. Many preconditioners may be

chosen in order to reduce ill-conditioned character of the coefficient matrix, and

to dampen the ill-posed character of the system, making it more suitable to

support numerical operations. The most classical preconditioners are probably

the diagonal or the incomplete lower-upper (ILU) factorization of the coeffi-

cient matrix. However, among the very large amount of possibilities of system

preconditioning, our choice is to use the adjoint scattering matrix presented in

Chapter 3, because of its very strong conceptual sense related to the physics of

the problem.



Chapter

5
The concept of ill-posed

problem

Numerous inverse problems arising in many physical fields are ill-posed. In most

cases, the ill-posedness of a problem is a consequence of the ill-conditioning of

the coefficient matrix (matrix of the coefficients of the variables in a set of

linear equations). Both these concepts of ill-posedness and ill-conditioning will

be carefully discussed in the next sections, since they occupy a central place

in the resolution of inverse problems. A major and powerful numerical tool -

namely, the singular value decomposition - for the analysis of ill-conditioned

systems of equations is also explained in details. Using this numerical tool,

the anatomy of an ill-posed problem may be investigated, revealing all the

difficulties associated with the resolution of the matrix system of equations, and

giving useful information about its stability with respect to successive numerical

operations. For completing the chapter, this fundamental concept of stability

will be defined by using the vector and matrix norms definitions.

In the beginning of 20th century, the concept of ill-posed problem has

been defined by Hadamard as a problem whose solution is not unique, or

if it is not a continuous function of the data. For Hadamard, as for many

mathematicians, ill-posed problems were mainly artificial, in the sense that

they do not correctly describe a real physical system. He was wrong, however,

and today the multiplicity of situations arising in many fields of science and

engineering that can be described by ill-posed problems has generated a vast

amount of literature (see, for instance, [60] for ill-posed problems in astronomy,

46
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[61] in medical physics, [62] in wave study or [63] in meteorology).

A typical example of ill-posed problem is the Fredholm equation of the

first kind, with a square integrable kernel [64]. This equation is a convolution

equation, as the one expressing the detection processes by a detector. This

equations may be written as:

g(s) =
∫ b

a
K(s, t)f(t) dt, c ≤ s ≤ d (5.1)

where the left-hand side g(s) and the kernel K(s, t) are given, and where f(t)

is the unknown solution to the equation. If the solution is disturbed by a small

variation as, for example:

∆f(t) = ε sin(2πpt), p = 1, 2, . . . (5.2)

the corresponding perturbation of the right-hand side g(s) is given by:

∆g(s) = ε

∫ b

a
K(s, t) sin(2πpt) dt, p = 1, 2, . . . (5.3)

and, due to the Riemann-Lebesgue theorem, it follows that ∆g(s) → 0 as

p→∞ [64]. Hence, the ratio ‖∆f‖/‖∆g‖ becomes arbitrarily large by choosing

p large enough. This shows that 5.1 is an ill-posed problem.

Strictly speaking, ill-posed linear problems must be infinite-dimensional,

otherwise the ratio ‖∆f‖/‖∆g‖ of course stays bounded, although it may be-

come very large. However, certain finite-dimensional discrete problems have

properties very similar to those of ill-posed problems, such as being highly sen-

sitive to high-frequency perturbations. It is consequently natural to associate

the term discrete ill-posed problems also with this kind of situations [65].

It is worthwhile noting that the ill-posedness of the problem does not sig-

nify the non-existence of a meaningful approximate solution. Rather, it implies

that the standard methods frequently used in numerical linear algebra cannot

be applied straightforwardly to compute such a solution [16]. Instead, more

sophisticated and powerful computation methods must be applied in order to

ensure physically meaningful solutions.
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Before going further into details about some particular methods for solving

ill-posed problems, it is first appropriate to introduce the most important and

convenient numerical tool for the analysis of discrete ill-posed problems: the

singular value decomposition.

5.1 Ill-posed problem analysis tool: the singular value

decomposition

The singular value decomposition (SVD) [16, 66, 67, 68] of the coefficient matrix

is one of the major numerical tool for discrete ill-posed problem analysis. This

structural analysis of the discrete coefficient matrix may help in revealing all

the difficulties associated with the ill-conditioning of the coefficient matrix (and

then with the probable ill-posed character of the problem), giving information

about the stability of the reconstructed solution.

Let us define a rectangular matrix F ∈ <m×n, with m ≥ n, which maps

vectors in <n to vectors in <m. The singular value decomposition of F is a

decomposition of the form:

F = UΣV T =
∑−→u iσi−→v Ti (5.4)

where U = (−→u 1,
−→u 2, . . . ,

−→u m) ∈ <m×m and V = (−→v 1,
−→v 2, . . . ,

−→v n) ∈ <n×n

are matrices with orthonormal columns, i.e. UTU = UUT = Im and V TV =

V V T = In (with I, the identity matrix), and where Σ = diag (σ1, σ2, . . . , σp) ∈

<m×n with p = min(m,n), has non-negative diagonal elements appearing in

non-increasing order such that:

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 (5.5)

The scalar quantities σi are called the singular values of the matrix F , while

the vectors −→u i and −→v i are known as the i-th left and i-th right singular vectors

of F , respectively. Under the conditions expressed by equations 5.4 and 5.5, the

singular values matrix Σ is uniquely determined for a given matrix F , except
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for singular vectors associated with multiple singular values. This uniqueness is

not observable for the U and V matrix.

In connection with discrete ill-posed problems, two main characteristic

features of the singular value decomposition are very often found:

− the singular values σi decay gradually to zero with no particular gap in

the spectrum. An increase of the dimensions of the matrix F will only

increase the number of small singular values;

− the left and right singular vectors −→u i and −→v i tend to have more sign

changes in their elements as the index i increases, i.e. as the singular

values σi decrease.

Although these characteristics are found in many discrete ill-posed problems

arising in practical applications, they are unfortunately very difficult – or per-

haps impossible – to prove in general [65].

The singular value decomposition also gives important insight into the

smoothing effect typically associated with a square integrable kernel. As σi

decreases, the singular vectors −→u i and −→v i become more and more oscillatory.

Consider now the mapping F−→x of an arbitrary vector −→x . Using the singular

value decomposition, we get:

−→x =
n∑
i=1

(−→v Ti −→x )−→v i (5.6)

and

F−→x =
n∑
i=1

σi(−→v Ti −→x )−→u i (5.7)

This shows that, due to the multiplication with the σi, the high-frequency com-

ponents of −→x are more damped in F−→x than the low-frequency components,

creating smoothing of the signal. Of course, the inverse problem of comput-

ing −→x from F−→x = −→m must have the opposite effect: it amplifies the high-

frequency oscillations of the right-hand side −→m. The resulting reconstruction of
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−→x is consequently very poor, essentially composed of important oscillations. In

our measurements, high frequency components may be mostly associated to the

experimental noise, i.e. the undesired fluctuations that appear superimposed on

the signal source.

It is currently generally accepted that a linear system of equations is ill-

posed if both following conditions are satisfied:

− the singular values of the coefficient matrix decay continuously to zero,

without any particular gap in their spectrum;

− the ratio between the largest and the smallest non-zero singular values,

called the (spectral) condition number of the matrix, is (very) large.

The gradual decrease of the singular values implies that there is no nearby prob-

lem with a well-conditioned coefficient matrix. The singular value decomposition

of a matrix will be discussed in details in section 5.1. The second condition, i.e.

the high value of the condition number associated to the coefficient matrix,

reflects the potentially very high sensitivity of the solution to variations in the

data of the problem. The condition number will be discussed in section 5.2.

5.2 Stability of a linear system of equations: the con-

dition number

The analysis of the potential effects of round-off errors on solutions of linear

systems of equations requires an appropriate way of quantification. This mea-

sure is fundamentally provided by the concept of norm, and quantified by the

condition number associated to a coefficient matrix. Broadly speaking, a norm

is a function that assigns a strictly positive size to all vectors in a vector space,

other than the zero vector. They are many ways for defining vector or matrix

norms, as they are several different norms. The most famous is the euclidian

norm, associated to the geometrical length of the vector (also called magni-

tude). However, the definition is more general. In the following, the concepts of
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vector and matrix norms are defined and discussed, and linked to the condition

number in a subordinate matrix norm.

5.2.1 Vector norm: definitions

Suppose that V is a linear space over the field K, equipped with an absolute

value. The nonnegative real-valued application ‖ · ‖ is said to be a vector norm

provided that it satisfies the following properties:

− ‖−→v ‖ = 0 if and only if −→v =
−→
0 in V ;

− ‖α−→v ‖ = |α|‖−→v ‖, ∀ α ∈ K and ∀ −→v ∈ V ;

− ‖−→u +−→v ‖ ≤ ‖−→u ‖+ ‖−→v ‖, ∀ −→u ,−→v ∈ V ;

where |α| is the absolute value of α if K = <. A linear space V equipped with

a norm, i.e. (V, ‖ · ‖), is called a normed linear space.

Any norm defined on the linear space V ∈ <n will be called a vector norm.

A useful class of vector norms is the so-called p-norm. This norm class may be

defined by:

‖−→v ‖p =

{
n∑
i=1

|vi|p
}1/p

, p ≥ 1 (5.8)

Among the possible set of norms, three particular vector norms are in common

use in numerical analysis: the 1-norm, the 2-norm and the ∞-norm. These are

special cases of the p-norms, for p = 1, p = 2 and p→∞.

− the 1-norm, usually noted as ‖ · ‖1, of the vector −→v = (v1, v2, . . . , vn)T ∈

<n is defined by:

‖−→v ‖1 =
n∑
i=1

|vi| (5.9)

− the 2-norm, usually noted as ‖ · ‖2, of the vector −→v = (v1, v2, . . . , vn)T ∈

<n is defined by:

‖−→v ‖2 =
(−→v T−→v )1/2 (5.10)
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or, in other words:

‖−→v ‖2 =

{
n∑
i=1

|vi|2
}1/2

(5.11)

− the∞-norm, usually noted as ‖ · ‖∞, of the vector −→v = (v1, v2, . . . , vn)T ∈

<n is defined by:

‖−→v ‖∞ = max
1≤i≤n

|vi| (5.12)

It is easy to show that each of these norms verify the properties of the norm

definition. The demonstrations may for example be found in [69].

5.2.2 Vector norm: some fundamental properties

All vector norms on finite dimensional vector spaces on <n are topologically

equivalent, i.e. if ‖ · ‖α and ‖ · ‖β are two norms of <n, then there exists real

positive constants, c1 and c2, such that:

c1‖−→v ‖α ≤ ‖−→v ‖β ≤ c2‖−→v ‖α (5.13)

for all −→v on <n. In particular, if −→v ∈ <n, then:

‖−→v ‖2 ≤ ‖−→v ‖1 ≤
√
n ‖−→v ‖2 (5.14)

‖−→v ‖∞ ≤ ‖−→v ‖2 ≤
√
n ‖−→v ‖∞ (5.15)

‖−→v ‖∞ ≤ ‖−→v ‖1 ≤ n ‖−→v ‖∞ (5.16)

5.2.3 Matrix norm: definitions

Matrix norms are natural extensions of vector norms to matrices. In general,

any norm on the linear space <n×n of n × n matrices with real entries will

be referred to as a matrix norm. We shall now consider matrix norms which

are induced by vector norms in a sense that will be made precise in the next

definition.
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Given any vector norm ‖ · ‖ on the space <n of n-dimensional vectors with

real entries, the subordinate (or associated) matrix norm on the space Rn×n of

n× n matrices with real entries is defined by:

‖F‖ = max−→v 6=0

‖F−→v ‖
‖−→v ‖

= max
‖−→v ‖=1

‖F−→v ‖ (5.17)

This norm is sometimes referred to as natural matrix norm, or matrix norm

induced by the vector norm ‖ · ‖. It can be shown that a subordinate matrix

norm satisfies the properties listed in the vector norm definition.

The most frequently used matrix norms in numerical linear algebra are

the p-norms, that may be defined in their most general sense by:

‖F‖p = max−→v 6=0

‖F−→v ‖p
‖−→v ‖p

(5.18)

The matrix p-norms are defined in terms of the vector p-norms already discussed

in the previous section. In particular:

− the matrix norm subordinate to the vector norm ‖ · ‖1 can be expressed,

for an n× n matrix F = (fij) ∈ <n×n, as:

‖F‖1 = max
1≤j≤n

n∑
i=1

|fij | (5.19)

The 1-norm of a matrix is its largest absolute column-sum.

− the matrix norm subordinate to the vector norm ‖ · ‖2 can be expressed,

for an n× n matrix F = (fij) ∈ <n×n, as:

‖F‖2 =
√
ρ(F ∗F ) =

√
ρ(FF ∗) = σmax(F ) (5.20)

where F ∗ is the adjoint (conjugate transpose) to the matrix F , ρ is the

spectral radius1 of the matrix (FF ∗) or (F ∗F ), and σmax(F ) is the highest

singular value of F . This matrix norm is often called the spectral norm,

because of its relation with the spectral radius of the matrix.
1Let λ1, λ2, . . . , λn be the eigenvalues of a matrix F ∈ <n×n, then its spectral radius ρ(F )

is defined by: ρ(F ) = max
i
|λi|.
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− the matrix norm subordinate to the vector norm ‖ · ‖∞ can be expressed,

for an n× n matrix F = (fij) ∈ <n×n, as:

‖F‖∞ = max
1≤i≤n

n∑
j=1

|fij | (5.21)

The ∞-norm of a matrix is its largest absolute row-sum.

The calculation of the 2-norm requires a precise evaluation of the highest sin-

gular value of the coefficient matrix (special algorithms have been developed

for that purpose, the complete singular value decomposition of the coefficient

matrix is then not necessary), and is much costlier in terms of computer time

than the 1-norm or the ∞-norm. It is important to note that all these matrix

norms are topologically equivalent. Consequently, if an estimation of the 2-norm

is sufficient, the properties expressed in section 5.2.4 may be used.

5.2.4 Matrix norms: some properties

The p-norms applied on matrices satisfy certain inequalities that are frequently

used in the analysis of matrix computations, especially for p = 1, p = 2 and

p→∞. For a matrix F ∈ <n×n, the following properties hold:

max
i,j
|fij | ≤ ‖F‖2 ≤ n max

i,j
|fij |, 1 ≤ i, j ≤ n (5.22)

1√
n
‖F‖1 ≤ ‖F‖2 ≤

√
n ‖F‖1 (5.23)

1√
n
‖F‖∞ ≤ ‖F‖2 ≤

√
n ‖F‖∞ (5.24)

‖F‖2 ≤
√
‖F‖1‖F‖∞ (5.25)

5.2.5 The condition number in a subordinate matrix norms

The condition number of a coefficient matrix F ∈ <n×n, κ(F ), is a character-

istic property that quantifies the asymptotically worst case of how much the

solution −→s of a linear system of equations F−→s =
−→
b can vary with respect to

small variations in the data vector
−→
b of the problem. This number reflects the

sensitivity of a particular solution, before the rounding effects are taken into
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account. As a general rule, if the condition number κ(F ) = 10k, then one can

expect to lose up to k digits of accuracy in solving the system of equations [70],

in addition of what would be lost due to loss of precision arising from numerical

operations (or approximative floating point numbers).

The condition number of a nonsingular coefficient matrix F ∈ <n×n is

defined by:

κ(F ) = ‖F‖.‖F−1‖ (5.26)

where ‖ · ‖ is a subordinate matrix norm. By convention, κ(F ) = ∞ if F is

singular. In general, the value of κ(F ) is strongly dependent on the choice of

the norm taken into consideration. This choice is usually denoted by introducing

an index in the notation. In the p-norm, for example, the condition number of

the matrix F is denoted by κp(F ). The condition number calculated in the

1-norm, κ1(F ), and in the ∞-norm, κ∞(F ), are blatantly evaluated by using

straightforwardly the definition 5.26. However, the condition number calculated

in the 2-norm requires more attention. It can be demonstrated [69] that, in

the case p = 2 and if F is a nonsingular coefficient matrix, κ2(F ) may be

characterized by:

κ(F ) =
σ1(F )
σn(F )

, (5.27)

where σ1(F ) is the highest singular value of the matrix F and σn(F ) is the

smallest singular value of F . This number arises very often in numerical analysis,

and is referred to as the spectral condition number of the matrix F .

Whatever the norm, the condition number κp(F ) is higher than 1, for

every matrix because:

1 = ‖FF−1‖ ≤ ‖F‖‖F−1‖ = κp(F ) (5.28)

If the condition number is exactly one, the relative accuracy of the solution is

expected to be similar to the accuracy of the source data. However, it does not

signify that the algorithm will converge rapidly to this solution, but only that it
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won’t diverge arbitrarily because of inaccuracy in the source data (provided that

the forward error introduced by the algorithm does not diverge as well because

of accumulating intermediate rounding errors). In general, matrices with a low

condition number, i.e. κp(F ) ≈ 1, are said to be well-conditioned, while matrices

with a high condition number, i.e. κp(F )� 1, are said to be ill-conditioned. It

is important to note that a low condition number does not necessarily indicate

that a solution will accurately be computed. The choice of stable resolution

algorithms is crucial at this point. Inversely, the fact of having a matrix with a

very high condition number does not automatically prevent of having excellent

and accurate solutions for particular independent term. Evidently the condition

number of a matrix is unaffected by scaling all its elements by multiplying by

a nonzero constant.

Finally, it is possible to assess the sensitivity of the solution to the linear

system of equations to changes in the independent vector. Let us start from the

following linear system of equations:

F−→s =
−→
b (5.29)

where F ∈ <n×n and
−→
b ∈ <n0 . The matrix F is assumed to be nonsingular.

Suppose now that the system 5.29 is subject to the perturbations δ−→s and

δ
−→
b ∈ <n. Both these δ-vectors contain very small elements. The perturbated

system is then defined by:

F (−→s + δ−→s ) =
−→
b + δ

−→
b (5.30)

In this situation, −→s ∈ <n0 and the following relation is respected:

‖δ−→s ‖
‖−→s ‖

≤ κ(F )
‖δ
−→
b ‖

‖
−→
b ‖

(5.31)

The proof of this relation may be found, for example, in [69]. The conclusion of

relation 5.31 is that, owing to the effect of rounding errors during the calculation,

the numerical solution to the matrix system F−→s =
−→
b will never be exact. The

numerical solution may be written as (−→s + δ−→s ), and the relative error of the
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solution vector ‖δ−→s ‖/‖−→s ‖ is bounded by the product between the relative error

in the data vector ‖δ
−→
b ‖/‖

−→
b ‖ and the condition number κ(F ). Consequently,

if the coefficient matrix F has a large condition number, the elements of δ−→s

may not be small.

In order to insure as maximum the stability of the solution, the condition

number of the coefficient matrix should be decreased as much as possible. This

can be done by using preconditioning techniques.
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6
Unfolding from the detector

response

The objective of any spectrometric measurement is to access the complete and

detailed information carried out by the radiation beam. However, since the de-

tection is performed by a radiation detector, unavoidable modifications may

considerably alter this information. These modifications are mainly due to the

finite size of the detector, and to the statistics associated to the detection pro-

cesses. Both these physical and statistical effects are included into the detector

response functions, as explained in Chapter 4. The measured spectrum is then a

modified version of the incident spectrum, and it has to be cleaned from the de-

tector influence to collect precise and correct information. In our global inverse

strategy for the X-ray source vector reconstruction, the first step of the proce-

dure aims to rebuilt the energy distribution of the incident photon beam, i.e. the

scattered vector
−→
b , starting from the measured vector −→m. This process, where

an experimental measurement is cleaned from the detector response functions,

is usually known as deconvolution - or unfolding - of the measurement.

In their most general sense, unfolding methods are a set of powerful math-

ematical algorithm-based techniques used to reverse the effects of convolution

on recorded data, and to reconstruct the detector incident spectrum starting

from a measurement. The methods are based on a detailed knowledge of the

system response functions in well known geometrical conditions. Historically, re-

sponse functions were determined experimentally by successive measurements

of monoenergetic sources [71, 72]. In the last couple of decades, with the de-
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velopment of computers (specifically the exponential increase of the processing

power), simulation codes have been enjoying a growing importance in this field.

Monte Carlo codes are today the main tool for calculating the response functions

of a detection system.

The aim of this chapter is to theoretically introduce the concept of un-

folding and to give an overview of some selected deconvolution techniques. The

convolution equation that models the detection process is first outlined, and the

discrete model used for numerical calculations is then deduced. Some common

unfolding methods are then described. First, regularization techniques are dis-

cussed in a very general way, and the Tikhonov and Truncated Singular Value

Decomposition methods are explained in details. Generally speaking, regular-

ization techniques require additional information about the expected solution,

such as restrictions for smoothness or on the vector space norm, in order to

regularize the solution vector and to prevent overfitting. The other two meth-

ods are based on a physical consideration about the physics of the problem: the

non-negativity of the expected solution spectrum. This additional criterion is

included into the system of equations to solve under the form of constraints.

6.1 The convolution equation and its discretization

A measured spectrum, recorded from any radiation detector, results from the

convolution of the incident radiation distribution with the detector response

functions. The measured differential pulse height spectrum m(H), with H the

pulse height, may be expressed as the convolution equation [73]:∫
R(H,E) b(E) dE = m(H) (6.1)

with:

− R(H,E), the detector response function;

− b(E), the unknown incident energy distribution hitting the radiation de-

tector.
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In equation 6.1, the quantity R(H,E) dH dE represents the differential prob-

ability that a quantum of energy within dE about E leads to a pulse with

amplitude dH about H, and b(E) dE is the differential number of incident pho-

tons with energy within dE about E.

Since the spectrum is recorded by means of a multi-channel analyzer

(MCA), equation 6.1 must be discretized for numerical applications. The mea-

sured differential pulse height distribution may be discretized in m pulse height

intervals:

mi =
∫ Hi

Hi−1

m(H) dH, i = 1, 2, . . . ,m (6.2)

where mi is the number of pulses recorded in the i-th interval. Similarly, the

incident energy distribution may be divided into n intervals of energy:

bj =
∫ Ej

Ej−1

b(E) dE, j = 1, 2, . . . , n (6.3)

with bj , the number of photons hitting the detector with energy included in

the interval [Ej−1, Ej ]. The detector response function R(H,E) can be approx-

imated, assuming low variations of the function in the energy interval [Ej−1, Ej ],

by a m× n matrix, denoted by Rij , whose elements are defined by:

Rij =
1

Ej − Ej−1

∫ Hi

Hi−1

∫ Ej

Ej−1

R(H,E) dE dH, (6.4)

with i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The quantity Rij , defined by equation

6.4, represents the probability that a pulse in the i-th pulse height interval

will be recorded when a photon in the j-th energy interval penetrates into the

detector.

Considering the discretization of the different quantities expressed by equa-

tions 6.2, 6.3 and 6.4, the integral equation 6.1 may equivalently be expressed

by the following expression:

n∑
j=1

Rijbj = mi, i = 1, 2, . . . ,m (6.5)
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The discrete equation 6.5 may also be rewritten in terms of a matrix equation:

R
−→
b = −→m, R ∈ <m×n (6.6)

with:

− R, the discretized response matrix of the detector;

−
−→
b = (b1, b2, . . . , bn)T , the incident photon energy distribution to the de-

tector (the incident vector);

− −→m = (m1,m2, . . . ,mm)T , the measured pulse height distribution (the

measured vector).

Equation 6.6 models the convolution process arising from the detection of an

incident energy distribution
−→
b with any radiation detector, using a MCA. Start-

ing with a real measurement −→m, it forms the system of equations to solve in the

first step of the inverse procedure.

Equation 6.6 however only represents an ideal model for the evaluation

of the incident energy distribution,
−→
b . Indeed, it does not consider the experi-

mental uncertainties associated to each energy bin of the measurement. From a

practical point of view, it is nearly impossible to have an access to exact data:

all measured quantities are a corrupted version of the quantities to be mea-

sured. The difference between the true and the measured quantities constitutes

the noise, ε. Equation 6.6 must then be completed, for a real measurement, by

adding this quantity:

−→m +−→ε =
;
m = R

−→
b , R ∈ <m×n (6.7)

where −→ε = (ε1, ε2, . . . , εm)T is an unknown fluctuating vector. The most at-

tracting and intuitive way for solving equation 6.7 consists in the direct inversion

of the discretized response matrix, R. Under certain mathematical conditions

of nonsingularity, the solution to equation 6.7 may be given by:

−→
b = R−1(−→m +−→ε ) (6.8)
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Due to the high-frequency components of the detector response functions, the

reconstruction of the scattered vector by direct inversion of the discretized re-

sponse matrix R is very often excessively poor. In most cases, the reconstructed

energy distribution does not fit the data in a reasonable way and the physical in-

formation of the reconstructed spectrum is totally drown into large oscillations.

In addition, this inversion method is out of sense in the framework of numerical

analysis, because it implies very heavy numerical calculations. In order to single

out a significant physical solution, it is then required to resort to more robust

methodologies.

6.2 Regularization techniques: general introduction

Discrete ill-posed problems form a complex class of problems owing to the mul-

tiplicity of small singular values of the coefficient matrix. As already discussed

in section 5.1, this situation leads to extremely oscillating (and improbable) so-

lutions. In order to stabilize the problem and to obtain a useful and significant

physical solution, the point of view adopted in regularization techniques is to

incorporate additional information to the underlying least square problem un-

der the form of a penalty for complexity, such as restriction for smoothness on

the vector space norm for example. A theoretical justification for regularization

is that it attempts to impose Ockham’s razor principle1 on the solution.

Let us consider the convolution problem expressed by equation 6.7, and

let us assume that the response function matrix R and the measured spectrum
−→m +−→ε are known. In the least-squares sense, the best approximate solution to

this problem is given by the minimization of the following quantity:

−→
Λ =

∥∥∥∥R−→b̂ − (−→m +−→ε )
∥∥∥∥

2

, R ∈ <m×n (6.9)

where
−→
Λ is the residual vector norm, i.e. the vector containing the differences

1The Ockham’s razor principle is a general rule recommending that, from among a large

set of competing hypothesis, selecting the one that makes the fewest new assumptions usually

provides the correct one.
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between the measured data (−→m + −→ε ) and our best estimate model of the re-

constructed spectrum
−→
b̂ , and where ‖ · ‖2 is the matrix 2-norm (the so-called

Euclidian norm).

Many types of additional information about the expected solution are

possible. However, the dominating and most efficient approach in discrete ill-

posed problems regularization is to require that the 2-norm (or an appropriate

norm) of the solution be small. The subsequent constraint, often called the

side constraint and denoted by Ω, may also include an initial estimate
−→
b ∗ of

the solution, for example. In this situation, the side constraint involves the

minimization of the quantity:

Ω(
−→
b̂ ) =

∥∥∥∥L(
−→
b̂ −
−→
b ∗)
∥∥∥∥

2

(6.10)

The matrix L used in equation 6.10 is typically either the identity matrix In or

a p × n discrete approximation of the (n − p)-th derivative operator, in which

case L is a banded matrix with full row rank. By means of this side constraint,

the smoothness of the regularized solution may be controlled.

As soon as the side constraint Ω(
−→
b̂ ) is introduced in the problem, the

requirement that R
−→
b is equal to −→m + −→ε (cf. equation 6.7) must obviously

be given up, and replaced by an appropriate balance between minimizing the

constraint Ω(
−→
b̂ ) and minimizing the residual norm

−→
Λ . The underlying idea

is that a regularized solution with a small least-square norm and a suitably

small residual norm is not too far from the exact, unknown and unaccessible

solution to the unperturbed problem that models the physical situation. The

initial problem is then replaced by a second one, containing sufficient additional

information to obtain an accurate approximate solution.

Many regularization methods have been developed in the past. Each of

them has properties that makes it better suited to certain problems or certain

computers. In the following subsections, two common and successful regulariza-

tion techniques are outlined.
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6.2.1 The Tikhonov regularization method

The Tikhonov method [74, 75] is perhaps the most commonly used regulariza-

tion technique for solving ill-posed problems, and is a typical application of the

matrix regularization principles. In this method, the best approximate solution
−→
b̂ Γ results from of a weighted combination between the side constraint Ω(

−→
b̂ )

and the residual norm
−→
Λ using a factor Γ2, i.e.:

−→
b̂ Γ = argmin

{∥∥∥∥R−→b̂ − (−→m +−→ε )
∥∥∥∥

2

+ Γ2

∥∥∥∥L(
−→
b̂ −
−→
b ∗)
∥∥∥∥

2

}
(6.11)

where Γ is the so-called regularization parameter. This parameter controls the

weight given to the minimization of the side constraint Ω(
−→
b̂ ) relative to the

minimization of the residual norm
−→
Λ . If the regularization parameter is large,

a small solution norm is favored at the cost of a large residual norm: the level

of oscillations in the solution is low, but the data are not very much taken into

consideration. On the other hand, a small Γ, i.e. a small amount of regulariza-

tion, has the opposite effect: the solution is less regularized and more sensitive

to oscillations, but the importance given to the initial data is high. Obviously,

if the regularization parameter is set to zero, the problem is reduced to the

simple least-square case considered earlier, keeping its extreme sensitivity to

random fluctuations affecting the measurement. The parameter Γ also controls

the sensitivity of the regularized solution
−→
b̂ Γ to eventual perturbations in the

discretized matrix R. It can be demonstrated that the perturbation bound is

proportional to Γ−1 [65, 76].

6.2.2 Truncated singular value decomposition, TSVD

The truncated singular value decomposition (TSVD) [77, 78, 79] is based on

a simple observation: for the larger singular values of the coefficient matrix R,

the components of the reconstruction along the corresponding singular vector

are well-determined by the data. This is not the case for the smaller singular

values, where the reconstruction components are very oscillatory, causing large

perturbations in the solution vector. In the TSVD regularization method, the

part of the Σ matrix containing the smaller singular values is then discarded.
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Since the singular values are ordered decreasingly in the Σ matrix, the pro-

cess of removing the smallest ones is straightforward: it can be done by simple

truncation.

The underlying idea in the treatment of the ill-conditioning by the TSVD

method is to circumvent the problem by deriving a new problem with a well-

conditioned rank deficient coefficient matrix. A fundamental result about de-

ficient matrices, which can be obtained from the singular value decomposition

of R, is that the closest rank-k approximation Rk to R measured in the 2-

norm, is obtained by truncating the SVD expansion at k. Therefore, an integer

k ≤ n is chosen for which the singular values are deemed to be significant. The

regularized matrix Rk is then given by:

Rk =
k∑
i=1

−→u iσi−→v Ti , k ≤ n (6.12)

The truncated SVD regularization method is based on this observation, in that

ones solves the problem of minimizing the 2-norm of the best estimate model

of the reconstructed spectrum
−→
b̂ subject to minimizing the residual vector of

the underlying least-square problem given by:

−→
Λ k =

∥∥∥∥Rk−→b̂ − (−→m +−→ε )
∥∥∥∥

2

(6.13)

From expression 6.12, the Moore-Penrose pseudo-inverse matrix may be de-

rived:

R+
k =

k∑
i=1

−→v i−→u Ti
σi

, k ≤ n (6.14)

Using the Moore-Penrose inverse matrix, the solution to the regularized

problem
−→
b̂ may be found by:

−→
b̂ k = R+

k
−→m (6.15)

or, in an explicit formulation:

−→
b̂ k =

k∑
i=1

−→u Ti
−→m

σi

−→v i (6.16)

The vector
−→
b̂ is the best approximate solution to equation 6.7.
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6.2.3 Selection of the truncation order

A very convenient graphical tool for analysis of discrete ill-posed problems is

the so-called L-curve. For any valid regularization parameter, this curve is a

plot of the regularized solution norm versus the corresponding residual norm.

In this way, the L-curve displays the balance between the minimization of these

quantities, which is the crucial point of the regularization approach. The use of

such plots in connection with ill-posed problems goes back to Miller [80] and

Lawson & Hanson [81].

For discrete ill-posed problems, it turns out that the L-curve, when plotted

in a logarithmic scale, almost always has a characteristic L-shaped appearance,

with a distinct corner separating the vertical and the horizontal parts of the

curve. The vertical part of the L-curve corresponds to solutions where the norm

of the regularized solution is very sensitive to changes in the regularization

parameter, and the horizontal one to solutions where it is the residual norm

that is most sensitive to the regularization parameter.

The L-curve is a continuous curve when the regularization parameter is

continuous, as it is the case in Tikhonov regularization. For regularization

methods with a discrete regularization parameter, such as the TSVD method,

the L-curve is plotted as a finite set of points. The method to transform such a

discrete L-curve in a continuous form is discussed in [82].

There is always an optimal regularization parameter that trades off the

perturbation error and the regularization error in the regularized solution. An

essential feature of the L-curve is that this optimal regularization parameter -

defined in the above sense - is not far from the regularization parameter that

corresponds to the L-curve’s corner [83]. In other words, by locating the corner

of the L-curve it is possible to obtain a good approximation of the optimal

regularization parameter and thus, in turn, to compute a regularized solution

presenting a good compromise between the two types of error.
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6.3 Non-linear least square method

Linear least-square methods (and associated techniques) are recommended for

use when good prior information and consistent measurements are available

[84]. However, the main disadvantage of these methods is that the solution

spectra may be physically inconsistent since negative fluence values may not be

excluded. In order to introduce the condition of non-negative fluence, an algo-

rithm first developed in the SandII code [85] and re-used later in the Gravel

code [86] can be applied. In this case, instead of determining the particle fluence,

its natural logarithm is calculated by a special iteration procedure minimizing

a chi-square function.

In the Gravel code, the set of admissible spectra is defined using two

restrictions. The first one expresses the link between the measured and the

unknown quantities, i.e. between the measured vector (−→m+−→ε ) and the incident

energy distribution to the detector
−→
b . This relation is given by the convolution

equation 6.7, that may equivalently be written under the following form, using

an element-based notation:

mi + εi =
n∑
j=1

Rij exp [ln bj ], R ∈ <m×n (6.17)

The mathematical trick in the right-hand side of equation 6.17 ensures the non-

negativity of the incident vector values, bj . The second restriction is defined by a

chi-square expression, in which the logarithms of the pulse height spectrum val-

ues mi are used with a diagonal relative covariance matrix. Using equation 6.17

for expressing the unknown errors εi, the chi-square criterion may be defined

by:

χ2 =
m∑
i=1

ε2
i

ρ2
i

=
m∑
i=1

mi −
n∑
j=1

Rij exp [ln bj ]

2

ρ2
i

(6.18)

where χ2 is familiar chi-square statistic criterion, and the ρi are the relative

standard deviations [86].
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The set of equations to minimize has then form:

m̃i =
n∑
j=1

Rij exp [ln bj ], R ∈ <m×n

χ2 =
m∑
i=1

mi −
n∑
j=1

Rij exp [ln bj ]

2

ρ2
i

(6.19)

Assuming that there exists a solution ln b(1)
j already known in the vicinity of

the exact solution, ln m̃i can be expanded into a Taylor series truncated after

the second term of the development:

ln m̃i = ln m̃(1)
i +

n∑
j=1

w
(1)
ij

(
ln bj − ln b(1)

j

)
(6.20)

where:

m̃
(1)
i =

n∑
j=1

Rij exp
[
ln b(1)

j

]
(6.21)

and:

w
(1)
ij =

Rij exp
[
ln b(1)

j

]
m̃

(1)
i

(6.22)

An optimal solution to the system of equations can be obtained by minimizing

the chi-square value thanks to a special iteration procedure [87]. In each iteration

step, the current solution (k+ 1) is obtained from the previous solution (k) via

an iteration algorithm given in first order by [88]:

b
(k+1)
j = b

(k)
j exp



n∑
j=1

w
(1)
ij ln

mi/

n∑
j′=1

Rij′b
(k)
j′


n∑
j=1

w
(1)
ij

 (6.23)

with j′, a summation index. For the iteration procedure, a first input spectrum

(default spectrum) is required when the iterations are started. This default

spectrum is modified during the iterations according to the different constraints
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imposed to the system of equations. Given a non-negative default spectrum, this

iterative procedure always leads to non-negative solution spectrum which tends

to have a lower χ2.

The Gravel code makes part of the Hepro [89] / Heprow [90] pro-

gram systems and is currently distributed by the Physikalisch-Technische

Bundesanstalt (PTB), Braunschweig, Germany.

6.4 The maximum entropy method

In Bayesian probability theory, the principle of maximum entropy is a general-

purpose axiom for determining positive and additive distributions starting from

defined but incomplete constraints or information. It states that, subject to

precisely stated a priori data expressing testable information, the probability

distribution which best represents the current state of knowledge is the one with

largest information theoretical entropy S. In this context, a priori information

are not only limited to measured data and to their experimental uncertainties,

but may also for example include correlations between variables, physical and

mathematical constraints or physically meaningful features of the distribution

[91]. In our case, the positive and additive distribution to be determined is the

differential incident photon fluence, and the constraints are the measurements

and their experimental uncertainties. The only available a priori information is

the nonnegativity of the a posteriori distribution.

In this framework, the term entropy usually refers to the Shannon en-

tropy, a mathematical function that intuitively quantify the amount of infor-

mation contained in a data source.

6.4.1 The Shannon and the cross entropy

Let us consider the discrete random variable X with n possible outcomes x =

{x1, x2, . . . , xn} with probabilities p = {p1, p2, . . . , pn} such that pi ≥ 0 for
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i = 1, 2, . . . , n giving partial information on the variable X. The quantity:

Ii = ln
(

1
pi

)
(6.24)

may be defined as the quantity of information Ii gained by each event xi of

the variable X. The logarithm is used to provide the additivity feature for

independent uncertainties.

The entropy in the sense of Shannon of a discrete random process is

defined as [92]:

S(p) =
n∑
i=1

pi ln
(

1
pi

)
= −

n∑
i=1

pi ln pi (6.25)

This entropy may be seen as the measure of the uncertainty expressed in the

distribution p = {p1, p2, . . . , pn}. The Shannon entropy concept may be gen-

eralized by defining the logarithmic term as the information gain on an a priori

probability qi offered by the knowledge of the probability pi given by the real-

ization of an event xi. It is then possible to define the quantity:

SCE = −
n∑
i=1

pi ln
(
pi
qi

)
(6.26)

as the cross-entropy of the probability distribution p = {p1, p2, . . . , pn} with re-

spect to the a priori distribution q = {q1, q2, . . . , qn}. The cross entropy satisfies

the condition SCE ≤ 0, and it equals to zero only if q(x) = p(x).

In the original derivation by E. Jaynes [93, 94], the use of the maximum

entropy principle is justified on the basis of the cross-entropy’s unique properties

as uncertainty measure. Arguments originating in information theory show that

the magnitude |SCE | of the cross entropy, as a generalization of the Shannon

entropy, is the appropriate measure of the amount of information necessary

to change p(x), which by assumption contains all the a priori information,

into q(x) [95]. It seems therefore reasonable to use |SCE | as a measure of how

much q(x) differs from p(x). From among all the spectra that fit the data, the

maximum entropy method chooses the one for which |SCE | is a minimum, and,
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therefore, the one that is closest to the default spectrum. Under this form, the

maximum entropy principle gives a selection rule for a particular solution. In

our case:

− the solution p(x) to be determined is the photon fluence;

− the constraints are the measures and the associated experimental uncer-

tainties.

The maximum entropy principle argue that, among the possible set of solutions,

the best solution is the one having both the maximum entropy, and being as

few compromising as possible compared to all the other unknown information.

6.4.2 The MAXED algorithm

The set of admissible spectra is defined using two restrictions. The first one ex-

presses the link between the measured and the unknown quantities, i.e. between

the measured vector −→m and the incident vector
−→
b . This relation is defined by

the following element-based equation:

mi + εi =
n∑
j=1

Rij bj , i = 1, 2, . . . ,m (6.27)

with Rij ∈ <m×n, the discretized response matrix. The second restriction takes

into account the (unknown) experimental errors εi in each bin i of the measured

vector, and assumes a normal distribution of probability with zero mean and

variance σ2
i :

χ2 =
m∑
i=1

ε2
i

σ2
i

, i = 1, 2, . . . ,m (6.28)

where χ2 stand for the familiar chi-square statistic. From this set of admissible

spectra, it is supposed that the best estimate of the incident vector
−→
b is the one

maximizing the entropy S of the distribution. The entropy of the distribution

is considered in a general form of the cross-entropy, given by Skilling [96]:

SCE = −
n∑
j=1

[
bj ln

(
bj

b
(0)
j

)
+ b

(0)
j − bj

]
(6.29)
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where b(0)
j is the discretized default spectrum. It contains all the a priori in-

formation available. Therefore, any deviations from the default spectrum that

results from the deconvolution should be driven by the new information pro-

vided by the measurements, otherwise we would be introducing structure that

neither agrees with our a priori information nor is justified by the measure-

ments. In other words, the aim is to take the default spectrum, and to change

it into a spectrum that fits the data but remains ’as close as possible’ to the

default spectrum [97, 98]. The cross-entropy function 6.29 satisfies SCE ≤ 0,

and the particular case SCE = 0 arises only if bj = b
(0)
j . The unfolding problem

can then be reduced in searching the solution to the system composed by equa-

tion 6.27 and 6.28, under constraint of maximizing the cross-entropy function

defined by equation 6.29. The solution to this optimization problem is found by

using the Lagrange multipliers method.

The MAXED algorithm explained in the following is a modified form of

the one presented by Wilczek and Drapatz [99]. The Lagrange function

associated with the optimization problem is of the form:

L (bj , εi, λi, µ) =−
n∑
j=1

[
bj ln

(
bj

b
(0)
j

)
+ b

(0)
j − bj

]

−
m∑
i=1

λi

 n∑
j=1

Rijbj −mi − εi


− µ

[
m∑
i=1

(
ε2
i

σ2
i

)
− χ2

]
(6.30)

where λi and µ are the Lagrange multipliers. Variation with respect to bj , εi

lead to the following set of (n+m) equations:

∂L

∂bj
= 0 =⇒ − ln

(
bj

b
(0)
j

)
−

m∑
i=1

λiRij = 0 j = 1, 2, . . . , n (6.31)

∂L

∂εi
= 0 =⇒ λi − 2µ

εi
σ2
i

= 0, i = 1, 2, . . . ,m (6.32)
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Equations 6.28, 6.31 and 6.32 are solved for the variables bj , the εi and µ in

terms of the λi:

bj = b
(0)
j exp

(
−

m∑
i=1

λiRij

)
, j = 1, 2, . . . , n (6.33)

εi =
λi σ

2
i

2µ
, i = 1, 2, . . . ,m (6.34)

µ =

√√√√√√
m∑
i=1

λ2
i σ

2
i

4χ2
(6.35)

Using equations 6.33 to 6.35, the m equations 6.27 may be rewritten as:

mi + λi σ
2
i

√
χ2∑n

j=1 λ
2
j σ

2
j

−
n∑
j=1

Rijb
(0)
j exp

(
−

m∑
l=1

λlRlj

)
= 0 (6.36)

The initial optimization problem has then been reduced to a system of m equa-

tions with m unknowns λ1, λ2, . . . , λm. The resolution of the system 6.36 is

equivalent to the maximization of the following potential function Z:

Z = −
n∑
j=1

b
(0)
j exp

[
−

m∑
i=1

λiRij

]
−

√√√√χ2

m∑
i=1

λ2
i σ

2
i −

m∑
i=1

mi λi (6.37)

with respect to the λi. Therefore, we can reformulate the problem in terms of

the maximization of Z. In Maxed, the potential function 6.37 is maximized

using an optimization subroutine based on the L-BFGS-B algorithm (version

2.3) [100, 101], a quasi-Newton code for solving large nonlinear optimization

problems that uses a limited memory variation of the Broyden-Fletcher-

Goldfarb-Shanno method. The L-BFGS-B algorithm is particularly suited

to problems with very large numbers of variables (often greater than 1000).

The Maxed code makes part of the UMG 3.3 package [88, 102] program

systems and is currently distributed by the Physikalisch-Technische Bun-

desanstalt (PTB), Braunschweig, Germany.
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7
Inverse scattering in the

spectrometer

During the first step of the inverse procedure, the measured spectrum −→m is

cleaned from the detector influence using the different methods discussed in the

previous chapter. The result of the unfolding procedure is the energy distribu-

tion hitting the detector.

The second stage of the inverse strategy is to compute the inverse of the

photon scattering on the target. Starting from the scattered vector representing

the photon flux just after the scattering of the primary beam, the aim is to

recover the initial X-ray source spectrum.

The forward discretized photon scattering on the spectrometer target can

be expressed as a general matrix equation:

F−→s =
−→
b , (7.1)

where:

− F ∈ <n×n is the discretized forward scattering matrix;

− −→s = (s1, s2, . . . , sn)T is the photon pulse height distribution emitted from

the source (the unknown source vector);

−
−→
b = (b1, b2, . . . , bn)T is the photon distribution after scattering on the

target (the scattered vector).

74
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It is assumed that all the scattered photons reach the detector without loss dur-

ing their transport in the spectrometer. Then, the vector
−→
b = (b1, b2, . . . , bn)T

also represents the photon flux arriving at the detector.

In some physical situations, the direct scattering system may be extremely

ill-conditioned, and the algebraic system can not necessarily be solved directly.

The stability problems arising with such types of algebraic systems may again be

studied by having recourse to the singular value decomposition of the coefficient

matrix and by its condition number. This number quantifies the asymptotically

worst case of how much the solution to the linear system of equations can

vary with respect to small variations in the source data of the problem. Since

the stability of a particular solution to successive numerical operations is not

obvious, more robust methodologies may be required to obtain a significant and

accurate physical solution to the scattering problem.

In the case expressed by equation 7.1, unfolding methods like regulariza-

tion techniques may be used. However, it can be shown that, in our case, no

acceptable solutions are obtained using the unfolding methods explained in the

previous chapter.

In the next sections of this chapter, some methods adapted to the par-

ticular structure of the scattering matrix are theoretically described. All these

methods will be applied in the next chapter, where their performances for the

spectrum reconstruction will be evaluated. Since the ill-conditioning of the ma-

trix may be a strong limitation into the achievement of a stable and accurate

solution to the scattering problem, it could be mathematically interesting to

transform the system in a form that is more adapted to numerical calculations.

This operation is referred to as preconditioning of the matrix system. In the

following, the two main system preconditioning ways will also be explained.
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7.1 Computation of the forward matrix

The deterministic code FPCShape has been used to compute the discrete for-

ward scattering matrix F of equation 7.1. This code is a modern powered ver-

sion of the Shape code, developed at the Laboratory of Montecuccolino

(University of Bologna), for computing the deterministic solution of the

Boltzmann transport equation. More information about the code are supplied

in [103]. Two specific scatterers (carbon and aluminium) of finite thickness have

been considered, with the following approximations:

− both Rayleigh and Compton scattering in the solid target have been

considered up to the first order of collision. This assumption can be jus-

tified by considering the very thin target used in the spectrometer;

− the model includes the form factors for Rayleigh scattering and the scat-

tering function for the Compton scattering. For Compton scattering,

the Doppler broadening of the Compton profile has not been consid-

ered;

− A Dirac-δ interaction model has been considered for both Rayleigh and

Compton scatterings, allowing their corresponding scattering intensities

to be stored in only one bin of the matrix.

The problem has been solved in the wavelength regime, using a constant bin

width. The choice of this bin width is fundamental in order to completely isolate

the Rayleigh contribution from the Compton one, in the main and in a

secondary diagonal of the forward matrix respectively. In these conditions the

problem becomes more easily solvable, thanks to the particular structure of the

scattering matrix (the matrix is said to be well-structured). If required, the final

result of the calculation can be converted again to the energy regime at the end

of the whole inverse procedure.

Denoting by i the index of the row and by j the index of the column,

a diagonal matrix R containing the terms of Rayleigh scattering has been
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defined as:

R(i,j) =

 ri,j if i = j

0 if i 6= j
(7.2)

and a single minor diagonal matrix C, containing the Compton scattering

contributions:

C(i,j) =

 ci,j if i = j + δ

0 if i 6= j + δ
(7.3)

where δ is a strictly positive integer defining the Compton shift in units of the

wavelength discretization interval. The forward scattering matrix, F , is defined

by the sum of the R and C matrices:

F = R+ C (7.4)

Under these computation conditions, the forward scattering matrix F has the

following properties:

− it is a square sparse matrix;

− the main diagonal only contains the Rayleigh contributions;

− the terms corresponding to the Compton scattering are placed in an

lower diagonal, that is not directly adjacent to the main diagonal (the

position of the minor diagonal depends on the wavelength discretization

and, specifically, on the δ value);

− except for these 2 diagonals, all the other matrix elements are null.

The forward matrix obtained by the specific wavelength discretization has then

a very simple structure: it is a positive semi-definite square matrix, whose ele-

ments are concentrated on the main diagonal and on a secondary lower diagonal.

7.2 Direct numerical methods for the resolution of

linear systems

Direct numerical methods form a first class of efficient methods for solving linear

systems of equations. A particularity of direct methods is that they compute
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the solution to a linear system of equations in a finite number of steps, entirely

determined by the size of the coefficient matrix. These methods would give

the precise answer if they were performed in infinite precision arithmetic. In

practice, however, this situation is very theoretical, because finite precision is

used for the computation. Consequently, assuming numerical stability of the

algorithm, the resulting vector is an approximation of the true solution.

Different direct numerical methods will be used in the next chapters to

solve the inverse scattering problem, in particular:

− the substitution and the bidiagonal elimination techniques;

− the Gauss elimination technique, with / without partial pivoting;

− the LU factorization;

− the Cholesky decomposition.

Since these methods are well-known, they are not described in this part of the

document. The reader interested in some details about these methods is invited

to read the Appendix A.

7.3 Iterative numerical methods for the resolution of

linear systems

In contrast to direct methods, iterative techniques are not expected to terminate

within a defined number of steps. Theoretically, iterative methods may require

an infinite number of iterations to converge to the solution to a linear system

of equations. The basic underlying ideas developed in iterative methods is to

form a convergent sequence of vectors −→s (k) such that:

−→s = lim
k→∞
−→s (k) (7.5)

where −→s is the solution to the matrix system of equations. Practically, start-

ing from an initial estimation −→s (0) of the solution, successive approximations
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converging to the exact solution are formed. A convergence test is often speci-

fied in order to decide when a sufficiently accurate estimate of the solution has

been found. This convergence test may take different forms. The most common

consists in the comparison between the norm of the difference between two suc-

cessive estimations of the reconstructed vector −→s (at iterations k and (k + 1))

and a user-defined fixed stability tolerance ε. The stopping condition may then

take a form such as:

‖−→s (k+1) −−→s (k)‖ < ε (7.6)

with ‖ · ‖, a given norm. The stopping condition is evaluated after each step of

the iteration procedure. Denoting the error at the k-th iteration as:

−→e (k) = −→s (k) −−→s (7.7)

the condition given in 7.5 amounts to lim
k→∞
−→e (k) = 0 for each starting vector

−→s (0).

The convergence of iterative algorithms is a crucial aspect of these meth-

ods. Let us consider the matrix system F−→s =
−→
b and its associated iterative

method of the general following form:

−→s (k+1) = B−→s (k) +
−→
f , k ≥ 0 (7.8)

with a given initial estimate −→s (0) of the solution. The matrix B is a square n×n

matrix usually referred to as iteration matrix, and
−→
f a vector that depends on

the independent term
−→
b . An iterative method of the form 7.8 is said to be

consistent with 7.1 if B and
−→
f are such that −→s = B−→s +

−→
f , −→s being the

solution to the matrix system 7.1, or equivalently if B and
−→
f satisfy:

−→
f = (I −B)F−1−→b (7.9)

This single property of consistency does not suffice to ensure the convergence

of an iterative method. However, if the method 7.8 is consistent, it can be

demonstrated (see, for example, [104] for a formal demonstration) that the
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vector sequence {−→s (k)} obtained from 7.8 converges on the solution to the

matrix system 7.1 for each starting vector −→s (0) if and only if ρ(B) < 1.

A general technique for defining a consistent linear iterative methods is

based on the decomposition (or splitting) of the coefficient matrix F under the

form F = P − N , where P is a nonsingular matrix. Given a starting solution
−→s (0), the k-th solution −→s (k) for k ≥ 1 is obtained by solving:

P−→s (k+1) = N−→s (k) +
−→
b , k ≥ 0 (7.10)

The iteration matrix of the method 7.10 is B = P−1N , et
−→
f = P−1−→s . Equation

7.10 may also be written under the form:

−→s (k+1) = −→s (k) + P−1−→r (k) (7.11)

where:

−→r (k) =
−→
b − F−→s (k) (7.12)

is the residual at iteration k. Equation 7.11 shows the structure of the system

to be solved for each iteration. In addition to be nonsingular, P should be easy

to inverse in order minimize the calculation costs. Note that if P is equal to

F and N = 0, the method defined by 7.11 converges in one iteration with the

same computer cost than any direct method.

The method defined by equation 7.11 is guaranteed to converge if the

spectral radius, i.e. the supremum among the absolute values of the elements

in its spectrum, of the iteration matrix B is less than 1, i.e. if:

ρ(B) < 1 (7.13)

In addition, the convergence is monotone. The demonstrations of these prop-

erties may be found in [104]. This property of convergence will be detailed for

the different methods considered in the following.

The arithmetic cost of iterative methods on full matrices is of the order of

n2 floating point operations at each step. Most direct methods require a total of
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2n3/3 floating point operations. Iterative methods may then be time efficient for

solving large systems of equations only if they converge in a number of iterations

that is independent of n, or increasing under-linearly with n. For large sparse

matrices, general direct methods usually turn out to have a high computational

cost because of the fill-in, and iterative methods offer an interesting alternative.

Finally, the main advantage of iterative methods is that, due to their

intrinsic nature, they are very well adapted to support round-off errors.

7.3.1 The Jacobi method

The Jacobi iterative algorithm is a method for determining the solutions of

a linear system of equations, and is well adapted for matrices having absolute

values in each row and column dominated by the diagonal elements.

Let us define a square system of linear equations with unknown −→s :

F−→s =
−→
b , F ∈ <n×n (7.14)

where:

F =


f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn

 ,
−→s =


s1

s2

...

sn

 ,
−→
b =


b1

b2
...

bn

 (7.15)

The coefficient matrix F may be decomposed into a diagonal coefficient matrix

D, and a remainder R. The decomposition of F may be defined by:

F = D +R (7.16)

with:

D =


f11 0 · · · 0

0 f22 · · · 0
...

...
. . .

...

0 0 · · · fnn

 , and R =


0 f12 · · · f1n

f21 0 · · · f2n

...
...

. . .
...

fn1 fn2 · · · 0
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Using the decomposition expressed by equation 7.16, the system of equations

7.14 may be rewritten in the following form:

(D +R)−→s =
−→
b (7.17)

and consequently:

−→s = D−1
(−→
b −R−→s

)
(7.18)

The matrix BJ = D−1R is the iteration matrix of the Jacobi method. The

iterative formulation of equation 7.18 may then be written in the following

form:

−→s (k+1) = D−1
(−→
b −R−→s (k)

)
(7.19)

and the corresponding element-based formula is given by:

s
(k+1)
i =

1
fii

bi − n∑
j=1
j 6=i

fij s
(k)
j

 , i = 1, 2, . . . , n (7.20)

For the Jacobi method, the standard convergence condition may be ex-

pressed by:

ρ(D−1R) < 1 (7.21)

Consequently, the Jacobi method is guaranteed to converge if the matrix F

is strictly diagonally dominant. Strict row diagonal dominance means that, for

each row, the absolute value of the diagonal term is greater than the sum of

absolute values of other terms, i.e.:

‖fii‖ >
n∑
j=1
j 6=i

‖fij‖, i = 1, 2, . . . , n (7.22)

Considering this relation, we may write:

‖BJ‖∞ = max
i=1,2,...,n

n∑
j=1
j 6=i

‖fij
fii
‖ < 1 (7.23)

proving the convergence condition. However, the Jacobi method may converge

even if these conditions are not fully satisfied.
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7.3.2 The Gauss-Seidel method

The Gauss-Seidel method, also known as Liebmann method, is similar to

the Jacobi method but takes advantage of the matrix decomposition to con-

tinuously give an update of the current solution. The coefficient matrix F of the

linear system is again subdivided into two components. The first is a lower tri-

angular component L, and the second is a strictly upper triangular component

U . The matrix F may then be written as:

F = L+ U (7.24)

where:

L =


f11 0 · · · 0

f21 f22 · · · 0
...

...
. . .

...

fn1 fn2 · · · fnn

 , and U =


0 f12 · · · f1n

0 0 · · · f2n

...
...

. . .
...

0 0 · · · 0


The system of equations may be rewritten as:

−→s = L−1
(−→
b − U−→s

)
(7.25)

or, in iterative formulation:

−→s (k+1) = L−1
(−→
b − U−→s (k)

)
(7.26)

The matrix BGS = L−1U is the iteration matrix. By taking advantage of

the triangular form of L, the elements of −→s (k+1) can be computed sequen-

tially using forward substitution. This operation gives an update to the cur-

rent solution, speeding up the convergence compared with the Jacobi method.

Practically, when computing the i-th element −→s (k+1)
i , the first k-th elements

−→s (k+1)
1 ,−→s (k+1)

2 , . . . ,−→s (k+1)
i−1 are already known, and presumably more precise

than −→s (k)
1 ,−→s (k)

2 , . . . ,−→s (k)
i−1. The corresponding element-based formula is given

by:

s
(k+1)
i =

1
fii

bi − n∑
j=i+1

fijs
(k)
j −

i−1∑
j=1

fijs
(k+1)
j

 , i = 1, 2, . . . , n (7.27)
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The Gauss-Seidel method converges for any starting vector if:

ρ
(
L−1U

)
< 1 (7.28)

The procedure is guaranteed to converge for strictly diagonally dominant ma-

trices as well as for symmetric positive definite coefficient matrices. If the coef-

ficient matrix F of the system to solve is positive definite, the method is in ad-

dition known to converge monotonically. Of course, the Gauss-Seidel method

sometimes converges even if these conditions are not completely satisfied.

7.3.3 The method of successive over-relaxation

The successive overrelaxation (SOR) iterative algorithm is a variant of the

Gauss-Seidel method for solving linear system of equations, resulting in pos-

sible faster convergence. The method is basically devised by applying extrap-

olation to the Gauss-Seidel method. This extrapolation takes the form of a

weighting factor. Starting with a square system of linear equations F−→s =
−→
b

with F ∈ <n×n, the coefficient matrix F may be decomposed into a diagonal

matrix D, a strictly upper triangular matrices U and a strictly lower triangular

matrix L. The matrix F may then be defined by:

F = D + L+ U (7.29)

where:

D =


f11 0 · · · 0

0 f22 · · · 0
...

...
. . .

...

0 0 · · · fnn

 , L =


0 0 · · · 0

f21 0 · · · 0
...

...
. . .

...

fn1 fn2 · · · 0


and

U =


0 f12 · · · f1n

0 0 · · · f2n

...
...

. . .
...

0 0 · · · 0
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The system of linear equations may be rewritten as:

ω (D + L+ U)−→s = ω
−→
b (7.30)

where ω is a constant called the relaxation parameter. By developing equation

7.30, the system becomes:

(D + ω L)−→s = ω
−→
b − [ω U + (ω − 1)D]−→s (7.31)

The method of successive over-relaxation solves the left-hand side of expression

7.31 for −→s , using previous value for −→s on the right-hand side. Analytically, the

iterative equation is defined by:

−→s (k+1) = (D + ω L)−1(ω
−→
b − [ω U + (ω − 1)D]−→s (k)) (7.32)

By taking advantage of the triangular form of (D+ωL), the elements of −→s (k+1)

can be computed sequentially using forward substitution with the following

element-based expression:

s
(k+1)
i = (1− ω) s(k)

i +
ω

fii

bi − n∑
j=1

fijs
(k+1)
j −

n∑
j=i+1

fij s
(k)
j

 (7.33)

for i = 1, 2, . . . , n. The method is perfectly consistent for ω 6= 0, and corresponds

to the Gauss-Seidel method if ω = 1. Though technically the term underre-

laxation should be used when ω ∈]0, 1[, for convenience the term overrelaxation

is commonly used for every value of the relaxation parameter.

The choice of the relaxation parameter ω significantly affect the rate at

which the method converges. However, the question of the choice of an optimal

parameter ωopt (i.e. for which the convergence rate is the highest) is still open:

except for some very specific cases (see, for example, [105] or [106]), it is not

possible to compute it in advance. In addition, even in the case when such an

estimation is possible, the expense of such computation is usually prohibitive.

Some general rules may however be mentioned. First, the choice of the relaxation

parameter is strongly dependent on the properties of the coefficient matrix. It

can be demonstrated that, without any particular hypothesis on the coefficient
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matrix F , the successive-overrelaxation method always fails to converge if ω is

outside the interval [0, 2] [104, 107]. Secondly, if the coefficient matrix is sym-

metric and positive-definite, the SOR iterative algorithm will necessarily lead

to convergence for any ω ∈]0, 2[. In addition, the convergence will be monotone

[108]. Finally, is the coefficient matrix F is strictly diagonally dominant, the

SOR method always converges for 0 < ω ≤ 1.

7.4 Preconditioning of the system of equations

In the previous sections, different numerical methods for solving linear systems

such as the forward scattering problem 7.1 have been discussed. Each of these

methods is characterized by its stability with respect to round-off errors prop-

agation and by particular convergence conditions. However, even with stable

algorithms, the solution may be very sensitive to small variations in the data

of the problem. As already seen, this instability is related to the conditioning

of the coefficient matrix.

7.4.1 Obtention of a better conditioned system of equations

In order to condition the problem into a form that is more suitable for numerical

calculations, having more favorable properties for direct / iterative resolution

procedure, a preconditioning of the matrix system of equations may be applied.

Generally speaking, preconditioning attempts to improve the spectral properties

of the coefficient matrix. In other words, the preconditioning procedure acts in

reducing the condition number of the problem, whatever the subordinate norm

in which the condition number is evaluated.

The preconditioner P−1 of the coefficient matrix F is a matrix such that

the matrix products
(
FP−1

)
or
(
P−1F

)
has a smaller condition number than

F . The system preconditioning may be performed into two different principal

ways: the right and the left preconditioning, according to the position of the

preconditioner towards the coefficient matrix. Instead of solving the original
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system, one may solve the following right preconditioned system:

FP−1−→y =
−→
b , −→s = P−1−→y (7.34)

The resolution of this system is done in two successive steps: the preconditioned

system is first solved for any −→y , and the solution vector is secondly found by

solving the residual equation for −→s . One may also solve the left preconditioned

system:

P−1F−→s = P−1−→b (7.35)

Both the left and right preconditioned systems give the solution to the original

problem, as long as the preconditioner is non-singular. However, the precondi-

tioned systems are easier to solve.

Since the preconditioner acts on the spectral radius of the coefficient ma-

trix, it should be useful to determine an optimal preconditioner, making the

number of iterations necessary to the convergence independent of the system’s

size. Unfortunately, the construction of optimal preconditioner is not possible:

there is no general purpose preconditioner and there are no selecting rules for

choosing the best appropriate preconditioner. The choice of a particular pre-

conditioner turns out to be an extremely delicate task, since an unadapted

preconditioning may considerably deteriorate the system. In general, a good

preconditioner should meet the following obvious requirements:

− the preconditioner should be cheap to construct and to apply;

− the preconditioned system should be easier to solve than the unprecondi-

tioned one.

In other words, the first property means that the preconditioning procedure

should not be too expensive in terms of computer time, while the second im-

plies that the convergence of any resolution technique should be rapid, i.e. that

the preconditioned matrix is quasi normal and its singular values are contained

in a reduced region of the space. Both these requirements are in competition
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with each other. The cheapest preconditioner is, of course, the identity matrix

I because P = P−1 = I. Obviously, the preconditioning of the system with the

identity matrix results in the original linear system itself and the preconditioner

does nothing. At the other extreme, the choice P = F gives P−1F = FP−1 = I,

which has an optimal condition number, requiring a single iteration for con-

vergence. However, this preconditioning is trivially inefficient. It therefore is

necessary to strike a fair balance between these two extreme requirements, and

to choose the matrix P as a compromise, in an attempt to achieve a minimal

number of iterations while keeping the operator P−1 as simple as possible. With

a good preconditioner, the condition number associated to the matrix system

of equations should be considerably reduced.

In Chapter 3, the adjoint scattering matrix has been derived from the

Boltzmann transport equations for photons. Because of its particular mean-

ing in the framework of transport theory, the adjoint matrix is a particular

preconditioner for the scattering problem 7.1. Therefore, the following study

does not concern the selection of the best possible preconditioner among a

large variety of mathematically acceptable preconditioners: the one which has

a strong physical link with the problem to solve has been selected.

7.4.2 Physical signification of the adjoint transport matrix as

a left preconditioner

Using the adjoint matrix F T as a left preconditioner, the system defined by

equation 7.1 becomes:

F TF−→s = F T
−→
b (7.36)

Denoting F TF = A, and F T
−→
b =

−→
i , the system 7.36 can be rewritten as:

A−→s =
−→
i (7.37)

The vector
−→
i is a measure of a photon’s importance in the measured spectrum

in contributing to a reading equivalent to the scattered vector.



Chapter

8
Simulated analysis of the

scattering problem using

two target materials

In practice, the scattering matrix system of equations may be very difficult

to solve in most physical situations, because of its intrinsic instability. Basi-

cally, the difficulties in performing the inverse scattering calculation are linked

to the mathematical structure of the scattering matrix, which also affects the

convergence properties of the numerical method. The matrix structure is itself

determined by the way X-ray photons interact with the matter, and then by the

physical properties of the target material. Among these properties, the atomic

number Z of the atoms making up the target plays a key role. The characteriza-

tion of the target material from a physical and a mathematical point of view is

then a fundamental aspect of the proposed inverse technique. In the following,

two different materials – pure carbon (Z = 6) and pure aluminium (Z = 13) – are

considered for their different physical behavior with respect to X-ray scattering.

The scattering matrices associated to these scatterers are in consequence also

different from a mathematical point of view. The first objective of this chapter

is to analyse the mathematical convergence conditions of the numerical meth-

ods theoretically described in Chapter 7, and to link these conditions with the

fundamental physics of the scattering problem (and then to the mathematical

structure of the scattering matrix). Starting from this analysis, general rules re-

garding the use of particular target materials for the optimization of the inverse

89
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scattering method will be deduced. An other key point to expect an accurate

estimation of the source vector, and to correctly characterize the target ma-

terial, are the mathematical performances of the different numerical methods

used for solving the inverse scattering problem. In particular, the mathematical

stability of the numerical algorithms and their ability in giving accurate recon-

structions are two fundamental aspects of the inverse method developed in the

following. A second objective of the chapter is then to appraise the stability

and the accuracy of some carefully selected numerical methods in solving the

inverse scattering problem. These two aspects have been studied starting from

a sharp-peaked source spectrum. They are quantified by characteristic p-norms

taking into account the differences between the theoretical source spectrum and

the reconstructed solution.

In order to focus this study only on the consistency of the numerical meth-

ods and to avoid the additional difficulties arising from the unavoidable experi-

mental noise of the measurement, numerical X-ray spectra have been considered

in a first approach to the inverse scattering problem. Artificial scattered vectors

for carbon,
−→
b (carbon), and aluminium,

−→
b (aluminium), have been computed by

multiplying a numerical source spectrum −→s representing a Tungsten X-ray tube

operating at 50 kV by the forward scattering matrix F(carbon) / F(aluminium), re-

spectively. The scattering matrices and the numerical X-ray source spectrum

have been constructed according to the following conditions:

− the forward scattering matrices have been computed for the two scatter-

ers from analytical transport calculation, as detailed in section 7.1. Let us

recall from this section that only Rayleigh and Compton interactions

are taken into account for the computation. The photoelectric absorption

and the subsequent fluorescence emission are then neglected. In the energy

interval considered for the numerical experiment, approximately ranging

from 2 keV to 50 keV, this approximation is straightforwardly acceptable

for both scatterers because of their very low fluorescence energies, as in-

dicated in table 8.1.
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Material Kα1 (keV) Kα2 (keV) Kβ1 (keV)

Carbon 0.2770 / /

Aluminium 1.4867 1.4827 1.5575

Table 8.1: Fluorescence X-ray lines for carbon and aluminium.

These energies are out of the energy interval considered, and the fluores-

cence approximation makes sense. Finally, it is worthwhile noting that

the carbon scattering case has been chosen for its practical interest in

the following step of the development. Indeed, a graphite target has been

used as scatterer for the measurements performed in the real application

(cf. Chapter 9);

− the theoretical X-ray source spectrum −→s has been built using X-ray_tube,

a computer code developed at the Laboratory of Montecuccolino

(University of Bologna) for computing general X-ray tube spectral

distributions. This code has been developed on the basis of two theoretical

algorithms (Pella’s algorithm [109, 110], and Schossmann’s algorithm

[111]). Both these algorithms appear to be accurate in the description of

the continuum, but not for the characteristic X-ray lines emission. The

program X-ray_tube has been developed to compute both the continuous

and the discrete part of the spectrum with a high level of accuracy. It

includes the calculation of the continuum and the ratio(s) of the charac-

teristic line(s) to the underlying continuum intensity at the wavelength(s)

of the characteristic line(s). Practically, twelve X-ray lines, visible at the

operating high-voltage of the tube, have been considered. X-ray transition

wavelengths and energies have been taken from [112] and [113]. They are

listed in Table 8.2, and the theoretical X-ray source spectrum is shown in

Figure 8.1.

Using the theoretical source spectrum and the scattering matrices just

described, the resulting scattered vectors
−→
b (carbon) and

−→
b (aluminium) present

multiple strong discontinuities (sharp peaks), all located between 1.0689Å and
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1.7170Å. The scattered vectors are shown in the wavelength regime in Fig-

ure 8.2 for carbon, and in Figure 8.3 for aluminium. In both scattered vectors,

a multitude of spectral structures are observed.

Starting from the numerical scattered vectors
−→
b (aluminium) and

−→
b (carbon),

all direct and iterative numerical methods introduced in Chapter 7 have been

implemented to solve the system of equations describing the two scattering

problems, eventually using the adjoint matrix as left / right preconditioner

because of its conceptual importance in the physics of the problem.

Denomination Energy (keV) Wavelength (Å)

L1β4 9.5252 1.3016

L1β3 9.8189 1.2627

L1γ2 11.6105 1.0681

L1γ3 11.6805 1.0620

L2η 8.7244 1.4211

L2γ5 10.9489 1.1323

L2γ1 11.2860 1.0985

L3l 7.3878 1.6782

L3α2 8.3353 1.4874

L3α1 8.3982 1.4764

L3β6 9.6082 1.2899

L3β2 9.9641 1.2446

Table 8.2: X-ray lines taken into consideration for the theoretical Tungsten source

spectrum computation.
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Practically, the photon scattering on the target material is represented

by a 6000× 6000 matrix, for wavelengths between 0.248000Å (49.99 keV) and

6.312989Å (1.9639 keV), with a constant wavelength step equal to 0.001011Å.

The choice of this discretization is fundamental to isolate the Compton contri-

bution in only one diagonal of the forward scattering matrix. Using this particu-

lar wavelength discretization, the Compton contribution is separated from the

Rayleigh contribution by 24 wavelength bins in each single response function

of both scattering matrices. The scattered spectra
−→
b (carbon) and

−→
b (aluminium)

are also represented by 6000 bins vectors, within the same wavelength range

and with the same wavelength discretization. In these conditions, the system of

equations is mathematically compatible, and may be expressed by:

F−→s =
−→
b (8.1)

Equation 8.1 forms the matrix system to solve in the numerical experiment.

In the next sections of this chapter, the following notations are used for

designating the reconstructed source vector recovered with a specific numerical

method:

− solution using the singular value decomposition: −→s rec, SVD;

− solution using the Cholesky factorization: −→s rec, Chol;

− solution using the LU factorization: −→s rec, LU;

− solution using the substitution technique: −→s rec, Sub;

− solution using the bidiagonal elimination: −→s rec, BE;

− solution using the Gauss method: −→s rec,G;

− solution using the Gauss method with partial pivoting: −→s rec,Gpp;

− solution using the Jacobi iterative method: −→s rec, J;

− solution using the SOR method: −→s rec, SOR.

The special notation −→s rec, ? will sometimes be used in the following to designate

the complete set of reconstructed source vectors obtained using the different

numerical methods for a particular scattering matrix system.
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It has been seen in Chapter 7 that the relaxation parameter ω of the SOR

method plays an important role in the convergence of the algorithm. There are

no applicable rules for calculating a priori the optimal value of this parameter.

However, it can be demonstrated that the convergence of the method is ensured

for values of ω included in the interval [0, 2] in a general case (e.g. the forward

scattering system), and in the interval ]0, 2[ if the matrix is symmetric and

positive-definite (e.g. the right / left preconditioned scattering systems). In

order to find the best SOR reconstruction, solution vectors have been calculated

for different values of the relaxation parameter, i.e.:

− for ω ∈ [0.00, 2.00] in the forward scattering system case;

− for ω ∈ [0.05, 1.95] in the preconditioned scattering system case;

with a constant step of ω = 0.05. For the sake of conciseness, only the best

reconstructed vector in the sense of the residual 2-norm will be presented in this

part of the document, and the correspondant value of the relaxation parameter

ω will be given.

Both the Jacobi and the SOR methods have been implemented with a

fixed stability tolerance ε equal to 10−20, and a maximum number of iterations

of 10.000.

The characterization of the carbon and aluminium scattering matrices is

organized as follows. For each target material, the corresponding unprecondi-

tioned, right preconditioned and left preconditioned matrix systems of equations

have successively been solved. For each system considered, the condition num-

ber of the coefficient matrix has been evaluated in the 1-, 2- and ∞-norms,

giving an a priori degree of complexity of the system resolution. The evalu-

ation of the source reconstruction quality is made through a residual vector

∆−→s = −→s − −→s rec,?, i.e. the difference between the theoretical source vector −→s

and the reconstructed source vectors −→s rec, ?. This characteristic vector is consid-

ered here as a standard evaluation of the spectrum reconstruction accuracy. The

residual vector has been calculated in the 2-norm and in the ∞-norm, ‖∆−→s ‖2
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and ‖∆−→s ‖∞, respectively. These norms have been chosen for their particular

physical signification: the 2-norm represents the length of the residual vector,

while the ∞-norm is the maximum distance (or the maximum discrepancy)

between the theoretical and reconstructed source vectors. The computer time

for the reconstruction (CT) is also given for information. Numerical calcula-

tions have been performed on an Intel Core(TM)i7 CPU 950 at 3.07GHz, with

16.00Go of RAM memory, under a 64 bits Windows 7 Entreprise Operating

System.

In this part of the document, it has been chosen to show exclusively the

best reconstructed source vector in the sense of the 2-norm for each matrix

system considered. For the sake of completeness, all the spectra are shown

in Appendix B for the carbon scattering system and in Appendix C for the

aluminium scattering system.

8.1 Pure carbon scattering matrix case

8.1.1 Evaluation of the systems ill-conditioning

The condition numbers of the unpreconditioned, right preconditioned and left

preconditioned coefficient matrices of the corresponding carbon scattering sys-

tems have been evaluated in different subordinate p-norms, for p = 1, p = 2

and p→∞. The following notations have been used for denoting the different

coefficient matrices:

− F(carbon) is the coefficient matrix of the unpreconditioned system, i.e. the

forward scattering matrix;

− P(right, carbon) = F(carbon) F
T
(carbon) is the coefficient matrix of the right

preconditioned system;

− P(left, carbon) = F T(carbon) F(carbon) is the coefficient matrix of the left pre-

conditioned system.

The estimated condition numbers and their computer calculation times are

reported in Table 8.3.



Chapter 8: Simulated analysis of the scattering problem 99

F(carbon) (CT) P(right, carbon) (CT) P(left, carbon) (CT)

κ1 4.985 1037 (14.21 s) 4.537 1021 (39.43 s) 2.556 1021 (39.84 s)

κ2 1.058 1037 (409.31 s) 7.399 1018 (526.80 s) 4.968 1018 (528.04 s)

κ∞ 3.225 1037 (15.56 s) 4.537 1021 (40.30 s) 2.556 1021 (40.49 s)

Table 8.3: Condition number estimates (and computer time) for the unpreconditioned,

right preconditioned and left preconditioned carbon matrix systems of equations.

All these values are consistent with the matrix p-norm properties given in

section 5.2.4. Some conclusions may be given about the potential instability of

the expected reconstructed source vectors by considering these condition num-

bers. Firstly, the condition numbers of the forward scattering matrix F(carbon)

(e.g. κ2 = 1.058 1037) are very high taking into account the dimensions of the

matrix. The matrix F(carbon) is then extremely ill-conditioned, and the system

may potentially be very ill-posed. It is then expected that the solution vectors

reconstructed by solving the unpreconditioned system be very sensitive to small

variations in the data. Secondly, the condition numbers of the right precondi-

tioned coefficient matrix P(right, carbon) (e.g. κ2 = 7.399 1018) are significantly

reduced compared to those of the unpreconditioned matrix system (19 orders of

magnitude). The right preconditioning of the system has then a positive effect

on the ill-conditioning of the coefficient matrix. Finally, in the left precondition-

ing case, the condition numbers are similar to those of the right preconditioned

matrix system, although slightly reduced (e.g. κ2 = 4.968 1018). The right and

left preconditioned systems are consequently significantly less sensible to small

variations in the data of the problem than the unpreconditioned system. The

solution vectors are consequently expected to be considerably more stable when

solving the system preconditioned by the adjoint matrix (right / left) than the

one without preconditioning.
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8.1.2 Resolution of the three matrix systems

In this section, the unpreconditioned / preconditioned carbon matrix systems

of equations are solved, using the numerical methods explained in Chapter 7.

For each solution vector considered, an evaluation of the reconstruction quality

is given through the residual vector norms. For the sake of readability and

continuity of the paragraphs, the comparisons between the numerical source

vector and the best estimates of the reconstructed vectors are shown, for each

matrix system, at the end of the section.

Unpreconditioned system

The residual norms of the unpreconditioned system solution vectors are given

in Table 8.4. In this table, it may be seen that all the reconstructed vectors
−→s rec, ? very inaccurately reproduce the original source vector: the 2-norms of

their respective residual vectors are ranging between ‖∆−→s ‖2 = 1.4133 10−3

for the SVD method and ‖∆−→s ‖2 = 3.418 1011 for the Gauss technique with

partial pivoting, i.e. between 5.770 103 % and 1.395 1018 % of the theoretical

source vector 2-norm, respectively.

The best reconstruction in the sense of the residual 2-norm has been ob-

tained by using the SVD method. The reconstructed vector −→s rec, SVD is given in

Figure 8.4 p. 105 for information, and compared to the theoretical source vec-

tor −→s . As expected from the extremely high ill-conditioning of the coefficient

matrix, the forward carbon scattering system is very complicated to solve since

it is numerically unstable. This instability only leads to an extremely high level

of oscillations in the reconstructed vector. A detailed analysis of the oscillations

position shows that they are situated in the wavelength range between 1.301Å –

2.382Å, while the rest of the spectrum reconstruction is good (even in the re-

gion of strong discontinuities between 1.062Å and 1.301Å). The region of high

level oscillations may be associated to a wavelength interval where the scatter-

ing matrix is not diagonally dominant, creating instabilities. In this situation,

most numerical algorithms usually fail to converge to a stable solution.
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Method ‖∆−→s ‖2 ‖∆−→s ‖∞ CT (s)
−→s rec, SVD 1.41329954 10−3 1.84306597 10−4 3.5220 103

−→s rec, LU 2.59861590 1011 4.81432902 1010 3.9041
−→s rec, Sub 1.90134257 1011 4.56887893 1010 1.4136 10−2

−→s rec, BE 1.90134257 1011 4.56887893 1010 1.2550 10−2

−→s rec,G 2.94728911 1011 4.57058683 1010 1.4937 101

−→s rec,Gpp 3.41752996 1011 4.87810469 1010 1.9779 101

−→s rec, J 2.84529308 1011 4.62978796 1010 4.4339
−→s rec, SOR(ω = 1.00) 1.90134257 1011 4.56887893 1010 1.1732

Table 8.4: Differences between the source vector −→s and the reconstructed source

vector −→s rec, ?, calculated in the 2-norm and in the∞-norm. Unpreconditioned system.

Carbon case.

Right preconditioned system

The residual norms of the right preconditioned carbon matrix system solution

vectors are presented in Table 8.5. Results are considerably less oscillatory than

those obtained by solving the unpreconditioned matrix system. However, the

reconstructed vectors obtained by solving the right preconditioning system are

very particular: the 2-norms of the residual vectors ∆−→s are equal until the

15th decimal (‖∆−→s ‖2 = 2.299 10−7, i.e. 0.939% of the theoretical source vec-

tor 2-norm), except for the Jacobi method (‖∆−→s ‖2 = 7.807 10−7, i.e. 3.187%

of the theoretical source vector 2-norm). For all the different methods, the re-

constructed source vectors are very similar and present oscillations in the same

region of the spectrum, included in the wavelength interval between 1.534Å and

2.274Å. This part of the spectrum corresponds to the non-diagonally dominant

section of the right preconditioned carbon coefficient matrix P(right, carbon). It

is finally very interesting to underline that the oscillations are periodic, with

a 24 bins periodicity. This periodicity is directly linked to the discretization

wavelength step of the coefficient scattering matrix P(right, carbon).
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Method ‖∆−→s ‖2 ‖∆−→s ‖∞ CT (s)
−→s rec, SVD 2.29917209 10−7 5.73526965 10−8 3.0954 102

−→s rec, Chol 2.29917209 10−7 5.73526965 10−8 5.0968 101

−→s rec, LU 2.29917203 10−7 5.73526963 10−8 3.6807
−→s rec, Sub 2.29917208 10−7 5.73526965 10−8 3.5901
−→s rec,G 2.29917204 10−7 5.73526965 10−8 1.4930 101

−→s rec,Gpp 2.29917206 10−7 5.73526964 10−8 1.9637 101

−→s rec, J 7.80762072 10−7 2.48978232 10−8 2.1433 102

−→s rec, SOR (ω = 1.00) 2.29917208 10−7 5.73526965 10−8 3.4610 102

Table 8.5: Differences between the source vector −→s and the reconstructed source

vector −→s rec, ?, calculated in the 2-norm and in the ∞-norm. Right preconditioned

system. Carbon case.

The best reconstruction in the sense of the smallest 2-norm residual vector

has been obtained by the substitution method, with a residual vector ‖∆−→s ‖2
equal to 2.299 10−7, i.e. 0.939% of the theoretical source vector 2-norm. The re-

constructed source vector −→s rec, Sub is compared to the theoretical source vector
−→s in Figure 8.5, p. 106. Except in the wavelength interval between 1.534Å and

2.274Å, the reconstruction appears very good in terms of both the intensity

and the wavelength position of the peaks, even in the region of the spectrum

where strong discontinuities are observed. In the wavelength interval between

1.534Å and 2.274Å, the reconstruction presents an important level of periodic

oscillations, as mentioned in the previous paragraph.

Left preconditioned system

The residual 2-norms of the left preconditioned system solution vectors are

reported in Table 8.6. As in the right preconditioned case, the vectors recon-

structed by solving the left preconditioned system are considerably less oscilla-

tory than those obtained by solving the unpreconditioned matrix system. The

2-norms of the residual vectors ∆−→s are included between ‖∆−→s ‖2 = 2.159 10−4
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for the SVD method and ‖∆−→s ‖2 = 6.725 10−8 for the SOR method, i.e. between

881.4% and 0.275% of the numerical source vector 2-norm, respectively.

Method ‖∆−→s ‖2 ‖∆−→s ‖∞ CT (s)
−→s rec, SVD 2.15901037 10−4 3.14859176 10−5 3.0788 102

−→s rec, Chol 5.55854700 10−5 7.35416856 10−6 4.7846 101

−→s rec, LU 1.03987502 10−5 2.21498744 10−6 4.3229
−→s rec, Sub 9.90998568 10−6 4.30711334 10−6 1.5225 10−2

−→s rec,G 1.51535580 10−5 3.05894736 10−6 1.4937 101

−→s rec,Gpp 1.16907463 10−5 2.71342237 10−6 1.9854 101

−→s rec, J 2.58493606 10−6 4.60459488 10−6 2.1195 102

−→s rec, SOR (ω = 1.50) 6.72473120 10−8 1.07805313 10−8 3.4610 102

Table 8.6: Differences between the source vector −→s and the reconstructed source

vector −→s rec, ?, calculated in the 2-norm and ∞-norm. Left preconditioned system.

Carbon case.

The best reconstruction has been obtained by the SOR method with a re-

laxation parameter ω equal to 1.50. The reconstructed source vector −→s rec, SOR

is compared to the numerical source vector −→s in Figure 8.6, p. 107. The recon-

struction appears excellent on the entire spectrum in both terms of continuum

agreement between the reconstructed and theoretical source vectors, and in

peak position / intensity correspondance. However, the reconstructed vector
−→s rec, SOR appears slightly oscillating, again with the periodicity of 24 wave-

length bins linked to the discretization of the forward scattering matrix, in the

region of the spectrum between 1.534Å and 2.274Å. The disrupted wavelength

interval is then identical to the disturbed one identified in the right precondi-

tioned case, in a lesser extent. As already explained in the right preconditioned

case, this part of the spectrum corresponds to a non-diagonally dominant inter-

val of the coefficient matrix P(left, carbon). These oscillations give the essential

contribution to the residual vector 2-norm.
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8.1.3 Conclusions for the carbon scattering system

The condition numbers estimated in section 8.1.1 indicate that the unprecon-

ditioned system is numerically extremely unstable. Obviously, this form of the

scattering system is not adapted to support multiple numerical operations. After

preconditioning the matrix system by the adjoint matrix, the condition num-

bers of the coefficient matrices are significantly reduced. The scattering system

is then transformed in a more suitable form. Right and left preconditioned sys-

tems have a very similar sensitivity to variations in the data of the problem.

The best reconstruction is obtained by applying the SOR method on the

left preconditioned scattering system. In this case, the residual vector 2-norm

represents 0.275% of the theoretical vector 2-norm (see section 8.1.2, part 3).

The reconstruction appears to be of high quality over the whole spectrum: the

agreement between the continuum of the reconstructed and the numerical source

vectors is excellent, all the peak positions and intensities are perfectly recovered

after performing the inverse scattering calculation. In the reconstruction, some

oscillations ranging from 1.534Å to 2.274Å can however be observed. Their

wavelength position corresponds to a non-diagonally part of the coefficient ma-

trix. These oscillations give the main contribution to the norm of the residual

vector, and they are at the origin of a non perfect correspondance between the

continuum of the source vectors.

In order to improve the quality of the reconstruction, an other scattering

material can be used. For the example, the improvement of the reconstruc-

tion will be performed in the following with aluminium. Because of the higher

atomic number of aluminium, the potential non-diagonally dominant part of

the aluminium scattering matrix shall be shifted to the lower energies.
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8.2 Pure aluminium scattering matrix case

8.2.1 Evaluation of the systems ill-conditioning

The condition numbers of the unpreconditioned, and right / left preconditioned

coefficient matrices of the corresponding aluminium scattering systems have

been evaluated in different p-norms, for p = 1, p = 2 and p→∞. The following

notations have been used for denoting the different coefficient matrices:

− F(aluminium) is the coefficient matrix of the unpreconditioned system, i.e.

the forward scattering matrix;

− P(right, aluminium) = F(aluminium) F
T
(aluminium) is the coefficient matrix of

the right preconditioned system;

− P(left, aluminium) = F T(aluminium) F(aluminium) is the coefficient matrix of

the left preconditioned system.

The estimated condition numbers and their computer calculation times are

given in Table 8.7.

F(aluminium) (CT) P(right, aluminium) (CT) P(left, aluminium) (CT)

κ1 5.998 1015 (14.86 s) 2.258 1019 (39.81 s) 2.119 1022 (39.27 s)

κ2 1.541 1015 (413.27 s) 1.704 1017 (662.06 s) 1.467 1019 (657.92 s)

κ∞ 7.848 1014 (15.88 s) 2.258 1019 (40.47 s) 2.119 1022 (40.22 s)

Table 8.7: Condition number estimates (and computer time) for the unpreconditioned,

right preconditioned and left preconditioned aluminium matrix systems of equations.

All the condition number estimates are consistent with the matrix p-norm

properties, detailed in section 5.2.4. Taking into account the very large di-

mensions of the coefficient matrices, the conditioning of the forward scattering

matrix F(aluminium) (e.g. κ2 = 1.541 1015) is not so bad (and significantly re-

duced than the one of the unpreconditioned carbon scattering system). The

condition numbers of the right and left preconditioned coefficient matrices,
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P(right, aluminium) and P(left, aluminium), are some orders of magnitude higher

than those of the unpreconditioned system (2 orders of magnitude for the right

preconditioning; 4 orders of magnitude for the left preconditioning). The pre-

conditioning (right / left) by the adjoint matrix has then no positive effects on

the scattering matrix system, since it increases the numerical sensitivity of the

solution vectors to small variations in the data of the problem.

From the point of view of the numerical stability of the reconstructed

solution, the unpreconditioned matrix system presents the most appropriate

characteristics since it has the lowest condition numbers.

8.2.2 Resolution of the three matrix systems

In this section, the unpreconditioned and preconditioned aluminium matrix sys-

tems of equations are solved using the numerical methods detailed in Chapter 7,

and the quality evaluation of the reconstruction is given through the residual

vector norms. As in the carbon case, the comparisons between the numerical

source vector and the best estimates of the reconstructions are shown at the

end of the section for each matrix system, for a question of readability of the

section.

Unpreconditioned matrix system

The residual norms of the unpreconditioned system solution vectors are given in

Table 8.8. Except for the SVD method, very accurate results are obtained. The

2-norms of the residual vectors are included between ‖∆−→s ‖2 = 2.459 10−6 for

the SVD method and ‖∆−→s ‖2 = 1.434 10−9 with a direct substitution technique,

i.e. between 10.043% and 5.854 10−3 % of the theoretical source vector 2-norm,

respectively.

It is interesting to note that the SOR method is reduced to a substitution

method in this particular case since the best relaxation parameter ω is equal to

1.00, and since the matrix has a particular bidiagonal structure. Similarly, due



Chapter 8: Simulated analysis of the scattering problem 110

to the bidiagonal structure of the matrix, the elimination and the substitution

methods are similar techniques. The equality of the residual vector norms is

then obvious.

The best solution vector has been obtained using a simple substitution

technique. The reconstructed source vector −→s rec, Sub is compared to the theo-

retical source vector −→s in Figure 8.7, p. 114. Two main observations may be

pointed out:

− the continuum parts of the reconstructed and theoretical source spectra

are in perfect agreement, on the whole wavelength range;

− the reconstruction is excellent also in the regions of the spectrum where

strong discontinuities (sharp peaks) are observed (between 1.037Å and

1.705Å), both in terms of wavelength position and peak intensity.

In this source spectrum reconstruction, no residual oscillations – even extremely

small – can be observed, and the superimposition of the spectra is of the highest

quality.

Method ‖∆−→s ‖2 ‖∆−→s ‖∞ CT (s)
−→s rec, SVD 2.45861138 10−6 5.07150691 10−7 3.2506 103

−→s rec, LU 2.59574409 10−9 5.40724035 10−10 4.2438
−→s rec, Sub 1.43383388 10−9 2.66284460 10−10 1.1288 10−2

−→s rec, BE 1.43383388 10−9 2.66284460 10−10 1.2186 10−2

−→s rec,G 2.37056838 10−9 5.08043010 10−10 1.4883 101

−→s rec,Gpp 2.44480955 10−9 5.40724035 10−10 1.9687 102

−→s rec, J 2.56246549 10−9 4.56080805 10−10 2.5330
−→s rec, SOR(ω = 1.00) 1.43383388 10−9 2.66284460 10−10 1.2332

Table 8.8: Differences between the source vector −→s and the reconstructed source

vectors −→s rec, ?, calculated in the 2-norm and in the∞-norm. Unpreconditioned system.

Aluminium case.
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Right preconditioned system

The residual norms of the right preconditioned system solution vectors are re-

ported in Table 8.9. The 2-norms of the residual vectors are equal for all the

techniques (‖∆−→s ‖2 = 2.709 10−8, i.e. 0.111% of the numerical vector 2-norm),

except for the Jacobi method (‖∆−→s ‖2 = 8.849 10−8, i.e. 0.361% of the numer-

ical vector 2-norm). Except for this last method, all the vector norms are one

order of magnitude higher than those of the unpreconditioned matrix system.

The best reconstruction in the sense of the smallest 2-norm residual vector

has been obtained using the substitution technique (taking into account the

calculation time). The reconstructed source vector −→s rec, Sub is compared to the

theoretical source vector −→s in Figure 8.8, p. 115. The continuum parts of the

reconstructed and theoretical source vectors are in very good agreement on

the entire range of wavelengths considered. Slight oscillations, common to all

reconstructions, can however be observed in the wavelength interval between

0.7039Å and 1.0295Å. This interval corresponds to a non diagonally dominant

part of the coefficient matrix.

Method ‖∆−→s ‖2 ‖∆−→s ‖∞ CT (s)
−→s rec, SVD 2.70898913 10−8 7.99520481 10−9 3.5246 103

−→s rec, Chol 2.70898913 10−8 7.99520481 10−9 5.27638 101

−→s rec, LU 2.70898913 10−8 7.99520481 10−9 3.6412
−→s rec, Sub 2.70898913 10−8 7.99520481 10−9 2.6145
−→s rec,G 2.70898913 10−8 7.99520481 10−9 1.4940 101

−→s rec,Gpp 2.70898913 10−8 7.99520481 10−9 1.9687 101

−→s rec, J 8.84920264 10−8 7.99520481 10−9 2.0977 102

−→s rec, SOR (ω = 0.10) 2.70898913 10−8 7.99520481 10−9 3.7136 102

Table 8.9: Differences between the source vector −→s and the reconstructed source

vector −→s rec,?, calculated in the 2-norm and in the ∞-norm. Right preconditioned

system. Aluminium case.
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Left preconditioned system

The residual norms of the left preconditioned system solution vectors are re-

ported in Table 8.10 for the different methods. As expected from the condition

numbers estimates in section 8.2.1, the vectors reconstructed by solving the

left preconditioned system are globally more inaccurate than those calculated

with the unpreconditioned scattering system. It is worthwhile noting that the

solution vectors present a high discrepancy in the reconstruction (4 orders of

magnitude between the 2-norms of the different residual vectors), illustrating

the instability level of the matrix system. The 2-norms of the residual vectors

∆−→s are ranging between ‖∆−→s ‖2 = 6.933 10−4 for the singular value decom-

position method and ‖∆−→s ‖2 = 1.552 10−8 for the SOR method, i.e. between

2.830 103 % and 6.336 10−2 % of the numerical source vector 2-norm, respec-

tively.

The best source vector reconstruction has been obtained with the left

preconditioned system using the SOR method, with a relaxation parameter ω

equal to 0.80. The reconstructed source vector −→s rec, SOR is compared to the

numerical source vector −→s in Figure 8.9, p. 116. This reconstructed vector cor-

responds very well to the numerical source vector in both the continuum part

and the discontinuity regions of the spectrum (as well in terms of intensity than

in wavelength position of the different peaks). As in the right preconditioning

case, slight oscillations can be observed in the region of the spectrum corre-

sponding to the non diagonally dominant part of the matrix, located between

0.7039Å and 1.0295Å. These oscillations have a similar aspect than those ob-

served in the right preconditioned case, even if they are slightly accentuated. A

periodicity of 24 wavelength bins, associated to the discretization choice of the

scattering matrix, is observed (as in the carbon case).
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Method ‖∆−→s ‖2 ‖∆−→s ‖∞ CT (s)
−→s rec, SVD 6.93263315.10−4 1.74883449 10−4 3.4858 103

−→s rec, Chol 1.68329476 10−4 4.01276405 10−5 5.0433 101

−→s rec, LU 2.52564067 10−5 6.64001353 10−6 4.1878
−→s rec, Sub 5.75934406 10−6 2.68287066 10−6 1.5635 10−2

−→s rec,G 1.90162926 10−4 7.72220372 10−5 1.4903 101

−→s rec,Gpp 9.34008103 10−5 3.33457860 10−5 1.9692 101

−→s rec, J 4.77387912 10−6 4.04589258 10−7 2.1226 102

−→s rec, SOR (ω = 0.80) 1.55228435 10−8 4.63669618 10−9 1.1484 102

Table 8.10: Differences between the source vector −→s and the reconstructed source

vector−→s rec, ?, calculated in the 2-norm and in the∞-norm. Left preconditioned system.

Aluminium case.

8.2.3 Conclusions for the aluminium scattering system

In the aluminium case, the condition numbers evaluated in section 8.2.1 indicate

that the unpreconditioned system has the lowest sensitivity to small fluctuations

in the data of the problem. The right or left system preconditioning by the

adjoint matrix has then an undesirable harmful effect on the numerical stability

of the solution vectors. The unpreconditioned system is then the most suitable

form for numerical operations.

For solving the unpreconditioned scattering aluminium system, the sub-

stitution technique is the most appropriate. In this case, the residual vector

2-norm is equal to 5.854 103 % of the numerical source vector 2-norm (see sec-

tion 8.2.2, part 1). The reconstruction appears to be of the highest quality on

the entire spectrum. First, the agreement is perfect between the continuum of

the reconstructed spectrum and the numerical source vector. Secondly, all the

peaks positions and intensities are perfectly recovered after the inverse scatter-

ing. The reconstruction is free from any oscillations.
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8.3 Conclusions about the numerical experiments

The developments carried out in this chapter were aiming to solve the inverse

scattering problem with a first numerical approach. Two aspects were investi-

gated in particular:

− the numerical suitability of the scattering system, with and without pre-

conditioning by the adjoint matrix;

− the assessment of the quality of reconstructed source vectors obtained by

different numerical methods.

In the previous pages, different mathematical behaviors were observed when

considering the carbon and the aluminium matrix systems. Before entering

further into the conclusions, however, it is worthwhile to underline that the

aluminium case was very theoretical. Regarding questions of target efficiency

in producing photon scattering, aluminium targets are never used in practice,

and this material has only been selected here to demonstrate the validity of

the proposed procedure. We will then exclusively focus the conclusions on the

carbon scattering system.

The unpreconditioned carbon matrix system was very intricate to solve,

since the matrix was extremely ill-conditioned (whatever the subordinate ma-

trix norm), indicating a very high sensitivity of the solution vector to small

variations in the data of the problem. The preconditioning was then essential

for transforming the system in a more suitable form, well-adapted to numerical

operations. The condition number estimates were similar for both right and left

preconditioning. Among the different techniques used for solving the inverse

scattering problem, the SOR method applied on the left preconditioned system

gave the best source vector reconstruction. The reconstructed vector was in a

very good agreement with the numerical source vector in terms of continuum

correspondance, peak intensity and peak position. Slight oscillations were how-

ever observed in a limited part of the spectrum. This disturbed interval was

associated to a non diagonally dominant section of the coefficient matrix.
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From these considerations, it becomes obvious that two different levels of

analysis should be considered in order to get a physically meaningful solution

to the inverse scattering problem:

1. the well-/ill-posed character of the matrix system should be estimated by

means of the matrix condition numbers. This estimate gives a survey of

the system sensitivity to small fluctuations in the data of the problem,

then also on the stability of the solution vector. If necessary, the condition

numbers may be reduced by the preconditioning technique, improving the

spectral properties of the system. With the carbon target material, the

left preconditioning with the adjoint matrix, i.e. the computation of the

importance vector, was shown to be an efficient technique;

2. the diagonal dominance of the matrix is a crucial criterium for the con-

vergence of the methods. A detailed analysis of the matrix structure then

appears to be a key point for the deduction of relevant information con-

cerning this convergence. Physically, the diagonal dominance of the for-

ward scattering matrix is closely linked to the ratio between the Rayleigh

interactions (main diagonal) and the Compton interactions (minor diag-

onal, whose position in the matrix depends on the wavelength discretiza-

tion and on the δ parameter, as explained in section 7.1) with the target

material. For solving the carbon matrix system, the SOR method has been

identified as the most stable method, well adapted to the source vector

reconstruction.

By denoting the Rayleigh and the Compton contributions in a row of the

forward scattering matrix by ri,i and ci,i−δ respectively, one may conclude that:

− the carbon scattering matrix is not diagonally dominant, i.e. r(i,i) ≤

c(i,i−δ) in a great part of the matrix, and the forward system is highly

ill-posed;

− the left preconditioning of the forward scattering matrix by the adjoint

scattering matrix and the computation of the importance vector signifi-

cantly improve the spectral properties of the system;
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− a new system to solve, more suitable to numerical operations, is generated

after preconditioning. Considering this preconditioned matrix system:

• the convergence of the method to a physically meaningful solution

is ensured for r2
(i,i) + c2

(i+δ,i) > r(i,i) c(i,i−δ) + r(i+δ,i+δ) c(i+δ,i), with

i = 1, 2, ..., n;

• the SOR method appears to be the most appropriate technique for

solving the preconditioned system.

In the next chapter, the inverse procedure introduced in this chapter is

applied for recovering the X-ray source spectrum from a set of experimental

measurements, performed with a thin scattering graphite target.



Chapter

9
Application of the inverse

procedure on real measure-

ments

For the application of the inverse procedure on real measurements, a Comp-

ton spectrometer built at the Operational Unit of Health Physics of the

University of Bologna was used. A cross section view of this spectrometer

has already been shown, with the location of the different vectors used in the

development and with the materials, in Figure 4.2, page 43. With this spectrom-

eter, three measurements were performed at different high-voltages. This set of

measurements forms the different starting points for the inverse procedure, i.e.

the −→m vectors.

Practically, the system was based on a tungsten rotating anode tube, where

electrons were produced by thermionic emission from a tungsten filament heated

by an electric current, with a 0.8× 0.8mm2 focus. The system was designed to

operate until 150 kV. In the spectrometer, a 2mm thick graphite target placed

at a 45 ◦ angle in the primary photon beam has been used for the scattering.

Graphite is an efficient scatterer that can easily be obtained in a pure state. For

an energy of 10 keV, the photon mean-free-path in graphite is approximately

2mm, while it is of course larger for higher energies. Consequently, the choice

of this particular material and its thickness ensure a low content of multiple

photon scattering in the target. It is worthwhile noting that the scattering

target has been fixed on an extra thin mylar foil, to avoid extra collisions our of

120
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the target. In order to isolate the photons scattered at a 90 ◦ angle with respect

to the initial photon beam axis and within a narrow cone of 0.75 ◦ half-opening

angle, two lead diaphragms have been inserted into the spectrometer. These

internal structures were acting as perfect absorbers for all photons scattered

outside the specified cone. Finally, the whole spectrometer was surrounded by a

plexiglas tube, acting essentially as a structural guide for the detector alignment

with the scattered beam.

The detector was a 10mm diameter and 10mm thick ORTEC HPGe

detector, in a POP-TOP configuration. It was connected to a small Dewar

tank containing the liquid nitrogen necessary to cool the detector and the front-

end electronics of the preamplifier to an optimal operating temperature. The

entering window was made up by a thin beryllium foil, making possible to

operate also at low photon energies with a high efficiency.

For additional information about the full experimental set-up, an extensive

and detailed explanation can be found in [114].

A first set of three scattering measurements, illustrated in Figure 9.1,

has been performed with the spectrometer at different high-voltages: 80 kV,

100 kV and 110 kV. The first step of the method, devoted to remove the detec-

tor effects from the spectrum, has been performed with the deconvolution codes

described in Chapter 6. The different scattered vectors have been compared, and

our best estimate of the scattered vector
−→
b selected for each measurement. The

inverse scattering method has secondly been applied on the best estimates of

the three scattered vectors
−→
b , in order to reconstruct the X-ray source vec-

tors −→s . The quality of the source vector reconstruction has been estimated by

comparison with a set of three direct measurements, corrected by the detector

influences. These measurements have been performed with the same radiologi-

cal device, at identical high-voltages than those of the measurement, but with

a lower current intensity, decreasing then significantly the photon flux of the

primary beam.
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9.1 Unfolding of the measured vectors

In this section, the four deconvolution techniques described in Chapter 6 –

namely, the Tikhonov method, the truncated singular value decomposition

(Tsvd), an algorithm based on the maximum entropy principle (Maxed) and

an iterative algorithm (Gravel) – are used to unfold the three measured spec-

tra. For the application of the Tikhonov and the Tsvd methods, the ’Reg-

ularization Tools’ package [65] developed at the Technical University of

Denmark (Lyngby, Denmark) by P.-C. Hansen has been used. This pack-

age consists in different routines to analyze and to compute stabilized solu-

tions to discrete ill-posed problems. Both the Gravel (grv_mc33 ) and the

Maxed (mxd_mc33 ) algorithms make part of the UMG package version 3.3

[88], and were developed at the Physikalish-Technische Bundesanstalt

(Braunschweig, Germany) by M. Matzke and M. Reginatto, respectively.

The quality of these four methods has already been demonstrated in many pa-

pers, mostly focussed on neutron spectrometry. The application of unfolding

techniques on X-ray spectra is here innovative, in particular for the Gravel

and Maxed codes.

This section aims at comparing the unfolded spectra computed with the

different codes, and at selecting our best estimate of the unknown scattered

vectors
−→
b for the inverse scattering calculation.

9.1.1 Computation of the discretized response function

An important part of the spectrum calculation lies in the computation of the

detector response matrix. As already mentioned, the response matrix contains

all the information concerning the physics of the photon detection. In the dis-

cretized form used for numerical applications, each column of the matrix rep-

resents the response function of the detector to a monoenergetic excitation.

The detector response matrix has been calculated using two different codes:

Penelope and Resolution [115].
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Very broadly, the computer code system Penelope [116] (an acronym

for PENetration and Energy LOss of Positrons and Electrons) performs Monte

Carlo simulation of coupled electron–photon transport in arbitrary materials for

a wide energy range, from a few hundreds of eV to about 1GeV. Photon trans-

port is simulated by means of the standard conventional simulation scheme, and

is simulated through analytical differential cross-sections, derived from simple

physical models and renormalized to reproduce accurate attenuation coefficients

available from the literature [117]. In particular, the code takes into consider-

ation the most important interactions in the X-ray regime: the photoelectric

effect, the Rayleigh scattering and the Compton scattering. These interac-

tions, explained in details in Chapter 2, are modelized with a sufficient level

of details for most practical purposes. The effect of the velocity distribution

of the electrons, i.e. the Doppler broadening, is also considered through the

one-electron Compton profile. Electron and positron histories are generated on

the basis of a mixed procedure (class II), which combines detailed simulation

of hard events with condensed simulation of soft interactions. An additional

geometry package permits the generation of random-photon showers in mate-

rial systems consisting of different assemblies of arbitrary density homogeneous

bodies limited by quadratic surfaces, i.e. planes, spheres, cylinders,. . . The code

runs under supervision of a certain number of additional descriptive user-defined

information for controlling the evolution of the tracks simulated by the code and

keeping score of relevant quantities.

Practically, the measurements have been performed in an energy interval

ranging from 0.13878 keV to 104.42449 keV, with an energy discretization step

of 0.20408 keV. The detector response matrix has been obtained by simulating

512 monoenergetic response functions, within an energy interval similar than the

one of the measurement, and with a constant energy increase of 0.20408 keV be-

tween each response function. The energy bin discretization in a single response

function corresponds to the energy interval separating the different response

functions. The resulting matrix system of equations is consequently mathemat-
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ically compatible. Ideal response functions of the detector are computed in these

conditions, without considering yet the energy resolution of the detector.

In order to reproduce the real response function of the HPGe detector, the

spectral broadening has been added to the monoenergetic response functions.

This step has been made by using the Resolution code that performs the

convolution between each theoretical response function obtained via Penelope

and a Gaussian function modeling the energy resolution of the detector. The

energy resolution has been calculated on the basis of the full-width at half

maximum (FWHM) variation in the measured spectra, in function of the energy,

using the following calibration equation [73]:

EFWHM =
√

8 (WFE + aEb) ln 2 + ∆E2
elec (9.1)

with:

− W , the average energy to produce an ion pair (keV);

− F , the Fano factor;

− a, a semi-empirical constant (keV);

− b, a semi-empirical constant;

− ∆Eelec, the electronic noise contribution (keV).

The analysis of some measured spectra leads to the following parameters:

− W = 2.96 10−3 keV;

− F = 6 10−2;

− a = 2 10−6 keV;

− b = 2.0;

− ∆Eelec = 0.17 keV.

This set of parameters has been implemented in equation 9.1 in order to apply

the energy broadening. With these parameters, the FWHM follows the trend

illustrated in Figure 9.2, in the energy range of the measurement.
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Figure 9.2: Calibration curve of the HPGe detector used for the scattering measure-

ments.

Thanks to both the Penelope and the Resolution codes, accurate re-

sponse functions have been calculated. As an illustration, a response function

obtained for an incident photon energy of 100 keV is shown in Figure 9.3 (semi-

logarithmic graph). From the higher to the lower energies:

− the photopeak can first be identified at 100 keV, i.e. at the energy of the

incident photon. This peak corresponds to the total absorption of the

photon energy in the detector;

− the two peaks at lower energies are usually termed as escape peaks. These

peaks arise whenever a fixed amount of energy is lost from the detector

with a significant probability. If the energy of the incoming X-ray photon

is greater than the absorption edges of the detector material, it can pro-

duce characteristic X-rays, called fluorescence photons. If these photons

escape from the active part of the detector without undergoing any inter-

action, their energy is lost during the detection process. The escape of the

characteristic X-rays from germanium following photoelectric absorption

can be significant, especially for small detectors with a large surface-to-

volume ratio like our HPGe. Two peaks are consequently often found in
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the spectrum with an energy lower than the photopeak energy, and with

an energy difference corresponding to the characteristic K X-ray energies

for germanium, i.e. 9.87 keV (Kα) and 10.98 keV (Kβ). In the case of a

100 keV photon, the corresponding X-ray escape peaks then have energies

of 91.13 keV and 89.02 keV, as observed in Figure 9.3. It is worthwhile

noting that escape peaks will be more prominent for incident low-energy

photons, because photoelectric absorption is then most probable, and all

interactions will tend to occur near to the detector surface.

− at low energies (between 0 and approximately 38.12 keV in the case de-

scribed here), the Compton continuum is observed.

Some selected response functions are shown in Figure 9.4 (semi-logarithmic

graph), for incident photon energies of approximately 20, 40, 60, 80 and 100 keV,

i.e. columns 100, 200, 300, 400 and 500 of the detector response matrix, respec-

tively. The description made for a single response function is of course transpos-

able on each of these distributions. The response matrix is partly represented

in 3-D in Figure 9.5, for incident photon energies between 11.1592 keV and

21.1592 keV (50 response functions have been included in the graph). This fig-

ure gives a very interesting glimpse to the response matrix.
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Figure 9.3: Description of the detector response function computed with the Pene-

lope and Resolution codes, for a 100 keV incident photon.
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Figure 9.4: Response functions computed with the Penelope and Resolu-

tion codes, for monoenergetic excitations of approximately 20, 40, 60, 80 and

100 keV (columns 100, 200, 300, 400 and 500 of the response matrix, respectively).
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9.1.2 Smoothing of the measured spectrum

Among other control parameters, the success of any unfolding procedure relies

on the statistical quality of the detector response functions. For that purpose,

simulations have been run with a high number of particles. The response ma-

trix then has an excellent statistical behavior, since all the response functions

contain very few statistical fluctuations. In order to optimize the quality of

the unfolded spectra, a good statistical behavior of the input spectra is also

expected. Should the opposite occur, the unfolding usually leads to perturba-

tions in the calculated spectra in the form of artificial oscillations, even with

additional criteria like positivity or minimal residual norm, and even with a

well-behaved response matrix. Two different approaches are possible to ensure

the statistical quality of a measured spectrum: longtime measurements, or filter-

ing procedures. Since longtime measurements are often not possible, a filtering

procedure has been favored in the next development.

In order to set the problem in sufficiently good conditions for the unfold-

ing, oscillations in the measured spectra −→m (cf. Figure 9.1) have been reduced

by using a Savitzky-Golay smoothing procedure [118, 119] (sometimes also

referred to as DISPO - digital smoothing polynomial - filter). This filter is based

on a local polynomial regression of degree k on a series of values (at least k+ 1

points which are considered to be equally spaced in the series) to determine the

smoothed value of each point. The advantage of this smoothing procedure is that

the distribution features such as relative maxima, minima and width, which are

usually flattened by other adjacent averaging techniques, are preserved.

In our case, the best smoothing of the measured spectra has been obtained

with a third degree polynomial, applied on a 7 points window. With these par-

ticular parameters, the original shape of the measured spectrum −→m is very well

preserved, both in the continuum and in the peaks regions. The smoothed mea-

sured spectra
−→
m̃ are compared to their corresponding measured spectra −→m in

Figure 9.6 for the 80 kV measurement, in Figure 9.7 for the 100 kV measurement

and in Figure 9.8 for the 110 kV measurement.
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9.1.3 Comparison of the unfolding methods: selection of the

scattered vector

The three smoothed measured spectra
−→
m̃ have been unfolded with the four

methods previously mentioned, aiming at evaluating the best estimate of the

unknown scattered vectors
−→
b . Let us denote the scattered vector obtained from

the measurement at 80 kV by
−→
b (80), at 100 kV by

−→
b (100) and the one obtained

from the measurement at 110 kV by
−→
b (110).

For the Tikhonov and the Tsvd regularization techniques, the regulariza-

tion and truncation parameters (Γ and k, respectively) have been computed by

using the L-curve algorithm proposed in the ’Regularization Tools’ package. For

the Tikhonov method, a default spectrum set to 0 has been used, as suggested

in the package manual. With the Gravel code, the scattered vectors have been

computed starting from a default spectrum equal to the measurement, a χ2 per

degree of freedom equal to 1, and a maximum number of iterations set to 10. It

has been observed that, beyond this number of iterations, the spectrum is not

anymore modified in its general shape, but high frequency oscillations appear

in the unfolded spectra. This has been noticed visually, and mathematically by

periodic variations in the calculated χ2. The Maxed algorithm has been run

starting from the same default spectrum, with a maximum number of iterations

equal to 1000, and with a χ2 factor per degree of freedom equal to the minimum

Gravel χ2 for each measurement. In these conditions, the best estimates of

the scattered vectors
−→
b were obtained in less than 50 iterations.

The best estimates of the scattered vectors
−→
b (80),

−→
b (100) and

−→
b (110) are

compared in Figure 9.9, in Figure 9.10 and in Figure 9.11 respectively. As a

first general observation, the four methods give very similar results. However,

some differences in the reconstructions may be underlined:

− for the scattered vector
−→
b (80):

• in the continuum part of the different unfolded spectra, the Maxed

estimate presents a high level of oscillations, mainly situated between
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35.5 keV and 64.8 keV. The two regularization methods give rise to

very similar vectors, with oscillations included in the energy range

between 35.2 keV and 54.8 keV. The Gravel estimate is the most

satisfactory, since it has the lowest level of oscillations.

− for the scattered vector
−→
b (100):

• in the continuum part of the spectra, the Tikhonov and the Maxed

algorithms give rise to oscillatory unfolded spectra, mainly for ener-

gies between 28.32 keV and 74.35 keV. The behaviors of the Tsvd

and the Gravel estimates are more satisfactory from this statistical

point of view;

• the positions of the peaks are in perfect agreement for all the methods

(first peak at 54.45 keV, second peak at 60.84 keV);

• except for the Maxed code where oscillations on the right part of

the second peak disturb the calculation, the FWHM of the peaks

are identical for all the methods (first peak: 2.04 keV, second peak:

1.84 keV);

• the intensity of the peak at 53.46 keV is very well estimated by all

the methods, although small variations (less than 3% between the

lower and the higher intensities) may be observed;

• the intensity of the peak at 60.75 keV is also very well estimated,

and the level of fluctuations is smaller than that of the first peak.

− for the scattered vector
−→
b (110):

• in the continuum part of the spectra, the Tikhonov and the Maxed

estimates of the scattered vectors show a considerable level of oscilla-

tions in the energy intervals ranging from 56.70 keV to 59.99 keV and

from 65.64 keV to 70.09 keV. The continuum of the Tsvd and the

Gravel algorithms are satisfactory on the whole energy range, and

in very good agreement between each other;
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• in all the estimates of the scattered vectors, the two peaks are exactly

at the same energy after unfolding (first peak at 53.46 keV, second

peak at 60.95 keV);

• the FWHM of the peaks are identical for the Tikhonov, Tsvd and

Gravel algorithms (first peak: 2.04 keV, second peak: 1.63 keV).

The poor result of the Maxed code is again a consequence of the

oscillations in the spectrum;

• the intensities of both peaks are very similar for all the methods,

even if small variations in their intensities may still be observed. In

particular, the Tsvd seems to overestimate both peaks, while the

Gravel code seems to underestimate them slightly.

From these considerations, it becomes apparent that all the methods are in very

good agreement between each other concerning the shape of the continuum and

the peaks positions. However, an important level of oscillations has been ob-

served when unfolding the smoothed measured spectra with the Tikhonov

method and the Maxed algorithm. In most cases, the Tsvd technique and

the Gravel code give rise to extremely similar results. Because of its interest-

ing underlying physical meaning, it has been decided to continue the inverse

procedure with the Gravel estimates of the scattered vectors
−→
b .
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9.2 Inverse scattering in the spectrometer: calcula-

tion of the source vector

In order to apply the inverse technique developed in Chapter 8, the scattered

vectors
−→
b (80),

−→
b (100) and

−→
b (110) have to be expressed in terms of wavelength,

not in energy. The infinitesimal variation of energy dE, is linked to the infinites-

imal variation of wavelength dλ, by:

dE = −hc
λ2
dλ (9.2)

where h is the Planck constant, and c the speed of the light. Using this con-

version, the inverse systems for 80 kV, 100 kV and 110 kV have been solved in

the wavelength regime, in which the forward scattering matrix has the very par-

ticular and attractive bi-diagonal structure, under computation approximations

similar to those in section 7.1. For the sake of convenience, the source vectors

have finally been converted back into the energy regime.

In the following sections, the stability of the forward transport matrix

is first estimated with the condition numbers. Depending on the matrix ill-

conditioning, and then taking into account the potential ill-posedness of the

system of equations, a numerical method is selected following the rules deduced

from the numerical experiments in Chapter 8. The three systems of equations

(for 80 kV, 100 kV and 110 kV) are then solved, aiming at reconstructing the

X-ray source vector. In order to estimate the quality of the reconstruction, a

comparison of the reconstructed source vectors with direct measurements is

made.

9.2.1 Spectral conditioning of the coefficient matrix

The condition numbers of the unpreconditioned forward scattering matrix Fscatt

have been calculated in different p-norms, for p = 1, p = 2 and p→∞:

− κ1(Fscatt) = 6.89077 1051;

− κ2(Fscatt) = 3.60386 1051;
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− κ∞(Fscatt) = 2.95327 1051.

These condition numbers are in perfect agreement with the matrix norms prop-

erties. They are extremely high, indicating that the forward scattering matrix

is extremely ill-conditioned. In these conditions, the unpreconditioned system

is highly ill-posed, i.e. very sensitive to small variations in the data of the prob-

lem. The solution vectors are extremely oscillating, and the oscillation level is

significantly amplified from the low to the high energies.

As concluded in Chapter 8, the left preconditioning by the adjoint ma-

trix and the importance vector computation should significantly improve the

numerical stability of the system, and permit to generate a more adapted form

of the system to solve with respect to numerical operations. The condition

numbers of the left preconditioned coefficient matrix by the adjoint matrix

P left = F Tscatt Fscatt are:

− κ1(P left) = 5.82399 1017;

− κ2(P left) = 2.44328 1017;

− κ∞(P left) = 5.82386 1017.

Again, all these estimations are consistent with the matrix p-norm properties.

As expected, the condition numbers are significantly reduced (factor of ap-

proximately 1034 for all the p-norms considered), making the matrix system

of equations considerably more suitable to numerical operations. The left pre-

conditioned system has better numerical properties, and is less sensitive to

fluctuations in the data of the problem. This system is solved in the following.

9.2.2 Inverse scattering on the graphite target

Using graphite as target material, the coefficient matrix of the left precondi-

tioned scattering system is not diagonally dominant. As suggested in Chapter 8,

the SOR method has to be used for solving the matrix system of equations. The

different reconstructed source spectra at 80 kV, 100 kV and 110 kV are shown

in Figure 9.12.
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As a first observation, the three reconstructed spectra have the general

shape expected for a Tungsten X-ray tube, considering their own operating

voltages. Let us denote the reconstructed vectors at 80 kV, 100 kV and 110 kV by
−→s (80),

−→s (100) and
−→s (110), respectively. Analyzing the reconstructed vectors, the

following observations may be outlined:

− for the reconstructed source vector −→s (80):

• no particular structure is observed (except an emerging fluorescence

peak at 59.45 keV), as expected considering the low operating voltage

used for the measurement.

− for the reconstructed source vector −→s (100):

• the characteristic fluorescence lines of the Tungsten may be observed

at 59.22 keV for the Kα line, and at 67.49 keV the Kβ line;

• the FWHM of the peaks are equal to 2.65 keV for the Kα line, and

to 2.04 keV for the Kβ line;

• the ratios between the peaks and the continuum part of the spectrum

are equal to 4.72 10−2 for the Kα line, and to 1.67 10−2 for the Kβ

line.

− for the reconstructed source vector −→s (110):

• the characteristic fluorescence lines of the Tungsten may be observed

at 59.45 keV for the Kα line, and at 67.49 keV the Kβ line;

• the FWHM of the peaks are equal to 3.26 keV for the Kα line, and

to 2.04 keV for the Kβ line;

• the ratios between the peaks and the continuum part of the spectrum

are equal to 2.84 10−2 for the Kα line, and to 2.31 10−2 for the Kβ

line.

From these observations, it appears that the full inverse method gives very good

results also with real measurements. In particular, the energy of the peaks on
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the −→s (100) and −→s (110) source vectors are very similar, indicating a coherent

source vector reconstruction.

In order to illustrate the accuracy of the different reconstructions, the

source vectors −→s (80),
−→s (100) and −→s (110) are shown in Figure 9.13, in Figure

9.14 and in Figure 9.15, together with directly measured spectra (corrected by

the detector influences with the Gravel code) used as references. The direct

measurements were performed with the same germanium detector than that

used for the scattering measurements, with the same operating high-voltages,

and modified for working with a special low current configuration (of the order of

1µA, while the operating amperage of the unmodified device is equal to 3mA).

The decrease of the current passing through the tube generates a significant

decrease of the emitted photon flux, allowing then the HPGe detector to be

placed in front of the X-ray tube and avoiding a pile-up effect.
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9.3 Comments on the reconstructions, and compari-

son with the direct measurements

For each measurement, the continuum parts of the reconstructed spectra and

the direct measurements are in very good agreement with each other. In the

100 kV and the 110 kV measurements, the ratios between the peaks of the Kα

/ Kβ lines and the continuum parts of the different spectra are compared in

Table 9.1, showing good correspondance. In the 100 kV and the 110 kV recon-

structed spectra, the energies of the two peaks perfectly correspond with each

other. This observation tends to indicate an excellent coherence of the recon-

struction technique. The energies of the Kα and Kβ lines are compared with the

theoretical positions of these lines in Table 9.2. An excellent correspondance is

observed.

Line, vector Reconstruction Direct measurement Difference (%)

Kα, −→s (100) 4.72 10−2 4.46 10−2 5.83

Kβ , −→s (100) 1.67 10−2 1.82 10−2 8.37

Kα, −→s (110) 3.84 10−2 3.56 10−2 7.86

Kβ , −→s (110) 2.31 10−2 2.17 10−2 6.45

Table 9.1: Comparison of the ratios between the characteristic lines and the contin-

uum of the spectra, for the reconstructions and the direct measurements.

Line, vector Theory (keV) Reconstruction (keV) Difference (%)

Kα, −→s (100) 59.31 59.22 0.15

Kβ , −→s (100) 67.23 67.49 0.39

Kα, −→s (110) 59.31 59.45 0.24

Kβ , −→s (110) 67.23 67.49 0.39

Table 9.2: Comparison between the theoretical energies (’Theory’) of the Kα and Kβ

lines of Tungsten and their energies after reconstruction (’Reconstruction’).
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It may be observed that the peaks found with the full inverse technique are

larger than those of the directly measured spectra. This effect may be assigned,

at least partially, to the Compton profile in the scatterer, which has not been

included into the actual calculation of the scattering matrix Fscatt. In addition,

it should be mentioned that the resolution may also be deteriorated by different

geometrical factors like the opening of the collimators or the thickness of the

scattering target, for example. These effects have not been investigated with a

great level of details in the previous sections, since the aim of this chapter was

to develop the method and to test its applicability on real measurements.

In conclusion, both the continuum and the characteristic parts of X-ray

spectra can be recovered from scattering measurements with a very good level

of details.



Chapter

10
Conclusions and future

prospects

The main objective of this thesis was to completely and accurately character-

ize an X-ray source spectrum from experimental scattering measurements in

normal operating conditions, by performing inverse calculations. Ideally, the

complete characterization of an X-ray beam should include a precise evalua-

tion of the photon fluence and provide information about the quality of the

radiation, specifying its spectral distribution in particular. This information is

of crucial importance in medical physics, since it aims at improving both the

quality of the medical imaging and the patient protection.

To meet this requirement of source spectrum characterization with the

highest level of quality, an innovative inverse procedure based on a detailed

modeling of the photon transport in the scattering target has been developed.

The technique proposed in this thesis relies on the consideration of the physics

inherent to the scattering problem. In that particular sense, the inverse proce-

dure proposed here moves away from most actual resolution techniques, only

based on purely mathematical criteria, and constitutes a new and innovative

approach of the scattering problem.

Formally, the scattering problem can be mathematically represented by a

matrix system of equations whose solution is the source spectrum. In most phys-

ical situations, however, the resulting algebraic system is extremely ill-posed.

This is the case in particular when light elements, like graphite, are used as

target materials. Due to the ill-posed character of the problem, its solutions

150
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are extremely sensitive to small variations in the data, and may be unstable

and / or meaningless. In order to circumvent the ill-posed character typically

associated with inverse problems, specific strategies are required. In this thesis,

the spectral properties of the scattering problem have been significantly im-

proved by using the adjoint scattering term, acting as a preconditioner. This

preconditioner, selected for its particular physical sense in the framework of

photon transport, has been used to transform the scattering matrix system in

a more suitable form to support numerical operations. Starting from the pre-

conditioned matrix system, different numerical methods have been applied to

get a meaningful reconstructed X-ray source vector. Among these methods, the

successive over-relaxation technique has been identified as the most stable, well

adapted to the source vector reconstruction. The effectiveness and the quality

of this procedure have been demonstrated in two different stages.

In a first approach to the inverse scattering problem, numerical experi-

ments have been considered to investigate two major aspects of the problem:

the numerical suitability of the scattering systems, and the quality assessment

of the reconstructed source vectors. For the tests, an X-ray source spectrum rep-

resenting a Tungsten X-ray tube operating at 50 kV and presenting 12 X-ray

lines, has been computed numerically. The photon scattering has been simu-

lated with carbon and aluminium targets. The associated scattering matrices

have been computed from analytical transport calculation, taking into account

only Rayleigh and Compton interactions. When solving the two inverse prob-

lems, starting from the scattered vector, very different behaviors were observed.

Regarding evident questions of target efficiency in producing photon scattering,

our attention has been focused mainly on the carbon case. The unpreconditioned

matrix system was extremely ill-conditioned, and the solution vectors recovered

with different numerical methods from this system were meaningless (the resid-

ual vectors 2-norms were included between 5.770 103 % and 1.398 1018 % of the

numerical source vector 2-norm). The preconditioning was necessary to improve

the spectral characteristics of the problem, and to stabilize the solution. The
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best reconstruction was obtained with the SOR method (ω = 1.50) on the

left preconditioned matrix system (residual vector 2-norm equal to 0.275% of

the numerical source vector 2-norm). The reconstructed vector was in excellent

agreement with the numerical source, even in the region of strong discontinu-

ities, but slight oscillations were observed in a small part of the spectrum contin-

uum (between 1.534Å and 2.274Å). The disturbed interval has been associated

to a non diagonally dominant section of the coefficient matrix. From these ob-

servations, it became obvious that two levels of analysis should be considered

in order to bring a physically meaningful solution to the inverse problem:

1. the ill-posed character of the scattering matrix system has to be estimated,

and reduced if necessary by the preconditioning technique. The adjoint

scattering matrix has been shown to be an efficient preconditioner;

2. the matrix structure appears to be a crucial point in the application of

the method, and stable methods (such as the successive over-relaxation)

are required to get meaningful solutions.

This approach of the problem was a first test to demonstrate the validity and

the consistency of the procedure.

In a second stage, the technique has been applied on a set of experimental

measurements performed with a spectrometer built at the Operational Unit

of Health Physics of the University of Bologna. A 2mm graphite tar-

get, fixed on an extra thin mylar foil, has been placed at a 45 ◦ angle in the

primary beam for the photon scattering. The target thickness has been chosen

to reduce as much as maximum the multiple photon scattering contributions

into the target. The detector used for the measurements was a 10mm diameter

and 10mm thick HPGe detector. Three scattering spectra have been measured

at different high voltages. Starting from these raw measurements, the following

procedure has been applied:

1. the smoothing of the experimental measurements with a Savitzky-Golay

filter;
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2. the cleaning of the detector effects (physical and statistical influences)

from the measured spectra with the Gravel unfolding code;

3. the conversion of the spectrum into the wavelength regime, in order to

take advantage from the bidiagonal structure of the scattering matrix;

4. the generation of the forward scattering matrix from detailed transport

calculation (and the estimate of the matrix ill-conditioning);

5. the computation of the left preconditioned coefficient matrix and the im-

portance vector (and the estimate of the matrix ill-conditioning);

6. the iterative numerical solution of the most adapted algebraic linear sys-

tem of equations by means of a successive overrelaxation method (SOR),

an accelerated convergence technique.

The reconstructed spectra have been successfully compared to straightforward

measurements performed at the same high-voltages in particular conditions.

The continuum parts of the reconstructed spectra and the direct measurements

were in very good agreements with each other. The position of the peaks were

in perfect correspondance. These observations indicated an excellent coherence

of the reconstruction technique, and permitted the validation of the procedure.

The inverse scattering procedure presented in this thesis then appears very

promising as a tool for characterizing the intensity distribution of an X-ray

tube spectrum with a high level of accuracy, even at low energies where other

methods usually fail. In particular, this procedure should allow to estimate

the parameters essential to the quality control of medical radiological systems.

Further investigation is still necessary in order to take advantage, for example,

of the characteristics of different targets.

In the future, the technique could be improved by introducing further

refinements in the computation of the scattering matrix, implementing for ex-

ample the Compton profile in the scatterer, partly responsible of the peaks

width, or multiple scattering effects. For second and higher orders of scattering,

it will be necessary to also include the effects of the photon polarization.
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Appendix

A
Appendix: Direct numeri-

cal methods for the resolu-

tion of linear systems

Direct numerical methods form a first class of efficient methods for solving linear

systems of equations. A particularity of direct methods is that they compute

the solution to a linear system of equations in a finite number of steps, entirely

determined by the size of the coefficient matrix. These methods would give

the precise answer if they were performed in infinite precision arithmetic. In

practice, however, this situation is very theoretical, because finite precision is

used for the computation. Consequently, assuming numerical stability of the

algorithm, the resulting vector is an approximation of the true solution.

The substitution technique

Let us define a lower triangular system of n linear equations with unknown −→s :

F−→s =
−→
b , F ∈ <n×n (A.1)

where:

F =


f11 0 · · · 0

f21 f22 · · · 0
...

...
. . .

...

fn1 fn2 · · · fnn

 ,
−→s =


s1

s2

...

sn

 ,
−→
b =


b1

b2
...

bn

 (A.2)
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The matrix F is assumed to be nonsingular. Since F is nonsingular, all the

diagonal terms are different from zero, it is possible to successively determine

the values of the unknowns si for i = 1, 2, . . . , n, by:

s1 =
b1
f11

(A.3)

si =
1
fii

bi − i−1∑
j=1

fijsj

 , i = 2, 3, . . . , n (A.4)

This algorithm is usually called forward substitution, and relations A.3 and A.4

as descent formula’s.

The system of equations defined by an upper triangular matrix F may

be solved by a similar treatment. In this case, the algorithm is referred to as

backward substitution, and is described in a general case by:

sn =
bn
fnn

(A.5)

si =
1
fii

bi − n∑
j=i+1

fijsj

 , i = n− 1, n− 2, . . . , 1 (A.6)

Forward and backward substitution algorithms need n(n+ 1)/2 multipli-

cations and divisions, and n(n − 1)/2 additions and subtractions. The global

arithmetic complexity of the algorithm is then n2 floating point operations.

The Gauss elimination technique

The Gauss elimination algorithm aims to reduce the matrix system of equations

F−→s =
−→
b in an equivalent form U−→s =

−→
b∗ , where U is an upper triangular

matrix and
−→
b∗ is a properly modified independent term. During the system

transformation, elementary row operations (linear combinations) are used to

reduce the coefficient matrix in an equivalent triangular form. The final system

may be solved by using a substitution algorithm.

Let us define the nonsingular matrix F ∈ <n×n, whose first diagonal term

a11 is assumed to be different from zero. Let us denote F (1) = F and b(1) = b.
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The values:

mi1 =
f

(1)
i1

f
(1)
11

, i = 2, 3, . . . , n (A.7)

where f (1)
ij are the elements of F (1), are called multipliers. The unknown s1 may

be eliminated from rows i = 2, 3, . . . , n by subtracting from it mi1 times the

first row, and by performing the same operation on the independent term. The

following quantities may then be defined:

f
(2)
ij = f

(1)
ij −mi1f

(1)
1j , i, j = 2, 3, . . . , n (A.8)

b
(2)
i = b

(1)
i −mi1b

(1)
1 , i = 2, 3, . . . , n (A.9)

At this stage of the elimination procedure, a second system of linear equations

of the following form is obtained:
f

(1)
11 f

(1)
12 · · · f

(1)
1n

0 f
(2)
22 · · · f

(2)
2n

...
...

. . .
...

0 f
(2)
n2 · · · f

(2)
nn




s1

s2

...

sn

 =


b
(1)
1

b
(2)
2
...

b
(2)
n

 (A.10)

or, in matrix form:

F (2)−→s =
−→
b (2) (A.11)

Of course, the second system of equations is equivalent to the starting one. This

second system may again be transformed in a way to eliminate the unknown

s2 from the rows 3 to n. By performing such successive transformations, it is

possible to obtain a finite sequence of systems:

F (k)−→x =
−→
b (k), 1 ≤ k ≤ n (A.12)

where the matrix F (k) has the following form:

F (k) =



f
(1)
11 f

(1)
12 · · · · · · · · · f

(1)
1n

0 f
(2)
22 f

(2)
2n

...
. . .

...

0 . . . 0 f
(k)
kk · · · f

(k)
kn

...
...

...

0 . . . 0 f
(k)
nk · · · f

(k)
nn


(A.13)
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where it has been assumed that f (k)
ii 6= 0 for i = 1, . . . , k − 1. Between the k-th

and (k + 1)-th system, the multipliers are given by:

mik =
f

(k)
ik

f
(k)
kk

, i = k + 1, . . . , n (A.14)

and the successive coefficient elements by:

f
(k+1)
ij = f

(k)
ij −mikf

(k)
kj , i, j = k + 1, . . . , n (A.15)

b
(k+1)
i = b

(k)
i −mikb

(k)
k , i = k + 1, . . . , n (A.16)

For k = n, an upper triangular system of linear equations F (n)−→s =
−→
b (n) is

obtained, which has the form:
f

(1)
11 f

(1)
12 · · · f

(1)
1n

0 f
(2)
22 · · · f

(2)
2n

...
. . .

...

0 0 · · · f
(n)
nn




s1

s2

...

sn

 =


b
(1)
1

b
(2)
2
...

b
(n)
n

 (A.17)

It is usual to denote the upper triangular matrix F (n) by U . The terms f (k)
kk

are commonly called the pivots, and must obviously be different from zero for

k = 1, 2, . . . , n− 1. The system A.17 may easily (but not always accurately) be

solved using backward substitution.

The Gauss elimination technique applied on a n × n system of equa-

tions requires 6n(n − 1)(n + 1) + n(n − 1) operations, plus n2 operations for

the backward substitution of the resulting triangular system. Approximately

(2n3/3 + 2n2) floating point operations are then necessary to solve the system.

The arithmetic complexity of the Gauss algorithm is consequently of 2n3/3

floating point operations. This algorithm is commonly used computed for sys-

tems with thousands of equations and unknowns, providing very often excellent

results [120]. It can be demonstrated that the algorithm is numerically extremely

stable for diagonally dominant and positive definite matrices [16, 104].

The Gauss elimination method fails if at least one pivot element is equal

to zero. In case of a zero pivot element, interchanging rows is necessary. This
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strategy is generalized by searching in F (k), at each step k of the elimination,

a nonzero pivot among the terms of the k-th column, for k going from line k

to line n. Furthermore, in order to insure as best as possible results with the

Gauss elimination, it is generally desirable to choose a pivot element with the

largest absolute value. This improves the numerical stability of the algorithm,

by reducing the successive effect of round-off error propagation. Consequently,

in order to insure a maximal stability of the numerical calculations, the pivot

element at the k-th operation is chosen to be the greatest element in absolute

value of the k-th column, for k going from line k to line n. Even if it is not

strictly necessary, the permutation of the pivoting element is generally done

at each step of the procedure. Of course, pivoting adds more operations to

the computational cost of the algorithm. The additional cost is of the order

of n2 floating point operations. This method is usually referred to as Gauss

elimination with partial pivoting.

The LU factorization

The LU factorization is a procedure for decomposing a nonsingular square ma-

trix F into the product of a lower triangular matrix L and an upper triangular

matrix U .

Let us define a nonsingular matrix F ∈ <n×n. The LU decomposition of

the matrix F has the following form:

F = LU (A.18)

where:

L =


1 0 · · · 0

l21 1 · · · 0
...

. . .
...

ln1 ln2 · · · 1

 , U =


u11 u12 · · · u1n

0 u22 · · · u2n

...
. . .

...

0 0 · · · unn

 (A.19)
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The LU decomposition is basically a modified form of the Gauss elimination

technique, with U = F (n). By defining the vector:

−→mk = [0, . . . , 0,mk+1,k, . . . ,mn,k]T ∈ <n (A.20)

and the matrix Mk by:

Mk =



1 . . . 0 0 . . . 0
...

. . .
...

... . . .
...

0 . . . 1 0 . . . 0

0 . . . −mk+1,k 1 . . . 0
... . . .

...
...

. . .
...

0 . . . −mn,k 0 . . . 1


= In −−→mk

−→e Tk (A.21)

as the k-th Gauss transform matrix, we have:

(Mk)ip = δip − (−→mk
−→e Tk )ip = δip −mip δkp, i, p = 1, 2, . . . , n (A.22)

From equation A.15:

f
(k+1)
ij = f

(k)
ij −mik δkk f

(k)
kj

=
n∑
p=1

(δip −mik δkp) f
(k)
pj , i, j = k + 1, . . . , n (A.23)

or, equivalently:

F (k+1) = Mk F
(k) (A.24)

Consequently, at the end of the elimination procedure, matrices Mk (for k =

1, . . . , n− 1) and U have been built. These matrices are such that:

Mn−1Mn−2 . . . M1F = U (A.25)

MatricesMk are lower triangular matrices, whose diagonal coefficients are equal

to 1, and whose inverse is given by:

M−1
k = 2In −Mk = In +−→mk

−→e Tk (A.26)
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The products (−→mi
−→e Ti )(−→mj

−→e Tj ) are equal to zero for i 6= j, then:

F = M−1
1 M−1

2 . . . M−1
n−1U (A.27)

= (In +−→m1
−→e T1 )(In +−→m2

−→e T2 ) . . . (In +−→mn−1
−→e Tn−1)U (A.28)

=

(
In +

n−1∑
i=1

−→mi
−→e Ti

)
U (A.29)

=



1 0 . . . . . . 0

m21 1
...

m31 m32
. . .

...
...

...
. . . 0

mn1 mn2 . . . mn,n−1 1


U (A.30)

Denoting L = (Mn−1Mn−2 . . . M1)−1 = M−1
1 . . . M−1

n−2M
−1
n−1, the previous ex-

pression becomes:

F = LU (A.31)

It is worthwhile noting that all the elements under the main diagonal of the

L matrix are the multipliers mik generated by the Gauss method, and the

diagonal terms are all equal to one.

Given a matrix equation F−→s =
−→
b , the solution is calculated in two steps.

Both matrices L and U are first computed, and the resolution of the system of

equations is done by successively solving two triangular systems:

L−→y =
−→
b (A.32)

U−→s = −→y (A.33)

Computing the LU decomposition requires 2n3/3 floating point opera-

tions. Obviously, the arithmetic complexity of the LU decomposition is similar

to the Gauss elimination complexity.

The Cholesky decomposition

The Cholesky decomposition is a matrix factorization of symmetric positive-

definite matrices into the product of a lower triangular matrix and its conjugate
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transpose. When applicable, the Cholesky decomposition is roughly twice as

efficient as the LU decomposition for solving large linear systems of equations.

Let us define a matrix F ∈ <n×n as a symmetric positive-definite matrix.

It exists a unique lower triangular matrix H ∈ <n×n with strictly positive

diagonal elements such that:

F = HHT (A.34)

where:

h =


h11 0 . . . 0

h21 h22 . . . 0
...

...
. . .

...

hn1 hn2 . . . hnn

 (A.35)

The matrix H is commonly called the Cholesky triangle. In practice, the

elements of H are constructed directly, rather than forming the L(1) and U (1)

matrices first, as in the LU decomposition. This step is done in a way similar

to the LU factorization. Assuming that i ≤ j, the Cholesky decomposition

then requires that:

fij =
i∑

k=1

hik hjk, 1 ≤ i ≤ j ≤ n (A.36)

In equation A.36, the fact that (HT )kj = hjk has directly been used. The sum

only extends up to k = i sinceH is lower triangular. Of couse, the same equation

will also hold for i > j, since F is a symmetric matrix. For i = j, i.e. for the

main diagonal matrix coefficients, equation A.36 gives:

h11 =
√
f11 (A.37)

hii =

(
fii −

i−1∑
k=1

h2
ik

)1/2

, 1 < i ≤ n (A.38)

It is here interesting to note that the calculations are done column by column,

starting with the first diagonal element, then continuing in the same column,
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passing after to the second diagonal element, etc. As F is a positive-definite

matrix, f11 (and therefore h11) is a positive real number (all the principal minors

have to be positive). Further, all the diagonal coefficient hii are also positive.

The non diagonal coefficients are given by:

hji =
1
hii

(
fij −

i−1∑
k=1

hikhjk

)
, 1 ≤ i < j ≤ n (A.39)

For large n the number of the operations required by the Cholesky al-

gorithm is approximately n3/3 floating point operations which, as might be

expected, is half the number given for the LU factorization of a non symmet-

ric matrix. This algorithm is very stable with respect to the round-off error

propagation [104].
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B
Appendix: Carbon scatter-

ing system

Unpreconditioned carbon system

In this part of the appendixes, the figures of the reconstructed vectors obtained

with the different numerical methods are given for the unpreconditioned carbon

matrix system. The figures correspond to the vectors reported in Table 8.4,

p. 101.

Vector Material Page
−→s rec, SVD carbon p. 179
−→s rec, LU carbon p. 180
−→s rec, Sub carbon p. 181
−→s rec, BE carbon p. 182
−→s rec,G carbon p. 183
−→s rec,Gpp carbon p. 184
−→s rec, J carbon p. 185
−→s rec, SOR carbon p. 186
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Right preconditioned carbon system

In this part of the appendixes, the figures of the reconstructed vectors obtained

with the different numerical methods are given for the right preconditioned car-

bon matrix system. The figures correspond to the vectors reported in Table 8.5,

p. 102.

Vector Material Page
−→s rec, SVD carbon p. 188
−→s rec, Chol carbon p. 189
−→s rec, LU carbon p. 190
−→s rec, Sub carbon p. 191
−→s rec,G carbon p. 192
−→s rec,Gpp carbon p. 193
−→s rec, J carbon p. 194
−→s rec, SOR carbon p. 195
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Left preconditioned carbon system

In this part of the appendixes, the figures of the reconstructed vectors obtained

with the different numerical methods are given for the left preconditioned carbon

matrix system. The figures correspond to the vectors reported in Table 8.6,

p. 103.

Vector Material Page
−→s rec, SVD carbon p. 197
−→s rec, Chol carbon p. 198
−→s rec, LU carbon p. 199
−→s rec, Sub carbon p. 200
−→s rec,G carbon p. 201
−→s rec,Gpp carbon p. 202
−→s rec, J carbon p. 203
−→s rec, SOR carbon p. 204
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Appendix

C
Appendix: Aluminium

scattering system

Unpreconditioned aluminium system

In this part of the appendixes, the figures of the reconstructed vectors ob-

tained with the different numerical methods are given for the unpreconditioned

aluminium matrix system. The figures correspond to the vectors reported in

Table 8.8, p. 110.

Vector Material Page
−→s rec, SVD aluminium p. 206
−→s rec, LU aluminium p. 207
−→s rec, Sub aluminium p. 208
−→s rec, BE aluminium p. 209
−→s rec,G aluminium p. 210
−→s rec,Gpp aluminium p. 211
−→s rec, J aluminium p. 212
−→s rec, SOR aluminium p. 213
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Right preconditioned aluminium system

In this part of the appendixes, the figures of the reconstructed vectors obtained

with the different numerical methods are given for the right preconditioned

aluminium matrix system. The figures correspond to the vectors reported in

Table 8.9, p. 111.

Vector Material Page
−→s rec, SVD aluminium p. 215
−→s rec, Chol aluminium p. 216
−→s rec, LU aluminium p. 217
−→s rec, Sub aluminium p. 218
−→s rec,G aluminium p. 219
−→s rec,Gpp aluminium p. 220
−→s rec, J aluminium p. 221
−→s rec, SOR aluminium p. 222
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Left preconditioned aluminium system

In this part of the appendixes, the figures of the reconstructed vectors obtained

with the different numerical methods are given for the left preconditioned alu-

minium matrix system. The figures correspond to the vectors reported in Ta-

ble 8.10, p. 113.

Vector Material Page
−→s rec, SVD aluminium p. 224
−→s rec, Chol aluminium p. 225
−→s rec, LU aluminium p. 226
−→s rec, Sub aluminium p. 227
−→s rec,G aluminium p. 228
−→s rec,Gpp aluminium p. 229
−→s rec, J aluminium p. 230
−→s rec, SOR aluminium p. 231



Appendix: Aluminium scattering system 224

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 S

V
D

 

F
ig

u
re

C
.1

7:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

SV
D
.T

he
sy
st
em

is
le
ft

pr
ec
on

di
-

ti
on

ed
by

th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.



Appendix: Aluminium scattering system 225

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 C

h
o
l 

F
ig

u
re

C
.1

8:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

C
ho

l.
T
he

sy
st
em

is
le
ft

pr
ec
on

di
-

ti
on

ed
by

th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.



Appendix: Aluminium scattering system 226

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 L

U
 

F
ig

u
re

C
.1

9:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

L
U
.T

he
sy
st
em

is
le
ft
pr
ec
on

di
ti
on

ed

by
th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.



Appendix: Aluminium scattering system 227

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 S

u
b
 

F
ig

u
re

C
.2

0:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

Su
b
.T

he
sy
st
em

is
le
ft
pr
ec
on

di
ti
on

ed

by
th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.



Appendix: Aluminium scattering system 228

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 G

a
u
ss

 

F
ig

u
re

C
.2

1:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

G
.T

he
sy
st
em

is
le
ft
pr
ec
on

di
ti
on

ed

by
th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.



Appendix: Aluminium scattering system 229

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 G

a
u
ss

P
P

 

F
ig

u
re

C
.2

2:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

G
pp
.T

he
sy
st
em

is
le
ft

pr
ec
on

di
-

ti
on

ed
by

th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.



Appendix: Aluminium scattering system 230

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 J

a
c
o
b
i 

F
ig

u
re

C
.2

3:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

J
.T

he
sy
st
em

is
le
ft
pr
ec
on

di
ti
on

ed

by
th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.



Appendix: Aluminium scattering system 231

1
,0

E
-0

9
 

1
,0

E
-0

8
 

1
,0

E
-0

7
 

1
,0

E
-0

6
 

1
,0

E
-0

5
 

1
,0

E
-0

4
 0

,0
 

0
,5

 
1
,0

 
1
,5

 
2
,0

 
2
,5

 
3
,0

 
3
,5

 
4
,0

 

Intensity (a.u.) 

W
av

el
en

gt
h

 (Å
) 

S
o
u
rc

e
 v

e
c
to

r 

R
e
c
o
n
st

ru
c
te

d
 s

o
u
rc

e
 v

e
c
to

r,
 S

O
R

 0
8
0
 

F
ig

u
re

C
.2

4:
C
om

pa
ri
so
n
be

tw
ee
n
th
e
so
ur
ce

sp
ec
tr
um
−→ s

an
d
th
e
re
co
ns
tr
uc
te
d
so
ur
ce

ve
ct
or
−→ s

re
c,

SO
R
.T

he
sy
st
em

is
le
ft

pr
ec
on

di
-

ti
on

ed
by

th
e
ad

jo
in
t
m
at
ri
x.

A
lu
m
in
iu
m

sa
m
pl
e.




	General introduction
	Objectives of the thesis
	Organization of the thesis

	Photon--matter interactions
	The photoelectric effect
	The scalar photoelectric kernel

	The Rayleigh scattering
	Scalar kernel

	The Compton scattering
	Compton kernel in the Waller-Hartree approximation
	Compton kernel in the Impulse Approximation


	Boltzmann transport equations for photons
	The forward Boltzmann equation
	The adjoint Boltzmann transport equation
	The adjoint function
	The adjoint to the transport operator

	Forward and adjoint transport equations in the monochromatic beam model
	Discretization of the forward and adjoint transport equations for numerical calculations

	The complete inverse calculation strategy
	Description of the forward measurement procedure
	Description of the complete inverse procedure

	The concept of ill-posed problem
	Ill-posed problem analysis tool: the singular value decomposition
	Stability of a linear system of equations: the condition number
	Vector norm: definitions
	Vector norm: some fundamental properties
	Matrix norm: definitions
	Matrix norms: some properties
	The condition number in a subordinate matrix norms


	Unfolding from the detector response
	The convolution equation and its discretization
	Regularization techniques: general introduction
	The Tikhonov regularization method
	Truncated singular value decomposition, TSVD
	Selection of the truncation order

	Non-linear least square method
	The maximum entropy method
	The Shannon and the cross entropy
	The MAXED algorithm


	Inverse scattering in the spectrometer
	Computation of the forward matrix
	Direct numerical methods for the resolution of linear systems
	Iterative numerical methods for the resolution of linear systems
	The Jacobi method
	The Gauss-Seidel method
	The method of successive over-relaxation

	Preconditioning of the system of equations
	Obtention of a better conditioned system of equations
	Physical signification of the adjoint transport matrix as a left preconditioner


	Simulated analysis of the scattering problem
	Pure carbon scattering matrix case
	Evaluation of the systems ill-conditioning
	Resolution of the three matrix systems
	Conclusions for the carbon scattering system

	Pure aluminium scattering matrix case
	Evaluation of the systems ill-conditioning
	Resolution of the three matrix systems
	Conclusions for the aluminium scattering system

	Conclusions about the numerical experiments

	Application of the method on real measurements
	Unfolding of the measured vectors
	Computation of the discretized response function
	Smoothing of the measured spectrum
	Comparison of the unfolding methods: selection of the scattered vector

	Inverse scattering in the spectrometer: calculation of the source vector
	Spectral conditioning of the coefficient matrix
	Inverse scattering on the graphite target

	Comments on the reconstructions, and comparison with the direct measurements

	Conclusions and future prospects
	Bibliography
	Appendix: Direct numerical methods for the resolution of linear systems
	The substitution technique
	The Gauss elimination technique
	The LU factorization
	The Cholesky decomposition

	Appendix: Carbon scattering system
	Unpreconditioned carbon system
	Right preconditioned carbon system
	Left preconditioned carbon system

	Appendix: Aluminium scattering system
	Unpreconditioned aluminium system
	Right preconditioned aluminium system
	Left preconditioned aluminium system


