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Abstract 

 

MYC is a transcription factor that can activate transcription of several targets by 

direct binding to their promoters at specific DNA sequences (E-box). 

However, recent findings have also shown that it can exert its biological role by 

repressing transcription of other set of genes. C-MYC can mediate repression on 

its target genes through interaction with factors bound to promoter regions but 

not through direct recognition of typical E-Boxes. 

In this thesis, we investigated whether MYCN can also repress gene transcription 

and how this is mechanistically achieved.  

Moreover, expression of TRKA, P75NTR and ABCC3 is attenuated in aggressive 

MYCN-amplified tumors, suggesting a causal link between elevated MYCN 

activity and transcriptional repression of these three genes. 

We found that MYCN is physically associated with gene promoters in vivo in 

proximity of the transcriptional start sites and this association requires 

interactions with SP1 and/or MIZ-1 (i.e. TRKA, P75NTR and ABCC3). 

Furthermore, we show that this interaction could interfere with SP1 and MIZ-1 

activation functions by recruiting co-repressors such as DNMT3a or HDACs (i.e. 

TRKA and P75NTR). 

Studies in vitro suggest that MYCN interacts through distinct domains with SP1, 

MIZ-1 and HDAC1 supporting the idea that MYCN may form different complexes 

by interacting with different proteins. 

Forced re-expression of endogenous TRKA and P75NTR with exposure to the 

HDAC inhibitor TSA sensitizes neuroblastoma to NGF-mediated apoptosis, 

whereas ectopic expression of ABCC3 induces decrease in cell motility without 

interfering with growth. 

Finally, using shRNA whole genome library, we dissected the P75NTR repression 

trying to identify novel factors inside and/or outside MYCN complex for future 

therapeutic approaches. 

Overall, our results support a model in which MYCN, like c-MYC, can repress 

gene transcription by direct interaction with SP1 and/or MIZ-1, and provide 

further lines of evidence on the importance of transcriptional repression induced 

by Myc in tumor biology. 
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1. The Nervous System (a quick overview) 
The nervous system is known as the more elaborate and fascinating organ 

system in human. 

It is composed of a network of very specialized cells that coordinate every action 

and signals transmission between different parts of an organism. In most of the 

subjects belonging to the animals kingdom it is divided in two different parts 

related to anatomical features: 

a) Central nervous system (CNS): that integrates the information received from 

all parts of the body and coordinates their activity. It consists in spinal cord, brain 

and retina. 

 b) Peripheral nervous system (PNS): that is made up of the nerves and 

ganglia outside of the brain and the spinal cord. Its main function is to connect 

the CNS to the muscles and organs in the body in both directions. A further 

division can be done in: 

1. Sensory Nervous System: that sends information to the CNS collected from 

internal organs or from external stimuli. 

2. Motor Nervous System: that carries information from CNS to organs, muscles 

and glands and can be further subdivided in: 

I. Somatic Nervous System: that controls skeletal muscles and sensory organs. 

II. Autonomic Nervous System: controls involuntary muscles, such as smooth and 

cardiac. 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. The Human Nervous System 
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1.1 Neurons 
The more representative cell types forming the nervous system are the neurons 

(Fig 2).  

A typical neuron possess a cell body (soma), dendrites and axon, moreover it 

has a particular membrane morphology that reflects its cell-to-cell communication 

function. 

 

 

 

 

 

 
Fig.2. Schematic neuron representation 

The soma can give rise to numerous dendrites but never to more the one axon. 

There are different kinds of neuronal classification and all of these are based on 

different cellular features. 

Based on structure: 

i) Unipolar: dendrite and axon emerging from the same process; 

ii) Bipolar: axon and dendrite are located on the opposite side of the soma; 

iii) Multipolar: they have more then one dendrites; 

Based on function: 

i) Afferent neurons: also known as sensory neurons that convey the information 

from tissue and organs to the CNS; 

ii) Efferent neurons: involved in the signal transmission process from CNS to 

periphery; 

iii) Interneurons: connect neurons with a specific region of CNS. 

 

 

 

 

 

 

 
Fig.3. Types of neurons 
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Each neuron can communicate with another through a contact in a process 

known as synapse in which the synaptic signal (of electrical or chemical nature) 

usually runs from the axon of one neuron to the soma and/or dendrites of another 

one. 

1.2 Glia Cells 
Other types of cells that contribute to form the nervous system are glia cells. 

These cell have a non-neuronal origin and provide support, nutrition and other 

several function to nervous system [1]. In the human brain, it is estimated that the 

total number of glia roughly equals the number of neurons, although the 

proportions can vary in different brain areas. The most important functions of glial 

cells consists in supporting neurons and holding them in place; supplying 

nutrients to neurons; insulating neurons electrically; destroying pathogens and 

remove dead neurons; and providing guidance cues directing the axons of 

neurons to their targets. A very important type of glial cell (oligodendrocytes in 

the central nervous system, and Schwann cells in the peripheral nervous system) 

generates layers of a fatty substance called myelin that wrap around axons and 

provide electrical insulation allowing neurons to transmit action potentials much 

more rapidly and efficiently. 

Astrocytes represents the majority of the CNS glia cells, they are the most 

abundant glia cells in brain and their main function is to bloody supply neurons. 

Moreover they regulate the external chemical environment of neurons by 

removing excess ions, and recycling neurotransmitters released during synaptic 

transmission. The current theory suggests that astrocytes may be the 

predominant "building blocks" of the blood-brain barrier.  

 

 

 

 

 

 

 
Fig.4. Glia and neuronal cells 
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2. Nervous System Cancers 
The term nervous system cancer includes a wide range of cancers occurred both 

in central nervous system and in peripheral nervous system. Nowadays cancers 

of the brain and nervous system are the second most common type of childhood 

cancer, after leukemia. It has been estimated that around 23.000 new cases of 

primary malignant brain and central nervous system (CNS) tumors were 

diagnosed in the United States in 2011; of those, approximately 3,000 were new 

cases of childhood primary brain and CNS tumors. (http://www.cbtrus.org/). 

Based on these evidences, the malignant tumors can be divided in two main 

groups: 

• CNS’s Cancers: There are more than 100 types of primary brain tumors, and 

about 6% of all brain tumors cannot be assigned an exact type. These types of 

cancers are considered to be among the most devastating of all cancers due to 

the brain and spinal cord complexity. The effects can be devastating for the 

patient when cancer attacks the CNS. It has been found that 20%–40% of all 

cancers metastasize to the brain [2, 3]. Among the most famous cancers we 

have: 

o Tumours of Neuroepithelial Tissue 

•  Astrocytic Tumours 

•  Oligodendroglial Tumours 

•  Oligoastrocytic Tumours 

•  Embryonal Tumours 

o Tumours of the Meninges 

o  Metastatic Tumours: they rise in another place but they can metastasize to the 

brain. 

• PNS’s Cancers: Peripheral Neuroblastic tumors, also known as PNT, are so 

unique that those factors useful in the routine practice of surgical pathology, 

such as positive surgical margins, tumor necrosis, vascular invasion, and even 

hematogenous/lymphatic spread, are not necessarily significant indicators of 

aggressive tumor progression and a poor clinical outcome of the patients. 

Biologic properties are often more important and critical than those 

conventional prognostic factors for predicting clinical behavior of the tumor in 

individual cases [4]. 

o Tumours of Cranial and Paraspinal Nerves 
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o Neurilemmoma/Schwannoma 

o Ganglioneuroma, Ganglioneuroblastoma and Neuroblastoma 

3. Neuroblastoma (an overview) 
Neuroblastoma is a malignant disease described for the first time in 1864 from a 

German pathologist R.L.K Virchow. He noted nodular distension of the 

suprarenal gland with more than one swelling that arose from the adrenal 

medulla. But only in 1910 J.H Wright uses for the first time the term 

Neuroblastoma while he was studying the migration of primitive nerve cells 

during the embryogenesis and he observed a development of tumors of similar 

appearance in different sites within the body [5]. Nowadays neuroblastoma (NB) 

is the most common extra cranial solid tumor in childhood and the most 

frequently diagnosed neoplasm during infancy. It accounts for more than 7% of 

malignancies in patients younger than 15 years and around 15% of all pediatric 

oncology deaths. The overall incidence is about one case in 7,000 live births, and 

there are about 700 new cases per year in the United States and about 1300 in 

Europe. This incidence is fairly uniform throughout the world, at least for 

industrialized nations. The median age at diagnosis for neuroblastoma patients is 

about 18 months; so about 40% are diagnosed by 1 year of age, 75% by 4 years 

of age and 98% by 10 years of age [6]. Neuroblastoma originates from neural 

crest that is an embryonic structure formed between the third and the fourth week 

of human embryonic development. During the development the neural crest cells 

migrate to many specific regions to form a variety of structure including the 

sympathetic nervous system (SNS). In vitro studies have shown that growth 

factors play a crucial role in lineage determination in neural crest stem cells, in 

fact, a way to obtaining primary culture from of immature neurons and 

neuroendocrine cells from rat is to grow the cells in presence of Nerve Growth 

Factor (NGF) and low levels environment of glucocorticoids [7]. By analyzing the 

transcriptional profiles of neuroblastoma cells it becomes evident that they share 

the expression of a set of genes within the SNS cells and as for many tumors 

neuroblastoma has low expression of some specific lineage markers. One also 

frequently finds expression of genes or antigens normally linked to migrating 

neural crest cells as MYCN, progenitor cells of other lineage as C-KIT and 

NEUROD, or early sympatho-adrenal progenitor cells as MYCN; HASH-1; 
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dHAND [8-10]. It is still an open question whether the expression of these genes 

reflect crest cell characteristics or instead features of an early progenitor stage.  

Most primary tumors (65%) occur within the abdomen, with at least half of these 

arising in the adrenal medulla gland. Other common sites include the neck, chest, 

and pelvis. The disease is remarkable for its broad spectrum of clinical behavior 

where signs and symptoms are highly variable and dependent on site of primary 

tumor as well as the presence or absence of metastatic disease [6, 11]. Even if a 

substantial improvement in outcome of certain well-defined subsets of patients 

has been obtained during the past few years, the outcome for children with a 

high-risk clinical phenotype has improved only modestly and the long-term 

survival is still less than 40% [12, 13]. 

 

 

 

 

 

 

 

 

 

 
 

Fig.5. Onset sites of Neuroblastoma. 

Based on a histological point of view neuroblastoma can be classified in: 

• Immature: they are the larger population of small neuroblasts, characterized from 

a high rate of undifferentiating form and little cytoplasm (neuroblastoma, 

malignant). 

•  Partially mature: consisting of ganglion cells capable of to metastasize. 

•  Mature: ganglion cells organized in cluster and surrounded by a stroma of 

Schwann cells (ganglioneuroma, benign). 
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Fig.6. Degree of differentiation in neuroblastoma. A, 

Schwann cells and ganglion cells (indicated by 

arrows) are prominent in stroma-rich neuroblastoma. 

B, Stroma-poor neuroblastoma consists of densely 

packed small round blue cells with scant cytoplasm 

[11]. 

 

 

 

 

Nowadays the general accepted method in neuroblastoma staging is 

International Neuroblastoma Staging System (shown in Table 1) that divide the 

pathology in several stage 1, 2A, 2B, 3, 4 and 4s each one reflecting a different 

dissemination status of the tumors [14]. However, these clinical features are 

imperfect predictors of tumor behavior, so further prognostic markers are needed. 

Advances in understanding of neuroblastoma came from cytogenetic and 

molecular biological approaches. Integration of biological and clinical data is 

crucial to facilitate predictions about neuroblastoma, and in many instances 

biological parameters seem to be more important than traditional clinical features 

as predictors of outcome [11, 15]. 

A peculiarity of neuroblastoma tumors is that in some cases they spontaneously 

regress. This phenomena was described for the first time by D’Angio and 

colleagues in 1971 [16]. They described the uncommon behavior of 4s stage in 

which infants although showed a small localized primary tumors with metastasis 

in several organs like liver, skin or bone marrow they always completely 

regressed. Neuroblastoma has the highest rate of spontaneous regression or 

differentiation (i.e. into a benign ganglioneuroma) observed in human cancers: 

the actual frequency of neuroblastomas that are detected clinically and 

subsequently regress without treatment is 5–10%. This is the reason why 
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probably the number of spontaneous regression rate, due to asymptomatic 

neuroblastomas, could be probably much higher [15]. 

Stage Definition 

1 

Localized tumor with grossly complete resection with 

or without microscopic residual disease; negative 

ipsilateral lymph nodes 

2A 
Localized tumor with grossly incomplete resection; 

negative ipsilateral non-adherent lymph nodes 

2B 

Localized tumor with or without grossly complete 

resection with positive ipsilateral non-adherent 

lymph nodes; negative contralateral lymph nodes 

3 

Unresectable unilateral tumor infiltrating across the 

midline with or without regional lymph node 

involvement, OR Localized unilateral tumor with 

contralateral regional lymph node involvement, OR 

Midline tumor with bilateral extension by infiltration 

(unresectable) or by lymph node involvement 

4 

Any primary tumor with dissemination to distant 

lymph nodes, bone, bone marrow, liver, skin or other 

organs (except as defined for stage 4S) 

4S 

Localized primary tumor (as defined for stages 1, 2A 

or 2B) with dissemination limited to skin, liver and 

bone marrow (limited to infants <1 year age) 

Table 1. International Neuroblastoma Staging System 

3.1 Genetics abnormalities in Neuroblastoma 
Subsets of patients show a genetic predisposition to develop neuroblastoma, and 

this predisposition follows an AUTOSOMAL-DOMINANT pattern of inheritance. 

Literature data report that roughly 22% of all neuroblastoma could be the result of 

a germinal mutation [17]. This hypothesis is reinforced by studies showing that 

the median age at diagnosis of patients with familial neuroblastoma is reduced 

from 18 months to 9 months [15]. Although some patients have a predisposition 
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to the disease, most neuroblastomas occur sporadically. It has been found that 

gain of alleles, activation of oncogene, loss of alleles and/or change in cell ploidy 

are important steps in neuroblastoma development. 

• DNA content: In spite of the fact that most tumors have karyotypes in the diploid 

range, tumors from patients with low stages are often hyperploid [18, 19]. 

Unfortunately, this aspect is not easy to assess since cells karyotyping assays 

are most of the time unsuccessful. 

• Amplification of loci: the most important and significant amplification that occur in 

neuroblastoma involves MYCN gene’s locus at 2p24 but I’ll discuss later about 

that and its relevance in this type of cancer. Other amplifications include 2p22, 

2p13, 12q13 (MDM2 gene), and 1p32 (MYCL gene) [20-23]. However, no 

neuroblastoma has been shown to amplify another gene that did not also amplify 

MYCN. Other abnormalities can occur at 4q, 6p, 7q, 11q and 18q [24-26]. 

• Trisomy of 17q: it is one of the most common abnormalities in neuroblastomas. It 

has been registered in 50% of cases [27, 28]. The gene (or genes) mapping in 

this chromosome regions responsible for the selective advantage is (are) 

unknown, though they may most likely have been proposed genes with anti-

apoptotic function with consequences on surviving rate [29].  

• HRAS oncogene activation: Activating mutations of RAS proto-oncogene are rare 

in neuroblastoma [30, 31]. However, there are some lines of evidence that high 

expression levels of HRAS in neuroblastoma can correlate with a lower stage 

disease and good prognosis [32]. Activation of RAS proteins may result from 

activation of tyrosine kinase receptor (TRK receptors such as TRKA). 

• Chromosomal deletions or allelic low: Deletions of some chromosomes are 

common in neuroblastoma disease and generally correlate with different stages 

of aggressivity and prognosis. For instance, deletion of 1p occurs in 35% of 

cases and is associated with MYCN amplification [33-35]. It is a good marker for 

the cancer progression but not for a valuation of survival. Three regions of 1p 

have been found involved by a different research groups (see Fig 7).  

On the other hand, deletions in 11q and 14q counter correlate with 1p and MYCN 

status [36]. Notably 11q LOH was associated with event-free survival but only in 

patients that lack MYCN amplification. Presumably the cause of this is that a very 

few amount of tumors have 11q loss and MYCN amplification and when the two 

abnormalities are concomitant the prognostic impact of MYCN is dominant. 
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Fig.7. Loss of heterozigosity of chromosome 1p. This 

genetic map shows the different regions identified by 

Brodeur [37], Schawb [38], Hyashi [39], Nakagawara [40], 

Martinsson [35] [41] and Versteeg [40]. 
 

 

 

 

 

 

• Specific tumor-suppressor genes: the TP53 gene, which encodes the P53, is one 

of the most commonly mutated genes in human tumors. P53 is a key regulator of 

cell cycle and its inactivation can contribute to tumor progression. The role of this 

gene in neuroblastoma is still controversial. In fact TP53 is rarely muted in 

primary neuroblastoma [42, 43].  Recent evidences show that TP53 gene might 

be more often mutated in cell lines that are derived from patients relapse that in 

primary tumors [44, 45]. CDKN2A (also knows as INK4A or p16) has been found 

deleted or mutated in several neuroblastomas. Is well known that CDKN2A plays 

an important role in cell cycle control. As well as CDKN2A also NF1 (a negative 

regulator of Ras signal pathway) has been found altered but both these gene 

alterations seem to be uncommon in primary tumors [46, 47]. 

• ABCC subfamily: Although the prognostic value of the ATP-binding cassette, 

subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed 

to their role in cytotoxic drug efflux, certain observations have suggested that 

these multidrug transporters might contribute to the malignant phenotype 

independent of cytotoxic drug efflux (see below). 

 

3.2 MYC oncoproteins and neuroblastoma 
The role of MYC oncogene family in the biology of normal and cancer cells has 

been intensively studied since 1980s. This family (comprising c-MYC; MYCN and 
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MYCL) is one of the most studied groups of proteins in biology. The deregulation 

on Myc genes is involved in a wide range of cancer types. They normally respond 

to different kind of signals driving cells proliferation, growth, apoptosis, 

metabolism, cell-size control, genome integrity and differentiation. The Myc family 

members share a good degree of homology (see Fig 8) but they are 

characterized from a slightly different expression pattern.  

 

 

 

 

 

 

 
Fig.8. The three MYC proteins (c-MYC, MYCN and MYCL). The N terminus of Myc 

contains the transactivation domain and the C terminus contains the DNA-binding 

domain. The MYC boxes I, II, III and IV are indicated in red. The basic helix-loop-

helix/Leucine zipper (b/HLH/LZ) domain is indicated in green. MYC box II (MBII) has 

been shown to have a crucial role in most of the biological activities of Myc. 

The expression of c-MYC gene is quite constant during embryonic development 

and is detected in adult tissues with a high rate of proliferation. MYCN is 

subjected to a strict temporal and spatial expression pattern as shown by 

comparison of fetal and adult brain cells [48] and by analyses of fetal mouse 

tissues during the development [49, 50]. For instance, MYCN expression starts to 

be detected in murine development at day 7.5 [51] reaches its maximal level at 

days 9.5-11.5 and then decreases after day 12.5 [50]. MYCN in expressed in 

several tissues such as heart, limb buds and neural tube [49] and during the 

organogenesis in lung, liver and stomach [52]. Moreover, MYCN expression is 

highly dynamic in time as well as in space.  At birth time it is expressed in brain, 

kidney, intestine, lung and heart but it becomes downregulated after several days 

or weeks, depending on the specific tissue taken in consideration. Studies in 

2002 have been demonstrated that its expression is essential for a normal 

development since its inactivation leads to a large set of defects [53]. This 

intricate expression pattern reflects a severe control mechanism that is achieved 

by converge of several tissue-specific, stage-specific and signals on MYCN 

promoter elements most likely different from those found in the c-MYC promoter 
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elements. Indeed, several data shown that MYCN is an exclusive and essential 

downstream effector of Shh signaling during cerebellar growth whereas c-MYC is 

required for Wnt/β−catenin pathways [54, 55]. Generally increase of Myc levels 

occurs through both transcriptional and post-transcriptional mechanisms and 

appears to be an immediate early response (about 2 hours) to most mitogenic 

factors [56]. On the contrary, anti-proliferative signals trigger rapid 

downregulation of Myc expression [57]. 

3.2.1 Myc/Max/Mad transcription factor network 
As mentioned before, Myc oncoproteins contain both leucine zipper and helix-

loop-helix motifs [58, 59]. These proteins motifs are documented in sequence–

specific DNA binding protein, thus Myc can bind the DNA. However this evidence 

was nothing until the identification of Max in 1991 [60]. Max is a small protein that 

can homodimerize and binds the DNA and the binding function of the Max-Max 

dimer is inhibited by phosphorylation [61]. Max can also form heterodimer with 

Myc family proteins and this heterodimers are not sensitive to any 

phosphorylation as seen previously for Max-Max dimer [61]. On the other hand, 

no stable Myc homodimers have been found present in vivo. Max can also 

dimerize with an other set of protein such as Mad1, Mad2 (Mx1), Mad3, Mad4 

and Mnt or better know as Mad family members. In fact, has been shown that 

they behave more or less like Myc [62]. 
Fig.9. Max-interacting proteins. 

Max forms heterodimers with 

members of the Myc and Mad 

protein families as well as with 

the Mnt and Mga proteins. Each 

of these proteins interacts with 

Max through its BR/HLH/LZ 

domain. 
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Myc/Max dimer can bind the DNA on specific sequences also known as E-Box 

(CANNTG, the most popular is CACGTG) with a weak transcriptional activity 

(from 2 to 4 fold) [60, 63, 64]. In contrast, the Mad/Max heterodimer acts a 

transcriptional repressor at the same binding sites [65-67]. 

 
Fig.10: A, Structure of 

heterodimer Myc-Max 

bound to DNA; B, 

Structure of heterodimer 

Mad-Max bound to DNA. 

 

 

 

 

 

The ability in transcriptional modulation of the dimers derives from specific 

domains that they can interact with a set of co-activators or co-repressors in 

order to form different complexes. For instance, the transcriptional activation of 

Myc is mediated by the recruitment of histone acetyltransferases (HATs) through 

the interaction between the Myc MBII motif and TRRAP 

(transactivation/transformation associated protein), whereas Mad/Max acts as 

transcriptional repressor by recruiting HDACs (histone deacetylase proteins) 

through the adaptor protein SIN-3 [68, 69]. 

 

 

 

 

 

 

 

 

 
Fig.11. Transcriptional regulation by Myc/Mad/Max network through E-box  

elements. 
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3.2.2 MYCN and Neuroblastoma 
In 1983 Schwab and colleagues identified a Myc-related oncogene (MYCN) 

located on the distal arm of chromosome 2 encoding a phosphoprotein (MYCN) 

of molecular weight of 65/67 KDa localized in the nucleus and capable to bind the 

DNA on a hexameric sequence (see above) [70, 71]. Surprisingly a large region 

from this site becomes amplified in some neuroblastoma cases and the MYCN 

locus is copied to form an extrachromosomal circular element or DMs (double-

minute chromatin bodies) or a homogenously staining region (HSR) with 

retention of wild type copy [72]. 

 

 

 

 

 

 

 

 

 

 
Fig.12. MYCN amplification in neuroblastoma cells analyzed by FISH. 

Evidence suggests that all the copies derived from amplification are 

transcriptionally active [73, 74] and this leads to an increase on MYCN mRNA 

levels form 50 to 100 fold thus generating high endogenous levels of MYCN 

protein. Amplification and overexpression of MYCN is generally associated with 

advanced stages in neuroblastoma and poor prognosis, in fact cells with high 

levels of MYCN are characterized by a rapid tumor progression and low level of 

differentiation even in infants and patients with low stage of disease [75, 76]. 

Furthermore, studies show a strong correlation between MYCN amplification, and 

deletions on chromosome 1 and 17q gain.  

It has been demonstrated that MYCN is amplified in 30% of advanced 

neuroblastoma cases and 22% of total cases display a number of copies form 50 

to 100 times. Overall, these results make MYCN amplification as one of the most 

significant prognostic factors for neuroblastoma outcome (see Table.2 and Fig 

13) 
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Table 2. Analysis on 3000 neuroblastoma patients. 

  
Fig.13. Survival of infants with 

metastatic neuroblastoma based on 

MYCN status. A Kaplan–Meier 

survival curve of infants less than 1 

year of age with metastatic 

neuroblastoma.  

 

 

 

 

 

3.2.3 MYCN as an activator 
In yeast and mammalian MYCN transfected cells the exogenous MYCN 

overexpression is sufficient to activate several synthetic reporters containing 

proximal E-Box [65, 77]. Furthermore, MYCN regulates natural E-box containing 

promoters or sequences derived from a putative Myc target genes [64, 78-80].  

The Myc/Max heterodimer has been seen to have a weak transcription activity 

(from 2 to 10 fold) both endogenously and in transient assay [77] and these 

evidences has been confirmed by different microarray experiments in 2004 [81]. 

These results corroborate the transcriptional role of Myc even if, as mentioned 

before, its activity is weaker when compared to other transactivators.  

Generally, MYCN through its transactivation domains (TAD) can recruit the basal 

transcription machinery either directly or indirectly. In almost every case, TAD 

function implicates interactions with specific set of proteins. The dominant model 

suggests that Myc, when bound to the DNA, increases local histone acetylation. 
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Indeed MYCN has been found to interact with histone acetyltransferase 

complexes including TRRAP and either GCN5 (general control of amino-acid 

synthesis protein 5) or TIP60 which preferentially acetylate histones H3 and H4 

respectively [69, 82] (fig 13a). Myc can also bind the p300/CBP (CREB-Binding 

Protein) acetyltransferases [83], but the effect of this binding is still controversial. 

In fact a 2003 study showed that CBP could acetylate Myc itself leading to a 

change in Myc protein ubiquitination and activity [83]. An acetylated chromatin 

state results in a opened DNA that provides more accessible docking sites for 

acetyl histone binding proteins such as GCN5 and SWI/SNF chromatin 

remodeling complex with consequential induction of transcription [84, 85]. 

Nowadays is certain that recruitment of acetyltransferase proteins is the major 

mechanism of transactivation and is utilized from other transcription factor s as 

TCF (T-cell factor), E2F, p53 and Gal4 [86].  

Most of the Myc target genes are transcribed by RNA polymerase II. Other target 

genes are CDKA (cyclin dependent kinase 4) [87], CDC25A [88], cyclin D2 [89, 

90] and other members of E2F family [91]. Furthermore, Myc has been found to 

stimulate expression of several genes that are directly involved in cell size and 

growth or that encode for ribosomal proteins [92], translation factors and 

metabolic enzymes [93]. This is consistent with the evidence that Myc, through 

the binding with TRRAP and subsequent acetylation, is present in vivo at both 

RNA polymerase III and RNA polymerase I dependent genes [92, 94-96].  

Myc can also regulate the transcription at the level of transcriptional elongation, 

in fact is well know that RNA pol II is recruited in proximity of the start sites with 

its C-terminus tail (CTD) in hypophosphorylated state. Phosphorylation of the 

CTD occurs during transcription and elongation steps, whereas the CTD must be 

dephosphorylated to allow RNA pol II to be recycled. Has been shown that Myc, 

by its TADs domains, can directly interact with the CTD tail of RNA pol II and 

increase the phosphorylation (see Fig 14b) [97, 98].  
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Fig.14. Mechanisms of MYC-

induced transcription. A, Myc 

recruits histone acetyltransferases, 

which promote localized modification 

of chromatin through acetylation of 

nucleosomes. B, Myc recruits basal 

transcription factors and promotes 

the clearance of promoters through 

RNA polymerase (pol) II. The Myc 

protein can promote a paused RNA 

pol to continue transcription of the 

mRNA by recruiting the P-TEFb 

(positive transcription-elongation 

factor-b) complex, which 

phosphorylates the CTD on Ser2 

and promotes transcriptional 

elongation. 
Moreover Myc can promote the methylation of 5’mRNA guanidine (cap) that is a 

general essential step for gene expression. Recent studies show that Myc has an 

important role also in DNA replication. During the cell cycle, the whole genome 

needs to be correctly replicated and segregated to the “daughter cells”. Any kind 

of disruption in this pathway results in cell cycle arrest or at worst in mutation 

and/or genomic instability [99]. Myc was found to bind to numerous components 

of the pre-replicative complex and localize to early sites of DNA replication [100, 

101]. The last recent studies demonstrated that Myc could also be involved in a 

polycistronic microRNA regulation making its role in the tumorigenesis even more 

intriguing [102, 103].  

Taken together, these findings reveal an apparent discrepancy between Myc’s 

dramatic effects on cellular function and its weak transcriptional activation. 

Recent experiments have been shown that hypothetically, Myc could bind 

thousands of sites present in the genome (about 15% of the genes) as well as 

intergenic regions [81, 104-106] thus Myc could regulate a significant portion of 

all genes in an organism. Certainly, the potentially Myc’s binding sites in vivo are 

more than the number of Myc molecules in proliferating cells, suggesting that 

each site is bound only temporarily by Myc (hit and run theory) [57]. In the end, 

there are several evidences that MYCN may paly an important role in the human 
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genome organization regulating global cellular euchromatin. MYCN maintains 90-

95 % of euchromatic histone marks: H3K9 acetylation and methylation and H3K4 

modifications in human neuroblastoma with the enhancer like function [107]. The 

absence of Myc in neuronal stem cells causes nuclear condensation and a 

spread of heterochromatic portion. Nonetheless, it is intriguing that it can bind 

intergenic regions even if they are not enriched for the E-Box specific sequence. 

In these cases it is supposed that Myc can bind the DNA through an indirect 

association with chromatin.  

Furthermore, Myc has been shown to posses another interesting feature 

completely independent from E-Box context; indeed Myc can act as well as 

transcriptional repressor on a specific set of genes [108]. 

3.2.4 MYCN as a repressor 
For several years it has been observed that high levels of Myc expression in 

transformed cell lines correlate with down-regulation of specific mRNAs. Indeed, 

in 1980 a number of studies have been demonstrated the Myc participates in a 

negative feedback loop [108, 109]. Other indications that Myc might also function 

as a transcriptional repressor came from a genome-wide analyses where has 

been shown that Myc can repress at least as many genes as it activates [57]. 

While, the mechanism by which Myc can promote the transcription of its targets 

is well understood and established, very little is known about its role in 

transcription repression. The use of a serial deletion mutants have focused the 

attention on the importance on Myc Box II (MBII) and BR/HLH/LZ region in both 

activation and repression activity. 

Originally, no DNA consensus sequence for transcriptional repression mediated 

by Myc has been identified. This reinforced the possibility that this mechanism is 

simply an indirect consequence of the altered physiological state of a cell that is 

induced by Myc. Indeed, there are data supporting an indirect mechanism of 

gene repression by Myc [110, 111]. Furthermore, DNA elements required for the 

repression mediated by Myc have been demonstrated to be within the promoters 

of repressed targets genes, thus indicating that Myc-repression occurs at a 

transcriptional level [108]. 

The repressed genes belonging to different classes: the first class consists in 

genes that encodes for proteins selectively expressed in quiescent cells or 

involved in cell proliferation. Among these we have P21Cip1 [112-116], 
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P27kip1[117], P15ink4b[115, 118, 119], P18ink4c[93], P57kip2[120], and further the 

differentiation-inducing protein C/EBP-α [121, 122], the growth-arrest proteins 

GAS1 and GAS2 [123], the growth-arrest and DNA damage proteins  GADD34, 

GADD45, GADD153 [124] and the Myc-antagonist MAD4 [125]. All the genes in 

the list point to a role for Myc-mediated gene repression in the control of cellular 

growth, differentiation and response to DNA damage. It appears clear that the 

repression of each individual gene could contribute to the phenotype of Myc-

transformed cells. 

The second class encompasses genes that are involved in cell adhesion and cell 

surface markers for instance class I HLA molecules in melanoma cells, the 

α3 β1 integrin in neuroblastoma and the LFA-1 cell adhesion protein in the 

transformed B-cell [62, 126, 127]. In fact, altered cell adhesion is a hallmark of 

many tumors as well as in the Myc-transformed cells [128]. 

Finally, genes involved in metabolic pathways such as H-ferritin and 

thrombospondin [129, 130]. Alteration in these gene expressions correlates with 

angiogenesis. 

These results indicate that Myc has a massive combination of functions that, 

when altered, could increase the replicative potential of the cells and causing 

tumors. 

The Myc-repression mechanism has been better elucidate with the identification 

of both DNA sequences and specific Myc-binding proteins that are involved in the 

repression. Recent studies show that not all genes are repressed by Myc through 

the same mechanism. 

Some Myc repressed targets contain a subclass of initiator elements (INRs 

consensus, YYCAYYYYY, where Y represents a pyrimidine base T/C), which are 

usually but not exclusively, on TATA less promoters. INRs elements are 

recognized by TFII-D as well as a number of regulatory proteins like TFII-I, YY1 

and the Myc-interacting zinc finger protein1 (MIZ-1). Has been demonstrated that 

all these three proteins interact with BR/HLH/LZ region of Myc [62]. While there 

has been a little follow-up on the initial evidences on TFII-I and YY1, the 

association Miz-1/Myc has been confirmed and shown to promote stabilization of 

Myc by inhibiting its ubiquitination and degradation [131]. 

MIZ-1 (also known as ZBTB17) gene encodes for a protein of 721 aa 

characterized from a 13 zinc-finger domains (N-terminus) and a BTB/POZ 
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domain which is a protein/protein interaction domain found in a multiple zinc-

finger proteins. Thus, Miz-1 interacts with Myc  “outside” the HLH domain, but do 

not interact with Mad, Max and Mnt [131, 132].  

Someone else Myc repressed genes, such as GADD45, do not contain INR 

sequences and the repression appears to be mediated by a GC-rich regions that 

are recognized by other factors like WT1 or P53 [124]. Another important GC 

binding protein that seems to be involved in this repression mechanism is the 

basal transcription factor 1 (specific protein 1 or SP1). SP1 is a zinc-finger protein 

of 785 aa involved in many cellular processes including differentiation, growth, 

apoptosis, responses to DNA damage and chromatin remodeling. It has 2 TADs 

domains and normally recruits TBP. Furthermore, results show that repression by 

Myc could occur through the SMAD and NF-Y binding sites due to a direct 

protein/protein interaction between Myc and these factors [133, 134]. It is clear 

that several pathways of repression exist (Fig 15). 

 

 

 
 

 

 

 

 

 

 
 

Fig.15. Myc mediated repression  (A) INR dependent 

(B) INR independent. 

Finally, the mechanistic model is that Myc/Max heterodimers interacts with 

transcriptional activators that are bound directly to DNA through enhancer or INR 

elements and these multi-protein complexes could displace co-activator and 

recruit co-repressor [135-137]. 

However, as mentioned before, some genes are repressed by Myc through a 

mechanism that does not involve Max [114, 138]. In these cases, Myc recruits 

DNMT3A (DNA methyltransferase) to the Myc/Miz-1 complex on the promoter as 

show for P21 repression, indicating that the repression could at least partially be 

mediated by methylation of its target regions [139]. Since DNMT3A is complexed 



Introduction 

 21 

with histone deacetylase proteins, its recruitment might lead to a local histone 

deacetylation and inhibition of transcription [140]. 

To date still less is know about MYCN mediated repression. Only few genes have 

been found repressed by MYCN: 

• NDRG1: This gene encodes for a cytoplasmic protein involved in stress 

responses, hormone responses, cell growth, and differentiation [141]. 

• NDRG2: This is a cytoplasmic protein that may play a role in neurite outgrowth 

[142]. 

• TG2: a protein involved in apoptosis [55]. 

• CCNG2: a cell cycle regulator [143]. 

• MKP3: (also known as DUSP6) is a dual specificity protein phosphatase [144]. 

 

 

 

 

 
 

 

 

Fig.16. Schematic models of MYCN-mediated repression on TG2 (A), 

CCNG2 (B) and MKP3 (C) genes. 

 

This is the reason why this thesis will be focused to the study of the 

mechanism(s) underlying the pivotal role played by MYCN. 

Furthermore, recent findings show that Myc is one of the fundamental factors in 

the “magic quartet” that can reprogram somatic cells to induced pluripotent stem 

cells (iPS). Ectopic expression of Myc increases the ability of OCT-4, SOX2 and 

KLF4 to induce iPS formation form mouse and human cells of 10 fold [145-148]. 

Taken together these results show that both activation and repression are maybe 

required for Myc biological functions and reveal another level of complexity 

hidden behind “the Myc family”. 

3.3 Expression and function of Trk and p75NTR in Neuroblastoma 
The factors that are responsible for regulating the malignant transformation of 

sympathetic neuroblasts to neuroblastoma cells are not completely well 
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understood, but they probably involve one or more neurotrophin-receptor 

pathways that signal the cell to differentiate or undergo to apoptosis. 

The TRK (NTRK) family of neurotrophin receptors plays an important role in 

development and maintenance of the central and peripheral nervous system. 

This family consists of TRKA (NTRK1), TRKB (NTRK2) and TRKC (NTRK3).  

The principal ligands for these receptors are: nerve growth factor (NGF), brain 

derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and neurotrophin 4/5 

(NT4-5). All the TRK receptors do not show the same affinity for all the ligands 

mentioned before (Fig 17). TRKA is high-affinity receptors for NGF, TRKB for 

BDNF, NT3 and NT4-5 while TRKC has a good binding affinity with NT3. All the 

neurotrophins bind also with lower affinity to another receptor known as P75NTR 

(NGFR). 

 

 

 

 

 

 

 

 

 

 
Fig.17. Interaction between neurotrophin and their receptors 

In normal sympathic ganglia, most of the mature neurons at the perinatal stages 

express TRKA at high levels as a result of a “switching” of expression from TRKB 

and TRKC [149]. 

A massive physiological apoptosis occurs after the expression of TRKA and 

entering in G1 cell cycle arrest. Knockout mice for TRKA, TRKB or TRKC display 

an overlapping spectrum of abnormalities in central and in the peripheral nervous 

system [150-152]. 

TRK was discovered as an oncogene fused with tropomyosin gene in the 

extracellular domain [153] from which its name is tropomyosin related kinase 

(TRK). 
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Comparison of the sequences of TRK family members to those other 

transmembrane tyrosine kinase indicated that they are a completely novel family 

of cellular surface proteins. 

 

 

 

 

 

 

 
Fig.18. Structure of TRK family receptors and P75NTR 

They are characterized from: 

• An extracellular domain of 50-80 KDa with the neurotrophin binding site 

• A transmembrane domain of 25 a.a 

• A cytoplasmic domain of 130-150 KDa recognized by ATP and with tyrosine-

kinase activity  

• A portion with numerous tyrosines that are phosphorylated for the activation of 

the receptors. 

The bond of the ligand to the receptors induces a structural change in the 

extracellular portion, causing the dimerization and activating the cytoplasmic 

kinase function for the cross-phosphorylation. 

TRKA is a transmembrane receptor that acts as a homodimer (Fig 18). Explanted 

neuroblastoma cells with high level of TRKA differentiate when expose to NGF or 

undergo apoptosis in absence of NGF [154]. The NGF/TRKA network could 

provoke differentiation or regression in good prognosis neuroblastomas 

depending on the particular microenvironment. 
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Fig.19. Signal-transduction pathway 

of the TRKA tyrosine kinase receptor. 

Binding of nerve growth factor (NGF) 

leads to TRKA auto-phosphorylation 

and activation of various signalling 

cascades. Proteins interact directly 

with the TRK intracellular domain are 

SHC, PLC 1, SH2B and IAPs. 

Binding of a ligand to TRKA can also 

trigger the RAS signalling pathway, 

leading to survival and differentiation, 

and an alternative survival-signalling 

pathway through phosphatylinositol 3-

kinase (PI3K). 

 

In neuroblastoma TRKA is expressed in tumors with favorable outcome that often 

showed spontaneous regression. Such tumors usually affect patients under one 

year of age, with low stage and their DNA is aneuploid. Furthermore, TRKA 

expression is strongly downregulated in aggressive neuroblastomas that usually 

have MYCN oncogene over-expression and loss of the region 1p36. The 

combination of TRKA expression and MYCN amplification provide even greater 

prognostic power [15, 154-158] (Fig 20). 

 

 

 

 

 

 

 

 

 

 
 

Fig.20. Probability of survival of patients with human neuroblastoma in accordance only 

with levels of expression of TRKA (A) and according to the relationship between 

expression of TRKA and amplification of MYCN (B). 
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In contrast to TRKA, TRKB is preferentially expressed in aggressive 

neuroblastoma, especially those with MYCN amplified [159]. It is physiologically 

expressed in normal sympathetic neurons at an early stage compared to TRKA. 

In the MYCN amplified tumors may suggest that the arrest of differentiation has 

occurred before TRKA expression. Oddly, has been found a truncated form of 

TRKB lacking the catalytic tyrosine kinase domain in favorable tumors. 

TRKC was found expressed in low stage neuroblastoma, and like TRKA, it is not 

expressed in tumors carrying MYCN amplification [160] [161]. 

P75NTR, also known as NGFR, was cloned for the first time in 1986. It is able to 

activate a distinct set of signaling pathways within cells that can be synergistic or 

antagonistic to those activated by TRK receptors. Most of this pathways are pro-

apoptotic indeed it belongs to the tumor necrosis factor receptor (TNFR)/ Fas 

death-receptor super-family, but are suppressed by TRK receptor-initiated 

signaling. 

P75NTR may form a homodimer or a heterodimer with the TRKA receptor. In this 

second case its presence increases the rate of NGF association with TRKA [162-

165]. 

The biological role of P75NTR in neuroblastoma is still unclear. However, recent 

evidence suggests that the intracellular region of P75NTR has a death domain 

which might send signals to induce neuronal cell death [166]. 

Theoretically, the P75NTR expression could lead to either cell death or 

differentiation in response to ligand, depending from the presence or the absence 

of TRKA [167, 168]. As for TRKA, the expression of P75NTR is strongly 

downregulated in aggressive neuroblastoma having MYCN amplification. 

It appears that TRKs and P75NTR are key molecules in the understanding of 

neuroblastoma biology. However, much still remains unknown, including what 

regulates expression and function of neurotrophin receptors in neuroblastoma. 

Taken together, the evidences suggest that there may be a direct involvement of 

MYCN in the repression of TRKA and P75NTR and this mechanism may play a 

pivotal role in malignancy of neuroblastoma. 

3.4 Chemioresistance in neuroblastoma 
It is well known that amplification of MYCN oncogene occurs in 30% of primary 

untreated neuroblastomas and it is associated with advanced stage disease, 

rapid progression and unfavorable prognosis [72].  
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Moreover, this patient subgroup often shows a multiple drug resistance 

phenotype (MDR) that develops from the treatment of the tumors with 

chemotherapeutic drugs and increase with the intensity of the therapy 

accommodation. 

There are two general models of resistance to anticancer drugs: those that impair 

delivery of anticancer drugs to tumor cells and those that arise in the cancer cells 

themself due to genetic and epigenetic alterations that affect drug sensitivity. In 

this second case cancer cells start to pump the drugs out by increasing the 

activity of efflux pumps, such as ATP-dependent transporters [169]. 

The ATP-binding cassette genes (ABC) represent the largest family of 

transporter genes and many of those are implicated in disease process and/or 

drugs resistance [170-173]. ABC genes are widely conserved between species; 

there are 25 ABC in E.Coli, 29 in S. cervisae, 56 in C. elegans, 56 in Drosophila, 

51 in Mouse and 48 in homo sapiens. Human ABCs are localized on 16 different 

autosomes and only 2 of them reside on the X chromosome. 

The prototype ABC protein binds ATP and uses this energy to transport 

molecules of different nature across the cell membranes (see Fig 21).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.21. The structure of three categories of ABC transporters. 

 

Analysis of amino acid sequences alignments of the ATP-binding domains has 

allowed the ABC genes to be classified into subfamilies. There are seven ABC 
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gene subfamilies in the human genome and for the most part they contain genes 

that display high identity in the trans-membrane domains (TM) and have identical 

gene organization. However, the function of ABC genes poorly corresponds to 

subfamily organization. 

Two of the best-characterized ABC transporters in neuroblastoma are P-

glycoprotein (encoded by MRD gene) and the multi resistant-associated protein 

MRP. 

While the role of MRP is still controversial and fails to predict the outcome (see 

Fig 22), a significant improvement has been done by studying MRP genes. 

MRP encodes a novel membrane transport protein whose over-expression 

confers a resistance profile similar to that mediated form MRD [174]. The 

discovered of ABCC1 (MRP1) stimulated a genomic search of homologous 

leading to the discovery of 12 additional members of the ABCC subfamily 

transporters [175]. Such as ABCC1 many ABCC family members have the 

potential to confer drug resistance, according with the theory that cancer cells 

may combine several different types of transporters to gain drug resistance [176]. 

Treatment of neuroblastoma includes cytotoxic agents (as Topoisomerase I 

inhibitors and taxanes), multi-drug resistance modulators, apoptosis modulators, 

gene therapy and inhibitors of angiogenesis. In particular, in neuroblastoma, the 

chemotherapeutic protocols combine alkylating agents, topoisomerase inhibitors 

and antibiotics.  

Following initial treatment with cytotoxic drugs, tumors appear highly responsive 

and display a good percentage or complete remission in about 80% of cases, 

even those classified with unfavorable prognostic outcome [177]. 

Although many high-risk neuroblastomas initially respond to the first cycle of 

intensive chemotherapy, they frequently become refractory to treatment as the 

disease progress.  Member of alkylating agents or platinum compounds, like 

cisplatin and cycle-phosphoamide respectively, are normally used in the 

chemotherapeutic treatment in neuroblastoma. These drugs are not substrate of 

ABCC1 [178] maybe this is the explanation why even the tumors with high levels 

of ABCC1 initially respond to chemotherapy and additional drug resistance lately 

appears [179]. 
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ABCC1 expression is considered a powerful marker for neuroblastoma prognosis. 

In fact, high levels of ABCC1 expression are strongly correlated with reduction in 

survival [180]. 

 

 

  

 

 

 

 
 

Fig.22. Expression of the MDR1 (ABCB1) and MRP1 (ABCC1) genes in 60 neuroblastoma 

patients. The survival of patients whose tumours expressed high levels of ABCC1 is 

significantly worse than those whose tumours expressed low levels [180]. 

 

Also ABCC4 (encoded by MRP4 gene) is expressed in primary neuroblastoma 

and its over-expression is significantly associated with MYCN amplification and 

ABCC1 expression. The drug resistance phenotype of MRP4 has been to date 

thought to encompass primarily nucleoside analogues (including anti-retroviral 

agents) and methatrexate. ABCC4 is also able to confer significant resistance in 

vitro to the topoisomerase I poison irinotecan and its active metabolite SN-38. 

Thus, like MRP1 also high expression of MRP4 gene correlates with poor clinical 

outcome and in neuroblastoma [181] (see Fig 23) 
 

 

Fig.23. Survival in 52 neuroblastoma 

patients according to expression of the 

MRP4 (ABCC4) gene [181] 

 

 

 

 

 
Our group in collaboration with Dr. Michelle Haber (Children’s Cancer Institute 

Australia, Sidney) was able to demonstrate that MYCN and c-MYC can 

transcriptionally regulate set of ATP-binding cassette transporter genes. 



Introduction 

 29 

Specifically, they found that MYCN drives the expression of ABCC1 and ABCC4 

in neuroblastoma through a direct binding in their promoter sequences. These 

evidences support that the levels of Myc directly affect the malignant behavior of 

neuroblastoma cells in vitro and tumor aggressive in vivo. 

We also found that in primary neuroblastoma low levels of ABCC3 expression 

(MRP3) are predictive for clinical outcome and counter-correlate with MYCN 

levels. The substrates of ABCC3 transporter gene are still unknown. 

So, as in the case of TRKA and P75NTR the relationship between ABCC3 and 

MYCN remains to be defined. 

4. Genome scale loss-of-function: RNA interference  
Genome sequencing efforts have transformed the nature of biological inquiry and 

have led to an increased need for tools that enable functional studies on the 

genome scale. In model organisms, genome scale loss-of-function genetic 

approaches have revealed rich, often unappreciated insights into many biological 

processes. Sequencing the Saccharomyces cerevisiae genome deeply altered 

experimental approach and led to the creation and large use of a yeast gene-

deletion collection that has facilitated studies of gene function [182]. Similarly, in 

model organism such as Caenorhabditis elegans and Drosophila melanogaster 

the discover of RNA interference (RNAi) can be exploited to suppress gene 

expression [183] [184] has lead to a rapid identification of the genes involved in 

many biological pathways through powerful loss-of-function screens [185-190]. 

Although powerful genetic tools already exist for both D. melanogaster and C. 

elegans, the availability of genome-scale libraries of RNAi reagent has facilitated 

comprehensive and, at the same time, increasingly complex loss-of-function 

screens. 

RNAi regulates gene expression through sequence-specific targeting of mRNA 

making possible the production of large-scale libraries direct toward each gene in 

the genome. RNAi also suppresses gene expression in mammalian cells [191] 

and chemically synthesized siRNA have become essential tools for biological 

studies. Indeed, screens in human cell using commercially available libraries of 

synthetic siRNA have identified modulator of apoptosis [192, 193], cell survival 

[194] and kinase required for endocytosis processes [195]. 

In 1998, Fire and Mello discover a mechanism of gene silencing based on the 

presence of small RNA in C. elegans. These gene silencing is on evolutionarily 
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conserved process and is highly dependent on gene sequence. It includes 

endogenous micro RNA (miRNA) and exogenous siRNA or shRNA. During the 

years the mechanism of RNAi has been well investigated and now appears clear 

that this process is initiated in the nucleus and terminated in the cytoplasm. In the 

nucleus, RNA polymerase II binds to promoter and transcribe a long RNA 

precursor as part of one arm of an ∼80 nucleotide RNA stem-loop that in turn 

forms part of a several hundred nucleotides long miRNA precursor (primary 

miRNA or pri-miRNA) [196, 197]. When a stem-loop precursor is found in the 3’ 

UTR, a transcript may be used as a pri-miRNA and as mRNA. Recent studies 

show that even the RNA polymerase III is involved in the transcription of 

particular set of miRNAs but the mechanism is still under investigation [198]. 

Subsequently, the double strand RNA structure of hairpins in a pri-miRNA is 

recognized from nuclear proteins such as DGCR and Drosha forming the 

“microprocessor” complex. In this complex, DGCR8 orients the catalytic RNase 

III domain of Drosha (a ribonuclease protein) that cuts RNA about eleven 

nucleotides from the hairpins liberating them. The product results in a pre-miRNA 

(precursor-miRNA). Pre-miRNA hairpins are exported from the nucleus to the 

cytoplasm by Exportin-5 where they are recognized and cleaved by Dicer in 20-

25 nucleotide fragments with 2 nt of overhang at 3’. One of the two strand will be 

incorporated in the RISC (RNA induced Silencing complex) and will guide the 

entire complex to the target mRNA (Fig 24). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.24. A schematic representation of siRNA, shRNA and miRNA pathways[199]. 
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Unfortunately, many mammalian cells appear to be resistant to the transfection 

methods usually used to introduce synthetic siRNAs into cells. 

An alternative approach to the transfection is to transduce (infect) mammalian 

cells with viruses carrying the expression sequence of a short hairpin RNA 

(shRNA) that encodes a specific siRNA within the cells; this approach can 

achieve stable, long time and highly effective gene suppression in a variety of 

cells types [200-203]. 

For instance, TRC library has been created in 2006 from the RNAi Consortium 

with the goal of enabling large-scale loss-of-function screens through the 

development of RNAi libraries and methodologies for their use. This library is 

designed on the lentiviral vector PLKO.1 (Fig 25), to maximize viral titers and 

resistance to plasmid recombination. The PLKO.1 lentiviral vector is a derivative 

of PRRLSIN.cPPT.PGK/GFP/WRE and is a third-generation self-inactivating 

lentiviral vector that can be used also as a second-generation [204-206]. Human 

U6 promoter drives the expression of shRNAs and the vector contains a PGK 

promoter that regulates the expression of the puromycin resistance gene to allow 

the selection of transduced cells (fig 24). Viruses are generated using a three 

plasmid packaging system (two for the second generation) that separates the 

gag, pol from rev and from the gene encoding the VSV-G coat onto separate 

vector to minimize the potential for recombination to create replication competent 

viruses (low than 0,05%). 
Fig.25. pLKO.1 structure carrying U6 promoter 

and puromycin resistance (Puro R) within the 

LTR sequences. 

 

 

 

 

 

 

 

At July 2006 the shRNA library of TRC contained over 135.000 clones targeting 

14.300 human genes. Each gene is target by an average of five distinct 

constructs and at least four shRNA are available for over 96% of targeted genes. 

The hairpin sequences contain stems of 21 nucleotides that exactly match the 
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target transcript and are select using an algorithm designed to maximize the 

efficiency of knockdown, to avoid off-targets effects and to cover all the 

transcripts. All the genome cover has been reached on spring 2007 and the 

library is still under upgrading processes. 

Other famous Lentiviral library are pGIPZ library that integrate the GFP protein to 

monitor the efficiency of transduction and the DECIPHER Pooled Lentiviral 

shRNA Libraries. 

Furthermore, library based on Lentivirus can be used to transduce both dividing 

and non-dividing cells. 

Numerous are the libraries based on retroviral vector such as pSM2C and pRS 

libraries. On contrary, retroviral libraries are used to infect only dividing cells. 

Due to their robustness and specificity siRNA and shRNA are also significantly 

used to silence cancer-related targets. A large number of preclinical studies have 

offered good outcome by silencing genes critical for tumor processes. For 

instance, metastatic pancreatic cancer is one of the most aggressive and deadly 

tumors with a life expectancy of 4-6 months. Pancreatic duodenal homebox-1 

oncogene (PDX-1) has been found overexpressed in pancreatic adenocarcinoma 

associated to poor prognosis. Silencing of PDX-1 expression through the use of a 

specific shRNA represents an attractive approach to inhibit tumor growth and 

immunohistochemistry examination showed a good reduction of PDX-1 

expression compared with the patients control group [207, 208]. RNAi technology 

has been used to inhibit tumor metastasis potential. For example in advanced 

prostatic cancer where the silencing of PIN1 and VEGFR1 gene expression 

significantly inhibits tumor growth metastasis and angiogenesis processes 

respectively [209-211]. 

Moreover, RNAi can be used to inhibit tumor growth in combination with 

chemotherapy or radiation therapy [212]. 
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1.MYCN expression is inversely correlated with that of TRKA, 
P75NTR and ABCC3. 
As mentioned before, high expression of TRKA, P75NTR and ABCC3 is 

associated with good prognosis and lower-stage neuroblastomas and is strongly 

downregulated when MYCN is overexpressed. Their expression is considered a 

powerful prognostic factor for favorable outcome. 

To determine whether MYCN can regulate at transcriptional level the expression 

of our genes we analyzed their expression profiles in different neuroblastoma 

cells, clones and systems. 

To this purpose, we used TET-21/N inducible cells, a human neuroblastoma cell 

line in which MYCN ectopic expression is transcriptional downregulated by 

adding tetracycline to the culture medium [213]. Transcription levels of TRKA, 

P75NTR and ABCC3 were measured by qRT-PCR as a function of tetracycline 

treat and correlate with that of MYCN. As shown in Fig 1A-B all the analyzed 

gene expression increased significantly upon a repression of MYCN expression. 

Second, we generated several stable cell clones by stable transforming SH-SY 

5Y, a human neuroblastoma cell line in which the expression of MYCN is low, 

with an expression vector carrying the MYCN coding sequence. The Fig 1C-D 

shows that each cellular clone that overexpresses MYCN can repress the 

transcription of TRKA, P75NTR and ABCC3 as compared to parental cell SH-SY 

5Y and to the clone carrying the empty vector. 

Finally, we treated SK-N-BE and L-AN-1, two human neuroblastoma cell lines 

with high level of MYCN expression due to an amplification, with a specific siRNA 

targeting the MYCN mRNA. Results of Fig 1E-F show that strong silencing of 

MYCN upregulates TRKA, P75NTR and ABCC3 as demonstrated by Western 

blotting and for qRT-PCR. 

APEX1, is a gene positively regulated by MYCN and was used as a positive 

control in every system tested. As expected, its repression occurs when MYCN is 

downregulated. 

All these findings support the initial hypothesis pointing to a direct role of MYCN 

in repressing this specific set of genes. 
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Fig.1. The expression of MYCN counter-correlates with the expression of TRKA, P75NTR and 

ABCC3 in neuroblastoma systems. A. Quantification of genes mRNA by qRT-PCR as a function 

of MYCN expression in TET-21/N system. B. Western blot assay C. Expression of TRKA, P75NTR 

and ABCC3 in neuroblastoma clones select for MYCN ectopic expression. D. Western blotting E. 
Western blot F. effect of MYCN knockout on the TRKA, P75NTR and ABCC3 expression by qRT-

PCR. 
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2.MYCN mediates repression of TRKA, P75NTR and ABCC3 acting 
on the core promoter regions. 
To formally confirm the direct role of MYCN in the repression of TRKA, P75NTR 

and ABCC3 we generated different luciferase constructs obtained by cloning the 

promoter regions of these genes into pGL3-basic (see Fig 2). The luciferase 

activity (RLU) was measured for each of these constructs in different cellular 

systems as a function of MYCN expression: 

• TET-21/N system in presence or absence of tetracycline induction. 

• SH-SY 5Y cell clones as a function of the level of MYCN overexpression. 

• HeLa cells as a function of the amount of the pCMV-MYCN expression 

vector co-transfected with the luc-reporters mentioned before. 

Furthermore, the use of HeLa cells extends our analysis in a different 

model from neuroblastoma. 

As shown in Fig 2, MYCN overexpression negatively influences the luciferase 

activity of TRKA, P75NTR and MRP3 full-length promoters while on the contrary 

we did not measure any change on the same promoters carrying deletions of the 

putative core binding regions. Furthermore, expression of MYCN does not affect 

the activity of a viral promoter such as Cytomegalovirus (CMV) that becomes 

responsive when one of the three core promoters is cloned downstream.  

APEX1 -1900/+443 construct represents our positive control and negative control 

respectively.  

Overall, through deletions we identified the minimal responsive regions of each 

promoter to MYCN thus demonstrating that the core promoter of TRKA, P75NTR 

and ABCC3 are required for MYCN-mediated repression phenomena. 

These findings encouraged us to further investigate the mechanism by which 

MYCN can promote transcription repression. 
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Fig.2. Whole promoters and respectively deletion mutants of the tested genes were cloned into 

Firefly Luciferase reporter (pGL3-basic). Luciferase activity was tested in presence/absence of 

MYCN in different conditions. Luciferase activity was normalized to that of Renilla luciferase. 

APEX1 and CMV are the controls. 

3.Repression of the neurotrophin receptor genes TRKA and 
p75NTR in neuroblastoma. 

3.1. Bioinformatics analysis reveals SP1 and MIZ-1 binding sequences. 
Through luciferase assays we identified the minimal responsive region for TRKA 

and P75NTR to MYCN. To better address this point, we bioinformatically analyzed 

both core promoter regions and we found several consensus sequences for SP1 

and MIZ-1 transcription factors (see fig 3). As mentioned in the introduction, 

scientific literature supports the idea that MYC can be recruited in an indirect 

manner on the target genes through its interactions with SP1 or MIZ-1. Indeed, 

SP1 and MIZ-1 binding sequence are also present in the cell cycle regulator 

gene P21 that results repress by MYC in different contexts. Moreover, Brenner 

and colleagues demonstrated that c-MYC could recruit DNMT3a on some genes 

thus promoting their repression. A couple of years ago, we have established that 

TRKA and P75NTR promoter are not methylated so we hypothesized that a 
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different mechanism from DNA methylation may determine the repression of 

neurotrophin receptor genes and it is may be similar to that described for P21. 

 
Fig.3. Cartoon representation of TRKA, P75NTR and P21 promoters. The 

distribution of SP1 (yellow rectangle) and MIZ-1 (red rectangle) sites is very 

similar among the three promoters. 

3.2 MYCN is physically associated on the core promoter of TRKA and 
p75NTR in vivo. 
According to the model generally accepted for Myc-mediated repression was 

reasonable to think that also MYCN does not bind directly DNA (in fact there are 

no putative E-box within the core promoter of both receptors), but through 

interactions with other proteins that can bind the DNA directly. Based on this, we 

performed dual-crosslinking chromatin immune precipitation assays (dual ChIP), 

a variant of standard ChIP in which two different crosslinking agents are used: Di 

(N-succynidimil) glutarate (DSG) that promotes the fixation of protein-protein 

bonds and the formaldehyde that causes links between proteins and DNA. In this 

way, we assured that even the proteins that not directly bind the DNA can be 

recovered [214]. 

Results in Fig 4 show that when we performed a dual ChIP on SK-N-BE 

neuroblastoma cell line we found that MYCN together with its partner MAX, SP1 

and MIZ-1 can specifically co-occupy the core promoter region both of TRKA and 

p75NTR. To establish the presence of MIZ-1 we performed dual ChIP assay in an 

inducible clone derived from SK-N-BE, which expresses MIZ-1-HA protein after 

ponasterone treatment. This allowed us to bypass the problem derived from 

absence of high quality commercial antibodies against MIZ-1 using an antibody 

direct against the HA tag. 
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Fig.4. Dual ChIP reveals that MYCN is physically associated with the core promoter regions of 

repressed genes in SK-N-BE. Results are expressed as a relative enrichment calculated as the 

ratio between the enrichment obtained with the specific antibody and the one obtained with the 

pre-immune serum (IgG). Amplicon A has been used as a negative control. Results represent the 

average of three independent experiments of qRT-PCR. Standard error is indicated. 
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3.3 MYCN, SP1 and MIZ-1 interact one with each other forming a complex 
through distinct domains. 
Based on the previous results we hypothesized that MYC, SP1 and MIZ-1 could 

interact forming a “ternary complex” capable to bind the DNA and to induce 

repression on its target genes. In order to confirm this idea, we performed a co-

immunoprecipitation assay. We co-transfected HEK 293 cells with expression 

vector for MYCN with FLAG and another one for SP1-HA or for MIZ-1-HA tag 

proteins. Fig 5 shows that when MYCN-FLAG was immunoprecipitated using an 

anti-FLAG we specifically recovered both SP1-HA and MIZ-1-HA (Fig 5A). We 

obtained the same results when SP1-HA or MIZ-1-HA was immunoprecipitated 

with the HA antibody. 

Moreover, to confirm the specificity of these interactions, we showed that MAD-

FLAG (another member of Myc/Mad/Max network) cannot recover neither SP1-

HA that MIZ-1-HA (Fig 5A). 

Furthermore, we performed the same assay using the endogenous expression of 

each of our interested proteins in SK-N-BE cells and we obtained the same 

results (Fig 5B). 

Finally, to map the domains involved in the interactions observed above, we 

generated several MYCN deleted proteins fused with the GST. 

We tested each constructs in GST-pull down assay incubating each fragments 

with in vitro translated SP1-HA or MIZ-1-HA proteins (Fig 5C). 

We found that MYCN interacts with SP1 and MIZ-1 through two distinct domains, 

one located on N-terminus (MBII) and the other one placed at C-terminus in 

proximity of the br/HLH/LZ domain respectively. 
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Fig.5. Co-immunoprecipitation and GST pull down assays. A. Tagged proteins were co-

expressed in HEK293 cells. Immunoprecipitation was performed using an ant-HA antibody and 

the western blot was developed using ant-FLAG antibody. Mad-FLAG is the negative control. B. 

Co-immunoprecipitation using endogenous proteins in SK-N-BE. Antibodies SP1, MIZ1 and 

MYCN were used for immunoprecipitation and western blot detection. C. GST pull down 

schematic representation of MYCN. GST assays were performed incubating MYCN fragments 

with SP1-HA or MIZ-1-HA in vitro translated proteins. Anti-HA antibody was used for 

immunodetection.  
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3.4 MYCN, SP1 and MIZ-1 are required for TRKA and P75NTR repression and 
their silencing sensitize neuroblastoma cells to NGF mediated apoptosis. 
To better characterize the critical role played by MYCN, SP1 and MIZ-1 in 

neurotrophin receptors repression we decided to silence each component of this 

putative complex (with the specific siRNAs). 

The silencing of the expression of our genes is sufficient to re-activate the 

expression of TRKA and P75NTR in SK-N-BE neuroblastoma cells (Fig 6A-B). 

 
Fig.6. Functional role of MYCN, SP1 and MIZ-1 in TRKA and P75NTR repression. A. 

Quantification of the tested genes transcripts by qRT-PCR. Fold differences are expressed as a 

function of RNAi knockout condition of MYCN, SP1 or MIZ-1. 

In order to investigate the biological importance of and P75NTR re-expression we 

silenced MYCN, SP1 or MIZ-1 in SK-N-BE neuroblastoma cells. We registered a 

significance increase in the percentage of the cells undergoing apoptosis only 

when cells treated with siRNA were also treated with NGF (Fig 7). The cell cycle 

was analyzed by BrdU incorporation assay and the cells in sub-G1 peak were 

considered as apoptotic cells (Fig 7A). 

Furthermore we tested the apoptosis using an anti-PARP antibody on whole 

protein extract from SK-N-BE (Fig 7B). PARP (Poly-ADP-Rybose-Polymerase) is 

a protein of 113 KDa recognized from certain caspases activated during early 

stages apoptosis. As expected, the fragment 89 KDa of the PARP is clearly 

detectable only in the presence of RNAi treatment assist with treatment with NGF. 
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Fig.7: TRKA and P75NTR re-expression increases the sensitivity of neuroblastoma cells to 

apoptosis after a treatment with NGF 50 ng/ml. A. BrdU incorporation assay for cell cycle analysis. 

B. Western blot assay with anti-PARP. Staurosporine has been used as a positive apoptotic 

inducer.  

3.5 HDAC1 is an important co-factor in MYCN-mediated repression on 
TRKA and P75NTR promoter genes. 
As for TG2 gene (data not shown), we wondered if some chromatin modifier 

could be involved in the repression process mediated by the oncogene MYCN 

[55]. Based on this, we investigated whether HDAC1 was also present at the 

repressed TRKA and P75NTR promoters in TET21/N, SK-N-BE, LAN-1 and SH- 

SY5Y neuroblastoma cells. ChIP assays in figure 8 show that HDAC1 is bound to 
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the core promoter regions only when MYCN is co-expressed and that histone 

deacetylation is strongly dependent on MYCN expression. 

 
Fig.8: Chromatin immunoprecipitation assays were performed in different neuroblastoma cell 

lines and clones using anti-HDAC1, anti-MYCN, anti-PanH3 antibodies. Relative enrichments are 

expressed as the ratio between the enrichment obtained with the specific antibody and the one 

obtained with the pre-immune serum (IgG). A. SK-N-BE and LA-N-1 neuroblastoma cell lines are 

characterized by a high level of endogenous MYCN. B. SH-SY 5Y cell clones C. TET-21/N 

neuroblastoma cell system. Results represent the average of 3 independent experiments. 
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3.6 TSA (trichostatin A) treatment induces reactivation of TRKA and P75NTR 
and sensitizes neuroblastoma cells to NGF-mediated apoptosis. 
To provide evidence that the repression of TRKA and P75NTR is induced, at least 

in part, through histone deacetylation we attempt to inhibit histone deacetylase 

using trichostatin A (TSA). We treated SK-N-BE and LA-N-1 with 250nM of TSA 

for 48 hrs and as shown in Fig 9A we obtained an increase in the expression of 

both TRKA and P75NTR from 10 to 15 fold. 

Furthermore, we analyzed the same phenomena in TET-21/N system as a 

function of the presence (-TET) or the absence (+TET) of MYCN. Results in 

figure 10B show the synergic effect of the MYCN downregulation with the TSA 

treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.9. qRT-PCR analyses. Fold enrichment is represented as a function of the condition without 

TSA (A) and without TSA and tetracycline (B). Results represent the average of three 

independent experiments. 

Finally, we tested the biological effect of the TSA inducted re-expression of TRKA 

and P75NTR treating the cells with TSA for 48 hours and adding NGF (50 ng/ml). 

We performed WB assay using PARP cleaved form as a biochemical marker of 

apoptosis. Fig 10 shows that NGF can induce massive apoptosis in cells re-

expressing TRKA and p75NTR after TSA treatment. 
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Fig.10. Western blot assay on SK-N-BE after TSA treatment and NGF addition using the anti-

PARP antibody. Cleaved form of PARP (89 KDa) is a marker of apoptosis. Staurosporine (St.) is 

a positive control of apoptosis. 

3.7 Final remarks 
Based on our findings we can suggest a schematic model in which the complex 

formed by MYCN, SP1 and MIZ-1 is bound to the core promoter regions of TRKA 

and P75NTR and recruits HDAC1 inducing a deacetylated status of the chromatin 

and a consequence repression of the transcription (Fig 11). 

  

 

 

 

 

 

 
Fig.11. Schematic representation of MYCN-mediated repression mechanism in neuroblastoma 

cells. 

4.Repression of ABCC3 (ATP-binding cassette transporter) 

4.1 Bioinformatics analysis reveals SP1 binding sites. 
As mentioned in the introduction, ABCC3 gene encodes for ABCC3 ATP-binding 

cassette protein, a protein characterized by a high prognostic potential and 

involved in the phenomena of the chemoresistance in cancer. Moreover, the 

ABCC3 expression profile counter-correlates with MYCN expression in 

neuroblastoma. 

Similarly to the rational applied for TRKA and P75NTR we analyzed ABCC3 gene 

promoter for the presence of MYCN, SP1 and MIZ-1 binding sites. Like 

neurotrophin receptors, ABCC3 promoter does not contain E-Boxes in the 
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proximity of its transcriptional start sites, whereas it contains SP1 binding site 

(GC region). Surprisingly, no MIZ-1 binding sites have been found in close 

proximity of the start (Fig 12). 

 

 

 

 

 

 

 
Fig.12. Schematic representation of ABCC3 promoter. A. Cartoon model with SP1 sites (yellow 

rectangles). B. CpG islands analyses of the ABCC3 promoter using ebi.ac.uk tool for CpG islands 

finding. 

4.2 MYCN represses ABCC3 promoter through the interaction with SP1. 
We performed a dual-ChIP on ABCC3 promoter checking if SP1 and MYCN can 

co-occupy the same core promoter region thus regulating, as for neurotrophin 

receptor genes, its expression (Fig 13). 

 

 

 

 

 

 

 

 

 

 
 

Fig.13. MYCN is physically associated with the core promoter of ABCC3. Dual-ChIP and 

quantitative PCR were applied to SK-N-BE cell line. Fold enrichment is relative to the pre-immune 

serum (IgG). Results represent the mean ± SE of three independent ChIP experiments. 

Results show that both SP1 and MYCN (and its partner MAX) bind the ABCC3 

promoter on a specific region containing SP1 binding sites. 

Taken together these results support the hypothesis that MYCN can repress 

some specific target genes even in absence of MIZ-1. 
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 4.3 ABCC3 expression levels affect multiple neuroblastoma cell behaviors. 
To investigate the biological significance of suppressed ABCC3 expression in 

neuroblastoma we worked together with the group of Dr. Michelle Haber 

(Children’s Cancer Institute, Australia, Sideny). In the last few years, we have 

already demonstrated that high levels of ABCC1 and ABCC4 are driven by 

MYCN overexpression that binds directly (with its partner MAX) to their promoter 

sequences thus influencing neuroblastoma behavior and prognosis. As a model 

for ABCC3 studies we choose SK-N-BE, which display low endogenous levels of 

ABCC3. We generated stable clones in which the expression of ABCC3 was 

vehicled from CMV promoter (Fig 15A). Moreover, we generated clones carrying 

a mutant form in the ATP binding domain of ABCC3 coding sequence. Cell 

clones were investigated for different parameters and we found that expression 

of ABCC3 reduces migratory activity (Fig 15B-C) without significantly interfering 

with cell proliferation (Fig 15D-E). 

Furthermore, mutations that affect the ATP binding site (V1322F) restores a wild 

type phenotype without interfering with ABCC3 expression and its membrane 

localization (Fig 15A and fig 14).  

We can conclude that ABCC3 plays a critical role in multiple aspects of tumor cell 

phenotype independent from any role in cytotoxic drug efflux and drug resistance. 

 
Fig.14. Expression of FLAG-

ABCC3. Immunofluorescent 

detection of FLAG-tagged 

ABCC3 in SK-N-BE 

neuroblastoma cell clones 

expressing either ABCC3-wt 

(clones A12, B12) or ABCC3 

V1322F mutant (clones C4, D1). 

Cells were stained with both 

monoclonal antibody M2 anti-

FLAG (FLAG), and DAPI to 

visualize nuclei.  
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Fig.15. Impact of ABCC3 gene expression on human SK-N-BE neuroblastoma cell 

characteristics. A Western blot analysis of ABCC3 protein expression either ABCC3-wt (clones 

A12, B12) or ABCC3 V1322F mutant (clones C4, D1) constructs. B Representative images of 

wound closure assay; Scale bar, 125 µm. C Expression of ABCC3-wt and impaired motility of SK-

N-BE clones, as measured by wound closure assay for 24 hours, compared with empty vector 

clone. D Colony-forming assay and E Bromodeoxyuridine (BrdU) incorporation upon expression 

of ABCC3-wt or its catalytically inactive mutant in SK-N-BE cells. One-way analysis of variance 

followed by two-sided t tests vs control were used to generate P values. Means are derived from 

three replicate experiments and error bars represent 95% confidence intervals.  

5.Whole genome shRNA screening identifies novel factors 
involved in P75NTR gene transcriptional control. 
Even if we elucidated the mechanism by which MYCN can repress P75NTR 

neurotrophin receptor gene appears clear that we did not identify all the factors 

involved in this complicated pathways.  

Based on these evidences, we performed a whole genome shRNA screening in 

collaboration with Dr. Michael Green (UMASS, Worcester, USA) to identify those 
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factors whose silencing could promote the re-expression of P75NTR using the 

Openbiosystem Lentiviral library created on PLKO.1 vector. 

5.1 Set-up of the parameters for the infection. 
The first step for a successful screening consisted in optimizing each parameter 

as a function of our cell model. From the previous results emerged that P75NTR is 

repressed by MYCN whose silencing drives a re-expression of the neurotrophin 

gene. As shown in Fig 16, we recapitulated the results described before. 

 
Fig.16. Re-expression of P75NTR as a function of MYCN silencing. A. qRT-PCR B. FACS; the 

numbers indicate the percentage of the cell re-expressing P75NTR as a function of the non 

silencing control infection (TRC_NS)  C. Western  blot.  

Another important step in screening assays based on fluorescence-activated cell 

sorting is the quality and the specificity of the antibody used. To assess the 

efficiency of the antibody we generated a pCDNA4 plasmid driving the 

expression of P75NTR coding-sequence. HEK-293T were transiently transfected 

and P75NTR expression was tested for qRT-PCR and FACS (see Fig 17A-B). 
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Fig.17. P75NTR antibody results specific for P75NTR detection and responds specifically to the 

minimum variation in the levels of the neutrophin gene expression. A. qRT-PCR on HEK-293T 

transiently transfected with either pCDNA4-P75NTR or pCDNA4. B. FACS analysis C. Silencing 

of P75NTR endogenous in SK-N-BE is efficiently recognized from our antibody even for FACS. D. 

qRT-PCR on SK-N-BE to assess the efficiency of the silencing. 

Furthermore we silenced P75NTR expression using a set of 5 shRNAs in SK-N-BE 

and we assessed the efficiency of the antibody to recognize a minimum variation 

on P75NTR expression even at low levels (SK-N-BE cell line expresses low levels 

of endogenous P75NTR see above). 
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As shown in Fig 17C-D our antibody results capable to detect the minimum 

variation of cellular P75NTR. 

5.2 Infection of SK-N-BE using PLKO.1 whole library. 
We performed a whole genome shRNA infection in SK-N-BE neuroblastoma cells, 

which display low levels of endogenous P75NTR.  

Viruses were packaged using HEK-293T cells and the viral titer was determined 

using the targeting cells (SK-N-BE). To obtain high percentage of cells with a 

single insertion in the genome we transduced the SK-N-BE with a M.O.I of 0,3 

(see Fig 18). 

 

 

 

 

 

 

 

 

 

 

 
Fig.18. Poisson distribution of viral insertions into the genome depending from M.O.I. 

Cells re-expressing P75NTR were sorted using a fluorescence-activated cell 

sorting (FACS) and collected separately (see Fig 19). To minimize the false 

positive rate, only the single cells and not apoptotic or apoptotic-like were 

included in the analyses. Experimental procedures are described accurately in 

Material and Methods. 
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Fig.19. FACS on SK-N-BE transduced with the whole library. APC+ population (red dots) was 

collected during the sorting. 

5.3 Identification of the potential candidates 
We extracted the DNA from the sorted population and we amplified by PCR a 

specific region representing the potential shRNA directs against the putative 

“candidate gene”. The first round of sequences identified 8 genes that, after 

shRNA-mediated knockdown, resulted in significant P75NTR re-expression. These 

genes are listed in Table 1. 

Gene Symbol Gene Name 

TNFAIP3 tumor necrosis factor, alpha-induced protein 3 

SPHK2 sphingosine kinase 2 

GPR152 G protein-coupled receptor 152 

MAGEA12 melanoma antigen family A, 12 

TRDN triadin 

EPHA2 EPH receptor A2 

HNRPC heterogeneous nuclear ribonucleoprotein C 

GSK3β glycogen synthase kinase 3 beta 

Table.1. Genes required for P75NTR silencing. 
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5.4. shRNA-mediated knockdown of the candidate genes induces P75NTR re-
expression. 
The data collected so far have to be considered preliminary. Further experiments 

are required to consider these candidates significant.  

To validate the candidate genes obtained from the screen, we performed qRT-

PCR and, where has been possible, western blot and FACS assays. 

qRT-PCR results in Fig 20 demonstrated that our putative candidate genes can 

induce a re-expression of P75NTR from 3 to 30 fold and most of them seem to 

have a more powerful effect than MYCN itself. Moreover, using at least 2 distinct 

shRNAs we excluded the off-target effects. 

 
Fig.20. Specifics knockdown induce P75NTR re-expression. Fold enrichment is calculated as a 

function of the SK-N-BE infected cells using TRC_NS virus. 

Additionally, we assessed (up now only for two of them) the re-expression of 

P75NTR through a western blot. Fig 21 confirms their potential involvement in the 

neurotrophin receptor gene silencing and demonstrates a good rate of correlation 

between signal obtained in qRT-PCR and effective protein re-expression. 
Fig.21. Western blot analysis on SK-N-BE after 

infection with either specific shRNAs or non-

silencing shRNA (TRC_NS). Cells were infected for 

24 hrs and selected with puromycin (3µg/ml) for 5 

days.  
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Based on the previous results, we selected the best shRNA for each of our 

candidates and we tested the re-expression of P75NTR by FACS. 

Results in Fig 22 demonstrate that the selective knockdown of our candidates 

promotes the re-expression of the neurotrophin receptor gene, and most of them 

have a greater effect if compared to MYCN silencing. 

 
Fig.22. Fluorescence-activated cell sorting assays on SK-N-BE. Cells were infected with either 

the specific shRNAs or non-silencing (TRC_NS) for 24 hours and selected with puromycin 

(3µg/ml) for 5 days. 

Cell population was stained with primary anti-P75NTR antibody (BD 557194) dil 1:1000 and 

secondary antibody APC conjugated (Jackson 115-136-146). Positive cells (APC+) have been 

identified using BD SCalibur Flow cytometer. 

5.5 Incoming experiments. 
Results collected so far indicate that further validation experiments have to be 

done to ensure the potential of our candidates in P75NTR regulation. First of all, 

we have to complete western blot analyses checking the formal re-expression of 

P75NTR and the efficiency of the knockdown of our candidates. Second, we have 

to test the biological significant of this re-expression. Furthermore, as seen for 

MYCN mediated repression, to better address the last point we will investigate 

the response of P75NTR re-expressing cells to NGF and pro-NGF treatments 

measuring the apoptosis induction.  
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MYCN is a member of the MYC proto-oncogene family that also comprises c-

MYC and MYCL. The gene was first discovered in neuroblastoma cell lines as 

amplified DNA with homology to viral myc. 

The Myc’s family onco-proteins are characterized from a highly conserved 

br/HLH/LZ DNA binding motif by which they can dimerize with proteins of MAX 

subfamily and act as a transcription factor through a direct binding with a specific 

DNA sequence called E-box (CACGTG) [62, 64]. Nonetheless, it has been 

shown that the dimeric complex (Myc-Max) can also well recognize degenerate 

variants of classical E-box known as “non-canonical E-box” (CATGTG and 

CAGCGC). 

Like other Myc members, MYCN controls the expression of many target genes 

involved in several critical cellular processes such as proliferation, growth, protein 

synthesis, metabolism, cell size, genome integrity, apoptosis and differentiation 

[215]. 

They were commonly known as a transcriptional activator in fact the dimer can 

recruit transcriptional co-factors such as TRRA-P or p300/CBP to promote 

transcriptional events (see introduction). 

Lately, genome-wide analyses demonstrated that Myc represses at least as 

many targets as it activates thus focusing the attention on a novel function of 

these amazing proteins. In the repression events, Myc binds to other transcription 

factors and inhibits transcription of their downstream targets. In this way, cell 

cycle regulators, pro-apoptotic and cell adhesion genes can be repressed thus 

promoting rapid growth and aggressive phenotype. 

Deregulated expression of MYCN is often found in neuroblastoma and in several 

other cancers, frequently of embryonic and/or neuroendocrine origin. These 

tumors originate from tissues where MYCN is normally expressed and include 

retinoblastoma [216], Wilm's tumor [217], rhabdomyosarcoma [218], 

medulloblastoma [219], glioblastoma [220], and small cell lung cancer [221]. 

Neuroblastoma is the most common extracranial solid tumor of the childhood and 

is responsible of higher number of cancer-related deaths in infants [15]. So far, 

MYCN amplification status remains one of the most critical predictor of 

neuroblastoma prognosis and outcome [15, 74, 76] although other important 

factors have been identified as important for prognosis prediction as ploidy status, 
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loss of chromosome 1p, expression of ABCCs (ABBC1 and ABCC4) and 

expression of TRKA and P75NTR neurotrophin receptor genes (see introduction).  

Our results show that MYCN amplification and overexpression induces 

repression of a subset of genes targeting their core promoter region: 

• TRKA and P75NTR neurotrophin receptor genes 

• ATP binding cassette transporter gene 3 (ABCC3) 

• Cell cycle inhibitor P21 (already demonstrated for c-MYC but never for 

MYCN) 

1. Neurotrophin receptor genes repression 
We have analyzed the role of MYCN in the transcriptional repression of TRKA 

and P75NTR in neuroblastoma. Our results show that MYCN is physically 

engaged with the core promoter region of both genes through interaction with 2 

other transcription factors, SP1 and MIZ-1. 

SP1 and MIZ-1 are normally transcriptional activators promoting TRKA and 

P75NTR expression. In our case, it seems that they can work together forming a 

platform cable of recruiting MYCN. In support of our idea we performed Co-IP 

assays and we demonstrated that MYCN, SP1 and MIZ-1 can interact with one 

other. Moreover, we mapped the specific regions of MYCN directly involved in 

this interaction and we finding that the MBII domain of MYCN interacts with SP1 

whereas the BR/HLH/LZ domain interacts with MIZ-1 respectively. 

We also demonstrated MYCN, SP1 and MIZ-1 are all necessary to mediate 

repression and that the silencing of one members of this “ternary complex” is 

sufficient to promote a disruption of the complex and a consequential TRKA and 

P75NTR re-expression.  

How does MYCN exert his repression activity?  There are two possible and 

different answers to this question. One possibility is that MYCN could interfere, 

after its recruitments in the complex, with the transactivation functions of SP1 and 

MIZ-1 blocking their activity. Another possibility is that the ternary complex, 

formed in presence of high levels of free MYCN, can recruit other additional 

factors such as chromatin modifier agents thus promoting changes in chromatin 

structure and accessibility. This second hypothesis is without any doubt more 

intriguing and it is supported by several lines of evidence deriving from c-MYC 

studies, in which c-MYC promotes P21 repression by recruiting DNMT3a (see 

introduction) Our results show that MYCN recruits HDAC1 on TRKA and P75NTR 
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core promoter regions and its recruitment can induce a strong decrease in their 

acetylation levels, thereby minimizing their accessibility to polymerase and other 

transcription factors. Indeed, ChIP assays and treatment with HDACs inhibitors 

such as TSA demonstrate that: 1) HDAC1 can co-occupy the same region of 

MYCN, SP1 and MIZ-1 on the neurotrophin core promoter genes 2) Inhibition of 

HDAC1 can reactivate transcription of the two genes thus relieving the repression 

effects of MYCN. 

What is the biological relevance of this mechanism for neuroblastoma? 

Surprisingly, even if neuroblastoma is one of the most deadly cancers in 

childhood, it is also characterized by high degree of spontaneous regression. 

This peculiarity seems to be directly correlated with differentiation or massive cell 

death events that occur in concomitance with high expression levels of TRKA 

expression, considered a predictor of positive outcome. 

Advanced stages neuroblastomas normally have a fast progression and lack 

both neurotrophin receptor genes expression. This is confirmed also in 

transgenic mice where over expression of MYCN promotes a progressive 

downregulation of TRKA and P75NTR increases the rate of growth. 

Interestingly, our findings also demonstrate that resumed expression of TRKA 

and P75NTR, obtained through alternative and distinct approaches appears to, 

sensitize neuroblastoma cells to NGF-mediated apoptosis whereas it has not 

effect on differentiation. 

Why apoptosis and not differentiation? In fact, several evidences described by 

the scientific literature link the co-expression of TRKA and P75NTR to cell 

differentiation or growth inhibition. We have two explanations supporting our 

results. First of all, recent studies have shown that under particular circumstance, 

TRKA re-expression, in addition to that of P75NTR, could promote apoptotic 

pathways transduction [222-225]. Second, in our experiments we always 

obtained a quite larger P75NTR re-expression compared to TRKA, suggesting that 

P75NTR signaling may prevail on that established through TRKA. 

However, still many aspect remain to be elucidated on the complexity of P75NTR 

and TRKA signaling pathways. 

Collected together our findings provide a mechanistic rational between MYCN 

overexpression and neurotrophin receptor genes repression in neuroblastoma, 

highlighting the anti-oncogenic role of NGF/P75NTR/TRKA pathways and lay 
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foundation to searching and developing novel therapeutic approaches to treat 

neuroblastoma. 

 

2. Repression of ABCC3. 
Chemoresistance of cancer cells is in part the consequence of a misregulation of 

the activity of membrane protein, called ATP-binding cassette transporters, 

responsible for the efflux of chemotherapeutic drugs [172] [226]. 

In neuroblastoma cells ABCC1, ABCC3 and ABCC4 are the most strongly 

regulated genes belonging to ABCC subfamily. In fact, we discovered that 

ABCC1, ABCC3 and ABCC4 expression can stratify neuroblastoma patients into 

groups having excellent, intermediate and poor outcome and this combination of 

factors is considered one of the most powerful prognostic marker. 

Furthermore, these genes are the only ones in the entire ABCC subfamily found 

to be directly regulated from MYCN specifically ABCC1 and ABCC4 are positively 

regulated whereas ABCC3 results to be inhibited. 

In this thesis, I focused my work investigating the molecular mechanism by which 

MYCN can negatively regulate ABCC3 expression trying to verify if MYCN 

mediated repression process can involve a different complex in function of the 

target gene that has to be repressed. Moreover, providing a mechanistic a 

rationale of ABCC3 repression means found different putative therapeutic targets 

for a possible drugs developing.  

First of all, we found that specific overexpression of ABCC3 as well as silencing 

of ABCC1 or ABCC4 genes cause reduction in cell motility without interfere with 

cellular growth. In particular we provided the first evidence that ABCC3 gene is a 

downstream target of MYCN. As shown in the results, ABCC3 gene promoter 

contains several SP1 binding sites located around the TSS whereas no E-Box 

has been found. Using dual-ChIP we demonstrated that SP1 and MYCN can 

occupy the same region of DNA on the ABCC3 promoters and that also MAX is 

involved in this type of repressing complex. Recent evidences support ta tumor 

suppressor role of ABCC3 in the oncogenesis, thus explaining the reason why it 

became transcriptionally silent during the tumors development [227] 
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3. shRNA whole genome screening  
Immunohistochemical analyses of P75NTR expression on a tissue microarray of 

93 primary neuroblastic tumors revealed that it is expressed in neuroblastic cells 

of ganglioneuromas/ganglioneuroblastomas as well as differentiating 

neuroblastomas, but not in poorly differentiated neuroblastomas. Furthermore in 

an unrelated cohort of 110 neuroblastic tumors, P75NTR mRNA expression levels 

correlated with differentiation, and patients with tumors that expressed P75NTR at 

high levels had an increased survival. Ectopic P75NTR expression in the 

neuroblastoma cell line significantly reduced proliferation, increased the fraction 

of apoptotic cells in vitro and resulted in a loss of tumorigenicity in nude mice.  

As mentioned in the introduction, P75NTR binds NGF and related neurotrophins 

with low affinity, but its effect is still unclear and controversial. 

It has been shown that cells overexpressing P75NTR increase the number of high 

and low-affinity NGF binding sites in TRKA [228]. This is probably due to a direct 

interaction with TRK receptors that induces a conformational change or P75NTR 

may also play a role in ligand presentation [229]. P75NTR expression may 

increase the sensitivity of TRKA to low concentrations of NGF and at the same 

time it can induce apoptosis in the presence of NGF [230-233]. 

Nevertheless, the effect of P75NTR on the cellular response to neurotrophins is 

complex and may depend on the concentration of ligand, the ratio of receptors, 

the cell type in which it is expressed, and its stage of differentiation [229, 234, 

235]. 

To identify new regulators of P75NTR and well elucidate its function and its 

regulation in the peripheral nervous system development and diseases, we 

performed a whole genome shRNA screening and identified several potential 

candidates that can directly or indirectly control the transcription of P75NTR 

Surprisingly most of the candidates are receptors or proteins with cytosolic 

localization involved in different processes and apparently not associated with 

transcription factors. 

Why we found more receptors than transcription factors? 

One possible explanation is that we used strict parameters for our screening thus 

selecting only those genes whose silencing induces a strong re-expression of 

P75NTR (from 4 to 50 fold). This hypothesis is supported by what we showed in 
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the results chapter where at the “ternary complex” disruption corresponds a 

P75NTR reactivation of a maximum of 4 fold. Furthermore, receptors are usually 

on top of a signaling pathway and when their expression is misregulated the 

effect spreads on all the components belonging at that specific way resulting in 

consequential signal amplification. 

Moreover, several evidences suggest that some of our potential candidates are 

not exhaustively studied in particular in the neuroblastoma context.  

TNFAIP3 encodes for a zinc-finger protein that inhibits nuclear factor-κB and 

avoids TNF induced apoptosis.  

SPHK2 encodes for a kinase involved in the sphingolipids metabolism. Its 

product is sphingosine 1-P a bioactive lipid mediator upregulated in different kind 

of cancers. It should be also mentioned that SPHK2 was found as part of a 

repressive complex capable of blocking transcription of the P21 gene. In that 

case SPHK2 can interact with HDAC1/2 to keep histone acetylation at low levels. 

However when SPHK2 is phosphorylated through the PI3-K signal pathways it 

becomes active and starts producing sphingosine 1-P which is a selective 

inhibitor of HDAC activity. Interestingly, sphingosine 1-P is a specific substrate of 

ABCC1 efflux activity thus suggesting that SPHK2 may affect neuroblastoma 

biology through different pathways: one involved in the control of P75NTR 

expression and a second one involving a functional axis with ABCC1. 

 In contrast to SPHK2, almost nothing is known about GPR152, MAGEA12 and 

TRDN function and their role in nervous system diseases and cancers.  

GPR152 belongs to G-protein coupled receptor family. This family is wide and its 

members are capable to interact with a wide variety of molecules on the outer 

surface of cells. Usually each receptor binds to one or a few specific molecules 

that activate the receptor, which changes its shape. The receptor can then 

activate proteins called G proteins within cells. In a process called signal 

transduction, active G proteins trigger a complex network of signaling pathways 

that ultimately influence many cell functions. 

Researchers have identified more than a thousand G protein-coupled receptors 

in humans and other organisms. Many of these receptors are predicted to be 

olfactory receptors, which allow organisms to recognize different smells. Other G 

protein-coupled receptors are involved in vision, the immune system, and the 

autonomic nervous system. Additionally, several major brain chemicals 
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(neurotransmitters) relay signals between nerve cells using G protein-coupled 

receptors. These neurotransmitters are critical for regulating behavior and mood. 

G protein-coupled receptors are involved in many human diseases, including 

various forms of cancer. Researchers estimate that about half of all currently 

available drugs have been designed to target these receptors. 

On contrary, EPHA2 is tyrosine kinase receptor and has been demonstrated that 

it acts during the nervous system developing but is not yet correlated with 

neuroblastoma or apoptosis.  

Finally, GSK3β is a serine/threonine kinase involved in more than forty different 

pathways. In mammalian it is recently subject of several studies because 

implicated in numerous disease and cancers. For instance in 2008 Kotliarova 

and colleagues demonstrated that in c-MYC-dependent glioma inhibition of 

GSK3-beta or alpha using different agents result in an increased sensitivity to 

apoptosis and in a block in intracellular nuclear factor-κB activity [236]. Moreover, 

will be very fascinating also elucidate the correlation between MYCN and GSK3 

wondering if it will act as c-MYC or it has a totally different role. 

Luckily, is easier to find commercial drugs targeting receptors than transcription 

factors and this will help me in further validation assay. 

4. Final remarks 
Overall our findings provide further clarifications on mechanism of MYCN 

transcriptional repression in Neuroblastoma and how these may contribute to 

tumor progression, chemoresistance and lack to apoptosis sensitivity particularly 

in those cancer where MYCN expression is deregulated. 

Curiously, although my thesis has been focused on Neuroblastoma and MYCN, 

there are numerous evidences demonstrating that c-MYC and MYCN generally 

share several common targets and characteristics in cancer (as ABCC1, ABCC3 

and ABCC4 regulation). In normal conditions, the heterodimer MYC/MAX 

promotes cell cycle progression: thus physiologically MYC expression is tightly 

regulated and restricted during G1/S transition. Furthermore, MYC proteins have 

short half-lives (in order of 20-30 minutes) whereas MAX is more stable and 

constitutively expressed (fig 1). 
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Fig.1. Schematic representation of distinct N-Myc complexes, depending on its cellular levels 

during cell cycle, in physiological conditions. 

We believed that when MYC expression is deregulated during the whole cell 

cycle the MYC/MAX heterodimer can become overabundant and can interact 

with novel partners such as SP1 or MIZ-1 outside the usual E-box context thus 

promoting neoplastic phenotype. 

Moreover, when significantly overexpressed (like in advanced stage 

neuroblastoma) Myc may establish a set of novel interactions not strictly 

connected to Max such with DNMT3a, SIRT1 and HDACs (fig 2 and fig 3). 

 
Fig.2. Schematic representation of distinct N-Myc complexes, depending on its cellular levels 

during cell cycle, in physiological conditions. 
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Several years and resources have been spent looking for an efficient therapy 

focused on blocking MYC onco-proteins, but they have been a big failure. Our 

studies, in particular the shRNA screening against P75NTR, are a new hope to 

understand and discover who are the factors that act directly with MYCN o by 

themselves which contribute in neuroblastoma tumorgenesis and how we can 

interfere with their function avoiding all the side effects as chemoresistance and 

apoptosis bypassing. 

 
Fig.3. Schematic representation of distinct N-Myc complexes, depending on its cellular levels 

during cell cycle, in physiological conditions. 
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CELL CULTURES 
 
Human neuroblastoma SK-N-BE(2)C, TET-21/N, SHEP and IMR-32 cells 

were cultured in DMEM containing 10% heat-inactivated FBS and 50 mg/ml 

gentamycin. Human neuroblastoma, SH-SY5Y and L-AN-1 cells were 

cultured in RPMI medium 1640 containing 10% FBS and 50 mg/ml 

gentamycin. TET-21/N cells were treated with tetracycline as described (Lutz 

et al., 1996; Schuhmacher et al., 2001).  

 

RNA EXTRACTION 
 
The step by step protocol is described for cultured cells grown in two 100-

mm dishes, containing 1-1,5  x  107 cells per dish. Remove the medium and 

add slowly 1ml of PBS1X. Wash and remove. Harvest the cells using trypsin 

treatment and when the cells detach from the culture dish, add 1 volume of 

fresh medium and transfer the suspension to a tube. Centrifuge for 5 minutes 

at 1000 rpm, and then remove the supernatant. Add 1-1,5 ml of TriReagent 

(Sigma). Pipet gently up and down and incubate for 5 minutes at room 

temperature. Add 300 µl of chloroform and vortex for 10 seconds. Incubate 5-

10 minutes at room temperature. Centrifuge fo 5 minutes at 12000rpm at 4°C. 

Transfer aqueous phase in a new tube and add 750 µl of isopropyl alcohol. 

Mix gently and incubate for 5-10 minutes at room temperature. Centrifuge at 

12000rpm for 10 minutes at 4°C. Remove the supernatant and wash the 

pellet with 1,5 ml EtOH 75% treated with DEPC and centrifuge at 12000 rpm 

for 5 minutes at 4°C. Remove the supernatant and dry the pellet. Then, 

resuspend the pellet in 30-50 µl of DEPC-treated water and heat the sample 

at 55°C for 10 minutes. 
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 RT-PCR SYSTEM 
 
The T RT-PCR was designed for the sensitive and reproducible detection 

and analysis of RNA molecules in a two-step process. RT, an avian reverse 

transcriptase with reduced RNase H activity, was engineered to have higher 

thermal stability, produces higher yields of cDNA, and produce full-length 

cDNA. cDNA synthesis was performed using total RNA with oligo(dT).  

In a 0,2-ml tube, combine primer (oligo(dT)), 2µg total RNA and dNTP 10mM 

mix, adjusting volume to 12 µl with DEPC-treated water. Denature RNA and 

primers by incubating at 65°C for 5 min and then place on ice. Vortex the 5X 

cDNA Synthesis buffer for 5 sec just prior to use. Prepare a master reaction 

mix on ice, with 5X synthesis buffer, 0,1M DTT, RNaseOUT (40U/ µl), DEPC-

treated water and RT (15units/ µl). Vortex this mix gently. Pipet 8 µl of master 

reaction mix into each reaction tube on ice. Transfer the sample to a thermal 

cycler preheated to the appropriate cDNA synthesis temperature and 

incubate for 100 min at 50°C. Terminate the reaction by incubating at 85°C 

for 5 min. Add 1 µl of RNase H and incubate at 37°C for 20min. Add 80 µl of 

MQ-water for each reaction and store at -20°C or use for qPCR immediately. 

Use only 2-5 µl of the cDNA synthesis reaction for qPCR. 

 

SYBR GREEN qPCR   
 
SYBR GreenER qPCR SuperMix (Invitrogen) for ICycler is a ready to use 

cocktail containing all components, except primers and template, for real-

time quantitative PCR (qPCR) on ICycler BioRad real time instruments that 

support normalization with Fluoresceina Reference Dye at final concentration 

of 500nM. It combines a chemically modified “hot-start” version of TaqDNA 

polymerase with integrated uracil DNA glycosilase (UDG) carryover 

prevention technology and a novel fluorescent dye to deliver excellent 

sensitivity in the quantification of target sequences, with a linear dose 

response over a wide range of target concentrations. SYBR GreenER qPCR 

SuperMix for ICycler was supplied at a 2X concentration and contains hot-

start TaqDNA polymerase, SYBR GrenER fluorescent dye, 1 µM Fluorescein 
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Reference Dye, MgCl2, dNTPs (with dUTP instead of dTTp), UDG, and 

stabilizers. The SuperMix formulation can quantify fewer than 10 copies of a 

target gene, has a broad dynamic range, and is compatible with melting 

curve analysis. The TaqDNA polymerase provided in the SuperMix has been 

chemically modified to block polymerase activity at ambient temperatures, 

allowing room-temperature set up and long term storage at 4°C. Activity is 

restored after a 10-minutes incubation in PCR cycling, providing an 

automatic hot start for increased sensitivity, specificity and yield. UDG and 

dUTP in the SuperMix prevent the reamplification of carryover PCR products 

between reactions. dUTP ensures that any amplified DNA will contain uracil, 

while UDG removes uracil residues from single or double-stranded DNA. A 

UDG incubation step before PCR cycling destroys any contaminating dU-

containing product from previous reactions. UDG is then inactivated by the 

high temperatures during normal PCR cycling, thereby allowing the 

amplification of genuine target sequences. Fluorescein is included at a final 

concentration of 500nM to normalize the fluorescent signal on instruments 

that are compatible with this option. Fluorescein can ajust for non-PCR-

related fluctuations in fluorescence between reactions and provides a stable 

baseline in multiplex reactions. Program real time instrument for PCR 

reaction as shown following: 50°C for 2 minutes hold (UDG incubation), 95°C 

for 10 minutes hold (UDG inactivation and DNA polymerase activation), 40 

cycles of: 95°C for 15 seconds and 60°C for 60 seconds. For multiple 

reactions, prepare a master mix of common components, add the 

appropriate volume to each tube or plate well, and then the unique reaction 

components (e.g. template, forward and reverse primers at 200nM final 

concentration). Cap or seal the reaction tube/PCR plate, and gently mix. 

Make sure that all components are at the bottom of the tube/plate, centrifuge 

briefly and place reactions in a pre-heated real-time instrument programmed 

as described above. 
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ChIP- CHROMATIN IMMUNOPRECIPITATION 
 
The step by step protocol is described for cultured cells grown in two 100-

mm dishes, containing 1-1,5 x  107 cells per dish. Two 100-mm dishes are 

used for each immunoprecipitation. In the specific case the protocol is 

intended for human neuroblastoma cells growing adhesively. Minor 

adjustments have to be introduced for other cell types especially for those 

growing in suspension. Based on our experience, one of the most critical 

steps in performing ChIP regards the conditions of chromatin fragmentation, 

which need to be empirically set up for each cell types employed. 

In each plate add 270 µl of formaldehyde from a 37% stock solution and mix 

immediately. Incubate samples on a platform shaker for 10 minutes at room 

temperature. In each plate add 500 ml glycine from a 2,5 M stock solution 

and mix immediately. Incubate on a platform shaker for 10 minutes at room 

temperature. Transfer the plates in ice and remove the medium. Harvest the 

cells with a scraper and then centrifuge at 1500 rpm for 4 minutes in cold 

centrifuge, then keep samples on ice. Remove the supernatant and wash 

pellet 3 times with 10 ml ice-cold PBS1X/ 1 mM PMSF. After each washing 

centrifuge at 1500 rpm for 5 minutes at 4°C. Remove supernatant and 

resuspend pellet in 500 µl ice-cold Cell Lysis Buffer. Pipet up and down 10-

20 times, then incubate on ice for 10 minutes. Centrifuge at 3000 rpm for 5 

minutes at 4°C. Remove supernatant and resuspend pellet in 600 µl ice-cold 

RIPA buffer. Pipet up and down 10-20 times, then incubate on ice for 10 

minutes. Sonication of crosslinked cells is performed in two distinct steps. 

First, cells are sonicated with a Branson Sonifier 2 times for 15 seconds at 

40% setting. Next, cell samples are further sonicated with the Diogene 

Bioruptor for 20 minutes at high potency in a tank filled with ice/water in order 

to keep cell samples at low temperature during sonication. Centrifuge 

samples at 14000 rpm for 15 minutes at 4°C. Transfer supernatant to a new 

tube and pre-clear lysate by incubating it with 50 µl of Immobilized Protein A 

[106] for 15 minutes in the cold room at constant rotation. Centrifuge samples 

at 3000 rpm for 5 minutes at 4°C.  Take the supernatant, after having saved 

50 µl aliquot for preparation of INPUT DNA, and add 5 µg of specific antibody. 

Rotate the sample O/N in the cold room. Add 50 µl of Immobilized Protein A 
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and incubate by constant rotation for 30 minutes at room temperature. 

Centrifuge the sample at 4000 rpm for 5 minutes at room temperature. 

Remove the supernatant and proceed to wash the beads. For each wash, 

incubate the sample by constant rotation fro 3 minutes at room temperature 

and the centrifuge at 4000 rpm for 2 minutes at room temperature. Wash 4 

times with 1 ml Ripa Buffer. Wash 4 times with 1 ml Washing Buffer. Wash 2 

times with 1 ml TE buffer. Remove the supernatant and add 200 µl TE buffer 

to the beads. Add 10 µg RNAse A and incubate at 37°C for 30 minutes. Add 

50 µl Proteinase K Buffer 5X and 6 µl Proteinase K (19 mg/ml). Then, 

incubate at 65°C in a shaker at 950 rpm for 6 hrs. Centrifuge at 14000 rpm 

for 10 minutes at 4°C, then transfer the supernatant (250 µl) to a new tube.  

Extract once with phenol/chlorophorm/isoamylalcohol. Recover the aqueous 

phase (200 µl) and transfer to a new tube. Add 100 µl TE buffer to the 

remaining phenol/chlorophorm fraction and re-extract DNA. Recover the 

aqueous phase and add it to the previous one. Extract once with 

chlorophorm/iso-amyl-alcohol. Recover the aqueous phase (200 µl) and 

transfer to a new tube. Add 1 µl glycogen (Glycogen is 20 mg/ ml stock 

solution), 10 µg Salmon Sperm, 1/10 volumes Na-acetate 3M pH 5.2, and 2.5 

volumes of cold ethanol100% Vortex and precipitate at -80°C for 40 minutes. 

Centrifuge at 14000 rpm for 30 minutes at 4°C. Remove the supernatant and 

wash pellet with 200 µl EtOH 70%. Resuspend IP-DNA and INPUT samples 

in 50-100 µl 10 mM TrisHCl pH 8.  Use 2-4 µl of IP-DNA for Real Time PCR 

analysis. 
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DUAL-STEP CHROMATIN IMMUNOPRECIPITATION 
 
The step by step protocol is described for cultured cells grown in two 100-

mm dishes, containing 1-1,5  x  107 cells per dish. Two 100-mm dishes are 

used for each immunoprecipitation. In the specific case the protocol is 

intended for human neuroblastoma cells growing adhesively. Minor 

adjustments have to be introduced for other cell types especially for those 

growing in suspension. Based on our experience, one of the most critical 

steps in performing ChIP regards the conditions of chromatin fragmentation, 

which need to be empirically set up for each cell types employed. 

Remove medium and add 2 ml PBS 1X/ 1 mM PMSF to each plate  and 

scrape cells at room temperature. Pool together the cells from two plates and 

centrifuge at 1500 rpm for 5 minutes at room temperature. Wash cell pellet 

with 20 ml PBS1X/ 1 mM PMSF at room temperature and centrifuge at 1500 

rpm for 5 minutes. Repeat this step 3 times. Resuspend pellet in 20 ml 

PBS1X/ 1 mM PMSF.  Add disuccinimidyl glutarate (DSG) to a final 

concentration of 2mM and mix immediately. DSG is prepared as a 0.5 M 

stock solution in DMSO. (Note1) Incubate for 45 minutes at room 

temperature on a rotating wheel at medium speed (8-10 rpm). At the end of 

fixation, centrifuge the sample at 1500 rpm for 10 minutes at room 

temperature. Wash cell pellet with 20 ml PBS1X/ 1 mM PMSF at room 

temperature and centrifuge at 1500 rpm for 5 minutes. Repeat this step 3 

times. Resuspend pellet in 20 ml PBS1X/ 1 mM PMSF. Add 540 µl 

formaldehyde from a 37% stock solution and mix immediately. Incubate 

samples on a rotating wheel for 15 minutes at room temperature. Add 1 ml 

glycine from a 2,5 M stock solution and mix immediately. Incubate on a 

rotating wheel for 10 minutes at room temperature. Centrifuge samples at 

1500 rpm for 4 minutes in cold centrifuge, then keep samples on ice. 

Remove the supernatant and wash pellet 3 times with 10 ml ice-cold PBS1X/ 

1 mM PMSF. After each washing centrifuge at 1500 rpm for 5 minutes at 4°C. 

Remove supernatant and resuspend pellet in 500 µl ice-cold Cell Lysis Buffer. 

Pipet up and down 10-20 times, then incubate on ice for 10 minutes. 

Centrifuge at 3000 rpm for 5 minutes at 4°C. Remove supernatant and 

resuspend pellet in 600 µl ice-cold RIPA buffer. Pipet up and down 10-20 
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times, then incubate on ice for 10 minutes. Sonication of crosslinked cells is 

performed in two distinct steps. First, cells are sonicated with a Branson 

Sonifier 2 times for 30 seconds at 40% setting. Next, cell samples are further 

sonicated with the Diogene Bioruptor for 20 minutes at high potency in a tank 

filled with ice/water in order to keep cell samples at low temperature during 

sonication. (Note 3)  Centrifuge samples at 14000 rpm for 15 minutes at 4°C. 

Transfer supernatant to a new tube and preclear lysate by incubating it with 

50 µl of Immobilized Protein A [106] for 15 minutes in the cold room at 

constant rotation. Centrifuge samples at 3000 rpm for 5 minutes at 4°C.  

Take the supernatant, after having saved 50 µl aliquot for preparation of 

INPUT DNA, and add 5 µg of specific antibody. Rotate the sample O/N in the 

cold room. Add 50 µl of Immobilized Protein A [106] and incubate by constant 

rotation for 30 minutes at room temperature. Centrifuge the sample at 4000 

rpm for 5 minutes at room temperature. Remove the supernatant and 

proceed to wash the beads. For each wash, incubate the sample by constant 

rotation fro 3 minutes at room temperature and the centrifuge at 4000 rpm for 

2 minutes at room temperature. Wash 4 times with 1 ml Ripa Buffer. Wash 4 

times with 1 ml Washing Buffer. Wash 2 times with 1 ml TE buffer. Remove 

the supernatant and add 200 µl TE buffer to the beads. Add 10 µg RNAse A 

and incubate at 37°C for 30 minutes. Add 50 µl Proteinase K Buffer 5X and 6 

µl Proteinase K (19 mg/ml). Then, incubate at 65°C in a shaker at 950 rpm 

for 6 hrs. Centrifuge at 14000 rpm for 10 minutes at 4°C, then transfer the 

supernatant (250 µl) to a new tube.  

Extract once with phenol/chlorophorm/isoamylalcohol. Recover the aqueous 

phase (200 µl) and transfer to a new tube. Add 100 µl TE buffer to the 

remaining phenol/chlorophorm fraction and re-extract DNA. Recover the 

aqueous phase and add it to the previous one. Extract once with 

chlorophorm/iso-amyl-alcohol. Recover the aqueous phase (200 µl) and 

transfer to a new tube. Add 1 µl glycogen (Glycogen is 20 mg/ ml stock 

solution), 10 µg Salmon Sperm, 1/10 volumes Na-acetate 3M pH 5.2, and 2.5 

volumes of cold ethanol100% Vortex and precipitate at -80°C for 40 minutes. 

Centrifuge at 14000 rpm for 30 minutes at 4°C. Remove the supernatant and 

wash pellet with 200 µl EtOH 70%. Resuspend IP-DNA and INPUT samples 
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in 50-100 µl 10 mM TrisHCl pH 8 Use 2-4 µl of IP-DNA for Real Time PCR 

analysis. 

 

Notes 
1) We have tested several crosslinking agents including DSG (disuccinimdyl 

glutarate), EGS [ethylene glycol bis(succinimidylsuccinate], DMA (dimethyl 

adipimidate) and DSS (disuccinidimyl suberate). In our conditions, DSG was 

the one that worked best, although we also obtained good results with EGS. 

2) Sometimes, insoluble aggregates form when DSG is added to cells 

resuspended in PBS 1X . However, this seems not to preclude the efficiency 

of the crosslinking reaction.  

3) Through this procedure we could efficiently fragment chromatin in a range 

between 500 and 200 bp. As stated above, this is a critical step that must be 

empirically set up for each cell line tested. For example, HL-60 cells that 

grow in suspension, are sonicated with a Branson Sonifier 4 times for 30 

seconds at 40% setting and subsequently with the Biogene Bioruptor at a full 

power for 30 minutes. This procedure allows fragmentation of HL-60 

chromatin to a size range of 1000-500 bp. 

 

LUCIFERASE ASSAY 
 

The Dual-Luciferase® Reporter (DLR.) Assay System (Promega) provides an 

efficient means of performing dual-reporter assays. In the DLR. Assay, the 

activities of firefly (Photinus pyralis) and Renilla (Renilla reniformis, also 

known as sea pansy) luciferases are measured sequentially from a single 

sample. The firefly luciferase reporter is measured first by adding Luciferase 

Assay Reagent II (LAR II) to generate a stabilized luminescent signal. After 

quantifying the firefly luminescence, this reaction is quenched, and the 

Renilla luciferase reaction is simultaneously initiated by adding Stop & Glo® 

Reagent to the same tube. The Stop & Glo® Reagent also produces a 

stabilized signal from the Renilla luciferase, which decays slowly over the 

course of the measurement. In the DLR. Assay System, both reporters yield 

linear assays with subattomole sensitivities and no endogenous activity of 

either reporter in the experimental host cells. Furthermore, the integrated 
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format of the DLR. Assay provides rapid quantitation of both reporters either 

in transfected cells or in cell-free transcription/translation reactions. 

 
Note: The LAR II, Stop & Glo® Reagent and samples should be at ambient 

temperature prior to performing the Dual-Luciferase® Assay. Prior to 

beginning this protocol, verify that the LAR II and the Stop & Glo® Reagent 

have been warmed to room temperature. 

 

The assays for firefly luciferase activity and Renilla luciferase activity are 

performed sequentially using one reaction tube. The following protocol is 

designed for use with a manual luminometer or a luminometer fitted with one 

reagent injector.  

Predispense 100µl of LAR II into the appropriate number of luminometer 

tubes to complete the desired number of DLR. Assays. Program the 

luminometer to perform a 2-second premeasurement delay, followed by a 10-

second measurement period for each reporter assay. Carefully transfer up to 

20µl of cell lysate into the luminometer tube containing LAR II; mix by 

pipetting 2 or 3 times. Do not vortex. Place the tube in the luminometer and 

initiate reading. 

 

Note: We do not recommend vortexing the solution at Step 3. Vortexing may 

coat the sides of the tube with a microfilm of luminescent solution, which can 

escape mixing with the subsequently added volume of Stop & Glo® Reagent. 

This is of particular concern if Stop & Glo® Reagent is delivered into the tube 

by automatic injection. 

If using a manual luminometer, remove the sample tube from the 

luminometer, add 100µl of Stop & Glo® Reagent and vortex briefly to mix. 

Replace the sample in the luminometer, and initiate reading. Discard the 

reaction tube, and proceed to the next DLR. Assay. 
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CO-IMMUNOPRECIPITATION AND GST PULL-DOWN ASSAYS 
 
The interaction between different proteins is assessed by 

immunoprecipitation and Western blotting. Cells are washed two times in 

PBS 1X+ PMSF (0,1%) and lysed in the following buffer for isolation of 

nuclei: Hepes 10mM, NaCl 50 mM, EDTA 1mM, DTT 1mM, 

NaPirophosphate 1 mM, NaOrtovanadate 1 mM, Nafluorophosphate 1 mM, 

PMSF 1 mM, protease inhibitor (Complete, ROCHE). Nuclei are lysed in  

Tris-Cl pH 7,5 50 mM, NaCl 150 Mm, EDTA 10 mM, DTT 1 mM, protease 

inhibitors. Nuclear lysate (1 mg) is immunoprecipitated with  antibody to 

HDAC (Upstate), N-Myc, SP1 (Upstate) overnight at 4°C. The day after, 

specific immunoprecipitated material is incubated with 40µl of slurry-beads 

protein A, allowing the link between our specific antibody and protein A. The 

beads with immunocomplexes are washed five times with  nuclear lysis 

buffer + NP40 0,25% and boiled in Laemmli sample buffer for  5 min at 

100°C.  Eluted proteins are separated by SDS-PAGE and analyzed by 

Western blot. 

For GST pull-down assay HEK293 cells are transfected with pRK7-SP1-HA 

construct and harvest 48 hrs after transfection. Cell lysates are pre-cleared 

by incubation with GST-saturated glutathione beads for 1 hr. lysates are 

incubated with GST-MYCN 1-88, GST-MYCN 82-254, GST-MYCN 249-361 

and GST-MYCN 336-644 for 1 hr at 4°C followed by incubation with 

glutathione beads for 1hr. bound protein are eluted with sample buffer and 

subjected to SDS/PAGE and analyzed by Western blot. 

 

IMMUNOBLOTTING ANALYSIS 
 

Western blots were performed according to Invitrogen procedures for 

NuPAGE Novex 4-12% Bis-Tris Gel Electrophoresis system, using 100 µg of 

whole-cell extracts.  

 



Materials and Methods 

  74 

GENE SILENCING, TRANSFECTION AND CELLULAR ASSAYS  
 
Lipofectamine RNAiMAX reagent (Invitrogen) was used to deliver short 

interfering RNAs (siRNA) according to the manufacturer’s instructions. Stable 

clones expressing N-Myc were generated by transfection of SH-SY 5Y cells 

with p3XFLAG-CMV-14-N-MYC, with C-terminal FLAG tag (Sigma) followed 

by neomycin selection. Stable clones expressing ABCC3 were generated by 

transfection of SK-N-BE cells with p3XFLAG-CMV-14-ABCC3, with C-

terminal FLAG tag (Sigma) followed by neomycin selection. 

To quantify neurite outgrowth cells with one or more neuritic extensions of at 

least twice the length of the cell body, were scored as positive. 100 cells 

were counted per random field, and at least 5 fields were taken per treatment 

in each of 3 separate experiments. 

Colony forming assays were performed as previously described (Verrills et 

al., 2006). 

For wound closure assays, a pipette tip was used to remove cells from 5 

separate areas of the growth substrate. Medium was replaced and the 

wound areas photographed at regular intervals. Wound size was quantified 

by averaging six measurements per wound. 

For viable cell counts, cells were plated in 6-well plates at a cell density of 

100,000 cells per well and counted after five days in culture using trypan blue 

exclusion method. 

BrdU incorporation was measured using a Cell Proliferation ELISA (Roche 

Diagnostics). Transduced SK-N-BE cells were plated in 96-well plates at a cell 

density of 15,000 cells per well with 100 ml DMEM medium and cultured for 

48h before addition of BrdU for 2h followed by assay according to the 

manufacturer’s protocol. 
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PRODUCTION OF TRC VIRAL SUPERNATANT 
 

We routinely use QIAGEN Effectene Transfection Reagent, which works very 

well for us. Detailed protocols are provided with the kit. The protocol below has 

been slightly modified from the QIAGEN kit protocol, in that it uses slightly 

more DNA.  

Reagents 
 

293T cells (ATCC) 

 

293T is a highly transfectable derivative of the 293 cell line into which the 

temperature sensitive gene for SV40 T-antigen was inserted. 

 

Cell culture medium 

 

Effectene reagent (Qiagen) 

 

EC buffer (comes with the QIAGEN Effectene kit) 

 

Enhancer (comes with the QIAGEN Effectene kit) 

 

TRC plasmid DNA (purchased from the RNAi Core Facility) 

 

psPAX2 (Addgene) àThis is the packaging vector 

 

pMD2.G (Addgene) àThis is the envelope vector 

 

0.45 µm filter (Millipore) 

 

Method 
 

Day 1: Plate 1.0x106 to 1.2x106 293T cells in a 6-well plate. 

Day 2: a. In a sterile microfuge tube, combine 1 µg of TRC or pGIPZ plasmid 

DNA with 1 µg psPAX2 and 0.5 µg pMD2.G (2:2:1 ratio) in 100 µl EC buffer. 
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Add 3.2 µl Enhancer. Mixed by brief vortexing and then spin down to collect 

the contents of the tube. Incubate at room temperature for 5 minutes. Add 10 

µl Effectene reagent, mix by brief vortexing and incubate for another 20-30 

minutes at room temperature. 

b. During the incubation, re-feed the 293T cells (that have been plated out the 

day before) with 1.6 ml of fresh medium 293T cells peel off easily, use 

extreme care to re-feed the cells. 

c. After the 20-30 minute incubation, add 0.6 ml medium to the DNA-Effectene 

mixture.  

Mix well and drop carefully onto the cells. 

Day 3: Re-feed the transfected cells with 2.5 ml fresh medium. 293T cells peel 

off easily, use extreme care to re-feed the cells. 

Day 4: 48 hours after infection, filter the supernatant through a 0.45 µ filter, 

aliquot and store at -80°C until ready for use. 

 

INFECTION USING TRC VIRAL SUPERNATANT 
 

The following protocol works well with most commonly used cancer cell lines. 

However, be aware that some cells, particularly primary cells, are extremely 

sensitive to Polybrene. It is therefore a good idea to pre-determine the most 

suitable concentration of Polybrene to be used in the infection.  

Reagents 
Cells of interest to be infected 

Cell culture medium 

Viral supernatant (purchased from the RNAi Core Facility, or produced from 

TRC plasmid DNA [see accompanying protocol]) 

Polybrene, 1 µg/µl (Sigma) 

Puromycin (various sources such as Sigma and Clonetech) 

The ideal concentration of puromycin should be pre-determined based on the 

cell line. 

Method 
Day 1: Plate 1x105 to 1.25x105 cells per well in a 6-well plate.  
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Day 2: Aspirate the medium and infect cells with 250 to 500 µl viral 

supernatant. Add fresh medium to a final volume of 1 ml. Add 10 µl (or pre-

determined optimized amount) of 1 µg/µl Polybrene. 

Day 3: Re-feed the cells with fresh medium. 

Day 4: Start puromycin selection or check the cells under a fluorescence 

microscope for GFP expression (if using the pGIPZ system). 

After 5 to 7 days of puromycin selection, the cells are ready to use in assays. 

 

FACSCalibur ANALZYER 
 

Reagents: 
PBS1x cold; Tripsine 1x; RPMI or DMEM 0,1% FBS without phenol red; plate 

96 well,  

If necessary treat the cells with: 

• Wash cells with PBS1X 

• PFA 4% in PBS1x 15’ 

• Wash twice with RPMI+FBS 0,2% 

• Resuspend the cell in RMPI+FBS 0,2% + Saponin 0,5% 15’ 

• All the incubation step should be done with saponin 

 

Or 

• Dump the media from the cell culture 

• Wash 1 time with PBS1x (not necessary cold) 

• Tripsinize the cell with the opportune volume of Tripsine 1x 

• Add media for neutralize tripsine and put the cells in a new tube 

• Centrifuge at 250 rcf at RT for 5’ 

• Resuspend the cell in media and plate in 96 well in 100ul for well. (vortex 

gently or pipetting) 

• Centrifuge the cells and resuspend them in 40 µl of media+ AbI°1:1000-1:250 

• Incubate for 20’ at on Ice then add 160 µl of media 

• Wash 3 times with media resuspending the pellet 

• Resuspend the cells in 50 µl media AbII° 1:200 for 20’ on Ice (cover) then add 

150 µl of media 
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• Wash 2 times with media and resupend in the appropriate volume (depends of 

cell density) 

• Transfer the resuspended cells in the tube. 
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