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ABSTRACT

This research has focused on the study of the behavior and of the collapse of masonry arch
bridges. The masonry arch bridges are standing from hundreds of years and can be considered one
of the oldest subjects of scientific research. Despite this, it can be difficult to analyze their behavior
for all the uncertainties related to the analysis of the materials in existing structures. The latest
decades have seen an increasing interest in this structural type, that is still present and in use,
despite the passage of time and the variation of the transport means. Several strategies have been
developed during the time to simulate the response of this type of structures, although even today
there is no generally accepted standard one for assessment of masonry arch bridges.

The aim of this thesis is to compare the principal analytical and numerical methods existing in
literature on case studies, trying to highlight values and weaknesses. The methods taken in exam are
mainly three: i) the Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite
Element Methods. The Thrust Line Analysis Method and the Mechanism Method are analytical
methods and derived from two of the fundamental theorems of the Plastic Analysis, while the Finite
Element Method is a numerical method, that uses different strategies of discretization to analyze the
structure. Every method is applied to the case study through computer-based representations, that
allow a friendly-use application of the principles explained. A particular closed-form approach
based on an elasto-plastic material model and developed by some Belgian researchers is also
studied.

To compare the three methods, two different case study have been analyzed: i) a generic
masonry arch bridge with a single span; ii) a real masonry arch bridge, the Clemente Bridge, built
on Savio River in Cesena. In the last case, a detailed historic analysis has been conducted together
with laboratory tests to determine the mechanical characteristics of masonry arches.

In the analyses performed, all the models are two-dimensional in order to have results
comparable between the different methods taken in exam. The different methods have been
compared with each other in terms of collapse load and of hinge positions.
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1.1 SOMMARIO

“Arco non é altro che una fortezza causata da due debolezze, imperoché I’arco negli edifici ¢ composto di due
quarti di circolo, i quali quarti circuli ciascuno debolissimo per sé desidera cadere e oponendosi alla ruina ['uno
dell’altro, le due debolezze si convertono in un’unica certezza.”

Leonardo da Vinci

L approccio classico per determinare la stabilita dei ponti ad arco risale alla teoria di Pippard
e Ashby, ulteriormente sviluppata negli anni 60 dal Prof. Heyman. Questa teoria assume che la
muratura: i) non abbia resistenza a trazione; ii) abbia un’infinita resistenza a compressione; iii)
non avvenga rottura per scorrimento. Il meccanismo di collasso dell’arco é quindi identificato
dalla progressiva formazione di quattro cerniere, che coincidono con i punti in cui la curva
delle pressioni e tangente all’intradosso o all’estradosso dell’arco. Il meccanismo per
formazione di cerniere non & I’unico possibile per I’arco’, ma studi sperimentali? dimostrano
che é il piu probabile in caso di ponti ad arco ben contraffortati. L’analogia tra questo
meccanismo di collasso e quello proprio delle strutture metalliche permette di applicare anche
alle strutture in muratura i fondamentali teoremi dell’analisi plastica, incluso il “safe theorem”.

La ricerca del Prof. Heyman evidenzia quindi che un’analisi di tipo elastico nel caso di
strutture in muratura & problematica perché non esiste un unico stato di equilibrio calcolabile.
L’ analisi limite permette invece di considerare la struttura solo in relazione al suo stato ultimo,
utilizzando pochi parametri materiali e trascurando lo stato di tensione iniziale.

! Meccanismo di rottura a scorrimento e misto scorrimento-cerniera.
2 AW. Hendry, S.R. Davies e R. Royles, Test on a Stone, Masonry Arch at Bridgemill-Girvan, Transport and
Road Research Lab, Contractor Report 7, UK (1985)
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1.2 Classic Theories

In his book® “La scienza delle costruzioni e il suo sviluppo storico”, Edoardo Benvenuto
gave us the historical perspective of the first static theories regarding the masonry arch.
Between the seventeenth and eighteenth century, the geometric and the empiric rules reported
in the ancient treatises were replaced by a real static theory on the stability of the arches.
Philippe De La Hire was the first to develop an innovative approach, which remained the same
for all the scholars of the eighteenth century. The arch was seen as a series of rigid blocks with
well-defined geometry and a specific weight. However his model neglected the friction, which
was taken into account by Coulomb’s Model. Since Coulomb's essay (1773) and Mery’s
subsequent elaboration (1840), the problem of statics of the masonry arch will have to wait
more than a hundred years before being called into question.

Only around the fifties of this century, the problem is taken up and dealt with a more
congenial method. Attempts in the twenties to adapt the elastic theory to the masonry arch were
not very successful. The weak point of these attempts was to assume the masonry material as
elastic and to consider valid the results even if the thrust line was external to the core in some
points. The turning point of the fifties is determined by the appearance of the limit design and
of its increasing applications to structural analysis. The theorems of limit analysis are
admirably suited to the determination of the collapse load of masonry arches.

So nowadays the engineering methods of assessment for arch bridges mainly rely on the
pioneering work by Pippard and Ashby*(1939) and Pippard®(1948). They determined the load
required, at a given location, to cause the formation of two additional hinges, and hence a
mechanism, in a two hinged arch. These procedures guaranteed that an equilibrium
configuration exists for the considered structural model but gave only rough estimates of the
limit load. Following their lead and Drucker’s studies, Kooharian published the first modern
work on this subject in 1952, which was followed one year later by Onat and Prager’s input.
Another milestone was Heyman’s publication in 1966, where he explained for the first time the
applicability of ultimate load theory for any masonry loadbearing structure. Heyman’s
contributions are so fundamental that is difficult to imagine today the state of the art without his
work. In the next paragraph, the fundamental hypotheses at the base of his theory will be
explained.

® Benvenuto E. (1981), La scienza delle costruzioni e il suo sviluppo storico, Sansoni, Firenze

4 Pippard, A.J.S., Ashby, R.J., (1939). An experimental study of the voussoir arch, Inst.n Civ. Eng., 10, 383-403.

® Pippard, A.J.S., (1948), The approximate estimation of safe loads on masonry bridges, Civil engineer in war, 1,
365, Inst.n Civ. Eng.rs.
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1.3 Jacques Heyman and the “Safe Theorem”

Hypothesis on masonry material

In 1966 Professor Jacques Heyman® has introduced some hypotheses for the determination
of the admissibility domain of the masonry material. The three assumptions are reasonable
approximations, but — as the same Heyman remembers — each is not strictly true and must be
protected with reservations. Heyman does not introduce nothing new, but formalizes in a clear
way some hypotheses on the material, that formed the basis for the calculation of the arches in
the XVI1II and XIX century. These assumptions enable Heyman to frame the masonry action in
the plastic theory and to formulate the famous safe theorem, that will be explained later on.
The three hypotheses are: (i) the masonry has no tensile strength; (ii) the masonry has infinite
compression strength; (iii) sliding failure doesn’t occur. As regards the first, it is an assumption
that does not always adhere to the reality, but it is at safety benefit. It is strictly true only if the
masonry is made by dry-stone blocks or with weak mortar: however, in most cases, the
adherence between mortar and masonry blocks is negligible because the mortar may decay in
time. Therefore, whatever is the ultimate tensile strength of the individual blocks, the masonry
may be considered a non resistant tensile material (NRT material).

The hypothesis of infinite compression strength is a valid approximation only if the ratio
between the average compression stress and the masonry compression strength is a negligible
value compared to the unit. That is, the compression strength is not infinitely great, but if the

INFINITE COMPRESSION

STRENGHT N 4
/ NO SLIDING FAILURE

Figure 1.1 Heyman’s three hypotheses: (i) the masonry has no tensile strength; (ii) the masonry has infinite
compression strength; (iii) sliding failure doesn’t occur.

® Heyman, J. (1966), The stone skeleton. Structural Engineering of Masonry Architecture, University of
Cambridge, Cambridge
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Figure 1.2: Reduction of the resistant section
when the stresses come out of the middle third.

Figure 1.3 Possible collapse mechanism for the
arch: i) a shear mechanism; ii) a hinge-mechanism;
iii) a combined shear-hinge mechanism.

ratio illustrated is sufficiently small, the
hypothesis of infinite compression strength is
justified.

However it should pay attention to the rise
of stresses concentrations. In fact, when an
NRT material is considered, if the stresses
come out of the middle third, occurs: (i) a
reduction of the resistant section; (ii) a
redistribution of the compression stresses; (iii)
an increase of the peak values. In normal
conditions of exercise, stresses are so low that
prevent any phenomena of crushing failure.

The assumption of absence of sliding
failure is equivalent to assert that the shear
component of the force, which is exercised
between two voussoirs, never exceeds the
friction Dbetween them. In fact, low
compression stresses allow to develop high
friction forces, that prevent voussoirs from
losing cohesion and sliding. The validity of
this hypothesis can be verify considering the
slope of the thrust line respect to the joints: if
the thrust line is perpendicular to the joints,
there is no mutual sliding between the
voussoirs. Instead, if it forms an angle minor
than 90°, the wvoussoirs tend to slide
downwards or upwards.

Concerning Heyman’s hypotheses, the
collapse mechanism of the arch is then
identified by the progressive formation of
hinges, that coincide with the points where the
thrust line is tangent to the intrados or extrados
of the arch. The mechanism for formation of
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hinges is not the only possible for the arch’, but the experimental studies of Hendry (figure 1.4)
show that it can be considered as the most likely collapse mechanism for arches well
buttressed. The analogy between the rotation failure mechanism of the arch and that of the steel
frames allows Heyman to apply even to the masonry structures the fundamental theorems of the
plastic analysis, including the safe theorem.

Safe Theorem

“If any equilibrium state can be found, that is, one for which a set of internal forces is in equilibrium with the

external loads, and, further, for which every internal portion of the structure satisfies a strength criterion, then the

5

structure is safe.’ J. Heyman

Concerning Heyman, it is not necessary to find the real equilibrium state to assure arch
safety, but only reasonable equilibrium states. This is very important since it is impossible to
know the real state because of its ephemeral nature (failure of the foundations, thermal
variations, etc.). In this way, it is possible to ensure the safety of the arch working only with the
equations of equilibrium and consistency, without making assumptions on the boundary

Figure 1.4 Hendry’s experiment on collapse of real masonry arch bridge

! According to Boothby, an arch bridge can collapse as a result of three possible collapse mechanisms: a shear
mechanism, a hinge-mechanism and a combined shear-hinge mechanism.
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conditions, that would be very difficult to verify. A way to represent the equilibrium equations
is the thrust line, that shows the distribution of internal forces under a given load.

As demonstrates Gerstner®, the masonry arch is a structure statically indefinite, so there are
endless lines of thrust, that satisfy the balance. In 1800s, the debate was just focused on the
research of the real thrust line: i) for Moseley,’ it was the one that minimizes the horizontal
thrust in the keystone; ii) for Winkler', it was the one that diverges the less possible from the
axis line of the arch. The safe theorem allows to remedy the vagueness connected to the true
thrust line location between infinite number of possibilities: an arch is safe simply if a thrust
line can be drawn inside his thickness. So Heyman’s approach can be defined in equilibrium
approach. A safe arch, just checked by the safe theorem, will not collapse whatever is the
movement induced in the abutments, provided that: i) the movements are little; ii) the
equilibrium equations are not changed; iii) the whole geometry of the arch is not distorted.

Hmin

Figure 1.5 Moseley’s determination of the Figure 1.6 Winkler’s determination of the
thrust line thrust line

Limit States
The thrust line has not to go out of the masonry thickness: to this end, it is interesting to

8 Gerstner F.J. von (1831-1834), Handbuch der Mechanik, J. Spurny, Prague

® Moseley H. (1833), On a new principle in statics, called the Principle of least pressure, The London and
Edimburgh Philosophical Magazine and Journal of Science, vol. 3, pp. 285-288

YWinkler E. (1867), Die Lehre von der Elastizitat und Festigkeit, Dominicus, Prague
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Figure 1.7 J. Heyman. (a) Minimum abutment thrust. (b) Maximum abutment thrust.

study its two extreme positions, that represent two states still in equilibrium. In fact, when the
thrust line touches the lower or the upper boundary of the arch, the masonry finds itself at the
limit of the admissible states region and the eccentricity is such that promotes the formation of
hinges. In particular, in the two extreme conditions, the thrust line gives the location of three
hinges that open: in this way, the value of the horizontal abutment thrust can be calculated.

In the two extreme positions of the thrust line, the horizontal abutment thrust will be: a)
minimum; b) maximum. The minimum horizontal thrust will be obtained when the arch acts on
the environment: for example, after removing the centering that supports the masonry, an arch
will thrust on the abutments and these one will open slightly. In minimum thrust state, or
passive state, the thrust line will have the greatest rise and the smallest clear span; it will touch
the extrados at the key and intrados at the back. The maximum horizontal thrust will be
obtained when the environment acts on the arch: for example, when two abutments move closer
to each other, the arch span diminishes. In state of maximum thrust state, or active state, the
thrust line will have the smallest rise and the greatest clear span; it will touch the extrados at the
crown and the intrados down. Three hinges will open if one is at the key; on the contrary, four
hinges form.

It is important to know the two extreme positions of the thrust line, because the real thrust of
the arch can’t be calculated, but the upper and the lower limits can be fixed.

Collapse

The collapse of a masonry arch does not involve an absence of strength, but rather a loss of
stability. In fact the collapse takes place when a thrust line can’t be find within the arch
boundaries. The crisis is connected with the formation of a fourth hinge, that transforms the
stable arch in a unstable mechanism of collapse. The four hinges open in alternating way in the

Hmax
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Figure 1.8 An additional point load Figure 1.9 Geometry Safety factor of 2
generate the fourth hinge

intrados and in the extrados, following a pattern that is function of the arch shape and the
working loads. In case of symmetrical load, a fifth hinge can open, but generally slight
geometrical failings make the structure to behave asymmetrically. A masonry arch has to
support two main types of loads: i) the self weight; ii) the additional loads. The additional point
loads have a thrusting nature and can cause collapses because their action move the thrust line
out of the arch, generating the fourth hinge. Then they implicate meaningful changing of shape.
On the contrary, the self weight is the resistant load of every masonry structure and opposes
every mechanism of collapse.

Stability Check

The catenary is the arch true shape. Arches with other shape stand up because catenaries are
included in their thickness. The thrust line shape is the mathematical catenary if the self weight
is equally distributed around the arch. There is a minimum thickness of semicircular arch that
just contains a catenary. The limit arch has exactly this minimum thickness and is in unstable
equilibrium. The ratio between the real arch thickness and the limit arch one defines the safety
factor, that is of geometric nature. Heyman suggests 2 as safe practical value: that is, if you’re
able to draw a thrust line in the middle half of the arch, the arch is safe. So the thrust line can be

perceived as an index of the stability condition of the arch.

10
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1.4 Plastic Limit Analysis

The research of Professor Heyman highlights that an elastic analysis is problematic for
masonry structures because there isn’t a unique calculable equilibrium state. On the contrary,
the limit analysis allows to consider the structure only in relation to its ultimate state, using few
material parameters and neglecting the initial stress state. Some of the principal methods for the
assessment of masonry arch bridges are based on the fundamental theorems of Limit Analysis,
that now will be explained.

A summary of the basic rules that apply in the theory of plasticity can be found in the work
of Horne®* (1979). In the context of masonry arches, there are fundamentally three main
considerations to apply the theorems of plastic limit analysis: i) the internal actions must be in
equilibrium with the external loads; ii) there must be a sufficient number of hinge to transform
the structure into a mechanism; iii) the maximum stresses must be less than or equal to the
material strength.

The three fundamental theorems of plastic analysis can be stated in simplified form as:
e Static or lower bound theorem. If the equilibrium and yield conditions are everywhere
satisfied, then the load factor 4, is less than or equal to the failure load factor /,;

e Kinematic or upper bound theorem. If the equilibrium and the mechanism conditions are
everywhere satisfied, then the load factor 4, is greater than or equal to the failure load factor
Ap;

Load factor

4 Kinematic or upper bound solutions

- ™

Exact solution

- S/

Static or lower bound solutions

»
>

Internal stress state / mechanism configuration

Figure 1.10 The relationship between upper and lower bound solutions

1 Horne, M.R. 1979. Plastic theory of structures, 2nd edition, Oxford: Pergamon Press.

11
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e Uniqueness theorem. If the internal stress state is such that the three conditions of
equilibrium, mechanism, and yield are satisfied then that load factor is the collapse load
factor 4,.

The relationship between upper and lower bound solutions is illustrated in figure 1.10.

12
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2.1 SOMMARIO

“If any equilibrium state can be found, that is, one for which a set of internal forces is in equilibrium with the
external loads, and, further, for which every internal portion of the structure satisfies a strength criterion, then the
structure is safe.”

Jacques Heyman

La teoria di Heyman ha dato vita nel tempo a diversi modelli. Infatti il “safe theorem’ unito
alla teoria della funicolare pud essere utilizzato per sviluppare strategie computazionali per
I’analisi di strutture in muratura, come ¢ stato fatto da Block' e da Oschendorf. Ai fini della
sicurezza ¢ quindi necessario solo poter disegnare una plausibile curva delle pressioni
all’interno dello spessore dell’arco. Tra i programmi di analisi basati su questa metodologia, si
trova Archie-M sviluppato dalla Obvis®, che indica graficamente una possibile curva delle
pressioni per qualsiasi regime di carico. Anche se lo scopo di Archie-M ¢ solo quello di
dimostrare se un determinato ponte ad arco possa sopportare 0 meno un dato carico, si pud
stimare il carico di collasso variando il moltiplicatore di carico fino a quando la curva delle
pressioni tocca il bordo dell’arco e si forma un numero sufficiente di cerniere.

Nell’analisi limite, si puo poi utilizzare un modello discreto e idealizzare 1’arco come un
assemblaggio di blocchi rigidi. Nel 1978 Livesley fu il primo ad adottare modelli discreti per
I’analisi limite di strutture in muratura. Partendo da un modello discreto, si puo inserire poi
all’interno del modello una resistenza a compressione finita, ridefinendo il dominio di rottura
non lineare di sforzo normale e momento. Generalmente ¢ conveniente assumere che i blocchi
siano rigidi e modellare tutte le rotture nei contatti tra i blocchi. Tra i programmi di analisi
basati su questa metodologia, si trova LimitState Ring™ che utilizza appunto tecniche di analisi
plastica, avvalendosi di modelli discreti. Il programma usa un’ottimizzazione matematica, che
permette di identificare lo stato limite ultimo, determinando la percentuale di “/ive load”, che
portera al collasso.

Un altro metodo usato per descrivere il comportamento strutturale dei ponti ad arco in
muratura ¢ il Metodo degli Elementi Finiti. Si parte da un approccio completamente diverso.
Adottando diverse strategie di discretizzazione, come micro-modellazione o macro-

modellazione, si divide la struttura in una serie di elementi finiti. Si puo effettuare un’analisi

Up. Block, Equilibrium systems. Studies in Masonry Structure, Thesis of master of Science in Architecture
Studies, MIT, Boston (2005)

2 Obvis Ltd., www.obvis.com

3 LimitState Ltd., www.limitstate.com

15
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non lineare, assegnando particolaru leggi costitutive al materiale. I risultati includono la
massima sollecitazione e 1’analisi della deformabilita. I Metodo degli Elementi Finiti
rappresenta lo strumento piu versatile per l'analisi numerica di problemi strutturali. Tuttavia nel
caso di muratura storico, la particolare natura del materiale deve portare a prestare maggior
attenzione all'applicazione di questo metodo.

In questo lavoro ¢ stato adottato anche un modello elasto-plastico, sviluppato da alcuni
ricercatori belgi®. Alla base di questo modello elasto-plastico, ci sono le tre equazioni di
equilibrio di un concio infinitesimo di arco in direzione radiale, tangenziale e alla rotazione. Sia
per il peso che per il carico esterno vengono scritte espressioni analitiche in funzione
dell'angolo e della posizione sulla curva. Sostituendo tutte le variabili nelle equazioni di
equilibrio, si ottengono equazioni differenziali di secondo ordine. Risolvendo le equazioni
differenziali, si determinano le espressioni analitiche delle forze interne, espressioni che
includono tre costanti di integrazione. Per trovare una soluzione univoca per le forze interne
nell’arco, bisogna quindi introdurre le condizioni al contorno: in questo caso si adottano le
equazioni di Bresse’. Noti gli spostamenti in entrambi i sostegni, queste equazioni possono
essere usate per determinare le tre costanti di integrazione. In questo modello, vengono
introdotte anche le proprieta del materiale, ovvero della muratura. Restando nell’ipotesi di
assenza di resistenza a trazione, si studiano le varie distribuzioni possibili delle sollecitazioni.
Sul diagramma dato dalla combinazione tra sforzo normale e momento, il confine della zona
elasto-fragile-plastica corrisponde ad una distribuzione plasto-fragile. Finché le combinazioni
di sforzo normale ¢ momento in ogni sezione dell’arco rimangono all’interno della curva limite
plasto-fragile, I’arco riesce a sopportare il carico senza formazione di cerniere. Quando si
aumenta ulteriormente il carico, a un certo punto ci si trova sulla curva limite del dominio ed ¢
in questo momento che si forma la prima cerniera plastica. Questa procedura viene ripetuta fino
a quando le cerniere plastiche arrivano a un numero tale che l'intero sistema pud deformarsi

sotto carico permanente costante.

* A. Audenaert, H. Peremans and W.P. De Wilde, Static determination of the internal forces and displacement in
arch bridges, The masonry society Journal, 22 (1), 2004, pp. 97-109
° M. Bresse, Cours de Mécanique Appliquée, Paris, Imprinmerie de Gauthier-Villar, 1859

16



METHODS AND MODEL FOR THE ANALYSIS OF MASONRY ARCHES

2.2 Classification of the methods

for the assessment of the masonry arches

Structural analysis is a general term describing the operations to represent the real behavior
of a construction. The analysis can be founded on mathematical models created on theoretical
bases or on physical models tested in laboratory. In both cases, the models try to individuate the
load carrying capacity of the structure, identifying the stress state, the strain and the internal
forces distribution of the entire structure or of its parts. Besides for arch structures, the models

try to indicate the failure mode and the location of plastic hinges.
THEORETICAL ANALYTICAL
—- — —
LABORATORY/ON-SITE EMPIRICAL
e — - —-
TESTS METHODS

Figure 2.1 Methods of load carrying capacity assessment

In this chapter, analytical methods for the structural analysis of the masonry arch bridges are
treated. In literature there are many types of theoretical methods that can be used. These
methods can be divided into different categories concerning their origin, scope, applicability
and approximation level.

As previously seen, about the three fundamental structural criteria®, it is the stability that
governs the life of the masonry arches because the average medium stresses are low and the
strains are negligible. So the most important methods for the evaluation of masonry arch
bridges are derived from Heyman’s theories and from the fundamental theorems of the Plastic
Analysis. They are: i) the thrust line analysis method; ii) the mechanism method.

The Thrust Line Analysis Method is based on the lower bound theorem or “safe” theorem
and defines the limits for the thrust line location. It uses a static approach and defines the limit
load, that ensure the equilibrium of the arch bridge analyzed. On the contrary, the Mechanism
Method is based on the upper bound theorem and studies the number of plastic hinges needed
to transform the arch in a mechanism. In this case, the stability of the arch is analyzed with
regards to a kinematic approach. Both the methods are valuable: due to their different bases, the

first one underestimates the structure strength, while the second overestimates it.

¢ strength, stiffness and stability
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STRENGTH STIFFNESS STABILITY

Figure 2.2 Representation of the three fundamental structural criteria: Strength, Stiffness and Stability

Another method used to described the structural behavior of the masonry arch bridges is the
Finite Element Method. It starts from a completely different approach. Adopting different
strategies of discretization, as micro-modeling or macro-modeling, the structure can be divided
in a series of finite elements. Non linear analysis can be performed, assigning particular
constitutive laws to the material. The results include the maximum stress and deformability
analysis. The Finite Element Method represents the most versatile tool for the numerical
analysis of structural problems. However in the case of historic masonry, the peculiar nature of
material leads to pay particular attention to the application of this method.

In the next paragraphs, these methods will be described more specifically. In particular,
there will be presented the material models that can be used. At the end of every paragraph
there will be introduced the most common computer-based representations connected to each
method. These computerized approaches allow a friendly-use application of the principles
explained. Depending on the used method, they enable to obtain various output including the
load carrying capacity.

The last paragraph of this chapter will deal with a particular closed-form approach
developed by some Belgian researchers in the last years. This method is based on the
fundamental theorems of limit analysis and is used to determine the critical points with a
relatively small modeling effort. To assure the stability of the masonry arch bridges, a model
based on equilibrium equations and compatibility conditions is first developed. Next, the

material properties are added to determine the formation of the hinges.

18



METHODS AND MODEL FOR THE ANALYSIS OF MASONRY ARCHES

2.3 Thrust Line Analysis Method

This general method analyzes the arch stability, evaluating the location of the thrust line
inside the cross section. The thrust line represents the /locus of points along the arch through
which the resultant forces pass. If all the arch voussoirs have the same size, the line of thrust
has almost the shape of an inverted catenary.
“As hangs the flexible, so but inverted will
stand the rigid arch.” wrote Robert Hooke in
1675. “None but the catenaria is the figure of a
true and legitimate arch.” completed Gregory

twenty years later, in 1697. These quotes

describe the mechanics of the arch in a brief,
but precise way. Figure 2.3 shows a simple
example used by Heyman (1982) to explain lp_.

R
this concept: a weightless string subjected to r‘ s J

three forces. The funicular polygon inverted ]
represents the thrust line. H / "

The thrust line may be located at the middle
of the section or very close to the edge. It L L
depends from the resultant of inertial forces in Figure 2.3 Inverted funicular polygon
a given cross section. If no moment and and the Thrust Line
transverse force occur into the arch, the thrust
line coincides with the centre-line of the
section. In the other cases, the thrust line
departs from the arch centre-line and so it is
important to define the distance between the
thrust line and the center of the mass, i.e. the
eccentricity e (figure 2.4).

The thrust line method analyzes the
location and the slope of the thrust line inside
the cross section through two parameters. The

first one is the eccentricity of the forces

resultant, that describes the location of the

thrust line in the cross section. The Figure 2.4 The eccentricity e
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eccentricity is easy to calculate because it is a function of the normal force N and the bending
moment M acting in the considered cross-section. The second important parameter is the
relation between normal force N and shear force 7, that defines the slope of the thrust line.
Calculation of thrust line location can be performed using the equilibrium equation or by
solving a linear programming problem.

So every thrust line is a possible equilibrium solution. Unfortunately the masonry arch is not
a statically determinate structure and this solution is not unique. There are infinite possible
lines of thrust. The equilibrium equations are not sufficient to obtain the inner forces.

The thrust line analysis method defines the load carrying capacity by limiting the zone
where the resultant force can be positioned. This method presents some variants which differ
from each other by the size of the limits. The limits depends on the theory and the material

model assumed. The main approaches will be described below.

Middle Third Rule

The first variant of this method is also the most ancient. The Middle Third Rule is
anticipated by Thomas Young’ in 1817, worked out by Claude-Louis Navier® in 1826 and
applied to masonry arch by William Rankine’ in 1858. This rule states that the thrust line must
lie within the middle third of the cross section, that is it must lie within the kern to avoid any

tensile stresses. The eccentricity is defined as:

This criterion is based on the elastic theory. Until the forces resultant remains within the
kern, there are only compressive stresses. When the force passes the middle third, the section
undergoes also tensile stresses (figure 2.5). However it is assumed that the masonry has not
tensile strength, so in this case the section is not contributing entirely. Cracks may occur and
this 1s wanted to avoid.

The middle third rule is extremely safe approach in the determination of the collapse load. It

is very difficult to satisfy because of this rigorous limit. It can be reach only: 1) if itis

" Thomas Young, Article in the Supplement to the fourth edition of the Encyclopaedia Britannica (1817).

8 Navier 1826. Résumé des Legons donées a L’Ecole des Ponts et Chaussées, sur ['application de la mécanique a
[’établissement des constructions et des machines . Paris.

? Rankine, W. J. M. 1858. 4 Manual of Applied Mechanics. London: Charles Griffin.
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FIGURE 2.5 THRUST LINE ANALYSIS METHOD
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considered in the design phase; ii) if the dead loads dominate considerably over live loads.

Middle Half Rule

The difficulty to satisfy the previous criteria has led to apply a less conservative version of
this method, that is the middle half rule. This approach increases the limits for the thrust line. In
this case, the thrust line should lie within the central half of the arch section (figure 2.5). The

eccentricity is defined as:

Heyman’s Rule

Another variant of the thrust analysis method is proposed by Jacques Heyman'’, as seen in
the first chapter. With the safe theorem, he assumes that an arch is safe simply if a thrust line
can be drawn inside his thickness. An arch will collapse only if the thrust line reaches the arch
edge at least in four points, converting the arch into a mechanism. This rule is surely the less
conservative than the other because the whole cross section become the allowed zone for the

thrust line. This can be expressed as:

This approach includes an important assumption concerning the masonry behavior. An
infinite compression strength is attributed to the masonry material. This enables the thrust line
to stay at the edge of the cross section. The assumption is not realistic, but this method can be
considered a good method to use because in the majority of the masonry arch bridges the stress

level are quite low respect to the masonry compressive strength.

All the variant of the thrust analysis method can be summarized by the Heyman’s concept of
“geometric safety factor”, just explained in the first chapter. For example the masonry arches

that satisfy the middle third rule have a geometric safety factor equal to three.

' Jacques Heyman, The Stone Skeleton, Cambridge University Press, Cambridge, 1966
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Figure 2.6 Harvey. The thrust zone.

Thrust Zone Analysis Method

A method very similar to the thrust line method is the thrust zone method developed by Bill
Harvey in 2001. It is based on an elasto-plastic model and considers a finite compressive
strength that doesn’t allow the thrust line to stay at arch edge. A rectangular “yield block” 1is
created around the force resultant. The force resultant is positioned in the middle of the
rectangular area, at #/2 (figure 2.6). The height of the yield block is a function of the normal
force N, the strength material . and the thickness of the arch B and can be calculated as:

Computer Based Application: Archie-M

Thrust line analysis together with Heyman’s safe theorem can be used to elaborate
computational strategies for the structural analysis of masonry arch bridges. For example, in
2006 Philip Block'' has developed an interactive computational procedure, that uses the thrust
lines to clearly visualize the forces within the masonry and to predict possible collapse modes.
The program lets the user to change the arch geometry, analyzing the different locations that
can be assumed by the thrust line.

Between the specialized analysis programs based on this method, there is also Archie-M

i Block, P., Ciblac, T. and Ochsendorf, J. 2006. Real-time limit analysis of vaulted masonry buildings,

Computers & Structures, 84(29-30), p. 1841-1852.
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Figure 2.7 Typical output of Archie-M (Obvis)

developed by Harvey and OBVIS Ltd'? in 2001. Archie-M is a computer program, that
analyzes multi-span arch bridges together with supports and backfill. It carries out a form of
equilibrium analysis. That is to say it determines whether an arch will remain stable, without
first considering how it will deform under load. In fact the software uses the thrust line analysis
combined with a thrust zone to model the masonry finite crushing strength. In practice the
program is based on the thrust zone analysis method.

Calculations are carried out on a static scheme of a three hinges arch. The hinge positions
are chosen as the most likely for the given load pattern. The program is easy to use because it
shows graphically the position of a potential thrust-line and the formed hinges for any given
loading regime (figure 2.7). Until the thrust zone is within the cross section of the arch at every
point, the structure is safe. When the thrust zone begins to touch the arch edge in a fourth point,
a mechanism is created and the collapse state is reached.

Although the aim of Archie-M is to demonstrate whether an arch bridge can withstand a
given load or not, the collapse load can be estimate by varying the load value until a sufficient
number of hinges is formed.

The program provides also the internal forces and the thrust zone position for each arch
segment. The live load is distributed through the fill with a sine shape. The backfill is modeled

as a continuous body that spreads the load and provides both active and passive soil pressure.

12 Obvis Ltd., www.obvis.com
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2.4 Mechanism Method

The Mechanism Method is a kinematical method, based on the upper bound approach. This
method belongs to the plasticity theory and was firstly used for steel structures. Later Heyman'
has applied it to masonry arch. The term mechanism refers to the possibility of structure to
move in accordance to internal and external constraints. This Method assumes that a masonry
arch becomes a mechanism when at least four plastic hinges open. Many experimental tests
confirm this hypothesis. However position of hinges is unknown.

First step is to assume the possible position of four hinges. In a simplified analysis with only
a concentrated force on the arch, the first three hinges can be assumed to be located under the
load and at the springing. It’s reasonable to hypothesize hinges A and C on the intrados and
hinges B and D on the extrados (figure 2.8). The concentrated force W is applied on the arch
with no dispersion through the fill. Self weights Vi include the weights of the backfill blocks
and of the corresponding arch segment. The four unknowns are the reaction forces of the two
abutments H, V,, V), and the failure load W. The problem can be solved with the moment
equilibrium equations at the hinges or with the equations of virtual works. In the first case, four
equilibrium equations can be derived around the hinges and solved, giving the four unknowns.
In the second case, the structure collapses if the total virtual work for at least one of the
mechanisms allowable is positive.

In order to find the best mechanism, it is necessary to repeat the analysis for each

Elock 1 Block 2 Block =

,B"-x d_d_da—‘—ﬁ_cif_h_—-a____ _,-'if" T
~ ;"-_ "'H-FFF 5 F h T F ™
Pl RV ] .
,.-/ 1-} u""-.-' ' - ",
/:; AW i -, \\
oy VIV DD
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v W1 U
H ' T H
va Figure 2.8 Arch with assumed hinges. Vi

Reproduced from ICE (2008)

1 Heyman, I., The masonry arch, Ellis Horwood, 1981
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possible load position and adopt the lowest result. The process remains simple and may be
undertaken with a hand calculator, but it is much more convenient to use a programmable
machine. A linear algorithm with a target function minimizing the live load factor can be
adopted. In this way the most probable mechanism mode is found automatically.

There are some variants of this method that differ from each other concerning the geometry
and the material model. Here two variants will be exposed. In the first case it is considered a
rigid material model characterized by infinite compression strength, while in the second case a
rigid-perfectly plastic material is taken into account. In both cases, the material is considered

homogeneous and no tensile resistant.

Rigid Blocks

A type of analysis using the mechanism method is the rigid block analysis. It is presented by
Livesley'®, that pioneered in 1978 the development of discrete limit analysis models for
masonry structures. Livesley found a solution for the equilibrium condition and the mechanism

conditions described by Heyman, using the linear programming.

Figure 2.9 From the real arch to the rigid block model

14 Livesley R.K. (1978), Limit analysis of structures formed from rigid blocks, International Journal for Numerical
Method in Engineering, 12, pp. 1853-1871.
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This theory simplifies the masonry arch as
an assemblage of plane blocks, that are
infinitely rigid and have an infinite strength.
The division into these blocks is regular, but
doesn’t respect necessarily the actual number
of units of the original arch. Usually the blocks
are slightly larger than the physical ones
because the mortar joints are not explicitly
modeled. The blocks can be also extremely
larger than the actual ones in order to reduce
the computational effort. In this case it must be
careful that the discretization does not affect
the expected mode of response. As checked
experimentally, the number of blocks to obtain
a sufficiently exact solution is about forty.

At the collapse, the blocks can either slide
or rotate. The blocks movement can be
calculated using the minimal energy for global

deformation.

Rigid-Plastic Blocks

An important extension of Livesley’s rigid
block analysis has been made by Gilbert" in
1998. As no real material can sustain infinite
compressive stresses, this variant of the
mechanism  method assumes a finite
compressive strength, redefining the failure
domain of normal stress and moment (figure
2.11). Also in this case, the failures are
modeled in the contacts between the blocks,

but the explained assumption constrains the

Moment

Figure 2.10 Infinite
Material Strenght:
(i Failure Mode
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Figure 2.11 Failure Domains for different
material strenght

Figure 2.12 Finite
~ Material Strenght:
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Figure 2.13 Stress Block

15 Gilbert, M. (1998): On the analysis of multi-ring brickwork arch bridges. Proceedings of 2™ International Arch

Bridges Conference, Venice, pp. 109-118.
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Real Hinge

Ideal Hinge

Figure 2.14 From the real arch to the rigid block model

hinges not to stay on the arch edges. (figure 2.12). In this way, the rotation point is brought
back inside the arch, that behaves as it would have a lower thickness (figure 2.13). In the
proximity of the hinges, the compressive force is carried by a rectangular stress block lying at

the edge of masonry. The finite domain is defined by Gilbert'® as:

2O-cmsh b

n.

fOI' eaCh COl’ltaCt, i — 1,..., C
l ]
crush

where n; are the normal force, m; is the bending moment, ¢; is the arch thickness and o, s the
compression strength. The passage to a finite compressive strength complicates the
computation. In fact it transforms a linear problem to a non linear one. Gilbert solves the
question applying an iterative solution, that uses a Linear Programming solver. In this way it is
possible to obtain a solution to the global problem and to approximate the constraints as a series
of linear constraints. The rigid-plastic block analysis can be considered the basic model for

understanding the fundamental behavior of the masonry arches.

16 Gilbert, M. (2001), RING home page, http://www.shef.ac.uk/ring
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Figure 2.15 Typical output of Ring(LimitState)

Computer Based Application: Ring

The two-dimensional rigid-plastic analysis has been inserted by Gilbert and Melbourne into
a software called RING, developed by a University of Sheffield spin-off company, LimitState
Ltd. The program is able to analyze multi-span masonry arch bridges, built of arch barrels,
supports and backfill (figure 2.15). A particular feature of this software is the capacity to
analyze multi-ring arches enabling separations between the various rings.

The program employs an efficient linear programming technique for the solution of virtual
works equations. This mathematical optimization allows to identify the ultimate limit state,
determining the percentage of live load, that will lead to the collapse. As a result of the
analysis, the minimum adequacy factor for live load is obtained, together with a graphic
representation of the thrust line and the failure mode. Exact location of hinges is indicated. The
live load is distributed through a Boussinesq distribution with a maximum spread angle. The

passive pressure is the only lateral pressure used.
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2.5 Finite Element Method

Masonry arch bridges can be analyzed also using the Finite Element Method. Today this
method can be considered the most general instrument for numerical analysis of structural
problems. While the Thrust Line Analysis Method and the Mechanism Method are specific for
the analysis of the arch stability, the Finite Element Method gives the possibility to model all
the types of structures. In the last twenty years, many researchers have developed different
finite element models for materials with low tensile strength, such as masonry. However the
current knowledge of masonry mechanics is underdeveloped in comparison with other fields, as
concrete and steel. So the Finite Element Method can be applied to the masonry analysis, but
with particular attention due to the specific nature of the material.

The base principle of the Finite Element Method is to discretize the continuous structures
into a series of partial domains called finite elements, that interact with each other only at
certain points called nodes. Through this method, a continuous problem with infinite unknowns
is reduced to a discrete problem with a finite number of unknowns. Usually the displacement
method is used and the node movements are determinate. Then the actions in the nodes and

internal strains can be evaluated using a series of fundamental relationships.

Masonry Modelling

The discretization of the structure is the first step of this method. While in the frame
structures there is a univocal choice, in the masonry structures there are different strategies of
discretization. The main reason is due to the particular characteristics of masonry, that is an
anisotropic material composed by bricks and mortar. In particular the presence of the mortar is

difficult to model.
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Figure 2.16 Finite element method
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The key point in the development of accurate stress analyses of masonry constructions is the
definition and the use of suitable constitutive laws. Taking into account the heterogeneity of the
masonry material, the models proposed in literature can be divided three different classes
concerning their grade of definition: i) micro-modeling; ii) multi-scale modeling; iii) macro-

modelling.

Micro-models simulate each constituent of the masonry material with its own specific
constitutive law and failure criteria. Micro-models can be detailed or simplified'’. In the first
case, the unit and the mortar are constituted by continuum elements, while the unit-mortar
interface is represented by discontinuous elements (figure 2.17). In the second case, mortar and
brick/mortar interface are combined in a single discontinuous joint element, so it is possible to

consider masonry as a set of elastic blocks bonded together by potential fracture line.

Lnit Mortar “Unit Joint
: ~ 1T
L __ L _|
Interface | e [
""-‘_ Unit/mortar | “.E L
===l
1]

Figure 2.17 Modelling strategies for masonry: i) detailed micro-modeling; ii) simplified micro-modeling

The mechanical properties of elements that characterize the micro-model can be obtained
through experimental tests'® conducted on the single material components. The principal
disadvantage of the micro-models is that requires a highly refined mesh and a great
computational effort. In fact both the unit blocks and the mortar beds have to be discretized,
obtaining a high number of nodal unknowns. Nevertheless, this model is the most suitable to

reproduce laboratory tests.

Multi-scale models consider firstly different constitutive laws for the units and the mortar
joints; then, a homogenization procedure is performed obtaining a macro-model for masonry
which is used to develop the structural analysis. To explain the Multi-scale analysis, the model

developed by Brasile' is one the most significant. In this case, the strategy is based on an

"7 Lourenco P. B., Computational Strategies for Masonry Structures, PhD thesis, Delft University of Technology,
1996

18 Compressive test, tension test, bending test..ect

" Brasile S. , Casciaro R. , Formica G. , " Multilevel approach for brick masonry walls". Computer methods in
applied mechanics and engineering, 2007, Vol. 196
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Figure 2.18 Multi-scale Models

iterative scheme, which uses simultaneously two different modeling of masonry. The first one
is defined at the scale of the local brick and joint and describes their nonlinear mechanical
interaction. The second one is defined at the global scale of the wall and looks like an
approximation of the previous model. The passage from one scale to another is obtained
through an operator, that is able to define the global displacements starting by local ones. Also
in this case, the mechanical properties of units and mortar joints are obtained through
experimental tests. The principle advantage of the multi-scale model is to derive in a rational
way the stress-strain relationship of the masonry, taking into account the mechanical properties
of each material component. On the other side, the non-linear homogenization procedure could

induce some computational difficulties.

Macro-model is also called homogeneous or continuous model because it considers the
masonry as a smeared continuum (figure 2.19), where there isn’t a distinction between the

Composite block and mortar joints. This model treats the masonry as

_“: anisotropic composite and uses constitutive laws to define
h] E“--] E' the behavior of the masonry material, i.e. stress-strain
'-‘--_-|-|: ——- relationship. This model could be unable to describe in a
1l

detailed way some mechanisms connected to the damage
Figure 2.19 Macro Model . ., . . . .

evolution, but it is very effective from a computational point
of view when structural analyses are performed. In fact it’s the only method that can be used in

presence of a large number of units and joints, without a more expensive computational effort.

In general, the finite element method applied to masonry arch bridges is mainly concentrated
on global aspects rather than on local approaches. Today macro models use an isotropic
homogenized failure surface similar to those developed for the analysis of concrete structures.

Some of the most popular failure surfaces are shown in Figure 2.20.
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Figure 2.20 Chen. (1985) Failure criteria

The most simplified idea can be given by Rankine criterion, but more refined and more

appropriated criteria for concrete-like materials limit surface is determined by William-Warnke

William-Warnke Criterion®. 1t’s a criterion that is conceived to describe the concrete, but can
also be applied to other brittle materials, as masonry. It is a good criterion, but is complicated
because it uses five parameters. Cracking is modeled through an adjustment of the material

properties and it is simulated through a “smeared band” of cracks, rather than discrete cracks.

0 William, K. J., Warnke E. D. (1975). Constitutive Model for the Triaxial Behavior of Concrete. Proceedings,
International Association for Bridge and Structural Engineering, ISMES. Bergamo, Italy, ISMES. Vol. 19: 174.
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Figure 2.21 William-Warnke Criterion.
Failure domain for plane stress states

Figure 2.22 William-Warnke Criterion.
Failure domain for tridimensional stress states

Figure 2.23 William-Warnke Criterion.
Deviatoric Plane
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The smeared crack model allows the crack
opening in three orthogonal directions for every
point of integration. The complex behavior of
masonry is assumed to be isotropic before
cracking and ortotropic after cracking. The
failure criterion for a multi-axial stress state is

represented by the following relation:

E—SZO

C

Where F is a function of the principal stress
state, S is the failure surface expressed in terms
of the principal stresses and of the five
parameters f; ,f. ,fo» , f1,/2> In particular f; and
f. are the values of the uniaxial tension strength
and the uniaxial compression strength. £, is the
value of the biaxial compression strength. f;
and f> represent the values of compression
strength in presence of a hydrostatic stress state,
respectively under biaxial and uniaxial regime.
So cracking occurs when the tensile stress
exceeds the limit value (Rankine criterion),
while the crushing takes place when all of the
principal stresses are compressive and exceed
the limit value. Failure domain for biaxial and
tridimensional stress state are represented in
figures 2.21 e 2.22.

The meridians of tension and compression
are respectively two parables. They are
connected by an ellipsoidal surface, passing
through the elliptical deviatoric curve as base

section.
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Backfill Modelling

Also the backfill can be modeled through
additional elements that allow the transfer of
loads and passive reactions on the arch barrel.
Different constitutive models have been
proposed for soils modeling. The differences
are based on the shape of the yield surface in
the meridian plane, the shape of yield surfaces
in the deviatoric stress plane and the use of
flow rules. The material of the soil is
considered usually nonlinear and is defined by
Mohr-Coloumb  or Drucker-Prager limit

criteria.

Mohr-Coulomb Criterion. It is the best
known failure criterion in soil mechanics. It is
the first type of failure criterion that takes into
consideration the effect of the hydrostatic
pressure on the strength of granular materials.

This criterion states:
‘T‘ =c—0-igQ

where 1 is the shear stress, ¢ is the normal

stress2 !

; ¢ and @ are the cohesion and the angle
of internal friction. Coulomb’s failure surface
is an irregular hexagonal pyramid in the

principal stress space (figure 2.25).

Drucker-Prager Criterion®. This criterion,
formulated in 1952, represents the major
advance in the extension of metal plasticity to

soil plasticity. It is the approximate expression

73
N
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Mohr-Coulomb

Figure 2.24 Drucker-PragerCriterion.
Failure domain for plane stress states
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Figure 2.25 Drucker-Prager Criterion.
Failure domain for tridimensional stress states
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/” compressive meridian

Mohr-Coulomb
" yield surface

-,

_—
Figure 2.26 Drucker-Prager Criterion.
Deviatoric Plane

I Compressive stress as a negative quantity and tensile stress as a positive quantity.
2 Drucker, D. C. and Prager, W. (1952). Soil mechanics and plastic analysis for limit design. Quarterly of

Applied Mathematics, vol. 10, no. 2, pp. 157-165
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of the Mohr-Coulomb criterion. The aim was to overcome the problem of Mohr-Coulomb
criterion, that the gradient of the plasticization function was not defined in a univocal way on
the pyramid corners. Drucker-Prager Criterion provides as failure surface a cone whose axis is
the hydrostatic axis (figure 2.25). This cone can be inscribed or circumscribed the hexagonal
pyramid of Mohr-Coulomb Criterion, depending on the values of the constants a, k. The failure

criterion can be represented by the following relation:
f(]l,Jz):—all“r Jz—kzo

where I; is the first invariant of the stress tensor, J, is the second invariant of deviatoric stress
tensor. a and k are material constants, determined from experiments. When a is equal to zero,
the Drucker-Prager criterion is reduced to the Von Mises criterion. In fact the first criterion
represents an extension of the second one with the addition of the influence of a hydrostatic
pressure in failure.

In finite element method, it is more convenient to use Drucker-Prager criterion than Mohr-
Coulomb criterion. In fact the Mohr-Coulomb hexagonal failure surface is mathematically
convenient only in problems where it is obvious which one of six sides is to be used. If this
information is not known in advance, the corners of the hexagon can cause considerable
difficulties and give rise to complications in obtaining a numerical solution with the finite

element models.

Computer Based Application: ANSYS, ABAQUS, DIANA

Also the finite element method comprises computer-based representations. They are
specialized ready-to-use computer programs that can be applied to masonry arches as to other
type of structures. Computer FEM systems used to analyze the masonry structures are
ABAQUS? or DIANA* often with self-implemented user codes to these applications. But
there are other ones.

125

For example, in 1999 Ng et all*’ used a FEM commercial package nonlinear, LUSAS®, with

a two-dimensional model to analyze a series of arch bridges. In this case, masonry is

2 Abaqus FEA (formerly ABAQUS) is a suite of software applications for finite element analysis and computer
aided engineering, originally released in 1978. www.simulia.com

* Tnodiana.com

» Ng K., Fairfield C.,Sibbad A. (1999). Finite-element analysis of masonry arch bridges, Proceedings of the
Institution of Civil Engineers: Structures and Buildings, Vol. 134, pp. 119-127
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Figure 2.27 Bidimensional Model

characterized as Von Mises material with different strengths in tension and compression. The

authors study the structure behavior, varying a series of parameters. They conclude that the
values of the Young modulus of elasticity can not have effect on the arch collapse.

In 2001 Fanning et al*’ generate three-dimensional nonlinear finite element models, using a
commercially available finite element package, ANSYS?*. The masonry behavior is modeled
using a solid element that can have its stiffness modified by the development of cracks and
crushing. The fill is modeled as a Drucker—Prager material. Analysis enables good predictions
of the actual behavior of a masonry arch bridge.

Depending on the accuracy required, the finite element model of a masonry arch can be two-
dimensional or three-dimensional. More complex approaches are necessary for considering
some types of defects but on the other hand often increasing the element dimension does not
gives any additional information. It is therefore important to try to get a good balance between

the element dimension and the calculation time.

In this thesis, only two-dimensional finite element modeling will be considered in order to
have results comparable with the other methods treated (Thrust Line Analysis and Mechanism
Methods). Three dimensional modeling in FEM is very important to model the whole structure,
but requires a very high computational effort. Through two-dimensional modeling, it is possible
to study the structure in the plane more quickly and to have a first idea of its behavior.

Two dimensional finite element model of a masonry arch bridge can be discretized in
different ways, as just explained. Figure 2.28 shows the different approaches that can be used:

a) macro-modelling with an only homogeneous material; b) and c) simplified micro-modeling,

% www.lusas.com

! Fanning, P. J., and Boothby, T. E. (2001). “Three-dimensional modeling and full-scale testing of stone arch
bridges.” Comput. Struct., 79, 2645-2662.
¥ www.ansys.com
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Figure 2.28 Various Type of Discretization: a) macro-modelling; b) and c) simplified micro-modeling;
d), e) and f) detailed micro-modeling

that enable the detachment of adjacent parts simulating cracks; d), ) and f) detailed micro-
modeling, where units, mortar and unit-mortar interface are modeled separately.

There are also different models that can be used to describe the masonry behavior: i) elastic;
i) elastic NRT; iii) elasto-plastic; iv) elasto plastic NRT; v) elasto-brittle NRT. Obviously
linear elastic behavior is used mainly in the pre-failure behavior.

The next paragraph will deal with a particular elasto-plastic model developed by some
Belgian researchers in the last years. It is very interesting to study the progressive opening of

the different hinges.
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2.6 Elasto-Plastic Model

The last paragraph of this chapter will deal with a particular closed form solution derived by
some Belgian researchers™ for the structural stability of arch bridges. Also this approach is
based on the fundamental theorems of limit analysis and employs a simplified homogeneous
material model® to determine the critical points with a relatively small modeling effort.

Firstly, a basic model is presented starting from the equilibrium equations. The geometry of
the arch is described by the angle 6, the radius of the centerline »(6), the thickness of the arch
barrel b(0), the height of the backfill h, and the width of the arch B, as shown in figure 2.29.
After solving the differential equilibrium equations, the analytical expressions for the internal
forces are derived as a function of three constants of integration. To obtain an univocal
solution, boundary conditions must be introduced. These equations are used to determine the
three constants of integration, starting from the value of the abutment displacements. In this
way it is possible to determine also the displacements in every point of the arch.

Then the material properties can be added to allow the occurrence of cracks and the
subsequent formation of the hinges. The elasto-plastic model assumes a hinge to behave in a
perfect plastic manner. The load factor is increased until a hinge has been formed and the
boundary conditions are changed so the moment in the hinge stays constant. The process is

repeated until the formation of the fourth hinge.

X, X,.V.) X
(%, YI) Figure 2.29 Geometry of the arch bridge ® y‘)

2 Audenaert A., Peremans H. and De Wilde W.P. (2004), Static determination of the internal forces and
displacement in arch bridges, The masonry society Journal, 22 (1), pp. 97-109
39 Lourenco P. B., Computational Strategies for Masonry Structures, PhD thesis, Delft University, 1996
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a.

Equilibrium equations

The first step is is to derive the three equilibrium equations for an infinitesimal slice of the

arch with an angular extent of df, inclined from the vertical axis of the angle 6 (figure 2.30).

The external forces that act on the infinitesimal piece are: in the radial direction F,, and in the

tangential direction Fy. To ensure the equilibrium of this infinitesimal element, the weight of

this slice of arch W and the external forces applied on its extrados must be balanced by the

internal forces and moments (N, 7, M). Thus, the equilibrium equations for normal force N

(positive for tension stresses), shear force T (positive for clockwise rotation) and bending

moment M (positive if the intrados fiber are compressed) were derived as follow:

N

_aT do.
a0

oT do
502
N do
20 2

—W(H)cos@—NdH—%d9+ZF, =0

W(@)sin6’+%d9—Td6?+ZFg =0

M 194 Nid9+Trd9+Ma(W)+Ma(F) =0
50 50

Figure 2.30 Equilibrium of an slice of Arch.

The terms M,(W) and M,(F) respectively indicate the moments of the resultant of the self

weight and of the external forces, calculated in the pole a. The weight of the infinitesimal slice,

of the filling and the external vertical point load can be expressed as a function of the angle 6

and of the position on the arch.

Weight of an infinitesimal piece of Arch. The self weight of this slice W(0) is expressed in

function of: i) the radius r; ii) the specific weight of the material y [N/m’]; iii) the arch

thickness b. It results from the subtraction of the triangular segment of arch with base =r - b/2

to the bigger one with base =r + b/2 (figure 2.31):

o e A 2]

40
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Figure 2.32 Distributed load resulting
from backfill.

Figure 2.33 Concentrated load.

v |

Because the gravity center of the infinitesimal slice
does not coincide usually with the pole, there will rise a
moment (M,(6)) associated with the self weight W. The
distance between the gravity center and the pole is
called d.

b2

d=r
1272

3
M, (0)=p*Lsinado
12
Where 5 () = b (6) /7 (6)

Distributed load resulting from backfill. The fill
weight is a distributed load acting on the arch. The
masonry arch bridges use a lot of filling above the arch
to increase the dead load and prevent the formation of
tensile stresses that occur when live loads move along
the bridge. This load can be derived as a function of the
height of the fill 4 and the specific weight of the fill 7.
At first, the trapezoid area Ay (shown in figure 2.32) is

_ ‘:(bmax ;bmin )} o

Base —(bmax ;b“‘i“ ) =h- [r(@) + @} cos @

Height /= (r + %){sin(@ + %)} - (r + %){sin(@ —%)} =
=d 6’(;’ + 2}
2

Then the trapezoid area is multiplied for the fill weight

determined.

A4,

v to obtain the total vertical load:

V() =1y, {h —[r(9)+ %‘9)] cos 0}@(9%%9)}10 cos 6
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Finally, from the derivation of the vertical distributed load V(6) it is possible to define the

contribution of the vertical load in the radial direction p,d6 and in tangential direction psd6:

p,do=—y, [h - @(9)+@} cos 9}(40%@}0& 6-do

p,dO =1y, [h —(r(0)+%€)jcos 9}(r(9)+ @jcos Osin6-do

Concentrated load. With regards to the concentrated load, it is assumed as mathematical

model the following Dirac distribution:

5(0-a)=0, 0+«

[s(6-ayo=1 0=«
It is clear that the distribution is zero in every point, with the only exception of the case (6 = a)
where its value is defined implicitly by an integral expression. The concentrated load P applied

at & = o will be expressed as Po(6 - o). The contribution of the concentrated load to the

equilibrium equations is:
Component in radial direction:  — PS(0—a)cos 4@

Component in tangential direction: P¢J (;9 — a)sin ado

Moment respect to pole a: M, (F) = P5(9 — a){r(a) sina — F(Q)Sin Q‘dg

b. Solving the equilibrium equations
Once the weight of the infinitesimal slice, of the filling and the external vertical point load

are determined, it is possible to rewrite the equilibrium equations previously derived.

- 7/r277d6?cos€—Nd&—%d@—P5(€—a)cos 6d0+ p.df=0

7>nd@sin 0+%d@—Td6’+ PS(0—a)sin@d0+ p,d6 =0

3
%d@+N%d(9+Trd9+ w ’17—2sin ad 6 + p0d9.§+P5(¢9—a)|r(a)sina—r(9) sin6|d6 =0

42



METHODS AND MODEL FOR THE ANALYSIS OF MASONRY ARCHES

Dividing all the above mentioned expressions for the term df, makes possible to obtain the

indefinite equilibrium equations for the slice of the arch as follows:

~N-T'-p’ncos@+p, —P5(O-a)cosd =0
N'-T + p’nsin @+ p, + P60 —a)sin @ =0

3
M'+Nr'+Vr + ’17—2sin 0+ p, §+ P30 -a)r(a)sina —r(@)sin 6| =0

In these equation, the derivative with respect to @ is indicated by a prime while p, is the radial
component of the distributed force; py is the tangential component of the distributed force; v is
the specific weight of the arch masonry and # = b/r. In order to solve the three equations

system, the equilibrium equation in the tangential direction has been derived:

N"—T‘+(7/r277)'sint9+ w’ncos@+ p',+PS'(0—a)sin @+ PS(0—a)cosd=0

T'= N"+(7/r277)'sin49+ w’ncos@+ p',+PS'(0—a)sin @+ PS(0 —a)cos O

The last equation is substituted into the equilibrium equation in the radial direction, that

becomes:
- N—N"—(y/rzn)'sinﬁ—wzn cos@—p'g—P5'(9—a)sin 9—P5(9—a)c059+
—w’ncosf+ p, —PS(@—a)cosd =0

This quadratic equation can be rewritten as follow

N"+N =¢q(0)-P5'(0—a)sin@—2P5(0—a)cos 6

where: ¢(6)= —(yrziy)'sin 0—2p’ncosO—p',+p,
This function ¢(8) includes all the loads distributed in a continuous way that acts on the arch
bridge, such as the self-weight and the weight of the filling. In order to determine the correct

solution it is introduced the unit step function ue, (0 —a) = 0

ump(e—a):o, 0<a

, 02«
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Thus, the solution of this quadratic equation is in the form:

N(0)= [k, sin 6 + k, cos 0]+ NP(Q)

The term N,(6) can be expressed as:

N,(0)=u,(0)sin 0 +u,(0)cos &

6 6

Where: ul(H):J.cosﬂ q(B)dp - P{J. cos Bsin B5'(B —ar)+2cos” f5(S )dﬂ}

0 0

0 0

1,(0)= —Tsin ﬂ-q(ﬂ)dﬂ—Pﬁ(smz B5'(B-a)+2sin Bcos ,B&(,B—a))dﬂ}

After simplification, these expressions became:

u1(0)=fcosﬂ-q(ﬂ)dﬂ—Pus,ep(e—a); uz(9)=—fsinﬂ-q(ﬂ)dﬂ

By inserting the values of u;, u,, and N,(®) in N(@) we obtain the analytical expressions of

internal forces and moment, that are:

N(6) =k, sin @+ k, cos @ +sin Hjcos Pa(p)dp - cos Hjsm Pa(B)p — Psin Hump(e—a)
0 2
T(@) =k, cos@—k, sin @+ cos 9_[ cos ﬁq(ﬂ)dﬂ +sin QJ sin ﬁq(ﬂ)dﬂ —Pcostu,,, (6’ - a) +p’nsin@+ p,
0 0

M(9)=k3—jN(ﬂ)-r'dﬁ—TT( B)rdp - I[ sm,b’+pg }dﬂ PJé’ alr(a)sina—r(ﬂ)sin,b’klﬁ

0

So by resolving the differential equilibrium equations, the analytic equations of the internal
forces and moment (N(@), V(6),and M(6)) are derived as a function of the constants k;, k, and
k3. The constants are three because the fixed arch is three time hyperstatic. To find a univocal
solution for the internal forces of the arch, it needs to introduce boundary conditions in the

form of additional constraints.
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Boundary conditions

Bresse’s equations’" are introduced. These equations can be applied to calculate the vertical,
horizontal and angular displacements of every point of the arch as a function of the
displacement values of the boundary points. In particular, the displacements of the right
abutment u,, v; and @, can be derived starting from the displacements of the left fixed abutment

uy, vy and @ (figure 2.34):

IHZM or :

2

O, =0 +— | — +| — | d@
s EHJI " (66’)

0, 0, 2
1 fN ox 1 M |, (or
U, = Uy + — +— ——d9+—j -y J—.r° +|—1 dé
2 1 (J/z )’1)(01 EQAGH Eg()’z )’)1 ((%J
1

1

92 92 2
(s — LN 4o L (e VM |2 (2
Vy =W (x2 x1)¢1+E9 y 806[0 E!(xz X )I r —{80) do

where: u is the horizontal displacement; v is the vertical displacement; ¢ is the rotation of the
elastic line; A4 is the area of the cross-section; / is the rotational inertia of the cross section; E is
the modulus of elasticity; x is the horizontal position coordinate; and y is the vertical position
coordinate. The sign convention for the horizontal and vertical deflections are in accordance
with the one used for the reference axis (x ; y), while the angular deflection is assumed to be
positive for clockwise rotations. The unique values of the three constants k;, &, and k; can be
derived from the Bresse’s equations only if the displacements and rotations in both the
abutments are known.

Then N(6) and M(6) formulations can
be inserted into the Bresse’s equations,
remembering that N(6), T(6), and M(6)

are linear functions of the constants k;,

k, e k3 and that all the operator applied
to N(6) and M(0) in Bresse’s equations

are linear. The equations obtained can be

(U, vi, 9,) (u, v, §2)

written also in matrix notation, placing Figure 2.34 Deflections in the fixed supports

3! Timoshenko S. P. (1953), History of Strength of Materials, New Y ork, McGraw-Hill Book Co.
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on the right side the terms containing the unknown constants k, and on the left side all known

terms.

E, +E,P ay Gy, dis k,
E, +E,P |=|a, ay ay || k,
E, +E,P as asz, as; | | ks

If matrix A is non-singular matrix, k;, k» e ks can be determined uniquely. In Annex 2.1,
Bresse’s equations with the replacement of N(0) and M(0) formulations and the terms that

composed matrix A and E are reported.

Elastic-Plastic material properties

This analysis has not yet taken into account the mechanical characteristics of the material
constituting the arch bridge. When considering a historic masonry structure, the influence of
the crack rise and their development is a very important task that cannot be neglected for the
success of the analysis. To simulate the behavior of the masonry, the following assumptions
have been taken into account: i) on reaching a defined tensile strength o; a crack occurs; ii) on
reaching a defined compressive strength o, the material behaves perfectly plastic; iii) for o, < o
< o, the material behaves linearly elastically.

Actually the tensile strength of masonry is much smaller than the compressive one, so it can
be considered equal to zero, in accordance with Heyman’s theory. Under this assumption, the

possibilities of stress distributions are represented in figure 2.35, where xy represents the height

a1 Ol
x i 1
% ) =
I n— Xr
- ;.—..—. xl.
oS — o 3 e e ; ..
b b s e -

n -7
~ \ o

=\ : |
= - | Ix“ I“P

a2 a2 Od Td (o1

Linear elastic ~ Elasto-fragile Elasto-plastic Elasto-plasto-fragile Pla.sto.—ﬁ’afgile
distribution distribution distribution distribution distribution

Figure 2.35 Possible distribution of stress
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of the crack and x, the height of the plastic section. Now the expressions of N(6) and M(0) can

be normalized by introducing n,(6) and m,(6) respectively as:

LN
-o,b
M6

py - 2100)
-o,b

where b represents height of the arch barrel. If we consider an (n;, mg,)-plane, each of the
different stress distributions identifies a zone (Fig. 2.19.). The boundary surface of the diagram

corresponds to the plasto-fragile distribution and to the formation of a plastic hinge.

el=linear-elastic
epd=eclasto-plastic

m,
B ef=elasto-fragile
015 epf=clasto-plasto-fragile
0.1
0.05
0
-0.05
-0.1
-0' I 2 1 1 1 1 1

Figure 2.36 Envelope of the distribution of stress

Definition of the boundary surface. The boundary surface can be expressed by two
expressions, one for the positive values of the moment (upper curve) and the other for the
negative ones (lower curve), as following:

2y =my +0.5n5 +0.5n,
z, =—my +0.5n] + 0.5n,
The first condition, for which z; or z; is equal to zero, corresponds to the formation of the first

plastic hinge.
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Construction of the Model

The loading capacity of the arch is then studied as a function of the point load P. Assuming
that both supports are fixed, the structure is statically indeterminate to the third degree of
freedom and the collapse will happen as soon 4 hinges are formed. The first hinge appears for
the smallest value of P, which gives rise to a normal force and a moment able to satisfy the
relationship above. The corresponding angle 0 identifies the position of the first hinge. The
process is repeated until the fourth hinge is formed. The equilibrium equations remain the

same, only the boundary conditions change.
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Bresse’s equations with the replacement of N(0) and M(0) formulations

1)  Bresse’s First Equation...............coooiiiiiiiiiiiiiii p- 51
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ii1) Bresse’s Third Equation...............oooiiiiiiiiiiii e, p. 55
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Bresse’s First Equation

The replacement of N(0) and M(0) formulations in Bresse’s equations:

¢ ¢
kysiné +k, cos& +sin 5_[ cos ﬂq(ﬂ)dﬂ —cos §Isin ﬂq(ﬁ)dﬂ — Psindug,, (§ - 05)] -r'dé
0 0

< <
ki cos& —k, sin & +cos g’fj. cosﬂq(ﬂ)dﬁ +sin fj.sin ﬁq(ﬂ)dﬁ —Pcosdugy,, (§ - a)+
0 0

0 3
+Wznsin§+p9]'rd§—j.{7r 717—2s1n§+p6, :‘d§+
0

9 1 or Y’
—PI 5(§—alr(a)sina—r(§)sin§|d.§} 7 r2+(—’"j }d@

0

Matrix notation:
E,+E,P a,a;pd; k,
E) +E P |=|ayaxa,; || k,
Ey +EuP aya3,05; | | &y

Bresse’s First Equation Terms:

Ey=p,—p+ I[I[fn +f21(§)+f31(5)]d§J} r2+[@j2de

| ( [Ua(@)+ @)+ £ule )]d:j [ﬂ]zde
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where:

¢ ¢
fu6)= {cos ¢ [ cos Ba(B)dp +sin & sin Bg(BHB+pnsin & + p}

£u(&)= {sin gi cos Bq(B)dp - cos éi sin fq(B 1B }(g—;j

3

b )
](31(5):]795"'7/’”3;7_231“5

f2(&)=—coséu,, (£-a)r
fn(&)=-sinéu, (¢ -a) [g—gj
fo(&)=06(-a)r(a)sina —r(£)sin ]
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Bresse’s Second Equation

The replacement of N(0) and M(0) formulations in Bresse’s equations:

6, 0 0
Uy =y + vy — 1)y +% j ky sin 6+ k, cos @ +sin 0 j cos &(E)dE — cos 0jsin sq(EMe +
6, 0 0

1t
d¢9+EI{k3+

ox

— Psin G, (0- a)] 150

5 <
kysin &+ k, cos & +5sin .fJ. cos ﬂq(ﬂ)dﬁ —Ccos fJ‘ sin ﬁq(ﬁ)dﬂ — Psinguy,, (.f - a)] r'dé
0 0

C— T ct—m

‘ ¢
ky cos & —k, sin & +cos cfj cos ,Bq(ﬁ)d,b’ +sin fJ. sin ﬁq(ﬂ)dﬂ — PcosGugy,, (.f - a)+
0

6
+W2nsin§+p9]-rd§—.[{ﬂ3717—251n§+p9 }d§+
0

f (r2-) or Y’
—PJ5(§—a1r(a)sina—r(f)sin§|d§ Zf r2+(—J do

0

Matrix notation:
E, +E,P a,a;pd; ks
E) +E,P |=| ayay,a, || k,
Ey +E,uP aya3,05; | | ks

Bresse’s Second Equation Terms:

E) =u,—u, _(yz_y1)§01 +

5] [ﬁu( Iy U[ﬁl(é)%l(f)%l(é)]dﬂyzl‘y ,/ﬁ{g—;ﬂw
b léj{f‘” Aae @ (&) )+ 1l dijz L+ g—;}
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where:

¢ e
fulé)= [cos £[ cos Bg(B)dp +sin & [ sin pa(B)B+yrnsin §+p9}-r

£1(E)= {sin gi cos fg(f)dp - cos fi sin ﬂq(ﬂ)dﬂ}(g—;]

b n .
ng(ég):peg""ﬂ” Esmg

S (9) =sin GT cos fq(f)dcf —CoS Hjl sin §q(§)d§
Sa(§)==coséu,,, (£ -a)r

126)=sin g, 6ol 2
f2(§)=8(5 -a)r(@)sina —r(§)sing]

fio(0)=—sinu,,,(0-a)
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Bresse’s Third Equation

The replacement of N(0) and M(0) formulations in Bresse’s equations:

vy =V — (X, — X))@, +—J kysin @ +k, cos @ +sin jSos &g §)d§ cos«9'|.sm &q §)d§+
0 ] r
_ Psi _ Y 49—~
Psin Gustep(ﬁ a)]Aaé’ do Z J.{k3 +

1

¢ ¢
kysin & +k, cos & +sin é‘j cos ,Bq(ﬁ)d/i’ —Cos §I sin ﬁq(ﬁ)dﬂ — Psin §ump (§ - a)] r'dé+
0 0

Sl ¥ O

¢ ¢
ky cos & —k,sin & + cos 5_[ cos ﬁq(ﬂ)dﬂ +sin §I sin ,Bq(/i’)d,B —Pcosduy,, (§ - a)+
L 0 0

0

3

. . b

+74,2,7 sin & + pg]-rd§—I|:W3 717—2sm§+ Do E}d§+
0

—PT&(g—a]r(a)sina—r(f)sin§|d§} =) r2+(1j2 }dﬁ

0

Matrix notation:
E, +E,P a;a;a; ks
E) +E,P =] ayay,a, || k,
Ey +E,P aya3,05; | | ks

Bresse’s Third Equation Terms:

Ey=v,—v +(x2_xl)¢l +
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where:
¢ ¢
fu6)= {cos £[ cos Bg(B)dp +sin & [ sin pg( BB+ prnsin §+pg]r
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Matrix A
The Matrix A can be defined as follow:

ap dyp iz
A=|ay ay ay

dsy dzp d3z
Where:

2
AN 0 7’2+[§;j
ay, %J‘[Isinf(s—;jd§+J‘cos§~rd§]-fd9
0 0

=—|——7—d0b
BT 7
6
0, 0 0 2
a21:l sin @ a_x — J‘Sinf ﬁ d§+J.COS§'7"d§ (yz_y) }"2+ ﬁ 40
E 4060 o0& 1 00
o, 0 0
HZ 1 4 2
1 ox . or (yz—y) 2 (ar]
=—|qcosl — |- I—sm d +Jcos | = |d< |- . +|— | tdO
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Chapter 3

Application

Masonry Arch Bridge

IC

to a Gener







3.1 SOMMARIO

"Marco Polo descrive un ponte, pietra per pietra.

- Ma qual'e la pietra che sostiene il ponte? - chiede Kublai Kan.

- Il ponte non é sostenuto da questa o quella pietra, - risponde Marco, - ma dalla linea dell'arco che esse formano.
Kublai Kan rimane silenzioso, riflettendo. Poi soggiunge: - Perché mi parli delle pietre? E solo dell'arco che
m'importa. Polo risponde: - Senza pietre non c'é arco”.

Italo Calvino

Scopo di questa tesi ¢ quello di confrontare fra di loro e valutare diversi metodi analitici e
numerici per la verifica di ponti ad arco in muratura. La parte di valutazione ¢ abbastanza
difficile per via dei molti parametri materiali sconosciuti nei ponti esistenti. Prima di affrontare
I’analisi di un ponte in muratura reale, in questo capitolo si analizzera un ponte ad arco
generico per dare una panoramica sull’utilizzo dei vari metodi. Per facilitare 1’analisi, il ponte
sara caratterizzato da un arco a tutto sesto, incastrato alle estremita. Le proprieta materiali
saranno ragionevolmente ipotizzate.

I metodi analizzati saranno quelli esposti nel capitolo 2: 1) analisi limite attraverso la curva
delle pressioni; ii) metodo dei meccanismi; iii) metodo agli elementi finiti. Per le suddette
analisi, ci si avvarra dei software descritti nel capitolo precedente. Per ultimo si applichera
anche il particolare approccio in forma chiusa, che sfrutta il modello materiale elasto-plastico:
il vantaggio di questo approccio ¢ quello di determinare i punti critici con uno sforzo
computazionale relativamente basso e di evidenziare a quale carico corrisponda I’apertura di
ogni cerniera. | vari metodi e modelli saranno confrontati fra di loro sulla base del carico limite

ultimo e della posizione delle varie cerniere.
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3.2 A Generic Arch Subjected to a Vertical Concentrated Load

The aim of this thesis is to compare and to evaluate different analytical and numerical
methods to verify masonry arch bridges. The step of assessment is very difficult because many
material parameters are unknown in existing structures. Before approaching the analysis of a
real masonry bridge, this chapter will analyze a generic arch bridge to give a general overview
on the use of various methods and different material models. To facilitate analysis, the bridge is
characterized by a round arch. The material properties are reasonably hypothesized. The

boundary conditions are assumed to be:

where ¢, u, v are the generalized displacements of the two supports'. The structure is statically
determinate to the third degree and will collapse as soon the four hinges occur. A vertical
concentrated point load P, applied at 0.75 (42.97°), and the weight of the backfill are imposed
on the bridge.

The methods discussed are those described in chapter 2: 1) Thrust Line Analysis Method, ii)
Mechanism Method, iii) Finite Element Method. For the analyzes, the computer software
described in the previous chapter will be used. Finally, the particular approach in closed form
based on the elastic-plastic material model will be also be applied. The different methods and

models will be compared with each other in terms of collapse load and the position of the four

P

= v

hinges.

Figure 3.1 Masonry arch under study

" The subscript 1 stays for the left abutment; the subscript 2 stays for the right one.
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The masonry arch bridge in exam has the following geometrical and material properties (as
showed by figure 3.1):

Basic Geometrical Parameters of the Arch:

Span Ly= 2,80 m;

Radius »= 1,4 m;

Thickness of the Arch Barrel b = 0,5 m;
Height of the Backfill 4 =2 m;

Width of the Arch B=1 m.

Masonry data:

The material is assumed to be homogeneous.

e Specific weight of the masonry arch y = 21000 N/m’;

Young’s Modulus = 5000 MPa;
Poisson’s ratio = 0,3;

Compressive Strenght of Masonry = 8 MPa.

Backfill data:

The material is assumed to be homogeneous.

Specific weight of the backfill y, = 21600 N/m’;
Young’s Modulus = 15000 MPa;

Poisson’s ratio = 0.3;

Angle of friction = 35;

Cohesion = 0.001;

Angle of dilatency = 35.
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3.3 Archie-M and Ring

The software chosen to simulate the analysis of the generic masonry arch bridge through the
Thrust Line Analysis Method and the Mechanism Method are Archie-M 2.4.1 and RING 3.0.
Both the programs are based on the principles of the Limit Analysis: Archie-M uses the lower
bound (static) theorem, while Ring uses the upper bound (kinematic) theorem.

Both the programs require as material input:

e For Masonry: unit weight (KN/m®) and compressive strength (MPa). In Archie-M, the
upper limit for masonry compressive strength is 30 Mpa.

e  For Backfill: unit weight (KN/m®) and angle of friction (degree). Ring requires also the
value of the backfill cohesion, Archie-M not.

In both cases, the arch is divided into fourty blocks. The same type of load has been chosen for

the analyzes with the two programs: it’s a /KN single Axle Load.

i,
o~ e

/7 Span1 ',

/ OBVIS

Figure 3.2 Analysis with the Thrust Analysis Method (Archie-M)

.limitstate Om

Figure 3.3 Analysis with the Mechanism Method (Ring)
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Considerations. As figures 3.2 and 3.3 illustrate, the positions of the hinges are almost the
same for the two methods: 1) one hinge is under the point where the concentrated load is
imposed; i1) two hinges are in correspondence of the supports. The only difference is that in
Archie-M the hinge near the right support corresponds with it, while in Ring the same hinge is
positioned higher up on the line of the arch. In addition to hinge positions, Ring gives as
graphic output also the failure mode. Concerning the collapse load, Archie-M estimates a load

smaller than Ring: the first one is equal to 165.2 KN, the second one is equal to 558 KN.

Sensitivity Analysis. In this study, Ring is also used to perform a sensitivity analysis of the
masonry arch bridge under study. A number of different parameters has been varied to identify
their influence on the bridge behavior. The geometry parameters, such as span, rise and
thickness of the arch, have not been not investigated in the analysis. The reason is that the
geometric parameters are more easy to measure than the material parameters. The considered
problems are:

* number of segments in the arch;

» angle of internal friction;

* unit weight of masonry;

* unit weight of backfill;

* height of the backfill.

The results are reported in a form of charts giving value of ultimate loads in relationship with

the analyzed parameters (figures from 3.4 to 3.8).

Figure 3.4: Parametric Study for number of segments in the Arch

Problem 1 - Ring
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Figure 3.5: Parametric Study for angle of Internal friction
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Figure 3.6: Parametric Study for the Unit Weight of Masonry
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Figure 3.7: Parametric Study for the Unit Weight of Backfill
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Figure 3.8: Parametric Study for the height of Backfill

Problem 5 - Ring
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Several deductions can be made from these parametric studies:

* the number of arch segments has a limited influence on the collapse load. A sufficient
number of segments is equal to forty. This may lead to a very small overestimate of the load
capacity, but allows to save computational effort;

» the increase of internal friction angle of the backfill gives higher values of the collapse load;

* Dboth unit weights of masonry and of backfill have a stabilizing effect on the arch behavior.
Their increase provides higher values of the collapse load;

+ the presence of backfill over the arch has a crucial influence on the ultimate load.
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The software chosen to simulate the analysis of the generic masonry arch bridge with the
Finite Element Method is Abaqus®. Abaqus is able to solve a wide range of linear and non

linear problems, that involve either static and dynamic response. The software is divided into

3.4 Finite Element Method

modules that respect the logic of the organizational process. The modules are:

-+ Part: where the elements of the model can be created;

- Property : where materials and sections of each part can be defined;

- Assembly: where it’s possible to create instances of the parts and to position the instances

in a global coordinate system, thus creating the assembly.

- Step: where it is possible to create analysis steps and specify output requests;

- Load: where the load, boundary condition, and field managers can be defined;

*  Mesh: where the mesh can be generated;

- Job: where jobs are created and their progression is monitored,

Visualization: where the output database is analyzed.

Masonry Properties. Defining the material property is the most delicate step. Between the

various types of discretizations described in chapter 2, the macro-modeling is chosen, trying to

4 Abaqui/CAF 6.9-1 - Model Database: CATemp\Archi buoanil\ 20120306412 o audencant_mano.cae [Viewport: 1]

¥ file Moded Viespon Yeew Pan  Shape Festyre Tock Plug-ine Help NP =] [ [

LEE S ¢ LEE

Model | Results

5 Model Datobase -l

= 4 Modek 1)
= Model-1
)
5 haco
# & Festures (1)
b sen
b Surfsces
® Siins
i Saingees

i 8 Section Assignments (1)

B Orientations
B Composite Layups
i Engineering Festures
4 fwco Aud 2
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Sexs
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[ Saringees

i 8 Section Assignments (1)
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Module: | Part [v] Moset Medsrt [=] pam arccsudz [+

L A4
[
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"

Figure 3.9 Abaqus’s screen

2 ABAQUS: www.simulia.com.
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take advantage of constitutive laws already implemented in the software and using equivalent
materials to model masonry. The general description of a 2D nonlinear constitutive model of a
concrete-like masonry consists of three elements: 1) pre-failure behavior; ii) limit domain; iii)
post-failure behavior. The pre-failure behavior is considered as linear elastic for both
compression and tension. The data requested are the Young’s Modulus and the Poisson’s Ratio.

There are various limit domains for concrete-like material. All of them have similar shape
based on Von Mises domain in compression and assume a considerably limited tensile strength.
The material model used to defined the properties of masonry outside the elastic range is the
concrete smeared cracking model. This material model is based on the William-Warnke
Criterion, just explained in chapter 2. The data needed to characterize the material behavior are:
1) Comp Stress, that is the absolute value of compressive stress; ii) Plastic Strain. Table 3.1
reports the values used, that come from simple static tests performed by University of Pavia.

The compressive strength is 8 MPa.

Comp stress | Plastic strain
(MPa)

1.05 0

1.5 0.000261
2.13 0.000696
2.6 0.001172
2.94 0.001981
3.25 0.002524
3.31 0.003379
3.39 0.004254
3.38 0.004555
3.34 0.004864

Table 3.1 Data requested for Smeared Crack Model

When the stresses pass the limit boundary, the material starts to behave in accordance with
assumed post-failure conditions. Abaqus offers several options. The “Tension stiffening”
option allows to define the strain-softening behavior for cracked concrete, by means of a post-
failure stress-strain relation or by applying a fracture energy cracking criterion. In this case, the
post-failure behavior is defined as a function of the displacement at which a linear loss of

strength after cracking gives zero stress.
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The Failure Ratios are used to define the shape of the failure surface. Four failure ratios can
be specified: i) the ratio of the ultimate bi-axial compressive stress to the ultimate uni-axial
compressive stress; ii) the absolute value of the ratio of the uniaxial tensile stress at failure to
the ultimate uniaxial compressive stress; iii) the ratio of the magnitude of a principal
component of plastic strain at ultimate stress in biaxial compression to the plastic strain at
ultimate stress in uniaxial compression; iv) the ratio of the tensile principal stress at cracking, in
plane stress, when the other principal stress is at the ultimate compressive value, to the tensile

cracking stress under uniaxial tension.

Ratio 1 Ratio 2 Ratio 3 Ratio 4
2 0.041 1.28 1.45

Table 3.2 Failure Ratios

Backfill Properties. A backfill can be modelled by means of 2D elements, that provide to
transfer live loads and passive reaction on the arch barrel. The material of the soil is usually
nonlinear defined by Mohr-Coloumb or Drucker-Prager limit criteria but also a crude approach
involving linear elastic material is allowed. In this case a Drucker-Prager domain is used. The

data requested are: 1) angle of friction; ii) Flowstress Ratio; iii) Dilatation Angle.

Figure 3.10 Mesh used
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Collapse load. The analysis is non linear and requires an iterative solver. A Lower Bound
Approach is used as criterion to determinate the maximum sustainable vertical load sustainable.
Then as maximum load, this study considers the load required to form three hinges and initiate
a fourth. The collapse load calculated is about 279 KN. In figure 3.11, there are reported the
principal stresses in the plane: the tension stresses are highlighted in grey. Under the point of
application of the vertical load, a hinge occurs as expected. Two hinges opens near the two
fixed supports, but not in correspondence. The location of these hinges is in good agreement
with the experimental study on the arch, except for the one that opens near the left support. In
fact this hinge occurs at intrados, while it has to open at extrados. However the results indicate
that the a priori assumption regarding the occurrence of two hinges in the two support points

which is frequently made is only approximately true.

N\
="

//

Figure 3.11 Principal Stresses in the Plane
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3.5 Elasto-Plastic Model

h
v
(XI: Yl) ) ) (X L] Y!)
Figure 3.12 Parameters for elasto-plastic model
@ The elasto-plastic model presented in the previous
>y chapter is now used to determine the maximum vertical

-

| Calculate ay, Ey, ;s I]

load of the masonry arch bridge under study. Besides the

il geometric characteristics explicated in the first
Determine ki, k;, ks paragraph, the model requires other parameters that can
B+ B P aya,a, & be deduced: i) the values of 6, and 0, (figure 3.12); ii) the
‘E_\-_ _Ez_vp =ty dyy dyy |- k_v
E,+EP| |a,a,a, |k cartesian coordinates of the two support points (X, yi, X2,
b y2). The masonry arch bridge is statically determinate to
Calculate N(B),T(8),M(8) the third degree and will collapse as soon the four hinges
v occur. The different steps are reported in a schematic
CalfUIate s way in the following: the first one is to determine the
N(8) M(8) ) .
= _-( = Mg =— (-’; first hinge. Figure 3.13 shows the flowchart of the
gty O ;0
J numerical algorithm.
Find the B, che minimizes
P(B), |mp||C|tl'ic:Ef_m;d by: First hinge.
pral= 2 A. Calculate Ej;, E;; and ay;:

Figure 3.13 Flowchart of the Algorithm
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-0.1208649316 108 -0. -0.7325147430 10?
ia = 0.3934072695 108 03745218447 108 -0.
-0.1354014926 108 -0.2245554244 108 0.

B. Determine the value of the constants of integration k; k; kj3:

kI =-0.00002 + 0.1190465854 P
k2 =-13863.55518 — 0.1838058012 P

k3 =-1967.20068 + 0.0197632153 P

C. Inserting k; k, k; in the differential equilibrium equations, it is possible to express the
internal forces in terms of the load P unknown:
N:=kl*sin(theta)+k2*cos (theta)+sin(theta) *int (cos(theta) *q, theta=0. .theta)-cos(the
ta)*int (sin(theta) *q, theta=0..theta)-P*sin(theta) *ustep (alpha, theta);

V:=kl*cos (theta)-k2*sin(theta) + cos(theta)*int (cos(theta)*q,theta=0..theta) +
sin(theta) *int (sin(theta) *q,theta=0..theta) -
P*cos (theta) *ustep (alpha,theta) +Gamma*r*2*eta*sin (theta) +ptheta;

M:=k3 - int(V*r,theta=0..theta) -
int (Gamma*r*3*eta*3/12*%sin(theta) +ptheta*h/2 , theta=0. .theta) ;

D. Then the normalized version of N(@) and M(6), i.e. n; and mg, can be calculated:

nd = 02500000000 10”0 (=0.00002 + 0.1190465854 P sin(8)
+0.2500000000 10°5 (~13863 55518 — 01838058012 P) cos(8) + 02500000000 10~ sin()
(21663. sin(8) cos(8) + 21663. 6 + 77976, sin(8) cos(8)° + 27360. sin(6)° — 54720, sin(8) cos(8)” — 109440, sin(6)) —
02500000000 105 cos(8)
(21663, + 17325 cos(6)° — 38988 sin(8)” — 27360 sin(8)" cos(8) — 54720. cos(8) + 54720, cos(B)" — 38988 cos(8) "

6 [0 8<075)
—0.2500000000 10™° Psin(8) | { -
L1 075<8)

md = 002659686664 — 01417581784 10'6 P+0.1650000000 10'10 sin(6) — 0.9821343295 10'7 sin(6) P

+0.008685213025 cos(8) +0.1516397860 10_6 P cos(8)-0.01397070000 cos(8)3 —-0.01787197500 sin(6) 6

5 ) / 3
+0.006433020000 cos(8)” — 0.02872800000 cos(8) - 0.006433020000 cos(8) sin(8)’ ~ 0.008577360000 sin(B)* cos(8)

[0 8<07500000000 6 [ 0. 8<0.7500000000)
P|{ |sin(8) - 0.5623519770 107 P | { .

. L otherwise L L otherwise )

+0.8250000000 10_6
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E. Calculate il 6,,, that minimizes P(0):
zy =my +0.5n; +0.5n,

z, =—my +0.5n; +0.5n,

The two functions z; and z, can’t be simultaneously zero. If z; and z, are plotted as a
function of the angle 6, at increasing of point load the function z, approaches zero (3.74).
This condition corresponds to the formation of the first plastic hinge. The first value
of load, for which z, is equal to zero, corresponds to the value of load P,,,; = 37200 N and
Omax1 = 0.7163.

Figure 3.14 Formation of the first hinge

Second hinge.
In the presence of a hinge, the structure becomes statically indeterminate to the second degree.
The new value for P is now given by P=P,,,.;/+ AP, where P, is just determined and 4P is

the unknown value.

A. Equilibrium equations must be rewritten as a function of the new increment 4P unknown:

4 4
N(8)=k, sin 6+ k, cosO+sin e.[ cos fg(B)dp - cos0 I Sin Sg( BV — Py Sin O (0— )~ APsin O, (0— )
0 0

6 0
T(H) =k, cos@—k,sinf+cos HJ- cos ﬁq(,[ﬁ’)dﬁ +sin 6’-[ sin ﬂq(ﬂ)dﬂ — Bax1 €08 G, (9 - a)— AP cos b, (9 - a)
0 0
+ Wzn sinf+ p,

0 0 3
M(0)=k; —J'V(ﬂ)-rdﬁ—f{rﬁ Tosinf+.py ﬂdﬂ
0 0
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B. The new boundary conditions can be expressed as:

Mmaxl = M(Hmaxl)

0,

1 ¢N o 1 M
Uy =u1+(y3—y1)¢1+(y2—y3)¢2+E9 y azd9+5bf(y3—y)7rd9

1
0,
N 0O 1 M
v2:v1+(x3—x1)go ( —X ¢2+_.[A 6)6}’ Eb[(%_x)T’”d‘g
1

C. The expressions of N (6), M (6) and T (6) are replaced in boundary conditions, redefining

the matrices:
E\ +EP ap ap ags ky
Ey +EnP |=|ay ay ay || ky

Ey +EyP asy ay asz | | ks

D. The three constants of integration k;, k,, k3 can be calculated as:
kI =4298991217 + 0.03253555874 P
k2 =-21392 80399 — 0 2370884169 P

k3 =-1158802301 + 0.1403638416 F

E. Calculate the increase A4P,,,,; regards to P, and the position of the second hinge:

AP gy 1= 28T60N € Opgn2 = -1.57

Also in this case, the function z, reaches the zero first.

A5 1 05 0 Theta Angle 05 1 15 2

Figure 3.15 Formation of the second hinge
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Third Hinge.
The structure is now one degree statically indeterminate.

A. The equilibrium equations and boundary conditions are rewritten as function of the new
conditions.

B. The three constants of integration ki, ky, k3 are calculated as:
k1 =5236.166396 + 0.05652328061 P

k2 =-28214.13658 — 0.1292173379 P

k3 =2880.858807 + 0.1199459778 P

C. Calculate the increase 4P, regards to P,y and the position of the third hinge:
AP o= 24800N € 0,43 = -0.4021

In this case the function z; reaches the zero first.

1]
Theta Angle

Figure 3.16 Formation of the third hinae

Fourth Hinge.

A. The equilibrium equations and boundary conditions are rewritten as function of the new
conditions.

B. The three constants of integration k;, k>, k; are calculated as:
k]l =6637.227869
k2 =-31417.0899%

k3 = 5853.999908
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C. Calculate the increase 4P regards to P,..; and the position of the fourth hinge:

APypgr3=43.400N € O,rs = 1.33

Also in this case the function z; reaches the zero first.

e | | | | | | |
2 B 0
Theta Angle

Figure 3.17 Formation of the fourth hinge

Considerations. The collapse load is obtained by summing the Pmax; and the increments
APaxi, APpax2, APpays calculated for the different hinges. Its value is 134160 N. As figure 3.18
shows, the first hinge opens under the point where the load is imposed. The second hinge
occurs at the springing, in the left abutment. The fourth hinge occurs close to the right support,

but not exactly in. The location of these hinges is in good agreement with the experimental

study on the arch and with Heyman’s theory.

Third Hinge: Y
=-0.40 (-22.92°)

First Hinge:
0=0.72 (41.25°)

Fourth Hinge:
0=1.33(76.20°)

Second Hinge:

0=-157 (-900)\

-1.65 0 1.65 %
Figure 3.18 Position of the Four Hinges
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3.6 Comparison between results

Figure 3.19 Thrust Line Analysis (Archie-M) Figure 3.20 Mechanism Method (Ring)

N\ S als” /|
7 PR

Figure 3.21 Finite Element Method Figure 3.22 Elasto-Plastic Model

Different analytical and numerical methods for the assessment of masonry arch bridges have
been applied to a generic arch bridge. Concerning the hinge positions, Ring, Archie-M and the
elasto-plastic model have shown similar results. Small differences are found near the point of
application of concentrated load, probably due to the different distribution of live load in the
various models. There are little differences also concerning the position of fourth hinge near the
right support. In particular, in Archie-M the hinge corresponds with the support, while in Ring
and in the elasto-plastic model the same hinge is positioned higher up on the line of the arch.
Concerning the hinge positions in the finite element model, there is a good correspondence
with the other models for the first hinge - that occur under the point of load application — and
for the fourth hinge — that opens near the right support. The positions of the other hinges are
different from those of other models. In fact the third hinge moves to the arch center, while the
second hinge occurs at intrados and not at extrados. The differences between the first three
models and the finite element model can be explained, thinking to the different conceptual

bases: Archie-M, Ring and the Elasto-Plastic model derive from the principles of limit state
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analysis, while the Finite Element Model comes from a completely different approach.
However the results indicate that the a priori assumption regarding the occurrence of two

hinges in the two support points which is frequently made is only approximately true.

FIRST | SECOND | THIRD | FOURTH | collapse
HINGE | HINGE | HINGE | HINGE Load
(rad) (rad) (rad) (rad) (KN)
ARCHIE-M 0.60 -1.57 -0.47 1.57 165
LIMITSTATE
RING 060 | -157 | -0.40 | 1.41 558
FINITE
cevent | 067 | -1.37 0 1.37 279
ELASTO-
PLASTIC 0.72 -1.57 | -0.40 1.33 138

Table 3.3 Hinge position and Failure Load for Different Methods

Concerning the collapse load, elasto-plastic model and Archie-M have shown a comparable
behavior. The Ring collapse load is significantly higher than the others, probably for two
reasons. The first one is that the other three models use a lower bound approach to determinate
the maximum vertical load sustainable, while Ring uses an upper bound approach. The second
one is that the rigid-plastic model neglects the elasticity of the masonry. This factor is very
important when the thickness of the arch is big as in the bridge in exam. This example
demonstrates that the elasticity of the material has a great influence on the determination of the
collapse load. The differences in the collapse load can be summarized as follows: Elasto-Plastic

collapse load < Archie-M collapse load < Finite Element collapse load < Ring collapse load.

Worst load position. In this example, the position of the load has been determined a priori
to compare between them the various methods. Actually, for practical reasons it’s very
interesting to study the worst load position that gives rise to the smallest collapse load. So the
last analysis made on the generic arch bridge is of this type. The most critical position is
founded at 2025 mm from the left abutment, about at a quarter of the span, as expected. The
maximum load that can be applied at this point has been calculated with Ring and is equal to
250 KN.
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Chapter 4
Case Study of Clemente Bridge







4.1 SOMMARIO

“Ti piaceva di fermarti sul ponte, che valica il Savio col grande arco quasi romano, appoggiato al pacifico
parapetto guardavi I’acqua poca e lenta passare laggiu tanto in basso.. Di sul ponte é piu facile orientarsi: c’e la
rocca dietro, a ridosso, con gli avanzi della vecchia murata, che coronano I'ultimo colle strapiombante sul fiume;

tutto I’alto bacino del Savio a monte, e il piano aperto a valle fino al mare si dispongono intorno a questo centro

2

naturale come in un quadro perfetto, dove ogni particolare ha il suo posto certo.
Renato Serra

Il caso studio oggetto della presente ricerca € il Ponte Clemente, situato sul fiume Savio a
Cesena. Si tratta di un ponte stradale simmetrico, con struttura ad arco in muratura. Le tre
campate sono caratterizzate da archi a sesto ribassato, sostenuti da massicci pilastri. Per quanto
riguarda la storia, nel 1729 Papa Benedetto XII1 autorizza I’inizio dei lavori in seguito al crollo
dell’esistente ponte in legno, ma é solo nel 1733 che i lavori iniziano con la successione di Papa
Clemente XII, che da il suo nome al ponte. Nel 1771 il ponte si puo dire completato. Diversi
sono gli architetti chiamati a dare pareri o0 a partecipare attivamente all’opera in questo periodo:
tra i piu noti ricordiamo Ferdinando Fuga e Luigi Vanvitelli. 1l ponte non soffre nel tempo
particolari danni fino alla seconda guerra mondiale, quando le truppe tedesche in ritirata fanno
saltare I’arcata centrale, da subito ricostruita dagli Alleati.

Attualmente il Ponte presenta cricche verticali vicino ai piloni di nord-est e di sud-est. Non
si tratta di fenomeni recenti, infatti vengono gia citati in una relazione del 1776. Queste lesioni
0ggi appaiono stabili e i bordi consolidati.

Le caratteristiche meccaniche dei materiali costituenti la struttura portante del ponte sono
state stimate attraverso prove di compressione monoassiale sui mattoni e di punzonamento sulla
malta. Per quanto riguarda la geometria della sezione dell’arco, in assenza di dati certi, sono
state formulate diverse ipotesi in accordo con le evidenze rilevate sul ponte dall’ultima
campagna di lavori nel 2010.

Nelle analisi svolte, Ring e Archie-M riproducono quasi le stesse modalita di collasso: la
posizione critica del live load é identificata sulla prima campata e in maniera simmetrica sulla
terza. Il carico di collasso di Archie-M é di poco inferiore a quello di Ring. Tra i due modelli, si
possono riscontrare piccole differenze nella collocazione delle cerniere poiché la posizione
critica del live load si trova vicino ai sostegni. Poiché lo spessore dell’arco e molto grande, con
Ring si € anche valutata I’ipotesi che ogni arco fosse formato da due archi sovrapposti. Per
quanto riguarda il metodo agli elementi finiti e il modello elasto-plastico, i risultati si stanno
ancora valutando.
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4.2 A Bridge, a Symbol: a brief description

The case study object of this research is the Clemente Bridge, located in Cesena’. Clemente

Bridge, also known as Old Bridge, is the most ancient bridge in Cesena and also one of

symbols of the city. In fact Cesena is known as the city “de’ font, de’ pont, de’ Mont™.

Figure 4.1 City of “fountain, bridge, Montain”: a) Masini Fountain; b) Clemente Bridge; ¢) Mount Abbey
As the other two symbols of the city — Masini Fountain and Mount Abbey — the bridge has a
glorious history and offers a magnificent example of the past techniques. So it is a monument
preserved by the Authority, but at the same time continues to perform its function of connection
between the city center and the Oltresavio neighborhood, despite the change of means of
transport and the increase of the traffic.

Clemente bridge is a road bridge and has a humpback pavement. It is collocated on the
ancient layout of the via Aemilia and spans the Savio River at one of the narrowest points in
the city. Clemente Bridge represents even now one of the most important accesses to the city,
though in 1919 the Risorgimento Bridge was built down south and the Via Emilia was
deviated. The structure of the bridge is symmetrical and is formed by three masonry arches that
show a segmental shape. The arches are supported by massive piers, endowed with triangular
cutwaters both at upstream and at downstream. The bridge reaches a total length of about 111
m and has an average width of 8.30 m, including the parapets. Its height is about 15 m in the
maximum point. The most important geometric data regarding the three arches — as width or
rise — and regarding the four supports — as height or thickness — are provided in Table 4.1 and
in Table 4.2.

! Cesena is an Italian town of 97.500 inhabitants of the province of Forli-Cesena in Emilia-Romagna. It is placed
about 90 km south-east of Bologna

2 “de’ font, de’ pont, de’ Mont” is a dialectal form that can be traducted as “city of fountain, of bridge, of
Montain”
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Figure 4.2 Recent Survey: Plan, North Front and South Front of Clemente Bridge

Height Thickness

Span Rise Left Abutment 4185 mm 3180 mm

Arch1l 22730 mm 7380 mm Pier 1 4250 mm 8490 mm

Arch2 24900 mm 7900 mm Pier 2 4150 mm 8520 mm

Arch3 22740 mm 7620 mm Right Abutment 4150 mm 3190 mm
Table 4.1 Geometric Arch Data Table Table 4.2 Geometric Pier DataTable

Data come from the latest survey carried out in 2006. Three are the principal surveys on the

Clemente Bridge remembered by source materials:

a. In 1812, Papal Civil Engineers® took a census of existing bridges in the Rubicone
Department: on this occasion draw up a table containing the data of the bridges surveyed,
including the Clemente Bridge, called here as the New Bridge in Cesena;

b. In 1993, Simona D’Altri Darderi effected dimensional controls in order to check the
previous measuring during the writing of her degree thesis with the supervision of
Salvatore Di Pasquale®;

c. In 2006 Cantori Architectural Firm redid the survey, when the Public Administration
commissioned it to replace the ornamental elements in white limestone from Istria.

® Archivio di Stato di Forli, Genio Civile, b. 3, 11-6, 1812
* Salvatore Di Pasquale, Architect, Full Professor of Mechanics of Structures, Academic Dean at Firenze and
Catania
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4.3 Historical Notes

The city of Cesena had to wait many centuries before to have a stable and durable masonry
bridge, that would allow the via Aemilia to cross the Savio River. In fact the Savio River has
been subject to continuous flooding and frequent movements of the riverbed: so it had always
caused the collapse of the structures built before Clemente Bridge. Various attempts were made
during the time: in Roman Age in the area of actual Risorgimento Bridge, in Medieval Age in
the place where nowadays rises Clemente Bridge. Other provisional bridges were built in
wood. During the lordship of Malatesta, a stone bridge with five arched spans was built: the
central ones were higher than the two lateral to allow the river in flood to pass more easily. In
spite of all, in 1684 it was ruined by the water violence.

In 1729 after the collapse of the last wooden bridge, Pope Benedetto XIII authorized the
beginning of works of the new masonry bridge based on a draft by Antonio Felice Facci. The
architect assumed to recover the two remaining arches of the Malatesta bridge and to build
three new arches to the East (see figure 4.3, in legend AB): so the project consisted in five
arched bridge provided with deep foundations. Unfortunately Pope Benedetto XIII didn’t see
the start of works because he died the next year.

Figure 4.3 Facci’s Project.
Plan and Front in a copy of Mauro Guidi conserved at Malatestiana Library at Cesena
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Figure 4.4 Wooden Model commissioned to Domenico Cipriani in 1734

The bridge construction began only in 1733 with the succession of Pope Clemente XII, who
made possible the starting with the bequest of five thousand crowns. In his honour the bridge
was called Clemente Bridge. At once the deep foundations were started to built. Regarding the
bridge geometry, the Pope liked Facci’s project, but preferred to have the advice of other
experts. In fact before to realize important public works in His communities, the Pope often
submitted the projects to influential architects, that evaluated the technical and financial
feasibility: in this case he commissioned Ferdinando Fuga, who in the same years had built
Corsini Palace for Him. In 1733 Fuga went to Cesena and met the work supervisor Domenico
Cipriani. In his relation to Pope, he proposed to reduce the number of the spans: not five, but
three exactly as in a bridge designed by him on Milicia River, near Palermo in Sicily. The new
solution is well illustrated by Cipriani’s wooden model realized in 1734 (figure 4.4) and by
Mauro Guidi’s original drawing (figure 4.5): nowadays both are conserved at Malatestiana
Library at Cesena. The three masonry arches show a segmental shape.

Figure 4.5 Fuga’s Project. Plan and Front in a drawing of Mauro Guidi
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Figure 4.6 P. C. Borboni: a) Dome of Mount Abbey; b) Church of St. Augustine; ¢) Church of St. James

In the thirty years following the work authorization, only the deep foundation were realized.
It happened for financial reasons: in fact Cesena was often invaded by enemy troops and was
forced to suspend works at the site of the bridge. In the meantime, a wooden bridge was built
further down: it was demolished by the river in flood in 1764. In the same year Cesena
community decided to restart the bridge construction on the foundation just realised. The task
was given to Pietro Carlo Borboni, one of the municipal architects: he can be considered the
bridge’s real architect. Beyond the bridge, he built in Cesena the Chapel of Our Lady in the
Cathedral, the church of the Servants, the church of St. Zenone, the dome of the Mount Abbey,
the church of St. Augustine and in Cesenatico the Church of St. James. Once obtained the
bridge supervision, Borboni elaborated a new project, that was submitted to the opinion of
Ferdinando Fuga and Luigi Vanvitelli. The last one approved it, making some changes: he
defined a bigger diameter for the arches, increased the pier size and changed the wing direction.
Works resumed in April of 1766 after thirty years of interruption.

Figure 4.7 Borboni’s Project modified following Fuga and Vanvitelli’s directions (Guidi’s copy)
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Figure 4.8 Frontal View of the Clemente Bridge

Additional ten years were needed to finish the construction. In 1771 the bridge was open to
transit, accessible even if incomplete. Bridge Congregation’s verbal of 14 april 1773 reported:
“In the last years the bridge is practicable, and a toll is requested, now the marble has to be
put down on the banks of that Bridge."> The bridge was completed by Borboni’s nephew: in
fact in 1773 Borboni died and the work direction passed to Agostino Azzolini, that had long
collaborated with him. Azzolini changed foundation shape in the central span, giving it a
semicircular form in order to allow better water flowing: besides he posed ornamental elements
in white limestone from Istria.

Old graphic documentations of Clemente Bridge come almost uniquely from the drawings
of Mauro Guidi, who did his apprenticeship in Azzolini’s workshop between 1780 and 1787. In
these years he could see, copy and elaborate Borboni’s projects, completing them with on-site
survey. Some of his drawing are reported in the previous pages and are still preserved in the
Malatesta Library at Cesena.

Clemente Bridge was built when the Mechanics of Structures was experiencing an important
theoretical development. In France, Philippe de la Hire (1640-1718) was writing treatises on a
static theory of the arches and the vaults: his models based on funicular polygon gave a first
scientific contribution to the study of the arch stability. Even if in France significant progresses
were made, in Italy the architects remained anchored to practice learned on the construction site
and to the Proportion rules, contained in the ancient treatises until Vitruvio. So Clemente
Bridge was realized following the constructive principles endorsed by the experience: the
dimensions of the arches were determined, trying to ensure the greatest free surface for the
water passage. Prudentia Massima® was recommended by Luigi Vanvitelli and not the respect

5 “Da qualche anno si passa, e si esige il Padaggio, ora resta tuttavia da mettere una porzione di Marmi sulle
sponde del detto Ponte.”
® That is “Utmost caution”. Vanvitelli wrote it in a letter to Pope Nuncio in 1765.
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of mathematics theories. Also Proportion rules were disregarded because could not guarantee
alone the stability of structure, as already argued by Galileo in his treatises.

In the next centuries, bridge’s transformation were often thought about. In fact three arch
bridge had some advantages, but also some drawbacks. For example, in winter it was very
difficult to go up the two long side ramps with carts, especially with ice. So in 1836 was
proposed the demolition of segmental arches and consequently their reconstruction into
elliptical shapes, as in France. But it all came to nothing. In 1919 Risorgimento Bridge was
built down south and the Via Aemilia was deviated, but Clemente Bridge remained one of the
most important accesses to the City Centre.

The bridge withstood the river attacks and didn’t suffer important damages until the Second
World War. Throughout the summer of 1944 the Allies tried to bomb the bridge, but they failed
to damage it. Conversely the Germans succeeded in purpose. In the night of 20 October 1944 —
the same day of liberation — German troops in retreat mined the structure and blew the central
arch’. At once Canadian engineers provided to restore the passage with a Bailey bridge (figure
4.9). At the same time they provided to rebuild the masonry central arch together with the local
administration: the reconstruction was made so well that today it is identifiable only by the
brick’s different shade (figure 4.10). In March 1945 the bridge was practicable, but was not yet
finished in all its parts.

7

. w
s ' Y, 5

Figure 4.9 Bailey Bridge on the central arched span destroyed by the German troops. 1944,

“... allora sistemammo alcune granate da mortaio nell’arcata centrale assieme ai restanti 3 chilogrammi di

esplosivo e al detonatore. Appiccammo fuoco alla miccia. [..] Corremmo al ponte e constatammo che uno degli
archi si era disintegrato.” (Cronaca Truppe Tedesche)
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Figure 4.10 Historic photo from the archive of the Superintendence of Monuments

The rehabilitation of the stacks and parapets continued under the direction of the honorary
inspector Monuments Professor Giannetto Malmerendi®: in 1952 all the works were finished.

Unfortunately the post-war restorations are not documented. The candidate is gone to State
Archive of Forli, to Historic Archive of Cesena and to Technical Office of Cesena; she has
contacted the Technical Service Basin of Emilia Romagna and the Savio Building Firm, that
had realized the work. Nothing is present, apart from three documents: i) a letter of
Superintendent of Monuments, that gave recommendations on the curtain restoration in 1946 ii)
a good survey of the damage to curtains, perhaps attached to some economic evaluation for the
restoration of the monument, without date, heading or signatures; iii) an estimate of the works
required for bridge completion made by Corps of Engineers of Forli (4nnex 4.4).

So it’s difficult to define the mode of reconstruction of the central vault: for this reason, the

candidate made some assumptions, that will discussed in Paragraph 4.4.

8 Giannetto Malmerendi was also the author of one of the two existing paintings representing the reconstruction of
1945.
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Actual state. Currently the bridge is in quite good conditions. It presents vertical cracks
over the piers both on the south front and particularly on the north one. This is not a recent
phenomenon: a report of Giuseppe Brunelli in 1776 mentioned it, attributing to "compression
that happens at first in all the new constructions, especially when they are heavy and high."®
These cracks were already present to a small extent on the parapets too. In 1993 also the road
surface next to the east pier presented an evident crack between the opposite platforms (figure
4.12). Today these cracks have stable and consolidated edges, so probably there are not static
involvements. Moreover the structure presents minor cracks on the walls of the lateral ramps
and on the central arch between the old structure and the reconstructed one: any static influence
can be dismissed.

Besides, in some structural elements such as piers and the vaults, there are serious damages
to masonry surfaces due to the direct hits of Second World War’s bombs. For example, the
south-east arch has severe damages in the profile for the lack or failure of many bricks. In these
cases, a complete reconstruction of masonry surface should be made with the use of the cuci
scuci technique: damaged bricks should be removed and replaced with other elements, similar
in shape, dimensions, shade and manufacturing techniques. In particular, special mortars for
restoration should be used: these mortars should have mechanical strength equal to ancient ones
in order to avoid different mechanical performances.

Nowadays the bridge is considered a reduced loading bridge. Few years ago, Public
Administration proposed to reduce traffic on the bridge to one-way: the proposal was
appropriate, given the current situation, but even now the situation has not changed.

Figure 4.11 Crack Distribution: i) North front, ii) South Front

% From the letter of Giuseppe Brunelli, papal hydrostatic expert (23 luglio 1776): “Finalmente le piccole crette
accadute fin da principio alla sommita della fabbrica, cioe nei parapetti e nei poggiuoli, siccome non sonosi in
seguito piu accresciute, non ponno secondo [’arte attribuirsi a difetto di fondamenti, ma piuttosto a quel callo
ossia compressione che accade da principio in tutte le nuove fabbriche, massime quando sono pesanti, ed
elevate.”
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Figure 4.12 Present State: i) vertical cracks over the piers; ii) crack on road surface in 1993; iii) cracks on
lateral ramps; iv) on the central arch between the old structure and the reconstructed one.
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4.4 Analysis of Constructive Techniques
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Figure 4.13 Constitutive Elements of Clemente Bridge: Isometric Cross Section and Front View

As just mentioned, Clemente Bridge was realized using traditional techniques
endorsed by thousand-years experience, exactly as it happened in the ancient constructions. In
particular, the constructive conception of this masonry arch bridge is essentially rooted in the
roman construction model of substructure. The substructure can be so schematized: (i) the
intrados of the vault stands on the provisional rib under construction; (ii) the spandrel walls are
made of bricks and are connected with the arch below, making the structure very solid with a
low stress states; iii) the piers are very wide.

However Clemente Bridge differs from Roman bridges due to the arch shape. Roman
Bridges had semicircular arches with a rise-span ratio 1:2, while the arches of Clemente Bridge
have a segmental shape, with a lower rise-span ratio. The reason is to maintain the road level as
low as possible and not to obstruct the flow of the river, especially when Savio is in flood.

The constitutive elements that characterize Clemente Bridge, as illustrated in fig. 4.13, are:
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= Arches: main supporting elements. They are characterized by:

Crown: the highest part of the arch;

Haunch: part of the arch between the springing and the crown;

Keystone: voussoir at the crown of the arch;

Span: space between two piers;

Spandrel: area above the extrados arch and below deck level,

Springing: point where the end of an arch meets the abutment or the pier;
Voussoir: unit that composes the arch.

= Abutment: end support of a bridge that resists to the horizontal thrust of the arch;

= Fill Material: rubble or earth used to fill the space between the arch and the deck level;
= Foundations: superficial structure on which piers and abutment stay;

= Pier: support between two arched spans;

= Spandrel Wall: lateral wall that contains the fill materials over the arch;

= Wing Wall: lateral wall of an abutment, forming a support and a protection to it.

In the following, the principal constitutive elements of Clemente Bridge are examined in
relation to the constructive technique, that characterize them.

Foundations

For a masonry arch bridge, the foundations are critical. The large thrusts of the arches need
to be transferred down to keep the structure in a correct position. In 1684 the lack of a
foundation was one of the causes of the collapse of the previous stone bridge. In fact the river
in flood dug the ground under the piers: once the piers fell, also the arches followed them.
When in 1729 a new bridge was proposed to build, the foundations were the first thing to think
about. As in Roman bridges, timber piles were used: oak piles were required, at least seven feet

Figure 4.14 Reconstructive Hypothesis of Simona D’Altri Darderi
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Figure 4.15 Photo of the actual condition of the fundaments: bottom right the oak piles

long (3.77 m) and four ounces and half wide at the top (0.24 m)™°. The piles were disposed
into regular meshes and connected together in order to distribute the vertical load. The
interspaces between the piles are filled with little stones. Over the top of the piles, bricks were
collocated also in order to avoid that moisture corroded the pile heads. Then, the inside of the
compartment created by piles was cleared by water and filled with inert materials. All the
operations were conducted during the summer period when the river level was low, using a lot
of workforce. As just remembered, the foundations were realized over thirty years, mainly for
economic reasons. Once realized, the foundations had the form of a large raft, ninety-five
meters long: nowadays they are still visible and give rise to a small waterfall down-river. In
correspondence with the north side of foundations when Savio is dry, the top of some piles can
be seen, as in figure 4.15.

Vertical Elements: Abutments and Piers
The vertical bearing elements of the bridge are divided into abutments and piers. The
abutments are the final vertical supports realized according to the bank. They withstand the

191t is reported in the Proceedings of Bridge Congregation, conserved at the Historic Archive of Cesena.
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ABUTMENT FOUMNDATION PIER DECK CONTOUR PIER ABUTMENT

274 ] 852 249 852 22.74

Figure 4.16 Plan of the Clemente Bridge

relevant horizontal trust of the last span. Their section is hidden and is conditioned by the
outline of the ground: so it is very difficult to know how they are actually composed. The
lateral wing walls are all one with the abutment.

The piers are the vertical supports between two spans: they withstand essentially vertical
actions. The pier sizing depends on two types of requirements: i) the pier must ensure the
structure stability; ii) at the same time the pier must be more slender as possible in order to
allow the river in flood to pass easily. The equilibrium between these two factors is not easy.
Until the eighteenth century, stability was usually preferred to the slenderness. So the piers of
Clemente Bridge seem too large to support only the arch trust. The choice depended on three
different reasons: i) the spans were not equal so the resultant of thrusts of the two adjacent
arches was inclined and the pier was also subject to shear; ii) the centerings were not enough to
allow the disarmament of all arches at the same time so initially the piers were subjected to an
asymmetric thrust; iii) besides, in case of one arch’s collapse, the piers should have been able to
support the remaining vault trust, without turn over until the arch reconstruction. As mentioned,
during the Second World War a span collapsed. If Clemente Bridge had been designed
according to the mathematics theories of De la Hire, it would have supported hardly this
asymmetric thrust and probably the bridge would be totally collapsed.

In order to allow the river in flood to pass easily,

the architects of the Clemente bridge used mainly
two strategies: i) they reduced the number of the

piers in the river bed from four to two; ii) they
endowed the piers with cutwater both at upstream

and at downstream. In particular the upstream

cutwaters were used to protect the piers by the

~ Figure 4.17 Palladio, impact of tree trunks swept by the flood.
“A bridge of my invention”, 1570
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The presence of the cutwaters is important also from the static point of view, because they
increase the resistant section both respect to live load and respect to overturning. As in Roman
bridges, the cutwaters have a triangular profile characterized by an angle of ninety degrees: this
shape facilitated the cutwater construction, as Palladio suggested in his treatises.

Arches

The arches of Clemente Bridge have a segmental shape and have spans that vary from 23 to
25 meters. The candidate has carried out various researches to reconstruct the geometry of the
section of the arches, both the ancient ones built in the eighteenth century and the central one
rebuilt after the war. As remembered before, she visited State Archive of Forli, Historic
Archive and Technical Office of Cesena. Unfortunately the researches did not lead to any
significant results. So she contacted Simona D’Altri Darderi, that wrote her degree thesis on
this bridge, and the Cantori Architectural Firm, that realized various work on the bridge
between 2009 and 2010, in particularly restoring the docks in limestone and remaking the
sidewalks. D’ Altri Darderi has hypothesized that the vault thickness is 80 cm, equivalent to the
lower arch, while the upper arch would seem an architectural connection with the above brick
curtain. On the contrary, Cantori Architectural Firm has hypothesized that the arch would have
an average thickness around 120 cm. In fact during the excavations around the sidewalks on the
central arch, they found bricks arranged to coast to sixty cm deep, that were assumed as part of

Figure 4.18 Bridge Front with wooden centerings used to construct time. Copy of Mauro Guidi

99



CHAPTER IV

One arch with a thickness of 120 cml,"'
™. (eight-brick-thick masonry) .~

One arch with a thickness of 80 cm .+
. (five-brick-thick masonry) ’

Multi-ring arch

Figure 4.19 Reconstructive hypotheses of the
section of vault
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the extrados of the vault. Unfortunately,
excavations have focused only on the
portions relating to the sidewalks, so it is not
possible to prove that the arch was made with
a constant rectangular cross section.
However they had no photo of detail that
would witness their hypotheses: the only
photo, that they had, reports a panoramic of
the excavations (see Annex 4.B), but
anything useful is not visible. In the absence
of reliable data, the candidate formulated
three hypotheses in accordance with the data
exposed, that are developed with the two-
dimensional models in the next paragraphs.
The three hypotheses as illustrated in figure
4.19 are :

= the vault is one with a thickness of 120 cm

(eight-brick-thick masonry);
= the vault is one with a thickness of 80 cm

(five-brick-thick masonry);
= the vaults are two and are superimposed.

The thickness of the lower one is 80 cm,

while the thickness of the upper one is 40

cm.

The hypothesis of two separated vaults is
supported by some constructions of the same
period built near the bridge, as the buttresses
of the external wall of the fortress park in
figure 4.20 .

Concerning the vault construction, is very
interesting the design of Mauro Guidi (figure
4.18), that describes the temporary wooden
structures used to sustain the arches at the
beginning.
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As reported by sources, the centerings
were made by oaks wood and should have
been fifteen, five for every vault. Actually
the number was lower because the finances
lacked. Probably the centerings used were
four: this hypothesis was supported by the
number of longitudinal cracks present on
the vault nowadays (figure 4.21, annex 4.2).
The centerings were sustained only at the
vault springing by two vertical wooden
pillars, that were collocated next to the pier
or the abutment and set on the foundation.
The design of the centerings is classical,
similar to those reported in the nineteenth-
century manuals. Struts and chains
composed a complex polygonal structure,
that was inscribed in the diameter of the
vault.

In general in this bridge, all the
structural elements are classical and were
realized using traditional techniques. The
big arches almost Romans, the foundations
on wooden piles, the oversizing of the piers
in order to ensure the structure stability, the
triangular profile of the cutwaters, the
polygonal geometry of the centerings: all
remember that, in building this bridge, the
aim was not to experience something new,
not to invent, but to guarantee a stable and
durable bridge after centuries of failed
attempts.

Ty

TR
ol

Figure 4.20 External wall of the fortress park

Figure 4.21 Longitudinal cracks on the vault

101



CHAPTER IV

4.5 Analysis of Materials

The assessment of the actual conditions of the existing masonry constructions plays a main
role in the design of the intervention to be performed. Information about different aspects have
to be acquired, including dimensional data of the constituent elements (i.e. brick and mortar
layers), local defects and the mechanical characteristics of materials. The quantity and quality
of the data collected affects the degree of precision of the analysis methods used in the building
assessment. The acquisition of these data may be occur through historical researches, visual
surveys or tests to perform directly on on-site materials and construction elements.

Firstly, in the case study of Clemente Bridge, the candidate has identified the different types
of masonry that constitute the whole work. The oldest ones, still intact, are handmade and
almost certainly come from different furnaces. The post-war recoveries are made with new
drawn bricks, even if the superintendent had prescribed that were handmade as the ancient ones
(annex 4.1). The main dimensions are shown in Table 4.3.

Lenght Base Height
L B H
(cm) (cm) (cm)
p 31 14,5 6,0
g 30 14,0 7,0
30 14,0 5,0
Hi 29 14,0 6,5
B 29 14,0 6,0
27 13,0 6,5
27 13,0 6,0

Table 4.3 The main dimensions of the Clemente Bridge bricks: i) in pink the ancient ones; ii) in orange the
post-war restorations

One of the main purposes of the evaluation of masonry mechanical characteristics is to
provide strength values, elastic properties and other parameters to be used as input data for the
implementation of finite element models. There are two different approaches that may be
employed for the evaluation of the masonry mechanical properties, even if everyone has
limitations in the applicability and in the reliability of obtained results.

The first way is to obtain from the existing structure masonry wallets similar to those
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required by the technical standards®* to test
in compression or diagonal compression. In
historical ~ constructions of particular
architectural value, this way is difficult to
follow because it is not possible to obtain
samples large enough to be tested in
laboratory.

So it is possible to estimate the masonry

mechanical properties from the data
obtained by laboratory tests on individual
components (brick and mortar). In fact it is
well known that the masonry mechanical
characteristics are strictly dependent on
those of the constituent materials even if,
actually, an established theory that allows
to deduce the masonry strength by the
resistance of the individual components
does not exist. European standards®

provide tables and correlations able to
resolve partially this problem. Figure 4.23 Sampling Point

Taking into account the historical
importance of the investigated bridge, the
candidate has taken a series of samples of
mortar and brick from the south-east wing
wall, that are subsequently tested in the
laboratory.

Figure 4.24 The three brick sample

1 see Italian technical standards (NTC 2008), Chapter 11.10.3: “The experimental characteristic compression
strength is determined on n wallets (n > 6), following both for the preparation for the test that the methods
indicated below. The samples (wallets) should have the same characteristics of the studied masonry, and each of
them must consist of at least three layers of resistant brick and must respect the following limitations: Length (b)
at least two block lengths,; Height/width ratio (1/t) ranging between 2.4 and 5.

2 UNI EN 1996-1-1: Eurocode 6. Design of masonry structures. General rules for reinforced and unreinforced
masonry structures
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Fig 4.25 Bricks samples rectified

104

before load application

Brick compressive strength

So three bricks (namely M1, M2 and M3) were taken
from the bridge walls to estimate their mechanical
characteristics. Samples were obtained cutting these brick
specimens as shown in Table 4.4. The loaded faces were
subsequently rectified.

After the preparation phases, the samples were
subjected to compression tests, carried out by loading the
brick along actual wall loading direction. The ultimate
compression strength values obtained from laboratory tests
are reported in Table 4.4.

Resistant section High Strength

(mm) (mm) (N/mm?)
M1 55,0 x 57,0 56,3 19,3
M2 57,0 x 59,5 59,1 21,4
M3 48,5 x 48,8 50,2 34,0

Table 4.4 Brick compression strength

Mortar compressive strength

The mechanical characterization of the mortar is a
difficult task because of two factors: at first the reduced
thickness of the joints, on average 10-15mm but not
constant, secondly the difficulty to take samples due to
adhesion between the mortar and the brick.

However, if it is possible to extract from the masonry
small portions of the mortar joints without damaging
them, it is possible to employ a test that is commonly
called punching test. This test consists in subjecting to
compression a portion of the extract. So two samples (Mal
and Ma2) were taken from the bridge walls of the
Clemente. The layer of mortar extracted has a thickness of
10-15 mm. In order to make reliable the test, the part of
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the sample subjected to cape must have a diameter of at
least 50 mm, even if the compression will affect a
diameter of only 20/30 mm. Unfortunately in this case, it
has not been possible to obtain a sample of 50x50 mm
section because the specimen broke in an irregular manner
at the time of cutting. So cylinder of 20 mm were realized.
The test on the specimen was then performed by
determining the punching resistance as the ratio between
the breaking load and the resisting section of mmq 314,
that is the section of the punch. The flatness of the bearing
surfaces was provided with a plaster cape®™. The test was
performed under displacement control with a rate of about
0.0075 mm:-s-1 while the processes of loading under force
control with a rate of 0.05 MPa:-s-1. Therefore, it was a
rather slow test. The compressive strength is defined as:

F ult

2

=196
I -

Where: £, mortar compression strength;

F.; sample collapse load.

This equation includes the effects of friction at the
interface  punch/sample and provides the uniaxial
compressive strength of mortar but unfortunately no
information can be obtained on the elastic modulus of the
mortar. The mortar compression strength values obtained
from laboratory tests are reported in Table 4.5.

Thickness Strength

(mm) (N/mm?)
Mal 9,9 10,2
Ma2 14,9 6,3

Table 4.5: Mortar Compression strenght

13 Soaked mortar to saturation prior to execution of the cape.

Fig 4.26 Bricks failure
Mechanism
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sample

Mechanical characteristic of masonry

In accordance with Eurocode 6, the characteristic
compressive strength of masonry should be determined
from the results of the tests used as parameters for the
equation:

szK‘be'7‘fr3'3 (2

where:

fe is the characteristic compressive strength of the
masonry, in N/mm?

K is a constant (for Clemente Bridge is 0,55) and,
where relevant, modified according to table 1.4

s is the normalized mean compressive strength of
the units, in the direction of the applied action
effect, in N/mm?

I is the compressive strength of the mortar, in
N/mm?

In the absence of a value determined by experimental
tests, the short term secant modulus of elasticity of
masonry (E) for structural use may be taken to be K - f;
(the recommended value of Kz is 1000), while the shear
modulus may be taken as 40% of the elastic modulus.

So after all the experimental analysis, the mechanical
characteristics of the Clemente Bridge’s masonry were
determined and reported in Table 4.6. The certificates of
laboratory tests are show in Annex 4.C.

Jo Sn K S E G
(MPa) (MPa) (MPa) (MPa) (MPa)
24,9 8,25 0,55 9,83 9830 3932

Figure 4.28 Compression test on
mortar sample: i) before load
application; ii) failure mechanism
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Table 4.6: Clemente Bridge masonry mechanical characteristics

As regards the evaluation of the mechanical properties
of masonry, there are the limits previously indicated. It
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must be noted, however, that often the crisis of a masonry structure is not due so much to the
achievement of high stress, but to the formation of failure mechanisms due to motions of
rigid body portions or structural elements, such as those that will be discussed below.

Masonry Unit Thin layer Lightweight mortar of density
General mortar
purpose (bed joint 600 < py 800 < pg
mortar > 0.5 mm and < 800 kg.-"m-y’ <1 3001‘:g.--’1113
<3mm)
Group 1 0.55 0.75 0.30 0.40
Clay Group 2 0.45 0.70 0.25 0.30
Group 3 0.35 0.50 0.20 0.25
Group 4 0.35 0.35 0.20 0.25
Calcium Group 1 0.55 0.80 Z Z
Silicate Group 2 0.45 0.65 i i
Group 1 0.55 0.80 0.45 0.45
Aggregate G1‘011]) 2 0.45 0.65 0.45 0.45
Concrete Group 3 0.40 0.50 I i
Group 4 0.35 i 1 i
Autoclaved
Aerated Group 1 0.55 0.80 0.45 0.45
Concrete
Manufactured | o 0p | 045 0.75 + +
Stone ’ '
Do | w1 | 015 |
I Combination of mortar/unit not normally used. so no value given.

Table 4.7 Values of K given by the Normative
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4.6 Comparison between the different Methods

The structural analysis of the Clemente Bridge is performed through the Thrust Line
Analysis Method and the Mechanism Method. The computational modeling tools used for this
masonry arch bridge are the same used for the generic masonry arch bridge, that is Archie-M
2.4.1 and RING 3.0. As just remembered in chapter 2, both the software are based on
Heyman’s Theory and on the principles of Limit analysis: Archie-M uses the lower bound
theorem, while Ring uses the upper bound theorem. Archie-M gives as graphic output the
position of a potential thrust-line and the hinge position for any given loading regime. In
Archie-M, the collapse load can be estimate by varying the load value until a sufficient number
of hinges is formed. On the contrary, Ring allows to identify the ultimate limit state,
determining the percentage of live load, that will lead to the collapse. As a result of the Ring’s
analysis, the minimum adequacy factor for the live load is obtained, together with a graphic
representation of the thrust line and the failure mode.

In the case of Clemente Bridge, Ring e Archie-M reproduce almost the same mode of
collapse. The bridge is modeled as in-plane structure. The software require as input: i)
geometry; ii) material properties; iii) loading.

The principal geometric data of the Clemente Bridge are provided in the first paragraph of
this chapter and derived by a site survey. As remembered in the paragraph 4.4, the only
geometric unknown quantity is the arch thickness. Three are the hypotheses contemplated: 1)

the vault is one with a thickness of 120 cm (eight-brick-thick masonry); ii) the vault is one with

— ey limitstate G

Figure 4.29 Geometric Model of the Bridge: i) Archie-M; ii) Ring
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Figure 4.30 Eleven load cases considered

a thickness of 80 cm (five-brick-thick masonry); the vaults are two and are superimposed (the
thickness of the lower one is 80 cm, while the thickness of the upper one is 40 cm). The first
two hypotheses are analyzed both with Archie-M and Ring, while only Ring is able to study the
third hypothesis, that is to analyze multi-ring arches enabling separations between the various
rings. In order to save computational effort, in the software every arch is divided in 40 blocks
and every pier in 20 blocks. As demonstrated in chapter 3, this leads to a very small
overestimate of the predicted carrying capacity of the real structure.

Regarding the material properties, both the programs require as material input: i) for
masonry arch, the unit weight (KN/m?®) and the compressive strength (MPa); ii) for backfill, the
unit weight (KN/m?) and the angle of friction (degree). The masonry properties are derived by
the tests on the material components, reported in the previous paragraph. The unit weight is
15,53 KN/m®, the compressive strength is 9,83 Mpa in accordance with the Eurocode 6.
Unfortunately it has not been possible to test the backfill material due to the historical value of

Single Axle at 15241 mm
g

.limitstate Gm

Figure 4.31: Collapse Modes: i) Archie-M; ii) Ring
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Figure 4.32: First span: failure mode and bending moment Figure 4.33: Heyman’s Point Load

the bridge. So in absence of comprehensive test results on backfill, typical values found in
similar surveyed bridges have been considered to assume. The unit weight is considered 18
KN/m®, the angle of friction is considered 30 degree.

Regarding the load condition, it’s used a EU single axle load". To simulate the loading
vehicle movement across the bridge and to identify the critical position, a series of load cases
are taken into account. Firstly the whole bridge is divided into ten parts: eleven load case are
considered (figure 4.30). Once individuated the worst load position, the sequel step is to
thicken the load cases around this zone to determine the exact condition that results in the
lowest adequacy factor (figure 4.34).

Ring e Archie-M reproduce almost the same mode of collapse. In both cases, the critical
position of the load is the third one from the left springing, on the first span (figure 4.30).
Obviously as the structure is symmetrical, there is a mirror-like collapse condition also on the
third span. As illustrated in figure 4.31, at limit state the collapse is connected with the
formation of a number of hinges enough to transform the stable arch in a unstable mechanism.
In particular, on the first span the hinges open in alternating way in the intrados and in the
extrados, following a pattern comparable to that described by Jacques Heyman for the point
load case. Concerning the hinge location, there are small differences between Ring and Archie-
M because the critical position of the live load is close to the supports (table 4.8). As just
remembered, two different arch thicknesses are analyzed with Archie-M and Ring: the results
reported in table 4.8 and 4.9 highlights that there are small differences in hinge positions
between the two hypotheses. In figure 4.32 it can be observed also that the bending moment is
equal to zero whenever the trust line pass the axle line, while it is maximum close to the hinges.

% The load is about 112.82 KN.
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Figure 4.34: Eleven Load Case thickened around the worst load position

Load
" Ring 3.0 Archie-M 2.4.3.1
Case
LC1 4 13 23 38 1 13 24 39
LC2 0 5] 16 26 4 16 26 40
LC3 0 8 18 29 8 18 28 40
LC4 0 9 20 33 0 11 20 31
LC5 0 11 23 35 0 12 23 36
L_ics 0 12 25 36 0 14 25 40
LCY 0 13 27 38 0 16 28 40
LC8 0 14 29 40 0 17 30 40
LC9 0 14 31 40 0 18 31 40
LC10 0 15 32 40 0 18 32 40
LC11 0 15 34 40 0 18 32 40
Table 4.8 Hinge Positions for different load positions, arch thickness 1,2 m
Load Ring 3.0 Archie-M 2.4.3.1
Case
LC1 5 13 22 35 3 13 22 31
LC2 0 7 15 25 4 15 25 40
LC3 0 9 18 28 9 18 27 40
LC4 0 10 20 32 0 11 20 31
LC5 0 12 23 34 0 13 23 40
| LC6 0 14 25 36 0 15 26 40 |
LC7 0 15 27 37 0 17 28 40
LC8 0 15 29 39 0 18 30 40
LCO 0 16 31 40 0 18 32 40
LC10 0 16 33 40 0 18 32 40
LC11 0 17 34 40 0 18 32 40

Table 4.9 Hinge Positions for different load positions, arch thickness 0,8 m
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b

Figure 4.35: Multi-ring arch: failure mode

Concerning the collapse load value, Archie-M collapse load is smaller than Ring’s one both
for arch thickness equal to 1.2 and for arch thickness equal to 0.8 m (table 4.10 and table 4.11).
Obviously, the collapse load calculated for the arch thickness of 0.8 m is smaller than the other
one. About the collapse load, other considerations can be made analyzing the graphs contained
in table 4.10 and 4.11. The first diagram shows the ratio between the collapse load of Archie-M
and Ring in relation to the different load positions and arch thickness. The red line divides the
graphic into two areas: over the red line there are Archie-M collapse loads higher than Ring’s
ones (case 3,4 and 5). The analysis reliability becomes lower in load case 10 and 11%. In the
second diagram, the difference % between the collapse load of Archie-M and Ring is reported
in relation to different load cases and arch thickness. Analyzing the graph trend, it’s clear how
the end positions®® are the most critical ones for the analysis due to the variances in the results,
where in the intermediate positions the differences are more attenuate. In particular analyzing
the arch of thickness equal to 1,2 m, the difference % between the results obtained in the
intermediate load cases is lower than 20%. These results underlines the reliability of the
analysis under precise load conditions.

As there are no certainties on the constructive modes and the arch thickness is very high, it
is also supposed that every arch may be made by two debonded rings, separated in the model
by frictional contacts. As remembered in paragraph 4.4, the hypothesis of two separated vaults
is supported by some constructions of the same period built near the bridge. Obviously in this
analysis, the value of the minimum adequacy factor decreases compared to the one-ring arch
analyzed before (table 4.12). This factor highlights the loss of bearing capacity for the bridge.
Also in this case the critical load position is on the first span, but obviously there are two thrust
line for every span and an higher number of hinges. (figure 4.35)

> oad Cases 10 and 11 where the ratio is respectively 0,42 and 0,19 for b = 1,2m; or 0,28 and 0,14 for b = 0,8m.
' Load Cases 1,2,8,9,10,11.
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Minimum Adequacy Factor

Load Case Position x [mm]
Ring 3.0 Archie-M 2.4.3.1
LC1 6027 72,9 39,8
LC2 7868 53,2 40,4
LC3 9710 37 37,13
LC4 11551 30,2 36,8
LC5 133593 26,8 30
1 LCo 15234 25,6 23,74 ]
LC7 17075 29 25
LC8 18917 46,2 35
LC9 20758 79,8 50
LC10 22600 191 79,8
LC11 24441 761 145,6

Table 4.10 Load Case positions and Minimum Adequacy Factor, arch thickness 1,2 m

Minimum Adequacy Factor

Load Case Position x [mm]
Ring 3.0 Archie-M 2.4.3.1
LC1 6027 45,2 32,7
LC2 7868 36,2 21,7
LC3 9710 26,1 25,2
LC4 11551 21,4 219
LCS 13393 18,6 17,6
| LC6 15234 17,8 13,4 |

LC7 17075 20,3 14,8
LC8 18917 32,1 15

LC9 20758 53,8 20,6
LC10 22600 120 33,5
LC11 24441 413 59,3

Table 4.11 Load Case positions and Minimum Adequacy Factor, arch thickness 0,8 m
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Collapse Load Archie-M/Collapse Load Ring
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Figure 4.36 Collapse Load ratio for different positions and thickness
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Figure 4.37 Difference % collapse load ratio for different position and thickness
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Position X Collapse Load Ring 3.0 [KN]
Load Case
e [mm] One-ring Multi-ring
LC1 6027 8224,58 5437,92
LC2 7868 6002,02 3971,26
LC3 9710 4174,34 3113,83
LC4 11551 3407,16 2549,73
LC5 13393 3023,58 2154,86
uCE 15234 2888,19 1963,07
LC7 17075 3271,78 2075,89
LC8 18917 5212,28 3091,27
LC9 20758 9003,04 5031,77
LC10 22600 21548,62 11090,21
LC11 24441 85856,02 35651,12

Table 4.12 Minimum Adequacy Factor for One-ring arch and multi-ring arch

Italian Technical Standards. The last analysis concerns the study of Clemente Bridge in

accordance to the Italian “Technical Standards for the Construction” of 2008. These standards

impose different load conditions according to the bridge category. Clemente Bridge belongs to

the second category, because only reduced live loads can cross it. In this case, the Standards

suppose to divide the bridge into two lanes, loading them with different point and distributed

loads. Nevertheless, the Standards emphasize that the load disposition has to be chosen so to

obtain the most unfavourable project conditions. Thus, refering to the Italian Standards but at

the same time simulating a static test condition, the bridge is loaded symmetrically on the

middle axle, overestimating the loads prescribed by the Standards. In this way, a combination

of two types of loads is considered, ensuring higher safety standards: i) double axle tandem
point load Qix of 440 kN, characterized by a loaded length of 400 mm and a width between the
axles of 2000 mm; ii) a distributed load gi of 7.20 kN/m? over all bridge length (figure 4.38).

10,

Figure 4.38 Clemente Bridge’s analysis in accordance to Italian Technical Standards
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The analysis is performed though Ring. The critical position is always on the first span, with
the double axle load spaced between 17,61 m and 19,21 m from the left springing. In this case
the minimum adequacy factor is equal to 3.98, so the bridge can be considered safe concerning
the Italian Technical Standards.
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Annex 4. A

Post war Documentation

i) Letter of Superintendent of Monuments, that gave recommendations on
the curtain restoration in 1946.............coiiiiiiiiiiiii e, p. 119
i) A survey of the damage to curtains, perhaps attached to some economic
evaluation for the restoration of the monument.......................p. 120
iii) Estimate of the works required for bridge completion made by Corps of

Engineers of FOrli........cooiiii i p. 126
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MINISTERO DEI LAVORI PUBBLICI

Frovveditorato Regionale alle Opere Pubbliche per I' Emilia
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Annex 4.C

Results of laboratory tests on samples taken on site:

i) Results of Compression Test on Brick Samples................ p. 137

il) Results of Compression Test on Mortar Sample............... p. 138
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CONCLUSIONS

Nowadays existing masonry arch bridges are very important to study because they represent
a very significant part of National road and rail network, both in terms of numerical quantity
and for the quality of their structural response. In fact the masonry arch bridges continue to be
used today without any evident change to their original shape, even if the majority of them was
built between 17th and 19th century. This is possible thanks to the high self-weight together
with masonry mechanical characteristics, that allow these bridges to have a relevant strength
regarding the loads which they are subjected. Maybe this is one of the most important aspects
of the masonry arch bridges, that permits these ancient structures to keep in good health
nowadays. However it can’t be forgotten that weight, speed and traffic are increased during the
last 100 years and these new elements will eventually lead to the deterioration of the bridge’s
structure. This is the reason why is important check the existing masonry bridges. Several
strategies have been developed during the time to simulate the response of this type of
structures, although even today there is no generally accepted standard one for assessment of
masonry arch bridges.

In this thesis, the principal analytical and numerical methods existing in literature have been
compared with each other. The methods taken in exam are mainly three: i) the Thrust Line
Analysis Method; i1) the Mechanism Method; iii) the Finite Element Methods. As explained in
chapter two, the Thrust Line Analysis Method and the Mechanism Method are analytical
methods and are derived from two of the fundamental theorems of the Plastic Analysis, while
the Finite Element Method is a numerical method, that uses different strategies of discretization
to analyze the structure. Every method is applied to the case study through computer-based
representations, that allow a friendly-use application of the principles explained: i) Archie-M;
i1) Ring; ii1) Abaqus. A particular closed-form approach based on an elasto-plastic material
model is also studied.

To compare the three methods, two different case study have been presented: 1) a generic
masonry arch bridge with a single span; ii) a real masonry arch bridge, built on Savio River in
Cesena. All the models presented are two-dimensional in order to have results comparable
between the different methods taken in exam. In fact finite element models can be two-
dimensional or three-dimensional, while the other methods allow to study only two
dimensional models. This is the same for the analytical approach based on the elasto-plastic

model.
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In the case of the generic masonry arch bridge, there are applied all the methods presented.
Concerning the hinge positions, Ring, Archie-M and the elasto-plastic model have shown
similar results. Small differences are found near the point of application of concentrated load
and near the right support, probably due to the different live load distributions. Concerning the
finite element model, there is a good correspondence with the other models for the first hinge
and the fourth hinge, while the positions of the other hinges are different. The differences can
be explained, thinking to the different conceptual bases: Archie-M, Ring and the Elasto-Plastic
model derive from the principles of limit state analysis, while the Finite Element Model comes
from a completely different approach. However the results indicate that the a priori assumption
regarding the occurrence of two hinges in the two support points which is frequently made is
approximately true.

Concerning the collapse load, elasto-plastic model and Archie-M have shown a comparable
behavior. The Ring collapse load is significantly higher than the others because the rigid-plastic
model neglects the elasticity of the masonry, that is a very important factor when the thickness
of the arch is big as in the bridge in exam. The differences in the collapse load can be
summarized as follows: Elasto-Plastic collapse load < Archie-M collapse load < Finite Element
collapse load < Ring collapse load.

The other case study taken in exam has been the Clemente Bridge, built over the River Savio
at Cesena. Material samples have been taken from the bridge to estimate the masonry
compressive strength. Besides, three different hypotheses regards to the vault thickness have
been formulated in absence of reliable data. In this case, Ring e Archie-M have reproduced
almost the same mode of collapse. In both cases, the critical position of the load is identified on
the first span. Obviously as the structure is symmetrical, there is a mirror-like collapse
condition also on the third span. The collapse load of Archie-M is resulted slightly smaller than
Ring’s one. Concerning the hinge location, there are small differences between Ring and
Archie-M because the critical position of the live load is close to the supports. As there are no
certainties on the constructive modes and the arch thickness is very high, with Ring it is also
supposed that every vault may be made by two multi-ring arches superimposed: obviously, in
this hypothesis the load is resulted the lowest of all the others. Future developments will regard
the application of the finite element model and the elasto-plastic model also to the case of the
Clemente Bridge.

In general, it can be concluded that every method and every its computational application
has own advantages and disadvantages, depending on the input, on the purpose and on the

researched results. The Thrust Line Analysis Method is the most ancient method and allows to
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draw immediately the thrust line to test the arch safety, even if it doesn’t give directly the
critical load factor. Different attempts have to be made in order to achieve the correct result.
The Mechanism Method allows to determine easily the collapse load factor. However, the
rigid-plastic model neglects the elasticity of the masonry and that leads to overestimate the
collapse load in the case of arches with a very big thickness. The Finite Element Method
represents even now the most versatile tool for the numerical analysis of structural problems.
However, it requires an elevate number of material characteristics, that are not always easy to
determine in the historical constructions. In the case of masonry, the peculiar nature of material
leads to pay particular attention to the application of this method. The analyses carried out have
highlined that perhaps micro-modeling can be more appropriate than macro-modeling, even if
the second one requires a lower computational effort. Finally, the elastic-plastic model gives a
realistic view of the arch behavior, providing the hinge evolutions. At the same time, it
provides a collapse load lower than the other methods.

All the two-dimensional models presented have the advantage to be easily constructible and
analyzable, but generally focus on the arc behavior and don’t quantify the stress in the section.
To have a more detailed assessment of local phenomena, it is therefore important also to use
three-dimensional models.
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