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Introduction

The understanding of the nature of dark energy is one of the outstanding question
for observational cosmology. Since the discovery of the present acceleration of
the Universe by the measurement of the luminosity distance of distant type Ia
supernovae (SN Ia) ([Riess et al.1998, Perlmutter et al.,1999]), several observations
have sharpened a cosmological concordance model in which an unknown component
- dark energy - with a negative pressure density shares ~ 2/3 of the total energy
budget of the Universe (|Tegmark et al.2004]). At present the nature of dark energy
can be hardly constrained by different cosmological observations, with the main
indication that its parameter of state wpg is close to a cosmological constant’s one.
The key strategy to constrain the nature of dark energy with current data is to
combine as many different observations as possible, as luminosity distance of SN
[a, baryonic acoustic oscillations (BAO) from galaxy surveys, Cosmic Microwave
Background (CMB) anisotropies, weak lensing surveys, etc ...

One of the key predictions of the presence of dark energy is the late Integrated
Sachs Wolfe effect (Sachs & Wolfe 1968) in the CMB pattern. The ISW effect is
a contribution to CMB anisotropies caused by the gravitational interaction of the
CMB photons with the forming large scale structures. It is related to a time evolving
gravitational potential, as occurs on large scales when the Universe enters in a late
accelerated expansion (late ISW). The late ISW is a small contribution to the total
CMB anisotropies and is maximum on the largest scales (Kofman & Starobinsky
1985), but therefore blurred by cosmic variance: however it can be detected by
its cross-correlation with large scale structures (LSS) (Crittenden & Turok 1995)
and this non vanishing cross-correlation is an independent probe of dark energy,
complementary to the distance to the last scattering surface which fixes the position

of the acoustic peaks in the angular power spectrum of CMB anisotropies.

In the current era of precision cosmology, an accurate analysis of the CMB-

3
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LSS cross-correlation and a scientifically soundful cosmological interpretation are
required, despite its modest signal-to-noise ratio (SNR), the quality of current data
and data analysis issues. Until now there is no consensus among results in literarture,
then we choose to use the best look on the ISW-LSS cross-correlation by using an
optimal method.

In this thesis we present the implementation of a quadratic maximum likelihood
(QML) code, ideal to estimate the ISW-LSS cross-power spectrum, together with
the auto-power spectra of CMB and LSS: such tool goes beyond all the previous

harmonic analysis of the ISW-LSS cross-power spectrum present in the literature.

The thesis is divided into the following chapters.

e The first chapter deals with the basic concepts of the current cosmological
model, starting from the Big Bang theory to pass through Dark Energy
obersevational evidences and models. It will be introduced the Inflation models

and reviewed the cosmological perturbation theory.

e The second chapter will focus on the CMB anisotropies, we will start from
primordial ones and then we will report all the secondary anisotropies,
including the ISW effect. We will obtain the temperature power spectrum
from the perturbation equations of a relativistic fluid, in order to take into
account the most important features of the spectrum and their cosmological

implications.

e The third chapter will be entirely dedicated to the ISW effect. We will
derive the cross power spectrum from the LSS matter density (J,) and CMB
temperature (AT/T') cross-correlation. We will report the ISW detection
history, the current controversy on the statistical significance of the ISW-LSS
cross-correlation, generated by several different results which span from no

detection at all to a positive at a maximum of 4.5 o.

e The fourth chapter deals with the real map description of CMB temperature
(WMAP-T7year) and galaxy distribution (NVSS) which will be used in Chap.(6)
analysis. We will introduce the shotnoise and one of the systematics in the
LSS map. We will describe two different galaxy distributions which could
characterize the NVSS map.
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e The fifth chapter deals with the QML method to estimate the cross correlation
ISW-LSS, going into a detailed description of the algebra. We will report the
implementation of the BolISW code based on the QML method and its Monte
Carlo validation with 1000 WMAP7-like and NVSS-like simulated maps.

e The sixth chapter deals with the applications of the BolISW code on real
data. We will show the estimates for all the three power spectra (temperature-
temperature, temperature-galaxy and galaxy-galaxy correlations), comparing

also estimates from different galaxy distribution models.

e The seventh chapter deals with the quantitative assessment of the cross-
correlation detections by using three different likelihood perspectives. We
will give constraints on the 2, parameter, fixing all the other cosmological

parameters. We will compare our results with other ISW-LSS signal detections.

Throughout the whole thesis, natural units ¢ = A = 1 are assumed.
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Chapter 1

The cosmological model

Today the concordance cosmological model is the ACDM (Cold Dark Matter) model,
based on the Einstein’s relativity and taking into account the ideas of the Standard
Hot Big Bang model, the presence of the Dark Matter and the Dark Energy and
the Inflation model. The observations have on many occasions been in disagreement
with the previously accepted theory, leading to the subsequent replacement or add-

on of the standard model.

1.1 Standard Hot Big Bang model

The Standard Hot Big Bang model suggests a homogeneus, isotropic Universe whose
evolution is governed by the Friedmann equations based on Einstein’s General
Relativity and the Copernican principle.

All the informations about matter density and the geometry of the Universe are

contained in the Einstein field equations
1
G =Ry — §RgW = 81GT ), (1.1)

where G, is the Einstein tensor, which describes the space-time geometry through
the metric tensor g,,, the Ricci tensor R, and Ricci scalar R, depending on metric
derivates; the other side of the equation contains the stress-energy tensor 7}, which
describes the matter-energy content in the space-time.

The T}, tensor takes this form:

T = (p+ p)uyy + pgpu (1.2)

7



8 CHAPTER 1. THE COSMOLOGICAL MODEL

where p and p are, respectively, the energy and the pressure density of the fluid and
u,, is the fluid four-velocity. If the fluid is ideal, 7}, takes a diagonal form with p
on the time coordinate and p on the space coordinates.

Assuming the Friedmann-Robertson-Walker (FRW) metric (¢ = h = 1)

2

dr
1 —Ekr?

ds® = —di* + a*(t) +r*(d6? + sin*0de’) (13)

where a(t) is the scale factor with respect to the cosmic time t; r, § and ¢ are
the comoving coordinates; the constant k£ describes the geometry of the space-time
(k= +1,0,—1, respectvely corresponding to a closed, flat and open Universe); the

Einstein’s equation split into the two Friedmann equations

o (4) _8C K (1.4)
 \a 3 a? '
. k
I = ~47Glp+p) + — (1.5)

where H is the Hubble parameter depending on time, and p and p are the total
matter and energy density of all the constituents of the Universe at a given time.

The mass conservation equation is
p+3H(p+p) =0, (1.6)

and combining Eq.s 1.4 and 1.5 we find the equation for the acceleration of the

scale-factor

a e

a = —T(,O‘f‘?)p). (17)

The evolution of the total energy density of the Universe is governed by
d(pa®) = —pd (a”) ; (18)

which is the First Law of Thermodynamics for a particular fluid in the expanding
Universe.
If the we consider a fluid with equation of state p = ~yp, it follows that p oc a=3(+7)

and a oc ¢2/30+7)

For p = p/3, ultra-relativistic matter, p < a™*

and a ~ t%; for p = 0, very

3

C _ 2
nonrelativistic matter, p o« a™ and a ~ t3; and for p = —p, vacuum energy,

p = const.
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We can use the Friedmann equation to relate the curvature of the Universe to the

energy density and expansion rate:

k

0= pp't; (1.10)

where the critical density today pey = 3H?/8mG = 1.88h*gem™3 ~ 1.05 X
10*eVem™3. There is a one to one correspondence between () and the spatial
curvature of the Universe: positively curved, €2y > 1; negatively curved, 2y < 1;
and flat (9 = 1). Model universes with & < 0 expand forever, while those with

k > 0 necessarily recollapse. The curvature radius of the Universe is related to the

Hubble radius and €2 by
H—l
|Q —1]1/2

Then the curvature radius sets the scale for the size of spatial separations. And in

Rewry = (1.11)

the case of the positively curved model it is just the radius of the 3-sphere.

Today we know this model has many shortcomings, as the flatness and the
horizon problems or the cosmological constant problem (solved by introducing some
Dark Energy or Modified Gravity models). However, this standard model provide
us a framework within it is possible to study the emergence of structures from the
small fluctuations in the density of the early Universe, like the observed galaxies,
clusters and the cosmic microwave background.

Over the last decades, observations have significantly increase the idea that: the
Universe is spatially flat and accelerating; it passed through an accelerated expansion
in the early Universe (inflation epoch); today the energy content consists principally
of ~ 27% of Dark Matter, ~ 76% of Dark Energy and few % of baryonic matter,
whereas the radiation and neutrinos contributions are negligible to the total energy
density

Qo = Qopm + Qo + Qo = Qom + Qoa. (1.12)

Qs is the energy density of the Dark Matter and the baryonic matter together, all
considered in their actual value.

If we consider a flat Universe, €2y = 1

Qop = 1 — Qo (1.13)
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The combined data from high redshift supernovae (SN1), large scale structures

(LSS) and cosmic microwave background give
Qo = 1.0010 0%, trovainumerigiusti

meaning that the present Universe is spatially flat (or at least very close to being

flat). Then restricting to {29 = 1, the dark matter density is
Qpamh?® = 01334705028,

the baryon density
Qph? = 0.0225875-00057,

and the substantial dark (unclustered) energy is inferred,

Qp =~ 0.734 £ 0.029.

In the next section we will see how all components contribute to the thermal history

of the Universe, considering a A-CDM model.

1.2 Thermal history of the Universe

RADIATION ERA.

AFTER PLANCK TIME, tp = /hG/S ~ 1078 s, Tp = /h?/GE? ~ 1.42 x
10* GeV.

In this era the energy density of the expanding Universe was dominated by the
radiation component and made up of photons, neutrinos and matter (protons,
electrons, helium nuclei and non-bayonic dark matter). At high temperatures both
the hydrogen and the helium are fully ionised. In this phase the Thomson scattering
occurs on a timescale much less than the expansion timescale, resulting in a tigh
coupling between matter and radiation.

At time t = 107°s, the GUT (Grand Unification Theory) phase transition occurs,
all the three gauges interactions - electromagnetic, weak and strong - become no
longer unified. The inflation epoch also occurs in this era, exponentially expanding
the Universe from to in the time range of 1073* — 107325, during which quantum
noise was stretched to astrophysical size seeding cosmic structures. At a temperature
of T ~ 1MeV the neutrinos decouple from matter and at T ~ 0.1 MeV the
first light elements form during the primordial nucleosynthesis (or BBN, Big Bang
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Nucleosynthesis).

We know the energy densities for radiation and matter evolves according to:
pm = pom(1+ 2)° (1.14)

pr=por(1+2)" (1.15)

When those densities are equal the matter-radiation equivalence occurs and the

matter domination begins.

MATTER ERA. t = 10°yrs, T ~ 10*K, 2., ~ 3200.

In the beginning of this era the radiation and matter temperatures are equivalent
T, =T (14 2) (1.16)

and remain approximately equals until z ~ 300, thanks to the residual ionisation
which allows an exchange of energy between matter and radiation via Compton
diffusion. After this redshift the thermal interaction between matter and radiation

becomes insignificant, so that the matter component cools adiabatically with a law
T o (14 2)° (1.17)

With the cooling of the temperature, the Universe reach the epoch of recombination
corresponding to a temperature of around T}.. ~ 4000K, when 50% of the matter
is in the form of neutral atoms. Because of the recombination, around zg.. ~ 1100,
a no-instantaneous process of decoupling occurs and matter and radiation begin to
evolve separately.

After decoupling any primordial fluctuations in the matter component that survive
the radiation era grow under the influence of Dark Matter gravitational potential
wells and eventually give rise to cosmic structures: star, galaxies and clusters of
galaxies. The part of the gas that does not end up in such structures may be
reheated and partly reionised by star and galaxy formation, during the reionization

period at about z ~ 10.5.

After z4.. ~ 1100 also the radiation begins free to evolve indipendently, because
the optical depth 7, of the Universe due to Compton scattering decreases. This

quantity describes the attenuation of the photon flux N, as it traverses a certain
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lenght. The probability that a given photon scatters with an electron while travelling

a distance c dt is given by

dN. I dt dt
——1 = —— = — =n.opcdt = —%UTC—dZ = —dr (1.18)
N, I Tre my dz
where n, is the number electron density, o is the Thompson scattering section, p,,

is the matter density and m,, is the proton mass; so that

I(tg, z) = I(t)exp (— ) %O'Tc%dz) = I(t)exp[—T7(2)] (1.19)

0 My z

I(ty, z) is the intensity of the background radiation reaching the observer at time
to with a redshift z; 7(z) is the optical depth of such a redshift; the x(z) is the
ionisation fraction from the known Saha equation. The probability that a photon,
which arrives at the observer at the present epoch, sufferes its last scattering event

between z and z-dz is
—diz{l — exp[—7(2)|}dz = exp[—7(2)]dT = g(2)dz=. (1.20)

The quantity g(z) is the effective width of the surface of last scattering (ls) and
is well approximated by a Gaussian with peak at z;, ~ 1100 and width Az ~ 400.
So at redshift z;; we also have 7(z) ~ 1, because the Universe is transparent to
photons.
The photons begin to travel from the last scattering surface creating what is
the radiation background of the Universe, called now the Cosmic Microwave

Background.

DARK ENERGY ERA. 2. ~ 0.4.

Very late with respect to the age of the Universe the energy density of the Dark
Energy begins to dominate, accelerating the cosmic expansion, until today, z = 0;
in the meanwhile large scale structures formed from the primordial fluctuations
and by interacting with dark matter potential wells. The nature of this dark
component is still unknown and many observational probes have been proposed
to test its properties and redshift evolution either in the standard A-Cold Dark
Matter (ACDM), modified gravity or quintessence models (next section for details).
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1.3 The Dark Energy models

The Dark Energy component does not interact through any of the fundamental
forces other than gravity and assuming the A-CDM model it causes the accelerated
expansion of the universe. From Eq. 1.7 we know the Dark Energy must have a
negative pressure in order to accelerate the expansion, i.e.

1
p<—3p (1.21)

If we parametrize the equation of state of a perfect fluid in this way
p=wp (1.22)

the equation-of-state parameter for Dark Energy will be w < —1/3. Nevertheless,
the perfect fluid model with a constant state parameter does not work, because if we
consider the perturbation theory relation 6P = c2dp, where c, is the speed of sound
of Dark Energy, ¢> = w, a negative state parameter implies negative value for c2.
Therefore it is necessary to describe dark energy with different models: as a fluid
with non-linear relation between P and p which leads to negative w but positive
value of ¢2, or a scalar field with an auto interaction potential. We can focus on
some of these models. Establishing whether the dark energy is constant or evolving
is one of the main challenges for modern cosmology. For example the expected
EUCLID mission in 2019 will have as main aims measuring the DE equation of
state parameters wg and w; to a precision of 2% and 10%, respectively, using both
expansion history and structure growth; measuring the growth factor exponent
with a precision of 2%, enabling to distinguish General Relativity from the modified
gravity theories; testing the CDM paradigm for structure formation, and measure
the sum of the neutrino masses to a precision better than 0.04eV when combined
with Planck.

The time dependence of the Dark Energy equation has been constrained by fitting
various forms of w(z) to the SNIa data, often in combination with CMB and the
LSS measurements.

One of the most popular two-parameter formula is the linear change in the scale

factor a = (1 + z)~* given by,

w(a) = wy +wia(l — a) (1.23)
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where wy is the value today and w; the value at some early time a.
For general w(a), the dynamical expansion of the Universe is specified by the

Friedmann equation

H2
E(a) = }I(Qa) =Qya® + Qga? + QDEaf(a), (1.24)
0

where Qi = (1 — Q,, — Qx) is the curvature constant, H(a) = a/a is the Hubble
parameter with present day value Hy. f(a) is calculated by solving the conservation
of energy equation for the Dark Energy d(pxa®)/da = —3pxa® giving px o< af(@,
where

fla) =

For constant w, f(a) = —3(1 4+ w).

/ " w()dind. (1.25)

For the parameterisation w(a) = wo + wya(l — a),

Fla) = —3(1 + wp) + 22 (1 — a)?. (1.26)

1.3.1 The cosmological constant

A cosmological constant was originally introduced by Einstein in 1917 in Eq. 1.1,
in order to obtain a static solution for a spatially closed universe
1

Rw,—2

Ry + Ag = 87GT),, (1.27)

after the discovery of the accelation expansion of the Universe it was regained as
possible candidate for the Dark Energy.

The Friedmann eq.s 1.4 and 1.7 becomes:

N
a 8tGp kA
a 4G A
. Z—T(,O+3p)+§. (1.29)

It is a time independent and spatially uniform dark component, which may classically
be interpreted as a relativistic perfect simple fluid. If we consider the observational
evidences of @ > 0, from Eq. (1.29) we find the cosmological constant contributes
negatively to the pressure term and hence exhibits a repulsive effect, as the Dark

Energy does. Introducing the modified energy density and pressure

A - A
5—pt - p_p_ 1.
p p+87rG’ G (1.30)
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we find that equations 1.28 and 1.29 reduce to equations 1.4 and 1.7, and that the

cosmological constant obeys the equation of state w = —1.

The cosmological constant A is the oldest and simplest candidate from a
mathematical viewpoint, but there is a fundamental problem related to such a
theoretically favored candidate which is usually called the cosmological constant
problem. The present cosmological upper bound (A,/87G ~ 10~*GeV*) differs
from natural theoretical expectations (~ 107'GeV*) by more than 100 orders of
magnitude.

We can consider now some others candidates appearing in the literature.

1.3.2 Chaplygin-type gas

It is widely known that the main distinction between the pressureless CDM and Dark
Energy is that the former agglomerates at small scales whereas the Dark Energy is
a smooth component. Such properties seems to be directly linked to the equation of
state of both components. It refers to an exotic fluid, the so-called Chaplygin type

gas, whose equation of state is

A

. 1.31
P (1.31)

Px =

where A is constant with dimension [M*1*®)] and « is constant in the range
[0,1]. The o # 1 constitutes a generalization of the original Chaplygin gas
equation of state proposed in [Bento et al, 2004] whereas az = 0 gives a model which
behaves as ACDM. The idea of a Unified Dark-Matter-Energy (UDME) scenario
inspired by an equation of state like (1.31) comes from the fact that the Chaplygin
type gas can naturally interpolate between non-relativistic matter (CDM) and
negative-pressure Dark Energy regimes [Bento et al, 2004]. The Jeans instability of
Chaplygin perturbations is at first similar to CDM fluctuations (when the Chaplygin
gas has a negligible pressure) and then disappears (when the Chaplygin gas behaves
as a cosmological constant). Both this late suppression of Chaplygin fluctuations
and the apperance of a non-zero Jeans length leave a large integrated Sachs Wolfe
(ISW, see Chap. 3) imprint on the CMB anisotropies.

Motivated by these possibilities, there has been growing interest in exploring
the theoretical and observational consequences of the Chaplygin gas, not only as a

possibility for unification of the dark sector (dark matter/Dark Energy) but also as a
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new candidate for Dark Energy only. The imprint of a Chaplygin gas is also present
on the matter power spectrum, since Chaplygin gas perturbations affect both CMB

anisotropies and structure formation.

1.3.3 Quintessence

The idea of quintessence originates from an attempt to understand the smallness
of the “cosmological constant” or Dark Energy in terms of the large age of the
universe [Wetterich, 1988|. As a characteristic consequence, the amount of Dark
Energy may be of the same order of magnitude as radiation or dark matter during
a long period of the cosmological history, including the present epoch. Today, the
inhomogeneous energy density in the universe (dark and baryonic matter) is about
Pinhom = (1073eV). This number is tiny in units of the natural scale given by the
Planck mass M, = 1.22 - 10" GeV. Nevertheless, it can be understood easily as a
direct consequence of the long duration of the cosmological expansion: a dominant
radiation or matter energy density decreases p ~ let*Q and the present age of the
universe is huge, ¢y ~ 1.5 - 10 yr. It is a natural idea that the homogeneous
part of the energy density in the universe (the Dark Energy) also decays with
time and therefore turns out to be small today. A simple realization of this idea,
motivated by the anomaly of the dilatation symmetry, considers a scalar field ¢ with

an exponential potential [Wetterich, 1988]

L=./g {%8"@5@@5 + V(¢)} (1.32)

where

V(¢) = M exp(—agp/M), (1.33)

with M? = M?/16m. In the simplest version ¢ couples only to gravity, not to
baryons. Cosmology is then determined by the coupled field equations for gravity
and the scalar “cosmon” field in presence of the energy density p of radiation or
matter. For a homogeneous and flat universe (n = 4 for radiation and n = 3 for

nonrelativistic matter)

e
. . OV
Hop+ — =
o+ 3 ¢+8¢ 0,
p+nHp=0. (1.34)

1 1.
H2 (P+§¢2+V),
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This model predicts a fraction of Dark Energy or homogenous quintessence (as

compared to the critical energy density p. = 6M?H?) which is constant in time

Oy = (V + %d?) /Pe = Ps/pe (1.35)

both for the radiation-dominated (n = 4) and matter-dominated (n = 3) universe
(2 + p/pe) = 1). This would lead to a natural explanation why today’s Dark
Energy is of the same order of magnitude as dark matter. For a large value of V(¢)
the force term in Eq.1.34 is large and the Dark Energy decreases faster than matter
or radiation. In the opposite, when the matter or radiation energy density is much
larger than V(¢), the force is small as compared to the damping term 3H¢ and
the scalar waits until the radiation or matter density is small enough such that the
over-damped regime ends. Stability between the two extreme situations is reached

for V'~ p. For this model, the equation of state parameter w is given by
wg = 5———— (1.36)

and can be varied in the range —1 < wg < 1.

1.3.4 Modified Gravity

In the simplest alternatives to Dark Energy, the present cosmic acceleration is caused
by a modification to general relativity, the so called Modified Gravity. The General
theory of relativity founded by Einstein at the end of 1915 has been successfully
verified as modern theory of gravity for the Solar System.

Attempts to modify general relativity started already at its early times and it was
mainly motivated by research of possible mathematical generalizations. Recently
there has been an intensive activity in gravity modification, motivated by discovery
of accelerating expansion of the Universe, which has not yet generally accepted
theoretical explanation. The general relativity has not been verified at the cosmic
scale (low curvature regime) and Dark Energy has not been directly detected. This
situation has motivated a new interest in modification of general relativity, which
should be some kind of its generalization. There is not a unique way how to modify
general relativity. Among many approaches there are two of them, which have been
much investigated: 1) f(R) theories of gravity and 2) nonlocal gravities.

In the case of f(R) gravity, the Ricci scalar R in the action is replaced by a function
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f(R). This is extensively investigated for the various forms of function f(R). We

aR+(
YR16

have had some investigation when f(R) = Rcosh and, after completion of

research, the results will be presented elsewhere.

1.4 Observational evidences for Dark Energy

There are many observational evidences of the Dark Energy effect. Historically,
the acceleration expansion was reveal for the first time by Ia supernovaeobervations.
In 1998 two groups of astronomers [Perlmutter et al.,1999] estimated the distance-
redshift relation using Type Ia supernovae (SNe), a class of exploding stars whose
distance can be measured with ~ 15% accuracy, much better than for other distant
sources. They found the a(t) is increasing, i.e. the universe is not merely expanding,
the expansion is accelerating.

Many other indirect supporting evindences come from different measurements. Now
galaxy clustering, weak lensing, baryonic acoustic oscillation (BAO) on the CMB
anisotropies, ages of the oldest stars are generally considered the most powerful
observational probes of Dark Energy.

Another method also provides additional cross-checks on Dark Energy constraints,
the late time anisotropy in the CMB, the Integrated Sachs-Wolfe effect (ISW), can
be detected and used to constrain cosmology.

It is important to take into account the results from all different observations,
because individually they do not allow to determine matter and Dark Energy
density, since they always involves a combination of these two parameters (“Cosmic
Degeneracy”).

The data from all these observations are not accurate enough to distinguish between
the cosmological constant and many forms of dynamical Dark Energy. Moreover
degeneracies between Dark Energy parameters strongly limit the possibility to test

whether w is constant or not.

1.4.1 Type Ia Supernovae

Type Ia Supernovae are generally believed to have homogeneous intrinsic luminosity
of peak magnitude. So SNe Ia are usually known as standard candles which could

be used to measure the expansion history of the Universe. The analysis of their
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distance modulus versus redshift could provide direct evidence for the acceleration
of the Universe and the analysis also put a constraint on dark energy models. The

luminosity distance d; of SNe la is defined by

_c(l+2) ¢ {ﬁl(l_qo)zu,,, . (1.37)

dp(z) = ———F(2) = — 5

Hy Hy

The function F(z) is

Flz) = /0 ) E(lz/)dz’ | (1.38)

where, if we consider a flat Universe with constant w, F(z) is given by the Friedmann
equation written as Eq.1.24.

Qo is the deceleration parameter, given by

Qom
2

~

+ Qopr (1.39)

0
if go < 0 the Universe is accelerating. The distance modulus is defined by
dr
MEm_M:510gM—m+25a (1.40)
where m and M are the apparent and absolute magnitudes, respectively; from the
first observations the Universe seems to accelarate because ¢y > 0, then we can

constrain the combination between the two cosmological paramaters 2 pg and €2y

1.4.2 Baryonic acoustic oscillations (BAO)

The Baryonic Acoustic Oscillations signatures in the large-scale clustering of galaxies
could act as additional tests for constraining Dark Energy cosmology, because
the acoustic oscillations in the relativistic plasma of the early Universe could be
imprinted onto the late-time power spectrum of the non-relativistic matter, as galaxy
clusters. The BAO relevant distance measure is modelled by volume distance, which

is defined as

dm)z} " "

e = %5

where [ (z) is the Hubble parameter and d4(z) = [, ﬁdz’ is the comoving angular
diameter distance. BAO measurements provide both d4(z) and H(z) using almost

completly linear physics, i.e. measuring the sound horizon today from clustering
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galaxies. Then Dy (z) can be computed essentially from the growth factor (1.65)
of perturbation theory which contains the cosmological paramaters. Combining the
information from BAO and from the first peak position of the CMB power spectrum

which sets the Universe to be flat

Oy~ 220057, (1.43)

it is possible to constrain separatly values of QQpg and €.

1.4.3 Gravitational lensing

The gravitational lensing is regarded as an independent tool that complements
SNe Ia as a probe on Dark Energy. The statistics of gravitational lensing of
quasars (QSOs) by intervening galaxies can constrain on the cosmological constant.
Lensed images of distant galaxies in cluster, arcs or rings, may provide a bound
on the equation of state parameter of Dark Energy. The gravitational lensing
system can be used measure the ratio of angular diameter distances. However, the
lensing observations primarily depend on the parameters of lens models with minor
dependence on cosmological parameters. There is the lens model degeneracy in both
the projected mass density profile and the circular velocity profile. It is shown that
we need to measure the Einstein radius and the velocity dispersion within O(1)%

accuracy in order to put a constraint on wpg.

In the gravitational lensing, one of the observable quantities without having any

model dependence is the Einstein radius (6g), which is proportional to the velocity

2
v

dispersion squared (o) and the ratio of the angular distances Dgys/Ds, where Dy
is the distance from the lens to the source and D; is that from the source to the
observer. With different values of cosmological parameters, we can have different
values of Dys/Ds, i.e. different values of 6x. Thus, it might be used for probing
the property of Dark Energy, wpgp. However, there is an ambiguity in measuring
oy If the error of o, measurement is not within the differences of Dy,/Ds between
different cosmological models, then we cannot distinguish the differences between

models by measuring 0.
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1.5 Inflation

In 1980 Guth and Starobinsky devolped the theory of inflation in order to solve
the shortcomings of the Big Bang theory, as the horizon, flatness and magnetic
monopole problems. We forementioned that an exponential accelerating expantion
occurs during the primordial phases of the evolution of the Universe, with the scale
factor evolves as

a = a; et (1.45)

where t; denotes the time at which inflation starts and H; the value of the Hubble
rate which remains constant during a inflationary (de Sitter) epoch. During inflation,

the horizon .
ri(t) = a(t) / % (1.46)

grows more slowly than the scale factor, therefore, regions that were in causal

connection before this period are pushed outside the Hubble radius

1
THubble = 77 (1.47)
An accelerating period is obtainable only if the overall pressure p of the universe is
negative: p < —p/3. Neither a radiation-dominated phase nor a matter-dominated
phase (for which p = p/3 and p = 0, respectively) satisfy such a condition. From
theory we know the inflation is driven by the vacuum energy of the inflaton field.
This period of exponential expansion solved some of the shortcomings of the

standard Big Bang Theory.

1.5.1 Horizon Problem

The horizon problem is related to the fact that every Big Bang model have a
cosmological horizon which delimits regions in causal connection one with the
others. In the Big Bang theory the horizon is too small to explain the high
isotropy observed in the CMB where very far emission regions seem to be in causal
connection and inside the cosmological horizon. If inflation lasts long enough, all
the physical scales that have left the horizon during the radiation-dominated or
matter-dominated phase can re-enter the horizon in the past: this is because such
scales are exponentially reduced. This explains the problem of the homogeneity of

CMB and the initial condition problem of small cosmological perturbations. Once



22 CHAPTER 1. THE COSMOLOGICAL MODEL

the physical length is within the horizon, microphysics can act, the universe can
be made approximately homogeneous and the primaeval inhomogeneities can be
created.

If t; and ¢; are, respectively, the time of beginning and end of inflation, we can

define the corresponding number of e-foldings N as
N =1In[H/(t. —t;)]. (1.48)

A necessary condition to solve the horizon problem is that the largest scale we
observe today, the present horizon H, ! was reduced during inflation to a value

A, (t;) smaller than the value of horizon length H; ' during inflation. This gives

_ Qy ag, _ Ty _ _
A (t)=H ' L) (=2 )=H"= N<H?
o 1) 0 <at0> <atf) 0 (Tf)e T

where for simplicity the short period of matter-domination is neglected and we have

called T the temperature at the end of inflation. We get

T, Ty T
Nzl(-2)-m(L)~67+m(=L).
(i) () =7+ (i)

Apart from the logarithmic dependence, we obtain N 2 70.

1.5.2 Flatness problem

The flatness problem is related ti the fact that although cosmological data are in
agreement with a flat Universe, the Big Bang model requires a fine tuning on the

density parameter that has to be
Ql—1~10"% (1.49)

non only at present time but at all times. Inflation also solves elegantly the flatness

problem. Since during inflation the Hubble rate is constant

k 1

X —.
alH? a2

0—1=

On the other end reproduce a value of (€y—1) of order of unity today the initial value
of (2—1) at the beginning of the radiation-dominated phase must be | — 1] ~ 1079,
Since we identify the beginning of the radiation-dominated phase with the beginning
of inflation, we require

-1, ~107%.
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During inflation

Q—1|,_ \ 2
2=ty <a—) — e 2N, (1.50)

1 — 1‘t:ti N ar
Taking |©2 —1],_, of order unity, it is enough to require that N ~ 70 to solve
the flatness problem. Inflation does not change the global geometric properties
of the spacetime. If the universe is open or closed, it will always remain flat or
closed, independently from inflation. What inflation does is to magnify the radius
of curvature R, defined in Eq. (1.11) so that locally the universe is flat with a

great precision.

1.5.3 Monopole problem

The magnetic monopole problem is related with the GUT [Buras et al., 1978|, the
Big Bang theory predicts the creation of a number n,, of magnetic monopoles during
the GUT phase transition

Ny > 1071, (1.51)

where n, is the number density of photon at that time. None of the processes
in the Universe history can destroy monopoles, then today they should be n,,, >
1071, ~ ny. These monopoles are very massive particoles (m,, ~ 106 GeV) and
according to their predicted abundance they should be the dominant component of

the cosmological fluid

Pmo o M Mmo

O = = , 1.52
Pco Pco ( )

Q,, > 10'°Q, (1.53)

The measured total density €2y and the lack of positive magnetic monopole detections
deny all the previous assumptions. Considering the inflation epoch, we find the
magnetic monopoles are created before inflation and therefore their density is
diluted by the exponential expansion up to a point where their contribution to

the cosmological fluid is irrelevant and it is extremely unprobable to obsevre them.

1.6 Cosmological perturbation theory

The theory of structure formation studys how the primordial fluctuations in matter
and radiation grow into galaxies and clusters of galaxies due to self gravity.

Structures were generated by the gravitational instability mechanism from tiny
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perturbations present at very ealy times and produced from quantum fluctuations
during the inflation period. CMB observations indicate that the anisotropies at
the epoch of decoupling were rather small (one part in 10°), implying that their
amplitudes were even smaller at earlier epochs. Then the generation and the

evolution of the perturbations can be studied using linear perturbation theory.

1.6.1 Metric perturbations

In a Friedmann background, the metric perturbations can be decomposed according
to their behavior under local rotation of the spatial coordinates on hyper-surfaces
of constant time. Therefore, the perturbations are classified into scalars, vectors
and tensors. Scalar perturbations are invariant under rotations and are the main
responsible for the anisotropies and the inhomogeneities in the Universe.

In the following we use only scalar pertubations in order to obtain, in the linear
regime, the evolution equations of the matter fluctuations created in the inflation

period.

We start deriving the perturbed continuity, Euler and Poisson equations in the
matter domain, inserting a generic small pertubation on the homegeneous density

Py, velocity vy, pressure p, and the gravitational potential ®;, values
p=ptpi, v=uv+vi p=pptp, =T+ (1.54)

in the continuity and Euler equations

9

8—§+V(pv) ~ 0 (1.55a)

ov Vp

ov - P _yo 1.

T + (vV)v ; \% (1.55b)
V20 = 4nGp (1.55¢)

We have to take into account also the eqution of state, ¢ = dp/0p. Then the

S

perturbed equations are

Ip;
8[‘; + oV (pvi) + piVu, = 0 (1.56a)
Ov; Vp;i
: = - - Vo, 1.
5 T WiV o Vo, (1.56b)

V20, = 4rGp;.. (1.56¢)
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We introduce the density contrast 6 = (p — py)/pp, and change in comoving
coordinates
Ve . .
V,=—, 7=azr+ad, (1.57)
a

where the first term in 7 is the expansion velocity v, = ax and the second one is
the peculiar velocity of the perturbation v; = ax; we define u = & as the comoving

velocity of the perturbation. Therefore, the continuity equation becomes
6= —V,u, (1.58)
and the Euler

.. 7 - 2. 2p.
a Ppa? a?

. (1.59)

Finally, by using the equation of state and Eq. (1.56¢), assuming a typical Fourier

transformation given by
1 .
Pt = [ @Ry (). (1.60)
(2m)*

we obtained the perturbation equation
.. a - 02 9
0+2=0 = —2V.0 +47Gpyd. (1.61)
a a

This equation has the typical harmonic oscillator form, the second term in the
left side is the damping term containing the expansion rate of the Universe in
opposition to the gravitational collapsing. From this equation, it is possible to

write the evolution equation for all kinds of fluid and 2.

1.6.2 Structure formation

Now we know where the primordial fluctuations come from, we can study how these
pertubations become structures under the influence of the gravity only. Then we
can assume the matter pressure term is negligible with respect to the gravitational
potential one

k*c? < 4mGpy,. (1.62)

In the following analysis we consider a Universe with Qypg # 0 and w = —1.
From Eq. (1.14) and Eq. (1.10) we find
3112

47Tpr = 902—&3, (163)
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therefore, the Eq. (1.64) becomes

.. Q- 3H?
o+ 255 = QOMﬁ& (1.64)
One of the two solutions is
5QM @ da’
0(a) = ——F - =D 1.
(@) = B | s = D), (1.65)

where E(a) is given by Eq. 1.24. It defines the growth factor D(a) of the matter
perturbations, a function of the natural logarithm of the scale factor. The linear
growth factor is strongly dependent on w, with w > —1 models behaving more like
open Universes than w < —1 models as the effect of the Dark Energy diminishes.

Although this integral can be easily solved numerically, it is common to use the

approximation of [Carrol et al., 1992]

D(a) ~ W [QM(a)4/7 — Qula)

e ) (1 BT

1.6.3 Non-linear perturbations

Now we deal with the non-linear perturbations in order to find the power spectrum
which also characterizes the CMB anisotropies.

We can start considering a volume V,, in which there is significant structure due
to the perturbations and also denote by (p) the mean density in the volume, by
p(x) the density at a point specified by the position vector x with respect to some
arbitrary origin. We define the fluctuation §(x) = [p(x) — (p)]/(p). As usual is more

expressible as a Fourier series:
i(x) = Zékexp(i k-x)= Zéﬁexp(i k- x). (1.67)
Kk Kk

The Fourier coefficients dy are complex quantities given by

0k = L d(x)exp(i k - x)dx. (1.68)
Vi lv,

Now we can imagine a large number N of such volumes, i.e. a large number of
‘realisations’ of the Universe, one will find that dy varies from one to the other in

both amplitude and phase. If the phases are random, the density field has Gaussian
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statistics: so the mean value of perturbation is identically zero by definition, its

mean square value, i.e. its variance o2, is not but

o= (0%) = (I6]*) 252 (1.69)

If we now take the V, — oo and assume that density field is statistically
homogeneous and isotropic, so that there is no dependence on the direction of k

but only on k = |k|, we find
1 ) 1 +00 )
= > 6 - 2 ), Py (k)Kdk, (1.70)
Yok

where, for simplicity, 62 = Ps(k). The quantity Ps(k) is called the power spectral
density function of the field ®, or power spectrum, and o2 tells us about the amplitude
of perturbations.

The perturbation power spectrum Pg(k), at least within a certain interval in k, is

given by the following power law
Py(k) = AE", (1.71)

the exponent n is usually called the spectral index.
The equation 1.70 can also be written in the form
1 o o
o2 = 1 7 py(i) k2 = / A(R)d In K (1.72)
27T2 0 —o0
where the dimensionless quantity
1

Alk) = 272

Py (k). (1.73)

It is more convenient to construct a statistical description of the fluctuation field
as a function of some scale R. In this way it is possible to define a mass variance

inside a spherical volume V' of radius R with mass M

) _ (0M7)°
oy = o) (1.74)

Using the usual Fourier decomposition as before we find

1
= > GW3(k R); (1.75)
vk

the function W(k R) is called the window function. We shall use this expression

when we define the cross-correlation power spectra for the ISW effect (Chapter 3).
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Chapter 2

Cosmological Microwave Background

The cosmic microwave background was first predicted by Alpher and Herman
[Alpher & Herman, 1998] in 1948 as a thermal relic isotropic radiation with an
estimated mean temperature of 5 K. The first detection of the microwave background
comes in 1965 by Penzias and Wilson [Penzias & Wilson, 1965|, for which they
later won the Nobel Prize, who observed an excess of 3.5K in their antenna
temperature noise on the A\ = 7.35cm. From that discovery the field of cosmic
microwave background (CMB) anisotropies has advanced over the years, especially
thanks to the instruments like COBE (the NASA satellite COsmic Background
Explorer, launched in 1989) and WMAP (the NASA satellite Wilkinson Microwave
Anisotropy Probe, 2001-2012 activity). Their observations have turned some of
initial speculations about the Universe into the current cosmological model: namely,
that the Universe is spatially flat, consists mainly of dark matter and dark energy,
with the small amount of ordinary matter necessary to explain the light element
abundances products of nucleosynthesis, and large scale structures formed through
gravitational instability from primordial perturbations which might be explained as
originated by quantum mechanical fluctuations during inflation. COBE confirmed
the cosmological origin predictions of the CMB, measuring an almost perfect
blackbody spectrum peaked at 2.7254+0.002 K and a temperature anisotropies of the
order of AT/T ~ 107" at the angular scale of 7 degrees. From these observations
we learn that the CMB is remarkably uniform except for the dipole induced by the
motion of the Solar Sistem [Smoot et al, 1977|. This is in contrast to the matter in
the Universe, organized in very non-linear structures like galaxies and clusters. The
smooth photon distribution observed in CMB with respect to the clumpy matter

distribution is due to the radiation pressure. Matter inhomogeneities grow due to

29
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gravitational instability, but pressure prevents the same process from occuring in the
photons. Thus, even though both inhomogeneities in the matter in the Universe and
anisotropies in the CMB apparently originated from the same source, these appear
very different today.

Since the photon distribution is very uniform, perturbations are small, and
linear response theory applies. This is perhaps the most important fact about
CMB anisotropies. If the sources of the anisotropies are also linear fluctuations,
anisotropy formation falls in the domain of linear perturbation theory (/ref.capitolo
primo). There are then essentially no phenomenological parameters that need to be
introduced to account for non-linearities or gas dynamics or any other of a host of
astrophysical processes that typically afflict cosmological observations.

CMB anisotropies in the working cosmological model fall almost entirely under
linear perturbation theory. The most important observables of the CMB are the
power spectra of temperature and polarization maps. Theory predicts, and now
observations confirm, that the temperature power spectrum has a series of prominent
peaks and troughs. In 2.1.1, we discuss the origin of these acoustic peaks and their

cosmological uses.

2.1 Primordial anisotropies

In order to study the CMB we consider its intensity as a function of frequency
and direction on the sky 7n(6,¢). Since the CMB spectrum is an extremely good
blackbody [Fixen & Mather, 2002]|, generally the observable T is described in terms

of a temperature fluctuation

AT _T(0,¢) - Ty
T(ea ¢) - T

By using the spherical harmonics expansion

%(9, d)) = Zzaémnm(‘gv d)) ) (22)
£ m

(2.1)

if these fluctuations are Gaussian, then the multipole moments of the temperature

field
AT
o = [ A () S () (2.3

are fully characterized by their power spectrum

<a2ma€’m’> = 6@6’5mm’ OK , (24)
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whose values as a function of the multipoles ¢ are independent in a given realization.
For this reason predictions and analyses are typically performed in harmonic space.

Since the angular wavelength 6§ ~ 27 /¢, large multipole moments corresponds
to small angular scales. Likewise, since in this limit the variance of the field is

[ d*tC,/(27)?, the power spectrum is usually displayed as

(0+1
A2 = (T)@T?. (2.5)

Whereas COBE first detected anisotropy on the largest scales, observations in
the last decade have pushed the frontier to smaller and smaller scales. The WMAP
satellite, launched in June 2001, went out to ¢ ~ 1000, while the ESA satellite,
Planck, launched in 2009, went a factor of two higher.

The power spectra (mettere plot pogosian per cosmic variance) exhibit large
uncertainty at low multipoles. The reason is that the predicted power spectrum is
the average power in the multipole moment ¢ an observer would see in an ensemble
of universes. However a real observer is limited to one Universe and one sky with
its one set of ay,’s, 20 + 1 numbers for each ¢. This is particularly problematic for
the monopole and dipole (¢ = 0, 1). If the monopole were larger in our vicinity than
its average value, we would have no way of knowing it. Likewise for the dipole, we
have very little hope of distinguishing a cosmological dipole from our own peculiar
motion with respect to the CMB rest frame.

In this way low ¢’s are dominated by “cosmic variance” because there are only

20 + 1 m-samples of the power in each multipole moment

2
20+1

ACy = C. (2.6)

By averaging over ¢ in bands of A¢ & {, the precision in the power spectrum
determination scales as /71, i.e. ~ 1% at £ = 100 and ~ 0.1% at ¢ = 1000.

Of course, any source of noise, instrumental or astrophysical, increases the errors.
If the noise is also Gaussian and has a known power spectrum, one simply replaces
the power spectrum on the right hand side of Eq. (2.6) with the sum of the signal and
noise power spectra [Knox, 1995]. Because astrophysical foregrounds are typically
non-Gaussian it is usually also necessary to remove heavily contaminated regions,
e.g. the galaxy. If the fraction of sky covered is fyy, then the errors increase by a

factor of fsfql,/ ? and the resulting variance is usually called “sample variance”. Taking
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into account these caveats, the Eq.(2.6) becomes the Knox equation [Knox, 1995|

AC, = 2 1 Apic 0y . .
£ fory(20+1) + Cye—FW HM//8log2 ¢- (2.7)

where A,;;, 0pi; are the area of the pixel and the sensitivity per pixel and FW HM

is the full width half maximum.

2.1.1 Acoustic peaks

As we have seen in Chap. 1, when the temperature of the Universe was at
Tree ~ 4000K and a redshift z... ~ 1100, electrons and protons combined to
form neutral hydrogen, in the recombination time. Before this epoch, free electrons
acted as glue between the photons and the baryons through Thomson and Coulomb
scattering, so the cosmological plasma was a tightly coupled photon-baryon fluid
[Peebles & Yu, 1970]. At ¢ > 100 the CMB power spectrum can be explained almost

completely by analyzing the behavior of this pre-recombination fluid.

We can start from the general evolution equation, Eq.(1.64), for perfect photon
fluid, neglecting for the first approximation the dynamical effects of gravity and the
baryons. Since perturbations are very small, we assume a linear approximation for

the evolution equations and different Fourier modes evolving independently.
. 62 9

The photon pressure is p, = p, /3, the temperature density p, o< T* and the desity
contrast is given by 40r = p,/p — 1.

where ¢, = \/]% = 1/4/3 is the sound speed in the (dynamically baryon-free) fluid.
We find the pressure gradients act as a restoring force to any initial perturbation
in the system which thereafter oscillate at the speed of sound. Physically these
temperature oscillations represent the heating and cooling of a fluid that is
compressed and rarefied by a standing sound or acoustic wave. This behavior
continues until recombination. Assuming negligible initial velocity perturbations,

we have a temperature distribution at recombination of

I(Mrec) = 0(0) cos(kspec) (2.9)

where s = [c,dn ~ n/V/3 is the distance sound can travel by n (called sound

horizon).
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In the limit of scales large compared to the sound horizon ks,.. < 1, the
perturbation is frozen into its initial conditions, so the large-scale anisotropies
measured mainly by satellites directly measure the initial conditions. On small
scales, the amplitude of the Fourier modes will exhibit temporal oscillations.
Modes that are caught at maxima or minima of their oscillation at recombination
correspond to peaks in the power, i.e. the variance of (k, 7,..). Because sound takes
half as long to travel half as far, modes corresponding to peaks follow a harmonic
relationship k,, = n7m/s.e., where n is an integer. A spatial inhomogeneity in the
CMB temperature of wavelength A appears as an angular anisotropy of scale § ~ \/d
where d(z) is the comoving angular diameter distance from the observer to redshift

zZ.

In a spatially curved universe, the angular diameter distance no longer equals the
coordinate distance, making the peak locations sensitive to the spatial curvature of

the Universe [Doroshkevich et al, 1978, Kamionkowski et al, 1994].

At present, observations of the location of the first peak of the CMB anisotropies

strongly point to a flat universe, in combination with other cosmological constraints.

The inflationary paradigm postulates that an early phase of near exponential
expansion of the Universe was driven by a form of energy with negative pressure. In
most models, this energy is usually provided by the potential energy of a scalar
field. The inflationary era brings the observable universe to a nearly smooth
and spatially flat state. Nonetheless, quantum fluctuations in the scalar field are
unavoidable and also carried to large physical scales by the expansion. Because
an exponential expansion is self-similar in time, the fluctuations are scale-invariant,
i.e. in each logarithmic interval in scale the contribution to the variance of the
fluctuations is equal. Since the scalar field carries the energy density of the
Universe during inflation, its fluctuations induce variations in the spatial curvature
[Guth & Pi, 1985, Hawking, 1982].

In order to understand the formation of CMB primordial anisotropies, we have to
relate the inflationary prediction of nearly scale-invariant curvature fluctuations to
the initial temperature fluctuations. General relativity says the Newtonian potential
is also a time-time fluctuation in the metric and it corresponds to a temporal shift
of 0t/t = W. The CMB temperature varies as the inverse of the scale factor, which

in turn depends on time as a o t¥/B0+2/P)l Therefore, the fractional change in the
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CMB temperature

AT Sa 2 p\ ot
-0 __ (14 - 2.10
T a 3 ( - p) t ( )

Thus, a temporal shift produces a temperature perturbation of —W¥ /2 in the radiation
dominated era (when p, = p,/3) and —2W¥/3 in the matter dominated epoch (p = 0)
(|Peacock, 1991]; [White & Hu, 1997]).
Also, for a fluctuation ® in the gravitational potential, the effect of a gravitational
redshift is to cause a fractional variation of the temperature AT/T = ®. In
the simplest case of a flat universe described by a matter-dominated Friedmann
model, the net effect is therefore given by AT/T = ®/3. The initial temperature
perturbation is therefore linked with the initial gravitational potential perturbation.

The primordial density fluctuations have left their imprint on the cosmic
microwave background radiation in the form of small variations in the temperature
in different directions on the sky. After recombination between electron and
photons, when the decoupling photons-baryons occured, photons begin to travel
in the last scattering surface(hereafter [ss) of thickness Az and encounter variations
in the metric which correspond to variations in the gravitational potential in
Newtonian gravity. This process during the [ss is called Sachs-Wolfe effect
([Sachs & Wolfe, 1967]). The effect is essentially gravitational in origin. According
to general relativity, photons climbing out of a potential well will suffer a
gravitational redshift which tends to make the region from which they come appear
colder.

The ripples seen by the COBE satellite were caused by the Sachs-Wolfe effect
and it fixes the amplitude of the initial power spectrum (P(k)) of the primordial
density fluctuations that are needed to start off the gravitational Jeans instability

on which these theories are based.

Now it is necessary to take into account the gravitational influence because the
Newtonian potential and the spatial curvature alter the acoustic oscillations by
providing a gravitational force on the oscillator. The simplified Euler equation (2.8)
gains a term on the right hand side due to the gradient of the potential k. The
main effect of gravity then is to make the oscillations a competition between pressure

gradients ko and potential gradients k¥ with an equilibrium when 6 + ¥ = 0.



2.1. PRIMORDIAL ANISOTROPIES 35

The oscillator equation (2.8) becomes

2

. k
5+é#5:—§m. (2.11)

In a flat universe and in the absence of pressure, ¥ is constant. Also, in the absence

of baryons, ¢? = 1/3 so the new oscillator equation is identical to Eq. (2.8) with §

s —

replaced by 0 + W. The solution in the matter dominated epoch is then

[0+ P](n) = [0+ ¥](Nma) cos(ks)

= %\Il(nmd) cos(ks) . (2.12)

where 7,q represents the start of the matter dominated epoch, assuming large
scales, kspq < 1. The quantity 6 + ¥ is the effective temperature and can
be thought of as an effective temperature in another way: after recombination,
photons must climb out of the potential well to the observer and thus suffer a
gravitational redshift of AT/T = W. The effective temperature fluctuation is
therefore also the observed temperature fluctuation. Therefore, the large scale
limit of Eq. (2.12) recovers the Sachs-Wolfe result that the observed temperature
perturbation is W/3 and overdense regions correspond to cold spots on the sky
[Sachs & Wolfe, 1967| (assuming adiabatic initial conditions). Taking into account
both gravity compressions and pressure enlargement, the fluid is rarefied and
compressed continually. The first peak corresponds to the mode that is caught
in its first compression by recombination. The second peak at roughly half the
wavelength corresponds to the mode that went through a full cycle of compression

and rarefaction by recombination.

The presence of baryons is not negligible in the dynamics of the acoustic
oscillations.
If we consider the photon-baryon momentum density ratio R = (py+pp)/(py+p4) =
30Q,h*(2/10%)~ . For typical values of the baryon density this number is of order
unity at recombination and so we expect baryonic effects to begin appearing in the
oscillations just as they are frozen in.

The baryons momentum density provides extra inertia in the joint Euler equation
for pressure and potential gradients. We can put again the oscillator equation in

the form of Eq. (2.8) with 6 — d 4 (1+ R)V and then obtain the following solution

0+ 14+ R)¥|(n) = [0+ (14 R)¥](nma) cos(ks). (2.13)



36 CHAPTER 2. COSMOLOGICAL MICROWAVE BACKGROUND

Aside from the lowering of the sound speed which decreases the sound horizon,
baryons have two distinguishing effects: they enhance the amplitude of the
oscillations and shift the equilibrium point from zero to 6 = —(1 + R)WV.

The shifting of the zero point of the oscillator has significant phenomenological
consequences. Since it is still the effective temperature o + ¥ that is the observed
temperature, the zero point shift breaks the symmetry of the oscillations and the
baryons enhance only the compressional phase, i.e. every other peak. For the working
cosmological model these are the first, third, fifth... Physically, the extra gravity

provided by the baryons enhance compression into potential wells.

In the previous analysis we neglect the presence of imperfections in the fluid,
as viscosity and heat conduction, which damp acoustic oscillations. Damping can
be thought of as the result of the random walk in the baryons that takes photons
from hot regions into cold and vice-versa [Silk, 1968| and the the damping scale is
of order k;s,.. =~ 10 leading to a substantial suppression of the oscillations beyond

the third peak.

2.2 Polarization

The polarization field can be analyzed in a way very similar to the temperature
field, save for one complication. In addition to its strength, polarization also has an
orientation, depending on relative strength of two linear polarization states. Instead
of using the usual Stokes parameters ) and U to describe polarization locally, the
scalar I/ and pseudo-scalar B, linear but no-local combinations of () and U, provide
a more useful description. In complete analogy with Eq. (2.3), we can decompose
E and B in terms of multipole moments, and then, following Eq. (2.4), consider the

power spectra,

(Bt Bom) = 000 0mm CF" (2.14)
(Bjy Berm) = 00t Gmms CF7 (2.15)
<aZmE€’m’> = 6@3’5mm’OgE . (216)

Parity invariance demands that the cross correlation between the pseudoscalar B

and the scalars T or E vanishes.
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The polarization spectra have several notable features. First, the amplitude
of the FE spectrum is indeed down from the temperature spectrum by a factor
of ten. Second, the oscillatory structure of the F'E spectrum is very similar to
the temperature oscillations, only they are apparently out of phase but correlated
with each other. Both of these features are a direct result of the simple physics of
acoustic oscillations. The final feature of the polarization spectra is the comparative
smallness of the BB signal. Indeed, density perturbations do not produce B modes

to first order.

Also the polarization of CMB is signed by the dissipation of the acoustic
oscillations. Thomson scattering induces a linear polarization in the scattered

radiation.

The E and B decomposition is simplest to visualize in the small scale limit, where
spherical harmonic analysis coincides with Fourier analysis [Seljak, 1997|. Then the
wavevector k picks out a preferred direction against which the polarization direction
is measured. Since the linear polarization remains unchanged upon a 180° rotation,
the two numbers E and B that define it represent polarization aligned or orthogonal
with the wavevector (positive and negative E) and crossed at £45° (positive and

negative B).

In linear theory, scalar perturbations like the gravitational potential and
temperature perturbations have only one intrinsic direction associated with them,
that provided by k, and the orientation of the polarization inevitably takes it cue
from that one direction, thereby producing an F—mode. The generalization to an
all-sky characterization of the polarization changes none of these qualitative features.
The F—mode and the B—mode are formally distinguished by the orientation of the
Hessian of the Stokes parameters which define the direction of the polarization itself.
This geometric distinction is preserved under summation of all Fourier modes as well

as the generalization of Fourier analysis to spherical harmonic analysis.

The acoustic peaks in the polarization appear exclusively in the EFE power
spectrum (Eq. 2.14). This distinction is very useful as it allows a clean separation
of this effect from those occuring beyond the scope of the linear perturbation theory

of scalar fluctuations.
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2.3 Secondary anisotropies

Beneath the peaks lies a wealth of information about the evolution of structure in
the Universe and its origin in the early universe, but the CMB photons traverse the
large scale structure of the Universe on their journey from the decoupling epoch, so
they pick up secondary temperature and polarization anisotropies.

These anisotropies depend on all components of the Universe: dark matter, dark
energy, baryonic gas density and temperature distributions, and even the existence
of primordial gravity waves. Unfortunately, it is difficult to make precise predictions
and measurements because of the uncertain and /or non-linear physics and because of
the cosmic variance of the primary anisotropies and the relatively greater importance
of galactic and extragalactic foregrounds.

Secondaries can be divided into two classes: those due to gravitational effects and

those induced by scattering off of electrons.

The same balance between pressure and gravity that is responsible for acoustic
oscillations determines the power spectrum of fluctuations in the non-relativistic
matter.

After recombination, without the pressure of the photons, the baryons simply fall
into the Newtonian potential wells with the cold dark matter.

Because the potential is constant in the matter dominated epoch, the large-scale
observations set the overall amplitude of the potential power spectrum today.

On scales below the horizon at matter-radiation equality, we have seen from
2.1.1 that pressure gradients from the acoustic oscillations themselves impede the
clustering of the dominant component, i.e. the photons, and lead to decay in the
potential. Dark matter density perturbations remain but grow only logarithmically
from their value at horizon crossing, which (just as for large scales) is approximately
the initial potential, J,, =~ —WV,;. The potential for modes that have entered the
horizon already will therefore be suppressed by ¥ o< —d,,/k* ~ ¥,;/k? at matter
domination again according to the Poisson equation. The ratio of U at late times
to its initial value is called the transfer function. On large scales, then, the transfer
function is close to one, while it falls off as 572 on small scales. If the baryons
fraction p,/pm is substantial, baryons alter the transfer function in two ways.

First their inability to cluster below the sound horizon causes further decay in
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the potential between matter-radiation equality. Secondly the acoustic oscillations
in the baryonic velocity field kinematically cause acoustic wiggles in the transfer
function [Hu & Sugiyama, 1996|. These wiggles in the matter power spectrum P(k)
are related to the acoustic peaks in the CMB spectrum and are visible on the largest
galaxy surveys [Percival et al, 2001].

The matter transfer function and the near scale-invariant initial spectrum of
fluctuations tell that by the present fluctuations in the cold dark matter or baryon
density fields will have gone non-linear for all scales k ~ 107*hMpc~t. So there
is just enough growth between z... ~ 1100 and z = 0 to explain structures in the
Universe across a wide range of scales.

In particular, since this non-linear scale also corresponds to galaxy clusters and
measurements of their abundance yields a robust measure of the power near this
scale for a given matter density (2.

More generally, the comparison between large-scale structure and the CMB is
important in that it breaks degeneracies between effects due to deviations from
power law initial conditions and the dynamics of the matter and energy contents of
the Universe. Any dynamical effect that reduces the amplitude of the matter power
spectrum corresponds to a decay in the Newtonian potential that boosts the level of
anisotropy. Massive neutrinos are a good example of physics that drives the matter
power spectrum down and the CMB spectrum up.

The combination is even more fruitful in the relationship between the acoustic
peaks and the baryon wiggles in the matter power spectrum. Our knowledge of the
physical distance between adjacent wiggles provides the ultimate standard candle
for cosmology. For example, at very low z, the radial distance out to a galaxy is
cz/Hy. The unit of distance is therefore h=! Mpc, and a knowledge of the true
physical distance corresponds to a determination of h. At higher redshifts, the
radial distance depends sensitively on the background cosmology (especially the

dark energy).

2.3.1 Gravitational Secondaries

Gravitational secondaries arise from two sources: the differential redshift from time-
variable metric perturbations [Sachs & Wolfe, 1967| and gravitational lensing. The

former gravitational potential effects are usually called the integrated Sachs-Wolfe
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(ISW) effect in linear perturbation theory, the Rees-Sciama effect in the non-linear
regime, and the gravitational wave effect for tensor perturbations. Gravitational
waves and lensing also produce B-modes in the polarization (see 2.2) by which they

may be distinguished from acoustic polarization.

REES-SCIAMA EFFECT. This effect is due to CMB photons traversing a non-
linear gravitational potential, usually associated with gravitational collapse. The
relevant scales are those of galaxy clusters and superclusters, corresponding to
angular scales of 5-10 arc minutes.

When we consider linear perturbations the effect is called Integrated Sachs-Wolfe
(IWS) effect. It will be the key argument of the thesis and it will be dealt with in
Chap. 3.

GRAVITATIONAL WAVES. A time-variable tensor metric perturbation similarly
leaves an imprint in the temperature anisotropy [Sachs & Wolfe, 1967]. A tensor
metric perturbation can be viewed as a standing gravitational wave and produces
a quadrupolar distortion in the spatial metric. If its amplitude changes, it leaves a
quadrupolar distortion in the CMB temperature distribution. Inflation predicts a
nearly scale-invariant spectrum of gravitational waves. Their amplitude depends
strongly on the energy scale of inflation and its relationship to the curvature

fluctuations discriminates between particular models for inflation.

Gravitational waves, like scalar fields, obey the Klein-Gordon equation in a flat
universe and their amplitudes begin oscillating and decaying once the perturbation
crosses the horizon. While this process occurs even before recombination, rapid
Thomson scattering destroys any quadrupole anisotropy that develops. This fact
dicates the general structure of the contributions to the power spectrum: they are
enhanced at ¢ = 2 the present quadrupole and sharply suppressed at multipole larger
than that of the first peak. As is the case for the ISW effect, confinement to the
low multipoles means that the isolation of gravitational waves is severely limited by

cosmic variance.

The signature of gravitational waves in the polarization is more distinct. Because
gravitational waves cause a quadrupole temperature anisotropy at the end of
recombination, they also generate a polarization. The quadrupole generated by

a gravitational wave has its main angular variation transverse to the wavevector
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itself. The resulting polarization that results has components directed both along
or orthogonal to the wavevector and at 45° degree angles to it. Gravitational waves
therefore generate a nearly equal amount of £ and B mode polarization when viewed

at a distance that is much greater than a wavelength of the fluctuation.

GRAVITATIONAL LENSING. The gravitational potentials of large-scale structure
also lens the CMB photons. Since lensing conserves surface brightness, it only
affects anisotropies and hence is second order in perturbation theory. The photons
are deflected according to the angular gradient of the potential projected along the
line of sight. This angular gradient of the projected potential peaks at a multipole

1

¢ ~ 60 corresponding to scales of a k ~ few 102 Mpc~!. The deflections are

therefore coherent below the degree scale.

This large coherence and small amplitude ensures that linear theory in the
potential is sufficient to describe the main effects of lensing. Since lensing is a
one-to-one mapping of the source and image planes it simply distorts the images
formed from the acoustic oscillations in accord with the deflection angle. This
warping naturally also distorts the mapping of physical scales in the acoustic peaks
to angular scales and hence smooths features in the temperature and polarization.
The smoothing scale is the coherence scale of the deflection angle A¢ ~ 60 and is

sufficiently wide to alter the acoustic peaks with A¢ ~ 300.

For the polarization, the remapping not only smooths the acoustic power
spectrum but actually generates B-mode polarization. Remapping by the lenses
preserves the orientation of the polarization but warps its spatial distribution in a
Gaussian random fashion and hence does not preserve the symmetry of the original
E-mode. The B-modes from lensing sets a detection threshold for gravitational

waves for a finite patch of sky.

Gravitational lensing also generates a small amount of power in the anisotropies
on its own but this is only noticable beyond the damping tail where diffusion
has destroyed the primary anisotropies. On these small scales, the anisotropy of
the CMB is approximately a pure gradient on the sky and the inhomogeneous
distribution of lenses introduces ripples in the gradient on the scale of the lenses

[Seljak & Zaldarriaga, 2000].

Because the lensed CMB distribution is not linear in the fluctuations, it is not
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completely described by changes in the power spectrum. It is possible to use the non-
Gaussianity to isolate lensing effects and their cross-correlation with the ISW effect
[Seljak & Zaldarriaga, 1999]. In particular, there is a quadratic combination of the
anisotropy data that optimally reconstructs the projected dark matter potentials for
use in this cross-correlation. The cross correlation is especially important in that in
a flat universe it is a direct indication of dark energy and can be used to study the

properties of the dark energy beyond a simple equation of state.

2.3.2 Scattering Secondaries

From the observations both of
the lack of a Gunn-Peterson trough [Gunn & Peterson, 1965] in quasar spectra and
its preliminary detection, we know that hydrogen was reionized at z,; ~ 6 (Chap.
1). This is thought to occur through the ionizing radiation of the first generation of
massive stars. The consequent recoupling of CMB photons to the baryons causes a
few percent of them to be rescattered. Linearly, rescattering induces three changes
to the photon distribution: suppression of primordial anisotropy, generation of large

angle polarization, and a large angle Doppler effect..

PEAK SUPPRESSION. Like scattering before recombination, scattering at
late times suppresses anisotropies in the distribution that have already formed.
Reionization therefore suppresses the amplitude of the acoustic peaks by the fraction
of photons rescattered, approximately the optical depth ~ 7,; . Unlike the plasma
before recombination, the medium is optically thin and so the mean free path and
diffusion length of the photons is of order the horizon itself. New acoustic oscillations
cannot form. On scales approaching the horizon at reionization, inhomogeneities
have yet to be converted into anisotropies and so large angle fluctuations are not
suppressed.

The rescattered radiation becomes polarized since temperature inhomogeneities
become anisotropies by projection, passing through quadrupole anisotropies when
the perturbations are on the horizon scale at any given time. The result is a bump
in the power spectrum of the E-polarization on angular scales corresponding to the
horizon at reionization. Because of the low optical depth of reionization and the finite

range of scales that contribute to the quadrupole, the polarization contributions are
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on the order of tenths of 4K on scales of £ ~ few. Asin the ISW effect, cancellation of
contributions along the line of sight guarantees a sharp suppression of contributions

at higher multipoles in linear theory.

DOPPLER EFFECT. Naively, velocity fields of order v ~ 107 and optical
depths of a few percent would imply a Doppler effect that rivals the acoustic
peaks themselves. Since the Doppler effect comes from the peculiar velocity along
the line of sight, it retains no contributions from linear modes with wavevectors
perpendicular to the line of sight and these are the only modes that survive
cancellation.  Consequently, the Doppler effect from reionization is strongly
suppressed and is entirely negligible below ¢ ~ 10? unless the optical depth in the

reionization epoch approaches unity.

The Doppler effect can survive cancellation if the optical depth has modulations
in a direction orthogonal to the bulk velocity. This modulation can be the result of
either density or ionization fluctuations in the gas and include the effect in clusters,

and linear as well as non-linear large-scale structures.

SUNYAEV-ZEL'DOVICH EFFECT. Internal motion of the gas in dark matter halos
also give rise to Doppler shifts in the CMB photons. Shifts that are first order in
the velocity are canceled as photons scatter off of electrons moving in different
directions. At second order in the velocity, there is a residual effect. For clusters
of galaxies where the temperature of the gas can reach 7. ~ 10keV, the thermal
motions are a substantial fraction of the speed of light v, = (37,/m.)Y? ~ 0.2.
The second order effect represents a net transfer of energy between the hot electron
gas and the cooler CMB and leaves a spectral distortion in the CMB where photons
on the Rayleigh-Jeans side are transferred to the Wien tail. This effect is called
the thermal Sunyaev-Zel’dovich (SZ) effect [Sunyaev & Zel’dovich, 1972|. Like all
CMB effects, once imprinted, distortions relative to the redshifting background
temperature remain unaffected by cosmological dimming, so one might hope to find
clusters at high redshift using the SZ effect. However, the main effect comes from
the most massive clusters because of the strong temperature weighting and these

have formed only recently in the standard cosmological model.

The SZ effect is expected to dominate the power spectrum of secondary
anisotropies, but the other secondaries are measurable. Its distinct frequency

signature can be used to isolate it from other secondaries. Additionally, it mainly
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comes from massive clusters which are intrinsically rare. Hence contributions to
the power spectrum are non-Gaussian and concentrated in rare, spatially localized
regions. Removal of regions identified as clusters through X-rays and optical surveys
or ultimately high resolution CMB maps themselves can greatly reduce contributions

at large angular scales where they are unresolved.

2.3.3 Foregrounds

In the CMB observations we also have to take into account the foreground emmission
which is not primordial.

There are three primary mechanisms for diffuse Galactic radio emission. Relativistic
electrons interact with the Galactic magnetic field to produce synchrotron emission,
for which the standard template is 408 MHz data. Less energetic electrons scatter
from each other and ionized nuclei to produce free-free radiation (also known as
thermal Bremsstrahlung), which can be traced with Ho line emission. Finally, dust
grains emit a modified blackbody spectrum through excitation of their vibrational
modes, for which the standard template is the fit to data from the Infrared
Astronomical Satellite (IRAS) and the Cosmic Background Ezplorer (COBE). Dust

grains may also emit radiation through rotational modes or other excitations.



Chapter 3

Late Integrated Sachs-Wolie Effect

As T have aforementioned in Chap.s 1 and 2 the key subject of this thesis is the
Integrated Sachs-Wolfe (ISW) effect.

This effect is due to the interactions of photons with the galaxy gravitational
potentials along the line of sight from the last scattering surface to present. CMB
photons pass through peaks and wells of the gravitational potential and when they
fall into a potential well, photons gain energy; if the well is not evolving, the photons
lose the same energy when they climb out, leaving no net change.

If the gravitational potentials decay while the photons pass through, then the energy
that they lose climbing out is less that what they gained falling in, leaving a net
shift in the photon temperature, a red shifting of photons which must ‘climb out’ of
a different potential than they ‘fell into’. The Rees-Sciama (RS) effect arise in the
same way but the ISW effect is generally taken to be the contribution from the linear
evolution of the gravitational potential, while the Rees-Sciama effect arises from the
non-linear evolution of the gravitational gravitational potential. While the non-
linear effect (RS) is inevitable, the linear effect (ISW) depends on the cosmological
model and requires that the background equation of state changes.

In a flat dark energy dominated universe the gravitational potentials associated with
the large scale structures decay as consequence of the accelerated phase of expansion.
In a universe with a signifcant cosmological constant, however, ® becomes time
dependent even in linear theory and an appreciable amount of anisotropy can be
created at quite modest redshifts. CMB photons which cross these regions acquire a
shift which generates temperature anisotropies. This also happens at early times as
the universe goes from being radiation dominated to matter dominated (Early ISW

effect); the effect at late times as the dark energy (or curvature) takes over from the

45
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matter is called (Late ISW effect).

The ISW temperature fluctuations, AT/T, in a particular direction 7 is given
by:

%(ﬁ) ~ 9 / ! e—ﬂz)fl—f(ﬁ, 2)dz, (3.1)
where ® is the Newtonian gauge gravitational potential, the integral is over the
redshift z, z; = 0 being today and z; being recombination and e~"(®) is the visibility
function to account for a possible suppression due to early reionization (7 is the
conformal time).

As we have seen, since the matter density is proportional to p, o a~3, the

gravitational potential evolves as ® o 0,,/a. In the matter dominated regime, the
growth of the perturbations is given by 9,, « a, meaning the gravitational potential
is constant in time: the collapse of the perturbations is exactly balanced by the
dilution of the matter.
When dark energy or curvature begins to dominate, the growth of perturbations is
slowed, and the gravitational potentials begin to decay, giving rise to the late time
ISW effect. Unlike the ISW perturbations generated at the earlier radiation-matter
transition, the ISW anisotropies generated at late times are virtually uncorrelated
with the CMB fluctuations generated at the [ss.

In this way, the CMB sky is effectively almost composed of two independent
maps, those fluctuations created at last scattering or soon afterwards, and those
created at low redshifts when dark energy or curvature has become dynamically
important (see Fig. 3.1, see also the simulated maps of the ISW and the total signal
on the CMB created by the ISW group of Planck in Santander [Barreiro et al., 2008,
Fig. 3.2). The linear effect is predominantly on very large scales, and for typical
models, it is not as large as the anisotropies from the last scattering surface. It is
dominated by modes which are of the horizon size, because it is these modes which
will have the most time for the potential to change as the photons pass through.
For smaller scale perturbations, photons can get many positive and negative smaller
amplitude contributions which will tend to cancel out.

Considering the simplest model of Dark Energy, i.e. the ACDM model, we know
that as the p, increases, it comes to dominate the total energy density at earlier

and earlier redshifts. The effect on the evolution of the potential is thus more
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Figure 3.1: [Crittenden, 2006] Typical auto.correlation function fot the ISW effect in a cosmological
constant model. The late ISW adds a small amount of large scale power to the temperature maps, largely
uncorrelated with the anisotropy arising from early times.

pronounced, as is the corresponding anisotropy generated at late times. For smaller
values of A the opposite is true; the correlated anisotropy is less, but it is more
concentrated at very late epochs. The cosmological constraints of A have also an
indirect effect on the degree scale anisotropy, because in a flat universe the presence
of A alters the matter-radiation balance at last scattering. In contrast, the large scale

Rees-Sciama effect is independent of physics at high redshifts (e.g. reionization).

3.1 Cross-correlation

The direct ISW signal is very difficult to detect: unlike many foregrounds, the
ISW fluctuations have the same frequency spectrum as the primordial anisotropies,
so different frequency observations cannot isolate them; the attempt to search the
additional power in the CMB auto-correlation spectrum also fails, because the ISW
amplitude is small with respect to the SW effect; where it is largest, the cosmic
variance is also large and prevails (see Fig. 3.3). If we compute the signal to noise

ratio, considering all the signal is not [ISW like the noise
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Figure 3.2: In the first panel: simulated map of the ISW signal. In the second panel: Simulated map of
the total CMB signal (ISW + SW signal). We can note the difference in the scales of intensity.

(%) :;% N %z0.68<1 (3.2)

we can safely confirm the ISW signal is not detectable from the total CMB map.

This problem can be overcome by considering how the Late ISW effect was
produced and by examining how the ISW temperature correlates with the density
of galaxies (|Crittenden & Turok1995]), which should trace the potential wells and
hills which bring about the anisotropies.

The Late ISW anisotropies are produced by local (z < 4) fluctuations in the
gravitational potential due to the presence of dark energy so it can be determined
if it is known how the matter is distributed on large scales.

If the gravitational potential is decaying, statistically we expect overdensities of

galaxies to align with temperature hot spots and under densities with temperature
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Figure 3.3: The larger error bars on the low ¢’s are due to the maximum influence of the cosmic variance

cold spots.
In order to quantify the cross-correlation between the galaxy distribution and
the CMB anisotropies, the sky temperature can be expanded in the usual spherical

harmonics

L) = Y auYin(6.6). 33)

where in an isotropic ensemble the a;,’s coefficients obey (ay,apm) = 0 pmm C;
where C} is the angular power spectrum.

If there is a clump of matter, such as a cluster of galaxies in a given direction of
the sky, we are likely to observe a spot in the corresponding direction of the CMB
provided that the CMB photons have crossed that region during the accelerated
epoch. We therefore expect to measure a positive angular correlation between CMB
temperature anisotropy maps and surveys of the large scale structures.

Since part of the CMB anisotropy is associated with the gravitational potential
at low redshift, it must be correlated with the matter distribution in our vicinity.

The evolution of the gravitational potential can be related to the linear density

perturbation via the Poisson’s equation in Fourier space. The observed galaxy
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density contrast in a given direction n will be

dg(n) = /bg(z)%(z)&n(ﬁ, z)dz, (3.4)
where dN /dz is the selection function of the survey, b,(z) its galaxy bias relating the
visible matter distribution to the underlying dark matter and ¢,, the matter density
perturbations.

The galaxy bias, by(z), can evolve in time or as a function of scale. In our
analysis we use at first a time and
scale independent bias for simplicity (as [Giannantonio et al., 2008, Ho et al., 2008,
Vielva, Martinez-Gonzalez & Tucci2006]) and then a redshift dependent bias
(xialOb). From the point of view of the ISW-LSS cross-correlation, time dependent
bias is equivalent to changing the selection function of the survey. Scale dependence
of the bias is also problematic, but on the very large scales (> 10 Mpc), the scale
dependence is expected to be weak.

Given a map of the CMB and a survey of galaxies, the angular auto-correlation

and cross-correlation functions are defined as

C79(0) = (5 ()3, (72) (3.5)
C™(6) = {5, ()3, (12)), (3.6)

with the average carried over all the pairs at the same angular distance 8 = |n; — ng|
and AT/T and J, given respectively by Eq. 3.3 and Eq. 3.4.
It is possible to express these quantities in the harmonic space with the use of

the Legendre polynomials F;:

o) = Y 2T R feos(6)), (3.7)

=2

and the auto- and cross-correlation power spectra are given by

Ol = 4x %AQ(k)IlISW(k)[lg(k) (3.8)
CY = dAn %A%k)]ﬁ(k)]f(k), (3.9)

where A(k) is the matter power spectrum A?(k) = 4rk*P(k)/(27)? and the two

integrands are respectively

—T(z d® .
5W () = —2 / Tl (2))d (3.10)
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Figure 3.4: Typical cross-correlation function for the ISW effect in a cosmological constant
model. The cross-correlation (here shown in arbitrary units) peaks on scales of a few
degrees.

120) = [ 0l (2ol il (2 (3.10)
where @y, ,,(k, z) are the Fourier components of the gravitational potential and
matter perturbations, j,(z) are the spherical Bessel functions and x is the comoving
distance.

The ISW effect thus generically shows up only at the lowest ¢’s in the
power spectrum (|[Kofman & Starobinskii, 1985]). The ability to detect the cross-
correlation is limited because the signal falls off on small scales. Not only is
cosmic variance an important factor, but there is also the problem of accidental
correlations between the galaxy surveys and the CMB anisotropies produced at last
scattering. Many independent measurements are needed to reduce the impact of such
accidental correlations. The theoretical signal to noise ratio of the cross-correlation
(|Crittenden & Turok1995|, for ISW effect) is given by

(€

S 2
(N) = ;(25 + 1)ngCZT T ~ 6.8 (3.12)

and then by using the cross-correlation we can obtain an indirectly detection of the
Late ISW signal.

Note that in this formula, the noise in the measurment of C7” and C{“ is neglected.
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Whereas neglecting noise in C7 7 for intermidiate multipoles is correct - since WMAP
is already essentially cosmic variance dominated on large scales -, neglecting the noise

for CF is an ideal assumption for current surveys.

3.2 Information on Dark Energy constraint in the ISW-LSS
cross-correlation

As we have seen in the previous section, the ISW depends on the cosmological
model and requires that the background equation of state changes. The cosmological
model can be constrained estimating the cross correlations between the CMB maps
and large scale distribution of matter. Detecting the cross correlations is difficult,
as it requires a map of the galaxy distribution which is both deep and covers
a large fraction of the sky ([Crittenden & Turok1995]). Large sky coverage is
essential because the primordial fluctuations act effectively like noise when searching
for anisotropies generated recently, and so the measurements are always ‘noise’
dominated (Eq. 3.2). If the sky faction fy, is small, the error to reconstruct
the lower modes is large.

The first attempts of detecting the correlation using the COBE data and maps of
the X-ray background (believed to trace AGN) or radio galaxy distribution produced
no detections (Boughn et al. 1998; Boughn & Crittenden 2002). However, the
picture improved greatly with the WMAP observations. Correlations were quickly
seen with the hard X-ray background (|[Boughn & Crittenden2004]), the NVSS radio
galaxy survey ([Boughn & Crittenden2004|; [Nolta at al. 2004]), the APM galaxy
survey |Folsalba & Gaztanaga, 2004], the SDSS (|Fosalba et al., 2003[; [Scranton et
al. 2003]; [Padmanabhan et al. 2005] and the 2MASS survey [Afshordi et al. 2003].
Whereas all the detections are at a low significance (2 — 30), it is encouraging that
they are seen is such a broad range of surveys, from the radio and infrared to the
optical and X-ray.

A Dark Energy model as the cosmological constant term A causes the Newtonian
potential ® to start evolving at late times, producing a significant amout of
CMB anisotropy |[Kofman & Starobinskii, 1985]. Since A comes to dominate rather
suddenly, this effect is most important at rather modest redshifts. Observations of
the density field allow to reconstruct the local potential which should be correlated

with the CMB. Measuring this correlation thus would constrain A. The Poisson’s
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Figure 3.5: Predictions for ISW signal given the redshift distribution LRGs, b, = 1,
ogs = 0.9, and a flat universe. The different curves show the effect of changing the
matter density. In particular, the effect becomes stronger as the matter density decreases
([Padmanabhan et al., 2005]).

equation contains the matter parameter €,;:

3 )
E2® = ZHZQ ) — 3.13
9 0~4M a ( )
where in the assumption of a flat universe, 2y, + Qprp = 1. The cosmological

information is also contained in d,, in the growth factor D(a), as the time evolution

of the matter distribution is
bk, @) = D(a)dn (k) (3.14)

In Fig. 3.5 (|[Padmanabhan et al., 2005|) it is possible to see how the cross-
correlation power-spectrum changes with the 2,, parameter.

As we have seen in the previous chapter, the potential on a given scale decays
whenever the expansion is dominated by a component whose effective density is
smooth on that scale. This occurs at late times in an €2); < 1 model at the end of
matter domination and the onset Dark Energy (or spatial curvature) domination. If
the potential decays between the time a photon falls into a potential well and when

it climbs out it gets a boost in temperature of 0¥ due to the differential gravitational
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Author CMB LSS Tracer Wavelength Method Claimed
Detection
Boughn & Crittenden (2002) COBE XRB Xray D2 No
Giannantonio et al. (2008) w3 D2 2.70
Boughn & Crittenden (2004, 2005) W1 XRB/NVSS Xray/Radio D2 ‘tentative’ (2-3 o)
Fosalba et al. (2003) Wi SDSS DR1 D2 20 (low z)
3.60 (high z)
Cabré et al. (2006) W3 SDSS DR4 Optical D2 > 2
Giannantonio et al. (2008) W3 SDSS DR6 D2 2.20
Sawangwit et al. (2010) W5 SDSS DR5 D2 ‘marginal’
Lopez-Corredoira et al. (2010) W5 SDSS DR7 D2 ‘No detection’
Giannantonio et al. (2006) w3 SDSS Quasars Optical D2 20
Giannantonio et al. (2008) w3 SDSS Quasars D2 2.50
Xia et al. (2009) W5 SDSS Quasars D2 2.70
Scranton et al. (2009) w1 D2 > 20
Padmanabhan et al (2004) W1 D1 2.50
Granett et al. (2009) w3 SDSS LRG Optical D1 20
Giannantonio et al. (2008) w3 D2 2.20
Sawangwit et al. (2010) W5 SDSS LRG, 2SLAQ D2 ‘marginal’
Sawangwit et al. (2010) W5 AAOmega LRG D2 Null
Fosalba & Gaztanaga (2004) w1 APM Optical D2 2.50
Afshordi et al. (2004) W1 D1 250
Rassat et al. (2007) w3 2MASS NIR D1 20
Giannantonio et al. (2008) W3 D2 0.50
Francis & Peacock (2010) W3 D1 ‘weak’
Boughn & Crittenden (2002) COBE D2 No
Nolta et al. 2004 W1 D2 220
Pietrobon et al. (2006) w3 NVSS Radio D3 > 4o
Vielva et al. 2006 W3 D3 3.30
McEwen et al. (2006) W3 D3 > 2.50
Raccanelli et al. (2008) w3 D2 2.70
McEwen et al. (2008) W3 D3 ~ 4o
Giannantonio et al. (2008) W3 D2 3.30
Hernandez-Monteagudo (2009) w3 D1 <20
Sawangwit et al. (2010) W5 D2 ‘marginal’ (~ 20)
Corasaniti et al. (2005) w1 D2 > 20
Gaztaflaga (2006) W1 D2 20
Ho et al. (2008) W3 Combination Combination D1 3.70
Giannantonio et al. (2008) w3 D2 4.50

Table 3.1: From [Dupé et al, 2011] Meta-analysis of ISW detections to date and their
reported statistical significance. The ‘Method’ describes the space in which the power
spectrum analysis is done (configuration, spherical harmonic, etc ...), not the method for
measuring the significance level of the detection. D1 corresponds to spherical harmonic
space, D2 to configuration space, D3 to wavelet space. The highest detections are made
in wavelet space. Regarding the survey used, the highest detections are made using NVSS
(though weak and marginal detections using NVSS are also reported) or using combinations
of LSS surveys as the matter tracer.
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redshift and —0® ~ 0¥ due to an accompanying contraction of the wavelength.

The potential decay due to Dark Energy or curvature at late times induces much
different changes in the anisotropy spectrum.

The ISW effect is especially important because it is extremely sensitive to the
Dark Energy: its amount, equation of state and clustering properties.

At small angles the angular cross-correlation is characterized by a nearly constant
plateau, while it rapidly vanishes at larger angles (0 > 10°, ¢ < 20). The overall
amplitude of the signal up to small angles is particularly sensitive to the equation
of state, w. In Chap. 1 we cosider the case for a perfect fluid Dark Energy
model in which dpy = c%dpx. Dark Energy, if it is not a plain cosmological
constant, possesses small inhomogeneities which interact gravitationally with the
inhomogeneities in baryons, dark matter and relativistic matter. The physical
properties of DE perturbations constitute additional ingredients which can impact

the CMB anisotropies and LSS. Then the general pressure perturbation equation is

) .
Spx = Aopy + 3H(1 + w) )Z’QJX <c§ - Z;—X> , (3.15)
X

where py, dpx, ¢ and Oy are respectively the DE density, density perturbation,
sound speed and velocity potential [Abramo, Finelli & Pereira, 2004|. In Fig. 3.6
we consider the Dark Energy speed of sound ¢, = 1, the amplitude has a maximum
around w = —1 and slowly decreases for decreasing values of w, while it rapidly
falls to zero for w — 0, this is because the Dark Energy contribution to the ISW
effect is mainly due to the background expansion. In fact for models with w > —1,
as w — 0 the Dark Energy driven expansion is less accelerated and tends to the
matter dominated behavior. Hence the variation of the gravitational potentials is
smaller and consequently produces a negligible amount of ISW as w — 0. Similarly
for models with w < —1, the Dark Energy affects the expansion later than in models
with w > —1. This effectively extends the period of matter domination which leads
to a lower ISW signal.

Since a smaller ISW signal can be compensated by increasing the amount of Dark
Energy density (pg, a precise degeneracy line in the (2pr — w plane is expected.
In particular lower negative values of w will be counterbalanced by higher values of
Qpp.

In Fig. 3.7, on the contrary for ¢y = 0, the amplitude of the cross-correlation is

a monotonic decreasing function of w. In this case the decay of the gravitational
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Figure 3.6: Two-dimensional marginalized likelihoods on 2pr — w. The yellow and red area correspond

to 1 and 20 limits inferred from the ISW data for ¢ = 1. Solid and dash lines represent the 1 and 2o
contours from the SN-Ia data [Corasaniti et al., 2005].

potential is sensitive to the clustering of Dark Energy which is more effective as
w decreases. Thus the amplitude of the ISW increases as w decreases. Again the
degeneracy in the {2pp — w plane is expected to be orthogonal to the previous case.
In fact increasing 2pg will compensate for larger values of w.

This trend hold independently of the selection function as long as it is centered
in a range of redshifts up z ~ 0.7 — 0.8 for models with w > —1. However one might
expect this to not be the general situation in the case of Dark Energy models with
a time dependent equation of state.

In [Giannantonio et al., 2008] it can be seen that for z > 0.2 the signal decreases
with the redshift in way that is strongly dependent on the Dark Energy parameters.
Note that these plots extend in a phenomenological way across w = —1 line which
divides very different theoretical proposals for Dark Energy.

Therefore redshift measurements of the cross-correlation are a potentially

powerful tool to distinguish between different dark energy models.

Hence a sharper selection function gives a smaller cross-correlation signal,
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Figure 3.7: Asin Fig. 3.6 with c2 = 0 prior ([Corasaniti et al., 2005]).

eventually leading to larger uncertainties. On the other hand increasing the number
of uncorrelated redshift bins would allow a better reconstruction of the redshift

evolution of the cross-correlation.

A redshift dependent bias can also in principle mimic the redshift evolution of

the cross-correlation predicted by different Dark Energy models.

One of the advantages of testing Dark Energy with the cross-correlation is that
it is insensitive to other parameters which limits common Dark Energy parameter
extraction analyses involving CMB temperature and polarization anisotropy spectra.
For instance the ISW correlation is not affected by a late reionization or by an extra
background of relativistic particles which change the CMB spectra through the early-
ISW. The ISW-correlation is also independent of the amplitude of tensor modes and
depends uniquely on the scalar perturbations, since a primordial background of

gravity waves is uncorrelated with present large scale structure distribution.

There is little sensitivity to the scalar spectral index ng, while the dependence on
the baryon density €2, can be non-negligible. In fact the presence of baryons inhibits

the growth of CDM fluctuations between matter-radiation equality and photon-
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baryon decoupling causing the matter power spectrum to be suppressed on scales
k > ke, for increasing values of Q, (k, is the scale which enters the horizon at the
first equality). Over the range of scales which contribute to the ISW-correlation

(k ~ 0.01) the sensitivity on €2, is still present.

The measure of the ISW signal can be done in various statistical spaces. In
Table 3.1, [Dupé et al, 2011| classify detection into three measurement ‘domains’:
D1 corresponds to spherical harmonic space; D2 to configuration space and D3 to

wavelet space.

There are only two analyses which use COBE as CMB data with XRB and
NVSS data,[Boughn & Crittenden, 2002|, and both report null detections, which
can reasonably be due to the low angular resolution of COBE even at large scales.

The rest are done correlating WMAP data from years 1, 3 and 5 (respectively ‘W1’,
‘W3’ and ‘W5’ in Tab. 3.1).

Most ISW detections reported in Tab. 3.1 are relatively ‘weak’ (< 3¢) and this is
expected from theory for a concordance cosmology. Higher detections are reported
for the NVSS survey [Pietrobon et al. 2006, McEwan et al. 2007, Giannantonio et
al. 2008|, though weak and marginal detections using NVSS data are also reported
[Hernéandez-Monteagudo 2009, Sawangwit et al. 2010|. High detections are often
made using a wavelet analysis |[Pietrobon et al. 2006, McEwan et al. 2007], though
a similar study by the same authors using the same data but a different analysis
method finds a weaker signal [McEwan et al. 2006]. The highest detection is reported
using a tomographic combination of all surveys XRB, SDSS galaxies, SDSS QSOs,
2MASS and NVSS, Giannantonioetal2008, as expected given the larger redshift

coverage of the analysis.

Several analyses have been revisited to seek confirmation of previous detections.
In some cases, results are very similar (|[Padmanabhan et al. 2004, Granett et
al. 2009, Giannantonio et al. 2008|, for SDSS LRGs; [Giannantonio et al. 2006,
Giannantonio et al. 2008| for SDSS Quasars; [Afshordi et al. 2003, Rassat et al
2007], for 2MASS), but in some cases they are controversially different (for e.g.
[Pietrobon et al. 2006] and [Sawangwit et al. 2010|, for NVSS or [Afshordi et al.
2003] and [Giannantonio et al. 2008], for 2MASS).

We also notice that as certain surveys are revisited, there is a trend for the

statistical significance to be reduced: for e.g., detections from 2MASS decrease
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from a 2.50 detection [Afshordi et al. 2003|, to 20 [Rassat et al 2007], to 0.5¢
|Giannantonio et al. 2008] to ‘weak’ |[Francis et al. 2010]. Detections using SDSS
LRGs decrease from 2.50 [Padmanabhan et al. 2004], to 2 — 2.20 [Granett et al.
2009, Giannantonio et al. 2008], to ‘marginal’ [Sawangwit et al. 2010]. Furthermore,
there tends to be a ‘sociological bias’ in the interpretation of the confidence on the
signal detection. The first detections interpret a 2 — 30 detection as ‘tentative’
[Boughn & Crittenden, 2003, 2004|, while further studies with similar detection
level report ‘independent evidence of dark energy’ [Afshordi et al. 2003, Gaztanaga
et al. 2004].
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Chapter 4

CMB and LSS data

In this chapter we present the data used to estimate the cross-correlation ISW-LSS
and which theoretical models characterize the angular power spectra. It is very
important to have a good knowledge of the theoretical temperature and galaxy

distributions.

4.1 Cosmic Microwave Background Data

For CMB data we make use of publicly available products '. In particular the
WMAP-7year release, clean maps at the V and W frequency bands have been co-
added, using a weighting procedure that accounts for the instrumental noise variance
per pixel. These frequency maps have been cleaned following a template fitting
approach [Gold et al.2011], and are those used by the WMAP team to perform
cosmological tests, such as constraining non-Gaussianity [Komatsu et al., 2011].
The co-added map has been degraded from its original N4 = 1024 down to
Nsige = 32, since the angular scales associated to this resolution (= 2°) is enough to
capture almost all the signal in the CMB-LSS cross-correlation expected from the
ISW effect. Following this, the WMAP KQT75 Galactic mask (similarly degraded)
is applied to the co-added map, in order to mitigate the unavoidable foreground
contamination in regions within and near the Galactic plane, and also to remove
known and intense extragalactic objects such as the Magellenic clouds and large
clusters near the northern Galactic pole. Finally, the remaining monopole and dipole
moments outside the mask have been estimated and removed. In Fig. 4.1 we show

the masked WMAP7 maps we use in our analysis at the resolution of N4 = 32

and in mK units.

"http://lambda.gsfc.nasa.gov/
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Figure 4.1: WMAP-7year masked map. This map is clean thanks to the previous finicking work of
foreground component separation (by WMAP team).

4.2 Large Scale Structures Data

Many large scale structure maps are available in order to quantize the distribution
of galaxies dN/dz. As it is shown in Tab. 3.1 many efforts have been done to detect
the ISW signal, cross-correlating the CMB map with several large scale structure
maps and different methods (the method used in this thesis will be introduced in
Chap. 5).

The most common used surveys are:

e 2-Micron All Sky Survey (2MASS), infrared (2um) survey of both hemispheres
with an observed area of 27191 deg? (Mount Hopkins, Arizona, for the northen
and Cerro Tololo/CTIO, Cile, for the southern hemisphere); the mean redshift
is ~ 0.1.

e Sloan Digital Sky Survey (SDSS), for photometric Luminous Red Galaxies
(LRG) and Quasars (QSO), survey on five optical bands of about 10* deg? of
the high-latitude sky; the redshift range is 0.31 < z < 1.67.

e NRAO VLA Sky Survey (NVSS), radio survey with the largest sky coverage
(27361 deg?) and the highest number of galaxies (1104983, for a flux cut of
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Table 4.1: The large-scale structure data summary.(|Ho et al., 2008|)

Sample Area Density Number of beft (2)p
deg? deg—? galaxies
2MASS, 12.0 < K, < 12.5 27191 1.84 50 096 1.63 0.06
2MASS, 12.5 < K3 < 13.0 27191 3.79 103 060 1.52 0.07
2MASS, 13.0 < K, < 13.5 27191 7.85 213516 1.54 0.10
2MASS, 13.5 < K5 < 14.0 27191 16.0 435570 1.65 0.12
SDSS, LRG, low-z 6641 35.1 232 888 1.97 0.31
SDSS, LRG, high-z 6641 93.8 622 646 1.98 0.53
SDSS, QSO, low-z 6039 20.8 125407 2.36 1.29
SDSS, QSO, high-z 6039 18.3 110528 2.75 1.67
NVSS point sources 27361 40.3 1104983 1.98 1.43

Table 4.2: Signal-to-noise ratio for each survey
Sample foky S/N
2MASS 0.66 0.58
SDSS, LRG 0.16 2.22
SDSS, QSO 0.15 2.68
NVSS 0.85 6.80

2mJ); the mean redshift is 1.43.

Some features for these surveys are summarized in Tab. 4.1 ([Ho et al., 2008]).

In order to study the ISW effect on the largest scales, the most important feature for
a LSS map is the fg,, the fraction of the observed sky and consequently the highest
number of galaxy. Today the best survey for this aim is the NVSS. We can compute

for each survey forementioned above the signal-to-noise ratio of the cross-correlation

(see Eq. (3.12))
S\ Farg (CTO2(0 + 172
<N) B ; [CTTCEY + (CTND](¢/2+ 1) (4.1)

where CFX is the theoretical angular power spectrum for the X(auto or cross)-
correlation.  Considering the same known angular power spectrum for the
temperature (WMAP7-like autospectrum), the galaxy-galaxy autospectrum (GG)
change for each survey, with a particular bias b,(z) and galaxy distributions dN/dz,
as we have seen in Chap. 3, in Eq. (3.11). The Tab. 4.2 shows the different signal-
to-noise ratios for each survey, it is clear how the NVSS is the best survey to study
the ISW effect.
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Figure 4.2: Masked NVSS map with 2.5mJy flux cut.

4.3 NVSS

The NRAO VLA Sky Survey (NVSS) is a 1.4 GHz continuum survey covering the
entire sky north of —40° declination (fs, ~ 85%) obtained using the compact D
and DnC configurations of the Very Large Array (VLA) [Condon et al., 1998|. The
images all have 45 arcsec FWHM resolution and nearly uniform sensitivity and yield

a catalog of almost 2 x 10° discrete sources stronger than ~ 2.5 mJy.

This survey has been widely used in the context of the ISW studies. It was
first used by [Boughn & Crittenden, 2002] to probe the CMB-LSS cross-correlation
with the COBE data, and a few years afterwards it was successfully used by the
same authors with WMAP data, in the first work reporting such cross-correlation
[Boughn & Crittenden2004]; this was soon followed by [Nolta at al. 2004| with a
similar analysis by the WMAP team. In Fig. 4.3 we show the NVSS map use in
our analysis at resolution N4 = 32 for a flux cut of 2.5mJy and with no units but
counts of sources (n,;; — )/n, where n,;, is the number of galaxies per pixel and n

the mean galaxy number of the map given by the ratio between the total number of

Ngal

galaxies and the number of no-masked pixels, Fm—
obspize
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4.3.1 Systematics and pre-processing

This survey has several systematics [Ho et al., 2008]: galactic synchrotron emission,
spurious power from bright sources and a declination-dependent striping problem,
different configurations of the VLA antennas (Condon 1998). All of these have to
be treated properly before one can claim that the power coming from the cross or

auto-correlation is not due to some spurious issues.

GALACTIC SYNCHROTRON EMISSION.. The Galactic synchrotron emission can in
principle be an issue because it contributes significantly to the noise temperature of
the VLA, and for realistic number counts, increased noise temperature could change
the number of sources with measured flux above some threshold. This issue is treated
[Ho et al., 2008] by incorporating a template in the cross-correlation analysis and
projecting out the power that are correlated to this template. Even though the
Haslam map is at 408 MHz, the frequency dependence of the galactic synchrotron
emission is fairly flat, allowing to use it as a template of the Galactic synchroton

radiation.

DOUBLE SOURCES. It was considered the possibility of double counting in NVSS,
or the possibility of the existence of sources which are so close each to other that
they are the same source. It has been made a NVSS map at N4 = 4096, where
a pixel correspond to a FWHM of 48.4" (assuming a gaussian beam). This value is
a little higher than the NVSS FWHM (45"). Then it can be identified the double
counts looking at the pixels at Ng;qe = 4096 with more than one count; the maximum
number of counts in a pixel at this resolution is two.

The number of double counts (1589) with respect to the total number of counts
(1657 106) was about 0.1%, most of the double counts were in the galactic plane. It

was so proved this issue does not change the angular power spectrum.

DECLINATION-DEPENDENT  STRIPING. The survey has a somewhat
inhomogenous sensitivity as a function of the equatorial declination, resulting in
the mean galaxy density that artificially varies with the declination. Therefore,
some pre-processing is needed in order to mitigate this large-scale effect. One of the

procedures used in the literature consists in defining iso-latitude bands (in equatorial
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Figure 4.3: Variations in NVSS source density as a function of declination for flux thresholds 2 mJy (filled
circles) and 10 mJy (open circles). The declination range of each array configuration is also indicated. The
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coordinates) and imposing that these bands have the same mean galaxy density. In
our case, this pre-processing consists of selecting first the sources above a particular
flux cut, and then defining nine bands of equal area, imposing the same mean galaxy
density number for each band. Finally, we rotate to Galactic coordinates to compare
to WMAP, and then pixelise to a HEALPix (citare Gorski) resolution of Ny;4 = 32.
This declination-dependent striping problem change with the flux cut.

In Fig. 4.3 (Jasper Wall 2002), declination-dependent variations occur at flux
densities below 10 mJy, including significant jumps at the declinations at which the

array configuration changes.

(For the test on the code see Chap. 6)

ANTENNA CONFIGURATIONS. Observations were conducted by the VLA in two
different configurations: the D configuration was used for ecliptic latitudes in the
range bp € [—10°,78°], while the DnC configuration was used under large zenith
angle (bp < —10°,bp > 78°). As noted by [Blake & Wall, 2002|, this change of
configuration introduced some systematics in the galaxy number density. In Fig.
4.4 the fluctuations of the radio galaxy number density (around its mean) are

plotted versus ecliptic latitude for NVSS sources after considering three different
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Figure 4.4: Variations of the NVSS radio galaxy fluctuation versus ecliptic declination for sources brighter
than 2.5mJy (black circles), 30 mJy (red triangles) and 60mJy (green squares) [Hérnandez-Monteagudo,
2010).

flux thresholds: black circles display the case where the threshold has been imposed
at 2.5 mJy, while red triangles and green squares correspond to 30 mJy and 60 mJy,
respectively (Monteagudo 2010). It is clear that dim sources are strongly affected by
the VLA configuration, since the number density fluctuations changes dramatically
for the declinations by = —10°, 78° where the observing configuration is switched.
This does not appreciably happen for the brightest sources (thresholds at 30 and 60
mJy), which show a rather flat pattern versus declination. BRIGHT SOURCES. The
bright sources are problematic since the VLA has a finite dynamic range (~ 1000 in
snapshot mode with limited uv-plane coverage) and thus the identification of faint
sources in fields with a bright source is unreliable. This issue is mitigated by masking
out all the bright sources. When pointing to a bright radio source, side lobes usually
show up surrounding it and being counted as spurious dim sources in the catalog.
Although potentially of relevance, this effect should be avoided in the brightest radio
sources, since the point source mask built by WMAP team typically cancels a circle

of radius 0.6° around the bright radio sources detected by this experiment. To deal
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Table 4.3: Number of galaxys for the three considered flux cuts.

Flux cut Galaxy Number foky Galaxy Number

(mJy) per pixel
2.5 1450270 161.6
5.0 846 726 0.73 944
10.0 509 250 26.8

with the above potential problems, [Ho et al., 2008| impose a flux limit of 2.5 mJy
(where NVSS is 50% complete), mask out a 0.6 degree radius around all the bright
sources (> 2.5 Jy).

Another reason to use the NVSS in an ISW context is the fact that luminous
Active Galactic Nuclei (AGNs) are supposed to be good tracers of the density
field at high redshift. However, among NVSS radio galaxies, one should, a priori,
distinguish two different source populations, namely high luminosity AGNs and
nearby Star Forming Galaxies (SFGs). If the contribution of the latter population
is not negligible, then it might distort our template of the high redshift density
distribution by adding a very low redshift galaxy sample. It is known most of the
ISW signal is generated in the redshift range z ~ [0.5, 1.1], and therefore ideally the
galaxy survey should probe this epoch. The SFGs are placed at very low redshift (z
< 0.01) and for this reason provide no information in terms of ISW studies. They
are intrinsically less luminous sources in the radio, and, as shown by Condon et al.
(1998), dominate the source counts in the low flux end. According to Condon et al.
(1998), they contribute to a ~ 30% of the total number of weighted source counts
at 1 mJy, but this contribution should drop rapidly at larger fluxes measured at
1.4 GHz. However, this constitutes another argument to test how correlation tests
depend on the flux cut applied to NVSS sources. In our analyses (Chap. 6), we build
three different galaxy templates out of NVSS data, each of them corresponding to
flux thresholds at 2.5, 5 and 10 mJy (in Table 5.1 there are the corrisponding galaxy
number for each flux cut,considering a HEALPix pixelization with N4 = 32 and
$0 Ny = 12 x N2, = 12288).
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4.3.2 Source redshift distribution

To interpret the results of our measurements, we must assume some redshift
distribution dN/dz and potentially redshift dependent bias b(z) for the sample.
Historically, the redshift distribution was based on models of the sources by
[Dunlop & Peacock, 1990], and a time-independent bias of 1.6 was derived by
[Boughn & Crittenden, 2002]. A larger time-independent bias was found by
[Blake, Ferreira & Borril, 2004|), albeit with a different redshit distribution with
respect to [Boughn & Crittenden, 2002].

In our analysis we use two different galaxy distributions.

e The first and main galaxy distribution we consider in our analysis are the
redshift distribution based on a I' distribution fit which was constrained to
give the cross-correlations measured between the NVSS survey and SDSS LRG
subsamples (|[Ho et al., 2008]):

dNHe a”
— o, —az/zs
= zYe , 4.2
dz 22T () (4.2)

where z, = 0.79 and a = 1.18. [Ho et al., 2008| also estimates an effective,
redshift independent value for the bias as b(z) = 1.98.

In the Eq. (3.4) of Chap. 3 the function dN/dz has to be characterized
and for NVSS is the hardest to obtain because there are no spectroscopic
samples of NVSS objects that have sufficiently high completeness to obtain
the redshift distribution. Past ISW analyses [Boughn & Crittenden2004,
Nolta at al. 2004 with the NVSS have been based on the radio luminosity
function ®(L, z) of Dunlop & Peacock [Dunlop & Peacock, 1990], which itself
was fit to a combination of source counts, redshifts for some of the brightest
sources, and the local luminosity function. It was assumed a constant bias and
the redshift distribution so obtained was reasonable, however it had three major
drawbacks: the redshift probability distribution for the faint sources (which
make up most of the sample) was constrained only by the functional form used
for the luminosity function and not by the data; it did not give the redshift
dependence of the bias, which could be very important since the redshift range
is broad, and the typical luminosity of the sources varies with redshift; the
absolute bias b was constrained using the NVSS autopower spectrum, which is

known to contain power of instrumental origin.
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The alternative method to measure f(z) is by cross-correlation against the
other samples whose redshift distributions are known and it was adopted by
[Ho et al., 2008], since it does not have any of the aforementioned problems. Its
main drawback is that the other samples only probe the range out to z ~ 2.6,

and little data is available to constrain f(z) above that.

The redshift distribution was then fit to the cross-power spectra and fyxvss(2)
is the Eq. (6.1) with three free parameters, b.s, z,, and «. Of these
the normalization b.g may be viewed as an effective bias in the sense that
f fnvss(2) dz = beg; in the absence of cosmic magnification this would be the
bias averaged over the redshift distribution. The peak of the distribution is at
z,, and « controls the width of the distribution.

There are always some radio sources without optical identifications, however
this method enables one to set an upper limit to the number of NVSS sources
that can be at high redshift. [Ho et al., 2008] have matched against the
COSMOS field, which has a modest solid angle (2 deg?), multiband imaging
allowing good photometric redshifts, and deep high-resolution coverage with
the VLA. Area is required due to the low density of NVSS sources (40 deg™?),
and high-resolution radio images are required to uniquely identify an NVSS
source with an optical counterpart due to the large positional uncertainty in
the NVSS (~ 7 arcsec for faint sources) [Condon et al., 1998]|.

The photometric redshift distribution of the matches is shown in Fig. 4.5.
The best-fit fxvss(z) (with the I' distribution) has 24% of the bias-weighted
source distribution at z > 2 and 8% at z > 3; if the source bias increases with
redshift, as usually found for optical quasars, this number would be lower.
From Fig. 4.5, only 2 out of 64 matches fall at z > 2, i.e. the high-redshift
tail of the I' distribution can only exist in reality if (i) most of the 26% of
the sources with failed matches to COSMOS optical /NIR data are actually at

z > 2, or (ii) the sources at z > 2 have a large bias.

The second galaxy distribution we explore is the most recent galaxy redshift
distribution proposed by [de Zotti et al., 2010], a fourth order polynomial fit
to the CENSORS distribution |Brookes et al., 2008]:

deZ
dz

=1.29 4 32.37z — 32.892% + 11.132° — 1.252* . (4.3)
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n@

Figure 4.5: The dashed line is the fit three-parameter fxysg(z), normalized to unity (i.e.
the redshift distribution assuming constant bias and negligible effect from magnification).
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Figure 4.6: The constraints on the NVSS redshift distribution from the cross-correlations
with the other eight samples. The horizontal error bars show the redshift window functions
as described in the text. The dashed line shows the result of using the redshift distribution
based on the [Dunlop & Peacock, 1990| luminosity function assuming constant bias and
neglecting magnification, as has been done in most ISW studies.
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Figure 4.7: Galaxy distributions from CENSORS (red curve) and from the I' distribution by
[Ho et al., 2008] (black curve).

In this model the units are given by the number of galaxies per redshift and
square degrees [de Zotti et al., 2010]. This distribution dN/dz is normalized
to unity choosing the integration range between 0 and 2,,,, = 3.73, where 2,4,
is the redshift at which model vanishes (Fig. 4.7).

We know the costant bias approach is not physically correct. For this reason
this galaxy distribution contains a redshift dependent bias b(z). We use the bias
parametrization of |Xia et al., 2010| that consider a model for the Gaussian

bias given by

(0<v<2), (4.4)

where b; and by being free parameters and D(z) is the growth factor (Chap.
1). An “object-conserving" bias model corresponds to 7 & 1, while the bias of

high-density peaks for objects that have just formed yields v ~ 2.

The expression of b(z) requires the knowledge about the mass function, given by
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[Xia et al., 2010] by the weighted effective halo bias in a non-Gaussian regime

f;fomin bNGnNng

f]\o/lomin TLNng

beNﬂG(Mmin7 Z, ka fNL) - (45)

where, in our case, only the minimum halo mass M,,;, is a free parameter.
nyG is the numeber of halos and fy; the non-Gaussianity parameter. In
[Xia et al., 2010] the parameters corresponds to by = 1.1, by = 0.6 and v = 1.
We choose to rescale these power spectra in order to be coincident with the
fiducial from [Ho et al., 2008| at ¢ = 64.

All the theoretical power spectra in temperature, galaxy or polarization are
usually numerically computed with codes as COSMICS, CMBFAST and CAMB
(the last two derived from COSMICS).

In this thesis the calculation of all the CF¢ and C7¢ spectra as well as the ISW

1SW
&

part of the temperature power spectrum is done using a modified version of

the CAMB code |Lewis et al, 2000].

4.3.3 Shot noise

A very important issue to take into account in a galaxy survey is its shot noise,
a Poissonian uncertainty of measuring a distribution iof galaxies. We define the

quantity ¢0; as the galaxy number density for each pixel ¢

=" (4.6)

n

and the error on the galaxy number in a pixel as

on; = /n;. (4.7)
Then the galaxy number density is affected by an error given by

55, = 2 _ V1 (4.8)

n n

The properly variance for the shot noise is
2 _ T
n?

In our analysis we use a uniform shot noise

S =
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Ngal
Nobspiz

the same for each pixel. Since it depends from the ratio n = , the three flux
cuts of the NVSS we consider have different shot noises, in particular when we have

a small number of galaxies (high flux cut) the shot noise is high.



Chapter 5

BollSW code

In order to estimate the angular power spectrum (APS) of the cross-correlation
between cosmic microwave background and large scale structure maps, seen in
the previous chapter, we implemented an optimal method, a Quadratic Maximum
Likelihood (QML) method. The QML method for power spectrum estimate
of CMB anisotropies was introduced in [Tegmark, 1997] and later was also
developed for CMB polarization in [Tegmark & de Oliveira-Costa, 2001|. A different
implementation of the method was applied to the cross-correlation between CMB
(WMAPI) and LSS (SDSS) by |[Padmanabhan et al., 2005] and by [Ho et al., 2008]
between WMAP3 and many different LSS maps (2MASS, SDSS LRG, SDSS QSO
and NVSS)) were used.

The code BolISW described in the following sections has a similar parallel
architecture to the BolPol code implemented by |Gruppuso et al., 2009|, where the
QML method was used to cross-correlate the CMB temperature with the CMB

polarization E and B modes (see Sec. 5.2).

5.1 QML algebra

Given a CMB map in temperature (T) and a galaxy survey in number of galaxies
per pixel (G), we define a vector in pixel space x = (T, G) rapresenting in observed
maps.

The QML provides an estimator of the angular power spectrum C’@X - where X can

be one of TT, T'G, GG correlations. This estimator is given by

G = (PR [REE x — tr(NEY)] (5.1)
X!

0]
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where the F;5X" components of the Fisher matrix defined as

o1 o0C 0C
FiX = —tr|C™! C'—— 5.2
R A Te e (5:2)
and the E matrix is given by
1 0C
Ef =-C'_;C" :
i =3 C aCx C (5.3)

The C = S(C;X) + N is the total global covariance matrix including the signal S

and noise N contributions. The S matrix componentes are

Gy => CXP] (5.4)
¢
where Pf; are the Legendre polynomials

20+1

Pl =
) 47

P!(#;, 7)) (5.5)
and CX is called the fiducial theoretical power spectrum (it is used to create the
simulated maps useful to test the method in Sec. 5.4).

Then there are three inputs in the QML method: the x vector that contains the
maps and the N noise matrix; the last input is the C;¥, given by the theoretical
cosmological model. It was proven by |Gruppuso et al., 2009] and by the analysis
in this thesis that these fiducial spectra are a kind of starting point and that the
estimates are not dependent from them, but only from the power spectra which
characterizes the real temperature and galaxy distributions, respectevly, the CMB
and LSS maps. In Fig. 5.1 we show the three used fiducial spectra (curves in blue).
For the temperature auto-spectrum the blue line is the total CMB signal, i.e. the
ISW (curve in red) effect plus all is not ISW (curve in black). The ISW contribution
is higher on the largest scales and gives to the total temperature fiducial model the
characteristic rising on the low multipoles.

The QML is an optimal method for two reasons.

e It provides unbiased estimates of the power spectrum of the map regardless of
this initial guess
(CF) = Cf. (5.6)

Here the average is taken over the ensemble of realizations based on the input
spectrum CX (see Sec. 5.4). The assumed fiducial power spectra can impact

the error estimates through the Fisher matrix.
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Figure 5.1: The three panels show the theoretical fiducial models for the three spectra TT,
TG and GG. In the first panel there are three curves: the black is the power spectrum for
which is not ISW; the red curve is the only ISW power spectrum; the blue curve is the
power spectrum for the total CMB signal. For all the power spectra in our analysis we
choose to plot the temperature in uK and the galaxy number density adimensionless.

e The QML method has minimum variance, i.e. it can provide the smallest error

bars allowed by the Fisher-Cramer-Rao inequality,

(ACEACKY = (F~HXX, (5.7)
where
ACY =CF = (¢, (5.8)

and the averages, as above, are over an ensemble of realizations. In Sec.
5.4 we will demontrate the unbiased and minimum variance properties, which

therefore constitute the validation of the code.

5.2 BolPol

The original code BolPol is a fully parallel implementation (MPI) of the QML

method written in F90. Since the method works in pixel space the computational
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cost increases as one considers smaller angular resolution for a given sky area, i.e.
more pixels. This is the reason why the QML code has been parallelized. The

3

inversion of the covariance matrix C scales as O(N3,.). The number of operations

p
is roughly driven, once the inversion of the total covariance matrix is done, by
the matrix-matrix multiplications to build the operators Ef in Eq. (5.3) and by
calculating the Fisher matrix F)%(, given in Eq. (5.2). The number of operations
N2 ) and O(NsideNgm)

that are needed to build these matrices scales as O(NZ; Ny,
) where A/ is the number

side
respectively. The RAM required is of the order O(A/ Ngm
of C™1(0C/0C) (for every X) that are built and kept in memory during the
execution time.

Given these kind of scalings, it is clear that it is currently unrealistic to run
the QML estimator for all-sky maps of resolution larger than Ny = 8 (in Healpix
language' |Gorski et al., 2005]) on a single CPU. To reach higher resolution we use
the ScaLapack library? and the BLACS? routines which are optimize for distributed
memory parallel computers. In this way it is possible to run BolPol on the WMAP
data set with the resolution of N,;4;. = 16 on a supercomputer. Note that N4 = 16
is not the highest resolution that BolPol is able to consider. Currently BolPol is
able to process maps of N4 = 32.

BolPol was applied to the WMAP5 (|Gruppuso et al., 2009]) and WMAP7
(|Gruppuso et al., 2011|) low resolution maps to compute the CMB angular power
spectra at large scales for both temperature and polarization.

The six angular power spectrum (TT,TE,TB,EE,EB,BB) estimates have been
provided up to fy;ax = 48, taking into account the the computational cost due
to the cosidered high number of pixels. In Fig. 5.2 we show the comparison of the

estimates obtained with WMAP7 and WMAP5 data for all the six power spectra.

5.3 BolISW

The BollSW code, implemented in this thesis, stens from BolPol and computes three
angular power spectra (TT,TG,GG), then it is capable to use higher resolutions with
respect to BolPol. Currently the code is working with N4 = 32 and computes - all

1http://healpix.jpl.na‘sa.gov/. For people not familiar with the Healpix notation, Ng;q4e is related to the
number of pixels Nyiz by Npiz = 12N2,..

2http://www.netlib.org/scalapack/

http://www.netlib.org/blacs/
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Figure 5.2: The panels show the six power spectra obtained by BolPol with two data sets:
WMAPS5, blue points; WMAP7, black points. In the plots £37ax = 32. The black dotted
line is the correspondent fiducial model.
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Table 5.1: Numerical features

Code BolPol BolISW BolISW
Features Ngige = 16 Ngide = 32 Ngige = 64
EMAX =3 (OI‘ Q)XNside 48 96 128
Npizer =12 x N2, 9216 24576 98 304
Nprocessor 64 256 512
Computing time (min) ~ 20 ~ 40 ~ 570 (9.5 hours)
Hardisk (GB) 65 153 671

together - the three spectra; however a code version has been implemented in order
to use Nyqe = 64,then in this case it is necessary to compute only one spectrum at
a time because of the large increasing in the number of pixel.

My code runs on the SP6 supercomputer at CINECA (processor type: Opteron Dual
Core 2.6 GHz, with 4 GB per processor), in Tab. 5.1 we summarize some technical

features for BolPol with N4 = 16 and BollSW with both resolutions N4 = 32, 64.

5.3.1 Numerical optimization

For the reasons discussed above, the QML method is computationally expensive at
high resolution. we discuss here some changes which can improve the numerics and
decrease substantially the execution time with a negligible loss of accuracy.

The predicted C7¢ is generally non-zero, and its measurement is the primary
goal of our analysis. In the following analysis, we decide to assume CI'¢ = 0 for
the fiducial model which is used to build the covariance matrix. This working
hypotesis is a good approximation as it is proven in the validation of the code (see
Sec. 5.4). Furthermore, the noise matrix N may be assumed to be uncorrelated
between the CMB and the galaxy measurements and then block-diagonal. Under
these assumptions, the Fisher matrix becomes block diagonal and the three spectra
CIT, CTG, CSC can be estimated independently from each other. This reduces the
computation cost of the Fisher matrix by ~ 50% with respect to the problem with
the full covariance. Moreover estimating just CA’EG the computational cost of the
problem decreases by a further factor of 1/3, as in [Padmanabhan et al., 2005]; we
use this reduction when we compute the estimates with a resolution of Ny;4, = 64.

In order to apply the algebra of the QML method, described in Eq.s (5.1-5.3),
one must build the covariance matrix C in pixel space and the Fisher matrix F in ¢

space. The latter is the most expensive task at computational level, largely because



5.3. BOLISW 81

it requires the inversion of the pixel space covariance matrix C. This inversion can
also introduce numerical errors since its eigenvalues span several orders of magnitude

(which it is visible also among the Fisher matrix blocks, for more details see A 7.2)

To bypass this issue, we have used inversion-routines only on numerically
homogeneous blocks thanks to the following expressions. Given a general matrix
A in block form,

A Ap
A= , 5.9
( Ay A (5.9)
where A;; and A,y are non-singular square matrices, then it can be shown that the

inverse of A is

B —Bi1 A Ay,
Al = 11 11412455 1
( — Ay An By Ay + AR Ay BiiAAy )7 (5.10)

with

B = (A1 — A1 Ay Ay) (5.11)

For this case, the covariance matrix C is divided in sub-blocks (TT, TG and
GG blocks), so that Ay is the covariance related to the CMB temperature sector
and A relates to the covariance of the galaxy sector. Thus, assuming a fiducial
model without any cross-covariance simplifies the inversion calculation significantly.
This technique is also applied to the Fisher matrix inversion in multipole space
(with A;; = FJ'), obtaining a much better precision with respect to the brute force

inversion (~ 3 orders of magnitude)

Note that when the fiducial power spectrum for the cross-correlation C7¢ is
chosen to be null, then the two aforementioned matrices (both C and F) become
block-diagonal and their inversion is simply given by the inversion of each of the
diagonal blocks. In this particular case of F, the QML method splits into three
independent “smaller” QMLs, for 7T, GG and T'G ([Ho et al., 2008|).

As we will show in next section with the Monte Carlo validation and later in
Chap. 7 where we will apply QML to real data, using the CI'“ = 0 approximation
does not change the estimates, but the little fluctuations in the error bars amplitude,
between the cases CI% = 0 and CTY # 0, will be visible since amplified in the

likelihood analysis.
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5.4 Validation

In order to validate the implementation of the QML method, we create
simulated CMB temperature anisotropy and galaxy count maps following the
recipe described in [Boughn & Crittenden, 1998| (see also [Barreiro et al., 2008]
and [Giannantonio et al., 2008]). we employ the HEALPix program synfast

|Gorski et al., 2005|, which allows one to create ag, such that
<az/mazj;n’*> - (}/Y/(S@Z’dmm’a (512)

where Y)Y’ = T,G. The total map for the CMB anisotropies al is simulated as

the sum of three different maps

ab, = ave 4 aPW g g (5.13)
where alPV¢ represents the fully correlated ISW effect with the galaxy distribution,
al®™W is the uncorrelated part of the ISW effect and ab"™ is the primordial CMB
signal. These amplitudes are given by

CTG
ISWe ‘
Uy = Ea ; (5.14)
VC56
. CTG 2

" = &,\/C}SW - (Oeee) : (5.15)

¢

apn™ =&/ OFT — OFW. (5.16)

In addition for the galaxy count maps we consider

ag, = &/ CFY, (5.17)

where £’s are Gaussianly distributed complex random numbers, with zero mean and
unit variance. They are the seeds of the simulations and satisfy (£,£%) = 040. In

this way it can be proven that

(apagm) = C[T, (5.18)
(agagy) = CFY. (5.19)
(apmagy) = C7 7. (5.20)

where CI7, C7“ and C§“ are the fiducials introduced in the previous section.
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We have tested the BolISW code using these Monte Carlo simulations. In
particular, we have performed 1000 realizations for CMB and LSS correlated maps
at the HEALPix resolution of N4, = 32. For the multipoles, we consider the range
Al = [2,95], i.e., up to the Nyquist frequency 3Ngqge — 1. By using the particular
fiducial power spectra forementioned above, the standard ACDM cosmological model
[Larson et al., 2011] is assumed, as well a survey characteristics similar to the NVSS
catalogue [Condon et al., 1998], namely: a similar sky coverage and a galaxy density
number distribution per redshift given by the [Ho et al., 2008] model, and a bias
b = 1.98 (see previous chapter)

These simulated maps show that BolISW leads to unbiased and minimum
variance results, as can be seen by comparing the simulations to the projected errors
from the Fisher matrix, in Fig. 5.3 with the two auto-spectra and in Fig. 5.4 with
the cross-spectrum. In this plot it is shown the Monte Carlo estimates with two
different error bars, from the Fisher matrix (1) and from the Monte Carlo variance
(2). The unbiased issue is proven because the estimates fall exactly on the fiducial
model it is used to characterize the simulated maps for all the three spectra. Also
the minimum variance is proven almost for all the multipoles; in the three spectra
a small discrepancy between the error bars computed from (1) and from (2), in
particular for multipoles higher than ¢ ~ 64. We have checked this discrepancy was
not due to the C}'® = 0 approximation, computing the Monte Carlo for the case with
fiducial model different from zero. The two cases result equivalent. Importantly, we
confirm that the method is unbiased and has minimum variance when the fiducial
cross power spectrum CZ¢ is set to zero, i.e. when the code is less computationally

expensive.

Further, we have also verified by Monte Carlo that our implementation is optimal
when considering the realistic case of a masked sky (thin error bars in Fig.s 5.5 and
5.6).

It is important to notice that, while on these large-scales the noise contribution
in WMAP and future (PLANCK) CMB temperature maps is so low that the CMB
noise N might be safely neglected, this is not true for large scale structure surveys.
Depending on the number of sources used as large scale tracers, the galaxy density
map could be significantly affected by a Poissonian shot noise, which must be taken

into account.
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Figure 5.3: The two panels show two error bars of the average estimates for the Monte
Carlo validation obtained in two different ways: the thin error bars are given by the inverse
of the Fisher matrix; the thick error bars are given by the Monte Carlo variance. The upper
and lower panels show the TT and GG auto spectra, respectively. The two error bars are
coincident until £ ~ 64, then the error bars obtained by the Fisher matrix become larger.
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Figure 5.4: The panel shows, in TG cross spectrum, two error bars of the average estimates
for the Monte Carlo validation obtained in two different ways: the thin error bars are given
by the inverse of the Fisher matrix; the thick error bars are given by the Monte Carlo
variance. The two error bars are coincident until £ ~ 64, then the error bars obtained by
the Fisher matrix become larger.
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The results from the Monte Carlo validation are summarized in Fig. 5.5 and Fig.
5.6: all the panels consider three different scenarios, all of which provide unbiased
averaged estimates in good agreement with the fiducial model (blue lines) as seen
above, and they differ only in their error bars. The first case corresponds to a
masked sky (accounting for the NVSS sky coverage and the WMAP KQ75 mask)
with negligible Poissonian shot noise contribution to the LSS map (given by the
thick error bars); second, a full-sky case with a shot-noise like the that expected in
NVSS (see the previous chapter) when only sources above 2.5mJy are taken into
account (solid line error bars); and finally, a more realistic situation where both,
the incomplete sky and the shot noise are included in the analysis (light dark error
bars). The error bars increase when the noise level in the LSS map rises and when
the fraction of the sky considered is reduced, the latter falling approximatively with
the |/ fiy fSy» as expected.

For comparison, the plots also include (dark lines) the average anafast estimation
for the full-sky case (dark lines), based on the simple HEALPix FFT tool; the anafast
estimation is slightly biased at high ¢ in the two auto-spectra.

As final validation test the QML code was runned on one simulated map, with

masks applied and removing the same shot noise used before. The results are
summarized in Fig.s 5.7 and 5.8. In the bottom panel of Fig. 5.8 we binned the
CTC estimates, over Al = 9.
Since the signal-to-noise for unbinned TG power spectrum is rather poor, we present
also the binned power spectrum C'¢ over Al = 9. The binned estimates are simply
the average of the unbinned estimates inside the bin. For plotting purposes, we
associate for the uncertainty in the binnes estimate

(F—l)TGTG

> + (5.21)

LeAL

where N is the number of ¢’s in a bin.
The same binning it is used to bin the estimates from real data in the next chapter.
It is important to note how the full sky power spctrum C¢ is well recover by our

QML with the mask applied, of course in agreement with our Monte Carlo validation.
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Figure 5.5: The average estimates for the Monte Carlo validation: the upper and lower
panels show the TT and GG auto-spectra, respectively. We compare results for three cases:
using realistically masked maps without noise in the LSS maps (thick error bars), using
full sky maps with NVSS-like shot noise (solid line error bars), and assuming both masked
maps and NVSS-like shot noise (light dark error bars). We can see that average power
spectra from the QML all agree very well with the underlying fiducial theoretical power
spectra (blue lines). The error bars change according to the noise level in the LSS map and
the fraction of the sky considered. The dark lines are the average of the anafast estimates,
which are slightly biased at high ¢ in the two auto-spectra.
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Figure 5.6: The average estimates for the Monte Carlo validation: the TG cross-spectrum.
As above we compare results for three cases: using realistically masked maps without noise
in the LSS maps (thick error bars), using full sky maps with NVSS-like shot noise (solid
line error bars), and assuming both masked maps and NVSS-like shot noise (light dark
error bars). We can see that average power spectra from the QML all agree very well
with the underlying fiducial theoretical power spectra (blue lines). The error bars change
according to the noise level in the LSS map and the fraction of the sky considered. The
dark line is the average of the anafast estimates, which is not biased at high ¢ like in the
two previous auto-spectra.
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Figure 5.7: The estimates for a single full sky realization: the upper and lower panels show
the auto-spectra, TT and GG. The error bars on our estimated points (stars) are estimated
by the Fisher matrix. The dark broken lines are the estimates by anafast and the blue
solid lines are the fiducial power spectra.
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Figure 5.8: The estimates for a single full sky realization: the upper and lower panels
show the cross-spectrum, TG, in the unbinned and binned cases. The error bars on our
estimated points (stars) are estimated by the Fisher matrix. The dark broken lines are the
estimates by anafast in the fully sky case and the blue solid lines are the fiducial power
spectra.



Chapter 6

Application to WMAP 7 year and
NVSS data

In this chapter we describe the application of BolISW to estimating the cross-
correlation spectrum between the WMAP 7-year CMB maps and the NRAO VLA
Sky Survey (NVSS) data, both described in 4. We consider three different flux
cuts (2.5, 5, 10 mJy) for NVSS map and two different galaxy distributions to
describe the NVSS power spectrum (the fiducial model from [Ho et al., 2008] and
from [de Zotti et al., 2010]), in order to investigate potential systematic problems.
We present all spectra up to £ = 64 (= 2 X Nyqe), in order to cut the aliasing effect

on the largest (’s.

6.1 TT auto-spectrum

The temperature auto power spetrum is the same for all the analysis, because we
use always the WMAP 7-year map for CMB temperature and a possible noise on
the TT is negligible (as seen in 4.3.3) and therefore we do not consider it here. The
map is masked with the same mask used in the code validation. In Fig. 6.1, it
is shown the angular power spectrum for the CMB temperature, compared to the

fiducial power spectrum which is the WMAPT year best fit ([Larson et al., 2011]).

6.2 Balaxy distribution model with constant b

In this section we present the TG cross-spectrum and the GG auto-spectrum
obtained by the [Ho et al., 2008| fiducial model
dNHo B a®

72 = Zf—i—lr(a) Zole*az/z*7 (6.1)
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Figure 6.1: Unbinned CeT T auto spectrum to [ = 64. The estimates follow the theoretical
fiducial model.

with z, = 0.79, o = 1.18 and a redshift independent value for the bias as b = 1.98
(see Chap. 4).

6.2.1 No shot-noise removal

In some of the literature it is not clear if the shot noise contribution is taken into
account and we therefore try to estimate power spectra without removing the shot
noise. Follow the unbinned estimates for the 2.5, 5.0 and 10.0 mJy flux cuts of NVSS
maps, in Fig.s 6.2, 6.3 and 6.4.

It is useful comparing the binned estimates in all the three flux cuts, for C’eTG and
CSC (Fig. 6.5).

From (jZGG, it is clear a large discrepancy between the QML estimates and the
fiducial model (|Pietrobon, Balbi and Marinucci, 2006]), in particular the estimates
are much higher than the model. Note that the errors are small for the scale of the
plot, but are given by the usual Fisher contribution with Nge = 0. Considering only

the é’eTG, this high discrepancy between estimates and fiducial model is not visible.



6.2. BALAXY DISTRIBUTION MODEL WITH CONSTANT B 93

In order to be sure about the cross-correlation, it is important to supervise also the
TT and GG auto-correlations.

The discrepancy in éeGG (not only the distance between the estimates and the model
but also the inconsistency among all the three flux cuts) could be due to a wrong
fiducial model, to no shot noise removal or some other systematic effect not taken
into account. As seen in Chap. 4, the galaxy surveys contain a Poissonian shot
noise due to the variance of the observed number of galaxies per pixel; this noise is
different for each flux cut and could be the reason of the discrepancy between the
three flux cuts. In principle the QML can remove a noise through the noise bias
term seen in Eq. (5.1), which can be fully modelled within the noise matrix Ngg.
In the first estimate computings the noise is not considered, so the N matrix is zero.
In order to evaluate the impact of the shot noise, a diagonal noise matrix in the GG
sector (as done in Eq. 4.3.3, we choose a uniform shot noise) has been taken into

account. For the T'T sector we still consider a negligible noise.

6.2.2 Shot-noise removal

Here we show how the C¢¢ and C7¢ change removing the shot-noise, as it should
be clear in Fig.s 6.6, 6.7 and 6.8.

Comparing the binned estimates in all the three flux cuts, for C7¢ and C%¢ in the
case of shot-noise removal, we obtain Fig. 6.9.

Removing the shot-noise, different for each flux cut because of the different galaxy
number for each flux cut (in Eq. (4.10)) we get the three flux cuts converge to each
other and approach towards the fiducial model, either in GG and in TG. A small
difference between the theoretical power spectrum CF¢ and the QML estimates
C’eGG is still visible and we cannot find explanetion to that. Our estimates for the
NVSS auto-power spectrum agree very well with [Blake, Ferreira & Borril, 2004|,
who used an optimal estimator similar to ours on a NVSS map of the same resolution
of the one used here. The stability of the CZY estimates with respect to different
flux threshold found in [Blake, Ferreira & Borril, 2004] is also very similar to what
we find. [Xia, Viel & Baccigalupi, 2010] estimated a larger discrepancy at lower
multipoles and explained this effect as result of non-negligible primordial non-
Gaussianity, caused by the large-scale scale-dependence of the non-Gaussian halo

bias. However, the value inferred for the coupling non-Gaussian parameter fyr,
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is much larger than the limits imposed by CMB analyses ([Komatsu et al., 2011,
Curto et al., 2011]). However, the fy, constraints derived from the CMB-LSS cross-
correlation [Xia et al., 2010] provide lower values, in better agreement with the CMB
tests. In addition, these authors also showed that when other LSS data sets are used
[Richards, 2009, in particular, the QSOs sample of the SDSS], such non-Gaussian
deviation is not found.

At first approximation a constant bias b for the galaxy distribution (same as
[Ho et al., 2008]) is assumed; we know it is necessary to take into account a redshift
dependent bias b(z).

In the next section we show the analysis with the fiducial model based on
the [Brookes et al., 2008] CENSORS galaxy distribution with a b(z) given by
[Xia et al., 2010] (see Chap. 4).

In Fig. 6.10, we select the 2.5mJy flux cut to show the large difference with respect
to the previous case (no shot-noise removal).

The C7 estimates show the main differences in the error bar amplitudes. Larger
error bars are expected when a shot-noise is removed. The covariance matrix C in
this case is properly made up of the signal matrix S(Cy) and the noise matrix N, as
seen in the Chap. 5. According to the QML algebra the inverse Fisher matrix, from
which the error bars are computed, become larger as well as larger is the covariance
matrix.

This demonstrates the noise correction can not be neglected.

6.2.3 Declination correction

One of the systematic effects present in NVSS data is the declination correction
(see Chap. 4). As seen before, |[Blake & Wall, 2002| say the flux cuts lower then
~10 mJy are affected by an artificial declination problem. All the maps used in
the previous analyses are corrected for this systematic. However we prove how the
declination correction influences the estimates by using a 10mJy flux cut map not
corrected for declination. In Fig. 6.11 the C‘eGG and CA*ZTG are shown.

The estimates for TG and GG are very similar because the 10mJy flux
cut is not influenced by declination correction, this confirms the statement by

[Blake & Wall, 2002]. The other two lower flux cuts (2.5 and 5.0 mJy, mainly
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affected by the systematic) which are corrected for declination are consistent with
the 10.0mJy flux cut (considering both the results in Fig.s 6.9 and 6.11). Then it
is very important to consider the declination correction in the analysis of the NVSS
data.

Hereafter all the maps are corrected for declination and with the short noise removed.

6.2.4 (7Y +#0 effect on the cross-power spectrum

In the previous chapter we demonstrated the Monte Carlo simulations converge
on the fiducial model which characterizes the maps when the C7% = 0 and when
CI'% # 0. Then we choose the C7% = 0 in order to make the computation less
heavy.

Here we want to check that the CF¢ # 0 also gives the same estimates of the
CI'% = 0 case, seen above for the 2.5mJy flux cut. In Fig. 6.12, it is evident the
estimates given by CF'“ # 0 (the thin error bars shifted of £ = +1 to the right) are
very similar to the previous one. It seems we can be confident on the estimates give
by CI'¢ = 0.

6.3 Galaxy distribution model with b(z)

In this section we show the estimates obtained using a fiducial model given by
CENSORS galaxy distribution presented in Chap. 5 and taking into account the
bias dependence on the redshift.

In Fig. 6.13 we compare the estimates for the 2.5mJy flux cut of NVSS.

It is clear how the CZY estimates for the [de Zotti et al., 2010] model is more
confident to the fiducial model with respect to the previous [Ho et al., 2008] model,
althought the CI'“ estimates do not change very much.

As the shot noise issue, also the bias characterization (in particular its dependence
on the redshift) results very important in the galaxy power spectrum estimation.
Note that the estimates never change in the two models, we confirm the QML

implementation is not strongly dependent on the fiducial model.
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Figure 6.2: Unbinned CZGG auto spectrum and C’eT G cross spectrum for 2.5mJy flux cut in
NVSS, without removing the shot noise.
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Figure 6.3: Unbinned CZGG auto spectrum and CeTG cross spectrum for 5mJy flux cut in
NVSS, without removing the shot noise.
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Figure 6.4: Unbinned CZGG auto spectrum and CeTG cross spectrum for 10mJy flux cut in
NVSS, without removing the shot noise.



6.3. GALAXY DISTRIBUTION MODEL WITH B(Z) 99

CgGG
0.020[ T ]
I .
0.015L ]
S i + |
~ L &
S 0.010F -
— L 4
i—) L * & ” i
0.005 L * ® w ]
I . . . |
i . . |
r + & .
0.000 . %, . ]
0 10 20 30 40 50 60
0
TG
@6
e
0.4 .
2 ook ﬂ} ]
= - ﬁ :
S - 7 1 i
,/IT |
N T T T T
~. 0.0r 1
153 i R ? I ﬂ
55 00k % .
—0.4 .
7”\ v b b e b e b b |
0 10 20 30 40 50 60

Figure 6.5: Binned comparison between CZGG auto spectrum and CeTG cross spectrum for
all the three flux cuts, without removing the shot noise.
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Figure 6.6: Unbinned CZGG auto spectrum and C(ZT G cross spectrum for 2.5mJy flux cut in
NVSS, with the shot noise removed.
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Figure 6.7: Unbinned CZGG auto spectrum and CeTG cross spectrum for 5mJy flux cut in
NVSS, with the shot noise removed.
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Figure 6.8: Unbinned CZGG auto spectrum and CZG cross spectrum for 10mJy flux cut in
NVSS, with the shot noise removed.
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Figure 6.9: Binned comparison between CZGG auto spectrum and CeTG cross spectrum for
all the three flux cuts, with the shot noise removed.
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Figure 6.10: Binned C’fG auto spectrum and CZG cross spectrum estimates for 2.5mJy
flux cut, where we compare the two cases with (points with thin error bars) and without
removing the shot noise (points with thick error bar).
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Figure 6.11: Binned C’fG auto spectrum and CZG cross spectrum estimates for 10mJy
flux cut, where we compare the two cases with (points with thin error bars) and without
declination correction applied to NVSS map (points with thick error bar).
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Figure 6.12: Binned CeGG auto spectrum and C’EG cross spectrum estimates for 2.5mJy
flux cut, where we compare the two cases with the fiducial CeT G =£ 0 (points with thin error
bars) and with the fiduciial C7“ = 0 (points with thick error bar).
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Figure 6.13: Binned CeGG auto spectrum and CgG cross spectrum estimates for 2.5mJy
flux cut. We compare the two galaxy distribution model with constant b (black curve and
points) and with b(z) (red curve and points).
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Chapter 7

Quantitative assessment of the
cross-correlation detection

In this chapter, we constrain the Dark Energy density parameter {2, using the
information contained in the ISW-LSS cross-correlation power spectrum, estimated

through our QML.

7.1 Likelihood computation

In order to obtain this constraint we sample the x? on 20 values of 24, 0 < Qx < 0.95,
with steps of 0.05. We assume the errors on the measured C7¢ are Gaussian and

calculate the relative likelihoods of €2, using

—2In[L£(2)] = x*(%) = Xain- (7.1)
where
X () =
[CFO — CS()] Cat () [CFO - CFé(w). (72)
Here CeT @obs are the unbinned estimates of the cross-correlation power spectrum,

and CI'%(Q,) are the theoretical predicted power spectrum. The matrix Cyp is the
covariance matrix between different ¢’s, which allows for correlations among non-
diagonal terms which arise in the presence of masks. x2. is the minimum value of
x? with respect to §2,.

We compare the likelihoods obtained by different prescriptions for the covariance
matrix. The first prescription is to use the unbinned QML estimates and the Fisher

matrix as its covariance matrix:
F _ (0~ INTGTG
Czel —_— (F )ez/ . (7-3)
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An alternative prescription is to construct the covariance matrix C by averaging
over Monte Carlo realisations of the maps. For every model 25, we can define the

covariance C with N simulated CMB and LSS maps

Coor () =
M [CTG () — CTEQ)ICES () — CEE ()]

P N , (7.4)

=0

where the Cg? are the estimates for every single realization i and the CF¢
is their theoretical value. We assume the covariance matrix is not strongly
dependent on the cosmological model, then we consider the case with 2, = 0
(|Vielva, Martinez-Gonzalez & Tucci2006]), and since CF¢(Q, = 0) = 0, the

covariance becomes,
N ~TGTG
cMe = ZO % (7.5)

We build Cpr in Eq. (7.5) either by using random realisations of only the
CMB maps and the single, true NVSS map, or by creating a realisations of both
CMB and LSS maps. In the former and latter cases, we generate results on 1000
realisations. We also examine how the probability contours for €2, depend on the
various assumptions such as the threshold flux cut used for the NVSS map or the
sources redshift distribution.

We evaluate the likelihood with the various different prescriptions by sampling
the x? on values of 4, 0 < 2, < 0.95. The other cosmological parameters are kept
fixed to the values determined by WMAP |Larson et al., 2011| for the standard
ACDM model. As default NVSS description, the Eq. (6.1, dN"°/dz) model is
assumed, with a bias of 1.98, as previously seen in chap. 4. In order to compare the
three prescriptions we use the the lowest flux threshold of 2.5 mJy, as it is shown in

7.1.

7.2 Results

By adopting the Fisher matrix prescription (solid black line) in Eq.7.3, we obtain
Q) = O.69J_rgég Eg:gg; at 1(2)o confidence level (CL).
An Einstein-de Sitter Universe is disfavoured at more than 2 o CL for the lowest

flux threshold in NVSS, consistent with earlier measurements.
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Figure 7.1: Comparison of likelihood contours for 2 obtained by the Fisher prescription
(black solid line), the covariance computed by the Monte Carlo for CMB only (red short
dashed line) and for both CMB and LSS (blue dashed line). The threshold flux in NVSS

has been chosen to be 2.5 mJy.

By building the covariance through realizations of the CMB maps while keeping
the NVSS map fixed, we obtain the probability distribution given by the red dashed
line of Fig. 7.1. We find Q4 = 0.69%)5 ()5 at 1(2)c CL. On the other hand,
by using the covariance derived from realizations of both CMB and LSS maps,
the probability distribution given by the blue dashed line of Fig. 7.1 we find
Q) = 0.73f8:;§§8:ﬁ§ at 1(2)c CL. Note that the constraint based on the Fisher
covariance is tighter than the one based on a Montecarlo covariance keeping fixed
the NVSS map, but looser than the Montecarlo covariance obtained with CMB

and LSS uncorrelated maps. Overall, the agreement between the three likelihood

prescriptions is good.



112CHAPTER 7. QUANTITATIVE ASSESSMENT OF THE CROSS-CORRELATION DETECTION

Given the agreement among the three different likelihood prescriptions, the
Fisher one can be used for the covariance to test other dependences of the analysis,
because the Fisher is tightly linked to the QML analysis. It takes into account the
estimates errors, influencing the width of the likelihood.

The first step is to compare the conditional probabilities of {2, for the three different
flux thresholds considered, see in Fig. 7.2. The blue line is the 2.5mJy flux cut with

Qx the same as above; the red line is the 5mJy flux cut with 2, = 0‘62418:;2 Egég;
at 1(2)o CL; the black line is the 10mJy flux cut with Q, = 0.77f8:;g§8:;2) at

1(2)o CL. As expected from the Fisher algebra, it is evident the estimates with the
larger error bars have also the wider likelihood. The 2.5mJy case is the tightest
one. In agreement with the power spectrum C'¢ estimates, the tightest constraints
we obtain on (2, gives credit to the attitude of cleaning NVSS data as much as
possible from the known systematics which is proposed in our approch. In Fig. 7.3
we verify the importance of taking into account the shot-noise in the NVSS map
for the 2.5mJy threshold: by not removing the shot-noise the probability contours
for Q, would be much tighter (blue solid line, Q) = 0.65f8:£§8:iz§ at 1(2)o CL),
because they rapresent an underestimate of the error in Cf'“, being linked with the
Fisher matrix we expect in the case we remove the shot-noise the likelihood is wider,
because of the larger estimates error bars (see Fig. 6.10). A careful treatment of

the correction to the declination systematics and of the shot noise is essential for an

optimal scientific explanation of NVSS data.

In the previous Chap. 6 we compared the 10mJy threshold maps with and
without the declination correction, finding no evident differences. In Fig.7.4 we
show these two cases, where the solid black line is the case without declination
correction. The more evident difference is in the peak position of the likelihoods,

but the shape seems not change.

We also verify how the likelihood change when the assumption C7¢ = 0 is not
used in the construction of the signal covariance matrix, i.e. we consider a cross-
power spectrum model different from the null hypothesis. In Chap.s 5 and 6, we did
not find any differences between the C7¢ = 0 and CI'“ # 0 cases, but in Fig.7.5 the
red line (C7¢ # 0) is evidently shifted and a little bit tigher than the previous case
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Figure 7.2: The likelihood for Q4 obtained by the Fisher prescription, with the 95 % and
68 % C.L. for the threshold flux of 2.5 mJy (blue), 5 mJy (red), 10 mJy (black) in NVSS,

In the last two analyses we showed how much a very small difference in the estimates

and error bar values can be amplified in the likelihood analysis.

by [de Zotti et al., 2010] in Eq.

In Fig. 7.6 we compare the redshift distribution estimated with CENSORS data

(4.3) with the one adopted by [Ho et al., 2008|,
considering for the latter a bias dependent from redshift b(z) and for the former a
constant bias b = 1.98 as an effective bias.

The tightest constraint obtained is 2y

+0.12(0.20)
= 0.7370.18(0'44) at 1
level (CL) for the lowest flux threshold of 2.5 mJ and using covariances based on

(2)o confidence
Monte Carlo of both CMB and LSS. This result agrees with that expected from

a typical survey with sky fraction and noise property as the NVSS, and agrees
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Figure 7.3: Comparison of likelihood contours for (2 obtained by the Fisher prescription
when accounting (blu line) and when not accounting (red line) for shot noise in NVSS
data. The threshold flux in NVSS has been chosen as 2.5 mJ.

with [Vielva, Martinez-Gonzalez & Tucci2006], but is somewhat weaker than the
one obtained by the non-optimal analysis by [Pietrobon, Balbi and Marinucci, 2006]
based on needlets. It is not clear if this discrepancy is due to the lower resolution
considered here or the neglection of shot-noise in the NVSS map in the analysis by

[Pietrobon, Balbi and Marinucci, 2006].
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Figure 7.4: Comparison of likelihood contours for {2 obtained by the Fisher prescription
when accounting (dashed black line) and when not accounting (continue black line) for the
declination correction in NVSS data for the 10mJy flux cut.
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Figure 7.5: Comparison of likelihood contours for (2 obtained by the Fisher prescription
when considering the full covariance (red solid line) and when using the approximation
of a block diagonal signal covariance and Fisher matrix. The threshold flux in NVSS has
been chosen as 2.5 mJ.
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Figure 7.6: Comparison of likelihood contours for 2 obtained by the Fisher prescription
for the two choices of redshift distributions: solid for b(z) and dashed for b constant. The
threshold flux in NVSS has been chosen as 2.5 mJ.
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Conclusions

The CMB fluctuations created by the late Integrated Sachs-Wolfe effect is
one of the key indicators of the presence of the Dark Energy and since
[Crittenden & Turok1995], the cross-correlation is the powerful method to detect it.
In 2002, Boughn and Crittenden published the first attempt of detecting the ISW
effect considering the cross-correlation between COBE data and XRB and NVSS
data, but in that case the detection was null mainly because of the poor resolution
and sensitivity of COBE map even at large scales. Since then, many papers (see
for example [Dupé et al, 2011 and references therein for an excellent conpilation
of available results) analysing the detection of the ISW effect have been published,
considering the cross-correlation between CMB anisotropies and LSS surveys, as
suggested by Crittenden and Turok (1996). In this thesis we have developed an
optimal estimator for the angular power spectrum of the cross-correlation ISW-LSS,
which also estimates their auto-spectra. This has been tested using an ensemble of
randomly generated maps, and we have demonstrated the optimal properties of our
QML implementation, as the robustness of the estimates for the TT, TG and GG
power spectra. The cross-correlation between CMB and LSS can be computed with
different methods in the harmonic domain or considering the Wavelet expansion,

but none of these method is optimal as a QML, which works in the pixel domain.

We have applied our method to WMAP 7 year and NVSS data, the best public
data sets at present for studying the ISW cross-correlations. Our method makes no
assumptions, and allows to measure the power spectrum of cross-correlation with
minimum variance errors and to exploit the full cosmological information contained

in the maps, though our analysis is limited to a pixel resolution of 1.8°.

We detect a non-zero cross-correlation, and have also seen a slight excess
in the NVSS auto-angular power spectrum compared to what usually is the

theoretical prediction. The estimates are fully consistent with the previous
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results in the literature ([Blake, Ferreira & Borril, 2004]). We have translated these
measurements into the quantitative constraints on the fraction of Dark Energy in a
ACDM model which can be obtained only by the cross-correlation of WMAP and
NVSS, estimating €2, while keeping fixed all the other cosmological parameters to the
WMAP 7 yr best-fit values [Larson et al., 2011]. We have compared three different
prescriptions for estimating the covariances: using the Fisher matrix computed by
our QML, on Monte Carlo realisations of the CMB maps keeping NVSS fixed and
creating Monte Carlo realisations of both CMB and LSS maps. We have found
a good agreement among the €25 probability contours obtained from these three

different likelihood prescriptions.

WMAP data is already signal dominated at the relevant angular scales and
therefore what is important for the ISW detection is the goodness of the LSS
maps that can be characterized by the sky coverage and the full redshift coverage
of the Dark Energy dominated era. We have used three different flux cuts
for NVSS maps and we have learnt the accurate description of the noise and
systematics present on the LSS maps are very important issues to consider. We
have corrected for the NVSS declination systematics and found that these corrections
are important only when considering flux thresholds below 10mJy, confirmed by in
literature |Blake & Wall, 2002|; considering the angular power spectrum technique,
the shotnoise of the LSS map impacts not only the auto-spectrum GG but also the
cross-spectrum 7'G, mainly in terms of error bars associated to the estimates. As a
consequence, we found an impact on the width of the likelihood of €2, and therefore
on the significance of the ISW detection. This means that the shotnoise present in
the galaxy maps cannot be neglected in the ISW analysis even if it is based on the
TG spectrum.

The QML is well suited for the [ISW-LSS cross-correlation detection not only because
it is an optimal estimator and therefore provides unbiased APS estimates with the
smallest error bars allowed by the Fisher-Cramer-Rao inequality, but also because
thanks to the built-in capabilities of performing Monte Carlo simulations it makes
possible to deeply test and keep under control the LSS maps including their noise
characterization. The width of this probability contour depends mainly on the flux

threshold and associated level of Poisson noise in the NVSS map, but the signal

— 0.69+0-15(0-23)

amplitude seems largely independent of the flux. We have found 2, 0.22(052)
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at 1(2)o C.L., a statistical significance for 25 close to 30 with a simplified likelihood,
by significantly correcting NVSS for its declination systematics and by estimating
carefully its shot noise.

This result is to add to all the other ISW detection in Tab. 3.1 of [Dupé et al, 2011].

Most ISW detections reported in Tab. 3.1 are relatively ‘weak’ (< 30), but
the some of the higher detections are reported for the NVSS survey |Pietrobon et
al. 2006, McEwan et al. 2007, Giannantonio et al. 2008]; they found statistical
significances for (1), respectvely, > 40, > 2.50 and 3.30, all consistent with our
result.

This thesis includes important international collaborations. R. G. Crittenden
(University of Portsmouth, UK) and Patricio Vielva, Enrique Martinez-Gonzalez
and Belen Barreiro (University of Cantabria, Spain) partecipate to the first
application of the optimal QML to WMAP 7 year and NVSS data.

This Ph.D. activities has led to a powerful methodology which has several new

and interesting applications.

e In order to consider the whole cosmological information (expected on
theoretical ground) included in the cross-correlation power spectrum we plan to
extend our analysis to larger multipoles by using a map resolution of N4, = 64.
Afshordi N. 2004, in Fig. 7.7, shows that the enclosed area for the region
covered by a survey, multiplied by its sky coverage fs,, gives the optimum
(S/N)? for the cross-correlation ISW-LSS signal. At £ > 100 the signal slowly
dies out, but it is not null. Going to higher multipoles allows to take into

account all the signal expected.

e In conjunction with the imminent WMAP 9 year final release we plan to
consider the CMB cross-correlation with the following LSS maps, taking
advantage of ISW-LSS Planck working group :

— Luminous Red Galaxies (LRG) from Sloan Digital Sky Survey (SDSS) III
(http://www.sdss3.org)

— Quasars from SDSS III (http://www.sdss3.org)
e In order to obtain a self-consistence estimate of parameters we plan to include

in the likelihood analysis a straightforward GG auto-spectrum contribution.

In this way it will be possible to estimate not only the {2, parameter but also
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d log(l)
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Figure 7.7: (S/N)? distribution with respect to multipoles.

the galaxy bias. As we have seen in the Chap. 6, the galaxy bias depeds on
redshift. We plan to use slices of galaxy maps, in order to take into account

the redshift dependence of the bias.

As for the analysis of the cross-correlation WMAP 7 - NVSS, the best likelihood
prescription will be applied to the three cross-correlation between WMAP 9
year data and the above mentioned data and will be added to the WMAP 9 year
one, whose likelihood code will be delivered at the same time of the scientific
results and data at the public site http://lambda.gsfc.nasa.gov/, as for the
previous releases. It is customary to add independently the LSS likelihood to
the CMB one to mainly break the degeneracy between the cold dark matter
density €2, and the Hubble parameter Hy and have therefore better constraints
on all the cosmological parameters (see for instance Finelli et al. 2010 for the
impact of the constraints obtained with LRG from SDSS Data Release 7 - i.e.
SDSS II - in combination with CMB data on the cosmological parameters).

A further step would be to include the cross-correlation between CMB and
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LSS self-consistently in the full likelihood: with the robustness achieved in
[Schiavon et al., 2012] in the CMB-LSS CC angular power spectrum estimation
and likelihood, we are in the position to include such contribution to the full
likelihood and discuss the cosmological implications for current data. To our
knowledge, this would be the first analysis of this kind. Once published
we might also release publicly the modified Markov Chain Monte Carlo
COSMOMC and the cross-correlation WMAP-LSS data.

e It has been suggested that the CMB polarization information could increase
of the 20 % the SNR encoded in the ISW-LSS cross-correlation (Crittenden
2006, Frommert & Ennslin, 2009). The inclusion of polarization to a pure
CMB QML estimator has been already handled successfully (Gruppuso et al.
2009). However, the inclusion of polarization would double the dimensionality
of the problem at the map level (from T,G to T,Q,U,G being Q,U the
Stokes parameters) and quadruplicate it at the level of covariances. The
QML computational time scaling would prohibit the possibility of unbinned
estimates from maps at the required angular resolution. To tackle this issue
it would be therefore necessary to develop a binned version of the QML code.
Such binning procedure would also be useful for the current temperature QML
code to increase the angular resolution of the maps (now limited to Ngqe = 64)

currently handled by our QML and investigate multipoles ¢ > 150 — 200.
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Appendix A

Fisher matrix

In the QML algebra the Fisher matrix is an important component since its inverse
matrix provides the smallest error bars allowed by the Fisher-Cramer-Rao inequality
5. The following figures visualize the Fisher matrix.

In order to understand why we do not use the total matrix inversion but the inversion
of the blocks (both in the covariance matrix and in the Fisher one), as it is explained
in Chap. 5, note the large difference in the order of magnitudes among the blocks
of the Fisher matrix. The TTxTT block is of the order of ~ 107° with respect to
the ~ 108 orders of the GG x GG block.

This matrix inversion trick can be used both when the matrices - C or F - are full
(fiducial CI'® # 0 case) and when they are not (fiducial C7'“ = 0 case). In the latter
case, the two matrices C and F are also block diagonal, then it is possible to invert
their diagonal blocks independently.

The Fisher matrix is directly computed by fiducial power spectra, then the shot
noise removal influences the matrix. The differences are very small and not visible

in the Fisher matrix visualization.
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Figure A.1: The Fisher matrix block TT x TT in two cases: the up panel is the case when
the fiducial CZTG = 0 and the bottom one is the case CeTG # 0.
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Figure A.2: The Fisher matrix block TT x TG in two cases: the up panel is the case when
the fiducial CZTG = 0 and the bottom one is the case CeTG # 0.
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Figure A.3: The Fisher matrix block TG x TG in two cases: the up panel is the case when
the fiducial CZG = 0 and the bottom one is the case C’ZTG = (0. This block is not null when
the fiducial CZG = 0 since it is computed by the fiducials CZT and C’(ZG G
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Figure A.4: The Fisher matrix block TT x GG in two cases: the up panel is the case when
the fiducial CZTG = 0 and the bottom one is the case CeTG #0
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Figure A.5: The Fisher matrix block TG x GG in two cases: the up panel is the case when
the fiducial CZTG = 0 and the bottom one is the case CeTG # 0.
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Figure A.6: The Fisher matrix block GG x GG in two cases: the up panel is the case
when the fiducial CZTG = 0 and the bottom one is the case CeTG #0.
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