Assessment of Daily Life Mobility Levels using Wearable Inertial Sensors and Minimun Measured Input Models

Kose, Alper (2012) Assessment of Daily Life Mobility Levels using Wearable Inertial Sensors and Minimun Measured Input Models, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Bioingegneria, 24 Ciclo. DOI 10.6092/unibo/amsdottorato/4854.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (1MB) | Anteprima

Abstract

Tracking activities during daily life and assessing movement parameters is essential for complementing the information gathered in confined environments such as clinical and physical activity laboratories for the assessment of mobility. Inertial measurement units (IMUs) are used as to monitor the motion of human movement for prolonged periods of time and without space limitations. The focus in this study was to provide a robust, low-cost and an unobtrusive solution for evaluating human motion using a single IMU. First part of the study focused on monitoring and classification of the daily life activities. A simple method that analyses the variations in signal was developed to distinguish two types of activity intervals: active and inactive. Neural classifier was used to classify active intervals; the angle with respect to gravity was used to classify inactive intervals. Second part of the study focused on extraction of gait parameters using a single inertial measurement unit (IMU) attached to the pelvis. Two complementary methods were proposed for gait parameters estimation. First method was a wavelet based method developed for the estimation of gait events. Second method was developed for estimating step and stride length during level walking using the estimations of the previous method. A special integration algorithm was extended to operate on each gait cycle using a specially designed Kalman filter. The developed methods were also applied on various scenarios. Activity monitoring method was used in a PRIN’07 project to assess the mobility levels of individuals living in a urban area. The same method was applied on volleyball players to analyze the fitness levels of them by monitoring their daily life activities. The methods proposed in these studies provided a simple, unobtrusive and low-cost solution for monitoring and assessing activities outside of controlled environments.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Kose, Alper
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
24
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
DOI
10.6092/unibo/amsdottorato/4854
Data di discussione
20 Aprile 2012
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^