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Introdution
The understanding of the nature of dark energy is one of the outstanding questionfor observational osmology. Sine the disovery of the present aeleration ofthe Universe by the measurement of the luminosity distane of distant type Iasupernovæ (SN Ia) ([Riess et al.1998, Perlmutter et al.,1999℄), several observationshave sharpened a osmologial onordane model in whih an unknown omponent- dark energy - with a negative pressure density shares ∼ 2/3 of the total energybudget of the Universe ([Tegmark et al.2004℄). At present the nature of dark energyan be hardly onstrained by di�erent osmologial observations, with the mainindiation that its parameter of state wDE is lose to a osmologial onstant's one.The key strategy to onstrain the nature of dark energy with urrent data is toombine as many di�erent observations as possible, as luminosity distane of SNIa, baryoni aousti osillations (BAO) from galaxy surveys, Cosmi MirowaveBakground (CMB) anisotropies, weak lensing surveys, et ...One of the key preditions of the presene of dark energy is the late IntegratedSahs Wolfe e�et (Sahs & Wolfe 1968) in the CMB pattern. The ISW e�et isa ontribution to CMB anisotropies aused by the gravitational interation of theCMB photons with the forming large sale strutures. It is related to a time evolvinggravitational potential, as ours on large sales when the Universe enters in a lateaelerated expansion (late ISW). The late ISW is a small ontribution to the totalCMB anisotropies and is maximum on the largest sales (Kofman & Starobinsky1985), but therefore blurred by osmi variane: however it an be deteted byits ross-orrelation with large sale strutures (LSS) (Crittenden & Turok 1995)and this non vanishing ross-orrelation is an independent probe of dark energy,omplementary to the distane to the last sattering surfae whih �xes the positionof the aousti peaks in the angular power spetrum of CMB anisotropies.In the urrent era of preision osmology, an aurate analysis of the CMB-3



4 CONTENTSLSS ross-orrelation and a sienti�ally soundful osmologial interpretation arerequired, despite its modest signal-to-noise ratio (SNR), the quality of urrent dataand data analysis issues. Until now there is no onsensus among results in literarture,then we hoose to use the best look on the ISW-LSS ross-orrelation by using anoptimal method.In this thesis we present the implementation of a quadrati maximum likelihood(QML) ode, ideal to estimate the ISW-LSS ross-power spetrum, together withthe auto-power spetra of CMB and LSS: suh tool goes beyond all the previousharmoni analysis of the ISW-LSS ross-power spetrum present in the literature.The thesis is divided into the following hapters.� The �rst hapter deals with the basi onepts of the urrent osmologialmodel, starting from the Big Bang theory to pass through Dark Energyobersevational evidenes and models. It will be introdued the In�ation modelsand reviewed the osmologial perturbation theory.� The seond hapter will fous on the CMB anisotropies, we will start fromprimordial ones and then we will report all the seondary anisotropies,inluding the ISW e�et. We will obtain the temperature power spetrumfrom the perturbation equations of a relativisti �uid, in order to take intoaount the most important features of the spetrum and their osmologialimpliations.� The third hapter will be entirely dediated to the ISW e�et. We willderive the ross power spetrum from the LSS matter density (δg) and CMBtemperature (∆T/T ) ross-orrelation. We will report the ISW detetionhistory, the urrent ontroversy on the statistial signi�ane of the ISW-LSSross-orrelation, generated by several di�erent results whih span from nodetetion at all to a positive at a maximum of 4.5 σ.� The fourth hapter deals with the real map desription of CMB temperature(WMAP-7year) and galaxy distribution (NVSS) whih will be used in Chap.(6)analysis. We will introdue the shotnoise and one of the systematis in theLSS map. We will desribe two di�erent galaxy distributions whih ouldharaterize the NVSS map.



CONTENTS 5� The �fth hapter deals with the QML method to estimate the ross orrelationISW-LSS, going into a detailed desription of the algebra. We will report theimplementation of the BolISW ode based on the QML method and its MonteCarlo validation with 1000 WMAP7-like and NVSS-like simulated maps.� The sixth hapter deals with the appliations of the BolISW ode on realdata. We will show the estimates for all the three power spetra (temperature-temperature, temperature-galaxy and galaxy-galaxy orrelations), omparingalso estimates from di�erent galaxy distribution models.� The seventh hapter deals with the quantitative assessment of the ross-orrelation detetions by using three di�erent likelihood perspetives. Wewill give onstraints on the ΩΛ parameter, �xing all the other osmologialparameters. We will ompare our results with other ISW-LSS signal detetions.Throughout the whole thesis, natural units c = h̄ = 1 are assumed.



6 CONTENTS



Chapter 1The osmologial modelToday the onordane osmologial model is the ΛCDM (Cold Dark Matter) model,based on the Einstein's relativity and taking into aount the ideas of the StandardHot Big Bang model, the presene of the Dark Matter and the Dark Energy andthe In�ation model. The observations have on many oasions been in disagreementwith the previously aepted theory, leading to the subsequent replaement or add-on of the standard model.
1.1 Standard Hot Big Bang modelThe Standard Hot Big Bang model suggests a homogeneus, isotropi Universe whoseevolution is governed by the Friedmann equations based on Einstein's GeneralRelativity and the Copernian priniple.All the informations about matter density and the geometry of the Universe areontained in the Einstein �eld equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν (1.1)where Gµν is the Einstein tensor, whih desribes the spae-time geometry throughthe metri tensor gµν , the Rii tensor Rµν and Rii salar R, depending on metriderivates; the other side of the equation ontains the stress-energy tensor Tµν whihdesribes the matter-energy ontent in the spae-time.The Tµν tensor takes this form:

Tµν = (ρ+ p)uµuν + pgµν (1.2)7



8 CHAPTER 1. THE COSMOLOGICAL MODELwhere ρ and p are, respetively, the energy and the pressure density of the �uid and
uµ is the �uid four-veloity. If the �uid is ideal, Tµν takes a diagonal form with ρon the time oordinate and p on the spae oordinates.Assuming the Friedmann-Robertson-Walker (FRW) metri ( = h̄ = 1)

ds2 = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

] (1.3)where a(t) is the sale fator with respet to the osmi time t; r, θ and φ arethe omoving oordinates; the onstant k desribes the geometry of the spae-time(k = +1, 0,−1, respetvely orresponding to a losed, �at and open Universe); theEinstein's equation split into the two Friedmann equations
H2 ≡

(

ȧ

a

)2

=
8πGρ

3
− k

a2
(1.4)

Ḣ = −4πG(ρ+ p) +
k

a2
(1.5)where H is the Hubble parameter depending on time, and ρ and p are the totalmatter and energy density of all the onstituents of the Universe at a given time.The mass onservation equation is

ρ̇+ 3H(ρ+ p) = 0, (1.6)and ombining Eq.s 1.4 and 1.5 we �nd the equation for the aeleration of thesale-fator
ä

a
= −4πG

3
(ρ+ 3p). (1.7)The evolution of the total energy density of the Universe is governed by

d(ρa3) = −pd
(

a3
)

; (1.8)whih is the First Law of Thermodynamis for a partiular �uid in the expandingUniverse.If the we onsider a �uid with equation of state p = γρ, it follows that ρ ∝ a−3(1+γ)and a ∝ t2/3(1+γ).For p = ρ/3, ultra-relativisti matter, ρ ∝ a−4 and a ∼ t
1

2 ; for p = 0, verynonrelativisti matter, ρ ∝ a−3 and a ∼ t
2

3 ; and for p = −ρ, vauum energy,
ρ = onst.



1.1. STANDARD HOT BIG BANG MODEL 9We an use the Friedmann equation to relate the urvature of the Universe to theenergy density and expansion rate:
Ω− 1 =

k

a2H2
; (1.9)

Ω =
ρ

ρcrit
; (1.10)where the ritial density today ρcrit = 3H2/8πG = 1.88h2 g cm−3 ≃ 1.05 ×

104 eV cm−3. There is a one to one orrespondene between Ω and the spatialurvature of the Universe: positively urved, Ω0 > 1; negatively urved, Ω0 < 1;and �at (Ω0 = 1). Model universes with k ≤ 0 expand forever, while those with
k > 0 neessarily reollapse. The urvature radius of the Universe is related to theHubble radius and Ω by

Rcurv =
H−1

|Ω− 1|1/2 . (1.11)Then the urvature radius sets the sale for the size of spatial separations. And inthe ase of the positively urved model it is just the radius of the 3-sphere.Today we know this model has many shortomings, as the �atness and thehorizon problems or the osmologial onstant problem (solved by introduing someDark Energy or Modi�ed Gravity models). However, this standard model provideus a framework within it is possible to study the emergene of strutures from thesmall �utuations in the density of the early Universe, like the observed galaxies,lusters and the osmi mirowave bakground.Over the last deades, observations have signi�antly inrease the idea that: theUniverse is spatially �at and aelerating; it passed through an aelerated expansionin the early Universe (in�ation epoh); today the energy ontent onsists prinipallyof ∼ 27% of Dark Matter, ∼ 76% of Dark Energy and few % of baryoni matter,whereas the radiation and neutrinos ontributions are negligible to the total energydensity
Ω0 = Ω0DM + Ω0B + Ω0Λ = Ω0M + Ω0Λ. (1.12)

ΩM is the energy density of the Dark Matter and the baryoni matter together, allonsidered in their atual value.If we onsider a �at Universe, Ω0 = 1

Ω0Λ = 1− Ω0M. (1.13)



10 CHAPTER 1. THE COSMOLOGICAL MODELThe ombined data from high redshift supernovae (SN1), large sale strutures(LSS) and osmi mirowave bakground give
Ω0 = 1.00+0.07

−0.03, trovainumerigiustimeaning that the present Universe is spatially �at (or at least very lose to being�at). Then restriting to Ω0 = 1, the dark matter density is
ΩDMh

2 = 0.1334+0.0056
−0.0055,the baryon density

ΩBh
2 = 0.02258+0.00057

−0.00056.and the substantial dark (unlustered) energy is inferred,
ΩΛ ≈ 0.734± 0.029.In the next setion we will see how all omponents ontribute to the thermal historyof the Universe, onsidering a Λ-CDM model.1.2 Thermal history of the UniverseRadiation Era.After Plank time, tP ≡
√

h̄G/c5 ≈ 10−43 s, TP ≡
√

h̄c5/Gk2 ≈ 1.42 ×
1019GeV.In this era the energy density of the expanding Universe was dominated by theradiation omponent and made up of photons, neutrinos and matter (protons,eletrons, helium nulei and non-bayoni dark matter). At high temperatures boththe hydrogen and the helium are fully ionised. In this phase the Thomson satteringours on a timesale muh less than the expansion timesale, resulting in a tighoupling between matter and radiation.At time t = 10−35 s, the GUT (Grand Uni�ation Theory) phase transition ours,all the three gauges interations - eletromagneti, weak and strong - beome nolonger uni�ed. The in�ation epoh also ours in this era, exponentially expandingthe Universe from to in the time range of 10−34 − 10−32 s, during whih quantumnoise was strethed to astrophysial size seeding osmi strutures. At a temperatureof T ≈ 1MeV the neutrinos deouple from matter and at T ≈ 0.1MeV the�rst light elements form during the primordial nuleosynthesis (or BBN, Big Bang



1.2. THERMAL HISTORY OF THE UNIVERSE 11Nuleosynthesis).We know the energy densities for radiation and matter evolves aording to:
ρm = ρ0m(1 + z)3 (1.14)
ρr = ρ0r(1 + z)4 (1.15)When those densities are equal the matter-radiation equivalene ours and thematter domination begins.Matter Era. t ≈ 105 yrs, T ≈ 104K, zeq1 ≈ 3200.In the beginning of this era the radiation and matter temperatures are equivalent
Tr = T0r(1 + z) (1.16)and remain approximately equals until z ≃ 300, thanks to the residual ionisationwhih allows an exhange of energy between matter and radiation via Comptondi�usion. After this redshift the thermal interation between matter and radiationbeomes insigni�ant, so that the matter omponent ools adiabatially with a law
Tm ∝ (1 + z)2. (1.17)With the ooling of the temperature, the Universe reah the epoh of reombinationorresponding to a temperature of around Trec ≃ 4000K, when 50% of the matteris in the form of neutral atoms. Beause of the reombination, around zdec ≃ 1100,a no-instantaneous proess of deoupling ours and matter and radiation begin toevolve separately.After deoupling any primordial �utuations in the matter omponent that survivethe radiation era grow under the in�uene of Dark Matter gravitational potentialwells and eventually give rise to osmi strutures: star, galaxies and lusters ofgalaxies. The part of the gas that does not end up in suh strutures may bereheated and partly reionised by star and galaxy formation, during the reionizationperiod at about z ≈ 10.5.After zdec ≃ 1100 also the radiation begins free to evolve indipendently, beausethe optial depth τγe of the Universe due to Compton sattering dereases. Thisquantity desribes the attenuation of the photon �ux Nγ as it traverses a ertain



12 CHAPTER 1. THE COSMOLOGICAL MODELlenght. The probability that a given photon satters with an eletron while travellinga distane  dt is given by
−dNγ

Nγ
= −dI

I
=

dt

τγe
= neσT cdt = −xρm

mp
σT c

dt

dz
dz = −dτ (1.18)where ne is the number eletron density, σT is the Thompson sattering setion, ρmis the matter density and mp is the proton mass; so that

I(t0, z) = I(t)exp

(

−
∫ z

0

xρm
mp

σT c
dt

dz
dz

)

= I(t)exp[−τ(z)] (1.19)
I(t0, z) is the intensity of the bakground radiation reahing the observer at time
t0 with a redshift z; τ(z) is the optial depth of suh a redshift; the x(z) is theionisation fration from the known Saha equation. The probability that a photon,whih arrives at the observer at the present epoh, su�eres its last sattering eventbetween z and z-dz is

− d

dz
{1− exp[−τ(z)]}dz = exp[−τ(z)]dτ = g(z)dz. (1.20)The quantity g(z) is the e�etive width of the surfae of last sattering (ls) andis well approximated by a Gaussian with peak at zls ≃ 1100 and width ∆z ≃ 400.So at redshift zls we also have τ(z) ≃ 1, beause the Universe is transparent tophotons.The photons begin to travel from the last sattering surfae reating what isthe radiation bakground of the Universe, alled now the Cosmi MirowaveBakground.Dark Energy Era. zeq2 ≈ 0.4.Very late with respet to the age of the Universe the energy density of the DarkEnergy begins to dominate, aelerating the osmi expansion, until today, z = 0;in the meanwhile large sale strutures formed from the primordial �utuationsand by interating with dark matter potential wells. The nature of this darkomponent is still unknown and many observational probes have been proposedto test its properties and redshift evolution either in the standard Λ-Cold DarkMatter (ΛCDM), modi�ed gravity or quintessene models (next setion for details).



1.3. THE DARK ENERGY MODELS 131.3 The Dark Energy modelsThe Dark Energy omponent does not interat through any of the fundamentalfores other than gravity and assuming the Λ-CDM model it auses the aeleratedexpansion of the universe. From Eq. 1.7 we know the Dark Energy must have anegative pressure in order to aelerate the expansion, i.e.
p < −1

3
ρ (1.21)If we parametrize the equation of state of a perfet �uid in this way

p = wρ (1.22)the equation-of-state parameter for Dark Energy will be w < −1/3. Nevertheless,the perfet �uid model with a onstant state parameter does not work, beause if weonsider the perturbation theory relation δP = c2sδρ, where cs is the speed of soundof Dark Energy, c2s = w, a negative state parameter implies negative value for c2s.Therefore it is neessary to desribe dark energy with di�erent models: as a �uidwith non-linear relation between P and ρ whih leads to negative w but positivevalue of c2s, or a salar �eld with an auto interation potential. We an fous onsome of these models. Establishing whether the dark energy is onstant or evolvingis one of the main hallenges for modern osmology. For example the expetedEUCLID mission in 2019 will have as main aims measuring the DE equation ofstate parameters w0 and w1 to a preision of 2% and 10%, respetively, using bothexpansion history and struture growth; measuring the growth fator exponent γwith a preision of 2%, enabling to distinguish General Relativity from the modi�edgravity theories; testing the CDM paradigm for struture formation, and measurethe sum of the neutrino masses to a preision better than 0.04 eV when ombinedwith Plank.The time dependene of the Dark Energy equation has been onstrained by �ttingvarious forms of w(z) to the SNIa data, often in ombination with CMB and theLSS measurements.One of the most popular two-parameter formula is the linear hange in the salefator a = (1 + z)−1 given by,
w(a) = w0 + w1a(1− a) (1.23)



14 CHAPTER 1. THE COSMOLOGICAL MODELwhere w0 is the value today and w1 the value at some early time a.For general w(a), the dynamial expansion of the Universe is spei�ed by theFriedmann equation
E(a) =

H2(a)

H2
0

= ΩMa
−3 + ΩKa

−2 + ΩDEa
f(a), (1.24)where ΩK ≡ (1 − Ωm − ΩX) is the urvature onstant, H(a) ≡ ȧ/a is the Hubbleparameter with present day value H0. f(a) is alulated by solving the onservationof energy equation for the Dark Energy d(ρXa

3)/da = −3pXa
2 giving ρX ∝ af(a),where

f(a) =
−3

ln a

∫ ln a

0

[1 + w(a′)]d ln a′. (1.25)For onstant w, f(a) = −3(1 + w).For the parameterisation w(a) = w0 + w1a(1− a),
f(a) = −3(1 + w0) +

3w1

2 ln a
(1− a)2. (1.26)1.3.1 The osmologial onstantA osmologial onstant was originally introdued by Einstein in 1917 in Eq. 1.1,in order to obtain a stati solution for a spatially losed universe

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.27)after the disovery of the aelation expansion of the Universe it was regained aspossible andidate for the Dark Energy.The Friedmann eq.s 1.4 and 1.7 beomes:

H2 ≡
(

ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
(1.28)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.29)It is a time independent and spatially uniform dark omponent, whih may lassiallybe interpreted as a relativisti perfet simple �uid. If we onsider the observationalevidenes of ä > 0, from Eq. (1.29) we �nd the osmologial onstant ontributesnegatively to the pressure term and hene exhibits a repulsive e�et, as the DarkEnergy does. Introduing the modi�ed energy density and pressure

ρ̃ = ρ+
Λ

8πG
, P̃ = P − Λ

8πG
(1.30)



1.3. THE DARK ENERGY MODELS 15we �nd that equations 1.28 and 1.29 redue to equations 1.4 and 1.7, and that theosmologial onstant obeys the equation of state w = −1.The osmologial onstant Λ is the oldest and simplest andidate from amathematial viewpoint, but there is a fundamental problem related to suh atheoretially favored andidate whih is usually alled the osmologial onstantproblem. The present osmologial upper bound (Λo/8πG ∼ 10−47GeV 4) di�ersfrom natural theoretial expetations (∼ 1071GeV 4) by more than 100 orders ofmagnitude.We an onsider now some others andidates appearing in the literature.1.3.2 Chaplygin-type gasIt is widely known that the main distintion between the pressureless CDM and DarkEnergy is that the former agglomerates at small sales whereas the Dark Energy isa smooth omponent. Suh properties seems to be diretly linked to the equation ofstate of both omponents. It refers to an exoti �uid, the so-alled Chaplygin typegas, whose equation of state is
pX = − A

ραX
, (1.31)where A is onstant with dimension [M4(1+α)] and α is onstant in the range

[0, 1]. The α 6= 1 onstitutes a generalization of the original Chaplygin gasequation of state proposed in [Bento et al, 2004℄ whereas α = 0 gives a model whihbehaves as ΛCDM. The idea of a Uni�ed Dark-Matter-Energy (UDME) senarioinspired by an equation of state like (1.31) omes from the fat that the Chaplygintype gas an naturally interpolate between non-relativisti matter (CDM) andnegative-pressure Dark Energy regimes [Bento et al, 2004℄. The Jeans instability ofChaplygin perturbations is at �rst similar to CDM �utuations (when the Chaplygingas has a negligible pressure) and then disappears (when the Chaplygin gas behavesas a osmologial onstant). Both this late suppression of Chaplygin �utuationsand the apperane of a non-zero Jeans length leave a large integrated Sahs Wolfe(ISW, see Chap. 3) imprint on the CMB anisotropies.Motivated by these possibilities, there has been growing interest in exploringthe theoretial and observational onsequenes of the Chaplygin gas, not only as apossibility for uni�ation of the dark setor (dark matter/Dark Energy) but also as a



16 CHAPTER 1. THE COSMOLOGICAL MODELnew andidate for Dark Energy only. The imprint of a Chaplygin gas is also presenton the matter power spetrum, sine Chaplygin gas perturbations a�et both CMBanisotropies and struture formation.1.3.3 QuintesseneThe idea of quintessene originates from an attempt to understand the smallnessof the �osmologial onstant� or Dark Energy in terms of the large age of theuniverse [Wetterih, 1988℄. As a harateristi onsequene, the amount of DarkEnergy may be of the same order of magnitude as radiation or dark matter duringa long period of the osmologial history, inluding the present epoh. Today, theinhomogeneous energy density in the universe (dark and baryoni matter) is about
ρinhom ≈ (10−3eV)4. This number is tiny in units of the natural sale given by thePlank mass Mp = 1.22 · 1019 GeV. Nevertheless, it an be understood easily as adiret onsequene of the long duration of the osmologial expansion: a dominantradiation or matter energy density dereases ρ ∼ M2

p t
−2 and the present age of theuniverse is huge, t0 ≈ 1.5 · 1010 yr. It is a natural idea that the homogeneouspart of the energy density in the universe (the Dark Energy) also deays withtime and therefore turns out to be small today. A simple realization of this idea,motivated by the anomaly of the dilatation symmetry, onsiders a salar �eld φ withan exponential potential [Wetterih, 1988℄

L =
√
g

{

1

2
∂µφ∂µφ+ V (φ)

} (1.32)where
V (φ) = M4 exp(−αφ/M), (1.33)with M2 = M2

p/16π. In the simplest version φ ouples only to gravity, not tobaryons. Cosmology is then determined by the oupled �eld equations for gravityand the salar �osmon� �eld in presene of the energy density ρ of radiation ormatter. For a homogeneous and �at universe (n = 4 for radiation and n = 3 fornonrelativisti matter)
H2 =

1

6M2

(

ρ+
1

2
φ̇2 + V

)

,

φ̈+ 3Hφ̇+
∂V

∂φ
= 0,

ρ̇+ nHρ = 0. (1.34)



1.3. THE DARK ENERGY MODELS 17This model predits a fration of Dark Energy or homogenous quintessene (asompared to the ritial energy density ρc = 6M2H2) whih is onstant in time
Ωh =

(

V +
1

2
φ̇2

)

/ρc = ρφ/ρc (1.35)both for the radiation-dominated (n = 4) and matter-dominated (n = 3) universe
((Ωh + ρ/ρc) = 1). This would lead to a natural explanation why today's DarkEnergy is of the same order of magnitude as dark matter. For a large value of V (φ)the fore term in Eq.1.34 is large and the Dark Energy dereases faster than matteror radiation. In the opposite, when the matter or radiation energy density is muhlarger than V (φ), the fore is small as ompared to the damping term 3Hφ̇ andthe salar waits until the radiation or matter density is small enough suh that theover-damped regime ends. Stability between the two extreme situations is reahedfor V ∼ ρ. For this model, the equation of state parameter w is given by

wQ =
φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

(1.36)and an be varied in the range −1 < wQ < 1.1.3.4 Modi�ed GravityIn the simplest alternatives to Dark Energy, the present osmi aeleration is ausedby a modi�ation to general relativity, the so alled Modi�ed Gravity. The Generaltheory of relativity founded by Einstein at the end of 1915 has been suessfullyveri�ed as modern theory of gravity for the Solar System.Attempts to modify general relativity started already at its early times and it wasmainly motivated by researh of possible mathematial generalizations. Reentlythere has been an intensive ativity in gravity modi�ation, motivated by disoveryof aelerating expansion of the Universe, whih has not yet generally aeptedtheoretial explanation. The general relativity has not been veri�ed at the osmisale (low urvature regime) and Dark Energy has not been diretly deteted. Thissituation has motivated a new interest in modi�ation of general relativity, whihshould be some kind of its generalization. There is not a unique way how to modifygeneral relativity. Among many approahes there are two of them, whih have beenmuh investigated: 1) f(R) theories of gravity and 2) nonloal gravities.In the ase of f(R) gravity, the Rii salar R in the ation is replaed by a funtion
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f(R). This is extensively investigated for the various forms of funtion f(R). Wehave had some investigation when f(R) = R cosh αR+β

γR+δ
and, after ompletion ofresearh, the results will be presented elsewhere.1.4 Observational evidenes for Dark EnergyThere are many observational evidenes of the Dark Energy e�et. Historially,the aeleration expansion was reveal for the �rst time by Ia supernovæobervations.In 1998 two groups of astronomers [Perlmutter et al.,1999℄ estimated the distane-redshift relation using Type Ia supernovae (SNe), a lass of exploding stars whosedistane an be measured with ∼ 15% auray, muh better than for other distantsoures. They found the ȧ(t) is inreasing, i.e. the universe is not merely expanding,the expansion is aelerating.Many other indiret supporting evindenes ome from di�erent measurements. Nowgalaxy lustering, weak lensing, baryoni aousti osillation (BAO) on the CMBanisotropies, ages of the oldest stars are generally onsidered the most powerfulobservational probes of Dark Energy.Another method also provides additional ross-heks on Dark Energy onstraints,the late time anisotropy in the CMB, the Integrated Sahs-Wolfe e�et (ISW), anbe deteted and used to onstrain osmology.It is important to take into aount the results from all di�erent observations,beause individually they do not allow to determine matter and Dark Energydensity, sine they always involves a ombination of these two parameters (�CosmiDegeneray�).The data from all these observations are not aurate enough to distinguish betweenthe osmologial onstant and many forms of dynamial Dark Energy. Moreoverdegeneraies between Dark Energy parameters strongly limit the possibility to testwhether w is onstant or not.1.4.1 Type Ia SupernovæType Ia Supernovæ are generally believed to have homogeneous intrinsi luminosityof peak magnitude. So SNe Ia are usually known as standard andles whih ouldbe used to measure the expansion history of the Universe. The analysis of their



1.4. OBSERVATIONAL EVIDENCES FOR DARK ENERGY 19distane modulus versus redshift ould provide diret evidene for the aelerationof the Universe and the analysis also put a onstraint on dark energy models. Theluminosity distane dL of SNe Ia is de�ned by
dL(z) =

c(1 + z)

H0

F (z) ≈ c

H0

[

z +
1

2
(1− q0)z

2 + ...

]

. (1.37)The funtion F (z) is
F (z) =

∫ z

0

1

E(z′)
dz′ . (1.38)where, if we onsider a �at Universe with onstant w, E(z) is given by the Friedmannequation written as Eq.1.24.

q0 is the deeleration parameter, given by
q0 ≡ − äa

ȧ2
=

[

−Ḣ +H2

H2

]

0

≃ Ω0M

2
+ Ω0DE (1.39)if q0 < 0 the Universe is aelerating. The distane modulus is de�ned by

µ ≡ m−M = 5 log
dLMp + 25 , (1.40)where m and M are the apparent and absolute magnitudes, respetively; from the�rst observations the Universe seems to aelarate beause q0 > 0, then we anonstrain the ombination between the two osmologial paramaters ΩDE and ΩM

2ΩDE > ΩM (1.41)1.4.2 Baryoni aousti osillations (BAO)The Baryoni Aousti Osillations signatures in the large-sale lustering of galaxiesould at as additional tests for onstraining Dark Energy osmology, beausethe aousti osillations in the relativisti plasma of the early Universe ould beimprinted onto the late-time power spetrum of the non-relativisti matter, as galaxylusters. The BAO relevant distane measure is modelled by volume distane, whihis de�ned as
DV (z) =

[

d2A(z)z

H(z)

]1/3

, (1.42)whereH(z) is the Hubble parameter and dA(z) =
∫ z

0
1

H(z′)
dz′ is the omoving angulardiameter distane. BAO measurements provide both dA(z) and H(z) using almostompletly linear physis, i.e. measuring the sound horizon today from lustering



20 CHAPTER 1. THE COSMOLOGICAL MODELgalaxies. Then DV (z) an be omputed essentially from the growth fator (1.65)of perturbation theory whih ontains the osmologial paramaters. Combining theinformation from BAO and from the �rst peak position of the CMB power spetrumwhih sets the Universe to be �at
ℓfp ≃ 220Ω

−1/2
0 , (1.43)

Ω0 = ΩM + ΩDE ≃ 1. (1.44)it is possible to onstrain separatly values of ΩDE and ΩM.1.4.3 Gravitational lensingThe gravitational lensing is regarded as an independent tool that omplementsSNe Ia as a probe on Dark Energy. The statistis of gravitational lensing ofquasars (QSOs) by intervening galaxies an onstrain on the osmologial onstant.Lensed images of distant galaxies in luster, ars or rings, may provide a boundon the equation of state parameter of Dark Energy. The gravitational lensingsystem an be used measure the ratio of angular diameter distanes. However, thelensing observations primarily depend on the parameters of lens models with minordependene on osmologial parameters. There is the lens model degeneray in boththe projeted mass density pro�le and the irular veloity pro�le. It is shown thatwe need to measure the Einstein radius and the veloity dispersion within O(1)%auray in order to put a onstraint on ωDE.In the gravitational lensing, one of the observable quantities without having anymodel dependene is the Einstein radius (θE), whih is proportional to the veloitydispersion squared (σ2
v) and the ratio of the angular distanes Dds/Ds, where Ddsis the distane from the lens to the soure and Ds is that from the soure to theobserver. With di�erent values of osmologial parameters, we an have di�erentvalues of Dds/Ds, i.e. di�erent values of θE . Thus, it might be used for probingthe property of Dark Energy, ωDE . However, there is an ambiguity in measuring

σv. If the error of σv measurement is not within the di�erenes of Dds/Ds betweendi�erent osmologial models, then we annot distinguish the di�erenes betweenmodels by measuring θE .



1.5. INFLATION 211.5 In�ationIn 1980 Guth and Starobinsky devolped the theory of in�ation in order to solvethe shortomings of the Big Bang theory, as the horizon, �atness and magnetimonopole problems. We forementioned that an exponential aelerating expantionours during the primordial phases of the evolution of the Universe, with the salefator evolves as
a = ai e

HI(t−ti), (1.45)where ti denotes the time at whih in�ation starts and HI the value of the Hubblerate whih remains onstant during a in�ationary (de Sitter) epoh. During in�ation,the horizon
rH(t) = a(t)

∫ t

0

dt

a(t)
(1.46)grows more slowly than the sale fator, therefore, regions that were in ausalonnetion before this period are pushed outside the Hubble radius

rHubble =
1

H
(1.47)An aelerating period is obtainable only if the overall pressure p of the universe isnegative: p < −ρ/3. Neither a radiation-dominated phase nor a matter-dominatedphase (for whih p = ρ/3 and p = 0, respetively) satisfy suh a ondition. Fromtheory we know the in�ation is driven by the vauum energy of the in�aton �eld.This period of exponential expansion solved some of the shortomings of thestandard Big Bang Theory.1.5.1 Horizon ProblemThe horizon problem is related to the fat that every Big Bang model have aosmologial horizon whih delimits regions in ausal onnetion one with theothers. In the Big Bang theory the horizon is too small to explain the highisotropy observed in the CMB where very far emission regions seem to be in ausalonnetion and inside the osmologial horizon. If in�ation lasts long enough, allthe physial sales that have left the horizon during the radiation-dominated ormatter-dominated phase an re-enter the horizon in the past: this is beause suhsales are exponentially redued. This explains the problem of the homogeneity ofCMB and the initial ondition problem of small osmologial perturbations. One



22 CHAPTER 1. THE COSMOLOGICAL MODELthe physial length is within the horizon, mirophysis an at, the universe anbe made approximately homogeneous and the primaeval inhomogeneities an bereated.If ti and tf are, respetively, the time of beginning and end of in�ation, we ande�ne the orresponding number of e-foldings N as
N = ln [HI(te − ti)] . (1.48)A neessary ondition to solve the horizon problem is that the largest sale weobserve today, the present horizon H−1

0 , was redued during in�ation to a value
λH0

(ti) smaller than the value of horizon length H−1
I during in�ation. This gives

λH0
(ti) = H−1

0

(

atf
at0

)(

ati
atf

)

= H−1
0

(

T0

Tf

)

e−N <∼ H−1
I ,where for simpliity the short period of matter-domination is negleted and we havealled Tf the temperature at the end of in�ation. We get

N >∼ ln

(

T0

H0

)

− ln

(

Tf

HI

)

≈ 67 + ln

(

Tf

HI

)

.Apart from the logarithmi dependene, we obtain N >∼ 70.1.5.2 Flatness problemThe �atness problem is related ti the fat that although osmologial data are inagreement with a �at Universe, the Big Bang model requires a �ne tuning on thedensity parameter that has to be
Ω−1 − 1 ≃ 10−60 (1.49)non only at present time but at all times. In�ation also solves elegantly the �atnessproblem. Sine during in�ation the Hubble rate is onstant

Ω− 1 =
k

a2H2
∝ 1

a2
.On the other end reprodue a value of (Ω0−1) of order of unity today the initial valueof (Ω−1) at the beginning of the radiation-dominated phase must be |Ω− 1| ∼ 10−60.Sine we identify the beginning of the radiation-dominated phase with the beginningof in�ation, we require

|Ω− 1|t=tf
∼ 10−60.
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|Ω− 1|t=tf

|Ω− 1|t=ti

=

(

ai
af

)2

= e−2N . (1.50)Taking |Ω− 1|t=ti
of order unity, it is enough to require that N ≈ 70 to solvethe �atness problem. In�ation does not hange the global geometri propertiesof the spaetime. If the universe is open or losed, it will always remain �at orlosed, independently from in�ation. What in�ation does is to magnify the radiusof urvature Rcurv de�ned in Eq. (1.11) so that loally the universe is �at with agreat preision.1.5.3 Monopole problemThe magneti monopole problem is related with the GUT [Buras et al., 1978℄, theBig Bang theory predits the reation of a number nm of magneti monopoles duringthe GUT phase transition

nm > 10−10nγ (1.51)where nγ is the number density of photon at that time. None of the proessesin the Universe history an destroy monopoles, then today they should be nm0 >

10−10nγ ≃ nb0. These monopoles are very massive partioles (mm ≃ 1016GeV) andaording to their predited abundane they should be the dominant omponent ofthe osmologial �uid
Ωm =

ρm0

ρc0
=

mmnm0

ρc0
, (1.52)

Ωm > 1016Ωb (1.53)The measured total density Ω0 and the lak of positive magneti monopole detetionsdeny all the previous assumptions. Considering the in�ation epoh, we �nd themagneti monopoles are reated before in�ation and therefore their density isdiluted by the exponential expansion up to a point where their ontribution tothe osmologial �uid is irrelevant and it is extremely unprobable to obsevre them.1.6 Cosmologial perturbation theoryThe theory of struture formation studys how the primordial �utuations in matterand radiation grow into galaxies and lusters of galaxies due to self gravity.Strutures were generated by the gravitational instability mehanism from tiny



24 CHAPTER 1. THE COSMOLOGICAL MODELperturbations present at very ealy times and produed from quantum �utuationsduring the in�ation period. CMB observations indiate that the anisotropies atthe epoh of deoupling were rather small (one part in 105), implying that theiramplitudes were even smaller at earlier epohs. Then the generation and theevolution of the perturbations an be studied using linear perturbation theory.1.6.1 Metri perturbationsIn a Friedmann bakground, the metri perturbations an be deomposed aordingto their behavior under loal rotation of the spatial oordinates on hyper-surfaesof onstant time. Therefore, the perturbations are lassi�ed into salars, vetorsand tensors. Salar perturbations are invariant under rotations and are the mainresponsible for the anisotropies and the inhomogeneities in the Universe.In the following we use only salar pertubations in order to obtain, in the linearregime, the evolution equations of the matter �utuations reated in the in�ationperiod.We start deriving the perturbed ontinuity, Euler and Poisson equations in thematter domain, inserting a generi small pertubation on the homegeneous density
ρb, veloity vb, pressure pb and the gravitational potential Φb values

ρ = ρb + ρi, v = vb + vi, p = pb + pi, Φ = Φb + Φi (1.54)in the ontinuity and Euler equations
∂ρ

∂t
+∇(ρv) = 0 (1.55a)

∂v

∂t
+ (v∇)v = −∇p

ρ
−∇Φ (1.55b)

∇2Φ = 4πGρ (1.55)We have to take into aount also the eqution of state, c2s = ∂p/∂ρ. Then theperturbed equations are
∂ρi
∂t

+ ρb∇(ρvi) + ρi∇vb = 0 (1.56a)
∂vi
∂t

+ (vi∇)vb = −∇pi
ρb

−∇Φi (1.56b)
∇2Φi = 4πGρi.. (1.56)



1.6. COSMOLOGICAL PERTURBATION THEORY 25We introdue the density ontrast δ = (ρ − ρb)/ρb and hange in omovingoordinates
∇r =

∇x

a
, ṙ = ȧx+ aẋ, (1.57)where the �rst term in ṙ is the expansion veloity vb = ȧx and the seond one isthe peuliar veloity of the perturbation vi = aẋ; we de�ne u = ẋ as the omovingveloity of the perturbation. Therefore, the ontinuity equation beomes

δ̇ = −∇xu, (1.58)and the Euler
δ̈ + 2

ȧ

a
δ̇ =

∇2
xpi

ρba2
+

∇2
xΦi

a2
. (1.59)Finally, by using the equation of state and Eq. (1.56), assuming a typial Fouriertransformation given by

f (k, t) =
1

(2π)3/2

∫

d3k eik·xf (x, t) , (1.60)we obtained the perturbation equation
δ̈ + 2

ȧ

a
δ̇ =

c2s
a2

∇2
xδ + 4πGρbδ. (1.61)This equation has the typial harmoni osillator form, the seond term in theleft side is the damping term ontaining the expansion rate of the Universe inopposition to the gravitational ollapsing. From this equation, it is possible towrite the evolution equation for all kinds of �uid and Ω.1.6.2 Struture formationNow we know where the primordial �utuations ome from, we an study how thesepertubations beome strutures under the in�uene of the gravity only. Then wean assume the matter pressure term is negligible with respet to the gravitationalpotential one

k2c2s ≪ 4πGρb. (1.62)In the following analysis we onsider a Universe with Ω0DE 6= 0 and w = −1.From Eq. (1.14) and Eq. (1.10) we �nd
4πGρb = Ω0

3H2
0

2a3
, (1.63)



26 CHAPTER 1. THE COSMOLOGICAL MODELtherefore, the Eq. (1.64) beomes
δ̈ + 2

ȧ

a
δ̇ = Ω0M

3H2
0

2a3
δ. (1.64)One of the two solutions is

δ(a) =
5ΩM

2
E(a)

∫ a

0

da′

[a′E(a′)]3
≡ D(a), (1.65)where E(a) is given by Eq. 1.24. It de�nes the growth fator D(a) of the matterperturbations, a funtion of the natural logarithm of the sale fator. The lineargrowth fator is strongly dependent on w, with w > −1 models behaving more likeopen Universes than w < −1 models as the e�et of the Dark Energy diminishes.Although this integral an be easily solved numerially, it is ommon to use theapproximation of [Carrol et al., 1992℄

D(a) ≃ 5ΩM(a)a

2

[

ΩM(a)4/7 − ΩΛ(a)

+

(

1 +
ΩM(a)

2

)(

1 +
ΩΛ(a)

70

)]−1

. (1.66)1.6.3 Non-linear perturbationsNow we deal with the non-linear perturbations in order to �nd the power spetrumwhih also haraterizes the CMB anisotropies.We an start onsidering a volume Vu in whih there is signi�ant struture dueto the perturbations and also denote by 〈ρ〉 the mean density in the volume, by
ρ(x) the density at a point spei�ed by the position vetor x with respet to somearbitrary origin. We de�ne the �utuation δ(x) = [ρ(x)−〈ρ〉]/〈ρ〉. As usual is moreexpressible as a Fourier series:

δ(x) =
∑

k

δk exp(i k · x) =
∑

k

δ∗
k
exp(i k · x). (1.67)The Fourier oe�ients δk are omplex quantities given by

δk =
1

Vu

∫

Vu

δ(x) exp(i k · x)dx. (1.68)Now we an imagine a large number N of suh volumes, i.e. a large number of`realisations' of the Universe, one will �nd that δk varies from one to the other inboth amplitude and phase. If the phases are random, the density �eld has Gaussian



1.6. COSMOLOGICAL PERTURBATION THEORY 27statistis: so the mean value of perturbation is identially zero by de�nition, itsmean square value, i.e. its variane σ2, is not but
σ2 ≡ 〈δ2〉 =

∑

k

〈|δk|2〉 =
1

Vu

∑

k

δ2
k
. (1.69)If we now take the Vu → ∞ and assume that density �eld is statistiallyhomogeneous and isotropi, so that there is no dependene on the diretion of kbut only on k = |k|, we �nd

σ2 =
1

Vu

∑

k

δ2k → 1

2π2

∫ +∞

0

PΦ(k)k
2dk, (1.70)where, for simpliity, δ2k = PΦ(k). The quantity PΦ(k) is alled the power spetraldensity funtion of the �eld Φ, or power spetrum, and σ2 tells us about the amplitudeof perturbations.The perturbation power spetrum PΦ(k), at least within a ertain interval in k, isgiven by the following power law

PΦ(k) = Akn, (1.71)the exponent n is usually alled the spetral index.The equation 1.70 an also be written in the form
σ2 =

1

2π2

∫ ∞

0

PΦ(k)k
2dk =

∫ ∞

−∞
∆(k)d ln k (1.72)where the dimensionless quantity

∆(k) =
1

2π2
PΦ(k)k

3. (1.73)It is more onvenient to onstrut a statistial desription of the �utuation �eldas a funtion of some sale R. In this way it is possible to de�ne a mass varianeinside a spherial volume V of radius R with mass M
σ2
M =

〈δM2〉
〈M〉

2 (1.74)Using the usual Fourier deomposition as before we �nd
σ2 =

1

Vu

∑

k

δ2kW
2(k R); (1.75)the funtion W (k R) is alled the window funtion. We shall use this expressionwhen we de�ne the ross-orrelation power spetra for the ISW e�et (Chapter 3).
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Chapter 2Cosmologial Mirowave Bakground
The osmi mirowave bakground was �rst predited by Alpher and Herman[Alpher & Herman, 1998℄ in 1948 as a thermal reli isotropi radiation with anestimated mean temperature of 5K. The �rst detetion of the mirowave bakgroundomes in 1965 by Penzias and Wilson [Penzias & Wilson, 1965℄, for whih theylater won the Nobel Prize, who observed an exess of 3.5K in their antennatemperature noise on the λ = 7.35cm. From that disovery the �eld of osmimirowave bakground (CMB) anisotropies has advaned over the years, espeiallythanks to the instruments like COBE (the NASA satellite COsmi BakgroundExplorer, launhed in 1989) and WMAP (the NASA satellite Wilkinson MirowaveAnisotropy Probe, 2001-2012 ativity). Their observations have turned some ofinitial speulations about the Universe into the urrent osmologial model: namely,that the Universe is spatially �at, onsists mainly of dark matter and dark energy,with the small amount of ordinary matter neessary to explain the light elementabundanes produts of nuleosynthesis, and large sale strutures formed throughgravitational instability from primordial perturbations whih might be explained asoriginated by quantum mehanial �utuations during in�ation. COBE on�rmedthe osmologial origin preditions of the CMB, measuring an almost perfetblakbody spetrum peaked at 2.725±0.002K and a temperature anisotropies of theorder of ∆T/T ∼ 10−5 at the angular sale of 7 degrees. From these observationswe learn that the CMB is remarkably uniform exept for the dipole indued by themotion of the Solar Sistem [Smoot et al, 1977℄. This is in ontrast to the matter inthe Universe, organized in very non-linear strutures like galaxies and lusters. Thesmooth photon distribution observed in CMB with respet to the lumpy matterdistribution is due to the radiation pressure. Matter inhomogeneities grow due to29



30 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUNDgravitational instability, but pressure prevents the same proess from ouring in thephotons. Thus, even though both inhomogeneities in the matter in the Universe andanisotropies in the CMB apparently originated from the same soure, these appearvery di�erent today.Sine the photon distribution is very uniform, perturbations are small, andlinear response theory applies. This is perhaps the most important fat aboutCMB anisotropies. If the soures of the anisotropies are also linear �utuations,anisotropy formation falls in the domain of linear perturbation theory (/ref.apitoloprimo). There are then essentially no phenomenologial parameters that need to beintrodued to aount for non-linearities or gas dynamis or any other of a host ofastrophysial proesses that typially a�it osmologial observations.CMB anisotropies in the working osmologial model fall almost entirely underlinear perturbation theory. The most important observables of the CMB are thepower spetra of temperature and polarization maps. Theory predits, and nowobservations on�rm, that the temperature power spetrum has a series of prominentpeaks and troughs. In 2.1.1, we disuss the origin of these aousti peaks and theirosmologial uses.2.1 Primordial anisotropiesIn order to study the CMB we onsider its intensity as a funtion of frequenyand diretion on the sky n̂(θ, φ). Sine the CMB spetrum is an extremely goodblakbody [Fixen & Mather, 2002℄, generally the observable T is desribed in termsof a temperature �utuation
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. (2.1)By using the spherial harmonis expansion
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aℓmYℓm(θ, φ) , (2.2)if these �utuations are Gaussian, then the multipole moments of the temperature�eld
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∫
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(n̂) (2.3)are fully haraterized by their power spetrum

〈a∗ℓmaℓ′m′〉 = δℓℓ′δmm′Cℓ , (2.4)



2.1. PRIMORDIAL ANISOTROPIES 31whose values as a funtion of the multipoles ℓ are independent in a given realization.For this reason preditions and analyses are typially performed in harmoni spae.Sine the angular wavelength θ ≃ 2π/ℓ, large multipole moments orrespondsto small angular sales. Likewise, sine in this limit the variane of the �eld is
∫

d2ℓCℓ/(2π)
2, the power spetrum is usually displayed as

∆2
T ≡ ℓ(ℓ+ 1)

2π
CℓT

2 . (2.5)Whereas COBE �rst deteted anisotropy on the largest sales, observations inthe last deade have pushed the frontier to smaller and smaller sales. The WMAPsatellite, launhed in June 2001, went out to ℓ ∼ 1000, while the ESA satellite,Plank, launhed in 2009, went a fator of two higher.The power spetra (mettere plot pogosian per osmi variane) exhibit largeunertainty at low multipoles. The reason is that the predited power spetrum isthe average power in the multipole moment ℓ an observer would see in an ensembleof universes. However a real observer is limited to one Universe and one sky withits one set of aℓm's, 2ℓ + 1 numbers for eah ℓ. This is partiularly problemati forthe monopole and dipole (ℓ = 0, 1). If the monopole were larger in our viinity thanits average value, we would have no way of knowing it. Likewise for the dipole, wehave very little hope of distinguishing a osmologial dipole from our own peuliarmotion with respet to the CMB rest frame.In this way low ℓ's are dominated by �osmi variane� beause there are only
2ℓ+ 1 m-samples of the power in eah multipole moment

∆Cℓ =

√

2

2ℓ+ 1
Cℓ . (2.6)By averaging over ℓ in bands of ∆ℓ ≈ ℓ, the preision in the power spetrumdetermination sales as ℓ−1, i.e. ∼ 1% at ℓ = 100 and ∼ 0.1% at ℓ = 1000.Of ourse, any soure of noise, instrumental or astrophysial, inreases the errors.If the noise is also Gaussian and has a known power spetrum, one simply replaesthe power spetrum on the right hand side of Eq. (2.6) with the sum of the signal andnoise power spetra [Knox, 1995℄. Beause astrophysial foregrounds are typiallynon-Gaussian it is usually also neessary to remove heavily ontaminated regions,e.g. the galaxy. If the fration of sky overed is fsky, then the errors inrease by afator of f−1/2

sky and the resulting variane is usually alled �sample variane�. Taking



32 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUNDinto aount these aveats, the Eq.(2.6) beomes the Knox equation [Knox, 1995℄
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Cℓe−ℓ2FWHM/
√
8log2

)

Cℓ . (2.7)where Apix, σpix are the area of the pixel and the sensitivity per pixel and FWHMis the full width half maximum.2.1.1 Aousti peaksAs we have seen in Chap. 1, when the temperature of the Universe was at
Trec ∼ 4000K and a redshift zrec ≈ 1100, eletrons and protons ombined toform neutral hydrogen, in the reombination time. Before this epoh, free eletronsated as glue between the photons and the baryons through Thomson and Coulombsattering, so the osmologial plasma was a tightly oupled photon-baryon �uid[Peebles & Yu, 1970℄. At ℓ > 100 the CMB power spetrum an be explained almostompletely by analyzing the behavior of this pre-reombination �uid.We an start from the general evolution equation, Eq.(1.64), for perfet photon�uid, negleting for the �rst approximation the dynamial e�ets of gravity and thebaryons. Sine perturbations are very small, we assume a linear approximation forthe evolution equations and di�erent Fourier modes evolving independently.

δ̈ =
c2s
a2

∇2
xδ (2.8)The photon pressure is pγ = ργ/3, the temperature density ργ ∝ T 4 and the desityontrast is given by 4δT = ργ/ρ̄− 1.where cs ≡ √

ṗ/ρ̇ = 1/
√
3 is the sound speed in the (dynamially baryon-free) �uid.We �nd the pressure gradients at as a restoring fore to any initial perturbationin the system whih thereafter osillate at the speed of sound. Physially thesetemperature osillations represent the heating and ooling of a �uid that isompressed and rare�ed by a standing sound or aousti wave. This behaviorontinues until reombination. Assuming negligible initial veloity perturbations,we have a temperature distribution at reombination of

δ(ηrec) = δ(0) cos(ksrec) , (2.9)where s =
∫

csdη ≈ η/
√
3 is the distane sound an travel by η (alled soundhorizon).



2.1. PRIMORDIAL ANISOTROPIES 33In the limit of sales large ompared to the sound horizon ksrec ≪ 1, theperturbation is frozen into its initial onditions, so the large-sale anisotropiesmeasured mainly by satellites diretly measure the initial onditions. On smallsales, the amplitude of the Fourier modes will exhibit temporal osillations.Modes that are aught at maxima or minima of their osillation at reombinationorrespond to peaks in the power, i.e. the variane of δ(k, ηrec). Beause sound takeshalf as long to travel half as far, modes orresponding to peaks follow a harmonirelationship kn = nπ/srec, where n is an integer. A spatial inhomogeneity in theCMB temperature of wavelength λ appears as an angular anisotropy of sale θ ≈ λ/dwhere d(z) is the omoving angular diameter distane from the observer to redshift
z.In a spatially urved universe, the angular diameter distane no longer equals theoordinate distane, making the peak loations sensitive to the spatial urvature ofthe Universe [Doroshkevih et al, 1978, Kamionkowski et al, 1994℄.At present, observations of the loation of the �rst peak of the CMB anisotropiesstrongly point to a �at universe, in ombination with other osmologial onstraints.The in�ationary paradigm postulates that an early phase of near exponentialexpansion of the Universe was driven by a form of energy with negative pressure. Inmost models, this energy is usually provided by the potential energy of a salar�eld. The in�ationary era brings the observable universe to a nearly smoothand spatially �at state. Nonetheless, quantum �utuations in the salar �eld areunavoidable and also arried to large physial sales by the expansion. Beausean exponential expansion is self-similar in time, the �utuations are sale-invariant,i.e. in eah logarithmi interval in sale the ontribution to the variane of the�utuations is equal. Sine the salar �eld arries the energy density of theUniverse during in�ation, its �utuations indue variations in the spatial urvature[Guth & Pi, 1985, Hawking, 1982℄.In order to understand the formation of CMB primordial anisotropies, we have torelate the in�ationary predition of nearly sale-invariant urvature �utuations tothe initial temperature �utuations. General relativity says the Newtonian potentialis also a time-time �utuation in the metri and it orresponds to a temporal shiftof δt/t = Ψ. The CMB temperature varies as the inverse of the sale fator, whihin turn depends on time as a ∝ t2/[3(1+p/ρ)]. Therefore, the frational hange in the



34 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUNDCMB temperature
∆T
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= −δa
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ρ

)−1
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t
. (2.10)Thus, a temporal shift produes a temperature perturbation of−Ψ/2 in the radiationdominated era (when pγ = ργ/3) and −2Ψ/3 in the matter dominated epoh (p = 0)([Peaok, 1991℄; [White & Hu, 1997℄).Also, for a �utuation Φ in the gravitational potential, the e�et of a gravitationalredshift is to ause a frational variation of the temperature ∆T/T = Φ. Inthe simplest ase of a �at universe desribed by a matter-dominated Friedmannmodel, the net e�et is therefore given by ∆T/T = Φ/3. The initial temperatureperturbation is therefore linked with the initial gravitational potential perturbation.The primordial density �utuations have left their imprint on the osmimirowave bakground radiation in the form of small variations in the temperaturein di�erent diretions on the sky. After reombination between eletron andphotons, when the deoupling photons-baryons oured, photons begin to travelin the last sattering surfae(hereafter lss) of thikness ∆z and enounter variationsin the metri whih orrespond to variations in the gravitational potential inNewtonian gravity. This proess during the lss is alled Sahs-Wolfe e�et([Sahs & Wolfe, 1967℄). The e�et is essentially gravitational in origin. Aordingto general relativity, photons limbing out of a potential well will su�er agravitational redshift whih tends to make the region from whih they ome appearolder.The ripples seen by the COBE satellite were aused by the Sahs-Wolfe e�etand it �xes the amplitude of the initial power spetrum (P (k)) of the primordialdensity �utuations that are needed to start o� the gravitational Jeans instabilityon whih these theories are based.Now it is neessary to take into aount the gravitational in�uene beause theNewtonian potential and the spatial urvature alter the aousti osillations byproviding a gravitational fore on the osillator. The simpli�ed Euler equation (2.8)gains a term on the right hand side due to the gradient of the potential kΨ. Themain e�et of gravity then is to make the osillations a ompetition between pressuregradients kδ and potential gradients kΨ with an equilibrium when δ +Ψ = 0.



2.1. PRIMORDIAL ANISOTROPIES 35The osillator equation (2.8) beomes
δ̈ + c2sk

2δ = −k2

3
Ψ. (2.11)In a �at universe and in the absene of pressure, Ψ is onstant. Also, in the abseneof baryons, c2s = 1/3 so the new osillator equation is idential to Eq. (2.8) with δreplaed by δ +Ψ. The solution in the matter dominated epoh is then

[δ +Ψ](η) = [δ +Ψ](ηmd) cos(ks)

=
1

3
Ψ(ηmd) cos(ks) . (2.12)where ηmd represents the start of the matter dominated epoh, assuming largesales, ksmd ≪ 1. The quantity δ + Ψ is the e�etive temperature and anbe thought of as an e�etive temperature in another way: after reombination,photons must limb out of the potential well to the observer and thus su�er agravitational redshift of ∆T/T = Ψ. The e�etive temperature �utuation istherefore also the observed temperature �utuation. Therefore, the large salelimit of Eq. (2.12) reovers the Sahs-Wolfe result that the observed temperatureperturbation is Ψ/3 and overdense regions orrespond to old spots on the sky[Sahs & Wolfe, 1967℄ (assuming adiabati initial onditions). Taking into aountboth gravity ompressions and pressure enlargement, the �uid is rare�ed andompressed ontinually. The �rst peak orresponds to the mode that is aughtin its �rst ompression by reombination. The seond peak at roughly half thewavelength orresponds to the mode that went through a full yle of ompressionand rarefation by reombination.The presene of baryons is not negligible in the dynamis of the aoustiosillations.If we onsider the photon-baryon momentum density ratio R = (pb+ρb)/(pγ+ργ) ≈

30Ωbh
2(z/103)−1. For typial values of the baryon density this number is of orderunity at reombination and so we expet baryoni e�ets to begin appearing in theosillations just as they are frozen in.The baryons momentum density provides extra inertia in the joint Euler equationfor pressure and potential gradients. We an put again the osillator equation inthe form of Eq. (2.8) with δ → δ+ (1+R)Ψ and then obtain the following solution

[δ + (1 +R)Ψ](η) = [δ + (1 +R)Ψ](ηmd) cos(ks) . (2.13)



36 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUNDAside from the lowering of the sound speed whih dereases the sound horizon,baryons have two distinguishing e�ets: they enhane the amplitude of theosillations and shift the equilibrium point from zero to δ = −(1 +R)Ψ.The shifting of the zero point of the osillator has signi�ant phenomenologialonsequenes. Sine it is still the e�etive temperature δ + Ψ that is the observedtemperature, the zero point shift breaks the symmetry of the osillations and thebaryons enhane only the ompressional phase, i.e. every other peak. For the workingosmologial model these are the �rst, third, �fth... Physially, the extra gravityprovided by the baryons enhane ompression into potential wells.In the previous analysis we neglet the presene of imperfetions in the �uid,as visosity and heat ondution, whih damp aousti osillations. Damping anbe thought of as the result of the random walk in the baryons that takes photonsfrom hot regions into old and vie-versa [Silk, 1968℄ and the the damping sale isof order kdsrec ≈ 10 leading to a substantial suppression of the osillations beyondthe third peak.2.2 PolarizationThe polarization �eld an be analyzed in a way very similar to the temperature�eld, save for one ompliation. In addition to its strength, polarization also has anorientation, depending on relative strength of two linear polarization states. Insteadof using the usual Stokes parameters Q and U to desribe polarization loally, thesalar E and pseudo-salar B, linear but no-loal ombinations of Q and U , providea more useful desription. In omplete analogy with Eq. (2.3), we an deompose
E and B in terms of multipole moments, and then, following Eq. (2.4), onsider thepower spetra,

〈E∗
ℓmEℓ′m′〉 = δℓℓ′δmm′CEE

ℓ , (2.14)
〈B∗

ℓmBℓ′m′〉 = δℓℓ′δmm′CBB
ℓ , (2.15)

〈a∗ℓmEℓ′m′〉 = δℓℓ′δmm′CTE
ℓ . (2.16)Parity invariane demands that the ross orrelation between the pseudosalar Band the salars T or E vanishes.



2.2. POLARIZATION 37The polarization spetra have several notable features. First, the amplitudeof the EE spetrum is indeed down from the temperature spetrum by a fatorof ten. Seond, the osillatory struture of the EE spetrum is very similar tothe temperature osillations, only they are apparently out of phase but orrelatedwith eah other. Both of these features are a diret result of the simple physis ofaousti osillations. The �nal feature of the polarization spetra is the omparativesmallness of the BB signal. Indeed, density perturbations do not produe B modesto �rst order.Also the polarization of CMB is signed by the dissipation of the aoustiosillations. Thomson sattering indues a linear polarization in the satteredradiation.The E and B deomposition is simplest to visualize in the small sale limit, wherespherial harmoni analysis oinides with Fourier analysis [Seljak, 1997℄. Then thewavevetor k piks out a preferred diretion against whih the polarization diretionis measured. Sine the linear polarization remains unhanged upon a 180◦ rotation,the two numbers E and B that de�ne it represent polarization aligned or orthogonalwith the wavevetor (positive and negative E) and rossed at ±45◦ (positive andnegative B).In linear theory, salar perturbations like the gravitational potential andtemperature perturbations have only one intrinsi diretion assoiated with them,that provided by k, and the orientation of the polarization inevitably takes it uefrom that one diretion, thereby produing an E−mode. The generalization to anall-sky haraterization of the polarization hanges none of these qualitative features.The E−mode and the B−mode are formally distinguished by the orientation of theHessian of the Stokes parameters whih de�ne the diretion of the polarization itself.This geometri distintion is preserved under summation of all Fourier modes as wellas the generalization of Fourier analysis to spherial harmoni analysis.The aousti peaks in the polarization appear exlusively in the EE powerspetrum (Eq. 2.14). This distintion is very useful as it allows a lean separationof this e�et from those ouring beyond the sope of the linear perturbation theoryof salar �utuations.



38 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUND2.3 Seondary anisotropiesBeneath the peaks lies a wealth of information about the evolution of struture inthe Universe and its origin in the early universe, but the CMB photons traverse thelarge sale struture of the Universe on their journey from the deoupling epoh, sothey pik up seondary temperature and polarization anisotropies.These anisotropies depend on all omponents of the Universe: dark matter, darkenergy, baryoni gas density and temperature distributions, and even the existeneof primordial gravity waves. Unfortunately, it is di�ult to make preise preditionsand measurements beause of the unertain and/or non-linear physis and beause ofthe osmi variane of the primary anisotropies and the relatively greater importaneof galati and extragalati foregrounds.Seondaries an be divided into two lasses: those due to gravitational e�ets andthose indued by sattering o� of eletrons.The same balane between pressure and gravity that is responsible for aoustiosillations determines the power spetrum of �utuations in the non-relativistimatter.After reombination, without the pressure of the photons, the baryons simply fallinto the Newtonian potential wells with the old dark matter.Beause the potential is onstant in the matter dominated epoh, the large-saleobservations set the overall amplitude of the potential power spetrum today.On sales below the horizon at matter-radiation equality, we have seen from2.1.1 that pressure gradients from the aousti osillations themselves impede thelustering of the dominant omponent, i.e. the photons, and lead to deay in thepotential. Dark matter density perturbations remain but grow only logarithmiallyfrom their value at horizon rossing, whih (just as for large sales) is approximatelythe initial potential, δm ≈ −Ψi. The potential for modes that have entered thehorizon already will therefore be suppressed by Ψ ∝ −δm/k
2 ∼ Ψi/k

2 at matterdomination again aording to the Poisson equation. The ratio of Ψ at late timesto its initial value is alled the transfer funtion. On large sales, then, the transferfuntion is lose to one, while it falls o� as k−2 on small sales. If the baryonsfration ρb/ρm is substantial, baryons alter the transfer funtion in two ways.First their inability to luster below the sound horizon auses further deay in



2.3. SECONDARY ANISOTROPIES 39the potential between matter-radiation equality. Seondly the aousti osillationsin the baryoni veloity �eld kinematially ause aousti wiggles in the transferfuntion [Hu & Sugiyama, 1996℄. These wiggles in the matter power spetrum P (k)are related to the aousti peaks in the CMB spetrum and are visible on the largestgalaxy surveys [Perival et al, 2001℄.The matter transfer funtion and the near sale-invariant initial spetrum of�utuations tell that by the present �utuations in the old dark matter or baryondensity �elds will have gone non-linear for all sales k ∼ 10−1hMp−1. So thereis just enough growth between zrec ≈ 1100 and z = 0 to explain strutures in theUniverse aross a wide range of sales.In partiular, sine this non-linear sale also orresponds to galaxy lusters andmeasurements of their abundane yields a robust measure of the power near thissale for a given matter density ΩM .More generally, the omparison between large-sale struture and the CMB isimportant in that it breaks degeneraies between e�ets due to deviations frompower law initial onditions and the dynamis of the matter and energy ontents ofthe Universe. Any dynamial e�et that redues the amplitude of the matter powerspetrum orresponds to a deay in the Newtonian potential that boosts the level ofanisotropy. Massive neutrinos are a good example of physis that drives the matterpower spetrum down and the CMB spetrum up.The ombination is even more fruitful in the relationship between the aoustipeaks and the baryon wiggles in the matter power spetrum. Our knowledge of thephysial distane between adjaent wiggles provides the ultimate standard andlefor osmology. For example, at very low z, the radial distane out to a galaxy is
cz/H0. The unit of distane is therefore h−1 Mp, and a knowledge of the truephysial distane orresponds to a determination of h. At higher redshifts, theradial distane depends sensitively on the bakground osmology (espeially thedark energy).2.3.1 Gravitational SeondariesGravitational seondaries arise from two soures: the di�erential redshift from time-variable metri perturbations [Sahs & Wolfe, 1967℄ and gravitational lensing. Theformer gravitational potential e�ets are usually alled the integrated Sahs-Wolfe



40 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUND(ISW) e�et in linear perturbation theory, the Rees-Siama e�et in the non-linearregime, and the gravitational wave e�et for tensor perturbations. Gravitationalwaves and lensing also produe B-modes in the polarization (see 2.2) by whih theymay be distinguished from aousti polarization.Rees-Siama effet. This e�et is due to CMB photons traversing a non-linear gravitational potential, usually assoiated with gravitational ollapse. Therelevant sales are those of galaxy lusters and superlusters, orresponding toangular sales of 5-10 ar minutes.When we onsider linear perturbations the e�et is alled Integrated Sahs-Wolfe(IWS) e�et. It will be the key argument of the thesis and it will be dealt with inChap. 3.Gravitational waves. A time-variable tensor metri perturbation similarlyleaves an imprint in the temperature anisotropy [Sahs & Wolfe, 1967℄. A tensormetri perturbation an be viewed as a standing gravitational wave and produesa quadrupolar distortion in the spatial metri. If its amplitude hanges, it leaves aquadrupolar distortion in the CMB temperature distribution. In�ation predits anearly sale-invariant spetrum of gravitational waves. Their amplitude dependsstrongly on the energy sale of in�ation and its relationship to the urvature�utuations disriminates between partiular models for in�ation.Gravitational waves, like salar �elds, obey the Klein-Gordon equation in a �atuniverse and their amplitudes begin osillating and deaying one the perturbationrosses the horizon. While this proess ours even before reombination, rapidThomson sattering destroys any quadrupole anisotropy that develops. This fatdiates the general struture of the ontributions to the power spetrum: they areenhaned at ℓ = 2 the present quadrupole and sharply suppressed at multipole largerthan that of the �rst peak. As is the ase for the ISW e�et, on�nement to thelow multipoles means that the isolation of gravitational waves is severely limited byosmi variane.The signature of gravitational waves in the polarization is more distint. Beausegravitational waves ause a quadrupole temperature anisotropy at the end ofreombination, they also generate a polarization. The quadrupole generated bya gravitational wave has its main angular variation transverse to the wavevetor



2.3. SECONDARY ANISOTROPIES 41itself. The resulting polarization that results has omponents direted both alongor orthogonal to the wavevetor and at 45◦ degree angles to it. Gravitational wavestherefore generate a nearly equal amount of E and B mode polarization when viewedat a distane that is muh greater than a wavelength of the �utuation.Gravitational lensing. The gravitational potentials of large-sale struturealso lens the CMB photons. Sine lensing onserves surfae brightness, it onlya�ets anisotropies and hene is seond order in perturbation theory. The photonsare de�eted aording to the angular gradient of the potential projeted along theline of sight. This angular gradient of the projeted potential peaks at a multipole
ℓ ∼ 60 orresponding to sales of a k ∼ few 10−2 Mp−1. The de�etions aretherefore oherent below the degree sale.This large oherene and small amplitude ensures that linear theory in thepotential is su�ient to desribe the main e�ets of lensing. Sine lensing is aone-to-one mapping of the soure and image planes it simply distorts the imagesformed from the aousti osillations in aord with the de�etion angle. Thiswarping naturally also distorts the mapping of physial sales in the aousti peaksto angular sales and hene smooths features in the temperature and polarization.The smoothing sale is the oherene sale of the de�etion angle ∆ℓ ≈ 60 and issu�iently wide to alter the aousti peaks with ∆ℓ ∼ 300.For the polarization, the remapping not only smooths the aousti powerspetrum but atually generates B-mode polarization. Remapping by the lensespreserves the orientation of the polarization but warps its spatial distribution in aGaussian random fashion and hene does not preserve the symmetry of the original
E-mode. The B-modes from lensing sets a detetion threshold for gravitationalwaves for a �nite path of sky.Gravitational lensing also generates a small amount of power in the anisotropieson its own but this is only notiable beyond the damping tail where di�usionhas destroyed the primary anisotropies. On these small sales, the anisotropy ofthe CMB is approximately a pure gradient on the sky and the inhomogeneousdistribution of lenses introdues ripples in the gradient on the sale of the lenses[Seljak & Zaldarriaga, 2000℄.Beause the lensed CMB distribution is not linear in the �utuations, it is not



42 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUNDompletely desribed by hanges in the power spetrum. It is possible to use the non-Gaussianity to isolate lensing e�ets and their ross-orrelation with the ISW e�et[Seljak & Zaldarriaga, 1999℄. In partiular, there is a quadrati ombination of theanisotropy data that optimally reonstruts the projeted dark matter potentials foruse in this ross-orrelation. The ross orrelation is espeially important in that ina �at universe it is a diret indiation of dark energy and an be used to study theproperties of the dark energy beyond a simple equation of state.2.3.2 Sattering SeondariesFrom the observations both ofthe lak of a Gunn-Peterson trough [Gunn & Peterson, 1965℄ in quasar spetra andits preliminary detetion, we know that hydrogen was reionized at zri ≃ 6 (Chap.1). This is thought to our through the ionizing radiation of the �rst generation ofmassive stars. The onsequent reoupling of CMB photons to the baryons auses afew perent of them to be resattered. Linearly, resattering indues three hangesto the photon distribution: suppression of primordial anisotropy, generation of largeangle polarization, and a large angle Doppler e�et..Peak suppression. Like sattering before reombination, sattering atlate times suppresses anisotropies in the distribution that have already formed.Reionization therefore suppresses the amplitude of the aousti peaks by the frationof photons resattered, approximately the optial depth ∼ τri . Unlike the plasmabefore reombination, the medium is optially thin and so the mean free path anddi�usion length of the photons is of order the horizon itself. New aousti osillationsannot form. On sales approahing the horizon at reionization, inhomogeneitieshave yet to be onverted into anisotropies and so large angle �utuations are notsuppressed.The resattered radiation beomes polarized sine temperature inhomogeneitiesbeome anisotropies by projetion, passing through quadrupole anisotropies whenthe perturbations are on the horizon sale at any given time. The result is a bumpin the power spetrum of the E-polarization on angular sales orresponding to thehorizon at reionization. Beause of the low optial depth of reionization and the �niterange of sales that ontribute to the quadrupole, the polarization ontributions are



2.3. SECONDARY ANISOTROPIES 43on the order of tenths of µK on sales of ℓ ∼ few. As in the ISW e�et, anellation ofontributions along the line of sight guarantees a sharp suppression of ontributionsat higher multipoles in linear theory.Doppler effet. Naively, veloity �elds of order v ∼ 10−3 and optialdepths of a few perent would imply a Doppler e�et that rivals the aoustipeaks themselves. Sine the Doppler e�et omes from the peuliar veloity alongthe line of sight, it retains no ontributions from linear modes with wavevetorsperpendiular to the line of sight and these are the only modes that surviveanellation. Consequently, the Doppler e�et from reionization is stronglysuppressed and is entirely negligible below ℓ ∼ 102 unless the optial depth in thereionization epoh approahes unity.The Doppler e�et an survive anellation if the optial depth has modulationsin a diretion orthogonal to the bulk veloity. This modulation an be the result ofeither density or ionization �utuations in the gas and inlude the e�et in lusters,and linear as well as non-linear large-sale strutures.Sunyaev-Zel'dovih Effet. Internal motion of the gas in dark matter halosalso give rise to Doppler shifts in the CMB photons. Shifts that are �rst order inthe veloity are aneled as photons satter o� of eletrons moving in di�erentdiretions. At seond order in the veloity, there is a residual e�et. For lustersof galaxies where the temperature of the gas an reah Te ∼ 10keV, the thermalmotions are a substantial fration of the speed of light vrms = (3Te/me)
1/2 ∼ 0.2.The seond order e�et represents a net transfer of energy between the hot eletrongas and the ooler CMB and leaves a spetral distortion in the CMB where photonson the Rayleigh-Jeans side are transferred to the Wien tail. This e�et is alledthe thermal Sunyaev-Zel'dovih (SZ) e�et [Sunyaev & Zel'dovih, 1972℄. Like allCMB e�ets, one imprinted, distortions relative to the redshifting bakgroundtemperature remain una�eted by osmologial dimming, so one might hope to �ndlusters at high redshift using the SZ e�et. However, the main e�et omes fromthe most massive lusters beause of the strong temperature weighting and thesehave formed only reently in the standard osmologial model.The SZ e�et is expeted to dominate the power spetrum of seondaryanisotropies, but the other seondaries are measurable. Its distint frequenysignature an be used to isolate it from other seondaries. Additionally, it mainly



44 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUNDomes from massive lusters whih are intrinsially rare. Hene ontributions tothe power spetrum are non-Gaussian and onentrated in rare, spatially loalizedregions. Removal of regions identi�ed as lusters through X-rays and optial surveysor ultimately high resolution CMB maps themselves an greatly redue ontributionsat large angular sales where they are unresolved.2.3.3 ForegroundsIn the CMB observations we also have to take into aount the foreground emmissionwhih is not primordial.There are three primary mehanisms for di�use Galati radio emission. Relativistieletrons interat with the Galati magneti �eld to produe synhrotron emission,for whih the standard template is 408 MHz data. Less energeti eletrons satterfrom eah other and ionized nulei to produe free-free radiation (also known asthermal Bremsstrahlung), whih an be traed with Hα line emission. Finally, dustgrains emit a modi�ed blakbody spetrum through exitation of their vibrationalmodes, for whih the standard template is the �t to data from the InfraredAstronomial Satellite (IRAS) and the Cosmi Bakground Explorer (COBE). Dustgrains may also emit radiation through rotational modes or other exitations.



Chapter 3Late Integrated Sahs-Wolfe E�et
As I have aforementioned in Chap.s 1 and 2 the key subjet of this thesis is theIntegrated Sahs-Wolfe (ISW) e�et.This e�et is due to the interations of photons with the galaxy gravitationalpotentials along the line of sight from the last sattering surfae to present. CMBphotons pass through peaks and wells of the gravitational potential and when theyfall into a potential well, photons gain energy; if the well is not evolving, the photonslose the same energy when they limb out, leaving no net hange.If the gravitational potentials deay while the photons pass through, then the energythat they lose limbing out is less that what they gained falling in, leaving a netshift in the photon temperature, a red shifting of photons whih must `limb out' ofa di�erent potential than they `fell into'. The Rees-Siama (RS) e�et arise in thesame way but the ISW e�et is generally taken to be the ontribution from the linearevolution of the gravitational potential, while the Rees-Siama e�et arises from thenon-linear evolution of the gravitational gravitational potential. While the non-linear e�et (RS) is inevitable, the linear e�et (ISW) depends on the osmologialmodel and requires that the bakground equation of state hanges.In a �at dark energy dominated universe the gravitational potentials assoiated withthe large sale strutures deay as onsequene of the aelerated phase of expansion.In a universe with a signifant osmologial onstant, however, Φ beomes timedependent even in linear theory and an appreiable amount of anisotropy an bereated at quite modest redshifts. CMB photons whih ross these regions aquire ashift whih generates temperature anisotropies. This also happens at early times asthe universe goes from being radiation dominated to matter dominated (Early ISWe�et); the e�et at late times as the dark energy (or urvature) takes over from the45



46 CHAPTER 3. LATE INTEGRATED SACHS-WOLFE EFFECTmatter is alled (Late ISW e�et).The ISW temperature �utuations, ∆T/T , in a partiular diretion n̂ is givenby:
∆T

T
(n̂) = −2

∫ f

i

e−τ(z)dΦ

dz
(n̂, z)dz, (3.1)where Φ is the Newtonian gauge gravitational potential, the integral is over theredshift z, zf = 0 being today and zi being reombination and e−τ(z) is the visibilityfuntion to aount for a possible suppression due to early reionization (τ is theonformal time).As we have seen, sine the matter density is proportional to ρm ∝ a−3, thegravitational potential evolves as Φ ∝ δm/a. In the matter dominated regime, thegrowth of the perturbations is given by δm ∝ a, meaning the gravitational potentialis onstant in time: the ollapse of the perturbations is exatly balaned by thedilution of the matter.When dark energy or urvature begins to dominate, the growth of perturbations isslowed, and the gravitational potentials begin to deay, giving rise to the late timeISW e�et. Unlike the ISW perturbations generated at the earlier radiation-mattertransition, the ISW anisotropies generated at late times are virtually unorrelatedwith the CMB �utuations generated at the lss.In this way, the CMB sky is e�etively almost omposed of two independentmaps, those �utuations reated at last sattering or soon afterwards, and thosereated at low redshifts when dark energy or urvature has beome dynamiallyimportant (see Fig. 3.1, see also the simulated maps of the ISW and the total signalon the CMB reated by the ISW group of Plank in Santander [Barreiro et al., 2008℄,Fig. 3.2). The linear e�et is predominantly on very large sales, and for typialmodels, it is not as large as the anisotropies from the last sattering surfae. It isdominated by modes whih are of the horizon size, beause it is these modes whihwill have the most time for the potential to hange as the photons pass through.For smaller sale perturbations, photons an get many positive and negative smalleramplitude ontributions whih will tend to anel out.Considering the simplest model of Dark Energy, i.e. the ΛCDM model, we knowthat as the ρΛ inreases, it omes to dominate the total energy density at earlierand earlier redshifts. The e�et on the evolution of the potential is thus more
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Figure 3.1: [Crittenden, 2006℄ Typial auto.orrelation funtion fot the ISW e�et in a osmologialonstant model. The late ISW adds a small amount of large sale power to the temperature maps, largelyunorrelated with the anisotropy arising from early times.pronouned, as is the orresponding anisotropy generated at late times. For smallervalues of Λ the opposite is true; the orrelated anisotropy is less, but it is moreonentrated at very late epohs. The osmologial onstraints of Λ have also anindiret e�et on the degree sale anisotropy, beause in a �at universe the preseneof Λ alters the matter-radiation balane at last sattering. In ontrast, the large saleRees-Siama e�et is independent of physis at high redshifts (e.g. reionization).
3.1 Cross-orrelationThe diret ISW signal is very di�ult to detet: unlike many foregrounds, theISW �utuations have the same frequeny spetrum as the primordial anisotropies,so di�erent frequeny observations annot isolate them; the attempt to searh theadditional power in the CMB auto-orrelation spetrum also fails, beause the ISWamplitude is small with respet to the SW e�et; where it is largest, the osmivariane is also large and prevails (see Fig. 3.3). If we ompute the signal to noiseratio, onsidering all the signal is not ISW like the noise



48 CHAPTER 3. LATE INTEGRATED SACHS-WOLFE EFFECT

Figure 3.2: In the �rst panel: simulated map of the ISW signal. In the seond panel: Simulated map ofthe total CMB signal (ISW + SW signal). We an note the di�erene in the sales of intensity.
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≈ 0.68 < 1 (3.2)we an safely on�rm the ISW signal is not detetable from the total CMB map.This problem an be overome by onsidering how the Late ISW e�et wasprodued and by examining how the ISW temperature orrelates with the densityof galaxies ([Crittenden & Turok1995℄), whih should trae the potential wells andhills whih bring about the anisotropies.The Late ISW anisotropies are produed by loal (z ≤ 4) �utuations in thegravitational potential due to the presene of dark energy so it an be determinedif it is known how the matter is distributed on large sales.If the gravitational potential is deaying, statistially we expet overdensities ofgalaxies to align with temperature hot spots and under densities with temperature
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Figure 3.3: The larger error bars on the low ℓ's are due to the maximum in�uene of the osmi varianeold spots.In order to quantify the ross-orrelation between the galaxy distribution andthe CMB anisotropies, the sky temperature an be expanded in the usual spherialharmonis
∆T

T
(n̂) ≡

∑

l,m

almYlm(θ, φ), (3.3)where in an isotropi ensemble the alm's oe�ients obey 〈almal′m′〉 = δll′δmm′Clwhere Cl is the angular power spetrum.If there is a lump of matter, suh as a luster of galaxies in a given diretion ofthe sky, we are likely to observe a spot in the orresponding diretion of the CMBprovided that the CMB photons have rossed that region during the aeleratedepoh. We therefore expet to measure a positive angular orrelation between CMBtemperature anisotropy maps and surveys of the large sale strutures.Sine part of the CMB anisotropy is assoiated with the gravitational potentialat low redshift, it must be orrelated with the matter distribution in our viinity.The evolution of the gravitational potential an be related to the linear densityperturbation via the Poisson's equation in Fourier spae. The observed galaxy



50 CHAPTER 3. LATE INTEGRATED SACHS-WOLFE EFFECTdensity ontrast in a given diretion n̂ will be
δg(n̂) =

∫

bg(z)
dN

dz
(z)δm(n̂, z)dz, (3.4)where dN/dz is the seletion funtion of the survey, bg(z) its galaxy bias relating thevisible matter distribution to the underlying dark matter and δm the matter densityperturbations.The galaxy bias, bg(z), an evolve in time or as a funtion of sale. In ouranalysis we use at �rst a time andsale independent bias for simpliity (as [Giannantonio et al., 2008, Ho et al., 2008,Vielva, Martinez-Gonzalez & Tui2006℄) and then a redshift dependent bias(xia10b). From the point of view of the ISW-LSS ross-orrelation, time dependentbias is equivalent to hanging the seletion funtion of the survey. Sale dependeneof the bias is also problemati, but on the very large sales (> 10 Mp), the saledependene is expeted to be weak.Given a map of the CMB and a survey of galaxies, the angular auto-orrelationand ross-orrelation funtions are de�ned as

CTg(θ) ≡ 〈∆T

T
(n̂1)δg(n̂2)〉 (3.5)

Cgg(θ) ≡ 〈δg(n̂1)δg(n̂2)〉, (3.6)with the average arried over all the pairs at the same angular distane θ = |n̂1− n̂2|and ∆T/T and δg given respetively by Eq. 3.3 and Eq. 3.4.It is possible to express these quantities in the harmoni spae with the use ofthe Legendre polynomials Pl:
CTg(θ) =

∞
∑

l=2

2l + 1

4π
CTg

l Pl[cos(θ)], (3.7)and the auto- and ross-orrelation power spetra are given by
CTg

l = 4π

∫

dk

k
∆2(k)IISWl (k)Igl (k) (3.8)

Cgg
l = 4π

∫

dk

k
∆2(k)Igl (k)I

g
l (k), (3.9)where ∆(k) is the matter power spetrum ∆2(k) ≡ 4πk3P (k)/(2π)3 and the twointegrands are respetively

IISWl (k) = −2

∫

e−τ(z)dΦk

dz
jℓ[kχ(z)]dz (3.10)



3.1. CROSS-CORRELATION 51

Figure 3.4: Typial ross-orrelation funtion for the ISW e�et in a osmologial onstantmodel. The ross-orrelation (here shown in arbitrary units) peaks on sales of a fewdegrees.
Igℓ (k) =

∫

bg(z)
dN

dz
(z)δm(k, z)jℓ[kχ(z)]dz, (3.11)where Φk, δm(k, z) are the Fourier omponents of the gravitational potential andmatter perturbations, jℓ(x) are the spherial Bessel funtions and χ is the omovingdistane.The ISW e�et thus generially shows up only at the lowest ℓ's in thepower spetrum ([Kofman & Starobinskii, 1985℄). The ability to detet the ross-orrelation is limited beause the signal falls o� on small sales. Not only isosmi variane an important fator, but there is also the problem of aidentalorrelations between the galaxy surveys and the CMB anisotropies produed at lastsattering. Many independent measurements are needed to redue the impat of suhaidental orrelations. The theoretial signal to noise ratio of the ross-orrelation([Crittenden & Turok1995℄, for ISW e�et) is given by

(

S

N

)2

=
∑

ℓ

(2l + 1)
[CTg

ℓ ]2

Cgg
ℓ CTT

ℓ + [CTg
ℓ ]2

≈ 6.8 (3.12)and then by using the ross-orrelation we an obtain an indiretly detetion of theLate ISW signal.Note that in this formula, the noise in the measurment of CTT
ℓ and CGG

ℓ is negleted.



52 CHAPTER 3. LATE INTEGRATED SACHS-WOLFE EFFECTWhereas negleting noise in CTT
ℓ for intermidiate multipoles is orret - sine WMAPis already essentially osmi variane dominated on large sales -, negleting the noisefor CGG

ℓ is an ideal assumption for urrent surveys.3.2 Information on Dark Energy onstraint in the ISW-LSSross-orrelationAs we have seen in the previous setion, the ISW depends on the osmologialmodel and requires that the bakground equation of state hanges. The osmologialmodel an be onstrained estimating the ross orrelations between the CMB mapsand large sale distribution of matter. Deteting the ross orrelations is di�ult,as it requires a map of the galaxy distribution whih is both deep and oversa large fration of the sky ([Crittenden & Turok1995℄). Large sky overage isessential beause the primordial �utuations at e�etively like noise when searhingfor anisotropies generated reently, and so the measurements are always `noise'dominated (Eq. 3.2). If the sky fation fsky is small, the error to reonstrutthe lower modes is large.The �rst attempts of deteting the orrelation using the COBE data and maps ofthe X-ray bakground (believed to trae AGN) or radio galaxy distribution produedno detetions (Boughn et al. 1998; Boughn & Crittenden 2002). However, thepiture improved greatly with the WMAP observations. Correlations were quiklyseen with the hard X-ray bakground ([Boughn & Crittenden2004℄), the NVSS radiogalaxy survey ([Boughn & Crittenden2004℄; [Nolta at al. 2004℄), the APM galaxysurvey [Folsalba & Gaztanaga, 2004℄, the SDSS ([Fosalba et al., 2003℄; [Sranton etal. 2003℄; [Padmanabhan et al. 2005℄ and the 2MASS survey [Afshordi et al. 2003℄.Whereas all the detetions are at a low signi�ane (2− 3σ), it is enouraging thatthey are seen is suh a broad range of surveys, from the radio and infrared to theoptial and X-ray.A Dark Energy model as the osmologial onstant term Λ auses the Newtonianpotential Φ to start evolving at late times, produing a signi�ant amout ofCMB anisotropy [Kofman & Starobinskii, 1985℄. Sine Λ omes to dominate rathersuddenly, this e�et is most important at rather modest redshifts. Observations ofthe density �eld allow to reonstrut the loal potential whih should be orrelatedwith the CMB. Measuring this orrelation thus would onstrain Λ. The Poisson's
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Figure 3.5: Preditions for ISW signal given the redshift distribution LRGs, bg = 1,
σ8 = 0.9, and a �at universe. The di�erent urves show the e�et of hanging thematter density. In partiular, the e�et beomes stronger as the matter density dereases([Padmanabhan et al., 2005℄).equation ontains the matter parameter ΩM :

k2Φ =
3

2
H2

0ΩM
δm
a

(3.13)where in the assumption of a �at universe, ΩM + ΩDE = 1. The osmologialinformation is also ontained in δm in the growth fator D(a), as the time evolutionof the matter distribution is
δm(k, a) = D(a)δm(k) (3.14)In Fig. 3.5 ([Padmanabhan et al., 2005℄) it is possible to see how the ross-orrelation power-spetrum hanges with the ΩM parameter.As we have seen in the previous hapter, the potential on a given sale deayswhenever the expansion is dominated by a omponent whose e�etive density issmooth on that sale. This ours at late times in an ΩM < 1 model at the end ofmatter domination and the onset Dark Energy (or spatial urvature) domination. Ifthe potential deays between the time a photon falls into a potential well and whenit limbs out it gets a boost in temperature of δΨ due to the di�erential gravitational
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Author CMB LSS Traer Wavelength Method ClaimedDetetionBoughn & Crittenden (2002) COBE XRB Xray D2 NoGiannantonio et al. (2008) W3 D2 2.7σBoughn & Crittenden (2004, 2005) W1 XRB/NVSS Xray/Radio D2 `tentative' (2-3 σ)Fosalba et al. (2003) W1 SDSS DR1 D2 2σ (low z)3.6σ (high z)Cabré et al. (2006) W3 SDSS DR4 Optial D2 > 2σGiannantonio et al. (2008) W3 SDSS DR6 D2 2.2σSawangwit et al. (2010) W5 SDSS DR5 D2 `marginal'López-Corredoira et al. (2010) W5 SDSS DR7 D2 `No detetion'Giannantonio et al. (2006) W3 SDSS Quasars Optial D2 2σGiannantonio et al. (2008) W3 SDSS Quasars D2 2.5σXia et al. (2009) W5 SDSS Quasars D2 2.7σSranton et al. (2009) W1 D2 > 2σPadmanabhan et al (2004) W1 D1 2.5σGranett et al. (2009) W3 SDSS LRG Optial D1 2σGiannantonio et al. (2008) W3 D2 2.2σSawangwit et al. (2010) W5 SDSS LRG, 2SLAQ D2 `marginal'Sawangwit et al. (2010) W5 AAOmega LRG D2 NullFosalba & Gaztañaga (2004) W1 APM Optial D2 2.5σAfshordi et al. (2004) W1 D1 2.5 σRassat et al. (2007) W3 2MASS NIR D1 2σGiannantonio et al. (2008) W3 D2 0.5σFranis & Peaok (2010) W3 D1 `weak'Boughn & Crittenden (2002) COBE D2 NoNolta et al. 2004 W1 D2 2.2σPietrobon et al. (2006) W3 NVSS Radio D3 > 4σVielva et al. 2006 W3 D3 3.3σMEwen et al. (2006) W3 D3 > 2.5σRaanelli et al. (2008) W3 D2 2.7σMEwen et al. (2008) W3 D3 ∼ 4σGiannantonio et al. (2008) W3 D2 3.3σHernández-Monteagudo (2009) W3 D1 < 2σSawangwit et al. (2010) W5 D2 `marginal' (∼ 2σ)Corasaniti et al. (2005) W1 D2 > 2σGaztañaga (2006) W1 D2 2σHo et al. (2008) W3 Combination Combination D1 3.7σGiannantonio et al. (2008) W3 D2 4.5σTable 3.1: From [Dupé et al, 2011℄ Meta-analysis of ISW detetions to date and theirreported statistial signi�ane. The `Method' desribes the spae in whih the powerspetrum analysis is done (on�guration, spherial harmoni, et . . .), not the method formeasuring the signi�ane level of the detetion. D1 orresponds to spherial harmonispae, D2 to on�guration spae, D3 to wavelet spae. The highest detetions are madein wavelet spae. Regarding the survey used, the highest detetions are made using NVSS(though weak and marginal detetions using NVSS are also reported) or using ombinationsof LSS surveys as the matter traer.



3.2. INFORMATIONON DARK ENERGY CONSTRAINT IN THE ISW-LSS CROSS-CORRELATION55redshift and −δΦ ≈ δΨ due to an aompanying ontration of the wavelength.The potential deay due to Dark Energy or urvature at late times indues muhdi�erent hanges in the anisotropy spetrum.The ISW e�et is espeially important beause it is extremely sensitive to theDark Energy: its amount, equation of state and lustering properties.At small angles the angular ross-orrelation is haraterized by a nearly onstantplateau, while it rapidly vanishes at larger angles (θ > 10◦, ℓ < 20). The overallamplitude of the signal up to small angles is partiularly sensitive to the equationof state, w. In Chap. 1 we osider the ase for a perfet �uid Dark Energymodel in whih δpX = c2XδρX . Dark Energy, if it is not a plain osmologialonstant, possesses small inhomogeneities whih interat gravitationally with theinhomogeneities in baryons, dark matter and relativisti matter. The physialproperties of DE perturbations onstitute additional ingredients whih an impatthe CMB anisotropies and LSS. Then the general pressure perturbation equation is
δpX = c2sδρX + 3H(1 + w)

θXρX
k2

(

c2s −
ṗX
ρ̇X

)

, (3.15)where ρX , δρX , c2s and θX are respetively the DE density, density perturbation,sound speed and veloity potential [Abramo, Finelli & Pereira, 2004℄. In Fig. 3.6we onsider the Dark Energy speed of sound cs = 1, the amplitude has a maximumaround w = −1 and slowly dereases for dereasing values of w, while it rapidlyfalls to zero for w → 0, this is beause the Dark Energy ontribution to the ISWe�et is mainly due to the bakground expansion. In fat for models with w > −1,as w → 0 the Dark Energy driven expansion is less aelerated and tends to thematter dominated behavior. Hene the variation of the gravitational potentials issmaller and onsequently produes a negligible amount of ISW as w → 0. Similarlyfor models with w < −1, the Dark Energy a�ets the expansion later than in modelswith w ≥ −1. This e�etively extends the period of matter domination whih leadsto a lower ISW signal.Sine a smaller ISW signal an be ompensated by inreasing the amount of DarkEnergy density ΩDE , a preise degeneray line in the ΩDE − w plane is expeted.In partiular lower negative values of w will be ounterbalaned by higher values of
ΩDE .In Fig. 3.7, on the ontrary for cs = 0, the amplitude of the ross-orrelation isa monotoni dereasing funtion of w. In this ase the deay of the gravitational
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Figure 3.6: Two-dimensional marginalized likelihoods on ΩDE −w. The yellow and red area orrespondto 1 and 2σ limits inferred from the ISW data for c
2

s = 1. Solid and dash lines represent the 1 and 2σontours from the SN-Ia data [Corasaniti et al., 2005℄.potential is sensitive to the lustering of Dark Energy whih is more e�etive as
w dereases. Thus the amplitude of the ISW inreases as w dereases. Again thedegeneray in the ΩDE −w plane is expeted to be orthogonal to the previous ase.In fat inreasing ΩDE will ompensate for larger values of w.This trend hold independently of the seletion funtion as long as it is enteredin a range of redshifts up z ∼ 0.7−0.8 for models with w ≥ −1. However one mightexpet this to not be the general situation in the ase of Dark Energy models witha time dependent equation of state.In [Giannantonio et al., 2008℄ it an be seen that for z > 0.2 the signal dereaseswith the redshift in way that is strongly dependent on the Dark Energy parameters.Note that these plots extend in a phenomenologial way aross w = −1 line whihdivides very di�erent theoretial proposals for Dark Energy.Therefore redshift measurements of the ross-orrelation are a potentiallypowerful tool to distinguish between di�erent dark energy models.Hene a sharper seletion funtion gives a smaller ross-orrelation signal,
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Figure 3.7: As in Fig. 3.6 with c
2

s = 0 prior ([Corasaniti et al., 2005℄).eventually leading to larger unertainties. On the other hand inreasing the numberof unorrelated redshift bins would allow a better reonstrution of the redshiftevolution of the ross-orrelation.A redshift dependent bias an also in priniple mimi the redshift evolution ofthe ross-orrelation predited by di�erent Dark Energy models.One of the advantages of testing Dark Energy with the ross-orrelation is thatit is insensitive to other parameters whih limits ommon Dark Energy parameterextration analyses involving CMB temperature and polarization anisotropy spetra.For instane the ISW orrelation is not a�eted by a late reionization or by an extrabakground of relativisti partiles whih hange the CMB spetra through the early-ISW. The ISW-orrelation is also independent of the amplitude of tensor modes anddepends uniquely on the salar perturbations, sine a primordial bakground ofgravity waves is unorrelated with present large sale struture distribution.There is little sensitivity to the salar spetral index ns, while the dependene onthe baryon density Ωb an be non-negligible. In fat the presene of baryons inhibitsthe growth of CDM �utuations between matter-radiation equality and photon-



58 CHAPTER 3. LATE INTEGRATED SACHS-WOLFE EFFECTbaryon deoupling ausing the matter power spetrum to be suppressed on sales
k > keq for inreasing values of Ωb (keq is the sale whih enters the horizon at the�rst equality). Over the range of sales whih ontribute to the ISW-orrelation(k ∼ 0.01) the sensitivity on Ωb is still present.The measure of the ISW signal an be done in various statistial spaes. InTable 3.1, [Dupé et al, 2011℄ lassify detetion into three measurement `domains':D1 orresponds to spherial harmoni spae; D2 to on�guration spae and D3 towavelet spae.There are only two analyses whih use COBE as CMB data with XRB andNVSS data,[Boughn & Crittenden, 2002℄, and both report null detetions, whihan reasonably be due to the low angular resolution of COBE even at large sales.The rest are done orrelating WMAP data from years 1, 3 and 5 (respetively `W1',`W3' and `W5' in Tab. 3.1).Most ISW detetions reported in Tab. 3.1 are relatively `weak' (< 3σ) and this isexpeted from theory for a onordane osmology. Higher detetions are reportedfor the NVSS survey [Pietrobon et al. 2006, MEwan et al. 2007, Giannantonio etal. 2008℄, though weak and marginal detetions using NVSS data are also reported[Hernández-Monteagudo 2009, Sawangwit et al. 2010℄. High detetions are oftenmade using a wavelet analysis [Pietrobon et al. 2006, MEwan et al. 2007℄, thougha similar study by the same authors using the same data but a di�erent analysismethod �nds a weaker signal [MEwan et al. 2006℄. The highest detetion is reportedusing a tomographi ombination of all surveys XRB, SDSS galaxies, SDSS QSOs,2MASS and NVSS, Giannantonioetal2008, as expeted given the larger redshiftoverage of the analysis.Several analyses have been revisited to seek on�rmation of previous detetions.In some ases, results are very similar ([Padmanabhan et al. 2004, Granett etal. 2009, Giannantonio et al. 2008℄, for SDSS LRGs; [Giannantonio et al. 2006,Giannantonio et al. 2008℄ for SDSS Quasars; [Afshordi et al. 2003, Rassat et al2007℄, for 2MASS), but in some ases they are ontroversially di�erent (for e.g.[Pietrobon et al. 2006℄ and [Sawangwit et al. 2010℄, for NVSS or [Afshordi et al.2003℄ and [Giannantonio et al. 2008℄, for 2MASS).We also notie that as ertain surveys are revisited, there is a trend for thestatistial signi�ane to be redued: for e.g., detetions from 2MASS derease



3.2. INFORMATIONON DARK ENERGY CONSTRAINT IN THE ISW-LSS CROSS-CORRELATION59from a 2.5σ detetion [Afshordi et al. 2003℄, to 2σ [Rassat et al 2007℄, to 0.5σ[Giannantonio et al. 2008℄ to `weak' [Franis et al. 2010℄. Detetions using SDSSLRGs derease from 2.5σ [Padmanabhan et al. 2004℄, to 2 − 2.2σ [Granett et al.2009, Giannantonio et al. 2008℄, to `marginal' [Sawangwit et al. 2010℄. Furthermore,there tends to be a `soiologial bias' in the interpretation of the on�dene on thesignal detetion. The �rst detetions interpret a 2 − 3σ detetion as `tentative'[Boughn & Crittenden, 2003, 2004℄, while further studies with similar detetionlevel report `independent evidene of dark energy' [Afshordi et al. 2003, Gaztañagaet al. 2004℄.
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Chapter 4CMB and LSS dataIn this hapter we present the data used to estimate the ross-orrelation ISW-LSSand whih theoretial models haraterize the angular power spetra. It is veryimportant to have a good knowledge of the theoretial temperature and galaxydistributions.4.1 Cosmi Mirowave Bakground DataFor CMB data we make use of publily available produts 1. In partiular theWMAP-7year release, lean maps at the V and W frequeny bands have been o-added, using a weighting proedure that aounts for the instrumental noise varianeper pixel. These frequeny maps have been leaned following a template �ttingapproah [Gold et al.2011℄, and are those used by the WMAP team to performosmologial tests, suh as onstraining non-Gaussianity [Komatsu et al., 2011℄.The o-added map has been degraded from its original Nside = 1024 down to
Nside = 32, sine the angular sales assoiated to this resolution (≈ 2◦) is enough toapture almost all the signal in the CMB-LSS ross-orrelation expeted from theISW e�et. Following this, the WMAP KQ75 Galati mask (similarly degraded)is applied to the o-added map, in order to mitigate the unavoidable foregroundontamination in regions within and near the Galati plane, and also to removeknown and intense extragalati objets suh as the Magelleni louds and largelusters near the northern Galati pole. Finally, the remaining monopole and dipolemoments outside the mask have been estimated and removed. In Fig. 4.1 we showthe masked WMAP7 maps we use in our analysis at the resolution of Nside = 32and in mK units.1http://lambda.gsf.nasa.gov/ 61
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Figure 4.1: WMAP-7year masked map. This map is lean thanks to the previous �niking work offoreground omponent separation (by WMAP team).4.2 Large Sale Strutures DataMany large sale struture maps are available in order to quantize the distributionof galaxies dN/dz. As it is shown in Tab. 3.1 many e�orts have been done to detetthe ISW signal, ross-orrelating the CMB map with several large sale struturemaps and di�erent methods (the method used in this thesis will be introdued inChap. 5).The most ommon used surveys are:� 2-Miron All Sky Survey (2MASS), infrared (2µm) survey of both hemisphereswith an observed area of 27191 deg2 (Mount Hopkins, Arizona, for the northenand Cerro Tololo/CTIO, Cile, for the southern hemisphere); the mean redshiftis ∼ 0.1.� Sloan Digital Sky Survey (SDSS), for photometri Luminous Red Galaxies(LRG) and Quasars (QSO), survey on �ve optial bands of about 104 deg2 ofthe high-latitude sky; the redshift range is 0.31 < z < 1.67.� NRAO VLA Sky Survey (NVSS), radio survey with the largest sky overage(27361 deg2) and the highest number of galaxies (1104983, for a �ux ut of



4.2. LARGE SCALE STRUCTURES DATA 63Table 4.1: The large-sale struture data summary.([Ho et al., 2008℄)Sample Area Density Number of beff 〈z〉bdeg2 deg−2 galaxies2MASS, 12.0 < Ks < 12.5 27 191 1.84 50 096 1.63 0.062MASS, 12.5 < Ks < 13.0 27 191 3.79 103 060 1.52 0.072MASS, 13.0 < Ks < 13.5 27 191 7.85 213 516 1.54 0.102MASS, 13.5 < Ks < 14.0 27 191 16.0 435 570 1.65 0.12SDSS, LRG, low-z 6 641 35.1 232 888 1.97 0.31SDSS, LRG, high-z 6 641 93.8 622 646 1.98 0.53SDSS, QSO, low-z 6 039 20.8 125 407 2.36 1.29SDSS, QSO, high-z 6 039 18.3 110 528 2.75 1.67NVSS point soures 27 361 40.3 1 104 983 1.98 1.43Table 4.2: Signal-to-noise ratio for eah surveySample fsky S/N2MASS 0.66 0.58SDSS, LRG 0.16 2.22SDSS, QSO 0.15 2.68NVSS 0.85 6.802mJ); the mean redshift is 1.43.Some features for these surveys are summarized in Tab. 4.1 ([Ho et al., 2008℄).In order to study the ISW e�et on the largest sales, the most important feature fora LSS map is the fsky, the fration of the observed sky and onsequently the highestnumber of galaxy. Today the best survey for this aim is the NVSS. We an omputefor eah survey forementioned above the signal-to-noise ratio of the ross-orrelation(see Eq. (3.12))
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(4.1)where CX
ℓ is the theoretial angular power spetrum for the X(auto or ross)-orrelation. Considering the same known angular power spetrum for thetemperature (WMAP7-like autospetrum), the galaxy-galaxy autospetrum (GG)hange for eah survey, with a partiular bias bg(z) and galaxy distributions dN/dz,as we have seen in Chap. 3, in Eq. (3.11). The Tab. 4.2 shows the di�erent signal-to-noise ratios for eah survey, it is lear how the NVSS is the best survey to studythe ISW e�et.
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Figure 4.2: Masked NVSS map with 2.5mJy �ux ut.4.3 NVSSThe NRAO VLA Sky Survey (NVSS) is a 1.4 GHz ontinuum survey overing theentire sky north of −40◦ delination (fsky ≈ 85%) obtained using the ompat Dand DnC on�gurations of the Very Large Array (VLA) [Condon et al., 1998℄. Theimages all have 45 arse FWHM resolution and nearly uniform sensitivity and yielda atalog of almost 2× 106 disrete soures stronger than ∼ 2.5 mJy.This survey has been widely used in the ontext of the ISW studies. It was�rst used by [Boughn & Crittenden, 2002℄ to probe the CMB-LSS ross-orrelationwith the COBE data, and a few years afterwards it was suessfully used by thesame authors with WMAP data, in the �rst work reporting suh ross-orrelation[Boughn & Crittenden2004℄; this was soon followed by [Nolta at al. 2004℄ with asimilar analysis by the WMAP team. In Fig. 4.3 we show the NVSS map use inour analysis at resolution Nside = 32 for a �ux ut of 2.5mJy and with no units butounts of soures (npix − n̄)/n̄, where npix is the number of galaxies per pixel and n̄the mean galaxy number of the map given by the ratio between the total number ofgalaxies and the number of no-masked pixels, Ngal

Nobspixel
.



4.3. NVSS 654.3.1 Systematis and pre-proessingThis survey has several systematis [Ho et al., 2008℄: galati synhrotron emission,spurious power from bright soures and a delination-dependent striping problem,di�erent on�gurations of the VLA antennas (Condon 1998). All of these have tobe treated properly before one an laim that the power oming from the ross orauto-orrelation is not due to some spurious issues.galati synhrotron emission.. The Galati synhrotron emission an inpriniple be an issue beause it ontributes signi�antly to the noise temperature ofthe VLA, and for realisti number ounts, inreased noise temperature ould hangethe number of soures with measured �ux above some threshold. This issue is treated[Ho et al., 2008℄ by inorporating a template in the ross-orrelation analysis andprojeting out the power that are orrelated to this template. Even though theHaslam map is at 408 MHz, the frequeny dependene of the galati synhrotronemission is fairly �at, allowing to use it as a template of the Galati synhrotonradiation.double soures. It was onsidered the possibility of double ounting in NVSS,or the possibility of the existene of soures whih are so lose eah to other thatthey are the same soure. It has been made a NVSS map at Nside = 4096, wherea pixel orrespond to a FWHM of 48.4" (assuming a gaussian beam). This value isa little higher than the NVSS FWHM (45"). Then it an be identi�ed the doubleounts looking at the pixels at Nside = 4096 with more than one ount; the maximumnumber of ounts in a pixel at this resolution is two.The number of double ounts (1589) with respet to the total number of ounts(1 657 106) was about 0.1%, most of the double ounts were in the galati plane. Itwas so proved this issue does not hange the angular power spetrum.delination-dependent striping. The survey has a somewhatinhomogenous sensitivity as a funtion of the equatorial delination, resulting inthe mean galaxy density that arti�ially varies with the delination. Therefore,some pre-proessing is needed in order to mitigate this large-sale e�et. One of theproedures used in the literature onsists in de�ning iso-latitude bands (in equatorial
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Figure 4.3: Variations in NVSS soure density as a funtion of delination for �ux thresholds 2 mJy (�lledirles) and 10 mJy (open irles). The delination range of eah array on�guration is also indiated. Theerror bar on the number of soures N in a bin is √N . Masked regions are exluded from measurement of[?℄oordinates) and imposing that these bands have the same mean galaxy density. Inour ase, this pre-proessing onsists of seleting �rst the soures above a partiular�ux ut, and then de�ning nine bands of equal area, imposing the same mean galaxydensity number for eah band. Finally, we rotate to Galati oordinates to ompareto WMAP, and then pixelise to a HEALPix (itare Gorski) resolution of Nside = 32.This delination-dependent striping problem hange with the �ux ut.In Fig. 4.3 (Jasper Wall 2002), delination-dependent variations our at �uxdensities below 10 mJy, inluding signi�ant jumps at the delinations at whih thearray on�guration hanges.(For the test on the ode see Chap. 6)antenna onfigurations. Observations were onduted by the VLA in twodi�erent on�gurations: the D on�guration was used for elipti latitudes in therange bE ∈ [−10◦, 78◦], while the DnC on�guration was used under large zenithangle (bE < −10◦, bE > 78◦). As noted by [Blake & Wall, 2002℄, this hange ofon�guration introdued some systematis in the galaxy number density. In Fig.4.4 the �utuations of the radio galaxy number density (around its mean) areplotted versus elipti latitude for NVSS soures after onsidering three di�erent
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Figure 4.4: Variations of the NVSS radio galaxy �utuation versus elipti delination for soures brighterthan 2.5mJy (blak irles), 30 mJy (red triangles) and 60mJy (green squares) [Hérnandez-Monteagudo,2010℄.�ux thresholds: blak irles display the ase where the threshold has been imposedat 2.5 mJy, while red triangles and green squares orrespond to 30 mJy and 60 mJy,respetively (Monteagudo 2010). It is lear that dim soures are strongly a�eted bythe VLA on�guration, sine the number density �utuations hanges dramatiallyfor the delinations bE = −10◦, 78◦ where the observing on�guration is swithed.This does not appreiably happen for the brightest soures (thresholds at 30 and 60mJy), whih show a rather �at pattern versus delination. bright soures. Thebright soures are problemati sine the VLA has a �nite dynami range (∼ 1000 insnapshot mode with limited uv-plane overage) and thus the identi�ation of faintsoures in �elds with a bright soure is unreliable. This issue is mitigated by maskingout all the bright soures. When pointing to a bright radio soure, side lobes usuallyshow up surrounding it and being ounted as spurious dim soures in the atalog.Although potentially of relevane, this e�et should be avoided in the brightest radiosoures, sine the point soure mask built by WMAP team typially anels a irleof radius 0.6◦ around the bright radio soures deteted by this experiment. To deal



68 CHAPTER 4. CMB AND LSS DATATable 4.3: Number of galaxys for the three onsidered �ux uts.Flux ut Galaxy Number fsky Galaxy Number(mJy) per pixel2.5 1 450 270 161.65.0 846 726 0.73 94.410.0 509 250 56.8
with the above potential problems, [Ho et al., 2008℄ impose a �ux limit of 2.5 mJy(where NVSS is 50% omplete), mask out a 0.6 degree radius around all the brightsoures (> 2.5 Jy).

Another reason to use the NVSS in an ISW ontext is the fat that luminousAtive Galati Nulei (AGNs) are supposed to be good traers of the density�eld at high redshift. However, among NVSS radio galaxies, one should, a priori,distinguish two di�erent soure populations, namely high luminosity AGNs andnearby Star Forming Galaxies (SFGs). If the ontribution of the latter populationis not negligible, then it might distort our template of the high redshift densitydistribution by adding a very low redshift galaxy sample. It is known most of theISW signal is generated in the redshift range z ∼ [0.5, 1.1], and therefore ideally thegalaxy survey should probe this epoh. The SFGs are plaed at very low redshift (z< 0.01) and for this reason provide no information in terms of ISW studies. Theyare intrinsially less luminous soures in the radio, and, as shown by Condon et al.(1998), dominate the soure ounts in the low �ux end. Aording to Condon et al.(1998), they ontribute to a ∼ 30% of the total number of weighted soure ountsat 1 mJy, but this ontribution should drop rapidly at larger �uxes measured at1.4 GHz. However, this onstitutes another argument to test how orrelation testsdepend on the �ux ut applied to NVSS soures. In our analyses (Chap. 6), we buildthree di�erent galaxy templates out of NVSS data, eah of them orresponding to�ux thresholds at 2.5, 5 and 10 mJy (in Table 5.1 there are the orrisponding galaxynumber for eah �ux ut,onsidering a HEALPix pixelization with Nside = 32 andso Npix = 12×N2
side = 12 288).



4.3. NVSS 694.3.2 Soure redshift distributionTo interpret the results of our measurements, we must assume some redshiftdistribution dN/dz and potentially redshift dependent bias b(z) for the sample.Historially, the redshift distribution was based on models of the soures by[Dunlop & Peaok, 1990℄, and a time-independent bias of 1.6 was derived by[Boughn & Crittenden, 2002℄. A larger time-independent bias was found by[Blake, Ferreira & Borril, 2004℄), albeit with a di�erent redshit distribution withrespet to [Boughn & Crittenden, 2002℄.In our analysis we use two di�erent galaxy distributions.� The �rst and main galaxy distribution we onsider in our analysis are theredshift distribution based on a Γ distribution �t whih was onstrained togive the ross-orrelations measured between the NVSS survey and SDSS LRGsubsamples ([Ho et al., 2008℄):
dNHo

dz
=

αα

zα+1
∗ Γ(α)

zαe−αz/z∗ , (4.2)where z∗ = 0.79 and α = 1.18. [Ho et al., 2008℄ also estimates an e�etive,redshift independent value for the bias as b(z) = 1.98.In the Eq. (3.4) of Chap. 3 the funtion dN/dz has to be haraterizedand for NVSS is the hardest to obtain beause there are no spetrosopisamples of NVSS objets that have su�iently high ompleteness to obtainthe redshift distribution. Past ISW analyses [Boughn & Crittenden2004,Nolta at al. 2004℄ with the NVSS have been based on the radio luminosityfuntion Φ(L, z) of Dunlop & Peaok [Dunlop & Peaok, 1990℄, whih itselfwas �t to a ombination of soure ounts, redshifts for some of the brightestsoures, and the loal luminosity funtion. It was assumed a onstant bias andthe redshift distribution so obtained was reasonable, however it had three majordrawbaks: the redshift probability distribution for the faint soures (whihmake up most of the sample) was onstrained only by the funtional form usedfor the luminosity funtion and not by the data; it did not give the redshiftdependene of the bias, whih ould be very important sine the redshift rangeis broad, and the typial luminosity of the soures varies with redshift; theabsolute bias b was onstrained using the NVSS autopower spetrum, whih isknown to ontain power of instrumental origin.



70 CHAPTER 4. CMB AND LSS DATAThe alternative method to measure f(z) is by ross-orrelation against theother samples whose redshift distributions are known and it was adopted by[Ho et al., 2008℄, sine it does not have any of the aforementioned problems. Itsmain drawbak is that the other samples only probe the range out to z ∼ 2.6,and little data is available to onstrain f(z) above that.The redshift distribution was then �t to the ross-power spetra and fNVSS(z)is the Eq. (6.1) with three free parameters, beff , z⋆, and α. Of thesethe normalization beff may be viewed as an e�etive bias in the sense that
∫

fNVSS(z) dz = beff ; in the absene of osmi magni�ation this would be thebias averaged over the redshift distribution. The peak of the distribution is at
z⋆, and α ontrols the width of the distribution.There are always some radio soures without optial identi�ations, howeverthis method enables one to set an upper limit to the number of NVSS souresthat an be at high redshift. [Ho et al., 2008℄ have mathed against theCOSMOS �eld, whih has a modest solid angle (2 deg2), multiband imagingallowing good photometri redshifts, and deep high-resolution overage withthe VLA. Area is required due to the low density of NVSS soures (40 deg−2),and high-resolution radio images are required to uniquely identify an NVSSsoure with an optial ounterpart due to the large positional unertainty inthe NVSS (∼ 7 arse for faint soures) [Condon et al., 1998℄.The photometri redshift distribution of the mathes is shown in Fig. 4.5.The best-�t fNVSS(z) (with the Γ distribution) has 24% of the bias-weightedsoure distribution at z > 2 and 8% at z > 3; if the soure bias inreases withredshift, as usually found for optial quasars, this number would be lower.From Fig. 4.5, only 2 out of 64 mathes fall at z > 2, i.e. the high-redshifttail of the Γ distribution an only exist in reality if (i) most of the 26% ofthe soures with failed mathes to COSMOS optial/NIR data are atually at
z > 2, or (ii) the soures at z > 2 have a large bias.� The seond galaxy distribution we explore is the most reent galaxy redshiftdistribution proposed by [de Zotti et al., 2010℄, a fourth order polynomial �tto the CENSORS distribution [Brookes et al., 2008℄:

dNdZ

dz
= 1.29 + 32.37z − 32.89z2 + 11.13z3 − 1.25z4 . (4.3)
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Figure 4.5: The dashed line is the �t three-parameter fNVSS(z), normalized to unity (i.e.the redshift distribution assuming onstant bias and negligible e�et from magni�ation).
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Figure 4.6: The onstraints on the NVSS redshift distribution from the ross-orrelationswith the other eight samples. The horizontal error bars show the redshift window funtionsas desribed in the text. The dashed line shows the result of using the redshift distributionbased on the [Dunlop & Peaok, 1990℄ luminosity funtion assuming onstant bias andnegleting magni�ation, as has been done in most ISW studies.
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Figure 4.7: Galaxy distributions from CENSORS (red urve) and from the Γ distribution by[Ho et al., 2008℄ (blak urve).In this model the units are given by the number of galaxies per redshift andsquare degrees [de Zotti et al., 2010℄. This distribution dN/dz is normalizedto unity hoosing the integration range between 0 and zmax = 3.73, where zmaxis the redshift at whih model vanishes (Fig. 4.7).We know the ostant bias approah is not physially orret. For this reasonthis galaxy distribution ontains a redshift dependent bias b(z). We use the biasparametrization of [Xia et al., 2010℄ that onsider a model for the Gaussianbias given by
bG(z) = b1 +

b2
Dγ(z)

(0 ≤ γ ≤ 2), (4.4)where b1 and b2 being free parameters and D(z) is the growth fator (Chap.1). An �objet-onserving" bias model orresponds to γ ≈ 1, while the bias ofhigh-density peaks for objets that have just formed yields γ ≈ 2.The expression of b(z) requires the knowledge about the mass funtion, given by



4.3. NVSS 73[Xia et al., 2010℄ by the weighted e�etive halo bias in a non-Gaussian regime
beffNG(Mmin, z, k, fNL) =

∫∞
Mmin

bNGnNGdM
∫∞
Mmin

nNGdM
(4.5)where, in our ase, only the minimum halo mass Mmin is a free parameter.

nNG is the numeber of halos and fNL the non-Gaussianity parameter. In[Xia et al., 2010℄ the parameters orresponds to b0 = 1.1, b1 = 0.6 and γ = 1.We hoose to resale these power spetra in order to be oinident with the�duial from [Ho et al., 2008℄ at ℓ = 64.All the theoretial power spetra in temperature, galaxy or polarization areusually numerially omputed with odes as COSMICS, CMBFAST and CAMB(the last two derived from COSMICS).In this thesis the alulation of all the CGG
ℓ and CTG

ℓ spetra as well as the ISWpart of the temperature power spetrum CISW
ℓ is done using a modi�ed version ofthe CAMB ode [Lewis et al, 2000℄.4.3.3 Shot noiseA very important issue to take into aount in a galaxy survey is its shot noise,a Poissonian unertainty of measuring a distribution iof galaxies. We de�ne thequantity δi as the galaxy number density for eah pixel i

δi =
ni − n̄

n̄
, (4.6)and the error on the galaxy number in a pixel as

δni =
√
ni. (4.7)Then the galaxy number density is a�eted by an error given by

δδi =
δni

n̄
=

√
ni

n̄
. (4.8)The properly variane for the shot noise is

σ2
sn =

n̄i

n̄2
. (4.9)In our analysis we use a uniform shot noise

σ2
sn =

1

n̄
, (4.10)



74 CHAPTER 4. CMB AND LSS DATAthe same for eah pixel. Sine it depends from the ratio n̄ =
Ngal

Nobspix
, the three �uxuts of the NVSS we onsider have di�erent shot noises, in partiular when we havea small number of galaxies (high �ux ut) the shot noise is high.



Chapter 5BolISW ode
In order to estimate the angular power spetrum (APS) of the ross-orrelationbetween osmi mirowave bakground and large sale struture maps, seen inthe previous hapter, we implemented an optimal method, a Quadrati MaximumLikelihood (QML) method. The QML method for power spetrum estimateof CMB anisotropies was introdued in [Tegmark, 1997℄ and later was alsodeveloped for CMB polarization in [Tegmark & de Oliveira-Costa, 2001℄. A di�erentimplementation of the method was applied to the ross-orrelation between CMB(WMAP1) and LSS (SDSS) by [Padmanabhan et al., 2005℄ and by [Ho et al., 2008℄between WMAP3 and many di�erent LSS maps (2MASS, SDSS LRG, SDSS QSOand NVSS)) were used.The ode BolISW desribed in the following setions has a similar parallelarhiteture to the BolPol ode implemented by [Gruppuso et al., 2009℄, where theQML method was used to ross-orrelate the CMB temperature with the CMBpolarization E and B modes (see Se. 5.2).5.1 QML algebraGiven a CMB map in temperature (T) and a galaxy survey in number of galaxiesper pixel (G), we de�ne a vetor in pixel spae x = (T,G) rapresenting in observedmaps.The QML provides an estimator of the angular power spetrum ĈX

ℓ - where X anbe one of TT, TG,GG orrelations. This estimator is given by
ĈX
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, (5.1)75
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, (5.2)and the E matrix is given by
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−1. (5.3)The C = S(CX

ℓ ) + N is the total global ovariane matrix inluding the signal Sand noise N ontributions. The S matrix omponentes areCX
ij =
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ij (5.4)where P ℓ
ij are the Legendre polynomials

P ℓ
ij =

2ℓ+ 1

4π
P

ℓ(r̂i, r̂j) (5.5)and CX
ℓ is alled the �duial theoretial power spetrum (it is used to reate thesimulated maps useful to test the method in Se. 5.4).Then there are three inputs in the QML method: the x vetor that ontains themaps and the N noise matrix; the last input is the CX

ℓ , given by the theoretialosmologial model. It was proven by [Gruppuso et al., 2009℄ and by the analysisin this thesis that these �duial spetra are a kind of starting point and that theestimates are not dependent from them, but only from the power spetra whihharaterizes the real temperature and galaxy distributions, respetevly, the CMBand LSS maps. In Fig. 5.1 we show the three used �duial spetra (urves in blue).For the temperature auto-spetrum the blue line is the total CMB signal, i.e. theISW (urve in red) e�et plus all is not ISW (urve in blak). The ISW ontributionis higher on the largest sales and gives to the total temperature �duial model theharateristi rising on the low multipoles.The QML is an optimal method for two reasons.� It provides unbiased estimates of the power spetrum of the map regardless ofthis initial guess
〈ĈX

ℓ 〉 = CX
ℓ . (5.6)Here the average is taken over the ensemble of realizations based on the inputspetrum CX

ℓ (see Se. 5.4). The assumed �duial power spetra an impatthe error estimates through the Fisher matrix.
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Figure 5.1: The three panels show the theoretial �duial models for the three spetra TT,TG and GG. In the �rst panel there are three urves: the blak is the power spetrum forwhih is not ISW; the red urve is the only ISW power spetrum; the blue urve is thepower spetrum for the total CMB signal. For all the power spetra in our analysis wehoose to plot the temperature in µK and the galaxy number density adimensionless.� The QML method has minimum variane, i.e. it an provide the smallest errorbars allowed by the Fisher-Cramer-Rao inequality,
〈∆ĈX

ℓ ∆ĈX′

ℓ′ 〉 = (F−1)X X′

ℓℓ′ , (5.7)where
∆ĈX′

ℓ′ = ĈX
ℓ − 〈ĈX

ℓ 〉, (5.8)and the averages, as above, are over an ensemble of realizations. In Se.5.4 we will demontrate the unbiased and minimum variane properties, whihtherefore onstitute the validation of the ode.5.2 BolPolThe original ode BolPol is a fully parallel implementation (MPI) of the QMLmethod written in F90. Sine the method works in pixel spae the omputational



78 CHAPTER 5. BOLISW CODEost inreases as one onsiders smaller angular resolution for a given sky area, i.e.more pixels. This is the reason why the QML ode has been parallelized. Theinversion of the ovariane matrix C sales as O(N3
pix). The number of operationsis roughly driven, one the inversion of the total ovariane matrix is done, bythe matrix-matrix multipliations to build the operators E

X
ℓ in Eq. (5.3) and byalulating the Fisher matrix F ℓℓ′

XX′ given in Eq. (5.2). The number of operationsthat are needed to build these matries sales as O(N2
sideN

2
pix) and O(NsideN

3
pix)respetively. The RAM required is of the order O(∆ℓN2

pix) where ∆ℓ is the numberof C
−1 (∂C/∂CX

ℓ ) (for every X) that are built and kept in memory during theexeution time.Given these kind of salings, it is lear that it is urrently unrealisti to runthe QML estimator for all-sky maps of resolution larger than Nside = 8 (in Healpixlanguage1 [Gorski et al., 2005℄) on a single CPU. To reah higher resolution we usethe SaLapak library2 and the BLACS3 routines whih are optimize for distributedmemory parallel omputers. In this way it is possible to run BolPol on the WMAPdata set with the resolution of Nside = 16 on a superomputer. Note that Nside = 16is not the highest resolution that BolPol is able to onsider. Currently BolPol isable to proess maps of Nside = 32.BolPol was applied to the WMAP5 ([Gruppuso et al., 2009℄) and WMAP7([Gruppuso et al., 2011℄) low resolution maps to ompute the CMB angular powerspetra at large sales for both temperature and polarization.The six angular power spetrum (TT,TE,TB,EE,EB,BB) estimates have beenprovided up to ℓMAX = 48, taking into aount the the omputational ost dueto the osidered high number of pixels. In Fig. 5.2 we show the omparison of theestimates obtained with WMAP7 and WMAP5 data for all the six power spetra.5.3 BolISWThe BolISW ode, implemented in this thesis, stens from BolPol and omputes threeangular power spetra (TT,TG,GG), then it is apable to use higher resolutions withrespet to BolPol. Currently the ode is working with Nside = 32 and omputes - all1http://healpix.jpl.nasa.gov/. For people not familiar with the Healpix notation, Nside is related to thenumber of pixels Npix by Npix = 12N
2

side.2http://www.netlib.org/salapak/3http://www.netlib.org/blas/
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Figure 5.2: The panels show the six power spetra obtained by BolPol with two data sets:WMAP5, blue points; WMAP7, blak points. In the plots ℓMAX = 32. The blak dottedline is the orrespondent �duial model.



80 CHAPTER 5. BOLISW CODETable 5.1: Numerial featuresCode BolPol BolISW BolISWFeatures Nside = 16 Nside = 32 Nside = 64
ℓMAX = 3 (or 2)×Nside 48 96 128
Npixel = 12×N2

side 9 216 24 576 98 304
Nprocessor 64 256 512Computing time (min) ∼ 20 ∼ 40 ∼ 570 (9.5 hours)Hardisk (GB) 65 153 671together - the three spetra; however a ode version has been implemented in orderto use Nside = 64,then in this ase it is neessary to ompute only one spetrum ata time beause of the large inreasing in the number of pixel.My ode runs on the SP6 superomputer at CINECA (proessor type: Opteron DualCore 2.6 GHz, with 4 GB per proessor), in Tab. 5.1 we summarize some tehnialfeatures for BolPol with Nside = 16 and BolISW with both resolutionsNside = 32, 64.5.3.1 Numerial optimizationFor the reasons disussed above, the QML method is omputationally expensive athigh resolution. we disuss here some hanges whih an improve the numeris andderease substantially the exeution time with a negligible loss of auray.The predited CTG

ℓ is generally non-zero, and its measurement is the primarygoal of our analysis. In the following analysis, we deide to assume CTG
ℓ = 0 forthe �duial model whih is used to build the ovariane matrix. This workinghypotesis is a good approximation as it is proven in the validation of the ode (seeSe. 5.4). Furthermore, the noise matrix N may be assumed to be unorrelatedbetween the CMB and the galaxy measurements and then blok-diagonal. Underthese assumptions, the Fisher matrix beomes blok diagonal and the three spetra

ĈTT
ℓ , ĈTG

ℓ , ĈGG
ℓ an be estimated independently from eah other. This redues theomputation ost of the Fisher matrix by ∼ 50% with respet to the problem withthe full ovariane. Moreover estimating just ĈTG

ℓ the omputational ost of theproblem dereases by a further fator of 1/3, as in [Padmanabhan et al., 2005℄; weuse this redution when we ompute the estimates with a resolution of Nside = 64.In order to apply the algebra of the QML method, desribed in Eq.s (5.1-5.3),one must build the ovariane matrix C in pixel spae and the Fisher matrix F in ℓspae. The latter is the most expensive task at omputational level, largely beause



5.3. BOLISW 81it requires the inversion of the pixel spae ovariane matrix C. This inversion analso introdue numerial errors sine its eigenvalues span several orders of magnitude(whih it is visible also among the Fisher matrix bloks, for more details see A 7.2)To bypass this issue, we have used inversion-routines only on numeriallyhomogeneous bloks thanks to the following expressions. Given a general matrix
A in blok form,

A =

(

A11 A12

A21 A22

)

, (5.9)where A11 and A22 are non-singular square matries, then it an be shown that theinverse of A is
A−1 =

(

B11 −B11A12A
−1
22

−A−1
22 A21B11 A−1

22 + A−1
22 A21B11A12A

−1
22

)

, (5.10)with
B11 = (A11 − A12A

−1
22 A21)

−1 . (5.11)For this ase, the ovariane matrix C is divided in sub-bloks (TT, TG andGG bloks), so that A11 is the ovariane related to the CMB temperature setorand A22 relates to the ovariane of the galaxy setor. Thus, assuming a �duialmodel without any ross-ovariane simpli�es the inversion alulation signi�antly.This tehnique is also applied to the Fisher matrix inversion in multipole spae(with A11 = F TT
ℓℓ′ ), obtaining a muh better preision with respet to the brute foreinversion (∼ 3 orders of magnitude)Note that when the �duial power spetrum for the ross-orrelation CTG

ℓ ishosen to be null, then the two aforementioned matries (both C and F) beomeblok-diagonal and their inversion is simply given by the inversion of eah of thediagonal bloks. In this partiular ase of F, the QML method splits into threeindependent �smaller� QMLs, for TT , GG and TG ([Ho et al., 2008℄).As we will show in next setion with the Monte Carlo validation and later inChap. 7 where we will apply QML to real data, using the CTG
ℓ = 0 approximationdoes not hange the estimates, but the little �utuations in the error bars amplitude,between the ases CTG

ℓ = 0 and CTG
ℓ 6= 0, will be visible sine ampli�ed in thelikelihood analysis.



82 CHAPTER 5. BOLISW CODE5.4 ValidationIn order to validate the implementation of the QML method, we reatesimulated CMB temperature anisotropy and galaxy ount maps following thereipe desribed in [Boughn & Crittenden, 1998℄ (see also [Barreiro et al., 2008℄and [Giannantonio et al., 2008℄). we employ the HEALPix program synfast[Gorski et al., 2005℄, whih allows one to reate aℓm suh that
〈aYℓmaY

′

ℓ′m′

⋆〉 = CY Y ′

ℓ δℓℓ′δmm′ , (5.12)where Y, Y ′ = T,G. The total map for the CMB anisotropies aTℓm is simulated asthe sum of three di�erent maps
aTℓm = aISWc

ℓm + aISWu
ℓm + aprimℓm , (5.13)where aISWc

ℓm represents the fully orrelated ISW e�et with the galaxy distribution,
aISWu
ℓm is the unorrelated part of the ISW e�et and aprimℓm is the primordial CMBsignal. These amplitudes are given by

aISWc
ℓm = ξa

CTG
ℓ

√

CGG
ℓ

, (5.14)
aISWu
ℓm = ξb

√

CISW
ℓ − (CTG

ℓ )2

CGG
ℓ

, (5.15)
aprimℓm = ξc

√

CTT
ℓ − CISW

ℓ . (5.16)In addition for the galaxy ount maps we onsider
aGℓm = ξa

√

CGG
ℓ , (5.17)where ξ's are Gaussianly distributed omplex random numbers, with zero mean andunit variane. They are the seeds of the simulations and satisfy 〈ξaξ∗a′〉 = δaa′ . Inthis way it an be proven that

〈aTℓmaT ∗
ℓm〉 = CTT

ℓ , (5.18)
〈aGℓmaG ∗

ℓm 〉 = CGG
ℓ . (5.19)

〈aTℓmaG ∗
ℓm 〉 = CTG

ℓ . (5.20)where CTT
ℓ ,CTG

ℓ and CGG
ℓ are the �duials introdued in the previous setion.



5.4. VALIDATION 83We have tested the BolISW ode using these Monte Carlo simulations. Inpartiular, we have performed 1000 realizations for CMB and LSS orrelated mapsat the HEALPix resolution of Nside = 32. For the multipoles, we onsider the range
∆ℓ = [2, 95], i.e., up to the Nyquist frequeny 3Nside − 1. By using the partiular�duial power spetra forementioned above, the standard ΛCDM osmologial model[Larson et al., 2011℄ is assumed, as well a survey harateristis similar to the NVSSatalogue [Condon et al., 1998℄, namely: a similar sky overage and a galaxy densitynumber distribution per redshift given by the [Ho et al., 2008℄ model, and a bias
b = 1.98 (see previous hapter)These simulated maps show that BolISW leads to unbiased and minimumvariane results, as an be seen by omparing the simulations to the projeted errorsfrom the Fisher matrix, in Fig. 5.3 with the two auto-spetra and in Fig. 5.4 withthe ross-spetrum. In this plot it is shown the Monte Carlo estimates with twodi�erent error bars, from the Fisher matrix (1) and from the Monte Carlo variane(2). The unbiased issue is proven beause the estimates fall exatly on the �duialmodel it is used to haraterize the simulated maps for all the three spetra. Alsothe minimum variane is proven almost for all the multipoles; in the three spetraa small disrepany between the error bars omputed from (1) and from (2), inpartiular for multipoles higher than ℓ ∼ 64. We have heked this disrepany wasnot due to the CTG

ℓ = 0 approximation, omputing the Monte Carlo for the ase with�duial model di�erent from zero. The two ases result equivalent. Importantly, weon�rm that the method is unbiased and has minimum variane when the �duialross power spetrum CTG
ℓ is set to zero, i.e. when the ode is less omputationallyexpensive.Further, we have also veri�ed by Monte Carlo that our implementation is optimalwhen onsidering the realisti ase of a masked sky (thin error bars in Fig.s 5.5 and5.6).It is important to notie that, while on these large-sales the noise ontributionin WMAP and future (Plank) CMB temperature maps is so low that the CMBnoise N might be safely negleted, this is not true for large sale struture surveys.Depending on the number of soures used as large sale traers, the galaxy densitymap ould be signi�antly a�eted by a Poissonian shot noise, whih must be takeninto aount.
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Figure 5.3: The two panels show two error bars of the average estimates for the MonteCarlo validation obtained in two di�erent ways: the thin error bars are given by the inverseof the Fisher matrix; the thik error bars are given by the Monte Carlo variane. The upperand lower panels show the TT and GG auto spetra, respetively. The two error bars areoinident until ℓ ∼ 64, then the error bars obtained by the Fisher matrix beome larger.
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Figure 5.4: The panel shows, in TG ross spetrum, two error bars of the average estimatesfor the Monte Carlo validation obtained in two di�erent ways: the thin error bars are givenby the inverse of the Fisher matrix; the thik error bars are given by the Monte Carlovariane. The two error bars are oinident until ℓ ∼ 64, then the error bars obtained bythe Fisher matrix beome larger.



86 CHAPTER 5. BOLISW CODEThe results from the Monte Carlo validation are summarized in Fig. 5.5 and Fig.5.6: all the panels onsider three di�erent senarios, all of whih provide unbiasedaveraged estimates in good agreement with the �duial model (blue lines) as seenabove, and they di�er only in their error bars. The �rst ase orresponds to amasked sky (aounting for the NVSS sky overage and the WMAP KQ75 mask)with negligible Poissonian shot noise ontribution to the LSS map (given by thethik error bars); seond, a full-sky ase with a shot-noise like the that expeted inNVSS (see the previous hapter) when only soures above 2.5mJy are taken intoaount (solid line error bars); and �nally, a more realisti situation where both,the inomplete sky and the shot noise are inluded in the analysis (light dark errorbars). The error bars inrease when the noise level in the LSS map rises and whenthe fration of the sky onsidered is redued, the latter falling approximatively withthe √

fT
skyf

G
sky, as expeted.For omparison, the plots also inlude (dark lines) the average anafast estimationfor the full-sky ase (dark lines), based on the simple HEALPix FFT tool; the anafastestimation is slightly biased at high ℓ in the two auto-spetra.As �nal validation test the QML ode was runned on one simulated map, withmasks applied and removing the same shot noise used before. The results aresummarized in Fig.s 5.7 and 5.8. In the bottom panel of Fig. 5.8 we binned the

ĈTG
ℓ estimates, over ∆ℓ = 9.Sine the signal-to-noise for unbinned TG power spetrum is rather poor, we presentalso the binned power spetrum CTG

b over ∆ℓ = 9. The binned estimates are simplythe average of the unbinned estimates inside the bin. For plotting purposes, weassoiate for the unertainty in the binnes estimate
∑

ℓ∈∆ℓ

(F−1)TGTG
ℓℓ

N
(5.21)where N is the number of ℓ's in a bin.The same binning it is used to bin the estimates from real data in the next hapter.It is important to note how the full sky power sptrum CTG

ℓ is well reover by ourQML with the mask applied, of ourse in agreement with our Monte Carlo validation.
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Figure 5.5: The average estimates for the Monte Carlo validation: the upper and lowerpanels show the TT and GG auto-spetra, respetively. We ompare results for three ases:using realistially masked maps without noise in the LSS maps (thik error bars), usingfull sky maps with NVSS-like shot noise (solid line error bars), and assuming both maskedmaps and NVSS-like shot noise (light dark error bars). We an see that average powerspetra from the QML all agree very well with the underlying �duial theoretial powerspetra (blue lines). The error bars hange aording to the noise level in the LSS map andthe fration of the sky onsidered. The dark lines are the average of the anafast estimates,whih are slightly biased at high ℓ in the two auto-spetra.
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Figure 5.6: The average estimates for the Monte Carlo validation: the TG ross-spetrum.As above we ompare results for three ases: using realistially masked maps without noisein the LSS maps (thik error bars), using full sky maps with NVSS-like shot noise (solidline error bars), and assuming both masked maps and NVSS-like shot noise (light darkerror bars). We an see that average power spetra from the QML all agree very wellwith the underlying �duial theoretial power spetra (blue lines). The error bars hangeaording to the noise level in the LSS map and the fration of the sky onsidered. Thedark line is the average of the anafast estimates, whih is not biased at high ℓ like in thetwo previous auto-spetra.
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Figure 5.7: The estimates for a single full sky realization: the upper and lower panels showthe auto-spetra, TT and GG. The error bars on our estimated points (stars) are estimatedby the Fisher matrix. The dark broken lines are the estimates by anafast and the bluesolid lines are the �duial power spetra.
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Figure 5.8: The estimates for a single full sky realization: the upper and lower panelsshow the ross-spetrum, TG, in the unbinned and binned ases. The error bars on ourestimated points (stars) are estimated by the Fisher matrix. The dark broken lines are theestimates by anafast in the fully sky ase and the blue solid lines are the �duial powerspetra.



Chapter 6Appliation to WMAP 7 year andNVSS dataIn this hapter we desribe the appliation of BolISW to estimating the ross-orrelation spetrum between the WMAP 7-year CMB maps and the NRAO VLASky Survey (NVSS) data, both desribed in 4. We onsider three di�erent �uxuts (2.5, 5, 10 mJy) for NVSS map and two di�erent galaxy distributions todesribe the NVSS power spetrum (the �duial model from [Ho et al., 2008℄ andfrom [de Zotti et al., 2010℄), in order to investigate potential systemati problems.We present all spetra up to ℓ = 64 (= 2×Nside), in order to ut the aliasing e�eton the largest ℓ's.6.1 TT auto-spetrumThe temperature auto power spetrum is the same for all the analysis, beause weuse always the WMAP 7-year map for CMB temperature and a possible noise onthe TT is negligible (as seen in 4.3.3) and therefore we do not onsider it here. Themap is masked with the same mask used in the ode validation. In Fig. 6.1, itis shown the angular power spetrum for the CMB temperature, ompared to the�duial power spetrum whih is the WMAP7 year best �t ([Larson et al., 2011℄).6.2 Balaxy distribution model with onstant bIn this setion we present the TG ross-spetrum and the GG auto-spetrumobtained by the [Ho et al., 2008℄ �duial model
dNHo

dz
=

αα

zα+1
∗ Γ(α)

zαe−αz/z∗ , (6.1)91
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Figure 6.1: Unbinned CTT
ℓ auto spetrum to l = 64. The estimates follow the theoretial�duial model.with z∗ = 0.79, α = 1.18 and a redshift independent value for the bias as b = 1.98(see Chap. 4).6.2.1 No shot-noise removalIn some of the literature it is not lear if the shot noise ontribution is taken intoaount and we therefore try to estimate power spetra without removing the shotnoise. Follow the unbinned estimates for the 2.5, 5.0 and 10.0 mJy �ux uts of NVSSmaps, in Fig.s 6.2, 6.3 and 6.4.It is useful omparing the binned estimates in all the three �ux uts, for ĈTG

ℓ and
ĈGG

ℓ (Fig. 6.5).From ĈGG
ℓ , it is lear a large disrepany between the QML estimates and the�duial model ([Pietrobon, Balbi and Marinui, 2006℄), in partiular the estimatesare muh higher than the model. Note that the errors are small for the sale of theplot, but are given by the usual Fisher ontribution with NGG = 0. Considering onlythe ĈTG

ℓ , this high disrepany between estimates and �duial model is not visible.



6.2. BALAXY DISTRIBUTION MODEL WITH CONSTANT B 93In order to be sure about the ross-orrelation, it is important to supervise also theTT and GG auto-orrelations.The disrepany in ĈGG
ℓ (not only the distane between the estimates and the modelbut also the inonsisteny among all the three �ux uts) ould be due to a wrong�duial model, to no shot noise removal or some other systemati e�et not takeninto aount. As seen in Chap. 4, the galaxy surveys ontain a Poissonian shotnoise due to the variane of the observed number of galaxies per pixel; this noise isdi�erent for eah �ux ut and ould be the reason of the disrepany between thethree �ux uts. In priniple the QML an remove a noise through the noise biasterm seen in Eq. (5.1), whih an be fully modelled within the noise matrix NGG.In the �rst estimate omputings the noise is not onsidered, so the N matrix is zero.In order to evaluate the impat of the shot noise, a diagonal noise matrix in the GGsetor (as done in Eq. 4.3.3, we hoose a uniform shot noise) has been taken intoaount. For the TT setor we still onsider a negligible noise.6.2.2 Shot-noise removalHere we show how the ĈGG

ℓ and ĈTG
ℓ hange removing the shot-noise, as it shouldbe lear in Fig.s 6.6, 6.7 and 6.8.Comparing the binned estimates in all the three �ux uts, for ĈTG

ℓ and ĈGG
ℓ in thease of shot-noise removal, we obtain Fig. 6.9.Removing the shot-noise, di�erent for eah �ux ut beause of the di�erent galaxynumber for eah �ux ut (in Eq. (4.10)) we get the three �ux uts onverge to eahother and approah towards the �duial model, either in GG and in TG. A smalldi�erene between the theoretial power spetrum CGG

ℓ and the QML estimates
ĈGG

ℓ is still visible and we annot �nd explanetion to that. Our estimates for theNVSS auto-power spetrum agree very well with [Blake, Ferreira & Borril, 2004℄,who used an optimal estimator similar to ours on a NVSS map of the same resolutionof the one used here. The stability of the CGG
ℓ estimates with respet to di�erent�ux threshold found in [Blake, Ferreira & Borril, 2004℄ is also very similar to whatwe �nd. [Xia, Viel & Baigalupi, 2010℄ estimated a larger disrepany at lowermultipoles and explained this e�et as result of non-negligible primordial non-Gaussianity, aused by the large-sale sale-dependene of the non-Gaussian halobias. However, the value inferred for the oupling non-Gaussian parameter fNL



94 CHAPTER 6. APPLICATION TO WMAP 7 YEAR AND NVSS DATAis muh larger than the limits imposed by CMB analyses ([Komatsu et al., 2011,Curto et al., 2011℄). However, the fNL onstraints derived from the CMB-LSS ross-orrelation [Xia et al., 2010℄ provide lower values, in better agreement with the CMBtests. In addition, these authors also showed that when other LSS data sets are used[Rihards, 2009, in partiular, the QSOs sample of the SDSS℄, suh non-Gaussiandeviation is not found.At �rst approximation a onstant bias b for the galaxy distribution (same as[Ho et al., 2008℄) is assumed; we know it is neessary to take into aount a redshiftdependent bias b(z).In the next setion we show the analysis with the �duial model based onthe [Brookes et al., 2008℄ CENSORS galaxy distribution with a b(z) given by[Xia et al., 2010℄ (see Chap. 4).In Fig. 6.10, we selet the 2.5mJy �ux ut to show the large di�erene with respetto the previous ase (no shot-noise removal).The ĈTG
ℓ estimates show the main di�erenes in the error bar amplitudes. Largererror bars are expeted when a shot-noise is removed. The ovariane matrix C inthis ase is properly made up of the signal matrix S(Cℓ) and the noise matrix N, asseen in the Chap. 5. Aording to the QML algebra the inverse Fisher matrix, fromwhih the error bars are omputed, beome larger as well as larger is the ovarianematrix.This demonstrates the noise orretion an not be negleted.6.2.3 Delination orretionOne of the systemati e�ets present in NVSS data is the delination orretion(see Chap. 4). As seen before, [Blake & Wall, 2002℄ say the �ux uts lower then

∼10 mJy are a�eted by an arti�ial delination problem. All the maps used inthe previous analyses are orreted for this systemati. However we prove how thedelination orretion in�uenes the estimates by using a 10mJy �ux ut map notorreted for delination. In Fig. 6.11 the ĈGG
ℓ and ĈTG

ℓ are shown.The estimates for TG and GG are very similar beause the 10mJy �uxut is not in�uened by delination orretion, this on�rms the statement by[Blake & Wall, 2002℄. The other two lower �ux uts (2.5 and 5.0 mJy, mainly



6.3. GALAXY DISTRIBUTION MODEL WITH B(Z) 95a�eted by the systemati) whih are orreted for delination are onsistent withthe 10.0mJy �ux ut (onsidering both the results in Fig.s 6.9 and 6.11). Then itis very important to onsider the delination orretion in the analysis of the NVSSdata.Hereafter all the maps are orreted for delination and with the short noise removed.6.2.4 CTG
ℓ 6= 0 e�et on the ross-power spetrumIn the previous hapter we demonstrated the Monte Carlo simulations onvergeon the �duial model whih haraterizes the maps when the CTG

ℓ = 0 and when
CTG

ℓ 6= 0. Then we hoose the CTG
ℓ = 0 in order to make the omputation lessheavy.Here we want to hek that the CTG
ℓ 6= 0 also gives the same estimates of the

CTG
ℓ = 0 ase, seen above for the 2.5mJy �ux ut. In Fig. 6.12, it is evident theestimates given by CTG

ℓ 6= 0 (the thin error bars shifted of ℓ = +1 to the right) arevery similar to the previous one. It seems we an be on�dent on the estimates giveby CTG
ℓ = 0.6.3 Galaxy distribution model with b(z)In this setion we show the estimates obtained using a �duial model given byCENSORS galaxy distribution presented in Chap. 5 and taking into aount thebias dependene on the redshift.In Fig. 6.13 we ompare the estimates for the 2.5mJy �ux ut of NVSS.It is lear how the CGG

ℓ estimates for the [de Zotti et al., 2010℄ model is moreon�dent to the �duial model with respet to the previous [Ho et al., 2008℄ model,althought the CTG
ℓ estimates do not hange very muh.As the shot noise issue, also the bias haraterization (in partiular its dependeneon the redshift) results very important in the galaxy power spetrum estimation.Note that the estimates never hange in the two models, we on�rm the QMLimplementation is not strongly dependent on the �duial model.
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Figure 6.2: Unbinned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum for 2.5mJy �ux ut inNVSS, without removing the shot noise.
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Figure 6.3: Unbinned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum for 5mJy �ux ut inNVSS, without removing the shot noise.
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Figure 6.4: Unbinned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum for 10mJy �ux ut inNVSS, without removing the shot noise.
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Figure 6.5: Binned omparison between CGG
ℓ auto spetrum and CTG

ℓ ross spetrum forall the three �ux uts, without removing the shot noise.
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Figure 6.6: Unbinned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum for 2.5mJy �ux ut inNVSS, with the shot noise removed.
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Figure 6.7: Unbinned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum for 5mJy �ux ut inNVSS, with the shot noise removed.
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Figure 6.8: Unbinned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum for 10mJy �ux ut inNVSS, with the shot noise removed.
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Figure 6.9: Binned omparison between CGG
ℓ auto spetrum and CTG

ℓ ross spetrum forall the three �ux uts, with the shot noise removed.
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Figure 6.10: Binned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum estimates for 2.5mJy�ux ut, where we ompare the two ases with (points with thin error bars) and withoutremoving the shot noise (points with thik error bar).
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Figure 6.11: Binned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum estimates for 10mJy�ux ut, where we ompare the two ases with (points with thin error bars) and withoutdelination orretion applied to NVSS map (points with thik error bar).
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Figure 6.12: Binned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum estimates for 2.5mJy�ux ut, where we ompare the two ases with the �duial CTG
ℓ 6= 0 (points with thin errorbars) and with the �duiial CTG

ℓ = 0 (points with thik error bar).
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Figure 6.13: Binned CGG
ℓ auto spetrum and CTG

ℓ ross spetrum estimates for 2.5mJy�ux ut. We ompare the two galaxy distribution model with onstant b (blak urve andpoints) and with b(z) (red urve and points).
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Chapter 7Quantitative assessment of theross-orrelation detetionIn this hapter, we onstrain the Dark Energy density parameter ΩΛ using theinformation ontained in the ISW-LSS ross-orrelation power spetrum, estimatedthrough our QML.7.1 Likelihood omputationIn order to obtain this onstraint we sample the χ2 on 20 values of ΩΛ, 0 < ΩΛ < 0.95,with steps of 0.05. We assume the errors on the measured CTG
ℓ are Gaussian andalulate the relative likelihoods of ΩΛ using

−2 ln[L(ΩΛ)] = χ2(ΩΛ)− χ2
min. (7.1)where

χ2(ΩΛ) =
[

CTG,obs
ℓ − CTG

ℓ (ΩΛ)
]

C−1
ℓℓ′ (ΩΛ)

[

CTG,obs
ℓ′ − CTG

ℓ′ (ΩΛ)
]

. (7.2)Here CTG,obs
ℓ are the unbinned estimates of the ross-orrelation power spetrum,and CTG

ℓ (ΩΛ) are the theoretial predited power spetrum. The matrix Cℓℓ′ is theovariane matrix between di�erent ℓ's, whih allows for orrelations among non-diagonal terms whih arise in the presene of masks. χ2
min is the minimum value of

χ2 with respet to ΩΛ.We ompare the likelihoods obtained by di�erent presriptions for the ovarianematrix. The �rst presription is to use the unbinned QML estimates and the Fishermatrix as its ovariane matrix:
CF
ℓℓ′ = (F−1)TGTG

ℓℓ′ . (7.3)109



110CHAPTER 7. QUANTITATIVE ASSESSMENT OF THE CROSS-CORRELATION DETECTIONAn alternative presription is to onstrut the ovariane matrix C by averagingover Monte Carlo realisations of the maps. For every model ΩΛ, we an de�ne theovariane C with N simulated CMB and LSS maps
Cℓℓ′(ΩΛ) =

N
∑

i=0

[CTG
ℓ ,i (ΩΛ)− C̄TG

ℓ (ΩΛ)][C
TG
ℓ′,i (ΩΛ)− C̄TG

ℓ′ (ΩΛ)]

N
, (7.4)where the CTG

ℓ ,i are the estimates for every single realization i and the C̄TG
ℓis their theoretial value. We assume the ovariane matrix is not stronglydependent on the osmologial model, then we onsider the ase with ΩΛ = 0([Vielva, Martinez-Gonzalez & Tui2006℄), and sine C̄TG

ℓ (ΩΛ = 0) = 0, theovariane beomes,
CMC
ℓℓ′ =

N
∑

i=0

CTG
ℓ ,iC

TG
ℓ′,i

N
. (7.5)We build Cℓℓ′ in Eq. (7.5) either by using random realisations of only theCMB maps and the single, true NVSS map, or by reating a realisations of bothCMB and LSS maps. In the former and latter ases, we generate results on 1000realisations. We also examine how the probability ontours for ΩΛ depend on thevarious assumptions suh as the threshold �ux ut used for the NVSS map or thesoures redshift distribution.We evaluate the likelihood with the various di�erent presriptions by samplingthe χ2 on values of ΩΛ, 0 < ΩΛ < 0.95. The other osmologial parameters are kept�xed to the values determined by WMAP [Larson et al., 2011℄ for the standard

ΛCDM model. As default NVSS desription, the Eq. (6.1, dNHo/dz) model isassumed, with a bias of 1.98, as previously seen in hap. 4. In order to ompare thethree presriptions we use the the lowest �ux threshold of 2.5 mJy, as it is shown in7.1.7.2 ResultsBy adopting the Fisher matrix presription (solid blak line) in Eq.7.3, we obtain
ΩΛ = 0.69

+0.15 (0.23)
−0.22 (0.50) at 1(2)σ on�dene level (CL).An Einstein-de Sitter Universe is disfavoured at more than 2 σ CL for the lowest�ux threshold in NVSS, onsistent with earlier measurements.
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Figure 7.1: Comparison of likelihood ontours for ΩΛ obtained by the Fisher presription(blak solid line), the ovariane omputed by the Monte Carlo for CMB only (red shortdashed line) and for both CMB and LSS (blue dashed line). The threshold �ux in NVSShas been hosen to be 2.5 mJy.By building the ovariane through realizations of the CMB maps while keepingthe NVSS map �xed, we obtain the probability distribution given by the red dashedline of Fig. 7.1. We �nd ΩΛ = 0.69
+0.18 (0.26)
−0.25 (0.52) at 1(2)σ CL. On the other hand,by using the ovariane derived from realizations of both CMB and LSS maps,the probability distribution given by the blue dashed line of Fig. 7.1 we �nd

ΩΛ = 0.73
+0.12 (0.18)
−0.20 (0.44) at 1(2)σ CL. Note that the onstraint based on the Fisherovariane is tighter than the one based on a Montearlo ovariane keeping �xedthe NVSS map, but looser than the Montearlo ovariane obtained with CMBand LSS unorrelated maps. Overall, the agreement between the three likelihoodpresriptions is good.



112CHAPTER 7. QUANTITATIVE ASSESSMENT OF THE CROSS-CORRELATION DETECTIONGiven the agreement among the three di�erent likelihood presriptions, theFisher one an be used for the ovariane to test other dependenes of the analysis,beause the Fisher is tightly linked to the QML analysis. It takes into aount theestimates errors, in�uening the width of the likelihood.The �rst step is to ompare the onditional probabilities of ΩΛ for the three di�erent�ux thresholds onsidered, see in Fig. 7.2. The blue line is the 2.5mJy �ux ut with
ΩΛ the same as above; the red line is the 5mJy �ux ut with ΩΛ = 0.62

+0.18 (0.27)
−0.28 (0.56)at 1(2)σ CL; the blak line is the 10mJy �ux ut with ΩΛ = 0.77

+0.17 (0.18)
−0.30 (0.564) at

1(2)σ CL. As expeted from the Fisher algebra, it is evident the estimates with thelarger error bars have also the wider likelihood. The 2.5mJy ase is the tightestone. In agreement with the power spetrum CTG
ℓ estimates, the tightest onstraintswe obtain on ΩΛ gives redit to the attitude of leaning NVSS data as muh aspossible from the known systematis whih is proposed in our approh. In Fig. 7.3we verify the importane of taking into aount the shot-noise in the NVSS mapfor the 2.5mJy threshold: by not removing the shot-noise the probability ontoursfor ΩΛ would be muh tighter (blue solid line, ΩΛ = 0.65

+0.10 (0.23)
−0.12 (0.48) at 1(2)σ CL),beause they rapresent an underestimate of the error in CTG

ℓ , being linked with theFisher matrix we expet in the ase we remove the shot-noise the likelihood is wider,beause of the larger estimates error bars (see Fig. 6.10). A areful treatment ofthe orretion to the delination systematis and of the shot noise is essential for anoptimal sienti� explanation of NVSS data.In the previous Chap. 6 we ompared the 10mJy threshold maps with andwithout the delination orretion, �nding no evident di�erenes. In Fig.7.4 weshow these two ases, where the solid blak line is the ase without delinationorretion. The more evident di�erene is in the peak position of the likelihoods,but the shape seems not hange.We also verify how the likelihood hange when the assumption CTG
ℓ = 0 is notused in the onstrution of the signal ovariane matrix, i.e. we onsider a ross-power spetrum model di�erent from the null hypothesis. In Chap.s 5 and 6, we didnot �nd any di�erenes between the CTG

ℓ = 0 and CTG
ℓ 6= 0 ases, but in Fig.7.5 thered line (CTG

ℓ 6= 0) is evidently shifted and a little bit tigher than the previous ase
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Figure 7.2: The likelihood for ΩΛ obtained by the Fisher presription, with the 95 % and68 % C.L. for the threshold �ux of 2.5 mJy (blue), 5 mJy (red), 10 mJy (blak) in NVSS,respetively.(CTG
ℓ = 0).In the last two analyses we showed how muh a very small di�erene in the estimatesand error bar values an be ampli�ed in the likelihood analysis.In Fig. 7.6 we ompare the redshift distribution estimated with CENSORS databy [de Zotti et al., 2010℄ in Eq. (4.3) with the one adopted by [Ho et al., 2008℄,onsidering for the latter a bias dependent from redshift b(z) and for the former aonstant bias b = 1.98 as an e�etive bias.The tightest onstraint obtained is ΩΛ = 0.73

+0.12 (0.20)
−0.18 (0.44) at 1(2)σ on�denelevel (CL) for the lowest �ux threshold of 2.5 mJ and using ovarianes based onMonte Carlo of both CMB and LSS. This result agrees with that expeted froma typial survey with sky fration and noise property as the NVSS, and agrees
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Figure 7.3: Comparison of likelihood ontours for ΩΛ obtained by the Fisher presriptionwhen aounting (blu line) and when not aounting (red line) for shot noise in NVSSdata. The threshold �ux in NVSS has been hosen as 2.5 mJ.with [Vielva, Martinez-Gonzalez & Tui2006℄, but is somewhat weaker than theone obtained by the non-optimal analysis by [Pietrobon, Balbi and Marinui, 2006℄based on needlets. It is not lear if this disrepany is due to the lower resolutiononsidered here or the negletion of shot-noise in the NVSS map in the analysis by[Pietrobon, Balbi and Marinui, 2006℄.
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Figure 7.4: Comparison of likelihood ontours for ΩΛ obtained by the Fisher presriptionwhen aounting (dashed blak line) and when not aounting (ontinue blak line) for thedelination orretion in NVSS data for the 10mJy �ux ut.
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Figure 7.5: Comparison of likelihood ontours for ΩΛ obtained by the Fisher presriptionwhen onsidering the full ovariane (red solid line) and when using the approximationof a blok diagonal signal ovariane and Fisher matrix. The threshold �ux in NVSS hasbeen hosen as 2.5 mJ.
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Figure 7.6: Comparison of likelihood ontours for ΩΛ obtained by the Fisher presriptionfor the two hoies of redshift distributions: solid for b(z) and dashed for b onstant. Thethreshold �ux in NVSS has been hosen as 2.5 mJ.
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Conlusions
The CMB �utuations reated by the late Integrated Sahs-Wolfe e�et isone of the key indiators of the presene of the Dark Energy and sine[Crittenden & Turok1995℄, the ross-orrelation is the powerful method to detet it.In 2002, Boughn and Crittenden published the �rst attempt of deteting the ISWe�et onsidering the ross-orrelation between COBE data and XRB and NVSSdata, but in that ase the detetion was null mainly beause of the poor resolutionand sensitivity of COBE map even at large sales. Sine then, many papers (seefor example [Dupé et al, 2011℄ and referenes therein for an exellent onpilationof available results) analysing the detetion of the ISW e�et have been published,onsidering the ross-orrelation between CMB anisotropies and LSS surveys, assuggested by Crittenden and Turok (1996). In this thesis we have developed anoptimal estimator for the angular power spetrum of the ross-orrelation ISW-LSS,whih also estimates their auto-spetra. This has been tested using an ensemble ofrandomly generated maps, and we have demonstrated the optimal properties of ourQML implementation, as the robustness of the estimates for the TT, TG and GGpower spetra. The ross-orrelation between CMB and LSS an be omputed withdi�erent methods in the harmoni domain or onsidering the Wavelet expansion,but none of these method is optimal as a QML, whih works in the pixel domain.We have applied our method to WMAP 7 year and NVSS data, the best publidata sets at present for studying the ISW ross-orrelations. Our method makes noassumptions, and allows to measure the power spetrum of ross-orrelation withminimum variane errors and to exploit the full osmologial information ontainedin the maps, though our analysis is limited to a pixel resolution of 1.8◦.We detet a non-zero ross-orrelation, and have also seen a slight exessin the NVSS auto-angular power spetrum ompared to what usually is thetheoretial predition. The estimates are fully onsistent with the previous119



120CHAPTER 7. QUANTITATIVE ASSESSMENT OF THE CROSS-CORRELATION DETECTIONresults in the literature ([Blake, Ferreira & Borril, 2004℄). We have translated thesemeasurements into the quantitative onstraints on the fration of Dark Energy in a
ΛCDM model whih an be obtained only by the ross-orrelation of WMAP andNVSS, estimatingΩΛ while keeping �xed all the other osmologial parameters to theWMAP 7 yr best-�t values [Larson et al., 2011℄. We have ompared three di�erentpresriptions for estimating the ovarianes: using the Fisher matrix omputed byour QML, on Monte Carlo realisations of the CMB maps keeping NVSS �xed andreating Monte Carlo realisations of both CMB and LSS maps. We have founda good agreement among the ΩΛ probability ontours obtained from these threedi�erent likelihood presriptions.WMAP data is already signal dominated at the relevant angular sales andtherefore what is important for the ISW detetion is the goodness of the LSSmaps that an be haraterized by the sky overage and the full redshift overageof the Dark Energy dominated era. We have used three di�erent �ux utsfor NVSS maps and we have learnt the aurate desription of the noise andsystematis present on the LSS maps are very important issues to onsider. Wehave orreted for the NVSS delination systematis and found that these orretionsare important only when onsidering �ux thresholds below 10mJy, on�rmed by inliterature [Blake & Wall, 2002℄; onsidering the angular power spetrum tehnique,the shotnoise of the LSS map impats not only the auto-spetrum GG but also theross-spetrum TG, mainly in terms of error bars assoiated to the estimates. As aonsequene, we found an impat on the width of the likelihood of ΩΛ and thereforeon the signi�ane of the ISW detetion. This means that the shotnoise present inthe galaxy maps annot be negleted in the ISW analysis even if it is based on theTG spetrum.The QML is well suited for the ISW-LSS ross-orrelation detetion not only beauseit is an optimal estimator and therefore provides unbiased APS estimates with thesmallest error bars allowed by the Fisher-Cramer-Rao inequality, but also beausethanks to the built-in apabilities of performing Monte Carlo simulations it makespossible to deeply test and keep under ontrol the LSS maps inluding their noiseharaterization. The width of this probability ontour depends mainly on the �uxthreshold and assoiated level of Poisson noise in the NVSS map, but the signalamplitude seems largely independent of the �ux. We have found ΩΛ = 0.69

+0.15(0.23)
−0.22(0.52)



7.2. RESULTS 121at 1(2)σ C.L., a statistial signi�ane for ΩΛ lose to 3σ with a simpli�ed likelihood,by signi�antly orreting NVSS for its delination systematis and by estimatingarefully its shot noise.This result is to add to all the other ISW detetion in Tab. 3.1 of [Dupé et al, 2011℄.Most ISW detetions reported in Tab. 3.1 are relatively `weak' (< 3σ), butthe some of the higher detetions are reported for the NVSS survey [Pietrobon etal. 2006, MEwan et al. 2007, Giannantonio et al. 2008℄; they found statistialsigni�anes for ΩΛ, respetvely, > 4σ, > 2.5σ and 3.3σ, all onsistent with ourresult.This thesis inludes important international ollaborations. R. G. Crittenden(University of Portsmouth, UK) and Patriio Vielva, Enrique Martínez-Gonzálezand Belen Barreiro (University of Cantabria, Spain) parteipate to the �rstappliation of the optimal QML to WMAP 7 year and NVSS data.This Ph.D. ativities has led to a powerful methodology whih has several newand interesting appliations.� In order to onsider the whole osmologial information (expeted ontheoretial ground) inluded in the ross-orrelation power spetrum we plan toextend our analysis to larger multipoles by using a map resolution of Nside = 64.Afshordi N. 2004, in Fig. 7.7, shows that the enlosed area for the regionovered by a survey, multiplied by its sky overage fsky, gives the optimum
(S/N)2 for the ross-orrelation ISW-LSS signal. At ℓ > 100 the signal slowlydies out, but it is not null. Going to higher multipoles allows to take intoaount all the signal expeted.� In onjuntion with the imminent WMAP 9 year �nal release we plan toonsider the CMB ross-orrelation with the following LSS maps, takingadvantage of ISW-LSS Plank working group :� Luminous Red Galaxies (LRG) from Sloan Digital Sky Survey (SDSS) III(http://www.sdss3.org)� Quasars from SDSS III (http://www.sdss3.org)� In order to obtain a self-onsistene estimate of parameters we plan to inludein the likelihood analysis a straightforward GG auto-spetrum ontribution.In this way it will be possible to estimate not only the ΩΛ parameter but also
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Figure 7.7: (S/N)2 distribution with respet to multipoles.the galaxy bias. As we have seen in the Chap. 6, the galaxy bias depeds onredshift. We plan to use slies of galaxy maps, in order to take into aountthe redshift dependene of the bias.As for the analysis of the ross-orrelationWMAP 7 - NVSS, the best likelihoodpresription will be applied to the three ross-orrelation between WMAP 9year data and the above mentioned data and will be added to the WMAP 9 yearone, whose likelihood ode will be delivered at the same time of the sienti�results and data at the publi site http://lambda.gsf.nasa.gov/, as for theprevious releases. It is ustomary to add independently the LSS likelihood tothe CMB one to mainly break the degeneray between the old dark matterdensity Ωm and the Hubble parameterH0 and have therefore better onstraintson all the osmologial parameters (see for instane Finelli et al. 2010 for theimpat of the onstraints obtained with LRG from SDSS Data Release 7 - i.e.SDSS II - in ombination with CMB data on the osmologial parameters).A further step would be to inlude the ross-orrelation between CMB and



7.2. RESULTS 123LSS self-onsistently in the full likelihood: with the robustness ahieved in[Shiavon et al., 2012℄ in the CMB-LSS CC angular power spetrum estimationand likelihood, we are in the position to inlude suh ontribution to the fulllikelihood and disuss the osmologial impliations for urrent data. To ourknowledge, this would be the �rst analysis of this kind. One publishedwe might also release publily the modi�ed Markov Chain Monte CarloCOSMOMC and the ross-orrelation WMAP-LSS data.� It has been suggested that the CMB polarization information ould inreaseof the 20 % the SNR enoded in the ISW-LSS ross-orrelation (Crittenden2006, Frommert & Ennslin, 2009). The inlusion of polarization to a pureCMB QML estimator has been already handled suessfully (Gruppuso et al.2009). However, the inlusion of polarization would double the dimensionalityof the problem at the map level (from T,G to T,Q, U,G being Q,U theStokes parameters) and quadrupliate it at the level of ovarianes. TheQML omputational time saling would prohibit the possibility of unbinnedestimates from maps at the required angular resolution. To takle this issueit would be therefore neessary to develop a binned version of the QML ode.Suh binning proedure would also be useful for the urrent temperature QMLode to inrease the angular resolution of the maps (now limited to Nside = 64)urrently handled by our QML and investigate multipoles ℓ ≥ 150− 200.
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Appendix AFisher matrixIn the QML algebra the Fisher matrix is an important omponent sine its inversematrix provides the smallest error bars allowed by the Fisher-Cramer-Rao inequality5. The following �gures visualize the Fisher matrix.In order to understand why we do not use the total matrix inversion but the inversionof the bloks (both in the ovariane matrix and in the Fisher one), as it is explainedin Chap. 5, note the large di�erene in the order of magnitudes among the bloksof the Fisher matrix. The TT×TT blok is of the order of ∼ 10−5 with respet tothe ∼ 108 orders of the GG × GG blok.This matrix inversion trik an be used both when the matries - C or F - are full(�duial CTG
ℓ 6= 0 ase) and when they are not (�duial CTG

ℓ = 0 ase). In the latterase, the two matries C and F are also blok diagonal, then it is possible to inverttheir diagonal bloks independently.The Fisher matrix is diretly omputed by �duial power spetra, then the shotnoise removal in�uenes the matrix. The di�erenes are very small and not visiblein the Fisher matrix visualization.
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Figure A.1: The Fisher matrix blok TT × TT in two ases: the up panel is the ase whenthe �duial CTG
ℓ = 0 and the bottom one is the ase CTG

ℓ 6= 0.
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Figure A.2: The Fisher matrix blok TT × TG in two ases: the up panel is the ase whenthe �duial CTG
ℓ = 0 and the bottom one is the ase CTG

ℓ 6= 0.
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Figure A.3: The Fisher matrix blok TG × TG in two ases: the up panel is the ase whenthe �duial CTG
ℓ = 0 and the bottom one is the ase CTG

ℓ 6= 0. This blok is not null whenthe �duial CTG
ℓ = 0 sine it is omputed by the �duials CTT

ℓ and CGG
ℓ .
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Figure A.4: The Fisher matrix blok TT × GG in two ases: the up panel is the ase whenthe �duial CTG
ℓ = 0 and the bottom one is the ase CTG
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