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SUMMARY 

 

Wheat is considered one of the main and strategic crops in Mediterranean countries. Syria is one 

of the few self-sufficient countries in wheat production (3.6 million tons in 2010) and an 

important exporter. In Italy durum wheat is considered a key crop and covers almost 50% of 

cereal cultivated areas.  

Fusarium Head Blight (FHB), a worldwide cereal disease that harms the crops in different 

manners, causes significant yield reduction, inferior grain quality, and is responsible for the 

mycotoxins accumulation. Fusarium graminearum and F. culmorum are the prevalent causal 

agents. To our knowledge, there are no published records on the presence of FHB disease in 

Syria, while in Italy it has been present, especially in northern and central regions, since 1995. 

Cultivar resistance is one of the most promising and effective managing strategies against FHB 

but unfortunately, no resistant cultivars to FHB exist. 

This research covered different aspects such as: identification, either morphologically or 

molecularly, of fungal population isolated from Italian and Syrian wheat kernels cultivated in 

distinct regions with particular attention to Fusarium species (CHAPTER I); investigation of the 

capability of different Fusarium species to produce mycotoxins after inoculation on different 

media (CHAPTER II); detection of mycotoxins in different Syrian and Italian wheat kernel 

samples (CHAPTER III); study the aggressiveness of F. culmorum isolates using different assays 

and validation of a new Petri-dish test (CHAPTER IV and V); study the behavior of different 

Syrian wheat cultivars grown under different conditions (field and growth chamber) toward FHB 

agents  (CHAPTER VI).  

CHAPTER I of this research concerns the collection of 48 Syrian and 46 Italian wheat kernel 

samples from six Syrian and seven Italian regions, respectively, in the years 2009 and 2010 and 

their analysis for Fusarium presence. Fusarium strains were morphologically and molecularly 

identified. F. graminearum and F. culmorum strains were chemotyped by multiplex PCR assays.  

The mycological analysis of Syrian samples revealed the presence of different fungal genera as 

Alternaria (53%), Cladosporium (15%), Penicillium (12%), Rhizopus (6%), Aspergillus (5%), 

Fusarium (4%), Epicocum (2%) and also other fungi but in low percentages. Fusarium spp. were 

present in 62.5% of Syrian samples with a relative frequency of 4% in Fusarium infected 



SUMMARY 
 

2 
 

samples. 163 Fusarium strains were collected and identified to species level. The most frequent 

species were: F. tricinctum (30.1%), F. culmorum (17.8%), F. graminearum (12.9%), F. equiseti 

(14.1%), F. verticillioides (10.4%) and F. proliferatum (8%) while to a lesser extent F. 

oxysporum (3%), F. semitectum (1.8%), and F. pseudograminearum (1.8%). The 3Acetyl-

Deoxynivalenol (3Ac-DON) and nivalenol (NIV) chemotypes were found in F. culmorum whilst 

all F. graminearum strains belonged to NIV chemotype. In Italian samples, Fusarium spp. were 

present at 67.4%. Among 93 Fusarium strains, F. graminearum (74.2%), F. poae (17.2%) and F. 

culmorum (8.6%) were identified morphologically and molecularly. 15Ac-DON was the 

prevalent chemotype in F. graminearum, while only 3Ac-DON chemotype was detected in F. 

culmorum.  

CHAPTER II regards mycotoxin production by 60 Syrian Fusarium strains, belonging to nine 

species, grown on wheat medium screened by HPLC-MS/MS in the laboratory of Toxicology, 

Department of Preventive Medicine, Faculty of Pharmacy, Valencia University (Spain). The 

results showed that all F. culmorum, F. graminearum and F. pseudograminearum strains were 

zearalenone producers. The production of fumonisin exclusively by all F. proliferatum and F. 

verticilliodes strains, the scattered presence of DON, and the absence of emerging mycotoxins 

(except one strain) were the prominent characters of the analysed strains. The quantification of 

mycotoxin production from 28 different Fusarium strains, belonging to four species associated to 

FHB, was done on rice medium by HPLC-MS/MS in the laboratory of Molecular Phytopathology 

and Mycotoxin Research, Göttingen University (Germany) and had shown accordance with the 

chemotypes of the strains, i.e. potential ability to produce mycotoxins. ZEN was found to be the 

predominant mycotoxin in all the tested strains (except for one F. equiseti). The most important 

species, F. graminearum and F. culmorum, were characterized by the presence of NIV/FUS-X 

and DON or its derivatives, respectively. Moreover, all F. culmorum strains belonged to NIV 

chemotype were capable to produce both NIV and DON.  

In CHAPTER III the estimation of mycotoxin contents on different Syrian and Italian wheat 

kernel samples, collected from different geographical areas from both countries, has been 

determined by HPLC-MS/MS. The results illustrated that 60% of Syrian samples were 

contaminated with mycotoxins: 27.5% with Fusarium mycotoxins, mainly DON, Fumonisin, 

ZEN in addition to emerging mycotoxins i.e. beauvericin, enniatins, and 55% with aflatoxins and 

ochratoxin. Italian seed samples were contaminated for 80.43% with Fusarium mycotoxins. 
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However, the levels of mycotoxins were under the European allowable limits (CE No 1881/2006 

as amended by CE No178/2010) with the exception of one sample that had ZEN level higher than 

the allowable ones. 

In CHAPTER IV, it has been studied the aggressiveness of different Syrian and Italian F. 

culmorum strains on a FHB susceptible cultivar, Simeto, using three different assays (floret 

inoculation in the growth chamber, ear inoculation in the field and Petri dish test). The 

aggressiveness levels of the isolates were further investigated for the relationship among 

aggressiveness parameters assessed in the three assays. Significant differences in aggressiveness 

levels within F. culmorum population and good correlations among the parameters of the three 

assays were found.   

CHAPTER V is about the Petri dish test on two different wheat cultivars, Simeto and Duilio. The 

assessment was based on germination reduction, coleoptiles length reduction and area under 

disease progress curve standard. The data were well correlated with the in vivo data and allowed 

to validate a new parameter named Aggressiveness Petri dish Index (AP index). This Petri dish 

test is a reliable and fast method which could be used to screen the aggressiveness of F. 

culmorum strains before artificial inoculation in field trials. 

In CHAPTER VI, the behavior of ten Syrian and one Italian (control) durum wheat cultivars 

towards FHB agents, under controlled and field conditions, was evaluated after artificial infection 

by Syrian and Italian F. culmorum strains. Syrian cultivars showed variable reactions to FHB 

agents in both trials. The cultivars Sham9, Sham5 and ACSAD1315 showed high susceptibility 

whilst the cultivars Jory and ACSAD1333 were the most tolerant to FHB agents. Moreover, Jory, 

the most tolerant cultivar had the lowest level of DON accumulation and could be a promising 

cultivar for breeding purposes. In conclusion, this is the first study on mycological and 

toxicological characterization of Syrian Fusarium species associated to FHB. The results should 

be taken in consideration in order to prevent, or at least reduce, the risks of any upcoming FHB 

epidemic, which might be caused by the changes in agricultural practices, imposed a cause of 

drought. Furthermore, these results should aid in the establishing of “Syrian allowed limits”, for 

Fusarium mycotoxins (conventional and emerging) in cereal food and feed. 
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Wheat 

Wheat (Triticum spp.) originates from south-west Asia, and some of the earliest remains of the 

crop were found in Syria, Jordan, and Turkey dated back to 10,000 years (Heun et al., 1997). It is 

the first food crop in all parts of the world where bread is the staple food for more than three-

quarters of the world (Dib and Soussi, 2004). The importance of wheat has been mainly attributed 

to its ability to be ground into flour, semolina, and etc. that form the basic ingredients of bread 

and other bakery products and pastas, e.g. macaroni, spaghetti (Chandrika and Shahidi, 2006; 

Gallo et al., 2008). There are three main factors playing an important role in the success of wheat 

crop: (1) adaptation of its cultivation to a wide range of environments, (2) ease grain storage and 

transportation, and (3) production of a limitless variety of healthy and appealing food (Morris et 

al., 2011). FAO’s estimation for global wheat production in 2010 stands at 653 million tonnes 

(FAO, 2010), while FAO’s first forecast for world wheat production in 2011 stands at 676 

million tonnes. In the first rank comes the EU as the main wheat producer with an expected 

production of 142 million tonnes in 2011 (FAO, 2011). Syria produces both durum (T. durum L.) 

and soft (common) (T. aestivum L.) wheat over the winter season; durum wheat in rainfed areas 

(60%) whilst soft wheat is cultivated mainly in irrigated areas (40%) (Sadiddin and Atiya, 2009). 

Depending on the rainfall, rainfed yields are highly unstable with a production average ranging 

from less than 0.5 tons per ha in drought years to over 1.7 tons per ha in years of good rainfall. 

Yields are more stable in an irrigated area with national average ranging from 3.0 to 4.4 tons per 

ha (www.pecad.fas.usda.gov). Syrian agricultural policy resulted in an increase in cultivation of 

wheat in the irrigated land from 229,000 ha in 1988 to 800,000 ha in 2003 and 1.9 million ha in 

2005 with annual production between 4 and 5 million tonnes (NAPC, 2009) and reached 3.6 

million tonnes in 2010 (FAO, 2011). 

Wheat and its two main products, i.e. bread, and bulgur are familiar commodities in Syria 

(Haydar et al., 1990) with an average consumption of bread of 12.9 Kg per capita per month 

(FAO, 2003). In Italy, both types of wheat are cultivated, and in 2010 the annual production 

reached 2.9 million tons for soft wheat and 3.6 million tons for durum wheat (Istat, 2011). In 

particular, in the province of Bologna, Emilia-Romagna region in Northern Italy, the area under 

wheat cultivation increased from 8,200 ha in 1999 to 14,100 ha in 2007 (ISTAT data, 

http://agri.istat.it). Durum wheat is commonly used in Italy for pasta and semolina manufacturing 
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with a productivity that reaches 3,194,152 tons and 5,850,000 tons, respectively (FranceAgriMer, 

2011). 

 

Fusarium spp. 

The teleomorph of the majority of Fusarium species belongs to the phylum Ascomycota, class  

Ascomycetes, order Hypocreales, genus Gibberella, and only a small number of Fusarium 

species, have telomorph in Hemanectria and Albonectria genera (Leslie and Summerell, 2006). 

Fusarium genus is common in nature, with pathogen and saprophyte species (Liddell, 1991). A 

high number of species is responsible for plant disease in several crops as well as cereals and at 

the same time can be pathogenic for human and animals. Fusarium spp. can be isolated from 

different plant organs, plant debris and soil (Summerell et al., 2003). Leslie and Summerell 

(2006) reported that at least 80% of all cultivated plants are associated with one disease caused 

by a Fusarium species and reviewed all Fusarium species associated with plant diseases and 

especially cereals. Fusarium infection can occur at all the plant developmental stages, from seed 

germination to matured vegetative tissues, depending on Fusarium species involved and the host 

plant. Various Fusarium species can coexist in the same plant causing diseases with a complex 

etiology and able to produce secondary metabolites, mycotoxins (Logrieco et al., 2007). Early 

and precise identification of Fusarium spp. in every stage of infection is essential in predicting 

the potential toxicological risk to which the plants are exposed other than preventing these 

metabolites to be formed, since most of Fusarium species have specific mycotoxin profiles. 

The ambiguous identification of mycotoxigenic Fusarium species is still the most critical issue. 

In fact, the genus Fusarium is characterized by the presence of a large number of species, now 

stands over 80, which are continuously changing, due to the various systems of taxonomy (Leslie 

and Summerell, 2006). These continuous changes are causing controversies among the researchers 

(Asan, 2011). 

This genus is provided by few morphological features useful for distinguishing the different 

species based on traditional methods, but with some experience and using the morphological 

characteristics - colony features, macroconidia, microconidia, chlamydospores, and other 

microscopic features (Dongyou, 2009) - we can discriminate the most important pathogenic and 

toxigenic Fusarium species (Dongyou, 2009). Macroconidia of Fusarium species are sickle 
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shaped, with multi septa and resemble a banana or a canoe (Figure 1a, 1b), microconidia are one 

or two celled and develop from phialides. Chlamydospore with thick walls can be found in some 

species (Leslie and Summerell, 2006). The occurrence of asexual spores, the distinctive banana 

shaped macroconidia, is considered the main trait needed for the species to be placed in the genus 

Fusarium (Moretti, 2009). The septated macroconidia are produced in the aerial mycelium and 

particularly on mono and polyphialides, but often in specialized structures called sporodochia on 

short monophialides (Hawksworth et al., 1983) (Figure 1d). The term monophialide is refereed to 

a conidiation cell with a unique pore from which the endoconidia are released, while a 

polyphialide can have multiple openings. The other trait which is used is microconidia, which can 

vary in shape and size and are produced on the aerial mycelium, either in clumps or chains, both 

on monophialides and polyphialides (Figure 1c, 1e). Finally, chlamydospores, the resistance 

structures, with thick high lipid content walls, can be formed on the middle or the apex of the 

hyphae (Figure 2) (Sen and Asan, 2009). Depending on the different shapes and absence or 

presence of the above-mentioned structures in addition to the characteristics of the micro- and 

macro-conidiogenous cells, researchers can distinguish the different Fusarium species. The 

different shapes of macroconidia remain the most important features. All taxonomists suggest, as 

the correct steps to reach the goal of characterization and identification of the species, the use of 

strain cultures obtained from single spore isolation, grown on suitable media under optimal 

condition (Dongyou, 2009).  

On the other hand, the increasing utility of DNA-based methods which are believed to be a 

revolution in Fusarium taxonomy prove the occurrence of underestimation of the true diversity in 

the genus Fusarium (O’Donnell, 2000). The molecular phylogenetic analysis recently proposed 

has been applied by many researchers in order to examine the taxonomy of the genus Fusarium, 

however many phylogenetic relationships remain unclear due to the presence of only few 

comprehensive phylogenetic analysis performed for this genus (Watanabe et al., 2011). Analysis 

such as DNA sequencing and species-specific PCR assays must also be conducted.  

In Fusarium, the translation elongation factor 1-α (TEF) gene, which encodes an essential part of 

the protein translation machinery, has become the marker of choice as a single-locus 

identification tool (Geiser et al., 2004). This is due to the appearance of constant occurrence of 

TEF gene as single-copy in Fusarium with high level of sequence polymorphism among closely 
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related species even when compared with the intron-rich portions of protein-coding genes such as 

calmodulin, β-tubulin and histone H3 (Rahjoo et al., 2008).  

Geiser et al. (2004) created the first generation of FUSARIUM- ID v.1.0, a publicly available 

database started with 441, but currently containing 5560, sequences representing a 

phylogenetically diverse selection of TEF sequences from the genus and placed it on a local 

BLAST server, which can be accessed at http://isolate.fusariumdb.org/index.php. Some species-

specific PCR primers have been developed but in most cases they need to be more widely tested 

especially for analysis of strains from various crops and /or geographic locations (Rahjoo et al., 

2008). Some researchers have used species-specific PCR assay to identify some Fusarium 

species as F. culmorum (Nicholson et al., 1998), F. graminearum (Waalwijk et al., 2003), F. 

poae (Parry and Nicholson, 1996) and F. pseudograminearum (Aoki and O'Donnell, 1999). 

 

Figure 1. Spore morphology in the identification of Fusarium species.  

A: Macroconidia, B: Macroconidial apical and basal cells, C: Microconidia, D: Phialides, E: 

Microconidial chains (Leslie and Summerell, 2006)  
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Figure 2. Chlamydospores of Fusarium species (Leslie and Summerell, 2006) 

 

 

Fusarium head blight in wheat 

The seed infection by Fusarium pathogens is a great risk for wheat cultivation. Fusarium species 

are widespread pathogenic fungi, which can cause Fusarium Head Blight (FHB) and Fusarium 

crown rot in wheat (Goswami and Kistler, 2004). Fusarium crown rot is known to occur in Syria 

(El-Khalifeh et al., 2006) while FHB or scab, which is a more dangerous and important disease, 

has not been reported in Syria yet. FHB epidemic incidences can arise suddenly: their appearance 

depends on environmental conditions such as rainfall occurring during flowering in the presence 

of susceptible hosts and aggressive isolates of the pathogen (Xu and Nicholson, 2009). Recent 

epidemic outbreaks of FHB were seen in South America, Asia, and Europe (Parry et al., 1995; 

McMullen et al., 1997). In Canada, the yield loss caused by FHB reached up to 70 % (Bai and 

Shaner, 1994), while in Europe the losses were estimated between 10 and 30 % (Bottalico and 

Perrone, 2002; Logrieco et al., 2002a). Severe epidemics in USA, in the years 1991-1997, caused 

a total loss of $2.6 billion and subsequently induced mycotoxin contamination of wheat and 

barley (Windels, 2000). In Italy FHB was first reported at the beginning of the 20th century, and 

it has been permanently present since 1995, especially in the north-central regions, with variable 

incidence and severity related to the year, area and cultivar (Pancaldi et al., 1996; Rossi et al., 

2006 ). The aetiology of FHB is complex because of the involvement of several species of 

Fusarium and Microdochium nivale (Fr.) Samuels & I.C. Hallett. Fusarium species most 

frequently associated in Italy are F. graminearum Schwabe (teleomorph Gibberella zeae 

[Schwein.] Petch), F. culmorum (W.G. Sm.) Sacc., F. avenaceum (Fr.) Sacc. (teleomorph 

Gibberella avenacea R.J. Cook) and F. poae (Peck) Wollenw. (Pancaldi et al., 2010).  
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Epidemiology 

Understanding the life cycle of Fusarium pathogens (Figure 3) is fundamental to understand the 

relation with seedling blight and head blight on small grains, including wheat. Plant debris is 

considered as the primary source of the inoculum which might be ascospores, hyphal fragments, 

macroconidia or chlamydospores (Goswami and Kistler, 2004). Boshoff (1996) reported that the 

saprophytic survival of the pathogen in residues could transfer inoculum from one season to 

another in addition to the capability of some Fusarium species to survive for long time in soil 

(Shaner, 2003). Cereal seeds sowed into Fusarium infested soil may result in the infection of 

plants and development of seedling rot. Fusarium- infected grains, resulting from the 

development of FHB, if used as seed, can provide an important source of inoculum for the 

development of seedling blight that will complete the disease cycle (Dill-Macky, 2003). Since 

hyphal fragments are believed to be an important source of inoculum for root infection, the air 

born inocula are also important in infecting the ears of the plants later in the growing season. Ear 

infection can happen either by rain-splashed conidiospores (asexual) transferred from the stem 

base or upward from the soil surface to the leaves by direct wind-dispersed ascospores (sexual) 

(Trail et al., 2005). High humidity, is needed for ascospore release, during anthesis to produce 

FHB (Trail et al., 2002). Nelson et al. (1981) mentioned that the intensity of the infection is 

reduced when ascospore release does not correspond with anthesis. Disease signs are 

characterized by bleached spikeltes of the head and if the conditions are highly favorable to FHB, 

pink-red mycelium and conidia develop on the spikelets and infection spreads throughout the 

entire head (Figure 4). Infected kernels finally become shriveled and chalky white in appearance 

(von der Ohe, 2010). 
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Figure 3. Disease cycle of the causal agents of FHB in wheat 

 

Figure 4. FHB symptoms: a) pink-red mycelium on the spikelets, b) bleached spike  

   a)                                 b) 

 

Conditions for Infection and Colonization 

Field monitoring is the base for most studies, which considered the relationship between 

environmental factors and FHB. The conditions for all FHB causative agents in general are 
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similar: wet or moist conditions during flowering (De Wolf et al., 2003). Nonetheless, there are 

some differences in the temperatures required for germination and infection among and within 

the Fusarium spp. In vitro studies showed that isolates from different origins have optimal 

temperatures in accordance with their country of origins (De Wolf et al., 2003). 

The optimum temperature for F. avenaceum and F. graminearum are approximately between 28 

and 29 °C on detached spikes, and spikes inoculated with F. culmorum have a lower infection 

incidence with the corresponding optimum temperatures of 18 and 26.5°C (Rossi et al., 2001). 

The relationships between the prevalence and abundance of FHB species with the environmental 

variables are not similar: F. graminearum is more frequent with warmer/humid conditions; F. 

poae is associated with relatively drier and warmer conditions, and F. avenaceum and F. 

culmorum are both associated with cooler/wet/humid conditions (Xu and Nicholson, 2009). 

 

Fusarium head blight and food quality 

Dexter et al. (1997) mentioned that the effects of FHB on wheat processing quality have not 

received much attention. On the other hand, artificial inoculation of wheat heads under field 

conditions with F. culmorum and examination of FDK under scanning electron microscopy 

(SEM) has revealed structural alteration caused by the infection and colonisation of kernels by 

this pathogen. Moreover, in contrast to the healthy kernels in which the endosperm cells were 

filled with tightly packed large and small starch granules, surrounded by the protein matrix, the 

principal changes in the structure of infected kernels characterized by partial or complete lack of 

cell walls, visible symptoms of the amylolytic degradation of starch granules and lack of the 

protein matrix surrounding the starch granules. These symptoms are likely a sign of the activity 

of hydrolytic enzymes produced by the fungi growing in the infected kernels (Jackowiak et al., 

2005). Similar images of the endosperm under scanning electron microscopy were observed on 

kernels of barley severely infected by F. graminearum (Schwarz , 2003). The structure and the 

quantity of gluten protein are strongly related to the quality and technological properties of wheat 

flour (Wang et al., 2005). Inferior backing quality caused by the degradation of wheat protein, i.e. 

gluten and glutanin as a result of the activity of proteolytic enzymes. This interprets the weaker 

dough with a lower loaf volume during manufacturing (Jackowiak et al., 2005).  
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Mycotoxins 

Infected grains can be contaminated considerably with secondary metabolites (mycotoxins) that 

are recognized as health hazard for both human and animals (Mankeviciene et al., 2007). Many 

authors have indicated the importance of mycotoxins in the mechanism of infection since they are 

involved in the inhibition of the host resistance reactions (Jansen et al., 2005; Maier et al., 2006). 

Mycotoxin presence depends on several factors, such as fungal strain, climatic and geographical 

conditions, cultivation techniques, susceptibility level of host plants and crop protection, 

especially during storage (Pancaldi et al., 2010). Rotation intervals among host crops, land 

preparation, use of fertilizers, irrigation, and weed control have been listed as influencing factors 

(Parry et al., 1995). Major mycotoxigenic fungi involved in the human food chain belong to the 

filamentous genera Fusarium, Aspergillus and Penicillium (Jestoi, 2008). Fusarium species, are 

an example of mycotoxigenic fungi, able to produce several major mycotoxins, such as 

deoxynivalenol (DON), acetylated-DON (ac-DON), nivalenol (NIV), HT-2 and T-2 toxins and 

zearalenone (ZEN) (Figure 5). In addition, cyclohesadepsipeptide enniatin (ENN) and 

beauvericin (BEA) production has also been reported (Torp and Langseth, 1999; Uhlig et al., 

2006) (Figure 5). Poisoning with Fusarium mycotoxins causes acute and chronic symptoms such 

as nausea, internal organs damage, cancer, and infertility (Rocha et al., 2005; Minervini et al., 

2004; Nielsen et al., 2009). DON mycotoxin, which is a member of trichothecene B group, is 

known to inhibit protein synthesis of eukaryotic cells and possesses neurotoxic and 

immunosuppressive activity (Snijders, 1994; Benett and Klich, 2003). While low concentration 

of DON in feed can reduce the food consumption of the animals and affect their appetite, higher 

doses induce vomiting (Benett and Klich, 2003). Consequently, mycotoxin is considered a major 

concern for food safety. Gareis et al. (1989) reported that DON contamination in European 

countries was found in more than 90% of samples harvested in years with FHB epidemics; 

Lepschy (1992) instead mentioned that even without any epidemics the levels of DON reached 

0.1 PPM in German wheat samples. Due to food-safety concerns, approximately 100 countries 

have regulated the maximum levels of mycotoxins in food or feedstuffs by the end of 2003 (van 

Egmond et al., 2007). In the EU, the limits in grains and food products allowed a maximum DON 

content in unprocessed bread wheat of 1.25 mg kg-1, in bread and bakeries of 0.5 mg kg-1, and 

0.2 mg kg-1 of baby food (Anonymous, 2005). No regulations are known in Syria for Fusarium 

mycotoxins allowable limits in food and feeds. 
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Figure 5. Chemical structures of mycotoxins produced by Fusarium species a) conventional, b) 

emerging (Sebastia et al., 2012) 

  a) 

 

  b) 
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Control 

Several authors have reported different control measures for FHB (Parry et al., 1995; Pancaldi et 

al., 2010), that include the use of cultural control techniques, genetic resistance and the use of 

chemical or biological antagonists. The cultural control techniques comprehend the use of 

suitable crop rotations, appropriate use of fertilizers, irrigation and weed control. Lemmens et al. 

(2004) suggested that growing resistant cultivars, genetically developed, could be one of the 

solutions to solve the problem related to mycotoxin accumulation in wheat. Application of 

fungicides, e.g. Tebuconazol and Prothioconazol, as chemical control against FHB, is still 

difficult since, they depend on the environment and the genotype as well as on the fungicide 

applications that need to be very close to each other. The best time should be at flowering, but it 

is limited because is affected by the precipitation time (Von der Ohe, 2010). The nature of the 

limited time in which the heads are susceptible to FHB infection (only during anthesis, and for a 

short period after) makes this disease a potential target for the biological control. There are 

numerous reports of bacterial or fungal antagonists to Fusarium species, but the results in the 

field are inconsistent or even a complete failure (Xu and Nicholson, 2009). Concerning the 

biological antagonists, the goal seems far away to be reached (Parry et al., 1995). The 

agronomical practises are known to affect FHB. Application of fertilizers from 0 to 80 kg/ha 

increased FHB severity and DON grain contamination, and it can be explained by the fact that 

fertilizers increase the plant density and alter the microclimate (Lemmens et al., 2004). Tillage 

and stubble management show efficacy in influencing FHB, especially when the previous crops 

cultivated are maize or wheat. The tendency of maintaining crop residues in order to resist the 

erosion of the soil, illustrate the effect of this procedure on the progress of FHB as it serves as a 

nutrient source for fungal inocula on the soil surface (Dill-Macky, 2008). The intensity of FHB 

infection is greatly affected by the type of tillage since the severity of the infection is in general 

the lowest with the deep tillage, and reaches the highest level without tillage. The destruction of 

the residues prevents the source for the inocula (Paul et al., 2004; Bateman et al., 2007). The 

tillage and the type of the previous cultivated crop, affect the severity of the disease, but without 

significant  alteration of the species composition. For the same reason, burning the stubble 

significantly reduce the survival of F. graminearum (Dill-Macky, 2008). Maize-wheat rotation is 

the most conducive for F. graminearum-induced FHB, but other crops may also influence the 

FHB population. FHB presence was 25% and 50% less where the previous cultivated crop was 
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soybean instead of wheat or maize (Dill-Macky, 2008). In order to achieve the goal of the 

individual management strategies for efficient reduction of disease symptoms and mycotoxin 

accumulation, it should be taken into consideration the composition of FHB pathogens. Thus, it is 

crucial to understand the FHB pathogen community structure for practical disease management 

(Xu and Nicholson, 2009). 

 

FHB resistance 

In plants, disease resistance is manifested by limited symptoms, which reflect inability of the 

pathogen to grow or multiply and spread, and often takes the form of a hypersensitive reaction 

(HR), in which the pathogen remains restricted to the site of infection as necrotic lesions (Van 

Loon, 1997). Mesterhazy (2002) described resistance of wheat to FHB as a complex phenomenon 

and reported different types of resistance (i) resistance to initial infection (Schroeder and 

Christensen, 1963); (ii) resistance to spreading (Schroeder and Christensen, 1963); (iii) resistance 

to kernel infection (Mesterhazy, 1995; Mesterhazy et al., 1999); (iv) tolerance to infection 

(Mesterhazy, 1995; Mesterhazy et al., 1999) and (v) resistance to DON accumulation (Miller et 

al., 1985). Most authors conclude that no wheat cultivar is immune, most are susceptible, but a 

few are moderately resistant (Parry et al, 1995). Triticum durum L. is more susceptible in 

comparison with Triticum aestivum L. to infection with pathogens of the genus Fusarium, 

therefore, its grains are more exposed to higher mycotoxin concentrations (Stack et al., 2002). 

Moreover, Buerstmayer et al. (2009) report that 46 different quantitative trait loci (QTLs) were 

identified for FHB resistance in common wheat, while only four QTLs were detected in durum 

wheat. Mesterhazy (1999) found very similar resistance reactions against F. graminearum and F. 

culmorum, and this held true for FHB, FDK, yield loss and the degree of DON 

contamination.The resistance to FHB is quantitatively inherited in all cereal species with a highly 

significant genetic variation among breeding materials (Snijders, 1990; Miedaner, 1997). 

Buerstmayr et al. (2000) reported that the cultivation of genetically resistant cultivars is the most 

cost-effective method to control the disease and it is well documented the presence of genetic 

variations against FHB among wheat and its relatives. Wheat cultivars with high and stable yield 

and good quality other than resistance against diseases, including FHB, is a great challenge 

(Buerstmayer et al., 2009). A quantitative trait of wheat resistant to FHB agents is induced by 
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several genes, and the environmental factors also play an important role (Bai et al., 2000). Thus, 

QTL approach has extensively been applied using molecular markers, nevertheless, it has not 

been found yet durum wheat sources with effective FHB resistant (Chen et al., 2007). The slow 

evaluation of resistance to FHB in cereal breeding is considered a problem since it is necessary to 

avoid escapees while evaluating resistance in whole plants over the years and in different 

environments (Browne and Cooke, 2004). Wheat breeding towards FHB resistance has become 

one of the major practices for wheat breeders. Toth et al. (2008) on FHB resistance breeding, 

reported that one pathogenic isolate of Fusarium species is sufficient, however it is also 

important to use an aggressive isolate because the low aggressive isolate may not allow to 

distinguish the different levels of resistance of wheat lines and cultivars. 

Pathogenicity and aggressiveness are two important characteristics of Fusarium spp. (Von der 

Ohe et al., 2010). Although the two words have different meaning, sometimes they have been 

confused. Pathogenicity reflects the measurement of the ability of a fungus to cause the disease, 

qualitatively, whereas, aggressiveness is a quantitative measurement of the rate at which level, 

the disease is reached with more aggressive pathogens (Shaner et al., 1992). Aggressiveness 

assessment is fundamental (Wu et al., 2005) to understand the interaction between host-pathogen 

in FHB-wheat system. Precise and accurate aggressiveness assays to quantify the levels of 

aggressiveness of Fusarium are needed. 
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OBJECTIVES 

The overall objective of this research was to study the involvement in food safety of Fusarium 

species, responsible for mycotoxin production in wheat crop. The specific objectives were: 

1. (a) determine the diversity of fungal species in wheat kernels (durum and soft wheat) from  

the different provinces of Syria; 

(b) identify Fusarium species isolated from Syrian and Italian samples; 

            (c) determine the genotype and chemotype of selected Fusarium strains using molecular  

           techniques; 

2. (a) screen the mycotoxin production of several Fusarium spp. previously isolated from 

Syrian wheat kernels and identification; 

(b) quantify the mycotoxin production of Fusarium spp. associated with FHB and 

compare their chemotypes with mycotoxin production; 

3. carry out a survey to obtain information on the incidence and levels of mycotoxins in 

Syrian and Italian wheat for human and animal consumption; 

4. (a) compare aggressiveness of Syrian F. culmorum isolates with Italian ones using three 

different aggressiveness assays (ear inoculations in field, floret inoculations in growth 

chamber and Petri-dish test); 

            (b) investigate the relationships among aggressiveness indices from different assays and   

            their relation to FDK, kernel weight (KW) reduction and DON production; 

(c) compare aggressiveness of two different chemotypes of F. culmorum isolates using 

four disease parameters obtained with three aggressiveness assays; 

            (d) evaluate FDK and KW reduction induced by two different chemotypes; 

5. (a) evaluate the feasibility of the modified Petri-dish test using Area Under Healthy tissue 

Progress Curve (AUHPC) or Standardized Area Under Disease Progress Curve 

(AUDPCstandard) to determine the different levels of aggressiveness among Syrian and 

Italian F. culmorum strains; 

(b) validate this method by finding significant correlation among these results and the data 

from floret inoculation techniques under controlled conditions (growth chamber) and ear 

inoculations in field conditions; 
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(c) discover the relationships among the three parameters obtained by Petri-dish test 

(AUDPCstandard, germination rate reduction and coleoptile length reduction) and their 

relations to floret inoculation in both growth chamber and field; 

(d) prove the stability and repeatability of this method among different durum wheat 

cultivars; 

6. (a) investigate varietal differences in resistance to FHB infection and spread, kernel 

infection and mycotoxin accumulation comparing different Syrian durum wheat cultivars 

with Italian susceptible ones inoculated with different Syrian and Italian F. culmorum 

strains under controlled and field conditions; 

(b) evaluate the relations among FHB-resistant types in different Syrian cultivars.  
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CHAPTER I 

Mycoflora isolated from Syrian wheat kernels and characterization 

of Fusarium species in two Mediterranean countries, Syria and Italy 
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ABSTRACT 

Wheat is one of the main crops in Mediterranean countries, and its cultivation has an important 

role in Syrian and Italian economy. Fusarium Head Blight (FHB) is considered an important 

disease in the Mediterranean basin and worldwide. In Syrian wheat, FHB and the accumulation 

of Fusarium mycotoxins have not been reported so far. We performed a mycological analysis of 

48 Syrian durum and common, and 46 Italian durum wheat kernel samples collected from several 

wheat cultivation areas in Syria and Italy with different environmental conditions in years 2009 

and 2010. Fungal genera were identified morphologically, and confirmation carried out 

molecularly for Fusarium isolates by species-specific PCR. For Syrian samples; most frequent 

fungal genera were Alternaria and Cladosporium. The relative frequency of Fusarium spp. in 

Fusarium infected samples was 4% while the percentage was 3% in all analyzed samples. The  

main Fusarium species associated with Fusarium head blight were F. culmorum 17.8%, F. 

graminearum 12.9%, F. equiseti 14.1%, and for the first time in Syrian wheat kernels, F. 

tricinctum 30.1%, F. proliferatum 8%, F. semitectum 1.8%, F. pseudograminearum 1.8% and F. 

oxysporum 3% were identified while the percentage of F. verticillioides was 10.4%. Chemotypes 

of Syrian F. culmorum and F. graminearum strains (3- and 15-acetyldeoxynivalenol, nivalenol) 

were determined by multiplex PCR. Syrian F. equiseti strains were checked for their potential 

ability to produce tricothecenes, and the results showed that 60% of F. culmorum strains were 

3AcDON while 40% were NIV, all F. graminearum strains have NIV chemotype and 80.83% of 

F. equiseti strains have trichothecenes gene. 

On the other hand, in the Italian samples the percentage of Fusarium infected samples was 67.4% 

Among 93 Fusarium strains were obtained; 69, 16 and eight strains were identified 

morphologically and molecularly to be F. graminearum, F. poae and F . culmorum, respectively. 

The chemotyping of these strains revealed that all F. culmorum were 3Ac-DON while 15Ac-

DON was predominant in F. graminearum strains. 

 

 



CHAPTER I 
 

22 
 

INTRODUCTION 

Durum wheat constitutes the largest part of the staple food in the southern Mediterranean 

countries (El-Khalifeh et al., 2009). In Syria, wheat cultivation covers 83% of the cultivated area 

and has a central role in the diet (www.pecad.fas.usda.gov). There are five distinct agro- climatic 

zones in Syria based on rainfall (FAO, 2003) (Figure 1.1a). Wheat is present in all these areas. 

Rainfed wheat is concentrated in high rainfall zones 1 and 2 while irrigation is necessary in zones 

3, 4 and 5.The largest zones are 5, 1 and 2, the wheat occupies roughly 53%, 42%, and 40% of 

the total cultivated land, respectively (NAPC, 2009). 

Syria produces both durum and common wheat over the winter season. Common wheat is 

cultivated mainly in irrigated areas, durum wheat in rainfed areas. Depending on the rainfall, 

rainfed wheat yields are highly unstable with an average ranging from less than 0.5 tons per ha in 

a drought year to over 1.7 tons per ha in a year with good rainfall. Yields are more stable in the 

irrigated area with a national average ranging from 3.0 to 4.4 tons per ha 

(www.pecad.fas.usda.gov). Syrian agricultural policy brought to an increase in cultivation of 

wheat in irrigated land from 229,000 ha in 1988 to 800,000 ha in 2003 and to 1.9 million ha in 

2005 (NAPC, 2009). In Italy, both types of wheat are cultivated with an annual production that 

reaches 2.9 million tons for common wheat and 3.6 million tons for durum wheat (Istat, 2011). In 

particular, in the province of Bologna, Emilia-Romagna region in Northern Italy, the area under 

wheat cultivation increased from 8,200 ha in 1999 to 14,100 ha in 2007 (ISTAT data 2011, 

http://agri.istat.it). 

Seed infection by Fusarium pathogens is a great risk for wheat cultivation. Fusarium species are 

widespread pathogenic fungi, which can cause Fusarium Head Blight (FHB) and Fusarium 

crown rot in wheat (Goswami and Kistler, 2004). Fusarium crown rot is known to occur in Syria 

(El-Khalifeh et al., 2006) while FHB or scab, which is a more dangerous and important disease, 

has not been reported in Syria yet. In contrast, FHB was first reported in Italy at the beginning of 

the 20th century and has been permanently present in Italy since 1995, especially in the north-

central regions, with variable incidence and severity related to the year, area and cultivar 

(Pancaldi et al., 1996, Rossi et al., 2006 ). 

The aetiology of FHB is complex due to the involvement of several species of Fusarium and 

Microdochium nivale (Fr.) Samuels & I.C. Hallett. The Fusarium species most frequently 

associated are Fusarium graminearum Schwabe (teleomorph Gibberella zeae [Schwein.] Petch), 
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F. culmorum (W.G. Sm.) Sacc., F. avenaceum (Fr.) Sacc. (teleomorph Gibberella avenacea R.J. 

Cook), and F. poae (Peck) Wollenw. Pancaldi and Torricelli ,(1999) in the study, performed 

during three years of observations (1994–1996) of FHB in durum wheat throughout Italy, have 

found that F. culmorum and F. graminearum, associated with F. avenaceum, were predominant 

in all three years, while F. verticillioides, F. tricinctum and F. cerealis only in 1994. F. poae was 

isolated with high frequency in 1996. 

The distribution of Fusarium species in wheat and their prevalence over other fungi is affected by 

climatic conditions (temperature, humidity, etc.), agricultural practices (soil tillage, crop rotation, 

nitrogen fertilizers, pesticide treatment, etc.) and cultivar susceptibility (Parry et al., 1995; Saremi 

et al., 1999; Doohan et al., 2003). FHB causes yield losses from 30 to 70% (Parry et al., 1995; 

McMullen et al., 1997). In addition to yield loss, colonization in wheat of Fusarium species can 

cause contamination of grain with mycotoxins, toxic fungal secondary metabolites, recognized as 

health hazard for both human and farm animals (Dexter et al., 1997). 

Toxigenic Fusarium species produce a number of mycotoxins such as trichothecenes A and B, 

zearalenone, moniliformin, depsipeptides and fusaric acid. Most attention in the analysis of FHB-

afflicting wheat grain has been so far devoted to deoxynivalenol (DON), acetylated forms of 

DON (3Ac-DON and 15Ac-DON), nivalenol (NIV), fusarenon X (Fus X), and zearalenone 

(ZEN). The knowledge of the occurrence of Fusarium species in different growing areas help to 

predict mycotoxin content in harvested grain (Desjardin, 2006; Pancaldi et al., 2010). Poisoning 

with Fusarium mycotoxins causes acute and chronic symptoms such as nausea, internal organs 

damage, cancer, and infertility (Rocha et al., 2005; Nielsen et al., 2009). The maximum limits 

allowed for mycotoxin levels in food for the protection of the consumer have been established, 

and for DON and ZEN in food Europe (EU-regulation1881/2006) have already defined the 

allowance limits.  

DON in the recent years has been found in FHB-infected durum and common wheat kernels in 

several wheat-growing areas of Emilia- Romagna and other Italian regions (Lops et al., 1998; 

Pascale et al., 2002; Rossi et al., 2006). 

In addition to Fusarium spp., other fungi infect wheat grain in the field, and cause quality loss 

due to undesirable colour and odour, e.g. Alternaria spp., Cladosporium spp., Epicoccum spp., 

Rhizopus spp. (Zillinsky, 1983). Some of these species are known to produce mycotoxins (Li et 

al., 2001).  
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The aims of the present research were (1) to determine the diversity of fungal species in wheat 

kernels (durum and common wheat) from different provinces of Syria, (2) to identify Fusarium 

species isolated from Syrian and Italian samples, (3) to determine the genotype and chemotype of 

selected Fusarium species strains using molecular techniques. 

 

MATERIALS AND METHODS 

Fungal isolation  

During 2009 and 2010, 48 grain samples of durum and common wheat were collected from six 

Syrian regions distributed in five ago-climatic zones (Figure 1.1a) and 46 of durum wheat were 

collected from seven Italian regions (Figure 1.1b). For Syrian samples, Fusarium presence was 

studied in addition to fungal population. 400 kernels, selected randomly from each sample, were 

disinfected in a sodium hypochlorite solution with 2% of available chlorine for two minutes, 

rinsed with sterile water, dried on sterile filter paper, placed in Petri dishes containing potato 

dextrose agar (PDA, Difco, USA) supplemented with neomycin and streptomycin sulphate (100 

mg/l and 200 mg/l, respectively) and incubated at 22°C in the darkness for seven days. 

Micromorphology of fungal isolates was examined by light microscopy (Watanabe, 2002). All 

Fusarium isolates were sub-cultured on water agar (2% of Bacto agar, Difco) using single spore 

technique (Leslie and Summerell, 2006). Pure cultures of Fusarium spp. were grown at 22°C (12 

h photoperiod) for 10 days on Carnation Leaf piece Agar (CLA) to produce macroconidia of 

uniform size and form, and on PDA for the morphology of the colony (Nelson et al., 1983; Leslie 

and Summerell, 2006). Strains of Gibberella fujikuroi complex (GFC) were characterized 

following method previously described by Nirenberg and O’Donnell (1998) and Marasas et al. 

(2001). The relative frequency of each genus was calculated as a percentage of the total number 

of fungal colonies.  

 

DNA extraction 

DNA was extracted from mycelium that was harvested from 7- day-old single- spore cultures 

grown on PDA, using CTAB (hexadecyl-trimethyl-ammonium bromide) method (Prodi et al., 

2011a). 
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Fungal mycelium, 100-200 mg was placed in 10x15 cm 500 gauge polyethylene bag,  

pre frozen in liquid nitrogen and then grinded using a small hand roller until the mycelium tissue 

formed smooth paste. One-two ml (10 vols) of grinding buffer (2% CTAB, 100 mM Tris-HCL, 

pH 8.0, 20 mM EDTA, 1.4 M NaCl, 1.0 % Na sulphate, 2.0 % PVP-40, and 1 μl of proteinase K) 

were added and mixed thoroughly using a roller. The ground sap was poured into 2.0 ml 

microfuge tube and incubated in water bath at 65°C for 10-15 min to denature the proteins. The 

sample was centrifuged for 10 min at 11,000 rpm (room temperature). The supernatant (Clarified 

sap) was transferred to microfuge tube, added with an equal volume of chloroform: isoamyl 

alcohol (I.A.A.) (24:1) and mixed to emulsion by inverting the tube. The sample was centrifuged 

again for 10 min at room temperature. The aqueous upper phase was carefully transferred to a 

new Eppendorf tube. DNA was precipitated with 0.5 volumes of 5 M NaCl pH 8.0 and an equal 

volume of ice cold iso-propanol. The DNA extract was thoroughly mixed and incubated at - 20°C 

overnight. The precipitate was centrifuged at 11,000 rpm for 15 min, the supernatant removed, 

the DNA washed carefully with cold ethanol (70%) and again centrifuged for 3-4 min at 11,000 

rpm. DNA was dried and redissolved in 50 μl sterile distilled water. Finally, the extracts were 

stored at –20°C.  

Molecular identification of Fusarium strains  by PCR amplification with specific primers 

To confirm morphological identification, F. graminearum, F. culmorum, F. equiseti, F. 

pseudograminearum, F. poae, F. proliferatum and F. verticillioides strains were identified using 

species-specific primers Fg16F/Fg16R and Fc01F/Fc01R (Nicholson et al., 1998), FEF1/FER1 

(Mishra et al., 2003), Fp1-1/Fp1-2 (Aoki and O’Donnell, 1999), Fp82 F/R (Parry and 

Nicholson,1996), PRO1/ PRO2 (Mule et al., 2004), and VER1/ VER2 (Mule et al., 2004), 

respectively. Amplification was done in a T3 thermocycler (Biometra, Göttingen, Germany) 

under the conditions described in the protocols. 

 

Chemotype identification 

F. graminearum and F. culmorum strains were characterized by multiplex PCR assays to 

differentiate their chemotypes regarding trichothecene synthesis. For F. culmorum, primers 

amplifying parts of Tri3 and Tri7 genes were used to identify 3Ac-DON, 15Ac-DON and NIV 
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chemotypes (Quarta et al., 2005). The primer sets Tri3F971/Tri3R1679 and 

Tri3F1325/Tri3R1679 identified 15Ac-DON and 3Ac-DON chemotypes, respectively, while the 

primer set Tri7F340/Tri7R965 identified the NIV chemotype. 

F. graminearum chemotypes were identified using a multiplex version of another chemotype-

specific test (Starkey et al., 2007) based on data published by Ward et al. (2002). The primers, 

designed in the region of the Tri12 gene encoding an efflux pump for trichothecenes,  

differentiate among three chemotypes for B trichothecene. One primer for each pair is common to 

all chemotypes (12CON) while the other is specific for 15Ac-DON chemotype (12-15F), 3Ac-

DON chemotype (12-3F) and NIV chemotype (12NF) (Ward et al., 2002). Primers Tox5/1 and 

Tox5/2, derived from the DNA-sequence of the trichodiene synthase gene (Tri5), were used to 

test the ability of F. equiseti strains to produce trichothecenes (Niessen and Vogel, 1998). 

Amplification products were resolved on 1.5% agarose gels stained with ethydium bromide (0.4 

μg ml-1) and visualized under UV light, alongside a 100 bp DNA ladder (Promega, USA) (Figure 

1.6). 

 

RESULTS 

Fungal colonization of Syrian wheat kernels 

In the surveys carried out in 2009 and 2010 on durum and common grain wheat collected from 

the different provinces in Syria, 17 different genera of fungi were identified in surface-sterilized 

kernels. Alternaria spp. and Cladosporium spp. were the most frequent, with an average isolation 

frequency of 53% and 15%, respectively (Figure 1.2). Storage fungi like Penicillium and 

Aspergillus were isolated at 12% and 5%, respectively. The percentage of non-infected kernels 

ranged from 1.5% to 96% per sample.  

High kernel infection with Alternaria and Cladosporium was detected in the samples collected 

from all six provinces investigated. Fusarium spp. was present in 62.5% of all samples (Table 

1.1) with a frequency of 4% of isolated fungi (Figure 1.2). Fusarium species were mostly isolated 

from samples collected in Daraa and Damascus rural areas with frequencies of 7.6% and 4.7%, 

respectively (Figure 1.3). 
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Morphological and molecular identification of Syrian Fusarium species 

163 Fusarium isolates were identified to species level. PCR was used to verify the morphological 

identification of F. culmorum, F. equiseti, F. graminearum, F. proliferatum, F. verticillioides and 

F. pseudograminearum. Genomic DNA of isolates putatively identified as F. culmorum (11 

isolates), F. graminearum (6 isolates), F. equiseti (9 isolates), F. proliferatum (4 isolates), F. 

verticillioides (5 isolates) and two isolates of F. pseudograminearum, was used in this analysis. 

The products of DNA amplification with species-specific primers (described in MATERIALS 

AND METHODS) were 570 bp for F. culmorum, 400 bp for F. equiseti, 450 bp for F. 

graminearum, 585bp for F. proliferatum, around 578 bp for F. verticillioides and around 523 bp 

for F. pseudograminearum. These sizes correspond to published values for species-specific PCR 

products, confirming the morphological identification.  

Morphological and molecular data (Figure 1.4, 1.5) revealed that the major Fusarium species 

were F. tricinctum, F. culmorum, F. graminearum, F. equiseti, F. verticillioides and F. 

proliferatum with relative frequencies of 30.1, 17.8, 12.9, 14.1, 10.4 and 8 %, respectively. F. 

semitectum, F. pseudograminearum, and F. oxysporum were present in low frequencies of 1.8, 

1.8, and 3%, respectively.  

Table 1.1 shows the distribution of Fusarium species in wheat samples from different Syrian 

provinces. 

F. culmorum was not detected in samples from Aleppo and Idlib provinces, while it was isolated 

from all other provinces. Some Fusarium species were limited to specific regions, such as F. 

graminearum to Damascus and Deir Ezzor, F. equiseti to Daara and Damascus, and finally, F. 

pseudograminearum to Deir Ezzor. The presence of F. tricinctum was predominant in all 

provinces.  

 

Morphological and molecular identification of Italian Fusarium species 

The frequency of Fusarium infected samples was 67.4% (Table 1.2). Among 93 Fusarium 

strains, 69, 16, and eight strains were identified morphologically to be F. graminearum, F. poae 

and  F . culmorum respectively. These results were confirmed by molecular identification (see 

above, additionally F. poae- 220 bp). 
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Chemotype identification  

Qualitative chemotyping results of Syrian and Italian F. graminearum, F. culmorum and F. 

equiseti  strains are  shown in Figure 1.6.  

Syrian strains  

In six strains (60%) of F. culmorum, using the primers directed to Tri3 (Tri3F1325/Tri3R1679), 

an amplification product of about 350 bp was obtained as expected for 3Ac-DON chemotypes 

(Quarta et al., 2005). Five strains (40%), amplified by the Tri7F340/Tri7R965 primers (Tri7 

gene), generated a 625 bp fragment expected for NIV producers. The 700-bp fragment specific 

for 15Ac-DON chemotype was not found in any of the tested strains. All six F. graminearum 

strains tested using primers for Tri12 produced amplicons of 840 bp, as expected for NIV 

chemotype (Starkey et al., 2007). None of the strains produced amplicons of 670 or 410 bp 

expected for 15Ac-DON and 3Ac-DON chemotypes, respectively (Figure 1.7a and c). 

Nine F. equiseti isolates were tested for the presence of trichodiene synthase gene involved in 

trichothecene synthesis (Niessen and Vogel, 1998). The presence of a 658-bp amplification 

product in seven strains could indicate a potential production of  trichothecene.  

Italian strains  

All F. culmorum strains were 3Ac-DON chemotype while NIV and 15Ac-DON chemotype were 

not detected. 87.2 % of F. graminearum amplified a 670 bp product as expected for 15Ac-DON, 

23.19% amplified by 12NF primer and gave a 840 bp fragment expected for NIV, whereas 4.35% 

have an amplification product of 410 bp as expected for 3Ac-DON (Figure 1.7b and d). 

 

DISCUSSION 

Fungal diseases are the primary constraint for wheat production in Syria (El Khalifeh et al., 

2009). In the 48 Syrian wheat grain tested samples, Alternaria and Cladosporium were the most 

dominant fungal genera (71%). These fungi are known to cause grey or black discoloration of 

heads and seeds resulting in sooty moulds, black points or smudge (Zillinsky, 1983). 

Furthermore, some Alternaria spp. produce mycotoxins such as alternariol which contaminate 

food products (Bottalico and Logrieco, 1998; Li et al., 2001). Storage fungi Penicillium spp. and 
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Aspergillus spp. of which some species produce aflatoxins and ochratoxins on stored grains 

(Muthomi and Mutitu, 2003) were isolated in the frequency of 12% and 5%, respectively.   

The fungal population found in this survey was consistent with what reported by Pinson-Gadais 

et al. (2007) that found that eight different fungal genera isolated and identified from durum 

wheat samples, were similar to the genera isolated in our work. FHB has not been reported in 

Syria so far; but Fusarium populations have been recently isolated from wheat grown in Syria 

(El-Khalifeh et al., 2009; Arabi and Jawhar, 2010). Our results revealed that 62% of the analysed 

wheat samples from six provinces in Syria were contaminated with Fusarium spp. The frequency 

of Fusarium species in Fusarium contaminated samples was around 4%, and the low prevalence 

of Fusarium species doesn’t reflect true field situation, since severely infected and shrivelled 

kernels, which are very light in weight, are expelled during combine harvesting (Bai and Shaner, 

1994).  

Wheat samples from Daraa, and Damascus rural regions were the most contaminated. F. 

tricinctum, F. equiseti and F. culmorum were identified in both regions while F. graminearum 

only in the latter one. These results are in line with the report of El-Khalifeh et al. (2009) who 

found F. equiseti spread in Daraa province.  

The Morphological and molecular identification of Italian Fusarium species illustrated that the 

prevalent strains belonged to F. graminearum, F. culmorum and F. poae. Our results agreed with 

previous reports indicating that among several species of Fusarium responsible for FHB, the 

prevailing ones in Italy were F. graminearum, F. culmorum and F. poae (Prodi et al., 2009; Shah 

et al., 2005; Pancaldi et al., 2010). In Italy and Europe, several authors have mentioned that F. 

poae is becoming more frequent with FHB complex (Pasquini et al., 2006; Infantino et al., 2005; 

Xu et al., 2005). This increase of F. poae was in the years where F. graminearum was less 

frequent (Parry et al., 1995; Pancaldi et al., 2010). The widespread presence of FHB agents in 

Syria is a worry because legal limits for mycotoxin content in food commodities are not 

established yet, whereas in Italy and other European countries, these limits already exist (EU 

regulations No. 856/2005) (Prodi et al., 2009). Genotype characterization could be a useful tool 

to map a population and identify population changes in the field (Karugia et al., 2009; Pasquali et 

al., 2010) as well as to predict the contamination with different trichothecenes, especially in 

regions lacking of such studies, as Syria. Interestingly, the majority of Syrian F. equiseti strains 

(7 out of 9 tested) possessed a gene encoding trichodiene synthase, which is necessary for 
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trichothecene production, in contrast to Canadian isolates, which rarely produce trichothecenes 

(Demeke et al., 2005). There are not too many reports on F.equiseti chemotypes, since its 

presence is still sporadic (Bottalico and Perrone, 2002; Pancaldi et al., 2010). 

PCR assay indicated that 6 out of 11 F. culmorum isolates belonged to 3Ac-DON chemotype and 

5 were potential NIV producers. These are the first data on F. culmorum chemotypes in Syria. 

The Syrian situation is similar to the Italian (Prodi et al., 2011b) and the European, in particular, 

in England, 3Ac-DON is more frequent than NIV chemotype (Jennings et al., 2004) and in 

Luxemburg, these two chemotypes are present for 53.2% and 46.8%, respectively (Pasquali et al., 

2010). Almost all F. graminearum isolates belonged to NIV chemotype result comparable with 

what reported in another area of Middle–East, Iran, by Haratian et al., (2008) who affirmed that 

the majority (46/57) of F. graminearum isolated by cereals grown in Iran were NIV chemotype. 

Furthermore, the result is in accordance with what reported by Lee et al. (2009) for both Southern 

and Eastern Korea. In the Netherlands (Waalwijk et al., 2003), England and Wales (Jennings et 

al., 2004), Italy (Prodi et al., 2009), and the USA (Gale et al., 2007) it has been shown the 

dominance of 15Ac-DON chemotype,.  

The trend toward higher irrigation rates after the drought waves which hit Syria recently might 

have increased the risk of FHB. Temperatures higher than 18C° accompanied by high humidity 

and  the increasing role of maize in crop rotation are suitable factors for  FHB incidence (Dill-

Macky and Jones, 2000; Parry et al. 1995). 

Syrian agricultural policy should be aware of the presence of the different FHB causal agents and 

their ability in producing  mycotoxins, then it is necessary to control their presence in food and 

feed and to develop a national legislation. This is the first report on the chemotypes and 

genotypes in Fusarium complex isolated from Syrian wheat kernels. The present study gives a 

contribute on the occurrence of fungal population as well as Fusarium species on wheat kernels 

in the post-harvest stages. 

Regarding the chemotypes of the Italian Fusarium strains, the study pointed out that most of F. 

graminearum strains belonged to 15Ac-DON chemotype, data comparable with those reported by  

Prodi et al. (2009) who found that this chemotype was predominant (87.2 %) over 3Ac-DON and 

NIV. Our results are also in agreement with Gale et al. (2007) in USA, Jennings et al. (2004) in 

England as well as with Yli-Mattila et al. (2008) in southern Russia, 3Ac-DON chemotype was 

predominated in western Russia and Finland (Yli-Mattila et al., 2008).  
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All the italian isolates of F. culmorum, belonged to 3Ac-DON chemotype: the same result was 

also reported by Yoruk and  Albayrak (2012).  

The chemotype composition of the different Fusarium species is different in the two countries, 

Syria and Italy. 
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FIGURES AND TABLES 

Figure 1.1. a) Agro- climatic zones in Syria based on rainfall (in mm) (FAO, 2003) and wheat 

samples collected provinces (▲) b) Italian samples collection provinces  

a)  

b)        
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Figure 1.2. Average frequency of the major genera of fungi contaminating wheat kernels in Syria  

*Others = species of Absidia, Chaetomium, Cylindrocarpon, Helminthosporium, Nigrospora, 
Phoma, Sclerotina, Septoria, Stemphylium. 

 

Error bars represent the standard error. 

 

Figure 1.3. Frequency (%) of Fusarium isolates from wheat kernels samples from different 

provinces in Syria  

 
Error bars represent the standard error. 
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Figure 1.4. Colonies of different mycotoxigenic Fusarium species on Potato Dextros Agar (PDA) 

 

Figure 1.5. PCR assay: identification of Fusarium species by specific-species primers 
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Figure 1.6. Results of chemotyping assay for F. graminearum, F. culmorum and F. equiseti 

 

Figure 1.7. Percentage of Syrian and Italian F. graminearum and F. culmorum chemotypes 
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Table 1.1. Occurrence of Fusarium species in wheat grains from different provinces in Syria  

 

Provinces 

Number 

of 

samples 

Number of 

Fusarium –

infected samples 

Fusarium species found 

Daraa 6 5 F. tricinctum, F. equiseti, F. culmorum 

ALHassakeh 7 6 
F. tricinctum, F. oxysporum, F. culmorum, 

 F. semitectum, F. verticillioides, F. proliferatum 

Aleppo 4 4 F. tricinctum, F. verticillioides, F. proliferatum 

Idlib 1 1 F. tricinctum, F. verticillioides, F. proliferatum 

Deir Ezzor 11 7 
F. culmorum, F. tricinctum, F. graminearum, F. 

pseudograminearum,  F. verticillioides, F. proliferatum 

Damascus 

rural 
19 7 

F. tricinctum, F. culmorum, F. equiseti, F. graminearum,  

F. verticillioides, F. proliferatum 

Total (%) 100% 62.5%  

 

Table 1.2. Occurrence of Fusarium species in wheat grain from different provinces in Italy 

Provinces 
Number 

of samples 

Number of 

Fusarium – 

infected samples 

Fusarium species found 

Emilia 

Romagna 
12 12 F. graminearum, F. poae 

Toscana 5 3 F. culmorum 

Marche 12 9 F. graminearum, F. poae, F. culmorum 

Umbria 7 4 F. graminearum, F. poae, F. culmorum 

Lazio 3 1 F. graminearum 

Sicilia 4 1 F. graminearum, F. poae 

Basilicata 3 1 F. culmorum 

Total (%) 100% 67.4%  
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CHAPTER II 

Screening and quantification of mycotoxin produced by Syrian  

Fusarium species 
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ABSTRACT 

In Syria, wheat is considered as the main strategic crop with annual production ranged between 4 

and 5 million tonnes during the last years and with consumption that reaches 12.5 Kg per capita 

per month. Infection with Fusarium spp. causes mycotoxin accumulation in the seeds; both major 

and minor mycotoxins. HPLC tandem mass spectrometry (HPLC-MS/MS) was used for 

screening mycotoxin's production from sixty different Syrian Fusarium strains, previously 

isolated and identified, cultured on wheat. The results revealed that zearalenone was detected in 

all the analysed samples of F. culmorum (11), F. graminearum (9) and  F. pseudograminearum 

(2). Deoxynivalenol (DON) was not predominantly present, fumonisin B1, B2, B3 (FB1, FB2, 

FB3) were present exclusively in all the analysed strains of F. proliferatum and F. verticilliodes, 

five and eight respectively. One strain of F. tricinctum was capable to produce several types of 

emerging mycotoxins; beauvericin (BEA), enniatin B, B1 (ENB, ENB1), enniatin A, A1 (ENA, 

ENA1). The main Fusarium Head Blight (FHB) causal agents were cultured on rice for a 

quantification of their mycotoxins. All the analysed strains - except one of F. equiseti -were ZEN 

producers with levels ranged from <0.1 to >100 ppm. Six F. graminearum strains were nivalenol 

(NIV) / fusarenon-X (Fus) producers. Six out of eleven strains of F. culmorum which belonged to 

3Ac-DON chemotype produced DON and its derivatives i.e. 3Ac-DON and 15Ac-DON while the 

rest which had NIV chemotype produced both NIV/FUS and DON. F. equiseti strains have 

produced mainly ZEN while produced the other mycotoxins sporadically. F. pseudograminearum 

strain (F.1030) produced high amount of DON while the strain (F.1029) produced the highst level 

of ZEN. 

 It is worthy to say that this study – according to our knowledge - is the first which carried out for 

screening and quantification of mycotoxins produced by Syrian Fusarium species. 

 

INTRODUCTION 

Wheat (Triticum spp.) is the first food crop in the part of the world where bread is the staple food 

for more than three-quarters of its inhabitants (Dib and Soussi, 2004). Wheat and barley 

constitute almost two-thirds of the whole world production of small grain cereals and almost 80% 



CHAPTER II 
 

39 
 

of the European small-grain production (Bottalico and Perrone, 2002). In Syria, wheat is 

considered the main strategic crop with an annual production varies from 4 to 5 million tons in 

recent years (NAPC, 2009) and in 2010 attained only 3.6 million tons (FAO, 2011). Sadiddin and 

Atiya (2009) reported that wheat production in Syria is divided roughly between 60% durum and 

40% soft wheat. Wheat and its two main products, bread and bulgur, are basic foods in Syria 

(Haydar et al., 1990) with an average monthly consumption of bread per capita of 12.9 kg (FAO, 

2003). Apart from its importance to human, wheat is equally important for livestock, since 

cereals and related products constitute a major source of energy and protein. 

The colonization of cereal grains by fungi is a significant risk of contamination with mycotoxins, 

secondary metabolites of these fungi (Placinta et al., 1999). Several Fusarium species are 

globally widespread pathogens on wheat that can cause root rot, seedling blight and Fusarium 

head blight (FHB), resulting in severe reductions in quality as well as crop yield, which may 

reach 75% (Wilcoxson et al., 1988; Brennan et al., 2005; Ward et al., 2002). In addition to their 

pathogenicity, several Fusarium strains are capable of producing mycotoxins, which can be 

formed in pre-harvest infected plants or in stored grains (Bottalico, 1998). The major Fusarium 

mycotoxins are deoxynivalenol (DON), acetylated-DON (Ac-DON), nivalenol (NIV), HT-2 and 

T-2 toxins, fumonisin (FB1, FB2, FB3) and zearalenone (ZEN) (Table 2.1). Fusarium species are 

also responsible for the production of another group of bioactive compounds called emerging or 

‘‘minor” mycotoxins which have been recently reviewed and described (Jestoi, 2008; Mahnine et 

al., 2011; Torp and Langseth 1999; Uhlig et al., 2006). There are only few information on the 

occurrence of these mycotoxins (Meca et al., 2010). Fusarium mycotoxins are responsible of 

acute and chronic symptoms such as nausea, internal organ damages, cancer and infertility 

(Rocha et al., 2005; Minervini et al., 2004; Nielsen et al., 2009). 

Mycotoxins are considered as unavoidable; more than 25% of the world grain production is 

contaminated by mycotoxins. In particular, Fusarium mycotoxins (so called field mycotoxins) 

contaminate up to 100% of the grains (Surai et al., 2008). For the importance of this topic, 

screening for the presence of Fusarium mycotoxins should be continuously carried out to avoid 

their hazardous risk. High-performance liquid chromatography combined with tandem mass 

spectrometry HPLC-MS/MS has become the most emerging analytical tool for multi 

determination, identification and characterization of mycotoxins and their metabolites depending 
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 Table 2.1. Different Fusarium spp with their related mycotoxins (Logrieco et al., 2002a) 

Fusarium species mycotoxins 

F. heterosporum ZEN, ZOH 

F. acuminatum T2, MON, HT2, DAS, MAS, NEO, BEA 

F. anthophilum BEA 

F. avenaceum MON, BEA 

F. cerealis NIV, FUS, ZEN, ZOH 

F. chlamydosporum MON 

F. culmorum DON, ZEN, NIV, FUS, ZOH, Ac-DON 

F. equiseti ZEN, ZOH, MAS, DAS, NIV, DAcNIV, FUS, FUC, BEA

F. graminearum DON, ZEN, NIV, FUS, Ac-DON, DAcDON, DAcNIV 

F. oxysporum MON, BEA 

F. nygamai BEA, FB1, FB2 

F. poae DAS, NIV, FUS, MAS, T2, HT2, NEO, BEA 

F. proliferatum FB1, BEA, MON, FUP, FB2, 

F. sambucinum DAS, T2, NEO, ZEN, MAS, BEA 

F. semitectum ZEN, BEA 

F. sporotrichioides T2, HT2, NEO, MAS, DAS 

F. subglutinans BEA, MON, FUP 

F. tricinctum MON, BEA 

F. verticillioides FB1, FB2, FB3 

Ac-DON – Mono-acetyldeoxynivalenols (3Ac-DON, 15Ac-DON); AcNIV – Monoacetylnivalenol (15-AcNIV); BEA – 

Beauvericin; DiAcDON – Diacetyldeoxynivalenol (3,15Ac-DON);DAcNIV – Diacetylnivalenol (4,15-AcNIV); DAS – 

Diacetoxyscirpenol; DON – Deoxynivalenol (Vomitoxin); FB1 – Fumonisin B1; FB2 – Fumonisin B2; FB3 – Fumonisin B3; 

FUP – Fusaproliferin; FUS –Fusarenone-X (4-Acetyl-NIV); FUC – Fusarochromanone; HT2 – HT-2 toxin; MAS – 

Monoacetoxyscirpenol; MON – Moniliformin; NEO – Neosolaniol; NIV – Nivalenol; T2 – T-2 toxin; ZEN – Zearalenone; ZOH 

– zearalenols (α and β isomers). 
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on their molecular mass, collision-induced dissociation (CID) and fragmentation behavior 

(Berthiller et al., 2005a) but not on their chemical characteristics (Berthiller et al., 2007). 

Additional advantages are offered by low detection limits (LOD), that allow to cover a wide 

range of analytes by their polarities and to give structural information, a requirement of minimal 

sample treatment. To our knowledge, there are no previous reports on mycotoxins produced by 

Syrian Fusarium isolates. Since wheat represents the major staple food for the people in Syria, it 

is important to assess the mycotoxin production capacity of Fusarium isolates and to determine 

the types and amounts of mycotoxins produced, to evaluate the risk that might be posed by 

contaminated food or feed.  

The objectives of this study are 1) to screen the mycotoxin production of several Fusarium spp. 

from Syrian wheat kernels previously isolated and identified (Chapter I), 2) to quantify the 

mycotoxin production of Fusarium spp. associated withFHB and to compare their chemotypes 

with their mycotoxin production in culture. 

 

MATERIALS AND METHODS 

Fusarium strains  

Fusarium strains examined for their mycotoxins production in this study were isolated during 

previous investigations of the mycological analysis of Syrian wheat kernels and identified 

morphologically and molecularly (Chapter I). 

60 strains of different Fusarium species were used to screen their mycotoxin production while 28 

strains of Fusarium spp. associated with Fusarium head blight were used to quantify their 

mycotoxin production.  

The Fusarium species and strains used in the present study are listed in Table 2.2.  

 

Screening of mycotoxin production 

This part of the study was carried out in the laboratory of  Toxicology, Department of Preventive 

Medicine, Faculty of Pharmacy, Valencia University (Spain), directed by Prof. Jordi Manes.  
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Buffered peptone water media were prepared, placed in the tubes (15 ml for each one), 

autoclaved at 121°C for 20 min then inoculated with a piece of mycelium of Fusarium single 

spore cultures and incubated at 27 °C for 4 days on a rotary shaker operating at 150 rpm. 

Conidial concentration was measured by optical density at 600 nm and adjusted to 106 conidia 

per ml in each pre-inoculum tube (Kelly et al., 2006). Solid medium of wheat was utilized in this 

study. Briefly, 50 g of solid wheat was weighted in glass fruit jars, and then autoclaved for 20 

min at 120 °C. The substrate was inoculated with conidia (concentration 106) and maintained at 

27 °C for 4 weeks then the cultures were dried at 60 °C for 24 hours and finely ground. Non-

inoculated control samples were inoculated with water and treated in the same manner.  

50 g of inoculated wheat and the control were prepared using an Oster® food processor 

(Professional Series Blender model BPST02-B00) by mixing thoroughly. Representative portions 

of 1 g (wheat flour) were weighed and placed into a glass mortar (50 ml) and were gently blended 

with 1 g of C18 for 5 min using a pestle, to obtain a homogeneous mixture. The homogeneous 

mixture was introduced into a 100 mm × 9 mm i.d. glass column, and eluted dropwise with 15 ml 

of acetonitrile/methanol (50/50, v/v) 1 mM ammonium formate by applying a slight vacuum. 

Consequently, the extract was transferred to a 25 ml conical tube and evaporated to dryness at 35 

°C with a gentle stream of nitrogen using a multi-sample Turbovap LV Evaporator (Zymark, 

Hopkinton, USA). The residue was reconstituted to a final volume of 1 ml with methanol/water 

(50/50, v/v) and filtered through a 13 mm/0.22 μm nylon filter purchased from Membrane 

solutions (Texas, USA) (Figure 2.1). 

For the preparation of fortified samples, 1 g of wheat flour “blank” sample (it was corroborated 

before the analysis that no analytes were present) was spiked with 0.2 ml of working mixture of 

the mycotoxins at the appropriate concentration. Then, spiked samples were left to stand 3 h at 

room temperature before the extraction to allow the evaporation of the solvent and to establish 

equilibration between the mycotoxins and sample. Ten replicates were prepared for each spiking 

level. LC–tandem MS analyses were carried out in a system consisting of an Agilent 1200 

chromatograph (Agilent Technologies, Palo Alto, CA, USA) coupled to a 3200 QTRAP® mass 

spectrometer (Applied Biosystems, AB Sciex, Foster City, CA, USA) equipped with a Turbo-

V™ source (ESI) interface. The QTRAP® analyzer combines a fully functional triple-quadrupole 

and ion trap mass spectrometer within on the same instrument. An extra confirmation tool, 

Information Dependent Acquisition (IDA), was carried out only for samples that contain the 
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selected mycotoxins since the inclusion of this IDA experiment provides an unequivocal 

identification of mycotoxins in the matrix (Rubert et al., 2011). 

Separation of analytes (Figure 2.2, 2.3) was performed using a Gemini C18 (Phenomenex, 150 

mm×2 mm, 3μm of particle size) analytical column preceded by a guard column with the same 

packing material. The flow rate was set to 0.250 ml min−1 and the oven temperature was 35C, 

being eluent A water (mobile phase A) slightly acidified with 0.1% of formic acid with 5mM 

ammonium formate, and B (mobile phase B) methanol with 5 mM ammonium formate. The 

elution gradient started with 10% of eluent B, increasing to 70% in 1.5 min and kept as isocratic 

during 1.5 min. After this step, B was increased to 80% in 5 min. The last step was to increase 

100% B in 10 min. During the further 8 min the column was re-equilibrated to the initial 

conditions. The volume to injection was of 20 μl. 

The analyses were performed using Turbo-V™ source in positive mode. The operation 

conditions for the analysis in positive ionization mode were the followings: Ion spray voltage 

5500 V, curtain gas 15 (arbitrary units), GS1 and GS2, 50 and 60 psi, respectively, probe 

temperature (TEM) 500 ºC. Nitrogen served as nebulizer and collision gas. SRM experiments 

were carried out to obtain the maximum sensitivity for the detection of target molecules. The 

optimization of MS parameters as declustering potential (DP), collision energy (CE) and collision 

cell entrance potential (CEP) were performed by flow injection analysis for each compound; 

entrance potential (EP) and collision cell exit potential (CXP) were set at 10 and 4 V, respectively 

for all analytes. The QTRAP® instrument was operated in SRM mode and with a resolution set to 

unit resolution for Q1 and Q3. For HPLC–MS/MS analysis, scheduled SRM (sSRM) was used 

with 60 s of SRM detection window and 1.5 s of target scan time. Analyst® version 1.5.2 

software (AB Sciex) was used to control all components of the system and also for data 

collection and analysis.  

 

Quantification of mycotoxin production 

In this part of the study, the samples were prepared, and the mycotoxin levels were  quantified in 

the laboratory of Molecular Phytopathology and Mycotoxin Research, Göttingen University 

(Germany), directed by Prof. Peter Karlovsky.  
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Rice media were prepared by autoclaving 50 g of polished rice with 70 ml of distilled water. 

After, then they were separately inoculated with agar plugs overgrown with each Fusarium strain 

and incubation incubated at 24°C for 4 weeks. Rice cultures were extracted with 

acetonitrile/water mixture and defatted as previously described (Adejumo et al., 2007) except that 

the residue after removal of extraction solvent was dissolved in 1 ml methanol/water (1:1, v/v). 

The analytes were separated on a polar-modified reverse-phase HPLC column (Polaris C18-

Ether, 100 x 2 mm, 3 µm particle size; Agilent, Darmstadt, Germany) kept at 40°C with a 

methanol-water gradient elution (10% to 98% in 7 min followed by washing and equilibration 

steps) at a flow rate of 0.2 ml/min. Mass spectrometry detection in a multiple reaction monitoring 

mode was performed after electrospray ionization in a negative mode as described by Klotzel et 

al. (2006) except for DON (adduct 355.0 > 295.0 and 355.0 > 265.0), 3Ac-DON (337.0 > 246.8 

and 337.0 > 217.0), 15Ac-DON (337.0 > 150.0 and 337.0 > 277.1), and nivalenol (adduct 371.0 

> 311.0 and 371.0 > 281.0). Regarding the differentiation between 3Ac-DON and 15Ac-DON, all 

four mass transitions were detectable for both derivatives but the difference in the relative 

intensity of the signals allowed chemotype determination. Triple quadrupole 1200L (Varian, 

Darmstadt, Germany) was used as a detector. Limits of detection were 100 µg/kg for DON, 300 

µg/kg for NIV, 20 µg/kg for ZEN, 250 µg/kg for 3Ac-DON und 15Ac-DON, and 200 µg/kg Fus 

X.  

Table 2.2. Number of strains of each Fusarium species cultured on buffered peptone water medium  

Fusarium species  Number of the strains 

F. culmorum  11 

F. graminearum  9 

F. equiseti 9 

F. verticilliodes 8 

F. proliferatum 5 

F. semitectum 2 

F. tricinctum 3 

F. incarnatum equiseti complex 11 

F. pseudograminearum  2 
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RESULTS 

Screening of mycotoxin production 

Table 2.3 shows the results of the screening of the main and minor mycotoxins. ZEN was 

detected in all the strains of F. culmorum (11), F. graminearum (9) and F. pseudograminearum 

(2) in addition to one strain of F. semitectum and F. equiseti. DON was not the predominant 

mycotoxins in the tested species, as the largest percentage was reached by F. culmorum strains (4 

out of 11). Emerging mycotoxins, i.e. BEA, ENB, ENB1, ENA, ENA1 were produced by only 

one strain of F. tricinctum. Fumonisin B1, B2, B3 (FB1, FB2, FB3) were present exclusively in all 

the analysed strains of F. proliferatum and F. verticilliodes. 

Quantification of the mycotoxins 

The production of mycotoxins by the main Fusarium species, associated with FHB, was 

quantified and in Table 2.4, these results were reported.  

All eleven F. culmorum strains were able to produce DON and its derivatives i.e. 3Ac-DON and 

15Ac-DON. The quantification of DON produced by F. culmorum strains ranged from 5 to > 100 

ppm, while the five strains which belonged to NIV chemotype tended to produce both NIV/FUS 

X as well as DON. All the tested F. graminearum strains (6) were NIV/FUS X producers. The F. 

pseudograminearum strains produced DON, 3Ac-DON and 15Ac-DON. Among nine strains of 

F. equiseti, two produced DON whilst three produced NIV.  

Almost all the analysed strains, except one of F. equiseti, were ZEN producers with levels ranged 

from <0.1 to >100 ppm, and the highest production was reached by F. pseudograminearum 

(F1029). 

 

DISCUSSION 

Wheat is exposed to the contamination of fungal by-products, mycotoxins, which are considered 

a serious health problem for human and Syria showed pay great attention to mycotoxins being 

wheat consumption rate per capita very high. Screening revealed the dominant production of 

ZEN in all F. graminearum, F. culmorum and F. pseudograminearum strains. This result is in 

accordance Bottalico and Perrone , (2002) who reported that F. graminearum and F. culmorum 
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are the main producers of ZEN. Also, it is in agreement with Blaney and Dodman, (2002) who 

reported in their study in Queensland that all F. pseudograminearum and most F. graminearum 

strains produced ZEN on culture. Furthermore, the results were similar to Hussein et al. (1991) 

who found that the two tested F. culmorum strains were ZEN producers. ZEN contamination is 

commonly associated with DON (Bottalico and Perrone, 2002) but this co-existence in our results 

did not often exist, and it might be interpreted as the difference between production in vitro and 

in vivo.  

Emerging mycotoxins are well known to be produced by different Fusarium spp. (Monti et al., 

2000; Meca et al., 2010). The capability of F. tricinctum to produce different types of emerging 

mycotoxins was reported by Jestoi (2008). 

All the strains of F. verticilliodes (8) and F. proliferatum (5) were capable of producing 

fumonisins (FB1, FB2, FB3). Our findings are in accordance with other authors (Farnochi et al., 

2005; Hartl et al., 1999; Aoyama and  Ishikuro., 2007) that recognize F. proliferatum and F. 

verticilliodes (before known as F. moniliforme) as the main producers of fumonisins among the 

other Fusarium spp.. The ability of F.equiseti to produce DAS was previously reported by 

Langseth et al. (1999). 

The quantification of different Fusarium spp. associated with FHB revealed correspondence 

between the chemotypes of Fusarium spp. and the production of mycotoxins on rice medium. 

The production of small amounts of 15Ac-DON is common in strains belonging to 3Ac-DON 

chemotype due to acetylation of 15-hydroxyl of DON by the product of Tri3 (Tokai et al., 2008). 

Moreover, recent results showed that trichothecene 15-acetyltransferase (product of gene Tri8) is 

active in all three chemotypes (Alexander et al., 2011). Similar to our results, ten F. culmorum 

strains belonging to 3Ac-DON chemotype from France produced large amounts of DON (Bakan 

et al., 2002). Co-production of DON and NIV is rare, and it has been reported only for a few 

European isolates of F. culmorum (Nielsen and Thrane, 2001). The ability of the NIV strains to 

produce DON or its derivatives besides NIV/FUS-X was also noticed in the study performed by 

Hestbjerg et al. (2002).  In our work, all F. culmorum and F. graminearum strains belonging to 

NIV chemotype also produced Fus X, which is not surprising because Fus X is 4-acetyl-NIV and 

NIV producers contain active trichothecene-4-acetylase, product of gene Tri7 (Lee et al., 2002). 

In a previous work of Bakan et al. (2001) found only 12 to 35 strains of F. culmorum 

coproducers of these mycotoxins.  
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ZEN in detectable levels was found in almost all the tested strains from different species; F. 

culmorum, F. graminearum, F. pseudograminearum and F. equiseti (except one strain). 

Furthermore, four of seven F. equiseti strains possessed trichothecene gene produced tricothecene 

B. NIV production by F. equiseti was mentioned by several authores (Langseth et al., 1999 ; 

Nicholson et al., 2003), while the ability of some strains to produce  DON and its derivatives is 

interesting, and need further investigation. There are possible explanations for the lack of 

detection of trichothecene production: (i) production in amounts below the detection level for the 

applied method (ii) mutations in the biosynthetic pathway, and (iii) down regulation of the 

biosynthetic pathway by unknown mechanisms (Hestbjerg et al., 2002).   

Analysis of two strains of F. pseudograminearum showed an ability to produce DON and its 

acetylated more than NIV which is in accordance with O’Donnell et al. (2000) and Monds et al. 

(2005), who found that F. pseudograminearum isolates produce the mycotoxin 3Ac-DON rather 

than NIV. The diversity of mycotoxins produced gives us a picture about the capability of the 

tested strains to produce different mycotoxins. 

This study, is the first study conducted on mycotoxin production by Syrian Fusarium species, and 

confirmed previous chemotyping of different Fusarium strains isolated from Syrian wheat 

kernels. The preliminary map, which can be drawn on the occurrence and prediction of the types 

of Fusarium mycotoxins, could be important for future work in Syria, which needs further 

investigation. 
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FIGURES AND TABLES 

Figure 2.1. Different stages of mycotoxin extraction and detection by HPLCMS/MS 
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Table 2.3. Occurrence of mycotoxins in 9 Fusarium species, isolated from wheat kernels collected from different Syrian areas, and cultured on 

wheat media  

 

Number of the strains producing mycotoxins 
Fusarium species 

N.o  

DON FB1 FB2 FB3 DAS ZEN BEA ENA ENA1 ENB1 ENB

F. culmorum 11 4 - - - - 11 - - - - - 

F. graminearum 9  - - - - 9 - - - - - 

F. pseudograminearum 2 2 - - - - 2 - - - - - 

F. semitectum 2 - - - - - 1 - - - - - 

F. tricinctum 3 - - - - - - 1 1 1 1 1 

F. incarnatum equiseti complex 11 1 - - - - - - - - - - 

F. proliferatum 5 - 5 5 5 - - - - - - - 

F. verticilliodes 8  8 8 8 - - - - - - - 

F. equiseti 9 2 - - - 3 1 - - - - - 
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Table 2.4. Strains, chemotypes of different Fusarium species and quantification (mg/kg) of the mycotoxins producted in rice media  

mycotoxins 
Fusarium species Sample Strain Chemotype 

DON NIV ZEN Fus X 3Ac-
DON 

15Ac-
DON 

960 3Ac-DON >100 - 17 - 42 6 
961 3Ac-DON >100 - 8 - 9 2 
962 3Ac-DON >100 - 18 - 10 2 
963 NIV 5 >100 5 30 - - 
964 NIV >100 >100 9 54 10 2 
965 NIV 9 >100 0.1 53 - - 
966 3Ac-DON >100 - 2 - 48 6 
967 NIV 10 >100 13 >100 0.4 - 
968 3Ac-DON >100 - 50 - 54 7 
969 3Ac-DON >100 - 33 - 37 4 

F. culmorum 

970 NIV 8 >100 1 52 0.2 - 
1012 NIV - 2 7 2 - - 
1014 NIV - 1 6 1 - - 
1016 NIV - 2 4 2 - - 
1017 NIV - 3 6 3 - - 
1018 NIV - 2 4 2 - - 

F. graminearum 

1022 NIV - 3 3 2 - - 
1029  3 - >100 - 10 1 F. pseudo-

graminearum 1030  >100 1 1 - 65 8 
982 Tri5 gene >100 - 8 - 15 3 
983 - - - < 0.1 - - - 
984 Tri5 gene - 19 13 - - - 
985 Tri5 gene - - >10 - - - 
987 Tri5 gene 23 4 8 1 25 0.3 
988 - 0.3 - 2 - - - 
990 Tri5 gene - - - - - - 
991 Tri5 gene - 1 < 0.1 1 - - 

F. equiseti 

992 Tri5 gene - - < 0.1 - - - 
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Figure 2.2. Chromatograms of spiked wheat flour under the optimum chromatographic 

conditions 
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Figure 2.3. Chromatograms of mycotoxins prodyced by a) F. culmorum strain b) F. verticilliodes 

strain 

a) 

 

b) 
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Detection of mycotoxins in Syrian and Italian wheat kernels 
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ABSTRACT 

 This article describes the validation of an analytical method for the detection of 23 mycotoxins 

in wheat flour. The analytical method is based on the simultaneous extraction of selected 

mycotoxins by matrix solid-phase dispersion (MSPD) followed by liquid chromatography 

coupled with tandem mass spectrometry (LC-MS/MS) using a hybrid  triple quadrupole-linear 

ion trap mass spectrometer (QTrap®). Information Dependent Acquisition (IDA), an extra 

confirmation tool for samples that contain the selected mycotoxins, was used. The results of the 

analysis of 40 Syrian and 46 Italian wheat flour samples were not identical. Whilst the Syrian 

samples were contaminated mainly with ochratoxins and aflatoxins, which are produced by 

storage fungi, these toxins were absent in the Italian samples. Moreover, the Syrian samples were 

contaminated with deoxynivalenol (DON) but not with its acetylated forms (15Ac-DON and 

3Ac-DON), while the Italian samples were contaminated mainly with DON and 15Ac-DON. The 

emerging mycotoxins were predominant in the Italian samples versus the Syrians. 

Among the analyzed samples, only one sample had zearalenone level above the European 

allowable limits (100 ppb). The climatic differences between Syria and Italy, both from 

Mediterranean basin, play a key role in the type of mycotoxins detected. 

  

INTRODUCTION 

Wheat (Triticum spp.) is the first food crop in the world where bread is the staple food for more 

than three-quarters (Dib and Soussi, 2004). The importance of wheat has been mainly attributed 

to its ability to be ground into flour and semolina, etc. that form the basic ingredients for bread 

and other bakery products and pastas (e.g. macaroni and spaghetti) (Chandrika and Shahidi, 

2006). Furthermore, wheat and its products, bread and pasta, are basic foods, especially in the 

Mediterranean diet (Gallo et al., 2008). There are three main factors that play an important role in 

the success of wheat crop: (1) adaptation to a wide range of environments, (2) ease storage of its 

grains and transportation, and (3) limitless variety of healthy and appealing food to which its 

grains could be processed (Morris et al., 2011). FAO’s estimation for global wheat production in 

2010 stand to 653 million tonnes (FAO, 2010), while FAO’s first forecast for world wheat 
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production in 2011 stands to 676 million tonnes. In the first rank, the European Union (EU) 

appears as the main wheat producer with an estimated production of 142 million tonnes in 2011 

(FAO, 2011). In Syria, wheat is considered the main strategic crop with an annual production that 

ranged from 4 and 5 million tonnes, within the last years (NAPC, 2009) and reached 3.6 million 

tonnes in 2010 (FAO, 2011). Both types of wheat, durum and soft, are cultivated in Syria for 

roughly 60% and 40% respectively (Sadiddin and Atiya, 2009). Wheat and its two main products, 

i.e. bread, and bulgur are common food stuffs in Syria (Haydar et al., 1990) with an average 

consumption of bread per capita per month of 12.9 Kg (FAO, 2003). On the other hand, durum 

wheat is commonly used in Italy due to its role in manufacturing pasta and semolina with a 

productivity that reaches 3,194,152 tons and 5,850,000 tons, respectively 

(www.franceagrimer.fr). 

Cereals and their derivatives could be contaminated by fungi, which may occur during 

harvesting, handling, transportation and storage (Jestoi et al., 2008). Pre and post-harvest 

infection by fungi, of wheat kernels in addition to quantity losses, can contaminate the grains 

with secondary metabolites (mycotoxins) that are recognized as health hazard for both human and 

animals (Mankeviciene et al., 2007). Mycotoxin presence depends on several factors, such as 

fungal strain, climatic and geographical conditions, cultivation technique, susceptibility level of 

host plants and crop protection, particularly during storage (Pancaldi et al., 2010). Rotation 

intervals between host crops, land preparation, use of fertilizers, irrigation, and weed control have 

also been listed as influencing factors (Parry et al., 1995). Major mycotoxigenic fungi involved in 

the human food chain belong to the filamentous genera Fusarium, Aspergillus and Penicillium 

(Jestoi, 2008). 

Fusarium species are mycotoxigenic fungi which produce several major mycotoxins, such as 

deoxynivalenol (DON), acetylated-DON (ac-DON), nivalenol (NIV), HT-2 and T-2 toxins and 

zearalenone (ZEN). In addition, cyclohesadepsipeptide enniatin (ENN) and beauvericin (BEA) 

production has also been widely reported (Torp and Langseth, 1999; Uhlig et al., 2006). Some 

fungal species are able to produce multiple mycotoxins. F. poae has been reported to produce 

both type A trichothecenes, such as T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS), and 

neosolaniol (NEO), and type B trichothecenes, nivalenol (NIV) and fusarenon-X (Fus) 

(Desjardins, 2006). Aspergillus spp. are capable to produce a group of mycotoxins called 

aflatoxins (B1, B2, G1, G2) (Sangare-Tigori et al., 2006). Poisoning with Fusarium mycotoxins 



CHAPTER III 
 

56 
 

causes acute and chronic symptoms such as nausea, internal organ damages, cancer, and 

infertility (Rocha et al., 2005; Minervini et al., 2004; Nielsen et al. 2009). Liquid 

chromatography–mass spectrometry (LC–MS/MS) is an useful method for rapid-simultaneous 

detection and quantification of many mycotoxins and their metabolites (Vendl et al., 2009). 

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is the technique 

for multi-mycotoxin analysis because of its versatility, specificity and selectivity. Until recently, 

triple quadrupole (QqQ) LC-MS/MS equipment has been the most widely employed equipment 

for  quantitative mycotoxin analysis (Ren et al., 2007; D’Arco et al., 2008; Beltran et al., 2009). 

Although the excellent sensitivity, selectivity and efficiency of QqQ, the qualitative information 

need to support the structural elucidation of the compounds that is still not available (Hernandez 

et al., 2005). This liability could be overcome with the hybrid mass spectrometer QTrap®, which 

is appropriate for both quantification and confirmation of mycotoxins (Martinez et al., 2007; 

Gros et al., 2009). In previous research (Rubert et al. 2010; Rubert et al., 2011) the matrix solid-

phase dispersion MSPD extraction procedures for the legislated mycotoxins have been developed 

and reported. As a follow-up to these studies, the objective of this work has been the 

development of a fast, selective and sensitive mycotoxin analytical method based on MSPD 

extraction followed by LC-MS/MS using a 3200 QTRAP® instrument applied to mycotoxins in 

wheat flour. To our knowledge, an MSPD method (followed by QTRAP® mass spectrometry) is 

scarcely used as a routine analytical technique for mycotoxin in the field, and for the analysis of 

these natural contaminants in wheat flour. Several surveys were conducted on the levels of 

mycotoxins in wheat all over the world such as USA, Canada, Serbia, Italy, Jordan (Jelinek et al., 

1989; Roscoe et al., 2008; Skrbic et al., 2012; Gallo et al., 2008; Salem and Ahmad, 2010)  

while, to our knowledge, in 1990 only one survey on aflatoxins in different syrian's food 

products, wheat included, was conducted in the city of Lattakia (Haydar et al., 1990). An 

estimate of the risk can support the decision to make strategic and tactical the control of the 

disease, for post-harvest management of kernels.  

For these purposes, the survey described in this paper was designed to obtain the first information 

on the incidence and levels of mycotoxins in Syrian and Italian wheat for human and animal 

consumption. 
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MATERIALS AND METHODS 

Occurrence of mycotoxins in Italian and Syrian wheat flour  

The mycotoxin analyses were performed in the laboratory of  Toxicology, Department of 

Preventive Medicine, Faculty of Pharmacy, Valencia University (Spain), directed by Prof. Jordi 

Manes. 

Chemical and reagents 

Acetonitrile and methanol were supplied by Merck (Darmstadt, Germany). The dispersant used 

for MSPD was octadecyl silica (C18) (50 µm), bonded silica from Analisis Vinicos S.L. 

(Tomelloso, Spain).  

Deionized water (>18 MΩ cm-1 resistivity) was purified using the Milli-Q® SP Reagent water 

system plus from Millipore Corp. (Bedford, MA, USA). All solvents were passed through a 0.45 

µm cellulose filter purchased from Scharlau (Barcelona, Spain). Analytical grade formic acid 

(purity > 98%), and ammonium formate were obtained from Panreac Quimica S.A.U. (Barcelona, 

Spain). 

The standards of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 

(AFG2), ochratoxin A (OTA), sterigmatocystin (STER), α-zearalenol (ZOL), zearalenone (ZEN), 

nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-

acetyldeoxynivalenol (15-ADON), fusarenon X (FUS-X), neosolaniol (NEO), diacetoxyscirpenol 

(DAS), fumonisin B1 (FB1), fumonisin B2 (FB2) and beauvericin (BEA) were purchased from 

Sigma Aldrich (Madrid, Spain). T-2 and HT-2 toxins, aflatoxin M1 (AFM1) and deepoxy-

deoxynivalenol (DOM-1) stock solutions (in acetonitrile) were obtained from Biopure 

referenzsubstanzen GmBH (Tulln, Austria). Fumonisin B3 (FB3) was supplied by the PROMEC 

unit (Programme on Mycotoxins and Experimental Carcinogenesis, Tygerberg, South Africa).  

The stock solutions of aflatoxins (AFs) and OTA at a concentration of 500 µg mL-1 were 

prepared in acetonitrile and stock solutions of STER, ZOL, ZEN, NIV, DON, 3-ADON, 15-

ADON, FUS-X, NEO, FB1, FB2 and BEA were also prepared at a concentration of 500 µg mL-1 

but in methanol. Stock solutions of FB3, DAS, T-2 and HT-2 at a concentration of 100 µg mL-1 

were prepared in acetonitrile. The internal standards (ISs) were AFM1 (for AFs) at 0.05 µg mL-1 



CHAPTER III 
 

58 
 

and DOM-1 (for trichothecenes) at 0.150 µg mL-1. Both of these solutions were prepared by 

dilution of individual stock solutions in methanol.  

All solutions were kept in secure conditions at -20ºC. 

All other working standard solutions were prepared immediately before use by diluting the stock 

solution with methanol:water (50:50) (V/V).  

Sampling 

A total of 86 wheat grain samples, collected during 2009 and 2010 seasons, were analysed for the 

presence of mycotoxins. 40 of durum and soft wheat were collected from different areas of Syria 

including Deir Ezzor (11), Damascus rural (19), Daraa (3) and Al Hassakeh (7). 46 of durum 

wheat were collected from different Italian areas belonging to Emilia-Romagna (12), Toscana 

(5), Marche (12), Umbria (7), Lazio (3), Basilicata (3) and Sicilia (4). Figure 3.1 shows the 

regions in Italy and Syria where the wheat samples were collected. 

According to EU guidelines (EU, 2006), three incremental samples of at least 1 kg were collected 

to obtain an aggregate sample of 3 kg total weight. After homogenization, samples were packed 

in a plastic bag and kept at -20 °C in a dark and dry place until analysis. Just before analysis, a 

subsample of 100 g was mixed thoroughly using an Oster® food processor (Professional Series 

Blender model BPST02-B00) to obtain wheat flour.  

Extraction 

Portions of 1 g of wheat ground sample were placed into a glass mortar (50 mL) and gently 

blended with 1 g of C18 for 5 min using a pestle to obtain a homogeneous mixture. This mixture 

was introduced into a glass column and eluted with 15 mL of a mixture of acetonitrile: methanol 

(50: 50) (v/v) and 1 mM ammonium formate by applying a slight vacuum. The extract was then 

transferred to a 25 mL conical tube and evaporated to dryness at 35 °C with a gentle stream of 

nitrogen using a multi-sample Turbovap LV Evaporator (Zymark, Hoptkinton, USA). The 

residue was reconstituted to a final volume of 1 mL with a mixture of methanol: water (50: 50) 

(v/v) and filtered using a 13 mm/0.22 μm nylon filter purchased from Membrane Solutions 

(Texas, USA) before the injection of the prepared samples into the LC–MS/MS system. 

For fortified samples (a sample enriched with a known amount of the analyte to be detected) (EU, 

2002), 1 g of “blank” sample (sample in which it was corroborated that no analyte was present) 



CHAPTER III 
 

59 
 

was spiked with 0.2 mL of a working mixture of the mycotoxins at the appropriate concentration 

e. Spiked samples were then left to stand for 3 hours at room temperature before the extraction to 

allow the solvent to evaporate and to establish equilibration between the spiked mycotoxins and 

wheat flour samples. Ten replicates were prepared at each spiking level. 

Liquid chromatography - mass spectrometry analysis 

LC-tandem MS analyses were conducted on a system consisting of a Agilent 1200 

chromatograph (Agilent Technologies, Palo Alto, CA, USA) coupled to a 3200 QTRAP® mass 

spectrometer (Applied Biosystems, AB Sciex, Foster City, CA, USA) equipped with a turbo 

ionspray electrospray ionisation (ESI) interface. The QTRAP® analyser combines a fully 

functional triple quadrupole and an ion trap mass spectrometer within the same instrument. 

Separation of analytes was performed using a Gemini-NX (Phenomenex, 150 mm × 4.6 mm, 5 

μm of particle size) LC-column preceded by a guard column utilising the same packing material. 

The flow rate was set to 0.8 mL min-1, and the oven temperature was 40º C, with eluent A water 

(mobile phase A) slightly acidified with 0.1% formic acid and 5 mM ammonium formate and 

eluent B (mobile phase B) methanol with 5 mM ammonium formate. The elution gradient started 

with 0% of eluent B, increased to 100% in 10 min, decreased to 80% in 5 min and, finally, 

decreased to 70% in 2 min. During the subsequent 6 min, the column was cleaned and readjusted 

to the initial conditions and equilibrated for 7 min. The volume of the injections was 20 µL. 

The analyses were performed using the Turbo V® ionspray in positive ionization mode (ESI+). 

The operating conditions for the analysis were the following: ion spray voltage, 5500 V; curtain 

gas, 20 (arbitrary units); GS1 and GS2, 55 and 65 psi, respectively; probe temperature (TEM), 

500º C. Nitrogen served as the nebuliser and collision gas. SRM experiments were performed to 

obtain the maximum sensitivity for the detection of target molecules. The optimisation of MS 

parameters as declustering potential (DP), collision energy (CE) and collision cell entrance 

potential (CEP) was performed by flow injection analysis for each compound; entrance potential 

(EP) and collision cell exit potential (CXP) were set at 10 and 4 V, respectively, for all analytes. 

The MS was operated in selected reaction monitoring (SRM) mode and with the resolution set to 

unit resolution for Q1 and Q3. For increased sensitivity and selectivity, MS/MS data acquisition 

was also performed in the SRM mode. For LC–MS/MS analysis, scheduled SRM (sSRM) was 

used with a 45 s SRM detection window and 2 s of target scan time. Scheduled SRM is defined 
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as SRM with the amount of time for detection that surrounds the retention time for each 

transition. Analyst® version 1.5.1 software (Applied Biosystems/AB Sciex) was used to control 

all components of the system and also for data collection and analysis. 

In addition, to obtain additional confirmation, especially when trace concentration levels were 

required, IDA experiments were performed with SRM as the survey scan and the EPI mode and 

MS3 mode were operated.  

 

Validation of the method 

Validation of the method was performed according to a previous study (Rubert et al., 2012). 

Quantification of each compound was performed using two SRM transitions and monitoring the 

SRM ratio. Enhanced product ion (EPI) scan (as an extra information tool) was used for 

confirmation of the positive mycotoxin findings. Matrix effect (ME) for each analyte is defined 

as the percentage of the matrix-matched calibration slope (B) divided by the slope of the standard 

calibration in solvent (A) and was calculated for wheat. The ratio (B/A x 100) is defined as the 

absolute matrix effect (ME %). A value of 100% indicates that there is no absolute matrix effect. 

There is signal enhancement if the value is >100% and signal suppression if the value is <100%. 

Matrix-matched calibration was used for reliable quantitative determinations. The linearity in the 

response was calculated using matrix-matched curves prepared by spiking one “blank” wheat 

sample and analysing it in triplicate at six concentration levels within the analytical range: from 

the limit of quantification (LOQ) to 100 times this LOQ.  

All results were calculated comparing the area obtained for a blank extract spiked before the 

extraction (fortified samples) to the results obtained from a blank extract spiked after the 

extraction (matrix-matched sample). This experiment was repeated ten times within a day for an 

intra-day precision test and additionally performed once each day, for five consecutive days, for 

the inter-day test.  

The recovery experiments were conducted by spiking the blank wheat sample in ten replicates at 

two concentration levels (LOQ and 10 times LOQ). In this way, intra-day and inter-day 

parameters of the method were determined at LOQ and 10 times LOQ concentration levels by 

repeating the analysis of the wheat samples in ten replicates on the same day and for five non-

consecutive days. 
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Limits of detection (LODs) and limits of quantification (LOQs) were defined as the concentration 

at which the signal-to-noise (S/N) obtained was close to 3 and 10, respectively. These limits were 

calculated by Analyst version 1.5.1 software (Applied Biosystems/AB Sciex) and both 

parameters were determined by the analysis of decreasing concentrations of the spiked wheat 

sample. 

 

Estimation of daily intake 

For estimating the toxin uptake by the consumers, a mean concentration of each found mycotoxin 

was calculated, considering: only positive samples, both positives and negative samples and the 

high concentration level found. These mean contamination values of analytes respect food 

consumption data were divided by the body weight (standard body mass of 60 kg) to calculate the 

dietary daily intake per person. 

 

RESULTS 

Validation of the method 

In the present work, a previous developed MSPD method (Rubert, et al., 2011) was further 

applied for extraction and determination multi-mycotoxin in different flours using LC–MS/MS. 

However, in order to validate the developed procedure for this matrix, parameters as recoveries, 

repeatability and reproducibility, as well as limits of detection (LODs) and limits of 

quantification (LOQs), were evaluated. 

The LODs and LOQs were based on the minimum amount of target analyte that produced a 

chromatogram peak with a signal-to-noise ratio of 3 and 10 times the background 

chromatographic noise, respectively. Calculated values for wheat flour to guarantee 

quantification, matrix effects in wheat flour were deeply studied. For the matrix effects 

evaluation, six concentration between LOQ and 100 times LOQ levels were analyzed in 

methanol/ water (50/50, v/v) and in matrix-matched (spiked after blank) samples, and the slopes 

of the calibration curves were compared by the formula (slope matrix-matched wheat flour /slope 

standard in solvent × 100). In all cases, the calibration curves showed high linearity.  
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Matrix matched standards calibration was required to correct the matrix effect problems in order 

to obtain reliable quantification of these mycotoxins in wheat flour. Matrix-matched calibration 

does not increase the time of analysis since extraction procedure, and chromatographic analysis 

are fast methods. Recoveries and repeatability of the developed analytical method, for each 

analyzed compound, were carried out by injection of the spiked samples at two concentration 

levels (LOQ concentration level and 100 times LOQ concentration level), ten consecutive times 

within the day (intraday precision), and for five consecutive days (inter-day precision). For all 

compounds, the mean recoveries in wheat flour were satisfactory. These results were in accord 

with the performance criteria of the EU (EU, 2002).  

Occurrence of mycotoxins in Italian and Syrian wheat flour  

In this study, “positive sample” was considered when the concentration detected was upper than 

LOQ level. Moreover, the confirmation of these “positive samples” was carried out, according to 

the European Commission (EU, 2002): the q/Q ratios were evaluated from reference standards in 

solvent and compared to those experimentally obtained from spiked samples. 

With this criterion, a total of 37 Italian samples and 24 Syrian were confirmed as positive 

samples. The specific mycotoxin in the positive samples was identified by searching in the 

appropriate retention time window (defined as the retention time ± three standard deviations of 

the retention time of a blank sample spiked at LOQ for each mycotoxin), and the confirmation 

was conducted by comparison of the signal intensity ratios of the two transitions (quantification 

and qualification) to the two transitions obtained using fortified blank samples. 

Out of 46 Italian wheat samples, 80% were contaminated with at least one mycotoxin. In fact, 

27% of positive samples were contaminated with more than one mycotoxin and 38% of them 

were contaminated with three or more mycotoxins. 

DON was the mycotoxin with high incidence (59%) (Table 3.1) and in 24% of samples this 

mycotoxin was detected with its precursors 3-ADON and/or 15-ADON. Only in five samples, 3-

ADON (2 samples) and 15-ADON (4 samples) were detected without the presence of DON. 

Low correlation between DON and other type B trichothecenes such as NIV and FUS-X has been 

found. For example, NIV was detected in three samples and only in one sample accompanied 

with DON. FUS-X was found in three samples; two with the presence of DON. 
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Type A trichothecenes, T-2 and HT-2, were detected in 26% of samples; in 18% of samples were 

detected simultaneously, and the positive samples for these mycotoxins were detected in Marche 

region. The second mycotoxin with high incidence (35%) was ZEN, and its metabolite α-ZOL 

was present in three samples.  

In spite of the high frequency of type A and B trichothecenes and ZEN, only in one sample from 

Marche, the  level of  ZEN exceeded the MLs extrablished by the EU (Table 3.4). 

Co-occurrence of mycotoxins in Syrian wheat grains is presented in Table 3.2. Out of 40 Syrian 

samples, 24 samples (60%) were contaminated with at least one mycotoxin. Aflatoxins exhibited 

the highest incidence compared to the other examined mycotoxins; 14 out of  positive samples 

(58%) were contaminated with AFB2. AFG2 was present in 2 wheat grain samples, and in one 

sample was with AFG1. No sample contaminated with AFB1 was detected in this study. STER 

was present only in four samples. The second most abundant mycotoxin was OTA. 12 samples 

(50%) out 24 samples were contaminated with OTA. In 6 samples, OTA was the only mycotoxin 

and in the other 6 samples, there was a co-occurrence of OTA and AFs. The incidence and levels 

of Fusarium toxins in Syrian samples were lower then Italian ones. Only in 11 out of 24 positive 

samples, Fusarium toxins were detected; ZEN was detected in 10 samples (42%) and its 

metabolite ZOL was detected in 3 samples. DON was found in 6 samples (25%) and Fumonisins 

(FB1 and FB2) were found only in 4 samples. 

Results about the occurrence and contamination level of emerging mycotoxins are summarized in 

Table 3.3. The incidence and mean concentrations of emerging mycotoxins found in Italian wheat 

grain samples were higher than those found in wheat samples from Syria. Moreover, the 

occurrence of mycotoxins was different; while ENB was the most common mycotoxin in positive 

Italian samples (49%), BEA was the emerging mycotoxin with high incidence (21%) in positive 

Syrian samples. According to Italian results, co-occurrence of the 5 mycotoxins was verified only 

in one sample. In 4 samples, the four enniatins were present simultaneously. ENB and ENB1 

were detected simultaneously in 8 samples and ENB was detected together with ENA in 4 

samples. Six samples were contaminated with only one mycotoxin; BEA was detected alone in 

one sample.  

Regarding to Syrian samples, the simultaneous incidence of BEA and ENA and ENA1 was 

confirmed in 3 samples. ENB was detected in one sample while ENB1 was absent in all the 

analyzed samples.  
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Estimation of daily intake 

The results of estimating dietary intake was compared with temporary TDI (tTDI) of the 

respective mycotoxins, to evaluate the possible health risk associated with the intake (Table 3.5) 

 

DISCUSSION 

There are few studies regarding the presence of different groups of mycotoxins simultaneously in 

wheat grain samples; the present study evaluates for the first time a broad spectrum of 

mycotoxins in wheat grains from Italy and Syria. In this regard, the level of contamination with 

various mycotoxins including aflatoxins, fumonisins, type A and B trichothecenes, ZEN, ZOL, 

OTA, STER and emerging mycotoxins were assed. Moreover, an estimation of consumer risk 

was calculated. 

In the field of mycotoxin analysis, several methods using the hybrid triple quadrupole-linear ion 

trap mass spectrometer had been described in literature (Berthiller et al., 2005b). In the current 

study, good sensitivity was obtained for selected mycotoxins when the ESI+ mode was applied. 

One of the main aims of this method was to detect as many mycotoxins as possible in a single 

run, but the problem encountered in the quantitative LC-MS/MS analysis was the existence of the 

matrix effects. Although sampling plans and performance features, that control requirements for 

methods in mycotoxin analysis have been regulated (FAO, 2004; EU, 2006), there is still a need 

for a specific performance criterion to overcome these matrix effects for mycotoxin analysis. 

Other contaminants such as pesticides or veterinary antibiotics have specific guidelines 

(Document SANCO, 2000; SANCO, 2003; SANCO, 2009) that recommend matrix-matched 

calibration as the optimal option to eliminate these interferences and obtain accurate results. In 

this work focused on mycotoxins, different techniques applied in other fields (pesticide and 

antibiotic analysis) have been evaluated to meet the established performance requirements in 

mycotoxin analysis (EU, 2002; EU, 2006). The validation of the method should be conducted in 

accordance with the performance criteria of the analytical method selected (EU, 2002). External 

matrix-matched calibration and internal standard calibration were therefore compared to evaluate 

matrix effects in wheat flour. A great number of approaches to evaluate and compensate for the 

matrix effects have been tested. However, the only way to ensure high accuracy in the results is 
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the use of isotopically labelled internal standards. Ideally, each analyte should be corrected by its 

own isotope-labelled molecule. Achieving this ideal situation is problematic in a multi residue 

method because of the commercial unavailability of several compounds and the economic 

restrictions on the acquisition of a large number of the ispotope-labelled compounds. The 

evaluation of different systems able to compensate for matrix effects is particularly important 

(Sforza et al., 2006; Rubert et al., 2011). 

On the light of our results obtained after mycotoxins analysis in the investigated sample, it is 

important to mention the fact that origin variations were noted on mycotoxins occurrence. 

Whearas in Italian samples only Fusarium mycotoxins, particularly type A and B trichothecenes, 

ZEN and ZOL were detected, Aspergillus and Penicillium mycotoxins such as aflatoxins and 

OTA had high incidence in Syrian samples (Figure 3.2). 

The relation between the region and the presence of fungal isolates is well-known and based on 

various factors such as climatic factors, agronomic practices and competition with other species  

(Parry et al., 1995; Saremi et al., 1999; Doohan et al., 2003; Pancaldi et al., 2010). The changes 

in these factors might strongly alter the mycoflora composition from season to season (Visconti 

and Pascale, 2010). This relation is important in order to establish control strategies for fungal 

disease and the content of mycotoxins in food and animal feed.  

Almost all the Italian infected samples were contaminated with the type B trichothecenes toxin 

DON, with the co-occurrence of its acylated form, 15Ac-DON in nearly half of the samples, and 

few with 3Ac-DON and NIV chemotypes. Our results are in agreement with the survey presented 

by Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2001) which showed that 

DON was the most abundant trichothecene in Italian cereals. Furthermore, 12 EU member States 

indicated that DON was the most frequently detected mycotoxin in wheat samples (EU, 2003). 

Trichothecenes A, T-2 and HT-2, were also simultaneously detected with tricothecenes B, but to 

a lesser extent. On the other hand, it can be noticed that the infected Syrian samples were mainly 

contaminated with ochratoxins and aflatoxins, which are produced by storage fungi i.e. 

Aspergillus spp. and Penicillium spp. (Reyneri, 2006), isolated previously from the same samples 

(Chapter I). On contrary to our findings, Haydar et al. (1990) estimated aflatoxin contamination 

in sixty-three samples of nineteen food commodities of Syrian origin - no levels were reported-  
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and found that AFB2 was present only in one sample whilst AFG1 and AFG2 were not detected in 

any commodity. 

The absence of AFB1 could be explained by two hypotheses: firstly, it is possible that it was 

presented at concentration levels lower than LOD, secondly, it is known that AFB1 is rapidly 

decomposed to AFB2; a much less toxic form (Carvajal and Arroyo, 1997) and AFB2 degrades 

more slowly. STER was detected in few samples, and this mycotoxin is supposed to be the 

precursor of aflatoxins (Wilkinson et al., 2004). So, its low incidence compared with high 

incidence of AFs could be explained by the transformation of this toxin to AFs owing to long 

periods of storage. 

These results indicate that more attention should be paid to post-harvest conditions to minimize 

the content of these toxins (Frenich et al., 2009). In addition, the presence of Fusarium 

mycotoxins (conventional and emerging) was also detected indicating pre-harvesting or post–

harvesting infection however, this detection was not concomitant with isolation of Fusarium spp. 

in most of the samples (Chapter I). The absence of Fusarium spp. could be due either to removal 

of the external infected coat during the wheat harvest or the application of fungicides during the 

storage. It should be taken into account the increasing use of irrigation in Syria, due to persistent 

drought in recent years, influenced Fusarium infection, particularly FHB, even if the level of 

inoculum was low (Chapter I). It is worth to note that all Fusarium mycotoxins belonged to the 

type B trichothecenes, particularly DON, with complete absence of its acetylated forms; 3Ac-

DON and 15Ac-DON. As Fusarium spp. and Alternaria spp. are responsible for emerging 

mycotoxin production (Meca et al, 2010), the low percentage of contaminated samples with these 

mycotoxins in Syrian samples versus the Italian ones is either due to the low percentage of 

Fusarium infection or the presence of non mycotoxigenic Alternaria strains.  

Climatic differences between Syria and Italy are significant, although both belong to the 

Mediterranean basin. Syria has an arid and dry climate, very hot in the Summer and cold in 

Winter, with an average maximum inland Summer temperatures between 33° and 40°C. Italian 

climate is mainly temperate, it slightly varies according to the areas, the northern Italian regions 

have warm humid Summer with occasional rains, the southern part is hot and dry. The climatic 

conditions and the agricultural practices are crucial for FHB appearance and its severity in field 
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conditions (Xu and Nicholson, 2009). Referring to the above mentioned factors, this might 

explain the higher incidence of Fusarium mycotoxins in Italian samples versus the Syrian.  

The research suggests that the most frequent isolated fungi can produce different amounts of two 

or more mycotoxins. The extend of the risk of grain co-contaminations with several mycotoxins 

depends on the level and kind of mycotoxins, human age, health status, feature or organ assessed 

and mycotoxin interactions, which can be additive, synergistic or antagonistic (Speijers and 

Speijers, 2004). Therefore, it is difficult, right now,  to define safe levels of mycotoxins. 

Aflatoxins, and in particular aflatoxin B1, are considered to be genotoxic and carcinogenic and 

there is evidence that they can cause liver cancer in humans (Farombi et al.,2005 ). In accordance 

with expert scientific panels, it is not possible to identify an intake without risk ( Yu et al., 1997). 

Therefore, the limits set for certain foodstuffs for direct human consumption are those considered 

to be as low as reasonably achievable (ALARA). In general, concentrations of mycotoxins 

analysed in our survey were below the tolerable levels established by EU. ZEN concentration was 

higher than the EU allowable limits in only one Italian wheat sample. 

In recent years the consumption of wheat around the world has increased as well in grain as its 

derivates. Because of the simultaneous occurrence of different mycotoxins in the analyzed 

samples, there should be a continuous monitoring of wheat. More studies, attempting to 

understand the dynamics involved in mycotoxin production in grains, need to be carried out with 

the aim of reducing the presence of these mycotoxins.  
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FIGURES AND TABLES 
Table 3.1. Summary of mycotoxin  frequencies and levels found in Italian wheat samples according to the regions 
(n=3) (ng ml-1). a Mean value of positive samples, b Mean value of total samples 

Regions 
 

DON 
3Ac-

DON 

15Ac-

DON 
NIV T-2 HT-2 

FUS-

X 
ZEN ZOL 

Frequency 6/12 0/12 2/12 0/12 1/12 0/12 1/12 3/12 1/12 
Mean 
Valuea 68.1 - 34.5 - 9 - 6 38 8 

Mean 
Valueb 34 - 5.75 - 0.75 - 0.5 9.5 0.67 EM

IL
IA

 
R

O
M

A
G

N
A

 
(n

=1
2)

 

Range 19-180 - 13-56 - 9 - 6 11-62 8 

Frequency 5/5 0/5 2/5 0/5 0/5 0/5 0/5 2/5 0/5 
Mean 
Valuea 82.2 - 12.5 - - - - 18 - 

Mean 
Valueb 82.2 - 5 - - - - 7.2 - 

TO
SC

A
N

A
 

(n
=5

) 

Range 53-120 - 12-13 - - - - 17-19 - 

Frequency 5/12 3/12 6/12 3/12 7/12 7/12 1/12 5/12 1/12 
Mean 
Valuea 248 25 41.8 183 12 15 14 88 5 

Mean 
Valueb 103.3 6.25 21 46 7 9 1.1 37 0.4 

M
A

R
C

H
E 

(n
=1

2)
 

Range 62-551 11-33 14-101 67-
290 2-51 5-32 14 8-231 5 

Frequency 5/7 1/7 4/7 0/7 1/7 2/7 1/7 4/7 1/7 
Mean 
Valuea 41 4 45 - 11 8.5 5 15 4 

Mean 
Valueb 29 0.6 26 - 2 2 0.7 8 0.6 U

M
B

R
IA

 

(n
=7

) 

Range 14-93 4 19-94 - 0-11 2-15 5 7-26 4 

Frequency 3/3 0/3 0/3 0/3 0/3 0/3 0/3 1/3 0/3 
Mean 
Valuea 818 - - - - - - 46 - 

Mean 
Valueb 818 - - - - - - 15 - LA

ZI
O

 

(n
=3

) 

Range 13-1230 - - - - - - 46 - 

Frequency 3/4 0/4 1/4 0/4 1/4 1/4 0/4 1/4 0/4 
Mean 
Valuea 31 - 105 - 2 5 - 7 - 

Mean 
Valueb 23 - 26 - 0.5 1.2 - 2 - SI

C
IL

IA
 

(n
=4

) 

Range 24-37 - 105 - 2 5 - 7 - 

Frequency 27/46 4/46 15/46 3/46 10/46 10/46 3/46 16/46 3/46 
Mean 
Valuea 178 20 42 183 11 13 8 44 6 

Mean 
Valueb 105 2 14 12 2.3 2.8 0.5 15 0.4 TO

TA
L 

(n
=4

6)
 

Range 13-1230 4-33 12-105 67-
290 2-51 2-32 5-14 7-231 4-8 
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Table 3.2. Summary of mycotoxin frequencies and levels found in Syrian wheat samples according to the regions 

(n=3) (ng ml-1). 

Regions  DON AFB2 AFG1 AFG2 STER OTA FB1 FB2 ZEN ZOL 

Frequency 2/11 3/11 0/11 1/11 3/11 1/11 2/11 2/11 3/11 3/11 
Mean 
Valuea 19 0.5 - 0.6 1.5 0.51 5 12 9 3 

Mean 
Valueb 3.5 0.1 - 0.05 0.4 0.05 0.9 2 2.3 0.9 

D
EI

R
 E

ZZ
O

R
  

(n
=1

1)
 

Range 15-
23 

0.5-
0.6 - 0.6 1.4-

1.6 0.51 5 12 7-10 3-4 

Frequency 2/19 5/19 1/19 1/19 0/19 6/19 0/19 0/19 0/19 0/19 
Mean 
Valuea 13.5 0.6 0.6 0.6 - 0.6 - -     -     - 

Mean 
Valueb 1.42 0.2 0.03 0.03 - 0.2 - - - - 

D
A

M
A

SC
U

S 

R
U

R
A

L 

(n
=1

9)
 

Range 9-18 0.5-
0.9 0.6 0.6 - 0.5-

0.7 - - - - 

Frequency 0/3 1/3 0/3 0/3 0/3 1/3 0/3 0/3 0/3 0/3 
Mean 
Valuea - 0.8 - - - 0.52 - - - - 

Mean 
Valueb - 0.3 - - - 0.2 - - - - D

A
R

A
A

 

(n
=3

) 

Range - 0.8 - - - 0.52 - - - - 

Frequency 2/7 5/7 0/7 0/7 1/7 4/7 2/7 2/7 3/7 0/7 
Mean 
Valuea 15.5 0.6 - - 1.2 0.5 5.5 12 7 - 

Mean 
Valueb 4 0.4 - - 0.2 0.3 1.6 3 3 - 

A
L 

H
A

SS
A

K
EH

 

(n
=7

) 

Range 15-
16 

0.6-
0.7 - - 1.2 0.4-

0.7 5-6 12 4-9 - 

Frequency 6/40 14/40 1/40 2/40 4/40 12/40 4/40 4/40 6/40 3/40 
Mean 
Valuea 16 0.6 0.6 0.6 1.4 0.6 5 12 6 3 

Mean 
Valueb 2.4 0.2 0.02 0.03 0.1 0.2 0.5 1.2 1 0.3 TO

TA
L 

(n
=4

0)
 

Range 9-23 0.5-
0.9 0.6 0.6 1.2-

1.6 
0.4-
0.7 5-6 12 4-10 3-4 
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Table 3.3. Summary of “minor” mycotoxins levels found in Italian and Syrian wheat grain samples 

(n=3) (ng ml-1) 

Origin Parameter BEA ENA ENA1 ENB ENB1 

Frequency 6/46 6/46 11/46 18/46 11/46 

Mean Valuea 2.7 8.5 14.7 27.4 28.8 

Mean Valueb 0.4 1.1 3.5 11 7 

ITALY 

(n=46) 

Range 1.8-5.1 3.1-18.1 4.5-40.4 3.1-87.2 1.5-69.8 

       

Frequency 5/40 4/40 4/40 1/40 0/40 

Mean Valuea 1.60 1.7 1 0.9 - 

Mean Valueb 0.2 0.2 0.1 0.02 - 

SYRIA 

(n=40) 

Range 1.5-1.7 1.5-2.2 0.6-2.1 0.9 - 

 

Table 3.4. Supplementary. Maximum levels for certain mycotoxins in cereal foodstuffs established 

by European Commission (EU, 2006)  

Mycotoxin Level (μg kg-1) Food stuff  

AFB1 2 

AFB2 

AFG1 

AFG2 

4 

All cereals and all products derived from cereals, 

including processed cereal products, with the exception 

of foodstuffs listed in 2.1.7, 2.1.10 and 2.1.12 

OTA 5 Unprocessed cereals 

DON 1750 Unprocessed durum wheat and oats 

ZEN 100 Unprocessed cereals other than maize 
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Table 3.5. Estimation of daily intake, TDI- Tolerable Daily Intake, 1-Mean concentration level of 

positive samples, 2-Mean concentration level of total samples, 3-High found concentration 

 
Italian Samples 

Daily wheat Intake  0.4 kg/day

Syrian Samples 

Daily wheat Intake  0.42 kg/day 

 

TDI 

(µg/kg 

bw/day) EDI1 EDI2 High EDI3 EDI1 EDI2 High EDI3 

DON 1 1.2 0.7 8 0.1 0.01 0.2 

3Ac-DON  0.1 0.01 0.2    

15Ac-DON  0.3 0.1 0.7    

NIV 0.7 1.2 0.1 1.9    

FUS-X  0.1 0.01 0.3    

T-2 0.1 0.01 0.2    

HT-2 
0.06 

0.05 3×10-3 0.1    

ZEN 0.2 0.3 0.1 1.5 0.04 7×10-3 0.07 

ZOL  0.04 2×10-3 0.05 0.02 2×10-3 0.03 

AFB1  - - -    

AFB2  - - - 4×10-3 1×10-3 6×10-3 

AFG1  - - - 4×10-3 1×10-4 4×10-3 

AFG2  - - - 4×10-3 2×10-4 4×10-3 

OTA 0.02 - - - 4×10-3 1×10-3 5×10-3 

STER  - - - 0.01 7×10-4 0.01 

FB1 - - - 0.03 3×10-4 0.04 

FB2 
2 

- - - 0.08 8×10-3 0.08 

BEA  0.02 3×10-3 0.03 9x10-3 1x10-3 0.01 

ENA  0.06 7×10-3 0.1 0.01 1x10-3 0.01 

ENA1   0.1 0.02 0.2 6x10-3 6x10-4 0.01 

ENB  0.2 0.07 0.6 5x10-3 1x10-4 5x10-3 

ENB1  0.2 0.05 0.5 - - - 
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Figure 3.1. Locations ( ) in Syria (a) and Italy (b) where wheat samples were collected for 

mycotoxins analysis. 

a)                                                                            b) 

 

 

Figure 3.2. Percentage of kernel samples contaminated with mycotoxins 
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CHAPTER  IV 

Comparision of the aggressiveness between Syrian and Italian 

Fusarium culmorum strains  
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ABSTRACT 

In this work eight Syrian and three Italian strains of Fusarium culmorum, previously 

characterized in chemotypes (3Ac-DON and NIV) (Chapter I), were studied for aggressiveness 

and Deoxynivalenol production. The aggressiveness was compared using different assays, ear 

inoculation in the field, floret inoculation in growth chamber and a new Petri-dish assay recently 

set up for F. graminearum. DON levels in 3Ac-DON chemotype strains were carried out by 

ELISA technique. 

All F. culmorum strains were pathogenic, and a wide range of aggressiveness was observed. The 

aggressiveness levels of the strains were further investigated for the relationship among the 

following parameters: Fusarium damage kernel (FDK), kernel weight (KW) reduction and the 

chemotypes of the isolates. 

The relationships among the aggressiveness levels found in different assays, and their relation to 

FDK and KW reduction have been confirmed by the results in this study. The highest correlation 

coefficient was found between the data of the seedling test in the Petri-dish (AUDPCstandard) 

and the data of the floret inoculation in the growth chamber (mean and terminal disease severity; 

r = 0.891 and 0.932, respectively) and ear inoculation in the field (r = 0.829). There was no 

significant difference in aggressiveness among the two different chemotypes as determined by 

three aggressiveness parameters from ear and floret inoculation assays. Moreover, there are also 

no significant differences in FDK and KW reduction between the two chemotypes. Different F. 

culmorum chemotypes showed no difference in aggressiveness and caused the similar damage 

level to wheat kernels. Highly significant correlations of AUDPCstandard from the Petri-dish test 

with both floret and ear inoculations revealed the potential of using Petri-dish test to screen for 

highly aggressive F. culmorum isolates for breeding purposes. 

 

INTRODUCTION 

Fusarium culmorum (W. G. Sm.) Sacc. is one of the most common pathogen for wheat (Triticum 

L.) causing Fusarium head blight (FHB), a worldwide devastating disease (Parry et al., 1995; 

McMullen et al., 1997; Gilbert and Tekauz, 2000; Miedaner et al., 2008).  
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This disease leads to high yield and grain quality losses, as well as accumulation of mycotoxins 

that is a hazardous health risk for animals and poses a safety concern in human food (Windels, 

2000; Cumagun and Miedaner, 2004; Placinta et al., 1999).  

The presence of Fusarium species on wheat grain greatly affects the quality of harvested wheat 

leading to reduce seed germination and vigour, as well as baking qualities of flour by destroying 

starch granules, storage proteins and cell walls (Jackowiak et al., 2005). The losses due to FHB in 

wheat in Europe often estimated from 10 to 30 % (Bottalico and Perrone, 2002; Logrieco et al., 

2002a), while the wheat yield losses in different regions in the USA ranged from 20-50% in 1993   

with subsequent mycotoxin contamination (Windels, 2000).  

Some Fusarium species are producers of trichothecene mycotoxins, of which the main are 

Deoxynivalenol (DON) and Nivalenol (NIV) (Cumagun and Miedaner, 2004) involved in the 

inhibition of host resistance reactions and in the increase of pathogen colonization (Jansen et al., 

2005; Maier et al., 2006). The effect of mycotoxins on the quality of cereal grains has led to a 

great  interest in FHB. 

FHB epidemics in nature could strike suddenly, but its appearance could be inconsistent within  

the years, since it requires high humidity and rainfall during flowering in presence of susceptible 

host and aggressive strains of the pathogen. 

The symptoms of FHB are premature ripening of the spikelets and peduncle tissue, which turn 

brown or tan (Osborne and Stein, 2007). The rating of FHB symptoms, as the amount of the 

disease caused in a race non-specific resistance, defines the aggressiveness of the pathogen, that 

differs from the pathogenicity, and their ability in causing the disease (Vanderplank, 1968). 

Pathogenicity is a qualitative measurement while aggressiveness is a quantitative measurement of 

the rate at which the disease level is reached with more aggressive pathogens (Shaner et al., 

1992). Aggressiveness is an important aspect essential for understanding the interaction between 

host-pathogen in FHB-wheat system (Wu et al., 2005). The mean FHB disease rating is usually 

measured in order to evaluate the aggressiveness of the isolates collected from different 

continents (Voss et al., 2008), but other parameters such as symptom development, host 

colonization, type and amount of mycotoxin production should be considered (Mesterhazy, 1984; 

Miedaner and Schilling, 1996; Miedaner et al., 2000; Desjardins et al., 2004; Toth et al., 2004; 

Akinsanmi et al., 2006). The aggressiveness of Gibberella zeae or F. culmorum has a 
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quantitative-genetic basis besides other possible components (Miedaner et al., 1996; Miedaner et 

al., 2000). 

Several assays such as ear inoculations in field condition (Mesterhazy, 2002; Toth et al., 2008; 

Von der Ohe et al., 2010), floret inoculations under controlled conditions (growth chamber or 

green house) (Xue et al., 2004; Alvarez et al., 2010), coleoptile inoculations (Wu et al., 2005), 

Petri-dish methods (Mesterhazy, 1978; Mesterhazy 1984; Koutnik and Lemmens, 2007; 

Purahong, 2010), etc. have  been conducted to determine the aggressiveness levels. Whether 

different assays give the same result or not on the aggressiveness levels are still to be 

investigated. Wu et al. (2005) mentioned the existence of few studies about this last point.  

It is a matter of debate the correlation between the proportion of scabbed wheat spikelets growing 

in greenhouse and field. Hall et al. (2001) found a very low correlation between the data obtained 

in these two different environments, whereas Bai et al. (2001) reported a significant association. 

Although  the existence of   this contrast, the high correlation of aggressiveness should minimize 

the costs in carrying out the aggressiveness test for  pathologists, biotechnologists and plant 

breeders.  

In addition to the aggressiveness assays, Fusarium damage kernel (FDK) and yield loss were two 

parameters, which have shown a high significant correlation between each other as well as with 

other indices of aggressiveness in field conditions (Mesterhazy, 2002; Toth et al., 2008). 

Buerstmayr et al. (1999) studied the aggressiveness of F. culmorum isolates in wheat kernels in 

Austria using ear inoculations in the field and reported that there was a high correlation between 

visual FHB symptoms,  Area Under Disease Progress Curve (AUDPC)  and FDK. 

Mesterhazy (1997) and Lemmens et al. (1997) also reported that the percentage of FDK was 

highly correlated with trichothecene content. Other authors (Cumagun and Miedaner, 2004; 

Goswami and Kistler, 2005; Nicholson, 2009) found high correlations between aggressiveness 

and DON production in artificial infections. Miedaner and Reinbrecht (2001) compared different 

aggressiveness levels with different chemotypes of F. culmorum. 

The aims of the present study were: 

 1) to compare aggressiveness of Syrian and Italian F. culmorum isolates by using different 

aggressiveness assays: ear inoculations in field, floret inoculations in growth chamber and Petri-

dish test,  



CHAPTER IV 
 

77 
 

2) to investigate the relationships among aggressiveness indices from different assays and their 

relation to FDK, kernel weight (KW) reduction and DON production, 

 3) to compare aggressiveness of two different chemotypes of F. culmorum isolates using four 

disease parameters obtained with three aggressiveness assays,  

4) to evaluate FDK and KW reduction induced by two different chemotypes. 

 

MATERIALS AND METHODS  

Aggressiveness and pathogenicity of F. culmorum strains 

Fungal isolates  

Several F. culmorum colonies were isolated from durum wheat kernels of different cultivars 

grown in localities in Syria and Italy in 2009. They were morphologically and molecularly 

identified and subsequently characterized for chemotypes (see Chapter I).  

Eleven F. culmorum strains (8 Syrian and 3 Italian) were used for this study. The Italian strains 

were all 3Ac-DON chemotype while the Syrian strains belonged to NIV and 3Ac-DON 

chemotype (Tab. 4.1). 

V8 broth – growth medium 

One litre of V8 tomato juice (Campbell foods, Belgium) was mixed with 5 g of calcium 

carbonate. The mixture was then centrifuged at 4000 rpm for 20 min. The supernatant was 

collected in a new flask and diluted with distilled water 1:4 (v: v) and finally autoclaved at 121 

°C for 15 min (Singleton et al., 1992).  

Macroconidia production 

Each F. culmorum strain was cultured on PDA plate for 7 days and then pounced using a sterile 

cork borer, 5 mm diameter. Flasks of 300 ml, containing 150 ml autoclaved V8 broth were 

inoculated by two mycelium plugs and shaken on a thermo-controlled horizontal type shaker  

(Thermo scientific, USA ) 120 rpm at 25 °C under incident sun light for two weeks (Figure 4.1). 

The mixture of macroconidia, mycelium and V8 broth was filtered by a syringe filled with double 

layers of autoclaved cheesecloth to obtain only a macroconidia suspension, that was stored in a 

refrigerator at 4°C until the beginning of each experiment. The suspension of each strain was 
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adjusted by a haemocytometer (Thoma cell) to the final concentrations of 2x105, 1x104 and 1x106 

conidia/ml just one day before the assays - ear inoculations in the field, growth chamber floret 

inoculations and Petri-dish test, respectively. Double layers of autoclaved cheesecloth were used 

to eliminate the mycelia from germinating conidia in some isolates. 

 

Ear inoculations in the field 

Susceptible wheat, cv Simeto, was sown in autumn at the University of Bologna research field 

located in Cadriano, Emilia Romagna, Northern-Central Italy. 

This field was subdivided into small subplots (1 m x 2.2 m), one subplot was representing one 

replication, and three replications were used for each of 11 F. culmorum strains and control 

treatment. At 30% anthesis, 60 ml of conidial suspension at concentration 2x105 conidia/ml or 

sterile distilled water (control) was sprayed on each subplot by a hand sprayer.  

Five groups of ten spikes per subplot were chosen and marked with plastic labels for disease 

assessment.The disease evaluations were measured as disease severity (DS) and disease 

incidence (DI) at 13 and 22 days after inoculation (DAI). For DS, the scale rating of  Purahong et 

al. (2012) was used. This scale represents eight levels of percentage area infected on individual 

ears:  0% (no infection), 2%, 5%, 10%, 25%, 50%, 75% and 90% (90% or more) (Figure 4.2). DI 

was measured as the number of ears that are visibly diseased in relation to the total number 

assessed (50spikes/replicate). Mean FHB Index was calculated as the product of DI and DS 

divided by 100 (Von de Ohe, 2010), and it was used as the aggressiveness index of the fungal 

strains in the field condition (Figure 4.3).  

To determine Fusarium damage kernel (FDK) and kernel weight (KW) reduction, 100 seeds from 

each replicate were automatically counted for the evaluations. The scabby "tombstone” kernel 

infection (Figure 4.4) was estimated visually and recorded as FDK (%) (Mesterhazy et al., 1999). 

Koch’s postulate was fulfilled by the reisolation of F. culmorum from infected kernels. The 

kernel weight per each plot was recorded, and KW reduction (%) was calculated in respect to the 

control. 
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Floret inoculations in growth chamber 

Seeds of the susceptible wheat cv Simeto were sown in seed trays (160 plants/tray) filled with 

autoclaved potting mix medium and subsequently placed in a growth chamber (25/19 °C 

day/night temperature, 14/10 hr light/dark cycle). Each seedling was individually transplanted 

into a new pot (8 cm in diameter and 15 cm in height) containing autoclaved potting mix medium 

and placed in a growth chamber with the conditions previously described. One week later, 

approximately 3 g of commercial fertilizer was applied to all plants. The plants were watered  

three times a  week until harvest, to avoid water stress condition.  

After two months, the first spike was observed and within one month the plant spikes were in the 

anthesis stage and ready for fungal artificial inoculation. 20 μl (10 μl/floret) of each macroconidia 

suspension of 11 F. culmorum strains (Tab.4.1) at a concentration of 1x104 conidia/ml (sterile 

distilled water for control treatment) were injected into two florets at the middle of each spike 

(without wounding) and covered with polyethylene bags for 48 h, to ensure constant high 

humidity. Each F. culmorum suspension was injected to ten spikes from different pots, 

accounting for ten replications (Figure 4.5).  

Disease evaluations were carried out at 7, 14 and 21 DAI. DS was determined as previously 

described in disease evaluation in the field. Mean and terminal (the 3rd disease severity 

evaluation, 21 DAI) severity were used as the aggressiveness index of the fungal strains in the 

growth chamber experiment (Figure 4.5). 

The experiment was duplicated as described above with three replications. Koch’s postulate was 

fulfilled by the re-isolation of F. culmorum from infected kernels. 

 

Petri-dish test  

Six F. culmorum strains (3 Syrian and 3 Italian) were examined by Petri-dish test (Tab.4.1). 

Wheat seeds of two susceptible Italian cultivars (Duilio and Simeto) were surface disinfected in 

2% sodium hypochlorite solution for 8 min and then rinsed with sterile distilled water six times.  

Sterile double layer filter papers were put in glass Petri-dishes (15 cm in diameter). Ten ml of 

macroconidia suspension at concentration of 1x106 conidia/ml for each F. culmorum strain 

(sterile distilled water for control treatment) was poured on the filter paper. Twenty-five healthy 

seeds, disinfected as above described, were put on one side of the Petri-dish, and the dish was 
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inclined to soak the seeds in the fungal inoculum. Each seed was then placed on the filter with the 

embryo directed upward. An environment of high relative humidity and low air flow were 

secured, by placing the Petri dishes of the same treatment in a clean polyethylene bag, 

supplemented by a piece of wet cotton, and then incubated in an incubator at 22 ° C in the dark. 

Four replicates for each strain, and cultivar were set up (Figure 4.6).  

The germinated seeds were counted 48h later and this value was considered at 100% germination, 

in addition to daily post inoculation, from 3 to 6 days; the healthy looking coleoptiles were 

counted. Seedlings infected with Fusarium  were distinguished by the presence of brown spots on 

the coleoptiles and/or seeds completely covered by mycelium. Percentage of healthy coleoptiles 

was plotted as a function of time (from day 2 to 6; the value at day 2 is 100%), and the area under 

the curve was calculated (formula 1) (Koutnik and Lemmens, 2007). This value defines  the area 

under the healthy progress curve (AUHPC) for each strain and ranges from 50 (most aggressive) 

to 400 (not aggressive). AUHPC can be transformed to AUDPCstandard (formula 2) (Koutnik 

and Lemmens, 2007): the value ranges from 0 (not aggressive strain ) to 1 (most aggressive). The 

aggressiveness of the strain was calculated as the mean values of two wheat cultivars.  

The experiment was repeated twice, and Koch’s postulate was fulfilled by the reisolation of F. 

culmorum from either small or large brown spots on the coleoptiles. 

AUHPC=                             (1) 

                           

AUDPCstand=                                            (2) 

Where (1) AUHPC = area under healthy progress curve, B1 – B5 = percentage of healthy 

coleoptile at 1-5 evaluation (B1 always = 100%); 

(2) AUDPC stand = area under disease progress curve standard. 

 

Mycotoxin analysis  

Wheat grains obtained from spikes artificially inoculated with the eight strains belonged to 

3ADON chemotype, in addition to the control (non inoculated spikes) were ground and DON 
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level was estimated for each sample (27 (9×3)). 20 g from each sample was suspended  in 100 ml 

double distilled water in 200 ml flasks. Sample suspensions were placed in a rotary shaker (200 

rpm) for 5 min, 2 ml of the suspension was transferred into Eppendorf tubes and centrifuged 

(14000 rpm) for 5 min. One ml of the supernatant served as a stock solution for dilution 

preparations. Dilutions were prepared from the stock solution to optimize ELISA analysis. DON 

content of ground wheat grain samples was analyzed using AgraQuant DON (Romer Labs, 

Austria) (Figure 4.7).  

 

Statistical analysis 

Data analysis was performed using SPSS (SPSS Inc. Chicago, IL, v17, 1993–2007). The 

correlation coefficients among indices of aggressiveness from each method and between replicate 

experiments were determined using the Pearson product-moment correlation at a significant level 

of 5%. ANOVA incorporating the Games-Howell post hoc test at the 5% level of significance 

was used to differentiate aggressiveness of different F. culmorum strains. 

 

RESULTS 

Pathogenicity of F. culmorum strains 

All the eleven F. culmorum strains tested with ear inoculations in the field and floret inoculations 

in the growth chamber were pathogenic, causing typical FHB symptoms. The bleached spikelets 

were observed on the first evaluation at 7 and 13 DAI in growth chamber and field experiments, 

respectively. There were no bleached spikelets in the control treatment (Tab. 4.2). 

All the six F. culmorum strains tested with the Petri-dish test caused also brown spots on the 

coleoptiles and/or the mycelium completely covered the seeds of two susceptible wheat cultivars 

(Simeto and Duilio). No symptoms of Fusarium infection were observed in the control treatment 

(Tab.4.2). 
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Aggressiveness of  F. culmorum strains  

Significant differences in aggressiveness levels among F. culmorum strains were detected with all 

four aggressiveness parameters obtained with three assays (Tab. 4.2). 

One F. culmorum strain (F11) was highly aggressive in all parameters examined. This proved 

that the highly aggressive isolates were stable with different aggressiveness assays. Two F. 

culmorum strains (F961, F960) were weakly aggressive in all parameters examined and ensured 

that these artificial inoculation methods work successfully. 

For mean FHB index, the parameter from ear inoculations in the field, only one strain (F11) 

differed significantly from six strains (Tab. 4.2). 

The floret inoculations in the growth chamber yielded two parameters for aggressiveness (mean 

and terminal severity) (Tab. 4.2). The mean severity of the different strains did not reach a 

significant level by ANOVA, while the terminal severity reached the significant level. Three 

strains (F960, F961, F966) were medium aggressive, six (F962, F963, F964, F965, F35, F24) 

medium-high aggressive and two (F11, F968) highly aggressive.  

For the last parameter AUDPCstandard (Petri-dish test), all the six F. culmorum tested were 

significantly different from the control, and all isolates were highly aggressive (Tab. 4.2). 

The two highly aggressive isolates (F11, F35) caused highest FDK and kernel weight (KW) 

reduction, with values ranging from 49.66 – 47.57% and 21,82 – 25,36%  respectively (Tab.4. 2). 

Eight strains caused FDK values significantly different from the control, and all the eleven 

isolates of F. culmorum tested were significantly different from the control for KW reductions. 

 

Mycotoxin production 

The highest aggressive strain (F11) produced the highest amount of DON, and there was 

significant difference among the amounts produced by the isolates with values ranging from 

0,24-6,12 ppm (Tab. 4.2) the level of DON produced by  strains number 11 and 968 was over of 

the detection limit of ELISA kit (5 ppm). 



CHAPTER IV 
 

83 
 

Relation among the different aggressiveness parameters  

Mean FHB index yielded higher positive correlation coefficients with FDK and KW reduction 

than the mean and terminal severity. AUDPCstandard showed a high correlation coefficient with 

FDK but not with KW reduction (Tab. 4.3). 

The best correlation coefficients were between the data of terminal severity in the growth 

chamber and AUDPCstandard (r =0,932, P< 0.01) and between the mean severity and 

AUDPCstandard (r = 0.891, P< 0.05). The data in growth chamber and in the field yielded 

significant correlation coefficients ranging from 0.853 (mean FHB index and terminal severity) 

and 0.840 (mean FHB index and mean severity) (P< 0.01). The correlation between 

AUDPCstandard and mean FHB index in the field was also significant (r =0.829, P< 0.05) and 

comparable to the correlation of mean FHB index, mean and terminal DS.  

All aggressiveness parameters showed a highly significant correlation with FDK. Field mean 

FHB index had the highest correlation with both FDK (r = 0.877 P< 0.01) and KW reduction (r = 

0.869, P < 0.01) (Tab. 4.3). The remaining correlations between FDK and severity (both mean 

and terminal), FDK and AUDPCstandard, KW reduction and severity (both mean and terminal) 

were high, ranging between r = 0.872,0.856 (mean and terminal severity with FDK, P < 0.01) and 

0.629 ,0.666 (mean and terminal severity with KW reduction, P < 0.05) (Tab. 4.3). 

High correlations were found among DON production and all other parameters (mean FHB 

index, mean severity, FDK, terminal severity, AUDPCstandard) with values 0.909, 0.862, 0.844 (P 

< 0.01) 0.819, 0.845( P< 0.05) respectively, but there was no correlation between DON 

production and KW reduction . 

 

Aggressiveness of different chemotypes 

There was no significant difference in aggressiveness between the two F. culmorum chemotypes 

(3Ac-DON and NIV) as determined by three parameters from the two assays in the growth 

chamber and in the field (Tab. 4.4). In addition, there were also no significant differences in FDK 

and KW reduction between the two different chemotypes (Tab. 4.4). In the field, mean FHB 

index and severity of 3Ac-DON were slightly higher than NIV. For FDK and KW reduction, NIV 

had slightly higher values than 3Ac-DON (Tab. 4.4). For AUDPC standard and DON production, 
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we could not differentiate between the two chemotypes because only DON producer isolates 

were used. 

 

DISCUSSION 

This study investigated two very important aspects of F. culmorum: pathogenicity and 

aggressiveness. All isolates tested with three different aggressiveness assays fulfilled the 

requirement for pathogenicity (ability to cause disease), thus they are pathogenic. The difference 

of aggressiveness within F. culmorum strains had been reported by Miedaner and Reinbrecht, 

(2001), and the same behavior after ear inoculations in the field and floret inoculations in the 

green house has been detected in the present study. Although the weather conditions were not 

ideal for the development of FHB in the year 2011 (year in which field experiment was carried 

out), the symptoms appearance allowed to distinguish the aggressiveness of the different              

F .culmorum isolates as well as to properly measure the different parameters of the disease 

severity.  

Highly significant correlations of AUDPCstandard, with mean and terminal severity of floret 

inoculations in the growth chamber were found. These data are in agreement with those reported 

by Cumagun and Miedaner (2003), that compared how temperature and humidity affect disease 

severity in uncontrolled field conditions and in the greenhouse.  

In addition, there was stability among the aggressiveness of the different F. culmorum strains in 

all the aggressiveness parameters. The aggressive strains had higher FDK losses and lower kernel 

weight than the less aggressive isolates. However, this difference did not reach the significant 

level. In this study, we found that all the aggressiveness indices, including mean FHB index, 

mean and terminal severity and AUDPCstandard, had a high significant correlation with FDK. 

This good correspondence among the previous mentioned parameters was reported by other 

authors ( Buerstmayr et al.,1999; Mentewab et al. 2000; Lemmens et al. 2004). Toth et al. (2008) 

reported highly significant correlations (more than 0.90, P< 0.001) between aggressiveness index 

(disease severity) and FDK in a study of resistance of common wheat to isolates of F. 

graminearum species complex and F. culmorum. In contrast, other authors denied such a 

correlation among the same parameters (Alvarez et al., 2009). Therefore, our results indicate that 
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there are correlations of different aggressiveness parameters, FDK and KW reduction and are 

stable in the different floret inoculations in aggressiveness assays. 

The comparison between aggressiveness of both chemotypes led us to conclude that different F. 

culmorum chemotypes have similar aggressiveness, and they can cause a similar damage level to 

wheat kernels. Furthermore trail with more strains is necessary to confirm this result.  

In contrast to our results, Miedaner and Reinbrecht (2001) studied trichothecene content of rye 

and wheat genotypes inoculated with DON and NIV producers and found that the NIV producer 

was significantly less aggressive than the DON producer. This phenomenon could be ascribed to 

a lower phytotoxicity of NIV in cereals and unfavorable conditions for the NIV producer.  

Our results confirm role of DON accumulation in the level of aggressiveness. In other words, 

aggressiveness is closely related to DON levels, whenever the level of DON increased there was 

an increase of aggressiveness and vice versa. Similar results were obtained for F. culmorum 

isolates by other authors (Gang et al., 1998; Hestbjergh et al., 2002; Bai et al., 2001). 

These data are in accordance with the results of Mesterhazy (2002) and Atanassov et al. (1994) 

that suggested that DON and related trichothecenes have a role as a virulence factor in disease 

development. Other researchers supported this conclusion (Muthomi et al. 2000) and reported a 

close correlation between aggressiveness and DON production in F. culmorum isolates (Scherm 

et al., 2011). 

Snijders (1994) mentioned that DON is a strong protein inhibitor, and this may cause inhibition 

of enzymatic activity in susceptible hosts, leading to a rapid increase of FHB. Alexander et al. 

(1997) did not consider trichothecenes necessary for pathogenicity, but they increase disease 

development. Thus, strategically, the disease resistant cultivars should not be associated with 

toxin-producing Fusarium species. There were no differences between Syrian and Italian  F. 

culmorum strains regarding to the different parameters of the three assays, however they 

originated from two distinct geographical regions. This result might be interpreted as reported by 

Srobarova et al. (2008) that there are  none or very low differences among F. culmorum isolates. 

Gargoliu et al. (2003) and Vanco et al. (2007) explained that the low level of genetic 

differentiation among populations of  F. culmorum is usually observed in out crossing fungal 

species rather than in predominant asexually propagated populations.  
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These results revealed the possibility of using the Petri-dish test to screen for highly aggressive F. 

culmorum isolates for breeding purposes. These findings are comparable with those previously 

performed by Purahong et al. (2012) on F. graminearum. 
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FIGURES AND TABLES 

Figure 4.1. F. culmorum strains grown on V8  

 

Table 4.1. Chemotypes of F. culmorum tested with three different aggressive assays (11 strains were 

tested with floret inoculations in field and growth chamber and 6 with Petri-dish test)  

No. of 

Strain 
Location Chemotype Field 

Growth 

chamber 

Petri-dish 

test 

DON 

production 

960 ALHassakeh- Syria 3Ac-DON yes yes yes yes 

961 Daraa- Syria 3Ac-DON yes yes yes yes 

962 ALHassakeh- Syria 3Ac-DON yes yes no yes 

963 Daraa- Syria NIV yes yes no no 

964 Daraa- Syria NIV yes yes no no 

965 Damascus rural-Syria NIV yes yes no no 

966 ALHassakeh- Syria 3Ac-DON yes yes yes yes 

968 ALHassakeh- Syria 3Ac-DON yes yes no yes 

11 Italy 3Ac-DON yes yes yes yes 

24 Italy 3Ac-DON yes yes yes yes 

35 Italy 3Ac-DON yes yes yes yes 

 

 

 



CHAPTER IV 
 

88 
 

Figure 4.2. FHB symptoms evaluated with rating scale of  Purahong et al. (2012), the numbers 

represent the percentage area infected on individual ears: 0% (no infection), 2%, 5%, 10%, 25%, 

50%, 75% and 90% (infection area is 90% or more)  

 

Figure 4.3. Evaluations of DI and DS in plots inoculated with F. culmorum strains (a) F11  and 

(b) F968  

a)                                                                      b) 
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 Figure 4.4. Fusarium damage kernels (FDK) (left) compared with healthy kernels (right) 

 

 

Figure 4.5. Steps of floret inoculation and estimation of DS in growth chamber 

     

 

 

 

 



CHAPTER IV 
 

90 
 

 

Figure 4.6. Steps of Petri-dish test  

 

      

                    
 

Figure 4.7. Detection of DON content in post harvest wheat kernels using  ELISA technique  
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Table 4.2. Parameters used to estabilish aggressiveness levels in  field experiment, growth chamber 

experiment and Petri-dish test: mean FHB index (0-90%), mean and terminal DS (0 – 90%), FDK (0 

– 100%), KW reduction, DON production and AUDPCstandard averaged across 3, 8 and 4 

replicates in field, growth chamber and Petri-dish test experiment, respectively 

Field experiment 
Growth chamber 

experiment 
Petri-dish test 

Strain Mean 

FHB 

index 

FDK 

(%) 

KW 

reduction 

(%) 

DON 

production 

Mean 

DS 

Terminal 

DS 
AUDPCstandard

control 0.196a 5.8a 0a 0.11a 0a 0a 0a 

960 0.69a 29.77ab 16.08b 0.35a 31.4b 50.5b 0.91bc 

961 0.97a 30ab 14.7 b 0.24a 33.7b 55.5b 0.94cd 

962 2.88abc 41.48b 18.57b 1.78a 39.4b 67.5bc nd 

963 2.71abc 40b 16.07b nd 38.7b 59.3bc nd 

964 1.47ab 39.78b 14.8b nd 35.7b 61.4bc nd 

965 2.19ab 40.66b 18.67b nd 33.7b 59.2bc nd 

966 0.69a 29.77ab 16.08b 0.35a 31.4b 50.5b 0.94cd 

968 6.34abc 44.66b 20.54b 5.64bc 39.7b 68.6bc nd 

11 9.11c 49.66b 21.82b 6.12c 44.6b 82.5c 0.99e 

24 1.15a 33.33ab 18.21b 0.94a 35.1b 61.5bc 0.96de 

35 7.80bc 47.57b 25.36b 2.96ab 40.2b 67bc 0.97de 

Means followed by the same letter in column within each F. culmorum  strain are not 

significantly different by the least significant difference test (LSD); nd =not determined. 
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Table 4.3. Correlation analysis of different aggressiveness parameters obtained by three different 

assays (Field floret inoculations, growth chamber floret inoculations and Petri-dish test) and their 

relation to FDK and KW reduction (number of the strains used in growth chamber and field floret 

inoculations = 11, number of the strains analysed for their DON production = 8, number of the 

strains used in Petri-dish test= 6)  

Correlation analysis 

Parameters 

Field 

mean 

FHB 

index 

Growth 

chamber 

mean DS 

Growth 

chamber 

Terminal DS 

AUDPC 

standard 
FDK 

KW 

reduction

Growth 

chamber 

Mean DS 

0.840**      

Growth 

chamber 

Terminal DS 

0.853** 0.922**     

AUDPCstandard 0.829* 0.891* 0.932**    

FDK 0.877** 0.872** 0.856** 0.835*   

KW reduction 0.869** 0.629* 0.666* ns 0.758*  

DON production  0.909** 0.819* 0.862** 0.845* 0.844** ns 

 

ns = no significant  correlation 

* and ** = Significant at P< 0.05 and P< 0.01, respectively. 
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Table 4.4. Comparison of mean FHB index (0-90%) from field experiment, mean and terminal DS 

(0 – 90%) from growth chamber experiment, FDK (field) (0– 100%) and KW reduction averaged 

among different strains within the same chemotype 

Parameters 3Ac-DON NIV Significant 

Mean FHB index 

(Field) 
3.76 2.12 no 

Mean DS 

(Growth chamber) 
37.4 34.1 no 

Terminal DS 

(Growth chamber) 
62.8 60.6 no 

FDK (Field) 39.45 40.37 no 

KW reduction 14.38 14.58 no 

*ANOVA Test was used to determine significant differences among different chemotypes 

Table 4.5. Mean of disease severity of 11 isolates in wheat cultivar ‘Simeto’ carried out in growth 

chamber at 7, 14 and 21 DAI (1st, 2nd, 3rd evaluation, respectively) 

 

Disease Severity Strain 

1st Evaluation 2nd Evaluation 3rd Evaluation Mean 

control 0.0 0.0 0.0 0.0 

960 8.3 35.5 50.5 31.4 

961 16.4 29.2 55.5 33.7 

962 4.8 45.8 67.5 39.4 

963 11.0 45.7 59.3 38.7 

964 11.0 34.5 61.5 35.7 

965 7.0 35.0 59.2 33.7 

968 6.3 44.3 68.6 39.7 

11 6.2 45.0 82.5 44.6 

24 9.5 34.2 61.5 35.1 

35 17.7 36.0 67.0 40.2 
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CHAPTER V 

Validation of a modified Petri-dish test to quantify aggressiveness 

levels of Fusarium culmorum in durum wheat 
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ABSTRACT 

Fusarium culmorum is a worldwide distributed agent causing Fusarium head blight (FHB) (scab) 

on wheat. Aggressiveness is a fundamental concept in order to understand the host-pathogen 

interaction in the FHB-wheat system. In this article, we modified and validated the Petri-dish test 

originally described by Mesterhazy (1978) to quantify the aggressiveness of 23 F. culmorum 

strains using different susceptible durum wheat cultivars for FHB. The results correlated to a high 

and significant degree with those obtained by using adult plants in the growth chamber and in the 

field (r= 0.891 and 0.829 (P<0.05), respectively). The Petri-dish test has repeatability with highly 

significant correlation coefficients in different wheat cultivars (r=0.991 for Dulio and 0.978 for 

Simeto (P<0.01) as well as stability with (r=0.992 (P<0.01). In this study, we also demonstrated 

that germination rate reduction and coleoptile length reduction are parameters involved with 

aggressiveness of F. culmorum. Petri-dish aggressiveness index is a new parameter for 

aggressiveness, which resulted from averaging three disease parameters from the modified Petri-

dish method. The results obtained  reveal that this modified Petri-dish test is rapid, reliable and 

stable with different durum wheat cultivars, and yields highly significant correlation coefficients 

with floret and ear inoculations, thus it is suitable to be used for quantification of aggressiveness 

of F. culmorum.  

 

INTRODUCTION 

Fusarium spp. are recognized as pathogens for many plant species. 19 species of Fusarium are 

associated with Fusarium Head Bligh (FHB), a disease of a wide range of host cereal crops as 

wheat (Triticum L.), barley (Hordeum L.), maize (Zea mays L.) and other grains, and among 

these Fusarium culmorum (WG Smith) Sacc. and F. graminearum Schwabe [teleomorph, 

Gibberella zeae (Schwabe) Petch] are the most important FHB causal agents (Gilbert and 

Tekauz, 2000; Tekauz et al., 2000;  Liddell, 2003; Goswami and Kistler, 2004). F. culmorum can  

colonize and cause disease in several plant parts, i.e. roots, stems and spikes (Parry et al., 1995). 

This low specificity makes its aggressiveness and spread in plant tissues variable and greatly 

influenced by environmental conditions.  
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FHB leads to considerable losses in grain quality and yield, which may reach 75% (Wilcoxson et 

al., 1988). Moreover, the infected grains tend to show reduced germination and cause seedling 

blight, poor stand as well as reduced grain mass, test weight, baking and seed quality (Wiersma et 

al., 1996; Bai and Shaner, 1996). The production of several mycotoxins by these fungi as 

trichothecenes, which include deoxynivalenol (DON), 15-acetyldeoxynivalenol (15Ac-DON), 3-

acetyldeoxynivalenol, (3Ac-DON) and NIV, is considered a major concern to human and animal 

health (Yazar and Omurtag, 2008).  

Pathogenicity and aggressiveness are two important characteristics of Fusarium spp. (Von der 

Ohe et al., 2010). Although these two words have different meaning, sometimes they have been 

not properly used. Pathogenicity reflects the ability of the fungus to cause qualitatively the 

disease. Aggressiveness is a quantitative measurement of the rate at which the level the disease is 

reached; with aggressive pathogens (Shaner et al., 1992). In order to understand the interaction 

between host-pathogen in FHB-wheat system, aggressiveness assessment is fundamental 

(Purahong et al., 2012). 

To reach this purpose several alternative methods have been developed including floral tissues, 

stems and seedling inoculation (Wu et al., 2005; Bai et al., 2001; Mesterhazy, 1995; Snijders, 

1990; Hare et al., 1999). Since for several decades, the floret inoculation assay has been used as a 

classical method, being considered reliable and precise, to assess the aggressiveness of fungal 

pathogen isolates, it is costly, time consuming, laborious, and greatly influenced by growth 

stages, environmental conditions and the inoculum, which can be applied quantitatively (Yang, 

1994; Wu et al., 2005). The other alternative inoculation methods (i.e. stem and seedling 

inoculation), even if are less time consuming and affect less the environment, have some 

limitations and/or disadvantages. Purahong et al. (2012) mentioned that the lack of data, that will 

allow to compare the aggressiveness of F. graminearum among the alternative methods and the 

single floret inoculation technique in controlled conditions and/or in the field, is a major problem.  

The use of wheat coleoptile in in vitro method gave a good correlation with floret inoculation in 

the field and many other advantages over the other inoculation methods (Wu et al.,2005). These 

authors also reported that the success of this method depends on the cultivar since the correlation 

factor extensively varied within the cultivars. Mesterhazy (1978) was the first who set up this 

method with the aim to screen the resistance of the cultivars to FHB; the cultivars more resistant 

show higher healthy wheat seedling. Further modifications of this method were done by Brennan 



CHAPTER V 
 

97 
 

et al. (2003) and Koutnik and Lemmens (2007). Purahong et al. (2012) set up a similar method 

that can quantify the aggressiveness of F. graminearum strains and fulfill all the requirements. 

According to our knowledge, this study on F. culmorum and the previous study carried out by our 

research group on F. graminearum (Purahong et al., 2012) are the first scientific works. It is also 

possible to assess, with this method, two additional parameters related to the aggressiveness of F. 

culmorum: germination rate and coleoptile length reduction. Browne and Cooke (2005) observed 

that F. culmorum induced a reduction of the germination rate of wheat seeds, in fact when kernels 

inoculated with F. culmorum in Petri-dish test are infected, their germination rate is likely 

reduced when compared with the non-inoculated ones. Infection by F. culmorum cause reduction 

of the coleoptile length and it has been related to the aggressiveness of the isolates; isolate posses 

more aggressiveness when the reduction of the coleoptile length is higher (Brennan et al., 2003). 

To date, we are in need of an in vitro aggressiveness method, simple and rapid, for F. culmorum 

in wheat, to show the high correlation with floret inoculation in different cultivars. 

The objectives of this research were: 1) to evaluate the feasibility of the modified Petri-dish test 

using AUHPC or AUDPCstandard to determine the different levels of aggressiveness among 

Syrian and Italian F. culmorum strains; 2) to validate this method by finding significant 

correlation among these results and the data from floret inoculation techniques under controlled 

conditions (growth chamber) and ear inoculations in the field; 3) to discover the relationships 

among the three parameters obtained by Petri-dish test (AUDPCstandard, germination rate 

reduction and coleoptile length reduction) and their relations to floret inoculation in both growth 

chamber and field; 4) to prove the stability and repeatability of this method among different 

durum wheat cultivars. 

 

MATERIALS AND METHODS  

Fungal strains and plant materials 

Twenty F. culmorum strains, were isolated previously from durum wheat kernels with visible 

FHB symptoms from different cultivars and localities in Italy during the years 2007- 2009 and 

three Syrian strains, from wheat kernels grown in AlHassakeh, Daraa provinces (Syria) in 2009, 

were characterized for mycotoxin chemotypes in chapter 1 and used for further studies (Table 

5.1). 
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Macroconidia production 

Each F. culmorum strain was cultured on PDA plate for seven days and then pounced using a 

sterile cork borer, 5 mm diameter. Two mycelium plugs were inoculated into 300 ml flask 

containing 150 ml autoclaved V8 broth, prepared as describes in Chapter IV (Singleton et al., 

1992), and shaken on a refrigerated rotary incubator (Thermo-Fisher MaxQ 4000) at 120 rpm and 

25°C under direct sun light for two weeks. 

The mixture of macro conidia, mycelium and V8 media was filtered by a sterile syringe filled 

with double layers of autoclaved cheesecloth. The spore concentrations were measured with a 

haemocytometer and stored at 4°C. Macroconidia of each strain were adjusted to the final 

concentrations of 1x106 conidia/ml. The mycelia from germinating conidia were excluded using 

double layers of autoclaved cheesecloth. 

 

A modified Petri-dish test 

Wheat seeds of a susceptible cultivar Simeto, were surface sterilized in 2% sodium hypochlorite 

for 8 min and then rinsed with sterile distilled water six times. Each of 10 ml of F. culmorum 

macroconidia suspension at a concentration of 1x106 conidia /ml (or sterile distilled water in the 

control treatment) was inoculated into Petri-dish (15 cm in diameter) with sterile double- layer 

filter papers (Perfect 2, Cordenons). 

Sterile forceps was used to eliminate air bubbles under the filter paper. Twenty-five seeds, 

apparently healthy, were put on one side of the Petri-dish, which were rotated in a way to make  

the seeds to submerge under the fungal inoculum, and then each seed was placed on a filter paper 

with the embryo turned upward. To ensure the high relative humidity and low air movement, the 

Petri-dishes, from the same treatment, were put in a clean polyethylene bag supplemented with 

moist cotton and incubated in an incubator at 22 °C in the dark. Four replicates for each strain 

were set up. The germinated seeds were counted two days after inoculation (DAI), and this value 

was set at 100% germination. 

The healthy looking coleoptiles were counted every single day from day 3 to 6 post inoculation. 

Fusarium infected seedlings were identified by brown spots on the coleoptiles and/ or mycelium 

covered the seeds completely (Figure 5.1). Percentage of healthy coleoptiles was plotted as a 

function of time (from day 2 to 6; the value at day 2 is 100%), and the area under the curve was 
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calculated (formula 1). The value of this area from each isolate is the area under the healthy 

progress curve (AUHPC) and ranges from 50 (very aggressive) to 400 (not aggressive). AUDPC 

can be transformed to AUDPCstandard (formula 2): the value ranges from 0 (not aggressive) to 1 

(very aggressive). If aggressiveness is low, the observation period can be extended over six days. 

The mean values of four replicates are taken as a measure for aggressiveness of the strain. The 

experiment was repeated once. Koch’s postulate was fulfilled by the reisolation of F. culmorum  

from either small or large brown spots on the coleoptiles. 

Germination rate reduction (Gr, formula 3) and coleoptile length reduction (Clr, formula 4) were 

determined by comparison with the non inoculated control at 6 DAI. The coleoptile length of six 

germinated seedling, which were considered as representative of each replicate, was measured for 

Clr.  

Petri-dish aggressiveness index (formula 5) combined three parameters that could link with 

aggressiveness of fungal isolates. 

AUHPC=                             (1) 

                           

AUDPCstand=                                            (2) 

 

 Gr=                                                                    (3) 

 

Clr=                                                                        (4) 

 

 

Apindex=                  (5)   

 

(1) AUHPC = area under healthy progress curve, B1 – B5 = percent of healthy 

coleoptile at 1-5 evaluation (B1 always = 100%); 
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(2) AUDPCstandard = area under disease progress curve standard, 

(3) Gr = germination rate reduction, NGc and NGt = number of germination seed in 

control and in treatment (F. culmorum), 

(4) Clr = coleoptile length reduction, Clc and Clt = coleoptile length in control and in 

treatment (F. culmorum), respectively 

APindex = Petri-dish aggressiveness index. 

 

Validation of the Petri-dish test  

AUDPCstandard, FHB index and disease severity (DS) were used as an aggressiveness index in 

Petri dish test, ear inoculations in the field and floret inoculations in the growth chamber, 

respectively. 

Among the strains, that have been tested by Petri-dish test, six strains (3 Italian and 3 Syrian) 

were also tested in growth chamber and in the field on the susceptible Italian wheat cv, Simeto. In 

the growth chamber, at wheat anthesis 20 μl (10 μl/floret) of each conidial suspension at a 

concentration of 104 conidia/ml or sterile distilled water (control) were injected into 2 florets at 

the middle of each spike (without wounding) (ten spikes from different pots were treated with 

each strain, accounting for ten  replications). In the field, wheat ears at 30% anthesis, 60 ml of 

conidial suspension at concentration 2x105 conidia/ml or sterile distilled water (control) was 

sprayed on each plot (1.0m x2.2 m) by a hand sprayer (3 plots were used for each fungal strains). 

More details about ear inoculations in the field and floret inoculations in the growth chamber 

were shown in chapter IV. The aggressiveness indices from different methods were correlated 

and compared. 

Repeatability and Stability of Petri-dish test in different wheat cultivars 

To verify the repeatability and stability of Petri-dish test among different host cultivars, another  

durum wheat cultivar “Duilio”, susceptible, was inoculated with the same 23 F. culmorum  

strains, as previously described in Petri-dish test. Each strain was repeated four times, and the 

whole experiment was repeated. The repeatability was accessed using correlation analyses 

between AUDPCstandard of the two experiments for each cultivar. The stability between different 

wheat cultivars was determined by correlation analyses between AUDPCstandard of the two wheat 
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cultivars in two independent experiments. Details of the strains and raw data were used to 

calculate the correlations that validated the repeatability and the stability between different durum 

wheat cultivars (Table 5.1, Table 5.2 and Table 5.3). 

 

Statistical analysis 

Data analysis was performed using SPSS (SPSS Inc. Chicago, IL, v17, 1993 – 2007). The 

correlation coefficients among aggressive indices from each method and between replicate 

experiments were determined using the Pearson product-moment correlation at a significant level 

of 5%. ANOVA with LSD were used to differentiate the strains. 

 

RESULTS 

Modified Petri-dish test 

The number of germinated seeds decreased in all F. culmorum treatments compared with the 

control, while in four strains (F820, F24, F93 and F722) the germination reduction was 

significant (P< 0.05). Clear symptoms of Fusarium infected seedlings have been observed since 

the first evaluation (3 DAI). Twenty-three strains showed a substantial variation in 

aggressiveness as defined by AUHPC ranging from 52.35 – 108.99 (AUDPCstandard ranging 

from 0.83 - 0.99) (Table 5.2). There was no contamination in the control treatment (water), and 

AUHPC was equal to 400 (AUDPCstandard = 0.00) (Table 5.2).  

Twenty-three strains also showed a large variation in aggressiveness as defined by germination 

rate reduction and coleoptile length reduction (Table 5.2). These reductions ranged from 25–45% 

and 51–92%  for germination rate and coleoptile length, respectively (Table 5.2). 

Three parameters obtained from Petri-dish test (AUDPCstandard, germination rate reduction and 

coleoptile reduction rate) were significantly correlated with each other. 

The data of AUDPCstandard and coleoptile length reduction were obtained  from the same organ 

of the plant (coleoptile) and were highly significantly correlated (r = 0.910, P< 0.01) (Table 5.3). 

On the other hand, the correlations among the parameters from different plant organs were lower 

(germination rate reduction with AUDPCstandard (r = 0.824; P< 0.01) and with coleoptile 

reduction (r = 0.867; P< 0.01) (Table 5.3).  



CHAPTER V 
 

102 
 

Germination rate reduction was not correlated with floret inoculations in growth chamber and ear 

inoculations in the field. Data on coleoptile reduction showed higher correlations than those  for 

germination rate reduction (r = 0.951; P< 0.01) in floret inoculation in the growth chamber, there 

was no correlation in the case of ear inoculation in the field (Table 5.3). 

Comparative analysis of aggressiveness of F. culmorum strains using AUDPCstandard (modified 

Petri-dish test), disease severity (floret inoculations in the growth chamber) and FHB index (ear 

inoculations in the field) showed highly significant correlations both between AUDPCstandard and 

disease severity as well as AUDPCstandard and FHB index, with correlation coefficients of 0.891 

and 0.829 (P<0.05), respectively (Figure 5.2). The repeatability of Petri-dish test was confirmed 

by the high significant correlation of AUDPCstandard of the two wheat cultivars inoculated. The 

correlation coefficient was 0.991 for Duilio and 0.978 for Simeto (P<0.01). The stability between 

different host cultivars was demonstrated with the high significant correlation coefficients, 0.992 

(P<0.01), between data of AUDPCstandard from different wheat cultivar.  

The new parameter, Petri-dish aggressive index (APindex), calculated from the mean value of 

AUDPCstandard, germination rate reduction and coleoptile reduction, yields a satisfactory 

correlation with floret inoculation in growth chamber and field condition with correlation 

coefficients of 0.886 (P< 0.05) and 0.858 (P<0.05), respectively (Table 5.3). 

 

DISCUSSION 

This study was carried out to validate the Petri-dish test and to quantifythe aggressiveness levels 

of F. culmorum. Taking in consideration, that this test was validated by Purahong et al. (2012) 

for F. graminearum. 

The values obtained from the three different parameters i.e. AUDPCstandard, germination rate 

reduction and coleoptile reduction were used to calculate the Petri-dish aggressiveness index. The 

modified Petri-dish test succeeded in  differentiating the aggressiveness levels for twenty- three 

F. culmorum strains and to group them according to those levels. The results from the modified 

Petri-dish test were highly correlated with the data obtained by in vivo inoculations: the strains 

showed higher aggressiveness levels in Petri-dish test and floret inoculation in the growth 

chamber than in the ear inoculation in the field. This result could be interpreted by the great 

fluctuation of environmental factors and cross contamination in the field as well as the 
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inoculation methods. Among the environmental factors, temperature and moisture are considered 

crucial in influencing the disease severity and incidence in the field. Wu et al. (2005) reported 

that warm humid weather can stimulate the spread of FHB. Under field conditions, there are 

possibile cross contaminations by different fungal genera, species and strains, and among them F. 

culmorum, which can compete for nutrition (Xu et al., 2007; Xu and Nicholson, 2009). The 

possibility for the co-existence of several Fusarium species increases with the presence of 

arthropod vectors, wind and rain splash (Parry et al., 1995). In our field experiment the control 

plots developed much less disease symptoms in comparison with the  inoculated ones. 

Inoculation methods as well as the target organ for the infection have a key role in determining 

the aggressiveness levels of the pathogen, F. culmorum. Wu et al. (2005) referred the  quick 

germination and invasion of the Fusarium conidia in the coleoptile tissues. after head removal.  

Furthermore, Almgren et al. (1999) stated that the difference of the disease development rate 

between roots and leaves may be due to the presence of resistance genes which were not 

expressed in the roots. The way to inoculate the pathogens, spray and double point inoculations in 

the field and in controlled conditions, respectively, could explain the difference of FHB rate 

between field and growth chamber as F. culmorum inoculum in floret inoculations was placed 

directly into the mature ovary while in the field it has first to overcome the spike (Type I 

resistance; initial infection) by the external hyphal growth and then enter in the susceptible sites 

(Bushnell et al., 2003). The precise determination of wheat anthesis is a favourable condition for 

disease development in growth chamber rather than in the field. In durum wheat, there are no 

high FHB resistant cultivars (Jauhar et al., 2009), hence it should be sufficient to prove the 

repeatability and stability of Petri dish test by using different durum wheat cultivars with 

different F. culmorum strains. The repeatability and stability of Petri-dish method are considered 

one of the main advantages. Germination rate reduction and coleoptile length reduction compared 

with control can also be used in the assessment of F. culmorum aggressiveness and they could be 

obtained with the Petri-dish test. Aggressiveness levels reached by coleoptile length reduction 

have high correlation with floret inoculation in growth chamber, which is in accord with what 

stated by Purahong et al. (2012) for F. graminearum. 

On the other hand, our data revealed no correlation between germination rate with floret and ear 

inoculation, and this is in contrast to the finding of Purahong et al. (2012) that found moderate to 
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weak correlation with the same parameters in a study on F. graminearum. Moreover, regarding 

the absence of correlation between germination rate and FHB rating in field experiments, our 

results disagreed with those reported by Browne (2007) who found weak negative relationship  

between germination rate reduction of wheat seeds induced by Microdochium majus and FHB 

rating obtained by spray inoculation of F. graminearum in the field. The difference was probably 

due to the number of the strains which was larger than ours or the difference among the 

pathogens used. In addition, our results were incompatible with those of Wu et al. (2005) 

regarding the coleoptile parameter, that found a moderate to high correlation between disease 

severity in the field and the length of the lesions on the cleoptile caused by F. graminearum. The 

good correlation of the new parameter “Petri-dish aggressiveness index” with floret and ear 

inoculation both in controlled and field conditions, is very close to the correlation obtained with 

AUDPCstandard. Petri-dish test has several advantages such as  low costs, labour and time and at 

the same time can be performed  all over the year and almost with no limitations in working with 

many isolates and/or replications. This test could be very usefull for both ear and floret 

inoculations, for screening and differentiation of different F. culmorum isolates for breeding 

purposes and for checking the aggressiveness levels of fungal inocula before inoculation in the 

field. Moreover, Petri-dish test is accounted to be a solution to facilitate the progress in studying 

FHB especially in the countries where it is forbidden to spray gene modified Fusarium strains in 

the field. The required period of 6 days to get results using this test,  compared to the 2.5 months 

for the  in vivo experiments shows how  advantageous is this method. It is also important for the 

scientists or the breeders involved with FHB, since with this method they can quantify the 

aggressiveness levels of F. culmorum. 
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FIGURES AND TABLES 

 

Figure 5.1. Symptoms on seedlings of durum wheat cv “Simeto” inoculated with F. culmorum: 

browning on the seedlings and mycelium covering the kernels  
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Table 5.1. F. culmorum strains included in this experiment 

 

Strains Location  Chemotype 

9 Grosseto 3Ac-DON 

10 Baricella (BO) 3Ac-DON 

11 Grosseto 3Ac-DON 

24 Grosseto 3Ac-DON 

25 Grosseto 3Ac-DON 

27 Grosseto 3Ac-DON 

28 Grosseto 3Ac-DON 

33 Grosseto 3Ac-DON 

35 Grosseto 3Ac-DON 

45 Grosseto 3Ac-DON 

53 Savarna (RA) NIV 

93 Asciano (SI) 3Ac-DON 

104 Braccagni (GR) 3Ac-DON 

106 Pisa 3Ac-DON 

385 ITEM  3Ac-DON 

595 Grosseto NIV 

593 Grosseto 3Ac-DON 

597 Grosseto 3Ac-DON 

722 Grosseto 3Ac-DON 

820 Grosseto  3Ac-DON 

960 Daraa 3Ac-DON 

961 Daraa 3Ac-DON 

966 AlHassakeh 3Ac-DON 
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 Table 5.2. Different parameters of  F. culmorum strains: AUHPC = area under healthy progress 

curve, Clr = coleoptile length reduction, Gr = germination rate reduction, AUDPCstand = area 

under disease progress curve standard, APindex = Petri-dish aggressiveness index  

Strain 

No 
AUHPC 

Coleoptile 

length 
Clr Gr AUDPCstand APindex 

control 399,14 8,13 0a 0a 0a 0a 

385 108,99 3,88 0,51b 0,25b 0,83b 0,53b 

104 60,49 3,04 0,60bc 0,26b 0,97cd 0,61bc 

595 79,13 2,89 0,63bc 0,30b 0,92cd 0,61bc 

820 82,51 2,51 0,69bc 0,35b 0,91c 0,65c 

106 76,96 1,74 0,77bc 0,346b 0,92cd 0,68c 

597 68,08 1,57 0,80bc 0,30b 0,95cd 0,68c 

960 74,94 1,64 0,79bc 0,36b 0,93cd 0,69c 

593 58,20 1,07 0,87c 0,31b 0,98cd 0,72c 

27 57,36 1,06 0,86bc 0,33b 0,98cd 0,72c 

53 55,00 1,03 0,87c 0,30b 0,99cd 0,72c 

25 58,71 1,23 0,84c 0,35b 0,98cd 0,72c 

966 58,80 0,92 0,88c 0,32b 0,97cd 0,73c 

24 59,83 1,25 0,85c 0,37b 0,97cd 0,73c 

28 67,63 1,35 0,83c 0,40b 0,95cd 0,73c 

9 66,43 1,66 0,79bc 0,45b 0,95cd 0,73c 

722 58,73 0,91 0,89c 0,35b 0,98cd 0,74c 

93 65,15 1,15 0,85c 0,40b 0,96cd 0,74c 

961 57,44 1,18 0,85c 0,39b 0,98cd 0,74c 

10 61,05 0,93 0,88c 0,39b 0,97cd 0,75c 

45 55,92 0,84 0,89c 0,37b 0,98cd 0,75c 

33 70,03 1,17 0,85c 0,45b 0,94cd 0,75c 

35 64,03 0,84 0,89c 0,42b 0,96cd 0,76c 

11 52,35 0,64 0,92c 0,39b 0,99d 0,77c 

The different letters indicate the significant differences among the strains based on ANOVA Test, 

Games-Howell post hoc test at the 5% level of significance.  
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Figure 5.2. Correlation between AUDPCstandard and disease severity in floret inoculations in 

growth chamber (a) and FHB index in ear inoculation in the field (b)  

a) 

 
b) 

 

The correlation was determined by Pearson correlation coefficient AUDPC 

r = 0.891, P< 0.05 (a) and r = 0.829, P< 0.05 (b). 
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Table 5.3. Correlation analysis among data of aggressiveness parameters obtained by three different 

methods; Petri-dish test, floret inoculations in growth chamber and field floret inoculations 

AUDPCstand=AUDPCstandard; Gr= germination rate reduction; Clr = coleoptile length reduction; 

AP index = Petri-dish aggressiveness index; DSf = field disease severity and DSc =disease severity in 

growth chamber 

 

 

Correlation analysis Aggressiveness 

parameters AUDPCstand Gr Clr AP index DSf 

Gr 0.824**     

Clr 0.910** 0.867**    

DSf 0.829* - - 0.861*  

DSc 0.891* - 0.951** 0.852* 0.835** 

* and ** = Significant at P< 0.05 and P< 0.01, respectively. 
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CHAPTER VI 

Behavior of Syrian durum wheat cultivars in field and growth 

chamber tests   
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ABSTRACT  
Wheat (Triticum durum L.) is a strategic crop worldwide and considered as a susceptible plant 

species for Fusarium head blight (FHB); the destructive disease for all cereals. FHB reduces 

yield, grain quality and causes accumulation of deoxynivalenol (DON) in grains. Cultivar  

resistance is one of the most promising and effective management strategies for FHB. 11 wheat 

cultivars (ten Syrian and one Italian, as susceptible cv) were infected artificially with different 

Syrian and Italian strains of F. culmorum under growth chamber and field conditions in order to 

1) study the behavior of wheat cultivar toward FHB and its relationship to different parameters: 

Fusarium head blight (FHB) index, Fusarium-damaged kernels (FDK), deoxynivalenol (DON) 

concentration, Hectolitric weight (HW), Disease severity and Disease development 2) ranking 

wheat cultivars with different types of resistance to FHB and DON accumulation. Different 

cultivars have shown different behavior toward FHB disease. The Syrian cultivars Jory and 

ACSAD1315 were the most tolerant in growth chamber and field, while the Syrian cultivars 

Sham 9 was the most susceptible under both conditions. DON accumulation and FDK (%) among 

the cultivars were different. However, the differences were not significant. Disease development 

showed significant difference between the cultivars under both conditions. The hectolitric weight 

parameter was affected by FHB also. DON accumulation was not correlated with any other 

parameters under both conditions. 

There were correlations among the following parameters: FHB index correlated significantly at 

P<0.01 with FDK, HW, disease severity and disease development in growth chamber and field. 

FDK correlated significantly with HW, disease development in the field, disease severity 

(p<0.01) and disease development in the growth chamber (p<0.05). Moreover, disease 

development in the field showed significant correlation with disease development in the growth 

chamber as well as disease severity and HW (P<0.05). Based on the different parameters, we 

could group the tested cultivars according to their resistance to FHB.  

 

INTRODUCTION 

Resistance as defined by Argos (1988) is the ability of an organism to exclude or overcome, 

completely or partially, the effect of a pathogen or other damaging factor. In plant, disease 
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resistance is manifested by limited symptoms, reflecting the inability of the pathogen to grow or 

multiply and spread. Often it takes place the  hypersensitive reaction (HR), in which the pathogen 

remains restricted to the site of infection as necrotic lesion (Van Loon, 1997). Mesterhazy (2002) 

described resistance of wheat (Triticum L.) to Fusarium Head Blight (FHB) as a complex 

phenomenon, and he reported different forms, types or components of physiological resistance: 

(i) resistance to initial infection (Schroeder and Christensen, 1963); (ii) resistance to spreading 

(Schroeder and Christensen, 1963); (iii) resistance to kernel infection (Mesterhazy, 1995; 

Mesterhazy et al., 1999); (iv) tolerance to infection (Mesterhazy, 1995; Mesterhazy et al., 1999) 

and (v) resistance to DON accumulation (Mesterhazy et al., 1999). 

FHB or scab, that is caused by 17 Fusarium species, mainly F. culmorum and F. graminearum, 

attracted attention in the recent years as a commonly worldwide distributed disease in wheat 

growing regions causing great yield losses (Brennan et al., 2005), bleached and shrunken kernels, 

decreased seed and baking quality due to destruction of starch, proteins and cell walls of infected 

kernels (Lemmens et al., 1993; Chelkowski et al., 1998) beside the most serious health risk, 

accumulation of mycotoxins, that have harmful effects on human and animal (Windels, 2000; 

Cumagun and Miedaner, 2004). The most important mycotoxins associated with FHB in wheat 

are the trichothecenes; deoxynivalenol (DON) and nivalenol (NIV) (Cumagun and Miedaner, 

2004), that are involved in the inhibition of host resistance reactions (Jansen et al., 2005; Maier et 

al., 2006). The majority of authors assert that no wheat cultivars are immune, most are 

susceptible, but a few are moderately resistant (Parry et al., 1995 ; Cai et al., 2005). Triticum 

durum L. is more susceptible to FHB than common wheat (T. aestivum L.); therefore, its grains 

are more exposed to higher mycotoxin concentrations (Stack et al., 2002). Although F. 

graminearum and F. culmorum are two distinct pathogens, Mesterhazy (1995) found that wheat 

cultivars have very similar resistance reactions against them and this can be true for FHB, 

Fusarium damaged kernels (FDK), yield loss and the degree of deoxynivalenol (DON) 

contamination.  

Wheat (durum and common) is one of the most important crops in Syria, both for local 

consumption and as an export commodity (NAPC, 2006). The cultivation area is divided 

according to agro-meteorological conditions into five sub-regions, from I to V.  

There are no reports about the existence of FHB in Syria. However, Fusarium species were 

frequently isolated and identified (EL-Khalifah et al., 2009). In Syrian wheat kernel samples, the 
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main pathogens isolated were F. culmorum and F. graminearum Schwabe [teleomorph 

Gibberella zeae (Schwein) Petch] (Chapter I). Besides different control practices, as fungicides, 

biological control, agronomical aspects e.g nitrogen application, crop rotation, and tillage/stubble 

(Xu and Nicholson, 2009), breeding for resistance has taken a high priority worldwide, and seems 

to offer the most promising tool (Browne and Cooke, 2005). The resistance to FHB is 

quantitatively inherited in all cereal species with a highly significant genetic variation among 

breeding materials (Snijders, 1990; Miedaner, 1997). A cultivar may be resistant to initial 

infection, hyphal spread and/or to mycotoxins (Lemmens et al., 1993). Moreover, Buerstmayr et 

al. (2000) reported that the cultivation of genetically resistant cultivars is the most cost-effective 

method to control the disease. High priority has taken to FHB resistance in  cereals worldwide 

however, the resistance evaluation has been slow due to the necessity to avoid escapees by 

evaluating the whole plant resistance in different environmental conditions and over several years 

(Browne and Cooke, 2004).  

The objectives of the present experiment were, first, to investigate varietal differences in 

resistance to FHB infection, FHB spread, kernel infection and mycotoxin accumulation 

comparing different Syrian durum wheat cultivars with an Italian susceptible one inoculated with 

different Syrian and Italian F. culmorum strains under control and field conditions and second, to 

evaluate the relations among FHB-resistant types in the different Syrian cultivars.  

 

MATERIALS AND METHODS 

Plant materials and fungal strains 

 Ten Syrian durum wheat cultivars, used frequently in different areas in Syria, were obtained 

from Arab Center for the Study of Arid Zones and Dry Lands (ACSAD)-Syria. One susceptible 

Italian cultivar (Simeto) was used as reference. All the 11 cultivars were then used for 

experimental trials under field and control (growth chamber) conditions. 

Six F. culmorum strains, isolated from durum wheat kernels (3 from Syria and 3 from Italy), 

aggressive and belonged to 3Ac-DON chemotype, were used as artificial inoculum. 
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Macroconidia production 

Each F. culmorum strain was cultured on PDA plate for 7 days and then two mycelium plugs 

were inoculated into a flask of 300 ml, containing 150 ml autoclaved V8 broth (Singleton et al., 

1992), shaken on a refrigerated horizontal type shaker at 140 rpm, 25 °C under incident sun light 

for two weeks. The mixture of macroconidia, mycelium and V8 medium was filtered through a 

sterile syringe filled with double layers of autoclaved cheesecloth. The conidial concentrations 

were measured with a haemocytometer and stored at 4°C. Macroconidia concentration of each 

strain was adjusted to 1x104 conidia/ml for floret inoculations in the growth chamber and to 

2x105 conidia/ml for field trials. Two mixtures were prepared; the first was consisted of the three 

Syrian F. culmorum strains (F960, F961, F966) and the second was of the three Italian ones (F11, 

F24, F35) previously characterized for aggressiveness in (Chapter IV).  

 

Floret inoculations in growth chamber 

Seeds of ten Syrian durum wheat cultivars and one susceptible Italian cultivar (Simeto) were 

embedded in seed trays (160 plants/tray) filled with autoclaved potting mix medium and placed 

in a growth chamber (25/19 °C day/night temperature, 14/10 hr light/dark cycle). Each seedling 

was transplanted individually into a new pot (diameter 8 cm and 15 cm height) containing 

autoclaved potting mix medium and placed in a growth chamber with the conditions described 

previously. One week after transplantation approximately 3 g of commercial fertilizer was 

applied to all plants. The plants were watered three times a week until harvest to avoid water 

stress condition. At wheat anthesis (GS = 63-65; Zadoks et al., 1974), 20 μl (10 μl/floret) of each 

conidial suspension at a concentration of 1x104 conidia/ml were injected into two florets at the 

middle of each spike (without wounding) and covered with polyethylene bags for 48 h to ensure 

constant high humidity. Eight spikes from different pots were treated with each isolate, 

accounting for eight replications.  

Disease evaluations were carried out at 7, 14 and 21 days after inoculation (DAI). For disease 

severity (DS), the scale of Purahong et al. (2012) was used. This scale represented the percentage 

area infected on individual ears: 0% (no infection), 2%, 5%, 10%, 25%, 50%, 75% and 90% 

(infection area is 90% or more) (Figure 4.2). Mean and terminal severity (the 3rd DS evaluation, 

21 DAI) were used to compare the resistance of the different cultivars in the growth chamber 
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experiment. Koch’s postulate was fulfilled by the re-isolation of F. culmorum from infected 

kernels. 

 

Ear inoculations in the field 

The same ten Syrian durum wheat cultivars and the Italian susceptible one (Simeto) were planted 

in the research field of University of Bologna located in Cadriano (Emilia Romagna, Northern-

Central Italy) in autumn. For each cultivar, this field was subdivided into micro-plots of double 

rows (1m length, 15 cm from each other row and 20 cm between two successive micro- plots). 

200 seeds were sown in each micro-plot (100 for row). The total field contained 44 micro-plots; 

22 inoculated with the Syrian strains mixture (11 cultivars repeated twice) and the same design 

was followed for the same cultivars but inoculated with Italian strains mixture (Figure 6.1). At 

30% anthesis, 60 ml of conidial suspension at concentration 2x105 conidia/ml were sprayed on 

each micro-plot by using hand sprayer. Natural rain on this day ensured high humidity, so no 

addition irrigation was applied.  

Five groups of 10 spikes per micro-plot were chosen and marked with plastic labels for disease 

assessment. The disease evaluations were measured as disease severity (DS) and disease 

incidence (DI) at 13and 19 days after inoculation (DAI). DS was determined as described 

previously in the growth chamber. DI was measured as the number of ears that are visibly 

diseased relative to the total number assessed (50 spikes/replicate). Mean FHB Index was 

calculated as the product of DI and DS divided by 100 (Von de Ohe, 2010). 

To determine FDK, one hundred seeds were counted manually from each replicate post- harvest 

for further evaluations (Mesterhazy et al., 1999). The percentage of scabby "tombstone” infected 

kernels (Figure 4.4) was estimated visually and recorded as % Fusarium damage kernel (FDK) 

(Mesterhazy et al., 1999). The Hectolitric weight was measured post- harvest also. Koch’s 

postulate was fulfilled by the re-isolation of F. culmorum from infected kernels.  

 

DON analysis  

Wheat grains were ground, and DON was extracted by weighing out 20 g of each sample. This 

weight was put into flasks of 150 ml containing 100 ml double distilled water. Sample 

suspensions were placed in a rotary shaker (200 rpm) for 3 min, 2 ml of the suspension was 
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transferred into Eppendorf tubes and centrifuged (14000 rpm) for 5 min. One ml of the 

supernatant served as a stock solution for dilution preparations. Dilutions were prepared from the 

stock solution to optimize ELISA analysis. The ground wheat grain samples were analyzed by 

AgraQuant DON (Romer Labs, Austria) Kit, an enzyme immunoassay for the quantitative 

analysis of DON in cereals. Two replicates for each cultivar inoculated with each mixture were 

analyzed, and DON content was calculated using a microtiter plate spectrometer, and a software 

package distributed by the manufacturer. Five standard solutions in water (0,0.25, 1, 2 and 5 

mg⁄kg) provided with the immunoassay kit were used in each plate as standards. 

 

RESULTS  

Floret inoculations in growth chamber 

Disease severity (DS) was the parameter evaluated in the growth chamber trial due to the limited 

number of spikes. Jory and ACSAD1333 were the most resistant cultivars based on the terminal 

disease assessment at 21 DAI (28.6%, 35% respectively) whereas the most susceptible cultivars 

were Sham9 and ACSAD1315 (76.4, 73.6% respectively) (Table 6.1). Typical FHB symptoms 

were observed in the inoculated spikelets whilst in control, no bleached spikelets were present.  

To study the development of disease, we plotted the means of each estimation (7, 14 and 21 DAI) 

of each cultivar to calculate the slope. The results ranged between 17.8 and 37.1% indicating that 

Jory has type II resistance while the most susceptible cultivar for the spread of disease was 

Sham9. The difference was significant only between the lowest and the highest values (Table 6.1 

and Figure 6.2).  

 

Ear inoculations in the field and DON analysis 

The values of mean FHB index ranged between 18.6 and 38.7%, the most resistance cultivars 

were Jory and ACSAD1333, which showed significant difference with the most susceptible 

cultivar Sham9. Whereas the values of the first estimation were between 0 and 2% for all the 

cultivars, the second estimation showed a wider range of differences in both types of inoculum 

(Syrian and Italian) (Table 6.2). 
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The values of FDK and DON levels were variables. However, there were no significant 

differences between the different cultivars. FDK ranged between 30 and 46% whilst DON levels 

ranged between 0.33 and 2.1 ppm.  

Hectolitric weight values showed diversity among the cultivars which reached significant levels; 

the highest value was for Sham3 (96.1 Kg/m3) while Sham5 had the lowest one (90.01 Kg/m3) 

(Table 6.2).  

Development of the disease was also heterogeneous among the cultivars using ANOVA 

comparisons between the mean of the estimations: less variability in Jory (17.8%), the highest 

value was for Sham9 (37.1%) (Figure 6.3). The cultivars inoculated either with Syrian or Italian 

inoculum had the same behavior. 

 

Comparison between the results of growth chamber and field trials 

Cultivar rankings generally fluctuated from trial to trial and from parameter to parameter within 

the same trial. In the growth chamber trial, Jory and ACSAD1333 were the most resistant to FHB 

while Sham9 and ACSAD1315 were the most susceptible (Table 6.1). For the disease 

development Jory and ACSAD1333 had the least values while Sham 5 and Doma1 had the 

highest. In the field, Jory and ACSAD1333 confirmed to be the most tolerant to FHB whilst 

Sham9, ACSAD1315 and Sham5 were the most susceptible (Table 6.1). Horani and 

ACSAD1333 showed less FDK in contrast to Sham5 and Sham9 that had the highest values. 

DON accumulation was  lower in Jory and Sham9 than in  Bohoth, Horany and Simeto. The 

grains of  Sham3 gave the best yielding , while Sham5 gave the worst (highest and the lowest 

hectolitric weight) (Table 6.1). Jory and Horani showed the less development of the disease 

whilst the disease developed sharply in Sham9 and Sham5. The correlations among the different 

parameters in the growth chamber and the field  are reported in Table 6.3. 

Mean FHB index showed high positive correlation with FDK (%) and negative correlation with 

hectoliteric weight (r = 0.912 and - 0.772, P < 0.01, respectively). Furthermore, high correlation 

was found between DS and FHB index (r = 0.843, P < 0.01). Disease development in the field 

correlated significantly with disease development in the growth chamber (r = 0.782, p<0.01). 

DON accumulation did not show a correlation with any other parameters. 
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DISCUSSION 

Few studies were carried out  in Syria to evaluate the FHB resistance of the durum wheat 

cultivars. This study provides information about FHB infection in durum wheat cultivars from 

different regions in Syria , newly released cultivars are also included in this study. Cultivars 

differed in their behaviour to FHB in both trials; growth chamber and field. Durum wheat 

cultivars evaluated in this study also differed in DON accumulation. However, differences among 

cultivars were not significant. DON accumulation level was not correlated to other parameters, 

and this implies that cultivars with resistance to FHB do not necessarily show low DON 

accumulation. This is in agreement with Wisniewska et al. (2004) and Chrpova et al. (2007) who 

reported that some cultivars expressed high resistance to the accumulation of DON but FHB 

symptoms were clearly developed. Moreover, Bai et al. (2001) reported that severe visual 

symptoms may not always be associated with high DON levels. On the contrary, Lemmens et al. 

(1997) and Perkowski and Chełkowski (1993) observed a significant correlation between 

resistance to FHB and DON accumulation in seeds after natural infection. The contradiction 

between the different finding could be interpreted as the regulation of DON accumulation is 

rather complicated and depends on ecological conditions in addition to host and fungal genotype 

(Mesterhazy et al.,1999). Moreover, the toxin resistance and disease resistance are two different 

phenomena. The behaviour of the cultivars in growth chamber and the field was similar as the 

most resistant and the most susceptible cultivars kept their scores under both conditions. 

Furthermore, disease severity in the growth chamber was higher than in the field. This might be 

interpreted by the fact that in the growth chamber, the humidity and temperature were adjusted to 

be ideal for disease development in contrast to uncontrolled conditions in the field, although in 

2011, the year in which field trial was carried out,  the climatic conditions were not favourable to 

disease incidence and spreading. Type I–resistance to initial infection by the fungus is strongly 

influenced by environmental conditions and type II–spread of the pathogen within the spike is 

regarded as a stable measure of cultivar resistance (Wisniewska et al., 2004). It is necessary to 

combine type I and type II resistance to get FHB resistant wheat plants.  

Wheat cultivars also varied in FDK, although these differences were not significant. The highly 

correlation between FDK and FHB index is in accordance with Mesterhazy (2002) and Wegulo et 

al. (2011). Since hectolitric weight is considered  a quality parameter influenced by FHB, then it 

could be used to determine the tolerance of wheat cultivars. According to our results, there were a 
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significant difference within hectolitric weights among the cultivars and a correlation between 

this parameter and FHB index. Ramirez-Marchand et al. (2003) reported the correlation between 

FHB and hectolitric weight.  The results from this study indicate that among Syrian cultivars, 

there is tolerance to FHB and DON accumulation. “Jory” has a better behavior than “Simeto”, the 

most cultivated cultivar in southern Italy where the climatic conditions is quite similar to some 

Syrian areas. However, the majorityof grown cultivars are susceptible. These results can be used 

to take decisions regarding the choice of cultivars to plant in order to reduce losses due to FHB 

and DON accumulation. Evaluation of a wider range of durum wheat cultivars grown in the 

region for resistance to FHB and DON accumulation will provide more choices and increased 

benefits to producers and to the food processing industries. In spite that FHB data in this study 

are only from one year, we are confident that the precautions taken into account to obtain reliable 

results could be efficient enough, as noticed by the consistency of the results obtained from both 

field and growth chamber trials. Repeating the experiments is recommended to evade escapee of 

cultivars. 
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FIGURES AND TABLES  

 

Figure 6.1. Field experiment  for studying the behavior of Syrian wheat cultivar  
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Table 6.1. Values of different parameters for evaluating different types of resistance in 11 Syrian 

durum wheat cultivars tested under field and growth chamber conditions: FHB index, Fusarium-

damaged kernels (FDK), DON level, Hectolitric weight (HW), Disease severity (DS) and Disease 

development (growth chamber and field) 

 

Field Growth chamber 

Cultivars 
Mean 

FHB 

index 

Type I 

FDK 

Type 

III 

DON 

(ppm) 

Type V 

HW 

Type IV 

Disease 

development  

Type II 

DS 

Growth 

chamber 

Disease 

development 

 

Simeto  22,2ab 34a 1,88 a 94,09bc 19,94ab 56,8bc 21,97bc 

ACSAD 

1315  
32,6ab 45a 1,67 a 91,96ab 30,17ab 73,6c 30,41c 

ACSAD 

1333  
20,6a 32a 1,18 a 92,87abc 20ab 35ab 14,4ab 

Bohoth1  28,8ab 45a 2,1 a 93,44abc 28,4ab 65,8c 28,74c 

Douma1  29,7ab 41a 1,41 a 93,58abc 28,16ab 70,3c 30,7c 

Horani  21,7ab 30a 1,81 a 95,26bc 19,78ab 50,8bc 23,75bc 

Jory  18,6a 33a 0,33 a 94,3bc 17,8a 28,6a 10,87a 

Sham1  23,8ab 39a 0,75 a 94,73bc 23,5ab 58,9bc 25,73c 

Sham3  22,2ab 33a 0,86 a 96,1c 21,4ab 63,8c 26,58c 

Sham5  33,7ab 46a 1,09 a 90,01a 32,3ab 70,9c 30,83c 

Sham 9  38,7b 46a 0,63 a 91,28ab 37,1b 76,4c 30,02c 

* Means with the same letter within a column are not significantly different at P = 0.05 according 

to ANOVA test 
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Table 6.2. Values of FHB index in the field, 1st and 2nd evaluations, due to two inocula (Italian and  

Syrian strains) of  F. culmorum for 11 durum wheat cultivars (10 Syrian and 1 Italian) 

Syrian mix Italian mix 

Cultivars FHB index 

(1st evaluation) 

FHB index 

(2nd evaluation) 

FHB index 

(1st evaluation) 

FHB index 

(2nd evaluation) 

Simeto 1,10 10,84 3,48 33,62 

ACSAD1315 1,03 38,84 3,86 26,39 

ACSAD1333 0,61 21,48 0,54 19,78 

Bohoth1 0,35 23,38 0,54 34,33 

Douma1 0,15 26,91 3,00 32,58 

Horani 1,78 15,99 2,16 27,52 

Jory 1,17 15,83 0,41 21,41 

Sham1 0,36 28,14 0,11 19,42 

Sham3 1,25 24,22 0,38 20,23 

Sham5 1,71 34,79 1,04 32,64 

Sham9 0,64 37,85 2,56 39,53 
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Table 6.3. Correlations among different parameters: FHB index, Fusarium-damaged kernels 

(FDK), DON concentration, Hectolitric weight, Disease development and Disease severity (DS) in 11 

durum wheat cultivars evaluated in the field and growth chamber for resistance to FHB  

 
FHB 

index 
FDK 

DON 

(ppm) 

Hectolitric 

weight 

Disease 

development in 

growth chamber 

DS 

FDK% 0.912**      

DON(ppm) - -     

HW 0.772** -0,744** -  -  

Disease 

development 

in growth 

chamber 

0,793** 0,734* -    

Disease 

development 

in field 

0,994** 0,929** - -0,766** 0,782** 0,828** 

DS 0.843** 0.773** - - 0,978**  

 

* and ** = Significant at P< 0.05 and P< 0.01, respectively 
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Figure 6.2. Disease development in growth chamber for 11 durum wheat cultivars after 7 (blue), 

14 (red) and 21 (green) DAI 

 

 

Figure 6.3. Disease development in the field for 11 durum wheat cultivars after 14 (blue) and 21 

(red) DAI 
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In this work, it was established, for the first time, the possibility of the occurrence of a serious 

FHB outbreak in Syria. We have isolated and identified, undoubtedly, FHB's  causal agents in 

Syrian wheat samples, using different biological and molecular approaches. These F. culmorum 

strains were able to cause the disease on different Syrian and Italian cultivars under field and 

growth chamber conditions and to produce different typeof mycotoxins. 

The morphological and molecular identification of the main Fusarium species associated with 

FHB in Syrian wheat kernel samples, collected from different regions, revealed the presence of F. 

culmorum, F. graminearum, F. equiseti and F. pseudograminearum while in the Italian samples, 

F. graminearum, F. poae and F. culmorum. The distribution and the prevalence of different 

Fusarium species are largely variable over the continents and regions due to environmental 

conditions (Logrieco et al., 2002b; Xu and Nicholson, 2009). The diversity between Syrian and 

Italian Fusarium species confirms the importance of the geography and the worldwide 

distribution, in fact differences in the distribution of alternative hosts, soil type, cultivar, cropping 

practice or temperature may all play a role in FHB causal agents (Jennings et al., 2004; Toth et 

al., 2005). 

It is not possible to conduct a comparative study for Syrian samples because of the absence of 

studies related to FHB causal agents in Syria. The presence of these species in Italian samples 

was found by several researchers in Italy (Prodi et al., 2009; Shah et al., 2005; Pancaldi et al., 

2010); F. pseudograminearum has always been associated with crown rot disease in wheat in 

Italy (Balmas, 1994), Turkey (Bentley et al., 2006) and Iran (Saremi et al., 2007), but only 

recently it has been found responsible of the major outbreaks of FHB in wheat in Australia 

(Akinsanmi et al., 2006). Miedaner et al. (2008) reported that F. pseudograminearum seemed to 

be restricted only to Australia as a FHB pathogen, but Kammoun et al. (2009) found in Tunisia 

this species representing 9% of the fungal complex associated with FHB in durum wheat. The 

association of F. pseudograminearum to FHB in new areas might be due to climate changes and a 

new source of disease and mycotoxin risks. 

Pasquali et al. (2010) affirmed that genetic chemotyping on a large scale is a valid approach to 

predict mycotoxin contamination in wheat, this aspect is also confirmed in this present work. The 

chemotyping showed diversity among F. graminearum and F. culmorum in Syria and Italy. In the 

tested Syrian F. graminearum strains, there was  a prevalence of NIV chemotype. This finding is 
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in accordance with Haratian et al. (2008) who reported that the majority of F. graminearum 

isolated from cereals grown in Iran, another area of Middle–East, was NIV chemotype. This 

result is not in accord with the data obtained in Europe, where the prevalent chemotype was 

15Ac-DON. In Italy, Prodi et al. (2009) found 15Ac-DON predominant over 3Ac-DON and NIV, 

as well as  in the Netherlands (Waalwijk et al., 2003), England and Wales (Jennings et al., 2004), 

USA (Gale et al. 2007) and southern Russia (Yli-Mattila et al., 2008), whilst 3Ac-DON 

chemotype was predominant in western Russia and Finland (Yli-Mattila et al., 2008) .  

Syrian isolates of F. culmorum belonged to 3Ac-DON and NIV chemotypes; while the Italian 

strains belonged exclusively to 3Ac-DON. Most probably the limited number of Italian F. 

culmorum strains analysed in our study might be the cause of non appearance of NIV chemotype.  

Several studies detected 3Ac-DON and NIV chemotypes of F. culmorum in several European 

countries, like Germany (Muthomi et al., 2000),  Italy (Prodi et al., 2011b), Norway (Langseth et 

al., 1999) and France (Bakan et al., 2001).   

Interestingly, the majority of Syrian F. equiseti strains possessed a gene encoding trichodiene 

synthase, which is necessary for trichothecene production, gene not frequently present in 

Canadian isolates (Demeke et al., 2005). The studies about F. equiseti chemotypes are few since 

the presence of this species on wheat is sporadic (Bottalico and Perrone, 2002; Pancaldi et al., 

2010).  

The screening of mycotoxin production by Syrian Fusarium strains on wheat media revealed the 

tendency of these isolates to produce conventional mycotoxins rather than emerging ones.  

ZEN production characterized all the tested strains of F. graminearum, F. pseudograminearum 

and F. culmorum. The same results were obtained by Bakan et al. (2002) on French F. culmorum 

tested strains. Furthermore, Al Mugrabi et al. (2011) found that all 59 German and French F. 

graminearum tested strains produced high amounts of ZEN. Blaney and Dodman, (2002) 

reported in their study in Queensland that all F. pseudograminearum and most F. graminearum 

strains produced ZEN on culture. In Europe, DON and ZEN were the most frequently 

encountered Fusarium mycotoxins in FHB induced by F. graminearum and F. culmorum 

(Bottalico and Perrone, 2002).  

The quantification of ZEN reflected its presence in almost all the strains of the different 

Fusarium species associated to FHB (CHAPTER I).  
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The in vitro production of trichothecene B corresponded to the chemotypes previously identified. 

In fact, F. culmorum and F. graminearum,  belonging to NIV chemotype, produced NIV and/or 

its acetylated form FUS-X while the remaining of F. culmorum strains, belonging to 3Ac-DON 

chemotype, produced 3Ac-DON, 15Ac-DON and DON. Tokai et al. (2008) reported that the 

production of small amounts of 15Ac-DON was common in strains belonging to 3Ac-DON 

chemotype due to acetylation of 15-hydroxyl of DON by the product of Tri3. Bakan et al. (2002), 

in the study carried out in France,  reported that F. culmorum strains, belonging to 3Ac-DON 

chemotype, were able to produce DON. Syrian F. culmorum strains, belonging to NIV 

chemotype, produced different amounts of DON and/or its acetylated forms, as also reported by 

Al Mugrabi et al. (2011). This characteristic could be accounted as an enzymatic conversion step 

of NIV to DON or as a bi-product of biosynthesis (Al Mugrabi et al., 2011). The quantification is 

extremely important to acquire a definite picture of mycotoxin expression in the different 

Fusarium strains since the co-presence of the different chemotypes cannot be detected with 

molecular techniques and allows to define whether the plant products are adequate for human and 

animal consumption (Al Mugrabi et al., 2011). 

The survey on mycotoxin content in Syrian and Italian wheat kernels has confirmed the presence  

of mycoflora on tested samples (CHAPTER I). Fusarium species were more frequent in the 

Italian samples, that were characterized by the contamination with both emerging and 

conventional  Fusarium mycotoxins. DON and 15Ac-DON were the prevalent trichothecene B 

toxins with a limited level of NIV. This finding affirms the general concept that DON is the most 

common trichothecene found in cereal grains (Xu and Nicholson, 2009). In our study, the co-

occurrence of ZEN and DON is in accordance with Chrpova et al. (2007) who reported that high 

DON content could be an indicator of high ZEN level. In Syrian samples the storage fungi, i.e. 

Aspergillus spp. and Penicillium spp., were isolated in higher percentage and the main 

mycotoxins detected were aflatoxins and ochratoxin (Reyneri, 2006). The absence of Fusarium 

species in some of the analysed samples (CHAPTER I) with the detection of Fusarium 

mycotoxins could be interpreted as an effect of post-harvest fungicide use in Syria.  

The aggressiveness of several Syrian F. culmorum strains, belonging to both chemotypes, was 

assessed and the role of DON accumulation in pathogenesis was also evaluated, in order to 

estimate the risk of Fusarium strains in a possible future occurrence of FHB outbreak in Syria, 

especially in the areas where the agronomical practices are changing (introduction of irrigation).  
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The knowledge of aggressiveness of fungal strains is fundamental in breeding assays for testing 

the pathogen resistance of a host/genotype. In this work we observed no significant differences in 

aggressiveness between Syrian and Italian F. culmorum strains, and the absence of this diversity 

can be explained by the low level of genetic differentiation among F. culmorum populations 

(Miedaner et al., 2008). The data obtained from different assays indicated that DON production is 

proportional to disease development, and enabled us to classify the different Syrian strains of F. 

culmorum according to their aggressiveness. 

The aggressiveness of the strains had the highest values in Petri dish test and the lowest in the 

field trial. These data could be explained by the different artificial inoculation methods performed 

in this experimental work (CHAPTER IV). Optimal humidity and temperature, suitable 

environmental conditions, for disease development (Parry et al., 1995; Birzele et al., 2002; De 

Wolf et al., 2003) are difficult to be ensured under fluctuated and uncontrolled field environment 

versus the stable and controlled ones in the growth chamber and the Petri-dish test. Therefore, 

this method with its remarkable stability of results, reliability, rapidity and low-cost could be 

considered a plausible test for breeding purposes. This method has been already validated for F. 

graminearum by Purahong et al. (2012) and it will be possible to validate the modified Petri dish 

test for F. culmorum too. 

The control of FHB, in years of a high pressure of natural inocula, is not risolutive with only 

good agronomic and chemical managements (Xu and Nicholson, 2009; Pancaldi et al., 2010). 

The adoption of resistant cultivars is the best method for FHB control (Parry et al., 1995; Bai and 

Shaner, 2004), but it is difficult to obtain FHB resistant cultivar, due to polygenic features. In our 

study, the evaluation of FHB resistance was based on different parameters, DS, FDK, HW and  

DON level. The positive correlation between visual disease symptoms and DON accumulation 

has been a debate in previous studies where the symptoms and DON contents could (Mesterhazy, 

2002) or could not (Edwards et al., 2001) be related to each other. Xu et al. (2007) hypothesized 

that this inconsistency might be due to a variable competition and toxin-producing capability 

between and within pathogen species in field samples. Furthermore, other researchers suggested 

that in some cases resistance to FHB and DON accumulation may not depend from each other 

(Arseniuk et al., 1999). Our data show that the most tolerant cultivar ,“Jory”, had the lowest 

DON level while the most susceptible, “Sham9”, had low DON content. “Jory”, with constant 

behavior under field and growth chamber conditions as well as the ability to accumulate a low 
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amount of mycotoxin, could be promising, but further research should be carried out to 

investigate these cultivars more thoroughly over several years and under different environments 

In conclusion, our current study has proved the presence of FHB causative agents with high 

capability to infect and accumulate mycotoxins in different Syrian cultivars under different 

conditions. We draw the attention over the risk of FHB and its hazardous mycotoxins in Syria, 

especially with the increasing trend to irrigation and the changes of agronomical practices. These 

two factors are considered as key players in enhancing the occurrence of this disease. In view of 

the great risk that poses the FHB ,we would like to point out the importance and the need to 

establish a national Syrian allowable limits for Fusarium mycotoxins in food and feed, 

particularly for baby foods, who are the most vulnerable and the most susceptible. 
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