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ABSTRACT 
 
 
 

This research has focused on the study of the behavior and of the collapse of masonry arch 
bridges. The masonry arch bridges are standing from hundreds of years and can be considered one 
of the oldest subjects of scientific research. Despite this, it can be difficult to analyze their behavior 
for all the uncertainties related to the analysis of the materials in existing structures. The latest 
decades have seen an increasing interest in this structural type, that is still present and in use, 
despite the passage of time and the variation of the transport means. Several strategies have been 
developed during the time to simulate the response of this type of structures, although even today 
there is no generally accepted standard one for assessment of masonry arch bridges. 

The aim of this thesis is to compare the principal analytical and numerical methods existing in 
literature on case studies, trying to highlight values and weaknesses. The methods taken in exam are 
mainly three: i) the Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite 
Element Methods. The Thrust Line Analysis Method and the Mechanism Method are analytical 
methods and derived from two of the fundamental theorems of the Plastic Analysis, while the Finite 
Element Method is a numerical method, that uses different strategies of discretization to analyze the 
structure. Every method is applied to the case study through computer-based representations, that 
allow a friendly-use application of the principles explained. A particular closed-form approach 
based on an elasto-plastic material model and developed by some Belgian researchers is also 
studied.   

To compare the three methods, two different case study have been analyzed: i) a generic 
masonry arch bridge with a single span; ii) a real masonry arch bridge, the Clemente Bridge, built 
on Savio River in Cesena. In the last case, a detailed historic analysis has been conducted together 
with laboratory tests to determine the mechanical characteristics of masonry arches. 

 In the analyses performed, all the models are two-dimensional in order to have results 
comparable between the different methods taken in exam. The different methods have been 
compared with each other in terms of collapse load and of hinge positions.  
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1.1 SOMMARIO 
 

“Arco non è altro che una fortezza causata da due debolezze, imperochè l’arco negli edifici è composto di due 
quarti di circolo, i quali quarti circuli ciascuno debolissimo per sé desidera cadere e oponendosi alla ruina l’uno 
dell’altro, le due debolezze si convertono in un’unica certezza.” 

Leonardo da Vinci 
 

 

 
 

L’approccio classico per determinare la stabilità dei ponti ad arco risale alla teoria di Pippard 
e Ashby, ulteriormente sviluppata negli anni 60 dal Prof. Heyman. Questa teoria assume che la 
muratura: i) non abbia resistenza a trazione; ii) abbia un’infinita resistenza a compressione; iii) 
non avvenga rottura per scorrimento. Il meccanismo di collasso dell’arco è quindi identificato 
dalla progressiva formazione di quattro cerniere, che coincidono con i punti in cui la curva 
delle pressioni è tangente all’intradosso o all’estradosso dell’arco. Il meccanismo per 
formazione di cerniere non è l’unico possibile per l’arco1, ma studi sperimentali2 dimostrano 
che è il più probabile in caso di ponti ad arco ben contraffortati. L’analogia tra questo 
meccanismo di collasso e quello proprio delle strutture metalliche permette di applicare anche 
alle strutture in muratura i fondamentali teoremi dell’analisi plastica, incluso il “safe theorem”.  

La ricerca del Prof. Heyman evidenzia quindi che un’analisi di tipo elastico nel caso di 
strutture in muratura è problematica perché non esiste un unico stato di equilibrio calcolabile. 
L’analisi limite permette invece di considerare la struttura solo in relazione al suo stato ultimo, 
utilizzando pochi parametri materiali e trascurando lo stato di tensione iniziale.      

 
 
 
 
 
 
 
 
 
 
 

                                                 
1 Meccanismo di rottura a scorrimento e misto scorrimento-cerniera. 
2 A.W. Hendry, S.R. Davies e R. Royles, Test on a Stone, Masonry Arch at Bridgemill-Girvan, Transport and 
Road Research Lab, Contractor Report 7, UK (1985) 
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1.2 Classic Theories 
 
In his book3 “La scienza delle costruzioni e il suo sviluppo storico”, Edoardo Benvenuto 

gave us the historical perspective of the first static theories regarding the masonry arch. 
Between the seventeenth and eighteenth century, the geometric and the empiric rules reported 
in the ancient treatises were replaced by a real static theory on the stability of the arches. 
Philippe De La Hire was the first to develop an innovative approach, which remained the same 
for all the scholars of the eighteenth century. The arch was seen as a series of rigid blocks with 
well-defined geometry and a specific weight. However his model neglected the friction, which 
was taken into account by Coulomb’s Model. Since Coulomb's essay (1773) and Mery’s 
subsequent elaboration (1840), the problem of statics of the masonry arch will have to wait 
more than a hundred years before being called into question.  

Only around the fifties of this century, the problem is taken up and dealt with a more 
congenial method. Attempts in the twenties to adapt the elastic theory to the masonry arch were 
not very successful. The weak point of these attempts was to assume the masonry material as 
elastic and to consider valid the results even if the thrust line was external to the core in some 
points. The turning point of the fifties is determined by the appearance of the limit design and 
of its increasing applications to structural analysis. The theorems of limit analysis are 
admirably suited to the determination of the collapse load of masonry arches.  

So nowadays the engineering methods of assessment for arch bridges mainly rely on the 
pioneering work by Pippard and Ashby4(1939) and Pippard5(1948). They determined the load 
required, at a given location, to cause the formation of two additional hinges, and hence a 
mechanism, in a two hinged arch. These procedures guaranteed that an equilibrium 
configuration exists for the considered structural model but gave only rough estimates of the 
limit load. Following their lead and Drucker’s studies,  Kooharian published the first modern 
work on this subject in 1952, which was followed one year later by Onat and Prager’s input. 
Another milestone was Heyman’s publication in 1966, where he explained for the first time the 
applicability of ultimate load theory for any masonry loadbearing structure. Heyman’s 
contributions are so fundamental that is difficult to imagine today the state of the art without his 
work. In the next paragraph, the fundamental hypotheses at the base of his theory will be 
explained. 

                                                 
3 Benvenuto E. (1981), La scienza delle costruzioni e il suo sviluppo storico, Sansoni, Firenze 
4 Pippard, A.J.S., Ashby, R.J., (1939). An experimental study of the voussoir arch, Inst.n Civ. Eng., 10, 383-403. 
5 Pippard, A.J.S., (1948), The approximate estimation of safe loads on masonry bridges, Civil engineer in war, 1, 
365, Inst.n Civ. Eng.rs. 
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1.3 Jacques Heyman and the “Safe Theorem” 

 

Hypothesis on masonry material  
In 1966 Professor Jacques Heyman6 has introduced some hypotheses for the determination 

of the admissibility domain of the masonry material. The three assumptions are reasonable 
approximations, but – as the same Heyman remembers – each is not strictly true and must be 
protected with reservations. Heyman does not introduce nothing new, but formalizes in a clear 
way some hypotheses on the material, that formed the basis for the calculation of the arches in 
the XVIII and XIX century. These assumptions enable Heyman to frame the masonry action in 
the plastic theory and to formulate the famous safe theorem, that will be explained later on.           
The three hypotheses are: (i) the masonry has no tensile strength; (ii) the masonry has infinite 
compression strength; (iii) sliding failure doesn’t occur. As regards the first, it is an assumption 
that does not always adhere to the reality, but it is at safety benefit. It is strictly true only if the 
masonry is made by dry-stone blocks or with weak mortar: however, in most cases, the 
adherence between mortar and masonry blocks is negligible because the mortar may decay in 
time. Therefore, whatever is the ultimate tensile strength of the individual blocks, the masonry 
may be considered a non resistant tensile material (NRT material). 

The hypothesis of infinite compression strength is a valid approximation only if the ratio 
between the average compression stress and the masonry compression strength is a negligible 
value compared to the unit.  That is,  the compression strength is not infinitely great,  but if the  

 
 

 
 
 
 
 
 
 
 

 

                                                 
6 Heyman, J. (1966), The stone skeleton. Structural Engineering of Masonry Architecture, University of 
Cambridge, Cambridge 

 Figure 1.1 Heyman’s three hypotheses: (i) the masonry has no tensile strength; (ii) the masonry has infinite 
compression strength; (iii) sliding failure doesn’t occur. 
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ratio illustrated is sufficiently small, the 
hypothesis of infinite compression strength is 
justified.  

However it should pay attention to the rise 
of stresses concentrations. In fact, when an 
NRT material is considered, if the stresses 
come out of the middle third, occurs: (i) a 
reduction of the resistant section; (ii) a 
redistribution of the compression stresses; (iii) 
an increase of the peak values. In normal 
conditions of exercise, stresses are so low that 
prevent any phenomena of crushing failure. 

The assumption of absence of sliding 
failure is equivalent to assert that the shear 
component of the force, which is exercised 
between two voussoirs, never exceeds the 
friction between them. In fact, low 
compression stresses allow to develop high 
friction forces, that prevent voussoirs from 
losing cohesion and sliding. The validity of 
this hypothesis can be verify considering the 
slope of the thrust line respect to the joints: if 
the thrust line is perpendicular to the joints, 
there is no mutual sliding between the 
voussoirs. Instead, if it forms an angle minor 
than 90°, the voussoirs tend to slide 
downwards or upwards.  

Concerning Heyman’s hypotheses, the 
collapse mechanism of the arch is then 
identified by the progressive formation of 
hinges, that coincide with the points where the 
thrust line is tangent to the intrados or extrados 
of  the  arch.  The  mechanism for formation of  

Figure 1.2: Reduction of the resistant section 
when the stresses come out of the middle third.

Figure 1.3 Possible collapse mechanism for the 
arch: i) a shear mechanism; ii) a hinge-mechanism; 

iii) a combined shear-hinge mechanism. 



            

 

 

hinge
show
buttr
fram
plast

 
   
 “I

extern
struct

 
 

C
safet
know
varia
equa

 

        
7 Acc

mecha

                           

es is not the
w that it c
ressed. The 

mes allows H
tic analysis, 

Safe Theor
If any equilib

nal loads, and
ture is safe.”  

oncerning H
ty, but only
w the real 
ations, etc.).
ations  of  eq

                  
cording to Bo

anism, a hinge

                          

e only possi
an be con
analogy bet

Heyman to a
including t

rem 
rium state can

d, further, for w
                  

Heyman, it
y reasonable

state becau
. In this way
quilibrium  

                  
oothby, an arc

e-mechanism 

Figure 1.4

                           

ible for the 
sidered as 
tween the ro

apply even t
the safe theo

n be found, th

which every in
                  

t is not nec
e equilibrium
use of its 
y, it is possi
and  consist

     
ch bridge can 

and a combin

4 Hendry’s ex

                           

arch7, but th
the most 

otation failu
to the mason
orem. 

hat is, one for 

nternal portio
                  

cessary to f
m states. Th
ephemeral 

ible to ensu
tency,   with

 

collapse as a

ned shear-hing

xperiment on 

                          

he experime
likely coll

ure mechani
nry structur

which a set of

on of the struc
                  

find the rea
his is very 
nature (fa

ure the safety
hout  makin

a result of thr

ge mechanism

collapse of re
 

     

ental studie
lapse mech
ism of the a
res the fund

of internal forc

cture satisfies 
                  

al equilibriu
important s

ailure of th
y of the arc
ng  assumpt

ee possible co

m. 

eal masonry a

STA

es of Hendry
hanism for 
arch and tha

damental the

ces is in equil

a strength cri
                  

um state to
since it is i

he foundatio
h working o

tions  on  th

ollapse mecha

arch bridge 

ATE OF THE AR

7

y (figure 1.4
arches we

at of the stee
eorems of th

librium with th

iterion, then th
     J. Heyman

o assure arc
mpossible t
ons, therma
only with th
e  boundary

 

anisms: a she

            
 

RT 

4) 
ell 
el 
he 

he 

he 
n  

ch 
to 
al 
he 
y  

ear 

  



 
C
 

c
is

e
r
th
a
th
li
a
m
e
 

 

  
8 

9 

10

CHAPTER 1 

 
8

conditions, t
s the thrust 

As demo
endless line
esearch of 
hrust in the

axis line of 
hrust line lo
ine can be 

approach. A
movement i
equilibrium 

 
 
 
 
 

 
 
 
 
 
 

Limit Sta
The  thru

                  
Gerstner F.J. 
Moseley H. 
Edimburgh P

0 Winkler E. (

Figure 1.

that would b
line, that sh
nstrates Ge
s of thrust,
the real thr

e keystone; 
the arch. T
ocation betw
drawn insid

A safe arch
induced in
equations a

ates 
ust  line  has

                  
von (1831-18
(1833), On a

Philosophical 
1867), Die Le

.5 Moseley’s d
thru

be very diff
hows the dis
erstner8, the 
 that satisfy
rust line: i) 
ii) for Wink

The safe the
ween infini
de his thick
, just check

n the abutm
are not chan

s  not  to  go

           
834), Handbuc
a new princip
Magazine and

ehre von der E

determination
ust line 

 

fficult to ver
stribution o
masonry ar

y the balan
for Mosele

kler10, it wa
eorem allow
ite number 
kness. So H
ked by the 
ments, prov
nged; iii) the

o  out of the 

ch der Mecha
ple in statics,
d Journal of Sc
Elastizitat und

n of the 

                

rify. A way
f internal fo
rch is a stru

nce. In 1800
ey,9 it was 
as the one t

ws to remed
of possibili

Heyman’s ap
safe theore

vided that: 
e whole geo

 

masonry th

anik, J. Spurny
, called the P
cience, vol. 3,

d Festigkeit, D

F

                

y to represen
orces under 
ucture static
0s, the deba
the one tha

that diverge
dy the vagu
ities: an arc
pproach can
em, will no
i) the mo

ometry of th

hickness: to 

y, Prague 
Principle of l
, pp. 285-288

Dominicus, Pra

Figure 1.6 Win

nt the equili
a given loa

cally indefin
ate was just
at minimize
es the less p
ueness conn
ch is safe s
n be define
ot collapse 
ovements ar
he arch is no

this end,  it

least pressure

ague 

nkler’s determ
thrust line 

 

ibrium equa
ad.  
nite, so ther
t focused o
es the horiz
possible from
ected to the
imply if a t

ed in equilib
whatever i

re little; ii
ot distorted.

t is interesti

e, The Londo

mination of th

             
 

ations 

re are 
on the 
zontal 
m the 
e true 
thrust 
brium 
is the 
i) the 
 

ing to 

on and 

e 

                            



                                                                                                                                                                      
 

 
STATE OF THE ART 

 
9

 
 
 
 
 
 

 
 

               Figure 1.7 J. Heyman. (a) Minimum abutment thrust.  (b) Maximum abutment thrust. 

 
study its two extreme positions, that represent two states still in equilibrium. In fact, when the 
thrust line touches the lower or the upper boundary of the arch, the masonry finds itself at the 
limit of the admissible states region and the eccentricity is such that promotes the formation of 
hinges. In particular, in the two extreme conditions, the thrust line gives the location of three 
hinges that open: in this way, the value of the horizontal abutment thrust can be calculated.  

In the two extreme positions of the thrust line, the horizontal abutment thrust will be: a) 
minimum; b) maximum. The minimum horizontal thrust will be obtained when the arch acts on 
the environment: for example, after removing the centering that supports the masonry, an arch 
will thrust on the abutments and these one will open slightly. In minimum thrust state, or 
passive state, the thrust line will have the greatest rise and the smallest clear span; it will touch 
the extrados at the key and intrados at the back. The maximum horizontal thrust will be 
obtained when the environment acts on the arch: for example, when two abutments move closer 
to each other, the arch span diminishes. In state of maximum thrust state, or active state, the 
thrust line will have the smallest rise and the greatest clear span; it will touch the extrados at the 
crown and the intrados down. Three hinges will open if one is at the key; on the contrary, four 
hinges form.  

It is important to know the two extreme positions of the thrust line, because the real thrust of 
the arch can’t be calculated, but the upper and the lower limits can be fixed.  

 
Collapse 
The collapse of a masonry arch does not involve an absence of strength, but rather a loss of 

stability. In fact the collapse takes place when a thrust line can’t be find within the arch 
boundaries. The crisis is connected with the formation of a fourth hinge, that transforms the 
stable arch in a unstable mechanism of collapse.  The four hinges open in alternating way in the  
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intrados and in the extrados, following a pattern that is function of the arch shape and the 
working loads. In case of symmetrical load, a fifth hinge can open, but generally slight 
geometrical failings make the structure to behave asymmetrically. A masonry arch has to 
support two main types of loads: i) the self weight; ii) the additional loads. The additional point 
loads have a thrusting nature and can cause collapses because their action move the thrust line 
out of the arch, generating the fourth hinge. Then they implicate meaningful changing of shape. 
On the contrary, the self weight is the resistant load of every masonry structure and opposes 
every mechanism of collapse.  

 
Stability Check                                                    
The catenary is the arch true shape. Arches with other shape stand up because catenaries are 

included in their thickness. The thrust line shape is the mathematical catenary if the self weight 
is equally distributed around the arch. There is a minimum thickness of semicircular arch that 
just contains a catenary. The limit arch has exactly this minimum thickness and is in unstable 
equilibrium. The ratio between the real arch thickness and the limit arch one defines the safety 
factor, that is of geometric nature. Heyman suggests 2 as safe practical value: that is, if you’re 
able to draw a thrust line in the middle half of the arch, the arch is safe. So the thrust line can be 
perceived as an index of the stability condition of the arch.  

 
 

 
 

 
 

 

Figure 1.8  An additional point load  
generate the fourth hinge 

Figure 1.9  Geometry Safety factor of 2 
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1.4 Plastic Limit Analysis 
 
The research of Professor Heyman highlights that an elastic analysis is problematic for 

masonry structures because there isn’t a unique calculable equilibrium state. On the contrary, 
the limit analysis allows to consider the structure only in relation to its ultimate state, using few 
material parameters and neglecting the initial stress state. Some of the principal methods for the 
assessment of masonry arch bridges are based on the fundamental theorems of Limit Analysis, 
that now will be explained.  

A summary of the basic rules that apply in the theory of plasticity can be found in the work 
of Horne11 (1979). In the context of masonry arches, there are fundamentally three main 
considerations to apply the theorems of plastic limit analysis: i) the internal actions must be in 
equilibrium with the external loads; ii) there must be a sufficient number of hinge to transform 
the structure into a mechanism; iii) the maximum stresses must be less than or equal to the 
material strength. 

 
The three fundamental theorems of plastic analysis can be stated in simplified form as: 

• Static or lower bound theorem. If the equilibrium and yield conditions are everywhere 
satisfied, then the load factor λl is less than or equal to the failure load factor λp; 
 

• Kinematic or upper bound theorem. If the equilibrium and the mechanism conditions are 
everywhere satisfied, then the load factor λu is greater than or equal to the failure load factor 
λp; 
 

 
 
 
 
 
 
 
 
 
 
 

                                                 
11 Horne, M.R. 1979. Plastic theory of structures, 2nd edition, Oxford: Pergamon Press. 

Figure 1.10  The relationship between upper and lower bound solutions 
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• Uniqueness theorem. If the internal stress state is such that the three conditions of 
equilibrium, mechanism, and yield are satisfied then that load factor is the collapse load 
factor λp. 
 

 The relationship between upper and lower bound solutions is illustrated in figure 1.10. 
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2.1 SOMMARIO 
 

“If any equilibrium state can be found, that is, one for which a set of internal forces is in equilibrium with the 

external loads, and, further, for which every internal portion of the structure satisfies a strength criterion, then the 
structure is safe.”                                                                                                                   

Jacques Heyman 
 

 

La teoria di Heyman ha dato vita nel tempo a diversi modelli. Infatti il “safe theorem” unito 
alla teoria della funicolare può essere utilizzato per sviluppare strategie computazionali per 
l’analisi di strutture in muratura, come è stato fatto da Block1 e da Oschendorf. Ai fini della 
sicurezza è quindi necessario solo poter disegnare una plausibile curva delle pressioni 
all’interno dello spessore dell’arco. Tra i programmi di analisi basati su questa metodologia, si 
trova Archie-M sviluppato dalla Obvis2, che indica graficamente una possibile curva delle 
pressioni per qualsiasi regime di carico. Anche se lo scopo di Archie-M  è solo quello di 
dimostrare se un determinato ponte ad arco possa sopportare o meno un dato carico, si può 
stimare il carico di collasso variando il moltiplicatore di carico fino a quando la curva delle 
pressioni tocca il bordo dell’arco e si forma un numero sufficiente di cerniere. 

Nell’analisi limite, si può poi utilizzare un modello discreto e idealizzare l’arco come un 
assemblaggio di blocchi rigidi. Nel 1978 Livesley fu il primo ad adottare modelli discreti per 
l’analisi limite di strutture in muratura. Partendo da un modello discreto, si può inserire poi 
all’interno del modello una resistenza a compressione finita, ridefinendo il dominio di rottura 
non lineare di sforzo normale e momento. Generalmente è conveniente assumere che i blocchi 
siano rigidi e modellare tutte le rotture nei contatti tra i blocchi. Tra i programmi di analisi 
basati su questa metodologia, si trova LimitState Ring3, che utilizza appunto tecniche di analisi 
plastica, avvalendosi di modelli discreti. Il programma usa un’ottimizzazione matematica, che 
permette di identificare lo stato limite ultimo, determinando la percentuale di “live load”, che 
porterà al collasso.  

Un altro metodo usato per descrivere il comportamento strutturale dei ponti ad arco in 
muratura è il Metodo degli Elementi Finiti. Si parte da un approccio completamente diverso. 
Adottando diverse strategie di discretizzazione, come micro-modellazione o macro-
modellazione, si divide la struttura in una serie di elementi finiti. Si può effettuare un’analisi 

                                                 
1 P. Block, Equilibrium systems. Studies in Masonry Structure, Thesis of master of Science in Architecture 
Studies, MIT, Boston (2005)  
2 Obvis Ltd., www.obvis.com 
3 LimitState Ltd., www.limitstate.com 
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non lineare, assegnando particolaru leggi costitutive al materiale. I risultati includono la 
massima sollecitazione e l’analisi della deformabilità. Il Metodo degli Elementi Finiti 
rappresenta lo strumento più versatile per l'analisi numerica di problemi strutturali. Tuttavia nel 
caso di muratura storico, la particolare natura del materiale deve portare a prestare maggior 
attenzione all'applicazione di questo metodo. 

In questo lavoro è stato adottato anche un modello elasto-plastico, sviluppato da alcuni 
ricercatori belgi4. Alla base di questo modello elasto-plastico, ci sono le tre equazioni di 
equilibrio di un concio infinitesimo di arco in direzione radiale, tangenziale e alla rotazione. Sia 
per il peso che per il carico esterno vengono scritte espressioni analitiche in funzione 
dell'angolo e della posizione sulla curva. Sostituendo tutte le variabili nelle equazioni di 
equilibrio, si ottengono equazioni differenziali di secondo ordine. Risolvendo le equazioni 
differenziali, si determinano le espressioni analitiche delle forze interne, espressioni che 
includono tre costanti di integrazione. Per trovare una soluzione univoca per le forze interne 
nell’arco, bisogna quindi introdurre le condizioni al contorno: in questo caso si adottano le 
equazioni di Bresse5. Noti gli spostamenti in entrambi i sostegni, queste equazioni possono 
essere usate per determinare le tre costanti di integrazione. In questo modello, vengono 
introdotte anche le proprietà del materiale, ovvero della muratura. Restando nell’ipotesi di 
assenza di resistenza a trazione, si studiano le varie distribuzioni possibili delle sollecitazioni. 
Sul diagramma dato dalla combinazione tra sforzo normale e momento, il confine della zona 
elasto-fragile-plastica corrisponde ad una distribuzione plasto-fragile. Finché le combinazioni 
di sforzo normale e momento in ogni sezione dell’arco rimangono all’interno della curva limite 
plasto-fragile, l’arco riesce a sopportare il carico senza formazione di cerniere. Quando si 
aumenta ulteriormente il carico, a un certo punto ci si trova sulla curva limite del dominio ed è 
in questo momento che si forma la prima cerniera plastica. Questa procedura viene ripetuta fino 
a quando le cerniere plastiche arrivano a un numero tale che l'intero sistema può deformarsi 
sotto carico permanente costante.  

 
 
 

 

 
 

                                                 
4 A. Audenaert, H. Peremans and W.P. De Wilde, Static determination of the internal forces and displacement in 
arch bridges, The masonry society Journal, 22 (1), 2004, pp. 97-109 
5 M. Bresse, Cours de Mècanique Appliquèe, Paris, Imprinmerie de Gauthier-Villar, 1859 
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2.2 Classification of the methods 
for the assessment of the masonry arches 

 
Structural analysis is a general term describing the operations to represent the real behavior 

of a construction. The analysis can be founded on mathematical models created on theoretical 
bases or on physical models tested in laboratory. In both cases, the models try to individuate the 
load carrying capacity of the structure, identifying the stress state, the strain and the internal 
forces distribution of the entire structure or of its parts. Besides for arch structures, the models 
try to indicate the failure mode and the location of plastic hinges.  

 
 

 
 
 
 
 
 

In this chapter, analytical methods for the structural analysis of the masonry arch bridges are 
treated. In literature there are many types of theoretical methods that can be used. These 
methods can be divided into different categories concerning their origin, scope, applicability 
and approximation level.  

As previously seen, about the three fundamental structural criteria6, it is the stability that 
governs the life of the masonry arches because the average medium stresses are low and the 
strains are negligible. So the most important methods for the evaluation of masonry arch 
bridges are derived from Heyman’s theories and from the fundamental theorems of the Plastic 
Analysis. They are: i) the thrust line analysis method; ii) the mechanism method.  

The Thrust Line Analysis Method is based on the lower bound theorem or “safe” theorem 
and defines the limits for the thrust line location. It uses a static approach and defines the limit 
load, that ensure the equilibrium of the arch bridge analyzed. On the contrary, the Mechanism 
Method is based on the upper bound theorem and studies the number of plastic hinges needed 
to transform the arch in a mechanism. In this case, the stability of the arch is analyzed with 
regards to a kinematic approach. Both the methods are valuable: due to their different bases, the 
first one underestimates the structure strength, while the second overestimates it.  

                                                 
6 strength, stiffness and stability 

 Figure 2.1 Methods of load carrying capacity assessment 
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Another method used to described the structural behavior of the masonry arch bridges is the 
Finite Element Method. It starts from a completely different approach. Adopting different 
strategies of discretization, as micro-modeling or macro-modeling, the structure can be divided 
in a series of finite elements. Non linear analysis can be performed, assigning particular 
constitutive laws to the material. The results include the maximum stress and deformability 
analysis. The Finite Element Method represents the most versatile tool for the numerical 
analysis of structural problems. However in the case of historic masonry, the peculiar nature of 
material leads to pay particular attention to the application of this method. 

In the next paragraphs, these methods will be described more specifically. In particular, 
there will be presented the material models that can be used. At the end of every paragraph 
there will be introduced the most common computer-based representations connected to each 
method. These computerized approaches allow a friendly-use application of the principles 
explained. Depending on the used method, they enable to obtain various output including the 
load carrying capacity. 

The last paragraph of this chapter will deal with a particular closed-form approach 
developed by some Belgian researchers in the last years. This method is based on the 
fundamental theorems of limit analysis and is used to determine the critical points with a 
relatively small modeling effort. To assure the stability of the masonry arch bridges, a model 
based on equilibrium equations and compatibility conditions is first developed. Next, the 
material properties are added to determine the formation of the hinges.  

 
 
 

 Figure 2.2  Representation of the  three fundamental structural criteria: Strength, Stiffness and Stability 
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2.3 Thrust Line Analysis Method 
 

This general method analyzes the arch stability, evaluating the location of the thrust line 
inside the cross section. The thrust line represents the locus of points along the arch through 
which the resultant forces pass. If all the arch voussoirs have the same size, the line of thrust 
has almost the shape of an inverted catenary.  
“As hangs the flexible, so but inverted will 
stand the rigid arch.” wrote Robert Hooke in 
1675. “None but the catenaria is the figure of a 
true and legitimate arch.” completed Gregory 
twenty years later, in 1697. These quotes 
describe the mechanics of the arch in a brief, 
but precise way. Figure 2.3 shows a simple 
example used by Heyman (1982) to explain 
this concept: a weightless string subjected to 
three forces. The funicular polygon inverted 
represents the thrust line. 

The thrust line may be located at the middle 
of the section or very close to the edge. It 
depends from the resultant of inertial forces in 
a given cross section. If no moment and 
transverse force occur into the arch, the thrust 
line coincides with the centre-line of the 
section. In the other cases, the thrust line 
departs from the arch centre-line and so it is 
important to define the distance between the 
thrust line and the center of the mass, i.e. the 
eccentricity e (figure 2.4).  

The thrust line method analyzes the 
location and the slope of the thrust line inside 
the cross section through two parameters. The 
first one is the eccentricity of the forces 
resultant, that describes the location of the 
thrust    line    in    the    cross    section.     The  

Figure 2.3 Inverted funicular polygon 
and the Thrust Line 

 Figure 2.4 The eccentricity e 
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eccentricity is easy to calculate because it is a function of the normal force N and the bending 
moment M acting in the considered cross-section. The second important parameter is the 
relation between normal force N and shear force T, that defines the slope of the thrust line. 
Calculation of thrust line location can be performed using the equilibrium equation or by 
solving a linear programming problem. 

So every thrust line is a possible equilibrium solution. Unfortunately the masonry arch is not 
a statically determinate structure and this solution is not unique. There are infinite possible 
lines of thrust. The equilibrium equations are not sufficient to obtain the inner forces.  

The thrust line analysis method defines the load carrying capacity by limiting the zone 
where the resultant force can be positioned. This method presents some variants which differ 
from each other by the size of the limits. The limits depends on the theory and the material 
model assumed.  The main approaches will be described below.  

 
Middle Third Rule 
The first variant of this method is also the most ancient. The Middle Third Rule is 

anticipated by Thomas Young7 in 1817, worked out by Claude-Louis Navier8 in 1826 and 
applied to masonry arch by William Rankine9 in 1858. This rule states that the thrust line must 
lie within the middle third of the cross section, that is it must lie within the kern to avoid any 
tensile stresses. The eccentricity is defined as:  

 

6
d

N
Me ≤=  

 

This criterion is based on the elastic theory. Until the forces resultant remains within the 
kern, there are only compressive stresses. When the force passes the middle third, the section 
undergoes also tensile stresses (figure 2.5). However it is assumed that the masonry has not 
tensile strength, so in this case the section is not contributing entirely. Cracks may occur and 
this is wanted to avoid.   

The middle third rule is extremely safe approach in the determination of the collapse load. It 
is  very  difficult  to  satisfy  because  of  this  rigorous  limit.  It  can  be  reach  only:  i)  if  it is  
                                                 
7 Thomas Young, Article in the Supplement to the fourth edition of the Encyclopaedia Britannica (1817). 
8  Navier 1826. Résumé des Leçons donées à L’École des Ponts et Chaussées, sur l’application de la mécanique à 
l’établissement des constructions et des machines . Paris. 
9 Rankine, W. J. M. 1858. A Manual of Applied Mechanics. London: Charles Griffin. 
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FIGURE 2.5 THRUST LINE ANALYSIS METHOD 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Heyman (1982). 
A pile of stone subjected to a compressive force. 
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considered in the design phase;  ii) if the dead loads dominate considerably over live loads. 

 
Middle Half Rule 
The difficulty to satisfy the previous criteria has led to apply a less conservative version of 

this method, that is the middle half rule. This approach increases the limits for the thrust line. In 
this case, the thrust line should lie within the central half of the arch section (figure 2.5). The 
eccentricity is defined as:  

 

4
d

N
Me ≤=  

 
Heyman’s Rule 
Another variant of the thrust analysis method is proposed by Jacques Heyman10, as seen in 

the first chapter. With the safe theorem, he assumes that an arch is safe simply if a thrust line 
can be drawn inside his thickness. An arch will collapse only if the thrust line reaches the arch 
edge at least in four points, converting the arch into a mechanism. This rule is surely the less 
conservative than the other because the whole cross section become the allowed zone for the 
thrust line. This can be expressed as:  

2
d

N
Me ≤=  

 

This approach includes an important assumption concerning the masonry behavior. An 
infinite compression strength is attributed to the masonry material. This enables the thrust line 
to stay at the edge of the cross section. The assumption is not realistic, but this method can be 
considered a good method to use because in the majority of the masonry arch bridges the stress 
level are quite low respect to the masonry compressive strength.  

 
All the variant of the thrust analysis method can be summarized by the Heyman’s concept of 

“geometric safety factor”, just explained in the first chapter. For example the masonry arches  
that satisfy the middle third rule have a geometric safety factor equal to three. 

 
                                                 
10 Jacques Heyman, The Stone Skeleton, Cambridge University Press, Cambridge, 1966 
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Thrust Zone Analysis Method 
A  method very similar to the thrust line method is the thrust zone method developed by Bill  

Harvey in 2001. It is based on an elasto-plastic model and considers a finite compressive 
strength that doesn’t allow the thrust line to stay at arch edge. A rectangular “yield block”  is 
created around the force resultant. The force resultant is positioned in the middle of the 
rectangular area, at t/2 (figure 2.6). The height of the yield block is a function of the normal 
force N, the strength material fc  and the thickness of the arch B and can be calculated as:  
 
 

Bf
Nt

c ⋅
=  

 
Computer Based Application: Archie-M 
Thrust line analysis together with Heyman’s safe theorem can be used to elaborate 

computational strategies for the structural analysis of masonry arch bridges. For example, in 
2006 Philip Block11 has developed an interactive computational procedure, that uses the thrust 
lines to clearly visualize the forces within the masonry and to predict possible collapse modes. 
The program lets the user to change the arch geometry, analyzing the different locations that 
can be assumed by the thrust line.  

Between  the  specialized  analysis  programs based on this method,  there  is  also Archie-M  

                                                 
11 Block, P., Ciblac, T. and Ochsendorf, J. 2006. Real-time limit analysis of vaulted masonry buildings, 
Computers & Structures, 84(29-30), p. 1841-1852. 

Figure 2.6 Harvey. The thrust zone. 
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developed by Harvey and OBVIS Ltd12 in 2001. Archie-M is a computer program, that 
analyzes multi-span arch bridges together with supports and backfill. It carries out a form of 
equilibrium analysis. That is to say it determines whether an arch will remain stable, without 
first considering how it will deform under load. In fact the software uses the thrust line analysis 
combined with a thrust zone to model the masonry finite crushing strength. In practice the 
program is based on the thrust zone analysis method.  

Calculations are carried out on a static scheme of a three hinges arch. The hinge positions 
are chosen as the most likely for the given load pattern. The program is easy to use because it 
shows graphically the position of a potential thrust-line and the formed hinges for any given 
loading regime (figure 2.7). Until the thrust zone is within the cross section of the arch at every 
point, the structure is safe. When the thrust zone begins to touch the arch edge in a fourth point, 
a mechanism is created and the collapse state is reached.  

Although the aim of Archie-M is to demonstrate whether an arch bridge can withstand a 
given load or not, the collapse load can be estimate by varying the load value until a sufficient 
number of hinges is formed.  

The program provides also the internal forces and the thrust zone position for each arch 
segment. The live load is distributed through the fill with a sine shape. The backfill is modeled 
as a continuous body that spreads the load and provides both active and passive soil pressure. 

 
 

 
 

                                                 
12 Obvis Ltd., www.obvis.com 

Figure 2.7 Typical output of Archie-M (Obvis) 
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2.4 Mechanism Method 
 
The Mechanism Method is a kinematical method, based on the upper bound approach. This 

method belongs to the plasticity theory and was firstly used for steel structures. Later Heyman13 
has applied it to masonry arch. The term mechanism refers to the possibility of structure to 
move in accordance to internal and external constraints. This Method assumes that a masonry 
arch becomes a mechanism when at least four plastic hinges open. Many experimental tests 
confirm this hypothesis. However position of hinges is unknown.  

First step is to assume the possible position of four hinges. In a simplified analysis with only 
a concentrated force on the arch, the first three hinges can be assumed to be located under the 
load and at the springing. It’s reasonable to hypothesize hinges A and C on the intrados and 
hinges B and D on the extrados (figure 2.8). The concentrated force W is applied on the arch 
with no dispersion through the fill. Self weights Vi include the weights of the backfill blocks 
and of the corresponding arch segment. The four unknowns are the reaction forces of the two 
abutments H, Va, Vb and the failure load W. The problem can be solved with the moment 
equilibrium equations at the hinges or with the equations of virtual works. In the first case, four 
equilibrium equations can be derived around the hinges and solved, giving the four unknowns. 
In the second case, the structure collapses if the total virtual work for at least one of the 
mechanisms allowable is positive.  

In  order  to  find  the  best  mechanism,   it  is  necessary  to  repeat  the  analysis  for each  
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
13 Heyman, J., The masonry arch, Ellis Horwood, 1981 
 

Figure 2.8 Arch with assumed hinges. 
Reproduced from ICE (2008) 
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This  theory  simplifies the masonry arch as 
an assemblage of plane blocks, that are 
infinitely rigid and have an infinite strength. 
The division into these blocks is regular, but 
doesn’t respect necessarily the actual number 
of units of the original arch. Usually the blocks 
are slightly larger than the physical ones 
because the mortar joints are not explicitly 
modeled. The blocks can be also extremely 
larger than the actual ones in order to reduce 
the computational effort. In this case it must be 
careful that the discretization does not affect 
the expected mode of response. As checked 
experimentally, the number of blocks to obtain 
a sufficiently exact solution is about forty.   

At the collapse, the blocks can either slide 
or rotate. The blocks movement can be 
calculated using the minimal energy for global 
deformation.  

 
Rigid-Plastic Blocks 
An important extension of Livesley’s rigid 

block analysis has been made by Gilbert15 in 
1998. As no real material can sustain infinite 
compressive stresses, this variant of the 
mechanism method assumes a finite 
compressive strength, redefining the failure 
domain of normal stress and moment (figure 
2.11). Also in this case, the failures are 
modeled in the contacts between the blocks, 
but  the  explained  assumption constrains  the 

                                                 
15 Gilbert, M. (1998): On the analysis of multi-ring brickwork arch bridges. Proceedings of 2nd International Arch 
Bridges Conference, Venice, pp. 109-118. 

Figure 2.13 Stress Block 
 
 

Figure 2.10 Infinite  
Material Strenght:  

Failure Mode  

Figure 2.11 Failure Domains for different 
material strenght 

 

Figure 2.12 Finite  
Material Strenght:  

Failure Mode  
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hinges not to stay on the arch edges. (figure 2.12). In this  way,  the  rotation point  is  brought  
back inside the arch, that behaves as it would have a lower thickness (figure 2.13). In the 
proximity of the hinges, the compressive force is carried by a rectangular stress block lying at 
the edge of masonry.  The finite domain is defined by Gilbert16 as: 
 
 
 

 
 

 
 

where ni are the normal force, mi is the bending moment, ti is the arch thickness and σcrush is the 
compression strength. The passage to a finite compressive strength complicates the 
computation. In fact it transforms a linear problem to a non linear one. Gilbert solves the 
question applying an iterative solution, that uses a Linear Programming solver. In this way it is 
possible to obtain a solution to the global problem and to approximate the constraints as a series 
of linear constraints. The rigid-plastic block analysis can be considered the basic model for 
understanding the fundamental behavior of the masonry arches. 

                                                 
16 Gilbert, M. (2001), RING home page, http://www.shef.ac.uk/ring 
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Computer Based Application: Ring 
The two-dimensional rigid-plastic analysis has been inserted by Gilbert and Melbourne into 

a software called RING, developed by a University of Sheffield spin-off company, LimitState 
Ltd. The program is able to analyze multi-span masonry arch bridges, built of arch barrels, 
supports and backfill (figure 2.15). A particular feature of this software is the capacity to 
analyze multi-ring arches enabling separations between the various rings.  

The program employs an efficient linear programming technique for the solution of virtual 
works equations. This mathematical optimization allows to identify the ultimate limit state, 
determining the percentage of live load, that will lead to the collapse. As a result of the 
analysis, the minimum adequacy factor for live load is obtained, together with a graphic 
representation of the thrust line and the failure mode. Exact location of hinges is indicated. The 
live load is distributed through a Boussinesq distribution with a maximum spread angle.  The 
passive pressure is the only lateral pressure used.  

 
 
 
 
 
 
 
 

Figure 2.15 Typical output of Ring(LimitState) 
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2.5 Finite Element Method 
 

Masonry arch bridges can be analyzed also using the Finite Element Method. Today this 
method can be considered the most general instrument for numerical analysis of structural 
problems. While the Thrust Line Analysis Method and the Mechanism Method are specific for 
the analysis of the arch stability, the Finite Element Method gives the possibility to model all 
the types of structures. In the last twenty years, many researchers have developed different 
finite element models for materials with low tensile strength, such as masonry. However the 
current knowledge of masonry mechanics is underdeveloped in comparison with other fields, as 
concrete and steel. So the Finite Element Method can be applied to the masonry analysis, but 
with particular attention due to the specific nature of the material. 

The base principle of the Finite Element Method is to discretize the continuous structures 
into a series of partial domains called finite elements, that interact with each other only at 
certain points called nodes. Through this method, a continuous problem with infinite unknowns 
is reduced to a discrete problem with a finite number of unknowns. Usually the displacement 
method is used and the node movements are determinate. Then the actions in the nodes and 
internal strains can be evaluated using a series of fundamental relationships.  

 
Masonry Modelling  
The discretization of the structure is the first step of this method. While in the frame 

structures there is a univocal choice, in the masonry structures there are different strategies of 
discretization. The main reason is due to the particular characteristics of masonry, that is an 
anisotropic material composed by bricks and mortar. In particular the presence of the mortar is 
difficult to model.  

 
 
 
 
 
 
 
 

 Figure 2.16 Finite element method 



                                                                                                                                                                      
 

 
METHODS AND MODEL FOR THE ANALYSIS OF MASONRY ARCHES 

 
31

The key point in the development of accurate stress analyses of masonry constructions is the 
definition and the use of suitable constitutive laws. Taking into account the heterogeneity of the 
masonry material, the models proposed in literature can be divided three different classes 
concerning their grade of definition: i) micro-modeling; ii) multi-scale modeling; iii) macro-
modelling. 

 

Micro-models simulate each constituent of the masonry material with its own specific 
constitutive law and failure criteria. Micro-models can be detailed or simplified17. In the first 
case, the unit and the mortar are constituted by continuum elements, while the unit-mortar 
interface is represented by discontinuous elements (figure 2.17). In the second case, mortar and 
brick/mortar interface are combined in a single discontinuous joint element, so it is possible to 
consider masonry as a set of elastic blocks bonded together by potential fracture line. 

 
 
 
 
 
 

                                                    
  
The mechanical properties of elements that characterize the micro-model can be obtained 

through experimental tests18 conducted on the single material components. The principal 
disadvantage of the micro-models is that requires a highly refined mesh and a great 
computational effort. In fact both the unit blocks and the mortar beds have to be discretized, 
obtaining a high number of nodal unknowns. Nevertheless, this model is the most suitable to 
reproduce laboratory tests.  

 

Multi-scale models consider firstly different constitutive laws for the units and the mortar 
joints; then, a homogenization procedure is performed obtaining a macro-model for masonry 
which is used to develop the structural analysis. To explain the Multi-scale analysis, the model 
developed  by  Brasile19  is  one  the  most  significant.  In this  case,  the strategy is based on an  
                                                 
17 Lourenco P. B., Computational Strategies for Masonry Structures, PhD thesis, Delft University of Technology, 
1996 
18 Compressive test, tension test, bending test..ect 
19 Brasile S. , Casciaro R. , Formica G. , " Multilevel approach for brick masonry walls". Computer methods in 
applied mechanics and engineering, 2007, Vol. 196 

Figure 2.17 Modelling strategies for masonry: i) detailed micro-modeling; ii) simplified micro-modeling 
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The most simplified idea can be given by Rankine criterion, but more refined and more 
appropriated criteria for concrete-like materials limit surface is determined by William-Warnke 
criterion.  
 
William-Warnke Criterion20. It’s a criterion that is conceived to describe the concrete, but can 
also be applied to other brittle materials, as masonry. It is a good criterion, but is complicated 
because it uses five parameters. Cracking is modeled through an adjustment of  the  material 
properties and it is simulated through a “smeared band” of cracks,  rather than discrete cracks. 

                                                 
20  William, K. J., Warnke E. D. (1975). Constitutive Model for the Triaxial Behavior of Concrete. Proceedings, 
International Association for Bridge and Structural Engineering, ISMES. Bergamo, Italy, ISMES. Vol. 19: 174. 
 

Figure 2.20 Chen. (1985) Failure criteria 
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The smeared crack model allows the crack  
opening in three  orthogonal directions for every 
point of integration. The complex behavior of 
masonry is assumed to be isotropic before 
cracking and ortotropic after cracking. The 
failure criterion for a multi-axial stress state is 
represented by the following relation: 
 

 

0≥− S
f
F

c
 

 

Where F is a function of the principal stress 
state, S is the failure surface expressed in terms 
of the principal stresses and of the five 
parameters ft  ,fc  ,fcb  , f1 ,f2. In particular  ft   and 
fc are the values of the uniaxial tension strength 
and the uniaxial compression strength. fcb is the 
value of the biaxial compression strength.  f1 
and f2 represent the values of compression 
strength in presence of a hydrostatic stress state, 
respectively under biaxial and uniaxial regime. 
So cracking occurs when the tensile stress 
exceeds the limit value (Rankine criterion), 
while the crushing takes place when all of the 
principal stresses are compressive and exceed 
the limit value. Failure domain for biaxial and 
tridimensional stress state are represented in 
figures 2.21 e 2.22.   

The meridians of tension and compression 
are respectively two parables. They are 
connected by an ellipsoidal surface, passing 
through the elliptical deviatoric curve as base 
section.  

 

Figure 2.21 William-Warnke Criterion. 
Failure domain for plane stress states 

 

Figure 2.22 William-Warnke Criterion. 
Failure domain for tridimensional stress states 

 

Figure 2.23 William-Warnke Criterion. 
 Deviatoric Plane 
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Backfill Modelling  
Also the backfill can be modeled through 

additional elements that allow the transfer of 
loads and passive reactions on the arch barrel. 
Different constitutive models have been 
proposed for soils modeling.  The differences 
are based on the shape of the yield surface in 
the meridian plane, the shape of yield surfaces 
in the deviatoric stress plane and the use of 
flow rules. The material of the soil is 
considered usually nonlinear and is defined by 
Mohr-Coloumb or Drucker-Prager limit 
criteria.  

 
Mohr-Coulomb Criterion. It is the best 

known failure criterion in soil mechanics. It is 
the first type of failure criterion that takes into 
consideration the effect of the hydrostatic 
pressure on the strength of granular materials. 
This criterion states: 

ϕστ tgc ⋅−=  
 

where τ is the shear stress, σ is the normal 
stress21; c and φ are the cohesion and the angle 
of internal friction. Coulomb’s failure surface 
is an irregular hexagonal pyramid in the 
principal stress space (figure 2.25). 
 

Drucker-Prager Criterion22. This criterion, 
formulated in 1952, represents the major 
advance in the extension of metal plasticity to 
soil plasticity.  It is the approximate expression  
                                                 
21 Compressive stress as a negative quantity and tensile stress as a positive quantity. 
22 Drucker, D. C. and Prager, W. (1952). Soil mechanics and plastic analysis for limit design. Quarterly of 
Applied Mathematics, vol. 10, no. 2, pp. 157–165 

Figure 2.24 Drucker-PragerCriterion. 
Failure domain for plane stress states 

 

Figure 2.25 Drucker-Prager Criterion. 
Failure domain for tridimensional stress states 

 

Figure 2.26 Drucker-Prager Criterion. 
 Deviatoric Plane 
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of the Mohr-Coulomb criterion. The aim was to overcome the problem of Mohr-Coulomb 

criterion, that the gradient of the plasticization function was not defined in a univocal way on 

the pyramid corners. Drucker-Prager Criterion provides as failure surface a cone whose axis is 

the hydrostatic axis (figure  2.25). This cone can be inscribed or circumscribed the hexagonal 

pyramid of Mohr-Coulomb Criterion, depending on the values of the constants α, k. The failure 

criterion can be represented by the following relation: 
 

0),( 2121 =−+−= kJIJIf α  
 

where I1 is the first invariant of the stress tensor, J2 is the second invariant of deviatoric stress 

tensor. α and k are material constants, determined from experiments. When α is equal to zero, 

the Drucker-Prager criterion is reduced to the Von Mises criterion. In fact the first criterion 

represents an extension of the second one with the addition of the influence of a hydrostatic 

pressure in failure.  

In finite element method, it is more convenient to use Drucker-Prager criterion than Mohr-

Coulomb criterion. In fact the Mohr-Coulomb hexagonal failure surface is mathematically 

convenient only in problems where it is obvious which one of six sides is to be used. If this 

information is not known in advance, the corners of the hexagon can cause considerable 

difficulties and give rise to complications in obtaining a numerical solution with the finite 

element models. 

 
Computer Based Application: ANSYS, ABAQUS, DIANA 
Also the finite element method comprises computer-based representations. They are 

specialized ready-to-use computer programs that can be applied to masonry arches as to other 
type of structures. Computer FEM systems used to analyze the masonry structures are 
ABAQUS23 or DIANA24 often with self-implemented user codes to these applications.  But 
there are other ones.  

For example, in 1999 Ng et all25 used a FEM commercial package nonlinear, LUSAS26, with 
a   two-dimensional   model   to  analyze  a  series  of  arch  bridges.   In  this  case,  masonry  is  

                                                 
23 Abaqus FEA (formerly ABAQUS) is a suite of software applications for finite element analysis and computer 
aided engineering, originally released in 1978. www.simulia.com 
24 Tnodiana.com 
25 Ng K., Fairfield C.,Sibbad A. (1999). Finite-element analysis of masonry arch bridges, Proceedings of the 
Institution of Civil Engineers: Structures and Buildings, Vol. 134, pp. 119-127 
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that enable the detachment of adjacent parts simulating cracks; d), e) and f) detailed micro-
modeling, where units, mortar and unit-mortar interface are modeled separately. 

There are also different models that can be used to describe the masonry behavior: i) elastic; 
ii) elastic NRT; iii) elasto-plastic; iv) elasto plastic NRT; v) elasto-brittle NRT. Obviously 
linear elastic behavior is used mainly in the pre-failure behavior.  

The next paragraph will deal with a particular elasto-plastic model developed by some 
Belgian researchers in the last years. It is very interesting to study the progressive opening of 
the different hinges. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.28 Various Type of Discretization: a)  macro-modelling; b)  and c) simplified micro-modeling;  
d), e) and f) detailed micro-modeling 
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2.6 Elasto-Plastic Model 
 

The last paragraph of this chapter will deal with a particular closed form solution derived by 
some Belgian researchers29 for the structural stability of arch bridges. Also this approach is 
based on the fundamental theorems of limit analysis and employs a simplified homogeneous 
material model30 to determine the critical points with a relatively small modeling effort.   

Firstly, a basic model is presented starting from the equilibrium equations. The geometry of 
the arch is described by the angle θ, the radius of the centerline r(θ), the thickness of the arch 
barrel b(θ), the height of the backfill h, and the width of the arch B, as shown in figure 2.29. 
After solving the differential equilibrium equations, the analytical expressions for the internal 
forces are derived as a function of three constants of integration. To obtain an univocal 
solution, boundary conditions must be introduced. These equations are used to determine the 
three constants of integration, starting from the value of the abutment displacements. In this 
way it is possible to determine also the displacements in every point of the arch.  

 Then the material properties can be added to allow the occurrence of cracks and the 
subsequent formation of the hinges. The elasto-plastic model assumes a hinge to behave in a 
perfect plastic manner. The load factor is increased until a hinge has been formed and the 
boundary conditions are changed so the moment in the hinge stays constant. The process is 
repeated until the formation of the fourth hinge.  

 
 
 
 
 
 

 
                                                 
29 Audenaert A., Peremans H. and De Wilde W.P. (2004), Static determination of the internal forces and 
displacement in arch bridges, The masonry society Journal, 22 (1), pp. 97-109 
30 Lourenco P. B., Computational Strategies for Masonry Structures, PhD thesis, Delft University, 1996 
 

Figure 2.29 Geometry of the arch bridge
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a. Equilibrium equations 
The first step is is to derive the three equilibrium equations for an infinitesimal slice of the 

arch with an angular extent of dθ, inclined from the vertical axis of the angle θ (figure 2.30). 
The external forces that act on the infinitesimal piece are: in the radial direction Fr, and in the 
tangential direction Fθ. To ensure the equilibrium of this infinitesimal element, the weight of 
this slice of arch W and the external forces applied on its extrados must be balanced by the 
internal forces and moments (N, T, M). Thus, the equilibrium equations for normal force N 
(positive for tension stresses), shear force T (positive for clockwise rotation) and bending 
moment M (positive if the intrados fiber are compressed) were derived as follow: 
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The terms Ma(W) and Ma(F) respectively indicate the moments of the resultant of the self 

weight and of the external forces, calculated in the pole a. The weight of the infinitesimal slice, 
of the filling and the external vertical point load can be expressed as a function of the angle θ 
and of the position on the arch.  
 

Weight of an infinitesimal piece of Arch. The self weight of this slice W(θ) is expressed in 
function of: i) the radius r; ii) the specific weight of the material γ [N/m3]; iii) the arch 
thickness b. It results from the subtraction of  the triangular segment of arch with base = r - b/2 
to the bigger one with base = r + b/2 (figure 2.31): 

 
 
 

 

Figure 2.30 Equilibrium of an slice of Arch. 
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Because the gravity center of the infinitesimal slice 
does not coincide usually with the pole, there will rise a 
moment (Ma(θ)) associated with the self weight W. The 
distance between the gravity center and the pole is 
called d.  

2

2

12r
brd =  

( ) θθηγθ drM a sin
12

3
3=  

 

Where η (θ) = b (θ) / r (θ) 
 

Distributed load resulting from backfill. The fill 
weight is a distributed load acting on the arch. The 
masonry arch bridges use a lot of filling above the arch 
to increase the dead load and prevent the formation of 
tensile stresses that occur when live loads move along 
the bridge. This load can be derived as a function of the 
height of the fill h and the specific weight of the fill γ2. 
At first, the trapezoid area Af (shown in figure 2.32) is 
determined.  
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Height  
 

Vertical distributed load: 
 
Then the trapezoid area is multiplied for the fill weight 
γ to obtain the total vertical load: 

 

 
 

Figure 2.31 Weight of an slice of Arch. 
 

Figure 2.32 Distributed load resulting 
 from backfill. 

Figure 2.33 Concentrated load. 
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Finally, from the derivation of the vertical distributed load V(θ) it is possible to define the 
contribution of the vertical load in the radial direction prdθ and in tangential direction pθdθ: 
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Concentrated load. With regards to the concentrated load, it is assumed as mathematical 

model the following Dirac distribution: 
 

 
 
 

It is clear that the distribution is zero in every point, with the only exception of the case (θ = α) 
where its value is defined implicitly by an integral expression. The concentrated load P applied 
at θ = α will be expressed as Pδ(θ - α). The contribution of the concentrated load to the 
equilibrium equations is: 
 

Component in radial direction: 

Component in tangential direction: 

Moment respect to pole a: 

 
b. Solving the equilibrium equations 
Once the weight of the infinitesimal slice, of the filling and the external vertical point load 

are determined, it is possible to rewrite the equilibrium equations previously derived. 
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Dividing all the above mentioned expressions for the term dθ, makes possible to obtain the 
indefinite equilibrium equations for the slice of the arch as follows: 
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In these equation, the derivative with respect to θ is indicated by a prime while pr is the radial 
component of the distributed force; pθ is the tangential component of the distributed force; γ is 
the specific weight of the arch masonry and η = b/r. In order to solve the three equations 
system, the equilibrium equation in the tangential direction has been derived: 
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The last equation is substituted into the equilibrium equation in the radial direction, that 
becomes: 
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This quadratic equation can be rewritten as follow 
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where: ( ) ( ) rpprrq +−−−= θθηγθηγθ 'cos2sin' 22  

This function q(θ) includes all the loads distributed in a continuous way that acts on the arch 
bridge, such as the self-weight and the weight of the filling. In order to determine the correct 
solution it is introduced the unit step function ustep (θ – α) = 0 
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Thus, the solution of this quadratic equation is in the form: 
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The term Np(θ) can be expressed as: 
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After simplification, these expressions became: 
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By inserting the values of u1, u2, and Np(θ) in N(θ) we obtain the analytical expressions of 
internal forces and moment, that are: 
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So by resolving the differential equilibrium equations, the analytic equations of the internal 
forces and moment (N(θ), V(θ),and M(θ)) are derived as a function of the constants k1, k2 and 
k3. The constants are three because the fixed arch is three time hyperstatic. To find a univocal 
solution for the internal forces of the arch, it needs to introduce boundary conditions in the 
form of additional constraints. 
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Boundary conditions 
Bresse’s equations31 are introduced. These equations can be applied to calculate the vertical, 

horizontal and angular displacements of every point of the arch as a function of the 
displacement values of the boundary points. In particular, the displacements of the right 
abutment u2, v2 and φ2 can be derived starting from the displacements of the left fixed abutment 
u1, v1 and φ1 (figure 2.34): 
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where: u is the horizontal displacement; v is the vertical displacement; φ is the rotation of the 
elastic line; A is the area of the cross-section; I is the rotational inertia of the cross section; E is 
the modulus of elasticity; x is the horizontal position coordinate; and y is the vertical position 
coordinate. The sign convention for the horizontal and vertical deflections are in accordance 
with the one used for the reference axis (x ; y), while the angular deflection is assumed to be 
positive for clockwise rotations. The unique values of the three constants k1, k2 and k3 can be 
derived from the Bresse’s equations only if the displacements and rotations in both the 
abutments are known.  

Then N(θ) and M(θ) formulations can 
be  inserted into the  Bresse’s equations, 
remembering that N(θ), T(θ), and M(θ) 
are linear functions of the constants k1, 
k2 e k3 and that all the operator applied 
to N(θ) and M(θ) in Bresse’s equations 
are linear. The equations obtained can be 
written  also  in  matrix notation, placing 

                                                 
31 Timoshenko S. P. (1953), History of Strength of Materials, New York, McGraw-Hill Book Co. 

Figure 2.34 Deflections in the fixed supports 
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on the right side the terms containing the unknown constants k, and on the left side all known 
terms. 

kAE =  
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If matrix A is non-singular matrix, k1, k2 e k3 can be determined uniquely. In Annex 2.1, 

Bresse’s equations with the replacement of N(θ) and M(θ) formulations and the terms that 

composed matrix A and E are reported. 
 

 
Elastic-Plastic material properties  
This analysis has not yet taken into account the mechanical characteristics of the material 

constituting the arch bridge. When considering a historic masonry structure, the influence of 
the crack rise and their development is a very important task that cannot be neglected for the 
success of the analysis. To simulate the behavior of the masonry, the following assumptions 
have been taken into account: i) on reaching a defined tensile strength σt a crack occurs; ii) on 
reaching a defined compressive strength σd the material behaves perfectly plastic; iii) for σd < σ 
< σt the material behaves linearly elastically. 

Actually the tensile strength of masonry is much smaller than the compressive one, so it can 
be considered equal to zero, in accordance with Heyman’s theory. Under this assumption, the 
possibilities of stress distributions are represented in figure 2.35,  where xf  represents the height  
 

       
 
 
 
 

Linear elastic 
distribution 

Elasto-fragile 
distribution 

Elasto-plastic 
distribution 

Elasto-plasto-fragile 
distribution 

Plasto-fragile 
distribution 

Figure 2.35 Possible distribution of stress 
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of the crack and xp the height of the plastic section. Now the expressions of N(θ) and M(θ) can 
be normalized by introducing nd(θ) and md(θ) respectively as: 

 

( )

( )
2b

Mm

b
Nn

d
d

d
d

σ
θ

σ
θ

−
=

−
=

 

 
where b represents height of the arch barrel. If we consider an (nd ; md)-plane, each of the 
different stress distributions identifies a zone (Fig. 2.19.). The boundary surface of the diagram 
corresponds to the plasto-fragile distribution and to the formation of a plastic hinge. 
 

 
 
 

 

Definition of the boundary surface. The boundary surface can be expressed by two 
expressions, one for the positive values of the moment (upper curve) and the other for the 
negative ones (lower curve), as following: 

 

 
 
 
The first condition, for which z1 or z2 is equal to zero, corresponds to the formation  of  the  first  
plastic  hinge.   

Figure 2.36 Envelope of the distribution of stress 
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Construction of the Model  
The loading capacity of the arch is then studied as a function of the point load P. Assuming 

that both supports are fixed, the structure is statically indeterminate to the third degree of 
freedom and the collapse will happen as soon 4 hinges are formed. The first hinge appears for 
the smallest value of P, which gives rise to a normal force and a moment able to satisfy the 
relationship above. The corresponding angle θ identifies the position of the first hinge. The 
process is repeated until the fourth hinge is formed. The equilibrium equations remain the 
same, only the boundary conditions change. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                      
 

 
METHODS AND MODEL FOR THE ANALYSIS OF MASONRY ARCHES 

 
49

 

 

 

 

 

Annex 2.A 
Bresse’s equations with the replacement of N(θ) and M(θ) formulations 

i) Bresse’s First Equation……………………………………………. p. 51 
ii) Bresse’s Second Equation…………………………………….……p. 53 
iii) Bresse’s Third Equation…………………………...………...……..p. 55 

iv) Matrix A……………………………………………………………p. 57 
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Bresse’s First Equation 
 

 

The replacement of N(θ) and M(θ) formulations in Bresse’s equations: 
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Matrix notation: 
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Bresse’s First Equation Terms: 
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where: 
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Bresse’s Second Equation 
 

 

The replacement of N(θ) and M(θ) formulations in Bresse’s equations: 
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Matrix notation: 
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Bresse’s Second Equation Terms:
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where: 
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Bresse’s Third Equation 
 

 

The replacement of N(θ) and M(θ) formulations in Bresse’s equations: 
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Bresse’s Third Equation Terms:  
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where: 
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Matrix A 
 
The Matrix A can be defined as follow: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

 a aa
 a aa
 a aa

A
 

 
 
 
Where: 

 

( )

( )

( )
θ

θ

θ
θ

ξ
ξ

ξξξ
θ

θ

θ
θ

ξξξ
ξ

ξ
θ

θ

θ
θ

θ
θ

ξξξ
ξ

ξ

θ
θ

ξξξ
ξ

ξ

θ

θ

θ

θ

θ θ

θ

θ

θ θ

θ

θ

θ

θ

θθ

θ

θ

θθ

drr
I

yy
E

a

drr
I

yydrrd
A

x
E

a

drr
I

yyrddr
A

x
E

a

d
I

rr

E
a

d
I

rr
rddr

E
a

d
I

rr
rddr

E
a

2
22

23

2
22

0 0
22

2
22

0 0
21

2
2

13

2
2

00
12

2
2

00
11

2

1

2

1

2

1

2

1

2

1

2

1

1

cossincos1

cossinsin1

1

sincos1

cossin1

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⋅
−

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⋅
−

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅+−−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⋅
−

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+
=

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+
⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+
⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=

∫

∫ ∫ ∫

∫ ∫ ∫

∫

∫ ∫∫

∫ ∫∫

 

 
 



                                           
 

 
CHAPTER 2 
                                  

 
58

( )

( )

( ) θ
θ

θ
θ

ξ
ξ

ξξξ
θ

θ

θ
θ

ξ
ξ

ξξξ
θ

θ

θ

θ

θ

θ

θ θ

θ

θ

θ θ

drr
I

xx
E

a

drr
I

xxdrdr
A

y
E

a

drr
I

xxdrdr
A

y
E

a

2
22

33

2
22

0 0
32

2
22

0 0
31

2

1

2

1

2

1

1

cossincos1

sincossin1

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⋅
−

−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⋅
−

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅+⋅⋅−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⋅
−

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅+⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

∫

∫ ∫ ∫

∫ ∫ ∫

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                                                                       
 

 
  

 
 
 
 

 
  

Chapter 3 
 

Application  

                               to a Generic Masonry Arch Bridge 

 

 

 
 

 



                                           
 

 
CHAPTER 3 
                                  

 
60

           



                                                                                                                                                                      
 

 
APPLICATION TO A GENERIC MASONRY ARCH BRIDGE 

 
61

3.1 SOMMARIO 
 
"Marco Polo descrive un ponte, pietra per pietra. 
- Ma qual'è la pietra che sostiene il ponte? - chiede Kublai Kan. 
- Il ponte non è sostenuto da questa o quella pietra, - risponde Marco, - ma dalla linea dell'arco che esse formano. 
Kublai Kan rimane silenzioso, riflettendo. Poi soggiunge: - Perché mi parli delle pietre? È solo dell'arco che 
m'importa. Polo risponde: - Senza pietre non c'è arco". 

Italo Calvino 
 

 

Scopo di questa tesi è quello di confrontare fra di loro e valutare diversi metodi analitici e 
numerici per la verifica di ponti ad arco in muratura. La parte di valutazione è abbastanza 
difficile per via dei molti parametri materiali sconosciuti nei ponti esistenti. Prima di affrontare 
l’analisi di un ponte in muratura reale, in questo capitolo si analizzerà un ponte ad arco 
generico per dare una panoramica sull’utilizzo dei vari metodi. Per facilitare l’analisi, il ponte 
sarà caratterizzato da un arco a tutto sesto, incastrato alle estremità. Le proprietà materiali 
saranno ragionevolmente ipotizzate. 

I metodi analizzati saranno quelli esposti nel capitolo 2: i) analisi limite attraverso la curva 
delle pressioni; ii) metodo dei meccanismi; iii) metodo agli elementi finiti. Per le suddette 
analisi, ci si avvarrà dei software descritti nel capitolo precedente. Per ultimo si applicherà 
anche il particolare approccio in forma chiusa, che sfrutta il modello materiale elasto-plastico: 
il vantaggio di questo approccio è quello di determinare i punti critici con uno sforzo 
computazionale relativamente basso e di evidenziare a quale carico corrisponda l’apertura di 
ogni cerniera. I vari metodi e modelli saranno confrontati fra di loro sulla base del carico limite 
ultimo e della posizione delle varie cerniere. 
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3.2 A Generic Arch Subjected to a Vertical Concentrated Load  
 
The aim of this thesis is to compare and to evaluate different analytical and numerical 

methods to verify masonry arch bridges. The step of assessment is very difficult because many 
material parameters are unknown in existing structures. Before approaching the analysis of a 
real masonry bridge, this chapter will analyze a generic arch bridge to give a general overview 
on the use of various methods and different material models. To facilitate analysis, the bridge is 
characterized by a round arch. The material properties are reasonably hypothesized. The 
boundary conditions are assumed to be:  

 

φ1= φ2 = u1 = u2 = v1 = v2 = 0 
 
 

where φ, u, v are the generalized displacements of the two supports1.  The structure is statically 
determinate to the third degree and will collapse as soon the four hinges occur. A vertical 
concentrated point load P, applied at 0.75 (42.97°), and the weight of the backfill are imposed 
on the bridge.  

 The methods discussed are those described in chapter 2: i) Thrust Line Analysis Method, ii) 
Mechanism Method, iii) Finite Element Method. For the analyzes, the computer software 
described in the previous chapter will be used. Finally, the particular approach in closed form 
based on the elastic-plastic material model will be also be applied. The different methods and 
models will be compared with each other in terms of collapse load and the position of the four 
hinges. 

 
 
 
 

 
 
 
 
 
 
 
 
                                                 
1 The subscript 1 stays for the left abutment; the subscript 2 stays for the right one.  

Figure 3.1 Masonry arch under study 
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The masonry arch bridge in exam has the following geometrical and material properties (as 
showed by figure 3.1): 
 
 
Basic Geometrical Parameters of the Arch: 
• Span L0 = 2,80 m; 

• Radius r = 1,4 m; 

• Thickness of the Arch Barrel b = 0,5 m; 

• Height of the Backfill h = 2 m; 

• Width of the Arch B = 1 m. 

 
 
Masonry data: 
The material is assumed to be homogeneous.  
• Specific weight of the masonry arch γ = 21000 N/m3; 

• Young’s Modulus = 5000 MPa; 

• Poisson’s ratio = 0,3; 

• Compressive Strenght of Masonry = 8 MPa. 

 
 
Backfill data: 
The material is assumed to be homogeneous.  
• Specific weight of the backfill γ2 = 21600 N/m3; 

• Young’s Modulus = 15000 MPa; 

• Poisson’s ratio = 0.3; 

• Angle of friction = 35; 

• Cohesion = 0.001; 

• Angle of dilatency = 35.  
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Considerations. As figures 3.2 and 3.3 illustrate, the positions of the hinges are almost the 
same for the two methods: i) one hinge is under the point where the concentrated load is 
imposed; ii) two hinges are in correspondence of the supports. The only difference is that in 
Archie-M the hinge near the right support corresponds with it, while in Ring the same hinge is 
positioned higher up on the line of the arch. In addition to hinge positions, Ring gives as 
graphic output also the failure mode. Concerning the collapse load, Archie-M estimates a load 
smaller than Ring: the first one is equal to 165.2 KN, the second one is equal to 558 KN. 
 
 

Sensitivity Analysis. In this study, Ring is also used to perform a sensitivity analysis of the 
masonry arch bridge under study. A number of different parameters has been varied to identify 
their influence on the bridge behavior. The geometry parameters, such as span, rise and 
thickness of the arch, have not been not investigated in the analysis. The reason is that the 
geometric parameters are more easy to measure than the material parameters. The considered 
problems are:  
•    number of segments in the arch; 
•    angle of internal friction; 
•    unit weight of masonry; 
•    unit weight of backfill; 
•    height of the backfill. 
The results are reported in a form of charts giving value of ultimate loads in relationship with 
the analyzed parameters (figures from 3.4 to 3.8). 
 
 

Figure 3.4: Parametric Study for number of segments in the Arch 
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Figure 3.5: Parametric Study for angle of Internal friction 
 

 
 

Figure 3.6: Parametric Study for the Unit Weight of Masonry 
 
 

 
 

Figure 3.7: Parametric Study for the Unit Weight of Backfill 
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Figure 3.8: Parametric Study for the height of Backfill 
 

 
 

Several deductions can be made from these parametric studies: 
•  the number of arch segments has a limited influence on the collapse load. A sufficient 

number of segments is equal to forty. This may lead to a very small overestimate of the load 
capacity, but allows to save computational effort; 

•    the increase of internal friction angle of the backfill gives higher values of the collapse load; 
•   both unit weights of masonry and of backfill have a stabilizing effect on the arch behavior. 

Their increase provides higher values of the collapse load; 
•    the presence of backfill over the arch has a crucial influence on the ultimate load. 
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3.4 Finite Element Method 
 

The software chosen to simulate the analysis of the generic masonry arch bridge with the 
Finite Element Method is Abaqus2. Abaqus is able to solve a wide range of linear and non 
linear problems, that involve either static and dynamic response. The software is divided into 
modules that respect the logic of the organizational process. The modules are: 

 

 Part: where the elements of the model can be created; 
 Property : where materials and sections of each part can be defined; 
 Assembly: where it’s possible to create instances of the parts and to position the instances 

in a global coordinate system, thus creating the assembly.  
 Step: where it is possible to create analysis steps and specify output requests; 
 Load: where the load, boundary condition, and field managers can be defined; 
 Mesh: where the mesh can be generated; 
 Job: where jobs are created and their progression is monitored; 
 Visualization: where the output database is analyzed. 

 

Masonry Properties. Defining the material property is the most delicate step. Between the 
various types of discretizations described in chapter 2, the macro-modeling is chosen,  trying to 
 
 

 
 
 
 
 
 
 
 
 
 
 

                                                 
2 ABAQUS: www.simulia.com. 

Figure 3.9 Abaqus’s screen 
 



                                                                                                                                                                      
 

 
APPLICATION TO A GENERIC MASONRY ARCH BRIDGE 

 
69

take advantage of constitutive laws already implemented in the software and using equivalent 
materials to model masonry. The general description of a 2D nonlinear constitutive model of a 
concrete-like masonry consists of three elements: i) pre-failure behavior; ii) limit domain; iii) 
post-failure behavior. The pre-failure behavior is considered as linear elastic for both 
compression and tension. The data requested are the Young’s Modulus and the Poisson’s Ratio. 

There are various limit domains for concrete-like material. All of them have similar shape 
based on Von Mises domain in compression and assume a considerably limited tensile strength. 
The material model used to defined the properties of masonry outside the elastic range is the 
concrete smeared cracking model. This material model is based on the William-Warnke 
Criterion, just explained in chapter 2. The data needed to characterize the material behavior are: 
i) Comp Stress, that is the absolute value of compressive stress; ii) Plastic Strain. Table 3.1 
reports the values used, that come from simple static tests performed by University of Pavia. 
The compressive strength is 8 MPa. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

When the stresses pass the limit boundary, the material starts to behave in accordance with  
assumed post-failure conditions. Abaqus offers several options. The “Tension stiffening” 
option allows to define the strain-softening behavior for cracked concrete, by means of a post-
failure stress-strain relation or by applying a fracture energy cracking criterion. In this case, the 
post-failure behavior is defined as a function of the displacement at which a linear loss of 
strength after cracking gives zero stress.  

Comp stress 
(MPa) 

Plastic strain 
 

1.05 0 
1.5 0.000261 
2.13 0.000696 
2.6 0.001172 
2.94 0.001981 
3.25 0.002524 
3.31 0.003379 
3.39 0.004254 
3.38 0.004555 
3.34 0.004864 

Table 3.1 Data requested for Smeared Crack Model
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The Failure Ratios are used to define the shape of the failure surface. Four failure ratios can 
be specified: i) the ratio of the ultimate bi-axial compressive stress to the ultimate uni-axial 
compressive stress; ii) the absolute value of the ratio of the uniaxial tensile stress at failure to 
the ultimate uniaxial compressive stress; iii) the ratio of the magnitude of a principal 
component of plastic strain at ultimate stress in biaxial compression to the plastic strain at 
ultimate stress in uniaxial compression; iv) the ratio of the tensile principal stress at cracking, in 
plane stress, when the other principal stress is at the ultimate compressive value, to the tensile 
cracking stress under uniaxial tension. 

 
 
 
 
 

 
Backfill Properties. A backfill can be modelled by means of 2D elements, that provide to 

transfer live loads and passive reaction on the arch barrel. The material of the soil is usually 
nonlinear defined by Mohr-Coloumb or Drucker-Prager limit criteria but also a crude approach 
involving linear elastic material is allowed. In this case a Drucker-Prager domain is used. The 
data requested are: i) angle of friction; ii) Flowstress Ratio; iii) Dilatation Angle.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Ratio 1 Ratio 2 Ratio 3 Ratio 4 
2 0.041 1.28 1.45 

Table 3.2 Failure Ratios

Figure 3.10 Mesh used 
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Collapse load. The analysis is non linear and requires an iterative solver. A Lower Bound 
Approach is used as criterion to determinate the maximum sustainable vertical load sustainable. 
Then as maximum load, this study considers the load required to form three hinges and initiate 
a fourth. The collapse load calculated is about 279 KN. In figure 3.11, there are reported the 
principal stresses in the plane: the tension stresses are highlighted in grey. Under the point of 
application of the vertical load, a hinge occurs as expected. Two hinges opens near the two 
fixed supports, but not in correspondence. The location of these hinges is in good agreement 
with the experimental study on the arch, except for the one that opens near the left support. In 
fact this hinge occurs at intrados, while it has to open at extrados. However the results indicate 
that the a priori assumption regarding the occurrence of two hinges in the two support points 
which is frequently made is only approximately true. 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.11 Principal Stresses in the Plane 
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E.  Calculate il θmin that minimizes P(θ): 
 

 
 

 

The two functions z1 and z2 can’t be simultaneously zero. If z1 and z2 are plotted as a 
function of the angle θ, at increasing of point load the function z2 approaches zero (3.14). 
This condition  corresponds  to  the  formation  of  the  first  plastic  hinge.  The  first  value 
of  load, for which z2 is equal to zero, corresponds to the value of load Pmax1 = 37200 N and 
θmax1 = 0.7163. 

 
 

 
 
 

 
Second hinge.  
In the presence of a hinge, the structure becomes statically indeterminate to the second degree. 
The new value for P is now given by P=Pmax1+ ΔP, where Pmax1 is just determined and ΔP is 
the unknown value.  
A. Equilibrium equations must be rewritten as a function of the new increment ΔP unknown: 
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C.  Calculate the increase ΔP regards to Pmax3 and the position of the fourth hinge: 
 

                                       ΔPmax3= 43.400N e θmax4 = 1.33 
 

Also in this case the function z1 reaches the zero first.  
 

 
 
 

 
 

Considerations. The collapse load is obtained by summing the Pmax1 and the increments 
ΔPmax1, ΔPmax2, ΔPmax3 calculated for the different hinges. Its value is 134160 N. As figure 3.18 
shows, the first hinge opens under the point where the load is imposed. The second hinge 
occurs at the springing, in the left abutment. The fourth hinge occurs close to the right support, 
but not exactly in. The location of these hinges is in good agreement with the experimental 
study on the arch and with Heyman’s theory.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Second Hinge: 
 

θ = -1.57 (-90°) 

Figure 3.17 Formation of the fourth hinge

Fourth Hinge: 
 

θ = 1.33 (76.20°) 

First Hinge: 
 

θ = 0.72 (41.25°) 

Third Hinge: 
 

θ = -0.40 (-22.92°) 

Figure 3.18 Position of the Four Hinges
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3.6 Comparison between results 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
Different analytical and numerical methods for the assessment of masonry arch bridges have 

been applied to a generic arch bridge. Concerning the hinge positions, Ring, Archie-M and the 
elasto-plastic model have shown similar results. Small differences are found near the point of 
application of concentrated load, probably due to the different distribution of live load in the 
various models. There are little differences also concerning the position of fourth hinge near the 
right support. In particular, in Archie-M the hinge corresponds with the support, while in Ring 
and in the elasto-plastic model the same hinge is positioned higher up on the line of the arch. 
Concerning the hinge positions in the finite element model, there is a good correspondence 
with the other models for the first hinge -  that occur under the point of load application – and 
for the fourth hinge – that opens near the right support. The positions of the other hinges are 
different from those of other models. In fact the third hinge moves to the arch center, while the 
second hinge occurs at intrados and not at extrados. The differences between the first three 
models and the finite element model can be explained, thinking to the different conceptual 
bases: Archie-M, Ring and the Elasto-Plastic model derive from the principles of limit state 

Figure 3.22 Elasto-Plastic Model 

Figure 3.11 Elasto-Plastic Model 

Figure 3.21 Finite Element Method 

Figure 3.19 Thrust Line Analysis (Archie-M) Figure 3.20 Mechanism Method (Ring) 
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analysis, while the Finite Element Model comes from a completely different approach. 
However the results indicate that the a priori assumption regarding the occurrence of two 
hinges in the two support points which is frequently made is only approximately true. 

 
 

 
 

 
 

 
 
 
 
 
 

Concerning the collapse load, elasto-plastic model and Archie-M have shown a comparable 
behavior. The Ring collapse load is significantly higher than the others, probably for two 
reasons. The first one is that the other three models use a lower bound approach to determinate 
the maximum vertical load sustainable, while Ring uses an upper bound approach. The second 
one is that the rigid-plastic model neglects the elasticity of the masonry. This factor is very 
important when the thickness of the arch is big as in the bridge in exam. This example 
demonstrates that the elasticity of the material has a great influence on the determination of the 
collapse load. The differences in the collapse load can be summarized as follows: Elasto-Plastic 
collapse load ≤ Archie-M collapse load ≤ Finite Element collapse load ≤ Ring collapse load.  

 
Worst load position. In this example, the position of the load has been determined a priori 

to compare between them the various methods. Actually, for practical reasons it’s very 
interesting to study the worst load position that gives rise to the smallest collapse load. So the 
last analysis made on the generic arch bridge is of this type. The most critical position is 
founded at 2025 mm from the left abutment, about at a quarter of the span, as expected. The 
maximum load that can be applied at this point has been calculated with Ring and is equal to 
250 KN. 

 

Table 3.3 Hinge position and Failure Load for Different Methods 



                                           
 

 
CHAPTER 3 
                                  

 
80

 



            
 

 

                           

         

                                                     

 

                           

 
 

Case 

                          

Study 

                       

 

of Cle

C

emente 

Chapter 

Bridg

            

 
 
 
 
    

4 
 

e 

 

 

 

  



                                           
 

 
CHAPTER IV 
                                  

 
82

 



                                                                                                                                                                      
 

 
                                                                                                                                         CASE STUDY OF CLEMENTE BRIDGE 

 
83

4.1 SOMMARIO 
 
“Ti piaceva di fermarti sul ponte, che valica il Savio col grande arco quasi romano; appoggiato al pacifico 
parapetto guardavi l’acqua poca e lenta passare laggiù tanto in basso.. Di sul ponte è più facile orientarsi: c’è la 
rocca dietro, a ridosso, con gli avanzi della vecchia murata, che coronano l’ultimo colle strapiombante sul fiume; 
tutto l’alto bacino del Savio a monte, e il piano aperto a valle fino al mare si dispongono intorno a questo centro 
naturale come in un quadro perfetto, dove ogni particolare ha il suo posto certo. ” 

Renato Serra 

 
Il caso studio oggetto della presente ricerca è il Ponte Clemente, situato sul fiume Savio a 

Cesena. Si tratta di un ponte stradale simmetrico, con struttura ad arco in muratura. Le tre 
campate sono caratterizzate da archi a sesto ribassato, sostenuti da massicci pilastri. Per quanto 
riguarda la storia, nel 1729 Papa Benedetto XIII autorizza l’inizio dei lavori in seguito al crollo 
dell’esistente ponte in legno, ma è solo nel 1733 che i lavori iniziano con la successione di Papa 
Clemente XII, che dà il suo nome al ponte. Nel 1771 il ponte si può dire completato. Diversi 
sono gli architetti chiamati a dare pareri o a partecipare attivamente all’opera in questo periodo: 
tra i più noti ricordiamo Ferdinando Fuga e Luigi Vanvitelli. Il ponte non soffre nel tempo 
particolari danni fino alla seconda guerra mondiale, quando le truppe tedesche in ritirata fanno 
saltare l’arcata centrale, da subito ricostruita dagli Alleati.  

Attualmente il Ponte presenta cricche verticali vicino ai piloni di nord-est e di sud-est. Non 
si tratta di fenomeni recenti, infatti vengono già citati in una relazione del 1776. Queste lesioni 
oggi appaiono stabili e i bordi consolidati.  

Le caratteristiche meccaniche dei materiali costituenti la struttura portante del ponte sono 
state stimate attraverso prove di compressione monoassiale sui mattoni e di punzonamento sulla 
malta. Per quanto riguarda la geometria della sezione dell’arco, in assenza di dati certi, sono 
state formulate diverse ipotesi in accordo con le evidenze rilevate sul ponte dall’ultima 
campagna di lavori nel 2010. 

Nelle analisi svolte, Ring e Archie-M riproducono quasi le stesse modalità di collasso: la 
posizione critica del live load è identificata sulla prima campata e in maniera simmetrica sulla 
terza. Il carico di collasso di Archie-M è di poco inferiore a quello di Ring. Tra i due modelli, si 
possono riscontrare piccole differenze nella collocazione delle cerniere poiché la posizione 
critica del live load si trova vicino ai sostegni. Poiché lo spessore dell’arco è molto grande, con 
Ring si è anche valutata l’ipotesi che ogni arco fosse formato da due archi sovrapposti. Per 
quanto riguarda il metodo agli elementi finiti e il modello elasto-plastico, i risultati si stanno 
ancora valutando. 
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The rehabilitation of the stacks and parapets continued under the direction of the honorary 
inspector Monuments Professor Giannetto Malmerendi8: in 1952 all the works were finished. 

Unfortunately the post-war restorations are not documented. The candidate is gone to State 
Archive of Forlì, to Historic Archive of Cesena and to Technical Office of Cesena; she has 
contacted the Technical Service Basin of Emilia Romagna and the Savio Building Firm, that 
had realized the work. Nothing is present, apart from three documents: i) a letter of 
Superintendent of Monuments, that gave recommendations on the curtain restoration in 1946 ii) 
a good survey of the damage to curtains, perhaps attached to some economic evaluation for the 
restoration of the monument, without date, heading or signatures; iii) an estimate of the works 
required for bridge completion made by Corps of Engineers of Forlì (Annex 4.A). 

 So it’s difficult to define the mode of reconstruction of the central vault: for this reason, the 
candidate made some assumptions, that will discussed in Paragraph 4.4. 
 

                                                 
8 Giannetto Malmerendi was also the author of one of the two existing paintings representing the reconstruction of 
1945. 

Figure 4.10 Historic photo from the archive of the Superintendence of Monuments 
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Actual state. Currently the bridge is in quite good conditions. It presents vertical cracks 
over the piers both on the south front and particularly on the north one. This is not a recent 
phenomenon: a report of Giuseppe Brunelli in 1776 mentioned it, attributing to "compression 
that  happens at first in all the new constructions, especially when they are heavy and high." 9 
These cracks were already present to a small extent on the parapets too. In 1993 also the road 
surface next to the east pier presented an evident crack between the opposite platforms (figure 
4.12). Today these cracks have stable and consolidated edges, so probably there are not static 
involvements. Moreover the structure presents minor cracks on the walls of the lateral ramps 
and on the central arch between the old structure and the reconstructed one: any static influence 
can be dismissed.  

Besides, in some structural elements such as piers and the vaults, there are serious damages 
to masonry surfaces due to the direct hits of Second World War’s bombs. For example, the 
south-east arch has severe damages in the profile for the lack or failure of many bricks. In these 
cases, a complete reconstruction of masonry surface should be made with the use of the cuci 
scuci technique: damaged bricks should be removed and replaced with other elements, similar 
in shape, dimensions, shade and manufacturing techniques. In particular, special mortars for 
restoration should be used: these mortars should have mechanical strength equal to ancient ones 
in order to avoid different mechanical performances.  

Nowadays the bridge is considered a reduced loading bridge. Few years ago, Public 
Administration proposed to reduce traffic on the bridge to one-way: the proposal was 
appropriate, given the current situation, but even now the situation has not changed. 

 

 

 
 

 
 
 

                                                 
9 From the letter of Giuseppe Brunelli, papal hydrostatic expert (23 luglio 1776): “Finalmente le piccole crette 
accadute fin da principio alla sommità della fabbrica, cioè nei parapetti e nei poggiuoli, siccome non sonosi in 
seguito più accresciute, non ponno secondo l’arte attribuirsi a difetto di fondamenti, ma piuttosto a quel callo 
ossia compressione che accade da principio in tutte le nuove fabbriche, massime quando sono pesanti, ed 
elevate.” 

Figure 4.11 Crack Distribution: i) North front, ii) South Front 
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relevant horizontal trust of the last span. Their section is hidden and is conditioned by the 
outline of the ground: so it is very difficult to know how they are actually composed. The 
lateral wing walls are all one with the abutment. 

The piers are the vertical supports between two spans: they withstand essentially vertical 
actions. The pier sizing depends on two types of requirements: i) the pier must ensure the 
structure stability; ii) at the same time the pier must be more slender as possible in order to 
allow the river in flood to pass easily. The equilibrium between these two factors is not easy. 
Until the eighteenth century, stability was usually preferred to the slenderness. So the piers of 
Clemente Bridge seem too large to support only the arch trust. The choice depended on three 
different reasons: i) the spans were not equal so the resultant of thrusts of the two adjacent 
arches was inclined and the pier was also subject to shear; ii) the centerings were not enough to 
allow the disarmament of all arches at the same time so initially the piers were subjected to an 
asymmetric thrust; iii) besides, in case of one arch’s collapse, the piers should have been able to 
support the remaining vault trust, without turn over until the arch reconstruction. As mentioned, 
during the Second World War a span collapsed. If Clemente Bridge had been designed 
according to the mathematics theories of De la Hire, it would have supported hardly this 
asymmetric thrust and probably the bridge would be totally collapsed.  

In order to allow the river in flood to pass easily, 
the architects of the Clemente bridge used mainly 
two strategies: i) they reduced the number of the 
piers in the river bed from four to two; ii) they 
endowed the piers with cutwater both at upstream 
and at downstream. In particular the upstream 
cutwaters were used to protect the piers by the 
impact of tree trunks swept by the flood.  

 

Figure 4.16 Plan of the Clemente Bridge 

Figure 4.17 Palladio,  
“A bridge of my invention”, 1570   
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must be noted, however, that often the crisis of a masonry structure is not due so much to the 
achievement of high  stress, but to  the  formation  of  failure mechanisms due to motions of 
rigid body portions or structural elements, such as those that will be discussed below. 
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the bridge. So in absence of comprehensive test results on backfill, typical values found in 
similar surveyed bridges have been considered to assume. The unit weight is considered 18 
KN/m3, the angle of friction is considered 30 degree. 

Regarding the load condition, it’s used a EU single axle load14. To simulate the loading 
vehicle movement across the bridge and to identify the critical position, a series of load cases 
are taken into account. Firstly the whole bridge is divided into ten parts: eleven load case are 
considered (figure 4.30). Once individuated the worst load position, the sequel step is to 
thicken the load cases around this zone to determine the exact condition that results in the 
lowest adequacy factor (figure 4.34). 

Ring e Archie-M reproduce almost the same mode of collapse. In both cases, the critical 
position of the load is the third one from the left springing, on the first span (figure 4.30). 
Obviously as the structure is symmetrical, there is a mirror-like collapse condition also on the 
third span. As illustrated in figure 4.31, at limit state the collapse is connected with the 
formation of a number of hinges enough to transform the stable arch in a unstable mechanism. 
In particular, on the first span the hinges open in alternating way in the intrados and in the 
extrados, following a pattern comparable to that described by Jacques Heyman for the point 
load case. Concerning the hinge location, there are small differences between Ring and Archie-
M because the critical position of the live load is close to the supports (table 4.8). As just 
remembered, two different arch thicknesses are analyzed with Archie-M and Ring: the results 
reported in table 4.8 and 4.9 highlights that there are small differences in hinge positions 
between the two hypotheses. In figure 4.32 it can be observed also that the bending moment is 
equal to zero whenever the trust line pass the axle line, while it is maximum close to the hinges. 
 
                                                 
14 The load is about 112.82 KN. 

Figure 4.32: First span: failure mode and bending moment Figure 4.33: Heyman’s Point Load 
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Table 4.8 Hinge Positions for different load positions, arch thickness 1,2 m 

Figure 4.34 Arch Thickness equal to 0.80 m_Hinge Positions 

Table  4.9 Hinge Positions for different load positions, arch thickness 0,8 m 

Figure 4.34: Eleven Load Case thickened around the worst load position 
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Concerning the collapse load value, Archie-M collapse load is smaller than Ring’s one both 
for arch thickness equal to 1.2 and for arch thickness equal to 0.8 m (table 4.10 and table 4.11). 
Obviously, the collapse load calculated for the arch thickness of 0.8 m is smaller than the other 
one. About the collapse load, other considerations can be made analyzing the graphs contained 
in table 4.10 and 4.11. The first diagram shows the ratio between the collapse load of Archie-M 
and Ring in relation to the different load positions and arch thickness. The red line divides the 
graphic into two areas: over the red line there are Archie-M collapse loads higher than Ring’s 
ones (case 3,4 and 5). The analysis reliability becomes lower in load case 10 and 1115. In the 
second diagram, the difference % between the collapse load of Archie-M and Ring is reported 
in relation to different load cases and arch thickness. Analyzing the graph trend, it’s clear how 
the end positions16 are the most critical ones for the analysis due to the variances in the results, 
where in the intermediate positions the differences are more attenuate. In particular analyzing 
the arch of thickness equal to 1,2 m, the difference % between the results obtained in the 
intermediate load cases is lower than 20%. These results underlines the reliability of the 
analysis under precise load conditions. 

As there are no certainties on the constructive modes and the arch thickness is very high, it 
is also supposed that every arch may be made by two debonded rings, separated in the model 
by frictional contacts. As remembered in paragraph 4.4, the hypothesis of two separated vaults 
is supported by some constructions of the same period built near the bridge. Obviously in this 
analysis, the value of the minimum adequacy factor decreases compared to the one-ring arch 
analyzed before (table 4.12). This factor highlights the loss of bearing capacity for the bridge. 
Also in this case the critical load position is on the first span, but obviously there are two thrust 
line for every span and an higher number of hinges. (figure 4.35) 

 
 

                                                 
15 Load Cases 10 and 11 where the ratio is respectively 0,42 and 0,19 for b = 1,2m; or 0,28 and 0,14 for b = 0,8m. 
16 Load Cases 1,2,8,9,10,11. 

Figure 4.35: Multi-ring arch: failure mode 
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Table 4.10 Load Case positions and Minimum Adequacy Factor, arch thickness 1,2 m 

Table 4.11 Load Case positions and Minimum Adequacy Factor, arch thickness 0,8 m 

Position x [mm]

Position x [mm]
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Figure 4.36 Collapse Load ratio for different positions and thickness 

Figure 4.37 Difference % collapse load ratio for different position and thickness 
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Italian Technical Standards. The last analysis concerns the study of Clemente Bridge in 
accordance to the Italian “Technical Standards for the Construction” of 2008. These standards 
impose different load conditions according to the bridge category. Clemente Bridge belongs to 
the second category, because only reduced live loads can cross it. In this case, the Standards 
suppose to divide the bridge into two lanes, loading them with different point and distributed 
loads. Nevertheless, the Standards emphasize that the load disposition has to be chosen so to 
obtain the most unfavourable project conditions. Thus, refering to the Italian Standards but at 
the same time simulating a static test condition, the bridge is loaded symmetrically on the 
middle axle, overestimating the loads prescribed by the Standards. In this way, a combination 
of two types of loads is considered, ensuring higher safety standards: i) double axle tandem 
point load Qik of 440 kN, characterized by a loaded length of 400 mm and a width between the 
axles of 2000 mm; ii) a distributed load qik of 7.20 kN/m2 over all bridge length (figure 4.38).  

 
 
 
 
 
 
 

Table 4.12 Minimum Adequacy Factor for One-ring arch and multi-ring arch 

Figure 4.38 Clemente Bridge’s analysis in accordance to Italian Technical Standards 

Position x 
 

[mm] 
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The analysis is performed though Ring. The critical position is always on the first span, with 
the double axle load spaced between 17,61 m and 19,21 m from the left springing. In this case 
the minimum adequacy factor is equal to 3.98, so the bridge can be considered safe concerning 
the Italian Technical Standards. 
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Annex 4.A 
Post war Documentation 

 

i) Letter of Superintendent of Monuments, that gave recommendations on 

the curtain restoration in 1946……………………………….........p. 119 
ii) A survey of the damage to curtains, perhaps attached to some economic 

evaluation for the restoration of the monument…………………..p. 120 
iii) Estimate of the works required for bridge completion made by Corps of 

Engineers of Forlì………………………………………...………p. 126 
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Annex 4.B 
On site photos 
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Annex 4.C 
Results of laboratory tests on samples taken on site: 

 

i) Results of Compression Test on Brick Samples……...….... p. 137 
ii) Results of Compression Test on Mortar Sample….………..p. 138 
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CONCLUSIONS 
 
 

Nowadays existing masonry arch bridges are very important to study because they represent 
a very significant part of National road and rail network, both in terms of numerical quantity 
and for the quality of their structural response. In fact the masonry arch bridges continue to be 
used today without any evident change to their original shape, even if the majority of them was 
built between 17th and 19th century. This is possible thanks to the high self-weight together 
with masonry mechanical characteristics, that allow these bridges to have a relevant strength 
regarding the loads which they are subjected. Maybe this is one of the most important aspects 
of the masonry arch bridges, that permits these ancient structures to keep in good health 
nowadays. However it can’t be forgotten that weight, speed and traffic are increased during the 
last 100 years and these new elements will eventually lead to the deterioration of the bridge’s 
structure. This is the reason why is important check the existing masonry bridges. Several 
strategies have been developed during the time to simulate the response of this type of 
structures, although even today there is no generally accepted standard one for assessment of 
masonry arch bridges.  

In this thesis, the principal analytical and numerical methods existing in literature have been 
compared with each other. The methods taken in exam are mainly three: i) the Thrust Line 
Analysis Method; ii) the Mechanism Method; iii) the Finite Element Methods. As explained in 
chapter two, the Thrust Line Analysis Method and the Mechanism Method are analytical 
methods and are derived from two of the fundamental theorems of the Plastic Analysis, while 
the Finite Element Method is a numerical method, that uses different strategies of discretization 
to analyze the structure. Every method is applied to the case study through computer-based 
representations, that allow a friendly-use application of the principles explained: i) Archie-M; 
ii) Ring; iii) Abaqus. A particular closed-form approach based on an elasto-plastic material 
model is also studied.   

To compare the three methods, two different case study have been presented: i) a generic 
masonry arch bridge with a single span; ii) a real masonry arch bridge, built on Savio River in 
Cesena. All the models presented are two-dimensional in order to have results comparable 
between the different methods taken in exam. In fact finite element models can be two-
dimensional or three-dimensional, while the other methods allow to study only two 
dimensional models. This is the same for the analytical approach based on the elasto-plastic 
model.  
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In the case of the generic masonry arch bridge, there are applied all the methods presented. 
Concerning the hinge positions, Ring, Archie-M and the elasto-plastic model have shown 
similar results. Small differences are found near the point of application of concentrated load 
and near the right support, probably due to the different live load distributions. Concerning the 
finite element model, there is a good correspondence with the other models for the first hinge  
and the fourth hinge, while the positions of the other hinges are different. The differences can 
be explained, thinking to the different conceptual bases: Archie-M, Ring and the Elasto-Plastic 
model derive from the principles of limit state analysis, while the Finite Element Model comes 
from a completely different approach. However the results indicate that the a priori assumption 
regarding the occurrence of two hinges in the two support points which is frequently made is 
approximately true. 

Concerning the collapse load, elasto-plastic model and Archie-M have shown a comparable 
behavior. The Ring collapse load is significantly higher than the others because the rigid-plastic 
model neglects the elasticity of the masonry, that is a very important factor when the thickness 
of the arch is big as in the bridge in exam. The differences in the collapse load can be 
summarized as follows: Elasto-Plastic collapse load ≤ Archie-M collapse load ≤ Finite Element 
collapse load ≤ Ring collapse load.  

The other case study taken in exam has been the Clemente Bridge, built over the River Savio 
at Cesena. Material samples have been taken from the bridge to estimate the masonry 
compressive strength. Besides, three different hypotheses regards to the vault thickness have 
been formulated in absence of reliable data. In this case, Ring e Archie-M have reproduced 
almost the same mode of collapse. In both cases, the critical position of the load is identified on 
the first span. Obviously as the structure is symmetrical, there is a mirror-like collapse 
condition also on the third span. The collapse load of Archie-M is resulted slightly smaller than 
Ring’s one. Concerning the hinge location, there are small differences between Ring and 
Archie-M because the critical position of the live load is close to the supports. As there are no 
certainties on the constructive modes and the arch thickness is very high, with Ring it is also 
supposed that every vault may be made by two multi-ring arches superimposed: obviously, in 
this hypothesis the load is resulted the lowest of all the others. Future developments will regard 
the application of the finite element model and the elasto-plastic model also to the case of the 
Clemente Bridge.  

In general, it can be concluded that every method and every its computational application 
has own advantages and disadvantages, depending on the input, on the purpose and on the 
researched results. The Thrust Line Analysis Method is the most ancient method and allows to 
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draw immediately the thrust line to test the arch safety, even if it doesn’t give directly the 
critical load factor. Different attempts have to be made in order to achieve the correct result. 
The Mechanism Method allows to determine easily the collapse load factor. However, the 
rigid-plastic model neglects the elasticity of the masonry and that leads to overestimate the 
collapse load in the case of arches with a very big thickness. The Finite Element Method 
represents even now the most versatile tool for the numerical analysis of structural problems. 
However, it requires an elevate number of material characteristics, that are not always easy to 
determine in the historical constructions. In the case of masonry, the peculiar nature of material 
leads to pay particular attention to the application of this method. The analyses carried out have 
highlined that perhaps micro-modeling can be more appropriate than macro-modeling, even if 
the second one requires a lower computational effort. Finally, the elastic-plastic model gives a 
realistic view of the arch behavior, providing the hinge evolutions. At the same time, it 
provides a collapse load lower than the other methods.  

All the two-dimensional models presented have the advantage to be easily constructible and 
analyzable, but generally focus on the arc behavior and don’t quantify the stress in the section. 
To have a more detailed assessment of local phenomena, it is therefore important also to use 
three-dimensional models. 
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