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Human movement is a complex phenomenon with many contributing factors: physiology, 

mechanics, psychology, etc. An ability to assess the quality or quantity of movement has the 

potential to provide an invaluable source of knowledge to clinicians to accurately diagnose and treat 

a variety of medical conditions [1]. Assessing the mobility level of individuals during daily life is 

essential for complementing the information gathered in confined environments such as clinical and 

physical activity laboratories for the assessment of mobility. A better understanding on people's real 

life may be possible if their physical activity is monitored during a typical day to provide an 

estimate of their mobility level, thus, increasing the impact of training programs or clinical 

interventions. 

Movement analysis under controlled environment is a useful tool, but does not reveal functional 

subject variability in everyday activity patterns. A patient’s level of mobility cannot be reliably 

estimated from the quality of movement. The quantity of movement in daily life should also be 

measured [2].  

To acquire needed data during daily life, wearable devices provide very good solution. 

Complicated wearable systems such as garments with embedded sensors are designed as an 

undershirt with various sensors embedded within them. Data are transmitted to a pager-size device 

attached to the waist portion of the shirt where it is sent via a wireless gateway to the Internet and 

routed to a data server where the actual monitoring occurs. Optical fibers, a data bus, a microphone, 

other sensors, and a multifunction processor, all embedded in a basic textile grid [3]. 

Inertial measurement units (IMUs) are used as a subset of wearable devices to monitor the 

motion of human movement [1]. They are used to measure applied acceleration and angular 

velocity along and around a defined axis. The availability of commercial small and light-weighted 

wearable modules with an extended battery life allows for monitoring human movement for 

prolonged periods of time and without space limitations. IMUs can be used as a stand alone device 

or a combination of sensors placed on various parts of the body of the subject. 

There are various studies reported in literature for long-time monitoring of daily life activities. 

Some of those studies used multiple sensors placed on various parts of the body [4, 5, 6]. The use of 

multiple sensors enables more parameters to be extracted from the data acquired; however, since 

multiple sensors are being used the cost of the systems, the complexities of the algorithms, the 

memory space required for a long term monitoring increased and also the system might create 

uneasiness for the subject. In the literature there are studies that use a single sensor to provide an 

unobtrusive, low-cost and less-complex solution [7, 8, 9].  
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1.1 Research Objectives 

Our research started as a part of a PRIN’07 project (PI Prof. Della Croce). Its main goal was the 

evaluation of the mobility of healthy individuals living in an urban context in relation with fitness 

level, age and gender. Our research was focused on the biomedical engineering portion of the 

project. Main tasks were related to inertial sensor data enhancement for detection and classification 

of activities, and, analysis and interpretation of enhanced data. Our research was continued, 

focusing on extracting parameters from the sensor data for specific activities such as gait. We 

developed an algorithm that extracts temporal parameters and estimates the spatial parameters of 

gait. 

1.2 Material and Methods 

Single IMU (FreeSense, Sensorize®) (Figure 1.1) featuring a tri-axial accelerometer and two bi-

axial gyroscopes (acceleration resolution 0.0096 m/s2, angular rate resolution 0.2441 deg/s, unit 

weight 93g, unit size 85mm×49mm×21mm) is being used for data acquisition. 

 
Figure 1.1 – IMU Used 

For validation purposes of the developed algorithms a commercial device a commercial physical 

activity assessment device (IDEEA, Minisun®) [4], two stereo photogrammetric systems (BTS 

SMART-D and VICON MX) and footswitches (BTS FREE EMG) were used for various 

experiments that will be explained. 

1.3 Organization of the thesis 

Chapter 2 introduces the technology of sensor that were used during research 

Chapter 3 presents the previous studies in literature 

Chapter 4 presents the developed method for monitoring of daily life activities 
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Chapter 5 presents the developed methods for extracting temporal parameters from the sensor 

data, and also the method for estimation of spatial parameters using the extracted temporal 

parameters and a specifially designed integration algorithm. 

1.4 References 
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system for human motion analysis using a kinematic sensor: monitoring of daily physical activity 

in the elderly”, IEEE Transactions on Bio-medical Engineering, 50(6), 711-23, 2003.  

9 M. J. Mathie, B. G. Celler, N. H. Lovell, A. C. F. Coster, “Classification of basic daily 

movements using a triaxial accelerometer”, Medical & Biological Engineering & Computing, 

42(5), 679-687, 2004. 

10 K. Zhang, P. Werner, M. Sun, F. X. Pi-Sunyer, C. N. Boozer, “Measurement of human daily 

physical activity”, Obesity Research, 11(1), 33-40, 2003. 

 

 



 10 

 

 

 

CHAPTER 2  

 

 

 

 

TECHNOLOGY  
 

 

 

 

 

 

 



 11 

2.1 Introduction 

Using inertial and magnetic sensors for body tracking is a relatively new technology. They are 

independent of an artificially generated source (i.e. sourceless), so they are free from range 

limitations seen in cameras (e.g. Kinetic sensor has a ranging limit of 1.2–3.5 m, similarly, most 3-

D sensors operate in well-calibrated distances) and interference problems (e.g. illumination effects). 

Low-cost, small size microelectro-mechanical systems (MEMS) sensors are used in the 

production of wrist-watch-sized inertial/magnetic sensor modules, which make it possible to track 

orientation in real-time. Also, placing these sensor modules to each of the major limb segments of 

human body makes it possible to independently estimate the orientation of each segment relative to 

an earth-fixed reference frame. It is also possible to compile the human model from these 

independent limb segments without knowing their relative orientation [1]. 

Inertial measurement units generally consist of three different sensors: accelerometers, 

gyroscopes and magnetometers. Their descriptions and application areas are briefly explained in the 

following sections. 

2.2 Accelerometers 

Accelerometers are devices which measure the applied acceleration along an axis. Although 

there exist different transducers for this purpose (piezoelectric crystals, piezoresistive sensors, servo 

force balance transducers, electronic piezoelectronic sensors, etc.), the main theory behind the 

accelerometers is a spring mass system. The response of the small mass within the system (a force 

to the spring) is used in order to calculate the applied acceleration. 

Using accelerometers provides a practical and low-cost method for monitoring human 

movements. They are used to measure physical activity levels, for movement identification and 

classification, and to monitor movements such as gait, sit-to-stand, postural sways and falls. 

A uni-axial accelerometer records accelerations in a single direction, while a triaxial 

accelerometer operates on three orthogonal axes and provides the measurements on each axis. To 

measure body parts, accelerometers are placed on the body part whose movement is being studied. 

To measure whole body movements, multiple instruments are used [2].  
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Activity recognition from accelerometer data is a very active topic in research. In the study of 

Bao and Intille [3], subjects wear 5 bi-axial accelerometers on different body parts while 

performing activities such as walking, sitting, standing still, bicycling etc. Data extracted from 

accelerometers are used in order to train a set of classifiers to discriminate between types of 

activities [4]. The fact that most modern mobile phones are equipped with accelerometers creates 

new application drives. 

2.3 Gyroscopes 

Gyroscope is a device consisting of a vibrating element merged with a sensing element, 

functioning as a Coriolis sensor. Coriolis effect is an evident force that manifests itself in a rotating 

reference frame and it is proportional to the angular rate of rotation. 

The gyroscope provides angular velocity measurements. Joint angles are derived by the 

integration of angular velocity, but data obtained can be distorted by offsets and drifts. 

Alternatively, gyroscopes are used to measure angular velocity without being affected by gravity 

and linear acceleration. 

Their low current consumption makes gyroscopes appropriate for ambulatory monitoring. 

Aminian et al. propose such a system for the estimation of spatio-temporal parameters during long 

periods of walking. The values of gait parameters are computed from the angular velocity of lower 

limbs by using wavelet transform. The validation of measurements was assessed using foot pressure 

sensors as standard information and data were gathered from young and elderly subjects to calculate 

the accuracy of the proposed system in a broad range for each gait parameter. The proposed method 

seems to be a significant monitoring tool for several reasons. First, it enables measurements of gait 

features during a long period of walking which supplies the stride-to-stride variability of gait. The 

portability of the system makes it possible to be used in other settings than a gait laboratory, and to 

obtain information reflecting the real performance of the subjects [5]. 

Tong and Granat investigate the usage of uni-axial gyroscopes to develop a basic portable gait 

analysis system. Gyroscopes are attached on the shank and thigh segments’ skin surface and the 

angular velocity for each segment is recorded. Using the segment angular velocities, segment 

inclinations and knee angle are derived [6]. 
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2.4 Magnetometers 

Magnetometer is a device which measures the strength and direction of the magnetic field in its 

locality. In general, magnetometers are combined with accelerometers and gyroscopes in 

biomechanics applications to increase the reliability of the system and to make the definition in the 

global reference frame possible. To do so, they are integrated into Magnetic, Angular Rate and 

Gravity (MARG) sensor modules. 

Bachmann et al. design a MARG sensor module in order to measure the 3 degrees of freedom 

orientations in real time without singularities (singularity - if the external earth magnetic field is in 

alignment with any of the sensor axes, the rotation rate about that axis cannot be determined). Each 

MARG sensor module contains orthogonally mounted micro-machined rate sensors, accelerometers 

and magnetometers for a total of nine sensor components. The MARG sensor requirements are 

derived from the necessities of human body motion tracking. The design goal behind MARG sensor 

is being able to measure 3 degrees of freedom rotational motions without singularities, to be 

sourceless (not depending on a generated signal source) and to have a suitable form factor, which 

does not encumber a human subject when the sensor units are attached. 

Design and implementation of MARG sensors demonstrate that all sensor components are linear 

within the intended operating conditions. Besides being used in human body tracking, these sensor 

units have important applications to teleoperation, virtual reality and entertainment as well [7]. 

Marins et al. present an extended Kalman filter for real-time estimation of rigid body orientation 

using MARG sensors. The filter represents rotations using quaternions rather than Euler angles, 

which eliminates the singularities. A process model is defined, where angular rates are converted 

into quaternion rates. The Gauss-Newton algorithm is used to find the best quaternion that relates 

the accelerations and the earth’s magnetic field, which is then used as part of the measurements for 

matching Kalman filter equations linear. The linearity of the Kalman filter reduces the 

computational time and the orientation estimation is assessed in real-time [8]. 

Yun and Bachmann also design a quaternion-based Kalman filter by preprocessing the 

accelerometer and magnetometer data using the single-frame QUaternion ESTimator (QUEST) 

algorithm [9]. QUEST represents the positioning of a rigid body relative to a fixed coordinate 

system. The quaternion produced by the QUEST algorithm is provided as input to the Kalman filter 

along with angular rate data. When compared with previous approaches, this preprocessing step 

significantly reduces the complexity of the filter design. Filter performance is validated in 

experiments and the results are very promising. Even when there are delays, the algorithm manages 

to handle the dynamic errors [1]. 
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There are various methods presented in the literature that uses inertial measurement units (IMUs) 

for acquiring human movement. IMUs can be used with various other sensors such as ECG, EMG, 

blood pressure sensors etc. Significant progress in computer technologies, solid-state micro sensors, 

and telecommunication has advanced the possibilities for individual health monitoring systems. A 

variety of compact wearable sensors are available today and it is expected that more will be 

available in the near future. This technology is bound to soon allow researchers and clinicians to 

unobtrusively monitor individuals for extended periods of time in the home and community settings 

[bonato]  

IMUs are suited to be used for human movement analysis, since they can acquire acceleration 

and angular rate of change and this could be used to estimate displacement and orientation for each 

segment that they are attached to. The studies that use IMUs can be classified into two groups 

regarding their use of sensors: multiple sensors and single sensors. 

3.1 Multiple IMUs for activity classification 

Placing multiple IMUs on various parts of the body allows gathering complex data about specific 

parts of the body. With multiple IMUs it is convenient to place a sensor in each conjoint segment 

and estimate the joint kinematics using the acquired data.  

Tapia et.al used five IMUs with a hearth rate monitor to classify the activities of daily life. The 

IMUs locations were: top of the dominant wrist just behind the wrist joint, side of the dominant 

ankle just above the ankle joint, outside part of the dominant upper arm just below the shoulder 

joint, on the upper part of the dominant thigh, and on the dominant hip. They have analyzed the 15 

acceleration signals (x, y and z components of each) with a sliding window (window length 4.2s 

and overlapping on 2.1s). Time domain and frequency domain features were then computed for 

each window: the area under curve (AUC) and variance to capture signal variability, mean distances 

between axes and mean to capture sensor orientation with respect to ground for postures, entropy to 

differentiate activity type, correlation coefficients to capture simultaneous motion of limbs, and FFT 

peaks and energy to discriminate between intensities. All the features were computed over each 

acceleration axis. The only feature computed over the HR data was the number of heart beats above 

the resting HR value (BPM-RHR). Finally, WEKA toolkit [WEKA] was used to evaluate the 

performance of the C4.5 DT [WEKA C4.5] (pruned) and the Naive Bayes classifier. They reached 

96% performance for recognition of activities (Lying, sitting, walking, running, stair 

ascend/descend, cycling, rowing, moving weight, arm exercises). [Tapia+Intille] 
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Ermes et al. used 2 IMUs placed on wrist and hip to classify daily life activities. For the wrist 

they have used 3-axial accelerometer and for the hip 3-axial accelerometer and magnetometer. 

Twelve subjects participated in their studies and 6h of data were collected for each subject. The 

classified activities were: Lying, sitting (computer work, reading), standing, cycling, rowing 

exercise, walking (regular and Nordic), playing football, running. They have used various classifiers 

(decision trees, artificial neural network, hybrid model) and reached 89 % recognition rate.  

Paraschiv-Ionescu et al. used 3 IMUs placed on chest, thigh and shank of the subject. The 

classified activities were standing (with various postures), sitting, lying and walking. They have 

used wavelet transform and Savitzky–Golay filters for extracting information from the signals and 

developed different algorithms for each kind of activity. They also used the same setup for 

extracting gait parameters. They have reached 98% percent recognition rate. They also estimated 

distance traversed with 6.8% error rate and speed with 9.6 % error rate.  

There are also commercial products that use multiple sensors to provide activity classification 

and gait analysis. Zhang et al. presented this commercial product in their publication. They use 5 

IMUs placed on both thigh, under the both foot and on chest. They classified 32 activities and claim 

to reach 98.7% rate for 32 activities. They provide a profiling of the subject for the daily activities 

performed. They also provide estimations of gait speed, distance, cadence and other spatio-temporal 

parameters along with estimations of energy and power.  

3.2 Single IMUs for activity classification 

In the study of Ravi et al., they used a single IMU for activity classification. They have placed 

the IMU ın waist level at the right side of the body. Their study was mostly based on the 

comparison of various machine learning methods applied on activity classification. They have 

classified following activities: standing, walking, running, ascending/descending stairs, sit-to-stand 

and stand-to-sit, vacuuming and brushing teeth. They extracted the following features from the IMU 

signals by analyzing the signals with the sliding window approach: (a) mean value, (b) standard 

deviation of the signal in each window, (c) energy, which is the sum of the squared discrete FFT 

component magnitudes of the signal (The sum was divided by the window length for 

normalization), and (d) correlation between the signals in each window. They used various 

classifiers but the most prominent one was the method called plurality voting that uses all the other 

classifiers for making a decision with 90% to 99% recognition rate in various cases. 
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Yang et al. proposed a method that uses a single IMU placed on the dominant wrist of the 

subject. They have divided the activities into two groups: (a) static and (b) dynamic. They 

developed their method using neural classifiers with multilayer feed-forward neural networks 

architecture. They trained two different neural classifiers: First one is for classifying the activity as 

dynamic or static and second one classifies the output from the first classifier. They analyzed the 

signal using the same approach of Ravi et al., however, they extracted additional features from the 

signal. The additional features are: interquartile ranges, root mean square, mean absolute deviation 

and variance. The classified activities were: standing, sitting, walking, running, vacuuming, 

scrubbing, brushing teeth, and working at a computer. Seven healthy subjects participated in the 

experiments performing each activity for 2 minutes. They have reached 95% recognition rate.  

Mathie et al. proposed a method with a single IMU placed at waist level above the fight anterior 

superior iliac spine. The movements were first divided into activity and rest. The activities were 

classified as falls, walking, transition between postural orientations, or other movement. The 

postural orientations during rest were classified as sitting, standing or lying. In controlled laboratory 

studies in which 26 normal, healthy subjects carried out a set of basic movements, the sensitivity of 

every classification exceeded 87%, and the specificity exceeded 94%; the overall accuracy of the 

system, measured as the number of correct classifications across all levels of the hierarchy, was a 

sensitivity of 97.7% and a specificity of 98.7%. 

Najafi et al. proposed a method using a single IMU attached to the chest. Wavelet transform, in 

conjunction with a simple kinematics model, was used to detect different postural transitions (PTs) 

and walking periods during daily physical activity. They developed different methods for detecting 

lying, sitting and standing, and walking. They classified activities using the outcomes of these 

different methods. They reached 92% to 99% recognition rate with 90% to 98% sensitivity. 

3.3 Multiple IMUs for gait analysis 

Tong and Granat [10] presented their study in 1999 using uniaxial gyroscopes. The IMUs were 

placed on thigh and shank. They used the first five seconds of the acquisitions where the subject 

stands still to remove the drift from the signal. After they subtract the offset value from the static 

part of the acquisition, they applied simple integration to estimate the inclination of the segment. 

The gait event detection was done by using footswitches and they proposed that the step length can 

be calculated using the leg length of the subject and the inclination calculated from the IMU on the 

shank.  
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Aminian et al. [11] worked on spatio-temporal parameters of gait using multiple gyroscopes. 

They have used three gyroscopes placed on each shank and on the right thigh. A wavelet based 

method was developed to estimate the heel strikes and toe-off events. The method for the estimation 

of gait events used the signals from the IMUs attached to the shanks. Each sensor was used to 

estimate gait events for the relevant foot. Temporal parameters of the gait were estimated using the 

gait events. For the spatial parameters, a pendulum model was developed. In this model the swing 

phase was modelled as a double pendulum model, while the stance phase was modelled as the 

inverse double pendulum model. They measured the length of the thigh and shank before the 

acquisitions and used this information together with the amount of rotation estimated from the 

signals of right thigh and shank as the required parameters for the double pendulum model. The root 

mean squared difference of temporal parameters were 23ms for right swing time, 8ms for gait cycle 

time. They found out that the heel strike detection method was overestimating the event by 10ms in 

average, relative to the footswitches [11]. In a later study they have applied their method for spatio-

temporal parameters estimation on clinical patients with hip osteoarthritis after total hip 

replacement [12].  

Takeda et al [13, 14] proposed a setup where seven IMUs were used. The IMUs were placed on 

abdomen, left and right thigh, left and right shank and left and right foot. In their first study [13], 

they developed a wavelet based method to estimate the inclination of the sensor and using the 

inclination they estimated the flexion of hip and knee. In their second study [14] they focused on 

gait analysis using all the sensors. They measured the distance of the sensors on the thigh and shank 

from hip, join and knee joints. They used this information along with the inclination to estimate 

both hip, knee and ankle joint angles. Also they proposed a model to create a stick figure of lower 

limbs with their setup. 

3.4 Single IMU for gait analysis 

Zijlstra and Hof [15] worked on the feasibility of an analysis of spatio-temporal gait parameters 

based upon accelerometry. Their setup was using only one IMU placed in the back of the subject at 

the waist level. 25 healthy subjects participated in the study. 15 of them walked on a treadmill that 

was equipped with force transducers underneath a left and a right walking surface and the rest 

walked overground. A pendulum model was developed based on a previous study [16]. Based on 

this model, they estimated the foot contact event as the zero-crossing point on forward acceleration 

where the switch from positive to negative occurs. They also proposed a refinement method where 
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the peak before the zero-crossing was estimated as foot contact point. The discrimination between 

left and right steps was based on the analysis of medio-lateral movement of the pelvis. The 

developed inverted pendulum model states that the center of mass (CoM) accelerates to the left 

during right support phase and to the right during left support phase. In the proposed method 

position of the CoM was chosen as the discriminator between left and right step. A Butterworth 

filter with 0.1 Hz cut-off frequency was applied to reduce the effect of the drift and the first 

harmonic was used to describe amplitude and timing of the left/right displacement pattern during a 

stride cycle. The estimation of step length was based on the relations between the changes in height 

of CoM and step length [16]. They developed a formula to estimate step length using the changes in 

height of CoM given the leg length of the subject. A Butterworth filter with 0.1 Hz cut-off 

frequency was applied on the vertical acceleration to reduce the effect of the drift and the 

displacement was estimated by double integration. The amplitude of the displacement was used to 

estimate the step length. They reported that peak detection method was giving better and stable 

results than zero crossing method for the detection of foot contacts. However, in their method, left 

and right foot contacts identification failed in some cases where the medio-lateral displacement was 

small, also the step lengths were underestimated in all subjects and at all speeds. It is presented in 

the study that the step length underestimation was consistent with all the subjects therefore a 

multiplication constant of 1.25 was introduced to compensate for the underestimation.  

Sabatini et al. [17] proposed a setup with a single IMU placed on the instep of the right foot. The 

IMU was composed of one biaxial accelerometer and one rate gyroscope. Gyroscope acquired 

angular velocity in sagittal plane. Angular velocity was integrated starting from each heel-off and 

orientation of the foot in sagittal plane was estimated. The knowledge of the orientation was used to 

remove the gravitational contribution from the accelerometer signal. The gait events were detected 

using the angular velocity. Heel-off after the stance phase occurs when a given threshold (30 deg/ 

sec) exceeded. The foot take-off detected at the time instant when the angular velocity reaches the 

maximum value in the clockwise direction. During the swing phase angular velocity is in counter-

clockwise direction. The heel strike detected at the time when the angular velocity reaches the 

maximum value in the clockwise direction for the second time in the gait cycle. The final transition 

when the foot becomes flat on the ground is detected at the time when the angular velocity slow 

down to a given threshold value (30 deg/ sec). The phase where the foot is flat on the surface, the 

foot was assumed motionless. This phase was used as a reference point for the reset mechanism of 

the double integration of accelerometer signal. They reported that the method tends to detect the 

toe-off earlier (on average: 35 ms), whilst the heel strike is detected without any systematic 

difference (on average: 2 ms).  
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Ojeda et al. [18] presented a study where they used a similar setup with Sabatini et al. [17] The 

IMU was placed on the lateral side foot. A zero velocity update method, similar to Sabatini et al. 

was used. The stance phase was detected applying a threshold on the root of squared sum of angular 

velocity components. In combination with the zero update method, a proposed method of Titerton 

and Westaon [19] was used to estimate the position of the sensor and the foot. The prosed method 

was able to estimate the direction and the distance of the sensor. Experiments were made on 

straight-line, 2-D closed-loop, simple 3-D closed-loop, complex 3-D closed-loop experiments and 

in longer durations. The errors for the straight line were in average 0.8% for fast and 0.3% for slow 

speeds. 0.9% error was reported for the simle 2-D closed loop track, 1.7% error was reported for the 

simle 3-D loop and 0.49% horizontal, 1.2% vertical error was reported for the complex 3-D closed 

loop experiments. For the longer duration experiments outside location with a rocky terrain was 

chosen and 2.1% horizontal and 1.9% vertical errors were reported.  

Yun et al. [20] proposed a similar method with the same setup presented in the method by 

Sabatini et al. [17]. In this study an IMU with magnetometer was used. Acceleration, angular 

velocity and magnetometer signals were used with a Kalman filter to estimate the orientation of the 

sensor. Also a zero velocity update method was used to correct the drift effect in integration. In this 

study, stance phase was detected using the vertical accelerometer signal. 1.3% error rate was 

reported for 120 meter straight line walking and 4.3% error for 120 meter straight line running. 

1.8% error rate was reported for 2-D closed loop track with combined forward walking, side 

stepping, and backward walking 
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4.1 Introduction 

Human movement is a complex phenomenon with many contributing factors: physiology, 

mechanics, psychology, etc. An ability to assess the quality or quantity of movement has the 

potential to provide an invaluable source of knowledge to clinicians to accurately diagnose and treat 

a variety of medical conditions [1]. Assessing the mobility level of individuals during daily life is 

essential for complementing the information gathered in confined environments such as clinical and 

physical activity laboratories for the assessment of mobility. A better understanding on people's real 

life may be possible if their physical activity is monitored during a typical day to provide an 

estimate of their mobility level, thus, increasing the impact of training programs or clinical 

interventions. 

Movement analysis under controlled environment is a useful tool, but does not reveal functional 

subject variability in everyday activity patterns. A patient’s level of mobility cannot be reliably 

estimated from the quality of movement. The quantity of movement in daily life should also be 

measured [2].  

To acquire needed data during daily life, wearable devices provide very good solution. 

Complicated wearable systems such as garments with embedded sensors are designed as an 

undershirt with various sensors embedded within them. Data are transmitted to a pager-size device 

attached to the waist portion of the shirt where it is sent via a wireless gateway to the Internet and 

routed to a data server where the actual monitoring occurs. Optical fibers, a data bus, a microphone, 

other sensors, and a multifunction processor, all embedded in a basic textile grid [3]. 

Inertial measurement units (IMUs) are used as a subset of wearable devices to monitor the 

motion of human movement [4]. They are used to measure applied acceleration and angular 

velocity along and around a defined axis. The availability of commercial small and light-weighted 

wearable modules with an extended battery life allows for monitoring human movement for 

prolonged periods of time and without space limitations. IMUs can be used as a stand alone device 

or a combination of sensors placed on various parts of the body of the subject. 

The presented study is a part of a PRIN’07 project (PI Prof. Della Croce). Its main goal is the 

evaluation of the mobility of healthy individuals living in an urban context in relation with fitness 

level, age and gender. Our research is focused on the biomedical engineering portion of the project. 

Main tasks are related to inertial sensor data enhancement for detection and classification of 

activities, and, analysis and interpretation of enhanced data. 
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4.2 Material and Methods 

Data were acquired using a single IMU (FreeSense, Sensorize®) 

featuring a tri-axial accelerometer and two bi-axial gyroscopes 

(sampling frequency 50 Hz) placed at the waist level on the right body 

side level, with its x-axis pointing downwards, the y-axis pointing 

backward and the z-axis pointing to the left (Figure 4.1). Training data 

set was acquired on ten subjects (four females, 31±4 yrs) who 

performed the following dynamic activities: walking, walking up/down 

stairs, turning, sit-to-stand, and stand-to-sit. Static activities performed 

were: standing, sitting. The subjects were guided by an examiner, who identified the timing of each 

activity, throughout the 5 minutes long acquisitions. Ten acquisitions were made for each subject. 

First, the distinction between dynamic and static activities was accomplished. Then, two different 

approaches were used for each activity type. Static activities were distinguished based on the 

relative angle with respect to the gravitational acceleration direction. For the dynamic activities a 

neural classifier was used. Distinguishing static and dynamic activities allows the neural classifier 

to focus on fewer types of activities aimed at increasing its accuracy (Figure 4.2). 

 

4.2.1 Distinguishing intervals of activity 

Intervals of physical activity were the combinations of two different estimations; one estimated 

from acceleration signals (a(ti)) and the other one from gyroscope signals (w(ti)), by applying 

minimum activity thresholds to a(ti) and w(ti) included within a moving window (window size 1s, 
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Figure 4.2 – The block diagram of activity recognition process 
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sliding step 0.1s) . When the two estimates, obtained from a(ti) and w(ti), did not match, the interval 

of activity was defined as the minimum time interval including them. The abovementioned 

procedure allowed dissecting the signals into subsequent parts.  

Time intervals estimated from IMU is compared with a commercial physical activity assessment 

device. Estimated intervals are an array of true or false values (True meaning activity, false 

meaning no activity is occurring). Comparison is made by applying XOR operation to the intervals 

estimated and acquired from validation device. 

4.2.2 Activity Classification 

To classify the activities performed, machine learning methods are being used. Artificial neural 

networks are one of those methods. They are modeled after simple working logic of neural cells. 

ANN is an adaptive system that changes its structure based on information that flows through the 

network during the learning phase. ANNs are non-linear statistical data modeling tools, used to 

model complex relationships between inputs and outputs or to find patterns in data. In traditional 

statistical language, the inputs are the independent variables and the outputs are the dependent 

variables. They have a very wide range of applications including gait analysis [5]. To utilize ANNs, 

extracted features from accelerometer data should be fed into the network for training. After 

training, ANN will have the mapping from input data to classified activities (Figure 4.3).  

 
 

Figure 4.3 – Training procedure and operation of ANN  

 

Multilayered feed-forward artificial neural network (ANN) [5] with the resilient backpropagation 

(RPROP) learning algorithm [6] was used to train the neural classifier. The ANN presented two 

hidden layers and a hyperbolic tangent sigmoid transfer function was used as transfer function for 

each layer (Figure 4.4). The signal inspection is performed using a sliding window approach, with 

window size 128 samples (2.56s) and 64 samples (1.28s) overlapping between each consecutive 

window.  
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Figure 4.4 – General structure of ANN used 

 

For each window, features characterizing the signal were extracted from the IMU signals. The 

selected features were:  

(1) the mean value of the signal within the window interval,  

(2) the standard deviation of the window interval,  

(3) the energy content (sum of squared FFT component magnitudes divided by the window 

length),  

(4) correlation between signals in the interval of window.  

The correlation was useful for differentiating among activities in which most of the movement is 

along a sensing axis. For example, walking and running feature the largest displacement in one of 

the sensor directions, whereas stair climbing involves a displacement in a combination of two 

sensor directions. Effectiveness of these features was demonstrated in prior work [7, 8]. Thirty-three 

features for each window were extracted: six features (three for the acceleration and three for the 

angular velocities) for mean, standard deviation and energy and, fifteen features for correlation 

were calculated. 75% of data acquired were used for training, 15% for validation and 10% of the 

acquired data is used for testing the method. 

4.3 Results 

Average recognition rate for the whole process is 95.21%. Confusion matrix is in Table 4.1. In 

the matrix columns represents actual activities annotated at the preliminary acquisitions and rows 

represent results of the activity classification process. For example, column 1 implies that 86 of out 

of 87 inputs annotated as standing is classified correctly and 1 of the standing is confused with 

sitting. On the other hand looking at row 1, out of 95 activities classified as standing, 86 of them are 

actually standing. From the table it is seen that generally activities did not confused with each other. 

Although the system recognizes 94.19 % of the actual stairs up, it tends to confuse walking and 
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stairs down activities with stairs up. Also for the sit to stand activity type the system has a low 

recognition rate. 

 

  Actual Activity 

  Standing Sitting Walk 
Stairs 

Up 
Stairs 
Down Sit2Stand Stand2Sit Turns 

C
la

s
s
if
ie

d
 A

c
ti
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it
y
 Standing 86 9 0 0 0 0 0 0 

Sitting 1 59 0 0 0 0 0 0 

Walk 0 0 172 3 0 0 0 0 

Stairs Up 0 0 5 81 5 0 0 0 

Stairs Down 0 0 0 2 78 1 1 0 

Sit2Stand 0 0 0 0 0 22 0 1 

Stand2Sit 0 0 0 0 0 1 23 1 

Turns 0 0 0 0 0 0 0 76 

Table 4.1 – Confusion matrix 

 

Table 4.2 shows recognition rates and validity rates. Those values are compiled from the results 

shown in Table 4.1. Recognition rate column shows the percentage of actual activities classified 

correctly. Accuracy rate column shows the percentage of predicted activities classified correctly. 

  Recognition rate Accuracy rate 

Standing 98.85 90.53 

Sitting 86.76 98.33 

Walk 97.18 98.29 

Stairs Up 94.19 89.01 

Stairs Down 93.98 95.12 

Sit2Stand 91.67 95.65 

Stand2Sit 95.83 92.00 

Turns 97.44 100.00 

Table 4.2 – Recognition and validity rates 

4.4 Conclusion 

The classification method has a high recognition rate in general (95.21%). But for some of the 

activity types (such as sit to stand) it can not perform well enough. One of the reasons for this is that 

transition activities has a smaller duration than periodical activities. Also the system has a low 

recognition rate for sitting posture. Since the orientation of the device regarding gravitational force 

was used for the detection of postures (classified as static intervals), it tends to confuse it with 

standing posture depending on the posture of the subject while seated. One solution for this problem 

is to apply some post processing for static intervals and classify intervals between transitions stand 

to sit and sit to stand, as sitting. 
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(This chapter was written on the basis of the accepted article “Bilateral step length estimation 

using a single inertial measurement unit attached to the pelvis”(Kose A., Cereatti A., Della Croce 

U. Journal of NeuroEngineering and Rehabilitation, 2012 (in press).) 

5.1 Introduction 

The measurement of temporal and spatial features of gait is essential for the assessment of gait 

abnormalities and the quantitative evaluation of treatment outcomes [1]. In particular, amplitude, 

variability and asymmetry of step length (SL) have been shown to be effective outcomes of walking 

ability. In fact, they are strongly related to the propulsion generation and can be representative of 

the compensatory mechanisms adopted in pathological walking [2, 3]. Having access to instruments 

capable of gathering information about the patient walking ability during daily life with no space 

limitations and for prolonged periods of time is of paramount importance in numerous clinical 

applications [4]. 

Inertial measurement units (IMU) are strong candidates for these applications. Those IMUs 

featuring 3-axis accelerometer and gyroscope [5] can be employed to estimate the SL during 

walking. In fact, an estimate of the SL can be obtained by first removing the contribution of the 

gravitational acceleration from the accelerometer signals, then by expressing the resulting 

acceleration in a global reference frame (GF) [6, 7], and finally, by double integrating its 

component in the direction of progression (DoP) between the instants of two consecutive heel 

strikes (HS). 

However, the implementation of the procedure described above requires the solution of a number 

of critical issues: 

a) the identification of the foot contact time instances (gait events), 

b) the determination of the IMU orientation with respect to the GF [8], 

c) the compensation for the drift affecting the accelerometer and gyroscope signals [9, 10], 

d) the estimation of the initial velocity values for the integration of the acceleration along the 

DoP [11]. 

The most straightforward solution to determine both right and left SL (rSL and lSL) would be to 

place an IMU on each foot so that velocity and the orientation of each IMU can be set to zero at the 

beginning of the integration interval [6, 12, 13]. 



 33 

However, when the focus is on the description of the individual motor capacity (“can do in daily 

environment”) and performance (“does do in daily environment”) [14], the requirement of a light, 

small and minimally obstructive setup is of primary importance and, therefore, it would be desirable 

to obtain the same information using a single, discomfort-free IMU. 

To the authors’ knowledge, all the studies in the literature, based upon the use of a single IMU, 

determined the SL through indirect estimation methodologies [15, 16, 17].  

Zijlstra and Hof (2003) proposed a method for estimating spatial-temporal parameters of gait 

from trunk accelerations. The IMU was placed on the back at the level of the S2 vertebrae. The 

method used zero crossing of the forward accelerations for detecting foot contact instances and an 

inverted pendulum model to estimate the SL. However, in their method, left and right foot contacts 

identification failed for 6 out of 15 subjects, 12% of the times and the SLs were underestimated in 

all subjects and at all speeds. 

Gonzales and colleagues (2007) proposed a modified version of the pendulum model for taking 

into account the single stance and double-stance, separately. The IMU was placed on the back at the 

L3 vertebral level. Traversed distance estimation ranged between 94.5% to 106.7% of the actual 

traversed distance. No information was provided about the errors associated to the SL estimates. 

Shin and Park (in press) determined the SL using a linear combination of the walking frequency 

and the variance of the signals of the accelerometer positioned in the back of a subject. Experiments 

were carried out on a single subject. The accuracy of the SL estimation is not reported, but the 

accuracy of traversed distance resulted to be of about 96%. 

This study presents a method for the estimation of rSL and lSL during level walking using a 

single IMU attached to the pelvis. As every similar method, the proposed method requires the 

identification of the gait events as a preliminary step. To minimize the detrimental drift effects, the 

IMU acceleration along the DoP, obtained using a Kalman filter [18], is double integrated by means 

of a combination of direct and reverse integrations [19] of an optimally filtered acceleration along 

the DoP combined to a velocity update for the estimation of the initial values of its integral (the 

initial velocity). 

We hypothesized that the proposed method for the estimation of the SL, would be more accurate 

than the indirect methods based on the use of inverted pendulum or regressive models.  

The performance of the proposed approach was evaluated on data collected on healthy subjects 

walking at various speeds, using stereo-photogrammetric (SP) measurements as a gold standard. 
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5.2 Methods  

5.2.1 Instrumentation 

An IMU (FreeSense, Sensorize®) featuring a tri-axial accelerometer and two biaxial gyroscopes 

(acceleration resolution 0.0096 m/s2, angular rate resolution 0.2441 deg/s, unit weight 93 g, unit 

size 85 mm × 49 mm × 21 mm) sampling data at 100 frames/s was used. A 10-camera BTS® 

SMART-D stereo-photogrammetric system acquiring at 100 frames/s, was used for validation 

purposes. 

5.2.2 Step length estimation 

The method described below can be applied to the data obtained from any IMU featuring a tri-

axial accelerometer and a three axial gyroscope. The physical quantities, specific forces and angular 

velocities, provided by each sensors of the IMU, are measured with respect to the axes of a local 

frame (LF) aligned to the edges of the unit housing. In this application, the IMU was mounted on 

the right side of the body at the pelvis level with XL, YL and ZL axes pointing downward, forward, 

and to the right, respectively (Figure 5.1). 

 

 

Figure 5.1. The IMU location – The IMU attached to the belt and positioned to the right side of the subject pelvis 

and relevant LF. 
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The assumption that the pelvis displacement along the DoP between the beginning and the end of 

a gait cycle occurs in phase with the movement of the feet is the basis of the proposed method. The 

success of the method relies on the solving of following issues: 

a) the identification of gait events; 

b) the determination of pelvis displacement along the DoP. 

A common approach to deal with the former was used in this study and an original method was 

developed to solve the latter. 

5.2.3 Identification of gait events 

A gait cycle begins when a foot hits the ground (heel strike - HS) and ends when the next HS of 

the same foot occurs. When gait cycles can be identified for both sides, then also steps can be 

identified. A step begins when a contra-lateral HS occurs and ends at the first following HS. 

In this study, initial and final contact of each recorded gait cycle for both sides were identified 

from the IMU signals. By following a heuristic approach, a preliminary visual investigation was 

performed to correlate the distinctive features in the IMU signals with the relevant gait events 

extracted from the SP system data (Figure 5.2a). 

A wavelet-based method was used to identify the candidate time instances from the 

accelerometer signals. The XL and YL accelerometer signals were decomposed using“Stationary 

wavelet decomposition” [20]. A Daubechies level 5 (“db5”) mother wavelet was chosen given its 

similarity to the IMU signals in the proximity of HS. The original signals were then decomposed in 

an approximation curve plus ten levels of detail. Thresholds were applied to the first three detail 

levels and the other detail levels were discarded. Thresholds for these levels were 1/5, 1/4 and 1/3 

of its magnitude for the first, second and third level, respectively. The signals were reconstructed 

using only the first three levels of detail after thresholds were applied. An interval of interest for the 

accelerometer signals was defined as the interval of time during which the reconstructed signals 

differed from zero (Figure 5.2b and Figure 5.2c). 

The right HS (rHS) was detected as the instant of time in the middle between the maximum of 

the YL accelerometer signal and the first minimum of the accelerometer signal along the XL 

accelerometer signal in the corresponding intervals of interest. The identification of the left HS 

(lHS) required the identification of both right and left toe off instances (rTO, lTO). The lTO was 

detected as the instant of time in the middle between the first maximum of the YL accelerometer 

signal after the rHS and the second minimum of the XL accelerometer signal in the corresponding 

intervals of interest. The rTO was found as the time of the minimum negative peak value between 
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two consecutive lTO and rHS. The lHS was found as the first local maximum of the ZL 

accelerometer signal before the rTO (Figure 5.2d) [21]. 

 

Figure 5.2. IMU signals and relevant gait events (a) Raw accelerometric signals: XL pointing downward (dashed 

line), YL pointing forward (solid line) and ZL pointing laterally (dot-dashed line). SP-based gait event timings are 

superimposed (vertical lines). (b) Raw signal on XL and corresponding reconstructed signal (thick dashed line) used for 

the definition of the interval of interest. (c) Raw signal on YL and corresponding reconstructed signal (thick line) used 

for the definition of the interval of interest. (d) Circles show the reference points used to estimate gait events from the 

accelerometric raw signals. 

5.2.4 Estimation of the pelvis displacement along the DoP 

The method developed for estimating the pelvis displacement along the DoP requires the 

knowledge of the gait events and is divided in the following phases: 

a) estimation of the IMU acceleration along the DoP; 
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b) integration of the IMU acceleration along the DoP; 

and, when the IMU is located laterally, 

c) removal of pelvic rotation contribution to IMU displacement. 

5.2.5 Estimation of the IMU acceleration along the DoP  

To estimate the IMU coordinate acceleration along the DoP, the orientation of the LFIMU with 

respect to the global frame (GFIMU), was estimated using a specifically designed Kalman Filter 

[Mazzà et al., in press].  

The GFIMU was defined as follows: the XG axis coinciding with the direction of gravity, the YG 

axis coinciding with the DoP of the subject during level straight walking, t, and the ZG resulting 

from the cross product between XG and YG 
. 

The orientation of LFIMU with respect to GFIMU at the i
th

 instant of time was expressed using the 

orientation quaternion )(iL

G
q . 

Let )(iL
f  be the specific force vector measured by the IMU expressed in LFIMU at the i
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 instant 

of time, then the coordinate acceleration vector )(iG
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5.2.6 Integration of the IMU acceleration along the DoP 

To obtain the velocity and displacement time series along the DoP, an integration technique, the 

Optimally Filtered Direct and Reverse Integration (OFDRI), and its simplified version, the 

Optimally Filtered Integration (OFI) [19], was adapted to manage acceleration signals during gait. 

Both the OFI and the OFDRI were originally designed for step negotiation motor tasks [19] and 

require the knowledge of the final value of the integral to set a cut off frequency for the high pass 

filter employed to reduce the effect of the drift in the accelerometer signals. In this application, the 

cut off frequency was determined from a gait cycle for which the initial and final velocity of the 

IMU was assumed to be equal. The resulting cut-off frequency was then applied for filtering the 

acceleration signal along the DoP, one gait cycle at a time. Since the trials started with the subject 

standing, the initial velocity along the DoP was set to zero. The velocity values found for the final 

HS were used as initial velocity values for the integration of the following gait cycle. For those gait 

cycles where the velocity at the final HS resulted to be roughly equal to the initial value (± ε, ε = 0.3 

m/s), then it was forced to be exactly equal to it and the OFDRI was applied. The same updated 
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velocity value was used also as initial velocity of the following gait cycle. The value ε = 0.3 m/s 

was chosen based on a trial and error approach.  

The second integration, the integration of velocity along the DoP to obtain displacement, was 

performed following the same approach. Since, for all cycles, the final value of the integral (the 

displacement at the final HS) could be neither known nor estimated, OFDRI was never applied and 

final values of the integral were never updated. 

Therefore, the resulting estimates of rSL and lSL of the j
th

 gait cycle were: 

rSLj=[sx(rHSj)- sx(lHSj)] - dsin(j) 

lSLj=[sx(lHSj)- sx(rHSj)] + dsin(j) 

where sx is the displacement along the DoP. 

The SL estimation method including the estimation and integration of the IMU acceleration 

along the DoP was named KOSE (Kalman and Optimal based filtering Step length Estimation). 

5.2.7 Removal of pelvic rotation contribution to the IMU displacement 

During walking, the pelvic rotation contributes to the length of steps since it completes a full cycle 

every two steps. When the IMU is located on the right side of the pelvis, the IMU displacement 

along the DoP, at the end of the right step duration (rT, the time interval between a lHS and the 

following rHS), is larger than the actual rSL due to the pelvic angular displacement θ occurring 

during the same interval of time. Conversely, the IMU displacement at the end of the left step 

duration (lT, the time interval between the rHS and the lHS) is smaller than the lSL. Therefore, 

applying the equations (2) without taking into account the pelvic rotation, would result in an 

overestimate of the rSL and an underestimate of the lSL (vice versa if the IMU is attached to the left 

side of the pelvis). The amount of the over-(under-) estimate would be equal to dsin(θj), where d is 

the inter ASIS (anterior superior iliac spine) distance, and θj is the pelvic angular displacement 

between beginning and end of the j
th 

cycle. 

Therefore, for the j
th

 gait cycle, rSL and lSL can be obtained as: 

rSLj=[sx(rhsj)- sx(lhsj)] - dsin(j) 

lSLj=[sx(lhsj)- sx(rhsj)] + dsin(j) 

when the IMU is on the right side of the pelvis and as: 

rSLj=[sx(rhsj)- sx(lhsj)] + dsin(j) 

lSLj=[sx(lhsj)- sx(rhsj)] - dsin(j) 

when the IMU is on the left side of the pelvis. 
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5.2.8 Experimental Session 

Gait data of nine healthy subjects (31 ± 6 yrs) were acquired. Two markers were placed on the 

right and left heels and toes of each subject. Subjects were asked to walk along a closed loop track 

of 25 m varying their speed as follows. They started walking from a standing position with their 

heels aligned to the start line. For the first two laps they walked at slow speed. At the beginning of 

the third lap, they increased their speed (comfortable speed) and maintained it for the third and 

fourth laps. At the beginning of the fifth lap, they further increased their speed (fast speed) and 

maintained it for the fifth and sixth laps. At the beginning of the seventh lap, they decreased their 

speed (comfortable speed) and maintained it for the seventh and eighth laps. At the beginning of the 

ninth lap, they further decreased their speed (slow speed) and maintained it for the ninth and tenth 

laps. They stopped walking at the end of the tenth lap (Figure 5.3b). 

A 4 m long portion of the walking track was included in the calibrated volume of the SP system, 

(Figure 5.3a) with its reference frame made to coincide with the GF. For each lap, SP data of three 

consecutive gait cycles were recorded. 

 

Figure 5.3. Experimental data acquisition – A schematic view of the path and the calibrated volume (seen from 

above). 

Only data recorded by the IMU and SP system within the calibrated volume were used for the 

method validation. Data recorded during each lap were arranged together to obtain a continuous 

data set formed by 3 × 10 gait cycles (Figure 5.3c). 

5.2.9 Data analysis 

The estimates of the timing of the gait events (rHS, lHS), the right and left step duration (rT, lT) 

and of rSL and lSL, obtained from the heel marker coordinates reconstructed with the SP system 
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were used as gold standard measurements when evaluating the accuracy of the estimates obtained 

using the IMU. 

Thus, for each step j and for any given quantity, the differences between IMU estimates and gold 

standard measurements may be interpreted as estimation error: 
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Descriptive statistics of the above errors were computed.  

In addition, to compare our results with previous works, the difference between the IMU 

estimated distance and the actual traversed distance was computed for each subject. 

5.3 Results 

Cut-off frequencies employed in both OFI and OFDRI to high-pass filter the original data varied, 

across the subjects, between the 0.067 Hz and 0.096 Hz. The pelvic rotation was on average across 

subjects about 5 degrees. 

5.3.1 Heel strike detection 

All rHS and lHS instances were successfully detected in all subjects. The mean and standard 

deviation of errors erHSj and elHSj are reported in Table 5.1. On average, the IMU-based estimates of 

both rHS and lHS were delayed with respect to the corresponding SP estimates by 0.017 s and 0.027 

s, respectively. 
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[s] RHS LHS 

subject mean  s.d. mean s.d. 

1 0,019 0,027 0,026 0,019 

2 0,008 0,021 0,017 0,016 

3 0,026 0,017 0,034 0,021 

4 0,012 0,007 0,027 0,025 

5 0,021 0,031 0,029 0,019 

6 0,016 0,013 0,028 0,024 

7 0,024 0,022 0,031 0,017 

8 0,018 0,02 0,028 0,016 

9 0,009 0,019 0,019 0,025 

average 0,017 0,020 0,027 0,020 

Table 5.1 – Heel strike detection error - Mean and standard deviation of errors in detecting right and left heel strikes 

are reported for each subject. Averaged values across the nine subjects are also reported. All values are in seconds. 

5.3.2 Right and left step duration 

The mean and standard deviation of errors erTj and elTj together with the mean percent errors 

are reported in Table 5.2. On average, across subjects, the IMU-based estimates of rT were 0.015 s 

(-2.3%) shorter than the SP measurements. On the contrary, the IMU-based estimates of lT were 

0.017 s (+2.4%) longer than the SP measurements. On the contrary, the IMU-based estimates of lT 

were 0.017 s (+2.4%) longer than the SP measurements. 

[s] rT lT 

Subject mean  s.d. % mean  s.d. % 

1 -0,021 0,031 -3,10% 0,024 0,025 2,60% 

2 -0,015 0,026 -2,80% 0,011 0,017 2,60% 

3 -0,014 0,017 -2,10% 0,023 0,019 2,70% 

4 -0,009 0,013 -1,70% 0,017 0,017 2,90% 

5 -0,014 0,022 -1,90% 0,011 0,023 1,60% 

6 -0,011 0,021 -1,50% 0,016 0,019 2,00% 

7 -0,022 0,027 -3,20% 0,019 0,025 2,70% 

8 -0,017 0,021 -2,50% 0,024 0,025 3,20% 

9 -0,01 0,018 -1,50% 0,009 0,018 1,40% 

Average -0,015 0,022 -2,26% 0,017 0,021 2,41% 

Table 5.2 - Step lenghts - Mean differences and standard deviations between step length values estimated with the IMU 

and with stereophotogrammetric system. All values are in meters. 

5.3.3 Right and left SL estimation 

The mean and standard deviation of errors erSLj and elSLj together with the mean percent errors are 

reported in Table 5.3. Percent errors varied across subjects, between -2.6% and +2.9% for the rSL 
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and between 0.4% and 2.6% for the lSL. On average, across subjects, IMU-based estimates of rSL 

were slightly overestimated by 0.009 m (+1.2%). 

On the contrary, lSL were underestimated by 0.008 m (-1.1%). 

 

[m] erSL elSL 

subject mean  s.d. % mean  s.d. % 

1 0,014 0,016 2,0% -0,010 0,014 -1,9% 

2 0,020 0,015 2,9% -0,017 0,013 -2,6% 

3 0,006 0,015 0,8% 0,002 0,016 0,3% 

4 -0,001 0,021 -0,2% 0,002 0,019 0,4% 

5 0,017 0,018 2,1% -0,012 0,018 -1,5% 

6 0,019 0,019 2,1% -0,019 0,021 -2,2% 

7 0,013 0,015 1,7% -0,008 0,014 -1,1% 

8 -0,008 0,017 -1,2% 0,001 0,019 0,2% 

9 0,003 0,013 0,6% -0,012 0,013 -1,4% 

average 0,009 0,017 1,2% -0,008 0,016 -1,1% 

Table 5.3 - Total traversed distance - Mean differences and standard deviations between step length values estimated 

with the IMU and with stereophotogrammetric system. All values are in meters. 

5.3.4 Total traversed distance 

The actual and IMU-based estimates of the traversed distance are reported in Table 5.4. Percent 

errors over a traversed distance of about 30 m, varied across subjects, between -0.54 m (-1.6%) and 

0.54 m (+1.7 %). The average estimate of the traversed distance is equal to 0.1%. 

 

subject 

actual 

distance [m] 

estimated 

distance  [m] 

difference 

[m] 
%difference 

1 32,65 33,02 0,37 1,1% 

2 30,99 31,46 0,46 1,5% 

3 31,17 30,80 -0,37 -1,2% 

4 31,71 32,25 0,54 1,7% 

5 30,37 29,91 -0,46 -1,5% 

6 33,44 32,89 -0,54 -1,6% 

7 31,40 31,74 0,34 1,1% 

8 32,11 31,78 -0,33 -1,0% 

9 30,63 31,00 0,37 1,2% 

average 31,61 31,65 0,04 0,1% 

Table 5.4 - Total traversed distance - Actual and estimated traversed distance (in meters) obtained from the SP and 

IMU data respectively, along with the difference (in meters) and percentage difference. Averaged values across the nine 

subjects are also reported. 
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5.4 Discussion and Conclusion 

A method for determining both right and left SL during level walking using a single IMU to be 

used either indoor or outdoor, without space limitations and for prolonged periods of time, was 

presented and validated. 

SL estimates were obtained directly from the IMU displacement between two consecutive HS, 

by employing an original method (the KOSE method) which double integrates the IMU acceleration 

along the DoP obtained after applying a Kalman filter. To reduce the errors caused by the drift 

affecting the IMU acceleration along the DoP, an integration technique proposed by Zok and 

colleagues [19] was adapted to gait and used. 

The method was tested on healthy subjects while they were walking increasing and decreasing 

their speed, five times along 30 m. The algorithm for the identification of left and right HS never 

failed in all the subjects analyzed. Both right and left HS were detected with an average time delay 

corresponding to 1.7 samples and 2.7 samples, respectively (sample frequency 100 frames/s). These 

errors implied that the right step duration was on average two samples shorter than the left one. 

Despite the shorter estimated step duration, the rSL resulted, over the different subjects, 

overestimated by 1.2%. The maximum mean error in estimating the SL was overestimated by 2.9% 

for the rSL and underestimated by 2.6% for the lSL. The main explanation for the side to side 

differences, is probably that the effect of the pelvic rotation, associated to the asymmetrical IMU 

positioning, was not completely compensated for by the correction term dsin(θj). In fact, in this 

regard, several assumptions were not completely satisfied: being attached to the belt of the subject, 

the IMU was not rigidly moving with the pelvis and d, which is taken as the inter-ASIS distance 

may differ from the distance between the LF origin to the pelvis vertical axis of rotation. As 

expected, the maximum percent error on the total traversed distance was to 1.7% and therefore 

smaller than the maximum SL percent error. It is worth noticing that the estimate of the traversed 

distance was never consistently either an overestimate or an underestimate (average over subjects 

equal to 0.1%). 

Several methods to estimate rSL and lSL, using a single IMU, have been proposed in the 

literature [15, 16, 17, 22]. A common feature of these methods is that the SL estimates were derived 

using indirect methodologies, either based on inverted pendulum models for level human walking 

representation [23, 24] or based on general regressive equation in which SL is expressed as function 

of the step frequency and accelerometric signal variations. Unfortunately, no data on the accuracy 

of the rSL and lSL estimates were provided in abovementioned studies. Therefore, a straightforward 

comparison among methods is not possible. However, Zijlstra and Hof (2003) reported a consistent 
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SL underestimation. As a consequence, also the mean speed (mean SL divided mean step time) was 

underestimated and to correct it, they introduced a coefficient of 1.25 heuristically determined. It 

could then be inferred that the SL estimations were affected by errors of about 20-30%. In Gonzales 

and colleagues (2007), the performance of their method was evaluated by assessing the errors of the 

distance traversed in each acquisition. Across subjects, errors ranged from -6.5% to +6.0%. Shin 

and Park (in press) reported an accuracy error of 3.7% (worst case) for the traversed distance. In our 

study the errors in estimating the traversed distance ranged from -1.6% to +1.7% among subjects. 

The smaller estimation errors compared to previously publish methods, confirm our initial 

hypothesis that the KOSE method improves the accuracy with respect to indirect methods based on 

the use of general models, which may not always take into account subject specificity in gait.  

In this study, the IMU was attached to the subject’s belt on the right side. This location was 

chosen to reduce subject discomfort and because it is a practical solution for monitoring daily life 

motor activities. However, it can be hypothesized that attaching the IMU centrally in the back (S2 

or L3 vertebral level) similarly to Zijlstra and Hof (2003) Gonzales and colleagues (2007) and Shin 

and Park (in press), the residual errors related to the pelvic rotation correction would be reduced and 

it would not be necessary to correct for the pelvic rotation effects. 

In this study we presented results relative to gait event timings and SL estimations. Additional 

gait parameters can be easily calculated from the estimated parameters. Therefore, using a single 

IMU, we were able to provide excellent estimates of both temporal and spatial gait parameters 

bilaterally. 

It is important to stress that the KOSE method was tested on experimental conditions fairly 

similar to those which can be encountered in the real life: different gait speeds (three gait speed 

levels), numerous velocity transients (five velocity transients on 30 m). It is reasonable to expect 

that, in healthy subjects, errors in traversed distance estimation during daily monitoring activity 

would be of the same order of magnitude of those presented. 

The data set, derived from the experiments carried out in the present study, referred to a straight 

level walking. For this specific method validation, the GF was therefore defined, at the beginning of 

each acquisition with the YG axis coinciding with the DoP. The IMU acceleration component along 

the DoP, was then calculated by projecting the accelerometric signal, after having removed the 

gravitational contribution, on the GF. In general, if during the acquisition, the subject varies the 

DoP more than once, it is necessary to define for every different DoP, an auxiliary GF with the YG 

axis aligned to the relevant DoP. 

There are some limitations to the current proof of concept which need to be addressed before 

using the presented methodology to estimate gait spatial and temporal parameters in clinical 
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contexts. One issue is related to the algorithm used to identify the gait events, which is normally 

based on IMU signal features. Such features may change or even disappear in pathologic subjects. 

Another issue is related to the assumption that the pelvis displacement along the DoP between HS 

equals the SL. In fact, in some gait disorders the pelvis displacement may not be in phase with the 

feet displacement as much as in healthy subjects. Finally, a potential limitation of the KOSE 

method is that it performs better on gait with fewer fluctuations in speed since the OFDRI, which is 

very effective in reducing the IMU signal drift [25], can be used only when subjects walk at a 

constant speed. 
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6.1 Motivation 

The World Health Organization (WHO) includes physical inactivity among the first ten causes of 

mortality and functional capacity limitations in the world. On the other hand, physical inactivity is a 

factor, which, in theory, could be controlled or modified, as well as smoking and eating habits. 

Acknowledging the importance of physical activity made necessary the identification of reliable 

methods for its quantitative evaluation, which, instead, is usually made using questionnaires, 

typically qualitative and with little accuracy. It is known as the cardio-respiratory fitness, 

neuromuscular function and motor capacity tend to degrade with ageing. However, both the 

relationship among these three determinants of mobility and the association between their 

deterioration level and the amount of physical activity performed during the daily life are still 

unknown. The quantitative evaluation and the characterization of the cause-effect relationship 

between physical activity and mobility require the combined evaluation of the three determinants to 

be included. The evaluation of the physical activity performed by individuals during their daily life 

usually is based on the analysis of those activities which require a higher level of energy 

expenditure, such as the locomotion tasks (sit-to-stand, walking, running, stair climbing, cycling, 

etc.). The finer movements of upper limbs, fingers and neck are usually not included. Therefore, the 

level of physical activity may properly assessed by quantifying the daily performance of a selected 

group of motor tasks (assessment of motor performance).  

6.2 Application on healthy subjects 

The goal of the presented study was the identification and the application of novel and accurate 

methodologies for the evaluation of the mobility of healthy individuals living in an urban context, in 

relationship with their fitness level, age and gender. In order to reach such goal, both biomedical 

engineers and physical exercise physiologists will face important challenges. The most interesting 

engineering aspect is the assessment of the motor performance (methods for assessing motor 

capacity are better developed). Properly integrated wearable devices coupled with biomechanical 

models may provide the necessary information for the evaluation of the motor performance. 

Exercise physiologists will investigate the relationships among: a) cardio-respiratory fitness, b) 

neuromuscular function, c) motor capacity and d) physical activity levels, on samples of the age 
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ranges (young adults, adults and elder adults) living in an urban context. Both biomechanical and 

physiological quantities obtained both from the laboratory and the daily life will be considered. The 

information extracted from the large pool of data formed will be performed using data mining 

techniques. The expected output of the entire process will be formed by a set of significant patterns 

and relationships among data, which will represent the knowledge extracted from the database. 

Such patterns will be used to characterize each group (differences in gender, age or fitness level) 

and will be expressed using relationships among the variables obtained from laboratory tests, from 

monitoring activities or both. It is expected that the information obtained will contribute in shaping 

a picture of the mobility level of the selected population.  

With the presented motivation and the goal a PRIN’07 project was initiated with Prof. Ugo 

DELLA CROCE as its PI. The Research Unit (RU), that the author of the presented thesis was a 

member of, was in charge of the biomedical engineering part of the project. Specifically, two main 

activities were decided to be carried out by the research unit: (a) wearable sensor data enhancement 

through application of mechanical models and (b) the analysis and interpretation of wearable 

devices data combined to the physical activity laboratory data. The former activity included a 

validation of wearable device data. Test subjects were asked to perform movements frequently 

performed during daily life (sit-to-stand, walking, etc.) while wearing sensors in a motion analysis 

laboratory (featuring force platforms and motion capture system). The study presented on chapter 4 

was developed to be used in this section of the application. The latter activity required the 

processing of selected biomechanical variables extracted from the wearable devices data and the 

biomechanical modeling complemented with motor and cardio-respiratory capacity, and 

neuromuscular function data. The study presented in chapter 5 aimed at meeting the requirements of 

this section of the application. Biomechanical modeling complemented with motor and cardio-

respiratory capacity, and neuromuscular function data, was carried out by another research unit of 

the PRIN project. 

6.2.1 Materials and methods 

34 subjects participated in the study. 18 of the subjects were young (age = 28 ± 3 yrs) and 16 of 

them were elderly (age = 71 ± 4 yrs). Acquisitions were carried out for 24 hrs. A single IMU 

(FreeSense, Sensorize®) was attached with a protection cover to the belts of the subjects at the right 

side of the body. During the night, the subjects take out the device from their belts and put it back 

on in the morning, therefore for every acquisition approximately 16 hrs of activity data were 

acquired). A commercial validation device was used (IDEEA, Minisun®) for validation purposes. 

The commercial device had multiple sensors placed in various parts of the subject. The setup 
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presented in this thesis was used together with the commercial device without any interaction. An 

Artificial Neural Network (ANN) based algorithm that was presented in chapter 4 was used for the 

classification of activities. And for extracting the parameters of gait, the study presented in chapter 

5 was used.  

6.2.2 Results 

The commercial device reports total durations of activities for given period (24 hrs). Table 6.1 

shows the durations of activities, for each subject, estimated by the commercial device. The 

activities occurred during the night were not included in this table. The intervals for “night-times” 

to be excludeded were estimated from the FreeSense IMU output. (The subjects took out the IMU 

during sleep). 

[min] Commercial Device Activity Durations 

Subject SITTING STAND WALK STEPUP STEPDOWN StSi SiSt 

OF02 650,45 263,30 40,76 0,27 0,35 2,50 2,36 

OF03 261,43 550,91 140,97 1,02 1,95 1,95 1,77 

OF05 494,92 318,59 93,67 1,45 1,41 2,90 2,71 

OF06 389,23 394,44 127,89 0,10 1,20 2,23 2,23 

OF11 562,88 310,31 80,13 0,38 0,41 3,02 2,87 

OM01 608,66 194,65 90,07 0,16 3,49 0,80 0,80 

OM02 656,38 193,38 84,22 0,80 1,75 1,15 0,97 

OM03 373,67 463,88 113,79 2,41 1,87 1,88 1,83 

OM04 593,33 301,76 55,94 0,38 0,87 3,82 3,90 

OM05 570,40 298,01 79,09 1,19 1,21 1,16 1,10 

OM06 592,60 266,91 46,56 0,84 1,11 2,14 4,82 

OM07 607,32 153,16 191,64 2,56 3,80 0,72 0,73 

OM08 726,65 166,58 60,05 0,84 0,17 2,94 2,78 

OM09 692,07 209,18 51,41 0,39 0,99 2,98 2,98 

OM10 615,59 258,32 79,46 3,01 1,12 1,24 1,27 

OM11 525,56 350,61 76,51 0,33 2,46 2,11 2,08 

YF02 610,93 236,96 83,15 4,26 2,67 3,98 4,06 

YF03 708,36 192,15 34,54 0,75 1,38 1,28 1,18 

YF05 644,60 245,94 60,53 1,49 3,10 1,67 1,66 

YF06 419,12 395,39 109,98 1,95 3,22 1,80 1,94 

YF07 282,24 496,69 170,39 2,33 2,66 2,40 2,65 

YF08 665,47 215,84 49,02 2,48 1,95 1,37 1,50 

YF10 644,18 251,06 57,66 2,96 2,28 0,90 0,95 

YF11 600,90 287,61 52,01 2,16 2,38 2,84 3,03 

YF12 538,25 339,14 64,00 2,84 3,37 3,18 3,38 

YM04 571,49 238,57 69,89 3,71 1,36 3,65 3,60 

YM05 496,94 288,32 126,53 4,23 2,76 3,23 3,32 

YM06 835,39 95,75 25,76 0,34 1,33 0,80 0,63 

YM07 189,48 290,94 83,11 1,80 0,81 0,53 0,48 

YM08 531,78 286,43 134,03 2,45 1,77 1,79 1,74 

YM09 671,62 195,73 83,49 2,50 2,53 1,87 2,08 

YM10 578,48 291,10 77,21 3,03 1,99 3,54 3,64 

YM11 518,79 346,85 71,80 5,80 3,60 6,40 6,41 

YM12 577,66 302,66 71,62 2,34 2,60 1,48 1,56 

Table 6.1 - Durations of activities estimated by the commercial device. The values are given in minutes 
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Table 6.2 shows the durations of activities, for each subject, estimated by the proposed activity 

classification method that uses a single IMU. 

[min] Single IMU Activity Durations 

Subject SITTING STAND WALK STEPUP STEPDOWN StSi SiSt 

OF02 647,53 256,04 45,60 0,68 0,45 2,69 2,64 

OF03 260,66 553,96 141,79 1,40 1,30 2,03 2,19 

OF05 493,08 314,75 96,36 1,55 1,47 3,20 2,88 

OF06 392,03 392,32 126,28 0,62 1,12 2,44 2,64 

OF11 560,83 311,36 82,18 0,49 0,50 3,26 3,18 

OM01 609,75 192,06 89,03 1,75 3,28 1,09 0,96 

OM02 654,31 192,39 85,91 1,16 1,41 1,45 1,21 

OM03 374,95 465,93 113,59 1,98 1,84 1,80 2,05 

OM04 591,59 299,22 57,20 0,56 0,95 3,71 4,03 

OM05 569,06 299,64 80,61 1,26 1,37 1,38 1,40 

OM06 591,27 265,15 47,83 0,81 1,31 1,96 4,61 

OM07 606,26 152,94 192,78 2,71 3,22 0,87 0,84 

OM08 725,38 164,45 61,79 0,72 0,81 3,29 2,28 

OM09 690,56 208,74 53,02 0,83 0,71 3,12 3,95 

OM10 613,59 257,85 80,72 2,78 1,46 0,92 1,09 

OM11 526,41 349,89 77,31 1,01 1,96 2,26 1,96 

YF02 609,06 236,48 82,13 4,46 2,86 4,14 4,16 

YF03 706,34 190,67 35,08 0,57 1,26 0,97 1,35 

YF05 645,59 244,02 61,20 1,13 2,88 1,79 1,57 

YF06 420,45 394,48 111,25 2,12 3,46 1,78 2,06 

YF07 281,57 496,53 171,93 1,00 2,93 2,21 2,43 

YF08 663,14 214,40 50,83 1,86 1,72 1,75 1,73 

YF10 643,55 251,63 57,31 3,01 2,63 1,16 1,15 

YF11 600,29 286,42 52,32 2,58 2,86 2,74 2,85 

YF12 537,72 339,65 65,01 2,37 3,88 2,97 3,52 

YM04 571,30 238,17 68,46 4,08 1,24 3,35 3,54 

YM05 497,23 289,66 127,23 3,81 2,39 3,00 3,16 

YM06 833,98 94,48 26,24 0,68 1,20 1,04 0,88 

YM07 188,45 291,18 84,97 2,37 0,96 0,69 0,77 

YM08 530,65 285,43 136,48 2,71 2,18 2,07 1,84 

YM09 670,34 196,17 85,30 2,15 2,99 1,69 1,86 

YM10 577,54 290,69 77,56 3,35 1,86 3,86 3,84 

YM11 517,18 346,99 73,11 5,20 3,76 5,99 6,29 

YM12 576,22 303,54 72,55 2,17 2,34 1,33 2,01 

Table 6.2 - Durations of activities estimated by the proposed activity classification method designed for a single IMU 

 

Table 6.3 shows the difference of total durations of activities estimated by a commercial physical 

activity assessment device and our proposed activity classification method that uses single IMU. A 

positive value means that the physical activity assessment device estimated the total duration more 

than our proposed method. All the values are given in minutes. 

Normal acquisition has approximately 16 hours of activity data (excluding the time for sleep) 

and the values in table 4 are less than 2 minutes, which means that the output of our proposed 

method provides data comparable to a proven commercial physical activity assessment device. 
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Table 6.4 shows the difference of cycle durations and stride lengths estimated between the 

physical activity assessment device estimates and our proposed system. 

[min] 
SITTING STAND WALK STEP-UP 

STEP-
DOWN StSi SiSt 

OLDER 
MEAN 0,87 1,08 -1,24 -0,26 0,06 -0,12 -0,17 

STD 1,55 2,49 1,46 0,46 0,35 0,19 0,33 

YOUNG 
MEAN 0,84 0,36 -0,79 0,10 -0,09 0,01 -0,07 

STD 0,98 0,92 1,01 0,49 0,29 0,25 0,20 

OVERALL 
MEAN 0,85 0,70 -1,00 -0,07 -0,02 -0,05 -0,11 

STD 1,26 1,84 1,24 0,50 0,32 0,23 0,27 

Table 6.3 – The difference of the total durations of the daily activities estimated by a commercial physical activity 

assessment device and our proposed activity classification method. All the values are in minutes 

 
  Cycle Durations Difference [s]  Stride Lengths Difference [m] 

  Left Stride Right Stride Both  Left Stride Right Stride Both 

OLDER 
MEAN 0,00 -0,01 0,00  -0,03 -0,02 -0,02 

STD 0,03 0,03 0,03  0,03 0,02 0,03 

YOUNG 
MEAN -0,02 -0,02 -0,02  -0,04 -0,02 -0,03 

STD 0,03 0,03 0,03  0,03 0,03 0,03 

OVERALL 
MEAN -0,01 -0,01 -0,01  -0,03 -0,02 -0,03 

STD 0,03 0,03 0,03  0,03 0,03 0,03 

Table 6.4 – Difference between gait cycle durations and stride lengths estimated by physical activity assessment device 

and our proposed method. Values are given in seconds for cycle durations and in meters for stride lengths 

 

6.3 A Sports Application 

The study presented in this thesis also applied on a 

sports application. The projects aim was to analyze 

the fitness levels of volleyball players by monitoring 

their daily life activities. Twenty subjects participated 

(aged between 18 and 35 years), who were practicing 

the sport of at least three consecutive years and train 

at least three times a week. The subjects carried the 

IMU for 24 hours. Data were acquired using a single 

IMU (FreeSense, Sensorize®) featuring a tri-axial 

accelerometer and two bi-axial gyroscopes (sampling 

frequency 50 Hz).  Data collection for the software testing was performed on 20 subjects. Early in 

the morning, the IMU was placed on the subjects at the waist level and data acquisition started. 

Then subjects continued their daily life routines carrying the IMU. They were advised to turn off 

and remove the device before going to bed. The day after the IMU was picked up from the subjects’ 

 

Figure 6.1 – Simple interface to be used to analyse the 

acquisitions 
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facilities and the acquired data were transferred to a 

computer and processed. A software interface was 

developed that was aimed to be simple and user 

friendly(Figure 6.1 and 6.2)  

The table 6.5 and 6.6 shows the output of the presented 

methods for the sports applicaiton. The results were used 

with laboratory data to evaluate the athletes performance. 

 

 

 

 

ACTIVITIES 

Athlete SITTING (%) STAND (%) WALK (%) STEPUP (%) STEPDOWN (%) StSi (%) SiSt (%) 

1 67,73 21,66 10,02 0,02 0,39 0,09 0,09 

2 33,1 51,14 14,92 0,42 0,17 0,12 0,14 

3 60,24 30,32 8,09 0,35 0,19 0,4 0,4 

4 67,38 25,47 6,39 0,12 0,3 0,19 0,16 

5 60,01 31,61 7,56 0,23 0,24 0,14 0,21 

6 64,57 25,07 8,71 0,47 0,3 0,44 0,44 

7 29,37 51,8 17,94 0,1 0,31 0,23 0,25 

8 44,94 42,16 11,89 0,23 0,37 0,19 0,22 

9 67,01 26,2 5,97 0,31 0,27 0,12 0,12 

10 53,96 36,2 7,63 0,54 0,39 0,62 0,66 

11 70,89 22,92 5,43 0,2 0,18 0,19 0,18 

12 69,79 20,42 8,88 0,22 0,31 0,18 0,19 

13 69,93 20,6 8,97 0,09 0,19 0,12 0,1 

14 53,67 31,26 13,73 0,41 0,26 0,32 0,34 

15 55,2 29,69 14,2 0,28 0,23 0,22 0,19 

16 63,18 30,15 5,51 0,27 0,3 0,29 0,3 

17 64,18 26,76 7,69 0,46 0,14 0,38 0,4 

18 38,95 48,35 11,86 0,25 0,2 0,2 0,19 

19 75,44 20,37 3,75 0,06 0,13 0,1 0,14 

20 56,3 35,56 6,81 0,25 0,41 0,31 0,37 

Average 58,29 31,39 9,30 0,26 0,26 0,24 0,26 

Table 6.5 – The percentages of activites performed during the acquisition day by each athlete 
 

 

 

 

 

 

 

 

Figure 6.2 – A sample report for an 

acquisition 
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 GAIT PARAMETERS 

 

AVG SPEED (m/sec) AVG CADENCE (steps/min) AVG STRIDE LENGHT (m) 

1 1,15 105,80 1,42 

2 1,19 94,10 1,83 

3 1,19 99,90 1,59 

4 1,12 103,50 1,49 

5 1,13 96,70 1,58 

6 1,34 123,80 1,82 

7 1,11 112,90 1,29 

8 1,13 101,60 1,50 

9 1,18 103,20 1,57 

10 1,17 108,10 1,38 

11 1,16 110,00 1,40 

12 1,03 93,80 1,47 

13 1,23 117,60 1,41 

14 1,00 100,40 1,34 

15 1,35 109,20 1,64 

16 1,30 113,30 1,53 

17 1,14 99,30 1,62 

18 1,31 98,60 1,83 

19 1,53 121,50 1,69 

20 1,13 103,10 1,58 

MEDIA 1,19 105,82 1,55 

Table 6.6 – The gait parameters requested in the project for each athlete. 
 


