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”Tutta una vita da arrampicare

come una scimmia sulla schiena di qualcuno,

come un uccello sul filo o un ubriaco per le scale

che quando cade sa cadere e non si fa male

o non lo fa vedere”.

(F. De Gregori - Per brevità chiamato artista)
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Prologue

Mobility problems, ranging from frequent accidental falls to difficulty standing up or walking,

affect million of people both young and old. Falls are caused by complex interaction between

multiple risk factors, including long-term or short-term predisposing factors, which may be

modified by age, disease and environment. A variety of methods and tools for fall risk

assessment have been proposed, most of which have discriminated poorly between fallers

and non fallers, and none of which is universally accepted. Existing tools are generally not

capable of providing a quantitative predictive assessment of fall risk, since they are based on

visual observation and/or timing of physical performance.

The need for objective, cost-effective and clinically applicable methods, as well as methods

that possess high sensitivity and specificity would enable quantitative assessment of fall risk

on a subject-specific basis. Tracking objectively falls risk could provide timely feedback

about the effectiveness of administered interventions enabling intervention strategies to be

modified or changed if found to be ineffective.

Moreover, even if extensive research has been conducted in the area of fall prevention,

some of the fundamental factors leading to falls and what actually happens during a fall

remain unclear. The low accuracy and reliability of oral reports about fall by the subject

themselves, witnesses and by informal or formal caregivers make these reports biased in

many ways. It is self-evident that objectively documented and measured falls are needed

to improve knowledge of fall in order to develop more effective prevention strategies and

prolong independent living.

The recent sensing hardware developments made available wearable inertial sensors for

human movement analysis. In the last decade, several research groups have developed the

idea to perform a sensor-based automatic or semi-automatic fall risk assessment using wear-

able inertial sensors, in order to overcome the often time-consuming nature of fall risk assess-

ment test that frequently require experimental knowledge. Apart from offering continuous

and objective data, this approach may also serve to detect falls events once they have hap-

pened, being aware of the fact that many falls go by undetected and a person may lie injured
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hours or even days in her or his flat.

At the moment, i) several fall-risk assessment studies based on inertial sensors, even if

promising, lack of a biomechanical model-based approach which could provide accurate and

more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of

published real-world fall data of older people in a real-world environment is minimal since

most authors have used simulations with healthy volunteers as a surrogate for real-world

falls.

With these limitations in mind, this thesis aims i) to suggest a novel method for the

kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the

fall-risk evaluation, through a body sensor network and a biomechanical approach and ii)

to define the guidelines for a fall detection algorithm based on a real-world fall database

availability.
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4. Fuschillo VF, Bagalà F, Chiari L, Cappello A (2010) Single-axis accelerom-

eter anthropometry estimation of an inverted pendulum balance model, Proceedings of

GNB 2010, July 8-10, Torino, Italy - BOLOGNA, Patron, 2010, pp. 219-220.
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Part I

The Falls world: technology in clinical

routine?
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Chapter 1

Fall risk and fall prevention in clinic

Falls among elderly people are a widely documented public health problem predicting quality

of life and disability [1, 2].

Several studies project that the number of persons aged 65 years and older will more

than double by 2030, and the number of persons aged 85 years and older will increase by

more than a factor of five by 2050 [3].

About a third of community-dwelling people over 65 years old fall each year [4, 5]. The

2006 Behavioural Risk Factor Surveillance System reported that 13% of adults aged 65-69

years, 14% of those aged 70-74 years, 16% of those aged 75-79 years, and 21% of those aged

80 years and older fell during 3 months preceding the survey [6].

The rate of fall-related injuries also increases with age. Fall-associated fractures in older

people are a significant source of morbidity [7] and mortality [8]. Population-based studies

of community-dwelling elderly persons have estimated annual total injurious fall rates from

84-229hpersons [9, 10] and fall injury hospitalization rates of 14h[11]. Hip fractures are an

especially severe complication of falls in older adults, resulting in more hospital admissions

than any other injury; the age-adjusted hospitalization rate for hip fractures in USA was

775.7 per 100,000 population in 2003 [12]. More than 400,000 hip fractures occur caused by a

fall in EU countries, and nine out of ten of them occur in people over 50 and 80% of them are

women. There is a 10% to 20% reduction in expected survival during the first year following

a hip fracture [13, 14], and roughly half of the survivors never recover normal function [15].

Twenty to 30% of those who fall suffer injuries that result in decreased mobility that limits

subsequent independence [16].

Even falls that do not result in injury can lead to negative outcomes. In particular,

experiencing a fall can increase an older person’s fear of falling [17, 18], an important psy-

chological outcome correlated with future falls [19]. Fear of falling leads older adults with
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Figure 1.1: Physical, mental and social effects of falls

and without a history of falling to limit activities, which eventually increases fall risk through

functional decline, deterioration in perceived health status, and increased risk for admission

to institutional care [17, 18]. The loss of confidence can result in self-restricted activity levels

resulting in reduction in physical function and social interactions [20].

Falling puts a strain on the family and is an independent predictor of admission to

a nursing home [21]. This causes massive stress and burden for the individual and also

enormous societal costs and indirect costs for the families. The financial burden of falls

and fall-related injuries in Europe is enormous. Fall-related costs range between 0.85% and

1.5% of the total health care expenditures within the USA, Australia, EU15 and the United

Kingdom. Including cost components beyond health care expenditures, future costs and

considering ageing societies, the total burden is likely to be increasing [22]. Conservative

estimates calculate the mean costs of all falls of e1,000. With an ageing population of

approximately 100 million older persons in Europe and an incidence rate of 30%, more than

30 million falls occur each year and hence the societal burden exceeds e30 billion in the EC

countries. Falls among older people thus remain a very important public healthcare issue.
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1.1 Definition

Despite attempts to achieve a consensus definition of ”a fall” [23, 24] many definitions still

exist in the literature [25, 26, 27]. Investigators have adapted these consensus definitions

in relationship with specific target populations or interventions [28, 29]. It is particular

important to have a clear, simple definition for studies in which older people document

their own falls; their concept of a fall may differ from that of researchers or health care

professionals [29]. Even if everyone intuitively knows what a fall is, when asked to define

it, people struggle for words. For clinical use, a standardised full definition may not be

necessary for patients’ undestanding of ”what is a fall”. However, for effective meta-analysis

of data from different researchers, it is vital. The Kellog Report [24] recognized the need

to define a fall in order to clearly identify which events could be included and which could

not, and to classify different types of falls in order to allow comparability between research

results. Since patients or their proxies can report the time, the place and the circumstances

of the falls, other findings have been gathered during interviews with fallers. These rely on

incomplete and sometimes controversial oral reports by the subjects themselves, witnesses

and by informal or formal caregivers. These reports are biased in many ways [28] and have

been critiqued for their accuracy and reliability [30]. Under-reporting or over-reporting of

falls can be related to the cognitive status of the subjects, the shame of falling, fear of the

social consequences, or simply by conceptually having a different definition of a fall. For

example, falling to the ground without an injury are not reported spontaneously by older

persons. The wording ‘involuntary’, ‘unintentional’, ‘unexpected’, ‘inadvertent’, ‘unplanned’,

or ‘sudden’ describes an external perspective not always experienced or verbalised by fallers.

People who fall may use different wording, e.g. stumbling, slipping or tripping. A recent

consensus statement (ProFaNE, Prevention of Falls Network Europe) defines a fall as ”an

unexpected event in which the participant comes to rest on the ground, floor, or lower level”

[31]. The wording recommended when asking participants is ”In the past month, have you

had any fall including a slip or trip in which you lost your balance and landed on the floor or

ground or lower level?” [31]. The proposed operational definition of a fall should maximize

the likelihood that elderly people reported all falling events.

1.2 Aetiology and Risk Factors

Falls are caused by complex interactions between multiple risk factors (Figure 1.2), including

long-term or short-term predisposing factors, which may be modified by age, disease, and

environment. Multi-factorial aetiology involves an interaction between two broad domains:
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- intrinsic factors (patients related), e.g. chronic disorders and neurological deficits,

increasing age, muscle weakness, gait and balance impairment, postural hypotension,

medication use, low body mass index, history of recurrent falls, vision impairment,

special toileting needs, urinary incontinence, comorbid illness, depression, and cognitive

impairment [32, 33, 34, 35, 36, 37, 38, 39];

- extrinsic factors (external to the patient), classified as environmental factors, e.g.

obstacles in a path of travel, poor lighting, slippery floors, uneven surface, footwear,

clothing, and behavioural factors, e.g. activities and choices that can destabilize bal-

ance, such as running or wearing improper shoes, inappropriate walking aids or assistive

devices [39, 40, 41].

At a population level, increasing age is the most important risk factor for falls. As people

age, they may develop more than one risk factor for falls. Functional capacity may decrease

with age due to physical and mental changes that lead to impairments in balance, gait and

strength. People may develop impairment in vision and cognition with advancing age that

may contribute to the risk for falls. Kron et al. [42] identified several risk indicators for fall in

a prospective observational study with 1-year follow up in a sample of institutionalized frail

elderly. The study population included 472 long-term-care residents whose mean age was 84

years (77% were female). Short-term memory loss, transfer assistance, urinary incontinence,

positive fall history, use of trunk restraints were indicated as predictors of falls. Depressive

symptoms, urinary incontinence and positive fall history were associated with frequent falls.

Recently, Rubenstein [43] summarized data from 12 of the large retrospective studies of

falls among older persons living in a variety of settings.

Accident/Environmental-related ”Accidental” or environment-related is the most fre-

quently cited, accounting for 30-50% in most series. Connell et al. [40] analyzed 19 falls, of

the 39 reported, associated with environmental and behavioural circumstances of fifteen sub-

jects ranged in age from 70 to 81 years old. About one third of all incidents and half of those

about which participants were interviewed occurred in bedrooms, about 10% in kitchens and

bathrooms, 18% in living rooms and studies. The majority of falls occurred while individ-

uals were engaged in routine behaviours, such as dressing, and during transfer (e.g. going

from the bedroom to the bathroom). The patterns of environment-behaviour circumstances,

associated with falls experienced by the sample, were collisions in the dark, failing to avoid

temporary hazards, preoccupation with temporary conditions, frictional variations in foot

contact, excessive environmental demands, habitual and inappropriate environmental use.

Li et al. [39] analysed data on the most recent falls during the past year among participants
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Figure 1.2: Risk factors for fall

aged 45 years and older in the control group (N=2193) of a case-control study of fractures.

Falls occurred outdoors more often than indoors among most age groups. Most outdoor

falls (73%) were caused by environmental factors, such as uneven surfaces and tripping or

slipping on objects, and usually occurred on side-walks, curbs and street. Walking (47.3%)

was the most common fall-related activity.

However, many falls attributed to accidents really stem from the interaction between

identifiable environmental hazards and increased individual susceptibility to hazards from

accumulated effects of age and disease. Age-associated impairments of vision, hearing and

memory also tend to increase the number of trips and stumbles.

Gait and Balance The broad category of gait difficulties, muscular weakness and an im-

paired standing balance is the next commonest specific precipitating cause for falls (10-25%

in most series) as also reported in a meta-regression analysis of the predisposing risk factors

[44]. The ability to walk normally depends on several biomechanical components, including

free mobility of joints, particularly in the legs, appropriate timing of muscle action, appro-

priate intensity of muscle action and normal sensory input, including vision, proprioception

and vestibular system. Gait and balance problems have many aetiologies, and many thera-
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peutic approaches can be effective. Gait problems can stem from simple age-related changes

in gait and balance as well as from specific dysfunctions of the nervous, muscular, skeletal,

circulatory and respiratory systems or from simple deconditioning following a period of in-

activity. Quantitative measures of gait have been able to identify prospectively those older

adults who are at greatest risk of falling. These quantitative studies of walking in elderly

fallers have largely focused on properties of an average stride or gait cycle as measured over

a few cycles [5, 45, 46, 47, 48, 49, 50]. Other studies [51, 52, 53] found controversial results

about peak hip extension moment and reduction in knee power absorption in pre-swing in

fallers.

Dizziness/vertigo The next major reported cause of falls is dizziness, which is an ex-

tremely common symptom among older persons. However, it is a less common cause of falls

than its prevalence would indicate, probably reflecting the fact that most persons with the

syndrome become accustomed to it and are able to find a seat or adjust before falling.

Drop attack Drop attacks are defined as sudden falls without loss of consciousness or

dizziness and have in the past been implicated in between 1 and 10% of falls. Patients

typically experience abrupt leg weakness, sometimes precipitated by sudden head movement.

The weakness is usually transient but can persist for hours. Drop attacks are today reported

much less often, probably reflecting better diagnostic precision.

Syncope Syncope, or sudden loss of consciousness, usually results from decreased cerebral

blood flow or metabolic factors. It has been the attributable cause of between 2 and 10%

of falls in several series but has been excluded from many other series either by definition

(because syncope is not a typical type of fall) or because many elderly patients with syncope

are acutely hospitalised and are treated differently.

Fall history and fear of falling Fall history represents another important non-modifiable

marker to identify residents at high risk for several reasons. Friedman et al. [19] determined

the temporal relationship between falls and fear of falling. In a population-based prospective

study of 2212 older adults aged 65 to 84 at baseline, falls at baseline were an independent

predictor for the onset of fear of falling after 20 months, and fear of falling at baseline inde-

pendently predicted becoming a faller. Because each is predictor of the other, an individual

who develops one of these outcomes is at greater risk for developing the other. These data

provide evidence of a spiraling effect of increasing falls, fear and functional decline. Individ-

uals who limit activities because of fear of falling are at particularly high risk of becoming
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fallers. It is certainly plausible that each syndrome may lead to the other. Namely, an indi-

vidual who falls may subsequently develop fear of further falls. Moreover, it is possible that

individuals who fall and have subsequent fear of falling had experienced fear before the fall

as well. Conversely, fear of falling may in turn cause falls. Several studies have shown activ-

ity restriction secondary to fear of falling, which could in turn lead to de-conditioning and

increased risk of falling, as also demonstrated in three prospective studies [18, 20, 54]. These

studies indicated that about one-third of elderly people develop a fear of falling after an

incident fall and this issue should be specifically addressed in any rehabilitation programme.

Medications Use of certain psychoactive and cardiac medications, and use of four or

more medications, has been associated with an increased risk for falls [55, 56, 57]. The role

of medications, as a contributing factor of falling among older persons, has received much

attention, primarily because medication exposure may be an important modifiable risk fac-

tor in fall prevention. Mechanism suspected of contributing to the risk of falling include

reduced metabolic capacity and renal activity as a result of the ageing process, therefore

extending medication half-life, psycho-motor impairment resulting from some psychotropic

medications, medications that lead to orthostatic hypothension and those that induce ambu-

lation (associated with the use of diuretics) [58]. Kelly et al. [57] estimated the magnitude

of association between medication use and risk of injurious falls in the community-dwelling

older population, while controlling for the effects of co-morbidity, age, gender and income.

The major findings were that taking medications from seven specific medication classes

(narcotic, anti-convulsant, anti-depressant, anti-psychotic, sedative, anti-parkinsonian and

anti-coagulant agents) were independent risk factors for predicting an injurious fall. How-

ever, when existing co-morbid conditions and being hospitalised within the previous year

were also controlled for, only narcotic, anti-convulsant and anti-depressants were significant

medication predictors of an injurious fall.

Other causes Other specific causes of falls include disorders of the central nervous system,

cognitive deficits, poor vision, drug side-effects, alcohol intake, anaemia, hypothyroidism, un-

stable joints, foot problems, severe osteoporosis with spontaneous fracture and acute illness.

Because most elderly individuals have multiple identifiable risk factors predisposing to falls,

the exact cause can often be difficult to determine.

8



1.3 Clinical Practice for fall-risk assessment

Falls among older adults are prevalent and preventable. In the absence of evidence to support

a population-based approach to prevention and the imperative to deliver cost-effective and

efficient services, health care providers need risk assessment tools that reliably identify at-

risk populations and guide intervention by highlighting remediable risk factors for falls and

fall-related injuries. Such tools typically consist of a rating or scoring system designed to

reflect the cumulative effect of known risk factors. However, risk profiles are not the same

for all elderly people [59]. Among active seniors living in the community, fall risk tends to

be mostly related to mobility status, exposure to hazardous environments and risk-taking

behaviour. People who require support to live in the community tend to be more susceptible

to falls owing to the direct effects of health problems such as arthritis, depression, use of

psychotropics and the functional consequences of a chronic disease. Among older adults

who are hospitalized, the risk of falling is greatly influenced by acute illness that often

has a marked, sometimes temporary, impact on physical and cognitive function. Among

residents of long-term care facilities, risk factors are influenced by impaired cognition, use

of psychotropic medications, incontinence and urgency, lack of exercise. The time scale over

which a prediction is needed varies from a few days or weeks in hospitalized patients to a year

or more for community-living populations. Tools developed for one population may therefore

be less accurate when used in a different settings since fall-risk profiles differ considerably

among well, active seniors who live in the community, those who are frail and need support

to live at home in the community, those who require long-term care, and those who are

hospitalised for acute health problems.

A variety of methods and tools have been proposed for fall risk assessment, most of which

have discriminated poorly between fallers and non fallers, and none of which is universally

accepted. Wyatt and Altman [60] laid down ”gold standard” criteria for the use of such tools.

Essentially, they should be validated prospectively, using sensitivity/specificity analysis, in

more than one population, with good face validity, inter-rater reliability and adherence from

staff and transparent, simple calculation of the score.

Assessment of fall risk typically involves either the use of multi-factorial assessment tools

that cover a wide range of fall-risk factors, or functional mobility assessments that typically

focus on the physiological and functional domains of postural stability including strength,

balance, gait and reaction times [59]. Some tools exist purely as a mechanism to screen for

high-risk populations, while others allow for tailoring of intervention based on assessment.

Since 2000, seven reviews have been published that detail a cross-section of fall-risk

assessment tools, focusing on institutional care [61, 62, 63], community dwelling [64, 65, 66]
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or both [59]. Other reviews including community-dwelling seniors in their testing sites have

focused on tools limited to the assessment of balance with little consideration of other risk

factors [67, 68, 69].

Multifaceted systems or instruments have been used in assessing frailer persons with

multiple fall risk factors like the St. Thomas risk assessment tool (STRATIFY [70, 71, 72])

and the Morse Fall Scale (MFS [73, 74, 75]) for use in hospital, the Downton fall risk index

[76, 77] and the Mobility Interaction Fall (MIF [78]) chart as well as staff judgement of fall

risk and history of falls. Methods and tools for assessing fall risk in home-dwelling older

persons with minor functional problems are several:

- functional balance and mobility assessment, by use of the Berg Balance Scale [79, 80,

81, 82], the Tinetti Mobility Scale [83, 84, 85, 86], the Functional Gait Assessment

(FGA [87]), the Balance Evaluation Systems Test (BESTest [88]), the Timed Up-and-

Go [89, 90, 91, 92, 93], 5-step test and floor transfer [85], functional reach [75, 85, 93, 94],

getting up from lying on floor [95], one-leg balance [20], stop walking when talking [78],

timed walk/distance walked [84, 85];

- physiological fall risk assessment, by use of the Physiological Profile Assessment (PPA

[96]);

- posturography to measure quiet standing by use of force plates [65, 94] or active balance

systems [92];

- assessment of psychological aspects of falls by the Falls Efficacy Scale International

[97].

Other methods are based on assessment of gait characteristics like gait speed [98], step width

[99], gait variability during simple and dual task conditions [48, 100].

The multi-factorial assessment tools typically check list comprising questions used to

screen the level and nature of risk based on a combined score of multiple factors known to

be associated with fall-related risk. In addition to questions that rely on self-report, the

tools may or may not include physical assessments of health status (e.g. blood pressure)

or mobility function. Most tools are administered in person and some are conducted by

telephone or a postal survey. They are typically administered by a nurse or therapist on

admission to hospital or a nursing home and are usually updated regularly or when there is

a change in health status. Some take as little as 1 min to complete and others can take over

1 h.
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Functional mobility assessments focus on functional limitations in gait, strength and

balance and are often completed by physical therapists or physicians in outpatient or acute

care settings. In most cases, the subject is required to perform a physical demonstration of

ability while the assessor monitors limitations in function and time used to perform the test,

compared to a pre-established standard.

Nevertheless, at present no tool exists that can be applied reliably across different settings

to accurately predict risk of falling, and of the tools that do exist, few have actually been

validated in more than one setting. Further research is needed to strengthen the evidence

for the use of multi-factorial tools and functional mobility assessments within and across

settings, and new tools may be required if no evidence exists to support the use of an

existing tool in a specific setting. The use of fall-risk assessment as part of a multi-factorial

approach for the prevention of falls is supported by evidence of strong associations between a

multiple risk factors and falls, as well as from experimental studies demonstrating significant

fall reductions where assessment is combined with tailored interventions [101].

Active partnerships between clinicians and researchers should be encouraged to ensure

that any future tool developed is reliable and valid as well as feasible and acceptable in

everyday practice in all health care settings. Future studies should use a sufficiently large

sample size to estimate sensitivity and specificity with high precision, be conducted in a

clinically relevant population, include a sufficient duration of follow-up, and have reliable

methods of recording of falls. Moreover, selecting an appropriate tool is complicated by the

lack of consistency in methods of reporting and interpreting the comparative properties of

fall-risk assessment tools in the published literature.

The need for objective, cost-effective and clinically applicable methods, as well as methods

that possess a high sensitivity and specificity, is hence clear. Instrumented tests would enable

quantitative assessment of fall risk on a subject-specific basis, overcoming the limitations due

to the lack of objectiveness related to individual judgement by a therapist or a nurse who

report a score related to the physical performance. The use of assistive technologies could

help to overcome this drawback. This issue will be discussed in the next chapters.

1.4 Clinical practice for fall prevention

Systematic reviews on fall prevention [35] or assessment [66] are underpinned by the attribu-

tion of falls to multiple interacting factors rather than one identifiable cause. Syncope, for

instance, is often quoted as an isolated cause of falls in elderly but loss of consciousness may

be the result of deteriorating function in several systems (e.g. cardiovascular, respiratory
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and hematological) in addition to defects in cerebral arterial circulation [102]. Therefore,

it is reasonable to conclude that a substantial number of falls attributed to a single cause

may in reality arise from the interplay of various causal factors [103]. This is consistent with

the principle that complex system failure is usually due to the cumulative effect of several

stressors. As discussed in the previous section, the lack of accuracy of fall risk assessment

tools is problematic for clinicians and researchers implementing fall prevention interven-

tions. Various falls-prevention interventions targeting a number of fall risk factors have been

evaluated. Falls prevention approaches aim to increase older adults’ strength and balance,

identify and remove hazards in their environment, increase awareness of falls and associated

risk factors, correct clinical conditions that may increase fall risk, or some combination of

these approaches. Theoretically, a multi-factorial intervention for elderly people should be

more effective than its single-intervention counterpart since causes and risk factors of falling

are usually multiple with striking individual (fall to fall) and inter-individual variation (Fig-

ure 1.3). On the other hand, a single-factor intervention such as exercise could also reduce

many impairments and disabilities and more distant risk factors for falling simultaneously. A

major limitation with the interpretation of the findings of multi-disciplinary fall-prevention

interventions is that they cannot distinguish between the independent role of individual mod-

ified risk factor, and thus which part of the intervention is effective and which is not cannot

be established.

Since 2000, several published systematic reviews [35, 66, 101, 104, 105, 106, 107, 108, 109]

for prevention of falls in older adults have concluded that fall prevention interventions are

likely to be beneficial (Figure 1.4), except for a recent systematic review [110] who found

limited evidence that multi-factorial fall prevention programs in primary care, community,

or emergency care settings are effective in reducing the number of fallers or fall-related

injuries. All of these reviews except two [106, 108] included institutionalized and hospitalized

populations in addition to community-dwelling older adults.

In summary, fall-prevention programs including multi-factorial assessment and manage-

ment, muscle strengthening and balance training, Tai Chi and group or home-based exercise

with multiple components, withdrawal of psychotropic medication, vitamin D in people with

lower vitamin D levels, home safety interventions for people with visual impairments and at

higher risk of falling, reduce fall-risk.

According with a recent review [111], since 1996, two published evidence-based clinical

guidelines for prevention of falls in older adults recommended routine assessment of falls

history during the past year along with brief tests of gait and balance during primary care

visits to identify older adults appropriate for further assessment and management to prevent
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Figure 1.3: Multi-factorial vs Single-intervention for fall prevention

falls.Some of these recommendations are here reported:

- the National Institute for Clinical Excellence recommends that older people’s health

care providers routinely ask about recent falls; that those reporting falls be observed

for balance and gait deficits and considered for interventions to improve strength and

balance; and that older adults appearing to be at high risk for falls be offered an indi-

vidualized, multi-factorial intervention including strength and balance training, home

hazard assessment and intervention, vision assessment and referral, and/or medication

review and modification [112];

- the America Geriatrics Society, the British Geriatrics Society, and the America Academy

of Orthopaedic Surgeons jointly recommend asking all older persons about falls at least

once per year and endorse several falls-prevention interventions, including gait and ex-

ercise training, home visits, and medical management [12];

- the Center for Disease Control and Prevention recommends that an annual check-up

for chronic medical conditions includes a review of medications and a vision screening

[113].

Despite these professional organization’s recommendations for routine falls risk assess-

ment and intervention in older persons, a comprehensive approach mixing high-risk strategies
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Figure 1.4: Phases of fall, causes/risk factors and possible prevention interventions
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and population-based policies has been recently pointed out as desirable (but still missing)

to tackle this population-wide problem [114, 115]. Even if extensive research has been con-

ducted in the area of fall prevention, some of the fundamental factors leading to falls and

what actually happens during a fall remain unclear.

Previous research, much of it by the ProFaNE group, [116, 117, 118, 119, 120, 121] into

older people’s attitudes and beliefs about interventions to prevent falls reveals that many

older people do not believe that they themselves are at risk of falling (even when they are)

and the sorts of interventions if they are to be successful must accord with older people’s

own beliefs, aspirations and lifestyles. Generic recommendations [122] stress

1. raising awareness in the general population that undertaking specific physical activities

has the potential to improve balance and prevent falls,

2. promoting benefits which fit with a positive self-identity,

3. utilising a variety of forms of social encouragement,

4. ensuring the intervention is designed to meet the needs, preferences and capabilities of

the individual,

5. encouraging self-management,

6. drawing on validated methods for promoting and assessing the processes, especially in

the longer-term.

These principles are clearly generalisable to the use of assistive technologies [123], but tech-

nologies themselves present a series of challenges for older people and for those implementing

technological solutions to older people’s everyday living problems such as falls. In the next

chapter, a review of the technologies used for fall-risk assessment and fall detection will be

presented.
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Chapter 2

From hospital to home: technologies

for fall risk assessment and fall

detection

Several fall risk assessment tools were developed to identify at-risk populations and guide

intervention by highlighting remediable risk factors for falls and fall-related injuries, as dis-

cussed in the previous chapter. Despite the numerous clinical scores developed, these meth-

ods often depend on individual observation and subjective interpretation, which make the

assessment results inconsistent [124] and have limited accuracy in recall [125]. Some standard

tests also require subjective judgements. For example, the Timed Up-and-Go (TUG) Test

is a simple test for evaluating one’s ability to perform a sequence of basic activities, and the

result of the TUG can be a predictor for risk of falling [126]. Distinguishing postural transi-

tions in the TUG, however, depends on subjective judgement that counts the time taken for

each posture transition. The Berg Balance Scale, a valid measure to evaluate balance control

of the elderly individuals, also requires subjective observation and determination for scoring

some test items [67]. Although their predictive value is undeniable, cut-off-values for clinical

use merely correspond with clearly visible instability or reduced ambulation. Moreover, fall-

risk assessments, from the most basic of screening tools to comprehensive environment, such

as a hospital or dedicated falls clinic, are invariably administered by qualified care givers or

experienced medical professionals.

The majority of these assessments are restricted to use in a clinical environment, as

their correct execution often requires supervision, and so renders them unsuitable for long-

term monitoring. Simple, unsupervised quantitative assessments of falls risk would enable

continuous monitoring of falls risk in the elderly. The need for objective and clinically
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applicable methods is clear. Tracking objectively falls risk could provide timely feedback

about the effectiveness of administered interventions enabling intervention strategies to be

modified or changed if found to be ineffective.

Modern sensor technologies and healthcare can help to close this gap and allow for un-

obtrusive quantitative monitoring of patients at their environment [127, 128].

In the last decade, several approaches assessing automatically fall-risk during motor per-

formance through quantitative measurements, provided by force platform or inertial sensors,

have been suggested. The main reasons why these technologies are used for the evaluation of

physical performance are that a history of falls and reported abnormalities of gait or balance

are consistently found to be the best predictors of future falls [129], and little or no additional

value may be gained by performing a complex screening test. A brief review is provided in

the following chapter.

2.1 Force platforms for fall-risk assessment

One of the most relevant intrinsic factors for fall, described in the previous chapter, is the

ability to maintain postural stability. A decrease in the quality of balance can also be

related to additional fall-risk factors that are manifested by their effect on balance, such

as visual, vestibular or proprioceptive problems. A commonly used method is to identify

elderly with balance problems. The main method used to evaluate balance are clinical tests

such as the Tinetti Balance Scale [5] or using a force plate (FP) to analyze the sway [337].

The FP technique is one of the tools most widely applied in assessing postural balance in

a quantitative way. In most applications measurement is based on the registration of the

ground reaction forces and the point of application (Center of Pressure, CoP) while the

subject is standing on the platform. Some papers have shown that balance tests based on

FP registrations are sensitive to differences in balance between young, middle-aged, and

older subjects.

A recent systematic review by Piirotal and Era [65] evaluated the findings of follow-

up prospective studies where FP measurements have been used as predictor of falls among

elderly population. Only nine original studies [94, 81, 82, 131, 132, 133, 134, 135, 136] were

included in the analysis according to the inclusion criteria assumed by the authors: i) the

studies had to analyse the association between balance and risk of falling in elderly people

and ii) the balance tests had to be done first and then the follow-up of the balance-tested

subjects.

Falls and fall-related injuries were generally followed for a 12-month period but periods
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of 6 months and 3-year periods were also used. During the follow-up 21-59% of the subjects

experienced one or more falls. Approximately half of the fallers fell two or more times.

Different FP-based balance instruments were used to measure postural balance (OR6-5 [94],

NeuroCoM Balance Master 6.1 [81], Chattecx Balance System [131, 134], Kistler 4060 [132],

custom made platform [133], computerized dynamic posturography platform EquiTest [135],

portable FP AccuSway System [136]). In five studies fall-related outcomes were associated

with some parameters of sway [81, 94, 132, 133, 136] while in other four studies [82, 131,

134, 135] no association between sway and falls was found. The predictive sway parameters

for falls were higher medio-lateral (ML) sway amplitude with eyes open and closed, higher

anterior-posterior (AP) speed with eyes open [133], and higher root-mean-square values for

ML CoP displacement with eyes closed.

Piirtola end Era [65] concluded that since there are some evidences that balance mea-

surements using a FP and its parameters could be used in assessing the risk for falling

among elderly populations, results of the studies are contradictory making difficult to draw

definitive conclusions.

One possible reason for these inconclusive results concerns the testing situations used,

which generally do not mimic real-life circumstances that cause falls. In many test situa-

tions, the participants have opportunity to compensate for their deficits by shifting toward

other control strategies, e.g., single-task versus dual-task testing. Therefore, measurement

protocols should challenge the participant in more complex conditions to avoid the use of

these compensatory strategies.

Consequently, in their review, Zijlstra et al. [137] evaluated whether dual-task balance

assessment have an ”added value” over single-task balance assessment. The authors pointed

out the importance to postural control as indicator of fall risk, due to the fact that attention

resources are limited [138] and postural control is more attention demanding in older adults

than in young adults [139, 140]. Also, older adults may prioritize tasks differently. In a

study by Bloem et al. [141], older subjects seemed less inclined than younger subjects to

use a ‘posture first’ strategy. This strategy consists of prioritizing balance maintenance

(the ‘primary’ task) over the execution of a second task (e.g. manual or cognitive) [142],

and thus can be considered as a ‘safety first’ strategy. Assessment methods incorporating

dual-task paradigms appear to be helpful in revealing the effect of age or disease on the

allocation of attention to postural tasks and may be sensitive in predicting fall risk and/or

in evaluating outcomes of fall interventions in older people [140]. Out of 114 dual task studies

in older people, 19 articles matched the inclusion criteria of the review [137]. In these studies

the balance task consisted mainly of standing on FP in different conditions (eyes open vs
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eyes closed) and measuring postural sway, TUG test or walking. None of the 19 articles

presented the same statistical measures for both tasks during dual-task performance as well

for the single balance and cognitive task. Authors concluded that an added value of dual

balance tasks for fall prediction or assessing fall intervention effects cannot be made due to

incomplete comparisons of single and dual balance tasks. Nevertheless, two studies [84, 143]

with prospective data collection of falls provided an indication that dual balance tasks may

have added value for fall prediction.

Opposite to the findings of [137], Swanenburg et al. [144] claimed that dual task did not

provide any extra value to the fall risk prediction model. Authors assess 270 elderly persons

in a prospective study in order to determine whether FP (AMTI Accusway) variables in single

and dual-task conditions were able to predict the risk of multiple falls in community-dwelling

elderly population. The authors found that FP variable root means square amplitude in the

ML direction in the single-task condition together with three co-variables (history of multiple

falls, use of drugs and gender) were significant independent predictors of being a multiple

faller. Moreover, multiple fallers had a narrower stance width compared to non-fallers.

Recently, several studies have been focused on FP-based assessment of fall risk [145,

146, 147, 148, 149, 150]. The studies in which fall-related outcomes were associated with

parameters of sway and their main findings are reported in Table 2.1.

Considering the finding of [65] and the subsequent studies which investigated fall risk

assessment through FPs, it seems that certain aspects of FP data may have predictive

value for subsequent falls, especially various indicators of the lateral control posture. Some

authors proposed statistical approach (discriminant function model [145], logistic regression

model [147]) to found the best trade between sensitivity and specificity. Neverthless, many

studies have some limitations related to the use of interviews for fall-risk factors [144] which

could have resulted in recall bias when participants were asked to remember past events,

smaller sample size [147, 149] or not random population (subject affected by mild cognitive

impairment [148], or intermittent claudication [146]) and the retrospecitve nature of the

studies [147, 148, 150] which limits the possibility to predict future episodes of falling from

the data. One problems related to the use of instrumentation in clinical practice is the

accuracy required by these device to provide reliable measurements. The ageing of the FP,

its usage, and in-situ installation procedures may reduce the effectiveness of the calibration

provided by the manufacturer and lead to a lack of accuracy which introduces errors in the

FP data and may propagate to the calculated kinetic and energetic quantities. The FP

accuracy can be increased by estimating the (6x6) recalibration matrix: this approach and

its details are given in the Appendix of this thesis.
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Table 2.1: Brief review of FP-based fall risk assessment studies. Abbreviations: EC (eyes

closed), EO (eyes open), DT (dual-task), BW (body weigth), SOT (Sensory Organization

Test). * are from Piirtola et al. [65]

Authors [ref] Force Platform Predictive Parameters

Test conditions

Boulgarides et al. [81]* NeuroCoM Balance Master 6.1 Higher mean CoP velocity EC

Thapa et al. [94]* OR6-5 Higher sway ellipse

Bergland et al. [132]* Kistler 4060 Higher ML CoP amplitude (in-

door falls)

Higher ML movement DT (inju-

rious falls)

Maki et al. [133]* Custom Platform Higher mean CoP velocity EC

Stel et al. [136]* AMTI AccuSway Higher mean CoP velocity EC

Swanenburg et al. [144]* AMTI AccuSway Higher RMS ML CoP sway EO

Hewson et al. [145]* Bertec 4060-08 Higher CoP velocity EO

Shin et al. [146]* Good Balance Higher ML CoP and velocity

EO/EC

Bigelow et al.* Bertec 5050 ML CoP velocity and mean fre-

quency

Schneider et al. [148]* Soehnle Professional GmbH Force and power knee during

bends

Bhatt et al. [149]* AMTI Force > 30% BW

Mockford et al. [150]* EquiTest Not provided (combined use with

SOT)

2.2 Inertial sensors for fall-risk assessment

In the last decade, several research groups have developed the idea to perform a sensor-based

automatic or semi-automatic assessment using wearable inertial sensors, in order to overcome

the often time-consuming nature of fall risk assessment test (e.g., POMA) that frequently

require experimental knowledge. Apart from offering continuous and objective data, this

approach may also serve to detect falls events once they have happened, being aware of the

fact that many falls go by undetected and a person may lie injured hours or even days in

her or his flat. Tables 2.2 and 2.3, similar to that provided in the previous section, show

the type of sensors used and the main findings.
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Table 2.2: Brief review of inertial sensor-based fall risk assessment studies (1)

Based on the summary tables, some considerations can be drawn:

� type of activity: all the studies focused on four main tasks: balance with different

test conditions (eyes open, eyes closed, solid or foam surface) [152, 153, 156, 158],

sit-to-stand (STS) [151, 159], TUG [154, 155, 157, 162, 163] and walking [160, 161,

162]. Probably, the TUG test is the most commonly used because it appears to be

more complete since it includes a transfer (standing-to-sit) and a walking phase, thus

providing informations about balance (e.g., during STS) and gait. Sit-to-stand test was

also used as functional test for discriminating subject at risk of falling. As discussed

in the previous chapter, the majority of falls occurred while individuals were engaged

in routine behaviours, mainly during transfer. A quantitative description of these

complex tasks could provide additional information which are not clearly visible by

a physical therapist or doctor who monitors the performance. Even if balance tests

(static and/or dynamic) provide indications about the ability of the subject to stand

still, functional tests could reveal wrong or non optimal strategies, which in turn could
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Table 2.3: Brief review of inertial sensor-based fall risk assessment studies (2)

lead to a fall.

In summary, the quantitative investigations about motor performance during the exe-

cution of functional tests have higher predictive value than observational studies and

clinical tests in which the clinician simply assesses a score.

� number and positioning of sensor: except for two studies [157, 161], one single

sensor (tri-axial accelerometer or tri-axial gyroscope, or both embedded in an inertial

measurement unit) is often used for the evaluation of the movement. Greene et al.

[157] placed two inertial measurement unit on the anterior part of the shanks in order

to extract gait parameters during TUG test. Caby et al. [161] used a whole body

accelerometer network composed of 10 tri-axial accelerometers placed on each limb on

the left and right side of ankle, knee, and on the wrist and shoulder for the analysis
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of 25m-walk. Upper limb-attached sensor can significantly reflect gait-related features

during locomotion or walking. Redundancy of sensors may provide more accurate

information about some body segments which are not investigated when a single sensor

is used, as confirmed by the findings of the study of Caby et al., in which features related

to the upper limb movement have the most significant discriminant power between

fallers and non-fallers. The use of more than one sensor is therefore a commendable

approach if in-depth analysis is required.

� features extraction: in all studies, the classification between fallers and non-fallers is

based on features extraction from the accelerometer and/or gyroscope measurements.

Temporal parameters (e.g., time used to perform the task, stride time, swing time,

gait speed, number of steps), energy-related features (e.g., signal vector magnitude,

rotational kinematic energy), frequency-domain features (e.g., the ratio of the magni-

tude under each harmonic of the accelerometry signal spectra) are the most commonly

used. The identification of one of these features as markers for fall-risk and as indicator

of any physiological impairment has been one of the main objectives of these studies.

The detection of the discriminant feature should help to design an effective prevention

strategies addressed to that specific impairment or cause of fall. Nevertheless, for ex-

ample the time to perform the task or the signal vector magnitude, which could be the

best discriminant features for the classification of fallers and non-fallers, do not provide

no additional informations about the biomechanical of the movement. While we recog-

nise the importance of identifying predicitve features of fall, the use of biomechanical

measurements can be fundamental for the evaluation of subject-specific fall-risk related

to balance and/or gait instability since it could help to identify a specific lack in muscle

strength, balance impairment or physical functional reserve.

In summary, all these studies are lacking in biomechanical model-based approach which

could provide accurate and more detailed measurements about the strategies adopted to

perform the task or biomechanical measurements like joint moments and/or joint forces. One

of the main aims of this thesis, discussed in Chapter 4 and 5, is to suggest a biomechanical

approach for the evaluation of measurements of interests (e.g., Center of Mass and Center

of Pressure displacements, net joint moments, sway angles) by using accelerometer body-

network during the execution of functional motor tasks (e.g., repeated STS) often used in

clinics for the fall-risk evaluation. Moreover, a more complex transfer (lying-to-sit-to-stand-

to-walk test) was investigated in Chapter 6 by using a single inertial measurement unit and a

sensor fusion algorithm for highlighting the different strategies adopted to perform the task.
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2.3 Technologies for fall detection

At the moment no standardized tests for predicting fall risk have been developed based on

inertial sensor-based assessment. Even if extensive research has been conducted in the area

of fall prevention, some of the fundamental factors leading to falls and what actually happens

during a fall remain unclear. As discussed in the previous chapter, the low accuracy and

reliability of oral reports about fall by the subject themselves, witnesses and by informal or

formal caregivers make these reports biased in many ways. It is self-evident that objectively

documented and measured falls are needed to improve knowledge of fall in order to develop

more effective prevention strategies and prolong independent living. In the literature, several

approaches were proposed to automatically detect a fall. There have been a number of recent

reviews of the use of technologies to support older and disabled people [164, 165, 166, 167].

These reviews cover a great range of assistive technologies and devices. The general failure in

the literature to categorise the technologies and devices by some (e.g. functional) taxonomy

makes it difficult to interpret what was actually done and thus what any results mean.

However, generally the state of the science is that (a) there is a paucity of evidence on the

appropriateness, acceptability and effectiveness of these technologies although there has been

a general rush towards embracing technological solutions. (b) Results of research into telecare

technologies aimed at assisting management of specific disease entities (e.g. diabetes, CVD,

etc.) generally provide favourable results for technologies aimed at tele-monitoring and tele-

follow up, although cost effectiveness is uncertain [168]. (c) There is generally insufficient

evidence to support or refute the use of technologies in promoting independence or assisting

older people in their everyday lives. (d) Little is known about psychological variables which

are associated with use, or conversely non-use, of assistive technologies by older people.

Technologies in the home may be viewed as more intrusive and less acceptable than in-

stitutions [169]. In respect to monitoring solutions over longer durations, issues of user’s

acceptance becomes even more relevant in relation to effectiveness and social significance.

Non-acceptance and non-usage can be regarded partly as a consequence of the failure of

designs and operational procedures to respond to the wishes and feelings of a very hetero-

geneous group as the older people. In overview there is a paucity of evidence about older

people’s and other stakeholders views, beliefs and attitudes towards the use of technolo-

gies in the detection and prevention of falls, and more generally in the promotion of active

and independent living. Older people are likely to embrace such technologies if they are

congruent with their own beliefs, attitudes, lifestyle and aspirations and are designed in

such a way as to be accessible to them. A number of candidate technologies and products

or telemedicine services for managing falls (alarm and notification systems) and support-
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ing health monitoring is available on the market or in a prototypical stage. Some of these

were specifically designed for elderly users some were not. A number of home automation

tools is also available, but also marginally oriented to an older user. Successful application

of technologies is strongly influenced by factors that relate to fit between demands of the

technology and specific capabilities of the user [170, 171, 172], obtrusiveness of monitoring

method [173, 174], and fit with users’ expectations [175, 176]. Based on these considerations,

the use of wearable, unobtrusive, low cost, low size, inertial sensors appears promising. In

the following, some technologies for fall detection, their benefit and limitations, are briefly

presented.

2.3.1 Environmental and Vision-based technologies

RFID Radio-Frequency IDentification (RFID) is a technology that allows exchanging data

between a reader and an electronic tag by means of radio waves, for the purpose of identifi-

cation and tracking. Some tags can be read from several meters away and beyond the line of

sight of the reader. Companies are currently using RFID technology also in the healthcare

industry as a way to enhance patient safety and improve inventory management capabilities,

mostly in the hospital environment. Still, RFID technology can improve the care a patient

receives in many ways, including patient tracking and identification. Initial attempts have

been done for using RFID-based fall detection. A recent study of Miaou [177] proposed a

fall detection system including an omni-directional camera, image processing and recognition

algorithms, and an RFID set. The 91% successful fall detection rate was achieved on simu-

lated falls. While this technique is attractive due to low-cost and simplicity, it has several

drawbacks. Objects and people must be equipped with RFID readers and tags. In the elder

care environment, this is a concern since many residents may forget to wear the devices.

Additionally, object such as metallic objects, food, and very small items are not feasible to

be tagged. Another concern in using this type of sensing method is the noise present in the

environment. Noise is created by RF field strength, interference, and conflict between labels

reading from two adjacent tagged objects.

Video-cameras Video-cameras have largely been used [178, 179, 180, 181, 182, 183, 184,

185, 186, 187, 188] for detecting falls but their poor adherence to real-life is particularly

related to privacy concerns. While these techniques work well in controlled environments

(laboratory, scene), they must be adapted in non-controlled environments in which neither

the lighting nor the framing is controlled (it is obviously necessary that the subject be in

the field of vision). Moreover, as the subject moves in a three dimensional space, it is also
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necessary to call upon more complex techniques, namely the use of two cameras (“stereovi-

sion”). Nevertheless, these techniques are becoming accessible, both technically and finan-

cially, thanks to the emergence of low cost cameras (web cams), the wireless transmission of

images over short distances, and the possibility of embedding the required algorithms. But

the video technology poses a major problem of acceptance as it requires the placement of

video cameras in private living quarters, and especially in the bedroom and the bathroom,

with consequent concerns about privacy.

Vibrational sensors Vibrational sensor can be useful in many ways for detecting fall

events. A completely passive and unobtrusive system was introduced by Alwan et al. [189]

that that developed the working principle and the design of a floor vibration-based fall

detector. Detection of human falls is estimated by monitoring the floor vibration patterns.

The principle is based on the vibration signature of the floor. The floor’s vibration signature

generated by the human fall is different from normal activities, such as walking. The concept

of floor vibrations with sound sensing was investigated in [190], where pattern recognition

is applied to differentiate between falls and other events. Shock response spectrum is one of

the key special features used in classification. The system is unique in the detection of falls

in critical cases, such as a subject being unconscious or in a stressful condition. Rimminen

et al. in [191] proposed to use a floor sensor based on near-field imaging. The shape, size,

and magnitude of the patterns are collected for classification. A set of features is computed

from the cluster of observations. The system has problems with test subjects falling onto

their knees as this produces a pattern very similar to a standing person. Toreyin et al. [192]

fused the multitude of sound, vibration and passive infrared sensors inside an intelligent

environment equipped with the above fusion elements. Wavelet based feature extraction is

performed on data received from raw sensor outputs. Regular and unusual activities, such

as falls, are used for training the Hidden Markov Models (HMM). The process of fusion is

applied to all outputs from sensors to detect falls.

Vibrational sensor are hence another potential technology to use, but present several

problems. It would require either the whole floor to be covered, a heavy expense and difficult

to clean, or it would have edges which could cause falls.

Acoustic sensors Acoustic sensors have been also used for detect posture and falls. Hori

and Nishida [193] developed an ultrasonic 3D tag system which locate ultrasonic tags in

real time, and employed the system in a nursing home to monitor positions of the elderly

people. If the system locates the elderly people continuously and robustly, and if it can

notify caregivers about the occurrence of accident-prone activities promptly, caregivers will
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be revealed from their unnecessary workloads.

Pressure sensors Most ambient device based approaches use pressure sensors for subject

detection and tracking. The pressure sensor is based on the principle of sensing high pressure

of the subject due to the subject’s weight for detection and tracking. It is a cost effective

and less intrusive for the implementation of surveillance systems. However, it has a big

disadvantage of sensing pressure of everything in and around the subject and generating

false alarms in the case of fall detection, which leads to a low detection accuracy.

In summary, both visual-based and environmental device approach require a pre-built

infrastructure, and this enables their use in hospital and houses, but it is hard to use them

outdoor.

2.3.2 Wearable technologies

Wearable sensor systems for health monitoring are an emerging trend and are expected to

enable proactive personal health management and better treatment of various medical con-

ditions. These systems, comprising various type of small physiological sensors, transmission

modules and processing capabilities, promise to change the future of personal care, by pro-

viding low-cost wearable unobtrusive solutions for continuous all-day and any-place health,

mental and activity status monitoring. Personal wearable monitoring systems need to satisfy

a great diversity of criteria and constraints. These include small weight and size, privacy

of personal data, unobtrusiveness, ease of use, low cost, reliability and low power consump-

tion. Designing such a system is a challenging task since a lot of highly constraining and

often conflicting requirements have to be considered from the designers. In these thesis, the

attention was focused on inertial sensors.

Inertial sensors Inertial tracking technologies are becoming widely accepted for the as-

sessment of human movement in both clinical application and scientific research. Several

of these studies focused on the monitoring of the activities of daily living (ADL) and fall

detection using wearable sensors. Compared to commercial movement analysis systems,

wearable sensors offer advantages in terms of cost, size, weight, power consumption, ease

of use and, most importantly, portability. With wearable sensors, data collection is no

longer confined to a laboratory environment, thus leading to their availability for health

monitoring. In the last decade, a variety of different methods based on inertial sensors
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were developed to automatically detect falls . Many different approaches have been ex-

plored to solve the fall detection problem using only accelerometers or gyroscopes or both

[194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210]. The

first approach to fall detection using accelerometry was published by Williams et al. [211],

and a fall detector was presented after a number of pilot studies [212]. In its design imple-

mentation, the fall detector consisted of two piezoelectric shock sensors to detect the impact

and a mercury tilt switch to identify the orientation. A two-stage detection process which

detects both impact (acceleration) and orientation was used to better eliminate false alarms.

The two-stage detection process firstly screens if any impact greater than a certain threshold

exists (the first stage). A fall emergency is registered after the first stage if the reclining

posture remains unchanged (the wearer does not get up) for a specific period of time. This

design implementation led to the product commercialization of the fall detector by Tunstall

Group (http://www.tunstall.co.uk/).

The most common used method is using a tri-axial accelerometer with threshold algo-

rithms. Such algorithms simply raise the alarm when the threshold value of acceleration

is reached. There exist many problems about this kind of algorithms, including lacking of

adaptability, deficiently in classification precision. For example, Hwang et al. [213] used tilt

switch to trigger the detection program, when the tilt of the person’s upper body over 70°,

the program will start to process the acceleration signals to determine whether there is a fall

occurred. However, if the person slides fall during going down-stairs, in general he will sit

down on the stairs with only a small tilt degree on the upper body, and hence the detection

program will not be triggered. A not exhaustive review of position, number of sensor and

algorithms used is provided in Figure 2.1.

More details about fall detection algorithms and their poor reliability and pervasivity in

the daily life will be provided in Chapter 7. The focus will be on threshold-based fall detection

algorithms when they are applied to a real-world fall database, in order to provide the main

drawbacks of these approaches which affect their acceptability among elderly people.

Smartphones Today’s smartphone not only serves as the key computing and communica-

tion mobile device of choice, but it also comes with a rich set of embedded sensors, such as

an accelerometer, digital compass, gyroscope, GPS, microphone and camera. Collectively,

these sensors are enabling new applications across a wide variety of domains, such as health-

care [214], social networks, safety, environmental monitoring, and transportation, and give

rise to the new area of research called mobile phone sensing [215]. Until recently mobile

sensing research such as activity recognition, where people’s activity (e.g. walking, driving,

sitting, talking) is classified and monitored, required specialized mobile devices (e.g., the
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Figure 2.1: Example of sensor positions and algorithms for fall detection.

Mobile Sensing Platform MSP) [216] to be fabricated. Mobile sensing applications had to

be manually downloaded, installed, and hand tuned for each device. User studies conducted

to evaluate new mobile sensing applications and algorithms were small-scale because of the

expense and complexity of doing experiments at scale. As a result the research, which was

innovative, gained little momentum outside a small group of dedicated researchers. Although

the potential of using mobile phones as a platform for sensing research has been discussed

for a number of years now, in both industrial [217] and research communities [218], there

has been little or no advancement in the field until recently.

In the fall-detection domain the iFall [219] application has been developed to detect fall

events: data from the accelerometer is evaluated with several threshold-based algorithms

and position data to determine a fall. If a fall is suspected a notification is raised requiring

the user’s response. If the user does not respond, the system sends alerts message via SMS.

The fall-detection algorithm is based on simulated falls only: this may cause the need to

perform a lot of threshold calibration without any assurance about its performance. The

Mover [220] application has been developed to monitor human activity level and to detect

falls. In order to measure activity levels, Mover reads data from the phone’s accelerometer

and sums it out throughout the day. People’s average level of activity is then translated

into a simplistic categorization of users: Sleeper, Sitter, Lagger, Walker, Mover or Hyper.
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Mover can also detect user falls and send alerts to user’s emergency contacts (through SMS

or email). Before calling for help, Mover will play a sound to make sure you are unconscious.

The feature is still experimental as the algorithm is still being tested (the algorithm is based

on simulated falls only). Two preliminary studies [221, 222] has verified the suitability of

consumer accelerometers, as those included in recent smartphone, to perform some clinical

tests, such as the instrumented TUG test. In other two recent papers [223, 224] authors

developed a computer algorithm for fall detection using mobile phone technology tested on

simulated falls performed by healthy volunteers.

In summary, even if a myriad of ICT-based products or services are in place trying to

satisfy the need of an early intervention in case of fall, existing solutions still do not have

a remarkable social impact neither a significant market penetration: just 4.5% of Europe’s

potential end users have any of the existing social alarms. Three facts hinder their effective-

ness of the existing systems, capping therefore the market demand: bad ergonomics (and

hence poor acceptability from older users) and lack of reliability, due to a poor knowledge

of real falls. This specific issue will be discussed in Chapter 7.
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Part II

Fall-risk evaluation
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Chapter 3

Balance control as indicator of fall risk

As discussed in Chapter 1 several studies are underpinned by the attribution of falls to

multiple interacting factor. Fall prevention can therefore successfully addressed through

adaptive and complex interventions focused on understanding of cumulative effect of several

stressors and their inter-relationships [225]. Recently, it has been argued that exercise alone

could prevent fall in older people, with the greatest relative effect size in programmes that

challenge balance [107].

Normal ambulation and postural stability are complex processes that involve the rapid,

automatic integration of information from the vestibular, somato-sensory, visual, and musculo-

skeletal systems, in the presence of cognition, which includes attention and reaction time

[227, 228]. The coordination of many different muscles acting on multiple joints is accom-

plished by the integration of activity in spinal neuronal circuitries with sensory feedback

signals and with descending commands from the motor cortex.

Balance is therefore a higher order function that requires a significant degree of connec-

tivity and coordination between several interdependent components (muscular, skeletal and

nervous) of the complex system that is the human body. Consequently, individuals who

may have lost the ability to integrate multiple inputs in the face of stress often present with

falls [93]. The prediction of falls by abnormalities in gait and balance is consistent with the

paradigm of complex system failure (see Figure 3.1).

As one gets older, the ability to maintain balance control deteriorates. This decline can

be attributed to decline in the somato-sensory, visual, and vestibular systems to varying

degrees [229]. Posture control, body-orienting reflexes, muscle strength and tone, and height

of stepping all decline with ageing and impair ability to avoid a fall after an unexpected

trip or slip. In old age, the ”strategy” for maintaining balance after a slip shifts from the

rapid correcting ”hip strategy” (fall avoidance through weight shifts at the hip) to the ”step
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Figure 3.1: Simplified block diagram illustrating some of the physiological and neuropsy-

chological factors that may be associated with gait and balance instability, adapted from

[226]

strategy” (fall avoidance via a rapid step) to total loss of ability to correct in time to prevent

a fall.

The measurement tools used to evaluate balance in the clinical setting are a means of

quantifying the working capacity of the sum of the components that enable postural stability.

Shumway-Cook and Woollacott [230] differ between the following strategies that help keeping

balance:

1. reactive balance, used to recover from an unexpected external threat to stability

during walking or standing;

2. static/dynamic steady-state balance, used during the maintenance of a steady

position in sitting, standing, and walking;

3. proactive balance, used to stabilize balance in anticipation of a know threat to

stability, such as when making a voluntary movement.

Falls primarily occur during ambulation (i.e., steady-state balance) or during slipping

and tripping events (i.e., reactive balance) and not during quiet standing in the elderly.

Since standing balance (i.e., static steady-state balance), walking balance (i.e., dynamic
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steady-state balance), and balance recovery (i.e., reactive balance) were reported to be un-

related [231, 232, 233], fall-risk assessment should particularly be carried out under dynamic

steady-state balance (e.g., analysis of gait variability under single and particularly multi-

task conditions) and reactive balance conditions (e.g., exposure to balance threats via the

postural stress test) to identify older adults at risk of falling. It was frequently reported that

deficits in reactive and steady-state balance performance put older adults at an increased

risk of falling [234, 235]. For these reasons, tests for the analysis of reactive balance and

steady-state should be incorporated into a standard fall- risk assessment protocol for older

adults. In the following section these two different conditions are briefly described. In the

next two chapters of this thesis the issue of the description of reactive and steady-state

balance is addressed through a biomechanical approach based on a body sensor network.

Reactive balance From a biomechanical perspective, to maintain an upright posture

during quiet stance the vertical projection of the whole-body centre-of-mass (CoM) must

fall within the limits of the base of support (BoS) [236]. To accomplish this, models related

to ankle stiffness [237, 238] and reactive muscle strategies [239, 240] predict that adjustments

in the location of the underfoot centre-of-pressure (CoP) are used to guide the trajectory of

the CoM towards an equilibrium position. In the event of a balance perturbation that causes

the CoM to shift anteriorly (such as being nudged from behind), recovering balance without

changing the BoS via stepping responses requires the CoP to be rapidly shifted anteriorly

towards the toes to decelerate the CoM. If the CoM trajectory cannot be altered quickly

enough by the anterior CoP displacement and consequently reaches the BoS boundaries, the

individual must increase the BoS by taking a step in order to prevent a forward fall [236].

Thus, the proximity of the CoM to the BoS boundaries after perturbation (margin of safety

(MoS)) provides an indication of the degree of instability following the perturbation. For

elderly persons, a large MOS may be of increased importance in recovering balance due to

age-related declines in strength, reaction time, and other sensor-motor capabilities.

Consequently, changes in support surface stiffness may influence CoP dynamics, which

in turn could influence CoM trajectories [241, 242]. To more closely assess the interaction

of musculo-skeletal and sensory components of postural stability, a number of investigations

have been performed in which the subject is mechanically perturbed by applying a direct

force to their body, or by tilting or translating the surface upon which they stand. These

techniques are thought to provide useful information regarding how effectively the subject’s

sensory and motor systems respond to external stimuli.

The sternal shove test or nudge test is a simple test of balance recovery [340]. Subjects

stand with feet close together. The examiner pushes with light even pressure over the
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Figure 3.2: Strategy for balance recovery, adapted from [247]

sternum three times. The response is graded using a 0 to 2 scale with 0 meaning that the

subjects start to fall and need assistance; 1 indicates that the subject maintains balance

with feet movement; 2 means that the subject’s stance remains stable. However, reliability

and validity have not been established for this test [244]. This might be due to the fact

that the intensity of the applied perturbation impulse as well as the rating of the balance

recovery reaction is examiner dependent. A more sophisticated but still easy-to-administer

test for the assessment of balance recovery reactions is the so-called postural stress test

which was introduced by Wolfson et al. [245]. In this test, balance recovery reactions

to postural perturbations of varying degrees are measured during normal standing using a

simple pulley weight system that displaces the centre of gravity behind the base of support.

More specifically, subjects have to withstand a series of posterior perturbation impulses that

are applied at the level of the subject’s waist using three different perturbation intensities

(i.e., 1.51%, 3%, and 4% of the body mass). Scoring of the postural responses is based on a

nine-point ordinal scale, where a score of 9 represents the most efficient postural response and

a score of 0 represents a complete failure to remain upright. Chandler et al. [246] observed

that elderly community-dwelling fallers score significantly lower on the postural stress test

than either young adults or non falling elderly individuals.

Biomechanical tests are usually characterized by high criterion validity. In an earlier

study, Maki et al. [133] compared the ability of different measures of postural balance to

35



predict risk of falling prospectively in an ambulatory and independent elderly population

aged between 62 and 96 years. Different balance tests including tests of spontaneous sway,

induced sway, and one-legged tests were conducted. A force plate moving back and forth

and side to side was used during the induced sway conditions. A number of measures

showed evidence of significant differences between fallers and non-fallers. The differences

were most pronounced for measures related to the control of both spontaneous and sway-

induced stability. The authors suggested that this rather simple and safe force-plate measure

of postural sway can be used in a clinical setting as a preliminary screening tool for risk of

falling. In summary, as also discussed in the previous Chapter, the existing methods and

clinical tests for the evaluation of reactive balance strategies, depend on subjective scores or,

in studies which involved FPs, the strategies are investigated by focusing on CoP neglecting

the biomechanics of the single body segments. In order tackle this issue, in Chapter 4, a

method for the kinematic evaluation of sway angles (ankle, knee and hip) during perturbed

stance by using a single-axis accelerometer per segment and a 3-link biomechanical model is

presented. The method is suitable for the evaluation of the response strategy to unexpected

perturbation even if it has been validate on a self induced sway only. The method is validated

with a stereo-photogrammetric system. Results obtained suggest its possible use in clinical

practice as tool for estimating how subject’s motor system responds to external stimuli and

for estimating quantitatively the balance recovery reaction.

Static/dynamic steady-state balance Steady-state balance can be assessed during

standing and/or walking under single-task conditions and/or dual/multi-task conditions (i.e.,

standing/walking while concurrently performing a motor/cognitive interference task).

One-leg standing balance (i.e., ability to stand unassisted for 5 seconds on one leg) is an

easy-to-administer and inexpensive clinical test for the assessment of the functional level and

the frailty status of older community-living persons [20]. Notably, Vellas et al. [20] reported

that this test can be used as a predictor of injurious falls. The Timed Up and Go Test

(TUG) is a test of dynamic steady-state balance that is commonly used to assess functional

mobility and risk of falling in community-dwelling, frail older adults (aged 70 to 84 years)

[126].

The sit-to-stand (STS) is another simple test which is often used as measure of lower

limb strength and is included in fall risk assessment scales. The STS transfer is a regular

mobility related activity in daily life, it is performed multiple times a day, and studies

have demonstrated that measures of STS performance are important indicators of overall

functioning and balance performance in older persons [126, 248].

For the sit-to-stand test with five repetitions (rSTS), subjects were usually asked to
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Figure 3.3: Sit to stand analysis

rise from a standard height (43 cm) chair without armrests, five times, as fast as possible

with their arms folded. The single sit-to-stand task (time from sitting to standing) was

also evaluated as it has been used in assessment scales as a measure of functional mobility,

balance and lower limb strength. Previous studies have also reported that the STS test is

significant predictor of falls in older community-living people [249, 250].

In particular Nevitt et al. [249] found that a patient’s ability to stand up from a chair

and to perform a tandem walk, were the most useful indicators of his or her risk of multiple

falls, perhaps because these abilities require a combination of neuromuscular competencies:

dynamic balance, strength, and an adequate range of motion in the lower extremities.

Buatois et al. [251, 252] found the the rSTS provided added value in the estimation of

risk for recurrent falls, in community-dwelling individuals at moderate risk for falls, as those

individuals in the “moderate risk” group with an rSTS score of greater than 15 seconds were

found to have twice as many falls as those individuals who performed the rSTS in less than

15 seconds.

Traditional clinical evaluation of STS transition is based on visual observation of joint

angle motion to describe alterations in coordination and movement pattern. However, the

validity of such assessment essentially depends on clinicians’ experience and training, as
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discussed in the previous Chapter. Results might not have the precision needed to objectively

assess the effect of rehabilitative intervention or the decline over time in frail elderly persons

[253]. One of the most straightforward parameter to characterize the subject’s performance

in STS postural transition is to measures its duration. Previous observations have shown that

duration of STS transitions can distinguish between older people at low and high risk for falls

[151]. Despite these encouraging observations suggesting the usefulness of duration of STS

postural transition, other studies in patients suffering from Alzheimer’s or Parkinson’s disease

also suggest that this parameter is not sufficient to fully describe the clinical performance in

older persons [254, 255].

Overall, these observations confirm that the STS transition is a complex movement and

suggest that more detailed characterization than merely a measure of duration are needed

to fully capture the various aspects of motor control and performance. To achieve this aim,

additional parameters are needed that more specifically assess kinematic phases within the

STS transition, such as the maximum trunk flexion [255], key events as temporal locations

of the major peaks of vertical and sagittal acceleration [256].

For instance, elderly frailty persons may use different compensatory strategies to achieve

successful transitions such as deviation from normal motion. This deviation is due to several

types of motion irregularities, among which sway is the most frequently encountered. Sway

consists in repetitive, quick changes in motion orientation due to a temporary loss of balance

or to insufficient strength in lower limbs. These results suggest that further investigation of

postural transition with other additional parameters has the potential to provide important

predictive information. Recently, Ganea et al. [257] extracted multi-parametric measures

characterizing different features of STS transition in older persons, using a single inertial

sensor attached to the chest, suggesting their use for fall risk estimation. Nevertheless, few

studies focused on a biomechanical approach using inertial sensors.

In Chapter 5, the method for the kinematics evaluation presented in Chapter 4 is applied

to young subjects during the execution of oscillatory trials ans repeated STS. Kinematic

and dynamic variables were evaluated by the use of accelerometry only and a biomechanical

approach. With the aim of balance control in mind, we provide a reliable algorithm to

describe quantitatively the biomechanics of the STS through accelerometers body network.

The set-up has the advantage to speed up the experimental sessions and to assess the motor

task considering biomechanical measurements which are usually neglected during clinical

assessments test.
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Chapter 4

Angular kinematics by body sensor

network

It has been recently demonstrated [258] a strong relations between voluntary postural sway

measures and falls-history status in community-dwelling older adults considering Center of

Pressure amplitudes and reaction time measures. An approach based on CoP excursions

may be limited as they can only provide a global indication of body motion, neglecting the

biomechanics of the single body segment. To obtain information about the inter-segmental

dynamics of maintaining stability, it may be necessary to measure postural motion at ad-

ditional locations such as lower and upper limb and trunk. The main aim of this chapter

is to provide a quantitative assessment tool of body sway angles by using a body sensor

network, consisted of one single-axis accelerometer (SAA) per segment. A preliminary cali-

bration, using SAAs and a reference system (encoder or stereo-photogrammetry), allows the

estimation of sensors position and orientation and segment lengths. These parameters are

then used to predict the chain kinematics using the SAAs only. To evaluate the method,

the algorithm is first tested on a mechanical arm equipped with a reference encoder. A

general method for estimating the kinematics of an N-link chain is also provided. Finally, a

three-link biomechanical model is applied to a human subject to estimate the joint angles

during squat tasks; a stereo-photogrammetric system is used for validation. The results are

very close to the reference values. Mean descriptive (predictive) root mean squared error

(RMSE) is 0.15° (0.16°) for the inverted pendulum, and 0.39° (0.59°) for the shank, 0.82°

(1.06°) for the thigh, 0.87° (1.09°) for the HAT (head-arm-trunk) in the three-link model.

The mean value of RMSE without calibration is 1.02° for the inverted pendulum, and 11.01°

Bagalà F, Fuschillo VF, Chiari L, Cappello A (2012) Calibrated 2D angular kinematics by

single-axis accelerometers: from inverted pendulum to N-link chain, IEEE Sensors Journal, 12(3): 479-486
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(shank), 11.39° (thigh) and 12.21° (HAT) in the three-link model. These results suggest

that, after the calibration procedure, one SAA per segment is enough to estimate 2D joint

angles accurately in a kinematic chain of any number of links, providing the usability of this

instrumented test in clinical practice.

4.1 Introduction

Several authors have used accelerometers and/or rate gyroscopes to study balance in unper-

turbed upright stance[259, 260, 261], to estimate the gait kinematic parameters[262, 263],

and to evaluate joint angles during specific tasks[264, 265, 266, 267, 268, 269, 270]. In the

balance studies, Kamen et al. [259] used two single-axis accelerometers (SAAs), taped to the

back (at S2 level) and forehead, to quantify postural sway, evaluating the root mean square

(RMS) and frequency spectrum of the accelerations in the anterior-posterior (AP) direction.

Moe-Nilssen [260] used a tri-axial accelerometer placed on the trunk to investigate whether

body sway during quiet standing could differentiate between young and elderly healthy sub-

jects in different sensory conditions. In the study of Mayagoitiaet al. [261], the authors

compared the effectiveness of tri-axial accelerometer, placed at the back of the subject, and

force plate measurements in distinguishing between different standing conditions. In the

gait studies, Mayagoitia et al. [262] used four SAAs and one gyroscope per body segment to

obtain the kinematics (shank, thigh and knee angle) in the sagittal plane. Their system was

validated by an optoelectronic system, and the ratio of root mean squared errors (RMSEs)

to average peak-to-peak values was 2-5%. Lyons et al. [263] used two SAAs to distinguish

between static and dynamic activities and detect the basic postures of sitting, standing and

lying. In the evaluation of the inclination angles of trunk and thigh in posture, the inertial

term was neglected. The effect of this decision will be further discussed in the definition of

our model. In joint angle evaluation studies, Liu et al. [264] used two tri-axial accelerome-

ters to estimate the flexion/extension and abduction/adduction angles of the thigh segment;

the RMSE of the thigh segment orientation was between 2.4° and 4.9° during normal gait,

comparing accelerometric and stereo-photogrammetric (SP) data. Cooper et al. [265] es-

timated knee flexion/extension angles with RMSEs from 0.7° up to 3.4° using two inertial

measurement units (i.e., a combination of gyroscopes and accelerometers). Similar results

for the 3D knee joint angle measurements were obtained by Favre et al. [266] with the

same instrumentation. O’Donovan et al. [267] found RMSE between 0.5o and 4o degrees

for 3D lower limb joint angles estimation during static and dynamic tasks by using tri-axial

accelerometers, gyroscopes and magnetometers. Dejnabadi et al. [268] showed RMSEs of 1°

40



and 1.6° for shank and thigh segments, respectively, in the sagittal plane using a combination

of accelerometers and gyroscopes. Most of these methods usually require at least two inertial

sensors per segment. In contrast, the aim of this study is to develop an alternative method

using (only) one SAA per segment aligned with the AP axis of the anatomical reference

frame. Off-line evaluation of sagittal plane kinematics is performed through a model-based

approach. To validate the method, three models are used.

� Inverted pendulum model : experimental tests using a mechanical arm equipped with

an absolute encoder and an SAA.

� N-link model : a simulation shows the possible extension of the algorithm to a kinematic

chain with N links.

� Three-link biomechanical model : an experimental session is conducted with a subject

during squat tasks.

A calibration for the inverted pendulum and the three-link model is provided to give the

position and the orientation of the sensors and the anthropometric parameters of the subject

(lengths of the shank and the thigh). These parameters are used, together with acceleromet-

ric data, to predict the joint angles which are then compared to the encoder outputs (for the

inverted pendulum model) or to the SP outputs (for the three-link biomechanical model).

4.2 Methods and Materials

4.2.1 Inverted Pendulum Kinematics

An inverted pendulum model (1 degree of freedom) is initially analyzed. First, the kinematic

equation of the model is shown and the estimation algorithm of the angular sway is provided.

Next, to validate the method in a simple set-up, a mechanical arm equipped with an absolute

encoder and an SAA are used and the sway angle is estimated after a calibration.

Inverted Pendulum Model: the Angle Estimation Method

The SAA is placed at height h from the pivot point P, with the sensitive axis orthogonal to

the longitudinal axis of the inverted pendulum (see Figure 4.1a).

The accelerometer output a(t) can be expressed, in the continuous-time domain, as the

sum of two terms:

inertial contribution depending on the angular acceleration θ̈(t)
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Figure 4.1: (a) Inverted pendulum model. (b) Mechanical Inverted pendulum

gravitational term depending on the sway angle θ(t)

a(t) = hθ̈(t)− g sin θ(t) (4.1)

where g is the gravitational acceleration. Several authors [260, 261, 262, 263, 271, 272]

used an inverted pendulum and a quasi-static (QS) model in which the inertial term in

(4.1) is neglected, so the accelerometer output can be approximated as a(t) ≈ −g sin θ(t).

This approximation is overcome by the angular sway estimation algorithm presented in this

chapter, which is based on the dynamic model shown in Eq.(4.1). First, Eq.(4.1) can be

rewritten, in the discrete-time domain, as the sum of a linear (L) and nonlinear (NL) term:

a(k) = hθ̈(k)− gθ(k)︸ ︷︷ ︸
Linear Term

+ g(θ(k)− sin θ(k))︸ ︷︷ ︸
Corrective nonlinear term

= aL(k) + aNL(k)

k = 1, . . . , n (4.2)

where n is the number of samples. Under the approximation of small angles, (sinθ(k) ≈
θ(k)), the nonlinear term is negligible, Eq. (4.1) is linearizable and the linear model transfer
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function is

H(s) =
θ(s)

a(s)
=

1

hss − g
(4.3)

Equation (4.3) clearly shows that the system is unstable, because one of the roots of the

denominator is positive. We refrain in this thesis from discussing the inverted pendulum

model stabilization and focus instead on the angular sway estimation. This can be solved in

the frequency-domain rewriting (4.3) as the product of two first-order low-pass filters (FF ,

forward filter; BF , backward filter):

H(jω) =
θ(jω)

a(jω)
= −1

g

1

1− jω
ωc︸ ︷︷ ︸

BF

1

1 + jω
ωc︸ ︷︷ ︸

FF

(4.4)

ωc =

√
g

h

The cutoff frequency of the two filters equal the corresponding natural frequency of the

system

fc =
1

2π

√
g

h
(4.5)

which is related to the distance h between the pivot point and the origin of the reference

system of the inertial sensor. Equation (4.5) represents the frequency response of a second-

order low-pass filter with zero-phase. Therefore, the angular sway can be computed through

the bidirectional filtering of the accelerometric signal as follows (using the filtfilt function in

Matlab):

θ(jω) = −1

g
BF (jω)FF (jω)a(jω) (4.6)

The corrective nonlinear term takes into account the nonlinearities due to large angular

excursions. The problem of evaluating the nontrivial, large angular displacements in Eq.(4.2)

is solved using an iterative methods with the following steps.

1. the angle vector θ = [θ(1) . . . θ(n)] is initialized, neglecting the nonlinear and the

inertial terms, as −a/g, where a = [a(1) . . . a(n)] is the accelerometer output.

2. the corrective nonlinear term aNL is evaluated form Eq.(4.2) by substituting the angle

vector θ.
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3. the linear acceleration vector is estimated as aL = a−aNL and new samples are added

at the beginning and at the end of the vector using the Symmetric Padding technique

[273] in order to neglect the transient effect after filtering. The length of the two

extensions has been chosen equal to six times the time constant,
√
h/g, of the filter.

4. the angle vector θ is estimated by filtering the acceleration aL through the bidirectional

low-pass filter, and the added extensions are removed.

5. the residual error at step j is estimated as e(j) = θ(j) − θ(j−1).

6. the cost function is evaluated as f (j) = e(j)
(
e(j)
)T

Iterations 2-6 stopped when f (j) < ε0, where ε0 = 10−25 is the chosen threshold. Usually,

the method converges in 10-15 steps.

Mechanical Inverted Pendulum

To test the method, an aluminum rectangular link is used as an inverted pendulum driven

by hand to sway with a fixed pivot point. The frequency content of the angular sway is

about 2Hz. Five trials are performed. The mechanical arm is equipped with an absolute

encoder (Gurley, mod. 7700, resolution 19 bit) and a tri-axial accelerometer (Dynaportr

Minimod, McRoberts, range ±2g, resolution ±1mg) placed at height h = 0.31m from the

pivot point, P (Figure 4.1b). For the present study only the accelerometer output related to

the axis orthogonal to the mechanical arm is acquired at 100Hz sampling rate. Unlike the

ideal condition of the mathematical model, the placement of the sensor on the mechanical

link potentially introduces some errors due to the non-orthogonality of the sensitive axis

of the SAA to the segment. This effect is even more evident in the human body segment,

where the soft tissue between the bone and the skin affects the ideal orthogonality of the

SAA sensitive axis. Equation (4.1) is modified by taking into account the projections of the

tangential, centripetal and gravity accelerations on the sensitive axis, in order to quantify

this undesired effect, as follows:

a(k) = hθ̈(k) cos β − hθ̇2 sin β − g sin(θ(k)− β)

k = 1, . . . , n (4.7)

where the angle β describes the SAA non-orthogonality (see Figure 4.1b). Preliminary

calibration is required to evaluate the two geometric parameters h and β. In the calibration

trial the encoder output, θenc, is used as reference. This algorithm estimates the parameter
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vector p = [h, β] through a least-squares approach by minimizing the cost function f (j) =

e(j)
(
e(j)
)T

, where e(j) = θ(j)
enc − θ(j−1) is the residual error at step j. The angle vector θ is

estimated through the iterative algorithm described previously.

In order to test the robustness of the calibration, the two parameters are estimated for

each trial and then their mean values are used to predict the angular sway of the inverted

pendulum using the SAA; this prediction is compared to the encoder output. Angular

RMSE is evaluated both in the calibration and prediction trials. In order to demonstrate

the advantage of the angle estimation method with respect to the QS model, the encoder

output is compared with the angular sway approximated as θ ≈ β+g arcsin(a/g), neglecting

the inertial terms θ̇ and θ̈. RMSEs between QS and reference angles are evaluated and the

percentage of time in which the QS model is valid is provided. In fact, according to Eq.(4.4), if

the frequency content of the accelerometer output is below the frequency fmax = fc
√
e%/100,

which implies an angle percentage error less than e% (e.g., h = 1m, e% = 5%, fmax = 0.11Hz),

the QS model approximation is valid; if the frequency content exceeds fmax significantly, the

accelerometer output, in absolute value, can reach the gravitational acceleration and the QS

model provides imaginary angular values.

4.2.2 Multilink Kinematics

A kinematic chain model (N degrees of freedom) is analyzed. First, the kinematic equations of

the model are described and the outputs of the N accelerometers are simulated. The angular

sway of each link is evaluated with the iterative method presented in the Section 4.2.1.

The experimental validation of the model is then performed, after a calibration trial in a

movement analysis laboratory, on a subject during squat tasks; the human body is assumed

to be a three-link model.

N-link Model

A continuous curve, with a fixed point in the joint ankle, is modelled. The curve can be

discretized with any finite number of links, as shown in Figure 4.2. In this first simulation

phase, a linear array of N=40 SAAs, equally spaced with li = 2cm(i = 1, . . . , n) (Figure 4.2),

is assumed. The N angular trends are then simulated by a superposition of sinusoidal

functions.

The output of the i-th accelerometer is obtained from Eq.(4.2), adding the projection

on the measurement axis of the accelerations, axi and ayi , at the lower joint. These two

contributions can be evaluated considering the second derivative of the lower joint posi-

tion with respect to the pivot point (e.g., [l1 sin θ1, l1 cos θ1] for the first segment, and for
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Figure 4.2: Snake-like profile for a 40-link kinematic chain

the second segment [l1 sin θ1 + l2 sin θ2, l1 cos θ1 + l2 cos θ2]). Therefore, by simple geometric

considerations, the acceleration of the i-th joint will be given by the recursive expressions:

axi (k) = axi−1(k) + li−1
d2[sin θi−1(t)]

dt2

∣∣∣
t=kT

≈ axi−1(k) + li−1
[sin θi−1(k+1)−2 sin θi−1(k)+sin θi−1(k−1)]

T 2

and

ayi (k) = ayi−1(k) + li−1
d2[cos θi−1(t)]

dt2

∣∣∣
t=kT

≈ ayi−1(k) + li−1
[cos θi−1(k+1)−2 cos θi−1(k)+cos θi−1(k−1)]

T 2

for k = 1, . . . , n, i = 1, . . . , N , where T is the sample time and li−1 is the length of

the (i-1)-th segment (it is assumed that ax,y0 = 0, l0 = 0). Therefore, the simulated i-th

accelerometer output is expressed as:

ai(k) = hiθ̈i(k)− g sin θi(k) + axi (k) cos θi(k)− ayi (k) sin θi(k)

k = 1, . . . , n

i = 1, . . . , N (4.8)
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In order to simulate the accelerometers output, a random Gaussian noise (zero-mean,

std=0.01) is added to each of the simulated signals expressed in Eq.(5.2). The same iterative

method described in Section 4.2.1 allows the evaluation of the time-dependent snake-like

profile, by summing and subtracting the linear gravitational contribution gθi(k) in Eq.(5.2).

In this case, the non-linear term of the acceleration, used in step-2 of the estimation method,

is defined as:

aNL,i(k) = gθi(k)− g sin θi(k) + axi (k) cos θi(k)− ayi (k) sin θi(k)

k = 1, . . . , n

i = 1, . . . , N (4.9)

The estimated profile of the kinematic chain is compared to the simulated profile.

Three-Link Biomechanical Model

In the second experiment, the method is tested on one subject (female, 27 years-old, weight

59kg, height 167cm), who participated after giving her informed consent. In order to estimate

the body sway in the sagittal plane during squat tasks [274], a three-link biomechanical

model is introduced. The feet are supposed to be rigidly connected to the ground; the ankle,

knee and hip joints are represented as three hinge joints and the shank (segment 1, length

l1 = 0.40m), thigh (segment 2, length l2 = 0.49m) and HAT (segment 3) are modelled as

three rigid segments. The subject is asked to perform a repetition of squat exercises for 30

seconds with her arms folded, keeping her movement in the AP direction. Four trials are

perfomed. In order to estimate the shank, thigh and HAT angles with respect to the vertical

line, three tri-axial accelerometers (Dynaportr Minimod, McRoberts, range ±2g, resolution

±1mg) are placed at measured heights h1 = 0.30m, h2 = 0.29m, h3 = 0.29m, with respect

to the ankle, knee and hip joint, respectively, in order to minimize the skin artifact effect.

Each of the three sensors is placed on a rhomboid rigid plate and mounted on the skin at

the lateral side of the thigh, shank and HAT by using three hook-and-loop fastener belts, as

shown in Figure 4.3. For the present study only the AP accelerometer outputs are acquired

at a 100Hz sampling rate.

Four reflective markers are placed on the vertices of each plates, and a SP system (SMART

eMOTION, BTS) is used for calibration and validation. SP and accelerometer data are low-

pass filtered (zero-phase) at a cut-off frequency of 3Hz. The 12 markers are projected onto

the plane which best approximates the point cloud in the observation interval, and the three

reference angles are evaluated through the 2D Singular Value Decomposition (SVD) method
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Figure 4.3: Experimental testing setup

[275, 276]. The SP angles are related to the first acquisition frame which defines the cluster

model. As explained in Section 4.2.1, the sensors on the skin surface introduce potential

errors, due to non-orthogonality of the measurement axis of the SAAs to the body segment

anatomical axis. In order to model this undesired effect, Eq.(5.2) is modified by taking into

account the projections of the tangential, centripetal, gravity and lower joints acceleration

on the measurement axis. The method proposed in this paper provides angles from accelero-

metric measures with respect to the vertical, rather than from the first acquisition frame as

for SP data. In order to take this fact into account, Eq.(5.2) is modified as follows:

ai(k) = hiθ̈i(k) cos βi − hiθ̇2i (k) sin βi − g sin (θi(k)− βi + θi0) (4.10)

+axi (k) cos (θi(k)− βi + θi0)− ayi (k) sin (θi(k)− βi + θi0)

k = 1, . . . , n

i = 1, . . . , 3
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where the angles βi describe the SAAs non-orthogonality (see Figure 4.1) for each seg-

ment, and the angle θi0 = −ai0/g is related to the first acquisition frame, in which the inertial

and non-linear terms are negligible.

Figure 4.4: Three-link biomechanical model

The parameters hi, βi and lm (m = 1, 2) are estimated by the calibration algorithm using

the least-squares minimization, as in Section 4.2.1; the SP angles are used as reference

values. The angle vectors θi = [θi(1) . . . θi(n)] are estimated through the iterative algorithm

described in Section 4.2.1. In order to test the robustness of the calibration, the 8 parameters

are estimated for each trial; the mean values of the parameters are then used to predict the

subject’s angular sways using the three SAAs. The estimated angles are compared to the

SP outputs by evaluating the RMSE.
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4.3 Results

4.3.1 Mechanical Inverted Pendulum

The calibration algorithm, presented in Section 4.2.1, provides two parameters (mean±std):

the distance h = 0.31± 0.00m, of the origin of the sensor reference system to the pivot point

P (the measured distance equals 0.30m), and an angle β = −1.17 ± 0.15°, related to the

non-orthogonality of the measurement axis of the SAA to the link. These two parameters

are used along with the SAA data to predict the angles which are compared with the encoder

angles. Calibration and prediction RMSEs and Peak-to-Peak (P-P) ranges are reported in

Table 4.1, along with the results obtained with the QS model and the percentage of time in

which it is valid.

Table 4.1: RMSEs and P-P range for the mechanical inverted pendulum

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 mean±std

RMSE[°] calibration 0.16 0.18 0.14 0.15 0.12 0.15± 0.02

RMSE[°] prediction 0.17 0.18 0.16 0.15 0.12 0.16± 0.02

RMSE[°] QS model
30.02 30.08 25.28 21.89 21.15 25.68± 4.28

(95.2%) (91.2%) (85.3%) (83.5%) (85.4%)

P-P range[°] 126.5 117.9 125.4 108.3 151.4 125.9± 16.0

The mean ratio between the RMSEs and the P-P ranges in description and prediction

is approximately 0.12%. The mean ratio between the RMSEs and the P-P range obtained

without calibration, by neglecting the parameter β and using the measured parameter h, is

about 0.82% and the mean value of RMSEs is 1.02°. The use of the calibration parameters

therefore allows a less biased estimation. Table I also shows that the mean angular error of

the QS model is very high, about 25°, due to the high frequency sways.

4.3.2 Multilink Kinematics

N-link model

The linear array of N=40 SAAs, equally spaced with li = 2cm(i = 1, . . . , N), is simulated.

The snake-like profile for 3 different frames is shown in Figure 4.5, comparing the simulated

and estimated profiles: the continuous curve represents the simulated N-link chain, the points

of the silhouette are the estimated joint positions, with respect to the pivot point, between
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two consecutive links. The positions of the joints are evaluated using the estimated angles

and segment lengths.

Figure 4.5: Snake-like profile for a 40-link kinematic chain

The angular RMSE between the sway angle of each link and the reference angle is eval-

uated. The values of the RMSE and P-P range, averaged out the N-link, are (mean±std)

0.37 ± 0.16° and 70.42 ± 10.19°, respectively. The Euclidean distance between the joint

positions of the estimated and simulated N-link is (mean±std) 0.3± 0.1mm.

Three-link biomechanical model

The mean values and standard deviations of the calibration parameters for the 4 trials,

estimated by using the accelerometer output and the SP data as reference, are (mean±std)

h1 = 0.31± 0.01m, h2 = 0.32± 0.00m, h3 = 0.30± 0.07m, l1 = 0.51± 0.06, l2 = 0.52± 0.06

and β1 = −10.96 ± 0.21°, β2 = −11.83 ± 0.64° and β3 = −13.17 ± 0.4o. These parameters

are used to predict angular sway by using the three SAA outputs. The angles obtained are
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Table 4.2: RMSEs and P-P range for the subject during squat tests

Trial 1 Trial 2 Trial 3 Trial 4 mean±std

RMSE shank [°] calibration 0.34 0.40 0.50 0.85 0.39± 0.08

RMSE shank [°] prediction 0.38 0.47 0.56 0.93 0.59± 0.24

P-P shank[°] range 26.54 24.64 28.11 23.79 25.77± 1.94

RMSE thigh [°] calibration 0.73 0.98 0.86 0.72 0.82± 0.12

RMSE thigh [°] prediction 0.81 1.32 1.16 0.95 1.06± 0.23

P-P thigh [°] range 42.74 59.74 48.30 47.45 49.55± 7.21

RMSE HAT [°] calibration 0.85 0.99 0.81 0.84 0.87± 0.08

RMSE HAT [°] prediction 0.93 1.06 0.97 1.42 1.09± 0.22

P-P HAT [°] range 39.73 56.14 37.30 47.74 42.23± 8.53

then compared with the SP data. Calibration and prediction RMSEs and P-P ranges are

reported in Table 4.2 for shank, thigh and HAT angles, respectively.

The ratios between the mean values of RMSEs and the P-P ranges are 1.5%, 1.7%, 1.9%

for shank, thigh and HAT angles, respectively, for the calibration trials, and 2.3%, 2.1%,

2.4% for the prediction trials. The three angular patterns for stereo-photogrammetry and

accelerometry data are reported in Figure 4.6 for one prediction trial. The mean RMSEs

obtained without calibration, thus neglecting the parameters βi and using the measured

parameters hi and li, are 11.01°, 11.39° and 12.21° for shank, thigh and HAT, respectively.

4.4 Discussion

This chapter suggests a novel method based on the use of one SAA per segment, which

provides the accurate estimation of 2D joint angles, taking into account the inertial term of

the accelerometer output is suggested. Several authors used the QS model to evaluate the

angular sway: the procedure of separating the gravitational and inertial components of the

accelerometer output has usually been considered very difficult unless multiple accelerometers

are used [264, 276, 277, 278, 279]. Our method improves the QS model approximation:

the use of the iterative method based on the bidirectional low-pass filter, with a cut-off

frequency related to the sensor position with respect to the pivot point, provides RMSEs of

approximately 0.1% of the angular range as shown in Table 4.1. The experimental sessions

on the mechanical arm provided a simplified situation in which the method was successfully

tested, as demonstrated by the mean RMSE values of 0.15° with a mean P-P range of
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Figure 4.6: Shank, thigh, HAT angular patterns in prediction

126.1°. This error term partly reflects the encoder resolution (0.036°) and the accelerometer

performance limits. As shown in the Methods, the angle evaluation can be extended to

an N-link model, providing the possibility of estimating the silhouette of a kinematic chain

with any number of links. The results obtained in simulation suggest possible applications in

various fields like trunk posture evaluation and swimming, and most importantly to evaluated

different strategies response to external stimuli in terms of sway angles. Additional discussion

is required about the subject tests. Description and prediction RMSEs are smaller than

those previously reported in the literature. For example, reported shank and thigh angle

RMSEs range from 0.7° to 4.1° [264, 265, 267], although these studies analyse 3D joint

angle estimation during gait instead of 2D squat tasks. RMSEs of the calculated angular

displacements of the three segments (thigh, shank and HAT), as shown in Table 4.2, are
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larger than those in the inverted pendulum tests, due to several factors:

- 2D errors : motion is inherently 3D and 2D analysis is an approximation. 2D projection

of the markers’ coordinates on the best fit plane produces a distortion affecting the SP

angles estimation and therefore the validation measures. Consequently, there is not the

certainty that SP provides a gold standard kinematics. Therefore both calibrated and

predicted RMSE values in Table 4.2 should be considered as measures of the distance

between estimates provided by two differently approximated methods;

- sensor mounting : it is difficult to firmly affix the accelerometers and the rhomboid

rigid plates onto the segments without any relative motion. Unlike the mechanical

arm, the soft tissue artefacts and the muscle activation add noise to the accelerometric

measures. In particular, respiration represents an undesired effect for the sensor placed

on the lateral side of the trunk, upon the rib;

- propagation errors : RMSEs are lower in the distal segment and increase in the thigh

and HAT. As shown in Eq.(5.2), the accelerations are related to the estimated angles of

the lower links, therefore the errors in the angle estimation of the (i-1)-th link propagate

to the angle estimation of the i-th link.

Despite these considerations, the results are very encouraging for several reasons. First, it

is important to note the effectiveness of the calibration procedure, both for the mechanical

arm and the three-link biomechanical model, which allows the evaluation of the sensor po-

sition and misalignment and thus provides a better kinematic estimation. The parameter

estimation provides unbiased results, both for description and prediction. Significantly, cal-

ibration allows us to reduce the errors from 11.0°-12.2° to 0.6°-1.1°. Second, our estimation

method provides a simple, accurate and portable joint angle evaluation for postural tasks.

The movement analysis laboratory is required only in the calibration phase, after which the

clusters of markers are removed and only the three SAAs are used. Squatting exercises are

often performed to characterize the bilateral lower-extremity kinematics after anterior cruci-

ate ligament reconstruction. The main outcome measures are the sagittal plane ankle, knee

and hip angles and their maximum excursion [274], in addition to the net joint moments.

The procedure presented in this chapter speeds up the experimental sessions, reducing the

computational and economic costs, especially when several subject are involved. The novel

method presented in this chapter overcomes the limitation of the QS model, often used in lit-

erature [260, 261, 262, 263, 271, 272], in which the accelerometers are used as inclinometers.

Since some authors used more than one sensors per segment [262, 264, 265], we demonstrated

one SAA per segment is enough to estimate 2D joint angles accurately in a kinematic chain of
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any number of link providing errors smaller than those reported in literature. The methods

presented in this Chapter is therefore suitable to be also included in fall risk assessments

tests which includes perturbed postures by applying a direct force to the subject or by tilting

or translating the surface upon which he stands. The presented approach could be able to

discriminate among different strategies adopted for recovery balance after external stimuli

by the evaluation of sway angles, highlighting how the subject’s motor system responds in

terms of hip, ankle or combined ankle-hip strategies. These quantitative measurements could

help to monitor the effect of fall prevention approach aiming to increase muscular strength

and/or balance.
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Chapter 5

Dynamics prediction during

sit-to-stand and voluntary postural

sway

In the previous chapter a novel method was proposed for estimating the kinematics of a

multi-link model by using a body sensor network during squat tasks. The same method

is extended in this Chapter for the kinematic description of sit-to-stand and oscillatory

voluntary trials. In addition, this chapter proposes a functional subject-specific 2D evaluation

tool for estimating body-segment and dynamic parameters which makes use of a simple

motor task (repeated sit-to-stand, rSTS), recorded with one single-axis accelerometer (SAA)

per segment and a force plate (FP). After this preliminary estimation, the quasi-real-time

prediction of Ground Reaction Force (anterior/posterior, Fx, and vertical, Fz, components),

Center of Pressure (CoP) and Mass (CoM), during rSTS and postural oscillation in the

sagittal plane, is performed by the use of accelerometry only. Predicted dynamic variables

and those obtained using anthropometric parameters derived from De Leva were compared

to FP outputs, in terms of Root Mean Squared Errors (RMSEs). RMSEs increase, using

De Leva’s parameters in place of those estimated, from 12N to 21N (Fx), from 21N to 24N

(Fz), and from 21.1mm to 55.6mm (CoP) in rSTS, and from 3.1N to 3.3N (Fx), and from

5.5mm to 6.6mm (CoP) in oscillatory trials. A telescopic inverted pendulum was adopted

to analyse the balance control in rSTS using only predicted CoP and CoM. Results suggest

that one SAA per segment may be used to predict the dynamics of a biomechanical-model

of any degrees of freedom.

Fuschillo VF, Bagalà F, Chiari L, Cappello A (2012) Accelerometry-based dynamics prediction

for balance monitoring, Under review on Medical & Biological Engineering and Computing
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5.1 Introduction

The trajectories of the body Center of Pressure (CoP) and the body Center of Mass (CoM)

are commonly investigated in studies on human posture and balance control [280, 281, 282,

283] and in many functional tests [284, 285, 286]. In balance-related studies [287], it is often

interesting to quantify the motion of CoM and CoP in order to investigate kinetic quantities

such as the moment of the ground reaction force (GRF) with respect to the CoM or the whole

body stiffness around the ankles [237]. However, while the CoP can be measured by means

of a force plate (FP), the whole body CoM location is not directly observed and it should

be estimated. Kinematics-based [237, 288] and FP-based methods [289, 290, 291] have been

proposed to estimate CoM position, involving the definition of an adequate biomechanical

model of the body and the identification of anthropometric properties of body-segments.

Body-segment parameters are typically derived from geometric models [292, 293, 294,

295, 296] and/or regression models scaled to the height and the weight of the subject (e.g.

cadaver segmentation [297, 298] and imaging methods [299, 300, 301, 302, 303, 304]). The

intrinsic limits of the geometric models are the assumption of a common model which neglects

individual differences in segment shape and density, and the requirement of a large number

of measurements (between 90 [296] and 248 [293]). About regression models, if equations are

obtained from cadaver’s data, they assume that embalmed and frozen tissue properties are

similar to their in vivo state. Regression equations derived from imaging methods provide

more accurate anthropometric parameter estimates, but they are invasive and expensive.

Recently, optimization methods combining model-based and experimental approaches were

proposed to estimate anthropometric parameters [305, 306]. Riemer et al. [306] used a

2D two-step optimization approach to solve a constrained non-linear optimization problem.

Three calibration motions were considered: i) a long motion that involved a single cycle of

a flexion and hyperextension of the hips, followed by flexion and extension of the knees, ii)

a squat motion, and iii) a sway motion. The authors used a stereo-photogrammetric (SP)

system and a FP, minimizing the residuals between measured GRF and the one calculated

via a top-down inverse dynamics approach. Chen et al. [305] developed a 3D non-invasive,

radiation-free optimization method, using a SP system and two FPs. The authors evaluated

the performance by comparing the predicted GRF and CoP to those directly measured for

static postures, squatting and walking. They obtained mean CoP errors less than 5 mm

during stationary standing postures, 9.4 mm for squatting and 12.8 mm for walking. These

methods need costly laboratory instrumentations and complex experimental protocols. Their

implementation requires a fully equipped movement analysis laboratory, with a SP system

and skilled personnel (e.g. in [305] each subject wore 54 retro-reflective markers placed by a
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well-trained physical therapist).

In conclusion, while the current state of the art offers several alternatives for anthropo-

metric parameters estimation, to the best of our knowledge, there are no published methods

based on inertial measurements related to this relevant topic. Even if inertial tracking tech-

nologies are becoming widely accepted for the assessment of human movement both in clinical

applications and scientific research, there is still a lack of applications of inertial wearable

technology for dynamics evaluation of human movement.

Aims of this chapter are:

1. to present a novel, functional, model-based approach to estimate subject-specific body-

segment parameters using a single-axis accelerometer (SAA) per segment and a FP;

2. to predict GRF, CoP and CoM using only the SAAs and the estimated anthropometric

parameters, during sit-to-stand and postural oscillation tasks.

The predicted dynamic variables are compared to those measured by the FP and those

obtained using anthropometric parameters derived from De Leva’s tables [307]. Moreover,

an inertial-based quasi-real-time balance monitoring during sit-to-stand and posture is sug-

gested.

5.2 Methods

5.2.1 Experimental set-up

Three young healthy subjects - two males, Body Mass Index (BMI) = [25.5, 22.3]kg/m2;

one female, BMI = 23.6kg/m2- with no previous orthopaedic ailment, participated in this

study after giving their informed consent. The subjects, standing on a FP (Bertec 4060-08)

with the feet supposed rigidly connected to the ground, were asked to perform two different

motor tasks:

� five trials of ten repeated sit-to-stand (rSTS) on a chair with height;

� five trials of voluntary postural oscillations, using as much as possible a pure ankle

strategy,

with their arms folded and keeping their movement in the anterior/posterior (AP) direction.

The first five repetitions of each rSTS trial were performed at the subjects’ maximum speed,

and the second five at the subjects’ self-selected speed. Each oscillatory trial was also

performed at the subjects’ maximum speed in the first part and at the subjects’ self-selected

58



Figure 5.1: N-link free-body diagram in the sagittal plane

speed in the second part. In both tasks, three SAA (Analog Device, ADXL 103) were placed

at measured heights h1, h2, h3, with respect to the ankle, knee, and hip joint, respectively.

Each of the three sensors was mounted directly on the skin, in a central position on the

lateral side of the thigh and the shank, and on the posterior side of the Head-Arms-Trunk

(HAT), in order to minimize skin artefact effects and model errors. In order to measure

the sensor position, hi(i = 1, . . . , 3), and the segment length, li(i = 1, . . . , 3), anatomical

landmarks of body-segments (lateral malleolus, lateral epicondyle and L5 vertebra) were

identified by palpation. FP and accelerometer signals were acquired at a 100Hz sampling

rate and low-pass filtered (2nd order zero-phase Butterworth filter) at a cut-off frequency of

3Hz.

5.2.2 N-link Biomechanical model

In order to describe the new method in the most general way, a N-link biomechanical model

(N degrees of freedom) in the sagittal plane is initially analyzed.

The free-body diagram (Figure 5.1) was used to define the dynamic equilibrium equations
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of the N-link model and the relationships between kinematic and kinetic variables. Feet and

other body segments were considered separated from each other and the interaction between

adjacent segments was described by horizontal and vertical forces, Hi and Vi , and net joints

moments, Ti. The AP and the vertical components of the GRF, FX and FZ , and the moment

component about the medium/lateral (ML) axis, MY , can be expressed, in the discrete-time

domain, as follows:

FX(k) = D̃T S̈θ(k)

FZ(k) = Mg + D̃T C̈θ(k) (5.1)

MY (k) = D̃T [gSθ(k)− l0S̈θ(k)−AIS(k)]− J̃T θ̈(k)

k = 1, . . . , n

where θ̈(k), Sθ(k), S̈θ(k), C̈θ(k), AIS(k), D̃, J̃ are [N × 1]-column vectors and n is the

number of samples. The vectors’ elements are defined as follows:

Sθ,i(k) = sin θi(k)

Cθ,i(k) = cos θi(k)

AIS,i(k) =
∑i−1

j=1 lj{[θ̈j(k) + θ̈i(k)] cos[θi(k)− θj(k)]+

[θ̇(k)2j − θ̇(k)2i ]sin[θi(k)− θj(k)]}
D̃i = midi + li

∑N
j=i+1mj

J̃i = Ji +mid
2
i + l2i

∑N
j=i+1mj

k = 1, . . . , n

i = 1, . . . , N

The vector θi = [θi(1) . . . θi(n)] represents the i-th angular deviation from the vertical

line, θ̇i, the i-th angular velocity vector, and θ̈i the i-th angular acceleration vector. The

two sensitivity vectors D̃ and J̃ are defined as linear combinations of the anthropometric

parameters, as segment length, li, mass, mi, distance of CoM from distal joint axis, di, and

moment of inertia, Ji.

The i-th SAA output vector, ai = [ai(1) . . . ai(n)], along the sensitive axis directed nor-

mally to the segment and oriented anteriorly, can be expressed as the sum of an inertial and a

gravitational term plus two contributions, related to the horizontal and vertical accelerations

at the lower joint, ax
i and ay

i , due to the underlying chain kinematics (see Chapter 4):
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ai(k) = hiθ̈i(k)− g sin θi(k) + axi (k) cos θi(k)− ayi (k) sin θi(k)

k = 1, . . . , n

i = 1, . . . , N (5.2)

According to the iterative technique presented in Chapter 4, the i-th sway angle of the

N-link model, θi, can be evaluated from the accelerometer outputs, using a low-pass bi-

directional filter with cut-off frequencies depending on sensor positions. After computing θi

and its first numerical derivative θ̇i, its second derivative, θ̈i, can be computed by Equation

(5.2). Therefore, the dynamic equilibrium equations can be expressed as linear combinations

of the i-th angular position, θi, the i-th angular velocity, θ̇i, and the i-th SAA output, ȧi,

through the 2N unknown anthropometric parameters, D̃ and J̃.

5.2.3 Subject-specific anthropometric parameters estimation

Adequate to the trials carried out, a 3-link model is then used for anthropometric parameters

estimation. The rSTS trials were used to estimate the anthropometric parameters D̃ and J̃,

for each subject. After computing θi(i = 1, . . . , N), D̃ and J̃ can be calculated by a linear

regression using the FP outputs, FX,FP , FZ,FP and MY,FP , as the dependent variables,

and the angular position vector, θi, the angular velocity vector, θ̇i, and the SAA outputs,

ai(i = 1, . . . , N), as the regressors. Three offset parameters must be also taken into account:

two instrumental offsets are related to the forces and the third, M0
Y , is related to the distance

between the origin of the FP’s reference system and the equilibrium position. Parameters

reliability was assessed by calculating the Intra-Class Correlation coefficient (ICC3,1) from

the five measurements of the three subjects. The significance level for all tests was set to an

uncorrected α = 5% (two-sided). Additionally, the mean value of each estimated parameter

was compared with the one provided by De Leva’s anthropometric tables [307].

5.2.4 Dynamics Prediction

The predictive ability of the 3-link model is finally tested on each subject in both rSTS and

oscillatory trials. The estimated parameters, D̃ and J̃ , were used to predict FX , FZ , the

displacement of the CoP in the AP direction, ∆CoPX , and the displacements of the CoM

in the AP and in the vertical direction, ∆CoMX and ∆CoMZ , the net joint moments at

the ankle, the knee and the hip, Ti(i = 1, 2, 3), using the three SAAs only and a top-down

approach, as follows:
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FX(k) = D̃T S̈θ(k)

FZ(k) = Mg + D̃T C̈θ(k)

∆CoPX(k) =
∆MY (k) +m0gδ

FZ(k)
− CoP 0

X

∆CoMX(k) =
1

M
[D̃TSθ(k)]

∆CoMX(k) =
1

M
[D̃TCθ(k)] (5.3)

Ti(k) = Ti+1(k) + J̃iθ̈i − gD̃i sin θi+

+ D̃i

i−1∑
k=1

lk[θ̈k cos(θk − θi)− θ̇2k sin(θk − θi)]+

+ li

3∑
k=i+1

D̃k[θ̈k cos(θk − θi)− θ̇2k sin(θk − θi)]

k = 1, . . . , n

where m0 is the estimated feet mass, δ is the AP location of the feet CoM with respect

to the malleolus (see Figure 5.1), ∆MY (k) = MY (k)−M0
Y , and CoP 0

X =
M0
Y

F 0
Z

= m0gδ is the

CoP value at the equilibrium position. For comparison, the moment at the ankle can be

obtained form the FP outputs as follows:

T1,FP (k) = FZ,FP (k)CoPX,FP (k) + FZ,FP (k)l0 −m0gδ (5.4)

The effectiveness of the method was evaluated for each subject in terms of Root Mean

Squared Error (RMSE) between the measured and estimated FP outputs, as follows:

� the mean description error was computed by averaging the RMSEs obtained by using

the estimated parameters of the p-th rSTS trial for the evaluation of the dynamic

variables of the same p-th trial;

� the mean prediction error was computed by averaging the RMSEs obtained by using

the estimated parameters of the p-th rSTS trial (p = 1, . . . , 5) for the evaluation of the

dynamic variables of the q-th rSTS trial (q = 1, . . . , 5, q 6= p), and the r-th oscillatory

trial;

� the mean De Leva’s prediction error was evaluated considering the De Leva’s parame-

ters [307] in place of the estimated parameters D̃ and J̃;
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� the predicted ankle moment T1 and that obtained using De Leva’s parameters, T1,DeLeva,

was compared to that provided by FP outputs, T1,FP, in terms of RMSEs.

For an effective description of the rSTS task by using the accelerometry-based predicted

CoP and CoM in the AP direction, the telescopic inverted pendulum (TIP) model, presented

by Papa and Cappozzo [285], was analysed. In this study, a minimum measured-input model,

which used only information obtained from a six-component FP, a seat uniaxial load-cell

and anthropometric data derived from [308], was adopted. In the present paper, only the

information derived from accelerometers were assumed as measured input. According to

[285], two TIP models were used in temporal sequence: the first one (TIP1) is related to the

time preceding seat-off, in which only the HAT system moves, and the second one (TIP2)

to the whole body movement during the interval of time following seat-off. For the TIP1

model, the vertical projection of the first sample of the predicted ∆CoPX on the seat surface,

P1 = (∆CoPX(1);hc), was considered in place of the midpoint between the hips. For the

TIP2 model, the last sample of the predicted ∆CoPX under the feet, P2 = (∆CoPX(n); 0),

was considered in place of the midpoint between the ankles. The linear actuator (LA) and

the sagittal plane rotational actuator (SA) were taken into account to describe the elongation

and the forward and backward rotations of the link. The telescopic link joined P1 to the

position of the predicted CoM of the HAT (phase TIP1), and P2 to the whole-body predicted

CoM position (phase TIP2). The linear and angular velocity of the SA and LA actuators

were evaluated and compared with those presented in [285].

5.2.5 Quasi-real-time prediction

Prediction of dynamic variables could be extended to real-time applications for balance

monitoring during rSTS and oscillatory tasks. The ∆CoPX and ∆CoM prediction is based

on quasi-real-time estimation of the sway angles θi(i = 1, . . . , N) from the accelerometer

outputs. The quasi-real-time technique is derived from the procedure described in Chapter 4

by applying the low-pass bi-directional filter to a sliding time window of the i-th accelerometer

outputs ai(i = 1, . . . , N) . The length of the time window is set to NW = 160 samples (TW =

1.6s). For the sake of clarity, the procedure is reported here for a single segment and the

index i is neglected (e.g. ai(k) becomes a(k)). At the k -th instant of time (k = NW
2
, . . . , NW

2
)

the angle θ(k) is evaluated as follows:

1. the 1.6s time-window aW = [a(k − NW
2

), . . . , a(k + NW
2

)] is filtered using the low-pass

bidirectional filter-based technique and the vector angle θW = [θW (1), . . . , θW (NW )]

evaluated;
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2. the central value θW (NW
2

) is considered as θ(k) estimate.

These two steps are repeated by shifting, sample by sample, the 1.6s time-windows.

The method was evaluated on-line using Matlab R2011a 7.12.0. The time required for

the execution of the described two-steps procedure is 2ms only. The kinematic and dynamic

variables can be estimated with a delay of 0.8s since NW
2

accelerometer future samples have

to be taken into account. The technique provides results consistent with Chapter 4.

5.3 Results

Test-retest reliability was good for the estimated parameters D̃i and J̃i(i = 1, . . . , 3), with

ICC3,1 equal to 0.98, 0.99, 0.99 and 0.91, 0.89, 0.92, respectively. Subjects’ characteris-

tics (sex, age and BMI), the mean value (standard deviation) of subject-specific estimated

anthropometric parameters and the De Leva’s parameters [307] are reported in Table 5.1.

Table 5.1: Characteristics of participants, estimated and De Leva’s inertial parameters. The

three rows for each subject represent the i-th element (i = 1, . . . , 3) of the sensitivity vectors

D̃ and J̃ .

Subject Sex Age BMI D̃ J̃ D̃DeLeva J̃DeLeva

[Kg/m2] mean(std) mean(std) [Kgm] [Kgm2]

[Kgm] [Kgm2]

32.2 (0.6) 10.1 (0.8) 32.4 25.9

1 M 29 25.5 30.8 (0.4) 10.2 (0.9) 16.1 13.9

15.2 (0.2) 6.5 (0.8) 10.5 7.9

24.4 (0.5) 9.7 (0.5) 25.1 17.9

2 M 28 22.3 22.9 (0.3) 10.9 (0.3) 12.3 10.2

12.7 (0.3) 9.3 (0.6) 6.1 5.8

23.8 (0.8) 10.0 (0.8) 26.4 21.3

3 F 31 23.6 20.8 (0.1) 8.7 (1.0) 13.0 11.1

9.3 (0.4) 5.9 (1.1) 8.4 6.2

Mean description and prediction RMSEs are shown in Figure 5.2 for the rSTS trials and

in Figure 5.3 for the oscillatory trials. The vertical force is not reported for the oscillatory

trial since the CoM vertical acceleration is negligible and FZ is approximately Mg.
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Figure 5.2: RMSEs of: a)FX , b)FZ , c)∆CoPX , for rSTS trials
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Figure 5.3: RMSEs of: a)FX , b)∆CoPX , for oscillatory trials

As shown in Figure 5.2, for each subject the mean prediction error is close to the mean

description error: the difference ranges from 0.1N to 0.4N for the forces and from 0.1mm

to 1.8mm for ∆CoPX. De Leva’s parameters provide prediction errors higher than those

obtained with the estimated parameters. RMSEs of FZ, FZ and ∆CoPX, get worse in all

cases. For the three subjects, the mean prediction error of ∆CoPX increases, using De

Leva’s parameters in place of those estimated, from 21.5mm to 57.9mm, from 17.8mm to

36.0mm, and from 24.0mm to 72.9mm, respectively.

Results for oscillatory trials are shown in Figure 5.3. The mean prediction error of

dynamic variables obtained using the rSTS estimated parameters is lower than the one

obtained by using De Leva’s parameters. For the three subjects, the mean prediction error

of ∆CoPX increases, using De Leva’s parameters in place of those estimated, from 6.2mm

to 7.5mm, from 4.4mm to 5.6mm, and from 5.9mm to 6.7mm, respectively.

FP outputs and residuals between measured signals and signals predicted by SAAs are
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reported in Figure 5.4 for one rSTS trial and in Figure 5.5 for one oscillatory trial of Subject

2.

In Figures 5.6- 5.7 two examples of patterns related to the predicted ∆CoPX, ∆CoMX

and ∆CoMX, during a rSTS and an oscillatory trial respectively, are shown for Subject

2. Figure 5.6 helps to identify the functional phases of the rSTS by monitoring the CoM

position with respect to the CoP, in terms of linear and angular velocities. These variables

were obtained by accelerometer-based prediction. The figure in the box is from Papa and

Cappozzo [285].

In Figure 5.7, the predicted ∆CoPX and the predicted difference ∆CoMX −∆CoMX

are in counter-phase as one would expect in an optimal balance control strategy.

RMSEs of T1 and T1,DeLeva, averaged on the three subjects, are 10.3Nm and 17.0Nm,

respectively. In Figure 5.8 the predicted net joint moments are reported for Subject 2. In

Figure 5.9 the ankle moment provided from FP outputs is shown at the top of the picture.

The residual errors between: i) measured signal and signal predicted using the SAAs, and ii)

measured signal and signal evaluated using the De Leva’s parameters are shown at bottom

of the picture.

5.4 Discussion

This chapter suggests a novel method aimed at estimating subject-specific anthropometric

parameters using one SAA per segment and a FP, using a functional motor task (rSTS) and

taking advantage of a model-based approach. Several authors estimated these parameters in

different ways, but no study, at our knowledge, evaluates the body-segment properties using

inertial tracking technologies. FP and portable and cost-effective inertial sensors represent an

easy and non-invasive alternative for anthropometric measurements, compared to previous

invasive [297, 298, 299, 300, 301, 302, 303, 304] or expensive [305, 306] setups. The use of

a traditional instrument for movement analysis, as the FP, is exclusively required for the

subject-specific anthropometric parameters estimation, after which only the SAA outputs

and the estimated parameters allow the GRF, CoP and CoM prediction in rSTS and postural

oscillation tasks. During these trials, the above mentioned kinetic variables are often used

for balance monitoring [286, 309, 310], and to extract temporal and power-related features

[311, 312].

The effectiveness of the suggested method was evaluated by comparing the predictive

ability of the estimated parameters and those derived from the De Leva’s tables [307]. As

shown in Table 5.1, the mean values of D̃ and J̃ are significantly different from D̃DeLeva and
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Figure 5.4: Pattern of: a)FX , b)FZ , c)∆CoPX and residual errors during a rSTS trial

(Subject 2)

68



Figure 5.5: Pattern of: a)FX , b)∆CoPX and residual prediction errors during an oscillatory

trial (Subject 2)

Figure 5.6: Linear and angular velocity of the rotation (SA) and linear (LA) actuator during

a rSTS trial (Subject 2). Image in the box is from [285]
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Figure 5.7: Pattern of: a)∆CoPX and b)∆CoMX −∆CoPX during an oscillatory trial

(Subject 2)

Figure 5.8: Patterns of ankle, knee and hip joint moments during a rSTS trial (Subject 2)
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Figure 5.9: Patterns of ankle joint moment provided from FP and residual errors during a

rSTS trial (Subject 2)

J̃DeLeva. These differences can be related to the specific morphology of the subjects’ segments,

not taken into account by the De Leva’s parameters, which depend only on mass and height

of the subjects. The good reliability of each estimate (ICC3, 1 always higher than 0.89) and

the negligible difference between the mean description and prediction errors for the dynamic

variables of the three subjects (see Figure 5.2) suggest that a single rSTS trial is enough

to estimate the subject-specific anthropometric parameters. The model-based approach and

the integration of FP and SAAs data allow “one-shot” regression estimation. As computa-

tional cost is concerned, previously published studies [306, 313], combining model-based and

experimental approaches, showed higher complexity and computational requirements.

One of the main aims of the presented study was to predict the GRF, and the displacement

of the CoP and CoM in the AP direction, using only the SAAs and the estimated parameters

during rSTS and postural oscillation tasks.

In the rSTS trials (Figure 5.2), mean prediction RMSEs, averaged on the three subjects,

are about 12N, 21N and 21.10mm for FZ, FZ and ∆CoPX, with mean peak-to-peak ranges

of 203N, 520N and 0.401m, respectively. These values are lower than those obtained with

the De Leva’s parameters, which are about 21N, 24N and 55.60mm for FZ, FZ and ∆CoPX.

These considerations are confirmed by the results obtained in the oscillatory trials, as shown

in Figure 5.3. Since the differences between mean prediction errors and mean De Leva’s
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prediction errors are less significant than in the rSTS trials, the presented experimental

protocol provides the best anthropometric parameter estimates.

By comparing ∆CoPX prediction errors with those presented in a previous study [305],

the results are very encouraging. Chen et al. [305] obtained mean errors (standard devia-

tions) of about 2.72(1.23)mm, 4.68(1.52)mm and 3.30(1.44)mm during static postures with

30° trunk flexion, 45° hip flexion and 90° shoulder abduction, respectively. As shown in [282],

during quiet standing, the range of the CoP displacement is around 14.30 mm, as confirmed

by experimental evidences. The percentage ratio between the mean CoP error provided by

[305] and the CoP range is around 25%. In the oscillatory trials presented in this paper,

subjects performed voluntary oscillations, with a mean CoP range, averaged on the three

subjects, of 190mm in the AP direction and with a mean error of about 5.50mm. The re-

lated percentage ratio between ∆CoPX error and the range is hence about 3%, significantly

lower than that obtained by [305]. Similar results are obtained from the dynamic trials

evaluation: even if Chen et al. [305] obtained a mean CoP error (standard deviation) of

9.40(2.95)mm for arm-swing squatting, lower than the proposed prediction method in rSTS

(about 21.10mm), the CoP range should be taken into account with relation to the performed

task. During squatting, the CoP displacement is confined to few centimetres, whereas during

rSTS movement the ∆CoPX range is about 40cm. Therefore, the percentage ratio is about

5%, significantly lower than that reported in [6]. Moreover, Chen et al. [305] assumed 3D

geometric shapes for the body segments instead of a rigorous biomechanical model. Despite

of these encouraging results, one limitation of the presented study is the 2D model-based

approach, which neglects the ML movement during the performed trials.

The CoP prediction by using only SAAs and the estimated parameters during sit-to-

stand tasks could have several positive feedbacks from clinical applications. Sit-to-stand

is an important task in daily life, and it has been identified as one of the most mechan-

ically demanding activities, confirming the general acceptance of its use as an indicator

of the mobility level. In several studies, rSTS performance has been associated with age-

related changes in muscular strength in leg extensor [314] and vestibular disorders as well

as changes in movement strategies [315]. Consequently, standardized assessment of rSTS

postural transitions has been used for multiple purposes, including evaluation of postural

control [316, 317], risk of fall [251, 311], lower-extremity strength [308, 318], and impairment

after stroke [319, 320]. The proposed method allows the kinematics and dynamics predic-

tion by using a simple, accurate and portable setup. Since rSTS and postural tasks are

frequently used in clinical routine, the procedure presented in this paper can speed up the

experimental sessions, reducing the computational and the economic costs, especially when
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several subjects are involved.

Sit-to-stand task requires coordination, balance, adequate mobility and strength. The

transfer from sitting to standing and back to sitting requires voluntary movement of the dif-

ferent segments that contribute to the change of posture and balance control during the CoM

forward and backward displacement. Several authors investigated the CoM control during

sit-to-stand movement [284, 286, 310] using SP systems and FPs. The traditional movement

analysis systems, usually considered as a goal standard for the kinematics and dynamics

evaluation, show several drawbacks, as lack in portability and usability, costs, and high com-

puting demanding for real-time applications. These drawbacks could be overcome by using

inertial sensors. In this study the quasi-real-time CoP and CoM prediction is accomplished

by using only SAAs and a set of subject-specific anthropometric parameters. As shown

in Figure 5.7, the dynamics accelerometer-based prediction provides results consistent with

the relevant study of Papa and Cappozzo [285], related to the TIP model applied to rSTS

movements. Linear and angular velocity of LA and SA were evaluated by using only CoP

and CoM positions, predicted through SAAs, the inputs of the minimum measured-input

model, in place of FP and seat uniaxial load-cell data as suggested by [285]. Therefore,

applications of the balance control techniques during rSTS tasks could take advantage of

accelerometry, in terms of portability, availability of the setup in either clinical/laboratory

settings or free-living environments, both for off-line and real-time monitoring. These bene-

fits are not task-related, since the subject-specific anthropometric parameters, estimated in

a single rSTS trial, can be well-applied to different motor tasks sharing the same biomechan-

ical model. As shown in Figure 5.7, the accelerometry-based predicted CoP and CoM in the

AP direction are suitable to quantifying standing balance during postural oscillations. In a

simple inverted pendulum the difference ∆CoMX−∆CoMX is directly proportional to the

CoM acceleration. The ankle moment, and consequently the CoP, is then in counter-phase

in order to keep balance.

In summary, this chapter provides a subject-specific evaluation tool for estimating inertial

parameters through a simple motor task (rSTS), involving only few SAAs and a FP. After

this preliminary estimation, the quasi-real-time prediction of GRF, CoP and CoM during

rSTS, postural sway, squatting, etc., could be performed by the use of accelerometry only,

and this is one of the most relevant findings of this thesis. Future developments will be

addressed to test older patients in order to describe through biomechanical measurements

their motor performance during rSTS.
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Chapter 6

Lie-to-sit-to-stand-to-walk test: a

preliminary study

In the two previous chapters a biomechanical approach and a body sensor network were used

to describe quantitatively some motor tasks, like squat and sit-to-stand, often used in clinics

for the fall risk assessment. In the following chapter a more complex transfer, the lying-to-sit-

to-stand-to-walk (LSSW) test, is described through a single inertial measurement unit. Up to

now, the transfer from LSSW was investigated only by functional testing or subjective rating.

The aim of this study was to describe the complex movement of the LSSW transfer in young

and older subjects by kinematic body-fixed sensors. Fifteen older patients of a geriatric

rehabilitation clinic (median age 81 years) and 10 young healthy persons (median age 37

years) were instructed to stand up from bed in a continuous movement and to start walking.

Data acquisition was performed using a single sensor device including tri-axial accelerometers

and gyroscopes. Parameters, such as the beginning and the end of the movement, jerk,

fluency, and velocity were extracted from the accelerometer and gyroscope outputs and were

able to classify ≥92% of the subjects into correct group with a sensitivity of ≥93% and a

specificity of ≥90%. ICCs3,1 of the descriptive parameters ranged between 0.848 and 0.947

in the cohort of older patients. Moreover, a sensor fusion algorithm was suggested for the

estimation of the different strategies adopted to transfer from lying to sitting at bedside.

Instrumented LSSW test allowed evaluating objectively the performance of younger and

older subjects in terms of movement duration and fluency. The results obtained in this

study suggest the usability of this instrumented test in clinical practice.

Bagalà F, Klenk J, Cappello A, Chiari L, Becker C, Lindemann U (2012) Quantitative

description of the Lie-to-Sit-to-Stand transfer by body-fixed sensors, Submitted to Gait & Posture
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6.1 Introduction

Complex movement patterns, such as standing up from a bed or from a chair are basic

movements of daily activity and are strongly associated with falls in older persons [321].

Sufficient capacity and quality of performance of such complex movements is a prerequisite

for independent living. The chair rise movement can be described by functional testing

[322, 323, 324] as well as by kinetic and kinematic assessment [151, 312, 325]. Here, any lateral

movement assessed by accelerometry has been shown to indicate undesirable movement [326].

Higher complexity, including walking following the chair rise, can be assessed functionally

by stop watch [126] or qualitatively by kinematic body-fixed sensors [327]. In contrast, to

date the transfer from lying to standing is investigated only by functional testing [328] or by

subjective rating [329], but not by kinematic measures. Moreover, as discussed in Chapter

1, several falls are associated with behavioural circumstances. The majority of falls occurred

while individuals were engaged in routine behaviours, such as dressing, and during transfer

(e.g., going from bedroom to the bathroom) [40]. This confirms the importance to assess

motor tasks which generally mimic real-life circumstances that cause falls. The aims of this

preliminary study were to describe the complex movement of the LSSW transfer by kinematic

body-fixed sensors, to investigate the test-retest reliability of the outcome measures, and to

compare the outcome measures between younger and older subjects. An Extended Kalman

Filter (EKF) was implemented for the description of the strategies from lying to standing

up.

6.2 Methods and Materials

Subjects and design Fifteen older patients of a geriatric rehabilitation clinic (median

age 81 years, 63-89 years, 80% women) and 10 young healthy employees of the same hospital

(median age 37 years, 25-45 years, 60% women) were recruited for this experimental study.

For reliability testing the LSSW transfer was performed twice in the cohort of older patients.

Inclusion criteria for the group of patients were age of 60 years and older, disease patterns

which affect the body symmetry (e.g. after hip surgery, stroke) or disease patterns which

make transfers difficult in general (e.g. Morbus Parkinson). Exclusion criteria were the

inability to walk with at least a walking aid, cognitive impairment indicating a possible

dementia, assessed by the Short Orientation Memory Concentration test (> 10 [330]), the

presence of uncontrolled cardiac illness, orthostatic dizziness, and impaired arm function.

Inclusion criteria for the group of young subjects was age between 25 and 45 years.

Exclusion criteria were identical with the other group and self-reported functional rel-
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evant disease (e.g. neurological and/or orthopedic), which significantly influences transfer

performance. In order to describe the cohort of older patients, habitual gait speed was mea-

sured by stop watch over a distance of 10 metres. Basic information of all persons included

is listed in Table 6.1. The study was conducted in concordance with the declaration of

Helsinki. All participants had to give written informed consent. The study was approved by

the ethical committee of the local university.

Table 6.1: Characteristics of all included participants (n=25). Short Orientation Memory

Concentration (SOMC) test with values higher than 10 indicating cognitive impairment

Young subjects (n=10, 6 woman) Older patients (n=15, 12 woman)

Median 1.-3.Q Min-Max Median 1.-3.Q Min-Max

Age[years] 37 32.5-41.25 25-45 81 75-85 63-89

Height[cm] 1.67 1.62-1.81 1.60-1.81 1.55 1.50-1.64 1.44-1.75

Weight[kg] 67.0 60.25-86.75 56.0-96.0 58.0 54-68 35.0-85.0

Gait Speed [m/s] 0.52 0.44-0.62 0.27-0.77

SOMC(0-28) 4 0-8 0-10

Procedure Participants were instructed to stand up in a continuous movement from a ly-

ing position on a conventional nursing bed to upright standing and to start walking. Starting

point was the supine position on bed, arms parallel to the body. Bed height was adjusted

individually, with a knee angle of 110° when sitting at the bedside with feet on the ground.

The head position during lying was also adjusted individually, with the upper side of the

bed raised to a maximum of 20° and the head of the patient resting on a small pillow. The

assessment was repeated on the consecutive day for evaluation of test-retest reliability in the

cohort of older patients.

Data acquisition and processing Data acquisition was performed in all subjects us-

ing a DynaPortr Hybrid (McRoberts, The Hague, NL) data logger. The DynaPortr Hy-

brid makes use of a tri-axial seismic acceleration sensor (LIS3LV02DQ, STMicroelectronics,

Agrate Brianza, Italy) and three orthogonally placed gyroscopic sensors (XV-3500CB, Ep-

son, San Jose, USA). The orientation of the axes are x=vertical (V), y=medio-lateral (ML),

and z=anterior-posterior (AP). The accelerometer sensors have a range of ±20m/s2 with a

resolution of 2mm/s2. The gyroscopic sensors have a range of ±100deg/s and a resolution
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of 7mdeg/s. Both sensors are sampled at frequency fs=100Hz. Data were stored for off-line

analysis on a micro SD card.

The sensor was fixed in a belt at the lower back, so that the technical frame (TF) axes

were aligned with the anatomical axis of the lower trunk. The analyses focused on the lying-

to-walking (first heel strike) transfer. The movement is performed mainly in the sagittal

plane. Therefore only the V and AP accelerometer’s outputs were considered, according to

the small values of the accelerometer’s output in ML direction. The accelerometer outputs

have patterns that are used to automatically detect the different phases of the LSSW test,

both for young subjects and older patients (see Figure 6.1). Three postures/transitions were

considered:

� lying posture: the subject lies on the bed. In this condition the AP accelerometer axis

is approximately aligned with the gravity acceleration, measuring about 1g. This static

condition can be assumed as zero-position. The beginning of the movement (Tstart) is

detected when the variation of the V (AX) or the AP (AZ) acceleration is ±3% of the

acceleration related to the zero-position;

� lying-to-sit-to-stand transition: the subject rotates to the bedside to standing up. A

first upright position, Tg, with vertical trunk is detected when AX overcomes the 95%

of the gravity acceleration. This posture is obtained through a rotation around the ML

axis. The gyroscope outputs in ML directions, GY, will measure the angular velocity

associated with this rotation. Then, the subject rotates around the V axis to the

bedside. The related angular rate is measured by the gyroscope outputs GX. When

the subject reaches this position, he starts to prepare the standing up phase by tilting

his trunk forward. This movement produces a decrease of AZ from 1g to negative

values. Then the signal exhibits a trough due to the rising phase from the bed (yellow

marker in Figure 6.1).

� standing-to-walking transition: the first heel strike (when the foot first touches the

floor) is assumed as the end of the movement (Tend). According to [331] the AP

acceleration data show a basic pattern of acceleration and deceleration during a gait

cycle. At foot contact, forward acceleration reaches peak values and after foot contact

a sharp decline is followed by a period of deceleration. This gait event is detected as

the first peak on AZ after the trough.

Based on these considerations four parameters were defined:

1. Total time TT : the total time TT = Tend − Tstart is defined as the time between the

beginning of the movement (Tstart) and the first step (Tend);
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Figure 6.1: Patterns of AX and AZ and related temporal markers for a young subject (a)

and a patient (b).
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2. Jerk J : since the smoothness is widely regarded as features of skilled, coordinated

movement, a measurement of this quality extracted from accelerometric data is the

jerk (i.e., the time derivative of acceleration). This parameter varies with movement

duration, thus according with [332] it is normalized by the duration to have a time-

independent measurement. The jerk values for the AP and V directions are defined

as:

JV,i = fs
AX,i+1 − AX,i−1

2
JAP,i = fs

AZ,i+1 − AZ,i−1

2

i = 2, . . . , n− 1 (6.1)

where n is the number of samples considered. By summing the jerk values between

Tstart and Tend, normalizing by the third power of time, two time-independent mea-

surements of smoothness were calculated:

JV = (Tend − Tstart)3
fs·Tend∑

i=fs·Tstart

|JX,i|

JAP = (Tend − Tstart)3
fs·Tend∑

i=fs·Tstart

|JZ,i| (6.2)

The mean value J = JV +JAP
2

between the two directions (V and AP) is considered as

index of smoothness.

3. Fluency F : fluency is defined as the sum of the residuals with respect to the trend

line of the accelerometry outputs. It is considered as measurement of smoothness.

According with [199], a low pass filter with cut-off frequency at 0.25Hz is employed to

separate the acceleration components due to gravity and bodily motion. The V and

AP accelerometer’s outputs were hence filtered with a second order zero-phase digital

low-pass filter (cut-off frequency 0.25Hz). By summing-up the differences between the

filtered (trend line) and unfiltered signals and normalizing by the second power of time,

the two indices of fluency are obtained:
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FlV = (Tend − Tstart)2
fs·Tend∑

i=fs·Tstart

|AX,i − AX,i,filtered|

FlAP = (Tend − Tstart)2
fs·Tend∑

i=fs·Tstart

|AZ,i − AZ,i,filtered| (6.3)

The mean value Fl = FlV +FlAP
2

between the two directions is considered as second

index of smoothness. Values of jerk and fluency will be expressed in logarithmic scale.

4. Root mean square (RMS) of the gyroscope outputs RMSG: gyroscope outputs are

considered to define two additional parameters. RMS of the angular rate in V and

AP directions, which are related to the two main rotations during the execution of the

LSSW test, as described previously, are calculated as follow:

RMSGX =

√√√√ fs·Tend∑
i=fs·Tstart

GX(i)2

fs (Tend − Tstart)

RMSGY =

√√√√ fs·Tend∑
i=fs·Tstart

GY (i)2

fs (Tend − Tstart)
(6.4)

The mean value RMSG =
RMSGX+RMSGY

2
between the two directions is considered as

index of movement speed.

These parameters were evaluated for both young and older patients.

In order to describe the strategies adopted by the subject for rotates to the bedside

from the lying postures, a sensor fusion approach was carried out. In particular, the EKF

[333, 334] was implemented to accurately estimate the relative orientation of the sensor by

fusing the accelerometer and gyroscope outputs. The block diagram of the EKF is shown in

Figure 6.2.

All the rotations estimated through the EKF were referred to rotations of the TF frame

of the sensor with respect to the TF at time Tstart which was assumed as global frame

(GF). The translation vector from the TF to GF was defined as GF tTF =
[
tV tML tAP

]T
(Figure 6.3). The three rotation angles are: θV , which corresponds to the rotation around

the V axis of the sensor, θML, related to the rotation around the ML of the sensor and θAP ,

corresponding
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Figure 6.2: Summary scheme of the operation implemented in the Kalman Filter

to the rotation around the AP axis of the sensor. The rotation matrix from the TF to

the GF, GFRTF , was defined as GFRTF = RZ(θAP )RY (θML)RX(θV ). The state vector of

the EKF, X[18x1], at every sampled instant of time k, was defined considering the angles

θV,ML,AP , their first and second time derivatives, ωV,ML,AP and αV,ML,AP respectively, and

the translations tV,ML,AP , with their first and second time derivatives, vV,ML,AP and aV,ML,AP

respectively, as X(k) =
[
ΘV(k) ΘML(k) ΘAP(k) TV(k) TML(k) TAP (k)

]T
.

The vectors Θ and T, for each direction V, ML and AP, were defined as follows:

Θ(k) =

 θ(k)

ω(k)

α(k)

 T(k) =

 t(k)

v(k)

a(k)

 (6.5)

In the time-discrete domain the prediction of the state at the instant k+1 was obtained

from the last update one (instant k) as:

 θ(k + 1)

ω(k + 1)

α(k + 1)

 =

1 T T 2

2

0 1 T

0 0 1


︸ ︷︷ ︸

Aθ,[3x3]

 θ(k)

ω(k)

α(k)


 t(k + 1)

v(k + 1)

a(k + 1)

 =

1 T T 2

2

0 1 T

0 0 1


︸ ︷︷ ︸

At,[3x3]

 t(k)

v(k)

a(k)

 (6.6)
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Figure 6.3: Relative rotations and translation between technical and global frames

The state matrix A[18x18], indicated in the scheme of Figure 6.2, was obtained considering

the extension of Aθ,[3x3] and At,[3x3] to the [18x1]-state vector as follow:

A =



Aθ,[3x3] 0[3x3] 0[3x3] 0[3x3] 0[3x3] 0[3x3]

0[3x3] A[θ,3x3] 0[3x3] 0[3x3] 0[3x3] 0[3x3]

0[3x3] 0[3x3] Aθ,[3x3] 0[3x3] 0[3x3] 0[3x3]

0[3x3] 0[3x3] 0[3x3] At,[3x3] 0[3x3] 0[3x3]

0[3x3] 0[3x3] 0[3x3] 0[3x3] At,[3x3] 0[3x3]

0[3x3] 0[3x3] 0[3x3] 0[3x3] 0[3x3] At,[3x3]


(6.7)

The vector of the measurements z(k)[6x1] was defined considering the outputs of the

sensor:

z(k) =



GX(k)

GY (k)

GZ(k)

AX(k)

AY (k)

AZ(k)


(6.8)

The accelerometer and gyroscope outputs measured at the instant i and defined in the

TF were expressed according to [335] as follows:
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 0 −GZ GY

GZ 0 −GX

−GY GX 0

 = GFRT
TF

dGFRTF

dt

 AX

AY

AZ

 = GFRT
TF (GFg +

GF
T̈TF ) (6.9)

The state of the measurements is related to the state vector through a non-linear rela-

tionship z(k) = h(xk), according to the Equation (6.9). The output matrix H(k)[6x18] which

relates the state the measurements z(k) to the state x(k) was thus obtained evaluating the

jacobian matrix of partial derivatives of h(xk) with respect to the state vector as follows:

H[i,j] =
δh[i]

δx[j]
(xk) (6.10)

i = 1, . . . , 6

j = 1, . . . , 18 (6.11)

The process noise covariance matrix Q[18x18] was defined under the assumption that state

noise affects the jerk only and there are not correlations between the state noises. Q[18x18] has

therefore only nine non-zero elements (Q(i, i), i = (3, 6, 9, 12, 15, 18)). The values Q(i, i) are

set to 0.01. The measurement noise covariance matrix R[6x6] is defined considering the noise

which affects the gyroscope and accelerometer outputs. Since correlations between noise of

the sensors are assumed to be zero, the matrix is diagonal, which values are set to 10−7

for the first three elements related to the gyroscopes noise, and to 10−8 for the last three

elements related to the accelerometer noises. All these tuning parameters weasre defined

after an optimization procedure in which a stereo-photogrammetric system was assumed as

gold standard. In order to run the filtering procedure, initial estimate of the state vector

was zeroed whereas the initial estimate of the error covariance matrix P[18x18] was set equal

to the identity matrix.

Statistics Due to the small sample size and a non-parametric distribution in some param-

eters, median values, 1st and 3rd quartile, minimum and maximum were used for descriptive

statistics. Differences between groups were calculated by Mann-Whitney-U tests. Discrim-

inative ability was assessed by receiver operating characteristic (ROC) curve analysis with
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Table 6.2: Descriptive parameters of the complex movement of the lying-sitting-standing

transfer for young subjects and older patients. Jerk and Fluency are expressed in logarithmic

scale. All differences between groups are p<0.0001.

Young subjects (n=10, 6 woman) Older patients (n=15, 12 woman)

Median 1.-3.Q Min-Max Median 1.-3.Q Min-Max

Total Time[s] 3.00 2.38-3.55 1.70-4.50 12.10 6.60-17.30 4.70-22.90

J [m] 11.20 10.50-11.75 9.60-12.50 15.40 13.80-16.60 12.10-17.80

F[m] 7.70 7.25-8.18 6.80-8.90 10.60 9.50-11.20 8.30-12.20

RMSG[/s] 48.5 44.73-56.15 38.40-81.70 17.20 13.30-26.00 9.30-31.30

sensitivity and specificity indicating correct classification of older patients and young persons.

The association between the parameters was described by Spearman’s coefficients of corre-

lation. Reliability was assessed by calculating the intra-class correlation coefficient (ICC3,1)

from 2 measurements with 1 day interval in the cohort of older women. The significance

level for all tests was set to an uncorrected α = 5% (two-sided). All analyses were conducted

using SPSS version 16 software (SPSS Inc., Chicago, IL, USA).

6.3 Results

There were no negative side effects during the measurements. The group of older patients

consisted of 7 patients after hip fracture, 3 patients after other fractures, and 5 other patients

de-compensated after an acute internal illness. Fixation and taking off the sensor as well as

starting and stopping the measurement took about 1 minute in total for each person. All

results derived from acceleration and gyroscopic outputs, such as total time of the movement

TT , J , F , RMSG, were significantly different between younger and older participants (all

p<0.0001). The results in detail are presented in Table 6.2.

The different parameters derived from acceleration and gyroscope outputs classified 92%

or more of the subjects into correct group with a sensitivity of 93% or higher and a specificity

of 90% or higher and an area under the curve of 0.97 or more (all p<0.0001) identified from

ROC analysis and shown in Table 6.3.

There was a significant association (all p-values <0.0001) of TT with J (r=0.993), F

(r=0.985), and RMSG (r=0.957). All correlations between these parameters were r > 0.9.

In the cohort of older patients ICC3,1 of total time, J , F and RMSG were 0.848, 0.883,

0.876, 0.929, and 0.947 respectively. Angle V versus angle ML plots visually demonstrated
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Table 6.3: Results of ROC analysis of TT , J , F and RMSG

Cut-off Sensitivity[%] Specificity[%] Area under the curve

Total Time 4.6[s] 100 100 1.00

J 12.7[m] 93 100 0.98

F 8.75[m] 93 90 0.98

RMSG 48.5[/s] 100 100 1.00

different strategies to transfer from lying to sitting at bedside as shown in Figure 6.4. In

particular, the young subject turns the trunk around the V and ML axis in the same time

in a continuos movement. The patient first moves the trunk forward with a rotation around

the ML axis and then turns to the bedside rotating around the V axis.

6.4 Discussion

Clear differences could be observed between young subjects and older patients using the

descriptive parameters TT , J , F , RMSG,. The reliability of these parameters also can be

regarded as good. With regard to TT , J , F the results of discriminative validity are in

concordance with a study of Klenk et al. [336] where the same parameters derived from

accelerometers were used to describe the complex movements of falls and were able to show

differences between real-world falls and simulated falls. In general, the discriminative ability

of all parameters derived from acceleration and gyroscope outputs were excellent. Although

stop watch timing alone has been shown to be a valid measure to describe the lying-to-sit-

to-stand-to-walk transfer [328], biomechanical measures provide a higher objectivity than

functional assessment or subjective rating [329]. Furthermore, the association between total

time and all other parameters is high, but additional objective information is provided in

terms of fluency and velocity of the movement. Here, the quality of the movement is not

only described in total, but every phase of the movement can be described in detail. Even

individual movement patterns are described appropriately, especially by parameters describ-

ing the smoothness of the movement. Thus, a movement pattern which may be regarded

in-economic and slow may show good results, if the movement is continuous and has a clear

direction. For this purpose the ML-rotation versus V-rotation plots might help to visualize

the patient’s strategy to transfer from lying to sitting at bedside, obvious for the clinician as

well as for the patient. Since transfer movements are strongly associated with falls in older

persons [321], this test may help better investigating the lying-to-sit-to-stand transfer and
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Figure 6.4: ML-rotation vs V-rotation of a young participant and a patient
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to understand the association between transfers and falls in older persons. In this context

the clinical relevance of the position of the hospital bed near the wall, meaning to stand up

to the left side or to the right side of the bed, is obvious and should be investigated in future

studies.

Although the small number of included persons is a limitation of this study, the clear

results underline the general findings. Since this study was not designed to show intra-

individual changes over time or for different test conditions, future research has to focus on

this issue.

In conclusion, this test is able to show qualitative and quantitative differences of the

lying-to-sit-to-stand transfer between young healthy subjects and older patients. Other

studies should investigate special cohorts of interest and the sensitivity to change in pre-post

assessments.
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Part III

Fall detection

88



Chapter 7

Fall detection algorithms

As discussed in Chapter 2, even if extensive research has been conducted in the area of

fall prevention, some of the fundamental factors leading to falls and what happens during

a fall remain unclear. Objectively documented and measured falls are needed to improve

knowledge of fall in order to develop a more effective prevention strategies and prolong

independent living. Real-time detection of falls and their urgent communication to a telecare

center may enable rapid medical assistance, thus increasing the sense of security of the elderly

and reducing some of the negative consequences of falls. Many different approaches have been

explored to automatically detect a fall using inertial sensors. Although previously published

algorithms report high sensitivity (SE) and high specificity (SP), they have usually been

tested on simulated falls performed by healthy volunteers. We recently collected acceleration

data during a number of real-world falls among a patient population with a high-fall-risk as

part of the SensAction-AAL European project. The aim of the present study is to benchmark

the performance of thirteen published fall-detection algorithms when they are applied to the

database of 29 real-world falls. To the best of our knowledge, this is the first systematic

comparison of fall detection algorithms tested on real-world falls. We found that the SP

average of the thirteen algorithms, was (mean±std) 83.0%±30.3% (maximum value = 98%).

The SE was considerably lower (SE=57.0%±27.3%, maximum value = 82.8%), much lower

than the values obtained on simulated falls. The number of false alarms generated by the

algorithms during 1-day monitoring of three representative fallers ranged from 3 to 85. The

factors that affect the performance of the published algorithms, when they are applied to

the real-world falls, are also discussed. These findings indicate the importance of testing

Bagalà F, Becker C, Cappello A, Chiari L, Aminian K, Hausdorff JM, Zijlstra W, Klenk

J (2012) Evaluation of accelerometer-based fall detection algorithms on real-world falls, Under review on

PlosOne
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fall-detection algorithms in real-life conditions in order to produce more effective automated

alarm systems with higher acceptance. Further, the present results support the idea that a

large, shared real-world fall database could, potentially, provide an enhanced understanding

of the fall process and the information needed to design and evaluate a high-performance

fall detector.

7.1 Introduction

Real-time detection of falls allows for the immediate communication of these adverse events

to a telecare center so that medical assistance can be supplied quickly. Such assistance is

needed to promote the sense of security of older adults, especially among those who are living

alone, and to reduce fear of falling and the subsequent negative impact of falls. Indeed, one

of the serious consequences of falling is the “long-lie” condition, where a faller is unable to

get up and remains on the ground for several hours. “Long-lies”, and falls, in general, are

associated with social isolation, fear of falling, muscle damage, pneumonia, pressure sores,

dehydration and hypothermia [249, 337, 338, 339]. Half of the elderly people who experience

a ‘long-lie’ die within 6 months [340], even if no direct injury from the fall has occurred.

The ‘long-lie’ occurs in more than 20% of elderly people admitted to hospital as a result of

a fall [341] and up to 47% of non-injured fallers are unable to get up off the floor without

assistance [342]. Detection of a fall, either through automatic fall detection or through

a personal emergency response system, might reduce the consequences of the ‘long-lie’ by

reducing the time between the fall and the arrival of medical attention [343]. If an older

person living alone experiences a fall at home, he or she may not be able to get to the phone

or press an alarm button due to sustained injuries or loss of consciousness [343]. Moreover,

some elderly people do not activate their personal emergency response systems, even when

they have the ability to do so [344].

As discussed in Chapter 2, in the last decade, a variety of different methods were devel-

oped over the last decade to automatically detect falls. These have been based on video-

cameras, acoustic or inertial sensors, and mobile phone technology. Several of these studies

focused on the monitoring of the activities of daily living (ADL) and fall detection using

wearable sensors.

Many different approaches have been explored to solve the fall detection problem using

only accelerometers or an inertial measurement unit (both gyroscopes and accelerometers).

The analysis of accelerometer and/or gyroscope outputs allows for detecting specific events,

such as voluntary (e.g., walking, sitting, lying) or involuntary (e.g., fall) activities of daily
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living, based on statistical or threshold-based algorithms. The inertial sensor-based fall

detection algorithms usually provide: i) a definition of a set of parameters related to the

accelerometer and gyroscopes outputs, used for the characterization of the movement, ii)

impact detection, using a threshold-based method, iii) orientation detection, e.g., using the

vertical accelerometer output or angular rate measurements, and iv) fall alarm, which occurs

when all the test conditions are true.

Published algorithms have usually been tested only on simulated falls. Most authors have

used simulations with healthy volunteers [195, 196, 198, 199, 202, 206, 208, 223] or martial

arts students [194] as a surrogate for real-world falls to develop biomechanical models of

falls [345]. To the best of our knowledge, there are no published inertial measurement-based

real-world fall data of older people measured in a real-world environment.Although the rate

of falls is quite high (approximately 30% of persons over 65 years fall at least once per year),

it is very difficult to capture real-world fall data. This largely is a result of the relatively

short measurement intervals allowed by commercially available sensors. As an example, to

capture 100 real-world falls, it would be necessary to record approximately 100,000 days of

physical activity (300 person years). If the battery lifetime is limited to 10 days, 10,000

measurement cycles would be needed. Additionally, compliance problems may arise with

long measurement periods. As far as we know, most international studies have failed to

gather sufficient numbers of fall events. Recently, Kangas et al. [346] collected acceleration

data of 5 real-world falls during a six-month test period in older people.

To address the challenges of capturing real-world falls, we began to collect acceleration

data during a number of real-world falls as part of a European project (SensAction-AAL)

that studied a population with a high-risk of falling. Based on these data, a recent study [336]

compared acceleration signals, measured using a tri-axial accelerometer placed on the waist

of the subjects, from simulated falls and these real-world falls and found large differences

between them, even though a relatively simple example of falling backward to the ground

was selected. Several problems are associated with the simulation approach including the

anticipation of the volunteer that a fall will occur and the choice of the floor material to

reduce the impact of the falls for safety reasons. These findings underline the importance of

gathering real-world fall data for designing accurate algorithms.

With the limitations of simulated falls in mind, the aim of the present chapter is to

benchmark, for the first time, the performance of 13 different published algorithms as applied

to the database of 29 real-world falls collected during the SensAction-AAL project. In

order to compare the performance in the same test conditions as our real-world fall data,

only algorithms based on waist or trunk accelerometer measurements were investigated.
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Algorithms based on gyroscopes measurements or on more than one sensor are not considered

in this study.

7.2 Methods and Materials

7.2.1 The real-world fall database

Acceleration signals of 32 falls of 15 subjects were collected during a recent European project

(SensAction-AAL) and clinical routine assessments. 30 falls from 9 subjects (7 women, 2

men, age: 66.4±6.2 years, height: 1.63±8.68m, weight: 77.2±11.5kg) were recorded within

a cross-sectional study of patients suffering from progressive supra-nuclear palsy (PSP) [347]

and from an intervention study to investigate the feasibility of audio-biofeedback to improve

balance [348]. PSP is an atypical Parkinson’s syndrome with a prevalence of 5 per 100,000

[349]. Postural instability and falls are common and are the most disabling features of the

disease [350, 351]. A 48-h activity measurement was conducted on 29 subjects as part of

the assessment in the cross-sectional study and during days without intervention. A fall

was defined as “an unexpected event in which the participant comes to rest on the ground,

floor, or lower level” [28]. Patients or their proxies reported the time, the place and the

circumstances of the falls.

Two additional falls were recorded from one subject within a cross-sectional study in

community-dwelling older people. All of these falls were recorded during daily physical ac-

tivity measurement using an ambulatory device based on accelerometers (Dynaportr Min-

iMod, McRoberts, The Hague, NL). For the sake of the present study, for each fall, we

extracted, from the 24 hour recording, a 60 second time-window centered around the fall

event. The falls were characterized with respect to location, pre-fall phase, fall direction,

and impact spot (Table 7.1). The MiniModr, composed of a tri-axial seismic acceleration

sensor (LIS3LV02DQ STMicroelectronics, Agrate Brianza, Italy), was fixed by a belt at the

lower back. The orientation of the axes are x=vertical, y=medio-lateral (left/right), and

z=anterior-posterior (forward/backward). The sensor has a resolution of 12 bit and a sam-

pling frequency of 100Hz. The published fall detection algorithms were usually based on

measurements carried out by accelerometers with a sampling frequency varying from 50Hz

to 250Hz and a range of ±10g or ±12g. We recorded 14 falls with a sensor’s range of ±6g,

the remaining 18 falls with a sensor’s range of ±2g. When the acceleration exceeds the

threshold ±2g, the so-called “clipping effect” (or saturation) produces a cut-off of the signal.

Since this could affect the results of the analysis, three falls that show saturation effects are

not included in the analysis. Therefore, the total number of falls considered in this study
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was 29. Raw data were stored for off-line analysis on a SD card.

Table 7.1: Description of real-world falls (n=32)

Number of falls per condition

Location Indoor (n=30), outdoor (n=2)

Activity before the fall Standing (n=16), walking forward (n=8),

walking backward (n=1), sit-to-stand (n=5),

stand-to-sit (n=2)

Reported direction of fall Forward (n=8), backward (n=18), sideward (n=6)

Impact spot Floor (n=23), bed/sofa (n=4), desk (n=1),

against wall/locker before hitting the floor (n=4)

7.2.2 The algorithms

The algorithms used are summarized here; additional details can be found in the literature

[194, 195, 196, 197, 352]. Table 7.2 summarizes the parameters, thresholds and the phases

of a fall event that are considered: beginning of the fall, falling velocity, fall impact and

orientation after the fall. The outputs of the tri-axial accelerometer are Ax(k),Ay(k),Az(k)

with k = 1, . . . , n and n as number of samples.

Chen et al. [194] used a tri-axial accelerometer worn on the waist of two martial arts

students, who performed some common fall motions over 10 trials. If the root sum vector

(SV) of the three squared accelerometer outputs exceeds a threshold, it is possible that a

fall has occurred (IMPACT DETECTION). Additionally, the orientation is calculated over

1 second before the first impact and 2 second after the last impact using the dot product of

the acceleration vectors (CHANGE IN ORIENTATION). The angle change that constitutes

a change in orientation can be set arbitrarily based on empirical data, as suggested by the

authors. We set this threshold to 20° in order to have the best sensitivity and specificity. No

results are reported in the paper, but the authors point out the benefits due to the evaluation

of change in orientation.

Kangas et al. [195] attached a tri-axial accelerometer to the waist, wrist and head of three

healthy middle-aged volunteers, who performed three standardized types of falls (forward,

backward, and lateral) towards a mattress. Examples of activities of daily living (ADL) were

collected from two healthy subjects, representing dynamic activities (e.g., walking, walking

on the stairs, picking up objects from the floor). Four different detection algorithms, Kan-
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gas1a to Kangas1d, with increasing complexity were investigated. The thresholds are related

to the waist measurement. These four algorithms had in common IMPACT DETECTION +

POSTURE MONITORING. They were based on the detection of the impact by threshold on

the sum vector (SV ), the dynamic sum vector (SVD) related to the high-pass filtered (HPF)

accelerometer outputs, the sliding sum vector (SVMaxMin) and the vertical acceleration (X2),

followed by monitoring of the subject’s posture. The posture was detected 2 seconds after

the impact from the low-pass filtered (LPF) vertical signal, based on the average acceleration

in a 0.4 seconds time interval, with a signal value of 0.5g or lower considered to be a lying

posture.

Two further algorithms, Kangas2a and Kangas2b, were considered from Kangas et al.

[195] based on START OF FALL + IMPACT DETECTION + POSTURE MONITORING.

These algorithms detected the start of the fall by monitoring lower than a threshold of 0.6g,

followed by the detection of the impact within a time frame of 1s by a threshold value of SV

or X2, followed by monitoring of the posture.

Three further algorithms, Kangas3a to Kangas3c, based on START OF FALL + VE-

LOCITY + IMPACT DETECTION + POSTURE MONITORING were considered from

[195]. These algorithms detected the start of the fall, followed by detection of the velocity v0

(calculated by integrating the area of SV from the trough (see Figure 7.1), at the beginning

of the fall, until the impact, where the signal value is lower than 1 g) exceeding the threshold,

followed by the detection of the impact within a time frame of 1s by a threshold value of SV

or X2, followed by monitoring of the posture. The fall detection sensitivity, declared by the

authors [195], of the different eight algorithms at the waist varied from 76% to 97% and the

specificity was 100%.

Bourke et al. [196] mounted two tri-axial accelerometers to the trunk (at the sternum)

and the thigh. Ten young subjects were involved in simulated falls onto large crash mats.

Ten community-dwelling elderly subjects performed ADL in their own homes (e.g., sit to

stand, lying, walking). In these algorithms (Bourke1a and Bourke1b), the SV of the three

signals was evaluated from the sternum and thigh accelerometer outputs and a fall was

detected when the SV is over the upper (UFT) threshold (3.52g) or lower than the lower

(LFT) thresholds (0.41g). Declared specificity is 100% for the upper threshold and 91.25%

for the lower threshold, related to the trunk sensor. In this paper, as suggested by the

authors [196], the thresholds were set according with the falls database. The UFT and LFT

were set at the level of the smallest magnitude upper fall peak (Bourke1a) and at the level of

the biggest magnitude lower fall peak (Bourke1b), respectively. Based on the accelerometric

data of the 29 falls, we set the two thresholds to 1.79g (UFT) and 0.73g (LFT). Exceeding
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any individual limit would indicate a fall.

Bourke et al. [197] developed a second fall detection system using a tri-axial accelerom-

eter to detect impacts. The algorithm (Bourke 2), considered the SV of the accelerometer

outputs, and monitor posture, assuming a lying posture if the vertical accelerometer signal

value is between -0.5g and 0.5 g. The sensor was attached to a custom designed vest. Two

teams of 5 elderly subjects tested the algorithm. Over 833 hours of monitoring, no actual falls

were recorded, although the system registered a total of 42 false alarms (i.e., false positives).

Recently, Bourke et al. [352] evaluated 21 fall-detection algorithms of varying degrees

of complexity for a waist-mounted accelerometer based system. The algorithms were tested

against a comprehensive data-set recorded from 10 young healthy volunteers performing

240 simulated falls and 120 ADL and 10 elderly healthy volunteers performing 240 scripted

ADL and 52.4 waking hours of continuous unscripted normal ADL. Here, we evaluated the

algorithm (Bourke3) VELOCITY+IMPACT+POSTURE that achieved 100% sensitivity and

specificity and with the lowest false-positive rate (0.6 false positive per day) when applied

to simulated falls and tested it on the real-world falls database. The algorithm is based on

the detection of the four distinct phases of a fall [345] (pre-fall, critical phase, post-fall phase

and recovery) when the SV exceeds the LFT (0.65g) and the UFT (2.8g) thresholds. Two

temporal features and their related thresholds are considered: the falling-edge time, tFE,

is from the SV signal last going below the LFT until it exceeds the UFT (threshold set to

600ms), and the rising-edge time, tRE, is the last time when the LFT is exceeded until the

UFT is exceeded (threshold set to 350ms). The vertical velocity is further considered as an

indicator of a fall when it overcomes the threshold (-0.7m/s). It is evaluated through the

numerical integration of the SV signal with the gravity component subtracted. The post-fall

posture is determined taking the dot product of the gravity vector gREF and the current

gravity vector estimated relative to the body segment gSEG. Lying is detected if the waist

posture, θ(t), from t+1 s to t+3 s exceeds 60° for more than 75% of the duration.

As summarized in Table 7.2, the SV is a common feature among all the algorithms. An

example of prototypical signal of the SV is shown Figure 7.1. The signal reflects a forward

real-world fall in which the subject fell directly on the floor while bending to pick up an

object. The typical trough before the impact, the impact and the maximum magnitude due

to the impact are also indicated.

The 29 accelerometer fall recordings were used to test the performance of the algorithms

in terms of sensitivity (SE, percentage of falls correctly detected as such). Further signals

analysis was performed in order to evaluate the specificity (SP, percentage of ADL correctly

identified as non-falls).
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Figure 7.1: Prototypical acceleration sum vector of a fall. This real-world example illustrates

components that are common to many falls.

Previous studies tested the specificity of ADL performed in the laboratory environment

by the same subjects who simulated falls (generally healthy young subjects) or community-

dwelling elderly subjects. These data could be biased, since subjects are forced to perform

activities, which are typically spontaneous. To avoid biased results for specificity, we ex-

tracted ADL based on the individual physical activity recordings from each subject excluding

the 60 second fall-time-windows. The remaining observation time was also separated into 60

second time-windows.

The recordings of 8 of the 15 fallers were carried out using the sensor with range ±2g

and therefore were excluded from the specificity evaluation. We collected, for the remaining

7 subjects, 168h of accelerometer recordings, i.e., 10,050 time-windows of 60 seconds (the

29 time-windows related to falls were excluded). These time windows could be related to

resting periods. In all these cases, the fall detection algorithms correctly identify 100% of

ADL as not-falls. Thus, the SP will show high values because of the high number of time

windows with inactivity included in the analysis. According to these considerations, the

time windows related to resting periods were excluded and those related to activity periods

were considered in the study according with a simple procedure.
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Table 7.2: Brief review of the main fall detection algorithms; 1 An angle of change can be

estimated using the dot product of the acceleration vectors before a fall and after, where the

vectors are from averaging over 1-second windows. 2-3 Accelerometric data were low-pass

(LPF) or high-pass (HPF) filtered (fc = 0.25Hz) with a digital second order Butterworth

filter.
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We assumed that an activity is performed if the dynamics of the signal (the difference

between the maximum and the minimum value) in a 60 second time window overcomes a

fixed threshold TH. This was selected from the following steps:

- the difference Mi = max (SVi)−min (SVi) (i = 1, . . . , 10, 050) was evaluated from the

accelerometer outputs for each of the 10,050 time-windows;

- the 10,050 time-windows were tested by the 13 algorithms;

- if the kth time window was wrongly identified as fall, the value Mk was allocated in a

vector M;

- after testing the 13 algorithms, the minimum element of M was considered as the

threshold TH for discriminating resting from activity periods.

All the time-windows with Mi > TH were considered as ADL and thus selected for the

analysis. The threshold evaluated by the procedure was TH =1.01 g. The total number of

time-windows considered was 1170. The accuracy (ACC, the ratio between the number of

correct assessments, falls and ADL, and the number of all assessments), the positive predic-

tive value (PPV, the probability that a time window with a positive test result, fall detected,

really does have the condition for which the test was conducted) and the negative predictive

value (NPV, the probability that a time window with a negative result, fall undetected,

really does have the condition for which the test was conducted) were evaluated for each

algorithm. Moreover, the performance of the tested algorithms were evaluated on 24 hour

accelerometer recordings for three of the PSP fallers, in order to evaluate the number of

false alarms (ADL detected as falls) generated by the different algorithms. Data analysis

was performed using MATLAB 7.9.0 (R2009B).

7.3 Results

In order to show an example of real-world fall signals, the sum vector of a backward fall

and its detail is reported in Figure 7.2A. The sum vector related to one of the randomly

extracted ADL is shown in Figure 7.2B. The SE and SP of the tested algorithms for fallers

are shown in Figure 7.3.

The SP is over 94% for all the algorithms, except for the algorithm Bourke2 and Bourke1(a,

b), which have the best performance in terms of SE (the thresholds are set to hit this mark)

and the worst in terms of SP, as one would expect. The SE is low (SE=57.0%±27.3%,

maximum value = 82.8%). Although a trade-off is achieved with the Chen and Bourke3
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Figure 7.2: Sum vector of (a) backward fall and detail and (b) example of selected ADL

(walking)
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Figure 7.3: Sensitivity and Specificity for the tested algorithms

algorithms (SE=75.9%±82.8%, SP=94.2%-96.7%, respectively), the results are considerably

worse than those previously reported in laboratory environments. The ACC, the PPV and

the NPV are reported in Table 7.3A for each algorithm. The number of false alarms gen-

erated in 24 hours is shown in Figure 7.4 for three fallers. Bourke1(a, b) shows the highest

number of false alarms, although it has the maximum value of sensitivity. Kangas’ algorithms

generated less than 9 false alarms, but sensitivity was lower than 55% (Figure 7.3).

7.4 Discussion

The aim of this chapter was to compare different accelerometer-based fall detection algo-

rithms on a database of real-world falls. Consistent with a previous work which demonstrated

marked differences between real-world and simulated falls [336], we find that algorithms that

were successful at detecting simulated falls did not perform well when attempting to detect

real-world falls.

To our knowledge, no other studies in the literature have evaluated fall detection algo-

rithms based on a relatively large dataset of real-world falls. Fifteen older patients (age

67±18 years) assessed as having a high risk of falling were involved in an 18-day study [197].
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Table 7.3: Accuracy (ACC), positive (PPV) and negative (NPV) predictive values of the

tested algorithms

Algorithm ACC[%] PPV[%] NPV[%]

Chen 93.7 24.4 99.4

Kangas1a 92.9 16.7 98.7

Kangas1b 93.7 18.9 98.7

Kangas1c 94.5 23.2 98.8

Kangas1d 96.4 18.2 97.9

Kangas2a 93.3 17.7 98.7

Kangas2b 95.3 22.4 98.4

Kangas3a 95.8 23.1 98.3

Kangas3b 96.7 29.6 98.2

Bourke1a 21.3 3.0 100.0

Bourke1b 13.0 2.7 100.0

Bourke2 86.8 12.3 99.2

Bourke3 96.3 38.1 99.6

Unfortunately only four falls were recorded and the data were not analyzed. Recently, Kan-

gas et al. [346] collected accelerometer data for 5 real-world falls during a 6 month test

period in older adults and compared some features (SV, pre-fall velocity) of real-world falls

with simulated falls. They suggested that there are important differences between real and

simulated falls.

Based on a data-set with recorded real-world falls, our study evaluated thirteen accelerometer-

based algorithms for fall detection which have been previously evaluated on simulated falls

only. SE and SP of these algorithms (Figure 7.3) shows how the sensitivity and specificity

obtained by the authors (often declared to be 100%) are different when the algorithms are

tested on real-world falls.

By analyzing the main drawbacks of the presented algorithms, we noted that several

factors affect the difference between simulated and real-world falls. Thresholds are usually

calibrated on simulated fall signals and are not suitable for real-world fall signals. For

instance, the SV is considered to be a feature for impact detection in all the presented

algorithms, but each author used a different threshold to detect the impact. Our results

are consistent with the considerations of Kangas [346] who found that some fall phases

detected in experimentally simulated falls were not detectable in acceleration signals from
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Figure 7.4: False alarms generated in 24 h recordings for three fallers

heterogeneous real-world falls.

Nevertheless, all the algorithms have low computational cost and low-complexity, allowing

them to be easily implemented in a microcontroller for real-time applications. This approach

is commendable because it helps to increase the security of the subject, hopefully reducing

the number and severity of falls. The use of the sum vector of the three accelerometer outputs

as the main parameter provides robustness against the incorrect position of the sensor.

Chen’s algorithm [194] provides a good trade-off in terms of SE (76%) and SP (94%).

Since the high threshold for impact detection allows for reduction of false positives, some

“low-magnitude” falls are not detected due to their maximum peak values. Despite the efforts

of the authors to pay attention to orientation change, this parameter does not provide an

optimal discrimination between real-world falls and ADL. Since we set a low angle orientation

threshold, in many conditions the subject’s orientation does not show a significant change

before and after the fall (e.g., falling on the knees).

Kangas et al. [195] investigated three different algorithms with increasing complexity.

Since the threshold values allow detection of most impacts, the posture monitoring test fails

against several types of falls. The LPF vertical signal rarely reaches values under 0.5g, which

is considered to be a lying posture [199, 200]. In our falls database, subjects who fell on

their buttocks, knees, or against a table or the walker, did not lie on the floor. However,
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the lying posture detection is very important to detect falls in which the subject lies on

the floor for a long time. Moreover, according to the SE values shown in Figure 7.3, the

more complex the algorithm is the more difficult it is to detect a fall, since the signal has

to pass several tests. The algorithms related to the vertical acceleration X2 (Kangas1d,

Kangas2b, Kangas3b) provide the lowest sensitivity values due to the high threshold set for

this parameter. Kangas3(a, b) show the worst results: the velocity before the impact is often

lower than the predetermined thresholds.

Results of Bourke’s algorithm [196] require additional discussion. The authors suggest

setting the two thresholds according to the falls database in order to have 100% of SE.

Nevertheless, the Bourke1(a, b) algorithms provide the worst results in terms of SP (19.3%

and 11.9%, respectively). This offline method is not recommended for several reasons. First,

the two thresholds, UFT (1.79g) and LFT (0.73g), are set according to the real-world fall

database and therefore have to be tuned every time a new fall occurs. Consequently, the

predictive ability of the fall detection algorithm is impaired: if the fall detector is used

in real-life conditions, falls with a maximum peak lower than UFT or the minimum peak

greater than LFT are not detected. The Bourke1b algorithm, based on the LFT algorithm,

provides the lowest SP. The majority of real-world falls we collected provide a trough before

the impact related to the free-fall phase. However some ADL (e.g., sitting on a chair or on

a bed) show values of the sum vector lower than the LFT=0.73g, due to the phenomenon of

weightlessness. This explains why the lowest specificity was found for Bourke’s algorithm.

Moreover, as shown in Figure 7.4, the high number of false alarms during 24h recordings, from

22 to 85 for the three fallers for Bourke1a, and from 27 to 84 for Bourke1b, is unacceptable

(more than 2 false alarms per hour). The major reason for failure is rejection by monitoring

services due to a high number of false alarms [353, 354]. This weak point is more evident

in the Bourke LFT algorithm as compared to the other algorithms, since these have fewer

than ten false alarms.

The second algorithm suggested by Bourke et al. [197] provides results similar to Chen’s

algorithm. Since the threshold, which is the same as Bourke1b, ensures detection of sev-

eral impacts, the SP is higher than Bourke1(a,b) because the algorithm provides posture

monitoring after fall. The subject’s “long-lie” condition (vertical accelerometer signal value

between -0.5g and 0.5g) allows increasing the SP but this did not occur in all falls. The

Bourke2 algorithm emphasizes the drawbacks of the Bourke1 algorithms, which are based

on thresholds lacking considerations of posture monitoring after a fall. Adding information

about posture after the impact can improve the results in terms of SP. As shown in Fig-

ure 7.4, the number of false alarms is reduced threefold from Bourke1 (mean of 61-65 false
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alarms) to Bourke2 (20 false alarms).

Bourke’s recently proposed algorithm (Bourke3) [352] provides the best trade-off in terms

of SE (83%) and SP (97%) but the results are still different from those obtained by the

authors on their simulated-falls database (100% sensitivity and specificity). The algorithm

fails to detect falls with low impact magnitude (mainly forward falls, falling on bed/sofa,

against the wall) which are common, since more than half of all in-patient falls in elderly

people in acute care settings occurred at bedside, during transfer or while getting up [321,

355]. Moreover, Kangas et al. [346] also found differences between simulated and real-world

falls on beds in terms of low impact magnitude. Despite of this, the number of false alarms

is considerably lower than with other Bourke’s algorithms (about 5 false alarms per day).

Table 7.3 provides results related to PPV and NPV, which are usually stable charac-

teristics of diagnostic tests when the prevalence of disease is high among the population of

interest (in this study prevalence of disease is equivalent to fall risk). The same diagnostic

test will have varying predictive values in different populations. As mentioned in the Meth-

ods section, the recorded ADL, used for testing the algorithms, are related to the PSP and

geriatric rehabilitation unit patients, both with a high risk of falling.

Since the results for NPVs (98.9%±0.7%) indicate that with these algorithms there is a

high probability that when an event is not detected as a fall it is not really a fall, the PPVs

(19.3%±9.7%) are low, i.e., there is a low probability that when a fall is detected it is really

a fall. This means that some events incorrectly detected as falls are activities of daily living.

Furthermore, since the number of real-world falls (29) is small compared with the total

number of time-windows tested (1170), the SP is affected by these differences and does

not provide useful information for the evaluation of the algorithms (e.g., Bourke3 has 97%

specificity i.e. 39 false positives). From a more practical point of view, if the fall detector

is connected to a tele-alarm system, the robustness of the fall detection algorithm should

be evaluated in terms of high sensitivity and small number of false alarms generated. For

example, consider a recording of 48h, i.e. 2880 time windows of 60s. If the algorithm

incorrectly detects 100 ADL as falls, the SP will be 96%. This is an acceptable value for a

test but if we imagine that the fall detector could trigger an alarm when a fall is detected,

100 false positive results within 48h means that about 2 false alarms per hour are generated.

The weaknesses of the tested algorithms enable us to understand certain complex aspects

of a fall but could also be a starting point for future development of an accurate fall detector.

The tested algorithms set a fixed threshold for features extracted by accelerometer signals but

are tested on individuals with different mass, age, clinical history and diseases. These factors

could affect the accelerometer data and the algorithms could fail; a fixed threshold may not
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be the optimal strategy compared to a subject-specific threshold. Inertial sensors-based

fall detection algorithms could be designed not only to automatically detect a fall but also

to provide additional information regarding direction of falls in order to better understand

injuries and to offer a prevention intervention. Since results are related to the thresholds

provided by the authors, the performance of the tested algorithms could be optimized by

using the Receiving Operating Characteristic (ROC) in order to identify the threshold with

the best trade-off between sensitivity and specificity. By the way of example, four out of the

13 algorithms were optimized in order to maximize the product SExSP
100

. Results are shown

in Figure 7.5 for SE and SP and in Figure 7.6 for false alarms. A good trade-off between SE

and SP was obtained for all algorithms, except for Bourke1(b).

Figure 7.5: Sensitivity and specificity after thresholds optimization for four out of the 13

algorithms

Figure 7.6: False alarms generated in 24 h recordings for three fallers after thresholds opti-

mization for four out of the 13 algorithms

Nevertheless, the number of false alarms significantly increases for the algorithms by
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Chen and Kangas1a, which had low SE before threshold optimization, and decreases for the

two Bourke’s algorithms which had 100% SE and low SP before optimization. The number

of false alarms still remains too high. These results suggest that statistical algorithms (e.g.,

based on Gaussian Mixture Model, Hidden Markov Model) should be preferred to threshold

algorithms.

Despite this, the results presented in this chapter showed the importance of testing al-

gorithms in real-world situations. The main limitation of the study is that the recorded

real-falls were from a rare disease population, but conclusions may be generalized to the

older population at large. Moreover, the tested algorithms are based only on waist or trunk

accelerometer measurements and therefore did not represent an exhaustive set of all pub-

lished fall detection algorithms.

The development of a larger shared real-world fall database should provide additional

data and deepen our knowledge of the fall process in general. The FARSEEING European

project, which started in January 2012, aims to build the world’s largest fall repository of

long-term analysis of the behavioural and physiological data collected using smartphones,

wearable and environmental sensors. This project could provide the necessary data to design

an accurate, portable and high-performance fall detector and a more valid model of falling.

The present study represents a preliminary study in this direction.
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Appendix A

Non-linear re-calibration of force

platforms

let Force platforms (FPs) are used in human movement analysis to measure the ground re-

action force and the center of pressure (COP), and calculate derived kinetic and energetic

quantities. We propose a re-calibration method that compensates for the FP non-linearity

induced by top plate bending under loading. The method develops a previous solution that

was proposed for a linear re-calibration and proved suitable for both local and global error

compensation (Cedraro et al., 2008). The new method was experimentally tested on 4 com-

mercial FPs by estimating the non-linear re-calibration matrix in a first training trial and by

using it to assess the three force components and the COP in a validation trial, comparing

the new method to the previously proposed solution for global, linear re-calibration. The av-

erage COP accuracy (mm) in the training trial was (mean±std): 2.3±1.4, 2.6±1.5, 11.8±4.3,

14.0±2.5 for the 4 FPs before re-calibration, and 0.7±0.4, 0.6±0.2, 0.5±0.2, 2.3±1.3 after

non-linear re-calibration. In the validation trial, for one of the 4 tested FPs, mean errors for

the three force components (N) and COP (mm) were: 3.6±2.3 (Fx), 3.0±0.7 (Fy), 5.0±2.5

(Fz), 1.2±0.68 (COP) after linear re-calibration, and 2.5±0.7 (Fx), 2.6±0.5 (Fy), 3.9±1.2

(Fz), 0.6±0.3 (COP) after non-linear re-calibration. The proposed global, non-linear method

performed equally well as the local, linear re-calibration method, proving well-suited to com-

pensate for the mild non-linear behavior of FP with the advantage of estimating a single

re-calibration matrix.

Cappello A, Bagalà F, Cedraro A, Chiari L (2011) Non-linear re-calibration of force platforms,

Gait & Posture, 33(4): 724-726
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A.1 Introduction

Force platforms (FPs) are precision instruments used in human movement analysis to mea-

sure the ground reaction force and the center of pressure (CoP). The ageing of the FP,

its usage, and in-situ installation procedures may reduce the effectiveness of the calibra-

tion provided by the manufacturer and lead to a lack of accuracy [356] which introduces

errors in the FP data and may propagate to the calculated kinetic and energetic quantities

[357, 358]. The FP accuracy can be increased by estimating the (6x6) re-calibration matrix,

C [359, 360, 361], which describes the linear functioning of the FP. Matrix C can be used to

model the behavior of either the entire platform (global re-calibration), or part of it (local

re-calibration) [359]. However, possible non-linearities largely attributable to the bending

of the top plate are not dealt with, and hence compensated, when a global linear model is

used [362, 363, 364]. In a previous study it has been shown that local re-calibration is more

effective than global re-calibration [359] because it allows increasing FP accuracy mainly in a

specific area of the FP, but this may be unacceptable when the loaded area is wide, as in gait

analysis. Aim of this appendix is to propose and validate a non-linear, global re-calibration

method that compensates for the FP non-linearity and is valid for the whole FP surface.

A.2 Materials and Methods

The output vector (L) of a six-component FP can always be described by its force and

moment components [359]:

L =



FX

FY

FZ

MX

MY

MZ


(A.1)

where axis Z is orthogonal to the FP surface, assuming the origin of the reference system

on the top surface of the FP. L can be calibrated,LC , by a linear re-calibration [359, 360]:

LC =

C11 · · · C16

... · · · ...

C61 · · · C66

L = CLL (A.2)

108



A main cause of the FP non-linearity is the bending of its top plate [362, 363, 364, 365],

caused by the load applied. As shown in [364], bending in turn introduces systematic errors

on the CoP which depend on the point of force application. As a consequence, the non-

linearity can be modeled and compensated with a re-calibration equation which takes into

account the CoP coordinates measured by the FP, XCoP = MY /FZ and YCoP = MX/FZ :

LC = C0L +


CX11 CX12 0 CX14 CX15 CX16

...
...

...
...

...
...

...
...

...
...

...
...

CX61 CX62 0 CX64 CX65 CX66





FX

FY

FZ

MX

MY

MZ


XCoP+

+


CY11 CY12 0 0 CY15 CY16

...
...

...
...

...
...

...
...

...
...

...
...

CY61 CY62 0 0 CY65 CY66





FX

FY

FZ

MX

MY

MZ


YCoP =

= (C0 + CXXCoP + CY YCoP ) L = CNLL (A.3)

where CX , CY and CNL are (6x6) matrices. Matrix C0 and vector L represent the linear

re-calibration terms. Vectors XCoPL and YCoPL introduce in the re-calibration method a

second-order non-linearity, due to cross-products between output vector components. Ma-

trices CX and CY represent the weights of the different non-linear terms included in the

model. The elements of the third column of CX and CY are zeroed because the cross-

products XCoPFZ and YCoPFZ are already taken into account in the linear term CY L; the

elements of the fourth column of CY are zeroed because the cross-product MXMY /FZ is al-

ready taken into account in the product XCoPL. The elements of the non-linear re-calibration

matrix CNL are hence linearly related to the CoP measured by the FP; this is in agreement

with the results of Schmiedmayer and Kastner [366], who found an error on CoP estimation

which was a function of the point of force application. This new method was experimentally

tested using the system for the FP re-calibration presented in [357, 359] which includes a

high-accuracy, tri-axial load cell, to be placed in 13 known positions on the FP surface and

then loaded by a subject that generates the same 3D time-varying force on the FP and

the load cell. Briefly, the re-calibration matrix C, linear or non-linear can be estimated by
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solving the following equations in a least-squares sense:

Lk
0(t) = Lk

C(t) + Ek(t) = CLk(t) + Ek(t)

k = 1, . . . , n

n ≥ 5 (A.4)

where Lk(t) is the FP output, Lk
0(t) is calculated from the force measured by the load cell

and the knowledge of the kth point of force application, and Ek(t) represents the residual

error. A cost function
∑

k,t E
k(t)TEk(t) is minimized [367] by updating the elements of C

[358]. As also described in [357], 4 commercial FPs were tested and their local and global

C’s were estimated: AMTI OR6, Bertec 4060-08, Bertec 4080-10, and Kistler 9286A. The

same data set was used to estimate the global, non-linear re-calibration matrix CNL . The

effectiveness of the non-linear re-calibration was verified:

1. quantifying the FP accuracy in the measurement of the CoP before and after re-

calibration;

2. evaluating the ability of the non-linear re-calibration to estimate force components and

CoP better than linear re-calibration in a second validation trial, by ensuring the same

measurement sites.

A.3 Results

Table A.1 shows the CoP accuracy before and after the re-calibration process, for the 4

tested FPs.

Table A.1: The CoP accuracy before and after the re-calibration process, for the 4 tested

FPs

CoP accuracy mean±std [mm] FP#1 FP#2 FP#3 FP#4

1 - Initial accuracy 2.3±1.4 2.6±1.5 11.8±4.3 14.0±2.5

2 - Linear global 1.1±1.4 1.8±1.1 1.0±0.6 3.2±1.1

3 - Linear local 0.7±1.4 0.8±0.5 0.5±0.3 2.0±1.2

4 - Non-linear global 0.7±1.4 0.6±0.2 0.5±0.2 2.3±1.3

Row(1) shows the FP accuracy using the manufacturers’ C. Each FP will be addressed

by a unique identifier such as FP#1,#2, #3 and #4.
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Table A.2: Mean values of the RMS errors in the validation trial for FP#3

Mean±std FX [N] FY [N] FZ [N] CoP accuracy [mm]

Linear re-calibration 3.6±2.3 3.0±0.7 5.0±2.5 1.2±0.7

Non-linear re-calibration 2.5±0.7 2.6±0.5 3.9±1.2 0.6±0.3

Figure A.1 reports the results of the validation trial where, by the way of example, FP#3

was considered.

Figure A.1: Error on CoP measurement (in mm), after global linear and non-linear calibra-

tion for FP#3, in the 13 different measurement sites

Table A.2 shows the mean values of the root mean squared (RMS) validation errors for

the three force components and the CoP for FP#3.

A.4 Discussions

Results displayed in rows 1, 2 and 3 of Table A.1 recapitulate those reported in [357]. The

non-linear, global re-calibration method (row 4) ensured similar results as the local, linear

re-calibration (row 3) proving its suitability to well re-calibrate the FPs, but with the clear

advantage of compensating the non-linearity, due to the bending of the top plate, with

no additional computational costs. In fact, the non-linear, global re-calibration method
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estimates a single matrix, instead of several local matrices that could be unpractical to

manage in the routine FP usage. As shown in Figure A.1, the use of the non-linear re-

calibration allows reducing CoP errors below 0.8mm in all measurement sites, both in the

training and validation trial. The mean values of RMS errors for force components and

CoP estimation in the validation trial (see Table A.2) prove the effectiveness of the non-

linear re-calibration compared to the linear re-calibration. Indeed, the mean CoP error plus

2 standard deviations keeps around 1mm, which is comparable to the expected placement

error of the load cell tip on the FP.
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Epilogue

The aims of the work presented in this thesis were to suggest a novel methods for the

quantitative description of some motor tasks often used in clinical settings for the fall risk

assessment and to define the guidelines for a fall detection algorithm based on a real-world

fall database availability. First, a biomechanical approach and a body sensor network al-

lowed evaluating kinematic and dynamic variables of human movement, which are usually

neglected in widespread clinical tests for the assessment of fall risk, through a portable, cost-

effective set-up. Second, the guidelines for the design of an optimal fall detector were defined,

based on experimental evidence that several published fall detection algorithms, based on

accelerometers, fail when they are applied to a real-world database. In this epilogue, after a

brief summary of previous chapters will be given, some directions for future research, as well

as some possible clinical applications of the work presented in this thesis will be outlined.

Overview of chapters

In chapter one several tools for fall risk assessment and fall prevention in clinic were dis-

cussed. It appeared that the existing clinical tests for fall risk assessment lack of objectiveness

related to individual judgement by a therapist or a nurse who report a score related to the

physical performance. The use of assistive technology could help to overcome this draw-

back further providing timely feedback about the effectiveness of administered interventions

enabling intervention strategies to be modified or changed if found to be ineffective.

In chapter two the specific issue addressed to of the use of technology for fall risk

assessment and fall detection was treated by reviewing the main studies based on force

platforms and inertial sensors. With regard to the fall risk assessment, it was concluded

that several studies identified discriminant feature for predicting the risk of fall without

focusing on the biomechanics of the motor tasks performed. The use of biomechanical

measurements can be fundamental for the evaluation of subject-specific fall risk since it

could help to identify quantitatively a specific lack in muscle strength, balance impairments
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or physical functional reserve. With regard to the fall detection, even if a myriad of ICT-

based product are proposed, existing solutions still do not have a remarkable social impact

neither a significant market penetration due the the low reliability and poor knowledge of

real falls.

In chapter three two different balance strategies (reactive balance and static/dynamic

steady state balance) were introduced and analyzed in depth in chapter four and five,

where a novel method based on a biomechanical model and a body sensor network was tested

to describe quantitatively the repeated sit-to-stand and voluntary postural oscillations. In

particular, the usability of these inertial sensors to predict dynamic variables like the Center

of Pressure and the net joint moments was demonstrated.

A single inertial measurement unit was used in the pilot study presented in chapter six to

describe the lying-to-sit-to-stand-to walk test. In particular, two populations, young subjects

and old patients, performed the test and a quantitative analysis based on accelerometric and

gyroscope measurements allowed detecting different features related to the task executed. A

sensor fusion algorithm (Extended Kalman Filter) was implemented to describe the strategies

adopted to complete the test. These chapters suggested the possibility to use inertial tracking

technologies to perform in-depth analysis of the motor performance according to an adequate

model-based approach. Since the use of these sensors appear promising, several limitations

still exist in the field of fall detection, as underlined in chapter seven, where some published

accelerometer-based algorithms were tested on a 29 real-world falls database. The sensitivity

and specificity obtained was considerably lower than those declared by the authors in their

papers and the high number of false alarms generated on 24h accelerometric recordings

demonstrated the reasons of the low pervasivity of these sensors in real-life.

Future works

One of the most vital reasons for preventing falls is to avoid fractures and other serious

injuries, which have the greatest consequences for people’s health and resource use. As often

underlined in this thesis, currently, falls are managed through a reactive care model. Fall

risk is assessed in a clinical setting by expert physiotherapists, geriatricians, or occupational

therapists following the occurrence of an injurious fall. Falls are sometimes managed using

body worn sensors and alarm pendants to notify others when a fall event occurs and to

trigger an urgent communication to a telecare center to assure a fast medical assistance.

However this model does not prevent a fall from occurring. There is now a growing focus

on multifactorial assessment and personalized targeted intervention for preventing falls and
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injuries among older people in community and emergency care settings. Still, as the popula-

tion ages, this reactive model of care will become increasingly unsatisfactory, and a proactive

community-based prevention strategy will be required.

In agreement with the line of reasoning presented in this thesis, it seems that a logical

next step would be to start a prospective study involving elderly subjects whose biome-

chanical measurements will be evaluated through the algorithms presented in this thesis.

Simple, unsupervised quantitative assessments of such measurements could help ”to track”

objectively the fall risk, providing feedback about the effectiveness of administered preven-

tion interventions. These quantitative measurements could help to monitor the effect of

fall prevention approach aiming to increase muscular strength and/or balance. Moreover,

the procedure could speed up the experimental sessions, reducing the computational and

economic costs, especially when several subject are involved.

In summary, the work presented in this thesis suggests that a biomechanical approach

based on wearable inertial sensors may provide reliable measurements to accurately and

quantitatively describe performance of subject-specific reactive balance strategies (chapter

four) and functional motor tasks (chapter five, six). Moreover, the quantitative descrip-

tion of fall event through reliable algorithms which satisfy defined criteria (chapter seven)

could substantially increase our knowledge of falls.
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