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Preface 
Making crystals by design is the paradigm of crystal engineering, an area 

of solid-state chemistry that encompasses molecular crystals and materials 

[1]. The goal of this field of research is that of assembling “bottom-up” 

functionalized molecular and ionic components into a target network of 

supramolecular interactions [2]. The convolution of the physical and 

chemical properties of the individual building blocks with the periodicity 

and symmetry operators of the crystal generates collective supramolecular 

properties [3].  

The Bolognese molecular crystal-engineering group has been active in 

the area of solid-state chemistry for more than a decade [4]. At the time of 

writing, several lines of research were being explored by this group. This 

review article will deal with one of the most productive of these lines, 

namely that focused on the design, synthesis, characterization and utilization 

of hydrogen bonded networks based on functionalized organometallic 

sandwich compounds. The reader interested to know more about the other 

research lines is addressed to recent review articles produced by the authors 

in the fields of the solvent-free preparation of crystalline materials [5], and 

of the investigation of polymorph preparation and interconversion [6].  

Our interest in the use of organometallic molecules and ions as building 

blocks stems from the observation [4] that organometallic molecules 

combine the supramolecular bonding features of organic molecules (e.g. 

hydrogen bonding interactions) with the structural variability of 

coordination compounds (e.g. ligand–metal coordination, coordination 

geometry, structural flexibly, etc.). On the other hand, the utilization of 

interactions that are strong and, at the same time, directional is essential for 

the assembly of molecular components because such types of interactions 

guarantee transferability and reproducibility, beside strength. For such 

reasons the hydrogen bond [7] is the interaction of choice in many crystal-
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engineering experiments where neutral molecules or molecular ions are 

employed [8]. This is well demonstrated by the plethora of studies on 

hydrogen bonded molecular or ionic crystals [9].  

In this review, we shall deal mainly with hydrogen bonding interactions 

between “classical” donor and acceptor groups, e.g. –COOH, –OH, –

CONHR, etc. present on adequately chosen, or ad hoc prepared, 

organometallic moieties.  

In previous studies, we have dealt with hydrogen-bonded networks 

formed by organic or inorganic molecules and ions templated by non-

participating organometallic units (mainly sandwich compounds) [10] and 

[11]. The design criterion was based on the idea of confining all strong 

donor/acceptor hydrogen bonding groups on the organic or inorganic 

(usually anionic) networks while excluding the organometallic fragments 

(usually cationic) from the direct participation in the hydrogen bonds. This 

strategy led to product crystals characterized by selective self-assembling of 

the organic/inorganic fragments in hydrogen bonded superstructures, whose 

topology depended on the size, shape and number and geometry of the –

OH/–COOH/COO(−) groups. To this end, cationic sandwich complexes such 

as [Co(η5-C5H5)2]+, [Cr(η6-C6H6)2]+, [Fe(η5-C5Me5)2]+ and [Co(η5-

C5Me5)2]+ were found particularly useful. The regular cylindrical shape of 

the organometallic moiety and the presence of C H groups allows 

interactions with the surroundings by means of C H O interactions 

between the acceptor sites on the networks and the C H groups protruding 

from the complex surface [12]. For instance, when D,L- and L-tartaric acids 

were used, the compounds [Co(η5-C5H5)2]+(D,L-

HO2CCH(OH)CH(OH)CO2) (D,L-HO2CCH(OH)CH(OH)CO2H)] and 

[Co(η5-C5H5)2]+ [(L-HO2CCH(OH)CH(OH)CO2)]− were, respectively, 

obtained [13]. With oxalic acid, compounds [Fe(η5-

C5Me5)2][HC2O4]·[H2C2O4]0.5 and [Cr(η6-C6H6)2][HC2O4]·[H2O] were 

prepared [14], while compounds [Cr(η6-C6H6)2][HC4O4] and {[Cr(η6-
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C6H6)2]}2[C4O4]·6H2O were prepared with squaric acid [15]. With phthalic 

and terephthalic acids the compounds {[Co(η5-

C5H5)2]+}4{[C6H4(COOH)(COO)]−}2 [C6H4(COO)2]2−·4H2O, [Cr(η6-

C6H6)2]+{[C6H4(COOH)(COO)]−[C6H4(COOH)2]}, and {[Co(η5-

C5H5)2]+}2[C6H4(COO)2]2−·6H2O were prepared [16], while with trimesic 

acid [Co(η5-C5H5)2]+{[(C6H3(COOH)3] [C6H3(COOH)2(COO)]}−·2H2O [17] 

was obtained, and with R-binaphtol were prepared [Co(η5-C5H5)2][(R)-(+)-

(HOC10H6C10H6O)]·[(R)-(+)-(HOC10H6C10H6OH)], and [Co(η5-C5H5)2] 

[(R)-(+)-(HOC10H6C10H6O)]·[(R)-(+)-(HOC10H6C10H6OH)]0.5 [18]. More 

recently, partially deprotonated inorganic oxoanions derived from sulphuric 

and phosphoric acids have been used to assemble organometallic cations in 

inorganic–organometallic hybrid systems by reacting the neutral sandwich 

compounds with acids such as H2SO4 and H3PO4 [19]. The anions HSO4
− 

and H2PO4
− resulting from partial deprotonation of the neutral acids were 

shown to assemble into hydrogen bonded mono- and bi-dimensional 

networks as in the case of organic anions. The structural features of these 

and several others hybrid organic/inorganic–organometallic superstructures 

were described before. The reader is addressed to Ref. [20] for further 

information.  
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When the donor/acceptor groups are located on the organometallic 

sandwich unit, the organometallic complexes are directly participating in the 

formation of hydrogen bonded supramolecular aggregates, such as dimers or 

higher complexity hydrogen bonded networks. This will be the main focus 

of this article. Besides, the possibility of alternative solutions to the problem 

of different spatial organization of the same molecular unit in the crystals, 

i.e. crystal polymorphism [21], will also be discussed whenever necessary 

[22]. In this respect, since different crystal forms imply the existence of 

different sets of supramolecular interactions between the same building 

blocks, polymorphs of the same molecular crystal can be seen as crystal 

isomers. It should also be pointed out that structural flexibility, a key 

characteristic of organometallic molecules [23], may favour formation of 

conformational crystal polymorphs, i.e. of different packings of the same 

molecule in different conformations. A classical example of organometallic 

conformational polymorphism is provided by ferrocene, for which one room 

temperature disordered and two low-temperature ordered crystalline forms 

are known [24].  

Even though polymorphism is emerging as a fundamental structural and 

chemical aspect of organometallic solid-state chemistry, rather than 

devoting a specific section of this review to this phenomenon, the 

occurrence of polymorphic modifications will be described as we proceed.  
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1. Mechanochemical preparation of molecular and 

supramolecular organometallic materials and coordination 

networks  
 

a. Introduction   

The core paradigm of crystal engineering is the ability of assembling 

molecules or ions into periodical functional structures, the crystal, by 

controlling molecular recognition and aggregation via supramolecular 

interactions and coordination bonds.1–7 Since the product of a crystal 

engineering experiment is by definition in the crystalline form, crystal 

engineers are crystal makers who constantly (and inevitably) face the 

problem of obtaining crystals for the characterization of their reaction 

products. Whether the products are obtained from solution, melt, vapour or 

from more forcing hydrothermal syntheses they will have to be investigated 

and characterized by solid-state techniques, in particular by X-ray 

diffraction. Amorphous materials are also extremely interesting,8–16 but their 

investigation and use is still very limited mainly in view of the difficulty in 

their characterization. 

In this perspective article we will demonstrate that novel crystalline 

materials can be obtained by reacting preformed crystalline materials with 

solid-state reactants in solvent-free  conditions.17 We will argue that 

mechanochemical  reactions between solids represent alternative and, at 

times, unique ways to prepare a variety of crystalline materials from 

coordination networks to hydrogen bonded adducts etc.  

It should be pointed out that part of the work discussed hereafter has been 

described previously in related review articles.18–20 This perspective, 

however, is focused on the utilization of metal complexes as starting 

materials, which has been traditionally the field of interest of our Bolognese 

crystal engineering laboratory.21–23  
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Making crystalline materials by mechanochemical methods  

The formation of crystals as products in solvent-free reactions between 

solid materials is controlled by the possibility of bringing reactants into 

contact. Therefore, intimate mixing of the reactants and large surface areas 

(i.e. small particle size) are, generally speaking, a prerequisite for successful 

reaction. Reactions between polycrystalline powders are usually carried out 

by mechanochemical methods such as manual co-grinding or milling (vide 

infra). Such methods generally produce materials also in the form of a 

polycrystalline powder and are, rather obviously, not suited for the growth 

of single crystals (for single-crystal diffractometers). Since 

mechanochemical mixing of reactants ultimately amounts to making 

crystals by smashing crystals  the single-crystal dogma, on which the vast 

majority of crystal engineering studies is based, is seemingly contradicted. 

Unless one recurs to high intensity synchrotron radiation, microcrystals will 

allow only powder diffraction experiments, which only rarely can be used 

for ab initio structure determination in order to get those precise structural 

information that are so essential to the crystal engineer. Full structural 

characterization of the products, however, still replies on the possibility of 

obtaining single crystals, which might be often grown from solutions of the 

desired product by the seeding technique. Single-crystal X-ray diffraction 

experiments, in fact, will not only allow to know the structure of the 

products in fine details but also to carry out a useful comparison between 

the powder diffractograms measured on the bulk product and those 

calculated on the basis of the single-crystal structures. This is widely 

applied in the cases discussed herein. 

Non-solution methods whether from solid–gas or solid–solid reactions 

(see Fig. 1) require the chemist, or crystal engineer, to explore/exploit 

methods that are not routinely used in chemical labs such as grinding and 

milling, which are less popular, when they are not dismissed as non-

chemical, in academic research labs.24–27  
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Fig. 1 The solid–gas (right) and solid–solid (middle) processes and the 

strategy to obtain single crystals by recrystallisation of the solid reaction 

product in the presence of seeds (left) of the desired crystals. 
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b. Grinding and milling  

Typical mechanochemical reactions are those activated by co-grinding or 

milling of powder materials. These reactions are usually carried out either 

manually, in an agate mortar, or electro-mechanically, as in ball milling. In 

both cases the main difficulty is in controlling reaction conditions: grinding 

time, temperature, pressure exerted by the operator, etc. Furthermore, the 

heat generated in the course of the mechanochemical process can induce 

local melting of crystals or melting at the interface between the different 

crystals, so that the reaction might take place in the liquid phase even 

though solid products are ultimately recovered. One should also keep in 

mind that mechanical stress by fracturing the crystals increases surface area 

and facilitates interpenetration and reaction depending on the ability of 

molecules to diffuse through the crystal surfaces. Mechanochemical 

methods are commonly used at industrial level mainly with inorganic 

solids.28–31  

In some cases the use of a small quantity of solvent can accelerate (when 

not make altogether possible) solid-state reactions carried out by grinding or 

milling.32 The method based on the co-grinding of powdered reactants in the 

presence of a small amount of solvent, also known as kneading, has been 

described as a sort of solvent catalysis  of the solid-state process, whereby 

the small amount of solvent provides a lubricant for molecular diffusion. 

The objection about whether a kneaded reaction between two solid phases 

can be regarded as a bona fide solid-state process is justified. However, in 

the context of this work, the interest lies more in the methods to make new 

crystalline materials rather than in the mechanisms. Industrial applications 

of kneading have been developed for pharmaceutical powders.33,34 As an 

example of preparative lab scale one could mention the preparation by 

kneading of binary -cyclodextrin bifonazole,35 and of -cyclodextrin 

inclusion compounds of ketoprofen,36 ketoconazole37 and carbaryl.38  
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We have pointed out that, even though the product of a grinding, milling 

and kneading process is, in general, in the form of a powdered material, 

single crystals are still highly desirable (when not indispensable) for a 

thorough characterization of the reaction product. In such a case, seeding 

can provide a route to the growth of single crystals of the desired 

material.17,39–41 The method, however, is not failure-proof, and other 

conditions, such as supersaturation, rate of solvent evaporation and 

temperature as well as the purity of the seeding powder obtained by 

grinding may still play a role in determining the crystallization outcome. 

The use of seeds is also very important when there is the possibility of 

formation of different crystal forms, i.e. crystal polymorphism.42,43 Seeds of 

isostructural or quasi-isostructural species that crystallise well can also been 

employed to induce crystallisation of unyielding materials (heteromolecular 

seeding).44–46 For instance, chiral co-crystals of tryptamine and 

hydrocinnamic acid have also been prepared by crystallization in the 

presence of seeds of different chiral crystals.47 Of course, unintentional 

seeding may also alter the crystallization process in an undesired manner.48  

 

 

 

 

c. Mechanically-induced formation of covalent bonds  

While mechanochemical methods have been widely used with organic26 

and inorganic24 compounds, there are not many examples of the utilization 

of mechanochemical procedures in coordination chemistry. For instance, 

Balema et al. have shown that the cis-platinum complexes cis-(Ph3P)2PtCl2 

and cis-(Ph3P)2PtCO3 can be prepared mechanochemically from solid 

reactants in the absence of solvent.49 Orita et al. have reported that the 

reaction of (ethylenediamine)Pt(NO3)2 with 4,4 -bipyridine, which takes as 

long as 4 weeks at 100 °C to form metallamacrocyclic molecular 
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squares,50,51 is brought to completion within 10 min at room temperature by 

mixing reactants without solvents.52 Similar reaction acceleration has been 

observed also with triazine based ligands.53,54 Double helix formation under 

solvent free conditions has also been achieved by reacting chiral 

oligo(bipyridine) copper complexes with [(CH3CN)4Cu]PF6. The progress 

of the reaction was monitored by measuring solid-state CD-spectra showing 

that after grinding for 5 min the desired helicate had been obtained.52  

It has been reported that bis-substituted pyridine/pyrimidine ferrocenyl 

complexes can be prepared by mechanically-induced Sukuzi-coupling 

reaction55–59 in the solid-state starting from ferrocene-1,1 -diboronic acid, 

[Fe( 5-C5H4–B(OH)2)2] (see Scheme 1).60 The solvent-free reactions allow 

synthesis in the air and at room temperature of mono- and bis-substituted 

pyridine and pyrimidine ferrocenyl derivatives thus providing a valuable 

alternative to the preparation in solution. Actually, in the case of [Fe( 5-

C5H4-1-C5H4N)2], the solvent-free process is much faster and more selective 

than the same reaction carried out in solution. Beside shorter reaction times, 

less workup, higher yield, and the absence of solvents the solid-state 

reaction affords the possibility of combining different synthetic steps in 

order to obtain homo- and hetero-ligands ferrocenyl complexes. 
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Scheme 1  

The solid-state synthesis of mono- and bis-substituted pyridine and 

pyrimidine ferrocenyl derivatives starting from ferrocene-1,1 -diboronic 

acid, [Fe( 5-C5H4–B(OH)2)2]. 

 

 

 

 

 

 

d. Preparation of complexes-of-complexes : mixed metal 

superstructures derived from bispyridine  

The bidentate compounds described in the previous section were 

employed for the preparation of supramolecular complexes-of-complexes

,61 aiming to the construction of mixed-metal supramolecular materials with 

interesting electrochemical and spin properties. The bottom-up construction 

of supramolecular materials and coordination networks with desired 

properties is one of the main goals of crystal engineering.62–91 Ferrocene-

based pyridyl ligands have been studied for the possibility of exploiting 

their redox properties in various applications, such as amperometric sensors 
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for metal ions. The focus, however, has been mainly on mono-substituted 

ferrocenes, while only few examples of bis-substituted ferrocene pyridyl 

complexes are known.92–99 We have prepared a series of mixed-metal 

macrocyclic complexes by reacting mechanochemically prepared [Fe( 5-

C5H4-1-C5H4N)2] with transition metal salts, such as AgNO3, Cd(NO3)2, 

Cu(CH3COO)2, Zn(CH3COO)2 and ZnCl2 (Scheme 2).100 A similar 

approach has been used before by others by using aminocobaltocenes and 

aminoferrocenes to form complexes with Zn2+ and Co2+ metal ions.95,101–117 

while flexible bis-p-aminopyridine bidentate ligands have also been utilized 

to prepare metallamacrocycle complexes.118–121 Analogously, neutral 

ligands (1,4-diazabicyclooctane, tetramethylpyrazine and pyrazine) have 

been used to link silver carboxylates in extended networks.122  

 

 

 

Scheme 2. 
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In view of the conformational freedom of the two 5-C5H4-1-C5H4N 

ligands in [Fe( 5-C5H4-1-C5H4N)2] we were also intrigued by the question 

on whether the ligands would have adopted a cisoid or a transoid 

conformation upon coordination.123 While the former conformation leads to 

the formation of finite coordination geometry, i.e. to a molecular complex, 

the latter might, in principle, lead to an infinite network. The two limiting 

situations are shown in Fig. 2. 

 

 

 
 

Fig. 2 The cisoid and transoid conformation of two metallamacrocycle 

compounds (a) the [Fe( 5-C5H4-4-C5H4N)2. The [Fe( 5-C5H4-4-C5H4N)2] 

leads to a finite structure (as in (b)) but it could also, in principle, form a 

infinite network (as in (c)), even though the structure in (c) is a fictive one. 

 

 

However, all compounds in Scheme 3 do not form extended networks but 

metallamacrocycles. The solid-state structure of the heterobimetallic system 

complex [Fe( 5-C5H4-1-C5H4N)2]2Ag2(NO3)2·1.5H2O is shown in Fig. 3. 

The two silver atoms interact directly with the pyridine ligands, with Ag N 
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distances between 2.123(8), and 2.145(8) . The Ag Ag distance is 

3.500(2) . This separation is comparable to that observed in other dimeric 

Ag-complexes.124,125 The two nitrate anions play different roles in the 

crystal structure. While one is directly linked to the other nitrate anion via 

water molecules, the second anion acts as a bridge between dimeric units as 

shown in Fig. 4, with O Ag distances of 2.752(9) and 2.870(1) , 

respectively. A similar ion-pairing link between neighbouring complexes 

has been observed in the complex with Ag+ and bis-p-aminopyridine 

bidentate ligands. 

 

 

 

 
 

Scheme 3 
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Fig. 3 The heterometallic [Fe( 5-C5H4-1-C5H4N)2]2Ag2(NO3)2·1.5H2O 

complex showing how the how the network is built up by bridging nitrate 

anions between the dimeric units. 
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Fig. 4 (a) The crystal structure of the [Fe( 5-C5H4-1-

C5H4N)2]2Zn2(CH3COO)4 complex. (b) The space filling model of the [Fe(
5-C5H4-1-C5H4N)2]2Zn2(CH3COO)4 complex showing the packing. 

 

 

The complex [Fe( 5-C5H4-1-C5H4N)2]2Zn2(CH3COO)4 shows that the 

Cp-pyridine ligands are nearly eclipsed with a Zn Zn separation of 

3.875(1) . The two acetate ligands span the Zn Zn system [Zn(1)–O(3) 

2.018(3), Zn(1)–O(4) 2.018(2) ] while two acetate ligands are dangling 

externally at a Zn O separation of 2.042(3) (see Fig. 4). The Zn Zn 
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distance indicates that the interaction between the Zn centres is entirely 

repulsive, as would be expected from closed shell first row systems. The 

coordination around the Zn-centres can be described as a trigonal 

bipyramid. A space filling representation of the packing of [Fe( 5-C5H4-1-

C5H4N)2]2Zn2(CH3COO)4 in the solid state is shown in Fig. 4(b). 

The structure of the compound obtained by reacting the bispyridine with 

zinc chloride, [Fe( 5-C5H4-1-C5H4N)2]2Zn2Cl4 is shown in Fig. 5. The 

constrain imposed by the tetrahedral coordination around the zinc centres 

[Zn–Cl distances 2.202(3), 2.224(3) ] leads to the formation of a butterfly-

type molecule, with the two ZnCl2 units forming the hinge and the 

ferrocenyl units the wings of the butterfly (see Fig. 6(b) for a space filling 

representation). The distance between the two Zn centres is 6.125 . 

 

 



 26 

 

 
 

 

Fig. 5 (a) The crystal structure of [Fe( 5-C5H4-1-C5H4N)2]2Zn2Cl4 

showing tetrahedral coordination geometry around the zinc centres. (b) 

This coordination geometry will lead to the formation of a butterfly-type 

molecule as shown by the space filling representation. 
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Fig. 6 (a) The crystal structure of the [Fe( 5-C5H4-1-

C5H4N)2]2Cd2(NO3)4·CH3OH·0.5C6H6 complex showing the coordinated 

methanol molecule which leads to different coordination numbers around 

the two cadmium centres. (b) The complex form ample channels throughout 

the structure where solvent molecules (benzene) can be accommodated. 

 

 

 

The structure of [Fe( 5-C5H4-1-C5H4N)2]2Cd2(NO3)4·CH3OH·0.5C6H6 is 

reminiscent of that of the silver complex with the notable difference that the 
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Cd-centres are bridged by two asymmetric nitrate bridges [Cd(1)–O(9) 

2.355(7), Cd(2)–O(9) 2.400(6), Cd(1)–O(1) 2.450(6), Cd(2)–O(1) 2.757(6) 

]. While the Cd(1) centre is six-coordinated, the Cd(2) centre is seven-

coordinated because of additional presence of a coordinated methanol 

molecule (see Fig. 6). In summary, one Cd-centre is almost octahedral, 

while the other is seven-coordinated and the Cd Cd distance is 4.225(3) . 

The ferrocenyl-pyridine systems stack at a distance of 3.47 , with the Cd-

atoms completely screened from the surrounding by the N- and O-

interactions. Fig. 6 shows how the supramolecular arrangement of the 

complexes leaves ample channels in the structure where the solvent 

molecules (light blue) can be accommodated. 

The complex [Fe( 5-C5H4-1-C5H4N)2]2Cu2(CH3COO)4·3H2O possesses a 

structure that is reminiscent of that of [Fe( 5-C5H4-1-

C5H4N)2]2Ag2(NO3)2·1.5H2O, the Cp-pyridine ligands are in eclipsed 

conformation and bridge the two Cu-atoms (see Fig. 7). The Cu Cu 

separations are 3.428(5) and 3.473(5) , respectively, for the two 

independent half molecules in the asymmetric unit. Similarly to what 

observed in [Fe( 5-C5H4-1-C5H4N)2]2Cd2(NO3)4·CH3OH·0.5C6H6 the 

bimetallic Cu Cu unit is spanned by two acetate anions [Cu(1)–O(2) 

1.96(2), 2.49(2), Cu(2)–O(6) 2.06(2), 2.37(2) ]. If one considers the 

additional acetate ions linked to each Cu atom, the coordination around 

copper can be described as distorted square pyramidal. 

 

 



 29 

 
 

 

Fig. 7 The heterometallic [Fe( 5-C5H4-1-

C5H4N)2]2Cu2(CH3COO)4·3H2O complex showing how the how the network 

is built up by bridging acetate anions between the dimeric units. 
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Clearly the complex [Fe( 5-C5H4-1-C5H4N)2] can also take part in 

hydrogen-bonding interactions with two N-acceptors on the pyridyl ligands. 

Hydrogen bonding is one of the core topics of molecular crystal engineering 

and has been investigated extensively because of its tuneable strength and 

directional features.102–104,106,108–114 In order to compare the Lewis basicity 

of the pyridyl ligand in [Fe( 5-C5H4-1-C5H4N)2] towards metal coordination 

and towards a protic acid, we have also reacted [Fe( 5-C5H4-1-C5H4N)2] 

with the dicarboxylic organometallic acid [Fe( 5-C5H4COOH)2] obtaining 

the hydrogen bonded adduct [Fe( 5-C5H4-1-C5H4N)2][Fe( 5-

C5H4COOH)2], which will be described later in this Perspective.  

 

 

 

 

e. Mechanochemical Preparation of Coordination Networks  

In this section we will show that coordination polymers with bidentate 

nitrogen bases can be prepared mechanochemically.126 Nichols, Steed and 

Raston have explored the use of mechanochemistry in the synthesis of 

extended supramolecular arrays.127 Grinding of Ni(NO3)2 with 1,10-

phenanthroline (phen) resulted in the facile preparation of [Ni(phen)3]2+ 

accompanied by a dramatic and rapid colour change. Addition of the solid 

sodium salt of tetrasulfonatocalix[4]arene (tsc) gives two porous -stacked 

supramolecular arrays [Ni(phen)3]2[tsc4–]·nH2O and the related 

[Na(H2O)4(phen)][Ni(phen)3]4 [tsc4–][tsc5–]·nH2O depending on 

stoichiometry. It has also been reported that the co-grinding of copper(II) 

acetate hydrate with 1,3-di(4-pyridyl)propane (dpp) gives a gradual colour 

change from blue to blue–green over ca. 15 min. The resulting material was 

shown by solid-state NMR spectroscopy to comprise a 1D coordination 

polymer with water-filled pores. The same host structure, [{Cu(OAc)2}2(µ-
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dpp)]n, could be obtained from solution containing methanol, acetic acid or 

ethylene glycol guest species.128  

We have reported preparation of the coordination polymer 

Ag[N(CH2CH2)3N]2[CH3COO]·5H2O by co-grinding of silver acetate and 

[N(CH2CH2)3N] in 1:2 ratio (see Fig. 8). Single crystals suitable for X-ray 

diffraction were obtained from a water–methanol solution and used to 

compare calculated and experimental X-ray powder diffractograms. When 

ZnCl2 is used instead of AgCH3COO in the equimolar reaction with 

[N(CH2CH2)3N], different products are obtained from solution and solid-

state reactions, respectively. The preparation of single crystals of 

Ag[N(CH2CH2)3N]2[CH3COO]·5H2O was obviously indispensable for the 

determination of the exact nature of the co-grinding product. In order to do 

so the powder diffraction pattern computed on the basis of the single-crystal 

structure was compared with the one measured on the product of the solid-

state preparation. Fig. 9 shows that the structure of Zn[N(CH2CH2)3N]Cl2 is 

based on a one-dimensional coordination network constituted of alternating 

[N(CH2CH2)3N] and ZnCl2 units, joined by Zn–N bonds. As mentioned 

above, upon co-grinding of the solid reactants a new Zn compound of 

unknown stoichiometry is obtained as a powder material. Even though 

attempts to obtain single crystals of this latter compound have failed, there 

is a relationship between the compound obtained initially by co-grinding 

and the one obtained from solution. In fact, the co-grind phase can be 

partially transformed by prolonged grinding into the known anhydrous 

phase Zn[N(CH2CH2)3N]Cl2 shown in Fig. 9. 
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Fig. 8 The coordination network in Ag[N(CH2CH2)3N]2[CH3COO]·5H2O 

is built up by chains of Ag [N(CH2CH2)3N] Ag [N(CH2CH2)3N] Ag 

with each silver atom carrying an extra pendant [N(CH2CH2)3N] ligand. An 

extra coordinated water molecule leads to tetrahedral coordination 

geometry around the silver centres. 

 

 

 
 

Fig. 9 The one-dimensional coordination network present in crystals of 

Zn[N(CH2CH2)3N]Cl2. 
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More recently we have applied the same procedure to the preparation of 

another class of compounds.129 We have explored the solid-state and 

solution reactions between silver acetate and trans-1,4-diaminocyclohexane 

[H2NC6H10NH2], dace, a diamine having been little exploited as a divergent 

ligand in the construction of coordination networks.130–137 The solid-state 

co-grinding of AgCH3COO and dace in 1 : 1 ratio results in a crystalline 

powder tentatively formulated as Ag[dace][CH3COO]·xH2O (Scheme 4). 

Crystallisation of the same compounds from anhydrous MeOH yields two 

types of products depending on the solvent evaporation conditions: crystals 

of Ag[dace][CH3COO][MeOH]·0.5H2O, are obtained by crystallisation 

under argon flow, while slow evaporation in the air results in crystals of 

Ag[dace][CH3COO]·3H2O. Single-crystal X-ray diffraction experiments 

have shown that both of these compounds contain two isomeric forms of the 

coordination network {Ag[dace]+} . If the same reaction between 

AgCH3COO and dace is carried out directly in MeOH–water solution, a 

third crystalline material is obtained, namely the tetrahydrate 

Ag[dace][CH3COO]·4H2O. In all cases, correspondence between bulk 

powder and single crystals was ascertained by comparing computed and 

observed powder diffractograms. 
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Scheme 4 

 

 

In terms of chemical composition the three compounds differ only in the 

degree and nature of solvation. The differences in topology are, however, 

much more dramatic and the three compounds must be regarded as isomers 

of the same basic coordination network. The crystal structure of the 

MeOH·0.5H2O compound is constituted of a two-dimensional coordination 

network (Fig. 10(a)) formed by the divergent bidentate dace ligand and two 

silver atoms, which are joined together by an Ag Ag bond of 3.323(1) 

and are asymmetrically bridged by two methanol molecules. There is a close 

structural relationship between the coordination networks in the 

MeOH·0.5H2O compound and in the trihydrated compound. This latter 

structure is built around a zigzag chain Ag(+) [dace] Ag(+) [dace] Ag(+) 

units as shown in Fig. 10(b). The Ag-atom is coordinated in a linear fashion. 

A projection perpendicular to the dace planes shows how the zigzag-chains 

extend in parallel fashion. The Ag(+) [dace] Ag(+) [dace] Ag(+) chains 

are bridged together via hydrogen bonds involving the N–H donors, the 

water molecules and the acetate anions. The tetrahydrated species 
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Ag[dace][CH3COO]·4H2O, contains an isomeric form of the coordination 

networks present in two former compounds. In the trihydrated compound 

two ligands are in cisoid relative orientation with respect to the silver atom, 

while in the tetrahydrated compound the two ligands adopt a transoid 

conformation. This is made possible by the different orientation of the N-

atom lone pairs in dace ligand. The acetate anions form a hydrated network 

and interact with the base and the water molecules. 
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Fig. 10 (a) Crystal structure of the Ag[dace][CH3COO]·1.5H2O complex 

where the two-dimensional coordination network is formed by the divergent 

bidentate dace ligand with silver atoms. (b) Crystal structure of the 

Ag[dace][CH3COO]·3H2O complex. (c) Crystal structure of the 

Ag[dace][CH3COO]·4H2O complex where the ligands adopt a transoid 

relative orientation with respect to the silver atom. 

 

 

In summary, different isomers of the same coordination network have 

been obtained depending on the preparation and crystallisation conditions 

(Scheme 5). The relationship between supramolecular isomerism and 

network topology has been discussed.66  
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Scheme 5 

 

 

In a further study of mechanochemical utilization of dace we have 

reported that compound [CuCl2(dace)]  can be obtained by thermal 

treatment of the hydrated compound [CuCl2(dace)(H2O)] , which is 

prepared by kneading of solid CuCl2 and dace in the presence of a small 

amount of water.138 The structure of [CuCl2(dace)]  is not known, since it 

is insoluble in most organic solvents, which does not permit the growth of 

single crystals of X-ray quality. However the DMSO adduct 

[CuCl2(dace)(DMSO)]  has been fully characterised by single X-ray 

diffraction and therefore given some insight of the structure of 

[CuCl2(dace)] . The DMSO adduct can also easily be obtained by kneading 

solid CuCl2 and dace in the presence of a small amount of DMSO. This 
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compound is formed of 1-D coordination networks, in which the CuCl2 

units are bridged by dace ligands in chains (see Fig. 11). Parallel 1-D 

CuCl2–dace networks form layers and between the layers, the co-

crystallised DMSO is intercalated. 

 

 

 
 

 

Fig. 11 The [CuCl2(dace)]  complex forming chains of CuCl2 and dace 

ligands, where the chains form layers. Between the layers, co-crystallized 

DMSO is intercalated. 
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Beside the interesting structural features, compound 

[CuCl2(dace)(DMSO)]  is relevant because of its behaviour upon thermal 

treatment. When [CuCl2(dace)(DMSO)]  is heated to 130 °C it converts to 

[CuCl2(dace)]  as easily ascertained by comparing X-ray diffraction 

powder diffractograms. From the structure of [CuCl2(dace)(DMSO)]  and 

from the knowledge of its thermal behaviour it is possible to infer that the 

structure of [CuCl2(dace)]  is based on stacking sequence of layers as in 

[CuCl2(dace)(DMSO)] , but squeezed  at a shorter inter-layer separation 

as a consequence of DMSO removal. When a guest molecule enters 

between the layers, the spacing between the CuCl2-dace chains is expanded 

and the layers are shifted back in position. A series of small molecules can 

be uptaken/released depending on the preparation method, i.e. kneading, 

suspension in the liquid guest or kneading followed by suspension. The 

latter approach is the most productive, when suspended in the desired liquid 

guest the [CuCl2(dace)]  only takes up relatively small molecules (DMSO, 

acetone, water, methanol, etc.) while by kneading other guest molecules are 

also taken up. But if [CuCl2(dace)]  is first kneaded with a small amount of 

the desired liquid and then left stirring in the same liquid for 12 h, partial or 

complete filling of the compound is observed, independently on the guest 

molecule. 

Reversible gas–solid reactions and solid–solid reactions of the zwitterion 

sandwich complex [CoIII( 5-C5H4COOH)( 5-C5H4COO)]  

As mentioned in the Introduction, solid–gas reactions provide another 

alternative (when not unique) solvent-free route to the preparation of novel 

materials. In this section we summarize the solvent-free chemistry of the 

zwitterion sandwich complex [CoIII( 5-C5H4COOH)( 5-C5H4COO)].139 The 

presence of one –COOH group, which can react with bases, and one –

COO(–) group, which can react with acids confers an effective amphoteric 

behaviour to the complex. As a matter of fact, the molecule undergoes fully 

reversible gas–solid reactions with the hydrated vapours of a variety of acids 
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(e.g. HCl, CF3COOH, CCl3COOH, CHF2COOH, HBF4, HCOOH and bases 

(e.g. NH3, NMe3, NH2Me) as well as solid–solid reactions (see Fig. 12) with 

crystalline alkali salts MX (M = K+, Rb+, Cs+, NH4
+; X = Cl–, Br–, I–, PF6

–, 

though not in all permutations of cations and anions).140–145 The zwitterion 

[CoIII( 5-C5H4COOH)( 5-C5H4COO)] can be quantitatively prepared from 

the corresponding dicarboxylic cationic acid [CoIII( 5-C5H4COOH)2]+. 

 

 

 
 

 

Fig. 12 The solid–solid reaction and gas–solid reaction of the zwitterion 

sandwich [CoIII( 5-C5H4COOH)( 5-C5H4COO)] complex with crystalline 

MX and vapours of difluoroacetic acid, respectively. 
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Manual grinding of the zwitterion [CoIII( 5-C5H4COOH)( 5-C5H4COO)] 

with a number of alkali salts MX (M = K+, Rb+, Cs+, NH4
+; X = Cl–, Br–, I–, 

PF6
– though not in all permutations of cations and anions, (see below) yields 

compounds of general formula [CoIII( 5-C5H4COOH)( 5-

C5H4COO)]2·M+X–.140,141 Information on the hydrogen-bonding nature and 

on the relationship between structures in solution and those obtained in the 

solid state by mechanical grinding were obtained by a combination of 

solution and solid-state NMR methods. In some cases (M = Rb+, Cs+, X = 

Cl–, Br–, I–) it was necessary to recur to kneading by adding a few drops of 

water to the solid mixture in order to obtain the desired product. All 

compounds of formula [CoIII( 5-C5H4COOH)( 5-C5H4COO)]2·M+X–, (M = 

K+, Rb+, Cs+, NH4
+ X = Br–, I–, PF6

–) are isostructural and are characterized 

by the presence of a supramolecular cage formed by four zwitterionic 

molecules encapsulating the alkali or ammonium cations. The cage is 

sustained by O–H O hydrogen bonds between carboxylic –COOH and 

carboxylate –COO(–) groups, and by C–H O bonds between –CHCp and –

CO groups, while the anions are layered in between the cationic complexes, 

as shown in Fig. 13 in the case of the CsI derivative. It is fascinating to 

think of the process leading to formation of the cages as a kind of 

sophisticated solvation based operated by the organometallic complex. The 

zwitterion is able of extracting  via O X– interactions the alkali cations 

from their lattice while the anions are extruded  and left to interact with the 

peripheral C–H groups via numerous C–H X interactions. The solid–solid 

process can thus be seen as the dissolution of one solid (the alkali salt) into a 

solid solvent.  
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Fig. 13 A pictorial representation of the process leading from [CoIII( 5-

C5H4COOH)( 5-C5H4COO)] and CsI to [CoIII( 5-C5H4COOH)( 5-

C5H4COO)]2·Cs+I–. 

 

f. Mechanochemical preparation of hydrogen bonded adducts  

Manual grinding of the ferrocenyl dicarboxylic acid complex [Fe( 5-

C5H4COOH)2] with nitrogen containing solid bases, namely 1,4-

diazabicyclo[2.2.2]octane, 1,4-phenylenediamine, piperazine, trans-1,4-

cyclohexanediamine and guanidinium carbonate, generates quantitatively 

the corresponding organic-organometallic adducts (see Fig. 14(a)).146,147 The 

case of the adduct [HC6N2H12][Fe( 5-C5H4COOH)( 5-C5H4COO)] (see 

Fig. 14(b)) is particularly noteworthy because the same product can be 
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obtained in three different ways: (i) by reaction of solid [Fe( 5-

C5H4COOH)2] with vapours of 1,4-diazabicyclo[2.2.2]octane (which 

possesses a small but significant vapour pressure), (ii) by reaction of solid 

[Fe( 5-C5H4COOH)2] with solid 1,4-diazabicyclo[2.2.2]octane, i.e. by co-

grinding of the two crystalline powders, and (iii) by reaction in MeOH 

solution of the two reactants. Clearly, the fastest process is the solid–solid 

reaction. It is also interesting to note that the base can be removed by mild 

treatment regenerating the structure of the starting dicarboxylic acid. The 

processes imply breaking and reassembling of hydrogen-bonded networks, 

conformational change from cis to trans of the –COO/–COOH groups on 

the ferrocene diacid, and proton transfer from acid to base. Crystals suitable 

for X-ray diffraction were grown via seeding from the solutions of the 

products originally prepared mechanochemically. 
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Fig. 14 (a) Grinding of the organometallic complex [Fe( 5-

C5H4COOH)2] as a solid polycrystalline material with the solid bases 1,4-

diazabicyclo[2.2.2]octane, guanidinium carbonate, 1,4-phenylenediamine, 

piperazine and trans-1,4-cyclohexanediamine generates quantitatively the 

corresponding adducts [HC6H12N2][Fe( 5-C5H4COOH)( 5-C5H4COO)], 

[C(NH2)3]2[Fe( 5-C5H4COO)2]·2H2O, [HC6H8N2][Fe( 5-C5H4COOH)( 5-

C5H4COO)], [H2C4H10N2][Fe( 5-C5H4COO)2], [H2C6H14N2][Fe( 5-

C5H4COO)2]·2H2O. (b) The solid–gas and solid–solid reactions involving 

1,4-diazabicyclo[2.2.2]octane with formation of the linear chain. 
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In this context it is worth discussing the result of the mechanochemical 

reaction of the above mentioned complex [Fe( 5–C5H4-1-C5H4N)2] with the 

dicarboxylic ferrocenyl acid [Fe( 5-C5H4COOH)2]. The supramolecular 

structure of the hydrogen bond adduct [Fe( 5-C5H4-1-C5H4N)2][Fe( 5-

C5H4COOH)2] is shown in Fig. 15. It can be seen that [Fe( 5-C5H4-1-

C5H4N)2] and [Fe( 5-C5H4COOH)2] establishes a twin hydrogen-bonding 

interaction forming a sort of ferrocenyl dimer. The O N separations 

[O(2) N(1) 2.593(5), O(4) N(2) 2.569(5) ] are in agreement with the 

presence of conventional hydrogen bonds. It is interesting to observe that, 

judging from the diffraction data, no proton transfer from the –COOH 

groups to the N-sites takes place. Hence the two hydrogen-bonding 

interactions ought to be described as neutral O–H N rather than as charge 

assisted  (–)O H–N(+)hydrogen bonds.107,148–152 Both the two COOH groups 

in the diacid and the pyridine groups in [Fe( 5-C5H4-1-C5H4N)2] are 

eclipsed. The arrangement is thus topologically related to that observed for 

the class of complexes of complexes  discussed above with the exception 

of the (ZnII
chloride)2

4+ derivative. It is interesting to note that the preference 

for an eclipsed conformation of the pyridyl ligands is maintained in the 

formation of the hydrogen bond adduct. In principle, [Fe( 5-C5H4-1-

C5H4N)2][Fe( 5-C5H4COOH)2] could possess an alternative network 

structure in the solid state based on 1-D chains of alternating 

pyridylcarboxylic ligands. This arrangement is fairly common when 

ferrocenyl dicarboxylic acid is used. It has been observed in hydrogen 

bonded adducts with bis-amidines153 and with other bis-amines, such as 1,4-

diazabicyclo[2.2.2]octane, C6H12N2, DABCO.146,154 In all these cases, 

however, the geometry of the base did not allow cyclization and forced the 

system to chain formation, while the conformational freedom of [Fe( 5-

C5H4-1-C5H4N)2] permits, in principle, both linear chains and rings. 
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Fig. 15 The solid-state structure of [Fe( 5-C5H4-1-C5H4N)2][Fe( 5-

C5H4COOH)2] showing the twin hydrogen-bonding interaction which form 

the ferrocenyl dimer. 

 

 

 

A similar situation is seen with the diacid [Fe( 5-C5H4COOH)2] itself.155–

163 Contrary to most dicarboxylic acids that form chains linked by 

carboxylic rings, the ferrocenyl diacid forms cyclic dimers joined by a twin 

carboxylic ring in both its known polymorphic modifications (monoclinic 

and triclinic). It is noteworthy that the analogy between [Fe( 5-C5H4-1-

C5H4N)2][Fe( 5-C5H4COOH)2] and [Fe( 5-C5H4COOH)2] is not confined 

to the dimeric structure: the supramolecular arrangement in the solid state is 

also extremely similar. The effect of mechanical mixing of solid 

dicarboxylic acids HOOC(CH2)nCOOH (n = 1–7) of variable chain length 

together with the solid base 1,4-diazabicyclo[2.2.2]octane, C6H12N2, to 
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generate the corresponding salts or cocrystals of formula [N(CH2CH2)3N]–

H–[OOC(CH2)nCOOH] (n = 1–7) has also been investigated.164  

 

 

 

 

g. Mechanochemical preparation of supramolecular crown ether 

adducts  

In a further extension of the exploratory work in the use of 

mechanochemical methods to prepare hydrogen bonded supramolecular 

adducts we have used crown ethers to capture alkali metal cations and the 

ammonium cation in extended hydrogen bonded networks.165 Crown ethers 

complexes have been the subject of an enormous number of studies because 

of the interest in ion recognition, complexation and in self-assembly 

processes.166–170 In the study ammonium hydrate sulfate salts were used 

since the presence of hydrogen bonds between ions is a relevant 

supramolecular issue and hydrogen sulfate salts have found applications in a 

number of devises such as H2 and H2O sensors, fuel and steam cells and 

high energy density batteries.171–174 Manual co-grinding of solid 18-

crown[6] and solid [NH4][HSO4] in the air leads to formation of the crown 

ether complex 18-crown[6]·[NH4][HSO4]·2H2O (Fig. 16), the water 

molecules being taken up from ambient humidity during grinding. The 

complex has been fully structurally characterised by single-crystal X-ray 

determination. In the complex the ammonium cation is trapped via Ocrown

H–N hydrogen bonds by the crown ethers, while on the exposed side it 

interacts with the hydrogen sulfate anion. The sulfate anion and the water 

molecules also interacts via hydrogen bonding forming a ribbon that is 

sandwiched between 18-crown[6]·[NH4]+ units. Hydrogen bonds are also 

observed between water molecules and oxygen atoms in the crown ether. 
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Fig. 16 The solid-state structure of the crown ether complex 18-

crown[6]·[NH4][HSO4]·2H2O. 
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The crown ether 15-crown[5] is a liquid in room temperature, so when it 

is kneaded instead of grinded, with the ammonium hydrate sulfate, a similar 

reaction as for the 18-crown[6] takes place. The product, (15-

crown[5])3·[NH4]2[HSO4]3·H2O, also fully structurally determined by 

single-crystal X-ray determination, is also obtained when the reaction takes 

place in solution. The (15-crown[5])3·[NH4]2[HSO4]3·H2O is reminiscent of 

that of the 18-crown[6] because of the formation of hydrogen bonded 

ribbons intercalated between the crown ether layers. The difference between 

the two adducts are, however, the two different types of interactions 

between the ammonium cation and the crown ether that is presence in the 

15-crown[5] adduct. One ammonium cation is sandwiched between two 

crown ether units, while the other is linked to the hydrogen sulfate anion by 

N–H O hydrogen bonds. In the 15-crown[5] adduct also a hydrogen 

bonded [H3O]+ ion is needed to neutralise the overall charge. 
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h. Conclusions  

Crystal engineering amounts to the deliberate construction of a molecular 

solid1 (whether a molecular complex, an adduct or a co-crystal)175,176 that 

can perform desired functions, hence it is conceptually related to the 

construction of a supermolecule.166,177 In both molecular crystals and 

supermolecules the collective properties depend on the aggregation via 

intermolecular bonds of two or more component units. These 

supramolecular interactions can be coordination bonds between ligands and 

metal centres and non-covalent bonds between neutral molecules or ions or, 

of course, any of their combinations. Processes that lead to such non-

covalent bonds from reactants to products, either via breaking or forming of 

intermolecular bonds, are therefore supramolecular reactions. In this 

Perspective article we have shown that non-covalent bonds can be broken 

and formed in a controlled way by reactions that do not imply the use of 

solvent but that can be carried out directly between two crystalline solids or 

between a crystalline solid and a vapour. Reactions of this type have been 

the subject of investigation for decades in the fields of organic and of 

inorganic chemistry. Although solid–gas and solid–solid reactions are at the 

basis of a number of industrial processes that range from preparation of 

pharmaceutical compounds178,179 to inorganic alloying,24 they still enjoy 

little popularity in the field or organometallic and coordination 

chemistry.180,181 This is probably due, on the one hand, to the fact that 

crystals are depicted (even at the level of crystallography courses) as rigid, 

stiff, fragile materials that are good for little else beside structural analysis, 

and, on the other hand, to the belief that molecular crystals, being held 

together by non-covalent interactions, cannot compete with covalent or 

ionic inorganic solids in terms of cohesion and stability and are not the best 

materials for gas uptake and/or mechanical treatment. 

Our experience is that adequately chosen crystalline materials can 

withstand reversible gas–solid reactions with vapours of both acidic and 
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basic substances as well as mechanically activated reactions with other 

molecular crystals and inorganic salts. Primarily, the interest in solvent-free 

conditions stems from the possibility of obtaining the same product as that 

from solution without solvent because the process is cheaper, less time 

consuming and often more environmentally friendly. On the other hand one 

may be interested in solvent-free conditions for the possibility of obtaining 

products not otherwise accessible from solvents. In this latter case, however, 

one is often faced with the problem of characterization, because the lack of 

single crystals complicates the matter significantly and ab initio structural 

determination from powder diffraction data alone is not yet a valid 

alternative with complex structures such as those described above. 

In this Perspective, we have confined ourselves to essentially four classes 

of reactions involving organometallic molecular crystals or coordination 

compounds as reactants: (i) reactions between a hydrogen bonded molecular 

crystal and a vapour with formation of hydrogen bonded supramolecular 

adducts, (ii) reactions leading to formation of covalent bonds for the 

preparation of building blocks, (iii) reactions between hydrogen bonded 

molecular crystals to produce new molecular crystals based on hydrogen 

bonds, and (iv) reactions between a molecular crystals and ionic crystals 

leading to solid-state solvation . Clearly, all these reactions (perhaps with 

the exception of those of type (ii) are diffusion controlled and are not 

necessarily reactions in the solid state as mechanical stress may cause local 

melting, co-grinding may form an intermediate eutectic phase, and kneading 

probably generates locally hypersaturated solutions wherefrom crystals of 

the new phase nucleate. In all these cases the crystal lattice is destroyed and 

reformed through recrystallization. In such processes hydrogen bonds, -

stacking, van der Waals, ion pairing interactions etc. in are broken and 

formed through the reaction process leading to formation of supramolecular 

compounds or hybrid molecular crystals. 
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On closing, it may be useful to stress that reactions involving solid 

coordination and organometallic compounds represent green chemistry  

ways to the preparation of metal containing materials since recovery, 

storage and disposal of solvents are not required.182 Furthermore solvent-

free reactions often lead to very pure products and reduce the formation of 

solvate species and may thus be exploited in the quest for elusive crystal 

polymorphs.183–189 These might be useful notions for crystal engineers and 

solid-state chemists. 
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2. Novel organometallic building blocks for molecular 

crystal engineering.  

Part 4. Synthesis and characterization of mono- and bis-

amido derivatives of [CoIII( 5-C5H4COOH)2]+ and their 

utilization as ligands  
 

a. Introduction  

We are contributing,1 together with others,2 to expanding the library of 

organometallic building blocks that can be used in the engineering of 

organometallic supramolecular complexes3 and networks.4 Our interest is 

focused on systems that could both coordinate to metal centres in the 

formation of supramolecular complexes and take part in 

intermolecular/interionic hydrogen bonding interactions. The intent is to 

widen the field of organometallic solid-state chemistry towards crystal 

engineering,5 the emerging discipline that aims to the design, bottom-up 

constructions and evaluation of molecular materials.6  

In previous studies,7 we have investigated the participation in 

intermolecular interactions between organometallic and coordination 

complexes carrying –COOH and –OH groups showing that they form 

essentially the same type of hydrogen bonding interactions whether as part 

of organic molecules or as metal coordinated ligands. This is not surprising, 

as hydrogen bonds formed by such strong donor and acceptor groups are at 

least one order of magnitude stronger than most non-covalent interactions.8  

In terms of crystal engineering via hydrogen bonds,9 dicarboxylic acid 

molecules are often favoured because they can generate hydrogen bonding 

networks thanks to the twin hydrogen bonding function.7–10 We have 

extensively exploited this feature in the utilization of the sandwich acids 

[Fe( 5-C5H4COOH)2],11 [Co( 5-C5H4COOH)2]+,12 and [Cr( 6-

C6H5COOH)2].13 The cobaltocenium cationic complex [Co( 5-
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C5H4COOH)2]+, in particular, has proved to be extremely versatile for the 

selective trapping of alkali ions and for use in solid–solid and solid–gas 

reactions.14  

The aim of this paper is essentially twofold. First, we expand our 

chemistry and crystal engineering efforts from the carboxylic groups 

towards a different supramolecular bonding functionality, namely the amido 

group, and second we explore the possibility of using the substituted amido 

group as a coordinating ligand in the preparation of complexes of complexes. 

In the following we will report the synthesis, characterization and the 

analysis of the hydrogen bonding in the solid state of a series of complexes 

obtained from the carbonyl chloride [CoIII( 5-C5H4COCl)2]+ prepared from 

the parent acid [CoIII( 5-C5H4COOH)2]+ (vide infra). Depending on the 

stoichiometric ratios and reaction conditions, the carbonyl chloride [CoIII(
5-C5H4COCl)2]+ has been used (see Scheme 1) to prepare the substituted bis-

amide cationic sandwich compounds 1,1 -bis(4-

pyrazinaminocarbonyl)cobaltocenium, [CoIII( 5-C5H4CONHC4H3N2)2]+ (1), 

1,1 -bis(2-aminomethylpyridylcarbonyl)cobaltocenium, [CoIII( 5-

C5H4CONHCH2C5H4N)2]+ (2) and 1,1 -bis(di(2-

pyridyl)aminocarbonyl)cobaltocenium, [CoIII( 5-C5H4CON(C5H4N)2)2]+ 

(3), as well as the mono-amido carboxyl complexes 1-di(2-

pyridyl)aminocarbonyl)-1 -(carboxylic acid)cobaltocenium, [CoIII( 5-

C5H4CON(C5H4N)2)( 5-C5H4COOH)]+ (4) and 1-(4-amino-3,5-di-2-

pyridyl-4H-1,2,4-triazylcarbonyl)-1 -(carboxylic acid) cobaltocenium, 

[CoIII( 5-C5H4CONHC2N3(C5H4N)2)( 5-C5H4COOH)]+ (5), all isolated and 

crystallized in the form of hexafluorophosphate [PF6]– salts. 
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Scheme 1 Reagents and conditions: (i) SOCl2;(ii) 1 1 stoichiometric 

ratio; (iii) 2 1 stoichiometric ratio. 
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The potential of these cationic sandwiches as ligands in the formation of 

supramolecular adducts, whether coordination networks or complexes of 

complexes, has been demonstrated with the preparation of a supramolecular 

adduct of the mono-amido carboxyl complex [CoIII( 5-

C5H4CONHC2N3(C5H4N)2)( 5-C5H4COOH)]+ (5). The reaction between 5 

and Cd(NO3)2 has yielded the hexa-cationic mixed-metal complex 

[Cd(NO3)2{CoIII( 5-C5H4CONHC2N3(C5H4N)(C5H4NH))( 5-

C5H4COOH)}2]6+ (6). We have analysed both ligand–Cd coordination and 

supramolecular bonding arising from the presence of the hydrogen bonding 

donor/acceptor –COOH group. 

Finally, we have also taken the opportunity of this report to describe the 

structure of the carbonyl chloride cation [CoIII( 5-C5H4COCl)2]+ (7) 

crystallized as its tetrachloro cobaltate salt. To the best of the author's 

knowledge there is only one example of a structurally characterized 

organometallic carbonyl chloride, namely the sandwich complex 4-

ferrocenylcarbonyl-4 -chlorocarbonylbiphenyl,15 while several organic 

compounds are known. 
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b. Experimental  

 

Synthesis of 1,1 -bis(chlorocarbonyl)cobaltocenium 

hexafluorophosphate16  

1.5 g of 1,1 -di(carboxylic acid)cobaltocenium hexafluorophosphate were 

dissolved in an excess of SOCl2, the solution was stirring for 24 h under 

argon atmosphere. The product was separated by filtration (1.25 g, yield 

75%) and stored under argon atmosphere. 

 

Synthesis of 1,1 -bis(4-pyrazinaminocarbonyl)cobaltocenium 

hexafluorophosphate, 1[PF6]  

To a solution of 4-aminopyrazine (0.5 g, 5.2 mmol) and triethylamine 

(0.53 g, 5.3 mmol) in dry CH3CN (60 mL) a solution of 1,1 -

bis(chlorocarbonyl)cobaltocenium hexafluorophosphate (1.2 g, 2.6 mmol) in 

CH3CN (60 mL) was added dropwise under nitrogen at room temperature. 

On addition, the colour of the solution changed from colourless to green and 

a yellow precipitate formed. The mixture was allowed to stir for 12 h. The 

crude product, a yellow solid, was filtered off (1.1 g, 1.9 mmol; yield 50%) 

and subsequently dissolved in hot water; an excess of NH4PF6 was then 

added. After cooling, a fine bright yellow powder was recovered by 

filtration and dried. Calc.: H, 2.80; C, 41.68; N, 14,58. Found: H, 2.80; C, 

41.56; N, 14,58%) 

 

Synthesis of 1,1 -bis(2-aminomethylpyridylcarbonyl)cobaltocenium 

hexafluorophosphate, 2[PF6]  

To a solution of 2-aminomethylpyridine (0.56 g, 5.2 mmol) and 

triethylamine (0.53 g, 5.3 mmol) in dry CH3CN (60 mL) a solution of 1,1 -

bis(chlorocarbonyl)cobaltocenium hexafluorophosphate (1.2 g, 2.6 mmol) in 

CH3CN (60 mL) was added dropwise under nitrogen at room temperature. 

On addition, the colour of the solution changed from colourless to green and 
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a yellow precipitate formed. The mixture was allowed to stir for 12 h, and 

the yellow solid was isolated by filtration as the crude product (1.1 g, 1.9 

mmol; yield 80%). The crude product was dissolved in hot water and an 

excess of NH4PF6 was added. On cooling, the pure product formed as a fine 

bright yellow powder that was isolated by filtration and dried. Calc: H, 3.68; 

C, 47.85; N, 9.30. Found: H, 3.67; C, 47.70; N: 9.29%. 

 

Synthesis of 1,1 -bis(di(2-pyridyl)aminocarbonyl)cobaltocenium, 3[PF6]  

To a solution of di(2-pyridyl)amine (0.9 g, 5.2 mmol) and triethylamine 

(0.53 g, 5.3 mmol) in dry CH3CN (60 mL) a solution of 1,1 -

bis(chlorocarbonyl)cobaltocenium hexafluorophosphate (1.2 g, 2.6 mmol) in 

CH3CN (60 mL) was added dropwise under nitrogen. On addition, the 

colour of the solution changed from colourless to green and a yellow 

precipitate formed. The mixture was allowed to stir for 12 h, and the yellow 

solid was isolated by filtration as the crude product (1.1 g, 1.5 mmol; yield. 

74%). The crude product was dissolved in hot water and an excess of 

NH4PF6 was added. On cooling, the pure product formed as a fine bright 

yellow powder that was isolated by filtration and dried. Calc: H, 3.32; C, 

52.76; N, 11.54. Found: H, 3.32; C, 52.90; N, 11.51%. 

 

 

Synthesis of 1-di(2-pyridyl)aminocarbonyl)-1 -(carboxylic 

acid)cobaltocenium hexafluorophosphate, 4[PF6]  

A solution of 1,1 -bis(chlorocarbonyl)cobaltocenium 

hexafluorophosphate (1.2 g, 2.6 mmol) in dry CH3CN (60 mL) was 

prepared in a bottom flask with two necks and stirred under nitrogen at 

room temperature. To this a solution of di(2-pyridyl)amine (0.22 g, 1.3 

mmol) and triethylamine (0.13 g, 1.3 mmol) in CH3CN (60 mL) was added 

dropwise under nitrogen. On addition a precipitate formed. The mixture was 

allowed to stir for 24 h and was then filtered. Removal of solvent from the 
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solution yielded a yellow powder, which was dissolved in hot water; an 

excess of NH4PF6 was added. On cooling, the pure product was recovered 

as a fine bright yellow powder that was filtered and dried. Elemental 

analysis calc: H, 2.98; C, 45.93; N, 7.30%. Found: H, 2.98; C, 45.80; N, 

7.29%. 

 

Synthesis of 1-(4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazylcarbonyl)-1 -

(carboxylic acid)cobaltocenium hexafluorophosphate, 5[PF6]  

A solution of 1,1 -bis(chlorocarbonyl)cobaltocenium 

hexafluorophosphate (1.2 g, 2.6 mmol) in dry CH3CN (60 cm3) was made 

up in bottom flask with two necks and stirred under nitrogen at room 

temperature. To this was added a solution of 4-amino-3,5-di-2-pyridyl-4H-

1,2,4-triazole (0.31 g, 1.3 mmol) and triethylamine (0.13 g, 1.3 mmol) in 

CH3CN (60 cm3) dropwise and under nitrogen. On addition a precipitate 

formed. The mixture was allowed to stir for 24 h and was then filtered. 

Removal of solvent from the solution yielded a yellow powder, which was 

dissolved in hot water; an excess of NH4PF6 was added. On cooling, the 

pure product was recovered as a fine bright yellow powder that was filtered 

off and dried. Calc: H, 2.82; C, 44.88; N, 13.08. Found: H, 2.82; C, 44.99; 

N, 13.12%. 

 

Synthesis of [Cd(NO3)2{CoIII( 5-C5H4CONHC2N3(C5H4N)(C5H4NH))( 5-

C5H4COOH)}2]6+2[PF6]–2[CO3]2–·H2O, 6[PF6]2[CO3]2·2H2O  

0.22 mmol of [CoIII( 5-C5H4CONHC2N3(C5H4N)2)( 5-

C5H4COOH)]+[PF6]– and 0.11 mmol of Cd(NO3)2 were dissolved in 5 mL of 

water. Crystals suitable for single crystal X-ray diffraction were obtained by 

slow evaporation of the solvent. Calc: H, 2.10; C, 29.64; N, 9.37. Found: H, 

2.10; C, 29.74; N, 9.39%. 
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Synthesis of 2[CoIII( 5-C5H4COCl)2]+[CoCl4]2–, 72[CoCl4]  

72[CoCl4] was obtained as well shaped large green crystals from the 

mother-solution of the [CoIII( 5-C5H4COCl)2]+[PF6]– reaction, left on 

standing after filtration. The [CoCl4]2– counterion is likely formed by 

decomposition of the sandwich complex. Calc: H, 0.82; C: 14.78. Found: H, 

0.82; C: 14.74%. 

 

 

 

 

 

 

 

 

c. Crystal structure determination  

 

Crystal data for all compounds were collected on a Bruker ApexII CCD 

diffractometer. Crystal data and details of measurements are summarized in 

Table 1. Common to all compounds: Mo-K  radiation, = 0.71073 , 

monochromator graphite. The computer program SHELX9717a was used for 

structure solution and refinement based on F2. All non-hydrogen atoms were 

refined anisotropically. Hydrogen atoms bound to carbon atoms were added 

in calculated positions. The [PF6]– anion in 1[PF6] is disordered around one 

of the anion four-fold axes; the occupancy ratio was refined to 70 30. One 

of the chlorocarbonyl C–O–Cl ligands in 7 is disordered over two positions, 

which were refined with an occupancy ratio of 80 20. SCHAKAL9917b was 

used for the graphical representation of the results. Hydrogen-bonding 

interactions were evaluated by the program PLATON.17c  
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Table 1 Crystal data and details of measurements for compounds 1–7  

 

 
1[PF6]  
 

2[PF6]  
 

3[PF6]  
 

4[PF6]  
 

5[PF6]  
 

Formula C20H16Co1F6N6O2P C24H22CoF6N4O2P C32H24CoF6N6O2P C22H17CoF6N3O3P C24H20CoF6N6O4P 
M 576.29 602.36 728.48 575.29 660.36 
Crystal system Monoclinic Triclinic Triclinic Monoclinic Triclinic 
Space group P21/n P  P  P21/c P  

a/  8.2145(2) 7.232(2) 11.186(3) 10.034(2) 7.735(2) 

b/  10.0998(3) 12.581(3) 12.622(3) 24.647(5) 13.136(4) 

c/  25.6180(7) 13.607(7) 13.089(4) 9.579(4) 13.535(4) 

/° 90 88.91(3) 64.82(2) 90 105.762(1) 

/° 98.322(1) 79.74(3) 67.27(3) 108.70(3) 90.15(1) 

/° 90 89.46(2) 80.85(2) 90 101.52(10) 

V/ 3 2103.0(1) 1218.0(8) 1542.5(7) 2244(1) 1294.61(6) 

Z 4 2 2 4 2 
T/K 293 293 293 293 293 
F(000) 1160 612 740 1160 668 
µ(Mo-K )/mm–

1 
0.980 0.848 0.686 0.918 0.813 

Measd. reflns. 17330 5788 5668 4859 10464 
Unique reflns. 5058 5567 5410 2513 4557 
Parameters 351 352 433 344 366 
GOF on F2 0.996 0.985 0.983 0.725 0.985 
R1 (on F [I > 
2 (I)]) 

0.0650 0.0670 0.0676 0.0367 0.0498 

wR2 (on F2, all 
data) 

0.1940 0.2134 0.1650 0.1159 0.1454 
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6[PF6]2[CO3]2·2H2O  
 

72[CoCl4]  
 

Formula C50H42CdCo2F12N14O20P2 C24H16Cl8Co3O4 
M 1679.18 828.76 
Crystal system Triclinic Tetragonal 
Space group P  I41/a 

a/  8.715(3) 13.855(1) 

b/  12.051(6) 13.855(1) 

c/  15.228(6) 29.570(9) 

/° 81.61(4) 90 

/° 73.61(3) 90 

/° 88.83(4) 90 

V/ 3 1517.5(11) 5676(2) 

Z 1 8 
T/K 293 293 
F(000) 840 3272 
µ(Mo-K )/mm–1 1.065 2.519 
Measd. reflns. 5543 2702 
Unique reflns. 5326 2482 
Parameters 447 172 
GOF on F2 1.010 1.043 
R1 (on F [I > 2 (I)]) 0.0470 0.0442 
wR2 (on F2, all data) 0.1386 0.1273 
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d. Results and discussion  

With reference to Scheme 1, we shall first describe the solid-state 

structures of the bis-amido complexes [CoIII( 5-C5H4CONHC4H3N2)2]+ (1), 

[CoIII( 5-C5H4CONHCH2C5H4N)2]+ (2) and [CoIII( 5-

C5H4CON(C5H4N)2)2]+[PF6]– (3[PF6]). All complexes have been 

crystallized as their hexafluorophosphate salts and characterized by single-

crystal X-ray diffraction. 

In crystals of the salt [CoIII( 5-C5H4CONHC4H3N2)2]+[PF6]–, 1[PF6], the 

pyrazinaminocarbonyl groups are eclipsed with superimposition of both 

rings and (C O)–NH groups (Fig. 1(a)). The eclipsed conformation might 

appear unfavored in view of the steric requirements of the ligands. 

However, the same eclipsed conformation has been observed in the crystal 

of the congener [CoIII( 5-C5H4CONHC5H4N)2]+,1 and also in the 

corresponding ferrocenyl derivatives [Fe( 5-C5H4-1-C5H4N)2].11  
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Fig. 1 The structure of the complex cation [CoIII( 5-

C5H4CONHC4H3N2)2]+(1). (a) A view of the molecular structure of 1 

together with the labelling scheme; note how the pyrazinamino-carbonyl 

groups are slightly tilted with respect to the cyclopentadienyl ligands. (b) 

The packing arrangement showing the overlap of the pyrazinamino-

carbonyl groups and the network of N–H N, C–H N and C–H O 

interactions between neighbouring organometallic cations. 

 

 

 

Fig. 1(a) shows the molecular conformation and the atomic labelling 

scheme. The packing arrangement of complex 1 is shown in Fig. 1(b). It is 

noteworthy that the pyrazinamino-carbonyl groups are interdigitated, 

allowing for the formation of a network of long N–H N, C–H N and C–

H O contacts between neighbouring organometallic cations. 



 78 

In compound [CoIII( 5-C5H4CONHCH2C5H4N)2]+ (2) the 

aminomethylpyridyl groups linked to the cyclopentadienyl ligands have an 

additional degree of conformational freedom, as well as additional steric 

requirements, with respect to the pyrazino and pyridino substituents. This is 

reflected in the structure of the cation (see Fig. 2(a)), with the pyridyl 

moieties tilted with respect to the amido C(O)–NH unit. Fig. 2(b) shows 

how the packing arrangement of cations and [PF6]– anions in the crystal. 

 

 

 
 

Fig. 2 The structure of the complex cation [CoIII( 5-

C5H4CONHCH2C5H4N)2]+(2). (a) A view of the molecular structure 

together with the labelling scheme; note how the pyridyl moieties are tilted 

with respect to the amido C(O)–NH unit and to the cyclopentadienyl 

ligands. (b) A view of the packing down the a-axis (HCH atoms not shown for 

clarity). 

 



 79 

In compound [CoIII( 5-C5H4CON(C5H4N)2)2]+ (3), the bulk of the 

dipyridylamino moieties forces the two ligands in transoid conformation. 

This arrangement is not generally favoured in the crystals of substituted 

cobaltocenium complexes. In view of the pyridyl nitrogen atoms, this 

molecular cation is a good candidate for divergent coordination, i.e. for the 

formation of extended coordination networks. The structure of the cation, 

together with the atomic labelling, is shown in Fig. 3(a), while Fig. 3(b) 

shows a view of the packing arrangement of the cations. It is worth noting 

that there is a number of C–H N/O interactions involving the 

cyclopentadienyl C–H groups, the dipyridylamino N atoms and the amido O 

atoms of neighbouring organometallic cations [C(1) N(1) 3.24(1), C(11)

N(3) 3.25(1), C(17) O(2) 3.19(1) ]. 
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Fig. 3 (a) The structure of the complex cation [CoIII( 5-

C5H4CON(C5H4N)2)2]+(3), together with the labelling scheme; note how the 

dipyridylamino moieties forces the two ligands in transoid conformation 

with respect to the cyclopentadienyl ligands. (b) A view of the packing 

arrangement in crystalline 3[PF6], showing the C–H N/O interactions 

between neighbouring organometallic cations [C(1) N(1) 3.24(1), C(11)

N(3) 3.25(1), C(17) O(2) 3.19(1) ](HCH atoms not shown for clarity). 

 

 

With reference to Scheme 1, we shall now describe the structures and 

packings of the amido-carboxyl complexes [CoIII( 5-C5H4CON(C5H4N)2)(
5-C5H4COOH)]+ (4) and [CoIII( 5-C5H4CONHC2N3(C5H4N)2)( 5-

C5H4COOH)]+ (5), which retain  one carboxylic unit from the parent 

molecule [CoIII( 5-C5H4COOH)2]+. 



 81 

In the complex cation [CoIII( 5-C5H4CON(C5H4N)2)( 5-C5H4COOH)]+ 

(4) the di(2-pyridyl)aminocarbonyl ligand is tilted with respect to the 

cyclopentadienyl plane (see Fig. 4(a)), thus adopting a conformation that 

closely resembles the one discussed above for 3. Far more interesting is the 

behaviour of the carboxylic group. As shown in Fig. 4(b), the –COOH unit 

links to a pyridyl nitrogen atom of a neighbouring cation, forming an 

hydrogen bonded dimer with an O N distance of 2.780(7) . It is 

interesting to speculate on the possible existence of a supramolecular isomer 

of this crystal, as it is conceivable that the dimer formation is replaced by an 

extended one-dimensional network based on O–H N interactions between 

consecutive cations in a row. As a matter of fact, the extended hydrogen 

bonded network is the motif present in the hydrated [PF6]– salt of cation 

[CoIII( 5-C5H4CONHC2N3(C5H4N)2)( 5-C5H4COOH)]+ (5). The molecular 

structure of compound 5 is shown in Fig. 5(a) together with the labelling 

scheme. The bulky 1-(4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazylcarbonyl 

ligand is placed in a transoid conformation with respect to the –COOH 

group, which is then able to form an inter-cationic O–H N hydrogen bond 

(see Fig. 5(b)), which is appreciably shorter [O(2) N(5) 2.650(4) ] than 

the analogous interaction in 4 [2.780(7) ]. Besides, the presence of water 

molecules provides hydrogen bonds between cationic rows by bridging 

together the amido hydrogen atom [N(1) O(100) 2.803(4) ] and the 

triazyl nitrogen [N(3) O(100) 2.874(4) ]. 
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Fig. 4 The structure of the complex cation [CoIII( 5-

C5H4CON(C5H4N)2)( 5-C5H4COOH)]+(4). (a) A view of the complex 

together with the labelling scheme; note how the dipyridylaminocarbonyl 

group is slightly tilted with respect to the cyclopentadienyl ligand, similarly 

to what is observed in complex 3. (b) The –COOH unit links to a pyridyl 

nitrogen atom of another cation, forming a hydrogen bonded dimer [O(2)

N(3) 2.780(7) ](HCH atoms not shown for clarity). 
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Fig. 5 The structure of the complex cation [CoIII( 5-

C5H4CONHC2N3(C5H4N)2)( 5-C5H4COOH)]+(5). (a) A view of the complex 

together with the labelling scheme; note how the 1-(4-amino-3,5-di-2-

pyridyl-4H-1,2,4-triazylcarbonyl ligand is transoid with respect to the –

COOH group. (b) The inter-cationic O–H N hydrogen bond [O(2) N(5) 

2.650(4) ] links the cations in one-dimensional hydrogen bonded networks. 

The water molecules provide hydrogen bonds between the cationic rows 

[N(1) O(100) 2.803(4), N(3) O(100) 2.874(4), O(1) O(100) 3.116(3)

](HCH atoms not shown for clarity). 
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This latter amido-carboxyl cation has been used as a ligand for the 

preparation of a complex of complexes. The reaction between 5 and 

Cd(NO3)2 has yielded the supramolecular cation [Cd(NO3)2{CoIII( 5-

C5H4CONHC2N3(C5H4N)(C5H4NH)( 5-C5H4COOH)}2]6+ (6). The structure 

of the cation is shown in Fig. 6(a). It can be seen that two complexes 5 

coordinate the cadmium atom as bidentate ligands, while the two nitrate 

anions fill in the octahedral coordination above and below the square plane 

defined by the four N Cd interactions. Chelation takes place by means of 

one triazyl nitrogen and one of the pyridyl nitrogen atoms. Interestingly, 

rather than turning around  and adopting a transoid conformation with 

respect to the sterically crowded Cd-centres, the –COOH groups adopt an 

eclipsed conformation with respect to the C(O)–NH amido group. 

Stabilization to what may appear an unfavourable stereogeometry seems to 

derive from the complex network of hydrogen bonding interactions that 

involve the –COOH groups and the water molecules, as well as the nitrate 

and carbonate anions [O(3) O(100) 2.599(8), N(1) O(9) 2.773(8), N(3)

O(7) 2.752(7), O(100) O(9) 2.848(8), O(100) O(4) 3.017(8), O(100)

O(5) 3.006(10) ]. It is noteworthy that the shortest of such bonds is 

between the carboxylic oxygen and the water molecule. 
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Fig. 6 (a) The structure of the supramolecular cation [Cd(NO3)2{CoIII(
5-C5H4CONHC2N3(C5H4N)(C5H4NH)( 5-C5H4COOH)}2]6+(6), together 

with the labelling scheme. (b) A view of the packing arrangement showing 

the complex pattern of hydrogen bonding interactions involving the –COOH 

groups and the water molecules as well as the nitrate and carbonate anions. 

Relevant hydrogen bonding interactions ( ) are O(3) O(100) 2.599(8), 

N(1) O(9) 2.773(8), N(3) O(7) 2.752(7), O(100) O(9) 2.848(8), 

O(100) O(4) 3.017(8), O(100) O(5) 3.006(10) (HCH atoms not shown for 

clarity). 
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There are not many examples of structurally characterized carbonyl 

chlorides, and only one, to the best of the author's knowledge, of an 

organometallic sandwich, namely the ferrocenyl complex 4-

ferrocenylcarbonyl-4 -chlorocarbonylbiphenyl, where the C( O)Cl group, 

however, is linked to a biphenyl spacer  bound to the cyclopentadienyl 

ligand.15 Furthermore, compound [CoIII( 5-C5H4COCl)2]+, 7, is the only 

example available of a cationic carbonyl chloride. Crystals of 7 have been 

obtained, rather serendipitously, from the mother-solution wherefrom the 

hexafluorophosphate salt used as precursor in all subsequent reactions had 

been precipitated (see Scheme 1 and the Experimental section). While single 

crystals of the [PF6]– salt of 7 could not be obtained, the salt {[CoIII( 5-

C5H4COCl)2]+}2[CoCl4]2– crystallized easily in the form of deep green large 

crystals, the counterion [CoCl4]2– being very likely formed from 

decomposition of the sandwich compound. Fig. 7(a) shows the structure of 

the cationic complex; it can be seen that the two carbonyl chloride 

substituents are in eclipsed conformation. Fig. 7(b) shows the packing 

arrangement of the cations in the crystal; it is worth noting that the cations 

are arranged in rows parallel to the a-axis, in such a way that the Cl atoms 

of the chlorocarbonyl ligands are grouped in clusters , with Cl Cl 

interactions below 3.800 . The preferential Cl Cl clustering might be a 

reason for the eclipsed conformation of the chlorocarbonyl groups in the 

complex; steric considerations alone would suggest a transoid arrangement. 
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Fig. 7 (a) The structure of the complex cation [CoIII( 5-

C5H4COCl)2]+(7)(only the major image of disorder is shown (see 

experimental). (b) In the crystal the cations are arranged in rows parallel to 

the a-axis; the Cl atoms of the chlorocarbonyl ligands are grouped in 

clusters , with Cl Cl interactions below 3.800 (HCH atoms not shown for 

clarity). 
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e. Conclusions  

In this paper we have reported the synthesis and crystallographic 

characterization of a series of novel bis-amido and mono-amido-carboxyl 

complexes based on the cationic cobaltocenium sandwich core [CoIII( 5-

C5H5)2]+. The substituents on the amido groups have been chosen so as to 

contain basic N-atoms potentially available for coordination towards metal 

centers4 and for hydrogen bonding with suitable donors. All compounds 

have been obtained via the bis-carbonyl-chloride [CoIII( 5-C5H4COCl)2]+ 7, 

which is a unique example of structurally characterized organometallic 

cationic carbonyl chloride. The basic idea is to use the bis-amido complexes 

either as spacers in the construction of mixed-metal organometallic 

coordination networks or to prepare mixed-metal complexes of complexes 

as schematised in Scheme 2. In this latter case the formation of metalla-

macrocycles of the type obtained with substituted ferrocenyl bipyridine 

complexes ought also to be considered.1c,d  

 

 

 
 

 

Scheme 2. 
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In the case of the mono-amide [CoIII( 5-

C5H4CONHC2N3(C5H4N)(C5H4NH)( 5-C5H4COOH)]+ we have indeed 

shown that formation of a complex of complexes is possible, even though the 

cationic nature of the ligand generates ionic charge build up . In fact the 

resulting complex is hexacationic, [Cd(NO3)2{CoIII( 5-

C5H4CONHC2N3(C5H4N)(C5H4NH)( 5-C5H4COOH)}2]6+. However, the 

presence of two carboxylic groups on the complex might allow partial 

charge compensation if two carboxylic protons can be removed from the 

carboxylic groups, with formation of the hypothetical tetra-cationic 

zwitterionic species [Cd(NO3)2{CoIII( 5-

C5H4CONHC2N3(C5H4N)(C5H4NH)( 5-C5H4COO)}2]4+. 

Work is in progress to fully explore the potentials of these ligands as 

supramolecular building blocks for coordination chemistry applications and 

crystal engineering. 
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3. Design, Preparation and Characterization of the Adducts 

of the Bis-Amido Cobalticinium Complex [CoIII( 5-

C5H4CONHC5H4N)2][PF6] with Fumaric and Maleic Acids 
 

a. Introduction 

In the context of crystal engineering1 organometallic molecules and ions 

are beginning to attract an increasing interest because organometallic 

molecules and molecular ions combine the supramolecular bonding capacity 

of organic molecules with the presence of metal atoms. The number of 

possible combinations of the valence, spin and charge states of the metals 

atoms with the coordination geometries and supramolecular bonding 

capacity of functionalised organometallic complexes is virtually unlimited.2 

One of the important issues in this area of chemistry is that of being able to 

design, synthesize and ultimately exploit the topological properties of solid 

state materials based on coordination compounds, whether linked together 

to form supramolecular complexes or joined in extended coordination 

networks through space.3 The goal is that of reaching an intelligent control 

of the recognition and assembly processes that lead from molecular or ionic 

components to superstructures,4 hence from individual to collective 

chemical and physical properties.5  

 

In recent years, we have been directing our efforts,6 together with others,7 

to the exploration of the area of organometallic supramolecular solid state 

chemistry and crystal engineering. While many organic compounds often 

utilized by the crystal engineer are commercially available and can be used 

directly in the supramolecular assembly experiment, this is not so with 

organometallic species, which need, most often, to be synthesized on 

purpose.  
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With this idea in mind we have begun to prepare, also in collaboration 

with others, novel organometallic building blocks with adequate 

supramolecular bonding functionalities for the construction of target 

architectures.8 We have focused our strategy on the possibility of adding 

hydrogen bonding donor/acceptor groups to robust sandwich complexes. 

The rationale for this choice is that the hydrogen bond is the strongest of the 

non-covalent interactions and the one that best combines strength and 

directionality.9 Strength is synonym of cohesion and stability, while 

directionality implies topological control and selectivity, which are 

fundamental prerequisites for a successful control of the aggregation 

processes.10 

 

It is now well demonstrated that coordination ligands functionalised with 

-COOH and -OH groups form essentially the same type of hydrogen 

bonding interactions whether as part of organic molecules or as part of 

metal complexes.2,7,11 This is not surprising, as hydrogen bonds formed by 

such strong donor and acceptor groups are at least one order of magnitude 

stronger than most non-covalent interactions. In terms of topology, 

dicarboxylic acid molecules allow construction of supramolecular networks 

because of the twin hydrogen bonding function. We have extensively 

exploited this feature by using sandwich organometallic dicarboxylic acids 

such as [Fe(η5-C5H4COOH)2], [Co(η5-C5H4COOH)2]+ and [Cr(η6-

C6H5COOH)2].12 The cobalt cationic complex, in particular, has proved to 

be extremely versatile for applications in solid-solid and solid-gas 

reactions.13 

Recently, we have expanded this chemistry towards organometallic bis-

amido complexes. We have reported the solid-state investigation of the bis-

amido cobalticinium complex [CoIII(η5-C5H4CONHC5H4N)2][PF6], 

[1]+[PF6]-, together with its utilization in the formation of a hydrogen 
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bonded adduct with ferrocene dicarboxylic acid, namely [CoIII(η5-

C5H4CONHC5H4N)2][Fe(η5-C5H4COOH)2][PF6].14  It is worth stressing that 

[1]+ possesses, at least in principle, both the capacity of acting as a cationic 

di-base for protonation and hydrogen bond formation as well as that of 

acting as a coordination ligand. In this study we explore the first such 

characteristics. The downside of this is that the counterion (in all cases 

discussed herein the [PF6]- anion) is also “carried through” the acid base 

reaction and the subsequent crystallization, which decreases the level of 

predictability of the supramolecular architectures resulting from acid-base 

aggregation. As it will be seen in the following, our compounds can be 

described as hetero-anionic salts, e.g. containing both [PF6]- and the anions 

obtained from deprotonation of fumaric and maleic acids, of the protonated 

bis-amide [1]+. 

  

In this paper we describe our results in the reactions between [1]+[PF6]-  

and the dicarboxylic fumaric and maleic acids. Our interest stems from the 

observation that the cationic starting material can, at least in principle, 

behave both as a mono- and as a di-protonic acceptor on the two N-termini 

(thus leading to the formation of di- and tri-cationic complexes, see Chart 

1). These protonated forms can form hydrogen bridges with suitable 

hydrogen bond acceptors. Furthermore, the presence of the two -(CO)NH 

amido groups confers to the molecule additional hydrogen bonding 

capacity.  

 

Co+

O

NH

O

+

N HN N

 

[1]+ 
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Chart 1 

 

b. Results and Discussion 

As pointed out above, the organometallic amide [1]+ can exist in solution 

in three different forms depending on the degree of protonation, i.e. 

[CoIII(η5-C5H4CONHC5H4N)2]+, [1]+, [CoIII(η5-C5H4CONHC5H4N)(η5-

C5H4CONHC5H4NH)]2+, [1H]2+ and [CoIII(η5-C5H4CONHC5H4NH)2]3+, 

[1H2]3+. In the reaction with acids the degree of protonation can be generally 

“tuned” by varying the base:acid molar ratio. Of the three cations only the 

structure of [1]+ has been reported before and we address the reader to the 

previous publication,14 while the structure of the mono protonated and di-

protonated compounds have not been reported before. Since the 

supramolecular structure of [1H]2+ bears on the following discussion we 

shall first describe the packing of the dication [CoIII(η5-

C5H4CONHC5H4N)(η5-C5H4CONHC5H4NH)]2+, [1H]2+, while the tri-cation 

[1H2]3+ will be seen in the structure of the adducts discussed below. 

Selected hydrogen bonding parameters for [1H]2+ as well as for all the other 

species described herein are reported in Table 1. 

[1H]2+ 

[1H2]3+ 
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The mono-protonation product [1H]2+ has been crystallized as its [PF6]- 

salt in the form 2[CoIII(η5-C5H4CONHC5H4N)(η5-C5H4CONHC5H4NH)]2+ 

4[PF6]- ·H2O, 2[1H]2+ 4[PF6]- ·H2O. The most interesting feature, which 

bears on the following discussion, is that the dication forms hydrogen 

bonded dimers in the solid state via N-H···N interactions, as shown in Figure 

1. The resulting supramolecular aggregate is thus a tetra-cation “kept 

together” by two N-H···N hydrogen bonds [N(4)···N(3) 2.715(4), N(8) 

···N(6) 2.738(4) Å, for the two crystallographically independent units shown 

in Figure 1]. 

 
Figure 1. 

 

It is worth noting that one of the tetra-cations is hydrogen bridged with 

two water molecules [N···O 2.943(5)Å] and both cations also interact with 

the [PF6]- anions, establishing N-H···F hydrogen bonding interactions with 

the amidic N-H units [N···F distances in the range 3.025(4) – 3.072(5) Å], as 

shown in Figure 2. 
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Figure 2 

 

c. Reactions with fumaric acid 

Even though it is possible to envisage several stoichiometric molar ratios 

between base and acid in the reaction of [1]+ with acids (see Table 1), our 

experiments show that only two stoichiometries yield crystalline aggregates, 

namely [CoIII(η5-C5H4CONHC5H4N)(η5-C5H4CONHC5H4NH)]2+· [PF6]-

·1/2[fumarate]2 -, [1H]2+·PF6
-·1/2[fumarate]2-, and [CoIII(η5-

C5H4CONHC5H4NH)2]3+·[PF6]-·[H(fumarate)2]3-·H3O+·H2O, [1H2]3+ ·[PF6]-
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·[H(fumarate)2]3-·H3O+·H2O, obtained from the 2:1 and the reverse 1:2 

amide:acid ratios, respectively. Amide:acid ratios 2:1, 1:1 and 1:1.5 all 

yielded the fumarate derivative  [1H]2+·[PF6]-·1/2[fumarate]2- , while ratios 

1:2 and 1:3 both yielded the hydrogen fumarate derivative [1H2]3+·[PF6]-

·[H(fumarate)2]3-·H3O+·H2O. Why other stoichiometries, in particular the 

1:1, are not obtained, is difficult to say. One should keep in mind, however, 

that the acid:base protonation equilibrium in solution is not the only aspect 

that may influence the final solid-state product stoichiometry. Solubility 

equilibria, for example, may favour one species over another, while kinetic 

aspects may have their role in the formation of long living crystal nuclei in 

solution.  

 

In the cases yielding [CoIII(η5-C5H4CONHC5H4N)(η5-

C5H4CONHC5H4NH)]2+· [PF6]-·1/2[fumarate]2 -, [1H]2+·PF6
-·1/2[fumarate]2-, 

the diprotic acid is able to protonate two molecules of the amide, raising the 

charge of the organometallic moiety from +1 to +2. This product is formed 

with stoichiometric ratios up to 1:1.5 (which, incidentally, implies that there 

is unreacted fumaric acid that precipitates out together with the crystals of 

the adduct). Above 1:1.5 the protonation equilibrium changes: the excess of 

fumaric acid leads to complete protonation of the bis-amido complex, to a 

total cationic charge of +3 and formation of the complex  [1H2]3+. The 

resulting material [1H2]3+·[PF6]-·[H(fumarate)2]3-·H3O+·H2O is crystallized 

together with a protonated water molecule (see below). The expected 

product [1H2]3+·[PF6]-· [fumarate]2- corresponding to the stoichiometric ratio 

1:1 has not been isolated. 
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Thus, the two crystals [1H]2+·[PF6]-·1/2[fumarate]2- and [1H2]3+·[PF6]-

·[H(fumarate)2]3-·H3O+ contain the di-protonated and the three-protonated 

organometallic complexes, respectively. In spite of this difference, the two 

complexes show interesting structural relationships in the solid state: 

i) The organometallic complexes in both crystals [1H]2+·[PF6]-

·1/2[fumarate]2- and [1H2]3+·[PF6]-·[H(fumarate)2]3-·H3O+·H2O adopt a 

cisoid (eclipsed) conformation of the Cp-pyridyl ligands.  

ii) In [1H]2+·[PF6]-·1/2[fumarate]2- the monoprotonated amide forms a 

cyclic dimer with another complex via N-H···N hydrogen bonds [N(3)···N(4) 

2.669(7) Å], as shown in Figure 3. 

iii) Such dimers are linked together in a zigzag fashion via the interaction 

of the deprotonated fumarate dianions and the outer amido N-H groups (see 

Figure 3) [N(1)···O(3) 2.809(6), N(2)···O(4) 2.703(6)Å]. Each carboxylate 

unit “pinches” both N-H groups of one complex, in such a way the 

organometallic cation and the fumarate dianion interact via four N-H···O 

bonds. 

 

 
 

Figure 3. 
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iv) In the case of [1H2]3+, on the other hand, a dimer cannot form because 

both N-termini are protonated, nonetheless the complex retains the eclipsed 

geometry of the ligands and substituents (see Figure 4a). The pyridyl NH 

groups interact via hydrogen bonding with the [H3O]+ cation and the water 

molecule [N(3)···O(100) 2.690(4) and N(4)···O(200) 2.743(4) Å, 

respectively], which in turn interact with each other [O(100)···O(200) 

2.829(4) Å]. The [H3O]+ cation and the water molecule are also hydrogen 

bonded to the [H(fumarate)2]3- anions (see Figure 4b) [O(100) ···O(6) 

2.703(4), O(100) ···O(8) 2.739(4), O(200) ···O(5) 2.976(5) Å]. 

v) The trications [1H2]3+ are linked together by a supramolecular anion 

formed by a hydrogen fumarate unit and a fumarate dianion. Since the 

proton is mid-way along the O···O bond [O(5)···O(8) 2.466(4) Å], it is more 

appropriate to describe the system as a superanion of formula 

[H(fumarate)2]3-. 

vi) On both sides the supramolecular trianion [H(fumarate)2]3- interacts 

with the amido N-H groups as observed in [1H]2+ with N(1)···O(3) and 

N(2)···O(10) separations of 2.763(4) and 2.965(5)Å, respectively.  

 
(a) 
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(b) 

 

Figure 4. 

 

 

d. Reactions with maleic acid 

 

In terms of supramolecular bonding capacity and hydrogen bond 

formation, maleic acid differs from fumaric acid mainly in the fact that 

mono-deprotonation leads in general to formation of an intra-molecular 

hydrogen bond. As a consequence of the intramolecular hydrogen bonding 

formation the carboxylate groups are available only for hydrogen bonding 

acceptance. 

 

The structure of [CoIII(η5-C5H4CONHC5H4N)(η5-

C5H4CONHC5H4NH)]2+·5/2[PF6]-· 3/2[Hmaleate]–,  2[1H]2+·5/2[PF6]-· 

3/2[Hmaleate]–,  is reminiscent of those of the mono-protonated amide salt 

[CoIII(η5-C5H4CONHC5H4N)(η5-C5H4CONHC5H4NH)]2+ ·4[PF6]-·H2O and 

of the hydrogen fumarate salt [1H]2+·[PF6]-·1/2[maleate]2-. These systems 

have in common the presence of hydrogen bond dimers in the solid state 
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(see Figure 5). The N-H···N separations are comparable in length 

[N(4)···N(8) 2.688(6); N(6)···N(2) 2.686(6) Å]. Note, however, that the 

amido groups are eclipsed in one of the two dications and staggered in the 

other. This difference seems to suggest that in solution the complex is 

present with both, possibly dynamically interconverting conformations, 

which are frozen out at the stage of crystallization. It is also noteworthy that 

compound 2[1H]2+·5/2[PF6]-· 3/2[Hmaleate]–  is the only case, in this study, 

where the Cp-amido ligands show both the staggered and eclipsed relative 

orientations of the C(=O)NH units. The arrangement of the hydrogen 

maleate anions provides a possible rationale for the difference. As shown in 

Figure 6, the hydrogen maleate anions provide two types of bridges between 

next neighbouring dimers.  

Because of the mentioned scarcity of hydrogen bonding donor sites, the 

interaction links have to utilize the amido N-H groups. The structure can be 

described as formed of “dimers of dimers” held together by two ordered 

hydrogen maleate anions, for a total of six N-H···O interactions [N(3)···O(5) 

2.923(5), N(5)···O(7) 2.916(6), N(7)···O(8) 2.836(6) Å]. The N(1)-H(100) 

donor group, which is not involved in the “dimer of dimer” formation, can 

thus be used to link together the “dimers of dimers” via the disordered 

hydrogen maleate [N(1)···O(100) 2.832(6) Å] (see Figure 6). This picture 

also provides a rationale for the disorder observed in this latter hydrogen 

maleate anion, which is oriented randomly in two positions around the 

crystallographic inversion centre. 

 
Figure 5. 
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Figure 6. 

 

Let us now consider the cases of compounds 2[CoIII(η5-

C5H4CONHC5H4NH)2]3+·3[PF6]-· 3[Hmaleate]- ·2H2O,  2[1H2]3+·3[PF6]-· 

3[Hmaleate]- ·2H2O and [CoIII(η5-C5H4CONHC5H4NH)2]3+·2[PF6]-

·[Hmaleate]-·H2O,   [1H2]3+·2[PF6]-·[Hmaleate]- · H2O. These tow crystalline 

materials, in spite of the different stoichiometry, bear some close structural 

relationship. In both systems the intramolecular hydrogen maleate anion 

acts as a bridge between two tri-cations (compare Figures 7 and 8) by 

accepting hydrogen bond donation from the protonated pyridine N-terminus 

[N(7)···O(6) 2.794(4) and N(1)···O(3) 2.884(7) Å for the two compounds, 

respectively] and from the amido N-H system of two distinct cations 

[N(4)···O(8) 2.789(5), and N(2)···O(5) 2.923(7) and N(2)···O(6) 2.873(8) Å 

for the two compounds, respectively]. The hydrogen maleate bridges thus 

generate an extended network of alternating cations and anions, thanks also 

to the rotational freedom about the Cp-Co-Cp axis. In addition to this, in 

compound 2[1H2]3+·3[PF6]-· 3[Hmaleate]- ·2H2O the two hydrogen maleates 
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that do not act as bridges still interact each with an organometallic cation via 

NH···O hydrogen bonds [N(5)···O(10), N(8)···O(9), N(1)···O(13) Å] (Figure 

8) and establish hydrogen bonding interactions with the water molecules 

[O···O distances in the range 2.771(5)-2.936(5)Å]. 

 

 
(a) 

 
(b) 

 

Figure 7. 
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Figure 8. 

 

 

 

e. Conclusions 

 

The aim of this study has been that of exploring the supramolecular 

bonding capacity of the cationic bis-amide complex [CoIII(η5-

C5H4CONHC5H4N)2][PF6], [1]+[PF6]-, towards the dicarboxylic fumaric and 

maleic acids. The idea was that of using the -COOH groups as a probe of 

the hydrogen bonding capacity of the organometallic complex. In previous 

studies we have extensively investigated the behaviour of organometallic 

dicarboxylic acids such as [Fe(η5-C5H4COOH)2], [Co(η5-C5H4COOH)2]+ 

and [Cr(η6-C6H5COOH)2]12 towards a variety of organic and inorganic acids 

or bases.  

The results of these studies have led us to the successful exploitation of 

the acid:base behaviour of one such species, namely the zwitterionic form 

[Co(η5-C5H4COOH)(η5-C5H4COO)] obtained by deprotonation of the 
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cobalticinium cationic acid, in heterogeneous reactions with vapours of 

acids and bases.15 In a parallel investigation we have investigated the 

reactivity of neutral di-substituted pyridyl and pyrimidyl ferrocenyl 

species towards acids and metal complexes.16 With the present work we 

intended to extend these findings to a new class of supramolecular synthons, 

namely that of cationic bis-amido complexes, of which [CoIII(η5-

C5H4CONHC5H4N)2]+  is the prototype.17 

In the course of this investigation we have shown that both fumaric and 

maleic acids are sufficiently strong as to protonate the pyridine moiety. The 

protonation yields a series of aggregates based on hydrogen bonds. 

Interestingly the complexes seem to violate a rule-of-thumb of hydrogen 

bonding interactions. Most, but not all, contain the dimer formed by the 

monoprotonated dication [1H]2+ which are held together by inter-cation N-

H···N hydrogen bonds between a protonated and a free pyridyl N-atom, 

while the O-atoms acceptors on the fumarate and hydrogen maleate anions 

appear to be involved exclusively in interactions with the amido -(CO)N-H 

hydrogen bond donors. Only in the case of  [1H2]3+·2[PF6]-·[Hmaleate]- · 

H2O interaction between the N-atom and the acid is observed. 

The difference between fumaric and maleic acid is as expected: in the 

latter case formation of the intramolecular hydrogen bond which is 

particularly stable yields compounds that contain only this monoanion, 

while in the case of fumaric acid, both the completely deprotonated 

fumarate dianion and the supramolecular tri-anion formed by one hydrogen 

fumarate monoanion and one fumarate dianion is possible. 

Similar dimer has been obtained previously in the case of the mixed metal 

supramolecular complex [CoIII(η5-C5H4CONHC5H4N)2][Fe(η5-

C5H4COOH)2][PF6], which also bears some resemblance with the dimer 

formed in the solid state by the cationic complex [CoIII(η5-

C5H4CONHC5H4NH)(η5-C5H4COO)](+). This similarity of behaviour seems 
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to suggest that these sandwich complexes act as supramolecular synthons 

and that the eclipsed conformation is rather favoured. Hence, whether 

formed via N-H···N or N-H···O or O-H···O these organometallic complex 

tend to behave as supramolecular dimmers. 

In terms of crystal engineering there are two major drawbacks. If crystal 

engineering is obtaining the desired architecture by exploiting the 

predictable arrangement of molecules and ions by exploiting supramolecular 

bonding capacity, the presence of two types of counterions, one innocent 

(the [PF6]-) and one responsible of the packing (the mono- and di-acid 

anions), complicates the matter enormously. Furthermore these crystals 

often co-crystallize with hydrogen bonded water molecules. In total, many 

of the complexes described in this paper contain up to four independent 

chemical units, the organometallic cations, the hexafluorophosphate anions 

and the anions derived from the organic acids and the water molecules. 

Clearly the possibility of predicting the outcome of the aggregation would 

be easier if the “dimensionality” of the problem related to the efficient 

packing of all particles, is reduced. 

Further studies are in progress to utilize the bis-amido complexes in 

the formation of complexes of complexes, for applications in 

coordination chemistry and crystal engineering. 

 

 

 

f. Experimental  Section 

 

All reactants were purchased from Aldrich and used without further 

purification. Reagent grade solvents and bidistilled water were used. 

Synthesis of [1H]2+·2[PF6]- : [1H]2+ was synthesized following a 

procedure, slightly modified, reported by Beer et Stokes.18 
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Synthesis of [1]+·[PF6]-: [1H]2+ was treated with a solution of NH3 0.1M, 

in order to obtain deprotonation of the two pyridine moieties. 

Synthesis of [1H]2+ ·[PF6]- ·1/2[fumarate]2-: 0.11 mmol of [1]+ · [PF6]- 

and 0.11 mmol of fumaric acid, C4O4H2, were dissolved in 5 ml of water. 

Crystals suitable for single crystal X-ray diffraction were obtained by slow 

evaporation of water. The same compound was obtained after reaction of 

0.11 mmol of [1]+ ·[PF6]- with 0.5 and 1.5 mmol of C4O4H2 (2:1 and 1:1.5 

reagents ratio, respectively). 

Synthesis of [1H2]3+ ·[PF6]- ·[H(fumarate)2]3- ·H3O+·H2O : 0.11 mmol 

of [1]+·[PF6]- and 0.22 mmol of fumaric acid, C4O4H2, were dissolved in 5 

ml of water. Crystals suitable for single crystal X-ray diffraction were 

obtained by slow evaporation of water. The same compound was obtained 

after reaction of 0.11 mmol of [1]+ ·[PF6]- with 0.33 mmol of C4O4H2 (1:3 

reagents ratio). 

Synthesis of  2[1H]2+ · 5/2[PF6]- ·3/2[maleate]2- : 0.22 mmol of [1]+ 

·[PF6]- and 0.11 of maleic acid, C4O4H2, were dissolved in 5 ml of water. 

Crystals suitable for single crystal X-ray diffraction were obtained by slow 

evaporation of water. 

Synthesis of  2[1H2]3+ ·3[PF6]- ·3[Hmaleate]-·2H2O : 0.11 mmol of [1]+ 

·[PF6]- and 0.22 of maleic acid, C4O4H2, were dissolved in 5 ml of water. 

Crystals suitable for single crystal X-ray diffraction were obtained by slow 

evaporation of water. 

Synthesis of  [1H2]3+ 2[PF6]- ·[Hmaleate]-·H2O : 0.11 mmol of [1]+ 

·[PF6]- and an excess  of  maleic acid, C4O4H2, were dissolved in 5 ml of 

water. Crystals suitable for single crystal X-ray diffraction were obtained by 

slow evaporation of water. 

Crystal structure determination: Crystal data for all compounds were 

collected on a Bruker ApexII CCD diffractometer. Crystal data and details 

of measurements are summarised in Table 2. Common to all compounds: 

Mo-Kα radiation, λ = 0.71073 Å, monochromator graphite. Data for 
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2[1H]2+·5/2[PF6]- ·3/2[Hmaleate]– were collected at 293K, all other data 

were collected at 273K.  SHELX9719a was used for structure solution and 

refinement based on F2. Non-hydrogen atoms were refined anisotropically. 

The [PF6]- anion in [1H]2+·[PF6]-·1/2[fumarate]2- is disordered over two 

positions (refined with an occupancy ratio of 80:20) around the F1-F5 axis. 

One of the two [Hmaleate]-
 ions in [1H]2+·5/2[PF6]- ·3/2[Hmaleate]– is 

disordered over two equivalent positions around an inversion centre, and 

was difficult to model; the position of the independent carbon atom and of 

the oxygen atom involved in the intra-molecular hydrogen bond could not 

be well separated from those of the second, inverted image; the refinement 

was then done by attributing to the two atoms an average C/O scattering 

factor. All Hydrogen atoms bound to nitrogen and oxygen atoms were 

located via difference Fourier syntheses. Only the hydrogen atoms bound to 

the water molecule in 2[1H]2+·4[PF6]-·H2O and [1H2]3+·2[PF6]-·[Hmaleate]- 

·H2O, and the HCOOH hydrogen in the disordered maleate monoanion in 

2[1H]2+·5/2[PF6]- ·3/2[Hmaleate]– could not be located. Hydrogen atoms 

bound to carbon atoms were added in calculated positions. SCHAKAL9919b 

was used for the graphical representation of the results. The program 

PLATON19c was used to calculate the hydrogen bonding interactions 

reported in Table 1. CCDC 260092 - 260097 contain the supplementary 

crystallographic data for this paper. These data can be obtained free of 

charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the 

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge 

CB21EZ, UK; fax: (+44)1223-336-033; or e-mail: 

deposit@ccdc.cam.ac.uk).   
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Captions to Scheme and Figures 

 

Chart 1. The cationic bis-amide complex [CoIII(η5-C5H4CONHC5H4N)2], 

[1]+, together with the di- and tri-cationic species [1H]2+ and  [1H2]3+ 

obtained via mono- and di-protonation of the two N-termini. 

 

Figure 1. The supramolecular aggregates present in 2[1H]2+ 4[PF6]- ·H2O. 

The tetra-cation is “kept together” by two N-H···N hydrogen bonds [N(4) 

···N(3) 2.715(4), N(8) ···N(6) 2.738(4) Å for the two crystallographically 

independent units]. [HCH, Hwater and H [H3O]+ atoms not shown for clarity]. 

 

Figure 2. N-H···O and N-H···F hydrogen bonding interactions between 

the bis-amide [CoIII(η5-C5H4CONHC5H4N)(η5-C5H4CONHC5H4NH)]2+ and 

the hexafluorophosphate anions and the water molecules. [HCH, Hwater and H 

[H3O]+ atoms not shown for clarity]. 

 

Figure 3.  Crystalline [1H]2+·[PF6]-·1/2[fumarate]2-. The hydrogen 

bridged amide dimers [N(3)···N(4) 2.669(7) Å] are linked together in a 

zigzag fashion via the interaction of the deprotonated fumarate dianions and 

the outer amido N-H groups, [N(1)···O(3) 2.809(6), N(2)···O(4) 2.703(6)Å]. 

Each carboxylate unit “pinches” both the amido N-H groups of one 

complex, in such a way each fumarate dianion interacts with the 
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organometallic cations via four N-H···O bonds. [HCH, Hwater and H [H3O]+ 

atoms not shown for clarity]. 

 

Figure 4. (a) In crystalline [1H2]3+·[PF6]-·[H(fumarate)2]3-·H3O+·H2O  the 

trications are linked together by a supramolecular anion formed by a 

hydrogen fumarate unit and a fumarate dianion. Since the proton is mid-way 

along the O···O bond in this unit, it is more appropriate to describe the 

systems as a superanion [H(fumarate)2]3-, with a O(5)···O(8) separation of  

2.466(4) Å. (b) The [H3O]+ cation and the water molecule interact via 

hydrogen bonding with each other [O(100)···O(200) 2.829(4) Å] and with 

the [H(fumarate)2]3- anion [O(100)···O(6) 2.703(4), O(100) ···O(8) 2.739(4), 

O(200) ···O(5) 2.976(5) Å]. [HCH, Hwater and H [H3O]+ atoms not shown for 

clarity].  

 

Figure 5. The hydrogen bonded dimer in crystalline [CoIII(η5-

C5H4CONHC5H4N)(η5-C5H4CONHC5H4NH)]2+·5/2[PF6]-· 3/2[Hmaleate]–,  

2[1H]2+·5/2[PF6]-· 3/2[Hmaleate]–. Note how  the amido groups are eclipsed 

in one of the two di-cations and staggered in the other. [HCH, Hwater and H 

[H3O]+ atoms not shown for clarity]. 

 

Figure 6. The structure of 2[1H]2+·5/2[PF6]-· 3/2[Hmaleate]–  shows the  

presence of hydrogen bond dimers in the solid state of the type observed for 

[CoIII(η5-C5H4CONHC5H4N)(η5-C5H4CONHC5H4NH)]2+ ·[PF6
-]4·H2O as 

well as the hydrogen fumarate salts [1H]2+·[PF6]-·1/2[fumarate]2-. Note, 

however, that the amido groups are eclipsed in one of the two di-cations and 

staggered in the other (see Figure 5). The “dimers of dimers” are held 

together by a hydrogen oxalate anion, which is disordered over two 
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orientations (only one of the two images is shown here for clarity). [HCH, 

Hwater and H [H3O]+ atoms not shown for clarity]. 

 

Figure 7. (a) The extended hydrogen bonded network in crystalline 

2[1H2]3+·3[PF6]-· 3[Hmaleate] - · 2H2O. Note how one hydrogen maleate 

anion acts as a bridge between trications while another one establishes 

hydrogen at the intra-cation level. (b) The hydrogen bonding interactions 

between the water molecules and the hydrogen maleates that are not 

involved in the cation bridging (water hydrogen atoms not shown for 

clarity). [HCH, Hwater and H [H3O]+ atoms not shown for clarity]. 

 

Figure 8. (a) The extended hydrogen bonded network in crystalline 

[1H2]3+·2[PF6]-·[Hmaleate]- · H2O. Note how the hydrogen maleate anion 

acts as a bridge between trications forming an extended network. [HCH, 

Hwater and H [H3O]+ atoms not shown for clarity]. 
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Table 1. Relevant hydrogen bonding parameters for all species discussed 

herein 
Compound Donor···Acceptor D···A (Å) 

N(1)···F(19)  3.037(5) 

N(2)···F(8)       3.025(4) 

N(4)···N(3)    2.715(4) 

N(5)···F(21)     3.072(5) 

N(7) ···O(5)       2.943(5) 

2[1H]2+·4[PF6]-·H2O 

N(8) ···N(6)       2.738(4) 

N(2) ···O(4)        2.703(6)        

N(1) ···O(3)        2.809(6)        

 [1H]2+·[PF6]-·1/2[fumarate]2- 

N(3) ···N(4)        2.669(7)        

N(1) ···O(3) 2.763(4) 

N(2) ···O(10) 2.965(5) 

N(3) ···O(100) 2.690(4) 

N(4) ···O(200) 2.743(4) 

O(100) ···O(8) 2.739(4) 

O(100) ···O(200) 2.829(4) 

O(100) ···O(6) 2.703(4) 

O(200) ···O(100) 2.829(4) 

O(200) ···O(5) 2.976(5) 

 [1H2]3+·[PF6]-·[H(fumarate)2]3-·H3O+ ·H2O 

O(5) ···O(8) 2.466(4) 

N(4) ···N(8)        2.688(6)      

N(6) ···N(2)        2.686(6)      

N(1) ···O(100)    2.832(6)      

N(3) ···O(5)        2.923(5)      

N(5) ···O(7)        2.916(6)      

N(7) ···O(8)        2.836(6)      

  2[1H]2+·5/2[PF6]-· 3/2[Hmaleate]– 

O(6) ···O(7)   2.460(5)      

N1···O13    2.757(5)      

O100···O15     2.798(7)      

O100···O12     2.771(5)      

N2···O100   2.689(5)      

O200···O8       2.936(5)      

O200’···O8       2.838(5)      

N3···O14      3.016(5)      

N4···O8        2.789(5)      

N5···O10      2.822(5)      

N6···O12      2.791(6)      

N7···O6        2.794(4)      

2[1H2]3+ ·3[PF6]-· 3[Hmaleate]- ·2H2O 

N8···O200    2.702(6)      
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O5···O7        2.407(4)      

O9···O11      2.416(4)      

O16···O14     2.477(5)      

O(4)···O(5)     2.411(5) 

N(1)···O(3)   2.884(7) 

N(2)···O(5)   2.923(7) 

N(2)···O(6)   2.873(8) 

N(4)···O(100)  2.787(8) 

O(100)···F(7)  3.1750(8) 

 [1H2]3+ ·2[PF6] -·[Hmaleate]- · H2O  

N(3)···F(12)  3.179(7) 
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Table 2. Crystal data and details of measurements for 2[1H]2+·4[PF6]-

·H2O, [1H]2+·[PF6]-·1/2[fumarate]2-, [1H2]3+ ·[PF6]-·[H(fumarate)2]3-·H3O+ 

·H2O, 2[1H]2+·5/2[PF6]- ·3/2[Hmaleate]–, 2[1H2]3+·3[PF6]- ·3[Hmaleate]- 

·2H2O and [1H2]3+·2[PF6]-·[Hmaleate]- ·H2O 

 
compound 2[1H]2+·4[PF6]-

·H2O 
[1H]2+·[PF6]-

·1/2[fumarate]
2- 

[1H2]3+ ·[PF6]-

·[H(fumarate)2]3

-·H3O+ ·H2O 

2[1H]2+·5/2[PF6]- 
·3/2[Hmaleate]– 

2[1H2]3+·3[PF6]- 

·3[Hmaleate]- 

·2H2O 

[1H2]3+·2[PF6]-

·[Hmaleate]- 
·H2O 
 

formula C44H40Co2F24N8
O5P4 

C24H20CoF6N4
O4P 

C30H30CoF6N4O
12P 

C50H41.50Co2F15N8
O10P2.5 

C56H53Co2F18N8
O18P3 

C26H25CoF12N4
O7P2 

Mr 1458.58 632.34 482.48 1394.70 1678.83 854.37 

system Monoclinic Monoclinic Triclinic Triclinic Triclinic Monoclinic 

space group P21/c P21/n P-1 P-1 P-1 P21/a 

a [Å] 23.468(2) 7.9833(3) 7.583(7) 10.6826(5) 12.7015(8) 13.1655(4) 

b [Å] 15.373(1) 29.284(1) 13.552(5) 14.2849(7) 14.6608(9) 12.7040(4) 

c [Å] 15.304(1) 10.5411(4) 16.526(4) 19.6711(9) 19.758(1) 19.7122(6) 

α [°] 90 90 89.38(2) 95.080(1) 70.667(1) 90 

β [°] 92.714(3) 90.836(1) 84.90(4) 104.807(1) 86.814(1) 97.7600(10) 

γ [°] 90 90 80.66(5) 107.763(1) 70.147(1) 90 

V [Å³] 5515.1(7) 2464.1(2) 1669(2) 2718.2(2) 3258.7(3) 3266.8(2) 

Z 4 4 2 2 2 4 

T [K] 293 293 293 273 293 293 

µ(MoKα) [mm-1] 0.852 0.848 1.676 0.802 0.712 1.737 

measured reflns 63612 23263 13537 26312 38487 25629 

unique reflns 16083 5369 5844 9654 15238 5745 

refined 
parameters 

823 372 471 782 970 463 

GOF on F² 1.018 0.885 1.010 1.074 0.823 1.024 

R1 [on F, I > 
2σ(I)] 

0.0641 0.0611 0.0648 0.0550 0.0543 0.0656 

wR2 (on F²,all 
data) 

0.2342 0.1832 0.1392 0.1758 0.1576 0.2010 
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4. Mechanochemical and solution preparation of the 

coordination polymers Ag[N(CH2CH2)3N]2[CH3COO]·5H2O 

and Zn[N(CH2CH2)3N]Cl2  
 

a. Introduction 

 

Mechanochemical methods based on co-grinding or milling of reactants 

have been shown to provide viable routes for the synthesis of novel 

molecular compounds.1 Recently, mechanochemical methods have also 

been utilized in the field of crystal engineering.2 The basic idea is that of 

breaking and forming supramolecular interactions with no need for the 

intermediacy of a solvent. Under this point of view solvent-free reactions 

between or within molecular crystals can be regarded as a green way to 

crystal engineering.3 Even though mechanochemical reactions have often 

been used in the preparation of molecular materials,4,5 they have mainly 

been exploited for the alloying of metals with ceramics, the activation of 

minerals for catalysis, and other inorganic materials applications.6,7 It is 

worth mentioning that, in general, the powdered products obtained by co-

grinding do not permit a straightforward determination of the structural 

features, of the type obtainable from single crystals. The problem can often 

be circumvented by growing crystals of the desired phase via seeding, i.e. 

by using pre-formed micro-crystals, in the form of crystalline powder, 

obtained by grinding.8 Seeding procedures are commonly employed in 

pharmaceutical industries to guarantee formation of the desired crystal 

form.9 If single crystals are obtained via seeding, it is possible to verify a 

posteriori whether the material obtained from solution crystallization and 

that yielded by solid–solid processes possess the same structure, by 

comparing the observed powder diffraction pattern with that computed on 

the basis of the single crystal structure. This approach has previously been 
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used by us and by others to determine the structure of polycrystalline 

products obtained by non-solution  methods (grinding, dehydration, 

thermal treatment).10 It is important to stress that crystallization from 

solution does not always yield the same product as is obtained by 

mechanical treatment. This is particularly relevant in those cases where 

crystallization from solution is under kinetic control, and leads to 

crystallization of those species that nucleate first and form less soluble 

nuclei, or to formation of solvate species that are not obtained by solid-state 

methods. 

In Bologna, we have exploited mechanochemical processes in the 

preparation of a series of organic and hybrid organic–organometallic 

hydrogen bonded network compounds.11 We have also reported recently the 

solid–solid preparation of hybrid organometallic–inorganic salts, obtained 

by reacting the organometallic zwitterion [CoIII( 5-C5H4COOH)( 5-

C5H4COO)] with a number of alkali salts MX (M = K+, Rb+, Cs+, NH4
+; X = 

Cl–, Br–, I–, PF6
–).12  

Herein we report our preliminary results of the solid state co-grinding of 

the transition metal salts AgCH3COO and ZnCl2 with the bidentate 

divergent ligand 1,4-diazabicyclooctane, [N(CH2CH2)3N]. This base has 

been widely exploited in crystal engineering both in the formation of 

hydrogen bonded adducts and in the formation of coordination networks.13 

We report that the coordination polymer 

Ag[N(CH2CH2)3N]2[CH3COO]·5H2O has been obtained by solid-state co-

grinding in the air of silver acetate and [N(CH2CH2)3N] (1 2). When ZnCl2 

is used instead, rather than AgCH3COO in a 1 1 reaction with 

[N(CH2CH2)3N], the solution and solid-state products are different. The 

former product has been identified on the basis of single crystal X-ray 

diffraction as the Zn-based coordination polymer Zn[N(CH2CH2)3N]Cl2. 

The product of the grinding process, characterized only by X-ray powder 
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diffraction, converts, on prolonged grinding, into the same phase as obtained 

via reaction in solution, i.e. Zn[N(CH2CH2)3N]Cl2. 

 

 

b. Results and discussion 

 

The two preparations, both as solid–solid and as solution reactions, have 

been studied together and will be discussed below. When silver acetate and 

[N(CH2CH2)3N], in a 1 2 ratio, are manually ground together in an agate 

mortar, the compound Ag[N(CH2CH2)3N]2[CH3COO]·5H2O, 1, is obtained 

quantitatively. However, the chemical formula could only be defined after 

collecting single-crystal X-ray data on crystals obtained by slow evaporation 

of a water–methanol (1 1) solution. We shall first describe the coordination 

network identified from the single-crystal data. Fig. 1 shows that the basic 

network in Ag[N(CH2CH2)3N]2[CH3COO]·5H2O is built around a chain of 

Ag(+)–[N(CH2CH2)3N]–Ag(+)–[N(CH2CH2)3N]–Ag(+) units, with each silver 

cation carrying an extra pendant [N(CH2CH2)3N] ligand and a metal-

coordinated water molecule. In this way the coordination geometry around 

the Ag+ cation can be described as tetrahedral. The acetate anions participate 

in the hydrogen bonding network, involving the bound metal as well as the 

remaining four water molecules of crystallization, with formation of a 

layered structure, as depicted in Fig. 2a. The pendant base unit also accepts 

hydrogen bond formation from a water molecule [O(5) N(2)IV 2.805(5) Å], 

as shown in Fig. 2b. The role of the water molecules is quite clear: the 

structure of compound 1 contains a large number of potential hydrogen 

bonding acceptor atoms (the free  N terminus on the base and the two 

oxygen atoms of the acetate anion) and no hydrogen bonding donor. It is 

thus not surprising that this material takes up water from air during grinding 

and crystallizes with water molecules from solution. 
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Fig. 1 The coordination network in 

Ag[N(CH2CH2)3N]2[CH3COO]·5H2O. Note the chain of Ag(+)–

[N(CH2CH2)3N]–Ag(+)–[N(CH2CH2)3N]–Ag(+) with each silver cation 

carrying an extra pendant [N(CH2CH2)3N] ligand and a coordinated water 

molecule in tetrahedral coordination geometry. H atoms not shown for 

clarity. [Symmetry operator for N(4) : –x, y– 1/2, 1/2 +z]. Click here to 

access a 3D image of Fig. 1. 
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Fig. 2 (a) The acetate anions in Ag[N(CH2CH2)3N]2[CH3COO]·5H2O 

participate in the hydrogen bonding network together with the metal bound 

water molecule and the four water molecules of crystallization. (b) The 

[N(CH2CH2)3N] moiety is involved in a hydrogen bonding interaction with 

a water molecule [O(5) N(2)IV 2.805(5)Å]. HCH atoms not shown for 

clarity. 
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The Ag–N distances in 1 are of comparable length [Ag(1)–N(3) 2.322(3), 

Ag(1)–N(4)  2.334(3), Ag(1)–N(1) 2.345(4) Å], while the silver–water 

Ag(1)–O(3) bond is longer, 2.630(3) Å. In terms of hydrogen bonds one can 

see from Fig. 2 that the four independent  water molecules form a classic 

tetrameric ring with O O separations of 2.808(5) (O4–O5) and 2.886(5) 

(O4–O5 ) Å. Another tetrameric hydrogen bonded ring is formed between 

two acetate anions and two water molecules [O(2) O(3) 2.792(6), O(2)

O(3) 2.701(5) Å]. In Table 1 are listed all relevant hydrogen bonding 

interactions involving acetate and water oxygen atoms. As mentioned 

above, the preparation of single crystals of 1 was instrumental to the 

determination of the nature of the product. It was in fact possible, once the 

structure of 1 had been established, to compare the powder diffraction 

pattern computed on the basis of the single-crystal structure with the one 

measured on the product of solid-state preparation. Fig. 3 shows the close 

correspondence of the two diffractograms. 
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Fig. 3 Comparison between the powder diffractograms calculated 

(bottom) on the basis of the single-crystal structure and that measured (top) 

on the ground sample of 1. A trace of unreacted silver acetate (marked with 

an arrow) can be detected.                        j 
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Table 1 Relevant hydrogen bonding parameters for 1  

O–H  

 

H O O O  O–H O  

Interaction  

 

(Å)  

 

(Å)  (Å)  (deg)  Operators for generating equivalent atoms  

 

O(3)–H(301) O(2)  0.91 1.81 2.701(5) 167 x, 1/2 – y, –1/2 + z 

O(3)–H(302) O(2) 0.81 2.01 2.792(6) 162  

O(4)–H(401) O(5)  0.74 2.15 2.886(5) 174 –x, –1/2 + y, 1/2 – z 

O(4)–H(402) O(5) 0.65 2.18 2.808(5) 162  

O(5)–H(501) O(1) 0.87 1.90 2.749(5) 164  

O(6)–H(601) O(7)  0.74 2.10 2.818(7) 164 1 – x, 1/2 + y, 1/2 – z 

O(6)–H(602) O(1) 0.74 2.05 2.774(6) 165  

O(7)–H(701) O(3) 0.74 2.11 2.827(7) 165  

O(7)–H(702) O(4) 0.61 2.18 2.770(7) 166  

O(5)–H(502) N(2)iv 0.74 2.11 2.805(5) 158 1 – x, 1 – y, 1 – z 

 

 

The same solid-state and solution experiments used to obtain 1 have been 

carried out with a number of other salts. The only other successful 

experiment, thus far, has been with ZnCl2. Single crystals of 

Zn[N(CH2CH2)3N]Cl2, 2sc, (see below) have been obtained by layering a 

solution of ZnCl2 in methanol over a solution of [N(CH2CH2)3N] in CH2Cl2. 

The structure of 2sc is based on a one-dimensional coordination network 

constituted of alternating [N(CH2CH2)3N] and ZnCl2 units, joined by Zn–N 

bonds. 

The Zn+ cation, as in 1, possesses a tetrahedral coordination geometry 

(see Fig. 4). The metal–ligand distances are Zn(1)–Cl(1) 2.219(1), Zn(1)–

N(1) 2.076(5), Zn(1)–N(2)  2.086(5) Å. The coordination polymer in 2sc 
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bears some resemblance to the coordination polymer in 1, both being based 

on an alternating sequence of metal and di-nitrogen base, the main 

difference arising from the necessary presence of a counterion in 1, which 

brings about the network of hydrogen bonds involving water molecules, as 

described above. 

 

 

 
 

Fig. 4 The one-dimensional coordination network present in crystals of 

Zn[N(CH2CH2)3N]Cl22sc as obtained from solution crystallization. H atoms 

not shown for clarity. [Symmetry operators for Cl(1)  and N(2) : x, y, 1/2 –z 

and –x– 1/2, y– 1/2, 1/2 –z, respectively.]                                     

  

Upon co-grinding of the solid reactants a new compound 2pw is obtained 

as a powder material. Powder diffraction clearly indicates that 2pw does not 

bear any relationship with the starting solid materials ZnCl2 and 

[N(CH2CH2)3N], except for the presence of traces of the two reactants. 

However, all attempts to obtain single crystals of compound 2pw have 

failed, due to either hydrolysis of the compound, once dissolved, or to 

precipitation of compound 2sc even if seeds of 2pw are used. However, a 

relationship can be found between the compound obtained initially by co-
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grinding and the one obtained from solution. The phase 2pw can be 

transformed into phase 2sc by vigorous and prolonged  (at least 10 min) 

manual grinding. See Fig. 5 for a comparison of powder diffraction patterns. 

 

 

 
 

Fig. 5 The powder diffraction patterns measured on 2pw as obtained by 

initial co-grinding (top) and the diffraction pattern measured after 10 min of 

vigorous grinding of 2pw(bottom). 
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Table 2 Crystal data and details of measurements for 1 and 2sc  

 

   

 

1  

 

2sc  

 

Formula C14H37AgN4O7 C6H12Cl2N2Zn 

Mw 481.34 248.45 

Crystal system Monoclinic Orthorhombic 

Space group P21/c Pbnm 

a/Å 10.561(2) 6.606(2) 

b/Å 12.782(3) 11.502(2) 

c/Å 16.147(3) 11.680(2) 

/° 90 90 

/° 101.72(3) 90 

/° 90 90 

V/Å3 2134.1(7) 887.5(3) 

Z 4 4 

F(000) 1008 504 

µ(Mo K )/mm–1 0.984 3.304 

Measured reflns 3192 935 

Unique reflns 3031 807 

Parameters 251 59 

GOF on F2 0.895 1.036 

R1 (on F [I > 2 (I)]) 0.0317 0.0320 

wR2 (on F2, all data) 0.0953 0.0819 
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This latter powder diffractogram is compared in Fig. 6 with that 

calculated on the basis of the single-crystal structure of 

Zn[N(CH2CH2)3N]Cl2 2sc. Even though there are few peaks that can still be 

attributed to 2pw, the formation of phase 2sc is very clear. 

 

 

 

 

 

 

 
 

 

Fig. 6 Comparison between the powder diffraction pattern measured on the 

co-grinding sample 2pw as obtained after vigorous manual grinding (10 

min) and the diffraction pattern calculated on the basis of the single-crystal 

structure of Zn[N(CH2CH2)3N]Cl22sc obtained from solution crystallization. 
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At this stage, we can only speculate on the relationship between 2pw and 

2sc. Since 2pw is obtained by grinding N(CH2CH2)3N, which is always wet 

and difficult to dry because the base easily sublimes, we could envisage 

formation of a hydrated phase analogous to 1. Manual grinding of this phase 

would then extrude part of the water leading to formation of the anhydrous 

crystalline phase 2sc. We have confirmed this aspect by carrying out a 

thermogravimetric analysis (TGA) of compound 2pw. The experiment 

indicates that ca. 4 equivalents of water are retained in the crystal structure 

of the initial mechanochemical product (e.g., 2pw). Furthermore, the 

powder recovered after TGA gives a diffractogram that corresponds 

precisely to that of 2sc, confirming that the dehydration product is the same 

as that obtained from reaction in solution (CH3OH/CH2Cl2) or from 

extensive grinding of 2pw. Phase 2sc can also be obtained directly from the 

reactants ZnCl2 and N(CH2CH2)3N if they are dried carefully prior to use 

and ground together in a glove bag. 

 

c. Conclusions 

 

In this paper, we have reported some initial successes in the solvent-free 

mechanochemical synthesis of coordination polymers. The method is based 

on the manual co-grinding of solid reactants. The reaction product is 

recovered in the form of a polycrystalline powder while single crystals, 

suitable for X-ray diffraction are obtained by conventional crystallization 

from solution assisted by seeding. Comparison between calculated and 

measured powder diffractograms allows identification of the products. In 

the case of the silver compound, the solution and solid-state treatments yield 

the same compound, while, in the case of zinc compound, the solution and 

solid-state treatment initially yield different products. The product of 

grinding undergoes a further transformation upon further mechanical 

treatment to yield, eventually, the unsolvated phase obtained from solution. 
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Besides those reported herein, there are not yet many examples of the 

utilization of mechanochemical procedures in coordination chemistry.14,15 

Balema et al. have shown that the cis-platinum complexes cis-(Ph3P)2PtCl2 

and cis-(Ph3P)2PtCO3 can be prepared mechanochemically from solid 

reactants in the absence of solvent.14a,b Steed and Raston et al. have 

explored the use of mechanochemistry in the synthesis of extended 

supramolecular arrays.15 Grinding of Ni(NO3)2 with 1,10-phenanthroline 

(phen) resulted in the facile preparation of [Ni(phen)3]2+ accompanied by a 

dramatic and rapid colour change. Addition of the solid sodium salt of 

tetrasulfonatocalix[4]arene (tsc) gives two porous -stacked supramolecular 

arrays [Ni(phen)3]2[tsc4–]·nH2O and the related [Na(H2O)4(phen)] 

[Ni(phen)3]4[tsc4–][tsc5–]·nH2O, depending on stoichiometry.15a Grinding 

copper(II) acetate hydrate with 1,3-di(4-pyridyl)propane gives a 1D 

coordination polymer with water-filled pores.15b In a recent study, Orita et 

al. have reported the supramolecular self-assembly of a number of two- or 

three-dimensional helicates.16  

The approach developed in this paper shows promising results. Clearly, 

the interest in solid–solid processes, beside those related to green-chemistry 

aspects, is also in the possibility of obtaining products that cannot be 

obtained from conventional solution methods. 
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5. Making crystals from crystals: three solvent-free routes 

to the hydrogen bonded co-crystal between 1,1’-di-Pyridil-

Ferrocene and Anthranilic Acid  
 

a. Introduction 

 

Solvent-free reactions, such as the mechanical mixing of solid reactants, 

often provide fast and quantitative routes to the preparation of novel organic 

and inorganic compounds.1-3 In recent years, under the impetus of crystal 

engineering,4 solvent-free processes have begun to be investigated for the 

preparation of crystalline materials.5,6 The number of papers reporting 

preparation of molecular co-crystals,7 coordination networks,8 salts,9 as well 

as the investigation of polymorphs10 is increasing rapidly. Beside inter-

crystal reactions, those occurring in the solid state, such as cycloadditions,11 

and many other organic reactions12 have been the subject of successful 

investigations. Undoubtedly, the number of reactions and processes that can 

be carried out in the solid state is enormous and the statement that “all 

(organic) reactions can be conducted in solvent free conditions” is largely 

justified.13  

We have reported a large number of cases where preparation of 

hydrogen-bonded co-crystals has been achieved by simple grinding of the 

solid reactants.14 However, the nature of the processes leading from reagents 

to products is not fully understood because the experimental conditions are 

not completely under control. For instance, it is difficult to estimate the 

extent of thermal effects associated with sheering and pressuring during 

manual or mechanical co-grinding. Furthermore, ambient humidity or 

intentional kneading, viz. the use of a micro quantity of solvent, can play a 

crucial role for the occurrence of the reaction. 
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In order to gain insight into these aspects we have chosen as a benchmark 

case the preparation of the 1:1 hydrogen bonded co-crystal {[Fe(η5-C5H4-

C5H4N)2]·[(C6H4)NH2COOH]}2. The compound has been obtained from the 

solid-state reaction of crystalline [Fe(η5-C5H4-C5H4N)2] and anthranilic 

acid. It is worth recalling that the starting reactant [Fe(η5-C5H4-C5H4N)2] 

can also be prepared in solvent-free conditions.15 

Anthranilic acid was chosen also because it is known to exist in three 

polymorphic modifications,16 with the so called form I and form II 

thermally interconverting at ca. 90 °C. Importantly, the mechanically 

induced conversion of form I into II by grinding had been investigated by 

Etter,17 while Shan and co-workers have found several new kneading ways 

for the interconversion among the three known forms.16d 

We have made use of a multi-technique approach for the investigation of 

the solid state reactions products, which have been characterized via a 

complementary use of both single-crystal and powder X-ray diffraction, 

solid-state NMR spectroscopy and DSC analysis. 

 

b. Results and Discussion 

 

The initial solid-state preparation was carried out by manual grinding in 

an agate mortar of equimolar quantities of the two solid materials. In order 

for the reaction to take place, kneading was required, i.e. a drop of MeOH 

was added during workup. For anthranilic acid the most stable form I was 

used. After grinding, the polycrystalline material was used as such for 

powder diffraction experiments. In a separate experiment, equimolar 

quantities of acid and base were dissolved in methanol and the solvent was 

allowed to evaporate at a temperature of 5°C. By comparison with the 

diffractograms measured on the raw reactants, it was possible to ascertain 

that in both cases the starting material had been fully converted into the 



 

                                                                                   141 

product. Methanol (99.8%) was used to grow single-crystals of the co-

crystal for the X-ray diffraction experiment. The structure determined from 

the single crystal experiment (see below) was in turn used to calculate the 

reference powder diffraction pattern. In the crystal structure the hydrogen 

bond interactions (Figure 1) show that anthranilic acid  molecules act as 

bridges between the organometallic molecules, which are in a cisoid 

(eclipsed) conformation.  

 
Figure 1. The anthranilic acid molecules bridge together two 

organometallic sandwich molecules [HCH atoms not shown for clarity]. 

 

The complex can be described as a supramolecular macrocycle whereby 

two (C6H4)NH2COOH molecules and two [Fe(η5-C5H4-C5H4N)2] complexes 

are joined by alternate O-H···N and N-H···N hydrogen bonding interactions. 

This is the most common arrangement for co-crystals involving two [Fe(η5-

C5H4-C5H4N)2] molecules and polyprotic acid units, although the alternative 

geometry based on an infinite acid-base hydrogen bonded network has been 

observed in at least one case.18 On the basis of the single crystal X-ray 

structure, it appears that the hydrogen atoms are ordered along the hydrogen 

bonds with the formation of three hydrogen bonding interactions, e.g. an 

intermolecular O-H···N  [N(1)···O(2) 2.609(7) Å], an intramolecular O-H···N 
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[N(3)···O(1) 2.718(9) Å] and an N···H-N interaction [N(2)···N(3) 3.079(10) 

Å]. This description of the hydrogen bonds, together with the structural 

information on the C-O and C=O distances, indicate that proton transfer 

from the acid to the base does not take place (see below) and that the 

compound is better described as a neutral hydrogen bonded adduct than a 

salt. Figure 2 shows a comparison between the X-ray powder diffractogram 

of the ground polycrystalline product (top) and that calculated on the basis 

of the structure determined by single crystal X-ray diffraction (bottom). 

Even though the crystallinity of the sample of {[Fe(η5-C5H4-C5H4N)2] 

[(C6H4)NH2COOH]}2 obtained via grinding is not high, all significant peaks 

can be easily recognized. 
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Figure 2. {[Fe(η5-C5H4-C5H4N)2] [(C6H4)NH2COOH]}2
 .Comparison 

between the X-ray powder diffractogram of the ground polycrystalline 

product (top) and that calculated on the basis of the structure determined by 

single crystal X-ray diffraction (bottom). 
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c. Solid state NMR characterization of the {[Fe(η5-C5H4-

C5H4N)2]·[(C6H4)NH2COOH]}2 co-crystal 

 

All the NMR data are listed in Table 1 and the number of carbon atoms 

follows the numeration proposed in Scheme 1. The 13C CPMAS spectrum of 

{[Fe(η5-C5H4-C5H4N)2]·[(C6H4)NH2COOH]}2 (Figure 3) is characterized by 

the presence of a signal at 172.3 ppm attributed to the anthranilic COOH 

group (C16). The chemical shift value is typical of a carboxylic group, in 

agreement with the formation of an O-H···N interaction [N(1)···O(2) 

2.609(7) Å] with no proton transfer from the acid to the nitrogen base. A 

similar chemical shift for this group (171.5 ppm) has been previously 

observed by Harris and Jackson for the neutral molecule present in the form 

I of the free acid, confirming the presence of a COOH instead of a COO- 

group.19 

The pyridine and the anthranilic aromatic carbon resonances fall in the 

range between 154 and 113 ppm. The complete assignment is reported in 

Table 1. It is worth noting that it was possible to detect by 13C NQS 

experiment two quaternary carbons (C6 and C6’) for the pyridine moiety at 

147.0 ppm and at 144.2 ppm. This is due to the presence of two different 

hydrogen bonds formed between pyridine and anthranilic acid, i.e. the O-

H···N  [N(1)···O(2) 2.609(7) Å], and the N···H-N interaction [N(2)···N(3) 

3.079(10) Å]. The difference in hydrogen bonding induces differences in the 

pyridine rings of the same [Fe(η5-C5H4-C5H4N)2] moiety. This is confirmed 

also by the  15N CPMAS spectrum (Figure 4), which shows two signals for 

the nitrogen pyridine atoms at 276.9 and at 243.1 ppm assigned to the nuclei 

involved in the N(2)···N(3) and N(1)···O(2) interactions, respectively. 

Considering the chemical shift value of the nitrogen atom in the pure 

pyridine (293.8 ppm) and the influence of the hydrogen bond, the observed 
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shifts of 16.9 and 50.7 ppm are in agreement with a weak N···N interaction 

and with a stronger N···O hydrogen bond interaction, respectively. 

This difference affects also the Cp rings, which, in fact, show two signals 

for the C1 and C1’ carbons (82.4 and 81.3 ppm) and two resonances for the 

other Cp atoms at 71.7 and 67.2 ppm attributed to C2, C2’, C5, C5’ and to 

C3, C3’, C4, C4’, respectively. 

By comparing our results with the chemical shifts reported by Harris et 

al. for the free known forms, we can argue that in the {[Fe(η5-C5H4-

C5H4N)2]·[(C6H4)NH2COOH]}2 adduct the acidic moiety is in a neutral form 

similar to that of polymorph I. The only remarkable difference is observed 

for the C10 carbon atom, whose peak shifts from 148 ppm (free acid) to 

153.3 ppm (adduct). This is probably due to the different hydrogen bonding 

environment around the amine moiety in the adduct with respect to the free 

acid. In the former two hydrogen bonds are present (N(2)-N(3)inter (3.079 Å) 

and N(3)-O(1)intra (2.718 Å,)), while in the latter three hydrogen bonds are 

involved (O-Nintra (2.688 Å,), N-Ninter (2.872 Å) and O-Ninter (2.894 Å)). The 

different HB network greatly influences the 15N chemical shift of the amine 

nitrogen N(3), with a 15N resonance at 45.3 ppm for the NH2 group (Figure 

4) shifted to higher frequencies by about 23.7 ppm with respect to that of the 

pure anthranilic acid (form I, neutral molecule).  
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Table 1. 13C and 15N NMR data for {[Fe(η5-C5H4-C5H4N)2] 

[(C6H4)NH2COOH]}2. For the assignment we followed the carbon 

numeration shown in Scheme 1. 
δ 13C / 

ppm 

Note δ 15N / 

ppm 

Note 

172.3  

153.9  

151.0  

148.8  

147.0  

144.2  

132.5  

122.1 

119.7  

116.8 

113.8 

82.4 

81.3 

71.7 

67.2 

C16 

C10 

C8 

C8’ 

C6, C9, C9’ 

C6’ 

C12, C14 

C7, C8 

C13, C7’ 

C15, C8’ 

C11 

C1 

C1’ 

C2, C5, C2’, 

C5’ 

C3, C4, C3’, 

C4’ 

276.9 

243.1 

45.3 

N2-

H···N3 

N1···H-

O2 

N3H2 
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Figure 3. 13C CPMAS NMR spectrum of the co-crystal {[Fe(η5-C5H4 

C5H4N)2]· [(C6H4)NH2COOH]}2 recorded at 5.5 kHz. 

 

 
 

Figure 4. 15N CPMAS NMR spectrum of the co-crystal {[Fe(η5-C5H4-

C5H4N)2]· [(C6H4)NH2COOH]}2 recorded at 5.0 kHz. 
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d. Alternative solvent-free preparations of the co-crystal {[Fe(η5-

C5H4-C5H4N)2]· [(C6H4)NH2COOH]}2 

 

In order to gain insight on the factors controlling the process leading to 

formation of the supramolecular macrocycle {[Fe(η5-C5H4-

C5H4N)2]·[(C6H4)NH2COOH]}2, we attempted its preparation in different 

ways, as detailed in the following:  

(i) Dry compression. Carefully dried powdered samples of anthranilic 

acid, form I, and of [Fe(η5-C5H4-C5H4N)2] were gently mixed together at 

room temperature. An X-ray powder diffractogram showed that no reaction 

had taken place. The sample was then pressed in an IR pellet maker. The 

resulting pellet was then ground and subjected to an X-ray measurement. 

The resulting superimposition of the two reactants powder patterns showed 

that no reaction had taken place. 

(ii) Wet compression, viz. solvent drop and compression. The same 

experiment was repeated with the addition of a drop of MeOH to the 

mixture before compression. The XRPD pattern showed formation of the 

compound {[Fe(η5-C5H4-C5H4N)2] [(C6H4)NH2COOH]}2, thus indicating 

that the tiny amount of solvent was necessary for the reaction to take place. 

(iii)“Digestion” in the presence of solvent vapour. The same reaction was 

carried out by placing an equimolar mixture of anthranilic acid and 

ferrocenyl complex in a closed beaker containing MeOH vapour and leaving 

the reactants in the MeOH atmosphere. After 5 days, the change of colour, 

from orange-red to purple indicated formation of the compound {[Fe(η5-

C5H4-C5H4N)2] [(C6H4)NH2COOH]}2, which was then ascertained by 

powder diffraction. The important role of solvent vapours in increasing the 

efficiency of a solid state reaction was also reported by Toda et al.1h 

(iv) Thermally induced reaction. Finally, the reaction between anthranilic 

acid and [Fe(η5-C5H4-C5H4N)2] was carried out by heating the mixture of 
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reactants directly under X-ray diffraction conditions. The process was also 

analysed by differential scanning calorimetry, which shows that the 

polymorphism of anthranilic acid does not play any significant role, because 

transition from form I to form II takes places in the heating process at 90°C. 

 

The thermally induced reaction experiment requires a more detailed 

description of the results. Figure 5a shows the variation with temperature of 

the powder diffraction patterns collected on a static mixture of the reactants 

from 25°C to 140°C. It can be seen that, on increasing the temperature to ca. 

130 °C, peaks of the product start to appear, and they are evident at 140°C 

(which corresponds to the melting point of anthranilic acid), viz. the 

reaction occurs between a crystalline solid and a melt. Figure 5b shows a 

comparison between the room temperature pattern after reaction and the 

calculated pattern.  
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Figure 5. Thermally induced reaction of a mixture of solid [Fe(η5-C5H4-

C5H4N)2] and [(C6H4)NH2COOH]. X-ray diffraction patterns were collected 

on a static mixture of the reactants from 25 to 140°C. (a) The variation with 

temperature of the XRPD pattern. (b) Comparison between (top) the 

experimental pattern measured at room temperature after the reaction and 

(bottom) the calculated one. Partial sublimation of the anthranilic acid 

prevents completeness of the reaction, as indicated by the presence of 

unreacted [Fe(η5-C5H4-C5H4N)2] (starred peaks). 

 

 

The previous reaction was also conducted in a glass vial immersed in an 

oil bath, in order to show that the reaction can be visually detected. Solid 

[Fe(η5-C5H4-C5H4N)2] and [(C6H4)NH2COOH] are orange and white, 

respectively, at room temperature, while the colour of the product is purple. 

Figure 6 shows the glass vial at room temperature and after the bath 

temperature has reached 143°C.  
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Figure 6. The orange-white mixture of solid reagents (left) and the purple 

solid product (right) can be visually appreciated if the thermally induced 

reaction is carried out in a glass vial. 

  

In summary, kneading (i.e. manual grinding of a wet mixture), wet 

compression and vapour digestion achieve the same result as the static 

heating of the reactants and lead to formation of the product {[Fe(η5-C5H4-

C5H4N)2] [(C6H4)NH2COOH]}2, while dry compression and dry grinding do 

not. Altogether, these experiments indicate that the process leading from 

solid anthranilic acid and solid [Fe(η5-C5H4-C5H4N)2] to the co-crystal can 

be more appropriately described as a solvent-free, rather than a solid-state 

reaction because, in order to occur, it requires either the intervention of a 

solvent, albeit in catalytic amount, or that one of the reactants is in the 

liquid state.  
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e. Conclusions 

In this paper we have reported that solid [Fe(η5-C5H4-C5H4N)2] reacts 

with the anthranilic acid (C6H4)NH2COOH  to generate the hydrogen 

bonded supramolecular macrocycle {[Fe(η5-C5H4-C5H4N)2] 

[(C6H4)NH2COOH]}2. The product has been characterized by means of X-

ray powder diffraction, 13C and 15N solid-state NMR and of single crystal X-

ray diffraction. Both spectroscopic and diffraction experiments concurs to 

indicate that no protonation of the organometallic molecule takes place so 

that the overall structure can be described as formed of a supramolecular 

macrocycle where two neutral anthranilic acid molecules link together two 

ferrocenyl units via O-H···N hydrogen bonds. This compound belongs to a 

family of supramolecular adducts of [Fe(η5-C5H4-C5H4N)2] with organic 

acids, all obtained by mechanical mixing of the reactants.18 

The focus of this study is, however, on the preparation conditions. 

Different mixing conditions of the solid reactants [Fe(η5-C5H4-C5H4N)2] 

and (C6H4)NH2COOH have been tested with the aim of understanding the 

factors controlling product formation.  

The results of the five experiments described above indicate that product 

formation is controlled by molecular diffusion. Molecular diffusion can be 

attained by grinding in the presence of “catalytic” amounts of solvent 

(kneading or wet compression), by exposing the dry mixture of reactants to 

vapours of the solvent (solvent digestion) or by thermal treatment. In this 

latter case, we have shown that one of the components, namely anthranilic 

acid, melts before reaction.  

We would thus argue in favour of experimental conditions (grinding, 

kneading etc.) that can assist diffusion of the molecules of anthranilic acid 

in the lattice of the ferrocenyl complex. Clearly, once the reaction has 

occurred and the new supramolecular bonds between the organic and the 

organometallic molecules established, the new crystal phase needs to 
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nucleate and grow as the remaining crystalline phase is destroyed. The 

driving force appears to be the formation of the hydrogen bonds between the 

anthranilic acid and the ferrocenyl complex, a highly favourable process 

because there are no strong hydrogen bonds in the crystals of the 

organometallic molecules while those in the organic crystals have been 

demolished by thermal treatment and/or by the intervention of methanol in a 

process of “local solvation”.  It can be correctly argued that these processes 

cannot be regarded as bona fide solid state reactions. Several authors in a 

number of relevant papers have shown that many reactions between solid 

reactants are not ultimately taking place in the solid state.2 Such is the case 

of the process discussed in this report and very likely also that of many 

other reactions between solids described by us and by others. We would, 

however, tend to favour a liberal view of these processes because, even 

though they are not solid-state reactions, the reactants and the products are 

crystalline phases and the solvent, if present, is used in minimal quantity 

and acts only as a catalyst. These notions should help, inter alia, to develop 

a better understanding of solvent-free reactions (or quasi solvent-free) for 

the development of cheaper processes and for the benefit of the 

environment. 
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f. Experimental Section 

Anthranilic acid was purchased from Sigma-Aldrich and used without 

further purification. Reagent grade solvents were used. Synthesis of Fe[η5-

C5H4-1-(4-C5H4N)]2 

The ferrocenyl derivative was prepared as previously reported. A solution 

of 4-bromopyridine hydrochloride (0.177 g, 0.91 mmol) in dioxane (6.5 mL) 

was stirred under nitrogen atmosphere with a solution of Na2CO3 (1M, 4.3 

mL) to obtain the 4-bromo-pyridine. The solution was heated at 50°C for 30 

min. PdCl2[1,1’-bis(diphenilfosphino)ferrocene] (0.006 g, 0.007 mmol) was 

then added followed by ferrocene diboronic acid (0.100 g, 0.37 mmol) and 

NaOH (3M, 0.24 mL) in DME (3 mL). The solution was refluxed for 2 

days, quenched with water and extracted with ethyl acetate (3 x 10 mL). The 

organic layer was washed with NH4Cl and water, dehydrated with Na2SO4 

and concentrated. The crude product was purified by column 

chromatography CH2Cl2/MeOH (95:5) (yield 53%). 

Solid-state preparation of {[Fe(η5-C5H4-C5H4N)2] [(C6H4)NH2COOH]}2. 

A stoichiometric 1:1 mixture of [Fe(η5-C5H4-C5H4N)2] and 

(C6H4)NH2COOH was manually ground in an agate mortar for 5 min and 

subjected to X-ray powder diffraction measurement (see below). A change 

in colour from orange-red to purple  was also diagnostic of product 

formation. It is noteworthy that the same solid-state reaction carried out 

with an excess of either reactant invariably led to formation of a mixture of 

the same product and of the reactant in excess. Single crystals of {[Fe(η5-

C5H4-C5H4N)2][(C6H4)NH2COOH]}2
 suitable for X-ray diffraction were 

obtained by slow evaporation of a solution obtained dissolving [Fe(η5-Cp-

C5H4N)2]2 and (C6H4)NH2COOH in 5 mL of methanol 99.8%. 

Solution synthesis of {[Fe(η5-C5H4-C5H4N)2] [(C6H4)NH2COOH]}2. 

[Fe(η5-C5H4-C5H4N)2] and (C6H4)NH2COOH were dissolved in 

stoichiometric amount in methanol 99.8% and stirred for 5 min. The 
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solution colour changed from orange-red to purple. A polycrystalline 

product was then recovered after evaporation of the solvent to dryness. The 

nature of the product was confirmed by X-ray powder diffraction. 

Digestion of {[Fe(η5-C5H4-C5H4N)2] [(C6H4)NH2COOH]}2 in the 

presence of methanol vapour. The compounds obtained from grinding 

reactions were exposed at room temperature to vapours of methanol 

(99,8%). After 7 days the diffraction pattern showed that crystallinity of  all 

samples had improved. 

Crystal structure determination. Crystal data were collected at room 

temperature on a Nonius CAD4 diffractometer. Crystal data and details of 

measurements are summarised in Table 2. Mo-Kα radiation, λ = 0.71073 Å, 

monochromator graphite. SHELX9720a was used for structure solution and 

refinement based on F2. All non-hydrogen atoms were refined 

anisotropically. Hydrogen atoms bound to N and O atoms were directly 

located from a Fourier difference map and refined, while the HCH atoms 

were added in calculated positions. Data were corrected for absorption by 

azimuthal scanning of high-χ reflections. SCHAKAL9920b was used for the 

graphical representation of the results. The program PLATON20c was used 

to calculate the hydrogen bonding interactions. These data can be obtained 

free of charge via  www.ccdc.cam.ac.uk/conts/retrieving.html (or from the 

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge 

CB21EZ, UK; fax: (+44)1223-336-033; or e-mail: 

deposit@ccdc.cam.ac.uk).  

Powder diffraction measurements: Powder diffraction for all samples was 

measured on a  Philips PW-1100 automated diffractometer, CuKα, 

monochromator graphite, using quartz sample holders; for the pure reagents 

30 mg of substance were employed. The program PowderCell 2.220d was 

used for calculation of X-ray powder patterns on the basis of the single 
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crystal structure determinations. Prolonged grinding of the compounds did 

not alter the diffraction patterns significantly.  

Solid state NMR measurements: All 13C and 15N spectra were recorded on 

a JEOL GSE 270 equipped with a Doty probe operating at 67.8 MHz for 13C 

and at 27.25 MHz for 15N. A standard cross-polarization pulse sequence has 

been used with a contact time of 3.5 ms for 13C and of 5 ms for 15N, a 90° 

pulse of 4.5 ms, recycle delay of 10-15 s and a number of 600-4000 

transients. Powdered samples were spun at 4-5 kHz at room temperature in a 

cylindrical 5 mm o.d. zirconia rotors with sample volume of 120 mL. The 
13C results are reported with respect to TMS assuming the 

hexamethylbenzene methyl peak is at 17.4 ppm. 15N chemical shifts were 

referenced via the resonance of solid (NH4)2SO4 (–355.8 ppm with respect 

to CH3NO2). For all samples the magic angle was carefully adjusted from 

the 79Br spectrum of KBr by minimising the linewidth of the spinning 

sideband satellite transitions. 
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Table 2.  Crystal Data  

Compound 
{[Fe(η5-C5H4-

C5H4N)2][(C6H4)NH2COOH]}2 

Formula C27H23FeN3O2 

M 477.33 

System Triclinic 

Space group P -1 

a /Å 9.565(9) 

b /Å 9.897(4) 

c /Å 13.201(4) 

α  /° 99.77(3) 

β  /° 94.17(4) 

γ  /° 115.74(7) 

U /Å³ 1094(1) 

Z 2 

Density /g cm-3 1.449 

µ (Mo-Kα) /mm-1 0.720 

Reflections collected 4010 

Indep refls, R(int) 3829 

Observed [Fo > 4σ 

(Fo)] 
2740 

R1 [Fo > 4σ (Fo)]  0.0843 

wR2 (all data) 0.2491 
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6. Mechanochemical Preparation of Hybrid 

Organometallic-Organic Macrocyclic Adducts with Long 

Chain Dicarboxylic Acids 
 

Mechanochemistry is an established branch of the chemical sciences 

whereby solid reactants are ground together in the solid state to obtain 

polycrystalline products.1 In recent years there has been an expansion of this 

chemistry in the areas of supramolecular chemistry2 and crystal 

engineering,3 fuelled by the interest in exploring solvent free synthetic 

procedures for the preparation of molecular aggregates as alternate to 

conventional solution chemistry.4   

The number of papers reporting solid-state preparation of molecular co-

crystals,5 coordination networks6 and salts7 is increasing rapidly. The impact 

on the investigation of crystal polymorphs and solvates is also noteworthy.8  

Besides being advantageous for the absence of solvents, reactions between 

solids do often lead to very pure products and require very simple 

equipments to be carried out. The mixing of reactant can be achieved by 

simple manual grinding or by mechanical milling. Sometimes the reaction is 

accelerated, or made altogether possible, by kneading (also called “solvent 

drop grinding”), i.e. by carrying out the grinding process in the presence of 

a “catalytic” amount of solvent.5,7 

 

The main drawback of inter-solid reactions arises from the characterization 

of the polycrystalline reaction products. In the case of complex 

supramolecular systems, such as those described herein, the lack of single 

crystals can forsake a detailed knowledge of the structure, when not of the 

very nature of the reaction product. This problem can be circumvented if 

single crystals of the target material can be grown from solution, often by 

seeding.9 
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We have already used solid-state methods in the preparation of molecular 

co-crystals, mainly with organometallic building blocks, and coordination 

networks.10  

 

In this communication we report the solid-state preparation of a series of 

novel hybrid organic-organometallic macrocycles of general formula 

{[Fe(η5-C5H4-C5H4N)2]· [HOOC(CH2)nCOOH]}2  (n = 4, 6, 7), while the 

adducts with n = 5 and n = 8 have been obtained from solution 

crystallization. In all cases the organic and organometallic moieties are held 

together by hydrogen bonds between the carboxylic –OH groups and the 

pyridine nitrogen atoms. More specifically, manual grinding of the solid 

organometallic complex [Fe(η5-C5H4-C5H4N)2]† (1) with the solid 

dicarboxylic acids of formula HOOC(CH2)nCOOH [with n = 4 (adipic), 5 

(pimelic), 6 (suberic), 7 (azelaic), 8 (sebacic)] in the presence of traces of 

MeOH (kneading) yields five novel compounds as easily ascertained by 

comparing the powder diffraction patterns of the starting materials with 

those of the products. No formation of intermediate liquid phases has been 

observed. The reactions are easily followed by a change in colour, which is 

diagnostic: while all organic acids are white, and the organometallic 

complex 1 is orange, the colour of the solid macrocycle varies from orange-

red to purple-red. It is worth recalling that the starting organometallic 

complex [Fe(η5-C5H4-C5H4N)2] (1) can also be prepared by Suzuki-

coupling in solvent-free conditions.11 

 

Single crystals§ of 1·adipic(4), 1·pimelic(5), 1·suberic(6), 1·azelaic(7) and 

1·sebacic(8) (numbers in parenthesis indicate the number of CH2 groups in 

the acid chain) were grown from MeOH solutions where direct reaction 

between complex 1 and the acid had occurred. In the cases of 1·adipic(4), 

1·suberic(6), and 1·azelaic(7) comparison between the X-ray diffraction 
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patterns measured on the kneaded samples and those calculated on the basis 

of the single crystal structures confirmed that the same compound had been 

prepared from solution and mechanochemically, whereas in the cases of 

1·pimelic(5) and 1·sebacic(8) the observed and calculated patterns were 

different (vide infra). 

All complexes, with the exception of 1·pimelic(5), share a common 

structural feature, namely the formation of supramolecular macrocycles 

constituted of two organometallic and two organic units linked in large 

tetramolecular units by O-H···N hydrogen bonds between the –COOH 

groups of the dicarboxylic acids and the N-atom of the ferrocenyl complex. 

Figure 1 shows the structures of 1·adipic(4), 1·suberic(6), 1·azelaic(7) and 

1·sebacic(8). It can be appreciated how the even/odd alternation of carbon 

atoms in the organic spacers is accommodated by the twist of the 

cyclopentadienyl-pyridyl groups and by the eclipsed or staggered 

juxtaposition of the organic moieties. 

 

 
Fig. 1a 

 
Fig. 1b 
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Fig. 1c 

 
Fig. 1d 

 

Fig. 1. The supramolecular structures of the macrocycles 1·adipic(4) (a), 

1·suberic(6) (b), 1·azelaic(7) (c) and 1·sebacic(8) (d) showing the hydrogen 

bond links between the two outer organometallic molecules and the inner 

organic spacers. 

 

The comparison between observed and calculated X-ray powder diffraction 

patterns in the case of  1·suberic(6), taken as example, is shown in Figure 2. 
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Fig. 2. Comparison between experimental (top) and calculated (bottom) X-

ray powder patterns for 1·suberic(6). 

 

As mentioned above, in the case of 1·pimelic(5) crystallization from 

solution yields an adduct with the same stoichiometric composition as the 

macrocycles 1·adipic(4), 1·suberic(6), 1·azelaic(7), but with acid and base 

moieties organized in a zig-zag chain instead than in a macrocycle, and 

linked via O-HCOOH···N hydrogen bonds, as shown in Figure 3. This 

structure does not yield the same powder diffraction pattern as that obtained 

by grinding. It is therefore interesting to speculate on the possibility of 

structural isomerism between closed (macrocycles) and open (zig-zag or 

other chains structures) arrangements and also on the possible 

interconversion, which may also depend on the choice of solvent.12 A 

similar, though inverse, situation is observed in the case of 1·sebacic(8): 

crystallization from solution yields the macrocycle, while the grinding 

experiments produces a different substance, which has not yet been 

characterized. Further studies are needed to address the problem of 

supramolecular isomerism in this class of compounds. 
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Fig. 3. The zigzag chain found in 1·pimelic(5). This structure is suggestive 

of the existence of supramolecular isomers of the macrocyclic structures 

shown in Fig. 1. 

 

It is worth noting that, even though the quality of the X-ray data does not 

allow to draw confident conclusions, no proton transfer from acid to base 

appears to take place, therefore all adducts are made of neutral components. 

A solid state NMR investigation,10a however, is under way. The 

supramolecular metalla-macrocycles share also some remarkable packing 

features in the solid state with all compounds forming layered structures as 

shown in Figure 4. The macrocycles are very anisotropic in shape, being 

characterized by two smaller dimensions (those corresponding 

approximately to the size of the ferrocenyl moiety, which are constant) and 

one long dimension, which varies with the dicarboxylic acid length, and 

form a “LEGO”® type of construct. These macrocycles are then placed next 
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to each other in layers that can be wavy (1·adipic(4) and 1·suberic(6)) or 

planar (1·azelaic(7) and 1·sebacic(8)). 

It is interesting to speculate on the fact that the formation of these complex 

packings implies molecular diffusion and significant molecular motion and 

bond breaking/forming in agreement with Kaupp’s model of molecular 

motion and phase reconstruction and extrusion as the solid-state reaction 

proceeds.13 

 

 
Fig. 4a 

 

 
Fig. 4b 
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Fig. 4c 

 

 
Fig. 4d 

 

 
Fig. 4e 

Fig. 4. The strong structural analogy in supramolecular organization ion of 

the layers in 1·adipic(4) (a), 1·suberic(6) (b), 1·azelaic(7) (c) and 

1·sebacic(8) (d). Note also the structural relationship with the ribbons in 

1.pimelic(5) (e). 
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Reactions between crystalline solids of the type used to prepare the 

macrocycles can be regarded as supramolecular reactions between solid, 

periodical supermolecules. In the reaction between molecular solid reactants 

to form a new molecular solid product the covalent bonding is not affected, 

while non-covalent van der Waals or hydrogen bonding interactions are 

broken and formed. In summary, we have provided further evidence that 

kneading of organometallic and organic crystals can be exploited to prepare 

new supramolecular hybrid organic-organometallic macrocycles and 

networks. 

 

 

 

Notes and references 

† All reagents were purchased from Sigma-Aldrich and used without further 

purification. Reagent grade solvents were used. Fe[η5-C5H4-1-(4-C5H4N)]2 

was synthesized as previously reported.11All crystallization solutions and 

mixtures for grinding reactions were initially prepared with an excess of the 

acid with respect to [Fe(η5-Cp-C5H4N)2]2.  After characterization, 

preparations were repeated with the 1:1 stoichiometric ratio. The mixtures 

of [Fe(η5-Cp-C5H4N)2]2 and of COOH(CH2)nCOOH (n = 4, 5, 6, 7 and 8) 

were manually ground in an agate mortar for 5 min; single crystals of 

1·adipic(4), 1·pimelic(5), 1·suberic(6), 1·azelaic(7) and 1·sebacic(8) 

suitable for single crystal X-ray diffraction were obtained by slow 

evaporation of a solution obtained by dissolving  equimolar quantities of 

[Fe(η5-Cp-C5H4N)2]2 (50 mg, 0.147 mmol) and COOH(CH2)nCOOH (0.147 

mmol, 21, 23, 25, 27 and 30 mg for n = 4, 5, 6, 7 and 8, respectively) in 5 

mL of  MeOH 99.8%. Co-grinding of the solids in stoichiometric ratios 

other than 1:1 (e.g. 1:2 and 2:1) led to formation of solid mixtures with 
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diffraction peaks corresponding to the unreacted excess reagent in addition 

to the peaks of the 1:1 compounds. 

§ Crystal data for all adducts were collected either at 293 K (1·adipic(4), 

1·pimelic(5), 1·suberic(6), 1·sebacic(8)) or at 273 K (1·azelaic(7)) on a 

Brucker APEX II diffractometer [monochromator graphite, MoKα radiation 

(λ = 0.71073 Å)]. Crystals suitable for diffraction experiments were difficult 

to grow, in most cases polycrystalline powders were obtained with only few 

poorly formed single crystals. For all compounds, Z is referred to the 

number of macrocycles in the unit cell. 1·adipic(4): {[Fe(η5-C5H4-

C5H4N)2]·[HOOC(CH2)4COOH]}2, M = 972.68, triclinic, P-1, a = 11.276 

(2), b = 14.816(3), c = 28.600(6) Å, α = 89.201(4), β =  87.275(4), γ =   

68.551(3) °, V =  4442(2) Å3, Z = 4, µ = 0.716, 15394 independent 

reflections (31703 measured), wR2 (all data) = 0.3563, R1 (I >2σ(I)) = 

0.1189. 1·pimelic(5): {[Fe(η5-C5H4-C5H4N)2]·[HOOC(CH2)5COOH]}2, M = 

2001.46, P-1, a = 9.396 (2), b = 10.667(3), c = 24.172(2) Å, α = 78.03(5), β 

=  88.93(2), γ =   81.25(4) °, V =  2342.2(8) Å3, Z = 1, µ = 0.681, 8019 

independent reflections (16818 measured), wR2 (all data) = 0.1990, R1 (I 

>2σ(I)) = 0.0645. 1·suberic(6): {[Fe(η5-C5H4-

C5H4N)2]·[HOOC(CH2)6COOH]}2, M = 1028.78, monoclinic, P21/c, a = 

11.107(9), b = 31.467(18), c = 14.846(12) Å, β =  110.33(8) °, V = 4866(6) 

Å3, Z = 4, µ = 0.658, 7134 independent reflections (15533 measured), wR2 

(all data) = 0.4224, R1 (I >2σ(I)) = 0.1271 (Only 83% of data collection 

completed, because of crystal decay). 1·azelaic(7): {[Fe(η5-C5H4-

C5H4N)2]·[HOOC(CH2)7COOH]}2, M = 1056.83, triclinic, P-1, a = 

9.8845(5), b = 10.7413(6), c = 13.4321(7) Å, α = 76.177(1), β =  78.844(1), 

γ = 68.146(1)°, V =  1276.6(1) Å3, Z = 1, µ = 0.629, 5782 independent 

reflections (11137 measured), wR2 (all data) = 0.1046, R1 (I >2σ(I)) = 

0.0390. 1·sebacic(8): {[Fe(η5-C5H4-C5H4N)2]·[HOOC(CH2)8COOH]}2, M =  



 

                                                                                   172 

1084.88,  triclinic, P-1, a = 11.028(2), b = 13.747(3), c = 18.765(4)  Å, α =  

96.076(3), β = 102.689(3), γ = 105.048(3)°, V =  2639.6(9)  Å3, Z = 2, µ = 

0.610, 5277 independent reflections (12282 measured), wR2 (all data) = 

0.2152, R1 (I >2σ(I)) = 0.0694. SHELX9714a and SCHAKAL9914b were 

used for structure solution and graphical representations. CCDC xxxxxx-

xxxxxx. See http://www.rsc.org/suppdata/cc/xx/xxxxxxxx/ for 

crystallographic data in CIF format. 

‡ Powder data for all samples were collected on a Philips PW-1100 

automated diffractometer with Cu-Kα radiation, graphite monochromator, 

using quartz sample holders. For the pure reagents 25 mg of substance were 

employed. The program PowderCell14c was used for calculation of X-ray 

powder patterns. 
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7. Conclusions  
We have shown that organometallic building blocks functionalized with 

classical hydrogen bonding donor/acceptor groups (e.g. –COOH, –B(OH)2, 

pyridine, amides, etc.) can be successfully utilized in a broad range of 

crystal engineering exercises for the formation of supramolecular adducts 

and hydrogen bonded networks. The building block of choice in this report 

is a sandwich compound (whether bis-arene of bis-cyclopentadienyl 

sandwich) carrying hydrogen bonding functional groups. We have shown in 

the first section that most dicarbocylic acids utilize the twin intermolecular 

hydrogen bonding to form cyclic dimers, which are then maintained in the 

crystal structures as supramolecular units of packing. The packing of such 

dimeric units is then that of supramolecular van der Waals objects capable, 

to the most, of weak C H O interactions. The existence of three 

polymorphs of such dimers in the case of {[Fe(η5-C5H4COOH)2]}2 is 

noteworthy. Interestingly, compounds such as the dicarboxylic acids 

{[Fe(η5-C5H4COOH)2]}2, {[Co(η5-C5H4COOH)2]}2 and {[Cr(η6-

C6H5COOH)2]}2 or, just as well, the dication {[Co(η5-

C5H4CONHC5H4NH)(η5-C5H4COO)]+}2 and the supramolecular adduct 

{[Co(η5-C5H4CONHC5H4N)2][Fe(η5-C5H4COOH)2]}+, which forms dimers, 

show an important topological difference from the relative “organic-only” 

compounds (i.e. organic dicarboxylic acids, bis-amides, etc.) because these 

latter compounds are, in general not “allowed” the conformational freedom 

of sandwich compounds and, therefore, cannot dimerize. In fact, 

dicarboxylic organic acids tend to form chains in the solid state, rather than 

self-assemble in dimeric units. The chain formation, on the other hand is not 

precluded to the organometallic sandwich acids. Not only the chain motif is 

also possible for a same species, as in the case of form II of [Fe(η5-C5H4-4-

C5H4N)(η5-C5H4-B(OH)2)], but it is also the motif of choice in all cases of 



 

                                                                                   176 

cationic acids, e.g. the two polymorphs of [Cr(η6-C6H5COOH)2][PF6] and 

[Co(η5-C5H4COOH)2]X (X = PF6
−, BF4

−). In these cases, the chain structure 

might be favoured because of the need to optimize simultaneously the 

Coulombic interactions between ions of opposite charge as well as the 

hydrogen bonds in between anions.  

We have put the emphasis on the structural and supramolecular features 

of the sandwich compounds, but it should made clear that, before these 

building blocks can be used in supramolecular bonding they have to be 

made. In many instances, it was necessary to synthesize ab initio, the 

building block of choice because only few of the starting materials are 

commercially available. Details of the solution chemistry that precedes the 

crystal engineering steps are available in the original papers quoted through 

the review.  

We have also shown that the preparation of molecular crystals of the type 

described in this contribution is not confined to traditional crystallization 

from solution. Solvent-free methods, such as solid–solid reactions, vapour 

uptake from a solid, kneading of crystalline solids with small amount of 

solvent or liquid reactant can be exploited to prepare novel compounds, 

some of which cannot be otherwise obtained by traditional solution 

methods. These methods, widely used in the organic solid-state chemistry 

field [45], can be predicted to have an important future also in the 

neighbouring field of solid-state organometallic chemistry [46].  

Beside the preparation of crystalline materials based on hydrogen bonds, 

we are currently investigating the use of some of the building blocks 

described above, such as pyridine and amido ferrocenyl and cobalticinium 

complexes, in the preparation of complexes of complexes [47], the 

exploitation of mechanochemical methods to prepare coordination networks 

[48], and the preparation of supramolecular adducts based on acid salts [49]. 

These results will constitute the subject matter of future reports.  
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