ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI Dipartimento di Astronomia

Dottorato di Ricerca in Astronomia Ciclo XXIV (2009-2011)

Pulsating variable stars as tracers of galactic structure and interaction mechanisms

Tesi di Dottorato

di Maria Ida Moretti

COORDINATORI	E : Prof. Lauro MOSCARDINI
RELATORE	: Prof. Bruno MARANO
CO-RELATORE	: Dott. Gisella CLEMENTINI
CO-RELATORE	: Dott. Vincenzo RIPEPI

Esame Finale Anno 2012

SCUOLA DI DOTTORATO IN SCIENZE MATEMATICHE, FISICHE E ASTRONOMICHE

Settore Concorsuale: 02/C1 – Astronomia, Astrofisica, Fisica della Terra e dei Pianeti Settore Scientifico-Disciplinare: FIS/05 – Astronomia e Astrofisica

Contents

	Intr	roduzione	3		
1	Galaxy formation scenarios				
	1.1	Galaxy formation: Cold Dark Matter theory	7		
	1.2	Galactic formation	8		
	1.3	Dwarf Spheroidal galaxies	9		
2	Variable stars as tools				
	2.1	Radially pulsating variable stars	14		
	2.2	δ Scuti and SX Phoenicis stars	15		
	2.3	RR Lyrae stars	17		
		2.3.1 Fourier Analysis of the RR Lyrae light curves	18		
		2.3.2 M_{V} -[Fe/H] and PL relations for RR Lyrae stars	22		
	2.4	Classical Cepheid stars	26		
	2.5	Type II Cepheid stars	28		
	2.6	Anomalous Cepheid stars	30		
3	"Ult	tra-faint" dwarf spheroidal galaxies	33		
	3.1	Leo IV	33		
		3.1.1 Observations and data reduction	34		
		3.1.2 Identification of variable stars	35		
		3.1.3 CMD, structure and distance to Leo IV	40		
	3.2	Hercules	41		
	3.3	Observations and Data Reduction	43		
	3.4 Variable Stars				
		3.4.1 Metallicity and reddening from the RR Lyrae stars	48		

CONTENTS

	3.5	CMD, structure and distance						
		3.5.1 A new estimate of the distance to Hercules						
4	The	e Magellanic System 59						
	4.1	The Magellanic System						
	4.2	Optical observations: microlensing surveys						
		4.2.1 EROS-2						
		4.2.2 OGLE III						
	4.3	VISTA telescope and surveys						
	4.4	The VMC survey						
		4.4.1 VMC observations						
5	Data	a analysis, and first results for RR Lyrae stars from the VMC						
	surv	vey 81						
	5.1	Optical data for the LMC RR Lyrae and Cepheids						
	5.2	EROS-2 data in the SEP field: GRATIS analysis						
	5.3	Classification of the RR Lyrae stars						
		5.3.1 Identification of the pulsation mode with the Bailey diagram . 87						
		5.3.2 Determination of the Fourier parameters						
		5.3.3 Metallicity estimate for RR_{ab} stars $\ldots \ldots \ldots \ldots \ldots \ldots $ 95						
		5.3.4 Metallicity estimate for the RR_c stars						
	5.4	Determination of the $\langle K_S \rangle$ values $\ldots \ldots $						
	5.5	Period-Luminosity-metallicity relation						
	5.6	RR Lyrae stars in the 30 Dor region						
6	Firs	t results for Classical Cepheids from the VMC survey 143						
	6.1	VMC data for the Cepheids						
	6.2	Classical Cepheids in the 30 Dor field						
	6.3	Zero point of the PW and PLC relations, and distance to the LMC $$. 158						
		6.3.1 Zero points from the parallax of Galactic Cepheids 158						
		6.3.2 Zero points from the IRSB Baade-Wesselink method $\ldots \ldots 160$						
		6.3.3 Zero points from the CORS Baade-Wesselink method 160						

Summary and Conclusions

2

163

Introduction

In the Λ Cold Dark Matter theory the Milky Way and, generally, all massive galaxies, formed at least the external parts, by accreting smaller galaxies. It is thus very important to understand whether, and how the nearby dwarf galaxies surrounding the Milky Way have contributed to the formation of the Galactic halo.

Among the Milky Way satellites are both dwarf irregular and dwarf spheroidal galaxies. The former are rich in gas, have surface brightness $\mu_V \leq 23$ mag arcsec⁻² and total masses $M_{tot} \leq 10^{10} M_{\odot}$. Dwarf spheroidal galaxies, instead, are gas-deficient and faint ($\mu_V \geq 22$ mag arcsec⁻²), with mass $M_{tot} \sim 10^7 M_{\odot}$. The best example of dwarf Irregular satellites of the Milky Way are the Large and Small Magellanic Cloud. They also represent the nearest case of interacting systems. Among dwarf spheroidals are also the so-called "ultra-faint" dwarfs, recently discovered by the Sloan Digital Dky Survey (York et al., 2000). They have ($\mu_V \gtrsim 28$ mag arcsec⁻²) and $M_{tot} \sim 10^7 M_{\odot}$. They are dark matter dominated and highly distorted in shape. They are among the best candidates of the "building block" of the Galactic halo. In the Milky Way most of the globular clusters hosting RR Lyrae stars divide in two distinct groups (Oosterhoff dichotomy, Oosterhoff 1939) depending on the average period of the fundamental mode RR Lyrae stars. We expect the "true" building block candidates to exhibit as well such a dichotomy.

One probe of the structure, formation and evolution history of the Galactic halo is its variable stellar population. Several types of pulsating variable stars exist, all lying in an almost vertical region of the Herzprung-Russel diagram and sharing the same pulsation mechanism. Among them, the RR Lyrae stars trace the oldest stars, the Classical Cepheids trace the young stars, and the Anomalous Cepheids are intermediate-age tracers. Age differences among pulsating stars belonging to

CONTENTS

the same stellar system correspond to differences in evolutionary phase, luminosity, pulsation properties, and geometrical distribution within the system. Using the variable stars is therefore possible to study the galaxy structure and get hits on the interaction with other systems (e. g. the Milky Way).

My PhD project has been focused on the study of the pulsating variable stars in two ultra-faint dwarf spheroidal satellites of the Milky Way, namely, Leo IV and Hercules; and in two fields of the Large Magellanic Cloud (namely, the Gaia South Ecliptic Pole calibration field, and the 30 Doradus region) that were repeatedly observed in the K_S band by the VISTA Magellanic Cloud (VMC, PI M.R. Cioni) survey of the Magellanic System.

Our first target has been the Leo IV ultra-faint galaxy. We have obtained the first V, B - V color-magnitude diagram (CMD) of the Leo IV dwarf spheroidal, from B, V time-series photometry collected with the Isaac Newton Telescope, the William Hershel Telescope, and The Southern Astrophysical Research telescope. The CMD reaches about half a magnitude below the Leo IV turnoff, which we have detected at V = 24.7 mag. We have identified three fundamental mode RR Lyrae stars, and one SX Phoenicis variable in the galaxy. In the period-amplitude diagram the Leo IV RR Lyrae stars are located close to the loci of Oosterhoff type I systems and evolved fundamental-mode RR Lyrae stars in the Galactic globular cluster M3. However, their mean pulsation period suggests an Oosterhoff type II classification for this galaxy. The RR Lyrae stars trace very well the galaxy horizontal branch (HB), setting its average magnitude at $\langle V_{RR} \rangle = 21.48 \pm 0.03$ mag, and bringing to a distance estimate of 154 ± 5 kpc. One of the RR Lyrae star is located well outside the galaxy half-light radius, still it lies exactly on the HB in the color-magnitude diagram. We conclude that the star belongs to the Leo IV galaxy, and, with its very peripheral location shows that that Leo IV is elongated due to the tidal interaction with the Milky Way.

Hercules is the other ultra-faint dwarf galaxy we have studied in this PhD work. B, V time-series photometry of Hercules was obtained using a variety of different telescopes (the Isaac Newton Telescope, the William Hershell Telescope, the Liverpool Telescope, the Faulkes Telescope and the 2.2 m ESO/MPI telescope). We have identifying 9 RR Lyrae stars and 1 Anomalous Cepheid in Hercules. The average period of the fundamental mode RR Lyrae stars along with the V-band period-

CONTENTS

amplitude diagram allow us to firmly classify Hercules as an Oosterhoff II system. We have obtained a color-magnitude diagram of the galaxy, reaching $V \sim 25$ mag, that shows the presence of a population as old and metal poor as the Galactic globular clusters M68 and M15. We also obtained the deepest color-magnitude of Hercules ever presented before, using Hubble Space Telescope (HST) archive data. The detection of an Anomalous Cepheid shows that Hercules hosts also an intermediate-age population component, confirming previous results on the galaxy star formation history. Also in Hercules, the distribution of the RR Lyrae stars suggests an elongated shape due to the interaction with the Milky Way.

Finally, the second part of the PhD thesis was focused on the analysis of RR Lyrae stars and Cepheids located in the South Ecliptic Pole (SEP) field, and in the 30 Doradus (30 Dor) region of the Large Magellanic Cloud, on the basis of infrared Y, J, K_S data obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) in the context of the Magellanic Cloud survey VMC. We present the K_S -band light curves of the Classical Cepheids and RR Lyrae stars in SEP and 30 Dor fields, and discuss in detail the procedures that were developed in order to gain information on the distance and 3D-structure of the Magellanic Cloud System from the analysis of the RR Lyrae stars and Cepheids. The VMC K_S light curves of the RR Lyrae stars in the SEP and 30 Dor regions have good photometric quality, with typical errors for the individual data points between ~ 0.02 and 0.05mag. The Cepheids have excellent light curves with typical errors of ~ 0.01 mag. The averaged K_S magnitudes derived for both types of variables were used to derive PLK_S (for the Cepheids) and PLK_SZ (for the RR Lyrae) relations that are in good agreement and show a smaller scatter than found in previous studies. These relations were used to measure absolute distances to the two fields, thus allowing to show the potential and scientific impact that the VMC survey, once completed, will have on our knowledge of the structure of the Magellanic System.

This PhD thesis is organized as follow: Chapter 1 provides the scientific context of the present study. Chapter 2 gives information on the pulsating stars as tools to study the resolved stellar populations in galaxies. Chapter 3 describes the data analysis and results obtained from the study of the Leo IV and Hercules ultrafaint dwarfs. Chapters 5 and 6 summarize the work done on the RR Lyrae and Classical Cepheids in SEP and 30 Dor regions of the LMC. Conclusions and future perspectives of the PhD thesis work are presented in Chapter 7.

Chapter 1

Galaxy formation scenarios

1.1 Galaxy formation: Cold Dark Matter theory

The Λ Cold Dark Matter theory (Λ CDM, Blumenthal et al. 1984) predicts that small structures cluster to form bigger objects (Davis et al., 1985). This is the so-called hierarchical model of the Universe. Observations are generally in agreement with the Λ CDM theory (Cole et al. 1994; Kauffman et al. 1999), however, there are two important discrepancies that could compromise the validity of the Λ CDM paradigm:

- the problem of the cuspy galactic halos: the ΛCDM predictions bring to rotation curves of galactic halos that are more cuspy than observed (Kravtsov et al. 1998; Moore et al. 1999);
- the "missing satellites" problem: the CDM cosmological model predicts that massive galaxies such as the Milky Way (MW) should be surrounded by large numbers of dark matter dominated satellite halos. The relatively modest population of dwarf galaxies observed to surround the MW and the Andromeda (M31) galaxies seems to conflict with this prediction (Kauffman et al. 1993).

These problems are strictly connected with the study of dwarf galaxies and in particular with the study of the dwarf spheroidal (dSph) (see section 1.3) satellites of the MW. For what concerns the missing dwarf problem, searching for new dSphs is fundamental to fill the gap between theory and observations. The MW Halo is better suited for this kind of search, as dSphs are faint, low surface brightness systems (see section 1.3), hence their detection is easier nearby. We will see in the next sections that several studies support the accreting model for the building up of the external halo of the MW, in agreement with the CDM predictions.

1.2 Galactic formation

The detailed study of resolved stellar populations in the MW, and in nearby galaxies, is a powerful tool to better understand the processes that may have lead to the formation of the Galactic halo. In this context, the Local Group (see section 1.3) is used as a true laboratory to perform near-field cosmology.

In the second half of the twentieth century, Eggen et al. (1962) proposed the so called *monolithic scenario* for the formation of the Galactic halo: they suggested that the halo formed in a rapid free-fall collapse. Searle & Zinn (1978) pointed out discrepancies between the predictions of the monolithic scenario and the observations, and put forward the idea that the Galactic halo built over an extended period of time by merging of independent fragments.

Zinn (1980) describes as follows this process of hierarchical accretion:

"The clouds in the central zone merged to form a large gas cloud that later evolved into the Galactic disk. The clouds in the second zone evolved as isolated systems for various lenghts of time up to ~ 5 Gyr, but, eventually, all these clouds collided with the disk and were destroyed. The clouds of the outermost zone have evolved in relative isolation until the present time, and have become the Magellanic Clouds and the dwarf spheroidal galaxies."

The present picture is that the main body of the MW ($R_{gc} < 10 \text{ kpc}$) was formed in a monolithic collapse (Sandage, 1990), whereas the region with $R_{gc} > 15 \text{ kpc}$ was mainly assembled by infall and capture of smaller fragments, as explained in the hierarchical model (Chiba & Beers 2000; van den Bergh & Mackey 2004). If this is the case, evidences of the assembling process should be seen in the properties of the halo stellar populations, at least in the outer halo, where the accreting model is supposed to dominate. As originally pointed out by Searl & Zinn, the best candidates for the small fragments that "built up" the external halo of the MW are the dwarf galaxies (see section 1.3). These galaxies are large in number and dSphs in particular are found around both the MW and M31 (despite their number is still lower than expected by the CDM theory). A clear evidence supporting the merger assembling of the MW halo is the observation of the tidal streams of the Sagittarius galaxy (Ibata et al., 1994). This dSph has left a debris stream fully encircling our Galaxy (e.g. Ibata et al. 2001) and is currently contributing to the assembly of the Galactic halo with both stars and globular clusters (GCs). Like the Sagittarius dSph, also the Canis Major overdensity (Martin et al., 2004) is interacting with the MW and there are several Galactic GCs possibly associated with this system. The "Monoceros Ring" (Newberg et al. 2002; Yanny et al. 2003) is probably the tidal debris of a destroyed dwarf galaxy, whose nucleus lies towards the Canis Major dSph. Not only dSphs are important in this context; another excellent laboratory to study the interaction of galaxies is the system formed by the two Magellanic Clouds (MCs, see section 4.1), that represent the closest prototypes of interacting dwarf irregular galaxies.

A powerful probe of the extended structure of galaxies, their formation and evolution history is their population of variable stars. In this, pulsating stars like the RR Lyrae stars and the Cepheids (see Chapter 2), being excellent distance indicators, and probing old and young/intermediate ages, respectively, provide powerful tools to investigate interaction and merging processes in the MW and in its satellites.

1.3 Dwarf Spheroidal galaxies

As first stated by Hubble (1936), the Local Group (LG) is a small group of galaxies, isolated with respect to the field. Nowadays, we know that this kind of structure is very common in the Universe and this makes the LG an ideal laboratory to check the theory of galactic formation and evolution. The LG contains two big spirals: the MW and M31. Having comparable mass and luminosity they form two subsystems inside the LG. The centre of mass of the LG is situated between them, closer to M31. Another spiral is M33, while the only elliptical galaxy in the LG is M32, a satellite of M31. Among the irregular galaxies are the Large and Small Magellanic Clouds (LMC and SMC respectively; see section 4.1) both satellites of the MW. Despite a general agreement on the number of luminous galaxies that belong to the LG, the census of the dwarf galaxies is still an issue for two main reasons:

• the membership of some galaxies to the LG is still uncertain;

• not all dwarf galaxies of the LG are yet observed (Mateo, 1998). This claim was widely confirmed by the large numbers of new dwarfs discovered by the wide-field surveys of the MW and M31 halos started after 2000, as briefly described in the following.

Dwarf galaxies have $M_V \ge -18$ regardless of the morphological type (Grebel, 2005). The dSphs, in particular, are less luminous than $M_V \sim -11.0$, have surface brightness $\mu_V \ge 22$ mag arcsec², and total mass $M \le 10^7 M_{\odot}$. They are found all over the LG, being the dominant population by number. The dSph galaxies are among the darkest objects we know in the Universe, with mass-to-light ratios ranging from $M/L \sim 5$ to $M/L \sim 100$ for galaxies such as Draco and Ursa Minor (Mateo, 1998), respectively. If they are dominated by dark matter they could give a fundamental contribution to the mass of galaxy clusters, and perhaps of the entire Universe.

Before 2005, only 10 dSphs satellite galaxies of the MW were known: Draco, Ursa Minor, Fornax, Carina, Sculptor, LeoI, LeoII, Sextans, Sagittarius, and Canis Major (Mateo 1998; Ibata et al. 1995; Irwin & Hatzidimitriou 1995; Martin et al. 2004). Similarly, only 12 dwarf galaxies were known to be M31 companions until 2004, among which only 6 dSphs.

The MW dSphs, also referred to as "bright" or "classical" dSphs, generally are found to contain stars exhibiting different chemical compositions than the stars in the Galactic halo (e.g. Helmi et al. 2006). Also, when the pulsation properties of their RR Lyrae stars are considered, the classical dSphs do not conform to the subdivision into Oosterhoff types I (Oo I) and II (Oo II; Oosterhoff 1939) observed for field and cluster MW variables. Indeed, in the MW, GCs that contain significant numbers of RR Lyrae stars have fundamental-mode (RR_{ab}) pulsators with mean period ($\langle P_{ab} \rangle$) either around 0.55 days or around 0.65 days, and separate into the so called Oo I and Oo II types (Oosterhoff, 1939). Extragalactic GCs and field RR Lyrae stars in the bright dSphs surrounding the MW instead, generally have $\langle P_{ab} \rangle$ intermediate between the two Oosterhoff types, and are thus classified as "Oosterhoffintermediate" (Catelan 2009 and references therein). These observational evidences suggest that it is unlikely that the halo of the MW was formed by accretion of objects with properties similar to the present-day "classical" dSphs.

The observations of the *Sloan Digital Sky Survey* (SDSS, York et al. 2000) started in 2005, and have covered so far more than one forth of the sky, centered

around the North Galactic Pole. The SDSS has produced detailed images and created 3-dimensional maps containing more than 930000 galaxies, and more than 120000 quasars. Among other things, the SDSS revolutionized the study of the LG dSphs as it allowed us to detect MW satellites that had not been recognized before because of their low surface brightness: $\mu_V \ge 28 \text{ mag arcsec}^{-2}$ (Belokurov et al., 2007). Indeed, since 2005, 17 new faint dSph satellites of the MW have been discovered, primarily from the analysis of SDSS imaging: Willman I, Ursa Major I, Ursa Major II, Bootes I, Coma Berenices (Coma), Segue I, Canes Venatici I (CVn I), Canes Venatici II (CVn II), Leo IV, Hercules, Leo T, Bootes II, Leo V, Bootes III, Segue II, Pisces I and Pisces II (Willman et al. 2005a; Willman et al. 2005b; Zucker et al. 2006a; Zucker et al. 2006b; Grillmair 2006; Grillmair 2009; Belokurov et al. 2006; Belokurov et al. 2007; Belokurov et al. 2008; Belokurov et al. 2009; Irwin et al. 2007; Walsh et al. 2007; Belokurov et al. 2010). Similarly, around M31 19 new satellites were discovered in the last 5 - 6 years, mainly based on the INT and CFHT data (Richardson et al. 2011 and references therein) and, more recently, also from the analysis of the SDSS data (Slater et al. 2011; Bell et al. 2011). These new discoveries have reduced the discrepancy between number of dark matter halos predicted by the CDM theory, and number of dwarf satellites observed around the MW and M31 spirals.

The new MW dSphs are fainter than the previously known spheroidals, with typical surface brightness generally around 28 mag/arcsec² or fainter, hence they have been named "ultra-faint" dwarfs (UFDs). Bright dSphs and UFDs lie in two separate regions in the absolute magnitude versus half-light radius plane (see Fig. 3 of Clementini 2010) suggesting that they may belong to different categories of stellar systems. These faint galaxies have high mass-to-light ratios and often distorted morphologies, likely due to the tidal interaction with the MW. They all host an ancient stellar population with chemical properties similar to those of the stars in the external Galactic halo (Simon & Geha 2007; Kirby et al. 2008; Frebel et al. 2009). Several of the faint dSphs have mean metallicities as low or lower than the most metal-poor Galactic GCs and, generally, much lower than those of the classical dSphs. Six of the faint dSphs have been searched for variable stars so far (Bootes I, Dall'Ora et al. 2006; CVn I, Kuehn et al. 2008; CVn II, Greco et al. 2008; Coma, Musella et al. 2009; Leo IV, Moretti et al. 2009; and UMa II, Dall'Ora et al. 2012).

Wiith the exception of only CVn I, all were found to contain RR Lyrae stars with properties resembling those of the MW OoII GCs. All the above characteristics suggest that a much larger population of systems, similar to the presently observed UFDs, may have been the "building blocks" of the halos of large galaxies such as the MW.

In the above framework, this PhD project developed along two main lines: (i) the study of the variable stars and stellar populations in two of the recently discovered "ultra-faint" dwarf spheroidal satellites of the MW, namely the Leo IV and the Hercules UFDs; and (2) the derivation of period luminosity relations in the K band (PL_K) for Cepheids, and PL_K - metallicity (PL_KZ) relations for RR Lyrae stars in two 1×1.5 degree² fields of the LMC, based on near-infrared photometry obtained by the VISTA ESO Public Survey on the Magellanic System (LMC, SMC & Bridge) - VMC, (PI: M.-R.L. Cioni, University of Hertfordshire - UK). We focused our attention on the structure of these objects being the deformation in shape a hint of interaction with the MW. The first line of research is part of a wider project aiming at the identification of the possible "building blocks" that contributed to the Galactic halo, by systematically investigating the pulsation properties of the new satellite of the MW, discovered by the SDSS. The second line of research is part of a large program aiming at the reconstruction of the 3D-structure of the system formed by LMC, SMC and Bridge between them. As the nearest large, metalpoor interacting satellites of MW the Magellanic Clouds represent in fact, optimal targets for the study of the environmental effects that large galaxies with satellites experience anywhere in the Universe.

Chapter 2

Variable stars as tools

In this Chapter we provide a brief description of the properties and potential of the pulsating variable stars as distance indicators and stellar population tracers.

We can define as *variable* a star that shows a variation in luminosity (ranging from a limit given by the instrument precision to few magnitudes) within a time interval that is small compared with the evolutionary time of that star. There are two main types of variable stars: intrinsic and extrinsic. The former show variability connected with internal physical phenomena, and include pulsating stars and supernovae. The latter show variability due to external causes and include, for example, eclipsing binaries and pulsars. Among the intrinsic periodic variables, an important role is played by the radially pulsating stars that periodically oscillate along a single dimension. They are used in this thesis work as a *tool* to trace the stellar populations and to study the 3-D distribution of stars inside a number of MW satellites. In particular, in this thesis we concentrate on the investigation of the two ultra-faint dSphs: LeoIV and Hercules, and of the Large Magellanic Cloud, our nearest dwarf irregular galaxy.

In the next section we summarize the properties of the classes of radially pulsating variable stars that are used in this thesis work as distance indicators and stellar population tracers.

Figure 2.1: Schematic light curve of a Cepheid variable star.

2.1 Radially pulsating variable stars

Radially pulsating variable stars undergo periodic changes in radius and temperature that are responsible for the change in luminosity. The variation of the luminosity against time is called *light curve* (see Fig. 2.1). Often the variation of the luminosity is plotted against the phase of pulsation, defined as $\phi = (t - t_0)/P - int[(t - t_0)/P]$. The characteristic time scale of pulsation is related to the stellar mean density according to the so-called period-density relation that can be derived by simple order of magnitude arguments. This ranges from seconds (for white dwarf structures) to hundred of days (for red giant stars). The most important pulsation observables are the period and the amplitude of the luminosity variation, that are both independent of uncertainties on distance and interstellar extinction, and therefore particularly useful, as we will discuss in the following. Since the pioneering paper by Zhevakin (1953), Eddington (1926) and Cox & Whitney (1958), it has become clear that the pulsation mechanism is related to variations of the opacity (the so called κ mechanism) and the adiabatic exponent in the ionization regions of the most abundant elements in the stellar envelopes, namely H, He and He+. As the driving mechanisms of pulsation are active in these external layers, the inner structure is not involved and can be neglected in pulsating models (King & Cox 1968 and references therein).

Radially pulsating stars share this driving mechanism, as demonstrated by the

occurrence of the so-called instability strip, the almost vertical region in the HR diagram where most of the pulsators are located (see Fig. 2.2)

As shown in Fig. 2.2, stars in different evolutionary phases cross the Instability Strip at different luminosity levels so that their observations in Galactic and extragalactic resolved systems allow us to trace stellar populations of different ages.

In particular: RR Lyrae and Type II Cepheids (*W Virginis stars* in Fig. 2.2) trace the oldest stars (t> 10 Gyrs); the Anomalous Cepheids (ACs) trace the intermediateage population (~ 1-5 Gyrs); the Classical Cepheids (CC) and δ Scuti stars are the youngest among the radially pulsating variables (50-200 Myrs). Table 2.1 summarizes the main properties of the most known classes of pulsating variable stars.

The quoted period-density relation is at the basis of the use of variable stars as population tracers. Indeed, by combining it with the Stephan Boltzman law, one obtains a relation connecting the period to the mass, the luminosity and the effective temperature, as the one first derived by van Albada & Baker (1971) for RR Lyrae stars. This kind of relations are of crucial importance because they establish a link between the period information and the evolutionary parameters, that in turn are related to age and chemical composition. Moreover, if the mass and the luminosity are related to each other, as for Classical Cepheids, this relation becomes a periodluminosity-color relation that can be used to infer the intrinsic luminosity of each pulsator of known period and color. Neglecting the color dependence, or averaging over the color extension, a statistical period-luminosity relation is obtained. Such a relation for Classical Cepheids is at the basis of the absolute extragalactic distance scale and of the estimate of the Hubble constant by the Hubble Space Telescope Key Project (Freedman et al. 2001) and the Supernova Project (Saha et al. 2001).

2.2 δ Scuti and SX Phoenicis stars

SX Phoenicis are stars with masses in the range $1.5 < M/M_{\odot} < 2.5$ that enter the lower part of the *Instability Strip* either in their core hydrogen burning phase or when they move towards the sub-giant branch during their shell-hydrogen burning phase. Their oscillation periods are in the range 0.02 < P < 0.25 d, with amplitudes of the order of ~ 0.1 mag in the V band. These variables are the so-called δ Scuti (δ Sct) stars if they are metal rich (Z > 0.01) or SX Phoenicis (SX Phe) stars if they are

Type	Period	$\langle M_V \rangle$	A_V	Spectral Type	Pop.	Evol. Phase
	(day)	(mag)	(mag)			
$\delta~{ m Scuti}$	≤ 0.02	$2 \div 3$	≤ 0.5	A-F	Ι	MS
SX Phoenicis	≤ 0.1	$2 \div 3$	< 1.5	A-F	II	MS
RR Lyrae ab-type	$0.45 \div 1$	$0.0{\div}1.0$	$\geq 0.6 \div 1$	A2-F2	II	HB
RR Lyrae c-type	≤ 0.4	$0.0{\div}1.0$	$0.4 \div 0.6$	A2-F2	II	HB
Anomalous Ceph.s	$0.3 \div 2$	$-2 \div 0$	< 1.5	A-F	?	HB?
W Virginis	$10 \div 50$	-3÷-1	< 1.5	F2-G6(?)	II	post-HB
BL Herculis	$2 \div 10$	-1÷0	≤ 1.5	F2-G6(?)	II	post-HB
Classical Ceph.s	1÷100	-7÷-2	≤ 1.5	F6-K2	I	blue loop

Table 2.1: Main pulsation and evolutionary properties of variable stars in the *Instability Strip*.

Figure 2.2: Locus of the color magnitude diagram in which lie pulsating variable stars: *InstabilityStrip*.

metal poor $(Z < 6 \times 10^{-3})$. In the Milky Way there is a physical distinction between δ Sct and SX Phe: the δ Scuti are Population I (Pop. I) stars, while the SX Phoenicis trace the metal poor Population II (Pop. II) stars. Amplitudes of the Pop. I stars can vary from a few 0.001 mag to several 0.1 mag. Even if high-amplitude δ Sct (HADS) stars are generally radial pulsators, several of these variables also exhibit non-radial modes (Poretti, 2003). In similar way, SX Phe stars show a mixture of modes, especially those found in GCs. Therefore, the separation between HADS and SX Phe stars is not easy if no information on the metal abundance is available. Since the light curves of both HADS and SX Phe stars are asymmetrical and resemble those of the Classical Cepheids, and since these variables too do obey to a Period-Luminosity relation, it quite common to group both HADS and SX Phe stars under the common term "Dwarf Cepheids". Since these variables obey a PL relation they can be utilized as standard candles to find distances. Given their intrinsic faintness and the short time scale of their variations, the known samples of δ Scuti stars almost all belong to the Milky Way (Nemec et al. 1994; Rodríguez & López-González 2000) and only few of these variables have been identified in systems external to the Milky Way (Clementini et al. 2003, Di Fabrizio et al. 2005, Kaluzny et al. 2006) and used by McNamara et al. (2007) to define the PL relation of the LMC Dwarf Cepheids. Finally, about 90 SX Phe variables have been found in the Fornax dSph galaxy (Poretti et al., 2008).

2.3 RR Lyrae stars

RR Lyrae stars are old (t > 10 Gyrs), low mass stars ($M \sim 1M_{\odot}$) during the core Helium burning phase corresponding to the Horizontal Branch (HB) sequence in the H-R diagram. They are among the oldest objects in the Universe.

The prototype star RR Lyr was discovered in 1899 by Williamina Fleming and in the following years a significant number of these pulsators were observed in globular clusters by Bailey, who classified them on the basis of the period and the light curve shape. In particular, the shape of the light curve allows us to divide the RR Lyrae stars into *ab*-type (RR_{ab}), with asymmetric light curves and amplitude decreasing as the period increases from ~ 0.45 to ~ 1d, and *c*-type (RR_c) with amplitude A_V ranging from 0.2 to 0.6 mag, sinusoidal light curves, and period ranging from ~ 0.2 to ~ 0.4 d. The theory of stellar pulsation has explained the two types as pulsating in the fundamental mode (RR_{ab}) and in the first overtone mode (RR_c) . Some RR Lyrae stars show pulsation in both modes and they are called *double mode* or RR_d . These are particularly useful to obtain independent estimates of the stellar mass (Petersen 1973; Bono et al. 1996; Bragaglia et al. 2001).

2.3.1 Fourier Analysis of the RR Lyrae light curves

According to Simon & Teays (1982), the light curve of an RR Lyrae star can be approximated with a Fourier function of the form:

$$m(t) = A_0 + \sum_{i=1}^{N} A_i \cos[i\omega_0(t - t_0) + \phi_i]$$
(2.1)

where m(t) is the star apparent magnitude at time t, A_0 is the average magnitude, N is the number of fitted terms, ω_0 is the angular pulsation frequency of the star ($\omega_0 = 2\pi/P_0$), t is the time of observation, t_0 is the time of maximum light, and A_i and ϕ_i are the amplitude and phase coefficients of the individual Fourier terms. The Fourier analysis of the light curve can be used to classify the RR Lyrae stars, using the A_1 , A_2 amplitudes and the ϕ_{21} , ϕ_{31} phases of the Fourier decomposition (see e.g., Simon & Teays 1982, Cacciari et al. 2005). The Fourier analysis is also used to infer properties of the RR Lyrae stars such as the the metal abundance [Fe/H]. In the last thirty years a number of studies on this specific subject have appeared in the literature (see e.g., Jurcsik & Kovács 1996, hereafter JK96, Kovács & Walker 2001, Morgan et al. 2007). In particular, JK96 derived a relation between the Fourier parameter ϕ_{31}^1 of the V-band light curve, the period, and the metallicity of an ab-type RR Lyrae star:

$$[Fe/H] = -5.038 - 5.394P + 1.345\phi_{31}.$$
(2.2)

that can be used to infer the star metallicity when a spectroscopic measurement is not available, provided that the pulsation period and the V-band light curve of the star are known. In this thesis work we have extensively used JK96 method to estimate the metallicity of the RR Lyrae stars. Therefore, in the following we discuss this relation and its calibration in different metallicity scale in detail. JK96

 ${}^1\phi_{ij} = j\phi_i - i\phi_j$

2.3 RR Lyrae stars

introduced the so-called *compatibility condition*: $D_m^2 < 3$, that the star light curve must satisfy, in order to have a reliable estimate of [Fe/H]. However, they also note, that this condition might be too strict, and even for stars with a larger D_m values it may be possible to obtain reliable results. Cacciari et al. (2005) for example, adopt a relaxed compatibility condition, and find that a maximum value of 5 for D_m allows to increase the statistic without changing the results. Kapakos et al. (2011) find that the criterion $D_m < 3$ cannot lead to a robust sample of RR_{ab} stars without taking into consideration the σ_{D_m} . Thus they used RR Lyrae stars with $\sigma_{D_m} < 3$ and $D_m - \sigma_{D_m} < 3$ in their analysis. Di Fabrizio et al. (2005) used the Fourier parameter technique to estimate metallicities for 29 ab-type RR Lyrae stars in two areas close to the bar of the LMC. They compared the "photometric" metallicities derived with this technique with spectroscopic metal abundances derived for the stars by Gratton et al. (2004). They find that the average difference between photometric and spectroscopic metallicities is 0.30 ± 0.07 dex, with the photometric abundances being larger due to differences in the metallicity scales used by "photometric" and spectroscopic techniques (see discussion below).

Morgan et al. (2007) found a relation between [Fe/H], ϕ_{31} and P that holds for first overtone pulsators, by using c-type RR Lyrae stars in a number of Galactic globular clusters:

$$[Fe/H]_{ZW} = 52.466P^2 - 30.075P + 0.131\phi_{31}^2 + 0.982\phi_{31} - 4.198\phi_{31}P + 2.424 \quad (2.3)$$

with a standard deviation of 0.145 dex.

In conclusion, while the spectroscopic metallicities are, in general, to be preferred, the Fourier parameters can be used to infer the mean metallicity of a sample of RR Lyrae stars when the spectroscopic analysis is not feasible. An important issue is the metallicity scale on which the JK96 relation measures the metal abundance. Eq. 2.2 connects the Fourier parameters with metallicity estimates in the Jurcsik (1995, hereafter J95) metallicity scale. J95 metallicity scale is valid both for GCs and field RR Lyrae stars, and is defined by the following relation:

$$[Fe/H]_{J95} = -0.190(\pm 0.007)\Delta S + 0.027(\pm 0.052)$$
(2.4)

 $^{^{2}}D_{F} = |F_{obs} - F_{calc}|/\sigma_{F}$ where F_{obs} is the observed value of the given Fourier parameter, F_{calc} is its predicted value from the other observed parameters, σ_{F} is the respective standard deviation as listed in Table 6 of JK96. D_{m} is the maximum of the deviation parameters $\{D_{F}\}$.

where ΔS is the Preston (1959) index, defined as the difference in tenths of spectral class between the spectral type of an *ab* type RR Lyrae variable at minimum light, estimated from the hydrogen lines [Sp(H)], and that estimated from the intensity of the CaII K line [Sp(K)]:

$$\Delta S = 10[Sp(H) - Sp(K)]. \tag{2.5}$$

J95 also gives a linear relation to transform her metallicities to the Zinn & West (1984, hereafter ZW) metallicity scale, which is valid for objects with $[Fe/H]_{ZW} < -1.0$:

$$[Fe/H]_{J95} = 1.431(\pm 0.006)[Fe/H]_{ZW} + 0.880(\pm 0.010).$$
(2.6)

Eq. 2.6 can be used to transform the photometric [Fe/H] estimates, obtained with Eq. 2.2, from the J95 to the ZW metallicity scale. More recently, Carretta et al. (2009; hereafter C09) have defined a new metallicity scale based on high resolution spectroscopy abundances, and have provided relations to convert the ZW metallicities to their new metallicity scale:

$$[Fe/H]_{C09} = (-0.413 \pm 0.027) + (0.130 \pm 0.289)[Fe/H]_{ZW} - (0.356 \pm 0.108)[Fe/H]_{ZW}^2$$
(2.7)

that has a $\sigma = 0.119$ dex. Kapakos et al. (2011) found a relation (their eq. 3) that links directly the JK96 and C09 metallicities:

$$[Fe/H]_{C09} = (1.001 \pm 0.0050)[Fe/H]_{JK96} - (0.112 \pm 0.077).$$
 (2.8)

this relation is valid in the range from -2.31 dex to -0.68 dex on the JK96 scale. Fig. 2.3 shows the [Fe/H] in C09 scale obtained using the two different procedures based on Eqs. 2.6,eq:fromZWtoC09, and Eq. 2.8. Points that are well within the region of validity of both Eq. 2.8 and Eq. 2.6 (black points) lie perfectly on the unity line, indicating that the two methods are in perfect agreement. Points outside this interval are marked with different colours. Red points correspond to objects that have [Fe/H]_{JK96} values outside the region of validity of Eq. 2.8. Yellow points correspond to objects that have [Fe/H]_{ZW84} values obtained by inverting Eq. 2.6, outside its interval of validity. Fig. 2.3 also shows that the errors obtained using Kapakos et al. (2011) direct transformation to the ZW scale are smaller than those obtained through the double transformation from J95 to ZW, and from ZW to C09 scales.

Figure 2.3: Metallicities in C09 scale obtained with different methods (cfr. text). Red and yellow points are values outside the interval of validity of relations 2.8 and 2.6, respectively. The black line is the unity line.

2.3.2 M_V -[Fe/H] and PL relations for RR Lyrae stars

For RR Lyrae stars, the visual absolute magnitude does not vary significantly with the period, because these variables belong the horizontal branch, but has been found and predicted to depend on metallicity according to the relation (Sandage 1981a,b):

$$M_V(RR) = \alpha \times [Fe/H] + \beta.$$
(2.9)

In the past decades several authors studied this relation using different methods, including synthetic Horizontal Branch models (Lee et al., 1994) and the Baade-Wesselink method (Fernley et al., 1998). A robust value for the slope α was derived by Clementini et al. (2003) and Gratton et al. (2004), using more than a hundred RR Lyrae stars in the LMC: $\alpha = 0.214 \pm 0.047$ mag/dex. Many estimates of the zero point β can be found in the literature. Cacciari & Clementini (2003) found $\beta = 0.59 \pm 0.03$ for [F/H]=-1.5 dex; $\beta = 0.56 \pm 0.09$ for [Fe/H]=-1.5 dex, was found by Clementini et al. (2003) on the basis of their distance modulus of the LMC of 18.52 ± 0.09 mag; more recently, Benedict et al. (2011) derived $\beta = 0.45 \pm 0.05$ for [Fe/H]=-1.5 dex using HST parallax as for 5 RR Lyrae stars, and adopting the slope by Gratton et al. (2004). The systematic differences up to 0.10-0.15 mag in the zero points derived by different authors remain a major problem in the use of the M_V-[Fe/H] relation.

On the other hand, the dependence of the V - K color on the effective temperature leads to the occurrence of a Period-Luminosity (PL) relation in the K band. This relation is a very promising tool to infer distances because in the near infrared (NIR) bands the effects of reddening and, possibly, metallicity are significantly reduced and the pulsation amplitudes are smaller, allowing us to derive mean magnitudes even from a reduced number of phase points.

Several authors studied this tool both from a theoretical and an observational point of view. Longmore et al. (1986) pioneering work was followed by Liu & Janes (1990), Jones et al. (1996) and Skillen et al. (1993) and a comprehensive analysis of the IR properties of RR Lyrae stars was given by Nemec et al. (1994). From the pulsation theory side, the PL_K properties have been studied by Bono et al. (2001):

$$M_K = 0.139 - 2.071 \times (logP + 0.30) + 0.167 \times logZ$$
(2.10)

where Z is in the range 0.0001 to 0.006, and by Bono et al. (2003)

$$M_K^F = -0.770(\pm 0.044) - 2.101 \times logP + 0.231(\pm 0.012) \times [Fe/H].$$
(2.11)

Cassisi et al. (2004) and Catelan et al. (2004) provide evolutionary calibrations of the PL_K relations with slopes and zero-points that vary with the HB morphology type (according to Lee et al. 1994) and with the metallicity.

The PL_K relation was used to infer distance estimates for the Reticulum globular cluster in he LMC (Dall'Ora et al. 2004, Sollima et al. 2006), several Galactic Globular Clusters (Sollima et al. 2006, Coppola et al. 2011), and few fields near the bar of the LMC (Szewczyk et al. 2008, Borissova et al. 2009). As an example we show in Fig. 2.4 (left panel) the empirical relation found by Dall'Ora et al. (2004). It is a very well defined relation for which a linear regression gives:

$$\langle K \rangle = -2.16(\pm 0.09) \times logP + 17.352(\pm 0.025),$$
 (2.12)

with a rms of only 0.03 mag.

This is a remarkable result for a standard candle. Using the Eq. 2.11 from Bono et al. (2003), they found a distance estimate for the Reticulum cluster of $\mu_0 = 18.52 \pm 0.005(random) \pm 0.117(systematic)$ where the error is dominated by the systematic uncertainty affecting the absolute zero-point calibration and the metallicity scale. Similar results are found in other GCs. The right panel of Fig. 2.4 shows an analogous work done by Coppola et al. (2011) for the Galactic GC M5. The linear regression (blue line in Fig. 2.4) is :

$$\langle K \rangle = -2.33(\pm 0.08) \times log P + 13.28(\pm 0.02),$$
 (2.13)

with a rms of 0.05 mag. Averaging results coming from the above mentioned theoretical (Bono et al. 2001, Bono et al. 2003, Cassisi et al. 2004, Catelan et al. 2004) and empirical (Sollima et al., 2006) calibrations, they infer a distance estimate for M5 of $\mu_0 = (14.44 \pm 0.02)$ mag.

The extension of this method to RR Lyrae in the LMC is of particular interest because the distance to the LMC is a cornerstone of the extragalactic distance scale. Indeed the two *Hubble Space Telescope (HST)* projects focused on the cosmic distance scale, namely the Key Project (Freedman et al. 2001) and the SNIa project (Saha et al. 2001) assume a distance modulus of the LMC (18.5 mag) and the

Figure 2.4: Left: PL_K relation obtained by Dall'Ora et al. (2004) in the LMC cluster Reticulum. Filled and empty circles correspond to RR_{ab} and RR_c stars, respectively. Right: PL_K relation obtained by Coppola et al. (2011) in the Galactic GC M5. Filled and empty circles correspond to RR_c and RR_{ab} stars, respectively. Green points correspond to overluminous stars 3σ outside the linear regression (blue line).

universality of the slope of LMC Cepheid optical PL relations. But there is still a non negligible discrepancy among modern distance determinations to the LMC from different methods (e.g. Benedict et al. 2002; Molinaro et al. 2012 and references therein). Most recent distance determinations to the LMC have clustered around the value of 18.5 mag that was adopted by the Key Project. However, a shorter LMC distance modulus (closer to 18.4 mag) has been obtained for example on the basis of recent exhaustive distance determinations of Galactic Cepheids from the IR surface brightness technique (Fouqué et al., 2007).

Szewczyk et al. (2008) applied the RR Lyrae PL_K relation to five fields of the LMC, and their investigation represents a promising step toward a resolution of the distance discrepancy. Szewczyk et al. (2008) obtain a distance estimate of the LMC corresponding to $\mu = 18.58 \pm 0.03(statistical) \pm 0.11(systematic)$ mag, where the systematic error takes into account the errors associated with the adopted calibrations, mean metallicity, photometric zero point and absorption correction. Borissova et al. (2009) combined NIR photometry and spectroscopically measured metallicities for 50 RR Lyrae stars in the LMC and found that the metallicity dependence of the

Figure 2.5: Infrared J (upper panel) and K (lower panel) PL relation for RR Lyrae in the LMC. Empty circles correspond to RR Lyrae observed by Borissova et al. (2009); red asterisks are data from Szewczyk et al. (2008). Figure from Borissova et al. (2009).

NIR PL relation is really small:

$$M_{K_s} = 2.11(\pm 0.17) \times logP + 0.05(\pm 0.07) \times [Fe/H] - 1.05.$$
 (2.14)

They obtained an estimate of the LMC distance of $\mu_0 = 18.53 \pm 0.13$ mag. Fig 2.5 shows the relation provided by Borissova et al. (2009) combining their data with those by Szewczyk et al. (2008). Comparing Fig. 2.5 with Fig. 2.4, it is clear that the dispersion is significantly larger in the case of LMC field observations. This could suggest that, even if small, the contribution of the metallicity should be taken into account, and/or that there is a depth effect. As already mentioned, differential reddening should not be important in these bands.

The above mentioned studies provided an increasing knowledge of the PL_KZ relation as distance indicator tool. Still, the are based on small samples. A systematic and homogeneous analysis on a wider area is of crucial importance to fully appreciate the capability of such relation. In this context the VMC survey (see section 4.4) will provide to the astronomical community an unprecedented huge amount of K band data that will cast new light on the potential of the PLK_Z relation.

2.4 Classical Cepheid stars

Cepheids are high-luminosity $(-2 > M_V > -7)$, radially pulsating variable stars, with periods ranging from 1 to 100 days, and commonly associated with relatively young stellar populations, such as those found in open clusters, disk of spiral galaxies or in irregular galaxies. Their presence in star clusters allow their ages to be estimated, with inferred values up to about $\sim 10^8$ yr. From the stellar evolution point of view, these variables are intermediate-mass $(3 - 12 M_{\odot})$ stars that cross the instability strip during the helium burning phase. In particular, after the quiescent ignition of He in the core (3α reaction), these stars may make an excursion toward higher effective temperature and, subsequently, come back toward the asymptotic giant branch in the HR diagram. This "loop" may extend to sufficiently high temperature (or blue color) to intersect the instability strip in which case the stars become Classical Cepheids. Their high intrinsic brightness makes them ideal distance indicators on Galactic and extragalactic scales. Indeed, from the space they are observable up to distances of 20-30 Mpc (see e.g. Freedman et al. 2001). The close relationship between period and luminosity which was found by Henrietta S. Leavitt in 1912, has given Classical Cepheids an unique role in establishing the distances to the near galaxies, and hence the distance scale of the Universe. On this basis they provide the absolute calibration of important secondary distance indicators, such as the maximum luminosity of supernovae Ia, the Tully-Fisher relation, surface brightness fluctuations, and the planetary nebulae luminosity function, that are able to reach cosmological distances and in turn to provide an estimate of the Hubble constant (Freedman et al. 2001; Saha et al. 2001). A very debated issue is the universality of the period-luminosity relation and, in particular, the effect of the metallicity on its coefficients, because any systematic error affecting the Cepheid period-luminosity is expected to have relevant consequences on the extragalactic distance scale and on the resulting estimate of the Hubble constant. Cepheids are also good tracers of intermediate mass stars in the Galactic disk (Kraft & Schmidt 1963, Matsunaga et al. 2011), and star-forming regions in extragalactic systems (Elmegreen & Efremov 1996; Efremov 2003; Meschin et al. 2009).

The use of Cepheids as tracers of young stellar populations was supplemented by the evidence that if these objects obey to a PL relation, and to a Mass-Luminosity relation, they also obey to a Period-Age relation. In particular, an increase in period implies an increase in luminosity, i. e., an increase in the stellar mass, and in turn a decrease in the Cepheid age. Therefore they can also be considered age indicators (Bono et al. 2005; Marconi et al. 2006).

PL for Classical Cepheid stars

Henrietta Swan Leavitt (1868-1921) discovered 2400 Classical Cepheids, most of them are located in the Small Magellanic Cloud (cfr. section 4.1). She noted that more luminous Cepheids had longer pulsation cycles, and plotted the apparent magnitudes of these stars against their periods. The resulting plot demonstrated that the apparent magnitude of Classical Cepheids is closely correlated with their period (Leavitt & Pickering, 1912). In 1955 the periods of 550 classical Cepheids in the LMC were published (see Shapley & McKibben Nail 1955). Then a considerable survey for LMC Cepheids was done by Woolley et al. (1962). The catalogue prepared by Payne-Gaposchkin (1971) on the basis of Harvard photographic plates contained about 1100 Cepheids in the LMC. After these early works, several studies succeeded during the last decades of the past century (Freedman & Madore 1990; Madore & Freedman 1991; Laney & Stobie 1994); but the situation really changed when very large catalogs of Cepheids were published as a by-product of the gravitational microlensing surveys: EROS (Beaulieu et al. 1995; see section 4.2.1), MACHO (Welch et al., 1997) and OGLE-II (Udalski et al. 1999; see section 4.2.2). Thanks to these microlensing projects and to infrared surveys such as 2-MASS (Skrutskie et al., 2006) and DENIS (Epchtein et al., 1999), it became possible to begin studing Classical Cepheids on a really statistically significant way (e.g. Groenewegen 2000).

As already stated, the physical basis of Cepheid PL relation is related to the period-density relation coupled with the Stephan-Boltzman law, with the assumption of the mass-luminosity relation predicted by stellar evolution for intermediate mass stars in the central He burning phase. The PL relation for Classical Cepheids is a 2-dimensional projection of the higher-order Period-Luminosity-Color (PLC) relation (Madore & Freedman, 2012). The PLC relation, in turn, is a finite por-

tion of a plane, a so-called strip, embedded in the 3-dimensional space of period, luminosity, and color. It is well known that the intrinsic width of the Cepheid P-L relation decreases as a function of increasing wavelength (e. g. Madore & Freedman 1991; McGonegal et al. 1982; Caputo et al. 2000a). Furthermore, in the infrared bands the reddening becomes less important and the effect of metallicity on the PL seems to be smaller (Groenewegen & Oudmaijer 2000; Caputo et al. 2000a; Marconi et al. 2005).

It is of paramount importance to systematically study the PL_K relation in several different regions of the LMC, not only to improve our knowledge of the distribution of the young stellar component in this galaxy, but also and mainly to check the distance determinations for the LMC, which is the fundamental first step of the cosmological distance ladder. The VMC survey (see section 4.4) with an unprecedented sensitivity and sky coverage will allow us to perform this systematic study over the entire Magellanic Cloud System.

2.5 Type II Cepheid stars

Type II Cepheids originate from hot, low mass stellar structures that started the main central He burning phase on the blue side of the RR Lyrae gap and now evolve toward the asymptotic giant branch crossing the pulsation region with luminosity and effective temperature that increases and decreases, respectively, while decreasing the mass (e.g. Di Criscienzo et al. 2007; Wallerstein 2002). They are believed to be the immediate progeny of low mass HB stars ($M \sim 0.53 M_{\odot}$), but with mass still large enough to reach the AGB stage, i.e., blue HB stars. This is supported both by observations, which show that type II Cepheids are present only when a sizeable blue HB component is also present (Wallerstein 1970; Smith & Wehlau 1985; Clement et al. 2001), apparently independently of metallicity (Pritzl et al., 2002), and by theoretical models (Schwarzschild & Harm 1970; Gingold 1976; Marconi & Di Criscienzo 2007 and references therein). Accordingly, detection of type II Cepheids should immediately implies the presence of a sizeable blue HB component.

These pulsating variable stars consist of two subclasses in different evolutionary stages, namely, the BL Herculis (BL Her) and the W Virgins (W Vir). Their evolutionary status can be summarized as follows: stars on the horizontal branch, bluer than the RR Lyrae gap, evolve toward higher luminosity and larger radius (just like stars leaving the main sequence) as they finish the helium in their cores. In doing so they cross the instability strip at a luminosity that corresponds to a period between roughly 1 and 5 days. This accounts for the short-period group, namely, the BL Her of low metallicity. The origin of BL Her of near-solar metallicity remains uncertain, since they are likely to originate from the red horizontal branch. After reaching the AGB they advance to higher luminosity and begin to suffer helium shell flashes, which cause the star to make an excursion into the instability strip. The luminosity at which this occurs results in stars having periods between 12 and about 20 days. These are the so called W Vir variable stars. The paucity of Type II Cepheids with periods between 5 and 12 days, especially in the GCs, can be understood as the lack of shell flashes until the star's luminosity reaches the value which corresponds to a 12 day period.

PL for Type II Cepheid stars

Until the mid of the 20th century astronomers were not aware that there exist two types of Cepheid variables. Only after the famous distance scale revision done by Baade (1952), it became clear that Population I and II Cepheids follow different period-luminosity relations. On average, type II Cepheids are about 1.5 mag fainter than Classical Cepheids of the same periods. As summarized by Di Criscienzo et al. (2007), Nemec et al. (1994) derived metal-dependent period-luminosity relations in various photometric bands, suggesting that the Type II Cepheids pulsate either in the fundamental or in the first overtone mode, and that the slopes of the PL relations are significantly different for the two modes. On the other hand, on the basis of a sample of Type II Cepheids identified in the OGLE-II variable star catalogue for the Galactic bulge fields, Kubiak & Udalski (2003) found that all the observed stars, which have period from ~ 0.7 to about 10 days, follow the same PL relation. Similar results were derived by Pritzl et al. (2003) and Matsunaga et al. (2006) for Type II Cepheids in Galactic GCs. Furthermore, these last two studies support the hypothesis that the same PL relation holds for BL Her and W Vir stars, without a steepening of the slope for periods longer than $P \sim 10$ days, as earlier suggested by McNamara (1995). More recently, Soszyński et al. (2008b) published a catalogue of 197 Type II Cepheids in the LMC. The sample consists of 64 BL Her, 96 W vir stars and 37 RV Tau stars. This is the largest sample of such type of variable stars detected anywhere outside the MW. They present $V, I, W_I PL$ relations for the stars that are very important benchmarks for future work. They also notice a significant difference in (V - I) colors among BL Her and W Vir stars, although a subset of their W Vir stars had, on average, colors similar to the BL Her stars.

2.6 Anomalous Cepheid stars

Anomalous Cepheids (ACs) are metal-poor-He-burning stars in the post-turnover portion of the Zero Age Horizontal Branch (ZAHB) evolutionary phase (Bono et al. 1997; Caputo 1998). They have periods between 0.30 d and 2.0 d, and are intrinsically brighter than RR Lyrae stars (between ~ 0.5 mag and ~ 2 mag brighter). They also appear to be significantly brighter than Population II Cepheids at fixed period. Their origin is still debated and two interpretations are presently the most widely accepted: 1) they are young (\leq 5Gyr) single stars produced by recent star formation; 2) they formed from mass transfer in old binary systems (e.g. Marconi et al. 2004). They are rare in Galactic GCs, whereas they have been observed in several nearby dwarf spheroidal galaxies (Fiorentino & Monelli 2012, and references therein). Soszyński et al. (2008b) found 83 Anomalous Cepheids in the LMC; they are divided into 62 fundamental-mode and 21 first-overtone pulsators. This is the largest sample of ACs ever detected.

PL for Anomalous Cepheid stars

Zinn & Searle (1976) named these variable stars Anomalous Cepheids because they do not follow the period-luminosity relation of Classical and Population II Cepheids. Fig. 2.6 shows the PL relations obtained by Soszyński et al. (2008b) for the LMC Cepheids.It is clear from this figure that the ACs locate themselves between type I and type II Cepheids in the PL diagram, and that their PL relation is well defined in the Wesenheit index, but not so in the V and I bands. On the theoretical side the PL of ACs is predicted to be the extension to short period and low metallicity of the Classical Cepheids PL (see Caputo et al., 2004).

Figure 2.6: Period-luminosity in V, I and Wesenheit index diagrams for Cepheids in the LMC. Symbols and color-coding are described in the figure label. Figure from Soszyński et al. (2008b).

Variable stars as tools

Chapter 3

"Ultra-faint" dwarf spheroidal galaxies

In this Chapter we describe the results that were obtained from the study of the variable stars, stellar populations, and structure of two new "ultra-faint" satellites of the Milky Way: Leo IV and Hercules.

3.1 Leo IV

The Leo IV galaxy (R.A.= $11^h 32^m 57^s$, DEC.= $-00^{\circ}32'00''$, J2000.0; $l = 265^{\circ}.4$, b= $56^{\circ}.5$) is one of the new faint satellites discovered around the MW by the SDSS. It is a low-mass, $M = (1.4 \pm 1.5) \times 10^6 M_{\odot}$, system with surface brightness $\mu_V = 28.3$ mag arcsec⁻² (Simon & Geha, 2007), absolute magnitude $M_V = -5.1 \pm 0.6$ mag, and half-light radius $r_h \sim 3.3$ arcmin (Belokurov et al., 2007). It is located at an heliocentric distance of 160^{+15}_{-14} kpc with a position angle of 355° (Belokurov et al., 2007). Its color magnitude diagram (CMD) is more complex than the CMDs of other galaxies discovered by Belokurov et al. (2007), due to the presence of an apparently "thick" red giant branch (RGB) and a blue horizontal branch (HB). The thickness of the RGB suggests the presence of stellar populations of different age/metallicity in this galaxy (Belokurov et al., 2007). The i, g - i CMD of Leo IV, obtained from the SDSS discovery data, reaches $i \sim 22$ mag. No study of the variable stars in the galaxy has yet been performed. Simon & Geha (2007) obtained spectra for 18 bright stars in Leo IV from which they derived an average velocity dispersion of 3.3 ± 1.7 km s⁻¹ and an av-

	1	0				
Dates	Telescope/Instrument	Detector	Resolution	FOV	N_B	\mathbf{N}_V
		(pixel)	$(''/{ m pixel})$	$(\operatorname{arcmin}^2)$		
Apr. 2007	2.5m INT/WFC	4 of 4k \times 2k	0.33	34×34	17	18
May 2007	4.2 m WHT/Prime Focus Camera	2 of 2k \times 4k	0.24	16.2×16.2	8	10
MarApr. 2007	4.1m SOAR/SOI	2 of 4k \times 4k	0.077	5.24×5.24	12	13

Table 3.1: Instrumental set-up and log of the observations of Leo IV

erage metallicity $\langle [Fe/H] \rangle = -2.31 \pm 0.10$ dex with a dispersion σ [Fe/H]=0.15 dex, on the Zinn & West (1984) metallicity scale (hereafter ZW). Kirby et al. (2008), using Keck DEIMOS spectroscopy coupled with spectral synthesis analysis, measured the metallicity of a subset of 12 stars extracted from the Simon & Geha (2007) sample. They obtained an average metallicity $\langle [Fe/H] \rangle = -2.58 \pm 0.08$, with a dispersion σ [Fe/H]=0.75 dex and individual metallicities as low as [Fe/H]~-3.0. The value derived by Kirby et al. (2008) is based on an automated spectroscopic method that is known to provide systematically lower metallicity estimates as discussed by the authors themselves (Kirby et al., 2009, 2010).

In the following we describe the study of Leo IV published in Moretti et al. (2009), where we obtained the first V, B - V CMD of the Leo IV dSph, reaching a depth of $V \sim 25.5$ mag, and identified three fundamental-mode RR Lyrae stars (RR_{ab}) and one SX Phoenicis (SX Phe) variable in the galaxy. We obtained well sampled B, V light curves for each variable star and used the average magnitude of the RR Lyrae stars to estimate the distance to the Leo IV galaxy.

3.1.1 Observations and data reduction

Time series B, V, I photometry of the Leo IV dSph galaxy was collected on 2007 April 20-23 with the Wide Field Camera (WFC), the prime focus mosaic CCD camera of the 2.5 m Isaac Newton Telescope (INT), on 2007 May 11-12, with the Prime Focues Imaging Platform (PFPI) of the 4.2 m William Hershel Telescope (WHT), and on 2007 March-May, with the SOAR Optical Imager (SOI) of the 4.1 m SOuthern Astrophysical Research telescope (SOAR). The fields of views covered by the three instruments are 5.24×5.24 arcmin² for SOI at the SOAR telescope, 16.2×16.2 arcmin² for PFPI at the WHT and 33×33 arcmin² for WFC at the INT. Two partially overlapping SOI fields were necessary to cover the galaxy, while just one PFPI field was sufficient, and from the INT data we could also infer
$3.1 \ Leo IV$

additional information on stars outside the Leo IV half-light radius. We obtained a total number of 37 *B*, 42 *V*, and 12 *I* images of the galaxy. Here we present results from the analysis of the *B* and *V* data. Table 3.1 provides informations on the instrumental sep-up and a log of the *B*, *V* observations of Leo IV. Images were reduced following standard procedures (bias subtraction and flat-field correction) with IRAF¹. The INT and WHT data were corrected for linearity following recipes provided in the telescope's Web pages. We then performed PSF photometry using the DAOPHOT/ALLSTAR/ALLFRAME packages (Stetson 1987, 1994). Typical internal errors of the B, V single-frame photometry for stars at the HB level range from 0.02 to 0.03 mag for the INT and WHT data, and are of about 0.02 mag for the SOAR data. The absolute photometric calibration was obtained using observations of standard stars in the Landolt (1992) fields SA 101, SA 107, SA110, and PG1323, as extended by P.B. Stetson,² which were observed at the INT during the night of 2007 April 22. Errors of the absolute photometric calibration are σ_B =0.01 mag, σ_V =0.01 mag, respectively.

3.1.2 Identification of variable stars

Variable stars were identified using the V and B time-series data separately. First we calculated the Fourier transforms (in the Schwarzenberg-Czerny 1996) of the stars having at least 12 measurements in each photometric band, then we averaged these transforms to estimate the noise and calculated the signal-to-noise ratios (S/Ns). Results from the V and B data sets were cross-correlated, and all stars with S/N > 5 in both photometric bands were visually inspected, for a total of about 2000 objects. We also checked whether some of the stars in the Blue Straggler Stars (BSSs) region might be pulsating variables of SX Phe type. The study of the light curves and period derivation were carried out using the Graphical Analyzer of Time Series package (GRaTiS; Clementini et al. 2000). We confirmed the variability and obtained reliable periods and light curves for 3 RR Lyrae stars, all fundamental-mode pulsators (stars: V1, V2 and V3), and for one SX Phe variable (star V4). The identification and

¹IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

²see http://cadcwwwdao.nrc.ca/standards.

properties of the confirmed variable stars are summarized in Table 3.2, their light curves are shown in Figure 3.1. Stars V1, V2 and V4 lie inside the galaxy half-light radius, while V3 lies outside, at about 12 arcmin from the Leo IV center (see right panel of Figure 3.4). In the CMD, the SX Phe star is located in the region of the BSSs, while all the RR_{ab} stars (V3 included) fall near the galaxy's HB. We checked the position of V4 on the period-luminosity (PL) relation of the SX Phe stars. Using the star's period and the absolute magnitude inferred from the apparent magnitude and the distance provided by the RR Lyrae stars (see section 3.1.3), we found that V4 lies very close to the Poretti et al. (2008) PL relation for SX Phe stars, thus confirming the classification as an SX Phe star.

The average pulsation period of the Leo IV RR_{ab} stars is $\langle P_{ab} \rangle = 0.655$ d, and seems to suggest an Oosterhoff type II classification for that Leo IV. Before 2009, only four dSphs of Oosterhoff type II were known, namely, Ursa Minor among the classical dSph companions of the MW, and Bootes I (Dall'Ora et al. 2006), CVn II (Greco et al. 2008), and Coma (Musella et al. 2009), among the ultra-faint SDSS dSphs. On the other hand, in the V-band period-amplitude diagram (see Figure 3.2) the Leo IV RR_{ab} stars fall close to the locus of OoI systems (from Clement & Rowe 2000), with V1 and V3 lying near the distribution of the bona fide regular variables, and V2 lying close to the locus of the well-evolved fundamental-mode RR Lyrae stars in the Galactic GC M3 (from Cacciari et al. 2005). Nevertheless, V2 does not appear to be overluminous in the CMD, as would be required if the star were evolved off the zero-age HB. The ambiguous behavior and the small number of variable stars make the conclusive assignment of an Oosterhoff type to the Leo IV dSph rather difficult.

We used the parameters of the Fourier decomposition of the V-band light curve, along with the Jurcsik & Kovács (1996) method for RR_{ab} stars (see section 2.2.1), to estimate the metallicity on the ZW scale of V1, the only variable of our RR Lyrae sample which satisfies the Jurcsik & Kovács (1996) compatibility condition. For this star we find $[Fe/H]_{ZW} = -2.11$ that transformed to Carretta et al. (2009) metallicity scale becomes $[Fe/H]_{C09} = -2.27$. The metallicity derived for V1 (see column 11 of Table 3.2) is in good agreement with the spectroscopic metallicity derived for another RR Lyrae star (variable V2) by Kirby et al. (2008) (see last column of Table 3.2).

Name	α	δ	Type	Р	Epoch (max)	$\langle V \rangle$	$\langle B \rangle$	A_V	A_B	$[Fe/H]_{ZW84}$
	(2000)	(2000)		(days)	(-2450000)	(mag)	(mag)	(mag)	(mag)	(a)
V1	$11 \ 32 \ 59.2$	-00 34 03.6	RRab	0.61895	4212.453	21.47	21.82	0.73	0.99	-2.11
V2	$11 \ 32 \ 55.8$	-00 33 29.4	RRab	0.7096	4214.543	21.46	21.86	0.64	0.76	-2.03
V3	$11 \ 33 \ 36.6$	-00 38 43.3	RRab	0.635	4212.453	21.52	21.81	0.65	0.82	—
V4	$11 \ 32 \ 45.4$	$-00 \ 31 \ 44.4$	SX Phe	0.0994	4213.397	22.96	23.34	0.37	0.38	—

Table 3.2: Identification and properties of variable stars in the Leo IV dSph galaxy. Note: (a) The metallicity of star V1 was derived from the Fourier parameters of the V-band light curve. The metallicity of V2 is from Kirby et al. (2008).Table from Moretti et al. (2009)

Figure 3.1: V (left panels) and B (right panels) light curves of the variable stars discovered in the Leo IV dSph galaxy. *Three upper rows:* fundamental-mode RR Lyrae stars; *bottom row:* SX Phe variable. Figure from Moretti et al. (2009)

Figure 3.2: V-band period-amplitude diagram of RR Lyrae stars in the Coma, Bootes I, CVn II, and Leo IV dSphs. Variables with $\log P > -0.35$ days are RRab pulsators, those with $\log P < -0.35$ days are first-overtone (RRc) pulsators. Longdashed and dot-dashed lines show the position of the Oo I and Oo II Galactic GCs, according to Clement & Rowe (2000). Period-amplitude distributions of the *bona* fide regular (solid curve) and well evolved (dashed curve) RRab stars in M3, from Cacciari et al. (2005), are also shown for comparison. Figure from Moretti et al. (2009)

Figure 3.3: V, B - V CMD of the Leo IV dSph obtained by plotting stellar-like objects located within the half-light radius of 3.3 arcmin. Variable stars V1, V2 and V4 are marked by triangles, star V3 by a cross, The solid line is the ridge line of the Galactic GC M15. Red and cyan dots are stars respectively within ± 0.05 mag in B - V and, for V > 23.5 mag, from ± 0.05 and ± 0.10 mag in B - V from the ridgeline of M15. Open circles mark member stars of the Leo IV dSph according to Simon & Geha (2007) and Kirby et al. (2008). Figure from Moretti et al. (2009)

3.1.3 CMD, structure and distance to Leo IV

Figure 3.3 shows the V, B - V CMD of the Leo IV dSph obtained by plotting all stellar-like objects located within the half-light radius of 3.3 arcmin from the Belokurov et al. (2007) center of Leo IV. The selection between stars and galaxies, for magnitudes brighter than V = 22.5 mag, was done with the software Source Extractor (SExtractor; Bertin & Arnouts 1996). Variables stars are plotted in the CMD according to their intensity-averaged magnitudes and colors (see Table 3.2), using filled triangles for stars V1, V2, and V4, and a cross for star V3. Although well outside the Leo IV half-light radius, V3 appears to be perfectly located on the galaxy's HB, thus confirming its membership to the galaxy. Non-variable HB stars are marked by (blue) filled circles. The CMD reaches $V \sim 25.5$ mag, and appears to be heavily contaminated at every magnitude level by field objects belonging to the MW. We used the mean ridgeline of the Galactic GC M15 (from Durrell & Harris 1993; solid line) properly shifted in magnitude and color, and selected as stars most likely belonging to the Leo IV galaxy the sources lying within ± 0.05 mag from the ridgeline of M15 (red dots). To allow for the larger photometric errors, for magnitudes fainter than V = 23.5 mag, we also considered as belonging to the galaxy stars with B-V color the range from ± 0.05 and ± 0.10 mag from the ridgeline of M15 (cyan dots). The HB of Leo IV shows up quite clearly and along with the galaxy's RGB, is well reproduced by the ridgeline of M15, implying that Leo IV has an old and metal-poor stellar population with metallicity comparable to that of M15 ($[Fe/H] = -2.5 \pm 0.08$, on the ZW scale). We also note that, by adopting for M15 a reddening value of $E(B - V) = 0.10 \pm 0.01 \text{ mag}$ (Durrell & Harris, 1993), the color shift needed to match the HB and RGB of Leo IV implies for the galaxy a reddening of $E(B-V)=0.04\pm0.01$ mag. For comparison, the reddening in the direction of Leo IV obtained from the Schlegel et al. (1998) maps is 0.025 ± 0.026 mag. The objects marked by the open circles are stars within the Leo IV half-light radius, whose membership to the galaxy was confirmed spectroscopically by Simon & Geha (2007). They include the RR Lyrae star V2 and a number of HB and RGB stars which fall very close to the M15 ridgeline, thus supporting our identification of the Leo IV member stars.

The left panel of Figure 3.4 shows a map of all sources observed in the FOV of the WHT observations that we consider to belong to the Leo IV galaxy, according to their

3.2 Hercules

position with respect to the M15 ridgeline, or with membership spectroscopically confirmed by Simon & Geha (2007, open circles). Symbols and color-coding are the same as in Figure 3.3 and, for nonvariable stars, the symbol sizes are proportional to the star's brightness. The solid circle shows the region corresponding to the halflight radius of Leo IV centered on the Belokurov et al. (2007) coordinates for the galaxy. The right panel of Figure 3.4 shows a map of the sources observed in the INT FOV which lie within ± 0.05 mag in B - V (for V > 23.5 mag, within ± 0.10 mag in B - V) from the ridgeline of M15. An overdensity of objects rather extended and irregular in shape is visible, corresponding to the region occupied by the Leo IV dSph. The black circle shows the half-light radius of Leo IV, according to Belokurov et al. (2007). The peripheral location of V3 is remarkable, and provides further hints on the elongation and rather deformed morphology of the Leo IV dSph.

The average apparent magnitude of the galaxy's RR Lyrae stars is $\langle V_{RR} \rangle = 21.48 \pm 0.03$ mag (standard deviation of the mean). Assuming $M_V = 0.59 \pm 0.03$ mag for the absolute luminosity of the RR Lyrae stars at [Fe/H]=-1.5 (Cacciari & Clementini 2003, but see also the discussion in Sect. 2.3.2), $\Delta M_V / \Delta [Fe/H] = 0.214 \pm 0.047$ mag dex⁻¹ for the slope of the luminosity-metallicity relation of RR Lyrae stars (Clementini et al., 2003), $E(B - V) = 0.04 \pm 0.01$ mag and [Fe/H]=-2.31 Simon & Geha (2007), the distance modulus of Leo IV is $\mu_0 = 20.94 \pm 0.07$ mag which corresponds to a distance $d = 154 \pm 5$ kpc. The error includes uncertainties in the photometry, reddening, metallicity, and RR Lyrae absolute magnitude, but does not take into account evolution off the zero-age HB which might contribute an additional 0.05 mag uncertainty, bringing the total error budget to 0.09 mag. If we adopt instead $M_V = 0.54$ mag at [Fe/H]=-1.5, which is consistent the LMC distance modulus of $\mu_0 = 18.52 \pm 0.09$ mag derived by Clementini et al. (2003) we obtain $\mu_0 = 20.99 \pm 0.07$ mag ($d = 158 \pm 5$ kpc). These new, precise distance estimates agrees very well with the distance of 160^{+12}_{-14} kpc derived by Belokurov et al. (2007).

3.2 Hercules

The Hercules ultra-faint dwarf (R.A.= $16^{h}31^{m}02.0^{s}$, Decl.= $12^{\circ}47'29.6''$, J2000.0) was discovered by Belokurov et al. (2007) from the analysis of the SDSS data. Hercules appears to be highly elongated, with an half-light radius of about 9 arcmin

Figure 3.4: Left panel: Map of sources in the FOV of the WHT observations, which we consider to belong to the Leo IV galaxy according to the fit with the M15 ridgeline, or with membership spectroscopically confirmed by Simon & Geha (2007, open circles). Symbols and color-coding are the same as in Figure 3.3 and, for non-variable stars, the symbol sizes are proportional to the star's brightness. *Right panel*: Map of sources observed in the INT field of view which lie within \pm 0.05 mag in B - V(for V > 23.5 mag, within \pm 0.10 mag in B - V) from the ridgeline of M15. The symbols and color-coding for the variable stars are the same as in Figure 33. In both panels the large circle shows the region corresponding to the half-light radius of Leo IV centered on the Belokurov et al. (2007) coordinates for the galaxy. Figure from Moretti et al. (2009).

Dates	Telescope/Instrument	Detector (pixel)	Resolution $(\prime\prime / {\rm pixel})$	FOV	N_B	N_V
Apr. 2007	2.5m INT/Wide Field Camera	4 of 4k \times 2k	0.33	$34' \times 34'$	52	32
May 2007	$4.2 \mathrm{m} \mathrm{WHT/Prime}$ Focus Camera	2 of 2k \times 4k	0.24	$16.2' \times 16.2'$	5	4
Jul. 2007	2.2m ESO/Wide Field Imager	8 of 2k \times 4k	0.238	$34' \times 33'$	7	7
Jul. 2008	2m LT/Ratcam optical CCD camera	$2k \times 2k$	0.270^{a}	$4.6' \times 4.6'$	24^b	22^b
Jan-Jun 2009	2m Faulkes Telescope North/EM01	$2k \times 2k$	0.278^{a}	$4.7' \times 4.7'$	14^c	7^d

Table 3.3: Instrumental set-up and log of the observations of Hercules

^{*a*} Binning 2×2

 b We covered 6 different fields around the galaxy center published by Belokurov et al. (2007)

 c We covered 4 different fields around the galaxy center

 d We covered 2 different fields around the galaxy center

 $(r_h \simeq 8.4 \text{ arcmin}, \text{ for Belokurov et al. 2007; } r_h \simeq 8.6 \text{ arcmin}, \text{ for Coleman et al.}$ 2007; $r_h \simeq 8.4 \text{ arcmin}, \text{ for Martin et al. 2008}$, and ellipticity $\epsilon \sim 0.67$ (Coleman et al., 2007; Martin et al., 2008). Hercules has no evidence of an internal rotation, and a very low velocity dispersion of $\sim 5 \text{ km s}^{-1}$ for Simon & Geha (2007) or 3.72 km s⁻¹ for Adén et al. (2009). The explanation of a such a large ellipticity in absence of a rotational support might imply that Hercules is not in dynamical equilibrium due to strong tidal distortions (see discussion in Coleman et al., 2007; Martin et al., 2008). The latest studies estimate for the galaxy distances in the range of ~ 132 kpc to ~ 147 kpc (see e.g., Coleman et al., 2007; Sand et al., 2009; Adén et al., 2011) and a total absolute magnitude ranging from $M_V = 6.2$ mag to $M_V = 6.6$ mag (see e.g. Martin et al., 2008; Sand et al., 2009). In the literature there are several spectroscopic and photometric determinations of the mean metallicity $\langle [Fe/H] \rangle$ of Hercules, with values in C09 metallicity scale ranging from about -2.3 to -2.7 dex (Koch et al., 2008; Adén et al., 2009; Kirby et al., 2008; Simon & Geha, 2007).

3.3 Observations and Data Reduction

Time-series observations in B and V of the Hercules UFD were obtained over the period 2007 April, to 2009 June, using a number of different telescopes. The collected data and related telescopes/instrumental set-ups are summarized in Table 3.3, where N_B and N_V are the number of frames in the B and V bands, respectively.

Name ^a	(2000)	δ (2000)	Type	P (days)	$\frac{\text{Epoch}^b}{(-2450000)}$	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	A_V (mag)	A_B (mag)
V1	16:31:02.17	+12:47:33.7	RRab	0.639206	4870.149	21.27	21.68	1.06	1.16
V2	16:31:02.91	+12:45:48.5	AC	0.53777	4614.590	20.72	21.14	0.45	0.59
V3	16:30:54.93	+12:47:04.2	RRc	0.39997	4614.6767	21.32	21.72	0.48	0.61
V4	16:30:56.14	+12:48:29.2	RRc	0.39576	4612.5745	21.23	21.59	0.58	0.69
V5	16:30:52.28	+12:49:12.0	RRc	0.40183	4212.699	21.30	21.64	0.47	0.61
V6	16:30:52.41	+12:49:60.0	RRab	0.69981	4232.700	21.35	21.76	0.90	1.19
V7	16:31:29.48	+12:47:34.9	RRab	0.67799	4613.456	21.22	21.65	0.81	1.03
V8	16:31:27.20	+12:44:16.7	\mathbf{RRab}	0.66234	4613.497	21.25	21.69	0.90	1.09
V9	16:31:29.50	+12:40:03.1	RRab	0.72939	4214.6101	21.18	21.60	0.0	1.00
$V10^{c}$	16:30:03.96	+12:52:06.3	\mathbf{RRab}	0.6616	4210.679	21.28	21.69	1.17	1.32

Table 3.4: Identification and properties of variable stars in the Hercules UFD galaxy

 \overline{a} We have named the variable stars with an increasing number starting from Martin et al. (2008) center for Hercules

^b Epoch corresponds to the time of maximum light.

^c This star has very scattered light curves

Pre-reduction of the images was performed by following standard procedures (bias subtraction and flat-field correction) with IRAF. We then performed PSF photometry using the DAOPHOT IV/ALLSTAR/ALLFRAME packages (Stetson 1987, 1994). After an accurate evaluation of the PSF of each individual frame, a reference image was built by averaging all the available frames and a source catalogue was extracted from the stacked image. The source list was then passed to ALLFRAME, in order to obtain a homogeneous photometry of all images simultaneously, thus providing catalogues of the *b* and *v* instrumental magnitudes for each telescope, separately. Typical internal errors of the single-frame photometry for stars at the magnitude level of the horizontal branch (HB; $V \sim 21.3$ mag) are of about 0.01 mag in both bands.

The absolute photometric calibration was derived using observations of standard stars in the Landolt fields SA 101, SA 107, SA 110 and PG1323 (Landolt 1992), as extended by P.B. Stetson³, which were obtained at the INT during the night of 2007 April 22. Errors of the absolute photometric calibration are $\sigma_B = 0.01$ and $\sigma_V = 0.01$ mag, respectively. As the various telescopes we used to observe Hercules define slightly different photometric systems, each individual dataset was tied to the INT standard calibration independently.

³see http://cadcwwwdao.nrc.ca/standards.

3.4 Variable Stars

Variable stars were identified from the B and V time-series data, independently, using the *ad hoc* procedure based on the calculation of Fourier transforms that we have already described in Sect. 3.1.2.Even if we expected to mainly find variables of RR Lyrae type in Hercules, we also checked whether any of the stars in the Blue Straggler region might be a pulsating variable of SX Phoenicis (SX Phe) type. We identified a total number of 10 candidate variables in Hercules. To study their light curves and derive their periods we used the software GRATiS (see e.g., Clementini et al. 2000), that, beyond confirming the variability also provided periods accurate to 4-6 decimal places for all of them. The Hercules variables include 1 Anomalous Cepheid (AC) and 9 RR Lyrae stars, of which 6 are fundamental-mode (RRab) and 3 are first-overtone (RRc) pulsators.

Classification and properties of the confirmed variable stars are summarized in Table 3.4, their light curves are shown in Figs. 3.5 and 3.6. We have assigned to the variables increasing numbers starting from the galaxy center that was set at $R.A.= 16^{h}31^{m}05.2^{s}$, $Decl.= 12^{\circ}47'29.6$, J2000.0 (Martin et al., 2008). Time-series data for the variable stars are provided in Table 3.5. The light curves are very well sampled, and show very little scatter, except for star V10. We suspect that this RR Lyrae star might be affected by the Blazhko effect (Blažko, 1907).

We note that, according to the period, variable V2 could be as well a fundamental mode RR Lyrae star. However, the star average magnitude is about 0.4-0.5 mag brighter then the HB level. This occurrence together with a too small amplitude for the star short period, suggest that the variable either suffers from blending by a contaminant star or is, instead, an AC. On the other hand, visual inspection of the star images seems to exclude the presence of possible companions, thus favoring the classification as AC for this variable star. As described in Section 3.5, the AC classification is further confirmed by the comparison with evolutionary tracks.

The AC, all the RRc variables and four of the RRab stars lie inside the halflight radius of the Hercules galaxy ($r_h \simeq 8.6$ arcmin, for Martin et al. 2008). The remaining two RRab stars lie slightly outside this region, with the farthest from the center being confirmed as member by Adén et al. (2009) on the basis of both radial velocity and Strömgren photometry (see Section 3.5 and Fig. 3.8 for details). All

Figure 3.5: Light curves of Hercules fundamental mode RR Lyrae stars. Variables are ordered by decreasing period.

Figure 3.6: Light curves of Hercules AC (top panel), and first overtone RR Lyrae stars. Variables are ordered by decreasing period.

Figure 3.7: V-band period-amplitude diagram of the RR Lyrae stars in the UFDs studied so far for variability: Coma, Boo I, CVn II, Leo IV, UMa II and Hercules UFDs. Solid lines are the positions of the Oo I and II Galactic GCs, from Clement & Rowe (2000).

the RR Lyrae stars fall on the HB of the Hercules UFD, and their mean magnitude is consistent, within the errors, with the average luminosity of the HB inferred by fitting the galaxy CMD with the ridge line of the GGC M68 (see section 3.5 for details).

The mean period of the RRab stars is $\langle P \rangle = 0.68$ d ($\sigma = 0.03$ d) thus firmly classifying Hercules as an Oosterhoff type-II system. Fig. 3.7 shows the position of the Hercules RR Lyrae stars on the V-band period-amplitude (Bailey) diagram. We have also reported in this figure the RR Lyrae stars identified in the other MW UFDs we have studied so far, for comparison. Hercules' RRab stars (star symbols) lie closer to the loci of the Oo II systems (from Clement & Rowe, 2000, solid line) and the RRc stars fall on the long-period tail of the bell-shaped distribution defined by RRc stars in Oo II systems.

	Hercules	s - Star	V8 - RRab		
HJD	V	σ_V	HJD	В	σ_B
(-2454211)	(mag)	(mag)	(-2454211)	(mag)	(mag)
0.652005	21.26	0.02	0.640218	21.69	0.02
0.676609	21.31	0.02	0.664420	21.72	0.02
0.702719	21.34	0.02	0.728613	21.89	0.02
0.741483	21.42	0.02	1.682154	22.10	0.02
1.693693	21.59	0.02	1.705106	22.00	0.02
1.717861	21.33	0.01	1.730836	21.49	0.01
2.646191	21.27	0.01	2.634102	21.69	0.02
2.686550	21.36	0.02	2.658033	21.75	0.02
2.722461	21.42	0.02	2.734216	21.94	0.02
3.610141	21.48	0.02	3.621931	22.01	0.02

Table 3.5: B, V photometry of the variable stars detected in the Hercules UFD

Table 3.5 is published in its entirety in the electronic edition of Musella et al. (2012). A portion is shown here for guidance regarding its form and content.

3.4.1 Metallicity and reddening from the RR Lyrae stars

We have Jurcsik & Kovács (1996) method to estimate the metallicity of the Hercules RR Lyrae stars. We have first performed a Fourier decomposition of the V-band light curves, and calculated amplitude ratios A_{n1} and phase differences ϕ_{n1} . We list in Table 3.6 these quantities till to the term n=3. The Fourier parameters were used along with the formulae provided by Jurcsik & Kovács (1996) and Morgan et al. (2007) for ab- and c-type RR Lyrae stars, respectively, to obtain individual metallicities for the Hercules RR Lyrae stars, except for V10 whose light curve is too noisy for a reliable application of Jurcsik & Kovacs method. The metallicity estimates obtained with this technique are reported in column 2 of Table 3.7, they are in ZW scale. They were transformed to the Carretta et al. (2009) metallicity scale (see Column 3 of Table 3.7) using the relations provided in Sect. 2.3.1 and then averaged (weighted average) to obtain our best estimate for the metallicity of the Hercules old population: $\langle [Fe/H]_{RR,C09} \rangle = -2.30 \pm 0.15$ dex.

The metal abundance we have derived from the RR Lyrae stars is in excellent agreement with measurements by Simon & Geha (2007), Coleman et al. (2007),

Name	Type	A_{21}	A_{31}	ϕ_{21}	$err\phi_{21}$	ϕ_{31}	$err\phi_{31}$
V1	RRab	0.49917	0.36365	3.64547	0.09703	1.44958	0.13949
V2	AC	0.29909	0.15253	4.57133	0.14328	1.99718	0.26515
V3	RRc	0.03663	0.09088	4.43201	1.46807	3.03154	0.61169
V4	RRc	0.27846	0.11197	4.42430	0.21027	2.31475	0.48194
V5	RRc	0.22652	0.08833	5.09514	0.12519	3.59738	0.30253
V6	RRab	0.54905	0.34341	4.05899	0.12258	2.13826	0.18946
V7	RRab	0.39660	0.32364	3.97741	0.07756	1.82471	0.10378
V8	RRab	0.44746	0.34821	3.73524	0.07124	1.59599	0.09866
V9	RRab	0.44564	0.39424	3.97431	0.07633	1.74252	0.09976
V10	RRab	0.50604	0.37673	4.28900	0.31261	2.83362	0.44539

Table 3.6: Fourier parameters of the V-band light curve for variable stars in Hercules

Table 3.7: Individual metallicities and reddening values derived for the RR Lyrae stars in Hercules (see text for details).

Name	$[Fe/H]_{ZW} \pm \sigma_{[Fe/H]_{ZW}}$	$[\mathrm{Fe/H}]_{\mathrm{C09}} \pm \sigma_{\mathrm{[Fe/H]}_{\mathrm{C09}}}$	E(B-V)
V1	-2.23 ± 0.13	-2.4 ± 0.2	0.10
V3	-2.12 ± 0.06	-2.29 ± 0.13	
V4	-2.13 ± 0.04	-2.31 ± 0.12	
V5	-2.03 ± 0.07	-2.14 ± 0.14	
V6	-1.81 ± 0.18	-1.8 ± 0.3	0.06
V7	-2.02 ± 0.10	-2.13 ± 0.19	0.08
V8	-2.18 ± 0.10	-2.36 ± 0.19	0.12
V9	-2.29 ± 0.10	-2.52 ± 0.19	0.08

Koch et al. (2008) and Adén et al. (2009), but is about 0.4 dex higher than derived by Kirby et al. (2008). However, the value of $[Fe/H] \sim -2.7$ (on C09 scale) derived for the galaxy by Kirby et al. (2008) is based on an automated spectroscopic method that is likely to provide systematically lower metallicity estimates as discussed by the authors themselves (Kirby et al., 2009, 2010). More recently, Adén et al. (2011) found a large metallicity spread (-3.2 < [Fe/H] < -2.0 dex) in Hercules, from the analysis of medium-high resolution spectra of 11 red giant branch (RGB) stars in the galaxy. However, if the average is computed only on the red giants with metallicity measured from a significant number of iron lines (≥ 5 ; four stars according to Aden et al. Table 6), we obtain an average value of $\langle [Fe/H] \rangle = -2.3 \pm 0.2$ dex, in excellent agreement with the value we have derived from the RR Lyrae stars. We used the RR Lyrae stars also to estimate a reddening value for Hercules. From the relation by Piersimoni et al. (2002), that holds for RRab stars, and connects the color excess, to the light curve amplitude in the B band, the logarithm of the period, and the star metallicity we obtain a mean color excess $E(B - V)_{RRab} = 0.09 \pm 0.02$ mag, where we have adopted the individual metallicities on Carretta et al. (2009) scale listed in Table 3.7. This estimate is in very good agreement with the value of 0.084 ± 0.026 mag derived from the Schlegel et al. (1998) maps. In the following we adopt for Hercules the average metallicity, $\langle Fe/H \rangle_{RR,C09} \rangle = -2.30 \pm 0.15$ dex, and the reddening value $E(B-V) = 0.09 \pm 0.02$ mag that were derived from the RR Lyrae stars.

3.5 CMD, structure and distance

Fig. 3.8 shows the V, B - V CMD of Hercules obtained in the present study. We used the CHI and SHARP parameters provided by the ALLFRAME package to select only the stellar-like objects (grey dots) present in our total FOV of about $40' \times 40'$. The selection is reliable for magnitude brighter then $V \sim 24$ mag, while uncertainty increases at fainter magnitudes. In the left panel we plot stellar-like objects within in the galaxy half light radius (8.6 arcmin, Martin et al., 2008), in the right panel instead we show objects outside this region. The CMD reaches $V \sim 25$ mag and appears to be heavily contaminated at each magnitude level by field objects belonging to the MW halo and disk, as well as by background galaxies. The main

Figure 3.8: Left: V, B - V CMD of the Hercules UFD, drawn from all the stellarlike objects within the galaxy half-light radius ($r_h \simeq 8.6$ arcmin, Coleman et al. 2007). Dashed cyan and magenta lines are the ridgelines of the Galactic GCs M 68 and M 15, respectively. Black and red dots are stars respectively within ± 0.05 mag in B - V and from ± 0.05 to ± 0.1 mag from the ridgelines of M 68. Blue dots are non-variable stars on the HB. Variable stars are marked by filled triangles, cyan: RRc stars, red: RRab stars, magenta: Anomalous Cepheid. Green and violet open circles mark member stars of the Hercules UFD identified spectroscopically by Kirby et al. (2008) and spectro-photometrically by Adén et al. (2009), respectively (see text for details). Right: V, B - V CMD of the stellar-like objects outside the Hercules half-light radius.

branches of the Hercules CMD are barely distinguishable, due to the overwhelming contamination by the MW field stars. To identify stars belonging to Hercules we applied the method that we have already successfully used for Leo IV, and in our previous papers (see e.g., Musella et al. 2009; Moretti et al. 2009). Specifically, we used the mean ridgelines of the Galactic GC M68 (NGC 4590; dashed cyan lines in Figure 3.8), obtained from Walker (1994) B, V photometry, and shifted them by $\Delta V = +5.68$ mag in magnitude, and $\Delta (B - V) = +0.02$ mag in color, to match the HB and RGB of the Hercules UFD. M68 is well suited for identifying members of the Hercules UFD because, like Hercules, is very metal-poor. Its metallicity, $[Fe/H]_{M68} = -2.27 \pm 0.04 \text{ dex}$ (Carretta et al., 2009), is in very good agreement with the mean metallicity obtained in section 3.4.1 from the RR Lyrae stars. The cluster has also a well defined and tight RGB, as well as an extended HB including stars both redder and bluer than the RR Lyrae instability strip (Walker 1994). With this procedure we selected as most probable members of the Hercules galaxy the sources lying within ± 0.05 mag in B - V from the ridgelines of M 68 (black dots in the left panel of Figure 3.8). To account for the larger photometric errors, below V = 24.2mag we also considered as belonging to the galaxy stars with colors within ± 0.05 and ± 0.10 mag from the ridgelines of M 68 (red dots). Adopting for M68 a reddening value of $E(B-V) = 0.07 \pm 0.01$ mag (Walker, 1994) the color shifts needed to match the HB and RGB of Hercules imply a reddening of $E(B-V) = 0.09 \pm 0.01$ mag for the galaxy, in excellent agreement with the value obtained from Hercules RRab stars (see Section 3.4.1). In the left panel of Fig. 3.8 we also show the ridgelines of the Galactic GC M15 (NGC 7078, dashed magenta lines), taken from Durrell & Harris (1993) and shifted by $\Delta V = +5.5$ mag in magnitude, and $\Delta (B - V) = -0.02$ mag in color, to match the HB and RGB of Hercules. M15 is slightly more metal-poor than M 68 with $[Fe/H]_{M15} = -2.33 \pm 0.02 \text{ dex}$ (Carretta et al., 2009), and matches equally well the main branches of the Hercules CMD. Finally, we have compared the CMD of Hercules with the ridgelines of the metal-intermediate GC M3 (Ferraro et al., 1997; Johnson & Bolte, 1998). However, the RGB ridgeline of M3 is too red and would require a negative reddening to match Hercules RGB.

With the help of the M68 ridgelines, it is possible to determine the average luminosity of Hercules HB in the region of the so-called RR Lyrae gap ($\langle V_{HB} \rangle = 21.30 \pm 0.02$ mag), and to locate the galaxy main-sequence turnoff at $V \sim 24.4$ mag.

Our identification of the Hercules member stars finds an excellent confirmation in the spectroscopic study by Kirby et al. (2008, 20 stars represented by the green open circles in Fig. 3.8) and in the spectrophotometric analysis by Adén et al. (2009, 47 stars represented by the violet open circles in Fig. 3.8), with membership to the Hercules UFD confirmed by radial velocity measurements and, for Adén et al. (2009)'s sample also by Strömgren photometry. The impressive agreement between these studies and our results supports the reliability of the procedure we have used to select Hercules member stars and to identify the HB.

Fig. 3.8 shows an overabundance of stars above the HB ($V \sim 20.5$ mag). These stars were already identified by Adén et al. (2009), who investigated whether they might represent variable stars brighter than the RR Lyrae stars. We also searched for candidate variables this region of the CMD, but, as already discussed in Section 3, we found only one AC variable, star V2 (filled magenta triangle in Fig. 3.8).

Fig. 3.9 shows the position of the stars we consider to be members of the Hercules galaxy in our FOV. Symbols and color-coding are the same as in Fig. 3.8, and symbol size is proportional to the object's magnitude. The black ellipse corresponds to the half light radius, the angle position and the ellipticity obtained for Hercules by Martin et al. (2008). This map confirms that the galaxy is elongated and has an irregular and extended shape. Likely, Hercules was tidally disrupted and is now embedded in the MW halo. Our discovery of two RRab variables outside the half light radius, together with the spectrophotometric identification in the same external region of some stars with confirmed membership by Adén et al. (2009), support the tidal interaction scenario.

3.5.1 A new estimate of the distance to Hercules

The RR Lyrae detected in Hercules offer the opportunity to estimate an accurate distance to this galaxy.

The position of the RR Lyrae stars is in satisfactory agreement with the M68 HB fiducial line, although with some spread. Two of the Hercules variables (V9 and V10) are located outside the galaxy half light radius (see Fig. 3.9), and V10, has very noisy light curves. We suspect it might be affected by Blazhko effect (Blazhko 1907). The measure the distance we have used only the RR Lyrae lying inside the galaxy half light radius. Their average apparent magnitude is: $\langle V_{RR} \rangle = 21.28 \pm 0.05$ mag

Figure 3.9: Map of the stars we consider to belong to the Hercules galaxy in the FOV of our observations. Symbols and color coding are the same as in Fig. 3.8. Symbol sizes are proportional to the object's magnitudes. A black ellipse describes the half-light region of the galaxy, for the angle position and ellipticity obtained for Hercules by Martin et al. (2008).

(where the error is the standard deviation of the average).

Assuming $M_V = 0.59 \pm 0.03$ mag for the absolute visual magnitude of the RR Lyrae stars at [Fe/H]=-1.5 (Cacciari & Clementini 2003, but see also the discussion in Sect. 2.3.2), $\Delta M_V / \Delta [Fe/H] = 0.214 \pm 0.047$ mag dex⁻¹ for the slope of the luminosity-metallicity relation of RR Lyrae stars (Clementini et al., 2003), $\langle Fe/H]_{RR,C09} \rangle = -2.30 \pm 0.15$ dex, and $E(B - V) = 0.09 \pm 0.02$ from the RR Lyrae stars, the distance modulus of Hercules is $\mu_0 = 20.58 \pm 0.08$ mag which corresponds to a distance $d = 131 \pm 5$ kpc, where the error includes the contribution of the uncertainties on the metallicity, the reddening, the adopted slope of the $M_V - [Fe/H]$ relation and the average apparent visual magnitude of Hercules RR Lyrae stars. If we adopt instead $M_V = 0.54$ mag at [Fe/H]=-1.5, which is consistent the LMC distance modulus of $\mu_0 = 18.52 \pm 0.09$ mag derived by Clementini et al. (2003) we obtain a true distance modulus of 20.63 \pm 0.08 mag ($d = 134 \pm 5$ kpc).

Our distance determinations are in statistical agreement with previous estimates by Belokurov et al. (2007), Coleman et al. (2007) and Adén et al. (2009).

An additional distance estimate based on the RR Lyrae stars can be obtained using the theoretical Wesenheit relation in the B, V bands as defined by Di Criscienzo et al. (2004) with the assumption of a suitable evolutionary mass for the metallicity of Hercules. The resulting distance modulus is: 20.60 ± 0.10 mag, in very good agreement with the values obtained from the absolute magnitude-metallicity relation.

Finally, in Fig. 3.10 we show a zoom of the HB region of the CMD in Fig. 3.8 (with the same color-coding) where we have reported (solid lines) the helium burning evolutionary tracks from the stellar model database BASTI⁴ (Pietrinferni et al., 2006), for stellar masses ranging from 0.7 to 1.4 M_{\odot} (with a step of 0.1 M_{\odot}) and Z = 0.0001. In particular, the red and blue lines are the HB evolutionary tracks for 0.7 and 0.8 M_{\odot} respectively, whereas the black lines are for $M \ge 0.9M_{\odot}$ including the range of masses corresponding to the HB turnover (Caputo & degl'Innocenti, 1995). The blue dashed line represents the Zero Age Horizontal Branch (ZAHB) for the same chemical composition. The location of the RR Lyrae stars is consistent with the model predictions and suggests an evolutionary effect for some of them. On the other hand, the AC (star V2) is, as expected, consistent with the evolution

⁴BaSTI database official site: http://www.oa-teramo.inaf.it/BASTI

Figure 3.10: Zoom of the HB region of the CMD in the Fig. 3.8 with same symbols and color-coding. Solid lines represent the HB evolutionary tracks for Z = 0.0001and stellar masses from 0.7 to 1.4 M_{\odot} (with a step of 0.1 M_{\odot}). Red and blue lines are the HB evolutionary tracks for 0.7 and 0.8 M_{\odot} respectively, whereas the black lines are for $M \ge 0.9M_{\odot}$ including the range of masses corresponding to the HB turnover (Caputo & degl'Innocenti, 1995). The blue dashed line represents the ZAHB location for the same chemical composition.

of a $M \sim 1.35 M_{\odot}$ from the turnover region of the ZAHB, confirming the presence of an intermediate-age stellar population $\sim 2-3$ Gyr old in Hercules.

HST data

The ground-based data of Hercules were complemented by times series observations in the F606W and F814W filters obtained with the Wide Field Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST). These data were obtained on 2007 Fabruary 26, as part of GO11084 (PI:Zucker) and are available on the HST archive. They consist of 3 F606W, and 5 F814W images, respectively, each obtained with an exposure lenght of 1200 sec. We adopted the HSTphot package (Dolphin, 2000), a PSF-fitting photometry package specifically designed for the treatment of

Figure 3.11: Right Panel: V, V - I CMDof Hercules obtained from the WFPC2 HST photometry; Left panel: V, B - V CMD of Hercules UFD from our ground-based photometry. All stellar-like objects measured in the total field of view (40' × 40') of the ground-based observations, are plotted (back points). Green dots show stars observed from the ground that have a counterpart in our HST dataset. Central Panel: ground-based V, B - V CMD of sources in the FOV covered by the WFPC2 observations, and, marked in green objects that have a counterpart in the HST catalogue. The red triangles in all panel is the only RR Lyrae star falling in the WFPC2 FOV.

the HST WFPC2 images, to reduce and calibrate the data to the standard Johnson-Cousins photometric system. The right panel of Fig. 3.11 shows the V, V - ICMD obtained from the WFPC2 HST photometry, where we have plotted only objects with $\chi^2 \leq 1.5$, sharpness values between -0.3 or 0.3 (see Dolphin 2000 for details), and photometric errors ≤ 0.015 mag, in both V and I bands. The HST CMD is exquisitely deep and well defined, reaching V ~ 27.5 mag, i.e. more than 3 magnitudes below the turnoff (TO) of Hercules ($V_{TO} \sim 24.4 \text{ mag}$), that is now clearly detected in the HST photometry, that has errors of $\sigma_V=0.03$ mag, $\sigma_I=0.041$ mag, for V=25.098 mag and I=24.457 mag, respectively. For comparison, the left panel of Fig. 3.11 shows the V, B - V CMD of Hercules UFD obtained with our ground-based photometry. All stellar-like objects measured in the total field of view $(40' \times 40'0 \text{ covered by our ground-based observations, were plotted (back points)}.$ Green dots show stars observed from the ground that have a counterpart in our HST dataset. The FOV covered by the HST observations is $2.5' \times 2.5'$, and only one of the RR Lyrae (red triangle in Fig. 3.11) falls in the area of Hercules observed wih the HST. The central panel of Fig. 3.11 shows the ground-based V, B - V CMD of sources in the FOV covered by the WFPC2 observations, and, marked in green objects that have a counterpart in the HST catalogue.

Chapter 4

The Magellanic System

In this Chapter we present the second part of the PhD project, that was focussed on the analysis of the LMC RR Lyrae stars and Cepheids, based on the near infrared data of the VMC survey.

4.1 The Magellanic System

Historical view

The Magellanic Clouds have been known for thousands of years to the inhabitants of the southern hemisphere. Many of the Middle Age sailors noted the two Clouds. As described in Westerlund 1997, the Clouds became connected with the name of the Portoguese seafarer Magalhaes through Antonio Pigafetta's description of the first circumnavigation of the globe in 1519-1522: "The Antarctic Pole is not so marked by stars as the Arctic. You can see there are several small stars clustered together, in the manner of two clouds a little separated one another and somewhat dim." Their nature as the two nearest external galaxies was pointed out by Abbe (1867): "The visible universe is composed of systems, of which the *Via Lactea*, the two *Nubeculae*, and the Nebulae, are the individuals, and which are themselves composed of stars (either simple, multiple, or in clusters) and of gaseous bodies of both regular and irregular outlines." Detailed investigations of the two Clouds began when the Harvard College Observatory established its southern station at Arequipa in Perù (1889-1927) and at Bloemfontain in South Africa. The most relevant result provided by early observations was the period-luminosity (PL) relation for Cepheid

variables described in the Harvard Circular N. 173, 1912. One hundred years separate us from this famous discovery by Leavitt & Pickering (1912); during this time several fundamental results concerning the Magellanic Clouds were achieved bringing us to the global picture of the system we have now.

Present picture

The Magellanic System lies at a distance of ~ 57 Kpc (e.g. Cioni et al. 2000b) and is formed by: the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC), the Bridge between them and the Stream, a trailing HI component (Mathewson et al. 1974). The LMC is a face-on (van der Marel & Cioni, 2001) dwarf irregular galaxy, also referred to as a late type spiral galaxy. It hosts several different populations of stars: old, intermediate-age, young, as well as star forming regions. The SMC is a highly inclined dwarf galaxy sometimes referred to as a dwarf Spheroidal galaxy (Zaritsky et al., 2000). Both MCs have a bar but while the LMC's is supposed to be just a few Kpc thick, the SMC's may extend up to 20 Kpc through the line of sight. The metallicity of the LMC, SMC and the Bridge are 1/2, 1/4 and 1/10of the solar metallicity, respectively. The interaction between the MCs could be responsible for the formation of the Bridge (Irwin et al., 1985), several episodes of star formation (Zaritsky & Harris, 2004) and the creation of the Stream (Besla et al., 2010). As Besla et al. (2010) pointed out, the Magellanic Clouds are the closest near-equal-mass interacting pair of galaxies. The optical and infrared surveys of the system show the Clouds as two distinct objects separated in space by a projected distance of ~ 20 kpc. The HI distribution, however, shows a different picture. The Clouds are connected by a low-metallicity bridge of gas and share a common gaseous envelope (Putman et al. 2003; Brüns et al. 2005). The existence of such features suggests that the two Clouds are a binary interacting pair. The Bridge in particular indicates that they have had a close encounter in the recent past. Toomre & Toomre (1972) demonstrate that two isolated galaxies are capable of removing substantial amounts of material via tides, forming pronounced features such as bridges and tails. The Stream is a filamentary feature of HI gas (no stars; Guhathakurta & Reitzel 1998) that trails behind the Clouds for at least 150° across the sky (Braun & Thilker 2004; Nidever et al. 2010). The Stream has historically been explained as the product of a tidal and/or hydrodynamic interaction between the Clouds and

the Milky Way (Gardiner & Noguchi 1996; Connors et al. 2006; Mastropietro et al. 2005). This picture is based on the belief that the Clouds have experienced multiple close passages near our Galaxy. However, recent Hubble Space Telescope (HST) proper motion measurements of the Clouds (Kallivayalil et al. 2006a; Kallivayalil et al. 2006b), independently confirmed by Piatek et al. (2008), have challenged this picture. These studies suggest instead that the Clouds have, at best, completed one orbit around the MW, or may even be still on their first passage (Besla et al., 2007). This occurs if either the MW's mass were higher (~ $2 \times 10^{12} M_{\odot}$; Besla et al. 2007), or if the velocity inferred from the proper motion measurements were substantially lower, e.g. if the velocity at the solar circle were higher (Shattow & Loeb 2009; Reid et al. 2009). In this case, the only previous pericentric passage around the Galaxy would be ~ 6 Gyr ago and the apocenter of the orbit would be ~ 400 kpc (i.e. larger than the virial radius of the MW). These values are lower limits since these studies assume that the MW's mass is constant over time, whereas in the current ΛCDM paradigm our Galaxy is believed to have been half as massive ~ 8 Gyr ago (Wechsler et al., 2002). Depending on the mass evolution of the MW it may be impossible for the Clouds to have completed multiple passages. Independently of which scenario is the correct one, there is no orbital solution that brings the Clouds near the MW over the past 3 Gyr. On the other hand, there is strong evidence that the Stream is a young feature (1-2 Gyr). Estimates of the survivability of high velocity clouds by Heitsch & Putman (2009) and Kereš & Hernquist (2009) make it improbable for the Stream to have survived much longer. The lifetime of the Stream poses a problem for all past numerical models, which invoke some combination of MW tides and/or ram pressure stripping to form the Stream. These models require at least one complete orbit around the MW, implying an incompatible age of at least 6 Gyr. As such, regardless of whether the Clouds are on their first or second passage to the MW, in the context of the origin of the Stream we are left with the same doubt: how can the Stream have formed without a complete orbit about the MW? Or, more generically, how can a pronounced tail be formed from a pair of dwarfs on their first infall toward a massive host?

The knowledge of the Magellanic System (MS) structure is of crucial importance to better understand its evolution and in turn improve our knowledge of the formation of the MW. This is one of the main purposes of the VISTA Y, J, K_S survey of the MS (VMC, see section 4.4). Started in November 2009, and extending over a ~ 5 yrs time span the VMC survey will indeed study the stellar 3-D structure and the star formation history of the LMC, SMC, Bridge and of a small piece of the Stream, thus providing new observational constrains on the near-field cosmology scenario.

In the framework of the VMC collaboration, in this PhD thesis we have developed, tested and fine tuned the procedures necessary to derive information on distance and 3D-structure of the Magellanic Cloud System from the analysis of the MC RR Lyrae stars and Cepheids, and have then applied them to two LMC fields completely observed by VMC. These procedures represent now the basic instrument to extend the analysis to the fields that the VMC survey will observe untill the completion of the entire project.

4.2 Optical observations: microlensing surveys

In the last couple of decades a number of different microlensing surveys have provided tens of millions light curves for objects in the Large and Small Magellanic Clouds. Despite these data were not obtained with the aim of studying variable stars, they allowed to detect and derive the period of variability for tens of thousands MC variables among which, most noteworthy, RR Lyrae stars, Classical Cepheids (CC), binaries, and Long Period Variables (LPV). The most extended of these surveys are: MACHO (Alcock et al., 2000), EROS (Tisserand et al., 2007), and OGLE (Udalski et al., 1997).

In this PhD thesis we have used identification, coordinates and pulsation properties (period, epoch of maximum light, parameters of the Fourier decomposition of the visual light curves) of the LMC RR Lyrae stars and Cepheids extracted from the microlensing catalogues of variable stars (see sections 4.2.1 and 4.2.2) to build infrared K-band light curves for the variables observed by the VMC survey. The average magnitudes in the K-band have then be used to construct period-luminosity relations from which to derive distances for the variable stars and information on the 3-D structure of the LMC.

In Figure 4.1 we show a map with the distribution of candidate RR Lyrae stars in the LMC according to the EROS-2 survey (black points), with superimposed the VMC tiles (black squares), the OGLE III fields (in red), and the MACHO fields (in

Figure 4.1: Map of candidate RR Lyrae stars in the LMC, according to the EROS-2 survey (black points), with superimposed the VMC tiles (black squares), the OGLE III fields (in red), and the MACHO fields (in green). $x = \alpha - \alpha_0$ and $y = \delta - \delta_0$ where $\alpha_0 = 81^\circ$ and $\delta_0 = -69^\circ$

green). The largest coverage of the LMC is provided by the EROS-2 data. However, EROS-2 as well as MACHO used non conventional filters. In particular, EROS' blue channel, $\lambda \epsilon$ (420-720 nm), overlaps to the V and R standard bands, while EROS' red channel, $\lambda \epsilon$ (620-920 nm), roughly matches the mean wavelength of the Cousins I band (Tisserand et al. 2007). OGLE used instead B_{Johnson} (B_J), V_{Johnson} (V_J) and I_{Cousins} (I_C) filters. For these reasons we used the OGLE-III data whenever available (e.g., in the centre of the LMC), and the EROS-2 data in the outer parts of the LMC that are not covered by other surveys. A number of most external VMC tiles are not covered by any of the previous microlensing surveys, however, the OGLE-IV survey, started in 2010, is in progress, and, once completed will cover the entire field of view of the VMC survey.

4.2.1 EROS-2

EROS-2 (*Expérience pour la Recherche d'Objets Sombres*) is a second generation microlensing experiment (Tisserand et al., 2007) that monitored 93 deg² in the Magellanic Clouds, 63 deg² in the Galactic Bulge, and 28 deg² in the spiral arms of the Milky Way. The EROS-2 observations were performed between 1996 July, and 2003 February. EROS-2 used the Marly 1 meter telescope at ESO, La Silla. The telescope was equipped with two 0.95 deg² CCD mosaics; each CCD has 2048 × 2048 pixels of $15 \times 15 \ \mu m^2$ size.

Images were taken simultaneously in two wide passbands, the so-called R_{EROS} centered close to the I_C standard band, and the B_{EROS} , which is intermediate between the standard V and R bands. Almost all of the EROS-2 fields were calibrated using stars from the catalogs of the Magellanic Cloud Photometric Survey (Zaritsky et al., 2004). For 4.5 deg², the calibration was checked with the OGLE-II catalog. To a precision of ~0.1 mag, the EROS magnitudes satisfy the following trasformation equations:

$$R_{EROS} = I_C; B_{EROS} = V_J - 0.4(V_J - I_C).$$
(4.1)

EROS-2 has, so far, the best coverage of the MCs. Data from this survey are widely used in this thesis work.

4.2.2 OGLE III

The Optical Gravitational Lensing Experiment (OGLE) is a wide-field sky survey started in 1992 and originally motivated by the search for microlensing events (Soszyński et al. 2008a, and references therein). The observing strategy of the project originally proposed by Paczynski (1986), was to regularly monitor the brightness of about 200 million stars in the Magellanic Clouds and Galactic bulge on time-scales of at least two years, in order to observe lensing events connected with "dark halo" objects with masses ranging from $10^{-6}M_{\odot}$ to 10^2M_{\odot} . It was clear immediately that such a kind of observations would have provided an enormous database of photometric measurements as a byproduct. The first phase of the project (OGLE I) started in 1992 and observations were continued until 1995 using the 1m Swope telescope at the Las Campanas Observatory, Chile (Udalski et al., 1992). The project

was very successful (Udalski et al., 1993) but it suffered from limited availability of telescope time, the observations were confined to the Galactic bulge, and the area covered on the sky was relatively small. The second phase of the project (OGLE-II) was conducted between 1997 and 2000 and the observations were collected with the new 1.3 m Warsaw Telescope dedicated for massive photometric surveys of dense stellar fields (Udalski et al., 1997). As a byproduct, catalogues of thousands of Cepheids, RR Lyrae stars, eclipsing binaries, and long period variables in the Galactic Bulge and the two Magellanic Clouds were produced (Szymanski, 2005). The OGLE-III phase started on 2001 June and used the 1.3-m Warsaw telescope equipped with the new eight 2048 \times 4096 CCD detector mosaic camera at the Las Campanas Observatory, Chile (Udalski, 2003). The OGLE project allowed to discover tens of thousands of new variable stars in the LMC and SMC. In particular, the OGLE III catalogues contain:

- 3361 CCs in the LMC, of which almost 1000 are new identifications (Soszyński et al., 2008a).
- 24906 RR Lyrae stars in the LMC, of which 42 are in common with the General Catalogue of Variable Stars (GCVS), 8745 are in common with the MACHO catalogue, and 7407 are in common with the OGLE II catalogue, hence providing ~8700 new identifications (Soszyński et al., 2009).
- 4630 CCs in the SMC, of which ~ 2049 are in common with the OGLE II catalogue (Udalski et al., 1999), and ~ 160 in common with the EROS-2 catalogue Marquette (1999), hence providing ~ 2421 new identifications (Soszyñski et al., 2010).
- 2475 RR Lyrae stars in the SMC, of which 558 in common with the OGLE II catalogue (Soszynski et al., 2002), 27 in common with the GCVS, and 19 in common with the list of RR Lyrae stars in the vicinity of 47 Tuc published by Weldrake et al. (2004), hence providing ~1871 new identifications (Soszyñski et al., 2010).
- 197 Type II Cepheids in the LMC, of which 125 are identified for the first time Soszyński et al. (2008b).

- 43 Type II Cepheids in the SMC, of which 11 are in common with the OGLE II catalogue, providing 32 new identifications (Soszyński et al., 2010c).
- 83 new Anomalous Cepheids in the LMC identified in the OGLE III catalogue (Soszyñski et al., 2010c).

Most of the observations were obtained in the I photometric band wich closely resembly the Johnson-Cousins standard filter. All fields were also observed in the V band with a frequency of about 10% the I-band coverage (Udalski et al., 2008). The data were calibrated to the standard system using hundreds of thousands stars observed during the OGLE-II project (1997-2000) and in common with the OGLE-III observations (Soszyński et al. 2008a, and references therein). The accuracy of the photometric calibrations is better than 0.02 mag.

The observing material collected during the OGLE-III phase is a unique dataset that can be used in a large variety of astrophysical applications. During this thesis work we massively used the OGLE-III data.

4.3 VISTA telescope and surveys

VISTA, the Visible and Infrared Survey Telescope for Astronomy, is a 4 m telescope situated at the ESO's Paranal Observatory in Chile (see Fig. 4.2 and Table 4.1). It is the biggest near-IR wide field imaging telescope and is designed¹ to perform six public surveys. The VISTA infrared camera (VIRCAM, Dalton et al. 2006) has a set of broad-band filters: Z, Y, J, H, K_S and a narrow-band filter at $\lambda = 1.18\mu$ (see Table 4.2). VIRCAM uses an array of 16 2048x2048 20 μm pixel detectors with a mean pixel size of 0.339" and a total field of view of 1.65 deg².

The physical space among detectors (see Fig. 4.3, left panel) produces gaps in a single exposure image (see Fig. 4.3, right panel). A number of basic actions are executed during the near-infrared observations in general, and during the VIR-CAM/VISTA operation in particular. Here we give the definition of these actions

¹75% of the VISTA time available to ESO will be available for large scale public surveys and the remaining 25% for smaller proprietary surveys. On the assumption that VISTA is unavailable ~10 nights a year for maintenance, the corresponding numbers of nights per year are ~236 nights (Public Surveys) and ~78 nights (Proprietary Surveys).

Name	Visible and Infrared Survey Telescope for Astronomy (VISTA)
Location	Paranal (Chile)
Start of operations	2009
Type	near-infrared survey telescope
Wavelength range	$(0.84 - 2.5) \ \mu m$
Aperture	4.1 m
Optical design	modified Ritchey Chrétien with corrector
Mounting	altazimuth fork
Housing	conventional rotating dome

Table 4.1: Informations on the VISTA telescope. Table adapted from http://www.eso.org/public/teles-instr/surveytelescopes/vista.html

Figure 4.2: Left: Picture of the Paranal mountains in the Atacama desert (Chile) where are located both VISTA (down) and the VLTs (up). Right: VISTA enclosure. Figures from Emerson et al. (2006)

in order to make the following discussion more understandable².

- An "integration" is a simple snapshot of a specified elapse of time. This elapsed time is known as the Detector Integration Time DIT (secs).
- An "exposure" is the stored product of N individual integrations. Each exposure is associated with an exposure time equal to NDIT × DIT, where NDIT is the number of DIT.
- A "microstep (pattern)" is a pattern of exposures at positions each shifted by a very small amount (< 3 arcsec) from the reference position.

 $^{^2} see \ the \ VISTA \ user \ manual \ at \ http://www.eso.org/sci/facilities/paranal/instruments/vircam/doc/ins$

- A "jitter (pattern)" is a pattern of exposures at positions each shifted by an amount (< 30 arcsec) from the reference position. Each position of a jitter pattern can contain a microstep pattern.
- A "pawprint" is the ensamble of 16 non-contiguous images of the sky produced by the VISTA IR camera, with its 16 non-contiguous detectors. The name "pawprint" is from the similarity to the prints made by the padded paw of an animal (see Fig. 4.3).
- A "tile" is a filled area of the sky fully sampled by combining multiple pawprints. Six pawprints are required to survey a contiguous area of 1.5 deg². Three steps in the Y direction and 2 steps in the X direction (see Fig. 4.4) provide a fully covered image. The field of view of a single tile is indeed the result of the combination of the field of view of the six pawprint that form the tile. The field of view of the pawprints overlap; this implies that a VISTA tile observes at least twice each portion of the sky, except for two edge strips in the extreme "Y" directions of the array.

Figure 4.3: *Left*: Picture of VIRCAM. *Right*: Example of a "pawprint" image showing the Moon. (Figures taken from http://www.vista.ac.uk/)

Filter	Z	Y	J	Н	K_S	NB1.18
Central wavelenght (μm)	0.88	1.02	1.25	1.65	2.15	1.18
FWHM (μm)	0.12	0.10	0.18	0.30	0.30	0.01

Table 4.2: Characteristics of the filters used by VIRCAM

Figure 4.4: Contiguous tile formed from the combination of six overlapping pawprints. Panel (a): three shifts in the Y direction and two shifts in the X direction allow to fill the field. Panel (b): six pawprints that form a tile; Panel (c): Tile resulting from the combination of pawprints shown in panel (b) using the path shown in panel (a). Figures from http://www.vista.ac.uk/

The VISTA Telescope is specifically designed to perform large surveys in the infrared (Emerson, 2001). In fall 2009 VISTA obtained the first observations of six ESO large public surveys³, namely:

- UltraVista;
- VISTA kilo-Degree Infrared Galaxy Survey (VIKING);
- VISTA Magellanic Survey (VMC);
- VISTA Variables in the Via Lactea (VVV);
- VISTA Hemisphere Survey (VHS);
- VISTA Deep Extragalactic Survey (VIDEO).

³For a detailed description of the surveys see

http://www.eso.org/sci/observing/policies/PublicSurveys/sciencePublicSurveys.html.

Among these surveys we briefly describe VVV that, similarly to VMC, targets variable stars. The VVV (P.I. Dante Minniti, Catolica) survey will observe the Galactic bulge and a portion of the adjacent plane in the Z, Y, J, H, and K_S filters. VVV covers a total area of 520 square degrees containing 355 open and 33 globular clusters. The VVV is multi-epoch in nature in order to detect a large number of variable objects and will provide > 100 carefully spaced observations of each tile. A catalog with ~ 10⁹ point sources including ~ 10⁶ variable objects is expected. These will be used to create a 3-dimensional map of the Bulge from well-understood distance indicators such as the RR Lyrae stars. Other science drivers include the derivation of ages of the stellar populations, study of globular cluster evolution, as well as of the stellar initial mass function.

4.4 The VMC survey

VISTA Y, J, K_S survey for Magellanic Clouds (VMC; P.I. Maria-Rosa Cioni, Hertfordshire University, UK) will observe $184 \ deg^2$ of the Magellanic System (MS) in the $Y, J, and K_S$ wavebands reaching an expected sensitivity limit of Vega magnitudes $Y=21.9 \text{ mag}, J = 21.4 \text{ mag} \text{ and } K_S=20.3 \text{ mag} \text{ with } S/N=10$ (Cioni et al., 2011). The main goals of the survey are to study the star formation history (SFH) of the Magellanic System as well as to trace its three-dimensional structure. The SFH of the entire MS will be studied from color magnitude diagrams and simulations of the resolved stellar populations. The 3-D geometry of the MS will be inferred exploiting a number of different distance indicators among which the luminosity of the red clump stars, and the Cepheid and RR Lyrae period-luminosity, period-luminositycolour and Wasenheit relations. The VMC K_S -band data are taken in time series mode down to ~ 20 mag. Each time series is composed by 12 individual epochs. This gives the possibility to study the K_S infrared light curves of variable stars belonging to the different stellar populations in the Magellanic System. Previous infrared surveys such as 2MASS (Skrutskie et al., 2006) and DENIS (Cioni et al., 2000a) were much shallower. They allowed to study the Cepheids but not the RR Lyrae stars.

The VMC survey covers the LMC area (116 deg²) with 68 tiles, while 27 tiles cover the SMC (45 deg²), and 13 cover the Bridge (20 deg²), see Fig. 4.5. Addition-

Figure 4.5: Sky coverage of the VMC survey. The underlying image shows the HI distribution according to McClure-Griffiths et al. (2009). The VISTA tiles are colour coded as follows: blue rectangles represent tiles for which observations started during the dry-runs and in the ESO period P85, green rectangles are for tiles observed in P86, and red tiles are observations that did not start until P87 (see Section 4.4.1 for details on the observation periods). Figure from Cioni et al. (2011).

ally, 2 tiles (3 deg^2) are positioned on the Stream, one approximately to the North of the centre of the Bridge and the other one to the North of the SMC, corresponding respectively to a dense area of gas and to a dense area of stars, following the simulations by Mastropietro (2009). Each tile is identified by two numbers: the first number indicates the row and the second the column of the mosaic that covers the system. Note that a separate tiling pattern has been defined for each region. Fig. 4.6 shows the tiles distribution in the LMC region. Row numbers increase from South to North and column numbers increase from West to East. Tiles covering the LMC are oriented at a position angle of +90 deg. The default orientation (position angle = 0) points the "Y" axis to the North and the "X" axis to the West. The position angle is defined to increase from minimum number of tiles and maximum area, increasing the efficiency of the survey. The overlap between the doubly-covered sky areas in adjacent tiles corresponds to 60 arcsec in both "X" and "Y" directions. The LMC mosaic was created using the Survey Area Definition Tool (SADT - Arnaboldi et al. 2008). A geodesic rectangle centered at $\alpha = 05^h : 35^m : 50^s, \ \delta = -69^{\circ}: 27' : 12''$ (J2000), with width=11.8 deg and height=15.9 deg, was created as the basis of the tiling process. Outer tiles were removed leading to the patterns shown in Figs. 4.5 and 4.6. The area covered by the tiles was checked against the distribution of stellar associations, carbon stars and other stellar objects using Aladin (Bonnarel et al., 2000). The centre of the rectangle was adjusted to include the 30 Doradus nebulosity within a single tile and similarly, the field in the direction of the South Ecliptic Pole (SEP) that the future space mission Gaia⁴ will repeatedly observe for calibration. Guide stars were assigned automatically to each tile using the GCS-2 reference catalogue (Lasker et al. 2008).

The SMC is covered using tiles placed at a position angle of 0 deg, with the wide tile-edge approximately along the right ascension direction in order to maximize the coverage with that number of tiles. The geodesic rectangle is centered at $\alpha = 00^h$: $50^m : 00^s$, $\delta = -73^\circ : 00' : 00''$ (J2000), with width=8.0 deg and height=8.0 deg. The position of the centre of the rectangle was tuned to match the area that will be observed in the optical domain by the VLT Survey Telescope (VST) as part of the STEP survey (P.I. Ripepi; Capaccioli et al. 2005) and to provide sufficient overlap for a consistent calibration with the Bridge area.

⁴http://sci.esa.int/science-e/www/area/index.cfm?fareaid=26

Figure 4.6: Tiles distribution in the LMC area (from Cioni et al. 2011). Tiles are color-coded as in Fig. 4.5.

The VMC tiles in the Bridge are chosen in order to have a good sampling of the stellar population following a continuous pattern (Cioni et al., 2011). In this case the geodesic rectangle was drawn with centre at $\alpha = 03^h : 00^m : 00^s$, $\delta = -74^\circ : 30' : 00''$ (J2000) and with width 13.5 deg and height 3 deg.

The two tiles positioned in the Stream region were prepared using the same parameters as for the LMC tiles, except for the position angle set to 0 deg. In these cases the geodesic rectangles are respectively coincident with the two tiles.

The next section describes the strategy and the status of the VMC survey as of the time of writing this PhD thesis.

4.4.1 VMC observations

The first VMC data were obtained during the Science Verification observations (15-31 October 2009) and the so called dry-run period (1 November 2009-31 March 2010) when VISTA was tested and survey operations were still being defined. The bulk of the VMC observations is carried out during the even-numbered ESO periods starting in October every year and ending in March the following year because of the seasonal observability of the Magellanic system.

Observations of the VISTA Public Surveys are obtained in service mode by the ESO staff. The requested observing conditions for the VMC survey are summarized in Table 4.3. Tiles centered on the most crowded regions, i.e. 30 Dor and the central regions of both LMC and SMC, have more stringent seeing conditions. This is necessary to prevent confusion in the bluest bands, while K_S band observations will not be limited by confusion for a seeing ≤ 0.9 ". The best $FWHM_S$ in the VISTA images are 0.6-0.7 " and undersampling, with respect to a pixel size of 0.339 ", is not a cause of concern in the data treatment.

The Magellanic system never rises above 50° from the horizon. Therefore, a compromise had to be made between observing at reasonable airmass and achieving continuous observability over about five months for the monitoring process. The maximum airmass constraints were optimized as a function of the tile declination, as shown in Table 4.3.

Table 4.4 describes the main parameters of the VMC observations. The total exposure time is calculated as follows: (number of epochs) $\times 2 \times$ (number of jitters) \times (number of DITs) \times DIT. The factor of two comes from the tiling pattern, during

Band	Seeing	Seeing
	(arcsec)	(arcsec)
	uncrowded	crowded
Y	1.2	1.0
J	1.1	0.9
K_s	1.0	0.8
Field	Tile row	Airmass
LMC	2, 3, 4	1.7
LMC	5, 6, 7	1.6
LMC	8, 9, 10, 11	1.5
Stream	1,2	1.5
SMC	2, 3, 4, 5	1.7
SMC	6, 7	1.6
Bridge	1, 2, 3	1.7

Table 4.3: Observing conditions requested for the VMC survey (from Cioni et al. 2011).

which most points of the sky are observed twice (on average). For the K_S band the total exposure time is: $12 \times 2 \times 5 \times 15 \times 5 = 9000$ s.

Each VMC Observing Block (OB) includes only one filter. OBs were prepared using a new version of the Phase II Proposal Preparation tool especially revised for Public Surveys with the VISTA and VST telescopes. It allows the user to have more control over the survey execution with new high-level tools called *schedul*ing containers (Arnaboldi et al., 2008). Three types of container were available: concatenations (grouping together OBs for back-to-back execution), time-links (imposing time constraints for the execution of OBs, including execution of OBs in a user-defined sequence), and groups (that improve the prioritization of OBs to ensure the completion of one set of OBs before another set is started). Each time-link sequence can start at any time, i.e. a TK1 OB can be observed on the same night as an OB in the Y, J or K_S filter taken as part of a concatenation or a group. Once started, the next observation of a TKn OB, in a time-link sequence, is obtained at intervals equal or larger than: 1, 3, 5 and 7 days for epochs 2 to 5, respectively, and thereafter at least 17 days from each previous observation (epochs 6 to 11). Some OBs in the time-link sequence were also repeated. Table 4.5 summarize time-link sequences where 11 individual K_S band OBs are associated with each LMC field.

Filter	Y	J	Ks
Central wavelength	1.02	1.25	2.15
Bandwidth	0.10	0.18	0.30
Detector Integration Time DIT (s)	20	10	5
Number of DITs	4	8	15
Number of exposures	1	1	1
Micro-stepping	1	1	1
Number of Jitters	5	5	5
Paw-prints in tile	6	6	6
Pixel size (arcsec)	0.339	0.339	0.339
System FWHM	0.51	0.51	0.51
Exposure time per epoch (s)	800	800	750
Number of epochs	3	3	12
Total exposure time (s)	2400	2400	9000
Predicted sensitivity per epoch (Vega mag)	21.3	20.8	18.9
Signal-to-noise per epoch at depth required	5.7	5.9	2.9
Total predicted sensitivity (Vega mag)	21.9	21.4	20.3
Total signal-to-noise at depth required	10	10	10
Saturation limit (Vega mag)	12.9	12.7	11.4
Area (square degrees)	184	184	184
Number of tiles	110	110	110

Table 4.4: Parameters of the VMC survey (from Cioni et al. 2011).

			(/							
Tile	TK1	TK2	TK3	TK4	TK5	TK6	TK7	TK8	TK9	TK10	TK11
3 5	01.12.10	10.12.10	20.02.11	02.09.11	13.09.11	02.10.11	06.11.11	23.11.11	16.01.12	05.02.12	
_		$06.12.10^{a}$		$04.09.11^{b}$							
		$06.12.10^{b}$		$02.09.11^{a}$							
4 2	14.12.09	17.12.09	5.01.10	14.01.10	22.01.10	21.01.12					
4 3	10.12.09	17.12.09	21.12.09	27.12.09	18.01.10	25.01.12					
$5^{-}5$	26.10.10	28.10.10	11.11.10	26.11.10	09.12.10	27.12.10	26.01.11	10.10.11	31.10.11	22.11.11	
_				$16.11.10^{b}$		02.01.11					
64	27.10.10	29.10.10	11.11.10	28.11.10	13.12.10	03.01.11	22.02.11	18.09.11	08.10.11	01.11.11	23.11.11
_				27.11.10							
6_6	8.11.09	12.11.09	17.11.09	29.11.09	7.12.09	26.12.09	$13.01.10^{a}$	31.01.10	19.02.10	11.03.10	10.11.10
	$6.11.09^{a}$										
6_8	15.01.12										
7_3	29.01.11	01.01.12	20.01.12	27.01.12							
		$20.02.11^{a4}$		01.02.12							
7_{5}	$01.03.11^{a2}$										
8 3	3.12.09	6.12.09	22.12.09	28.12.09	14.01.10	31.01.10	22.02.10	25.10.10	$14.11.10^{b}$	27.09.11	07.11.11
_									05.09.11		08.11.11
88	14.11.09	19.11.09	25.11.09	30.11.09	$7.12.09^{b}$	25.12.09	14.01.10	31.01.10	19.02.10	07.03.10	26.11.10
8 8					26.10.10						$16.11.10^{b}$
9 3	4.12.09	9.12.09	19.12.09	23.01.10	31.01.10	24.02.10	15.09.10	11.10.11 ^b			
_				$16.01.10^{b}$		$20.02.10^{b}$		16.01.12	02.02.12		
97	02.03.11										
		1						1			1

Table 4.5: LMC epochs: time linked (T) Ks-band monitoring. Table adapted and updated from Cioni et al. (2011).

a Reduced number of jitters and/or paw-prints

 an^{an} Reduced number of jitters and/or paw-prints for a number of n OBs during the same night; b Seeing and/or ellipticity too high.

The preliminary results of the survey and its strategy are described in Cioni et al. (2011); results on star formation history, AGN stars and planetary nebulae studies are presented in Rubele et al. (2011), Gullieuszik et al. (2011) and Miszalski et al. (2011), respectively.

Data reduction and archiving

The raw VISTA images acquired for the VMC survey are reduced by the VISTA Data Flow System (VDFS, Irwin et al. 2004) pipeline at the Cambridge Astronomical Survey Unit (CASU). The VDFS pipeline is specifically designed for reducing VISTA data and is used to process up to 250 GB/night of data. The VMC data are reduced together with other VISTA data on a weekly basis. Prior to this science reduction the data are checked at the observatory site (ESO Chile) using a simplified version of the VDFS pipeline. The data are subsequently checked at ESO in Garching to monitor the instrumental performance and to feed updated information back to the observatory (Cioni et al., 2011). The most relevant VDFS steps for the reduction of the VMC data are the reset, dark, linearity, flat and sky background corrections; jittered and paw-print stacking; points source extraction; astrometric and photometric calibration; bad pixel handling, propagation of uncertainties and effective exposure times by use of confidence maps; nightly extinction measurements.

A tile image is produced by combining 96 different images (16 detector images per each of 6 pawprints).

The data reduced by the VDFS pipeline at CASU are ingested into the VISTA Science Archive (VSA) at the Wide Field Astronomy Unit (WFAU) in Edinburgh which is similar to the WFCAM Science Archive (Hambly et al., 2008). There are three main types of VSA tables that are important for the VMC survey (Cioni et al. 2011, Cross et al. 2009):

- vmcDetection table: it contains the catalogues corresponding to individual observations;
- vmcSource table: it contains the list of sources obtained from deep stack images and each source is matched in the three VMC bands;
- vmcSynoptic tables: contain the colour information and the multi-epoch information for individual observations.

VSA releases before September 2011 had some problems with the Julian Day of the observation (see section 5.4). A very large fraction of my work inside the VMC project was devoted to check the quality of the first data obtained with VISTA. These checks slowed down the scientific work and results, nonetheless they were necessary steps of the data analysis in general, and of the VMC data in particular.

The latest release of VMC data from the VSA (VMCv20120126) occurred on January 26th, 2012. This release included completely observed (the whole 12 epoch time-series), reduced and catalogued VMC data for two tiles in the LMC, tile 6_6 and tile 8_8, (see Table 4.5). The fields covered by these two tiles are very important for astronomical reasons:

- tile 8_8 covers the South Ecliptic Pole (hereinafter SEP) region that the Gaia astrometric satellite (Lindegren & Perryman 1996; Lindegren 2010) will repeatedly observe at the beginning of the mission for calibration purposes. It is an external tile that lies in an uncrowded, peripheral area of the LMC. Information on the variable stars in this area comes only from the optical data in non conventional filters of the EROS-2 survey;
- tile 6_6 is centered on the well known 30 Doradus (hereinafter 30 Dor) star forming region. It lies in the central part of the LMC and is a very crowded

area. Optical time-series data in the V_J and $I_{cousins}$ filters are available here, from the OGLE III survey.

The very different location and crowding conditions of these two fields gave us the possibility to test and fine tune our strategy for the analysis of the variable stars observed by the VMC survey.

The Magellanic System

Chapter 5

Data analysis, and first results for RR Lyrae stars from the VMC survey

We have used the identification, the period, and the epoch of maximum light of the RR Lyrae stars and Cepheids identified in the Large Magellanic Cloud (LMC) by the optical microlensing surveys (see section 4.2), to fold the K_S -band light curves produced by VMC (see section 4.4) and derive average K_S magnitudes for these variables. In this Chapter we present the work done on the visual light curves of both RR Lyrae stars and Cepheids, and present results from the analysis of the RR Lyrae stars contained in the first two "tiles" completely observed by the VMC survey, namely tiles 8_8 and 6_6. These two tiles are centered respectively on the South Ecliptic Pole (SEP) field and on the well known 30 Doradus (30 Dor) star forming region of the LMC.

5.1 Optical data for the LMC RR Lyrae and Cepheids

Fig. 5.1 shows the distribution of RR Lyrae stars (left) and Classical Cepheids (right) identified in the LMC by the OGLE III survey (Soszyński et al. 2009, and Soszyński et al. 2008a, respectively). As expected, the two distributions are very different. The RR Lyrae stars have a larger density in the central region of the LMC, however, they are still present in the external areas, their distribution is smooth and traces a spheroid corresponding to the LMC halo. On the other hand, the Classical Cepheids are strongly concentrated towards the LMC bar and almost disappear in

the external regions. Fig. 5.2 shows the distribution of EROS-2 candidate RR Lyrae stars (left) and Cepheids (right) in the LMC area. Black boxes show the VMC tiles on the LMC, red boxes correspond to the LMC fields observed by OGLE III, green boxes represent the VMC tiles with the complete 12-epoch time-series already available, and the magenta rectangle shows the South Ecliptic Pole (SEP) field that the Gaia satellite (Lindegren & Perryman 1996; Lindegren 2010) will repeatedly observe at the beginning of the mission for calibration purposes. Fig. 5.2 shows that EROS-2 coverage of the LMC is much larger than OGLE III coverage, but is still smaller than the VMC coverage. The wider area of the LMC covered by EROS-2 allows to better study the distribution of both RR Lyrae stars and Cepheids in the LMC. The comparison of the two panels in Fig. 5.2 further highlights the difference between RR Lyrae and Cepheid distributions pointed out by the OGLE III data (see Fig. 5.1), but also reveals a feature not observed before because of the smaller field of view sampled by OGLE III: as already noted in Clementini (2011), the distribution of EROS-2 candidate Cepheids (right panel of Fig. 5.2) suggests the existence in the LMC of a second bar running almost parallel above the first main LMC bar. We expect that the VMC data, combined with the microlensing data, both EROS-2, OGLE III and OGLE IV, which is in progress (see section 4.2.2), will allow us to confirm the existence and fully characterize this second bar as well as to significantly improve our knowledge of the geometrical structure of the entire Magellanic System.

Four VMC fields of the LMC have already been completely observed (green rectangles in Fig. 5.2) they correspond the tiles: 6_6 (middle left), 8_8 (top left), 6_4 (middle right,) and 8_3 (top right). However, as anticipated in section 4.4.1, at the time of writing this PhD Thesis, only data corresponding to tiles 6_6 (30 Dor field) and 8_8 (SEP field) had been fully reduced and catalogued. The data for tiles 6_4 and 8_3 have been fully reduced, but not yet completely catalogued by the VSA, thus they were released in the last VSA internal release of January 26th, 2012. We expect them to be made available in the next VSA internal release on July 2012. The work described here is indeed part of a bigger project that aims at studying systematically the infrared properties of the pulsating variable stars in each of the 68 tiles that cover the LMC, as well as in each of the 27 tiles that cover the SMC (see section 4.4.1). The result will be an improved knowledge of the geometrical distribution of the stars in the MS.

Figure 5.1: Distribution of the OGLE III fields (black and red boxes, respectively) in the LMC field. Black points represent RR Lyrae stars (left panel), and Cepheids (right panel), respectively. The background image of the LMC is originated from the ASAS sky survey Pojmanski (1997). Figures from Soszyński et al. (2009), and Soszyński et al. (2008a), respectively.

Figure 5.2: Distribution of the EROS-2 RR Lyrae (left) and Cepheid (right) candidates (black points) in the LMC. Black boxes represent the VMC tiles, green boxes represent VMC tiles completely observed (full 12-epoch time series), red boxes are the OGLE III fields and magenta box represent the Gaia SEP calibration field.

84Data analysis, and first results for RR Lyrae stars from the VMC survey

Given its location on the periphery of the LMC, tile 8_8 only overlaps with EROS-2. Coordinates, periods and optical light-curves of RR Lyrae stars and Cepheids in the SEP field were taken from the EROS-2 catalogue and cross-matched to the VMC data using TOPCAT¹ (Tool for OPerations on Catalogues And Tables). The 30 Dor field is covered by both EROS-2 and OGLE III, as well as by MACHO, but for the present analysis we only employed periods and optical (Johnson-Cousins, V, I bands) light-curves from OGLE III.

5.2 EROS-2 data in the SEP field: GRATIS analysis

In this work we extensively used the EROS-2 data for the LMC RR Lyrae stars and Cepheids (see section 4.2), which were kindly provided by the EROS collaboration. Fig. 5.3 shows the (B_{EROS} , $B_{EROS} - R_{EROS}$) color magnitude diagram obtained from the EROS-2 catalogue of the LMC sources (red points). The blue points correspond to candidate RR Lyrae stars: all objects with B_{EROS} magnitude between 18.46 and 20.03 mag, and $B_{EROS} - R_{EROS}$ colour between 0.05 and 0.58 mag in the EROS-2 catalogue were considered candidate RR Lyrae stars. Fig. 5.4 shows the (P, B_{EROS}) diagram obtained from the EROS-2 catalogue of the LMC sources (red points). The blue points correspond to candidate RR Lyrae stars. Fig. 5.4 shows the (P, B_{EROS}) diagram obtained from the EROS-2 catalogue of the LMC sources (red points). The blue points correspond to candidate Classical Cepheids (CCs): all objects with B_{EROS} magnitude between 13.39 mag and 17.82 mag, and Period between 0.89 d and 15.85 d were considered CC candidates. These selections returned lists of 16337 RR Lyrae, and 5800 Cepheid candidates over the whole field of the LMC covered by EROS-2.

We first selected the EROS-2 candidate RR Lyrae stars and Cepheids in the SEP field, by extracting all objects within 87.8464 <RA(deg)< 91.8464 and -67.3413 <DEC (deg)< -65.3413, in EROS-2 catalogues of candidate RR Lyrae and Cepheids. We then matched the EROS-2 catalogues with the VMC data, using the VSA utilities (see section 4.4.1). In the SEP field we found 117 candidate RR Lyrae stars, and 21 CC candidates in common between the EROS-2 and the VMC catalogues. To study the light curves of these objects we used the GRaphical Analyser of TIme Series

¹see http://www.star.bris.ac.uk/ mbt/topcat/

Figure 5.3: B_{EROS} , $B_{EROS} - R_{EROS}$ color magnitude diagram of the LMC from the EROS-2 data (red points). The blue box marks the region corresponding to candidates RR Lyrae stars.

(GRATIS) software developed at the Bologna Observatory by P. Montegriffo (see e.g., Clementini et al. 2000). We checked the EROS-2 Period (P_{EROS2}) for a subsample of 24 RR Lyrae stars in the SEP field, by obtaining our own estimate for the period (P_{GRATIS}). We found a very good agreement between P_{EROS2} and P_{GRATIS} , with difference, on average, on the fifth decimal place, thus adopted P_{EROS2} for the remaining stars. Although we did not calculate P_{GRATIS} for all candidates in the SEP, we analyzed the light-curves for all of them with the GRATIS package using P_{EROS2} as input period. In this way we used GRATIS not to search the Period, but to visually check the light-curves of the RR Lyrae and Cepheid candidates. Thanks to this visual inspection it was possible to clean the samples of RR Lyrae and Cepheids from spurious sources and/or wrong periods, as in the case of star id_{EROS2}=B0383116657, for which P_{EROS2} is twice the actual period.

Fig. 5.5 shows the light curve of a confirmed RR Lyrae star on the left, and the light curve of a transient source, misclassified as RR Lyrae star, on the right. Of the 116 RR Lyrae candidates, 107 were confirmed by the analysis with Gratis, while the

86Data analysis, and first results for RR Lyrae stars from the VMC survey

Figure 5.4: Distribution of EROS-2 data (red points) for the LMC field in the (P, B_{EROS}) plane. The blue box marks the region corresponding to candidate Classical Cepheids. The Period axis is in logarithmic scale.

remaining 9 were rejected (see below). Table 5.6 summarized main informations on the confirmed RR Lyrae stars. Also for the CCs we analysed the light curves using GRATIS; out of the 21 CC candidates, 12 were confirmed, while 10 were rejected.

Thanks to the analysis with GRATIS, we also determined the epoch of maximum light for each B_{EROS} band light curve. Moreover, we were able to make a first distinction between RR_{ab} and RR_c pulsators, by simply checking the shape of the light curves. The classification in pulsation mode of the RR Lyrae stars was also carefully studied using the Bailey diagram and the Fourier parameters of the light curve decomposition (see 5.3.1).

Figure 5.5: Light curves of two RR Lyrae candidates. Left: typical light curve of a confirmed RR Lyrae star; Right: light curve of a source misclassified as RR Lyrae star, that likely is a transient object.

5.3 Classification of the RR Lyrae stars

5.3.1 Identification of the pulsation mode with the Bailey diagram

We discuss in this paragraph the classification of the RR Lyrae stars made using the Bailey diagram (LogP, A_V). Light curves in the Johnson V_J band are needed to apply the Bailey analysis. We therefore transformed each B_{EROS} and R_{EROS} light curve to the V_J and I_C bands using equation 4 from Tisserand et al. (2007):

$$R_{EROS} = I_C; (5.1)$$

$$B_{EROS} = V_J - 0.4(V_J - I_C).$$
(5.2)

We transformed the light curves of all 116 SEP RR Lyrae stars to the V_J band and then studied the light curves (cfr. section 5.2) with GRATIS. This analysis was necessary to check the quality of the V_J light curves obtained with the Eqs. 5.1 and 5.2. From this analysis we also inferred the amplitude A_V of the light curve. A_V is extremely important both to classify the RR Lyrae stars in type (Bailey 1902) and to study the K band light curve using the template fitting method (cfr. 5.4).

87

88Data analysis, and first results for RR Lyrae stars from the VMC survey

Figure 5.6: Bailey diagram of the RR Lyrae stars in the SEP field.

Fig. 5.6 shows the distribution of the SEP RR Lyrae stars in the Bailey diagram. In this plot we can distinguish the following groups:

- LogP < -0.6 and LogP > 0.2: these objects are non RR Lyrae stars;
- $-0.6 \leq LogP \leq -0.3$ and $A_V \leq 0.7$ mag: first-overtone (RR_c) RR Lyrae stars;
- $-0.3 \simeq LogP \simeq 0.1$: fundamental mode (RR_{ab}) RR Lyrae stars.

The classification through the Bailey diagram (see fig. 5.6) is generally in good agreement with the classification obtained trough the visual inspection of the light curve with GRATIS. The points outside both the RR_c and the RR_{ab} loci in fig. 5.6 are: lm0370n7027, lm0373l7929, lm0505l9240, lm0373n18084 (that were already classified as non-RR by the GRATIS analysis) and lm0371n18417. They were all discarded. Two further objects (idEROS-2: lm0385k3074 and lm0507k19195) are classified respectively as RR_c and RR_{ab} with the Bailey diagram, but after the analysis with GRATIS were discarded, as they likely are binary systems. This underlines the importance of the visual inspection of the light curves for objects that have period and amplitude of the light curve compatible with an RR Lyrae star but have a completely different shape of the light curve. Three objects were not successfully classified with GRATIS but they are classified by the Bailey diagram. These

Figure 5.7: Light curves of variable stars classified as RR Lyrae from the Bailey diagram but not/not successfully in the GRATIS analysis.

sources have idEROS-2=lm0373m4999, lm0371l5942 and lm0381l8329. Light curves for all the five sources for which there is disagreement between the two methods of classification are showed in Fig.5.7. All these objects were dropped in the following analysis.

Indeed, we have used in the following analysis only sources that were classified, without any doubts, as RR Lyrae stars both by the visual analysis with GRATIS, and by the Bailey diagram. This method may sound a bit restrictive, but gave us a very reliable sample of 106 RR Lyrae stars in the SEP field. The final catalogue of the SEP RR Lyrae stars contains 30 RR_c and 76 RR_{ab} variables. Table 5.6 summarizes main informations on these confirmed RR Lyrae stars. An alternative way to classify the RR Lyrae stars in types is to use the Fourier parameters of the light curve. We have used this method to further checked the classification of the 106 SEP RR Lyrae stars (see 5.3.2).

5.3.2 Determination of the Fourier parameters

In order to obtain reliable values for the Fourier parameters, we first cleaned the V_J -band light curves from possible outliers, according to the following iterative procedure:

90Data analysis, and first results for RR Lyrae stars from the VMC survey

- we discarded all points with residual > 0.200 mag from GRATIS best fit model of the light curve;
- we checked the standard deviation σ of the distribution of residuals:
 - if $\sigma < 0.070$ mag we stopped the cleaning operation;
 - if $\sigma > 0.070$ mag, we discarded also data points with residuals ∈ (0.150, 0.200) mag from the best fit model.
- we again checked the standard deviation σ of the distribution of residuals:
 - if $\sigma < 0.070$ mag we stopped the cleaning operation;
 - − if $\sigma > 0.070$ mag , we discarded also data points with residual ∈ (0.100, 0.150) mag from the best fit model.

Note that all light curves, after this cleaning still have more then 83 data points. The discard operation was successful for most of the RR Lyrae stars but not all of them. We were able to obtain reliable Fourier parameters using a sine Fourier decomposition for a final catalogue of 81 RR Lyrae stars, of which 56 are RR_{ab} 's and 25 are RR'_cs . For each star we obtained A(i), $\phi(i)$ with *i* from 1 to 10. The Fourier parameters are summarized in Table 5.1.

Fig 5.8 shows the plot of A_{21}^2 against ϕ_{21} ; almost all the points are split into two separate regions of the plot: in the upper region are points representing RR_{ab} stars, while the RR_c stars concentrate themselves in the lower region, (e.g. Cacciari et al. 2005). There are at least four stars with Fourier parameters out of the expected loci; namely, idEROS-2: lm0380k19902, lm0371m5148, lm0506n12471, and lm0383l15644. These stars had no particular problems during the GRATIS analysis of the light curve, and are well inside the Bailey RR Lyrae loci; we thus decided to retain them. Fig.5.9 shows ϕ_{31} against logP. The presence of a relation between ϕ_{31} and logP for the RR_{ab} stars (empty circles) is very clear. This is not the case of the RR_c stars (filled black circles), that also have extremely large errors. This is caused by the high number (10) of harmonics used in the Fourier decomposition. This number is too high for c-type RR Lyrae stars. We therefore repeated the Fourier analysis of the RRc stars using only 3 harmonic (see section 5.3.4).

 $^{^{2}}A_{ij} = A_{i}/A_{j}$

Figure 5.8: A_{21} values against ϕ_{21} . Empty circles are RR_{ab} stars; filled circles are RR_c stars. We do not show errors in the plot, but they are provided in Table 5.1.

Figure 5.9: LogP values against ϕ_{31} . Empty circles are RR_{ab} stars; filled circles are RR_c stars.

92Data analysis, and first results for RR Lyrae stars from the VMC survey

	D.D.			1					- D
id _{EROS}	RRtype	P _{EROS}	ϕ_{21}	$\operatorname{err}_{\phi_{21}}$	ϕ_{31}	$\operatorname{err}_{\phi_{31}}$	A ₂₁	errA ₂₁	D_m
10234	0	0 482726	2.47	0.05	5.28	0.081	0.6	0.4	5 97
10400	ő	0.102120	0.11	0.05	5.20	0.00	0.0	0.1	10.00
10498	0	0.594565	2.11	0.05	5.23	0.06	0.5	0.3	10.69
10748	1	0.360168	3.8	0.3	4.64	1.06	0.2	0.2	41.08
10812	1	0.354487	3.64	0.10	64	0.4	0.1	0.2	72.32
10012	1	0.334407	3.04	0.15	0.4	0.4	0.1	0.2	12.52
10894	0	0.655036	2.41	0.15	5.0	0.2	0.4	0.1	26.19
1127	0	0.584708	2.32	0.07	5.05	0.07	0.4	0.4	4.04
11400	ő	0 550641	0.10	0.05	5.07	0.00	0.5	0.4	6.95
11492	0	0.552641	2.12	0.05	5.07	0.08	0.5	0.4	0.30
11722	0	0.648894	2.28	0.05	4.69	0.05	0.5	0.4	7.32
11777	1 1	0.270926	2 02	0.17	5.9	0.0	0.2	0.2	79 74
11///	1	0.279830	2.85	0.17	0.2	0.8	0.2	0.2	10.14
12246	0	0.773581	2.72	0.05	5.69	0.08	0.5	0.2	12.79
19471	1	0.351672	13	0.6	54	0.8	0.1	0.2	115 36
12411		0.001012	4.0	0.0	0.4	0.0	0.1	0.2	110.00
13140		0.304106	3.10	0.11	5.9	0.3	0.2	0.3	28.50
13678	0	0 505996	2.15	0.06	4 62	0.10	04	0.5	18 44
10010		0.000000	2.10	0.00	0.1	0.10	0.1	0.0	20.00
13919	1	0.307907	3.5	0.2	0.1	0.7	0.1	0.3	22.39
14070	1	0.282675	3.19	0.09	3.2	0.5	0.3	0.3	53.80
1 4000		0.504040	0.17	0.04	1.00	0.05	0.5	0.0	2.27
14085	0	0.524842	2.11	0.04	4.08	0.05	0.5	0.4	3.37
14319	0	0.568044	2.16	0.04	4.82	0.06	0.5	0.4	5.58
14454	1	0 352030	33	0.2	6.6	0.8	0.1	0.2	81 56
14404	1	0.352333	0.0	0.2	0.0	0.0	0.1	0.2	01.00
14455	0	0.564069	2.26	0.04	4.79	0.05	0.5	0.4	3.25
1/088		0 5/3303	2.16	0.06	4 72	0.00	0.4	0.4	6.08
15000		0.040000	2.10	0.00	4.12	0.00	0.4	0.4	1.00
15364	0	0.592290	2.34	0.05	4.92	0.06	0.5	0.3	4.26
15448	1	0.362432	3.35	0.18	6.3	0.6	0.1	0.2	27.48
10110	i î	0.752000	9.71	0.07	5 74	0.15	0.4	0.0	11 20
10014		0.753009	4.11	0.07	0.74	0.10	0.4	0.2	11.29
15574	0	0.601586	2.46	0.07	5.12	0.10	0.5	0.3	10.39
15644	1 1	0 42207	4.4	0.5	5.6	0.6		0.2	37 00
10044	1 1	0.43207	4.4	0.0	0.0	0.0	0.1	0.2	31.90
15662	1	0.342598	3.05	0.16	4.98	0.16	0.2	0.3	17.12
15889	1 1	0 357676	28	0.2	70	0.0	01	0.2	55 21
10000		0.001010	2.0	0.4	1.9	0.9	0.1	0.4	00.41
15972	0	0.543127	2.34	0.05	4.78	0.07	0.5	0.5	4.41
16071	0	0.657831	2.38	0.05	5.18	0.07	0.5	0.3	1.73
10011		0.000010	2.00	0.00	5.10	0.10	0.0	0.0	
16710	0	0.603013	2.62	0.07	5.31	0.10	0.4	0.4	4.44
16908	0	0.598866	2.19	0.04	4.75	0.06	0.4	0.5	4.81
1,0000	ő	0.701.470	0.00	0.00	5 60	0.00	0.5	0.0	20.17
16920	0	0.721478	2.63	0.06	5.62	0.08	0.5	0.3	30.17
16928	0	0.582626	2.41	0.07	5.08	0.09	0.5	0.3	3.33
16000	0	0 599997	2 70	0.07	5 76	0.11	0.5	0.2	20.26
10999	0	0.382837	2.70	0.07	3.70	0.11	0.5	0.5	30.20
17115	0	0.598345	2.48	0.07	5.18	0.11	0.5	0.3	4.15
1765	1	0 343763	3.23	0.12	6.0	0.6	0.2	0.3	43 31
1100	1	0.545705	0.20	0.12	0.0	0.0	0.2	0.5	40.01
17861	0	0.725348	2.53	0.04	5.28	0.06	0.5	0.3	2.82
18337	0	0 569036	2.28	0.05	4 78	0.07	0.5	0.4	5 73
10477	1	0.0500000	2.20	0.00	0.0	0.01	0.0	0.1	57 10
18477	1	0.358804	3.1	0.2	8.0	0.6	0.1	0.3	57.13
18546	1	0.361223	2.85	0.18	6.5	0.6	0.2	0.2	122.69
10727		0 594510	2.00	0.07	E 14	0.11	0.4	0.2	0 50
18/3/	0	0.584510	2.27	0.07	0.14	0.11	0.4	0.3	8.50
19172	0	0.573327	2.22	0.08	4.87	0.11	0.4	0.3	6.80
10179	0	0.651900	2.40	0.05	F 20	0.00	0.5	0.2	2.12
19170		0.051892	2.49	0.05	0.29	0.08	0.5	0.5	3.13
19248	0	0.494594	2.09	0.06	4.35	0.17	0.4	0.4	6.81
10950	0	0.525510	2 22	0.02	4 72	0.04	0.5	0.4	2 72
19850	0	0.555519	2.22	0.03	4.72	0.04	0.5	0.4	3.73
19902	0	0.515216	1.60	0.15	3.96	0.10	0.2	0.4	21.28
10033	1 1	0.339066	29	0.4	67	0.3	0.1	0.2	28.27
10000		0.000000	2.0	0.4	0.1	0.0	0.1	0.2	20.21
20171		0.331325	2.86	0.14	5.5	0.2	0.2	0.3	23.23
20205	0	0.671272	2.34	0.05	5.17	0.07	0.5	0.3	5.18
00000	ő	0 575050	0.49	0.15	FC	0.0	0.4	0.0	40.00
20208	0	0.575952	2.43	0.15	0.6	0.8	0.4	0.2	42.00
21063	0	0.718701	2.46	0.05	5.26	0.09	0.4	0.3	5.97
21254	1	0.359865	3.26	0.14	64	0.4	0.2	0.3	1873
01004		0.0000000	0.20	0.14	0.4	0.4	0.2	0.0	10.10
21390	1	0.369042	3.2	0.2	6.4	0.4	0.1	0.2	79.47
22456	0	0.538300	2.35	0.06	4.82	0.08	0.4	0.4	37.22
00415		0 560440	0.00	0.05	E 00	0.00	0.5	0.4	E 00
23417	0	0.509449	2.20	0.05	5.00	0.06	0.5	0.4	5.00
24832	0	0.648020	2.50	0.05	5.38	0.07	0.5	0.3	7.66
2508	1	0 308761	29	03	39	0.3	0 1	0.3	25.07
2000		0.01.1001	0.00	0.00	4.00	0.04	0.1	0.5	20.01
2684	0	0.614284	2.22	0.03	4.88	0.04	0.5	0.5	3.78
3518	0	0.808167	2.85	0.09	5.64	0.19	0.4	0.2	4.86
4000	i i	0 482272	2.22	0.06	1 60	0.07	0.4	05	8 94
4000		0.402012	4.44	0.00	4.00	0.07	0.4	0.5	0.04
4284	0	0.729118	2.65	0.07	5.74	0.11	0.4	0.3	45.51
4670	1	0.339586	2.73	0.12	64	0.2	02	0.3	25.74
4010		0.000000	2.10	0.12	U.4	0.10	0.2	0.0	10 -0
4863	0	0.612503	2.43	0.07	5.26	0.13	0.5	0.3	10.79
5148	1	0.373764	2.0	0.6	2.3	1.6	0.1	0.2	45.57
E 4 4 1		0.622607	2 56	0.00	6.0		0.4	0.0	10 50
5441	0	0.033687	2.56	0.08	0.2	0.2	0.4	0.2	18.58
5500	0	0.584960	2.18	0.04	4.91	0.05	0.4	0.3	3.24
5839	0	0.617036	2 50	0.06	5 5 2	0.13	05	0.2	7 20
0000		0.01/030	2.09	0.00	0.04	0.13	0.5	0.2	1.49
5990	0	0.644776	2.37	0.04	5.10	0.06	0.5	0.3	5.50
6036	0	0.511104	2.25	0.04	4.75	0.04	0.4	0.5	2.18
2005		0.40000	0.10	0.01	4 71	0.01	0.4	0.5	1.00
6235	0	0.488967	2.18	0.03	4.71	0.05	0.5	0.5	1.99
6601	0	0.623342	2.38	0.07	5.27	0.10	0.5	0.3	3.89
6696	1 1	0.351409	2 / 1	0.10	7 1	0.2	0.1	0.2	67.76
0000	1	0.331408	3.41	0.19	1.1	0.3	0.1	0.2	01.10
6674	0	0.483525	2.17	0.04	4.61	0.06	0.4	0.5	4.10
7107	0	0.676837	2.67	0.09	5.66	0.17	04	0.3	8.07
		0.0007	0.51	0.00	5.00	0.10	0.1	0.0	0.01
7473	0	0.638708	2.51	0.09	5.18	0.12	0.3	0.2	24.00
7752	0	0.640428	2.35	0.10	4.86	0.18	0.4	0.2	6.73
	í í	0 561005	0.00	0.04	4.00	0.00		0.4	
8204	0	0.001825	2.29	0.04	4.92	0.06	0.5	0.4	2.96
8721	1	0.384920	3.10	0.15	5.7	0.8	0.1	0.2	104.82
9760	l õ	0.605190	2 20	0.07	1.64	0.00	0.4	0.2	4 70
0/09		0.003180	2.30	0.07	4.04	0.09	0.4	0.3	4.70
8898	0	0.652404	2.42	0.06	5.27	0.08	0.4	0.3	11.14
9603	1 1	0.365587	3.4	0.2	8.0	0.5	0.1	0.3	49,00
	÷ .		~ • •				~		

Table 5.1: Fourier parameters of the RR Lyrae stars in the SEP field. Column 1 gives the RR Lyrae type with zero and one corresponding to fundamental mode and first overtone pulsators, respectively

5.3.3 Metallicity estimate for RR_{ab} stars

We have estimated the metallicity of the SEP RR_{ab} stars using the Fourier parameters of their V-band light curves and Jurksic & Kovács (1996; hereafter JK96) relation (see section 2.3.1). We applied equation 2.2 to the 56 RR_{ab} stars in the SEP field obtaining a metallicity estimate for each of them in the J95 scale. Following Cacciari et al. (2005), we considered all the objects with $D_m < 5$, because in our sample only 5 stars have $D_m < 3$. Using eq. 2.8 we then transformed the J95 metallicities to the C09 metallicity scale. The top panel of Fig 5.10 shows the $[Fe/H]_{C09}$ values, and their errors, obtained with this procedure plotted against the pulsation period. In this plot the blue points are stars with $D_m < 5$, they are much scattered than the other points, thus showing the importance of considering only objects with small D_m to infer reliable metallicity estimates. The lower panel of Fig 5.10 shows the metallicity. distribution of the SEP RR_{ab} stars. Black, blue, and green lines represent the histogram of all objects, objects with $D_m < 5$, and objects with $D_m < 3$, respectively. The three distributions peak for the same $[Fe/H]_{C09}$ value. In the black histogram, metallicities that differ significantly from the central peak value correspond to stars with high D_m values.

We list in Table 5.2 the individual [Fe/H] values derived with this procedure for the SEP RR_{ab} stars with $D_m < 5$. The weighted mean metallicity of these objects is: $\langle [Fe/H]_{C09} \rangle = (-1.65 \pm 0.02)$ dex, with $\sigma = 0.2$. Some stars have an [Fe/H] value out of the range of validity of equation 2.8 ($-2.31 < [Fe/H]_{JK96} < -0.68$). All these stars have $D_m \geq 5$, hence they were not used to derive the average metallicity.

5.3.4 Metallicity estimate for the RR_c stars

We have used Eq. 2.3 from Morgan et al. (2007) to obtain metallicity estimates for the RR_c stars in the SEP field. This relation provides metallicities in the ZW84 scale. To transform them to the C09 scale we used the relation 2.7 given in Carretta et al. (2009). Morgan et al. (2007) use a cosine Fourier decomposition. We therefore derived the Fourier parameters of the c-type RR Lyrae stars using a cosine decomposition. Given the symmetric shape of the light curve of the c-type RR Lyrae, we used only 3 harmonics for the light curve decomposition. Fig 5.11 shows the $[Fe/H]_{C09}$ values of the RR_c stars, and their errors, obtained with this proce-

Figure 5.10: Top panel: [Fe/H] values of the RR_{ab} stars (black points) in the SEP field plotted against the pulsation period. In blue are points corresponding to stars with $D_m < 5$. Lower panel: metallicity distribution of the RR_{ab} stars. The different histograms correspond to: the distribution obtained from all the RR_{ab} stars (black line), the distribution of the RR_{ab} stars with $D_m < 5$ (blue line), and the RR_{ab} stars with $D_m < 3$ (green line).

Figure 5.11: Top panel: [Fe/H] values for the RR_c (black points) in the SEP field plotted against the pulsation period. In blue are points corresponding to stars with $err\phi_{31} < 0.3$. Lower panel: metallicity distribution of the RR_c stars. All the RR_c stars in the SEP are plotted.

96Data analysis, and first results for RR Lyrae stars from the VMC survey

VMC name	id-1	$[Fe/H]_{C09}$	$\rm err[Fe/H]_{C09}$	D_m	Р	ϕ_{31}	$\mathrm{err}\phi_{31}$
		dex	dex		(days)		
VMC90.01699_66.36999	16071	-1.73	0.12	1.73	0.657831	5.18	0.07
VMC89.01188_66.79188	6235	-1.46	0.09	1.99	0.488967	4.71	0.05
VMC90.26666_66.46120	6036	-1.52	0.09	2.18	0.511104	4.75	0.04
VMC90.50615_66.90768	17861	-1.96	0.12	2.82	0.725348	5.28	0.06
VMC89.14485_65.82450	8204	-1.56	0.10	2.96	0.561825	4.92	0.06
VMC89.29626_67.08839	19178	-1.55	0.12	3.13	0.651892	5.29	0.08
VMC88.81756_65.79473	5500	-1.70	0.11	3.24	0.584960	4.91	0.05
VMC89.18743_66.69605	14455	-1.76	0.10	3.25	0.564069	4.79	0.05
VMC90.14881_66.94333	16928	-1.46	0.13	3.33	0.582626	5.08	0.08
VMC90.04898_66.86007	14083	-1.69	0.10	3.37	0.524842	4.68	0.05
VMC91.19125_66.88860	19850	-1.68	0.10	3.73	0.535519	4.72	0.05
VMC88.66768_65.75290	2684	-1.91	0.11	3.78	0.614284	4.88	0.05
VMC90.00150_66.29262	6601	-1.42	0.15	3.89	0.623342	5.27	0.10
VMC90.60471_66.28531	1127	-1.51	0.12	4.04	0.584708	5.05	0.07
VMC88.69875_65.81397	6674	-1.56	0.10	4.10	0.483525	4.61	0.06
VMC88.62716_66.07124	17115	-1.41	0.16	4.15	0.598345	5.18	0.11
VMC88.95860_65.65705	15364	-1.74	0.12	4.26	0.592290	4.92	0.06
VMC90.43995_66.58296	15972	-1.65	0.12	4.41	0.543127	4.78	0.07
VMC89.21644_67.07065	16710	-1.26	0.15	4.44	0.603013	5.31	0.10
VMC88.91820_66.65638	8769	-2.18	0.16	4.70	0.605180	4.64	0.09
VMC88.75765_66.36566	16908	-2.00	0.12	4.81	0.598866	4.75	0.06
VMC90.09496_66.62618	3518	-1.9	0.3	4.86	0.808167	5.64	0.19

Table 5.2: Metallicity values obtained for the RR_{ab} stars in the SEP field. The columns are: 1) EROS-2 identification number; 2) metallicity value in the C09 scale; 3) metallicity error; 4) JK96 regularity value; 5) P_{EROS-2} ; 6) ϕ_{31} Fourier parameter; 7) ϕ_{31} error.

dure plotted against the pulsation period. Blue points are stars with $\operatorname{err}\phi_{31} \leq 0.07$. The weighted mean metallicity of these objects is: $\langle [Fe/H]_{C09} \rangle = -2.07$ dex, with $\sigma = 0.3$.

There is a systematic difference of ~ 0.4 dex between the average metallicity of RR_{ab} and RR_c stars, with the former being more metal rich. A similar difference was also found by Kapakos et al. (2011). Although we do not have a clear explanation for this shift, we suspect it might be caused by some systematics in the calibration of the different relations used to estimate the metallicity of the RR_{ab} and RR_c stars.

VMC name	id _{EROS}	Р	[Fe/H] _{C09}	$\rm err[Fe/H]_{C09}$	ϕ_{31}	$\mathrm{err}\phi_{31}$
		(days)	dex	dex		
VMC89.05881_65.62997	11777	0.2798360	-2.0	0.1	1.0	0.6
$VMC88.54182_{67.04457}$	13140	0.3041060	-1.7	0.2	2.6	0.4
VMC90.63806_66.84103	13919	0.3079070	-1.6	0.2	2.9	0.3
VMC90.61131_66.97001	2508	0.3087610	-1.9	0.2	2.5	0.5
VMC88.58812_66.39030	20171	0.3313250	-2.2	0.1	1.9	0.4
VMC89.38447_66.88713	19933	0.3390660	-1.8	0.2	3.3	0.3
VMC90.70238_66.62708	4670	0.3395860	-1.8	0.3	3.3	0.6
$VMC90.18475_{66.87184}$	15662	0.3425980	-2.3	0.1	2.1	0.2
VMC90.85286_66.43754	1765	0.3437630	-1.7	0.3	3.6	0.6
VMC90.04089_66.99461	6636	0.3514080	-1.3	0.3	4.2	0.4
$VMC88.48468_{66.13947}$	12471	0.3516720	-1.4	1.2	4.1	2.0
VMC88.42676_66.00653	14454	0.3529390	-1.0	0.3	4.6	0.4
$\rm VMC88.46714_66.59529$	10812	0.3544870	-1.7	0.2	3.7	0.3
VMC88.83012_66.51167	15888	0.3576760	-1.5	0.5	4.0	0.9
$VMC88.94167_{66.43547}$	5942	0.3583190	-2.1	0.2	3.0	0.5
$\rm VMC89.06184_66.07770$	18477	0.3588040	-1.0	1.4	4.7	2.0
$VMC89.47125_{66.74303}$	21254	0.3598650	-2.2	0.1	2.8	0.3
VMC88.89312_66.82638	10748	0.3601680	-2.3	0.1	1.8	0.6
$\rm VMC88.97116_66.20557$	18546	0.3612230	-2.1	0.2	3.1	0.5
VMC91.17422_66.70195	15448	0.3624320	-1.7	0.2	3.8	0.4
$VMC90.80177_{66.66222}$	9603	0.3655870	-1.3	0.3	4.4	0.5
$VMC90.10844_{66.41316}$	21390	0.3690420	-2.3	0.1	2.5	0.4
$\rm VMC89.37604_66.35017$	5148	0.3737640	-2.0	0.3	3.5	0.7
$VMC88.44221_{66.46144}$	8721	0.3849200	-2.0	0.2	3.7	0.4
$VMC91.18246_{66.56863}$	9807	0.3913350	-1.8	0.2	4.1	0.5
$\rm VMC90.46352_66.91447$	15644	0.4320700	-1.5	0.4	1.1	0.8
$\rm VMC89.06472_65.76323$	3849	0.3777840	-2.1	0.2	1.4	0.7
$\rm VMC 89.31884_66.75497$	22698	0.3707080	-1.8	0.6	0.6	1.4
VMC89.76387_66.52093	15111	0.3136930	-1.9	0.4	0.0	1.2

Table 5.3: Metallicity values obtained for the RR_c stars in the SEP field. The columns are: 1) VMC name; 2) EROS-2 identification number; 3) P_{EROS-2} ; 4) metallicity value in the C09 scale; 5) metallicity error; 6) ϕ_{31} parameter in the cosine decomposition; 7) ϕ_{31} error.

98Data analysis, and first results for RR Lyrae stars from the VMC survey

5.4 Determination of the $\langle K_S \rangle$ values

In this section we focus on the determination of the mean magnitudes in the K_S band $(\langle K_S \rangle)$ for the RR Lyrae stars in the SEP field. We used as a reference the catalogue of confirmed RR Lyrae stars obtained from the EROS-2 catalogue (see 5.2). For these stars we used the K_S light curves made available to us at the beginning of Sept. 2011, by the VSA release: VMCv20110909. It should be noted that the work on the K_S light curves was significantly delayed by problems occurred with the Julian Day of the tile cataloguing procedure applied by the VSA. As described in (Cioni et al. 2011, see section 4.4.1), the observation time of a pawprint is of the order of ~ 10 minutes, while the observation time of a tile is of the order of 1h. In the VSA releases before September 2011, the JD associated with the tile observations corresponded to the middle of the tile exposures. This is a good estimate of the time of observation for objects that are observed in the middle of the pawprints. However, for stars observed, for instance, only in the first pawprint of a tile, this procedure provides a wrong estimate of the time of observation. Fig 5.12 shows, as an example, the differences in JD obtained respectively with the tile data using as time of observation the mean JD of all pawprints (black points), and the tile data after in the VSA were introduced the start and end time of observation for each star (green points), with respect to the pawprint data (long shaded line). We also note that for "concatenated observations" differences are clearly smaller. This is because the exposure length of a "concatenation" is smaller (~ 30 minutes).

In order to have reliable JDs before September 2011, we could use only VSA data available in pawprint version. This implied that for each night of observation we had to average the K_S measurements to reach almost the same S/N value that is provided by the tile observations. This problem was sorted out with the VMCv20110909 release, thanks to the checks made during this thesis work. Indeed an important by-product of this work in the first stages of the VMC project, was to improving the pipeline reduction procedures, or as in this case, the cataloguing procedures.

The K_S light curves of the RR Lyrae stars in the SEP field presented in this thesis work are the final results, after two years spent on the analysis of VMC preliminary data. The LMC RR Lyrae stars are much fainter, hence have lower S/N light curves, than the LMC Cepheids. The SEP field is an uncrowded region, thus this is not a

Figure 5.12: Differences in the JD estimates for star VMC88.46714_66.59529, using different observation times. The reference value (long dashed line) is that of the pawprint data. Black points correspond to tile data for which the mean JD of all pawprint JDs is used; green points correspond to tile data in which to each star is associated a JD obtained averaging only the JDs of the pawprints in which that star was observed.

big problem, while it becomes an issue in the 30 Dor field (see section 5.6).

Figs. from 5.13 to 5.19 show the K_S light curves overplotted by the K- band templates of (Jones et al., 1996), that we adopted to fit the K_S light curves, and thus infer average K_S magnitudes for the SEP RR Lyrae stars. Jones et al. (1996) provide different templates depending on the type of variability (RR_{ab} or RR_c type), and on the B-amplitude of the variable star. They described each of these templates as a Fourier decomposition. This method needs a precise knowledge of the star ephemeris as well as the amplitudes in the V or the B band. We have applied the template fitting method to the SEP RR Lyrae stars using pulsation properties derived from the EROS-2 data. Table 5.6 summarizes the resulting $\langle K_S \rangle$ values and their errors. According to Jones et al. (1996), the mean K_S values inferred with this procedure have errors less then 0.03 mag. We then used the $\langle K_s \rangle$ to study the PL_KZ relation (see section 5.5).

5.5 Period-Luminosity-metallicity relation

The Period-K-band Luminosity-Metallicity relation for RR Lyrae stars is a most powerful distance indicator for Population II systems. In the context of the VMC survey, we will apply the PL_KZ relation to each VMC tile, separately. This will allows us to infer an estimate of the distance to each tile and, in turn, to study the structure of the Magellanic Clouds. We can also derive our own PL_KZ relation, from the VMC data, to compared with the literature relations, thus improving our knowledge on this very promising tool.

In the following we describe the results obtained from the application of the PL_KZ relation to the RR Lyrae stars in the SEP field of the LMC. Once we have the period (cfr. 5.2 and Tab.5.6) and the $\langle K_s \rangle$ values (cfr. 5.4 and Tab.5.6) for each RR Lyrae star, we can plot the PL relation. This is shown in Fig. 5.20, where filled circles are the RR_{ab} , and open circles are the RR_c stars in the SEP field, respectively. The PL_KZ relation obtained with this procedure is: $K_s = (17.351 \pm 0.035) - 2.450 \pm 0.133 \times logP$, with rms=0.082. This relation was derived by considering only objects that lie within 3σ from the best fit line.

A number of different PL_KZ relations exist in the literature (see Section 2.3.2): Bono et al. (2003) (see eq. 5.5), Dall'Ora et al. (2004) (see eq. 5.6), Sollima et al.

Figure 5.13: K_s light curves for RR Lyrae stars in the SEP field, overplotted by the templates that we used to estimate the $\langle K_S \rangle$ magnitude for each star. Red circles mark the observations out of constraints (see Table 4.3).

Figure 5.14: K_s light curves for RR Lyrae stars in the SEP field, overplotted by the templates that we used to estimate the $\langle K_S \rangle$ magnitude for each star. Red circles mark the observations out of constraints (see Table 4.3).

Figure 5.15: K_s light curves for RR Lyrae stars in the SEP field, overplotted by the templates that we used to estimate the $\langle K_S \rangle$ magnitude for each star. Red circles mark the observations out of constraints (see Table 4.3).

Figure 5.16: K_s light curves for RR Lyrae stars in the SEP field, overplotted by the templates that we used to estimate the $\langle K_S \rangle$ magnitude for each star. Red circles mark the observations out of constraints (see Table 4.3).

Figure 5.17: K_s light curves for each RR Lyrae star in the SEP field, overplotted by the templates that we used to estimate the $\langle K_S \rangle$ magnitude for each star. Red circles mark the observations out of constraints (see Table 4.3).

Figure 5.18: K_s light curves for RR Lyrae stars in the SEP field, overplotted by the templates that we used to estimate the $\langle K_S \rangle$ magnitude for each star. Red circles mark the observations out of constraints (see Table 4.3).

Figure 5.19: K_s light curves for RR Lyrae stars in the SEP field, overplotted by the templates that we used to estimate the $\langle K_S \rangle$ magnitude for each star. Red circles mark the observations out of constraints (see Table 4.3).

Figure 5.20: Dereddened mean K_s magnitudes against LogP, for RR Lyrae stars in the SEP field. Empty and filled circles represent c- and ab-type RR Lyrae stars, respectively. The periods of the RRc stars were fundamentalized by adding 0.127 to the logP.

1

(2006) (see eq. 5.4), Sollima et al. (2008) (see eq. 5.3), Del Principe et al. (2006) (see eq. 5.7), Borissova et al. (2009) (see eq. 5.8). Some of them are based on RR Lyrae stars in the field and globular clusters of the LMC. Benedict et al. (2011) have estimated new zero points for these different PL_KZ relations, on the basis of new HST trigonometric parallaxes for five Galactic field RR Lyrae stars:

$$M_K = (-2.38 \pm 0.04)(log P + 0.28) + (0.08 \pm 0.11)([Fe/H] + 1.58) + a_1, \quad (5.3)$$

$$M_K = (-2.38 \pm 0.04)(\log P + 0.28) + a_2, \tag{5.4}$$

$$M_K = -2.101(logP + 0.28) + (0.231 \pm 0.012)([Fe/H] + 1.58) + a_3,$$
(5.5)

$$M_K = (-2.16 \pm 0.09)(log P + 0.28) + a_4, \tag{5.6}$$

$$M_K = (-2.71 \pm 0.12)(logP + 0.28) + (0.12 \pm 0.04)([Fe/H] + 1.58) + a_5 \qquad (5.7)$$

$$M_K = (-2.11 \pm 0.17)(logP + 0.28) + (0.05 \pm 0.07)([Fe/H] + 1.58) + a_6 \quad (5.8)$$

where the $a_1 - a_6$ values are, respectively: -0.56, -0.57, -0.58, -0.56, -0.57, and -0.56 (see Benedict et al. 2011). These different relations are based on a number of different metallicity scales. In particular, Bono et al. (2003) and Del Principe et al. (2006) use the ZW metallicity scale. Sollima et al. (2008), use the Carretta & Gratton (1997) metallicity scale. The relation from Dall'Ora et al. (2004) has no metallicity term., as also does, according to Benedict et al. (2011), the relation derived by Sollima et al. (2006). Finally, Borissova et al. (2009) use the so called Harris metallicity scale, that they consider to be ~ 0.06 more metal than ZW metallicity scale.

To estimate distance moduli for the SEP field we entered the above relations using: pulsation periods for the SEP RR Lyrae stars taken from the EROS-2 catalogue; $\langle K_S \rangle$ magnitudes derived applying the template fitting procedure to the VMC20110909 VSA release time series dereddened according to Rubele et al. (2011), and metallicities obtained by the Fourier analysis of the V band light curves³ (see section 5.3.3 and 5.3.4).

In order to properly take into account the systematic difference of ~ 0.4 dex in the mean metallicity of *RRab* and *RRc* stars (see section 5.3.3 and 5.3.3), we followed 3 different approaches for the metallicity term:

³Obtained by the B_{EROS} and R_{EROS}

110Data analysis, and first results for RR Lyrae stars from the VMC survey

- A: average of the metallicities of all RR Lyrae stars;
- B: average of the metallicities of *RRab* stars only;
- C: average of the metallicities of *RRc* stars only.

Details of method A

We used just one value for the metallicity, obtained by averaging the photometric metallicity estimates of both RRab and RRc stars. We associated to this mean value an error corresponding to the standard deviation of the distribution: $\langle [Fe/H]_{ZW} \rangle =$ -1.8; $\sigma_{[Fe/H]_{ZW}} = 0.3$. This allowed us to use all the 106 stars simoultaneously to estimate the distance modulus. The majority of the above PLZ relations use the ZW metallicity scale. We therefore transformed the RRab metallicities from JK96 to the ZW scale, using Eq. 2.6. Eq. 2.3 for the c-type RR Lyrae stars provides metallicities directly on the ZW scale. Only Sollima et al. (2008) uses the Carretta & Gratton (1997) metallicity scale; we then used the relation given by Carretta & Gratton (1997) to transform them to ZW:

$$[Fe/H]_{CG97} = (-0.618 \pm 0.083) - (0.097 \pm 0.189)[Fe/H]_{ZW} - (0.352 \pm 0.067)[Fe/H]_{ZW}^{2}.$$
(5.9)

Each of the above relations was used to infer an M_K absolute magnitude for each RR Lyrae star. The M_K value was combined with the dereddened apparent K magnitude (using A_K values based on Rubele et al. 2011) providing a μ_0 estimate for each individual star. Average μ_0 values and related standard error inferred from the different PL_KZ relations are summarized in Column 4 of Table 5.4.

Details of method B

We used the mean metallicity derived by averaging the photometric metallicities obtained only from the *RRab* stars. We associated to this mean value an error corresponding to the standard deviation of the average: $\langle [Fe/H]_{ZWab} \rangle = -1.7$; $\sigma_{[Fe/H]_{ZWab}} = 0.2$, and inferred distance moduli from the above *PLZ* relations for each of the 76 ab-type RR Lyrae stars. The average distance moduli μ_0 and related standard errors obtained the different *PL_KZ* relations are summarized in Column 2 of Table 5.4.

PL_K -relation	$\mu_{\langle ab \rangle}$	$\mu_{}$	$\mu_{\langle ab+c \rangle}$
Bono et al 2003	$18.594{\pm}0.015$	$18.71 {\pm} 0.03$	18.635 ± 0.014
Dall'Ora et al. 2004	$18.551 {\pm} 0.015$	$18.57 {\pm} 0.03$	18.557 ± 0.014
Sollima et al. 2008	$18.553 {\pm} 0.015$	$18.59 {\pm} 0.03$	18.566 ± 0.014
Sollima et al. 2006	$18.573 {\pm} 0.015$	$18.57 {\pm} 0.03$	18.573 ± 0.014
Del Principe et al. 2006	$18.603 {\pm} 0.015$	$18.62 {\pm} 0.03$	18.611 ± 0.014
Borissova et al. 2009	$18.552 {\pm} 0.015$	$18.60 {\pm} 0.03$	18.566 ± 0.014
average	$18.57 {\pm} 0.02$	$18.61 {\pm} 0.05$	$18.58 {\pm} 0.03$

Table 5.4: Distance moduli for the LMC SEP obtained applying different PL_KZ relations to the SEP RR Lyrae stars. Column 1: Reference of the PL_KZ relation; Column 2: distance modulus obtained using only RR_{ab} stars; Column 3: distance modulus obtained using only RR_c stars; Column 4: distance modulus obtained using all the RR Lyrae stars. See text for details.

Details of method C

We used the mean metallicity derived by averaging the photometric metallicities obtained only from the RRc stars. We associated to this mean value an error corresponding to the standard deviation of the average: $\langle [Fe/H]_{ZWc} \rangle = -2.07$; $\sigma_{[Fe/H]_{ZWc}} = 0.12$, and inferred distance moduli from the above PLZ relations for each of the 30 c-type RR Lyrae stars. The average distance moduli μ_0 and related standard errors inferred from the different PL_KZ relations are summarized in Column 2 of Table 5.4.

5.6 RR Lyrae stars in the 30 Dor region

The 30 Dor field is a very crowded star forming region in the central part of the LMC. Its location on a map of the VMC tiles on the LMC is shown in Fig 5.21.

A number of different studies have targeted the RR Lyrae stars in regions close to the 30 Dor field. Clementini et al. (2003) and Gratton et al. (2004) presented photometry and spectroscopy for more than a hundred RR Lyrae stars in two fields located close to bar of the LMC (blue rectangles in Fig. 5.21). They measured average magnitudes, local reddening, and individual metallicities for the RR Lyrae stars from which they derived the slope of the RR Lyrae luminosity-metallicity relation, and an estimate of the distance to the LMC. In particular, they inferred

Figure 5.21: Location of the 30 Dor field (black thick rectangle) on the map of VMC tiles (black thin rectangles) covering the LMC. Blue rectangles mark the MACHO fields in which lie the LMC regions studied by Clementini et al. (2003) and Gratton et al. (2004). Green and magenta rectangles mark fields studied by Borissova et al. (2004, 2006, 2009) and Szewczyk et al. (2008), respectively. See text for details.

Figure 5.22: K_S light curves of RR Lyrae stars in the 30 Dor field.

a mean metallicity for the RR Lyrae stars in this region of the LMC of $[Fe/H] = -1.48 \pm 0.03$ dex, with $\sigma = 0.29$ dex on the Harris (1996) metallicity scale. This scale is, on average, 0.06 dex more metal-rich than the ZW scale. Borissova et al. (2006) measured radial velocities for 87 LMC RR Lyrae stars and metallicities for 78 RR Lyrae stars. These targets are located in 10 fields (green rectangles in Fig. 5.21) covering a wide range of distances, out to 2.5 degrees from the center of the LMC. One of the Borissova et al. fields in contained in the 30 Dor tile. They inferred a mean metallicity value $[Fe/H] = -1.53 \pm 0.02 \text{ dex}^4$ with a dispersion of $\sigma = 0.20 \pm 0.02$ dex in agreement with Gratton et al. (2004) results, and showing that the LMC RR Lyrae stars form a rather homogeneous metal-poor population.

Infrared PL relations for the RR Lyrae stars in the central part of the LMC have been obtained by a number of different authors (see section 2.3.2). Szewczyk et al. (2008) obtained deep infrared J and K band observations of five fields located in the LMC bar (magenta rectangles in fig. 5.21). They found consistent values for the distance modulus of the LMC using a number of different theoretical and empirical calibrations of the PL_KZ relation, and adopt as their final value

⁴Metallicities in Borissova et al. (2009) are measured using the Gratton et al. 2004 method.

114Data analysis, and first results for RR Lyrae stars from the VMC survey

 $18.58 \pm 0.03(statistical) \pm (0.11)(systematic)$ mag, in good agreement with most independent determinations of the distance to this galaxy. Borissova et al. (2009) investigated the metallicity dependence of the infrared PL relation for RR Lyrae stars combining near-IR photometry and spectroscopically measured metallicities for 50 RR Lyrae stars within nine fields in the central region of the LMC. They found a very mild dependence on metallicity of the PL in the K band, and inferred from their near-IR PL_KZ relation, an LMC distance modulus of 18.53 ± 0.13 mag. They point out that their distance modulus relies on the trigonometric parallax of the star RR Lyrae. The 30 Doradus field (thick black rectangle in fig. 5.21) is one of the VMC fields completely observed, reduced and catalogued. This field has been covered by the OGLE III survey (http://ogle.astrouw.edu.pl/), which thus provides the reference catalogue for the variable stars. For the analysis of the 30 Dor variables we adopted the periods and mode classification provided by the OGLE III team, without performing a new analysis of the light curves with GRATIS. The severe crowding conditions makes the analysis of the RR Lyrae stars in the 30 Dor field much more complicated and time consuming than in the SEP and any other field of the LMC. To mitigate the crowding problems, we used for the RR Lyrae stars in the 30 Dor region the PSF photometry kindly provided by Stefano Rubele. By cross-matching the OGLE III catalogue of RR Lyrae stars in the 30 Dor region against the VSA and the PSF-photometry catalogues we obtained a list of 1241 RR Lyrae stars. Fig. 5.22 shows examples of the K_S light curves for fundamental mode RR Lyrae stars in the 30 Dor field. Table 5.7 summarizes the properties (Id, coordinates, type, period, time of maximum light, and average magnitudes) of the 30 Dor RR Lyrae stars. A proper analysis of the 30 Dor RR Lyrae stars using templates to fit the K_S -band light curves, and the Fourier parameters to estimate individual metallicities, as we have done for the SEP variables, is in progress. Here, we summarize preliminary results on the PL_K relations that we obtained by simply intensity-averaging the individual K_S time series and neglecting the metallicity dependence. To account for the variable reddening that characterizes the 30 Dor region, we adopted the recent evaluations by Haschke et al. (2011). Fig. 5.23 shows the PLK_S relation we have obtained for the 30 Dor RR Lyrae stars using this simplified procedure. In the figure open circles are RRab stars and filled circles are RRcstars, periods for the latter were fundamentalized by adding 0.127 to the $\log P$. The

Figure 5.23: Dereddened mean K_s magnitudes against LogP, for RR Lyrae stars in the 30 Dor field. Empty and filled circles represent c- and ab-type RR Lyrae stars, respectively. The periods of the RRc stars were fundamentalized by adding 0.127 to the logP.

 PL_K relation obtained with this procedure is:

$$k_0 = (17.454 \pm 0.019) - 2.51 \pm 0.06 \times logP \tag{5.10}$$

with an r.m.s. of 0.181 mag. This relation was derived by discarding objects 3 σ outside the best fit linear regression (blue line).

The PL_K relation in Fig. 5.23 is much more scattered than the PL_K relation found for the SEP field and has a significantly fainter zero point. Using then the same approach described in Section 5.5 and adopting for the metallicity the mean metal abundance $[Fe/H] = -1.53 \pm 0.02$ dex derived for the LMC RR Lyrae stars by Borissova et al. (2006), we have obtained the distance moduli summarized in Table 5.5. These distance moduli do not agree with the results obtained by (Szewczyk et al., 2008; Borissova et al., 2009) using the same method (i.e. the PL_K of the RR Lyrae stars).

Clearly, these are very preliminary and rather puzzling results. Much more work is needed to improve the analysis of the 30 Dor RR Lyrae stars. As a first attempt

116Data analysis, and first results for RR Lyrae stars from the VMC survey

PL_K -relation	μ_0
Bono et al 2003	18.736 ± 0.005
Dall'Ora et al. 2004	18.712 ± 0.005
Sollima et al. 2008	18.699 ± 0.005
Sollima et al. 2006	18.727 ± 0.005
Del Principe et al. 2006	18.733 ± 0.005
Borissova et al. 2009	18.711 ± 0.005
average	18.720 ± 0.005

Table 5.5: Distance moduli for the 30 Dor field obtained applying different PL_KZ relations to the 30 Dor RR Lyrae stars.

to check whether there is some trend in the PL when moving along the 30 Dor field, we divided the 30 Dor RR Lyrae stars into nine subfields of equal area (see left panel of Figure 5.24) in order to calculate independent PL_K relations for each of these 9 subfields, starting from the two subfields marked in red in the right panel of Figure 5.24.

The PL_K relation derived from the RR Lyrae stars contained in the upper-left subregion (subregion 1) is:

$$K_0 = 17.42 \pm 0.06 - 2.7 \pm 0.2 \times \log P \tag{5.11}$$

with an rms= 0.143. This PL_K is shown in Fig. 5.25. Crosses mark stars which are more than 3 σ from the linear regression (blue line) and were discarded.

The PL_K relation derived from the RR Lyrae stars contained in the lower-right subregion (subregion 9) is:

$$K_0 = 17.45 \pm 0.05 - 2.5 \pm 0.2 \times \log P \tag{5.12}$$

with an rms=0.201. This PL_K is shown in Fig. 5.26.

The PL_K relations in the two subregions are indistinguishable within the errors. This seems to rule out a trend in the PL in the 30 Dor field. If we blindly rely on the results obtained from the PL_K relations of SEP ($\mu_0 = 18.58 \pm 0.03$ mag) and 30 Dor ($\mu_0 \sim 18.72 \pm 0.01$ mag) RR Lyrae stars we should conclude that the 30 Dor RR Lyrae are at larger distance than the SEP variables. On the other hand, the results of the PL for Classical Cepheids, that will be presented in the next Chapter, leading to a shorter distance modulus of $\mu_0 = 18.46 \pm 0.03$ mag (see section 6.2) further complicates the interpretation of the RR Lyrae results.

Figure 5.24: *Left Panel*: RR Lyrae stars (solid points) in the 30 Dor region divided into 9 subregions of equal area. *Right Panel*: RR Lyrae stars (red solid points) of the two subregions that we have started to analyze. See text for details.

Figure 5.25: PL_K relation defined by the RR Lyrae stars in the subregion 1. Empty circles are RRab stars, filled circles are RRc stars. Crosses are stars which are more than 3 σ from the linear regression (blue line).

Figure 5.26: PL_K relation defined by the RR Lyrae stars in the subregion 9. Empty circles are RRab stars, filled circles are RRc stars. Crosses are stars which are more than 3 σ from the linear regression (blue line).

VSA id	id-1	α	δ	RR	Р	Epoch(max)	$\langle B_{EBOS} \rangle$	A_V	$\langle K_s \rangle$	σ_{K}
		(2000)	(2000)		(days)	(JD-2450000)	(mag)	(mag)	(mag)	(mag)
VMC89.05881 65.62997	11777	89.05881	-65 62997	C	0.279836	2652 64817	19.055	0.39	18 43	0.04
VMC88.54182 ^{-67.04457}	13140	88.54182	-67.04457	c	0.304106	1381.58947	19.192	0.58	18.34	0.02
VMC90.63806 ^{-66.84103}	13919	90.63806	-66.84103	с	0.307907	1908.62017	19.185	0.50	18.36	0.02
VMC90.61131 ^{-66.97001}	2508	90.61131	-66.97001	с	0.308761	1221.65639	19.137	0.62	18.39	0.02
VMC89.76387 ^{66.52093}	15111	89.76387	-66.52093	с	0.313693	2184.83767	19.109	0.43	17.500	0.011
VMC88.58812 ^{-66.39030}	20171	88.58812	-66.3903	с	0.331325	2165.83235	19.047	0.51	18.170	0.019
VMC89.38447_66.88713	19933	89.38447	-66.88713	с	0.339066	2248.63538	19.078	0.44	18.215	0.019
VMC90.70238_66.62708	4670	90.70238	-66.62708	с	0.339586	1510.78566	19.169	0.56	18.185	0.019
VMC90.18475_66.87184	15662	90.18475	-66.87184	с	0.342598	1454.89457	19.046	0.63	18.153	0.019
VMC90.85286_66.43754	1765	90.85286	-66.43754	с	0.343763	1435.80988	19.231	0.65	18.222	0.019
VMC90.04089 66.99461	19471	90.04089	-00.99401	с	0.351408	1504 75010	19.074	0.45	17.948	0.016
VMC88 42676 66 00652	14471	88 49676	-00.13947	c	0.351072	1004.70912	18.002	0.48	17 022	0.016
VMC88.42070_00.000000 VMC88.46714_66.50520	14404	88.42070	-00.00000	c	0.352939	2051 51101	10.905	0.50	10.24	0.010
VMC88 83012 66 51167	15888	88 83012	-00.59529		0.357676	0403 65860	10.200	0.45	18.34	0.02
VMC89.06184_66.07770	18477	89.06184	-66.0777	c	0.358804	2264 66450	19.083	0.40	18 231	0.019
VMC89.47125 ^{-66.74303}	21254	89.47125	-66.74303	c	0.359865	1773.86766	19.122	0.55	18.36	0.02
VMC88.89312 ^{-66.82638}	10748	88.89312	-66.82638	c	0.360168	2186.82044	19.194	0.44	18.177	0.019
VMC88.97116 ^{-66.20557}	18546	88.97116	-66.20557	c	0.361223	1568.69875	19.172	0.49	18.146	0.018
VMC88.67397 ^{66.06404}	20120	88.67397	-66.06404	с	0.361499	1834.86629	19.187	0.48	18.172	0.019
VMC91.17422 ^{66.70195}	15448	91.17422	-66.70195	с	0.362432	2581.80256	18.948	0.47	18.008	0.016
VMC90.80177 ^{66.66222}	9603	90.80177	-66.66222	с	0.365587	1433.85859	19.128	0.54	18.129	0.018
VMC90.10844 ^{66.41316}	21390	90.10844	-66.41316	с	0.369042	0384.66456	19.141	0.47	18.063	0.017
VMC89.31884_66.75497	22698	89.31884	-66.75497	с	0.370708	1905.63006	19.109	0.48	18.080	0.019
VMC89.37604_66.35017	5148	89.37604	-66.35017	с	0.373764	0856.75824	19.024	0.43	18.132	0.018
VMC89.06472_65.76323	3849	89.06472	-65.76323	с	0.377784	1661.56158	99.999	0.35	18.042	0.016
VMC88.44221_66.46144	8721	88.44221	-66.46144	с	0.38492	0404.76630	19.123	0.47	18.057	0.017
VMC91.18246_66.56863	9807	91.18246	-66.56863	с	0.391335	1635.53733	19.043	0.42	17.981	0.016
VMC90.46352 66.91447	15644	90.46352	-00.91447	C	0.43207	18/8./4040	18.702	0.42	16.002	0.013
VMC80 76824 66 50172	10224	80 76824	-03.92392	ab	0.462572	1654 58824	10.914	1.51	18.065	0.018
VMC88 60875 65 81307	6674	88 60875	65 81307	ab	0.483525	1054.58824	18 074	1.00	18.000	0.02
VMC80.01188_66.70188	6235	80.01188	66 70188	ab	0.488967	1167 60566	10.151	1.22	18 125	0.010
VMC91 05922 66 88541	19248	91.05922	-66 88541	ab	0.494594	0411 72916	18 966	0.78	17 957	0.015
VMC90 55951 66 27546	663	90 55951	-66 27546	ab	0.502671	1522 73976	19 410	1 27	18 18	0.02
VMC89 58751 66 34335	12420	89 58751	-66 34335	ab	0.504687	1476 82046	19 508	1 14	17 888	0.015
VMC88.63285 ^{-67.04827}	13678	88.63285	-67.04827	ab	0.505996	1950.68154	19.217	1.35	18.090	0.019
VMC90.26666 ^{-66.46120}	6036	90.26666	-66.4612	ab	0.511104	1570.72598	19.343	1.37	18.102	0.018
VMC89.38903 ^{66.74248}	21067	89.38903	-66.74248	ab	0.512181	1840.83142	18.882	0.74	17.758	0.013
VMC89.60338 ^{-66.40584}	19902	89.60338	-66.40584	ab	0.515216	1566.73078	19.532	1.35	18.157	0.019
VMC90.04898 ^{66.86007}	14083	90.04898	-66.86007	ab	0.524842	1897.65806	18.903	0.98	17.854	0.015
VMC88.93383 ^{-65.79487}	5559	88.93383	-65.79487	ab	0.528266	1658.58360	18.963	1.09	17.947	0.016
VMC88.44860 ^{-65.86588}	21824	88.4486	-65.86588	ab	0.530161	1236.73959	19.001	1.02	17.980	0.017
VMC91.19125_66.88860	19850	91.19125	-66.8886	ab	0.535519	2581.80256	19.025	1.17	17.895	0.016
VMC89.70010_66.92510	22456	89.7001	-66.9251	ab	0.5383	1843.87176	19.220	1.09	17.985	0.017
VMC90.43995_66.58296	15972	90.43995	-66.58296	ab	0.543127	1958.76520	19.301	1.29	18.015	0.016
VMC89.98765_66.55564	14988	89.98765	-66.55564	ab	0.543303	1872.78084	19.138	0.87	17.436	0.010
VMC89.83111_67.02162	9897	89.83111	-67.02162	ab	0.546485	0835.80158	18.903	1.15	17.714	0.014
VMC89.91313_66.92605	22582	89.91313	-06.92605	ab	0.546566	1866.72666	19.259	0.53	18.17	0.02
VMC89.34804 05.02532	20074	09.34804	-00.02032	aD	0.552041	1000.70410	19.044 10.117	0.90	17 807	0.016
VMC88 00207 66 20100	20974	88 00207	-00.39738	aD	0.556700	0399.79420	19.117	1.03	17.071	0.016
VMC00 80654 66 57041	16708	00.80654	-00.29199	ab	0.558642	2301.70014	19.300	1.20	18 050	0.010
VMC80 14485 65 82450	8204	80.14485	65 8245	ab	0.5561825	2002.12340	19.292	1.04	18.059	0.018
VMC89 18743 66 60605	14455	89 18742	-66 69605	ab	0.564069	2165 83235	19.065	1.04	18 053	0.018
* *************************************	14400	03.10143	-00.03000	ab	0.004009	2100.00200	13.101	1.10	10.000	0.010

$ \begin{array}{llllllllllllllllllllllllllllllllllll$											
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC90.78511_66.52942	14319	90.78511	-66.52942	ab	0.568044	1502.77046	19.365	1.08	18.080	0.018
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC91.45882_66.76432	18337	91.45882	-66.76432	ab	0.569036	2254.67274	18.936	1.03	17.928	0.015
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC88.78716_65.71886	23417	88.78716	-65.71886	ab	0.569449	2619.64881	19.033	1.10	17.916	0.016
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC89.84316_66.55735	19172	89.84316	-66.55735	ab	0.573327	1443.80388	19.123	0.72	17.883	0.015
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC89.33329_66.88950	20208	89.33329	-66.8895	ab	0.575952	2574.77742	19.315	0.40	18.045	0.017
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC88.71300_66.94060	20193	88.713	-66.9406	ab	0.580958	2003.58706	19.091	0.65	17.966	0.016
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC90.14881_66.94333	16928	90.14881	-66.94333	ab	0.582626	1954.70090	18.974	0.63	17.921	0.016
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC89.41532_66.71313	16999	89.41532	-66.71313	ab	0.582837	1439.81465	19.308	0.68	18.22	0.02
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC88.99951_66.72901	18737	88.99951	-66.72901	ab	0.58451	1464.78763	19.097	0.72	17.923	0.015
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC90.60471 66.28531	1127	90.60471	-66.28531	ab	0.584708	0400.71316	19.313	0.85	18.008	0.017
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC88.81756 ^{65.79473}	5500	88.81756	-65.79473	ab	0.58496	2000.60142	18.984	0.84	17.969	0.016
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC89.17322 ^{66.14831}	11644	89.17322	-66.14831	ab	0.586441	1828.82309	18.966	1.25	18.058	0.017
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC91.31575 ^{66.35863}	15027	91.31575	-66.35863	ab	0.591598	1563.77261	19.228	0.92	17.886	0.015
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC88.95860 ^{-65.65705}	15364	88.9586	-65.65705	ab	0.59229	1469.73869	19.017	0.89	17.974	0.016
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC90.58726 ^{-66.82029}	10498	90.58726	-66.82029	ab	0.594565	2266.75986	19.020	0.78	17.848	0.014
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC88.62716 ^{-66.07124}	17115	88.62716	-66.07124	ab	0.598345	2225.84181	19.117	0.65	17.967	0.016
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.75765 ^{-66.36566}	16908	88.75765	-66.36566	ab	0.598866	1641.55387	19.051	1.25	17.932	0.015
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VMC90.32399 ^{-66.74809}	15574	90.32399	-66.74809	ab	0.601586	2581.80256	19.219	0.79	18.011	0.016
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.58529 ^{-65.65132}	13995	88.58529	-65.65132	ab	0.602472	1837.79110	19.131	0.68	17.993	0.017
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC89.21644 ^{-67.07065}	16710	89.21644	-67.07065	ab	0.603013	1590.67784	19.550	0.87	17.759	0.014
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.91820 ^{-66.65638}	8769	88.9182	-66.65638	ab	0.60518	1952.68464	19.169	0.73	17.934	0.015
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.57023 ^{66.09572}	5521	88.57023	-66.09572	ab	0.610169	2637.80939	19.057	0.77	17.954	0.016
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC90.28469 ^{66.63666}	4863	90.28469	-66.63666	ab	0.612503	1451.85267	19.401	0.69	18.037	0.016
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.66768 ^{-65.75290}	2684	88.66768	-65.7529	ab	0.614284	2236.63572	18.781	1.25	17.828	0.015
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC89.18085 ^{65.67398}	17942	89.18085	-65.67398	ab	0.615016	1556.81167	19.130	0.70	17.551	0.011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.54227 ^{66.99087}	5838	88.54227	-66.99087	ab	0.617036	1625.66665	19.070	0.60	17.814	0.015
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC90.00150 ^{-66.29262}	6601	90.0015	-66.29262	ab	0.623342	2401.55234	19.289	0.63	17.944	0.016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC90.97139 ^{66.28902}	7254	90.97139	-66.28902	ab	0.629166	0396.82836	19.164	1.00	17.899	0.015
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC90.44786 ^{66.48435}	9162	90.44786	-66.48435	ab	0.631294	1481.79696	19.050	0.95	17.789	0.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC90.68824 ^{66.37370}	5441	90.68824	-66.3737	ab	0.633687	2026.55644	19.278	0.47	17.877	0.015
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC88.69570 ^{-65.82616}	7473	88.6957	-65.82616	ab	0.638708	2228.69562	18.937	0.49	17.794	0.014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC88.63838 ^{-66.72336}	13082	88.63838	-66.72336	ab	0.640384	0383.77552	19.052	0.77	17.751	0.013
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.44106 ^{-65.95059}	7752	88.44106	-65.95059	ab	0.640428	1499.73922	18.965	0.50	17.753	0.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC88.99509 ^{-65.79442}	5990	88.99509	-65.79442	ab	0.644776	2245.86102	18.738	0.87	17.761	0.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC89.10724 ^{66.92583}	24832	89.10724	-66.92583	ab	0.64802	1443.79465	18.844	0.77	17.661	0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC89.22852 ^{65.87613}	11722	89.22852	-65.87613	ab	0.648894	1241.74438	18.930	0.92	17.810	0.014
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC89.29626 ^{-67.08839}	19178	89.29626	-67.08839	ab	0.651892	0332.82646	19.127	0.75	17.960	0.016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC88.58049 ^{66.46238}	8898	88.58049	-66.46238	ab	0.652404	1566.70864	19.152	0.68	17.893	0.015
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC89.06749 ^{-65.86500}	10894	89.06749	-65.865	ab	0.655036	1658.58360	19.075	0.28	17.885	0.015
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC90.01699 ^{-66.36999}	16071	90.01699	-66.36999	ab	0.657831	0932.49584	19.033	0.76	17.715	0.013
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC90.48320 ^{-66.85892}	16657	90.4832	-66.85892	ab	0.6640825	1940.78649	19.083	0.57	17.849	0.014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC90.33167 ^{66.40298}	20205	90.33167	-66.40298	ab	0.671272	1892.72546	18.944	0.90	17.651	0.012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC90.74558 ^{66.79828}	7107	90.74558	-66.79828	ab	0.676837	1908.62017	19.013	0.54	17.825	0.014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VMC89.05388 ^{-66.39558}	21063	89.05388	-66.39558	ab	0.718701	2255.70817	18.950	0.64	17.676	0.012
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC90.29803 ^{66.88117}	16920	90.29803	-66.88117	ab	0.721478	2000.62653	19.032	0.72	17.816	0.014
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC90.50615 ^{-66.90768}	17861	90.50615	-66.90768	ab	0.725348	2003.60763	18.846	0.65	17.564	0.012
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC88.42721 ^{66.63017}	4284	88.42721	-66.63017	ab	0.729118	2262.73526	18.886	0.64	17.489	0.011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VMC90.84876 ^{66.70341}	15514	90.84876	-66.70341	ab	0.753009	1493.82836	18.992	0.47	17.708	0.013
VMC90.09496 ^{-66.62618} 3518 90.09496 -66.62618 ab 0.808167 2240.69776 18.995 0.52 17.527 0.011	VMC89.75178 ^{66.49660}	12246	89.75178	-66.4966	ab	0.773581	0457.76997	18.992	0.56	17.601	0.011
	VMC90.09496_66.62618	3518	90.09496	-66.62618	ab	0.808167	2240.69776	18.995	0.52	17.527	0.011

Table 5.6: Properties of confirmed RR Lyrae stars in the SEP field. Column 1: star id in the VMC catalogue; Column 2: EROS-2 id (only the last 4-5 digits) Columns 3,4: RA,DEC from the EROS-2 catalogue; Column 5: RR type; Column 6: EROS-2 period (except for star 16657 where we used the half of the EROS-2 period; Column 7: time of maximum light; Column 8: $\langle B_{EROS} \rangle$ mag, as obtained from the analysis with GRATIS; Column 10: $\langle K_S \rangle$ as obtained with the template's method; Column 11: error in $\langle K_S \rangle$.

idOGLE	id	RA	DECdeg	type	Ι	V	Р	dP	Epoch	k ₀	$\operatorname{err}(\mathbf{k}_0)$
OCLE INC DRIVE 21977	VMC85 627025 68 626000	(deg)	(deg)	DD.L	(mag)	(mag)	(d)	(d)	(HJD-245000)	(mag)	(mag)
OCLE IMC PRIVE 10454	VMC82 700000 68 642240	82.700000	-08.030900	DRab	18 912	19.575	0.347203700	1.4E-0 7.0E 7	2107.42000	17.86	0.05
OCLE I MC DDIVD 19652	VMC82 101185 68 642660	83.700990	68 642660	DDo	18.091	10.280	0.499421000	7.0E-7	2107.33733	19.22	0.03
OGLE-LMC-BBLYB-20280	VMC84 275670 68 649040	84 275670	-68 649040	BBab	18 857	19.561	0.592429400	1.0E-7	2187 44302	18.00	0.04
OGLE-LMC-BBLYB-21907	VMC85 662660 68 642780	85 662660	-68 642780	BBab	19 376	19.901	0.388219500	$4.0E_{-7}$	2187 43562	18.10	0.05
OGLE-LMC-BBLYB-20020	VMC84 092445 68 649600	84 092445	-68 649600	BBc	19.015	19 416	0.280158700	6.0E-7	2187 50418	18.54	0.03
OGLE-LMC-BBLYB-21888	VMC85.642455 ^{-68.644560}	85.642455	-68.644560	BRab	19.162	19.846	0.458133100	6.0E-7	2187.77089	18.44	0.03
OGLE-LMC-RRLYR-21598	VMC85.341090 ^{-68.647210}	85.341090	-68.647210	RRab	18.794	19.366	0.533937300	1.6E-6	2187.32005	18.06	0.03
OGLE-LMC-RRLYR-18463	VMC83.075460 ^{68.647720}	83.075460	-68.647720	RRab	18.825	19.315	0.450714800	2.0E-7	2167.55651	18.12	0.03
OGLE-LMC-RRLYR-18851	VMC83.315400 ^{-68.650390}	83.315400	-68.650390	RRab	18.934	19.559	0.558726500	6.0E-7	2167.85023	18.06	0.03
OGLE-LMC-RRLYR-18933	VMC83.372790 ^{68.659490}	83.372790	-68.659490	RRab	19.099	19.717	0.515377900	5.0E-7	2167.48725	18.33	0.03
OGLE-LMC-RRLYR-19990	VMC84.071730 ^{-68.670760}	84.071730	-68.670760	RRab	18.642	19.307	0.707276600	1.9E-6	2187.70851	17.86	0.03
OGLE-LMC-RRLYR-21091	VMC84.905730 ^{-68.669360}	84.905730	-68.669360	RRc	18.905	19.308	0.302158200	5.0E-7	2187.60200	18.27	0.03
OGLE-LMC-RRLYR-19706	VMC83.860395 ^{68.676360}	83.860395	-68.676360	RRab	18.999	19.616	0.574046100	1.4E-6	2187.69299	18.12	0.04
OGLE-LMC-RRLYR-21164	VMC84.970485_68.675480	84.970485	-68.675480	RRc	18.686	19.162	0.364415000	7.0E-7	2187.67560	18.05	0.03
OGLE-LMC-RRLYR-21220	VMC85.024215_68.680730	85.024215	-68.680730	RRab	19.130	19.362	0.504584900	5.0E-7	2187.70253	17.90	0.03
OGLE-LMC-RRLYR-19300	VMC83.588355_68.682350	83.588355	-68.682350	RRab	18.950	19.570	0.597524100	8.0E-7	2167.41658	17.92	0.04
OGLE-LMC-RRLYR-18470	VMC83.080230_68.682800	83.080230	-68.682800	RRab	20.126	21.409	0.598200000	1.7E-6	2167.70288	18.38	0.03
OGLE-LMC-RRLYR-20571	VMC84.489390_68.687410	84.489390	-68.687410	RRc	18.393	18.846	0.384976500	1.1E-6	2193.72177	17.81	0.03
OGLE-LMC-RRLYR-18917	VMC83.360595_68.684020	83.360595	-68.684020	RRC	19.344	19.784	0.284344100	5.0E-7	2167.76675	18.20	0.07
OGLE-LMC-RRLYR-21348	VMC85.128195_68.685220	85.128195	-68.685220	RRab	18.798	19.488	0.624507500	2.6E-6	2187.31111	17.88	0.03
OGLE-LMC-RRLYR-20277	VMC84.270390 68.690080	84.270390	-68.690080	RRAD	18.074	19.309	0.676827400	4.4E-6	2187.31091	10.10	0.02
OGLE-LMC-RRLYR-18050	VMC83.190300 68.687890	83.190300	-08.08/890	RRaD DD-L	19.000	19.808	0.013213300	1.5E-6	2107.88230	18.12	0.03
OCLE IMC DRIVE 10275	VMC84.217440 08.091800	84.217440	-08.091800	DD-L	10.001	19.409	0.581590500	9.0E-7	2167.09219	17.01	0.05
OCLE IMC PRIVE 10268	VMC82 571540 68 601600	83.040420	-08.091730	R R R R R R R R R R R R R R R R R R R	10.029	19.455	0.571297100	1.1E-0 1.6F 6	2107.04239	1915	0.05
OGLE LMC BRLVB 20062	VMC84 700605 68 603300	84 700605	-08.091000	BBab	18 074	10 548	0.309701400	6.0E-7	2180.70992	18.15	0.03
OGLE-LMC-BRLVB-20842	VMC84 699420 68 695140	84 699420	-68 695140	BBab	19 163	19.948	0.566930100	9.0E-7	2187 60169	18.30	0.03
OGLE LMC BRIVE 22017	VMC85 760835 68 688610	85 760835	68 688610	BBab	18 850	10 583	0.500550100	3.0E-7	2187.00103	17.08	0.04
OGLE-LMC-BRLVB-21634	VMC85 372665 68 692220	85 372665	-68 692220	BBab	19 202	19.837	0.526649400	6.0E-7	2187.62371	18 17	0.03
OGLE-LMC-BBLYB-19491	VMC83 725185 68 696530	83 725185	-68 696530	BBc	19 121	19.558	0.273957000	6.0E-7	2167 70977	18.61	0.04
OGLE-LMC-BBLYB-20007	VMC84.083160 ^{-68.695120}	84.083160	-68.695120	BRab	18.824	19.469	0.616755100	2.0E-6	2187.50744	18.00	0.03
OGLE-LMC-RRLYR-21867	VMC85.609365 ^{-68.693900}	85.609365	-68.693900	RRe	19.142	19.647	0.278604900	8.0E-7	2187.72533	18.45	0.04
OGLE-LMC-RRLYR-20083	VMC84.135780 ^{-68.699820}	84.135780	-68.699820	RRc	18.867	19.272	0.351665500	9.0E-7	2187.67885	17.99	0.04
OGLE-LMC-RRLYR-21162	VMC84.968835 ^{68.699930}	84.968835	-68.699930	RRab	18.925	19.546	0.537568600	5.0E-7	2187.50594	18.12	0.04
OGLE-LMC-RRLYR-21331	VMC85.109295 ^{68.698810}	85.109295	-68.698810	RRab	18.839	19.460	0.548572200	7.0E-7	2187.43400	18.08	0.03
OGLE-LMC-RRLYR-19661	VMC83.831625 ^{68.704870}	83.831625	-68.704870	RRab	19.348	20.163	0.524175300	1.4E-6	2187.58241	18.18	0.05
OGLE-LMC-RRLYR-21497	VMC85.246110_68.701950	85.246110	-68.701950	RRab	18.917	19.547	0.530866400	2.1E-6	2187.73181	18.14	0.03
OGLE-LMC-RRLYR-20371	VMC84.341640_68.707870	84.341640	-68.707870	RRab	18.887	19.361	0.475208700	4.0E-7	2187.73356	18.08	0.03
OGLE-LMC-RRLYR-21396	VMC85.162995_68.705420	85.162995	-68.705420	RRab	18.937	19.675	0.637727600	3.9E-6	2187.39808	17.95	0.03
OGLE-LMC-RRLYR-18625	VMC83.172885_68.708010	83.172885	-68.708010	RRc	19.038	19.424	0.280615100	5.0E-7	2167.80590	18.50	0.05
OGLE-LMC-RRLYR-20039	VMC84.107415_68.713440	84.107415	-68.713440	RRab	18.933	19.508	0.534417300	1.2E-6	2187.57616	18.15	0.03
OGLE-LMC-RRLYR-21892	VMC85.646970_68.707880	85.646970	-68.707880	RRab	19.207	20.094	0.533551600	1.4E-6	2187.63700	18.29	0.03
OGLE-LMC-RRLYR-21092	VMC84.906135_68.711550	84.906135	-68.711550	RRC	18.918	19.460	0.355597300	1.0E-6	2187.58149	18.18	0.03
OGLE-LMC-RRLYR-21133	VMC84.935805 68.715020	84.935805	-08.715020	RRaD DD-	18.903	19.680	0.728335000	2.9E-0	2187.73523	10.04	0.04
OGLE-LMC-RRLYR-20276	VMC84.270150 68.716940	84.270150	-08.710940	RRC DD-L	18.951	19.417	0.323182400	8.0E-7	2187.44048	18.30	0.03
OCLE IMC PRIVE 10182	VMC82 512005 68 716270	82 512005	-08.717410	DRab	18.759	19.000	0.052770700	5.0E-0 5.6F 6	2167.20201	17.82	0.03
OGLE LMC BRLVB 20354	VMC84 331965 68 718300	84 331065	68 718300	BBab	18 874	10 513	0.141400800	2.0E-6	2107.07122	18.01	0.03
OGLE-LMC-BRLYB-19165	VMC83 500770 68 717960	83 500770	-68 717960	BBab	18 782	19 462	0.595386200	7.0E-7	2167 74503	18.01	0.04
OGLE-LMC-BBLYB-20444	VMC84 389460 68 721690	84 389460	-68 721690	BBab	19.312	19.812	0.400552500	4 0E-7	2187 60980	18.51	0.04
OGLE-LMC-BBLYB-21571	VMC85.313295 ^{-68.730640}	85.313295	-68.730640	BRe	19.683	20.456	0.286193400	1.2E-6	2187.64603	18.36	0.04
OGLE-LMC-RRLYR-20696	VMC84.605220 ^{-68.734790}	84.605220	-68.734790	RRab	19.224	19.877	0.496695200	1.7E-6	2187.50557	18.24	0.04
OGLE-LMC-RRLYR-20059	VMC84.121185 ^{-68.736790}	84.121185	-68.736790	RRc	19.279	19.849	0.300248000	7.0E-7	2187.75061	18.74	0.05
OGLE-LMC-RRLYR-21210	VMC85.016355_68.732750	85.016355	-68.732750	RRab	19.090	19.961	0.646300500	3.2E-6	2187.63001	17.98	0.03

OGLE-LMC-BRLYB-19762	VMC83 908230 68 737070	83 908230	-68 737070	BBab	19 120	19 993	0 536416300	1.3E-6	2187 62307	18.06	0.03
OGLE-LMC-BRLYB-21876	VMC85 626945 68 734890	85 626945	-68 734890	BBab	19.079	19 777	0.515880300	6 0E-7	2187 72447	18 11	0.03
OCLE IMC PRIVE 10246	VMC82 555700 68 740200	82 555700	68 740200	PRob	10.010	10 /19	0.514648500	5 0 5 7	2167 84510	18.02	0.04
OCLE IMC DRIVE 10075	VMC84.050500 08.740500	84.050520	-08.740300	DDab	18.001	19.410	0.514048500	4 OE 7	2107.84510	10.03	0.04
OGLE-LMC-RRLIR-19975	VMC84.059520 08.744050	84.059520	-08.744030	nnab	10.101	19.437	0.512080800	4.0E-7	2187.29475	10.10	0.04
OGLE-LMC-RRLYR-21198	VMC85.005615_68.743380	85.005615	-08.743380	RRe	19.164	19.651	0.254999800	1.3E-0	2187.72519	18.52	0.04
OGLE-LMC-RRLYR-19461	VMC83.705130_68.743920	83.705130	-68.743920	RRab	18.900	19.486	0.505894500	5.0E-7	2167.56130	18.23	0.04
OGLE-LMC-RRLYR-18923	VMC83.364600_68.741320	83.364600	-68.741320	RRab	18.467	19.061	0.750322700	1.2E-6	2167.40153	17.81	0.03
OGLE-LMC-RRLYR-20269	VMC84.266670 68.748110	84.266670	-68.748110	RRab	18.823	19.469	0.534921700	5.0E-7	2187.47387	18.07	0.03
OGLE-LMC-RRLYR-19758	VMC83.906475 ^{68.748680}	83.906475	-68.748680	RRc	18.803	19.231	0.322238800	9.0E-7	2187.66988	18.32	0.04
OGLE-LMC-RRLYR-20523	VMC84.460965 ^{-68.750100}	84.460965	-68.750100	RRab	19.117	19.880	0.613905200	2.0E-6	2187.16729	18.01	0.03
OGLE-LMC-RRLYR-21769	VMC85.516830 ^{-68.744360}	85.516830	-68.744360	RRab	18.900	19.630	0.611569100	1.3E-6	2187.59020	18.00	0.03
OGLE-LMC-RRLYR-19982	VMC84.066750 ^{-68.757110}	84.066750	-68.757110	RRab	18.951	19.599	0.539460000	8.0E-7	2187.68858	18.28	0.04
OGLE-LMC-BBLYB-19933	VMC84 032730 ⁻⁶⁸ 758570	84 032730	-68 758570	BBab	19 102	19 777	0 504270000	5 0E-7	2187 72414	18 20	0.03
OGLE-LMC-BRLVB-22041	VMC85 797780 ⁻⁶⁸ 753850	85 797780	-68 753850	RRab	19.031	19 773	0.568808800	17E-6	2187 49089	18.02	0.03
OCLE IMC PRIVE 18610	VMC82 167860 68 754000	82 167960	68 754000	PRob	10.142	10 740	0.540085600	1056	2167 25222	10.02	0.04
OCLE I MC DDIVD 21242	VMC95.107800 08.754000	05.107000 05.045705	68 762080	DDab	10.104	10.042	0.540505000	2.1E.6	2107.333333	10.02	0.04
OGLE-LMC-RRLIR-21242	VMC85.045785 08.705280	85.045785	-08.703280	nnab	19.104	19.945	0.023007900	2.1E-0	2107.20071	10.05	0.03
OGLE-LMC-RRLYR-20030	VMC84.098595_68.770760	84.098595	-08.770760	RRC	18.804	19.332	0.341342400	9.0E-7	2187.50435	18.20	0.03
OGLE-LMC-RRLYR-19673	VMC83.841330_68.771850	83.841330	-68.771850	RRab	18.913	19.503	0.520188700	6.0E-7	2187.25645	18.13	0.03
OGLE-LMC-RRLYR-20233	VMC84.242100_68.772270	84.242100	-68.772270	RRab	19.036	19.587	0.465786900	4.0E-7	2187.36644	18.22	0.03
OGLE-LMC-RRLYR-19026	VMC83.421735_68.774650	83.421735	-68.774650	RRab	19.256	20.195	0.661663300	4.7E-6	2167.75844	18.09	0.03
OGLE-LMC-RRLYR-18856	VMC83.318865 68.777270	83.318865	-68.777270	RRab	18.942	19.559	0.558969400	5.0E-7	2167.42670	18.16	0.03
OGLE-LMC-RRLYR-21483	VMC85.235715 ^{68.778370}	85.235715	-68.778370	RRab	18.786	19.415	0.559362300	6.0E-7	2187.68269	18.02	0.03
OGLE-LMC-RRLYR-18861	VMC83.322225 ^{-68.779960}	83.322225	-68.779960	RRab	18.952	19.639	0.611226600	1.4E-6	2167.47452	18.07	0.03
OGLE-LMC-RRLYR-20191	VMC84.216030 ^{-68.771700}	84.216030	-68.771700	RRab	18.792	19.516	0.653812800	5.4E-6	2187.74689	17.90	0.03
OGLE-LMC-RRLYR-20904	VMC84.746025 ^{-68.785890}	84.746025	-68.785890	RRab	19.288	20.101	0.568044000	8.0E-7	2187.50676	18.02	0.03
OGLE-LMC-BRLYB-19458	VMC83.702430 ^{-68.775370}	83,702430	-68.775370	BBe	19.122	19.493	0.230198200	8.0E-7	2167.76437	18.68	0.04
OGLE-LMC-BRLYB-18378	VMC83 029620 ⁻⁶⁸ 784370	83 029620	-68 784370	BBc	18 829	19 276	0.339405000	7 0E-7	2167 85546	18 24	0.03
OGLE-LMC-BRLYB-20495	VMC84 439755 68 792250	84 439755	-68 792250	BBe	19 464	20 273	0.276555700	1 3E-6	2187 51749	18 41	0.04
OGLE IMC BRIVE 21220	VMC85 033035 68 780370	85.033035	68 789370	BBab	10.530	20.210	0.514830500	1.0E-6	2187 30452	18.23	0.03
OGLE-LMC BRIVE 19833	VMC83 057835 68 705740	83 057835	68 795740	BBab	18 550	10.068	0.620177000	0.0E 7	2187.30432	17.01	0.03
OCLE IMC PRIVE 18794	VMC92 221695 69 704140	82 221685	68 704140	DDab	18.550	10.280	0.627262400	1056	2167.40208	17.70	0.03
OGLE-LMC-RRLIR-18724	VMC85.231085 08.794140	85.231083	-00.794140	DDab	10.714	19.200	0.037203400	1.0E-0	2107.20307	18.05	0.03
OGLE-LMC-RRLIR-21329	VMC85.107900_08.790040	85.107900	-08.790040	nnab DD 1	10.909	19.710	0.589551500	1.0E-0	2187.43007	17.00	0.03
OGLE-LMC-RRLYR-21137	VMC84.939255 68.798290	84.939255	-68.798290	RRab	18.832	19.414	0.549448000	6.0E-7	2187.41238	17.99	0.03
OGLE-LMC-RRLYR-19772	VMC83.914830_68.800350	83.914830	-68.800350	RRC	19.085	19.548	0.304159700	(.0E-7	2187.73504	18.45	0.04
OGLE-LMC-RRLYR-19142	VMC83.488710_68.794650	83.488710	-68.794650	RRab	18.866	19.459	0.545384500	6.0E-7	2167.62690	17.98	0.03
OGLE-LMC-RRLYR-21996	VMC85.752030_68.794250	85.752030	-68.794250	RRC	19.340	19.995	0.295908900	9.0E-7	2187.75256	18.48	0.03
OGLE-LMC-RRLYR-19581	VMC83.780430_68.802920	83.780430	-68.802920	RRab	19.027	19.589	0.514528200	1.4E-6	2187.70798	18.30	0.04
OGLE-LMC-RRLYR-21760	VMC85.509915 68.803940	85.509915	-68.803940	RRab	19.456	20.139	0.401189500	5.0E-7	2187.45237	18.82	0.05
OGLE-LMC-RRLYR-18446	VMC83.066940 ^{-68.803790}	83.066940	-68.803790	RRab	19.081	19.758	0.544715900	1.1E-6	2167.42634	18.17	0.03
OGLE-LMC-RRLYR-20969	VMC84.809160 ^{-68.809480}	84.809160	-68.809480	RRab	18.990	-99.99	0.558497700	5.0E-6	299.85580	18.0	0.03
OGLE-LMC-RRLYR-18944	VMC83.378940 ^{-68.812670}	83.378940	-68.812670	RRab	18.936	19.566	0.565201200	5.0E-7	2167.43411	18.13	0.03
OGLE-LMC-RRLYR-20635	VMC84.544185 ^{68.819290}	84.544185	-68.819290	RRab	19.131	20.002	0.648469500	4.7E-6	2187.49296	17.99	0.03
OGLE-LMC-RRLYR-19447	VMC83.694480 ^{-68.820000}	83.694480	-68.820000	RRab	19.576	20.426	0.458894000	1.0E-6	2167.60804	18.38	0.05
OGLE-LMC-BRLYB-18638	VMC83.180280 ^{-68.822400}	83,180280	-68.822400	RRab	18.899	19.448	0.556320600	6.0E-7	2167.41938	18.14	0.03
OGLE-LMC-BRLYB-21052	VMC84 873885 ⁻⁶⁸ 825260	84 873885	-68 825260	BBab	19 045	19 791	0.590729600	1 0E-6	2187 53269	18 15	0.03
OCLE IMC BRIVE 10002	VMC84.074715 68.827640	84.074715	68 827640	BBab	10 208	10 728	0.454786800	5 OF 7	2187 34458	18 52	0.04
OCLE IMC PRIVE 10769	VMC92 012225 68 927550	82 012225	68 827550	DDab	19.200	10 104	0.454780800	1556	2107.34430	17 70	0.04
OCLE IMC DRIVD 21822	VMC85.912325 08.827350	05.912323 05.576205	-00.027000	DDab	10.011	10.194	0.037990300	2.0E-0	2107.39343	17.19	0.03
OGLE-LMC-RREIR-21855	VMC84 125480 68.821110	00.0700000	-00.021110	DDab	10.070	10.401	0.011720000	1 OF 6	2187.34203	10.10	0.03
OGLE-LMC-RRLYR-20082	VMC84.135480 68.832120	84.135480	-08.832120	RRAD	18.879	19.491	0.580931300	1.0E-0	2187.74980	18.18	0.03
OGLE-LMC-KKLYK-19214	VMC83.535045_68.830950	83.535045	-08.830950	KKab	18.991	19.653	0.579848600	1.2E-6	2107.77487	18.13	0.04
OGLE-LMC-RRLYR-19356	VMC83.621475_68.829520	83.621475	-68.829520	RRab	19.076	19.724	0.536226800	5.0E-7	2167.52276	18.20	0.03
OGLE-LMC-RRLYR-19619	VMC83.807295_68.836830	83.807295	-68.836830	RRc	18.868	19.321	0.341276900	9.0E-7	2187.74111	18.16	0.05
OGLE-LMC-RRLYR-18952	VMC83.384130_68.837350	83.384130	-68.837350	RRab	19.254	20.020	0.530376200	1.0E-6	2167.37860	18.36	0.03
OGLE-LMC-RRLYR-18872	VMC83.329335_68.838200	83.329335	-68.838200	RRc	19.106	19.559	0.273941600	5.0E-7	2167.71246	18.45	0.05
OGLE-LMC-RRLYR-19887	VMC83.999055_68.842290	83.999055	-68.842290	RRc	19.127	19.566	0.301345500	1.1E-6	2187.67175	18.58	0.04
OGLE-LMC-RRLYR-20706	VMC84.613830 ^{-68.843290}	84.613830	-68.843290	RRab	19.127	19.924	0.567393400	1.0E-6	2187.52746	18.08	0.03
OGLE-LMC-RRLYR-22040	VMC85.797105 ^{68.836420}	85.797105	-68.836420	RRab	18.425	19.096	0.737662300	2.5E-6	2187.44954	17.61	0.03
OGLE-LMC-RRLYR-18340	VMC83.010270_68.839860	83.010270	-68.839860	RRab	18.726	19.334	0.577986900	9.0E-7	2167.79714	17.89	0.05

OGLE-LMC-BBLYB-19012	VMC83 414745 68 844540	83 414745	-68 844540	BBab	19 106	19 702	0 532377600	6 0E-7	2167 46161	18.33	0.04
OGLE-LMC-BBLVB-18592	VMC83 149275 68 844140	83 149275	-68 844140	BBab	18 783	19 425	0.617181800	1.1E-6	2167 50613	17.99	0.04
OCLE LMC BRIVE 21770	VMC85 518825 68 845700	85 518825	68 845700	BBab	18 986	10.723	0.575156300	1.0E 6	2187 54007	18 15	0.03
OCLE I MC PRIVE 20688	VMC94 500120 68 852080	84 500120	68 852080	DDab	10.300	20.256	0.667875100	2.25 6	2107.54007	18 10	0.03
OCLE I MC DRIVD 21552	VMC84.399130 08.832080	84.399130 85.900705	-08.852080	DDal	19.294	10 562	0.007875100	5.5E-0	2107.00007	10.10	0.04
OGLE-LMC-RRLIR-21552	VMC85.299705 08.852920	85.299705	-08.852920	nnab DD 1	10.930	19.005	0.555949600	0.0E-7	2107.03903	10.13	0.03
OGLE-LMC-RRLYR-21482	VMC85.233555_68.853940	80.233000	-08.853940	RRAD	20.045	21.073	0.436739000	1.0E-0	2187.00550	18.95	0.05
OGLE-LMC-RRLYR-20260	VMC84.261720_68.857290	84.261720	-68.857290	RRe	18.892	19.285	0.259118200	1.2E-6	2187.68257	18.53	0.04
OGLE-LMC-RRLYR-18443	VMC83.065125_68.854270	83.065125	-68.854270	RRab	18.992	19.705	0.603040500	1.4E-6	2167.68955	18.32	0.03
OGLE-LMC-RRLYR-21073	VMC84.890400_68.858680	84.890400	-68.858680	RRab	19.484	20.389	0.540508700	1.0E-6	2187.38662	18.33	0.04
OGLE-LMC-RRLYR-19462	VMC83.706270_68.861680	83.706270	-68.861680	RRc	18.826	19.605	0.364017000	9.0E-7	2167.73195	17.28	0.06
OGLE-LMC-RRLYR-21029	VMC84.857580 68.863670	84.857580	-68.863670	RRc	19.803	20.634	0.323257800	1.4E-6	2187.45023	18.51	0.04
OGLE-LMC-RRLYR-19019	VMC83.418765 ^{68.868310}	83.418765	-68.868310	RRc	18.840	19.448	0.396892000	1.2E-6	2167.84883	17.90	0.04
OGLE-LMC-RRLYR-20388	VMC84.354450 ^{-68.873980}	84.354450	-68.873980	RRab	19.062	19.810	0.557262900	9.0E-7	2187.49785	18.15	0.03
OGLE-LMC-RRLYR-20253	VMC84.253005 ^{-68.873000}	84.253005	-68.873000	RRab	18.338	18.690	0.580268200	2.0E-6	2187.44986	17.66	0.04
OGLE-LMC-RRLYR-20403	VMC84.365700 ^{-68.874670}	84.365700	-68.874670	RRc	18.638	19.084	0.351800500	8.0E-7	2187.44914	18.11	0.04
OGLE-LMC-RRLYR-19257	VMC83.564145 ^{-68.872910}	83.564145	-68.872910	RRab	18.565	19.041	0.600685800	1.3E-6	2167.29235	17.90	0.03
OGLE-LMC-BBLYB-19068	VMC83 446425 ⁻⁶⁸ 876620	83 446425	-68 876620	BBab	18 228	18 509	0.554178100	7 0E-7	2167 66787	17.83	0.03
OGLE-LMC-BBLYB-20383	VMC84 351030 68 880620	84 351030	-68 880620	BBab	19.038	19.638	0.508663900	7 0E-7	2187 40456	18 21	0.04
OGLE-LMC-BBLYB-21287	VMC85.078890 68.879020	85.078890	-68 879020	BBc	20.066	21 130	0.301867700	1.3E-6	2187 47775	18.67	0.04
OCLE LMC BRIVE 19358	VMC83 624130 68 884090	83 624130	68 884000	BBab	18 834	10 406	0.569120700	1.0E-0	2167 57624	17.05	0.03
OCLE I MC DRIVE 19795	VMC92 269295 69 992220	82.024130	68 882220	DDo	18.059	10.400	0.210155400	6 OF 7	2107.57024	19.25	0.03
OCLE I MC DRIVD 21072	VMC85.208285 08.882250	05.200205 05.720525	-00.002230	DDal	10.932	10.716	0.510155400	0.0E-7	2107.00101	10.20	0.04
OGLE-LMC-RRLIR-21972	VMC85.750555 08.880500	85.750555	-08.880300	nnab DD 1	19.034	19.710	0.538729900	0.0E-7	2107.30909	10.21	0.03
OGLE-LMC-RRLYR-20743	VMC84.640245_68.881420	84.640245	-08.881420	RRAD	19.352	20.481	0.504690800	1.0E-6	2190.50029	18.10	0.05
OGLE-LMC-RRLYR-18646	VMC83.182365_68.889520	83.182365	-68.889520	RRab	18.935	19.577	0.522815400	6.0E-7	2167.84702	18.28	0.04
OGLE-LMC-RRLYR-19083	VMC83.456700_68.893320	83.456700	-68.893320	RRe	18.615	18.961	0.268939200	7.0E-7	2167.69623	18.18	0.03
OGLE-LMC-RRLYR-19369	VMC83.631465_68.893550	83.631465	-68.893550	RRab	18.679	18.869	0.522912100	4.0E-7	2167.52091	17.79	0.04
OGLE-LMC-RRLYR-18635	VMC83.177970_68.895060	83.177970	-68.895060	RRc	18.635	19.152	0.402091000	8.0E-7	2167.56308	18.03	0.03
OGLE-LMC-RRLYR-18450	VMC83.070630_68.896200	83.070630	-68.896200	RRab	18.717	19.114	0.602567600	1.3E-6	2167.78846	17.95	0.04
OGLE-LMC-RRLYR-19693	VMC83.853240 68.900000	83.853240	-68.900000	RRab	19.423	20.266	0.552391500	1.7E-6	2187.73055	18.33	0.03
OGLE-LMC-RRLYR-21256	VMC85.058145 ^{68.900330}	85.058145	-68.900330	RRc	18.511	18.853	0.323173700	1.0E-6	2187.48553	17.95	0.03
OGLE-LMC-RRLYR-19810	VMC83.945220 ^{-68.905090}	83.945220	-68.905090	RRab	19.013	19.911	0.678896700	1.9E-6	2187.20037	18.04	0.03
OGLE-LMC-RRLYR-18831	VMC83.299185 ^{68.904810}	83.299185	-68.904810	RRab	18.548	19.163	0.739795700	2.2E-6	2167.83075	17.76	0.03
OGLE-LMC-RRLYR-18958	VMC83.387145 ^{68.914400}	83.387145	-68.914400	RRab	18.849	19.478	0.589581500	8.0E-7	2167.70192	18.15	0.03
OGLE-LMC-RRLYR-18899	VMC83.345385 ^{-68.915940}	83.345385	-68.915940	RRab	18.743	19.414	0.649198400	1.7E-6	2167.48258	17.94	0.03
OGLE-LMC-RRLYR-21620	VMC85.361370 ^{-68.915660}	85.361370	-68.915660	RRab	19.238	20.137	0.574971600	2.8E-6	2187.30947	18.19	0.03
OGLE-LMC-BBLYB-21359	VMC85 135455 ⁻⁶⁸ 917700	85 135455	-68 917700	BBab	19.841	20.880	0.578728500	2 3E-6	2187 38823	18.30	0.04
OGLE-LMC-BBLYB-18374	VMC83 028645 68 915800	83 028645	-68 915800	BBab	19.871	20.946	0.555939300	1.6E-6	2167 68704	18 24	0.04
OGLE-LMC-BBLYB-20325	VMC84 307755 68 920720	84 307755	-68 920720	BBab	18 817	19 442	0.592398000	8 0E-7	2187 58938	17.88	0.04
OCLE LMC BRIVE 20048	VMC84 114645 68 022510	84 114645	68 022510	BBab	10.011	10.053	0.522330900	1.5E.6	2187 38578	18 35	0.04
OCLE LMC BRIVE 10363	VMC83 627730 68 026080	83 627730	68 026080	BBab	18 823	10 550	0.631011400	2.0E.6	2167.85418	17.80	0.04
OCLE I MC PRIVE 21820	VMC85 572105 68 028200	85.572105	68 028200	DDab	10.020	20.154	0.535582200	2.0E-0	2107.00410	18.05	0.03
OCLE I MC DRIVD 21506	VMC85.372195 08.928200	85.572195 85 955770	-08.928200	DDab	19.242	20.134	0.525562200	6.0E-7	2187.02803	17.02	0.04
OCLE IMC DRIVD 21812	VMC85.255770 08.951700	05.255770 05 557505	-08.931700	nnab DD-	10.031	19.134	0.372924400	0.0E-7	2107.27000	10.46	0.03
OGLE-LMC-RRLIR-21815	VMC85.557585_08.950850	85.557585	-08.930830	nnc DD 1	19.044	20.024	0.346461000	2.0E-0	2187.51952	18.40	0.04
OGLE-LMC-RRLYR-20097	VMC84.143520_68.936550	84.143520	-68.936550	RRab	19.572	20.686	0.555409500	1.9E-6	2187.49598	18.00	0.04
OGLE-LMC-RRLYR-20053	VMC84.119535_68.936470	84.119535	-68.936470	RRab	19.837	21.024	0.598669600	3.5E-6	2187.46061	18.26	0.04
OGLE-LMC-RRLYR-21706	VMC85.451085_68.934040	85.451085	-68.934040	RRab	19.329	20.233	0.695502700	3.1E-6	2187.35141	18.04	0.04
OGLE-LMC-RRLYR-19503	VMC83.735715_68.940260	83.735715	-68.940260	RRab	19.428	20.252	0.491801400	5.0E-7	2167.66537	18.34	0.03
OGLE-LMC-RRLYR-18641	VMC83.181225 68.940650	83.181225	-68.940650	RRab	18.707	19.290	0.614159800	7.0E-7	2167.47344	17.96	0.03
OGLE-LMC-RRLYR-21605	VMC85.347975 ^{68.941550}	85.347975	-68.941550	RRab	18.951	19.708	0.650949100	5.1E-6	2187.74682	18.02	0.03
OGLE-LMC-RRLYR-19218	VMC83.538780 ^{-68.948240}	83.538780	-68.948240	RRab	18.803	19.457	0.595896200	4.0E-7	2167.55680	17.92	0.03
OGLE-LMC-RRLYR-21297	VMC85.084395 ^{68.948670}	85.084395	-68.948670	RRab	19.494	20.432	0.551878000	1.0E-6	2187.39896	18.40	0.04
OGLE-LMC-RRLYR-19799	VMC83.936355 ^{-68.950950}	83.936355	-68.950950	RRab	19.019	19.884	0.724928400	3.6E-6	2187.46299	17.91	0.03
OGLE-LMC-RRLYR-18740	VMC83.242605 68.950090	83.242605	-68.950090	RRc	18.646	19.071	0.378571200	8.0E-7	2167.62349	18.07	0.03
OGLE-LMC-RRLYR-21328	VMC85.105410 ^{-68.950410}	85.105410	-68.950410	RRc	19.301	20.174	0.383625600	1.3E-6	2187.68501	18.24	0.03
OGLE-LMC-RRLYR-21668	VMC85.411230 ^{-68.949250}	85.411230	-68.949250	RRab	18.882	19.566	0.556302900	6.0E-7	2187.56223	17.86	0.03
OGLE-LMC-RRLYR-19150	VMC83.494425 ^{-68.953030}	83,494425	-68.953030	RRab	18.647	19.090	0.581072100	1.2E-6	2167.71961	17.91	0.03
OGLE-LMC-RRLYR-18336	VMC83.005620 ^{-68.952860}	83.005620	-68.952860	BRab	19.588	20.471	0.488061700	4.0E-7	2167.46535	18.40	0.04
OGLE-LMC-BBLYB-19490	VMC83 725095 68 956860	83 725095	-68 956860	BBab	19 123	19 943	0.606692500	1 3E-6	2167 64967	18 16	0.04
0011-1m0-m11-19490	v mic 00.720000 00.000000	00.120030	-00.000000	Turab	1 10.140	13.340	0.000032000	1.010-0	a101.04301	1 10.10	0.04

OGLE-LMC-RRLYB-20877	VMC84.726330 68.957000	84.726330	-68.957000	RRab	19.394	20.129	0.473998100	1.5E-6	2187.75970	18.42	0.05
OGLE-LMC-BBLYB-21856	VMC85 599780 ⁻⁶⁸ 952980	85 599780	-68 952980	RRab	19 361	20.435	0.696444800	2.6E-6	2187 33152	18.06	0.03
OGLE LMC BRIVE 20384	VMC84 352560 68 961880	84 352560	68 061880	BRab	18 051	10 805	0.007203500	8.6F.6	2186 86960	17 71	0.03
OCLE IMC PRIVE 21499	VMC85 220600 68 060120	85.220600	68.060120	PRo	10.001	10.442	0.277861100	8 OF 7	2180.00000	19.61	0.00
OCLE I MC DRIVD 20184	VMC84.207085-68.062270	84.207085	-08.900130	DD-L	10.564	19.442	0.277801100	0.0E-7	2107.71729	18.01	0.04
OGLE-LMC-RRLIR-20184	VMC84.207285 08.905570	04.207200	-08.903370	nnab DD 1	19.004	20.529	0.550055000	9.0E-7	2107.20941	18.04	0.05
OGLE-LMC-RRLYR-18410	VMC83.049075_68.960300	83.049075	-68.960300	RRAD	19.038	19.894	0.662660600	1.5E-0	2107.45952	17.05	0.05
OGLE-LMC-RRLYR-20932	VMC84.768975_68.968580	84.768975	-68.968580	RRab	19.214	19.867	0.525523200	1.5E-6	2187.24475	18.29	0.03
OGLE-LMC-RRLYR-22069	VMC85.832610_68.962210	85.832610	-68.962210	RRab	18.850	19.459	0.566191100	8.0E-7	2187.46241	18.01	0.03
OGLE-LMC-RRLYR-21142	VMC84.948360_68.969170	84.948360	-68.969170	RRab	19.030	19.874	0.633420100	2.0E-6	2187.31713	18.00	0.03
OGLE-LMC-RRLYR-19200	VMC83.522445 68.970750	83.522445	-68.970750	RRab	18.898	19.495	0.544953300	7.0E-7	2167.54183	18.23	0.04
OGLE-LMC-RRLYR-18312	VMC82.997475 ^{68.969010}	82.997475	-68.969010	RRc	19.004	19.503	0.346867600	1.6E-6	2167.82412	18.42	0.03
OGLE-LMC-RRLYR-20407	VMC84.371295 ^{68.975360}	84.371295	-68.975360	RRab	19.138	19.835	0.554148000	2.3E-6	2187.32164	18.25	0.04
OGLE-LMC-RRLYR-20775	VMC84.660090 ^{-68.975180}	84.660090	-68.975180	RRab	18.766	19.302	0.558832900	7.0E-7	2193.54380	18.01	0.04
OGLE-LMC-RRLYR-20679	VMC84.590940 ^{-68.977600}	84.590940	-68.977600	RRab	18.389	19.107	0.794743500	3.1E-6	2187.15490	17.22	0.06
OGLE-LMC-BRLYB-20094	VMC84 141660 68 980000	84 141660	-68 980000	BBab	19 591	20 403	0.505247200	1.8E-6	2187 26317	18 44	0.05
OGLE-LMC-BRLYB-19067	VMC83 445600 ⁻⁶⁸ 978450	83 445600	-68 978450	BBe	19.026	19 311	0.264750900	8 0E-7	2167 74996	18 73	0.05
OGLE-LMC-BRLVB-19113	VMC83 474865 68 979310	83 474865	-68 979310	BBab	19.036	19 587	0.478389800	3.0E-7	2167 51302	18.22	0.04
OCLE LMC BRIVE 18560	VMC83 120730 68 078260	83 120730	68 978260	BBab	18 053	10.670	0.665935200	1.7E.6	2167 80250	17.94	0.04
OCLE I MC PRIVE 18601	VMC92 150205 68 070580	82 150205	68 070580	DDo	10.300	20.240	0.252157400	1.711-0	2107.80250	18.26	0.03
OCLE I MC DRIVD 18525	VMC83.139205 08.979580	03.139203	-08.979380	DD-L	19.491	10.706	0.353137400	1.5E-0	2107.03084	17.70	0.04
OGLE-LMC-RRLYR-18535	VMC83.118525_68.980800	83.118525	-68.980800	RRAD	18.928	19.796	0.765725500	2.7E-0	2107.70705	11.18	0.03
OGLE-LMC-RRLYR-18465	VMC83.077605_68.982550	83.077605	-68.982550	RRC	19.422	20.143	0.337277800	1.2E-6	2167.79285	18.41	0.03
OGLE-LMC-RRLYR-18327	VMC83.003310_68.980620	83.003310	-68.980620	RRC	19.116	19.543	0.296301800	1.1E-6	2167.63000	18.51	0.04
OGLE-LMC-RRLYR-19846	VMC83.968635_68.989900	83.968635	-68.989900	RRc	19.304	20.026	0.338426900	1.1E-6	2187.54125	18.29	0.03
OGLE-LMC-RRLYR-19507	VMC83.737755_68.990970	83.737755	-68.990970	RRab	19.030	19.695	0.530509000	6.0E-7	2167.73955	18.24	0.03
OGLE-LMC-RRLYR-21097	VMC84.910395_68.990750	84.910395	-68.990750	RRab	18.591	19.349	0.862058600	4.0E-6	2187.10632	17.53	0.02
OGLE-LMC-RRLYR-19008	VMC83.411760 68.991380	83.411760	-68.991380	RRab	19.023	19.705	0.625601400	1.8E-6	2167.50199	18.20	0.03
OGLE-LMC-RRLYR-19754	VMC83.905080 ^{-68.992760}	83.905080	-68.992760	RRab	19.421	20.311	0.593111800	2.3E-6	2187.34571	18.26	0.04
OGLE-LMC-RRLYR-18603	VMC83.160465 ^{-68.990920}	83.160465	-68.990920	RRe	19.693	20.399	0.277569200	1.4E-6	2167.68732	18.84	0.05
OGLE-LMC-RRLYR-19110	VMC83.473215 ^{-68.995260}	83.473215	-68.995260	RRab	18.861	19.554	0.643157500	2.8E-6	2167.43524	18.03	0.03
OGLE-LMC-RRLYR-20342	VMC84.318585 ^{68.996840}	84.318585	-68.996840	RRab	19.081	19.871	0.571804800	1.9E-6	2187.52192	18.05	0.04
OGLE-LMC-RRLYR-20546	VMC84.474420 ^{-68,996800}	84.474420	-68.996800	RRc	19.133	19.693	0.326112700	2.1E-6	2187.71206	18.29	0.04
OGLE-LMC-RRLYR-20431	VMC84.382230 ^{-68.999330}	84.382230	-68.999330	RRab	18.578	19,102	0.600250400	6.0E-7	2187.65360	17.94	0.03
OGLE-LMC-BRLYB-19223	VMC83 542170 ⁻⁶⁹ 000100	83 542170	-69.000100	BBab	19 093	19.877	0.595752000	1.3E-6	2167 88194	18 17	0.03
OGLE-LMC-BBLYB-20343	VMC84 320745 69 000970	84 320745	-69.000970	BBab	19 031	19 749	0.470396500	1.2E-6	2187 58920	18 27	0.03
OGLE-LMC-BBLYB-21824	VMC85 568010 68 992560	85 568010	-68 992560	BBab	18 696	19 303	0.692365300	1.2E-6	2187 55302	17 71	0.03
OCLE I MC PRIVE 20565	VMC84 485720 60 002200	84 485720	60.002200	DDab	10.030	20.048	0.402220000	6 OF 7	2187.55502	18 20	0.03
OCLE I MC DDIVD 18208	VMC82.042445_68.0002290	82 042445	-09.002290	DDab	10.270	20.048	0.492330900	0.0E-7	2187.00430	18.30	0.03
OCLE IMC DRIVD 19674	VMC82 202120 60 000500	82 202120	-08.999080	DDab	10.105	10.020	0.555012700	2.1E-0	2107.70020	18.30	0.03
OGLE-LMC-RRLIR-18074	VMC85.202120 09.000500	05.202120	-09.000500	nnab	19.195	19.939	0.307323100	2.3E-0	2107.50209	10.24	0.03
OGLE-LMC-RRLIR-21898	VMC85.055805 08.998180	85.055805	-08.998180	DD	19.270	19.903	0.544957900	1.3E-0	2107.55097	10.33	0.03
OGLE-LMC-RRLYR-18930	VMC83.369625_69.005070	83.369625	-69.005070	RRAD	18.917	19.467	0.510462400	1.0E-7	2107.58022	18.20	0.03
OGLE-LMC-RRLYR-21860	VMC85.602030_69.005580	85.602030	-69.005580	RRab	19.050	19.916	0.599766000	1.4E-6	2187.78544	18.08	0.03
OGLE-LMC-RRLYR-21440	VMC85.201575_69.010610	85.201575	-69.010610	RRab	19.240	19.984	0.480823300	1.8E-6	2187.57458	18.40	0.03
OGLE-LMC-RRLYR-21729	VMC85.481820_69.010270	85.481820	-69.010270	RRc	19.151	19.750	0.328939000	1.7E-6	2187.52369	18.36	0.03
OGLE-LMC-RRLYR-21711	VMC85.453650 69.012010	85.453650	-69.012010	RRab	19.143	20.029	0.659893700	2.3E-6	2187.75892	17.97	0.03
OGLE-LMC-RRLYR-21076	VMC84.892050 ^{-69.018780}	84.892050	-69.018780	RRab	18.944	19.637	0.559051600	1.5E-6	2187.76797	18.08	0.04
OGLE-LMC-RRLYR-18703	VMC83.216925 ^{-69.017570}	83.216925	-69.017570	RRc	19.127	19.697	0.317922600	7.0E-7	2167.80262	18.29	0.04
OGLE-LMC-RRLYR-19284	VMC83.579175 ^{69.022170}	83.579175	-69.022170	RRab	19.012	19.663	0.546583700	1.7E-6	2167.84068	18.08	0.04
OGLE-LMC-RRLYR-18477	VMC83.082540 ^{-69.024210}	83.082540	-69.024210	RRab	19.026	19.735	0.595339100	8.0E-7	2167.60238	18.10	0.03
OGLE-LMC-RRLYR-22009	VMC85.762275 ^{-69.023090}	85.762275	-69.023090	RRab	19.522	20.719	0.572251000	1.2E-6	2187.50299	18.31	0.03
OGLE-LMC-RRLYR-20341	VMC84.317415 ^{69.031650}	84.317415	-69.031650	RRab	19.253	20.091	0.530734300	1.9E-6	2187.37703	18.11	0.03
OGLE-LMC-BRLYB-19695	VMC83.853495 ^{-69.033140}	83.853495	-69.033140	RRab	19.608	20.820	0.652492600	3.0E-6	2187.21007	18.12	0.03
OGLE-LMC-BBLYB-19915	VMC84 021375 69 033860	84 021375	-69.033860	BBab	20.066	21 348	0.528720600	2.5E-6	2187 52614	18 41	0.03
OGLE-LMC-BBLVB-19919	VMC83 443290 69 034080	83 443200	-69.034080	BBab	19 182	19 749	0.453970900	4.0E-7	2167 54980	18 45	0.04
OCLE LMC BRIVE 19901	VMC83 038860_60 022220	83 038860	-60 033220	BBc	10 042	10 620	0.356349400	9.0E-7	2167 67147	18.27	0.04
OCLE LMC BRIVE 10040	VMC83 438625 60 027050	83 438625	60.037050	BBab	18 872	10.601	0.646116000	1 3E 6	2167 46447	17.05	0.04
OCIEIMC PRIVE 10081	VMC84 044085 60 020150	84 04408F	60.029150	DD	10.013	21 021	0.040110500	1.50-0	2107.40447	19.60	0.03
OGLE-LMC-RRLIR-19951	VMC82 262770 60 026080	04.044960	-09.036130	DD-1	19.904	21.031	0.29040000	1.0E-0	2107.04002	18.02	0.04
OGLE-LMC-RRLYR-18777	VIVIC83.203770_09.030980	03.203/70	-09.030980	RRAD	19.079	20.771	0.018030000	2.9E-0	2107.77229	18.20	0.03
OGLE-LMC-RRLYR-21150	v MC84.954060_69.039300	84.954060	-09.039300	ККар	18.917	19.616	0.585496800	1.9E-6	2187.21321	18.04	0.05

OGLE-LMC-BBLYB-18914	VMC83 358780 69 039920	83 358780	-69.039920	BBab	19.076	19 737	0 542292000	6 0E-7	2167 73891	18 14	0.03
OCLE I MC DDIVD 21208	VMC85 084500 60 040020	00.000100 0F 004500	60.040020	DDal	10.409	20.220	0.467010800	0.0E-1	2107.10001	10.14	0.00
OGLE-LMC-RRLIR-21298	VMC85.084500_09.040020	85.084500	-09.040020	nnab	19.498	20.329	0.407919800	2.1E-0	2107.47010	10.31	0.04
OGLE-LMC-RRLYR-20000	VMC84.079650_69.044060	84.079650	-69.044060	RRab	19.534	20.613	0.596976800	2.1E-6	2193.25562	18.05	0.04
OGLE-LMC-RRLYR-20768	VMC84.655425 69.039720	84.655425	-69.039720	RRab	19.662	20.158	0.565382100	2.0E-6	2187.30682	18.15	0.03
OGLE-LMC-RRLYR-18894	VMC83.343975 ^{-69.047160}	83.343975	-69.047160	RRab	18.589	19.206	0.557740100	6.0E-7	2167.47906	17.86	0.03
OGLE-LMC-BBLYB-18414	VMC83 049300 ⁻⁶⁹ 047100	83 049300	-69.047100	BBab	18 914	19 711	0.610726000	1 3E-6	2167 88934	17 92	0.03
OCLE IMC PRIVE 18706	VMC82 272215 60 048520	82 272215	60.048520	PRob	10.024	10.662	0.466500600	2057	2167 44760	18.02	0.02
OGLE-LMC DDLVD 01017	VMC05.272215 09.040550	05.212210	-03.040550	DD	10.004	10.002	0.400533000	1.200	2107.44700	10.02	0.03
OGLE-LMC-RRLYR-21317	VMC85.096020_69.051200	85.096020	-69.051200	RRe	19.061	19.368	0.244033400	1.3E-0	2187.73194	18.03	0.04
OGLE-LMC-RRLYR-21801	VMC85.545585 69.048480	85.545585	-69.048480	RRab	19.116	19.913	0.574518300	9.0E-7	2187.60345	17.97	0.03
OGLE-LMC-RRLYR-18951	VMC83.382615 ^{69.054270}	83.382615	-69.054270	RRe	19.101	19.646	0.280567900	7.0E-7	2167.63827	18.39	0.04
OGLE-LMC-BBLYB-18848	VMC83.311980 ^{-69.055090}	83.311980	-69.055090	RRab	18.938	19.617	0.549491000	6.0E-7	2167.55903	18.18	0.03
OGLE-LMC-BRLVB-21312	VMC85 094535 69 056270	85 094535	-69.056270	RRab	19 217	20.080	0 565951800	$1.1E_{-6}$	2187 43611	18.08	0.03
OCLE IMC PRIVE 10782	VMC82 025405 60 050060	82 025405	60.050060	PRob	10.720	20.026	0.604754400	2 9 5 6	2187 72801	19.17	0.02
OGLE-LMC DDIVD 10042	VMC003.325405 03.055000	00.020400	-03.053000	DD	10.001	10.001	0.004734400	1.0E.C	0167 41591	10.17	0.03
OGLE-LMC-RRLYR-19043	VMC83.435565_69.056760	83.435565	-09.050700	RRab	18.981	19.681	0.622039300	1.0E-0	2107.41531	18.07	0.03
OGLE-LMC-RRLYR-21523	VMC85.274550 69.058690	85.274550	-69.058690	RRab	18.835	19.537	0.583370500	3.6E-6	2187.33968	17.90	0.03
OGLE-LMC-RRLYR-19279	VMC83.575785 ^{69.069020}	83.575785	-69.069020	RRab	19.200	20.086	0.617814600	1.3E-6	2167.79387	18.07	0.03
OGLE-LMC-RRLYR-19584	VMC83.782350 ^{-69.070060}	83.782350	-69.070060	RRab	19.626	20.795	0.533838700	1.0E-6	2167.38428	17.65	0.06
OGLE-LMC-BRLVB-19842	VMC83 966265 69 067490	83 966265	-69.067490	RRab	19 174	20.020	0.577960600	$1.2E_{-6}$	2187 33619	17 75	0.06
OCLE I MC PRIVE 10118	VMC82 476080 60 070220	82 476080	60.070220	DDo	10.256	10.862	0.202044800	1 2 5 6	2167 80010	19.27	0.04
OGLE-LMC-RREIR-19118	VMC83.470980 09.070330	03.470900	-09.070330	DD	10.010	19.803	0.293944800	0.1E.C	2107.80910	10.07	0.04
OGLE-LMC-RRLYR-19216	VMC83.538270_69.074280	83.538270	-69.074280	RRAD	19.212	20.043	0.657178400	2.1E-0	2107.42285	18.09	0.03
OGLE-LMC-RRLYR-18399	VMC83.042730 69.066740	83.042730	-69.066740	RRe	19.107	19.522	0.269528000	6.0E-7	2167.65579	18.46	0.04
OGLE-LMC-RRLYR-21467	VMC85.219035 ^{69.075790}	85.219035	-69.075790	RRab	19.243	20.021	0.522455900	6.0E-7	2187.29099	18.22	0.03
OGLE-LMC-RRLYR-21193	VMC84.998700 ^{-69.078280}	84.998700	-69.078280	RRab	18.698	19.433	0.677025400	1.9E-6	2187.53733	17.75	0.03
OGLE-LMC-BBLYB-20677	VMC84 589725 ⁻⁶⁹ 080470	84 589725	-69.080470	BBab	19 624	20.045	0.537265800	9 0E-7	2187 60585	18 15	0.04
OGLE-LMC-BBLVB-20591	VMC84 506400 69 081330	84 506400	-69.081330	BBc	19 288	19 180	0.320690600	1.6E-6	2187 65124	17.89	0.06
OCLE I MC PRIVE 20080	VMC94 140415 60 081250	84.140415	60.081250	PRo	10.059	20.976	0.262522400	2456	2187.71460	17.00	0.10
OGLE-LMC-RREIR-20089	VMC05 501015 09.081200	04.140410	-09.081230	DD	19.956	20.870	0.303322400	1.1E.C	2187.71409	17.03	0.10
OGLE-LMC-RRLYR-21840	VMC85.581315_69.077680	85.581315	-09.077080	RRAD	18.075	19.324	0.656178400	1.1E-0	2187.38700	17.79	0.03
OGLE-LMC-RRLYR-18953	VMC83.385990_69.082170	83.385990	-69.082170	RRC	19.281	19.827	0.307994000	9.0E-7	2167.67328	18.71	0.05
OGLE-LMC-RRLYR-19351	VMC83.619315_69.083550	83.619315	-69.083550	RRab	19.113	19.964	0.673158700	1.6E-6	2167.58369	18.01	0.03
OGLE-LMC-RRLYR-20141	VMC84.172305 ^{69.084250}	84.172305	-69.084250	RRab	19.563	20.344	0.465502600	1.0E-6	2187.67179	18.40	0.04
OGLE-LMC-RRLYR-20192	VMC84.216510 ^{-69.084670}	84.216510	-69.084670	RRab	19.513	20.550	0.639869800	2.6E-6	2187.16996	18.14	0.03
OGLE-LMC-BBLYB-18684	VMC83.207340 ^{-69.080310}	83.207340	-69.080310	RRab	19.022	19.858	0.761693200	4.2E-6	2167.23047	17.86	0.03
OGLE-LMC-BBLVB-20058	VMC84 121155 69 086300	84 121155	-69.086300	BBc	10 333	19 946	0.317858700	2 0E-6	2187 49008	18.04	0.05
OCLE LMC BRIVE 20071	VMC85 834365 69 078790	85 834365	60.078700	BBab	10.084	10.830	0.582069600	9 OF 7	2187 35702	18.05	0.04
OGLE-LMC-RREIR-22071	VMC85.854505 09.078790	00.004000	-09.018190	DD	10.079	19.830	0.382009000	9.0E-7	2187.33702	10.00	0.04
OGLE-LMC-RRLIR-18285	VMC82.989000_09.085090	82.989000	-09.083090	nnc	19.072	19.034	0.370199100	1.0E-0	2107.50908	10.29	0.05
OGLE-LMC-RRLYR-19093	VMC83.462415_69.086050	83.462415	-69.086050	RRC	19.471	20.300	0.322717600	8.0E-7	2167.86246	18.38	0.05
OGLE-LMC-RRLYR-21313	VMC85.094850 69.086180	85.094850	-69.086180	RRab	19.774	20.975	0.461643300	7.0E-7	2187.31068	18.51	0.05
OGLE-LMC-RRLYR-20596	VMC84.509865 ^{69.088940}	84.509865	-69.088940	RRc	19.399	20.122	0.339024900	1.1E-6	2187.67386	18.15	0.07
OGLE-LMC-RRLYR-21685	VMC85.426620 ^{-69.084740}	85.426620	-69.084740	RRe	19.483	20.002	0.246063100	1.7E-6	2187.57616	18.83	0.06
OGLE-LMC-BBLYB-19974	VMC84.059490 ^{-69.090040}	84.059490	-69.090040	BBc	19.389	20.041	0.298181300	1.0E-6	2187.48736	18.61	0.06
OGLE-LMC-BBLVB-19341	VMC83 613270 ⁻⁶⁹ 089870	83 613270	-69 089870	BBab	19 359	20 106	0.475793000	1.0E-6	2167 82378	18.45	0.04
OCLE I MC PRIVE 18272	VMC82 028200 60 087240	82 028200	60.087240	PRab	19.059	10.655	0.644864000	2.65.6	2167 52028	19.11	0.04
OCLE IMC DRIVE 10006	VMC84 014210 60 001040	84.014210	60.001040	DDal	10.355	20.212	0.044804900	2.01-0	2107.52556	18.04	0.04
OGLE-LMC-RRLIR-19900	VMC84.014510_09.091940	84.014310	-09.091940	nnab	19.372	20.313	0.595058000	2.86-0	2107.00010	18.04	0.03
OGLE-LMC-RRLYR-21538	VMC85.286340_69.086510	85.286340	-69.086510	RRab	18.781	19.483	0.628496400	1.9E-6	2187.18450	17.86	0.03
OGLE-LMC-RRLYR-19637	VMC83.818950 69.093650	83.818950	-69.093650	RRab	19.956	21.140	0.555128700	2.4E-6	2187.51450	18.30	0.04
OGLE-LMC-RRLYR-19560	VMC83.767725 ^{69.094140}	83.767725	-69.094140	RRab	19.783	20.953	0.589503500	4.6E-6	2248.28695	18.13	0.03
OGLE-LMC-RRLYR-22048	VMC85.809435 ^{69.087360}	85.809435	-69.087360	RRc	19.216	19.930	0.340953700	1.3E-6	2187.74472	18.33	0.03
OGLE-LMC-BBLYB-18626	VMC83 173230 ⁻⁶⁹ 092130	83 173230	-69.092130	BBab	19 254	19 995	0.500799900	1 5E-6	2167 46862	18.31	0.03
OCLE LMC BRIVE 20637	VMC84 545955 69 096450	84 545955	69.092100	BBab	10 144	00.00	0.544612800	4.6E.6	2187 51531	17.80	0.00
OGLE-LMC-RREIR-20037	VMC84.545955_09.090450	04.040900	-09.090430	DD	19.144	-99.99	0.544012800	4.012-0	2187.51551	17.09	0.04
OGLE-LMC-RRLYR-21250	VMC85.052940_69.093730	85.052940	-69.093730	RRAD	18.770	19.398	0.568557800	9.0E-7	2187.41952	17.89	0.03
OGLE-LMC-RRLYR-18337	VMC83.008665_69.093610	83.008665	-69.093610	RRab	18.608	19.323	0.689194700	3.0E-6	2193.23943	17.75	0.03
OGLE-LMC-RRLYR-20413	VMC84.372930 69.100670	84.372930	-69.100670	RRab	18.700	19.337	0.631214300	2.9E-6	2193.64697	17.90	0.03
OGLE-LMC-RRLYR-18852	VMC83.315835 ^{69.100120}	83.315835	-69.100120	RRc	19.413	20.100	0.338742600	1.3E-6	2167.81930	18.43	0.03
OGLE-LMC-RRLYR-18680	VMC83.206080 69.100850	83.206080	-69.100850	RRab	18.925	19.528	0.495772800	5.0E-7	2167.53491	18.11	0.03
OGLE-LMC-BBLYB-19586	VMC83 783385 69 104200	83 783385	-69 104200	BRab	20.052	21 405	0 497754000	2.8E-6	2167 62495	18 46	0.04
OGLE-LMC-BBLYB-18400	VMC83 048805 69 102070	83 048805	-69 102970	BRab	18 906	19 473	0.535786200	4 0E-7	2167 42774	17.90	0.04
OCLE I MC DDIVD 21549	VMC85 205265 60 105140	85 205265	60 105140	DDab	10.001	10.962	0.716779800	2.7E 6	0107 60020	17.90	0.04
OGLE-LMC-RRLIR-21348	VMC02 C40005 C0 100140	00.290200	-09.100140	DD	10.001	19.003	0.710773600	2.710-0	2107.00032	10.10	0.03
OGLE-LMC-RKLYR-19386	VMC83.648085_69.108140	83.648085	-09.108140	ккар	19.204	20.059	0.540637200	3.0E-6	2167.53580	18.12	0.03

OGLE-LMC-BBLYB-20051	VMC84.117945 69.106570	84.117945	-69.106570	RRab	19.363	20.125	0.512686900	2.1E-6	2187.31970	18.37	0.04
OGLE-LMC-RRLYR-21285	VMC85.077870 ^{-69.108340}	85.077870	-69.108340	RRc	19.052	19.393	0.381886400	3.0E-6	2187.42570	18.57	0.04
OGLE-LMC-BBLYB-21305	VMC85 090740 69 107580	85 090740	-69.107580	BBab	18 628	19 164	0.525099300	1.0E-6	2187 25414	17 95	0.03
OGLE-LMC-BBLYB-20036	VMC84 105450 69 109840	84 105450	-69 109840	BRab	19 376	20 112	0.475512200	1 1E-6	2187 53125	18.48	0.04
OGLE-LMC-BBLYB-20551	VMC84 477600 69 091310	84 477600	-69.091310	BBc	19.092	19 738	0.372013100	1.8E-6	2187 58670	17.87	0.04
OCLE I MC PRIVE 10710	VMC82 875005 60 116810	82 875005	60 116810	DDab	10.607	20.672	0.640840100	5.65.6	2107.00010	17.07	0.04
OCLE I MC PRIVE 10005	VMC84.078405 60.117120	84.078405	60 117120	DDo	18 820	10 2073	0.049840100	7.0E-0	2107.72004	18.25	0.04
OGLE-LMC-RREIR-19995	VMC84.078495 09.117150	02.000495	-09.117130	DD	10.020	19.207	0.290434800	1.0E-7	2187.08120	10.20	0.03
OGLE-LMC-RRLIR-19555	VMC85.020425 09.110270	85.020425	-09.110270	nnab DD 1	19.210	20.051	0.550055100	1.1E-0	2107.44369	10.00	0.03
OGLE-LMC-RRLYR-21806	VMC85.549875 69.113000	85.549875	-69.113000	RRAD	19.751	21.000	0.037289300	9.6E-6	2187.24784	18.15	0.03
OGLE-LMC-RRLYR-21004	VMC85.409190 69.115590	85.409190	-69.115590	RRC	19.031	20.604	0.350887000	2.2E-0	2187.70749	18.45	0.03
OGLE-LMC-RRLYR-21219	VMC85.024095_69.119960	85.024095	-69.119960	RRC	19.326	20.083	0.344529900	1.5E-0	2187.76394	18.30	0.04
OGLE-LMC-RRLYR-18949	VMC83.381055_69.120040	83.381055	-69.120040	RRab	19.083	19.910	0.642171400	2.5E-6	2167.60770	18.01	0.03
OGLE-LMC-RRLYR-20919	VMC84.758370_69.116170	84.758370	-69.116170	RRab	19.975	-99.99	0.576375700	3.9E-6	2187.35594	18.07	0.06
OGLE-LMC-RRLYR-19519	VMC83.743980_69.122140	83.743980	-69.122140	RRab	19.684	20.880	0.686427800	5.2E-6	2167.64040	18.00	0.03
OGLE-LMC-RRLYR-19179	VMC83.508975_69.120580	83.508975	-69.120580	RRab	19.367	20.177	0.507869600	9.0E-7	2167.85435	18.07	0.04
OGLE-LMC-RRLYR-19402	VMC83.659875 69.124320	83.659875	-69.124320	RRab	18.759	19.438	0.606956900	1.3E-6	2167.86549	18.01	0.03
OGLE-LMC-RRLYR-21072	VMC84.890250 ^{-69.122580}	84.890250	-69.122580	RRc	19.567	20.030	0.285239100	8.0E-7	2187.58493	18.17	0.05
OGLE-LMC-RRLYR-18731	VMC83.238375 ^{-69.123360}	83.238375	-69.123360	RRc	18.814	19.278	0.338443400	8.0E-7	2167.67712	18.20	0.03
OGLE-LMC-RRLYR-20142	VMC84.172590 ^{-69.129720}	84.172590	-69.129720	RRe	19.796	20.481	0.228516200	1.0E-6	2187.66576	19.22	0.11
OGLE-LMC-RRLYR-19979	VMC84.064065 ^{-69.131360}	84.064065	-69.131360	RRab	19.206	20.060	0.606566500	1.1E-6	2187.42422	18.02	0.04
OGLE-LMC-RRLYR-20587	VMC84.502305 ^{-69.123720}	84.502305	-69.123720	RRe	18.991	19.363	0.273546200	1.9E-6	2187.62206	18.44	0.04
OGLE-LMC-RRLYR-20024	VMC84.095325 ^{-69.132480}	84.095325	-69.132480	RRab	19.478	20.334	0.502795400	8.0E-7	2187.48186	18.35	0.03
OGLE-LMC-RRLYR-19157	VMC83.497380 ^{-69.136310}	83,497380	-69.136310	BBc	19.079	19.444	0.336955500	1.0E-6	2167.75042	18.15	0.05
OGLE-LMC-BBLYB-19502	VMC83 735190 ⁻⁶⁹ 137380	83 735190	-69 137380	BBab	19 342	20.178	0 462491000	5 0E-7	2167 73937	18 11	0.03
OGLE-LMC-BBLYB-19087	VMC83 458905 69 137400	83 458905	-69 137400	BRab	18 918	19 687	0.638510300	1 9E-6	2167 85436	18.04	0.03
OGLE-LMC-BBLVB-19923	VMC84 025545 69 140460	84 025545	-69 140460	BRab	18 966	19 769	0.670314700	1.6E-6	2187 67139	17.80	0.02
OGLE-LMC-BBLYB-19435	VMC83 684550 69 141360	83 684550	-69 141360	BBc	18 981	19 688	0.439998200	2.5E-6	2167 72691	18.06	0.02
OCLE LMC BRIVE 18400	VMC83 008635 60 138400	83.008635	60 138400	BBc	10.001	10.510	0.350097500	8 OF 7	2167 79049	18 10	0.03
OCLE LMC BRIVE 18583	VMC83 141220 60 140830	83 141220	60 140830	BBab	10.063	10 605	0.501282000	5.0E-7	2167 60595	18.13	0.03
OCLE I MC PRIVE 20067	VMC84 805740 60 142260	84 805740	60 142260	DDab	18 762	10 220	0.501282000	0.057	2107.00333	18.00	0.03
OCLE I MC DDIVD 21124	VMC84.005740 09.145500	84.005740	-09.143300	DD-L	10.702	19.559	0.572088000	9.0E-7	2107.09721	18.09	0.03
OCLE I MC DDIVD 10796	VMC82.027010 60.146810	84.933940	-09.144320	DD-	20 125	20.520	0.022034900	1.0E.6	2107.75021	10.09	0.03
OGLE-LMC-RRLIR-19780	VMC84.022070_60.140510	84.022270	-09.140810	DD-L	20.135	21.110	0.212131200	1.2E-0	2107.73701	17.00	0.00
OGLE-LMC-RRLYR-21130	VMC84.933270 69.148520	84.933270	-09.148520	RRAD	18.709	19.485	0.014100100	1.8E-0	2187.74485	17.92	0.03
OGLE-LMC-RRLYR-21371	VMC85.143180 09.150550	85.143180	-09.150550	RRC	19.471	19.824	0.308616200	1.0E-0	2187.51524	18.15	0.04
OGLE-LMC-RRLYR-18557	VMC85.128515 69.151460	83.128515	-09.151400	RRAD	18.811	19.475	0.601541300	8.0E-7	2107.55090	17.94	0.03
OGLE-LMC-RRLYR-21469	VMC85.219845_69.156510	85.219845	-69.156510	RRe	19.382	19.934	0.260217300	9.0E-7	2187.65685	18.69	0.04
OGLE-LMC-RRLYR-19682	VMC83.844360_69.160740	83.844360	-69.160740	RRab	19.545	20.624	0.653098700	5.5E-6	2187.74440	17.98	0.03
OGLE-LMC-RRLYR-21268	VMC85.066230_69.159810	85.066230	-69.159810	RRab	19.904	20.804	0.436640100	1.0E-6	2187.69253	18.69	0.03
OGLE-LMC-RRLYR-20175	VMC84.197820_69.165900	84.197820	-69.165900	RRab	19.256	20.192	0.619733600	2.3E-6	2187.38581	17.99	0.03
OGLE-LMC-RRLYR-20246	VMC84.249855_69.167350	84.249855	-69.167350	RRab	19.536	20.701	0.610393200	1.8E-6	2187.30597	18.08	0.03
OGLE-LMC-RRLYR-20108	VMC84.148320_69.170800	84.148320	-69.170800	RRc	19.241	19.978	0.338759100	1.1E-6	2187.68573	18.37	0.05
OGLE-LMC-RRLYR-19827	VMC83.952960_69.171410	83.952960	-69.171410	RRab	20.166	21.422	0.448742400	1.8E-6	2187.69045	18.66	0.04
OGLE-LMC-RRLYR-18451	VMC83.071290_69.168070	83.071290	-69.168070	RRab	19.031	19.672	0.542047200	2.0E-6	2167.44563	18.05	0.03
OGLE-LMC-RRLYR-21556	VMC85.302780 69.168970	85.302780	-69.168970	RRab	19.864	21.342	0.528232800	1.1E-6	2187.34091	18.40	0.04
OGLE-LMC-RRLYR-18878	VMC83.332095 ^{69.170310}	83.332095	-69.170310	RRab	18.808	19.448	0.568543100	6.0E-7	2167.80487	17.98	0.04
OGLE-LMC-RRLYR-21589	VMC85.333245 ^{69.171290}	85.333245	-69.171290	RRab	19.583	20.665	0.557443800	1.1E-6	2187.74609	18.07	0.03
OGLE-LMC-RRLYR-20961	VMC84.799065 ^{-69.172820}	84.799065	-69.172820	RRab	18.744	19.587	0.759972600	2.9E-6	2187.54910	17.59	0.03
OGLE-LMC-RRLYR-21464	VMC85.217310 ^{-69.172200}	85.217310	-69.172200	RRab	19.151	20.123	0.566897000	1.2E-6	2187.33115	17.79	0.04
OGLE-LMC-RRLYR-21005	VMC84.840390 ^{-69.174380}	84.840390	-69.174380	RRab	20.164	21.977	0.484008300	1.2E-6	2187.46214	18.58	0.04
OGLE-LMC-RRLYR-20138	VMC84.168600 ^{-69.176520}	84.168600	-69.176520	BBc	19.240	19.735	0.335173000	1.0E-6	2187.53442	18.20	0.05
OGLE-LMC-BBLYB-19997	VMC84.079305 ^{-69.178260}	84.079305	-69.178260	RRab	19.176	20.097	0.656908500	1.7E-6	2187.55019	18.00	0.03
OGLE-LMC-RRLYB-21916	VMC85.669065 ^{-69.172260}	85.669065	-69.172260	RRab	18.757	19.419	0.624222400	1.9E-6	2187.29415	17.86	0.03
OGLE-LMC-BBLYB-19039	VMC83 432520 69 176400	83 432520	-69 176400	BBe	19 316	19 943	0 270404900	1 2E-6	2167 87004	18.67	0.03
OGLE-LMC-BRLVB-21665	VMC85 409670 69 174370	85 409670	-69 174370	BBab	19.464	20 368	0.563486800	1 0E-6	2187 32447	18 15	0.03
OGLE-LMC-BBLYB-21130	VMC84 943290 69 178880	84 943200	-69 178880	BBab	19.904	21 311	0.606056000	3.5E-6	2187 54940	18 17	0.03
OCLE LMC BRIVE 19929	VMC83 203440 60 170150	83 2034/0	60 170150	BBab	18 507	10 232	0.696573600	1 1 E 6	2167 83505	17 72	0.04
OGLE LMC BRIVE 20256	VMC84 258000 60 179620	84 258000	60 178620	RRab	10.097	20 350	0.518356500	10E.6	2107.033003	18 38	0.05
OCLE IMC DRIVE 10146	VMC82 401545 60 100770	92 401545	60 180770	DDat	10.014	10 784	0.516550500	2.9E-0	2107.04433	18.00	0.05
OGLE-LMO-RRL1R-19146	v 1v1085.491345_09.180770	03.491040	-09.100770	nnab	19.014	19./04	0.096340300	0.012-7	2101.01919	10.22	0.03

OGLE-LMC-RRLYR-19599	VMC83.790120 69.185120	83.790120	-69.185120	RRab	19.922	20.981	0.555203700	1.9E-6	2167.72136	18.47	0.03
OGLE-LMC-RRLYB-21274	VMC85.070895 ^{-69.182490}	85.070895	-69.182490	BBc	18.850	19.385	0.357286500	9.0E-7	2187.61305	18.22	0.02
OGLE-LMC-BRLYB-19215	VMC83 536740 69 188620	83 536740	-69 188620	BBab	18 662	19 208	0 540911200	8 0E-7	2167 68403	18.05	0.03
OGLE-LMC-BRLYB-21959	VMC85 714770 69 183250	85 714770	-69 183250	BBab	18 401	19.055	0.808980100	1.3E-6	2187 58371	17.63	0.02
OGLE-LMC-BRLYB-21621	VMC85 361460 69 186540	85 361460	-69 186540	BBab	19 746	20.980	0.525098000	2.7E-6	2187 42680	18 44	0.03
OGLE-LMC-BBLYB-21580	VMC85 324215 69 190180	85 324215	-69 190180	BRab	19 603	20.638	0.569349800	19E-6	2187 76268	18 29	0.03
OCLE LMC BRIVE 18449	VMC83 068710 69 191610	83.068710	60 101610	BBc	10.156	20.000	0.303142600	6.0E.7	2167 64585	17.05	0.03
OCLE LMC BRIVE 21320	VMC85 101660 60 104310	85 101660	60 10/310	BBab	10.605	20.157	0.469564500	6.0E-7	2107.04565	18 55	0.05
OCLE LMC BRIVE 20800	VMC84 733305 60 100020	84 733305	60 100020	RRab	10 125	20.000	0.403304300	2 0E 6	2187.000000	17.07	0.03
OCLE LMC BRIVE 18800	VMC83 336265 60 108540	83 336265	60 108540	RRab	10 283	20.104	0.583664500	2.5E-0	2167 54214	18 31	0.03
OCLE LMC BRIVE 21561	VMC85 304820 69 197510	85 304820	60 107510	RRab	10 325	20.120	0.353004300	5.0E.7	2107.34214 2187 72076	18 37	0.04
OCLE LMC BRIVE 21212	VMC85.018350_60.100700	85.018350	60 100700	RRab	20.220	21.618	0.515147000	2 3E 6	2187.12010	18 78	0.05
OCLE I MC PRIVE 22046	VMC85 805285 60 105070	85 905295	60 105070	PRob	19 944	10.250	0.510147300	5.05.7	2187.57804	10.10	0.00
OCLE LMC BRIVE 20607	VMC84 606885 60 202200	84.606885	60 202200	BBc	10.394	20.230	0.346901600	1.8E.6	2187.55102	18 54	0.05
OCLE LMC BRIVE 20004	VMC84.081330_69.202230	84.081330	60 205630	BBc	10.405	20.230	0.340301000	9.0E.7	2187.57000	18.57	0.03
OCLE LMC BRIVE 19631	VMC83 816100 60 205420	83 816100	60 205420	BBab	10 602	20.277	0.550510500	1.0E-6	2167.67775	18 33	0.04
OCLE IMC PRIVE 21622	VMC85 262750 60 202870	85.262750	-09.203420	PRab	10.565	20.777	0.559519500	2556	2107.07775	18.33	0.03
OCLE IMC PRIVE 21625	VMC85.200540 60.202870	85.302730	-09.202870	PRo	10.009	10.476	0.333007000	1.0E.6	2107.72030	18.03	0.04
OCLE IMC PRIVE 10204	VMC82 500680 60 208460	83.290340	-09.204970	PRob	19.008	10.279	0.272103500	2.0E-0	2167.57636	17.45	0.04
OCLE IMC RRIVE 10120	VMC83.590080 09.208400	83.390080	-09.208400	DD-L	10.595	19.578	0.589302000	0.0E-7	2107.73424	10.01	0.03
OGLE-LMC-RRLIR-19130	VMC83.480040 09.210330	83.480040	-09.210330	nnab	19.387	20.739	0.584577100	1.4E-0	2107.40000	10.21	0.03
OGLE-LMC-RRLIR-20448	VMC84.392730 09.212980	84.392730	-09.212980	nnab	19.810	20.972	0.579814400	3.4E-0	2101.29113	10.34	0.03
OCLE IMC DRIVE 10806	VMC83.910900 09.212910	83.910900	-09.212910	DD-L	19.621	20.801	0.541774800	1.2E-0	2107.43030	17.72	0.03
OCLE IMC DRIVE 10617	VMC83.941380 09.214020	83.941360	-09.214020	DD-L	10.000	19.550	0.010703900	2.0E-0	2167.42219	10.26	0.03
OCLE IMC DRIVE 22078	VMC85.807100 09.214030	85.807100	-09.214030	DD-L	19.391	20.279	0.330108000	5.0E-7	2107.71792	10.30	0.04
OCLE IMC RRIVE 10770	VMC82.02265 60.212640	83.841190 82.000765	-09.204920	DD-L	19.200	19.999	0.494440100	0.0E-7	2107.37119	10.37	0.04
OCLE IMC PRIVE 10067	VMC84.057150_60.216540	84.057150	-09.212040	PPa	10 509	20.845	0.20100000000	1.55.6	2187.01795	18.55	0.03
OCLE IMC PRIVE 20521	VMC84.464240 60.212040	84.057150	60 212040	PRob	19.000	10.290	0.551112700	1.56-0	2187.09803	17.99	0.07
OCLE IMC PRIVE 20331	VMC85 282215 60 215740	04.404340 95 202215	-09.212940	PRab	10.725	21 080	0.008903700	2.256	2187.74001	18 20	0.04
OCLE IMC PRIVE 21038	VMC85.578215 60.215200	95 579915	-09.215740	PRab	10 120	21.089	0.330920100	6 1 F 6	2107.39931	17.92	0.03
OCLE IMC PRIVE 10102	VMC82 518140 60 210220	82 518140	-09.210390	PRab	19.120	10 512	0.704080800	6 OF 7	2167.33321	17.00	0.03
OCLE LMC BRIVE 18412	VMC83.040240_60.219230	83.040240	60 217070	RRab	18 784	19.312	0.571348800	1.4E.6	2107.70327	17.59	0.03
OCLE IMC PRIVE 20662	VMC84 581120 60 222400	84 581120	60 222400	PRob	18 052	10 501	0.511405800	6 0F 7	2107.50723	19.22	0.07
OCLE IMC PRIVE 10252	VMC82 561250 60 220020	82 561250	60 220020	PRab	18.955	10 142	0.511403800	1556	2167.54514	17 70	0.03
OCLE IMC PRIVE 21214	VMC85.005045 60.2220020	85.005045	-09.220020	PRab	18 800	10.544	0.372102000	1.512-0	2107.70380	18.06	0.03
OCLE IMC PRIVE 19717	VMC82 224050 60 222620	82.093043	-09.222340	PPa	10.155	10.652	0.490471200	4.0E-7	2167.57216	18.00	0.04
OCLE LMC BRIVE 18711	VMC83 220015 60 223630	83 220015	60 222630	BBab	10.040	19.656	0.488401400	5.0E-7	2167 /108/	18.40	0.04
OCLE IMC PRIVE 20525	VMC84 465255 60 227040	84.465255	-09.223030	PRab	10.274	20.270	0.488491400	2.1E 6	2107.41964	18.49	0.04
OCLE LMC BRIVE 21176	VMC84 081045 60 220310	84.981045	60 220310	RRab	10 472	20.213	0.627270400	3.8E.6	2187.74105	17 00	0.03
OCLE LMC BRIVE 19553	VMC83 763630 60 231630	83 763630	60 231630	RRab	10.040	10.810	0.588607600	2.2E.6	2167.23563	17.00	0.03
OCLE LMC BRIVE 20674	VMC84 580530 60 231200	84 580530	60 231200	RRab	18 781	10 474	0.667584400	7.0E.6	2107.00000	17.70	0.03
OGLE-LMC-BRLVB-19680	VMC83 844045 69 232500	83 844045	-69 232500	BRab	19.002	19.834	0.699754400	1.0E-0	2167 52580	17.92	0.03
OGLE-LMC-BRLVB-18707	VMC83 218635 69 230870	83 218635	-69 230870	BBc	19.002	19 435	0.283399000	5.0E-7	2167 85844	18 50	0.05
OGLE-LMC-BBLYB-20656	VMC84 568800 69 236100	84 568800	-69 236100	BBc	18 951	19.561	0.351282500	1 1E-6	2187 76429	18.23	0.05
OGLE-LMC-BRLYB-20534	VMC84 464790 69 236380	84 464790	-69 236380	BBab	19.817	21 367	0.756243200	8.0E-6	2187 76261	18 17	0.03
OGLE-LMC-BRLVB-21948	VMC85 702755 69 232590	85 702755	-69 232590	BRab	19 544	20.347	0.442364400	6.0E-7	2187 53954	18.48	0.05
OGLE-LMC-BRLVB-18579	VMC83 139090 69 236820	83 139090	-69 236820	BRab	18 621	19 211	0.656631500	1 3E-6	2167 82783	17.84	0.03
OGLE-LMC-BRLYB-19898	VMC84 008085 69 240390	84 008085	-69 240390	BBe	18 519	18 879	0.289719900	1.6E-6	2187 67117	17.93	0.03
OGLE-LMC-BRLYB-18506	VMC83 102220 69 240630	83 102220	-69 240630	BBab	18 797	19 258	0.502461800	4 0E-7	2167 72943	18 24	0.03
OGLE-LMC-BRLYB-19463	VMC83 706435 69 245890	83 706435	-69 245890	BBab	18 629	19 195	0.650409300	8 0E-6	2227 39747	17 73	0.03
OGLE-LMC-BBLYB-20228	VMC84 239685 69 249490	84 239685	-69 249490	BRab	19.521	_99 99	0.545388300	8 3E-6	300 02266	18 24	0.03
OGLE-LMC-BBLYB-19171	VMC83 504490 69 244730	83 504490	-69 244730	BRab	18 894	19 527	0.610119900	1.9E-6	2167 29704	18.01	0.03
OGLE-LMC-BBLYB-20694	VMC84 602295 69 252530	84 602295	-69 252530	BRab	19 405	20 400	0.545863100	2.2E-6	2193 67816	18 10	0.05
OGLE-LMC-BRLYB-20075	VMC84.132270 ^{-69.253310}	84.132270	-69.253310	RRab	19.629	20.594	0.591280700	2.9E-6	2193.38531	18.21	0.04
OGLE-LMC-BRLYB-19155	VMC83.496285 ^{-69.254170}	83.496285	-69.254170	RRab	19.028	19.685	0.548259300	6.0E-7	2167.71523	18.21	0.03
OGLE-LMC-BRLYB-18837	VMC83.304585 ^{-69.254560}	83.304585	-69.254560	BRe	19.178	19.752	0.296564600	9.0E-7	2167.68665	18.55	0.04
OGLE-LMC-BRLYB-22026	VMC85.782720 ^{-69.248690}	85.782720	-69.248690	BBc	18.972	-99.99	0.297890600	1.2E-6	300.01397	18.39	0.03
OGLE-LMC-RRLYR-18931	VMC83.371470 ^{-69.256170}	83.371470	-69.256170	RRc	18.888	19,436	0.345639500	6.0E-7	2167.74349	18.34	0.04
1000 10001			30.200110	10100	1 10.000	1 10.100		1 21012 1	_101111010	1 10:01	0.04

OGLE-LMC-RRUNE-1433 VMC65.198325. 69.252300 REc. 19.471 20.062 0.270962400 8.6.7 2187.76579 18.48 0.04 OGLE-LMC-RRUNE-1033 VMC68.1830065 69.20000 RLC 19.411 19.521 0.344619200 8.6.7 2187.76579 18.49 0.04 OGLE-LMC-RRUNE-1333 VMC68.1330065 69.200900 RLC 19.411 19.321 0.344619200 8.6.7 2187.76579 18.49 0.04 OGLE-LMC-RRUNE-1333 VMC68.136506 69.200400 RLC 19.411 19.321 0.34567100 3.6.67 2187.64333 18.17 0.03 OGLE-LMC-RRUNE-12050 VMC82.8445620 69.291408 RLS 19.341 19.345 0.45381700 3.6.67 2187.64333 18.37 0.03 2187.74333 18.37 0.03 2187.74333 18.37 0.03 2187.74333 18.37 0.03 2187.74333 18.37 0.03 2187.74333 18.37 0.03 2187.74333 18.37 0.03 2187.74343 18.343 10.31847000<												
CGLE_LLAC.RRLYRE.20821 VMCS4.847105 = 00.254700 Rike 10.041 10.821 0.264098100 0.616 2187.67206 18.13 0.03 CGLE_LLAC.RRLYRE.2083 VMCS5.706861 60.254700 Rtk 18.68 20.741 Rtk 18.68 20.741 Rtk 18.44 0.03 CGLE_LLAC.RRLYRE.20766 VMCS5.706861 60.25440 Rtha 19.352 0.45790700 7.067.72 18.71033 18.14 0.03 CGLE_LLAC.RRLYRE.2016 VMCS4.511635 60.25440 Rtha 18.24 0.45351700 3.067.7 18.71033 18.14 0.03 CGLE_LLAC.RRLYRE.2040 VMCS4.564207 60.274420 Rtk 19.241 19.84 0.43264100 3.067.7 18.77107 18.327 0.045 CGLE_LLAC.RRLYRE.2040 VMCS4.40707 69.277140 Rtk 19.241 19.846 0.43846100 1.067.7 187.84787 18.00 0.057 1217.948787 18.00 0.057 1217.948787 18.00 0.057 1217.948787 18.00 0.057 1217.948787	OGLE-LMC-RRLYR-21433	VMC85.196325 69.253200	85.196325	-69.253200	BBc	19.474	20.062	0.279962400	8.0E-7	2187.76579	18.48	0.04
OCLE_LINC.RRLYRE.1903 VXICSS.796580 69.254740 85.796580 -69.254740 Rife 10.632 0.344.01290 2.88.6 2.987.67235 18.41 0.04 OCLE_LINC.RRLYRE.1903 XVICSS.796580 69.209404 Rife 18.699 19.51 0.344.61290 3.056 69.209403 Rife 18.699 19.51 0.344.61290 3.056 69.209404 Rife 18.61 19.700 3.056 69.209410 Rife 18.61 19.700 3.056 69.209410 Rife 18.71 0.035 0.045 5.057 2.107.7127 18.32 0.045 0.045 0.045 1.057 0.045 1.057 0.045 <td>OGLE-LMC-BBLYB-20821</td> <td>VMC84 687105⁻⁶⁹ 260000</td> <td>84 687105</td> <td>-69 260000</td> <td>BBe</td> <td>19 041</td> <td>19.821</td> <td>0.264968100</td> <td>6 0E-7</td> <td>2187 68766</td> <td>18 13</td> <td>0.03</td>	OGLE-LMC-BBLYB-20821	VMC84 687105 ⁻⁶⁹ 260000	84 687105	-69 260000	BBe	19 041	19.821	0.264968100	6 0E-7	2187 68766	18 13	0.03
OCIE_LINC.RRLYR-1303 VIXC83 330365 e0.200950 83.50035 -60.200950 RR. 18.203 20.22 0.344010200 8.06-7 2167.74975 18.19 0.04 OCIE_LINC.RRLYR-1333 NUCS5 111657 60.24410 RRLh 19.232 0.265796070 3.06-7 2167.74975 18.14 0.03 OCIE_LINC.RRLYR-1230 VIXC85 664067 e0.29010 RLh 19.877 10.3427.103 3.06-7 2167.74927 18.87 0.03 OCIE_LINC.RRLYR-1260 VIXC85 664067 e0.29010 RLh 19.845 0.433444100 1.36-6 2187.74133 18.37 0.05 OCIE_LINC.RRLYR-18050 VIXC83 143520 e0.271710 RL 18.24 10.43 10.36 0.35144700 1.36-6 2187.28456 18.00 0.05 0.057 0.05786770 1.05788778 18.29 0.04 0.056 0.217710 RL 18.34 10.186 0.33144700 1.06-6 2187.28456 1.8.00 0.057 0.05786770 1.05779127 RL 1.054 0.34005000 1.06-6 2187.244243 1.8.40 0.030 0.056 1.06-779127 RL	OGLE-LMC-BBLYB-22039	VMC85 796580 69 254740	85 796580	-69 254740	BBc	19.658	20 734	0.359407600	2.8E-6	2187 67236	18 41	0.04
$ \begin{array}{c} \text{GClE-LIXC-RIKYL-2033} \\ \text{GCLE-LIXC-RIKYL-2035} \\ \text{CGLE-LIXC-RIKYL-2035} \\ \text{CGLE-LIXC-RIKYL-2045} \\ \text{VMC84.55290} \\ \text{CGLE-LIXC-RIKYL-2045} \\ \text{VMC84.55290} \\ \text{CGLE-LIXC-RIKYL-2045} \\ \text{VMC84.55290} \\ \text{CGLE-LIXC-RIKYL-2045} \\ \text{VMC84.5529} \\ \text{CGLE-LIXC-RIKYL-2044} \\ \text{VMC84.111015} \\ \text{CGLE-LIXC-RIKYL-2044} \\ \text{VMC84.45200} \\ \text{CGLE-LIXC-RIKYL-2044} \\ \text{VMC84.45300} \\ \text{CGLE-LIXC-RIKYL-2046} \\ \text{VMC84.45300} \\ \text{CGLE-LIXC-RIKYL-2047} \\ \text{VMC84.45300} \\ \text{CGLE-LIXC-RIKYL-2047} \\ \text{VMC84.45300} \\ \text{CGLE-LIXC-RIKYL-1940} \\ \text{VMC84.45300} \\ \text{CGLE-LIXC-RIKYL-1940} \\ \text{VMC84.45300} \\ \text{CGLE-LIXC-RIKYL-1940} \\ \text{VMC84.46300} \\ \text{CGLE-LIXC-RIKYL-1940} \\ CGLE-LIXC-RIK$	OCLE LMC BRIVE 18003	VMC83 350365 60 260050	83 350365	60 260050	BBc	18 000	10 521	0.344610200	8 OF 7	2167 74375	18 10	0.04
$ \begin{array}{c} \text{CGLE} LACK RRIYR-2005 \\ \text{CGLE} LACK RRIYR-2005 \\ \text{CRIVR} VMC85.65946.65924610 \\ \text{CGLE} LACK RRIYR-2105 \\ \text{VMC85.65946.65924610 \\ \text{CGLE} LACK RRIYR-2105 \\ \text{VMC85.65946.69246100 \\ \text{CGLE} LACK RRIYR-2105 \\ \text{VMC85.65946.69246100 \\ \text{CGLE} LACK RRIYR-2105 \\ \text{VMC85.05946.6924180 \\ \text{CGLE} LACK RRIYR-2056 \\ \text{VMC85.05946.6924180 \\ \text{CGLE} LACK RRIYR-2056 \\ \text{VMC85.05946 \\ \text{VMC85.05946 \\ \text{CGLE} LACK RRIYR-2056 \\ \text{VMC85.05946 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC85.05946 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC85.05946 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.477765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.477765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.477765 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.47776 \\ \text{CGLE} 202770 \\ \text{CGLE} LACK RRIYR-2050 \\ \text{VMC84.477765 \\ \text{CGLE} 202770 $	OCLE I MC DRIVE 21222	VMC85 111625 60 264410	85.111625	60.264410	DDab	10.333	20.262	0.544013200	7 OF 7	2107.74373	19.13	0.04
OCILE_LINC_RRLYR_31005 VMCC8.563647 69.26910 READ 19.377 0.408527100 3.0E-7 2187.64233 18.17 0.13 OCILE_LINC_RRLYR_15240 VMCS4.455227 69.271420 64.20100 READ 18.374 19.375 0.403527100 3.0E-7 2187.16351 17.65 0.01 OCILE_LINC_RRLYR_1240 VMCS4.455227 69.277420 64.377420 RR. 18.374 19.375 0.403527100 3.0E-7 2187.13561 17.65 0.01 OCILE_LINC_RRLYR_2044 VMCS4.406777 69.282640 RR. 18.461 19.310 0.3499633900 1.0E-6 2187.49406 17.76 0.07 OCILE_LINC_RRLYR-2044 VMCS4.448303 69.290730 RIAB30 -69.292600 RR. 18.661 19.210 0.34093950 1.0E-6 2187.49404 18.38 0.04 OCILE_LINC_RRLYR-2047 VMCS4.448303 -69.292100 RIAB 19.376 0.340500 1.0E-6 2187.47074 18.38 0.04 OCILE_LINC_RRLYR-2057 VMCS4.4483707 69.29210 RIAB <td>OCLE I MC DDIVD 20766</td> <td>VMC84 654000 60 268440</td> <td>84.6F4000</td> <td>-09.204410</td> <td>DDab</td> <td>10 700</td> <td>20.202</td> <td>0.557950700</td> <td>2.0E-7</td> <td>2107.70923</td> <td>10.14</td> <td>0.03</td>	OCLE I MC DDIVD 20766	VMC84 654000 60 268440	84.6F4000	-09.204410	DDab	10 700	20.202	0.557950700	2.0E-7	2107.70923	10.14	0.03
$ \begin{array}{c} 0 \text{CLE} \text{LACK-RELYR.2100} & VARSabs485 & 0.2.04410 & 82.0.9485 & -0.9.274401 & 18.26 & 19.576 & 0.40527100 & 0.0E-7 & 2167.93227 & 18.12 & 0.05 & $	OGLE-LMC-RRLIR-20700	VMC84.054990_09.208440	84.054990	-09.208440	nnab	19.790	21.010	0.010477400	3.0E-0	2107.01000	10.30	0.03
$ \begin{array}{c} 0 \text{CLE} LMC-RILYR-18440 & VMCS4.98145, 69.290180 & 84.98145, 69.290180 & Reb 1947, 1947, 19436, 0.45361700 & 3.9E-7 & 2167.7917, 18.427 & 0.04 \\ 0 \text{CLE} LMC-RILYR-21261 & VMCS5.072125 & 9.27760 & 85.072125 & -0.27760 & Reb 18.441 & 19.136 & 0.45361700 & 7.9E-7 & 2167.8878 & 18.40 & 0.04 \\ 0 \text{CLE} LMC-RILYR-2061 & VMCS5.072125 & 9.27760 & 9.27860 & 0.927760 & Reb 19.418 & 0.4904900 & 1.0E-6 & 2157.7841 & 18.60 & 0.05 \\ 0 \text{CLE} LMC-RILYR-2061 & VMCS4.463030 & -0.290730 & Reb 19.184 & 0.1947 & 0.3813 & 0.4904900 & 1.0E-6 & 2157.7841 & 18.60 & 0.07 \\ 0 \text{CLE} LMC-RILYR-2061 & VMCS4.463030 & -0.290730 & Reb 19.475 & 0.3817 & 0.45351700 & 1.0E-6 & 2157.7283 & 18.29 & 0.04 \\ 0 \text{CLE} LMC-RILYR-2061 & VMCS4.47445 & -0.91370 & 84.49330 & -0.290730 & Reb 18.904 & 19.455 & 0.5150900 & 5.0E-7 & 2167.72583 & 18.29 & 0.04 \\ 0 \text{CLE} LMC-RILYR-2050 & VMCS4.47445 & -0.91370 & 84.49137 & -0.929170 & Reb 18.904 & 19.455 & 0.51351700 & 1.0E-6 & 2157.7448 & 18.07 & 0.03 \\ 0 \text{CLE} LMC-RILYR-2050 & VMCS4.47745 & -0.90120 & 84.47775 & -0.920120 & Reb 19.052 & 0.53251700 & 1.0E-6 & 2157.7548 & 18.07 & 0.03 \\ 0 \text{CLE} LMC-RILYR-2050 & VMCS4.47745 & -0.90120 & 84.47775 & -0.902100 & Reb 19.052 & 0.53251700 & 1.0E-6 & 2157.7548 & 18.07 & 0.03 \\ 0 \text{CLE} LMC-RILYR-2050 & VMCS4.47745 & -0.902120 & 84.47775 & -0.902100 & Reb 19.052 & 0.030477660 & 1.0E-6 & 2157.7548 & 18.07 & 0.03 \\ 0 \text{CLE} LMC-RILYR-2050 & VMCS4.47765 & -0.90120 & 85.37775 & -0.9300510 & 85.37775 & -0.9300510 & 85.37775 & -0.9300510 & 85.37775 & -0.9300510 & 85.365200 & 1.0E-6 & 2157.7641 & 17.3 & 0.04 \\ 0 \text{CLE} LMC-RILYR-2163 & VMCS4.54865 & -0.930740 & 85.65280 & -0.830740 & Reb 19.272 & 0.043 & 0.5016800 & 1.9E-6 & 2157.7641 & 17.3 & 0.04 \\ 0 \text{CLE} LMC-RILYR-2163 & VMCS4.54865 & -0.931540 & 85.65280 & -0.930760 & Reb 19.277 & 0.043 & 0.5016800 & 1.9E-6 & 2157.7641 & 17.3 & 0.04 \\ 0 \text{CLE} LMC-RILYR-2163 & VMCS4.54865 & -0.931540 & Reb 19.272 & 0.043 & 0.5016800 & 1.9E-6 & 2157.7641 & 17.3 & 0.04 \\ 0 \text{CLE} LMC-RILYR-2163 & VMCS4.54865 & -0.931540 & Reb 1$	OGLE-LMC-RRLYR-21905	VMC85.659465_69.264910	85.659465	-69.264910	RRab	19.123	19.875	0.495827100	5.0E-7	2187.64323	18.17	0.03
$ \begin{array}{c} 0 \text{Cl} \text{L} \text{L} \text{C} \text{R} \text{R} \text{R} \text{L} \text{R} \text{R} \text{R} \text{R} \text{R} \text{R} \text{R} R$	OGLE-LMC-RRLYR-18249	VMC82.981485_69.269180	82.981485	-69.269180	RRab	18.974	19.352	0.453351700	3.0E-7	2167.79127	18.32	0.04
$ \begin{array}{c} \text{OGLE} LMC-RRLYR-21281 & VMC88.072125 & 69.277650 & 85.077125 & 69.277650 & Rhab 18.441 & 19.081 & 0.73396200 & 1.78-5 & 2187.13651 & 17.66 & 0.03 \\ \text{OGLE} LMC-RLYR-2004 & VMC8.111015 & 0.286260 & 84.111015 & -0.286260 & Rrk & 19.410 & 0.34903800 & 1.08-6 & 2187.4940 & 17.78 & 0.07 \\ \text{OGLE} LMC-RLYR-2004 & VMC8.111015 & 0.286260 & 84.111015 & -0.9286260 & Rrk & 19.421 & 0.34903800 & 1.08-6 & 2187.4940 & 17.78 & 0.07 \\ \text{OGLE} LMC-RLYR-2004 & VMC8.41303 & 69.20730 & 84.48303 & -69.20710 & Rrk & 19.45 & 0.51916000 & 5.08-7 & 2167.72853 & 18.29 & 0.04 \\ \text{OGLE} LMC-RLYR-19285 & VMC8.43703 & 69.29128 & 83.47300 & -69.39210 & Rrk & 19.45 & 0.51916000 & 5.08-7 & 2167.72853 & 18.29 & 0.04 \\ \text{OGLE} LMC-RLYR-19285 & VMC8.4371785 & 69.299120 & Rrk & 19.361 & 0.496874100 & 1.08-6 & 2187.4744 & 18.07 & 0.03 \\ \text{OGLE} LMC-RLYR-19278 & VMC8.4471785 & 69.399120 & Rrk & 19.361 & 0.496874100 & 1.08-6 & 2187.4744 & 18.07 & 0.03 \\ \text{OGLE} LMC-RLYR-19778 & VMC8.447795 & 69.30370 & 84.47765 & -69.30210 & Rrk & 19.362 & 0.563252000 & 1.18-6 & 2187.4734 & 15.55 & 0.10 \\ \text{OGLE} LMC-RLYR-2078 & VMC8.47785 & 69.30370 & 84.47765 & -69.30210 & Rrk & 19.362 & 0.56325200 & 1.18-6 & 2187.4734 & 15.55 & 0.10 \\ \text{OGLE} LMC-RLYR-2045 & VMC8.587795 & 69.300510 & 85.577755 & 69.300510 & Rrk & 19.472 & 19.615 & 0.52035204 & 8.08-7 & 2187.6543 & 15.57 & 0.03 \\ \text{OGLE} LMC-RLYR-2165 & VMC8.587795 & 69.300510 & 85.577755 & 69.300510 & Rrk & 19.472 & 19.615 & 0.52035204 & 8.08-7 & 2187.6548 & 15.57 & 0.03 \\ \text{OGLE} LMC-RLYR-2165 & VMC8.587197 & 69.30230 & 85.47805 & 69.30230 & Rrk & 19.472 & 19.615 & 0.52035204 & 8.08-7 & 2187.6548 & 17.57 & 0.04 \\ \text{OGLE} LMC-RLYR-2173 & VMC8.58710 & 69.32330 & 85.47805 & 69.30230 & Rrk & 19.272 & 19.615 & 0.52035204 & 8.08-7 & 2187.6568 & 17.57 & 0.03 \\ \text{OGLE} LMC-RLYR-18428 & VMC8.587010 & 69.32340 & 69.30230 & Rrk & 19.47 & 10.530 & 0.563166400 & 1.28-6 & 2187.4476 & 17.57 & 0.03 \\ \text{OGLE} LMC-RLYR-18428 & VMC8.587010 & 69.30230 & 85.453910 & 69.30230 & Rrk & 19.47 & 10.530 & 0.563166400 & 1.28-6 & 2$	OGLE-LMC-RRLYR-20519	VMC84.455220_69.274420	84.455220	-69.274420	RRc	19.254	19.845	0.342464100	1.3E-6	2187.74143	18.37	0.05
$ \begin{array}{c} \text{GLE} LLMC-RRLYR-18565 \\ \text{VMCS8.131c20} = 0.277170 \\ \text{Rtab} 19.18 \\ \text{Hab} 19.18 \\ \text{Hab} 19.18 \\ \text{Hab} 19.18 \\ \text{Hab} 0.48603900 \\ \text{GLE} LLMC-RLYRLYR-2061 \\ \text{VMCS8.4487037 } 0.290730 \\ \text{Rtab} 48.409710 \\ \text{GLE} LLMC-RLYRLYR-19261 \\ \text{VMCS8.4487037 } 0.290730 \\ \text{Rtab} 48.367940 \\ \text{GLE} LLMC-RLYRLYR-19261 \\ \text{VMCS8.45700 } 0.290730 \\ \text{Rtab} 19.475 \\ \text{C} 20.371 \\ \text{C} 20.3227 \\ \text{C} 0.33221700 \\ \text{C} 2.2E-6 \\ \text{L} 2187.7073 \\ \text{H} 18.36 \\ \text{C} 0.490730 \\ \text{C} 0.2E-LMC-RLYRLYR-1926 \\ \text{VMCS8.45700 } 0.290730 \\ \text{Rtab} 19.364 \\ \text{C} 20.327 \\ \text{C} 0.33221700 \\ \text{C} 2.2E-6 \\ \text{L} 2187.7053 \\ \text{H} 18.36 \\ \text{C} 0.291370 \\ \text{C} 0.2E-LMC-RLYRLYR-1926 \\ \text{VMCS8.45700 } 0.290370 \\ \text{Rtab} 19.364 \\ \text{C} 0.2327 \\ \text{C} 0.33221700 \\ \text{C} 2.2E-6 \\ \text{L} 2187.7543 \\ \text{H} 18.15 \\ \text{C} 0.40 \\ \text{C} 0.2E-LMC-RLYR-1926 \\ \text{VMCS8.457706 } 0.302420 \\ \text{Rtab} 19.364 \\ \text{C} 0.34077600 \\ \text{L} 10.467 \\ \text{C} 10.467 \\ \text{C} 10.57578 \\ \text{H} 18.15 \\ \text{C} 0.30477600 \\ \text{C} 1.0E-7 \\ \text{C} 127.5577 \\ \text{C} 18.13 \\ \text{C} 0.30477600 \\ \text{C} 1.0E-7 \\ \text{C} 127.5577 \\ \text{C} 18.13 \\ \text{C} 0.30477600 \\ \text{C} 1.0E-7 \\ \text{C} 127.5677 \\ \text{C} 13.17 \\ \text{C} 10.18 \\ \text{C} 10.10 \\ \text{C} 1.0E-7 \\ \text{C} 127.5677 \\ \text{C} 1.18 \\ \text{C} 10.10 \\ \text{C} 1.0E-7 \\ \text{C} 127.5677 \\ \text{C} 1.18 \\ \text{C} 10.10 \\ \text{C} 1.0E-7 \\ \text{C} 127.5677 \\ \text{C} 1.18 \\ \text{C} 1.18 \\ \text{C} 1.0008400 \\ \text{C} 1.0E-6 \\ \text{C} 1287.7533 \\ \text{C} 1.01 \\ \text{C} $	OGLE-LMC-RRLYR-21281	VMC85.072125 69.277650	85.072125	-69.277650	RRab	18.441	19.081	0.733986200	1.7E-6	2187.13651	17.66	0.03
$ \begin{array}{c} \text{CGLE-LMC-RRLYR-20461} & \text{VMC84.406770}^{-} 6.9.282640 & \text{Rhz} & \text{Ib} .184 & \text{Ib} .813 & 0.48963900 & 1.0E-6 & 2187.28816 & 18.00 & 0.05 \\ \text{CGLE-LMC-RLYR.20561} & \text{VMC84.45303}^{-} 6.290730 & 84.48030 & -69.290730 & \text{Rhz} & 18.643 & 0.535548600 & 1.0E-6 & 2187.70074 & 18.53 & 0.04 \\ \text{CGLE-LMC-RLYR.20561} & \text{VMC84.45303}^{-} 6.290730 & 84.48030 & -69.290730 & \text{Rhz} & 19.475 & 20.38 & 0.535548600 & 1.0E-6 & 2187.70074 & 18.53 & 0.04 \\ \text{CGLE-LMC-RLYR.2050} & \text{VMC84.47765}^{-} 6.9293210 & 84.37185 & -69.291370 & \text{Rhz} & 19.365 & 19.376 & 0.34677410 & 4.0E-7 & 2167.5578 & 18.13 & 0.03 \\ \text{CGLE-LMC-RLYR.2050} & \text{VMC84.477465}^{-} 6.032412 & 84.47745 & -69.291270 & \text{Rhz} & 19.365 & 19.476 & 0.53477400 & 1.0E-6 & 2187.7543 & 18.57 & 0.05 \\ \text{CGLE-LMC-RLYR.2050} & \text{VMC84.477465}^{-} 6.032412 & 84.47745 & -69.291270 & \text{Rhz} & 19.365 & 19.476 & 0.53477400 & 1.0E-6 & 2187.7543 & 18.57 & 0.05 \\ \text{CGLE-LMC-RLYR.2050} & \text{VMC84.61668}^{-} 69.30520 & 84.66158 & -69.20510 & \text{Rhz} & 19.365 & 19.476 & 0.53477400 & 1.0E-6 & 2187.7545 & 18.57 & 0.05 \\ \text{CGLE-LMC-RLYR.2163} & \text{VMC85.5377785}^{-} 69.300510 & 85.577795 & -69.300510 & \text{Rhz} & 19.365 & 19.476 & 0.50116100 & 2.1E-6 & 2187.7561 & 17.75 & 0.03 \\ \text{CGLE-LMC-RLYR.2163} & \text{VMC85.537767}^{-} 69.300510 & 85.54220 & \text{Rhz} & 18.544 & 19.539 & 0.55016600 & 1.9E-6 & 2187.74276 & 17.75 & 0.03 \\ \text{CGLE-LMC-RLYR.2163} & \text{VMC85.537876}^{-} 69.300510 & 85.54290 & \text{Rhz} & 19.72 & 0.55016600 & 1.9E-6 & 2187.74276 & 17.75 & 0.03 \\ \text{CGLE-LMC-RLYR.2163} & \text{VMC85.537876}^{-} 69.30290 & 85.54390 & \text{Rhz} & 19.27 & 0.55016600 & 1.9E-6 & 2187.7407 & 17.75 & 0.03 \\ \text{CGLE-LMC-RLYR.19228} & \text{VMC85.537910}^{-} 69.30290 & 85.545190 & -69.20760 & \text{Rhz} & 19.27 & 0.5631900 & 0.4E-7 & 2167.74276 & 17.77 & 0.04 \\ \text{CGLE-LMC-RLYR.19228} & \text{VMC85.537910}^{-} 6.9.30290 & 85.53910 & \text{Rhz} & 19.30 & 0.56016600 & 0.9E-7 & 2167.74276 & 17.77 & 0.03 \\ \text{CGLE-LMC-RLYR.19248} & \text{VMC85.34584666}^{-} 6.9.30290 & 83.54390 & -69.30290 & \text{Rhz} & 18.542 & 19.098 & 0.6404245000 &$	OGLE-LMC-RRLYR-18565	VMC83.131620 ^{-69.277170}	83.131620	-69.277170	RRc	18.743	19.136	0.351847600	7.0E-7	2167.88878	18.30	0.04
$ \begin{array}{c} \text{GLE} LMC-RRLYR.20044 & VMC84.111015 & -09.286260 & RR. \\ \text{GLE} LMC-RRLYR.2056 & VMC84.45303 & 69.29073 & 84.48030 & -69.29073 & RR. \\ \text{GLE} LMC-RRLYR.1926 & VMC84.35306 & -9.29073 & 84.48030 & -69.29178 & RR. \\ \text{GLE} LMC-RRLYR.1926 & VMC84.377445 & -69.29178 & RR. \\ \text{GLE} LMC-RRLYR.1926 & VMC84.377345 & -69.29120 & 84.47308 & -69.29120 & RR. \\ \text{GLE} LMC-RRLYR.1926 & VMC84.377345 & -69.29120 & 84.47308 & -69.29120 & RR. \\ \text{GLE} LMC-RRLYR.1926 & VMC84.271785 & -69.29120 & 84.47360 & -69.29120 & RR. \\ \text{GLE} LMC-RRLYR.20278 & VMC84.271785 & -69.29120 & 84.47368 & -69.29120 & RR. \\ \text{GLE} LMC-RRLYR.1926 & VMC84.47745 & -69.30422 & 84.47368 & -69.29120 & RR. \\ \text{GLE} LMC-RRLYR.20278 & VMC84.471785 & -69.304520 & 84.47368 & -69.30520 & RR. \\ \text{GLE} LMC-RRLYR.20278 & VMC84.61680 & -69.30520 & RR. \\ \text{GLE} LMC-RRLYR.2195 & VMC84.61680 & -69.30520 & RR. \\ \text{GLE} LMC-RRLYR.2195 & VMC84.6775 & -9.300520 & 84.47368 & -69.30520 & RR. \\ \text{GLE} LMC-RRLYR.2195 & VMC84.61680 & -69.30520 & RR. \\ \text{GLE} LMC-RRLYR.2195 & VMC84.61680 & -69.30520 & RR. \\ \text{GLE} LMC-RRLYR.2195 & VMC85.43775 & -9.30051 & 85.37795 & -69.30051 & RA. \\ \text{GLE} LMC-RRLYR.2193 & VMC85.43610 & 9.304320 & 8.505280 & -69.297600 & RR. \\ \text{GLE} LMC-RRLYR.2193 & VMC85.43610 & 9.304330 & 8.553910 & -69.302330 & RR. \\ \text{GLE} LMC-RRLYR.2193 & VMC85.43610 & 9.304330 & 8.553910 & -69.302330 & RR. \\ \text{GLE} LMC-RRLYR.1942 & VMC85.43695 & -9.315120 & RA. \\ \text{GLE} LMC-RRLYR.1942 & VMC84.4500 & 9.0641 & 8.45310 & -69.304230 & RR. \\ \text{GLE} LMC-RRLYR.1942 & VMC84.55510 & -69.304528 & -69.30120 & RR. \\ \text{H} 19.679 & 0.033 & 0.56310900 & 4.66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & 17.5 & 0.04 & 0.04 & -66-6 & 2187.4611 & $	OGLE-LMC-RRLYR-20461	VMC84.406770 ^{69.282640}	84.406770	-69.282640	RRab	19.184	19.813	0.489693900	1.0E-6	2187.28816	18.00	0.05
$ \begin{array}{c} \text{GLE} LLMC-RRLYR.129561 \\ \text{GLE} LLMC-RRLYR.129561 \\ \text{VMCS3.57446} \hline 69.291730 \\ \text{GLE} LLMC-RRLYR.12957 \\ \text{GLE} LLMC-RRLYR.20460 \\ \text{GLE} LLMC-RRLYR.20460 \\ \text{GLE} LLMC-RRLYR.20460 \\ \text{GLE} LLMC-RRLYR.20550 \\ \text{GLE} LLMC-RRLYR.20570 \\ \text{GLE} LLMC-RRLYR.20580 \\ GLE$	OGLE-LMC-RRLYR-20044	VMC84.111015 ^{-69.286260}	84.111015	-69.286260	RRc	18.664	19.210	0.349039500	1.0E-6	2187.49406	17.78	0.07
$ \begin{array}{c} \hline CCLE_LMC_RRLYR_19285 & VMC83.479445 = 03.291780 & 85.379445 & -06.291780 & Rkab & 19.3485 & 0.519150900 & 5.0E-7 & 2167.27858 & 18.29 & 0.04 \\ CGLE_LMC_RRLYR_19139 & VMC83.487300 & 69.293210 & 84.48730 & -69.293210 & Rkab & 19.336 & 0.496874100 & 4.0E-7 & 2167.55978 & 18.13 & 0.04 \\ CGLE_LMC_RRLYR_20579 & VMC84.497765 & 69.302170 & 84.492765 & -69.302170 & Rkab & 19.336 & 0.496874100 & 4.0E-7 & 2167.55978 & 18.13 & 0.04 \\ CGLE_LMC_RRLYR_20579 & VMC84.492765 & -69.302170 & 84.492765 & -69.302170 & Rkab & 19.152 & 19.784 & 0.519038400 & 7.0E-7 & 2187.66374 & 18.9 & 0.05 \\ CGLE_LMC_RRLYR_20579 & VMC84.492765 & -69.302170 & 84.492765 & -69.302170 & Rkab & 19.152 & 19.784 & 0.519038400 & 7.0E-7 & 2187.66374 & 18.9 & 0.05 \\ CGLE_LMC_RRLYR_2046 & VMC84.492765 & -69.305120 & 88.55180 & -69.302520 & Rkab & 19.422 & 19.615 & 520382400 & 1.9E-6 & 2187.71350 & 18.57 & 0.04 \\ CGLE_LMC_RRLYR_2046 & VMC84.50270 & 29.9150 & 88.565765 & -69.29150 & Rkab & 19.422 & 19.615 & 520382400 & 1.9E-6 & 2187.49874 & 17.57 & 0.04 \\ CGLE_LMC_RRLYR_2100 & VMC85.656765 & -69.29150 & Rkab & 19.444 & 20.043 & 0.529182200 & 3.2E-6 & 2187.44987 & 17.57 & 0.04 \\ CGLE_LMC_RRLYR_2100 & VMC85.656765 & -69.29150 & Rkab & 19.454 & 20.043 & 0.55918200 & 3.2E-6 & 2187.44987 & 17.57 & 0.04 \\ CGLE_LMC_RRLYR_1905 & VMC83.6510 & -9.30263 & 85.55310 & -69.30263 & Rkab & 19.454 & 20.043 & 0.55918200 & 3.2E-6 & 2187.44981 & 17.75 & 0.04 \\ CGLE_LMC_RRLYR_1905 & VMC83.65476 & -69.30545 & -69.311540 & Rkab & 19.567 & 20.418 & 0.563105000 & 7.6E-7 & 2167.67861 & 17.99 & 0.03 \\ CGLE_LMC_RRLYR_1905 & VMC83.656765 & -69.29150 & Rkab & 19.567 & 20.418 & 0.563105000 & 7.6E-7 & 2167.67861 & 17.99 & 0.03 \\ CGLE_LMC_RRLYR_1905 & VMC83.656765 & -69.29150 & Rkab & 18.567 & 10.57748800 & 5.6E-7 & 2167.7625 & 17.80 & 0.04 \\ CGLE_LMC_RRLYR_1905 & VMC83.656765 & -69.30526 & -69.311540 & Rkab & 18.567 & 10.57748800 & 5.6E-7 & 2167.6762 & 2187.64861 & 15.99 & 0.04 \\ CGLE_LMC_RRLYR_1905 & VMC83.456760 & -322526 & 331540 & 8.496755 & -69.311540 & Rkab & 18.963 & 19.577 & $	OGLE-LMC-BBLYB-20561	VMC84 483030 69 290730	84 483030	-69 290730	BBab	19 475	20.381	0.536568600	1.0E-6	2187 70074	18.36	0.04
$ \begin{array}{c} CGLE LMC-RRLYR, 1949 \\ CGLE LMC-RRLYR, 1949 \\ CGLE LMC-RRLYR, 1949 \\ CGLE LMC-RRLYR, 1940 \\ CGLE LMC-RRLYR$	OGLE-LMC-BBLYB-19285	VMC83 579445 69 291780	83 579445	-69 291780	BBab	18 904	19 485	0.519150900	5.0E-7	2167 72583	18 29	0.04
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	OCLE IMC PRIVE 20400	VMC84 426185 60 201270	84 426185	60 201270	PRab	10.264	20 227	0.522251700	2.256	2107.12000	19.15	0.04
CGLE_LIMC_RRLYR_2027 VMCS4.271987 63.29110 64.271988 -69.290110 18.46 19.362 0.563253000 1.1E-6 2187.42248 18.10 0.03 OGLE_LMC_RRLYR_20579 VMCS4.497765 69.302170 84.492765 -69.302170 RRab 19.122 19.784 0.519038400 7.0E-7 2187.66374 18.19 0.05 OGLE_LMC_RRLYR_20579 VMCS4.492765 69.30510 RRab 19.272 19.161 0.5200616800 1.9E-6 2187.70501 17.73 0.04 OGLE_LMC_RRLYR_21045 VMCS5.56026 69.202900 RRab 18.644 19.272 19.161 0.52032400 8.19-7 2167.62689 17.95 0.03 OGLE_LMC_RRLYR_19228 VMCS5.358101 69.302300 RRab 18.649 19.279 20.83 0.56166800 1.9E-6 2167.42768 17.95 0.03 OGLE_LMC_RRLYR-1928 VMCS5.358106 69.302400 RRab 18.649 19.279 20.83 0.56166800 1.9E-6 2167.70295 17.80 0.03 OGLE_LMC_RRL	OCLE I MC DRIVD 10120	VMC82 487200 60 202010	89.497200	-09.291370	DDab	19.304	10.327	0.000000	2.2E-0	2107.42943	10.10	0.04
OCIEDE LINIC - RRLYR, 2056 VMCS4.147168 60.20240 108.26 10.3047 0.30242600 1.06-1 218.742433 18.06 0.00 OGLEE LINC - RRLYR, 20579 VMCS4.40765 66.302476 .60.302476 1.06.97 218.766374 18.06 0.00 OGLE - LINC - RRLYR, 19976 VMCS4.577755 66.300510 RRab 20.078 21.194 0.50116800 1.9E-6 218.776501 1.7.7 0.04 OGLE - LINC - RRLYR, 2045 VMCS5.802280 68.205280 -66.297600 RRab 19.271 0.5016800 1.9E-6 2187.70501 1.7.7 0.04 OGLE - LINC - RRLYR, 2045 VMCS5.4385140 69.302300 RRab 19.271 0.5016800 1.9E-6 2187.44271 17.27 0.04 OGLE - LINC - RRLYR, 2058 VMCS5.358107 69.30230 RRab 19.270 20.083 0.56310900 4.6E-6 2187.44271 17.47 0.04 OGLE - LINC - RRLYR, 1862 VMCS5.358107 69.30230 RRab 18.524 19.908 64.0045300 6.0E-7 2167.70295 17	OGLE-LMC-RRLIR-19139	VMC85.487500 09.295210	03.407300	-09.293210	nnab DD 1	10.700	19.330	0.490874100	4.0E-7	2107.33978	10.13	0.03
OGLEE LMC-RRLYR.20:00 VMC84.41/40:5 98.42/40:5 -99.302420 RRc. 19.976 0.0494/fe000 1.0E-5 2157.63434 18.59 0.00 OGLEE-LMC-RRLYR.19676 VMC84.307850 84.47/405 -69.303500 RRab 18.844 19.655 0.50392400 80.E-7 2157.63634 18.57 0.03 OGLE-LMC-RRLYR.21636 VMC85.377795 69.300510 85.377795 -69.302900 RRab 18.844 19.655 0.520392400 80.E-7 2157.62689 17.75 0.04 OGLE-LMC-RRLYR.21733 VMC85.535910 69.302900 83.543895 -69.302900 RRab 19.454 19.276 10.615 0.520392400 80.E-7 2157.443844 17.75 0.04 OGLE-LMC-RRLYR.21733 VMC85.535910 69.30230 85.35910 69.30230 RRab 19.276 20.043 0.529183200 3.216 2147.44907 18.40 0.04 OGLE-LMC-RRLYR.18437 VMC85.454997 69.307840 Rab 18.842 19.030 0.712438600 0.216.7 2167.71430 0.73 </td <td>OGLE-LMC-RRLYR-20278</td> <td>VMC84.271785_09.299120</td> <td>84.2/1/85</td> <td>-69.299120</td> <td>RRAD</td> <td>18.901</td> <td>19.632</td> <td>0.563252000</td> <td>1.1E-0</td> <td>2187.42748</td> <td>18.07</td> <td>0.03</td>	OGLE-LMC-RRLYR-20278	VMC84.271785_09.299120	84.2/1/85	-69.299120	RRAD	18.901	19.632	0.563252000	1.1E-0	2187.42748	18.07	0.03
OGLE-LMC-RRLYR.199 VMC84.492765 69.302170 84.492765 -69.30210 RRab 19.122 19.784 0.5190384100 7.0E-7 2187.66374 18.19 0.00 OGLE-LMC-RRLYR.1907 VMC85.06180 60.30520 81.061695 -69.30320 RRab 12.074 11.93 0.510150100 21.E-6 2187.62389 17.55 0.03 OGLE-LMC-RRLYR.22045 VMC85.656765 69.299150 85.656765 -69.299150 RRab 19.279 0.520166800 1.9E-6 2187.62389 17.72 0.04 OGLE-LMC-RRLYR.12107 VMC85.656765 69.299150 RRab 19.454 20.043 0.529183200 3.2E-6 2187.43931 17.75 0.04 OGLE-LMC-RRLYR.18457 VMC85.656765 69.299150 RRab 19.454 20.043 0.529183200 3.2E-6 2187.44907 18.40 0.04 OGLE-LMC-RRLYR.18457 VMC85.17827 69.306470 83.15120 RRab 18.642 19.048 0.64043500 6.0E-7 2167.71031 17.33 0.03 OGLE-	OGLE-LMC-RRLYR-20550	VMC84.477465_69.302420	84.477465	-69.302420	RRC	19.365	19.976	0.304776600	1.0E-6	2187.75434	18.95	0.10
OGLE_LMC-RRLYR-19976 VMC84.4661680 69.303520 84.061680 -69.305510 RRab 20.078 21.194 0.501150100 21.1e-6 2187.70510 18.57 0.06 OGLE_LMC-RRLYR-2105 VMC85.805280 69.297600 85.805280 -69.297160 RRab 19.272 19.615 0.520392400 8.0E-7 2187.40561 17.55 0.03 OGLE_LMC-RRLYR-2103 VMC85.805280 69.299150 RS.656765 -69.300510 RRab 19.474 20.043 0.52183200 3.2E-6 2187.43841 17.75 0.04 OGLE_LMC-RRLYR-21079 VMC85.358101 69.306470 RRab 19.474 20.083 0.563109000 4.6E-6 2187.44907 18.40 0.04 OGLE_LMC-RRLYR-18428 VMC83.054985 69.30740 RRab 18.659 19.233 0.71912600 1.6E-6 2187.0614 18.39 0.03 OGLE_LMC-RRLYR-18424 VMC84.462555 69.31540 RRab 18.657 19.0571 0.72748800 0.6E-7 2187.0614 18.30 0.02 OGLE	OGLE-LMC-RRLYR-20579	VMC84.492765_69.302170	84.492765	-69.302170	RRab	19.122	19.784	0.519038400	7.0E-7	2187.66374	18.19	0.05
OGLE_LMC_RRLYR_21636 VMC85.377795 69.300510 85.377795 69.300510 RRab 18.844 19.639 0.590616800 1.9.Fe 2187.6268 17.73 0.04 OGLE_LMC_RRLYR_19228 VMC85.54580 69.2927600 RRab 18.684 19.279 0.580166800 1.9E-6 2187.4384 17.72 0.04 OGLE_LMC_RRLYR_21090 VMC85.545810 63.302330 85.555810 -63.30230 RRab 19.233 0.752183200 3.2E-6 2187.4384 17.75 0.04 OGLE_LMC_RRLYR_21703 VMC85.535910 63.302330 85.555910 -63.302330 RRab 19.233 0.752183200 4.6E-6 2187.4921 17.89 0.03 OGLE_LMC_RRLYR_18637 VMC83.178270 69.307400 83.178270 -69.307400 RRab 18.542 19.098 0.460045300 6.0E-7 2187.60214 18.30 0.02 OGLE_LMC_RRLYR_18637 VMC84.37909076 69.31540 84.279090 -69.31540 RRab 18.547 19.371 0.527748800 5.0E-7 2167.5022 18.30 </td <td>OGLE-LMC-RRLYR-19976</td> <td>VMC84.061680 69.303520</td> <td>84.061680</td> <td>-69.303520</td> <td>RRab</td> <td>20.078</td> <td>21.194</td> <td>0.501150100</td> <td>2.1E-6</td> <td>2187.71350</td> <td> 18.57</td> <td>0.05</td>	OGLE-LMC-RRLYR-19976	VMC84.061680 69.303520	84.061680	-69.303520	RRab	20.078	21.194	0.501150100	2.1E-6	2187.71350	18.57	0.05
$ \begin{array}{c} \text{OGLE-LMC-RRLYR-12045} \\ \text{OGLE-LMC-RRLYR-21945} \\ \text{OGLE-LMC-RRLYR-21928} \\ \text{VMCS5.535916} \\ \text{OGLE-LMC-RRLYR-21930} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-21930} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-21930} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-21930} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-19808} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-19908} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-19908} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-19908} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-19908} \\ \text{VMCS5.65676} \\ \text{OGLE-LMC-RRLYR-19808} \\ \text{VMCS5.45697} \\ \text{OGLE-LMC-RRLYR-19808} \\ \text{VMCS5.46676} \\ \text{OGLE-LMC-RRLYR-19808} \\ \text{VMCS5.46667} \\ \text{OGLE-LMC-RRLYR-19808} \\ \text{OGLE-LMC-RRLYR-18828} \\ \text{VMCS5.460676} \\ \text{OGLE-LMC-RRLYR-18808} \\ \text{VMCS5.2979730} \\ \text{OG.317400} \\ \text{RLAB} \\ \text{IS.967} \\ \text{IS.967} \\ OGLE-LMC-RRLYR-18800 \\ \text{OGLE-LMC-RRLYR-18800 \\ \text{OGLE-LMC-RRLYR-1880 \\ \text{OGLE-LMC-RRLYR-18800 \\ \text{OGLE-LMC-RRLYR-18800 \\ \text{OGLE-LMC-RRLYR-18800 \\ \text{OGLE-LMC-RRLYR-1880 \\ \text{OGLE-LMC-RRLYR-188$	OGLE-LMC-RRLYR-21636	VMC85.377795 ^{69.300510}	85.377795	-69.300510	RRab	18.844	19.639	0.590616800	1.9E-6	2187.70501	17.73	0.04
$ \begin{array}{c} \text{GGE-LMC-RRLYR-1928} \\ \text{GGE-LMC-RRLYR-21793} \\ \text{OGLE-LMC-RRLYR-21793} \\ \text{OGLE-LMC-RRLYR-21793} \\ \text{VMC85.535910}^{-69.302930} \\ \text{S5.535910}^{-69.302930} \\ \text{S5.535910}^{-69.302930} \\ \text{S5.535910}^{-69.302930} \\ \text{S5.535910}^{-69.302930} \\ \text{S5.535910}^{-69.302330} \\ \text{S5.535910}^{-69.302300} \\ \text{S5.535910}^{-69.302300} \\ \text{S5.535910}^{-69.302320} \\ \text{S5.535910}^{-69.302300} \\ \text{S5.535910}^{-69.302320} \\ \text{S5.535910}^{-69.312500} \\ \text{S5.525910}^{-69.312500} \\ \text{S5.5500}^{-69.322650} \\ \text{S5.5500}^{-69.322650} \\ \text{S5.5500}^{-69.322650} \\ \text{S5.50320} \\ \text{S5.5500}^{-69.322650} \\ \text{S5.50320} \\ \text{S5.5500}^{-69.322650} \\ \text{S5.50320} \\ \text{S5.5030} \\ S5.5$	OGLE-LMC-RRLYR-22045	VMC85.805280 ^{-69.297600}	85.805280	-69.297600	RRab	19.272	19.615	0.520392400	8.0E-7	2187.62689	17.95	0.03
$ \begin{array}{c} \text{GLE-LMC-RRLYR-21900} & \text{VMC85.656765}^{-69.29915} & 85.65765 & -69.29150 \\ \text{GLE-LMC-RRLYR-19085} & \text{VMC85.35391}^{-69.302330} & 85.535910 & -69.302330 \\ \text{GLE-LMC-RRLYR-19085} & \text{VMC85.158140}^{-69.306470} & 83.458140 & -69.306470 \\ \text{GLE-LMC-RRLYR-18037} & \text{VMC85.158270}^{-69.307340} & 83.054985 & -69.301320 \\ \text{GLE-LMC-RRLYR-18637} & \text{VMC85.178270}^{-69.307840} & 83.154827 & -69.307840 \\ \text{GLE-LMC-RRLYR-2028} & \text{VMC84.462555}^{-69.311540} & 84.472555 & -69.311540 \\ \text{GLE-LMC-RRLYR-2028} & \text{VMC84.162555}^{-69.311540} & 84.472555 & -69.311540 \\ \text{GLE-LMC-RRLYR-18637} & \text{VMC85.178270}^{-69.307840} & 83.1527 & -69.307840 \\ \text{GLE-LMC-RRLYR-2028} & \text{VMC84.426255}^{-69.311540} & 84.472555 & -69.311540 \\ \text{GLE-LMC-RRLYR-18642} & \text{VMC84.279730}^{-69.31520} & 84.2797930 & -69.315960 \\ \text{GLE-LMC-RRLYR-18642} & \text{VMC85.131215}^{-69.317410} & 83.131215 & -69.317410 \\ \text{GLE-LMC-RRLYR-18642} & \text{VMC85.131215}^{-69.317410} & 83.131215 & -69.317410 \\ \text{GLE-LMC-RRLYR-18642} & \text{VMC85.131215}^{-69.317410} & 83.131215 & -69.317410 \\ \text{GLE-LMC-RRLYR-18642} & \text{VMC85.131215}^{-69.32720} & 82.663500 \\ -69.32502 & -69.32510 \\ \text{GLE-LMC-RRLYR-1864} & \text{VMC85.030766}^{-3.35262} & 85.665300 \\ -69.32560 & -69.32560 \\ \text{GLE-LMC-RRLYR-21911} & \text{VMC85.665300}^{-69.32510} & 85.665300 \\ -69.325840 & -69.325170 \\ \text{GLE-LMC-RRLYR-21911} & \text{VMC85.665300}^{-69.325420} & 85.496735 \\ -69.325470 & -69.325470 \\ \text{GLE-LMC-RRLYR-21911} & \text{VMC85.665300}^{-69.325400} & 85.663370 \\ -69.325400 & \text{Rab} & 18.91 \\ 9.407 & 0.52285400 & 0.60E^{-7} & 2167.65023 \\ \text{GLE-LMC-RRLYR-21911} & \text{VMC85.665300}^{-69.325400} & 85.265210 \\ -69.325400 & \text{Rab} & 18.971 \\ 9.502 & 0.5288240 & 0.786 \\ -69.22840 & \text{Rab} & 18.875 \\ 9.500 & 0.5288240 & 0.60E^{-7} & 2187.66530 \\ \text{GLE-LMC-RRLYR-2198} & \text{VMC85.375700}^{-69.325400} & 83.460660 \\ -69.325840 & \text{Rab} & 18.875 \\ 9.500 & 0.52882400 & 6.0E^{-7} & 2187.64594 \\ 18.0 & 0.03 \\ \text{GLE-LMC-RRLYR-1885} & \text{VMC85.37600}^{-69.325400} & 83.4602660 \\ -69.328400 & \text{Rab} & 18.952 \\ 9.471 & 0.52892400 & 6.$	OGLE-LMC-RRLYR-19228	VMC83.543895 ^{69.302990}	83.543895	-69.302990	RRab	18.684	19.279	0.580166800	1.9E-6	2167.44276	17.72	0.04
$ \begin{array}{c} \text{GLE-LMC-RRLYR-21793} & \text{VMC}85,535910 \\ \hline 6.9,30230 \\ \text{GLE-LMC-RRLYR-18428} & \text{VMC}83,455140 \\ \text{GO}83,455140 \\ \text{GO}83,455140 \\ \text{GO}84,51482 \\ \text{GO}83,17827 \\ \text{GO}93,07840 \\ \text{S}1,1540 \\ \text{S}1,1540 \\ \text{GH}24,1784 \\ \text{GO}162,1164 \\ \text{GH}24,1784 \\ \text{GO}162,1164 \\ \text{GH}24,1784 \\ \text{GH}24,1784 \\ \text{GH}24,1842 \\ \text{GH}24,184 \\ \text{GH}24,184 \\ G$	OGLE-LMC-RRLYR-21900	VMC85.656765 ^{-69.299150}	85.656765	-69.299150	RRab	19.454	20.043	0.529183200	3.2E-6	2187.43834	17.75	0.04
$ \begin{array}{c} \hline \text{GLE-LMC-RRILYR-19085} & \text{VMC83}.458140 & -69.306470 & \text{Rab} & 18.583 & 19.233 & 0.719126600 & 7.0E-7 & 2167.70295 & 17.80 & 0.03 \\ \hline \text{GLE-LMC-RRILYR-18637 } & \text{VMC83}.578270 & 69.301320 & 83.05498 & -69.301320 & \text{Rab} & 18.689 & 19.010 & 0.642436800 & 1.2E-6 & 2167.70514 & 17.93 & 0.03 \\ \hline \text{GLE-LMC-RRILYR-19637 } & \text{VMC83}.178270 & 69.307840 & 83.178270 & -69.307840 & \text{Rab} & 18.689 & 19.010 & 0.642436800 & 1.2E-6 & 2187.6014 & 18.59 & 0.04 \\ \hline \text{GLE-LMC-RRILYR-20284 } & \text{VMC84}.426255 & -69.311540 & 84.46255 & -69.311540 & \text{Rab} & 18.965 & 19.771 & 0.73248800 & 5.2E-6 & 2187.06104 & 18.03 & 0.02 \\ \hline \text{GLE-LMC-RRILYR-18562 } & \text{VMC83}.13215 & -69.317410 & 83.131215 & -69.317410 & \text{Rab} & 18.963 & 19.771 & 0.52748800 & 5.2E-6 & 2167.45212 & 18.27 & 0.04 \\ \hline \text{GLE-LMC-RRILYR-18562 } & \text{VMC83}.08655 & -69.320320 & -69.320320 & \text{Rab} & 18.963 & 19.771 & 0.52748800 & 5.2E-7 & 2167.58315 & 8.0 \\ \hline \text{GLE-LMC-RRILYR-18562 } & \text{VMC83}.086055 & -69.320320 & -69.320320 & \text{Rab} & 18.963 & 19.771 & 0.54265000 & 7.0E-7 & 2167.58315 & 8.0 \\ \hline \text{GLE-LMC-RRILYR-19318 } & \text{VMC83}.080655 & -69.320320 & -69.320320 & \text{Rab} & 18.917 & 19.05 & 0.45744500 & 3.0E-7 & 2167.5832 & 18.31 & 0.04 \\ \hline \text{GLE-LMC-RRILYR-1911 } & \text{VMC83}.606655 & -69.322650 & \text{Rab} & 18.917 & 19.670 & 0.78041400 & 3.E-6 & 2187.59268 & 17.33 & 0.05 \\ \hline \text{GLE-LMC-RRILYR-21160 } & \text{VMC84}.967215 & -69.322450 & \text{Rab} & 18.971 & 19.528 & 0.54810610 & 6.0E-7 & 2167.58032 & 18.31 & 0.04 \\ \hline \text{GLE-LMC-RRILYR-1918 } & \text{VMC83}.60660 & -69.328400 & \text{Rab} & 18.971 & 19.528 & 0.54810610 & 6.0E-7 & 2167.56033 & 18.03 & 0.03 \\ \hline \text{GLE-LMC-RRILYR-1918 } & \text{VMC83}.367500 & 69.324200 & \text{Rab} & 18.8971 & 19.590 & 0.52825400 & 6.0E-7 & 2187.56530 & 18.04 & 0.03 \\ \hline \text{GLE-LMC-RRILYR-1948 } & \text{VMC83}.37500 & 69.324200 & \text{Rab} & 18.971 & 19.590 & 0.52825400 & 7.0E-7 & 2167.66530 & 18.00 & 0.03 \\ \hline \text{GLE-LMC-RRILYR-1948 } & \text{VMC83}.37500 & 69.324200 & 8.33740 & \text{Rab} & 18.967 & 19.471 & 0.58298100 & 7.0E-7 & 2187.65771 & 18.96 & 0.03 \\ \hline GLE$	OGLE-LMC-RRLYR-21793	VMC85.535910 69.302330	85.535910	-69.302330	RRab	19.279	20.083	0.563109000	4.6E-6	2187.44907	18.40	0.04
$ \begin{array}{c} \label{eq:constraints} \hline CGLE=LMC-RRIYR-18428 & VMC88.054985 & -68.01320 & Rab & 18.689 & 19.310 & 0.642436800 & 1.2E-6 & 2167.37540 & 17.93 & 0.03 \\ CGLE=LMC-RRIYR-18637 & VMC84.162555 & -69.311540 & Rab & Rab & 18.542 & 19.098 & 0.640045300 & 1.3E-6 & 2187.0014 & 18.59 & 0.04 \\ CGLE=LMC-RRIYR-20528 & VMC84.279090 & 69.315120 & 84.27909 & -69.315120 & Rab & 18.965 & 19.771 & 0.72948800 & 5.2E-6 & 2187.0014 & 18.03 & 0.02 \\ CGLE=LMC-RRIYR-18243 & VMC82.979730 & -69.315960 & 82.979730 & -69.315120 & Rab & 18.965 & 19.771 & 0.527748800 & 5.2E-7 & 2167.54122 & 18.27 & 0.04 \\ CGLE=LMC-RRIYR-18262 & VMC83.03125 & 69.31251 & -69.317410 & Rab & 18.963 & 19.571 & 0.527748800 & 5.0E-7 & 2167.54515 & 18.05 & 0.04 \\ CGLE=LMC-RRIYR-18482 & VMC83.00655 & -69.322650 & Rab & 18.913 & 19.528 & 0.548106100 & 6.0E-7 & 2167.58032 & 18.31 & 0.04 \\ CGLE=LMC-RRIYR-1918 & VMC83.606655 & 69.322650 & Rab & 18.913 & 19.528 & 0.548106100 & 6.0E-7 & 2167.58032 & 18.31 & 0.04 \\ CGLE=LMC-RRIYR-1918 & VMC83.6066530 & -69.322650 & Rab & 18.913 & 19.670 & 0.780314400 & 3.8E-6 & 2187.59268 & 17.33 & 0.05 \\ CGLE=LMC-RRIYR-21911 & VMC85.665300 & -69.322400 & 82.4200 & Rab & 18.971 & 19.528 & 0.548106100 & 6.0E-7 & 2187.59268 & 17.33 & 0.05 \\ CGLE=LMC-RRIYR-21464 & VMC85.406376 & 9.322400 & 85.322032 & Rab & 18.871 & 19.590 & 0.529825400 & 6.0E-7 & 2187.59268 & 17.33 & 0.03 \\ CGLE=LMC-RRIYR-21444 & VMC85.40230780 & 69.322400 & Rab & 18.872 & 19.471 & 0.582298100 & 6.0E-7 & 2187.37665 & 18.14 & 0.03 \\ CGLE=LMC-RRIYR-21441 & VMC85.5923620 & 83.450660 & -69.322840 & Rab & 18.892 & 19.471 & 0.582298100 & 6.0E-7 & 2187.54554 & 18.08 & 0.03 \\ CGLE=LMC-RRIYR-21481 & VMC85.5926620 & 83.145285 & -69.328660 & Rac & 18.894 & 19.257 & 0.337219400 & 8.0E-7 & 2187.64554 & 18.04 & 0.03 \\ CGLE=LMC-RRIYR-1988 & VMC83.45285 & 0.932640 & 83.45066 & -69.32840 & Rab & 18.992 & 19.471 & 0.48529594800 & 0.0E-7 & 2187.645511 & 18.31 & 0.04 \\ CGLE=LMC-RRIYR-1988 & VMC83.45285 & 0.932640 & 83.45066 & -69.32840 & Rab & 18.994 & 19.518 & 0.57012050 & 0.5245540 & 18.1$	OGLE-LMC-BBLYB-19085	VMC83 458140 ⁻⁶⁹ 306470	83 458140	-69 306470	BBab	18 583	19 233	0 719129600	7 0E-7	2167 70295	17.80	0.03
$ \begin{array}{c} \label{eq:constraints} \begin{array}{c} \label{constraints} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	OGLE-LMC-BBLYB-18428	VMC83 054985 69 301320	83 054985	-69 301320	BBab	18 689	19 310	0.642436800	1.2E-6	2167 37540	17.93	0.03
$ \begin{array}{c} \text{OCLE-LMC-RRIVR-20528} & \text{VMC84} 44255^{-} = 69.311540 & \text{st.} 442555 & -69.311540 & \text{Rrb} & 10.657 & 20.418 & 0.281416900 & 1.3E-6 & 2187.60214 & 18.50 & 0.04 \\ \text{OCLE-LMC-RRIVR-18243} & \text{VMC82} 2799730 & -69.31500 & 82.979730 & -69.31540 & \text{Rrb} & 18.963 & 19.571 & 0.527748800 & 5.DE-7 & 2167.41222 & 18.27 & 0.04 \\ \text{OCLE-LMC-RRIVR-18422 & \text{VMC83}.12125 & -69.317410 & 82.979730 & -69.317410 & \text{Rrb} & 18.963 & 19.571 & 0.527748800 & 5.DE-7 & 2167.4515 & 18.06 & 0.04 \\ \text{OCLE-LMC-RRIVR-18482 & \text{VMC83}.04805 & -69.32020 & 83.084805 & -69.32020 & \text{Rrb} & 18.917 & 19.405 & 0.47844500 & 3.0E-7 & 2167.58123 & 18.31 & 0.04 \\ \text{OCLE-LMC-RRIVR-1918 & \text{VMC83}.060657 & -69.322650 & 69.318870 & \text{Rrb} & 18.917 & 19.405 & 0.47844500 & 3.0E-7 & 2167.58032 & 18.31 & 0.04 \\ \text{OCLE-LMC-RRIVR-21911 & \text{VMC85}.065300 & -69.318870 & \text{Rrb} & 18.917 & 19.405 & 0.487844500 & 3.0E-7 & 2167.58032 & 18.31 & 0.04 \\ \text{OCLE-LMC-RRIVR-21160 & \text{VMC85}.065300 & -69.325170 & 84.967215 & -69.322100 & \text{Rrb} & 18.907 & 19.394 & 0.57881300 & 1.0E-6 & 2187.60360 & 18.03 & 0.03 \\ \text{OCLE-LMC-RRIVR-1908 & \text{VMC83}.460660 & -69.325840 & \text{Rrb} & 18.807 & 19.394 & 0.57881300 & 1.0E-6 & 2187.60360 & 18.03 & 0.03 \\ \text{OCLE-LMC-RRIVR-1908 & \text{VMC83}.460660 & 83.37570 & -69.322400 & \text{Rrb} & 18.807 & 19.394 & 0.57881300 & 0.0E-7 & 2187.67365 & 18.01 & 0.03 \\ \text{OCLE-LMC-RRIVR-1908 & \text{VMC83}.45206 & 83.35700 & -69.32840 & \text{Rrb} & 18.807 & 19.590 & 0.529825400 & 6.0E-7 & 2187.67365 & 18.01 & 0.03 \\ \text{OCLE-LMC-RRIVR-21841 & \text{VMC85}.52236^{-}69.32640 & \text{Rrb} & 18.897 & 19.594 & 0.5702590 & 0.0E-7 & 2187.67364 & 18.04 & 0.05 \\ \text{OCLE-LMC-RRIVR-21841 & \text{VMC83}.552236^{-}69.32640 & \text{Rrb} & 18.897 & 19.594 & 0.50594800 & 9.0E-7 & 2187.64594 & 18.03 & 0.03 \\ \text{OCLE-LMC-RRIVR-21841 & \text{VMC83}.545216 & -69.322640 & \text{Rrb} & 18.947 & 19.618 & 0.57012500 & 0.0E-7 & 2187.64594 & 18.03 & 0.03 \\ \text{OCLE-LMC-RRIVR-21494 & \text{VMC83}.545216 & 69.326870 & \text{Rrb} & 18.947 & 19.618 & 0.57012500 & 0.0E-7 & 2187.64594 & 18.03 & 0.03 \\ OCLE-LMC-RRIVR-2149$	OCLE LMC BRIVE 18637	VMC83 178270 60 307840	83 178270	60 307840	BBab	18 542	10.010	0.640045300	6 0E 7	2167 70131	17.03	0.03
OGLE-LMC-RRLYR-2024 VMC84.27090 69.31530 84.32090 -69.315120 RRab 18.057 10.732948800 5.26-6 2187.00104 18.03 0.02 OGLE-LMC-RRLYR-18243 VMC84.279090 69.31500 RRab 18.965 19.771 0.732948800 5.26-6 2187.00104 18.03 0.02 OGLE-LMC-RRLYR-18243 VMC83.131215 69.317410 RRab 18.965 19.771 0.5227748800 5.26-6 2187.00104 18.03 0.04 OGLE-LMC-RRLYR-18452 VMC83.004805 69.320320 R8.084805 69.320320 R8.084805 19.771 0.54265000 7.06-7 2167.88073 18.31 0.04 OGLE-LMC-RRLYR-1918 VMC83.006655 69.322570 RC 18.917 19.405 0.487844500 0.82-6 2187.50268 17.33 0.05 OGLE-LMC-RRLYR-1160 VMC84.67215 69.322400 RRab 18.871 19.829100 7.06-7 2167.70607 17.98 0.03 OGLE-LMC-RRLYR-18937 VMC83.406660 69.322840 RRab 18.925	OCLE I MC DRIVE 20528	VMC84 462555 60 211540	84 462555	60 211540	DDo	10.657	20 418	0.040045500	1256	2107.70131	19 50	0.03
OGLE-LMC-RRLIR-120294 VMC84.219093 05.313120 64.313120 c-0.313120 c-0.3120120 c-0.31201200 c-0.31201200 c-0.31201200 c-0.31201200 c-0.321020 Rab l-1.313120 c-0.321010 R	OCLE I MC DRIVD 20284	VMC84.402555 09.511540	84.402000	-09.311340	DD-L	19.007	10 771	0.281410900	1.3E-0	2187.00214	18.09	0.04
$ \begin{array}{c} 0 \text{GLE-LMC-RRLYR-18562} & \text{VMC83.} 31312 = 69.317410 & 82.919730 & -69.313900 & RAB & 18.847 & 19.387 & 0.521438500 & 3.0E-1 & 210.741222 & 18.21 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-184562} & \text{VMC83.} 31215 = 69.317410 & 83.131215 & -69.317410 & RAB & 18.847 & 19.387 & 0.54265000 & 7.0E-7 & 2167.8502 & 18.31 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-19318} & \text{VMC83.} 0.0655 & 69.322650 & 83.00655 & -69.322650 & RAb & 18.917 & 19.405 & 0.487844500 & 3.0E-7 & 2167.85032 & 18.31 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-21911} & \text{VMC83.} 0.0655 & 69.322560 & 83.00655 & -69.322660 & RAb & 18.913 & 19.528 & 0.54810610 & 6.0E-7 & 2167.8673 & 18.13 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-21160} & \text{VMC84.} 967215 & -69.3225170 & RL & 18.907 & 19.394 & 0.376881300 & 1.0E-6 & 2187.695268 & 17.33 & 0.05 \\ 0 \text{GLE-LMC-RRLYR-21444} & \text{VMC85.} 523780 & -69.324200 & 85.203780 & -69.324200 & RAb & 18.875 & 19.590 & 0.529825400 & 6.0E-7 & 2187.37465 & 18.01 & 0.03 \\ 0 \text{GLE-LMC-RRLYR-19088} & \text{VMC83.} 406660 & -69.32840 & RAb & 18.802 & 19.471 & 0.58228100 & 7.0E-7 & 2187.54594 & 18.00 \\ 0 \text{GLE-LMC-RRLYR-18937} & \text{VMC83.} 375700 & -69.326860 & RRc & 18.836 & 19.257 & 0.337219400 & 8.0E-7 & 2186.54550 & 18.14 & 0.05 \\ 0 \text{GLE-LMC-RRLYR-18937} & \text{VMC83.} 452510 & 69.32620 & R3.145285 & -69.326620 & RAb & 18.952 & 19.471 & 0.485457800 & 4.0E-7 & 2167.48211 & 18.82 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-18585} & \text{VMC83.} 145285 & 69.326620 & RAb & 18.952 & 19.471 & 0.485457800 & 4.0E-7 & 2167.48211 & 18.92 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-18585} & \text{VMC83.} 452510 & 69.326870 & RAb & 18.847 & 19.648 & 0.50594800 & 9.0E-7 & 2187.5771 & 17.95 & 0.03 \\ 0 \text{GLE-LMC-RRLYR-19587} & \text{VMC83.} 43760 & 69.322980 & 83.783760 & -69.32840 & RAb & 18.952 & 19.471 & 0.485457800 & 4.0E-7 & 2167.48211 & 18.82 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-20447} & \text{VMC84.} 378760 & 69.322980 & RAb & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2167.72410 & 18.24 & 0.04 \\ 0 \text{GLE-LMC-RRLYR-19587} & \text{VMC83.} 78760 & 69.322980 & 83.783760 & 69.332940 & 85.579605 & 69.329400 & RAb & 18.945 & 19.480 & 0.466749100 & 3.0E-7 $	OCLE I MC DDIVD 18949	VMC82.279090 09.315120	89.070720	-09.313120	DDab	18.903	10 571	0.132948800	5.2E-0	2167.00104	10.03	0.02
$ \begin{array}{c} \text{OGLE-LMC-RRLYR-18482} & \text{VMC83.} 131215 = 69.31/410 & 83.131215 & -69.31/410 & \text{Rab} & 18.847 & 19.387 & 0.542650000 & 7.0E-7 & 2167.58032 & 18.30 \\ \text{OGLE-LMC-RRLYR-19318} & \text{VMC83.} 60.6655 = 69.322650 & 83.600655 & -69.322650 & \text{Rab} & 18.917 & 19.465 & 0.447844500 & 6.0E-7 & 2167.58032 & 18.31 & 0.04 \\ \text{OGLE-LMC-RRLYR-211911} & \text{VMC85.} 665300 & 69.318870 & 85.665300 & -69.322650 & \text{Rab} & 18.917 & 19.670 & 0.780341400 & 3.8E-6 & 2187.59268 & 17.33 & 0.05 \\ \text{OGLE-LMC-RRLYR-21160} & \text{VMC84.} 967215 & 69.325170 & 84.967215 & -69.325170 & \text{Rc} & 18.907 & 19.394 & 0.376881300 & 1.0E-6 & 2187.59268 & 17.33 & 0.05 \\ \text{OGLE-LMC-RRLYR-1408 } & \text{VMC85.} 40660 & 69.325840 & 83.460660 & -69.325840 & \text{Rab} & 18.875 & 19.590 & 0.52825400 & 6.0E-7 & 2167.58053 & 18.03 \\ \text{OGLE-LMC-RRLYR-18937 } & \text{VMC83.} 4375700 & 69.325840 & -69.326840 & \text{Rab} & 18.805 & 19.471 & 0.582298100 & 7.0E-7 & 2187.37465 & 18.01 & 0.03 \\ \text{OGLE-LMC-RRLYR-18937 } & \text{VMC83.} 375700 & 69.326860 & 83.75700 & -69.326620 & \text{Rab} & 18.804 & 19.57 & 0.37219400 & 8.0E-7 & 2187.64594 & 0.03 \\ \text{OGLE-LMC-RRLYR-21841 } & \text{VMC85.} 52230^{-69.326470} & 85.582230 & -69.326620 & \text{Rab} & 18.947 & 19.618 & 0.570120500 & 7.0E-7 & 2187.64594 & 18.08 \\ \text{OGLE-LMC-RRLYR-21494 } & \text{VMC85.} 5425210 & 69.326670 & \text{Rab} & 18.947 & 19.618 & 0.570120500 & 7.0E-7 & 2187.64594 & 18.08 \\ \text{OGLE-LMC-RRLYR-21744 } & \text{VMC85.} 4.09326670 & 85.245210 & -69.326670 & \text{Rab} & 18.945 & 19.469 & 0.595094800 & 9.0E-7 & 2187.64594 & 18.32 & 0.04 \\ \text{OGLE-LMC-RRLYR-21744 } & \text{VMC85.} 5495676 & -69.322980 & \text{Rab} & 18.978 & 19.469 & 0.595094800 & 9.0E-7 & 2187.64594 & 18.08 \\ \text{OGLE-LMC-RRLYR-21744 } & \text{VMC85.} 4.092370 & 69.331010 & \text{Rab} & 18.798 & 19.469 & 0.595094800 & 9.0E-7 & 2187.64594 & 18.40 & 0.04 \\ \text{OGLE-LMC-RRLYR-21744 } & \text{VMC85.} 549230 & 69.331010 & \text{Rab} & 18.978 & 19.469 & 0.595094800 & 5.0E-7 & 2187.64594 & 18.40 & 0.04 \\ \text{OGLE-LMC-RRLYR-21744 } & \text{VMC85.} 579605 & 69.3229400 & 8.579605 & 69.329400 & \text{Rab} & 18.945 & 19.469 & 0.$	OGLE-LMC-RRLYR-18243	VMC82.979730_69.315960	82.979730	-69.315960	RRAD	18.963	19.571	0.527748800	5.0E-7	2107.41222	18.27	0.04
$ \begin{array}{c} \text{OGLE-LMC-RLYR-18482} \\ \text{OGLE-LMC-RLYR-19318} \\ \text{VMC88.060655} & 69.320250 \\ \text{OGLE-LMC-RLYR-21161} \\ \text{VMC88.665300} & 69.3222650 \\ \text{S6.06530} & 69.322650 \\ \text{S6.06550} & -69.322650 \\ \text{S6.06550} & -69.322650 \\ \text{S6.06550} & -69.328170 \\ \text{S6.06520} & -69.328100 \\ \text{S6.028200} \\ \text{Rab} & 18.875 \\ 19.990 \\ \text{OS2825400} & -60.5282540 \\ \text{S6.05200} & -69.32840 \\ \text{S6.0270} & -69.32840 \\ \text{S6.023780} & -69.32840 \\ \text{S6.375700} & -69.32680 \\ \text{Rab} \\ 18.952 \\ 19.471 \\ 19.618 \\ \text{O.570120500} & 7.0E-7 \\ 2187.64594 \\ 18.08 \\ \text{OGLE-LMC-RLYR-21841 \\ \text{VMC85.245210} & -69.326870 \\ \text{S6.245210} & -69.326870 \\ \text{Rab} \\ 18.952 \\ 19.471 \\ 19.451 \\ \text{OGLE-LMC-RLYR-21444 \\ \text{VMC85.49230} & 69.32840 \\ \text{S6.245210} & -69.326870 \\ \text{Rab} \\ 18.792 \\ 19.471 \\ 19.451 \\ \text{O6225} \\ O$	OGLE-LMC-RRLYR-18562	VMC83.131215_69.317410	83.131215	-69.317410	RRAD	18.847	19.387	0.542650000	7.0E-7	2107.85415	18.05	0.04
$ \begin{array}{c} \text{OGLE-LMC-RRLYR-19318} & \text{VMC83}, 600655 & 69.322650 & \text{RRab} & 18.913 & 19.528 & 0.548106100 & 6.0E-7 & 2167.83673 & 18.13 & 0.048 \\ \text{OGLE-LMC-RRLYR-21911} & \text{VMC83}, 6655300 & 69.318870 & 85.665300 & 69.318870 & \text{RRab} & 18.714 & 19.670 & 0.78034100 & 3.8E-6 & 2187.59268 & 17.33 & 0.05 \\ \text{OGLE-LMC-RRLYR-21444} & \text{VMC85}, 5203780 & 69.325170 & \text{RAb}, 69.325170 & \text{RRab} & 18.907 & 19.394 & 0.376881300 & 1.0E-6 & 2187.69530 & 18.03 & 0.03 \\ \text{OGLE-LMC-RRLYR-19088} & \text{VMC83}, 460660 & 69.325840 & \text{RRab} & 18.802 & 19.471 & 0.582298100 & 7.0E-7 & 2167.76067 & 17.98 & 0.03 \\ \text{OGLE-LMC-RRLYR-18987} & \text{VMC83}, 375700 & 69.326860 & 83.375700 & -69.326860 & \text{RRab} & 18.947 & 19.618 & 0.570120500 & 7.0E-7 & 2187.64594 & 18.04 \\ \text{OGLE-LMC-RRLYR-21841} & \text{VMC85}, 582230 & 69.326420 & 83.455285 & -69.326860 & \text{RRab} & 18.947 & 19.618 & 0.570120500 & 7.0E-7 & 2187.64594 & 18.08 & 0.03 \\ \text{OGLE-LMC-RRLYR-21444} & \text{VMC85}, 5425210 & 69.326670 & 83.145285 & -69.326670 & \text{RRab} & 18.962 & 19.471 & 0.485457800 & 4.0E-7 & 2187.64594 & 18.08 & 0.03 \\ \text{OGLE-LMC-RRLYR-21444} & \text{VMC84}, 403230 & 69.331010 & 84.403230 & -69.331010 & \text{RRab} & 18.781 & 19.545 & 0.662957600 & 5.2E-6 & 2187.41343 & 17.94 & 0.04 \\ \text{OGLE-LMC-RRLYR-21744} & \text{VMC83}, 783760 & 69.322840 & \text{RRab} & 18.781 & 19.545 & 0.662957600 & 5.2E-6 & 2187.41343 & 17.94 & 0.04 \\ \text{OGLE-LMC-RRLYR-19387} & \text{VMC83}, 733760 & 69.322980 & 8.783760 & -69.322980 & \text{RRab} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.45721 & 18.18 & 0.03 \\ \text{OGLE-LMC-RRLYR-20344} & \text{VMC83}, 783760 & 69.322940 & \text{RRab} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.45243 & 18.01 & 0.03 \\ \text{OGLE-LMC-RRLYR-21034} & \text{VMC83}, 579605 & 69.329400 & \text{RRab} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.45243 & 18.01 & 0.03 \\ \text{OGLE-LMC-RRLYR-21034} & \text{VMC84}, 579605 & 69.329400 & \text{RRab} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.45261 & 18.31 & 0.03 \\ \text{OGLE-LMC-RRLYR-21034} & \text{VMC84}, 579605 & 69.329400 & \text{Rab} & 18.945 & 19.430 & 0.66673300 & 1.0E-6 & $	OGLE-LMC-RRLYR-18482	VMC83.084805_69.320320	83.084805	-69.320320	RRab	18.917	19.405	0.487844500	3.0E-7	2167.58032	18.31	0.04
$ \begin{array}{c} \text{OGLE-LMC-RRLYR-2110} & \text{VMC85.} 665300 & 69.318870 & \text{K}8.665300 & -69.318870 & \text{RRab} & 18.714 & 19.670 & 0.780341400 & 3.8\text{Le}6 & 2187.39268 & 17.33 & 0.05 \\ \text{OGLE-LMC-RRLYR-21144} & \text{VMC85.} 203780 & 69.325170 & \text{K}4.967215 & -69.325170 & \text{RRab} & 18.875 & 19.590 & 0.529825400 & \text{G.PE-7} & 2187.37465 & 18.01 & 0.03 \\ \text{OGLE-LMC-RRLYR-19088} & \text{VMC83.} 366660 & 60.325840 & \text{S}3.37570 & -69.32680 & \text{RRab} & 18.875 & 19.590 & 0.529825400 & \text{G.PE-7} & 2187.7465 & 18.01 & 0.03 \\ \text{OGLE-LMC-RRLYR-18937} & \text{VMC83.} 375700 & 69.326860 & \text{S3.7570} & -69.32680 & \text{RRc} & 18.836 & 19.257 & 0.337219400 & 8.0\text{E-7} & 2186.74654 & 18.04 & 0.05 \\ \text{OGLE-LMC-RRLYR-18385} & \text{VMC83.} 145285 & 69.32620 & -69.323440 & \text{RRab} & 18.947 & 19.618 & 0.570120500 & 7.0\text{E-7} & 2187.64594 & 18.08 & 0.03 \\ \text{OGLE-LMC-RRLYR-21841} & \text{VMC85.} 452520 & -69.32620 & \text{RRab} & 18.947 & 19.618 & 0.570120500 & 7.0\text{E-7} & 2187.764594 & 18.08 & 0.03 \\ \text{OGLE-LMC-RRLYR-21494} & \text{VMC85.} 4525210 & 69.326870 & \text{S5.} 245210 & -69.326870 & \text{RRab} & 18.798 & 19.469 & 0.595094800 & 9.0\text{E-7} & 2187.7117 & 17.95 & 0.03 \\ \text{OGLE-LMC-RRLYR-21474} & \text{VMC85.} 495965 & -69.328340 & \text{RRe} & 18.687 & 19.039 & 0.251155900 & 1.3\text{E-6} & 2187.57211 & 18.18 & 0.03 \\ \text{OGLE-LMC-RRLYR-19587} & \text{VMC83.} 327600 & 69.324300 & -69.328340 & \text{RRe} & 18.945 & 19.480 & 0.466749100 & 3.0\text{E-7} & 2187.7117 & 17.95 & 0.03 \\ \text{OGLE-LMC-RRLYR-19587} & \text{VMC83.} 327600 & 69.328340 & \text{RRe} & 18.945 & 19.490 & 0.466749100 & 3.0\text{E-7} & 2187.72401 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-19587} & \text{VMC83.} 32760 & 69.32840 & \text{Rab} & 18.945 & 19.480 & 0.466749100 & 3.0\text{E-7} & 2187.72401 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-19381} & \text{VMC83.} 378760 & -69.328340 & \text{RRe} & 18.945 & 19.480 & 0.466749100 & 3.0\text{E-7} & 2187.72463 & 18.01 & 0.03 \\ \text{OGLE-LMC-RRLYR-19381} & \text{VMC83.} 378760 & -69.32840 & \text{Rab} & 18.915 & 19.620 & 0.66230200 & 1.3\text{E-6} & 2187.22997 & 17.98 & 0.03 \\ \text{OGLE-LMC-RRLYR-19381} & \text{VMC83.} 375860 & 69.334300 & \text{Rab} & 18.915 & 19.62$	OGLE-LMC-RRLYR-19318	VMC83.600655_69.322650	83.600655	-69.322650	RRab	18.913	19.528	0.548106100	6.0E-7	2167.83673	18.13	0.04
$ \begin{array}{c} \text{OGLE-LMC-RRLYR-21160} & \text{VMC84.967215} & 69.325170 & 84.967215 & 69.325170 & \text{RRc} & 18.907 & 19.394 & 0.376881300 & 1.0E-6 & 2187.37465 & 18.03 & 0.03 \\ \text{OGLE-LMC-RRLYR-19088} & \text{VMC83.460660} & 69.325840 & 85.203780 & -69.322400 & \text{RRab} & 18.875 & 19.590 & 0.5292825400 & 7.0E-7 & 2167.70607 & 17.98 & 0.03 \\ \text{OGLE-LMC-RRLYR-18937} & \text{VMC83.375700} & 69.326860 & 83.375700 & -69.326860 & \text{RRc} & 18.836 & 19.257 & 0.337219400 & 8.0E-7 & 2187.37465 & 18.00 & 0.03 \\ \text{OGLE-LMC-RRLYR-21841} & \text{VMC85.582230} & 69.326420 & 83.145285 & -69.326420 & \text{RRab} & 18.947 & 19.618 & 0.570120500 & 7.0E-7 & 2187.64594 & 18.08 & 0.03 \\ \text{OGLE-LMC-RRLYR-2144} & \text{VMC85.542510} & 69.326870 & \text{R8.b} & 18.947 & 19.618 & 0.570120500 & 4.0E-7 & 2187.57717 & 17.95 & 0.03 \\ \text{OGLE-LMC-RRLYR-2144} & \text{VMC85.495965} & 69.326620 & \text{Rab} & 18.947 & 19.618 & 0.570120500 & 4.0E-7 & 2187.57717 & 17.95 & 0.03 \\ \text{OGLE-LMC-RRLYR-2144} & \text{VMC85.495965} & 69.328340 & 85.495965 & -69.328340 & \text{RRab} & 18.781 & 19.545 & 0.662957600 & 5.2E-6 & 2187.57721 & 18.18 & 0.03 \\ \text{OGLE-LMC-RRLYR-21744} & \text{VMC85.79605} & 69.322980 & \text{R3.783760} & -69.322980 & \text{RRab} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2167.72410 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-20344} & \text{VMC83.783760} & 69.3229400 & \text{RAb} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.477410 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-20134} & \text{VMC83.597280} & 69.332430 & -69.33430 & \text{RRab} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.47240 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-20344} & \text{VMC83.597280} & 69.3329400 & \text{RAb} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.47240 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-20144} & \text{VMC83.597280} & 69.334520 & \text{RRab} & 18.945 & 19.480 & 0.466749100 & 3.0E-7 & 2187.47240 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-20144} & \text{VMC83.597280} & 69.334520 & \text{RRab} & 18.945 & 19.480 & 0.466734000 & 3.0E-7 & 2187.47240 & 18.21 & 0.04 \\ \text{OGLE-LMC-RRLYR-20144} & \text{VMC83.182275} & 69.334520 & \text{RRab} & 18.945 & 19.430 & 0.466734000 & 1.3E-6 & 2187.47364 & 18.0$	OGLE-LMC-RRLYR-21911	VMC85.665300_69.318870	85.665300	-69.318870	RRab	18.714	19.670	0.780341400	3.8E-6	2187.59268	17.33	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-21160	VMC84.967215 69.325170	84.967215	-69.325170	RRc	18.907	19.394	0.376881300	1.0E-6	2187.60530	18.03	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-21444	VMC85.203780 ^{-69.324200}	85.203780	-69.324200	RRab	18.875	19.590	0.529825400	6.0E-7	2187.37465	18.01	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-19088	VMC83.460660 ^{-69.325840}	83.460660	-69.325840	RRab	18.802	19.471	0.582298100	7.0E-7	2167.70607	17.98	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-18937	VMC83.375700 ^{-69.326860}	83.375700	-69.326860	RRc	18.836	19.257	0.337219400	8.0E-7	2186.54550	18.14	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-21841	VMC85.582230 ^{-69.323440}	85.582230	-69.323440	RRab	18.947	19.618	0.570120500	7.0E-7	2187.64594	18.08	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-18585	VMC83.145285 69.326620	83.145285	-69.326620	RRab	18.952	19.471	0.485457800	4.0E-7	2167.48211	18.32	0.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-21494	VMC85.245210 ^{-69.326870}	85.245210	-69.326870	RRab	18.798	19.469	0.595094800	9.0E-7	2187.57717	17.95	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGLE-LMC-BBLYB-20457	VMC84 403230 69 331010	84 403230	-69 331010	BBab	18 781	19 545	0.662957600	5.2E-6	2187 41343	17.94	0.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGLE-LMC-BBLYB-21744	VMC85 495965 69 328340	85 495965	-69 328340	BBe	18 687	19 039	0.251155900	1 3E-6	2187 55721	18 18	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCLE LMC BRIVE 19587	VMC83 783760 60 322080	83 783760	60 322080	BBab	18 045	10.480	0.466749100	3 OF 7	2167 72410	18 21	0.00
$ \begin{array}{c} \text{GGLE-LMC-RRLYR-210344} & \text{VMC84.321300} & -93.32430 & 93.321300 & -93.33430 & 93.321300 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33430 & -93.33450 & -93.334250 & -93.337120 & -93.334250 & -93.337120 & -93.334250 & -93.337120 & -93.337120 & -93.334250 & -93.337120 & -93.337120 & -93.337120 & -93.337120 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & -93.37120 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -93.337120 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -93.337120 & -93.337120 & -93.337120 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -82.23 & 0.03 & -72.187.43294 & -72.187.43294 & -72.187.43294 & -72.187.43294 & -72.187.43294 & -72.$	OCLE I MC PRIVE 20244	VMC84 221200 60 224220	84 221200	60 224220	DDab	18 015	10.620	0.400749100	1256	2107.72410	17.09	0.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCLE I MC DDIVD 21222	VMC85 570605 60 220400	04.321300 95 570605	-09.334330	DDab	10.913	10.020	0.000230200	1.5E-0	2107.22997	10.01	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLIR-21838	VMC83.579005 09.529400	85.579005	-09.329400	nnab	10.100	19.200	0.482972000	4.0E-7	2187.42043	10.01	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-19311	VMC83.597280_69.334520	83.597280	-09.334520	RRe	19.181	19.606	0.259254600	1.0E-0	2107.72930	18.70	0.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-20174	VMC84.196740_69.335640	84.196740	-69.335640	RRab	19.253	20.098	0.598482600	1.3E-6	2187.41561	18.31	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-18644	VMC83.182275_69.334250	83.182275	-69.334250	RRab	18.641	19.304	0.601733300	1.0E-6	2167.44229	17.76	0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-20419	VMC84.375840_69.338060	84.375840	-69.338060	RRab	19.236	20.055	0.583050700	1.4E-6	2187.51150	18.28	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-21001	VMC84.835455 ^{69.337110}	84.835455	-69.337110	RRab	18.931	19.387	0.456073400	5.0E-7	2187.43294	18.23	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-21100	VMC84.911190 ^{-69.337120}	84.911190	-69.337120	RRc	19.279	19.835	0.284477800	8.0E-7	2187.65835	18.52	0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-21040	VMC84.864825 ^{69.337900}	84.864825	-69.337900	RRab	18.715	19.518	0.778995600	2.9E-6	2187.75177	17.75	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-19168	VMC83.502420 ^{-69.343590}	83.502420	-69.343590	RRc	19.077	19.598	0.306785500	4.0E-7	2167.61459	18.59	0.05
OGLE-LMC-RRLYR-21416 VMC85.180830 69.346730 85.180830 -69.346730 RRab 19.419 20.231 0.479154700 1.0E-6 2187.75302 18.33 0.04	OGLE-LMC-RRLYR-19903	VMC84.011385 69.349080	84.011385	-69.349080	RRab	18.996	19.496	0.463770200	4.0E-7	2187.67857	18.29	0.03
	OGLE-LMC-RRLYR-21416	VMC85.180830 ^{-69.346730}	85.180830	-69.346730	RRab	19.419	20.231	0.479154700	1.0E-6	2187.75302	18.33	0.04

OGLE-LMC-RRLYR-18533	VMC83.118060 69.347100	83.118060	-69.347100	RRc	18.693	19.156	0.363817100	8.0E-7	2167.58055	18.08	0.03
OGLE-LMC-RRLYR-18487	VMC83.091690 ^{-69.346620}	83.091690	-69.346620	RRe	19.006	19.388	0.282137800	7.0E-7	2167.72844	18.52	0.04
OGLE-LMC-RRLYR-19383	VMC83.646240 ^{-69.351300}	83.646240	-69.351300	RRc	19.092	19.593	0.311923800	6.0E-7	2167.67864	18.61	0.04
OGLE-LMC-RRLYR-18371	VMC83.027685 ^{69.349080}	83.027685	-69.349080	RRab	18.771	19.269	0.524811600	4.0E-7	2167.39625	18.33	0.04
OGLE-LMC-RRLYR-20574	VMC84.491295 ^{69.356240}	84.491295	-69.356240	RRab	18.809	19.487	0.586601700	1.0E-6	2187.21711	17.99	0.03
OGLE-LMC-RRLYR-19740	VMC83.891415 69.358480	83.891415	-69.358480	RRab	18.993	19.606	0.504781900	5.0E-7	2187.27839	18.15	0.03
OGLE-LMC-RRLYR-18364	VMC83.025465 ^{-69.355250}	83.025465	-69.355250	RRe	18.992	19.423	0.275110500	1.5E-6	2186.75724	18.73	0.05
OGLE-LMC-RRLYR-19666	VMC83.834355 ^{69.357000}	83.834355	-69.357000	RRab	18.809	19.483	0.621706000	1.4E-6	2167.68372	18.02	0.03
OGLE-LMC-RRLYR-21190	VMC84.994155 ^{69.360310}	84.994155	-69.360310	RRab	18.824	19.526	0.659997000	1.3E-6	2187.16290	17.95	0.03
OGLE-LMC-RRLYR-19020	VMC83.419575 ^{69.361460}	83.419575	-69.361460	RRc	19.141	19.612	0.274386100	6.0E-7	2167.85333	18.73	0.05
OGLE-LMC-RRLYR-19052	VMC83.439285 ^{-69.362040}	83.439285	-69.362040	RRc	18.334	18.508	0.301914200	6.0E-7	2167.61716	18.11	0.03
OGLE-LMC-RRLYR-19746	VMC83.897745 69.364450	83.897745	-69.364450	RRab	19.103	19.753	0.556019800	1.8E-6	2187.66695	18.28	0.03
OGLE-LMC-RRLYR-18803	VMC83.278425 ^{69.362250}	83.278425	-69.362250	RRab	18.903	19.421	0.487909300	1.2E-6	2167.83637	18.30	0.04
OGLE-LMC-RRLYR-20314	VMC84.296640 ^{69.364090}	84.296640	-69.364090	RRab	18.628	19.251	0.665895500	2.3E-6	2187.51236	17.89	0.03
OGLE-LMC-RRLYR-20205	VMC84.224805 ^{69.366250}	84.224805	-69.366250	RRab	18.968	19.618	0.518407400	2.0E-6	2187.71253	18.10	0.04
OGLE-LMC-RRLYR-19178	VMC83.508510_69.365580	83.508510	-69.365580	RRc	19.024	19.520	0.304918100	8.0E-7	2167.72875	18.42	0.04
OGLE-LMC-RRLYR-20808	VMC84.678000_69.369870	84.678000	-69.369870	RRab	18.912	19.593	0.617384600	2.1E-6	2187.16326	18.01	0.03
OGLE-LMC-RRLYR-19357	VMC83.622990_69.366080	83.622990	-69.366080	RRab	18.716	19.285	0.578571400	7.0E-7	2167.60983	17.99	0.03
OGLE-LMC-RRLYR-22080	VMC85.846050_69.365030	85.846050	-69.365030	RRc	19.609	20.551	0.393190000	3.4E-6	2187.49106	18.22	0.04
OGLE-LMC-RRLYR-20426	VMC84.379620_69.376480	84.379620	-69.376480	RRab	19.045	19.683	0.549267100	9.0E-7	2187.31280	18.08	0.04
OGLE-LMC-RRLYR-18857	VMC83.318880_69.374520	83.318880	-69.374520	RRab	19.098	19.569	0.630549600	3.5E-6	2167.56753	17.88	0.03
OGLE-LMC-RRLYR-20052	VMC84.118515_69.376710	84.118515	-69.376710	RRab	18.888	19.392	0.518881500	8.0E-7	2187.69110	18.35	0.04
OGLE-LMC-RRLYR-21596	VMC85.338990_69.372280	85.338990	-69.372280	RRab	18.879	19.451	0.539690600	9.0E-7	2187.34297	17.97	0.03
OGLE-LMC-RRLYR-21846	VMC85.592025_69.371680	85.592025	-69.371680	RRab	18.831	19.495	0.612733000	1.1E-6	2187.37443	18.04	0.03
OGLE-LMC-RRLYR-21629	VMC85.367970_69.373640	85.367970	-69.373640	RRc	18.855	19.570	0.444978000	3.4E-6	2187.51340	17.88	0.03
OGLE-LMC-RRLYR-18963	VMC83.388420_69.375940	83.388420	-69.375940	RRab	18.811	19.508	0.671565700	1.8E-6	2167.88422	17.93	0.03
OGLE-LMC-RRLYR-20381	VMC84.348990 69.378480	84.348990	-69.378480	RRab	18.841	19.567	0.675204800	2.2E-6	2187.75912	18.01	0.03
OGLE-LMC-RRLYR-18070	VMC83.199270 69.377350	83.199270	-09.377350	RKe	19.128	19.503	0.262193700	1.3E-0	2107.00825	18.72	0.05
OGLE-LMC-RRLYR-18779	VMC83.264490_69.377650	83.264490	-69.377650	RRAD	18.760	19.376	0.600855600	1.2E-0	2107.29197	17.80	0.04
OGLE-LMC-RRLYR-20559	VMC84.481905 69.382390	84.481905	-09.382390	RRAD DD-L	19.011	19.779	0.528272100	1.9E-0	2187.31540	16.66	0.04
OGLE-LMC-RRLIR-21243	VMC82 800275 60 285060	83.040280	-09.381240	DD-L	19.041	10.900	0.400550400	0.0E-7	2107.41794	17.04	0.03
OCLE IMC PRIVE 22087	VMC85.899275 09.385000 VMC85.854855 60.278470	03.099273 95.954955	-09.383000	R R R R R R R R R R R R R R R R R R R	10.741	19.397	0.030974000	2.4E-0 2.6E-6	2107.71944	17.94	0.03
OCLE IMC PRIVE 10182	VMC82 512200 60 286280	82 512200	-09.378470	R R R R R R R R R R R R R R R R R R R	19.321	20.207	0.594988700	5.0E-0 6.0E-7	2107.44030	17.66	0.03
OCLE LMC BRIVE 10522	VMC83 747175 60 387300	83 747175	60 387300	RRab	18 773	10 420	0.551584200	6.0E-7	2107.03915	18 10	0.07
OCLE LMC BRIVE 20103	VMC84 145230 60 388500	84 145230	60 388500	RRab	18 533	18 067	0.612116100	2.0E-6	2107.40515	17 75	0.04
OCLE LMC BRIVE 18732	VMC83 230020 60 385600	83 230020	60.385600	BBc	10.005	10.307	0.205578300	5.0E-7	2167.68210	18.41	0.03
OGLE-LMC-BRLVB-21259	VMC85.062645_69.388710	85.062645	-69 388710	BBab	18 298	18 785	0.235578500	1.8E-6	2187 47668	17.66	0.04
OGLE-LMC-BRLYB-18817	VMC83 287230 69 389500	83 287230	-69.389500	BBab	19 220	19 883	0.510168100	8 0E-7	2167.65261	18.33	0.02
OGLE-LMC-BRLYB-20942	VMC84 778755 ⁻⁶⁹ 391210	84 778755	-69.391210	BBc	19 254	19 899	0 298194400	7 0E-7	2187 75991	18.53	0.05
OGLE-LMC-BRLYB-21788	VMC85.533720 ^{-69.387700}	85.533720	-69.387700	RRab	18.787	19.318	0.512275000	7.0E-7	2187,43515	18.09	0.04
OGLE-LMC-BRLYB-18437	VMC83.063100 ^{-69.390720}	83.063100	-69.390720	BBc	18.843	19.178	0.330669600	8.0E-7	2167.79963	18.39	0.04
OGLE-LMC-RRLYR-19542	VMC83.758305 ^{-69.394360}	83.758305	-69.394360	RRab	18.990	19.693	0.636006000	3.5E-6	2167.70571	18.02	0.03
OGLE-LMC-RRLYR-19994	VMC84.076095 ^{-69.395610}	84.076095	-69.395610	RRab	18.868	19.455	0.557741000	8.0E-7	2187.60153	18.02	0.03
OGLE-LMC-RRLYR-21366	VMC85.139145 ^{69.395290}	85.139145	-69.395290	RRc	18.659	19.239	0.395096400	1.1E-6	2187.50956	17.95	0.03
OGLE-LMC-RRLYR-21238	VMC85.038705 ^{69.398180}	85.038705	-69.398180	RRc	18.967	19.332	0.298505400	1.1E-6	2187.65044	18.09	0.05
OGLE-LMC-RRLYR-19136	VMC83.485320 ^{-69.399170}	83.485320	-69.399170	RRab	18.823	-99.99	0.601844900	1.7E-6	2248.19936	18.01	0.03
OGLE-LMC-RRLYR-20068	VMC84.127725 ^{69.385460}	84.127725	-69.385460	RRab	18.773	19.434	0.663688900	1.7E-6	2187.15358	17.84	0.04
OGLE-LMC-RRLYR-19456	VMC83.701650 ⁻ 69.393490	83.701650	-69.393490	RRab	19.268	19.726	0.373043000	3.0E-7	2167.79387	18.54	0.10
OGLE-LMC-RRLYR-21564	VMC85.308105 ^{69.402440}	85.308105	-69.402440	RRc	19.351	20.065	0.307710100	2.0E-6	2193.76293	18.62	0.04
OGLE-LMC-RRLYR-19208	VMC83.530095_69.406280	83.530095	-69.406280	RRab	19.209	19.886	0.489128300	1.0E-6	2167.61607	18.56	0.04
OGLE-LMC-RRLYR-18799	VMC83.277045_69.404990	83.277045	-69.404990	RRab	18.869	19.616	0.612156800	1.0E-6	2167.53845	18.07	0.03
OGLE-LMC-RRLYR-21471	VMC85.221810_69.405190	85.221810	-69.405190	RRab	19.300	20.010	0.486916200	1.3E-6	2187.66128	18.27	0.04
OGLE-LMC-RRLYR-20636	VMC84.545820 ^{69.408620}	84.545820	-69.408620	RRab	19.043	19.769	0.551028800	1.6E-6	2187.39738	17.94	0.03
OGLE-LMC-RRLYR-19140	VMC83.488095_69.408490	83.488095	-69.408490	RRab	18.768	19.310	0.534141900	7.0E-7	2167.44764	17.97	0.03
OGLE-LMC-RRLYR-20736	VMC84.633930_69.410100	84.633930	-69.410100	RRab	19.125	-99.99	0.584687900	6.1E-6	2187.57820	18.16	0.04
OGLE-LMC-RRLYR-21496	VMC85.246080_69.407560	85.246080	-69.407560	RRab	19.053	19.815	0.585193900	1.3E-6	2187.50184	18.16	0.04
OGLE-LMC-RRLYR-19002	VMC83.407200_69.409090	83.407200	-69.409090	RRc	19.408	19.233	0.289506500	8.0E-7	2167.69656	18.18	0.04

OGLE-LMC-RRLYR-20047	VMC84.114240 69.411150	84.114240	-69.411150	RRab	18.892	19.413	0.483944900	8.0E-7	2187.52660	18.16	0.03
OGLE-LMC-BRLVB-19065	VMC83 444940 69 413950	83 444940	-69 413950	BRab	19.007	19 517	0.480258000	$4.0E_{-7}$	2167 60434	18 31	0.04
OCLE LMC BRIVE 21680	VMC85 430895 69 409240	85 430805	60 400240	BBab	10.068	10.818	0.622468600	2.4E.6	2187 17275	17.85	0.05
OCLE I MC PRIVE 10800	VMC92 026720 60 410220	82 026720	60 410220	DDo	10.012	10.464	0.022403000	1.0E.6	2107.17270	19.41	0.05
OCLE IMC DRIVD 21726	VMC85.930730 09.410330	05.930730	-09.410330	DDab	19.012	10.204	0.522801800	1.0E-0	2187.45500	17.00	0.03
OGLE-LMC-RRLIR-21730	VMC85.485920 09.415090	03.403920	-09.415090	nnab DD 1	10.090	19.304	0.577055400	9.0E-7	2187.02403	10.00	0.03
OGLE-LMC-RRLYR-20422	VMC84.377715_09.415730	84.3///15	-09.415730	RRab	18.073	19.191	0.503412300	8.0E-7	2187.74744	18.00	0.03
OGLE-LMC-RRLYR-18877	VMC83.330865_69.416540	83.330865	-69.416540	RRab	18.681	19.233	0.549522000	7.0E-7	2167.50823	17.84	0.05
OGLE-LMC-RRLYR-20826	VMC84.690465_69.419660	84.690465	-69.419660	RRab	20.040	21.180	0.453302300	1.9E-6	2187.43913	18.90	0.04
OGLE-LMC-RRLYR-20855	VMC84.709815_69.423290	84.709815	-69.423290	RRab	19.963	21.181	0.568335200	3.0E-6	2187.68165	18.34	0.03
OGLE-LMC-RRLYR-18295	VMC82.991490 69.420970	82.991490	-69.420970	RRc	18.869	19.306	0.329605500	3.0E-7	455.54581	18.35	0.03
OGLE-LMC-RRLYR-20567	VMC84.487050 ^{-69.426240}	84.487050	-69.426240	\mathbf{RRab}	18.806	19.477	0.613993100	1.6E-6	2193.43192	17.96	0.03
OGLE-LMC-RRLYR-19124	VMC83.478375 ^{-69.421500}	83.478375	-69.421500	RRab	18.864	19.410	0.467395700	3.0E-7	2167.86132	17.98	0.05
OGLE-LMC-RRLYR-20014	VMC84.086880 ^{-69.424370}	84.086880	-69.424370	RRab	18.959	19.482	0.501810300	5.0E-7	2187.64397	18.33	0.03
OGLE-LMC-RRLYR-21372	VMC85.143675 ^{-69.425530}	85.143675	-69.425530	RRab	19.006	19.633	0.514599600	1.3E-6	2187.57029	18.28	0.03
OGLE-LMC-BRLYB-19450	VMC83 696685 69 428530	83 696685	-69428530	BBab	18 841	19 387	0 488239000	1 9E-6	2167 67739	18 24	0.04
OGLE-LMC-BBLYB-20733	VMC84 631425 69 428620	84 631425	-69 428620	BRab	19.682	_00 00	0.576951500	39E-5	2250 64030	18 17	0.03
OGLE-LMC-BBLYB-20166	VMC84 191550 69 432790	84 191550	-69 432790	BRab	18 980	19 603	0.561303100	2 0E-6	2187 61223	18 14	0.04
OCLE LMC BRIVE 18505	VMC83 101380 60 428250	83 101380	60 428250	BRab	18 576	10.127	0.585810200	3 OF 7	455 68042	17.87	0.04
OCLE IMC DRIVD 18262	VMC83.101380 09.428230	03.101300	-09.428230	DD-L	10.570	10.046	0.585810200	3.0E-7	455.06042	10.05	0.04
OGLE-LMC-RRLIR-18302	VMC85.024805 09.424500	03.024003	-09.424500	nnab	10.100	19.240	0.525071400	2.0E-7	455.50002	18.05	0.03
OGLE-LMC-RRLYR-19125	VMC83.478780_09.432630	83.478780	-09.432030	RRE	19.135	19.550	0.272139200	1.0E-0	2107.83458	18.08	0.04
OGLE-LMC-RRLYR-21754	VMC85.501095_69.429520	85.501095	-69.429520	RRab	18.860	19.508	0.557439800	1.5E-6	2187.68720	18.00	0.04
OGLE-LMC-RRLYR-20434	VMC84.385395_69.434840	84.385395	-69.434840	RRab	18.643	19.360	0.700666400	1.8E-6	2187.70877	17.78	0.03
OGLE-LMC-RRLYR-18835	VMC83.302290_69.433540	83.302290	-69.433540	RRab	18.982	19.514	0.511508300	4.0E-7	2167.82138	18.30	0.04
OGLE-LMC-RRLYR-18491	VMC83.092830 69.430360	83.092830	-69.430360	RRab	19.018	19.608	0.446083200	2.0E-7	455.41208	18.39	0.06
OGLE-LMC-RRLYR-21547	VMC85.294995 ^{69.433790}	85.294995	-69.433790	\mathbf{RRab}	18.967	19.522	0.467858500	5.0E-7	2187.55638	18.17	0.04
OGLE-LMC-RRLYR-20618	VMC84.532845 ^{69.438620}	84.532845	-69.438620	RRc	18.466	18.954	0.422715500	1.0E-6	2187.61577	17.80	0.03
OGLE-LMC-RRLYR-19766	VMC83.910885 ^{69.439180}	83.910885	-69.439180	RRab	18.802	19.393	0.532757200	2.1E-6	2187.26756	18.27	0.03
OGLE-LMC-RRLYR-19276	VMC83.574915 69.437490	83.574915	-69.437490	RRab	18.829	19.315	0.502674200	5.0E-7	2167.52928	18.15	0.03
OGLE-LMC-RRLYB-18981	VMC83.396610 ^{-69.437460}	83.396610	-69.437460	RRab	19.092	19.746	0.557207400	3.8E-6	2167.36751	18.20	0.03
OGLE-LMC-BBLYB-20165	VMC84 189465 69 443480	84 189465	-69 443480	BBab	18 716	19 235	0.633420300	3 2E-6	2187 16114	17.93	0.03
OGLE-LMC-BBLYB-20905	VMC84 746370 69 444250	84 746370	-69 444250	BRab	18 798	19 588	0 742462900	2 1E-6	2187 54214	17 72	0.03
OGLE-LMC-BBLYB-21082	VMC84 897285 69 445150	84 897285	-69 445150	BBc	18 675	19 186	0.400535600	1.7E-6	2187 48710	18 14	0.03
OCLE LMC BRIVE 19330	VMC83 607345 60 444400	83 607345	60 444400	BBc	10.010	10.100	0.296607500	6.0E.7	2167 83560	17 74	0.08
OCLE LMC BRIVE 20022	VMC84 760575 69 447130	84 760575	60 447130	BBab	10.080	10.648	0.481013800	8 OF 7	2107.00000	18 36	0.03
OCLE I MC PRIVE 20322	VMC94 425280 60 448710	84.425280	60 449710	DDo	10.001	10.576	0.222522000	1156	2187.00373	18.50	0.05
OCLE I MC DDIVD 20789	VMC84.667080 60 448710	84.667080	60 448710	DDa	10.066	10.500	0.323323900	2 OF 7	2187.73702	18.00	0.07
OCLE IMC DRIVD 19919	VMC82.007980 09.448900	84.007980	-09.440900	DD-	19.000	10 100	0.309500500	4.0E-7	455 40111	17.00	0.00
OGLE-LMC-RRLIR-18212	VMC82.909035 09.443870	82.909035	-09.443870	DD	18.003	19.122	0.401048100	4.0E-7	455.40111	17.92	0.04
OGLE-LMC-RRLIR-20421	VMC84.577255_09.450070	04.377233	-09.450070	nnab	18.949	19.010	0.030091400	2.0E-0	2187.08775	10.17	0.03
OGLE-LMC-RRLYR-19114	VMC83.475135_69.450200	83.475135	-69.450200	RRab	18.922	19.493	0.507752500	6.0E-7	2167.52305	18.17	0.03
OGLE-LMC-RRLYR-19678	VMC83.843565_69.446500	83.843565	-69.446500	RRab	18.639	19.271	0.608577800	1.1E-6	2167.33973	17.78	0.04
OGLE-LMC-RRLYR-18233	VMC82.976865_69.450530	82.976865	-69.450530	RRab	18.713	19.242	0.592934100	2.0E-7	455.54874	18.11	0.03
OGLE-LMC-RRLYR-20267	VMC84.264840_69.455980	84.264840	-69.455980	RRab	19.280	20.007	0.488273200	1.2E-6	2187.50967	18.28	0.04
OGLE-LMC-RRLYR-21540	VMC85.288755 69.454700	85.288755	-69.454700	RRe	19.286	19.849	0.267070400	1.2E-6	2187.66916	18.50	0.05
OGLE-LMC-RRLYR-19640	VMC83.820120 ^{-69.458050}	83.820120	-69.458050	RRc	19.058	19.499	0.281793800	4.0E-7	2167.82023	18.32	0.04
OGLE-LMC-RRLYR-19061	VMC83.442285 ^{69.458330}	83.442285	-69.458330	RRab	18.957	19.483	0.493544200	4.0E-7	2167.49471	18.30	0.04
OGLE-LMC-RRLYR-21455	VMC85.209915 ^{69.458930}	85.209915	-69.458930	RRc	19.521	19.947	0.409514500	2.6E-6	2187.51599	19.01	0.06
OGLE-LMC-RRLYR-21436	VMC85.199130 ^{-69.459390}	85.199130	-69.459390	RRab	18.959	19.711	0.492684900	4.0E-7	2187.71214	17.81	0.05
OGLE-LMC-RRLYR-20504	VMC84.446820 ^{-69.461890}	84,446820	-69.461890	RRab	19.059	19.796	0.553237400	1.7E-6	2187.67015	17.80	0.06
OGLE-LMC-BBLYB-18823	VMC83 288475 ⁻⁶⁹ 463470	83 288475	-69463470	BBab	18 899	19 488	0.559140800	7 0E-7	2167 63032	18.05	0.03
OGLE-LMC-BBLYB-18484	VMC83 086185 69 462780	83 086185	-69 462780	BRab	18 788	19 418	0.610020400	3 0E-7	455 30629	18.08	0.03
OGLE-LMC-BBLVB-10705	VMC83 931915 69 467190	83 931915	-69 467190	RRab	18 748	19 165	0.450602300	6.0E-7	2187 58378	18 10	0.04
OCLE LMC BRIVE 20160	VMC84 103770 60 469290	84 103770	60 468380	RRab	10.080	10 662	0.458053200	5.0E-7	2187 61666	18 30	0.04
OCLE I MC DDIVD 10656	VMC82 827545 60 470010	04.193770 92.997575	60 470010	DDa	19.009	10 507	0.400000200	7 0 5 7	2167.01000	10.59	0.03
OGLE-LMC-RRLIR-19030	VMC82 020005 60 460210	03.02/040	-09.470010	DDab	10.9/3	10.241	0.334033000	1.0E-1	2107.00034	17.06	0.04
OGLE-LMC-RRLIR-19770	VMC84 520140 60 470200	84 520005	-09.409210	DD-1	10.001	19.341	0.07162000	9.0E-7	2107.40044	17.90	0.03
OGLE-LMC-RRLYR-20614	VMC84.529140 - 69.470320	84.529140	-09.470320	RRAD	19.183	20.097	0.746826100	0.1E-0	2187.30663	10.10	0.03
OGLE-LMC-RRLYR-19877	VMC83.992860_69.471020	83.992860	-09.471020	KKab	19.056	19.834	0.594987000	2.3E-6	2187.51845	18.12	0.04
OGLE-LMC-RRLYR-18454	VMC83.072640_69.467080	83.072640	-69.467080	RRe	19.008	19.340	0.271429600	4.0E-7	455.51020	18.77	0.07
OGLE-LMC-RRLYR-21567	VMC85.309950_69.472060	85.309950	-69.472060	RRc	19.225	19.891	0.345137600	1.2E-6	2187.64703	18.40	0.05

OGLE-LMC-BBLYB-18992	VMC83.402010 69.473620	83.402010	-69.473620	RRab	18.734	19.218	0.610378400	1.3E-6	2167.32444	17.45	0.05
OGLE-LMC-BRLYB-21349	VMC85.129335 ^{-69.473240}	85.129335	-69.473240	RRab	18.521	19.036	0.614473600	6.0E-7	2187.70861	17.83	0.03
OGLE-LMC-BBLYB-18335	VMC83 005005 69 473100	83 005005	-69 473100	BRab	18 605	19 202	0.610227100	4 0E-7	455 67412	17.86	0.03
OGLE-LMC-BBLYB-19077	VMC83 454765 69 474060	83 454765	-69 474060	BRab	18 858	19.310	0 492017500	5.8E-6	2167 50770	18.04	0.04
OGLE-LMC-BBLYB-21308	VMC85 092735 69 463380	85 092735	-69 463380	BRab	19 010	19 747	0.610148300	1.6E-6	2187 33661	18.05	0.03
OGLE-LMC-BBLYB-18758	VMC83 253315 69 475870	83 253315	-69 475870	BBab	18 514	18 813	0.570659600	1.5E-6	2167 50052	16.59	0.00
OCLE LMC BRLVB 19072	VMC83 450100 60 477310	83 450100	60 477310	BBo	10.014	10.513	0.202712200	8 OF 7	2167 71843	18.60	0.05
OCLE I MC PRIVE 18580	VMC82 120165 60 476100	82 120165	60 476100	DDab	18 750	10 224	0.572880700	2.057	455 50280	18.05	0.00
OCLE I MC PRIVE 20127	VMC84 162465 60 470820	84 169465	-09.470100	DDab	18.750	10 524	0.575885700	1656	2187 21502	18.00	0.04
OCLE I MC DDIVD 21625	VMC85 265765 60 476710	04.102405 05 265765	-09.479030	DDab	18.903	10 619	0.550555400	1.0E-0	2107.31392	17.09	0.03
OGLE-LMC-RRLIR-21025	VMC83.303703 09.470710	83.303703	-09.470710	DD-	18.908	19.010	0.373331100	9.0E-7	2167.00049	10.90	0.03
OGLE-LMC-RRLYR-18050	VMC83.192010 09.477000	83.192010	-09.477000	RRC	18.905	19.357	0.349730700	9.0E-7	2107.00310	18.24	0.04
OGLE-LMC-RRLYR-20482	VMC84.425910 69.481780	84.425910	-09.481780	RRAD	19.064	19.081	0.478289100	1.7E-0	2187.51931	17.70	0.04
OGLE-LMC-RRLYR-21221	VMC85.024770 69.478770	85.024770	-09.478770	RRAD	18.405	19.044	0.642005600	8.0E-7	2187.34078	17.04	0.03
OGLE-LMC-RRLYR-21315	VMC85.095180_69.480380	85.095180	-69.480380	RRab	18.949	19.549	0.484683900	8.0E-7	2187.45997	18.25	0.03
OGLE-LMC-RRLYR-18427	VMC83.054970_69.478100	83.054970	-69.478100	RRe	18.753	19.147	0.288382300	2.0E-7	455.52555	18.21	0.04
OGLE-LMC-RRLYR-21985	VMC85.741470_69.476460	85.741470	-69.476460	RRab	18.535	19.090	0.643022200	1.4E-6	2187.16291	17.73	0.03
OGLE-LMC-RRLYR-19701	VMC83.858100_69.485370	83.858100	-69.485370	RRab	18.709	19.358	0.633612300	1.6E-6	2167.40626	17.89	0.03
OGLE-LMC-RRLYR-21930	VMC85.685475_69.479300	85.685475	-69.479300	RRab	18.966	19.743	0.603831600	2.2E-6	2187.50963	18.09	0.03
OGLE-LMC-RRLYR-18520	VMC83.108430 69.482970	83.108430	-69.482970	RRab	18.740	19.326	0.568642500	3.0E-7	455.54977	17.82	0.03
OGLE-LMC-RRLYR-22025	VMC85.782645 ^{69.479630}	85.782645	-69.479630	RRc	19.267	20.085	0.312354500	1.2E-6	2187.69520	18.44	0.04
OGLE-LMC-RRLYR-21048	VMC84.870990 ^{69.487140}	84.870990	-69.487140	RRc	19.322	19.882	0.275190800	8.0E-7	2187.69942	18.68	0.05
OGLE-LMC-RRLYR-20406	VMC84.367350 ^{-69.487920}	84.367350	-69.487920	RRab	19.042	19.790	0.633112400	1.9E-6	2187.36917	18.11	0.04
OGLE-LMC-RRLYR-19032	VMC83.426280 ^{-69.487840}	83.426280	-69.487840	RRab	18.752	19.385	0.613908400	7.0E-7	2167.76293	17.98	0.04
OGLE-LMC-RRLYR-21559	VMC85.303830 ^{-69.486800}	85.303830	-69.486800	RRab	19.205	19.867	0.480403800	5.0E-7	2187.32898	18.43	0.04
OGLE-LMC-RRLYR-21143	VMC84.948795 ^{69.488930}	84.948795	-69.488930	RRc	19.330	20.297	0.403838000	3.7E-6	2187.58346	17.97	0.04
OGLE-LMC-RRLYR-18355	VMC83.019735 ^{69.487010}	83.019735	-69.487010	RRab	18.723	19.282	0.638756700	3.0E-7	455.60513	18.05	0.03
OGLE-LMC-RRLYR-19555	VMC83.764590 ^{69.494750}	83.764590	-69.494750	RRab	18.681	19.337	0.632338800	2.0E-6	2167.66947	17.93	0.03
OGLE-LMC-RRLYR-21498	VMC85.246200 ^{-69.494240}	85.246200	-69.494240	RRab	18.766	19.471	0.576193700	4.6E-6	2187.56451	17.87	0.03
OGLE-LMC-RRLYR-20070	VMC84.129285 ^{69.496060}	84.129285	-69.496060	RRab	19.093	19.757	0.486218600	1.2E-6	2187.30089	18.41	0.04
OGLE-LMC-RRLYR-21791	VMC85.535235 ^{69.491370}	85.535235	-69.491370	RRab	18.878	19.634	0.606266200	2.3E-6	2187.60529	17.93	0.03
OGLE-LMC-RRLYR-21805	VMC85.547175 ^{69.492710}	85.547175	-69.492710	RRab	18.549	19.164	0.710472400	1.6E-6	2187.27342	17.80	0.03
OGLE-LMC-RRLYR-20006	VMC84.082950 ^{69.499970}	84.082950	-69.499970	RRab	18.704	19.211	0.574689400	1.0E-6	2187.61444	17.98	0.04
OGLE-LMC-RRLYR-18691	VMC83.210310 69.494190	83.210310	-69.494190	RRab	18.708	19.274	0.561063700	7.0E-7	2167.38946	18.00	0.03
OGLE-LMC-RRLYR-18808	VMC83.280645 ^{69.501940}	83.280645	-69.501940	RRab	18.947	19.528	0.557848800	6.0E-7	2167.69639	18.12	0.03
OGLE-LMC-RRLYR-18419	VMC83.051220 ^{-69.490520}	83.051220	-69.490520	RRab	18.672	19.308	0.672927600	1.2E-6	455.33677	17.80	0.03
OGLE-LMC-BRLYB-19286	VMC83.582415 69.503550	83.582415	-69.503550	RRab	18.849	19.492	0.612046100	1.4E-6	2167.36804	18.13	0.03
OGLE-LMC-BBLYB-19738	VMC83.890545 ^{-69.504610}	83.890545	-69.504610	RRab	18.639	19.215	0.592092600	1.0E-6	2187.74478	17.91	0.03
OGLE-LMC-BBLYB-20270	VMC84.268230 69.507640	84.268230	-69.507640	BBe	18.750	19.175	0.291095800	8.0E-7	2187.50032	18.29	0.03
OGLE-LMC-BRLYB-20311	VMC84.294945 ^{69,508180}	84.294945	-69.508180	BBc	18.678	19,100	0.406336400	3.1E-6	2187.70967	17.91	0.03
OGLE-LMC-RRLYR-20179	VMC84.199125 ^{69.492240}	84.199125	-69.492240	RRab	18.810	19.518	0.624264400	2.9E-6	2187.56846	18.08	0.03
OGLE-LMC-RRLYR-20578	VMC84.492015 ^{69.510560}	84.492015	-69.510560	RRc	19.085	19.691	0.338144200	1.4E-6	2187.46568	18.40	0.04
OGLE-LMC-RRLYR-21152	VMC84.958125 ^{69.510670}	84.958125	-69.510670	RRc	18.810	19.309	0.360623400	9.0E-7	2187.67868	18.27	0.04
OGLE-LMC-RRLYR-19407	VMC83.665995 ^{-69.510660}	83.665995	-69.510660	RRe	19.663	20.323	0.284580900	1.4E-6	2167.63886	18.67	0.04
OGLE-LMC-RRLYR-20100	VMC84.144285 69.512980	84.144285	-69.512980	RRab	19.036	19.649	0.548607600	1.5E-6	2187.24237	18.29	0.03
OGLE-LMC-BRLYB-21599	VMC85.343925 ^{69.509340}	85.343925	-69.509340	RRab	19.118	19.931	0.582226800	1.6E-6	2187.34483	18.16	0.03
OGLE-LMC-RRLYR-18570	VMC83.134425 ^{69.511100}	83.134425	-69.511100	RRab	18.543	19.096	0.592500900	3.0E-7	455.35994	17.77	0.03
OGLE-LMC-RRLYR-21741	VMC85.494090 ^{-69.509580}	85,494090	-69.509580	RRc	19.050	19.623	0.327988700	1.1E-6	2187.65659	18.29	0.03
OGLE-LMC-BBLYB-20489	VMC84.436140 ^{-69.514080}	84,436140	-69.514080	RRab	18.589	19.220	0.643781200	3.6E-6	2187.50168	17.78	0.03
OGLE-LMC-RRLYR-21400	VMC85.168665 ^{69.512270}	85.168665	-69.512270	RRc	19.257	19.994	0.347315100	1.3E-6	2187.60084	18.29	0.04
OGLE-LMC-BBLYB-22029	VMC85.785225 69.507750	85.785225	-69.507750	RRab	19.022	19.781	0.477961100	6.0E-7	2187.51714	18.14	0.03
OGLE-LMC-BBLYB-20176	VMC84.198210 ^{-69.515610}	84,198210	-69.515610	BBc	18.640	19.226	0.455743100	3.7E-6	2187.75141	18.04	0.03
OGLE-LMC-BBLYB-20149	VMC84.176865 ^{-69.516780}	84.176865	-69.516780	RRab	18.746	19.392	0.602829400	1.6E-6	2187.76738	17.92	0.03
OGLE-LMC-RRLYR-18818	VMC83.287545 ^{-69.510440}	83.287545	-69.510440	RRab	18.694	19.339	0.633899200	1.9E-6	2167.26673	18.02	0.03
OGLE-LMC-RRLYR-19354	VMC83.620635 69.514810	83.620635	-69.514810	RRab	18.653	19.293	0.657061900	1.0E-6	2167.49026	17.94	0.04
OGLE-LMC-BRLYB-20168	VMC84.191985 ^{-69.520030}	84.191985	-69.520030	RRab	18.699	19.295	0.559149400	7.0E-7	2187.48768	18.06	0.04
OGLE-LMC-BBLYB-18790	VMC83.270655 ^{-69.519350}	83.270655	-69.519350	RRab	18.884	19.374	0.531622200	1.1E-6	2167.42628	18.24	0.03
OGLE-LMC-BRLYB-20232	VMC84.241530 ^{-69.522270}	84.241530	-69.522270	BBc	19.018	19.501	0.326834200	7.0E-7	2187.66947	18.44	0.05
OGLE-LMC-RRLYR-21721	VMC85.465050 ^{-69.518370}	85.465050	-69.518370	RRc	19.110	19.791	0.361955200	1.0E-6	2187.63865	18.23	0.03

OGLE-LMC-BBLYB-21156	VMC84 960645 69 522560	84 960645	-69 522560	BBab	19 911	20.908	0 580764200	3 1E-6	2187 69176	18 27	0.04
OCLE LMC BRIVE 20558	$VMC84.481845^{-60.525210}$	8/ /818/5	60 525210	BBab	18 694	10 275	0.557826500	7 0F 7	2187 42170	18.03	0.03
OCLE IMC PRIVE 21010	VMC85 665210 60 510500	85.665210	60 510500	PRob	10.004	10.521	0.584262000	1056	2107.42115	17.06	0.00
OGLE-LMC-RREIR-21910	VMC82 712440 60 528000	83.003210	-09.519500	DDab	10.007	10.001	0.584203900	1.9E-0	2187.70705	10.00	0.03
OGLE-LMC-RRLYR-19472	VMC83.713440_69.528000	83.713440	-69.528000	ккар	19.254	19.991	0.534126600	8.0E-7	2107.73097	18.23	0.03
OGLE-LMC-RRLYR-21762	VMC85.511565_69.526340	85.511565	-69.526340	RRC	19.151	19.824	0.333039200	1.3E-6	2187.66342	18.30	0.03
OGLE-LMC-RRLYR-21070	VMC84.887235 69.530060	84.887235	-69.530060	RRe	19.110	19.524	0.264065200	1.6E-6	2187.72807	18.59	0.05
OGLE-LMC-RRLYR-19843	VMC83.966640 ^{-69.533680}	83.966640	-69.533680	RRab	18.597	19.210	0.626539300	2.0E-6	2187.57277	17.92	0.03
OGLE-LMC-RRLYR-19144	VMC83.489715 ^{-69.532570}	83.489715	-69.532570	RRc	18.799	19.316	0.367440400	9.0E-7	2167.72501	18.18	0.03
OGLE-LMC-RRLYR-18439	VMC83.063505 ^{-69.530240}	83.063505	-69.530240	RRe	18.995	19.416	0.273984000	5.0E-7	455.49184	18.61	0.05
OGLE-LMC-RRLYB-21456	VMC85.209915 ^{-69.532630}	85.209915	-69.532630	BBc	19.654	20.604	0.338146800	2.3E-6	2187.51540	18.32	0.04
OGLE-LMC-BBLYB-20187	VMC84 212685 69 536270	84 212685	-69 536270	BBab	18 817	19 446	0.573008300	1 3E-6	2187 54758	17.98	0.03
OCLE IMC PRIVE 10052	VMC82 420870 60 524550	82 420870	60.524550	DDab	18 629	10.246	0.752716400	0155	2167.04166	17.76	0.00
OCLE I MC PRIVE 10515	VMC82 741760 60 524250	82 741760	60 524250	DDo	18.028	10 272	0.755710400	6 OF 7	2107.48133	19.56	0.03
OGLE-LMC-RREIR-19515	VMC85.741700_09.554550	03.741700	-09.534550	DD	10.907	19.372	0.201087100	0.0E-7	2107.73730	18.50	0.04
OGLE-LMC-RRLYR-21057	VMC84.877395_69.534900	84.877395	-69.534900	RRab	18.420	19.082	0.724855700	1.4E-6	2187.23229	17.58	0.03
OGLE-LMC-RRLYR-18438	VMC83.063325_69.534290	83.063325	-69.534290	RRab	18.804	19.417	0.563223100	2.0E-7	455.41772	17.99	0.03
OGLE-LMC-RRLYR-18574	VMC83.136225 69.533650	83.136225	-69.533650	RRab	18.809	19.295	0.542525000	2.0E-7	455.54044	17.34	0.07
OGLE-LMC-RRLYR-21181	VMC84.984135 ^{69.536840}	84.984135	-69.536840	RRab	19.054	19.885	0.562316600	1.8E-6	2187.37315	18.06	0.04
OGLE-LMC-RRLYR-21765	VMC85.515870 ^{-69.533650}	85.515870	-69.533650	RRab	18.743	19.444	0.678663100	8.3E-6	2187.64510	17.88	0.03
OGLE-LMC-RRLYB-20509	VMC84.450570 ^{-69.539170}	84,450570	-69.539170	RRab	18.771	19.419	0.700537800	2.0E-6	2187.57045	17.91	0.03
OGLE-LMC-BBLYB-19281	VMC83 577480 ⁻⁶⁹ 538380	83 577480	-69 538380	BBab	19 494	20 236	0 477206000	6 0E-7	2167 75745	18 41	0.04
OCLE LMC BRIVE 21925	VMC85 677960 69 534540	85 677960	69 534540	BBab	18 072	10.625	0.538176100	11E6	2187 34215	18 12	0.03
OCLE I MC PRIVE 18204	VMC82 040045 60 527100	82.040045	60 527100	DDab	19 772	10 200	0.000110100	2.05.7	455 29277	18.00	0.03
OGLE-LMC-RRLIR-18394	VMC85.040945 09.557100	05.040945	-09.537100	DD	10.775	19.299	0.490332700	1.4E.C	400.20211	10.00	0.04
OGLE-LMC-RRLYR-21842	VMC85.582545_69.537120	85.582545	-69.537120	RRAD	19.046	19.650	0.504553300	1.4E-0	2187.55915	18.33	0.04
OGLE-LMC-RRLYR-19015	VMC83.416785_69.542280	83.416785	-69.542280	RRab	19.039	19.626	0.474261200	4.0E-7	2167.55337	18.42	0.05
OGLE-LMC-RRLYR-19123	VMC83.477820_69.542990	83.477820	-69.542990	RRc	18.877	19.369	0.340796900	6.0E-7	2167.62923	18.22	0.03
OGLE-LMC-RRLYR-20023	VMC84.094065 69.545680	84.094065	-69.545680	RRab	18.947	19.433	0.452966400	3.0E-7	2187.51182	18.33	0.03
OGLE-LMC-RRLYR-19552	VMC83.763360 ^{-69.547090}	83.763360	-69.547090	RRc	19.241	19.893	0.370311600	7.0E-7	2167.69892	18.21	0.03
OGLE-LMC-RRLYR-18961	VMC83.388045 ^{69.546310}	83.388045	-69.546310	RRab	18.694	19.377	0.667550200	9.0E-7	2167.74752	17.83	0.03
OGLE-LMC-RRLYR-19669	VMC83.838510 ^{-69.549430}	83.838510	-69.549430	RRab	18.912	19.540	0.546935600	6.0E-7	2167.39400	18.20	0.03
OGLE-LMC-BBLYB-18662	VMC83 197305 ⁻⁶⁹ 547060	83 197305	-69 547060	BBab	19.002	19 640	0.523757700	5 0E-7	2167 44483	17 97	0.03
OCLE LMC BRIVE 21386	VMC85 153875 69 546470	85 153875	69 546470	BBab	10.084	10.051	0.618440500	1.2E.6	2187 62601	17.07	0.03
OCLE IMC PRIVE 10140	VMC82 402010 60 547060	82 402010	60 547060	PRob	19.765	10.200	0.578068600	11116	2167.22520	17.04	0.00
OCLE IMC DRIVD 19994	VMC82.077200 60 548010	83.492910	-09.547900 60 E48010	DDab	10.703	10.201	0.578908000	2.0E 7	455 26166	10.12	0.03
OGLE-LMC-RRLIR-18234	VMC82.977390 09.348910	02.977390	-09.548910	nnab	10.000	19.361	0.333080300	2.0E-7	433.30100	10.13	0.03
OGLE-LMC-RRLYR-22004	VMC85.759125_69.547880	85.759125	-09.547880	RRC	18.973	19.527	0.353864200	1.0E-0	2187.03930	18.40	0.03
OGLE-LMC-RRLYR-21802	VMC85.546710_69.550560	85.546710	-69.550560	RRab	19.344	20.293	0.548051800	8.0E-7	2187.32879	18.07	0.03
OGLE-LMC-RRLYR-21722	VMC85.469205_69.551660	85.469205	-69.551660	RRab	18.533	19.086	0.622004900	1.4E-6	2187.69972	17.85	0.02
OGLE-LMC-RRLYR-18333	VMC83.004750 69.552720	83.004750	-69.552720	RRab	18.955	19.449	0.505912100	2.0E-7	455.21873	18.26	0.03
OGLE-LMC-RRLYR-18795	VMC83.271570 ^{-69.558850}	83.271570	-69.558850	RRab	18.661	19.283	0.599672400	8.0E-7	2167.55330	17.99	0.03
OGLE-LMC-RRLYR-18719	VMC83.228295 ^{69.559310}	83.228295	-69.559310	RRab	18.881	19.504	0.526953400	2.4E-6	2167.77963	18.20	0.04
OGLE-LMC-RRLYR-20125	VMC84.161925 69.563660	84.161925	-69.563660	RRab	18.642	19.305	0.782180300	2.1E-6	2187.41353	17.79	0.03
OGLE-LMC-BRLYB-19735	VMC83 886585 ⁻⁶⁹ 564030	83 886585	-69 564030	BBab	18 753	19 429	0.653313600	2.5E-6	2167 89110	18.04	0.04
OGLE-LMC-BBLYB-19874	VMC83 988225 69 564590	83 988225	-69 564590	BBc	18 882	19 211	0.318036100	7 0E-7	2187 52589	18 35	0.04
OCLE LMC BRIVE 19453	VMC83 700435 69 566460	83 700435	69 566460	BBab	10.324	10.055	0.479549700	6.0E.7	2167.02000	18.43	0.04
OCLE I MC PRIVE 10078	VMC82 454045 60 568410	82.454045	60 568410	DDab	18.061	10.602	0.577477400	0.01-7	2167 40207	18.45	0.03
OGLE-LMC-RRLIR-19078	VMC05 5494945 09.508410	05.404940	-09.508410	DD	10.901	19.002	0.011411400	9.0E-7	2107.49297	17.00	0.03
OGLE-LMC-RRLIR-21797	VMC85.545185 09.509750	85.545185	-09.309730	nnab	10.927	19.075	0.009207400	3.0E-0	2107.29300	17.99	0.03
OGLE-LMC-RRLYR-20581	VMC84.493230_69.572890	84.493230	-69.572890	RRC	18.613	18.965	0.304455900	2.7E-6	2187.47555	18.25	0.04
OGLE-LMC-RRLYR-19308	VMC83.594385_69.576040	83.594385	-69.576040	RRab	18.818	19.409	0.563233900	7.0E-7	2167.88393	18.16	0.03
OGLE-LMC-RRLYR-19416	VMC83.673015 69.576270	83.673015	-69.576270	RRab	18.519	19.139	0.722468600	3.0E-6	2167.74884	17.78	0.03
OGLE-LMC-RRLYR-20849	VMC84.705225 ^{69.577120}	84.705225	-69.577120	RRab	18.683	19.269	0.662088200	1.5E-6	2187.41522	17.81	0.03
OGLE-LMC-RRLYR-18445	VMC83.065815 ^{-69.574910}	83.065815	-69.574910	RRab	18.845	19.319	0.469893400	2.0E-7	455.51870	18.26	0.04
OGLE-LMC-RRLYR-19003	VMC83.407425 ^{-69.577370}	83.407425	-69.577370	RRc	19.011	19.601	0.342961000	1.0E-6	2167.85120	18.10	0.03
OGLE-LMC-RRLYR-20730	VMC84.629895 ^{-69.580870}	84.629895	-69.580870	RRab	18.829	19.442	0.533023100	1.2E-6	2187.56516	17.84	0.05
OGLE-LMC-BRLYB-19478	VMC83 716785 69 582950	83 716785	-69 582950	BBab	19 354	19 931	0 477685000	7 0E-7	2167 52015	18.58	0.06
OGLE-LMC-BBLYB-21149	VMC84 953550 69 583120	84 953550	-69 583120	BBab	18 584	19 218	0.685559200	3 7E-6	2187 29704	17 79	0.03
OCLE IMC DRIVD 19405	VMC92 04550 60 591240	01.303030 01.503030	-03.000120	DD-L	10.004	10 491	0.5060000000000	2.015.7	455 26000	10.10	0.03
OCLE IMC DRIVE 10000	VMC84 057200 60 50050	84.057200	-09.001040	nnao DD-	10.911	19.401	0.020007000	2.0E-(400.20900	10.19	0.03
OGLE-LMC-RRLYR-19968	V M C 84.097300 69.982050	04.00/300	-09.582050	RKC	19.059	19.479	0.297798300	1.0E-1	2187.07715	18.44	0.05
OGLE-LMC-RRLYR-21485	VMC85.238040_69.581950	85.238040	-09.581950	RKab	18.998	19.738	0.565901500	1.3E-6	2187.66657	18.02	0.04
OGLE-LMC-RRLYR-21474	VMC85.224705_69.583210	85.224705	-69.583210	RRc	19.294	19.856	0.310207600	1.9E-6	2187.65788	18.53	0.05

OGLE-LMC-BBLYB-19971	VMC84.058185 69.587580	84.058185	-69.587580	RRab	18.822	19.348	0.506939500	8.0E-7	2187.57395	18.21	0.04
OGLE-LMC-BBLVB-18941	VMC83 376900 69 586710	83 376900	-69 586710	BRab	18 801	19 385	0.583312200	6.0E-7	2167 32108	18 19	0.04
OCLE LMC BRIVE 19494	VMC83 730240 60 588230	83 730240	60 588230	BRab	18 803	10.606	0.650464300	2 OF 6	2167 78550	17.96	0.03
OCLE I MC PRIVE 10040	VMC84 042265 60 588820	84.042265	60 5888200	DDab	19 715	10.275	0.556452000	2.5E-0	2107.70000	18.00	0.03
OGLE-LMC-RRLIR-19949	VMC82 740015 60 580000	84.043303	-09.388820	DD-L	10.710	10.210	0.550455000	6.0E-7	2187.30101	18.00	0.03
OGLE-LMC-RRLIR-19515	VMC85.740215_09.589990	85.740215	-09.589990	nnab	10.742	19.312	0.556525600	0.0E-7	2107.40389	10.04	0.03
OGLE-LMC-RRLYR-21773	VMC85.520565_69.582220	85.520565	-69.582220	RRC	19.048	19.777	0.364411500	1.9E-6	2187.47591	18.16	0.03
OGLE-LMC-RRLYR-19156	VMC83.496435_69.591330	83.496435	-69.591330	RRab	18.787	19.398	0.534289400	1.7E-6	2167.81140	18.16	0.03
OGLE-LMC-RRLYR-18529	VMC83.115855 69.589190	83.115855	-69.589190	RRab	18.872	19.594	0.612508500	5.0E-7	455.21153	18.20	0.04
OGLE-LMC-RRLYR-21430	VMC85.193640 ^{-69.589400}	85.193640	-69.589400	\mathbf{RRab}	19.462	20.565	0.556615200	1.4E-6	2187.22849	18.13	0.04
OGLE-LMC-RRLYR-19714	VMC83.874195 ^{-69.592820}	83.874195	-69.592820	RRab	18.691	19.259	0.563112200	7.0E-7	2167.76385	17.97	0.04
OGLE-LMC-RRLYR-21811	VMC85.555290 ^{-69.589410}	85.555290	-69.589410	RRab	18.959	19.674	0.524715500	1.1E-6	2187.66910	18.17	0.03
OGLE-LMC-BBLYB-20712	VMC84 617880 69 594530	84 617880	-69594530	BBab	19 868	21 119	0.568812100	8 9E-6	2187 73957	18 49	0.04
OGLE-LMC-BBLYB-19051	VMC83 439150 69 593590	83 439150	-69 593590	BRab	18 962	19 745	0.620595100	3.0E-6	2167 46027	18.04	0.03
OGLE LMC BRIVE 19007	VMC83 400810 60 505260	83 400810	69 595260	BRab	10.002	10.830	0.580131200	7 OF 7	2167 55560	18 13	0.03
OCLE IMC DDIVD 18480	VMC92 092770 60 504690	82 082770	-03.333200 60 F04680	DDal	10.002	10.205	0.5353131200	2.0E 7	455 24646	10.10	0.03
OGLE-LMC-RRLIR-18480	VMC83.083770 09.394080	03.003770	-09.594080	nnab DD 1	10.024	19.365	0.550059000	3.0E-7	435.34040	10.19	0.03
OGLE-LMC-RRLYR-20976	VMC84.814185_09.598240	84.814185	-69.598240	RRAD	20.436	21.042	0.508931600	2.6E-6	2187.69729	18.59	0.03
OGLE-LMC-RRLYR-20221	VMC84.233715_69.599510	84.233715	-69.599510	RRab	18.845	19.380	0.535586900	4.0E-7	2187.61494	18.15	0.04
OGLE-LMC-RRLYR-20954	VMC84.790290_69.600450	84.790290	-69.600450	RRab	18.634	19.131	0.578098100	1.2E-6	2187.40467	18.01	0.03
OGLE-LMC-RRLYR-21766	VMC85.516605_69.596690	85.516605	-69.596690	RRab	18.790	19.547	0.657067700	1.1E-6	2187.43861	17.89	0.03
OGLE-LMC-RRLYR-20116	VMC84.154530 69.600250	84.154530	-69.600250	RRab	18.807	19.417	0.573615800	7.0E-7	2187.33791	18.16	0.03
OGLE-LMC-RRLYR-21276	VMC85.071090 ^{-69.600930}	85.071090	-69.600930	RRab	19.210	20.039	0.535407300	1.5E-6	2187.50725	17.64	0.06
OGLE-LMC-RRLYR-19958	VMC84.048300 ^{69.603700}	84.048300	-69.603700	RRab	19.143	19.810	0.562130700	7.0E-7	2187.23364	18.26	0.04
OGLE-LMC-BBLYB-21960	VMC85.714890 ^{-69.597150}	85,714890	-69.597150	RRab	18.768	19.272	0.608620900	1.1E-6	2187.71358	17.67	0.04
OGLE-LMC-BBLYB-18501	VMC83 099040 69 602580	83 099040	-69 602580	BBc	18 859	19 250	0.305103500	8 0E-7	455 52352	18 42	0.04
OGLE-LMC-BBLYB-22095	VMC85 860195 69 598420	85 860195	-69 598420	BRab	18 875	19 397	0.499240500	6.0E-7	2187 73820	18.04	0.03
OCLE I MC PRIVE 10055	VMC84 046205 60 605500	84.046205	60.605500	DDab	18 000	10 497	0.433240300	1756	2187.79820	19.15	0.03
OGLE-LMC-RRLIR-19955	VMC84.040505 09.005500	84.040303 84.26160F	-09.003300	DD-L	10.500	10.010	0.011213200	1.712-0	2187.70003	17.70	0.04
OGLE-LMC-RRLIR-20390	VMC85 266185 60 601400	04.301093	-09.000120	DD-L	10.000	10.470	0.472038300	1.0E-0	2187.70300	17.09	0.04
OGLE-LMC-RRLIR-21020	VMC85.500185 09.001490	85.500185	-09.001490	nnab	10.040	19.470	0.380993400	1.86-0	2167.25724	17.90	0.04
OGLE-LMC-RRLYR-19174	VMC83.506620_69.606660	83.506620	-69.606660	RRC	18.623	19.220	0.330903100	9.0E-7	2107.71040	17.51	0.06
OGLE-LMC-RRLYR-18829	VMC83.295765_69.606700	83.295765	-69.606700	RRC	18.990	19.480	0.313296600	1.1E-6	2167.84860	18.46	0.04
OGLE-LMC-RRLYR-18709	VMC83.218845_69.605250	83.218845	-69.605250	RRab	18.936	19.561	0.538889400	1.2E-6	2167.77593	18.13	0.04
OGLE-LMC-RRLYR-19069	VMC83.446710 69.607040	83.446710	-69.607040	RRab	19.271	20.000	0.564325200	1.6E-6	2167.67065	18.12	0.04
OGLE-LMC-RRLYR-20410	VMC84.372480 ^{69.611080}	84.372480	-69.611080	\mathbf{RRab}	18.749	19.415	0.583716600	1.0E-6	2187.38643	18.09	0.03
OGLE-LMC-RRLYR-21484	VMC85.237785 ^{69.610070}	85.237785	-69.610070	RRab	19.860	20.802	0.481323200	2.2E-6	2187.54029	18.57	0.04
OGLE-LMC-RRLYR-18381	VMC83.031285 ^{69.608290}	83.031285	-69.608290	RRab	18.943	19.655	0.603496200	4.0E-7	455.26818	18.13	0.03
OGLE-LMC-RRLYR-21201	VMC85.006905 ^{69.606850}	85.006905	-69.606850	RRab	19.562	20.582	0.619869200	3.6E-6	2187.39938	18.46	0.05
OGLE-LMC-BBLYB-20400	VMC84.363795 ^{69.616010}	84.363795	-69.616010	RRab	18.541	19.125	0.735082700	2.3E-6	2187.05451	16.88	0.05
OGLE-LMC-BBLYB-18957	VMC83.387115 ^{-69.615580}	83.387115	-69.615580	BBc	19.048	19.534	0.296915400	6.0E-7	2167.71237	18.34	0.04
OGLE-LMC-BBLYB-19418	VMC83 673705 69 616060	83 673705	-69 616060	BBab	18 681	19.329	0.690786100	1 9E-6	2167 53113	17.98	0.03
OGLE-LMC-BBLYB-20264	VMC84 263805 69 620040	84 263805	-69 620040	BBc	18 838	19 257	0.305861700	6.0E-7	2187 62345	18 33	0.03
OGLE LMC BRIVE 21534	VMC85 283235 60 614180	85 283235	69 61/180	BBab	18 033	10.604	0.501204000	2 1 E 6	2187 24315	17 73	0.00
OCLE I MC DDIVD 10705	VMC92 850675 60 691190	00.200200 00.00075	60 621120	DDab	18.004	10.275	0.531204000	1.0E.6	2107.24010	17.10	0.04
OGLE-LMC-RRLIR-19705	VMC83.859075 09.021120	03.039073	-09.021120	nnab DD 1	10.924	19.373	0.579749000	1.2E-0	2107.61132	17.59	0.05
OGLE-LMC-RRLYR-19589	VMC83.784345_09.022870	83.784345	-09.022870	ккар	18.730	19.369	0.626270100	1.7E-0	2167.60215	17.97	0.03
OGLE-LMC-RRLYR-19317	VMC83.599740_69.627100	83.599740	-69.627100	RRc	19.077	19.650	0.340059600	7.0E-7	2167.88085	18.47	0.05
OGLE-LMC-RRLYR-20263	VMC84.262755_69.629080	84.262755	-69.629080	RRab	19.029	19.651	0.531805200	1.1E-6	2187.26022	18.28	0.03
OGLE-LMC-RRLYR-21961	VMC85.716660 69.624630	85.716660	-69.624630	RRab	18.847	19.474	0.579759200	1.6E-6	2187.37987	17.97	0.03
OGLE-LMC-RRLYR-21423	VMC85.187235 ^{69.628640}	85.187235	-69.628640	\mathbf{RRab}	19.258	-99.99	0.673185700	4.9E-6	2187.62189	17.79	0.04
OGLE-LMC-RRLYR-21887	VMC85.641615 ^{69.627220}	85.641615	-69.627220	RRab	18.512	19.053	0.639858800	7.0E-7	2187.74721	17.83	0.03
OGLE-LMC-RRLYR-19730	VMC83.883135 ^{69.634410}	83.883135	-69.634410	RRab	19.223	19.801	0.461863900	1.0E-6	2167.68048	18.45	0.04
OGLE-LMC-BBLYB-21447	VMC85.204500 ^{-69.633080}	85,204500	-69.633080	BBc	19.259	19.807	0.293578100	7.0E-7	2187.53796	18.64	0.04
OGLE-LMC-BRLYB-19771	VMC83.913870 ^{-69.637000}	83.913870	-69.637000	RRab	19.065	19.770	0.572170600	1.2E-6	2167.54876	18.10	0.03
OGLE-LMC-BRLYB-19960	VMC84 048960 69 638470	84 048960	-69 638470	BBe	18 968	19.318	0 271653400	1 4E-6	2187 60165	18.63	0.04
OGLE-LMC-BRLYB-21334	VMC85 112370 69 637260	85 112370	-69 637260	BBe	19 327	19 775	0.276988800	1 3E-6	2187 62589	18 79	0.05
OCLE LMC BRIVE 22077	VMC85 840800 60 621540	85 840800	60.631540	BBc	18 755	10 134	0.211803800	4 OE 7	2187 52612	18 10	0.03
OCLE I MC DDIVD 1000F	VMC 22 526405 60 640070	82 586405	60 642270	DDat	10.700	10 502	0.011003000	2.01-7	456 41040	18.19	0.03
OCLE I MC DDIVD 01720	VMC85 400010 60 620020	85 400010	60 620020	DDat	10.000	10 449	0.407001000	15F6	9197 96744	17.00	0.03
OGLE IMC DRIVD 20070	VMC95 924005 60 627400	05.490010	-09.039020	DD-1	10.012	19.448	0.012639000	1.5E-0	2101.20144	10 20	0.03
OGLE-LMC-RKLYR-22070	v 1v1C65.834095_09.037480	00.834095	-09.03/480	RRAD	18.880	19.480	0.525190200	9.06-7	2187.02404	18.32	0.04
OGLE-LMC-RRLYR-21521	VMC85.273200 69.640700	85.273200	-69.640700	KRab	18.984	19.564	0.531432000	5.0E-7	2187.67864	18.02	0.03

OGLE-LMC-BRLYB-21700	VMC85 441350 69 640250	85 441350	-69 640250	BRab	18 858	19 497	0.647971800	3 7E-6	2187 25866	18.05	0.03
OCLE I MC DDIVD 21660	VMC95 414065 60 628800	00.441000 05 414065	60 628800	DDa	10.000	10.242	0.047371800	1 1 1 1 1 6	2107.20000	10.00	0.03
OGLE-LMC-RREIR-21009	VINC85.414005 09.038890	00.414000	-09.038890	DD	10.047	19.343	0.334393100	1.112-0	2107.75494	10.27	0.03
OGLE-LMC-RRLYR-19712	VMC83.867400_69.642560	83.867400	-69.642560	RRC	18.885	19.370	0.335391100	7.0E-7	2167.80364	18.40	0.04
OGLE-LMC-RRLYR-20511	VMC84.450885 69.648390	84.450885	-69.648390	RRab	19.175	19.889	0.521562000	8.0E-7	2187.45658	18.34	0.05
OGLE-LMC-RRLYR-18397	$VMC83.042310^{-}69.644050$	83.042310	-69.644050	RRab	18.826	19.505	0.560906800	2.0E-7	455.37974	18.09	0.03
OGLE-LMC-BRLVB-18608	VMC83 166090 69 647080	83 166090	-69 647080	RRab	18 918	19 475	0.532005800	$4.0E_{-7}$	456 35216	18.09	0.04
OCLE IMC PRIVE 10055	VMC82 440860 60 640000	82 440860	60.640000	PRo	10.102	10 569	0.202002600	0.05 7	456 51254	18.49	0.04
OGLE-LMC-RRLIR-19055	VMC85.440800_09.049000	03.440000	-09.049000	DD	19.102	19.008	0.292002000	9.01-7	450.51254	10.42	0.05
OGLE-LMC-RRLYR-20402	VMC84.364920_69.650450	84.364920	-69.650450	RRab	19.544	20.295	0.498958800	2.0E-6	2187.70649	18.53	0.05
OGLE-LMC-RRLYR-19488	VMC83.724960 69.651570	83.724960	-69.651570	RRab	18.634	19.193	0.565695800	3.0E-7	456.19507	17.82	0.03
OGLE-LMC-RRLYR-18545	VMC83.120610 ^{-69.650400}	83.120610	-69.650400	RRc	18.862	19.428	0.326577700	3.0E-7	455.42173	18.14	0.03
OGLE-LMC-BRLYB-18572	VMC83.135460 ^{-69.648360}	83.135460	-69.648360	RRab	18.734	19.350	0.612755900	3.0E-7	455.50850	17.97	0.03
OCLE IMC BRIVE 19605	VMC83 797065 69 652760	83 797065	69 652760	RRab	18 836	19 446	0.765745800	2 9E 6	2167 78803	17 00	0.03
OCLE IMC DRIVD 21742	VMC95 405205 60 650110	SE 405205	60.650110	DDal	10.000	10.200	0.612008000	1.0E-6	2107.10000	17.69	0.05
OGLE-LMC-RRLIR-21745	VMC85.495505_09.050110	85.495505	-09.050110	nnab	10.000	19.390	0.012098900	1.2E-0	2187.29200	17.00	0.05
OGLE-LMC-RRLYR-20702	VMC84.609360_69.655200	84.609360	-69.655200	RRC	19.284	19.997	0.337584600	1.2E-6	2187.53974	18.44	0.06
OGLE-LMC-RRLYR-20651	VMC84.560685 69.655710	84.560685	-69.655710	RRc	19.170	19.667	0.309831000	6.0E-7	2187.62976	18.50	0.04
OGLE-LMC-RRLYR-21590	VMC85.333995 ^{-69.652830}	85.333995	-69.652830	RRab	18.837	19.409	0.552175800	7.0E-7	2187.51853	18.01	0.04
OGLE-LMC-RRLYR-21391	VMC85.157055 ^{-69.653470}	85.157055	-69.653470	RRab	18.923	19.493	0.524737600	1.5E-6	2187.61195	18.27	0.03
OGLE-LMC-BRLYB-19011	VMC83 413455 ⁻⁶⁹ 658000	83 413455	-69 658000	BBc	19 504	20.074	0.310840900	4.0E-7	456 63216	18.93	0.05
OCLE I MC PRIVE 20414	VMC84 272205 60 660020	84 272205	60,660020	DDab	10.029	10 526	0.470000000	1.95.6	2197 26261	18.05	0.04
OGLE IMO DDIVD 20779	VINC04.070000 09.0000020	04.070000	-03.000320	DD	10.124	10.005	0.419090900	0.70.0	2107.30301	10.00	0.04
OGLE-LMC-RRLYR-20778	VMC84.003345_09.003570	84.003345	-09.003570	RRAD	19.134	19.995	0.629414800	2.7E-0	2187.31413	18.01	0.03
OGLE-LMC-RRLYR-20061	VMC84.122910_69.665180	84.122910	-69.665180	RRab	18.720	19.379	0.639051700	3.2E-6	2187.28669	17.92	0.03
OGLE-LMC-RRLYR-20763	VMC84.652905 69.665090	84.652905	-69.665090	RRab	19.515	20.526	0.559273200	1.1E-6	2187.37904	18.52	0.04
OGLE-LMC-RRLYR-22076	VMC85.840875 ^{-69.655460}	85.840875	-69.655460	RRab	19.026	19.599	0.468623200	1.3E-6	2187.66724	18.25	0.05
OGLE-LMC-BBLYB-21785	VMC85 529610 69 662200	85 529610	-69 662200	BBab	18 845	19 517	0.650519900	3 2E-6	2187 63232	18.00	0.03
OCLE LMC BRIVE 18751	VMC83 248635 69 665060	83 248635	69 665060	RRab	18 854	10/08	0.565610500	6 OF 7	456 38975	18.08	0.04
OGLE-LMC DDIVD 2045C	VMC03.240035 03.005000	03.240035	-03.005000	DD	10.004	10.507	0.505010500	0.0E-7	430.36375	17.00	0.04
OGLE-LMC-RRLIR-20450	VMC84.403140_09.000800	84.403140	-09.000800	nnab	10.009	19.507	0.551547800	1.0E-1	2101.02011	17.90	0.05
OGLE-LMC-RRLYR-19037	VMC83.431980_69.668900	83.431980	-69.668900	RRab	18.782	19.363	0.612251300	6.0E-7	456.28784	18.08	0.04
OGLE-LMC-RRLYR-19497	VMC83.732370 69.673670	83.732370	-69.673670	RRab	19.059	19.816	0.588639100	4.0E-7	456.62578	18.12	0.03
OGLE-LMC-RRLYR-19863	VMC83.977875 ^{69.674910}	83.977875	-69.674910	RRab	18.743	19.205	0.564972500	7.0E-7	2187.48618	17.65	0.08
OGLE-LMC-RRLYR-18620	VMC83.172030 ^{-69.674140}	83.172030	-69.674140	RRab	18.730	19.349	0.586929400	3.0E-7	456.27100	18.06	0.03
OGLE-LMC-BRLYB-21071	VMC84 889980 ⁻⁶⁹ 675710	84 889980	-69 675710	BBab	19 001	19 738	0.603032400	2 2E-6	2187 66462	18 12	0.03
OGLE-LMC-BRLVB-20783	VMC84 664200 ⁻⁶⁹ 674730	84 664200	-69 674730	RRab	18 994	19 724	0 597993700	1.5E-6	2187 62427	17.92	0.04
OCLE IMC PRIVE 18566	VMC82 121005 60 670470	82 121005	60.670470	PRab	10.179	10 799	0.422186800	2.05.7	455 59491	18 50	0.04
OGLE-LMC-RREIR-18500	VMC84 218085 60 674820	03.131995	-09.070470	DDab	19.170	10.210	0.423180800	2.0E-7	9197 99779	17.70	0.04
OGLE-LMC-RRLIR-2019/	VMC84.218985_09.074820	84.218985	-09.074820	nnab	10.700	19.219	0.554085200	0.0E-7	2101.32112	11.10	0.04
OGLE-LMC-RRLYR-18326	VMC83.002875_69.675380	83.002875	-69.675380	RRab	18.820	19.478	0.592322500	6.0E-7	455.66084	18.08	0.03
OGLE-LMC-RRLYR-18769	VMC83.257230_69.677950	83.257230	-69.677950	RRe	19.206	19.718	0.296007800	5.0E-7	455.41033	18.67	0.04
OGLE-LMC-RRLYR-20603	VMC84.515025 69.680200	84.515025	-69.680200	RRab	19.092	19.825	0.556062200	9.0E-7	2187.69621	18.14	0.03
OGLE-LMC-RRLYR-18664	VMC83.198025 ^{-69.683550}	83.198025	-69.683550	RRab	18.691	19.175	0.538663300	5.7E-6	455.57151	17.94	0.03
OGLE-LMC-BRLYB-18383	VMC83 032230 ⁻⁶⁹ 683010	83 032230	-69 683010	BBab	18 782	19.378	0.621794500	6 0E-7	455 45882	18.04	0.03
OGLE-LMC-BRLVB-19931	VMC84 031845 69 681820	84 031845	-69 681820	RRab	18 717	19 273	0.611428200	9.0E-7	2187 34144	18.05	0.03
OCLE IMC PRIVE 20227	VMC84 220115 60 687220	84 920115	60.687220	PRab	10.262	00.00	0.627557400	S GE G	22101.04144	18.00	0.00
OGLE-LMC-RRLIR-20227	VMC84.239113 09.087220	04.209110	-09.087220	DD	19.203	-99.99	0.027337400	2.712.6	2222.55707	10.01	0.03
OGLE-LMC-RRLYR-20564	VMC84.483840_09.088990	84.483840	-69.688990	RRAD	18.932	-99.99	0.569199800	3.7E-0	2260.23830	18.17	0.04
OGLE-LMC-RRLYR-18964	VMC83.388750_69.687980	83.388750	-69.687980	RRab	18.895	19.444	0.505439300	2.0E-7	455.40070	18.60	0.07
OGLE-LMC-RRLYR-21699	VMC85.440045 69.681910	85.440045	-69.681910	RRab	18.759	19.387	0.642617500	2.3E-6	2187.33158	17.93	0.03
OGLE-LMC-RRLYR-18673	VMC83.202075 ^{-69.685590}	83.202075	-69.685590	RRc	18.831	19.466	0.339399100	5.0E-7	455.41898	18.06	0.04
OGLE-LMC-RRLYR-19873	VMC83.987685 ^{-69.681760}	83.987685	-69.681760	RRab	19.492	20.313	0.533241600	1.1E-6	2187.76152	18.31	0.03
OGLE-LMC-BRLYB-20328	VMC84 310215 69 679210	84 310215	-69 679210	BBab	18 996	19 651	0.585350200	2 7E-6	2187 51016	17.88	0.05
OCLE LMC BRIVE 18379	VMC83 020860 60 688140	83 020860	69 688140	RRab	18 8/8	10.237	0.562611100	2 OF 7	455 58906	17.63	0.03
OGLE-LMC DDIVD 10701	VMC03.029800 09.088140	03.023000	-03.000140	DD	10.040	10.207	0.502011100	1.0E-7	400.00000	17.00	0.05
OGLE-LMC-RRLYR-19791	VMC83.930235_69.691980	83.930235	-69.691980	RRAD	18.752	19.303	0.518580200	1.0E-6	726.66349	17.78	0.05
OGLE-LMC-RRLYR-21145	VMC84.949860_69.687650	84.949860	-69.687650	RRab	19.046	-99.99	0.472952000	2.6E-6	2222.74237	18.20	0.04
OGLE-LMC-RRLYR-21839	VMC85.580100 ^{-69.690170}	85.580100	-69.690170	RRc	18.760	19.262	0.361855100	7.0E-7	2187.43880	18.13	0.03
OGLE-LMC-RRLYR-19205	VMC83.527725 ^{69.697020}	83.527725	-69.697020	RRab	18.967	19.584	0.527220400	6.0E-7	455.41475	18.29	0.03
OGLE-LMC-BRLYB-21473	VMC85.224345 ^{-69.692640}	85,224345	-69.692640	RRab	18.839	19.413	0.503534200	6.0E-7	2187.63515	18.11	0.03
OGLE-LMC-BRLVB-21718	VMC85 462890 69 696240	85 462890	-69 696240	BBc	18 930	19 418	0 339869400	1.0E-6	2187 56553	18 32	0.03
OCIEIMC DDIVD 10141	VMC92 488470 60 608240	00.402030	60 60 8240	DDo	10.062	10 452	0.0500000000	2.05 7	455 62210	19.02	0.03
OGLE-LMC-RRLIR-19141	VIVIC65.466470_09.098340	03.400470	-09.096340	nne	19.003	19.403	0.200201200	2.0E-7	400.00010	10.40	0.04
OGLE-LMC-RRLYR-21452	VMC85.207230_69.698690	85.207230	-09.698690	RKab	19.485	20.427	0.517663700	1.2E-6	2187.73058	18.19	0.03
OGLE-LMC-RRLYR-20106	VMC84.147375_69.703520	84.147375	-09.703520	RRC	19.896	20.658	0.291316000	5.0E-7	726.59408	18.89	0.05
OGLE-LMC-RRLYR-21587	VMC85.331775_69.699600	85.331775	-69.699600	RRab	19.015	19.533	0.463729600	5.0E-7	2187.49025	18.10	0.06

OGLE-LMC-BBLVB-20188	VMC84 212745 69 705900	84 212745	-69 705900	BBab	19.236	10 002	0.540591300	$4.0E_{-7}$	726 40634	1830	0.03
OCLE LMC BRIVE 20345	VMC84 321795 69 704400	84 321795	69 704400	BBab	10.351	20.240	0.555803000	6.0E.7	726 60473	18 10	0.00
OCLE I MC DRIVE 20111	VMC85 872620 60 608220	04.021100	-03.104400	DDal	10 610	10 199	0.5555655500	6 OE 7	0107 07010	17.09	0.03
OGLE-LMC-RRLIR-22111	VMC85.875020 09.098550	00.070020	-09.098330	nnab DD 1	10.010	19.100	0.506775400	0.0E-7	2101.21010	10.10	0.03
OGLE-LMC-RRLYR-20412	VMC84.372855_09.700330	84.372855	-09.700330	ккар	19.104	19.973	0.627752100	0.0E-7	(26.23220	18.18	0.04
OGLE-LMC-RRLYR-19529	VMC83.748705_69.708760	83.748705	-69.708760	RRc	18.730	19.275	0.409358600	4.0E-7	455.62775	17.95	0.03
OGLE-LMC-RRLYR-18344	VMC83.014470 69.703020	83.014470	-69.703020	RRab	18.775	19.207	0.479610200	2.0E-7	455.57989	18.21	0.03
OGLE-LMC-RRLYR-18469	VMC83.079150 ^{-69.704260}	83.079150	-69.704260	RRab	18.714	19.407	0.652128900	1.1E-6	455.60963	17.71	0.04
OGLE-LMC-RRLYR-21368	VMC85.140840 ^{-69.708380}	85.140840	-69.708380	RRc	18.846	19.301	0.313632700	5.0E-7	2187.68912	18.40	0.04
OGLE-LMC-RRLYR-21189	VMC84.992805 ^{69,708970}	84.992805	-69.708970	RRab	19.170	20.072	0.752155200	.27E-5	2187.18932	17.93	0.04
OGLE-LMC-RRLYB-19278	VMC83.575755 ^{-69.709910}	83.575755	-69.709910	RRab	18.717	19.246	0.549089400	2.0E-7	455.53171	18.13	0.04
OGLE-LMC-BBLYB-18370	VMC83.027640 ⁻⁶⁹ 706910	83 027640	-69 706910	RRab	18 830	19 283	0.523025700	4 0E-7	455 29615	18.07	0.04
OCLE LMC BRIVE 21213	VMC85 019880 69 710540	85 010880	69 710540	BBab	10.000	10.047	0.358494900	1.6E 6	2187 70675	18.66	0.04
OCLE I MC DRIVE 18257	VMC82.082400_60.700040	82.082400	60 700040	DDab	19.906	10 284	0.531167800	2.0E-7	455 25854	18.00	0.03
OCLE IMC DRIVD 10794	VMC82.982400 09.709040	82.982400	-09.709040	DDab	10.045	19.264	0.521107800	2.0E-7	400.20004	18.07	0.04
OGLE-LMC-RRLIR-19784	VMC85.920095_09.712840	85.920095	-09.712840	nnab	19.045	19.747	0.550895500	2.0E-7	120.07004	10.24	0.05
OGLE-LMC-RRLYR-18976	VMC83.393610_69.712590	83.393610	-69.712590	RRab	18.824	19.398	0.587151400	4.0E-7	455.61211	18.04	0.03
OGLE-LMC-RRLYR-21798	VMC85.543770_69.709170	85.543770	-69.709170	RRab	18.806	19.457	0.553898100	7.0E-7	2187.61362	17.71	0.09
OGLE-LMC-RRLYR-21642	VMC85.385670 69.710840	85.385670	-69.710840	RRab	18.819	19.384	0.569320900	8.0E-7	2187.65779	17.83	0.04
OGLE-LMC-RRLYR-18771	VMC83.258865 ^{69.710530}	83.258865	-69.710530	RRc	18.779	19.389	0.410654600	8.0E-7	455.51904	18.17	0.03
OGLE-LMC-RRLYR-20026	VMC84.095895 ^{-69.717950}	84.095895	-69.717950	RRc	19.137	19.689	0.294476200	3.0E-7	726.72019	18.76	0.06
OGLE-LMC-RRLYR-19748	VMC83.898885 ^{-69.718170}	83.898885	-69.718170	RRab	18.632	19.212	0.639370700	4.0E-7	726.79731	17.89	0.03
OGLE-LMC-RRLYB-21417	VMC85.181160 ^{-69.717110}	85,181160	-69.717110	BBc	19.601	20.644	0.312884600	1.4E-6	2187.74646	18.40	0.04
OGLE-LMC-BRLYB-20140	VMC84 169245 69 719290	84 169245	-69 719290	BBc	18 631	19 166	0.385329600	8 0E-7	726 81190	17.96	0.03
OGLE-LMC-BBLYB-22092	VMC85 858965 69 715890	85 858965	-69 715890	BBab	19 205	20.315	0.638332800	54E-6	2187 71975	18.02	0.03
OCLE LMC BRIVE 21730	VMC85 482000 69 717450	85 482000	69 717450	BBab	18 860	10 371	0.512881500	6 OF 7	2187 30620	18.23	0.03
OCLE LMC BRIVE 20466	VMC84 410865 60 723010	84 410865	60 723010	BBc	10.531	20.367	0.334787200	8 OF 7	726 76740	18.45	0.03
OCLE IMC DRIVD 20620	VMC94 542165 60 722720	04.410000 04.540165	60 722720	DD-L	10.022	10.700	0.554767200	1.9E.6	2187 45200	17.04	0.04
OGLE-LMC-RRLIR-20030	VMC84.545105 09.725750	84.343103	-09.723730	nnab DD 1	19.033	19.790	0.588010200	1.86-0	2187.45590	17.94	0.05
OGLE-LMC-RRLYR-18453	VMC83.072505_69.721610	83.072505	-09.721010	RRAD	18.704	19.232	0.548498000	6.0E-7	455.34849	11.12	0.05
OGLE-LMC-RRLYR-19558	VMC83.766375_69.725630	83.766375	-69.725630	RRab	19.039	19.608	0.525451500	4.0E-7	455.35194	18.38	0.04
OGLE-LMC-RRLYR-18765	VMC83.255850_69.721230	83.255850	-69.721230	RRab	18.951	19.562	0.549932800	4.0E-7	455.63485	18.43	0.04
OGLE-LMC-RRLYR-18778	VMC83.263995_69.722990	83.263995	-69.722990	RRab	18.511	18.850	0.695893900	9.0E-7	455.44490	17.62	0.03
OGLE-LMC-RRLYR-20683	VMC84.592530 69.722200	84.592530	-69.722200	RRab	19.119	19.775	0.548011600	1.5E-6	2187.69771	18.11	0.03
OGLE-LMC-RRLYR-19102	VMC83.468910 ^{-69.722310}	83.468910	-69.722310	RRc	18.630	19.036	0.375915200	1.1E-6	455.43941	18.09	0.03
OGLE-LMC-RRLYR-19957	VMC84.048075 ^{-69.728080}	84.048075	-69.728080	RRab	18.761	19.414	0.661394700	1.9E-6	726.72565	18.00	0.04
OGLE-LMC-RRLYR-21387	VMC85.154100 ^{-69.726880}	85.154100	-69.726880	RRab	19.448	20.438	0.627258700	2.1E-6	2187.22750	18.14	0.04
OGLE-LMC-RRLYR-18369	VMC83.027415 ⁶⁹ .728390	83.027415	-69.728390	RRab	18.872	19.417	0.519211500	2.0E-7	455.34173	18.34	0.04
OGLE-LMC-RRLYR-22006	VMC85.760145 ^{-69.725780}	85.760145	-69.725780	RRab	19.222	20.001	0.547579200	1.2E-6	2187.50103	18.23	0.03
OGLE-LMC-BBLYB-20012	VMC84 086505 69 731710	84 086505	-69 731710	BBab	19 103	19 766	0 491957800	2.0E-7	726 38152	18 12	0.04
OGLE-LMC-BBLYB-19365	VMC83 628390 69 732600	83 628390	-69 732600	BBab	18 718	10 330	0.626064100	4 0E-7	455 47302	17 99	0.04
OCLE LMC BRIVE 21010	VMC85 673235 69 728360	85 673235	69 728360	BBab	10.053	10.871	0.634019900	1.7E 6	2187 25810	18.05	0.04
OCLE I MC PRIVE 20027	VMC84 766800 60 722020	84 766800	60 722020	DDo	10 102	10 759	0.034013300	2 OF 7	2187.25810	18.05	0.03
OCLE IMC DRIVD 10662	VMC84.700890 09.733920	84.700890	-09.133920	DD-L	10.102	10,606	0.500887000	4.0E-7	796 51690	10.40	0.04
OGLE-LMC-RREIR-19003	VMC85.832990 09.733000	85.852990 85.406580	-09.733000	DDab	19.102	10.050	0.524575700	4.0E-7	2187 28400	18.42	0.04
OGLE-LMC-RRLYR-21/4/	VMC85.496580_69.733620	85.496580	-09.733020	RRAD	18.732	19.257	0.515246800	7.0E-7	2187.38400	18.00	0.03
OGLE-LMC-RRLYR-22057	VMC85.826175_69.731870	85.820175	-09.731870	RRAD	18.708	19.317	0.577003700	8.0E-7	2187.29804	17.88	0.03
OGLE-LMC-RRLYR-19847	VMC83.969115_69.739600	83.969115	-69.739600	RRab	19.188	19.925	0.558837700	6.0E-7	726.81255	18.29	0.03
OGLE-LMC-RRLYR-21237	VMC85.037085_69.739300	85.037085	-69.739300	RRc	18.858	19.786	0.356067600	3.0E-6	2187.53282	17.44	0.02
OGLE-LMC-RRLYR-21284	VMC85.074315 69.739670	85.074315	-69.739670	RRab	18.793	19.382	0.553133300	7.0E-7	2187.45546	17.90	0.03
OGLE-LMC-RRLYR-20658	VMC84.573750 69.742790	84.573750	-69.742790	RRab	19.043	19.967	0.760583600	9.3E-6	2187.72849	17.95	0.02
OGLE-LMC-RRLYR-19355	VMC83.621025 ^{-69.742980}	83.621025	-69.742980	RRab	18.910	19.573	0.578060900	7.0E-7	455.56928	18.28	0.04
OGLE-LMC-RRLYR-19163	VMC83.500320 ^{-69.744700}	83.500320	-69.744700	RRab	18.786	19.335	0.551811500	2.0E-7	455.16594	18.18	0.03
OGLE-LMC-RRLYR-20611	VMC84.524400 ^{-69,746230}	84.524400	-69.746230	RRc	19.360	19.982	0.304751900	1.3E-6	2187.76799	18.87	0.05
OGLE-LMC-RRLYR-19160	VMC83.498250 ^{-69.745600}	83.498250	-69.745600	RRab	18.880	19.425	0.508030100	2.0E-7	455.42271	18.26	0.03
OGLE-LMC-BRLYB-18513	VMC83.105265 ^{-69.743980}	83,105265	-69.743980	RRab	18.937	19.610	0.642766600	1.3E-6	455.26412	18.01	0.04
OGLE-LMC-BBLYB-21101	VMC84 911955 69 740510	84 911955	-69 740510	BBc	18 749	19 120	0.351167500	8 0E-7	2187 55731	17.92	0.05
OGLE-LMC-BBLVB-20086	VMC84 136650 69 740340	84 136650	-69 749340	BBab	19,000	19 727	0.552563200	4 0E-7	726 71347	18 19	0.00
OCLE I MC DDIVD 10007	VMC84 028005 60 750120	84 03800F	60 750120	DDal	19.000	10.214	0.551052700	4.05 7	726 52021	10.13	0.03
OCLE IMC DRIVD 20720	VMC94 626595 09.750130	04.020900	-09.700130	DD-1	10.708	19.314	0.001000700	4.0E-/	120.000001	10.11	0.03
OGLE-LMC-RRLYR-20739	VMC84.030385 09.750360	04.030383	-09.100300	DD-1	10.933	19.022	0.070238300	1.0E-0	2101.38183	10.14	0.03
OGLE-LMC-RRLYR-20364	VMC84.338685_69.749770	84.338685	-09.749770	RKab	19.411	20.331	0.487577100	3.0E-7	(26.49189	18.34	0.03
OGLE-LMC-RRLYR-18854	VMC83.317995_69.749230	83.317995	-69.749230	RRe	18.201	18.212	0.286473700	6.0E-7	455.53905	18.20	0.04

OCLE-LLCR.RLYH.12180 VMC83.217210 697.43200 RRab 18.601 19.319 0.592128100 30.57 455.48855 17.75 0.04 OCLE-LLCR.RLYH.21835 VMC85.60355 697.44707 R1A8 18.710 10.316 0.56404400 3.057.7 455.2823 18.14 0.04 OCLE-LLCR.RLYH.21835 VMC85.65010-697.48207 85.2006 -69.748207 R1A8 18.741 0.5760500 3.057.7 455.2283 18.14 0.04 OCLE-LLCR.RLYH.21835 VMC85.6501769 69.746207 85.30733 -69.75600 R1A8 18.941 15.775 0.625.7487 18.22 0.04 OCLE-LLCR.RLYH.18037 VMC85.232750 69.75610 R1A8 18.827 10.610 0.6257 455.57487 18.22 0.63 10.555206 R1A8 18.827 10.610 0.6257 455.2841 17.75 0.03 OCLE-LLCR.RLYH.18137 VMC82.3035705 67.75400 R1A8 18.847 10.612 0.6257447 735.57487 18.12 0.63574200 10.557447 18.226000 </th <th></th>												
$ \begin{array}{c} \hline CGLE_LAC, RRIYE, 13865 \\ CGLE_LAC, RRIYE, 13865 \\ CGLE_LAC, RRIYE, 13865 \\ CGLE_LAC, RRIYE, 13865 \\ CGLE_LAC, RRIYE, 13845 \\ CGRE AC, 23845 \\ CGRE AC, 13845 \\ CGRE AC, 13845 \\ CGRE AC, 23845 \\ CGRE AC, 13845 \\ CGRE A$	OGLE-LMC-BBLYB-18704	VMC83 217210 69 743200	83 217210	-69 743200	BBab	18 691	19 319	0 592128100	3 0E-7	455 48895	17 75	0.04
CGLE_LAC_RRLYR_1812 VikC8.557285 co.745200 85.557285 -69.745200 RRab 18.875 19.412 0.475050800 7.057 2187.53885 18.22 0.06 CGLE_LAC_RRLYR_18134 VikC8.557285 67.45700 RRab 18.755 19.417 0.707655200 6.057 275.52884 18.41 0.03 CGLE_LAC_RRLYR_18134 VikC8.5898735 60.756270 RR 18.856 19.376 0.387949400 4.057 455.57877 18.25 0.03 CGLE_LAC_RRLYR_18364 VikC8.531880 60.756270 RR 18.856 19.376 0.287949400 4.057 455.57877 18.52 0.03 CGLE_LAC_RRLYR_18361 VikC8.5350866 67.55508 RRab 18.911 19.412 0.53782800 7.057 455.5538 18.50 0.35 62.5538 18.50 0.35 67.557 455.5508 18.51 0.03 0.04555 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50	OGLE-LMC-BRLYB-21865	VMC85 606335 69 745170	85 606335	-69 745170	BRab	18 716	19 323	0.563064900	1 1E-6	2187 63346	17.87	0.03
CGLE_LIXC-RRIVE.1932 VXICS3.6200G co.748207 83.20200 -67.48270 REAL 18.704 10.417 0.75665200 3.0E-7 145.29283 18.14 0.04 CGLE-LIXC-RRIVE.1833 VXICS3.85110 60.748600 RR.4 18.544 10.441 0.5965200 0.4E-7 125.60251 18.25 0.01 CGLE-LIXC-RRIVE.1835 VXICS3.85073 60.75600 RIA 18.32750 60.75600 RIA 18.32570 60.75600 RIA 18.32770 10.17 0.68922000 4.0E-7 455.2881,1 17.79 0.03 CGLE-LIXC-RRIVE.1846 VXICS3.23570 60.75600 RIA 18.327570 67.75640 RIA 18.327 10.412 0.53972200 4.0E-7 455.2881,1 17.79 0.032 CGLE-LIXC-RRIVE.1247 VXICS3.235760 67.75640 RIA 18.341 10.10 19.327 0.463540 40.757.4560 RIA 18.642 10.60 10.5574497 83.20760 RIA 18.341 10.10 10.5574497 18.3246 10.60 10.527410 </td <td>OCLE I MC PRIVE 21812</td> <td>VMC85 557285 60 745260</td> <td>95 557295</td> <td>60 745260</td> <td>PRab</td> <td>18 007</td> <td>10.442</td> <td>0.470500800</td> <td>7057</td> <td>2107.00040</td> <td>18.22</td> <td>0.00</td>	OCLE I MC PRIVE 21812	VMC85 557285 60 745260	95 557295	60 745260	PRab	18 007	10.442	0.470500800	7057	2107.00040	18.22	0.00
$ \begin{array}{c} CGLE LACK-RRLYR-19143 \\ CGLE LACK-RRLYR-19143 $	OCLE IMC DRIVE 10252	VMC83.557285 09.745200	00.001200 00.00065	-09.745200	DDab	18.907	10.417	0.479509800	2.0E-7	455 20000	10.22	0.04
Colle_LMC_RINULT_18131 VMC83832910 68178600 St.388110 -69778600 RRe 18.850 19.342 (3.9394720) 4.05.7 455.67887 18.35 0.13 OGLE_LMC_RINYR-11948 VMC838132567 69.755050 83.213850 -69.755050 RRab 18.850 19.370 0.36274 455.678867 18.72 0.04 OGLE_LMC_RINYR-19407 VMC83.325567 69.755050 RRab 18.971 19.063 0.623952300 1.06-7 455.57386 18.22 0.04 OGLE_LMC_RINYR-19477 VMC83.325602 69.755408 82.956049 -69.755840 82.956049 -69.75580 82.96620 -69.75590 18.24 19.77 19.412 0.593782800 1.06-7 455.57381 18.20 0.04 OGLE_LMC_RINYR-18767 VMC83.301726 69.75390 83.904721 -69.75390 84.91725 -69.753904 RRab 18.371 19.12 0.59378260 -45.547711 17.33 0.03 OGLE_LMC-RINYR-18764 VMC83.250161 69.764700 RRab 18.38 19.065	OGLE-LMC-RRLIR-19552	VMC85.020005 09.748270	05.020000	-09.748270	nnab DD 1	10.795	19.417	0.579055200	3.0E-7	400.20200	10.14	0.04
CGLE_LACK_RELYR.1913 VMC83.2385.39 69.790090 82.385.41 -00.79009 REC 18.350 19.490 10.497 42.542246 18.429 0.04 CGLE_LACK_RELYR.18169 VMC83.235576 69.75000 85.32570 -66.75010 REA 18.327 19.630 0.62923200 4.05.77 455.57484 18.15 0.03 CGLE_LACK_RELYR.19167 VMC83.235576 69.75000 85.05540 -66.750200 REA 18.15 0.03 CGLE_LACK_RELYR.19177 VMC83.005620 69.75300 83.05540 -66.753200 REA 18.048 19.226 0.652045800 1.05.7 728.57868 17.56 0.03 CGLE_LACK_RELYR.19167 VMC83.005620 69.75320 RS.401721 -60.75320 REA 18.434 19.042 19.757 -728.57868 17.56 0.03 CGLE_LACK_RELYR.19167 VMC83.005420 69.75320 REA 18.434 19.027 0.78056100 2.85.4 455.47714 17.33 0.03 CGLE_LACK_RELYR.19210 VMC83.20171 69.75320 REA 18.854 19.060 0.56024700 18.45 17.65 0	OGLE-LMC-RRLYR-21843	VMC85.585110_69.748600	85.585110	-09.748000	ККАБ	18.944	19.532	0.516924000	4.0E-7	2187.00251	18.44	0.04
$ \begin{array}{c} 0 \text{GLE} \ \ LMC + \text{RLY} R.19449 \\ \text{VMCSS 617826}, 63, 76270 \\ \text{GLE} \ \ LMC + \text{RLY} R.19549 \\ \text{VMCSS 12570}, 6-9, 762040 \\ \text{SS 12570} \\ \text{CLE} \ \ LMC + \text{RLY} R.19549 \\ \text{VMCSS 12570}, 6-9, 762040 \\ \text{SS 12570} \\ \text{CLE} \ \ LMC + \text{RLY} R.1957 \\ \text{VMCSS 20052}, 6-9, 762040 \\ \text{SS 20562}, 6-9, 752040 \\ \text{SS 20562}, 6-9, 752040 \\ \text{RLS 10} \\ RLS 10$	OGLE-LMC-RRLYR-19315	VMC83.598735_69.756080	83.598735	-69.756080	RRc	18.855	19.404	0.396497200	6.0E-7	455.62297	18.25	0.03
OCLE_LAMC-RRLYR.18697 VMC83 213850 69.750650 84.52360 18.27 19.607 0.62352360 9.05-7 45.57487 18.17 0.03 OCLE_LAMC-RRLYR.18173 VMC84 355606 75.5540 84.553560 -69.75340 RRab 19.191 19.422 0.623528500 15.57 77.756.77868 7.96 0.03 OCLE_LAMC-RRLYR.19173 VMC84 305620 69.75340 84.955360 15.57 77.756.77868 7.96 0.03 OCLE_LAMC-RRLYR.19177 VMC83 401725 -69.753400 RRab 18.408 19.022 0.75036100 2.85-6 455.45774 17.33 0.03 OCLE_LAMC-RRLYR.18767 VMC83 401725 -69.763407 RRab 18.744 19.602 0.75036100 2.85-6 455.45774 17.58 0.04 OCLE_LAMC-RRLYR.18767 VMC85 401415 69.763400 RRab 18.744 19.643 0.5567210700 1.75.6 135.57711 7.00.44 OCLE_LAMC-RRLYR.18763 VMC85 401475 69.763400 RRab 18.844 19.604 0.56620106 1.45.6 2187.59881 17.58 0.03 OCLE_LAMC-RRLYR.18753	OGLE-LMC-RRLYR-19348	VMC83.618265_69.756270	83.618265	-69.756270	RRc	18.850	19.376	0.367949400	4.0E-7	455.67866	18.22	0.04
OGLE LLACE, RLYR, 18866 VMC88, 325750 69, 760120 Rhab 18, 19, 174 0.580322000 4, 0E-7 455, 28514 17.79 0.03 OGLE LLACE, RLYR, 20130 VMC88, 425300 63, 72540 Rhab 18, 19, 1967 0.55322000 1.51, 66 215, 70001 18, 10, 01 0.03 OGLE LLACE, RLYR, 21264 VMC85, 056480 69, 765520 Rhab 18, 10, 19, 75 0.6550400 7, 0E-7 215, 73398 18, 15 0.03 OGLE LLACE, RLYR, 21264 VMC85, 056480 69, 765520 Rhab 18, 488 19, 925 0.7503961100 1.28, 62, 45, 45, 47, 74 17, 53 0.03 OGLE LLACE, RLYR, 21264 VMC85, 056145 69, 765920 Rhab 18, 874 19, 925 0.65021100 1.48, 53, 835 17, 88 0.04 OGLE LLACE, RLYR, 21502 VMC85, 25715 69, 765200 Rhab 18, 874 19, 520 0.319450300 4, 0E-7 726, 60135 17, 88 0.04 OGLE LACE, RLYR, 21854 VMC85, 267176 69, 765200 Rhab 18, 843 19, 540 0.495, 7736 82, 90100 60, 77210 Rhab 18, 843 19, 540 0.412121600 <td>OGLE-LMC-RRLYR-18697</td> <td>VMC83.213850 69.755050</td> <td>83.213850</td> <td>-69.755050</td> <td>RRab</td> <td>18.927</td> <td>19.603</td> <td>0.629352300</td> <td>9.0E-7</td> <td>455.57487</td> <td>18.17</td> <td>0.03</td>	OGLE-LMC-RRLYR-18697	VMC83.213850 69.755050	83.213850	-69.755050	RRab	18.927	19.603	0.629352300	9.0E-7	455.57487	18.17	0.03
OGLE_LMC-RRLYR.2187.26613 VMC84.525300 ⁻ 69.762040 RRab. 19.191 19.970 0.58258000 1.58-6 2187.59001 18.15 0.03 OGLE_LMC-RRLYR.1217.47 VMC83.06490 ⁻ 0.763520 83.06732 0.706-7 455.5228 18.16 0.03 OGLE_LMC-RRLYR.21264 VMC83.05490 ⁻ 0.763520 83.04725 69.763520 Rtab. 18.724 19.104 19.857 0.46555400 7.0E-7 455.5228 18.15 0.03 OGLE_LMC-RRLYR.1917.47 VMC83.25160 ⁻ 69.76470 83.257160 69.764670 88.255100 ⁻ 69.764670 83.257160 ⁻ 69.766240 Rtab. 18.724 19.177 0.553127000 2.0E-7 455.27871 17.91 0.04 OGLE_LMC-RRLYR.19571 VMC85.197215 69.765240 Rtab. 18.83 19.330 0.03872600 7.754 0.13 OGLE_LMC-RRLYR.19571 VMC85.197215 69.765240 Rtab. 19.346 0.05612200 4.0E-7 218.74200 17.95 0.03 OGLE_LMC-RRLYR.19572 VMC85.397215	OGLE-LMC-RRLYR-18866	VMC83.325750 ^{-69.760120}	83.325750	-69.760120	RRab	18.587	19.174	0.580322000	4.0E-7	455.28814	17.79	0.03
OGLE_LMC-RRUX-R1973 VMC82.950495 ⁻ / _{69.755840} 82.050495 -69.755840 RRab 18.770 19.412 0.592762800 7.0E-7 425.55226 18.02 0.04 OGLE_LMC-RRUX-R1977 VMC83.05620 67.65020 83.040725 -69.765020 RRab 18.262 0.652045800 0.2E-7 725.77868 11.53 0.03 OGLE_LMC-RRUX-R1977 VMC83.251610 0.766702 83.255100 -69.764502 RRab 18.744 19.177 0.55212700 2.8E-7 725.77813 11.73 0.03 OGLE_LMC-RRUX-R1972 VMC83.25110 69.765020 85.35415 -69.765620 RRab 18.854 19.650 0.55820310 1.4E-7 726.0135 17.28 0.04 OGLE_LMC-RRUX-R19521 VMC83.25416 ⁻ 69.768500 RRab 18.383 19.030 0.61282100 0.4E-7 726.0135 17.28 0.04 OGLE_LMC-RRUX-R19741 VMC83.25416 ⁻ 69.776800 RRab 19.384 19.041 19.54 0.4622100 0.4E-7 726.44513 18.340 0.04	OGLE-LMC-RRLYR-20613	VMC84.525360 ^{-69.762040}	84.525360	-69.762040	RRab	19.191	19.967	0.582588000	1.5E-6	2187.59901	18.15	0.03
OGLEE_LMC-RRUX-R1276 VMC88.06520 ^{-60,765090} 85.06540 69.76520 RRab 19.60 19.26 0.652045800 4.0E-7 726.57868 17.96 0.03 OGLEE_LMC-RRUX-R1244 VMC88.061725 69.763220 85.06440 69.763220 RRab 19.45 10.6555400 2.8E-4 455.45774 17.53 0.03 OGLEE_LMC-RRUX-R19521 VMC88.30115 69.763200 85.35714 10.657 59.678140 10.875 10.865 10.8571070 11.76- 2187.5588 11.78 0.04 OGLEE_LMC-RRUX-R1283 VMC85.15715 69.76340 85.59715 69.76340 85.47170 10.76- 2187.59881 17.26 0.03 OGLEE_LMC-RRUX-R1283 VMC85.16716 69.76340 85.38415 69.76380 RRab 19.365 -99.99 0.612821100 2.0E-7 455.24733 18.40 OGLEE_LMC-RRUX-R1283 VMC83.60100 69.77530 85.16645 69.775730 RRab 19.9526 0.612821100 2.0E-7 2187.49756 18.249 0.040 0.0E-2 1287.49756 </td <td>OGLE-LMC-RRLYR-18173</td> <td>VMC82.950495^{-69.755840}</td> <td>82.950495</td> <td>-69.755840</td> <td>RRab</td> <td>18.770</td> <td>19.412</td> <td>0.593782800</td> <td>7.0E-7</td> <td>455.55236</td> <td>18.02</td> <td>0.04</td>	OGLE-LMC-RRLYR-18173	VMC82.950495 ^{-69.755840}	82.950495	-69.755840	RRab	18.770	19.412	0.593782800	7.0E-7	455.55236	18.02	0.04
OGLE_LMC_RRLYR_12/24 VMC83.06/1480 - 69.763520 R83.06/1480 -69.763520 RRab 18.484 19.104 19.875 0.465509400 7.05-7 2187.30389 18.15 0.03 OGLE_LMC_RRLYR_118763 VMC83.25160 69.763520 RRab 18.484 19.032 7.0603310 2.8E-6 455.45771 17.93 0.043 OGLE_LMC_RRLYR_118763 VMC83.25160 69.763520 RRab 18.484 19.032 0.319453900 4.0E-7 455.45771 17.90 0.043 OGLE_LMC_RRLYR_128153 VMC85.377106 9.763240 88.351715 69.765240 RRab 19.8433 0.585710700 1.7E-6 2187.59881 17.26 0.004 OGLE_LMC_RRLYR_12824 VMC85.397310 69.776520 88.361010 69.776370 RRab 19.866 19.542 0.66221100 4.0E-7 726.45513 18.00 0.06 OGLE_LMC_RRLYR_12824 VMC82.967310 69.776730 RRab 19.842 0.662211500 4.0E-7 2187.468513 18.00 0.06 OGLE_LMC_RRLYR_12824 <td< td=""><td>OGLE-LMC-BRLYB-19757</td><td>VMC83.905620^{-69.765090}</td><td>83,905620</td><td>-69.765090</td><td>RRab</td><td>18.608</td><td>19.226</td><td>0.652045800</td><td>4.0E-7</td><td>726.57868</td><td>17.96</td><td>0.03</td></td<>	OGLE-LMC-BRLYB-19757	VMC83.905620 ^{-69.765090}	83,905620	-69.765090	RRab	18.608	19.226	0.652045800	4.0E-7	726.57868	17.96	0.03
$ \begin{array}{c} \hline CGLE LMC-RRLYR, 19147 \\ CGLE LMC-RRLYR, 19150 \\ CGLE LMC-RRLYR, 20150 \\ CGLE LMC-RRLYR, 2015$	OGLE-LMC-BRLYB-21264	VMC85 065480 ⁻⁶⁹ 763520	85 065480	-69 763520	BRab	19 104	19.875	0 465595400	7 0E-7	2187 39389	18 15	0.03
$ \begin{array}{c} \hline GCEE-LMC-RILYR-18763 \\ GCEE-LMC-RILYR-18763 \\ (MCS3.255160 \\ (MCS3.25015 \\ (MCS3.747160 \\ (MCS3.74716 \\ (MCS3.74717 \\ (MCS3.74717 \\ (MCS3.74818 \\ (MCS3.7481$	OGLE-LMC-BRLYB-19147	VMC83 491725 69 763920	83 491725	-69 763920	BRab	18 438	19.082	0.780936100	2.8E-6	455 45774	17.53	0.03
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	OCLE IMC PRIVE 18762	VMC82 255160 60 764670	82 255160	60 764670	PRob	18 794	10.177	0.552127000	2.01-0	455 97971	17.00	0.00
CGEE_LIMC_RRIYR_15022 VMC85.747160 68.768740 R.R. 18.874 19.529 0.513448300 1.40E-7 278.60135 17.88 0.03 OGLE_LMC_RRIYR_12535 VMC85.579125 60.763500 R35.133445 60.763500 Rab 18.83 19.433 0.385710700 1.7E-6 2187.24266 17.95 0.03 OGLE_LMC_RRIYR_1870 VMC85.133445 60.763500 RRab 19.365 -99.90 0.612821100 2.0E-6 2187.24266 17.95 0.03 OGLE_LMC_RRIYR_1870 VMC83.9010 60.775730 RRab 19.364 0.51412100 4.0E-7 726.45313 18.00 0.06 OGLE_LMC_RRIYR_18204 VMC83.9000 60.775730 RRab 19.064 19.746 0.5141200 4.0E-7 218.747775 18.42 0.04 OGLE_LMC_RRIYR_18204 VMC83.48615 60.775730 RRab 19.554 0.30056400 80.5217300 4.0E-7 218.747775 18.42 0.04 OGLE_LMC_RRIYR_18204 VMC84.490276 60.77640 82.99825 60.77540	OCLE IMC DRIVD 21502	VMC85.255100 09.704070	05.255100	-09.704070	DDab	10.724	10.605	0.555127000	2.0E-7	455.27671	17.91	0.04
$ \begin{array}{c} \mbox{CdE} E_{\rm LMC} = RRLYR_{14} 124 \\ \mbox{CRLYR}_{14} = 124 \\ \mbox{CRLY}_{14} = 124 \\ \mbox{CRL}_{14} = 124 \\ \mbox{CRL}_{14} = 124 \\ \mbox{CRL}_{14} = 124 \\ \mbox{CRL}_{14} = 124 \\ $	OGLE-LMC-RRLIR-21502	VMC85.250415 09.765020	00.200410	-09.705020	nnab	10.004	19.005	0.390208100	1.4E-0	2107.33000	17.00	0.00
CGLE ELMC-RRLYR.2183 VMC85.99/215 60.70240 85.39/215 -99.76540 REab. 18.835 19.436 0.0885.010/00 1.1.E-16 218.724209 17.53 0.003 OGLE ELMC-RRLYR.1874 VMC82.907310 69.70880 83.20474 -60.70880 Rab. 19.066 19.422 0.545211500 2.05.7 455.23737 17.34 0.03 OGLE ELMC-RRLYR.18749 VMC82.906100 -69.77530 RL 19.054 19.746 0.642487000 1.1E-6 2187.66247 17.92 0.04 OGLE ELMC-RRLYR.20710 VMC84.616635 -69.77530 RL 19.054 19.724 0.4412200 4.02.7 2187.46247 17.92 0.04 OGLE ELMC-RRLYR.2061 VMC84.606270 -69.77540 RRab 18.849 19.526 0.624987000 4.15.77471 18.18 0.04 OGLE LMC-RRLYR.2061 VMC84.46065 -69.777540 RRab 18.841 19.436 0.551247800 4.15.67338 8.14.6665 6.0777740 18.18 10.4463800 5.057745800 18.66656 6.07777740	OGLE-LMC-RRLYR-19521	VMC83.747160_69.768940	83.747160	-09.708940	RRC	18.074	19.529	0.319459300	4.0E-7	726.60135	17.88	0.04
GGLE-LMC-RRLYR-21421 VMC85.183845 69.763800 88.48 19.365 -99.39 0.612821100 2.0E-6 2157.39881 17.36 0.03 GGLE-LMC-RRLYR-1839 VMC83.360110 67.77530 88.46710 66.776570 RRab 19.386 0.5421200 4.0E-7 756.6247 17.36 0.03 GGLE-LMC-RRLYR-19839 VMC83.3601107 67.77530 88.16635 -69.775730 RRab 19.384 19.784 0.40E-7 756.45313 18.00 0.06 GGLE-LMC-RRLYR-21321 VMC85.102605 69.775730 88.16635 -69.775730 RRab 19.051 19.752 0.0506440 NE-7 2187.49795 18.22 0.04 GGLE-LMC-RRLYR-2061 VMC84.600277 69.776540 84.60270 -69.776540 RRab 19.356 0.251247800 4.1E-6 2187.49781 84.40055 0.03 GGLE-LMC-RRLYR-20751 VMC84.600277 76.77770 85.43665 -69.77070 RRab 18.841 19.366 0.5674770 85.559976 0.03 0.053 17.74777777777777777777777	OGLE-LMC-RRLYR-21853	VMC85.597215_69.765240	85.597215	-69.765240	RRab	18.833	19.433	0.585710700	1.7E-6	2187.24206	17.95	0.03
OGLE_LMC_RRLYR.1874 VMC83.249745 69.770880 83.249745 -69.770880 RRab 19.868 19.766 0.666125200 4.0E-7 455.2137 17.94 0.03 OGLE_LMC_RRLYR.1989 VMC83.990100 69.775210 83.960100 -69.775210 RRab 19.664 19.786 0.514121600 4.0E-7 26.485137 18.90 0.04 OGLE_LMC_RRLYR.1989 VMC83.990100 69.775210 85.48015 -69.77530 RRab 19.785 0.3556400 8.0E-7 2187.49795 18.22 0.04 OGLE_LMC_RRLYR.21734 VMC85.483815 69.77540 84.000270 -69.776540 RRab 19.354 0.355147800 4.1E-6 2187.47773 18.49 0.05 OGLE_LMC_RRLYR.12071 VMC84.846965 69.77640 RRab 18.841 19.364 0.524173500 2.0E-7 455.17774 18.18 0.04 OGLE_LMC_RRLYR.120751 VMC84.846965 69.776200 RRab 18.841 19.40 0.524173500 2.0E-7 2187.360031 17.650 0.03 OG	OGLE-LMC-RRLYR-21421	VMC85.183845_69.763850	85.183845	-69.763850	RRab	19.365	-99.99	0.612821100	2.0E-6	2187.59881	17.26	0.09
OGLE-LMC-RRLYR-18204 VMC82.967310 69.769660 82.967310 -69.769660 RRab 19.166 19.166 19.42 0.54121500 2.05-7 455.24373 18.34 0.04 OGLE-LMC-RRLYR-20710 VMC84.616635 69.777570 84.616635 69.777570 RRab 18.849 19.526 0.624987000 1.1E-6 2187.49778 18.24 0.04 OGLE-LMC-RRLYR-20710 VMC84.610270 69.775730 RRab 19.554 20.4243 0.551247800 4.1E-6 2187.49791 18.34 0.06 OGLE-LMC-RRLYR-2082 VMC84.600270 69.775640 RRab 19.554 20.463 0.551247800 4.1E-6 2187.496012 18.54 0.05 OGLE-LMC-RRLYR-21737 VMC84.640965 69.774770 85.486965 69.77470 RRab 18.841 19.436 0.5524750 9.0E-7 2187.49665 18.07 0.03 OGLE-LMC-RRLYR-21577 VMC83.78570 98.71609 RR 19.361 19.574 0.54646350 0.0E-7 2187.4356 18.06 0.03 0.02 </td <td>OGLE-LMC-RRLYR-18754</td> <td>VMC83.249745 69.770880</td> <td>83.249745</td> <td>-69.770880</td> <td>RRab</td> <td>18.988</td> <td>19.796</td> <td>0.666125200</td> <td>4.0E-7</td> <td>455.27137</td> <td>17.94</td> <td>0.03</td>	OGLE-LMC-RRLYR-18754	VMC83.249745 69.770880	83.249745	-69.770880	RRab	18.988	19.796	0.666125200	4.0E-7	455.27137	17.94	0.03
OGLE-LMC-RRLYR-19839 VMC83.960100 ^{-69,775210} 83.960100 -69,775730 RRab 19.084 19.758 0.514121600 4.06-7 726.48513 18.00 0.00 OGLE-LMC-RRLYR-21321 VMC85.102605 ^{-69,775730} 85.102605 -69,775730 RRab 19.524 0.624987000 4.06-7 2187.47717 18.49 0.06 OGLE-LMC-RRLYR-21321 VMC84.600270 ^{-69,775240} 84.84815 -69,772540 RRab 19.554 20.643 0.551247360 4.16-6 2187.47717 18.44 0.06 OGLE-LMC-RRLYR-20531 VMC84.600270 ^{-69,775640} 84.84065 -69,775640 RRab 18.847 19.361 0.64430800 5.06-77 2187.47713 86.40 0.05 OGLE-LMC-RRLYR-20576 VMC84.46065 ^{-66,780080} 84.494655 -69,781090 RRab 19.051 19.405 0.60755500 4.05 4.59,77500 RRab 19.064 19.056 4.06755300 1.06-6 2187,74356 18.02 0.03 OGLE-LMC-RRLYR-20576 VMC84.491655 ^{-66,781690} 84.491655 -69,781090 RRab <	OGLE-LMC-RRLYR-18204	VMC82.967310 ^{-69.769660}	82.967310	-69.769660	RRab	19.166	19.842	0.545211500	2.0E-7	455.24373	18.34	0.04
$ \begin{array}{c} \text{OGLE-LMC-RRLYR-20710} & \text{VMCS4.616635} - 69.775730 \\ \text{OGLE-LMC-RRLYR-21731} & \text{VMCS4.6102607} - 69.775730 \\ \text{OGLE-LMC-RRLYR-21734} & \text{VMCS5.102605} - 69.775730 \\ \text{OGLE-LMC-RRLYR-21734} & \text{VMCS5.102605} - 69.775730 \\ \text{OGLE-LMC-RRLYR-21734} & \text{VMCS5.48315} - 69.775240 \\ \text{OGLE-LMC-RRLYR-2081} & \text{VMCS5.48315} - 69.775240 \\ \text{OGLE-LMC-RRLYR-2081} & \text{VMCS5.48315} - 69.775640 \\ \text{OGLE-LMC-RRLYR-2081} & \text{VMCS5.48315} - 69.775640 \\ \text{OGLE-LMC-RRLYR-2081} & \text{VMCS5.4832} - 69.775640 \\ \text{OGLE-LMC-RRLYR-20751} & \text{VMCS5.98622} - 69.775640 \\ \text{OGLE-LMC-RRLYR-20751} & \text{VMCS5.98622} - 69.775640 \\ \text{OGLE-LMC-RRLYR-20751} & \text{VMCS5.98622} - 69.775608 \\ \text{OGLE-LMC-RRLYR-19567} & \text{VMCS4.446965} - 69.77560 \\ \text{OGLE-LMC-RRLYR-19567} & \text{VMCS4.4491655} - 69.781690 \\ \text{OGLE-LMC-RRLYR-19576} & \text{VMCS4.4491655} - 69.781690 \\ \text{OGLE-LMC-RRLYR-20751} & \text{VMCS5.77570} & 83.778770 \\ \text{OGLE-LMC-RRLYR-20751} & \text{VMCS5.77570} & 83.778770 \\ \text{OGLE-LMC-RRLYR-19578} & \text{VMCS5.775730} & 83.778570 \\ \text{OGLE-LMC-RRLYR-19578} & \text{VMCS5.77676} & 69.775108 \\ \text{OGLE-LMC-RRLYR-19578} & \text{VMCS5.77676} & 69.775108 \\ \text{OGLE-LMC-RRLYR-19578} & \text{VMCS5.161557} & 69.781610 \\ \text{OGLE-LMC-RRLYR-2045} & \text{VMCS5.161557} & 69.786100 \\ \text{CLR-RLYR-2045} & \text{VMCS5.161557} & 69.786100 \\ \text{CLR-RLYR-1918} & \text{VMCS5.161557} & 69.786100 \\ \text{CLR-RLYR-1919} & \text{VMCS5.161557} & 69.786100 \\ \text{CLR-RLYR-1919} & \text{VMCS5.161557} & 69.786100 \\ \text{CLR-RLYR-1919} & \text{VMCS5.161557} & 69.786100 \\ \text{CLR-LMC-RRLYR-2045} & \text{VMCS5.161557} & 69.786100 \\ \text{CLR-LMC-RRLYR-1919} & VMCS5.16$	OGLE-LMC-RRLYR-19839	VMC83.960100 ^{-69.775210}	83.960100	-69.775210	RRab	19.084	19.798	0.514121600	4.0E-7	726.48513	18.00	0.06
$ \begin{array}{c} \mbox{GLE-LMC-RRLYR-21321} & \mbox{VMCS5.102605}{-69.775730} & \mbox{S1.02605} & -69.775210 & \mbox{Rab} & \mbox{Int} & I$	OGLE-LMC-RRLYR-20710	VMC84.616635 ^{-69.775730}	84.616635	-69.775730	RRab	18.849	19.526	0.624987000	1.1E-6	2187.66247	17.92	0.04
$ \begin{array}{c} \mbox{GLE-LMC-RRLIX-21734} & \mbox{VMC85.483815} - 69.772810 & \mbox{Rab} & 19.230 & 19.785 & 0.305065400 & 8.0E-7 & 2187.47773 & 18.49 & 0.05 \\ \mbox{OGLE-LMC-RRLIX-18289} & \mbox{VMC82.989825} - 69.775640 & \mbox{Rab} & 18.849 & 19.386 & 0.524173500 & 2.0E-7 & 455.17774 & 18.18 & 0.04 \\ \mbox{OGLE-LMC-RRLIX-21737 & \mbox{VMC84.46965} - 69.774070 & \mbox{Rab} & 18.441 & 19.436 & 0.532473500 & 2.0E-7 & 2187.66656 & 18.07 & 0.03 \\ \mbox{OGLE-LMC-RRLIX-20751 & \mbox{VMC84.64965} - 69.780080 & \mbox{84.64966} & -69.780090 & \mbox{Rab} & 18.477 & 19.011 & 0.644630800 & 5.0E-7 & 2187.38003 & 17.65 & 0.03 \\ \mbox{OGLE-LMC-RRLIX-20576 & \mbox{VMC84.49165} - 69.781090 & \mbox{81.7697 & -69.777580 & \mbox{Rab} & 18.771 & 19.064 & 19.758 & 0.546446800 & 4.0E-7 & 455.16873 & 18.06 & 0.03 \\ \mbox{OGLE-LMC-RRLIX-20576 & \mbox{VMC84.49165} - 69.781090 & \mbox{81.7857 & -69.777580 & \mbox{Rab} & 19.727 & 0.330475300 & 1.0E-6 & 2187.74356 & 18.02 & 0.04 \\ \mbox{OGLE-LMC-RRLIX-20379 & \mbox{VMC84.49035} - 69.78100 & \mbox{84.49033 & -69.784110 & \mbox{Rab} & 19.810 & 20.950 & 0.539316700 & 7.0E-7 & 726.73022 & 18.35 & 0.03 \\ \mbox{OGLE-LMC-RRLIX-2045 & \mbox{VMC84.2411300 & 69.784970 & \mbox{84.111300 & -69.784970 & \mbox{Rab} & 19.429 & 20.223 & 0.73883700 & 3.7E-7 & 726.73022 & 18.35 & 0.03 \\ \mbox{OGLE-LMC-RRLIX-2194 & \mbox{VMC83.241133 & 0.67.49710 & \mbox{84.111300 & -69.789100 & \mbox{Rab} & 19.429 & 20.223 & 0.73883700 & 3.7E-7 & 726.73022 & 18.35 & 0.03 \\ \mbox{OGLE-LMC-RRLIX-2194 & \mbox{VMC83.34315 & 69.799200 & \mbox{Rab} & 19.429 & 20.23 & 0.73883700 & 3.7E-7 & 726.59152 & 0.16 & 0.03 \\ \mbox{OGLE-LMC-RRLIX-2194 & \mbox{VMC83.34315 & 69.799200 & \mbox{Rab} & 19.429 & 20.23 & 0.73883700 & 3.0E-7 & 455.58665 & 18.55 & 0.05 \\ \mbox{OGLE-LMC-RRLIX-18489 & \mbox{VMC83.34315 & 69.799200 & \mbox{Rab} & 19.430 & 0.57321600 & 3.0E-7 & 455.58665 & 18.55 & 0.05 \\ \mbox{OGLE-LMC-RRLIX-18489 & \mbox{VMC83.34315 & 69.799300 & \mbox{Rab} & 18.952 & 0.3618700 & 3.0E-7 & 455.58655 & 18.55 & 0.05 \\ OGLE-LMC-RRLIX-21849$	OGLE-LMC-RRLYR-21321	VMC85.102605 ^{-69.775730}	85.102605	-69.775730	RRab	19.051	19.724	0.491292200	4.0E-7	2187.49795	18.22	0.04
$ \begin{array}{c} \hline \text{OGLE-LMC-RRLYR-20691} & \text{VMCS4}.600270 & -69.776540} & \text{Rab} & 19.554 & 20.463 & 0.551247800 & 4.1E-6 & 2187.68012 & 18.54 & 0.05 \\ \hline \text{OGLE-LMC-RRLYR-21737} & \text{VMCS5}.489965 & -69.775640 & \text{Rab} & 18.841 & 19.366 & 0.53427500 & 9.0E-7 & 455.17774 & 18.18 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-19767} & \text{VMCS6}.469696 & -69.780080 & \text{Rab} & 18.477 & 19.010 & 0.644630800 & 5.0E-7 & 2187.66656 & 18.07 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-19567} & \text{VMCS3}.699720 & -69.780990 & \text{Rab} & 18.477 & 19.010 & 0.644630800 & 5.0E-7 & 2187.66656 & 18.07 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-19576} & \text{VMCS3}.496720 & -69.780990 & \text{Rab} & 18.771 & 19.405 & 0.60759500 & 8.0E-7 & 455.59976 & 17.68 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-19576} & \text{VMCS3}.78570 & -69.77580 & \text{Rab} & 18.771 & 19.405 & 0.53918700 & -0.0E-7 & 2187.63012 & 18.64 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-19578} & \text{VMCS3}.78570 & -69.77580 & \text{Rab} & 19.068 & 19.758 & 0.546648500 & 4.0E-7 & 455.16873 & 18.06 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-2045} & \text{VMCS4}.111300 & -69.784970 & \text{Rab} & 19.249 & 20.223 & 0.73883700 & 7.0E-7 & 726.59152 & 17.89 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-21472} & \text{VMCS4}.111300 & -69.784970 & \text{Rab} & 19.157 & 19.914 & 0.57120400 & 2.0E-6 & 2187.5133 & 18.06 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-21472} & \text{VMCS5}.24105 & -69.796000 & 85.24105 & -69.796100 & \text{Rab} & 19.465 & 20.484 & 0.579536400 & 2.0E-6 & 2187.58943 & 18.26 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-11472} & \text{VMCS3}.48895 & -69.792260 & \text{Rab} & 19.457 & 20.484 & 0.579536400 & 2.0E-6 & 2187.58943 & 18.26 & 0.03 \\ \hline \text{OGLE-LMC-RRLYR-18482} & \text{VMCS3}.44895 & -69.792260 & \text{Rab} & 19.457 & 20.484 & 0.579536400 & 2.0E-6 & 2187.58943 & 18.26 & 0.05 \\ \hline \text{OGLE-LMC-RRLYR-18482} & \text{VMCS3}.44895 & -69.795260 & \text{Rab} & 18.953 & 19.392 & 0.30387300 & 3.0E-7 & 455.58665 & 18.55 & 0.05 \\ \hline \text{OGLE-LMC-RRLYR-18482} & \text{VMCS3}.44805 & 69.795940 & \text{Rab} & 18.957 & 19.343 & 3.05774 & 5.58665 & 18.55 & 0.05 \\ \hline \text{OGLE-LMC-RRLYR-18482} & \text{VMCS3}.434315 & 69.789540 & \text{Rab} & 18.957 & 19.433 & 0.517321500 & 1.0E-6 & 2187.44669 & 18.24 \\ \hline $	OGLE-LMC-BRLYB-21734	VMC85.483815 ^{-69.772810}	85.483815	-69.772810	BBc	19.230	19.785	0.305065400	8.0E-7	2187.47773	18.49	0.05
$ \begin{array}{c} \hline \text{OCLE-LMC-RRILYR-18289} \\ \hline \text{VMC82} 98825 & -69.775640 \\ \hline \text{Rab} & 18.849 & 19.386 \\ \hline \text{OCLE-LMC-RRILYR-20751} \\ \hline \text{VMC84} 646965 & -69.77477 \\ \hline \text{Rab} & 18.841 & 19.466 \\ \hline \text{OCLE-LMC-RRILYR-20751} \\ \hline \text{VMC84} 646965 & -69.77470 \\ \hline \text{Rab} & 18.841 & 19.466 \\ \hline \text{OCLE-LMC-RRILYR-20751} \\ \hline \text{VMC84} 646965 & -69.776080 \\ \hline \text{Rab} & 18.847 & 19.011 \\ \hline \text{OCLE-LMC-RRILYR-20576} \\ \hline \text{VMC84} 91655 & -69.781690 \\ \hline \text{Rab} & 18.477 & 19.011 \\ \hline \text{OCLE-LMC-RRILYR-20576} \\ \hline \text{VMC84} 491655 & -69.781690 \\ \hline \text{Rab} & 18.477 & 19.011 \\ \hline \text{OCLE-LMC-RRILYR-20576} \\ \hline \text{VMC84} 491655 & -69.781690 \\ \hline \text{Rab} & 18.477 & 19.064 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC84} 491655 & -69.781610 \\ \hline \text{Rab} & 19.476 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC84} 436935 & -69.77680 \\ \hline \text{Rab} & 19.876 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC84} 436935 & -69.786110 \\ \hline \text{Rab} & 19.810 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC85} 161555 & -69.786090 \\ \hline \text{Rab} & 19.810 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC85} 161555 & -69.786090 \\ \hline \text{Rab} & 19.476 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC85} 161555 & -69.786090 \\ \hline \text{Rab} & 19.476 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC85} 161555 & -69.786090 \\ \hline \text{Rab} & 19.476 \\ \hline \text{OCLE-LMC-RRILYR-20379} \\ \hline \text{VMC85} 161555 & -69.786090 \\ \hline \text{Rab} & 19.157 \\ \hline \text{IP}.448 \\ \hline \text{OCLE-LMC-RRILYR-1945} \\ \hline \text{VMC85} 161555 & -69.786090 \\ \hline \text{Rab} & 19.157 \\ \hline \text{IP}.448 \\ \hline \text{IP}.47 \\ \hline \text{IP}.488 \\ \hline \text{IP}.47 \\ \hline \text{IP}.488 \\$	OGLE-LMC-BRLYB-20691	VMC84 600270 ⁻⁶⁹ 776540	84 600270	-69 776540	BBab	19 554	20 463	0.551247800	4 1E-6	2187 68012	18 54	0.05
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	OGLE-LMC-BRLVB-18289	VMC82 989825 69 775640	82 989825	-69 775640	BRab	18 849	19 386	0.524173500	2 0E-7	455 17774	18 18	0.04
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	OGLE LMC BRIVE 21737	VMC85 486965 69 774770	85 486965	69 774770	BBab	18 8/1	10.000	0.583427500	0.0E 7	2187 66656	18.07	0.03
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	OCLE IMC PRIVE 20751	VMC84 646065 60 780080	84.646065	60 780080	DDab	18 477	10.011	0.644620800	5.057	2187.00050	17.65	0.03
$ \begin{array}{c} \text{GGLE-LMC-RRLYR-13507} & \text{Vir} \text{GS}_{1,10}, \text{MC84}, 491655 - 69, 781690 & \text{RA} & 10, 10, 10, 10, 403 & 0, 00, 10, 30, 300 & 1, 0.6-6 & 218, 74356 & 18, 0.2 & 0, 0.4 \\ \text{GGLE-LMC-RRLYR-19578} & \text{VMC84}, 3778570 - 69, 777580 & 83, 778570 & -69, 777580 & \text{RA} & 19, 0.64 & 19, 758 & 0.546648500 & 4, 0.6-7 & 455, 16873 & 18, 06 & 0.3 \\ \text{GGLE-LMC-RRLYR-20379} & \text{VMC84}, 340935 - 69, 786110 & 84, 446935 & -69, 786110 & \text{RA} & 19, 0.64 & 19, 758 & 0.546648500 & 4, 0.6-7 & 726, 59152 & 17, 89 & 0.3 \\ \text{GGLE-LMC-RRLYR-20379} & \text{VMC84}, 111300 - 60, 784970 & 84, 111300 & -69, 784970 & \text{RA} & 19, 249 & 20, 223 & 0, 738833700 & 3, 7E-6 & 726, 59152 & 17, 89 & 0.33 \\ \text{GGLE-LMC-RRLYR-21395} & \text{VMC85}, 161555 & -69, 786090 & \text{RA} & 19, 157 & 19, 914 & 0, 57120400 & 2, 0.6-6 & 2187, 59143 & 18, 18 & 0.03 \\ \text{GGLE-LMC-RRLYR-19545} & \text{VMC83}, 618957 & 60, 792260 & 83, 618895 & -69, 792200 & \text{RA} & 19, 465 & 20, 484 & 0, 579536400 & 2, 0.6-6 & 2187, 58943 & 18, 26 & 0.03 \\ \text{GGLE-LMC-RRLYR-19545} & \text{VMC83}, 3618895 & 68, 792260 & \text{RR} & 18, 953 & 19, 392 & 0, 303837300 & 3, 0.6-7 & 455, 58665 & 18, 55 & 0.05 \\ \text{GGLE-LMC-RRLYR-18892} & \text{VMC83}, 3618895 & 68, 7929260 & \text{RR} & 18, 953 & 19, 392 & 0, 303837300 & 3, 0.6-7 & 455, 58665 & 18, 55 & 0.05 \\ \text{GGLE-LMC-RRLYR-18892} & \text{VMC83}, 343815 & 69, 798850 & \text{RA} & 18, 812 & 19, 467 & 0, 624974500 & 1, 0.6-6 & 455, 62631 & 18, 03 & 0.03 \\ \text{GGLE-LMC-RRLYR-18892} & \text{VMC83}, 3479800 & -69, 79950 & \text{RA} & 18, 812 & 19, 467 & 0, 624974500 & 1, 0.6-6 & 455, 62631 & 18, 03 & 0.03 \\ \text{GGLE-LMC-RRLYR-18894} & \text{VMC83}, 34695^{-6}, 99, 9050 & 83, 344695 & -69, 790330 & \text{Ra} & 18, 8105 & 19, 443 & 0, 517321500 & 1, 0.6-6 & 4187, 46664 & 18, 24 & 0.03 \\ \text{GGLE-LMC-RRLYR-18896} & \text{VMC83}, 344695^{-6}, 99, 90540 & \text{RA} & 18, 805 & 19, 443 & 0, 517321500 & 1, 0.6-6 & 4187, 46646 & 18, 24 & 0.03 \\ \text{GGLE-LMC-RRLYR-18896} & \text{VMC83}, 344695^{-6}, 69, 802450 & \text{RA} & 18, 816 & 19, 562 & 0, 566019090 & 5, 3.6-6 & 2187, 46666 & 17, 96 & 0.03 \\ \text{GGLE-LMC-RRLYR-20681}$	OCLE IMC DRIVD 10567	VMC82.760700 60.780080	82 760700	-09.780080	DDab	10.477	10.405	0.044030800	9.0E-7	455 50076	17.05	0.03
$ \begin{array}{c} 0 \text{GLE-LMC-RRLYR-19578} & VMC84.491655 & 69.761690 & 84.491655 & -69.761500 & RRc \\ 0 \text{GLE-LMC-RRLYR-2057} & VMC84.436935 & 69.76150 & 84.346915 & -69.77650 & RRab \\ 0 \text{GLE-LMC-RRLYR-2037} & VMC84.11300 & -69.786110 & RRab \\ 19.064 & 19.758 & 0.546648500 & 4.0-E-7 & 726.73122 & 18.35 \\ 0 \text{GLE-LMC-RRLYR-21045} & VMC84.11300 & -69.786110 & RRab \\ 0 \text{GLE-LMC-RRLYR-21395} & VMC84.11300 & -69.786110 & RRab \\ 0 \text{GLE-LMC-RRLYR-21395} & VMC84.11300 & -69.786110 & RRab \\ 0 \text{GLE-LMC-RRLYR-21472} & VMC85.161555 & -69.786090 & 85.161555 & -69.786090 & RRab \\ 0 \text{GLE-LMC-RRLYR-19349} & VMC85.2105 & 69.79600 & 85.224105 & -69.780100 & RRab \\ 0 \text{GLE-LMC-RRLYR-19349} & VMC85.2105 & 69.79000 & 83.760975 & -69.789120 & RRab \\ 0 \text{GLE-LMC-RRLYR-19349} & VMC83.618895 & -69.72260 & -69.789120 & RRab \\ 0 \text{GLE-LMC-RRLYR-19349} & VMC83.618895 & -69.72260 & -69.789120 & RRab \\ 0 \text{GLE-LMC-RRLYR-18349} & VMC83.31315 & -69.788800 & -69.7992260 & RRab \\ 0 \text{GLE-LMC-RRLYR-18492} & VMC83.343315 & -69.788850 & RRab \\ 0 \text{GLE-LMC-RRLYR-18687} & VMC83.343315 & -79.789120 & 83.479800 & -69.791530 & RRab \\ 0 \text{GLE-LMC-RRLYR-18687} & VMC83.348840 & -69.70950 & RRab \\ 0 \text{GLE-LMC-RRLYR-18687} & VMC83.348840 & -69.70950 & RRab \\ 0 \text{GLE-LMC-RRLYR-19128} & VMC83.3479800 & -69.791530 & RAb \\ 0 \text{GLE-LMC-RRLYR-19128} & VMC83.3479800 & -8.791530 & RAb \\ 0 \text{GLE-LMC-RRLYR-19128} & VMC83.3479800 & -8.791530 & RAb \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC83.3479800 & -8.791530 & RAb \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC83.3479800 & -8.791530 & RAb \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC83.3470805 & -69.795400 & 8.378900 & -69.806200 & RAb \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC83.3470805 & -69.806200 & RAb \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC83.347085 & -69.80580 & RAb \\ 19.592 & 20.845 & 0.56129300 & -5.8E-6 & 2187.66645 & 17.96 & 0.03 \\ 0 \text{GLE-LMC-RRLYR-2058} & VMC83.352415 & -69.791530 & RAb \\ 19.592 & 20.845 & 0.56129300 & -5.8E-6 & 2187.66645 & 17.96 & 0.03 \\ 0 \text{GLE-LMC-RRLYR-2058} & VMC84.33705 & -69.806600 & RAb \\ 19.592 & -5.858600 & 0.50E-7 & 726.52190 & 18.1$	OGLE-LMC-RRLIR-19507	VMC85.709720 09.780990	03.709720	-09.780990	nnab	10.751	19.405	0.007959500	0.0E-7	455.59970	10.00	0.03
$ \begin{array}{c} 0 \text{GLE-LMC-RRLYR-19576} & VMC83.17850 _ 69.77610 \\ 0 \text{GLE-LMC-RRLYR-20379} & VMC84.346935 _ 69.786110 \\ 0 \text{GLE-LMC-RRLYR-20379} & VMC84.346935 _ 69.786110 \\ 0 \text{GLE-LMC-RRLYR-20379} & VMC84.346935 _ 69.786110 \\ 0 \text{GLE-LMC-RRLYR-21395} & VMC85.461555 _ 69.78600 \\ 0 \text{GLE-LMC-RRLYR-21472} & VMC85.161555 _ 69.78600 \\ 0 \text{GLE-LMC-RRLYR-21472} & VMC85.161555 _ 69.78600 \\ 0 \text{GLE-LMC-RRLYR-19545} & VMC83.760975 _ 69.78910 \\ 0 \text{GLE-LMC-RRLYR-19545} & VMC83.760975 _ 69.78910 \\ 0 \text{GLE-LMC-RRLYR-19545} & VMC83.760975 _ 69.78910 \\ 0 \text{GLE-LMC-RRLYR-19545} & VMC83.3618895 _ 69.792260 \\ 0 \text{GLE-LMC-RRLYR-19545} & VMC83.3618895 _ 69.792360 \\ 0 \text{GLE-LMC-RRLYR-19545} & VMC83.3125 _ 69.78850 \\ 0 \text{GLE-LMC-RRLYR-19545} & VMC83.30840 _ 69.79050 \\ 0 \text{GLE-LMC-RRLYR-19128} & VMC83.479800 _ 69.791530 \\ 0 \text{GLE-LMC-RRLYR-19128} & VMC83.479800 _ 69.791530 \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC84.591840 _ 69.799540 \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC84.591840 _ 69.799540 \\ 0 \text{GLE-LMC-RRLYR-20681} & VMC84.591840 _ 69.79050 \\ 0 \text{GLE-LMC-RRLYR-1896} & VMC84.33705 _ 69.802450 \\ 0 \text{GLE-LMC-RRLYR-1896} & VMC84.33705 _ 69.802450 \\ 0 \text{GLE-LMC-RRLYR-1896} & VMC84.33705 _ 69.80640 \\ 0 48.333705 _ 69.80640 \\ 0 \text{ 48.4333705 _ 69.80640 \\ 0 \text{ 48.333705 _ 69.806600 \\ 0 \text{ 48.333705 _ 69.80640 \\ 0 \text{ 48.333705 _ 69.80640 \\ 0 \text{ 4$	OGLE-LMC-RRLIR-20570	VMC84.491055 09.781090	04.491055	-09.781090	DD	19.089	19.727	0.550475500	1.0E-0	2187.74330	10.02	0.04
$ \begin{array}{c} 0 \text{GLE-LMC-RHYR-2045} & \text{VMC84.1340935} & 69.786110 & 84.340935 & -69.786110 & \text{Rab} & 19.810 & 20.950 & 0.539310700 & 7.0E-7 & 726.73022 & 17.89 & 0.03 \\ 0 \text{GLE-LMC-RHYR-21045} & \text{VMC85.161555} & 69.786090 & 85.161555 & -69.786909 & \text{Rab} & 19.157 & 19.914 & 0.571204000 & 2.0E-6 & 2187.5133 & 18.26 & 0.03 \\ 0 \text{GLE-LMC-RHYR-21472} & \text{VMC85.161555} & 69.786090 & 85.161555 & -69.780600 & \text{Rab} & 19.465 & 20.484 & 0.579536400 & 2.0E-6 & 2187.58943 & 18.26 & 0.03 \\ 0 \text{GLE-LMC-RHYR-19545} & \text{VMC83.760975} & 69.789120 & 83.760975 & -69.789120 & \text{Rab} & 18.792 & 19.376 & 0.559871100 & 2.0E-7 & 455.60392 & 18.16 & 0.03 \\ 0 \text{GLE-LMC-RHYR-19349} & \text{VMC83.04885} & -69.72260 & 83.618895 & -69.792260 & \text{Rab} & 19.011 & 19.716 & 0.621094600 & 1.3E-6 & 455.67566 & 18.55 & 0.05 \\ 0 \text{GLE-LMC-RHYR-18887} & \text{VMC83.02840} & -69.70950 & 83.340315 & -69.788850 & \text{Rab} & 19.011 & 19.716 & 0.621094600 & 1.3E-6 & 455.47556 & 18.55 & 0.05 \\ 0 \text{GLE-LMC-RHYR-18887} & \text{VMC83.028840} & -69.70950 & 83.479800 & -69.791530 & \text{Rab} & 18.747 & 19.288 & 0.605138700 & 3.0E-7 & 455.456615 & 18.50 & 0.03 \\ 0 \text{GLE-LMC-RHYR-19128} & \text{VMC83.0558185} & -69.790330 & \text{Rab} & 18.747 & 19.288 & 0.605138700 & 3.0E-7 & 455.41531 & 18.12 & 0.03 \\ 0 \text{GLE-LMC-RHYR-20681} & \text{VMC84.33700} & 69.802450 & \text{Ra} & 18.846 & 19.562 & 0.656909900 & 1.3E-6 & 2187.6645 & 17.96 & 0.03 \\ 0 \text{GLE-LMC-RHYR-20425} & \text{VMC84.338700} & 69.802450 & \text{Ra} & 18.877 & 19.288 & 0.605138700 & 3.0E-7 & 455.45830 & 18.22 & 0.04 \\ 0 \text{GLE-LMC-RHYR-20425} & \text{VMC84.333705} & 69.806200 & 84.33700 & -69.806400 & \text{Rab} & 19.552 & 20.485 & 0.561129300 & 1.0E-6 & 455.6320 & 18.22 & 0.04 \\ 0 \text{GLE-LMC-RHYR-1975} & \text{VMC84.333705} & 69.80640 & \text{Ra} & 18.877 & 19.753 & 0.65190901 & 1.0E-6 & 455.6508 & 8.12 & 0.03 \\ 0 \text{GLE-LMC-RHYR-19240} & \text{VMC84.333705} & 69.80640 & \text{Rab} & 19.552 & 20.485 & 0.561129300 & 1.0E-6 & 455.6508 & 18.10 & 0.03 \\ 0 \text{GLE-LMC-RHYR-19240} & \text{VMC84.333705} & 69.806640 & \text{Rab} & 19.552 & 20.678 & 0.488860100 & 5.0E-7 & 726.67900 & 18$	OGLE-LMC-RRLYR-19578	VMC83.778570_69.777580	83.778570	-69.777580	RRab	19.064	19.758	0.546648500	4.0E-7	455.16873	18.06	0.03
OGLE-LMC-RRLYR-21035 VMC84.111300 69.784970 RRab 19.249 20.223 0.738833700 3.7E-6 726.59152 17.89 0.03 OGLE-LMC-RRLYR-21395 VMC85.161555 69.796000 RRab 19.157 19.914 0.571204000 2.0E-6 2187.58943 18.26 0.03 OGLE-LMC-RRLYR-19545 VMC85.161895 69.792260 RRab 19.465 20.484 0.579536400 2.0E-6 2187.58943 18.26 0.03 OGLE-LMC-RRLYR-19349 VMC83.618895 69.792260 RRc 18.953 19.392 0.303837300 3.0E-7 455.58665 18.55 0.05 OGLE-LMC-RRLYR-18687 VMC83.208840 69.79050 83.24840 -69.79050 RRab 18.901 19.467 0.624974500 1.0E-6 455.62631 18.03 0.03 OGLE-LMC-RRLYR-18184 VMC83.449570 83.479800 -69.790330 R3.455815 -69.790330 Rab 18.907 19.433 0.132150 1.3E-6 2187.46664 18.24 0.03 OGLE-LMC-RRLYR-18280 <t< td=""><td>OGLE-LMC-RRLYR-20379</td><td>VMC84.346935_69.786110</td><td>84.346935</td><td>-69.786110</td><td>RRab</td><td>19.810</td><td>20.950</td><td>0.539316700</td><td>7.0E-7</td><td>726.73022</td><td>18.35</td><td>0.03</td></t<>	OGLE-LMC-RRLYR-20379	VMC84.346935_69.786110	84.346935	-69.786110	RRab	19.810	20.950	0.539316700	7.0E-7	726.73022	18.35	0.03
$ \begin{array}{c} \text{OGLE-LMC-RRLYR-21395} & \text{VMC85.161555} & 69.786090 & \text{85.161555} & -69.786090 & \text{RRab} & 19.167 & 19.914 & 0.571204000 & 2.0E-6 & 2187.5133 & 18.18 & 0.03 \\ \text{OGLE-LMC-RRLYR-19545} & \text{VMC83.760975} & -69.789120 & \text{RRab} & 19.465 & 20.484 & 0.57953640 & 2.0E-6 & 2187.58943 & 18.26 & 0.03 \\ \text{OGLE-LMC-RRLYR-19349} & \text{VMC83.3618895} & -69.789260 & \text{RRab} & 19.767 & 0.559871100 & 2.0E-7 & 455.6865 & 18.55 & 0.05 \\ \text{OGLE-LMC-RRLYR-18892} & \text{VMC83.343315} & -69.788850 & \text{RRab} & 19.011 & 19.716 & 0.621094600 & 1.3E-6 & 455.37566 & 17.92 & 0.05 \\ \text{OGLE-LMC-RRLYR-18889 & \text{VMC83.343315} & -69.788850 & \text{RRab} & 19.011 & 19.716 & 0.62497450 & 1.0E-6 & 455.62631 & 18.03 & 0.03 \\ \text{OGLE-LMC-RRLYR-19128} & \text{VMC83.479800} & -69.791530 & 83.298840 & -69.791530 & \text{RRab} & 18.812 & 19.467 & 0.62497450 & 1.0E-6 & 455.62631 & 18.03 & 0.03 \\ \text{OGLE-LMC-RRLYR-19128} & \text{VMC83.479800} & -69.791530 & \text{RRab} & 18.915 & 19.443 & 0.517321500 & 3.0E-7 & 455.41531 & 18.12 & 0.03 \\ \text{OGLE-LMC-RRLYR-20681} & \text{VMC83.344695} & -69.802450 & \text{RRab} & 18.805 & 19.443 & 0.517321500 & 3.0E-6 & 2187.46645 & 17.96 & 0.03 \\ \text{OGLE-LMC-RRLYR-20681} & \text{VMC83.344695} & -69.802450 & \text{RRab} & 18.805 & 19.443 & 0.517321500 & 1.3E-6 & 2187.46645 & 17.96 & 0.03 \\ \text{OGLE-LMC-RRLYR-20425} & \text{VMC83.334705} & -69.806240 & \text{RRab} & 18.895 & 19.443 & 0.517321500 & 1.3E-6 & 2187.46645 & 17.96 & 0.03 \\ \text{OGLE-LMC-RRLYR-20425} & \text{VMC83.334705} & -69.806240 & \text{RRab} & 19.576 & 20.678 & 0.488860100 & 5.0E-7 & 726.52190 & 18.16 & 0.03 \\ \text{OGLE-LMC-RRLYR-19240} & \text{VMC83.33705} & -69.806540 & \text{RRab} & 19.576 & 20.678 & 0.488860100 & 5.0E-7 & 726.52190 & 18.16 & 0.03 \\ \text{OGLE-LMC-RRLYR-19240} & \text{VMC83.337075} & -69.806540 & \text{RRab} & 19.576 & 20.678 & 0.488860100 & 5.0E-7 & 726.52190 & 18.16 & 0.03 \\ \text{OGLE-LMC-RRLYR-20158} & \text{VMC83.30705} & -69.806640 & \text{RRab} & 19.576 & 20.678 & 0.488860100 & 5.0E-7 & 726.52190 & 18.16 & 0.03 \\ \text{OGLE-LMC-RRLYR-19240} & \text{VMC83.30775} & -69.806640 & \text{RRab} & 19.571 & 0.615988400 & 5.0E-7 & 726.65190$	OGLE-LMC-RRLYR-20045	VMC84.111300_69.784970	84.111300	-69.784970	RRab	19.249	20.223	0.738833700	3.7E-6	726.59152	17.89	0.03
$ \begin{array}{c} \text{CdEE-LMC-RRLYR-21472} & \text{VMC85.224105} & 69.790600 & 85.224105 & -69.790600 & \text{Rab} & 19.465 & 20.484 & 0.579536400 & 2.0E-6 & 2187.560392 & 18.16 & 0.03 \\ \text{CdEE-LMC-RRLYR-19545 & \text{VMC83.618895} & 69.789206 & 83.618895 & -69.792260 & \text{Rrc} & 18.953 & 19.392 & 0.30837300 & 3.0E-7 & 455.560392 & 18.16 & 0.03 \\ \text{CdEE-LMC-RRLYR-18897 & \text{VMC83.34315} & 69.78850 & 83.343315 & -69.78850 & \text{Rab} & 19.011 & 19.716 & 0.621094600 & 1.3E-6 & 455.37556 & 17.92 & 0.05 \\ \text{CdEE-LMC-RRLYR-18887 & \text{VMC83.3208840} & 69.790950 & 83.208840 & -69.790950 & \text{Rab} & 18.812 & 19.467 & 0.624974500 & 1.0E-6 & 455.62631 & 18.03 & 0.03 \\ \text{CdEE-LMC-RRLYR-21814 & \text{VMC83.558185} & 69.790330 & 83.558185 & 69.790330 & \text{Rab} & 18.8747 & 19.288 & 0.605138700 & 3.0E-7 & 455.41531 & 18.12 & 0.03 \\ \text{CdEE-LMC-RRLYR-2081 & \text{VMC84.591540} & 69.795940 & 83.344695 & -69.795940 & \text{Rab} & 18.846 & 19.562 & 0.656099900 & 5.3E-6 & 2187.44669 & 18.24 & 0.03 \\ \text{CdEE-LMC-RRLYR-20458 & \text{VMC84.378900} & 69.802450 & \text{Rac} & -69.802450 & \text{Rac} & 18.818 & 19.302 & 0.354180900 & 1.1E-6 & 455.58309 & 18.22 & 0.04 \\ \text{CdEE-LMC-RRLYR-20458 & \text{VMC84.378900} & 69.806200 & \text{Rab} & 19.592 & 20.845 & 0.561129300 & 7.0E-7 & 726.52190 & 18.16 & 0.03 \\ \text{CdEE-LMC-RRLYR-20458 & \text{VMC84.378900} & 69.806200 & \text{Rab} & 19.592 & 20.845 & 0.561129300 & 7.0E-7 & 726.82267 & 17.68 & 0.04 \\ \text{CdEE-LMC-RRLYR-2045 & \text{VMC84.378900} & 69.806540 & \text{Rab} & 19.577 & 0.667240200 & 8.0E-7 & 726.612930 & 18.11 & 0.03 \\ \text{CdEE-LMC-RRLYR-19775 & \text{VMC83.352415} & 69.805400 & \text{Rab} & 18.977 & 19.753 & 0.672490200 & 8.0E-7 & 726.67900 & 18.04 \\ \text{CdEE-LMC-RRLYR-20129 & \text{VMC83.352415} & 69.805400 & \text{Rab} & 18.977 & 19.753 & 0.672490200 & 8.0E-7 & 726.67900 & 18.04 \\ \text{OGLE-LMC-RRLYR-20104 & \text{VMC83.352415} & 69.806540 & \text{Rab} & 18.977 & 19.753 & 0.672490200 & 8.0E-7 & 726.67900 & 18.04 \\ \text{OGLE-LMC-RRLYR-20104 & \text{VMC83.352415} & 69.805800 & \text{Rab} & 18.977 & 19.753 & 0.672490200 & 8.0E-7 & 726.67900 & 18.04 \\ \text{OGLE-LMC-RRLYR-20106 & \text{VMC83.352445} & 69.799130 &$	OGLE-LMC-RRLYR-21395	VMC85.161555_69.786090	85.161555	-69.786090	RRab	19.157	19.914	0.571204000	2.0E-6	2187.51133	18.18	0.03
$ \begin{array}{c} \mathrm{OGLE-LMC-RRLYR.19545} & \mathrm{VMC83.760975}^{-69.789120} & \mathrm{83.618895}^{-69.792260} & \mathrm{Rab} & \mathrm{18.792} & \mathrm{19.376} & \mathrm{0.559871100} & \mathrm{2.0E-7} & \mathrm{455.560392} & \mathrm{18.16} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.18892} & \mathrm{VMC83.348315}^{-69.792260} & \mathrm{83.618895}^{-69.792260} & \mathrm{Rab} & \mathrm{19.011} & \mathrm{19.716} & \mathrm{0.621094600} & \mathrm{1.3E-6} & \mathrm{455.37556} & \mathrm{17.92} & \mathrm{0.05} \\ \mathrm{OGLE-LMC-RRLYR.18687} & \mathrm{VMC83.208840}^{-69.79050} & \mathrm{83.208840} & -69.79050 & \mathrm{Rab} & \mathrm{18.812} & \mathrm{19.467} & \mathrm{0.624974500} & \mathrm{1.0E-6} & \mathrm{455.62631} & \mathrm{18.03} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.19128} & \mathrm{VMC83.479800}^{-69.791530} & \mathrm{83.479800} & -69.791530 & \mathrm{Rab} & \mathrm{18.747} & \mathrm{19.288} & \mathrm{0.605138700} & \mathrm{3.0E-7} & \mathrm{455.45531} & \mathrm{18.12} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.21814} & \mathrm{VMC85.558185}^{-69.790330} & \mathrm{85.558185} & -69.790330 & \mathrm{Rab} & \mathrm{18.905} & \mathrm{19.443} & \mathrm{0.517321500} & \mathrm{1.3E-6} & \mathrm{2187.666645} & \mathrm{17.96} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.20681} & \mathrm{VMC84.378900}^{-69.802450} & \mathrm{84.391540} & -69.802450 & \mathrm{Rac} & \mathrm{18.818} & \mathrm{19.302} & \mathrm{0.354180900} & \mathrm{1.E-6} & \mathrm{455.58309} & \mathrm{18.22} & \mathrm{0.04} \\ \mathrm{OGLE-LMC-RRLYR.2025} & \mathrm{VMC84.333705}^{-69.802450} & \mathrm{84.378900} & -69.806240 & \mathrm{Rac} & \mathrm{18.818} & \mathrm{19.502} & \mathrm{0.56129300} & \mathrm{7.26} & \mathrm{7726.52190} & \mathrm{18.16} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.2025} & \mathrm{VMC84.333705}^{-69.808400} & \mathrm{84.333705} & -69.806840 & \mathrm{Rab} & \mathrm{19.576} & \mathrm{20.678} & \mathrm{0.48860100} & \mathrm{5.0E-7} & \mathrm{726.52190} & \mathrm{18.16} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.19177} & \mathrm{VMC83.52415}^{-69.805898} & \mathrm{83.52415} & -69.805898 & \mathrm{Rab} & \mathrm{18.977} & \mathrm{19.753} & \mathrm{0.672490200} & \mathrm{8.0E-7} & \mathrm{455.65508} & \mathrm{18.11} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.19177} & \mathrm{VMC83.32745}^{-69.806840} & \mathrm{Rab} & \mathrm{18.923} & \mathrm{19.465} & \mathrm{0.51885700} & \mathrm{9.0E-7} & \mathrm{726.62100} & \mathrm{18.11} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.2016} & \mathrm{VMC84.087555}^{-69.808680} & \mathrm{84.08755} & -69.808680 & \mathrm{Rab} & \mathrm{18.923} & \mathrm{19.465} & \mathrm{0.51885700} & \mathrm{9.0E-7} & \mathrm{726.67068} & \mathrm{18.29} & \mathrm{0.03} \\ \mathrm{OGLE-LMC-RRLYR.2016} & \mathrm{VMC83.014665}^{-69.805644} & 83.9191$	OGLE-LMC-RRLYR-21472	VMC85.224105 69.790600	85.224105	-69.790600	RRab	19.465	20.484	0.579536400	2.0E-6	2187.58943	18.26	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-19545	VMC83.760975 69.789120	83.760975	-69.789120	RRab	18.792	19.376	0.559871100	2.0E-7	455.60392	18.16	0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-19349	VMC83.618895 ^{69.792260}	83.618895	-69.792260	RRc	18.953	19.392	0.303837300	3.0E-7	455.58665	18.55	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-18892	VMC83.343315 ^{-69.788850}	83.343315	-69.788850	RRab	19.011	19.716	0.621094600	1.3E-6	455.37556	17.92	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-18687	VMC83.208840 ^{-69.790950}	83.208840	-69.790950	RRab	18.812	19.467	0.624974500	1.0E-6	455.62631	18.03	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-19128	VMC83.479800 ^{-69.791530}	83.479800	-69.791530	RRab	18.747	19.288	0.605138700	3.0E-7	455.41531	18.12	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-BRLYB-21814	VMC85.558185 69.790330	85.558185	-69.790330	RRab	18,905	19.443	0.517321500	1.3E-6	2187.44669	18.24	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-BRLYB-20681	VMC84 591540 ⁻⁶⁹ 795940	84 591540	-69 795940	BRab	18 846	19 562	0.656909900	5 3E-6	2187 66645	17.96	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-BRLYB-18896	VMC83 344695 ⁻⁶⁹ 802450	83 344695	-69 802450	BBc	18 818	19 302	0.354180900	1 1E-6	455 58309	18 22	0.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCLE IMC BRIVE 20425	VMC84 378900 69 806200	84 378000	69.806200	BBab	10.510	20.845	0.561120300	7 OF 7	726 52100	18 16	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCLE IMC PRIVE 20425	VMC84.378900 09.800200	84.378900	-09.800200	DDab	10.576	20.845	0.301129300	5 OF 7	726.82267	17.69	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCLE IMC DRIVE 10940	VMC84.555705 09.800840	04.333703	-09.800840	DDab	19.077	10 752	0.488800100	9.0E-7	456 10065	10.11	0.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLIR-19240	VMC85.552415 09.805980	03.002410	-09.805980	nnab DD 1	10.977	19.755	0.672490200	0.0E-7	450.19005	10.11	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OGLE-LMC-RRLYR-19775	VMC83.919195_69.806540	83.919195	-09.800540	RRAD	18.842	19.571	0.615988400	5.0E-7	726.67900	18.04	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-20229	VMC84.239775_69.808410	84.239775	-69.808410	RRab	18.451	19.119	0.755386500	9.0E-7	726.45269	17.60	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-18408	VMC83.047995_69.806660	83.047995	-69.806660	RRab	19.105	19.606	0.428117400	2.0E-7	455.65508	18.41	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-20016	VMC84.087555_69.808680	84.087555	-69.808680	RRab	18.923	19.465	0.518857700	3.0E-7	726.60768	18.29	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-21612	VMC85.352445_69.799130	85.352445	-69.799130	RRab	19.406	19.932	0.508986600	2.0E-6	2187.71837	18.64	0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-21583	VMC85.328865 ^{69.808450}	85.328865	-69.808450	RRab	19.510	20.450	0.602398900	2.9E-6	2187.67292	18.15	0.03
	OGLE-LMC-RRLYR-18348	VMC83.016465 ^{-69.807440}	83.016465	-69.807440	RRc	18.828	19.342	0.355733700	4.0E-7	455.44041	18.00	0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-20510	VMC84.450660 ^{-69.813110}	84.450660	-69.813110	RRc	19.054	19.734	0.357058500	7.0E-7	726.64130	18.39	0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OGLE-LMC-RRLYR-21424	VMC85.187550 ^{-69.812950}	85.187550	-69.812950	RRc	19.689	20.683	0.318481000	1.4E-6	2187.48957	18.48	0.04
OGLE-LMC-RRLYR-19814 VMC83.948655 69.819220 83.948655 -69.819220 RRc 18.758 19.263 0.355872600 3.0E-7 726.48302 17.97 0.03	OGLE-LMC-RRLYR-20479	VMC84.424215 ^{69.816090}	84.424215	-69.816090	RRab	18.882	19.547	0.540847900	3.0E-7	726.50966	17.99	0.03
	OGLE-LMC-RRLYR-19814	VMC83.948655 ^{69.819220}	83.948655	-69.819220	RRc	18.758	19.263	0.355872600	3.0E-7	726.48302	17.97	0.03

OGLE-LMC-BRIVB-18870	VMC83 327985 69 813560	83 327985	-69.813560	BBc	18 915	10 303	0.318512900	3 0E-7	455 43451	1 18 45 1	0.03
OGLE IMC DDIVD 00001	VMC04.002700-00.010000	00.021000	-00.010000	DD	10.010	10.050	0.010012500	2.012 7	700.10101	10.40	0.00
OGLE-LMC-RRLYR-20831	VMC84.693780_69.820860	84.693780	-69.820860	RRAD	19.040	19.652	0.508578500	3.0E-7	120.59762	18.21	0.04
OGLE-LMC-RRLYR-22002	VMC85.757745 69.815300	85.757745	-69.815300	RRab	19.159	19.911	0.567584700	1.6E-6	2187.33625	18.16	0.04
OGLE-LMC-RRLYR-19075	VMC83.452890 ^{-69.817170}	83.452890	-69.817170	RRab	19.019	19.803	0.580979400	4.0E-7	455.67855	18.19	0.04
OCLE IMC BRIVE 10230	VMC83 551755 60 821220	83 551755	60 821220	BBab	10.061	10.825	0.588855200	7 OF 7	456 30040	18 33	0.05
OGLE IMO DDIVD 10000	VINC00.001700 00.021220	00.001100	-03.821220	DD	10.400	10.044	0.000470500	0.057	450.55540	17.00	0.00
OGLE-LMC-RRLYR-19082	VMC83.450055_69.821270	83.456655	-69.821270	RRad	18.468	19.044	0.606470500	2.0E-7	455.59494	17.80	0.03
OGLE-LMC-RRLYR-18623	VMC83.172525 69.819670	83.172525	-69.819670	RRab	19.043	19.598	0.496626000	4.0E-7	455.68368	18.25	0.04
OGLE-LMC-RRLYR-20577	VMC84.491850 ^{-69.825000}	84,491850	-69.825000	RRab	19.093	19.589	0.469548600	2.0E-7	726.64561	18.37	0.04
OCLE LMC BRIVE 19862	VMC83 975355 ⁻⁶⁹ 825040	83 075355	69.825040	BBo	10 576	20.031	0.225227000	4 0E 7	726 81151	10.23	0.00
OGLE-LMC DDLVD 19402	VINC03.3733335 03.823040	00.010000	-09.825040	DD	10.000	10.001	0.220221900	4.00-7	455 50059	10.10	0.03
OGLE-LMC-RRLYR-18493	VMC83.094105_69.820140	83.094105	-69.820140	RRC	18.820	19.230	0.350782800	(.0E-7	455.50053	18.18	0.03
OGLE-LMC-RRLYR-20262	VMC84.262425 69.822320	84.262425	-69.822320	RRab	19.188	20.149	0.632352800	1.4E-6	726.55826	18.07	0.03
OGLE-LMC-RRLYR-20201	VMC84.224085 ^{-69.825500}	84.224085	-69.825500	RRab	19.112	19,969	0.541253800	3.0E-7	726.50759	18.05	0.04
OCLE LMC BRIVE 19703	VMC83 858850 ⁻⁶⁰ 827140	83 858850	69 827140	BRab	10.045	10 762	0 569479600	3 OF 7	726 43579	18 10	0.03
OGLE-LMC DDLVD 10750	VINC03.000000 09.021140	03.000000	-03.827140	DD	10.040	10.000	0.303473000	0.00-7	720.43373	10.13	0.03
OGLE-LMC-RRLYR-19759	VMC83.906475_69.826410	83.906475	-69.826410	RRAD	19.012	19.600	0.495096600	2.0E-7	120.00192	18.20	0.03
OGLE-LMC-RRLYR-20087	VMC84.136740 69.829260	84.136740	-69.829260	RRab	18.780	19.239	0.590565700	8.0E-7	726.61962	16.91	0.04
OGLE-LMC-BBLYB-20292	VMC84 283020 ⁻⁶⁹ 828990	84 283020	-69 828990	BBab	19 278	20 165	0 564464500	5 0E-7	726 50303	18 26	0.03
OCLE IMC DRIVE 18481	VMC82 084640 60 826750	82 084640	60.826750	DDab	19 659	10 222	0.641868700	8 OF 7	455 10081	10.00	0.02
OGLE-LMC-IIILIII-10401	VINC03.004040 03.020130	03.004040	-03.820130	DD	10.000	10.505	0.041000100	5.01-1	400.10001	10.00	0.05
OGLE-LMC-RRLYR-19901	VMC84.009765_69.834260	84.009765	-69.834260	RRad	18.830	19.535	0.646936100	5.0E-7	120.32002	18.04	0.03
OGLE-LMC-RRLYR-22125	VMC85.892835 69.825840	85.892835	-69.825840	RRab	18.944	19.638	0.564646000	7.0E-7	2187.48558	18.25	0.03
OGLE-LMC-RRLYR-20742	VMC84.637755 ^{-69.837110}	84.637755	-69.837110	B.B.c	19.253	19.792	0.271386100	3.0E-7	726.67670	18.69	0.04
OCLE LMC BRIVE 19334	VMC83 611200 60 837380	83 611200	60 837380	BBab	10.008	10.872	0.647521400	1.4E.6	455 11800	18.05	0.03
OGLE-LMC DDLVD 1001C	VINC03.011230 03.031300	02.20022	-09.007300	DD	10.000	10.5072	0.047521400	1.40-0	455.11000	17.00	0.03
OGLE-LMC-RRLYR-18916	VMC83.360235_69.831830	83.360235	-09.831830	RRab	18.823	19.527	0.634512800	1.3E-0	455.62351	17.89	0.03
OGLE-LMC-RRLYR-20762	VMC84.652485 69.834060	84.652485	-69.834060	RRab	19.314	20.122	0.354203900	2.0E-6	726.49752	18.46	0.04
OGLE-LMC-RRLYR-21099	VMC84.910665 ^{-69.839930}	84.910665	-69.839930	RRc	19.193	19.414	0.336962900	1.1E-6	726.66886	17.91	0.06
OGLE-LMC-BBLYB-19721	VMC83 877555 ⁻⁶⁹ 842230	83 877555	-69.842230	BBab	18 485	19 104	0.705742500	4.0E-7	726 37315	17 66	0.03
OCLE IMC PRIVE 20557	VMC94 481455 60 845000	94 491455	60.845000	DDab	19 549	10 107	0.724680800	1056	726 74826	17.56	0.02
OGLE-LMC-RREIR-200041	VINC84.481433 09.843000	04.401400	-09.845000	DD	10.340	19.197	0.724080800	1.012-0	720.74820	10.00	0.03
OGLE-LMC-RRLYR-20041	VMC84.107835_69.848290	84.107835	-69.848290	RRe	19.476	19.881	0.247755100	4.0E-7	726.63404	19.02	0.05
OGLE-LMC-RRLYR-19005	VMC83.407950 69.847140	83.407950	-69.847140	RRab	18.986	19.659	0.523465200	3.0E-7	455.47900	18.47	0.04
OGLE-LMC-RRLYR-20820	$VMC84.687090^{-}69.841900$	84.687090	-69.841900	RRab	19.419	20.081	0.587034600	1.1E-6	726.32483	17.99	0.04
OGLE-LMC-BRLYB-21025	VMC84 855060 ⁻⁶⁹ 848230	84 855060	-69.848230	BBab	19 218	20.087	0.548441100	1 7E-6	726 37283	18 12	0.03
OCLE IMC DRIVE 20192	VMC84 202205 60 850080	84 00200F	60.850080	DDal	10.210	10.272	0.625926900	8 OF 7	706 49510	17.02	0.02
OGLE-LMC-RRLIR-20182	VMC84.203205_09.850980	84.203203	-09.850980	nnab	10.750	19.372	0.023820800	8.0E-7	120.46512	17.95	0.03
OGLE-LMC-RRLYR-18377	VMC83.029470_69.844830	83.029470	-69.844830	RRab	18.764	19.206	0.547653700	2.0E-7	455.43524	18.05	0.03
OGLE-LMC-RRLYR-18214	VMC82.970415 69.843600	82.970415	-69.843600	RRab	18.682	19.187	0.564651300	2.0E-7	455.45351	17.80	0.05
OGLE-LMC-RRLYR-19657	VMC83.827875 ^{-69.853320}	83.827875	-69.853320	RRab	18.687	19.500	0.839594400	1.9E-6	726.41027	17.69	0.02
OGLE-LMC-BBLYB-19001	VMC83 406990 69 851550	83 406990	-69.851550	BRab	18 662	19 226	0 598974400	$4.0E_{-7}$	455 31659	18 10	0.03
OCLE IMC DRIVE 20200	VMC94 222470 60.854010	84 992470	60.854010	DDal	10.002	10 502	0.569712100	4.0E 7	706 46909	17.00	0.00
OGLE-LMC-RRLIR-20200	VMC84.223470_09.834910	84.223470	-09.854910	nnab	10.045	19.505	0.502715100	4.0E-7	120.40898	17.92	0.04
OGLE-LMC-RRLYR-19611	VMC83.802960 69.855990	83.802960	-69.855990	RRab	19.437	20.429	0.565717300	1.3E-6	726.54055	18.20	0.03
OGLE-LMC-RRLYR-22110	VMC85.872345 69.847320	85.872345	-69.847320	RRab	18.670	19.298	0.618954900	2.1E-6	2187.56411	17.88	0.03
OGLE-LMC-RRLYR-19870	VMC83.982360 ^{-69.856180}	83.982360	-69.856180	RRab	18.971	19.539	0.465149400	7.0E-7	726.81466	18.33	0.03
OCLE LMC BRIVE 21004	VMC85 750050 69 849570	85 750050	69 849570	BBab	18 442	18 072	0.510484200	4 OF 7	2187 35071	17 74	0.03
OGLE-LMC DDLVD 10161	VINC00.100000 09.049910	00.100000	-09.849510	DD	10.442	10.012	0.510404200	4.0D-7	455 17702	10.05	0.03
OGLE-LMC-RRLYR-19161	VMC83.498565_69.856850	83.498505	-09.850850	RRab	19.102	19.902	0.563206600	3.0E-7	455.17703	18.25	0.03
OGLE-LMC-RRLYR-20144	VMC84.174450 69.857280	84.174450	-69.857280	RRc	18.846	19.267	0.300103500	4.0E-7	726.80218	18.37	0.03
OGLE-LMC-RRLYR-21896	VMC85.653375 ^{-69.853430}	85.653375	-69.853430	RRab	18.076	18.529	0.662613900	4.0E-6	2187.55522	17.55	0.03
OGLE-LMC-BBLYB-19404	VMC83 662770 ⁻⁶⁹ 859140	83 662770	-69 859140	BBab	18 973	19 488	0.456243600	3.0E-7	455 26726	18.38	0.03
OCLE IMC PRIVE 22006	VMC95 960765 60 951260	85 860765	60.851260	DDa	18 000	10.622	0.241081400	1056	2197 69206	19 /1	0.02
OGLE-LMC DDLVD 01440	VINCOS.000705 09.051500	05.000105	-09.851300	DD	10.333	10.032	0.541561400	1.01-0	2107.00200	17.00	0.03
OGLE-LMC-RRLYR-21449	VMC85.205025_69.852970	85.205025	-69.852970	RRab	18.619	19.213	0.652459900	2.8E-0	2187.09031	17.88	0.03
OGLE-LMC-RRLYR-19103	VMC83.470005 69.860840	83.470005	-69.860840	RRab	18.621	19.460	0.759015800	1.7E-6	455.00094	17.57	0.03
OGLE-LMC-RRLYR-20066	$VMC84.124635^{-}69.862950$	84.124635	-69.862950	RRab	19.102	19.929	0.623734100	1.9E-6	726.24076	18.07	0.03
OGLE-LMC-BRLVB-19482	VMC83 720355 69 864500	83 720355	-69 864500	BBe	19.086	19.625	0 297571600	$5.0E_{-7}$	455 69637	18 46	0.05
OCLE IMC DRIVE 20015	VMC94 097490 60 962570	00.120000	60.862570	DDal	10.000	10.450	0.485577000	1.0E 6	796.66050	10.40	0.00
OGLE-LMC-RREIR-20015	VIVIC84.087480 09.803570	04.007400	-09.803570	DD	10.900	19.400	0.485577000	1.012-0	120.00939	10.20	0.04
OGLE-LMC-RRLYR-18207	VMC82.968240_69.859750	82.968240	-69.859750	RRab	18.703	19.221	0.560011600	6.0E-7	455.29203	18.19	0.04
OGLE-LMC-RRLYR-22061	VMC85.828005 69.857970	85.828005	-69.857970	RRab	18.993	19.641	0.448866000	8.0E-7	2193.83513	18.21	0.03
OGLE-LMC-RRLYR-20449	VMC84.392805 ^{69.859880}	84.392805	-69.859880	RRab	19.107	19.545	0.449035100	2.0E-7	726.67865	18.14	0.04
OGLE-LMC-BBLYB-20843	VMC84 699525 69 867710	84 699525	-69 867710	BBab	19 765	20 537	0.543774600	6.0E-7	726 79405	17.87	0.04
OCLE I MC DDIVD 01400	VMC95 916410 60 907140	01.000020	60.967140	DD-1	10 717	10.269	0.611590400	1 5 5 6	0107 60251	17.02	0.04
OGLE-LMC-RRLIR-21463	v NIC85.210410_09.867140	00.210410	-09.80/140	RRAD	18./17	19.308	0.011589400	1.5E-0	2187.02351	17.92	0.03
OGLE-LMC-RRLYR-19940	VMC84.037035_69.867010	84.037035	-69.867010	RRab	18.660	19.209	0.536057600	3.0E-7	726.30699	18.09	0.03
OGLE-LMC-RRLYR-18356	VMC83.019765 ^{-69.869730}	83.019765	-69.869730	RRab	18.819	19.425	0.609177700	3.0E-7	455.39589	18.35	0.03
OGLE-LMC-RRLYR-21325	VMC85.103730 ^{-69.870810}	85.103730	-69.870810	RRab	20.083	21.763	0.470508600	2.3E-6	2187.38084	18.55	0.03
				1			1	-			

OGLE-LMC-RRLYB-19290	VMC83.585010 69.875920	83.585010	-69.875920	RRab	18.946	19.697	0.638813300	7.0E-7	455.65716	18.03	0.03
OGLE-LMC-BRLVB-18802	VMC83 278410 ⁻⁶⁹ 875560	83 278410	-69.875560	RRab	18 456	19.048	0.672313800	6.0E-7	455 04219	17 77	0.03
OCLE LMC BRIVE 18020	VMC83 368425 60 878560	83 368425	60.878560	BRab	10 542	20.318	0.490573900	3 OF 7	455 26030	18 31	0.05
OCLE I MC PRIVE 21722	VMC95 471225 60 876220	95 471225	60.876220	DDo	19.751	10.260	0.490913900	1056	2187 54402	18.01	0.03
OGLE-LMC-RRLIR-21723	VMC82.411335 09.870220	00.471000	-09.870220	DD-L	10.751	10.200	0.548557800	1.0E-0	796 61101	17.20	0.03
OGLE-LMC-RRLIR-19033	VMC85.810475 09.881290	05.010475	-09.881290	nnab DD 1	10.002	19.200	0.550892900	4.0E-7	720.01101	10.01	0.03
OGLE-LMC-RRLYR-22050	VMC85.813125_09.871520	85.813125	-09.871520	RRAD	18.914	19.630	0.611218000	9.0E-7	2187.45300	18.01	0.04
OGLE-LMC-RRLYR-21904	VMC85.658775_69.876950	85.658775	-69.876950	RRab	18.895	19.415	0.470435300	1.0E-6	2187.45067	18.34	0.03
OGLE-LMC-RRLYR-18726	VMC83.234160_69.881970	83.234160	-69.881970	RRab	18.626	19.305	0.687437000	3.4E-6	455.34899	17.95	0.03
OGLE-LMC-RRLYR-19203	VMC83.523960_69.879560	83.523960	-69.879560	RRab	19.055	19.854	0.610510800	7.0E-7	455.33006	18.15	0.03
OGLE-LMC-RRLYR-19405	VMC83.663550 69.886620	83.663550	-69.886620	RRab	18.970	19.685	0.625824300	8.0E-7	455.63778	18.09	0.03
OGLE-LMC-RRLYR-21924	VMC85.677570 ^{-69.881870}	85.677570	-69.881870	RRab	19.026	19.722	0.577155600	1.8E-6	2187.26568	18.29	0.04
OGLE-LMC-RRLYR-19921	VMC84.023625 ^{69.888890}	84.023625	-69.888890	RRab	18.620	19.243	0.703752000	1.3E-6	726.16934	17.86	0.03
OGLE-LMC-RRLYR-18258	VMC82.983570 ^{-69.885010}	82.983570	-69.885010	RRab	18.697	19.263	0.583438100	3.0E-7	455.33071	18.16	0.04
OGLE-LMC-BRLYB-19277	VMC83.575395 ^{-69.890620}	83.575395	-69.890620	RRab	18.929	19.597	0.618362400	6.0E-7	455.33413	17.90	0.03
OGLE-LMC-BRLYB-18432	VMC83 057640 ⁻⁶⁹ 888630	83 057640	-69.888630	BBc	18 814	19 249	0.324752800	3 0E-7	455 49026	18.37	0.04
OGLE-LMC-BRLVB-20118	VMC84 155310 69 891700	84 155310	-69 891700	BBab	18 644	19 287	0.606401400	8 0E-7	726 52682	17.95	0.03
OGLE LMC BRIVE 18551	VMC83 125125 60 880350	83 125125	60 880350	BBab	18 880	10.551	0.569303000	2 OF 7	455 22226	18 20	0.03
OCLE I MC PRIVE 20207	VMC84 202670 60 802700	84 202670	60.802700	DDab	18 707	10.621	0.505505000	1.0E-6	726 72164	17 79	0.03
OCLE IMC DRIVE 10572	VMC82 777085 60 804100	84.293070 92.777095	-09.892700	DD	10.797	10.485	0.082137400	2.0E-7	455 42050	19 50	0.03
OGLE-LMC-RRLIR-19575	VMC85.777085 09.894100	03.777003	-09.894100	DD	19.029	19.465	0.320437800	3.0E-7	400.40900	18.59	0.04
OGLE-LMC-RRLYR-20801	VMC84.713535_69.889670	84.713535	-09.889070	RRAD	18.833	19.614	0.716369300	1.2E-0	120.82430	11.11	0.03
OGLE-LMC-RRLYR-21989	VMC85.747650_69.890990	85.747650	-69.890990	RRC	19.102	19.668	0.317366500	1.2E-6	2187.63482	18.44	0.03
OGLE-LMC-RRLYR-21085	VMC84.899235_69.897210	84.899235	-69.897210	RRab	19.630	20.846	0.639254200	3.4E-6	726.41085	18.10	0.03
OGLE-LMC-RRLYR-20921	VMC84.759960_69.897810	84.759960	-69.897810	RRab	19.279	20.170	0.612672100	1.0E-6	726.77930	18.20	0.03
OGLE-LMC-RRLYR-20960	VMC84.798285 69.900840	84.798285	-69.900840	RRab	19.762	21.012	0.512878400	5.0E-7	726.76193	18.43	0.04
OGLE-LMC-RRLYR-19789	VMC83.929380 ^{-69.898840}	83.929380	-69.898840	RRab	18.808	19.438	0.595922700	5.0E-7	726.56344	18.08	0.04
OGLE-LMC-RRLYR-20767	VMC84.655230 ^{-69.901700}	84.655230	-69.901700	RRe	18.920	19.185	0.222790800	5.0E-7	726.82845	18.55	0.05
OGLE-LMC-RRLYR-20432	VMC84.384735 ^{69.896040}	84.384735	-69.896040	RRab	19.474	20.371	0.584386700	1.4E-6	726.32677	18.32	0.03
OGLE-LMC-RRLYR-18943	VMC83.377680 ^{-69.900110}	83.377680	-69.900110	RRab	18.832	19.477	0.655071600	1.3E-6	455.07477	18.03	0.04
OGLE-LMC-BRLYB-19452	VMC83.699940 ^{-69.899100}	83.699940	-69.899100	BBe	19.238	19.845	0.269105600	5.0E-7	455,49487	18.56	0.03
OGLE-LMC-BRLYB-22117	VMC85.877610 ^{-69.899690}	85.877610	-69.899690	RRab	18.540	19.081	0.546169700	5.0E-7	2187.49227	17.89	0.03
OGLE-LMC-BRLYB-19332	VMC83 610165 ⁻⁶⁹ 908620	83 610165	-69 908620	BBab	19.073	19 771	0.541093000	3 0E-7	455 50213	18.26	0.04
OGLE-LMC-BRLVB-19852	VMC83 972385 69 907980	83 972385	-69 907980	BBab	18 779	19 334	0.581711400	4 0E-7	726 58225	17 90	0.03
OCLE IMC PRIVE 21220	VMC85 108560 60 006220	85 108560	60.006220	DDab	18 067	10.640	0.521057200	1.05.6	2187 26761	18.94	0.00
OCLE IMC DRIVE 21830	VMC85 562060 60 002420	85.562060	-09.900330	DDab	19 965	10.621	0.531937300	1.01-0	2187.30701	16.24	0.03
OGLE-LMC-RRLIR-21818	VMC82.717460_60.010120	83.303900	-09.903420	DDab	10.003	10.021	0.024837800	6 OE 7	455 40400	18.02	0.03
OGLE-LMC-RRLIR-19480	VMC85.717400 09.910130	83.717400	-09.910130	nnab DD 1	10.075	19.208	0.022000200	0.0E-7	455.40490	10.03	0.03
OGLE-LMC-RRLYR-20483	VMC84.426090_69.910210	84.426090	-69.910210	RRAD	19.149	20.273	0.494247000	2.0E-7	(20.44355	18.10	0.04
OGLE-LMC-RRLYR-18486	VMC83.090985_69.910280	83.090985	-69.910280	RRab	18.830	19.222	0.651752000	9.0E-7	455.58633	17.83	0.03
OGLE-LMC-RRLYR-19829	VMC83.954265_69.909420	83.954265	-69.909420	RRc	18.541	18.959	0.353211000	1.2E-6	726.64527	18.26	0.03
OGLE-LMC-RRLYR-19058	VMC83.441355_69.913480	83.441355	-69.913480	RRab	18.779	19.047	0.511983700	2.0E-7	455.69773	17.97	0.05
OGLE-LMC-RRLYR-21397	VMC85.163790_69.911000	85.163790	-69.911000	RRe	18.898	19.285	0.273164600	1.5E-6	2187.62983	18.33	0.04
OGLE-LMC-RRLYR-18702	VMC83.216565 69.913710	83.216565	-69.913710	RRc	19.037	19.574	0.335212700	4.0E-7	455.67338	18.61	0.04
OGLE-LMC-RRLYR-19288	VMC83.583345 ^{69.914330}	83.583345	-69.914330	RRe	19.109	19.509	0.272846700	3.0E-7	455.49417	18.65	0.04
OGLE-LMC-RRLYR-20247	VMC84.249975 ^{-69.918160}	84.249975	-69.918160	RRab	18.852	19.607	0.586845600	5.0E-7	726.65069	18.02	0.03
OGLE-LMC-RRLYR-18588	VMC83.147025 ^{-69.912050}	83.147025	-69.912050	RRc	18.916	19.245	0.280121200	2.0E-7	455.64801	18.09	0.06
OGLE-LMC-RRLYR-20703	VMC84.611400 ^{-69.920730}	84.611400	-69.920730	RRab	19.360	20.316	0.653578200	4.1E-6	726.22218	18.04	0.03
OGLE-LMC-RRLYR-20160	VMC84.185130 ^{-69.921260}	84.185130	-69.921260	RRc	19.073	19.671	0.335050400	4.0E-7	739.64061	18.43	0.04
OGLE-LMC-RRLYR-18309	VMC82.996755 ^{-69.918040}	82.996755	-69.918040	RRc	18.806	19.115	0.291213600	2.0E-7	455,57877	18.08	0.05
OGLE-LMC-BRLYB-18826	VMC83.290800 ^{-69.923840}	83.290800	-69.923840	BBc	18.644	19.174	0.349618000	4.0E-7	455.65327	18.14	0.03
OGLE-LMC-BRLYB-20359	VMC84 334365 ⁻⁶⁹ 927290	84 334365	-69 927290	BBab	19 183	20 152	0.631715000	1.3E-6	726 24824	18.02	0.03
OGLE LMC BRIVE 21597	VMC85 330080 60 023710	85 330080	60 023710	BBab	18 260	18 861	0.836161200	2.2E.6	2187 00871	17.46	0.03
OCIEIMC DDIVD 18725	VMC82 240475 60 026520	82 240475	60.026520	DDab	18 209	10.001	0.630101200	2.2D-0 2.0E 7	455 51919	19 15	0.03
OGLE-LMC-RRLIR-18/30	VINC84 202450 60 02020	03.240473	-09.920030	DD-1	10.000	19.492	0.032234600	0.0E-7	400.01013	10.10	0.04
OGLE-LMC-RRLYR-20318	$v_{14} \otimes 84.303450 \otimes 93.929360$	04.303450	-09.929360	RRAD	19.413	20.500	0.01/303200	1.2E-0	120.41191	18.00	0.03
OGLE-LMC-RRLYR-21646	V MC85.390530_69.926480	85.390530	-09.926480	RRab	18.985	19.786	0.013207300	1.9E-6	218(.24717	18.03	0.03
OGLE-LMC-RRLYR-20013	VMC84.086670_69.928520	84.086670	-09.928520	RRC	19.070	19.638	0.300353600	4.0E-7	126.69656	18.26	0.05
OGLE-LMC-RRLYR-19210	VMC83.530125_69.923350	83.530125	-69.923350	RRab	18.760	19.357	0.563832200	3.0E-7	455.47681	18.11	0.03
OGLE-LMC-RRLYR-19807	VMC83.942055_69.925720	83.942055	-69.925720	RRab	18.948	19.497	0.466720300	4.0E-7	726.73099	18.25	0.03
OGLE-LMC-RRLYR-19934	VMC84.033465_69.930780	84.033465	-69.930780	RRab	18.843	19.386	0.489216700	4.0E-7	726.54487	18.04	0.03
OGLE-LMC-RRLYR-19551	VMC83.761890_69.929740	83.761890	-69.929740	RRab	19.146	19.421	0.427560500	2.0E-7	455.37099	18.27	0.06

OGLE-LMC-RRLYR-18384	VMC83.032485 69.930640	83.032485	-69.930640	RRab	18.830	19.487	0.587671500	3.0E-7	455.52708	18.20	0.03
OGLE-LMC-RRLYR-18425	VMC83.053830 ^{-69.930860}	83.053830	-69.930860	RRc	18.940	19.407	0.319099200	2.0E-7	455.52355	18.36	0.04
OGLE-LMC-RRLYR-20445	VMC84.391500 ^{-69.933520}	84.391500	-69.933520	RRab	19.470	20.265	0.519582900	4.0E-7	726.77403	18.34	0.04
OGLE-LMC-RRLYR-18918	VMC83.361555 ^{-69.933580}	83.361555	-69.933580	RRab	18.432	19.024	0.791871900	8.0E-7	455.51307	17.66	0.03
OGLE-LMC-RRLYR-19460	VMC83.704995 ^{-69.930780}	83.704995	-69.930780	RRab	18.631	19.197	0.599184700	5.0E-7	455.64139	17.64	0.06
OGLE-LMC-RRLYR-21525	VMC85.276950 ^{-69.927060}	85.276950	-69.927060	RRc	19.021	19.637	0.342766500	1.0E-6	2187.76744	18.19	0.04
OGLE-LMC-RRLYR-19530	VMC83.748720 ^{-69.938260}	83.748720	-69.938260	RRab	18.687	19.232	0.554377900	3.0E-7	455.26155	18.02	0.03
OGLE-LMC-RRLYR-21643	VMC85.386075 ^{-69.933810}	85.386075	-69.933810	RRab	18.910	19.449	0.491954400	4.0E-7	2187.63836	18.33	0.03
OGLE-LMC-RRLYR-20572	VMC84.489495 ^{69.938300}	84.489495	-69.938300	RRab	19.362	20.332	0.591965700	1.5E-6	726.50939	18.04	0.04
OGLE-LMC-RRLYR-19265	VMC83.569275 ^{-69.935790}	83.569275	-69.935790	RRab	18.631	19.195	0.573641400	4.0E-7	455.48143	18.00	0.05
OGLE-LMC-RRLYR-19101	VMC83.468175 ^{-69.935500}	83.468175	-69.935500	RRc	19.061	19.568	0.353957900	5.0E-7	455.49986	18.39	0.04
OGLE-LMC-RRLYR-19105	VMC83.471085 ^{-69.940160}	83.471085	-69.940160	RRc	18.714	19.108	0.369656500	3.0E-7	455.67536	17.98	0.03
OGLE-LMC-RRLYR-22075	VMC85.839240 ^{-69.932110}	85.839240	-69.932110	RRc	18.986	19.404	0.303790000	6.0E-7	2187.65413	18.56	0.04
OGLE-LMC-RRLYR-21401	VMC85.169625 ^{69.940940}	85.169625	-69.940940	RRc	19.222	19.884	0.334256500	1.0E-6	2187.75335	17.94	0.06
OGLE-LMC-RRLYR-22103	$VMC85.866360_{-}69.935730$	85.866360	-69.935730	RRc	18.601	18.984	0.318580200	1.0E-6	2187.70891	18.10	0.03
OGLE-LMC-RRLYR-21172	VMC84.977580_69.941900	84.977580	-69.941900	RRab	19.225	20.257	0.745185100	3.0E-6	726.55421	18.00	0.03
OGLE-LMC-RRLYR-21490	VMC85.241235_69.939840	85.241235	-69.939840	RRc	18.891	19.449	0.350480100	9.0E-7	2187.74509	18.19	0.04
OGLE-LMC-RRLYR-19641	VMC83.820135_69.942970	83.820135	-69.942970	RRab	18.826	19.355	0.528162100	2.0E-7	726.75597	18.19	0.03
OGLE-LMC-RRLYR-18607	VMC83.165550 69.942570	83.165550	-69.942570	RRab	18.872	19.499	0.574056100	8.0E-7	455.61913	18.12	0.04
OGLE-LMC-RRLYR-19664	VMC83.833905 ^{69.947490}	83.833905	-69.947490	RRab	18.847	19.106	0.525540100	4.0E-7	726.40118	17.57	0.04
OGLE-LMC-RRLYR-18860	VMC83.321805 ^{69.947090}	83.321805	-69.947090	RRab	18.475	19.158	0.839598900	1.0E-6	455.00071	17.76	0.03
OGLE-LMC-RRLYR-21347	VMC85.126890 ^{-69.946090}	85.126890	-69.946090	RRab	18.841	19.502	0.567557900	7.0E-7	726.79726	17.86	0.03
OGLE-LMC-RRLYR-18595	VMC83.152380 ^{-69.947080}	83.152380	-69.947080	RRab	18.801	19.555	0.463131100	2.0E-7	455.46151	17.83	0.04
OGLE-LMC-RRLYR-19867	VMC83.980635_69.949770	83.980635	-69.949770	RRc	19.019	19.502	0.311640300	6.0E-7	726.67254	18.70	0.06
OGLE-LMC-RRLYR-18699	VMC83.214390_69.946610	83.214390	-69.946610	RRab	18.901	19.505	0.524358100	2.0E-7	455.23043	18.38	0.04
OGLE-LMC-RRLYR-20211	VMC84.227115_69.952530	84.227115	-69.952530	RRab	19.238	20.073	0.588014400	8.0E-7	726.39338	18.12	0.04
OGLE-LMC-RRLYR-19018	VMC83.417625_69.952020	83.417625	-69.952020	RRab	18.971	19.604	0.612061600	8.0E-7	455.37388	18.20	0.04
OGLE-LMC-RRLYR-22015	VMC85.767090_69.948160	85.767090	-69.948160	RRab	18.863	19.410	0.515186700	4.0E-7	2187.64240	18.24	0.03
OGLE-LMC-RRLYR-20793	VMC84.670350_69.955730	84.670350	-69.955730	RRab	18.774	19.413	0.580842900	4.0E-7	726.28921	17.97	0.03
OGLE-LMC-RRLYR-18571	VMC83.134455 69.960520	83.134455	-69.960520	RRab	18.531	18.856	0.619662600	6.0E-7	455.19080	17.82	0.03
OGLE-LMC-RRLYR-18281	VMC82.989315_69.958180	82.989315	-69.958180	RRab	18.650	19.418	0.584840800	3.0E-7	455.41779	17.21	0.05
OGLE-LMC-RRLYR-19429	VMC83.679240_69.966270	83.679240	-69.966270	RRab	19.070	19.597	0.496066300	9.0E-7	455.44952	18.43	0.04
OGLE-LMC-RRLYR-19668	VMC83.836830_69.966050	83.836830	-69.966050	RRab	19.000	19.661	0.490961900	6.0E-7	726.48454	18.39	0.04
OGLE-LMC-RRLYR-21028	VMC84.856815_69.966850	84.856815	-69.966850	RRc	18.900	19.346	0.339785800	4.0E-7	726.62689	18.26	0.03
OGLE-LMC-RRLYR-21815	$VMC85.559625_{69.961800}$	85.559625	-69.961800	RRab	19.067	19.641	0.470844900	2.0E-7	726.44073	18.26	0.03
OGLE-LMC-RRLYR-20773	VMC84.659280_69.968030	84.659280	-69.968030	RRab	19.102	19.952	0.653455900	5.0E-7	726.76673	18.06	0.03
OGLE-LMC-RRLYR-21510	VMC85.263555_69.968860	85.263555	-69.968860	RRab	19.068	19.909	0.627729800	8.0E-7	726.80309	18.11	0.03
OGLE-LMC-RRLYR-19836	VMC83.959470_69.974780	83.959470	-69.974780	RRab	18.912	19.682	0.625063100	1.1E-6	726.77751	18.08	0.03
OGLE-LMC-RRLYR-19609	VMC83.800650_69.975120	83.800650	-69.975120	RRab	18.560	19.047	0.592321100	2.0E-7	726.48277	18.02	0.04
OGLE-LMC-RRLYR-18924	VMC83.365020_69.967830	83.365020	-69.967830	RRc	18.951	19.437	0.338865600	3.0E-7	455.62838	18.01	0.06
OGLE-LMC-RRLYR-20128	VMC84.162570_69.977280	84.162570	-69.977280	RRe	19.398	20.108	0.280868400	5.0E-7	726.64830	18.55	0.04
OGLE-LMC-RRLYR-20327	VMC84.309000_69.979490	84.309000	-69.979490	RRab	19.191	20.091	0.650235800	2.3E-6	726.52651	17.91	0.03
OGLE-LMC-RRLYR-18282	VMC82.989375_69.976920	82.989375	-69.976920	RRab	18.697	19.232	0.603456200	6.0E-7	455.18747	17.95	0.03
OGLE-LMC-RRLYR-20062	VMC84.123345_69.980660	84.123345	-69.980660	RRab	19.292	19.981	0.456117000	3.0E-7	726.55159	18.04	0.04
OGLE-LMC-RRLYR-21062	VMC84.878910_69.980230	84.878910	-69.980230	RRab	19.540	20.080	0.519359400	5.0E-7	726.79511	17.99	0.04
OGLE-LMC-RRLYR-18776	VMC83.263230_69.981080	83.263230	-69.981080	RRab	18.756	19.376	0.575850700	4.0E-7	455.31580	17.96	0.03
OGLE-LMC-RRLYR-20772	VMC84.658770_69.984130	84.658770	-69.984130	RRab	19.194	20.105	0.592727900	5.0E-7	726.66925	17.87	0.05
OGLE-LMC-RRLYR-21539	VMC85.286760_69.981850	85.286760	-69.981850	RRc	19.047	19.660	0.350539600	6.0E-7	726.67065	18.35	0.03
OGLE-LMC-RRLYR-20337	VMC84.314130_69.970120	84.314130	-69.970120	RRab	19.170	20.090	0.535294900	4.0E-7	726.37004	17.15	0.05
OGLE-LMC-RRLYR-19320	VMC83.600880_69.985880	83.600880	-69.985880	RRab	18.637	19.189	0.582536100	7.0E-7	455.21683	18.04	0.03
OGLE-LMC-RRLYR-22151	VMC85.919430_69.980230	85.919430	-69.980230	RRab	18.717	19.325	0.596724400	1.5E-6	2187.30003	18.04	0.03
OGLE-LMC-RRLYR-20347	VMC84.323670_69.990020	84.323670	-69.990020	RRC	19.133	19.657	0.286871600	3.0E-7	726.76782	18.36	0.04
OGLE-LMC-RRLYR-18774	VMC83.262135_69.984410	83.262135	-69.984410	RRab	18.737	19.276	0.576399800	4.0E-7	455.60095	18.19	0.04
OGLE-LMC-RRLYR-21926	VMC85.678275_69.984660	85.678275	-69.984660	RRab	18.695	19.359	0.606612000	8.0E-7	2187.52078	17.58	0.03
OGLE-LMC-RRLYR-18945	VMC83.378940_69.986040	83.378940	-69.986040	RRC	18.618	19.421	0.352805100	5.0E-7	455.43441	10.88	0.03
OGLE-LMC-RRLYR-21576	VMC85.320810_69.989030	85.320810	-69.989030	RRC	19.011	19.775	0.450381200	1.6E-6	726.63044	18.00	0.04
OGLE-LMC-RKLYR-20362	VMC84.336945 - 69.994050	84.336945	-09.994050	RKC DD-	19.235	19.869	0.394017600	2.5E-6	726.68536	18.20	0.04
OGLE-LMC-RRLIR-19688	v IviC83.850195_09.992610	03.800195	-09.992010	кке	18.979	19.458	0.275825300	3.0E-7	(20.(0550	18.30	0.04

OGLE-LMC-BBLYB-21627	VMC85 366365 69 993440	85 366365	-69 993440	BBab	18 800	19.318	0 572049500	5 0E-7	726 74737	18.08	0.03
OCLE LMC BRIVE 18729	VMC83 237400 ⁻⁶⁰ 004430	83 237400	60 004430	BRab	18 703	10.266	0.518801200	4 0F 7	455 40043	18 10	0.03
OCLE I MC PRIVE 20220	VMC84 202885 60 000150	00.201400	60.000150	PRab	10.100	10.041	0.616125800	1156	726 47242	18.05	0.00
OCLE IMC DRIVD 91577	VMC85 221740 60 006000	04.303000	-09.999130	DDab	19.109	10.169	0.010123800	1.112-0	726.47342	17.79	0.03
OGLE-LMC-RRLIR-21577	VMC85.521740 09.990090	00.021740	-09.990090	nnab DD 1	18.000	19.108	0.700934000	1.4E-0	720.77400	10.12	0.03
OGLE-LMC-RRLYR-20516	VMC84.454455 70.001200	84.454455	-70.001200	RRAD	18.930	19.531	0.569994200	3.0E-7	720.50002	18.13	0.03
OGLE-LMC-RRLYR-21701	VMC85.441620_69.998230	85.441620	-69.998230	RRe	18.808	19.188	0.298159500	5.0E-7	726.81051	18.35	0.04
OGLE-LMC-RRLYR-20853	VMC84.707070_70.002500	84.707070	-70.002500	RRc	19.165	19.815	0.350224600	8.0E-7	726.80791	18.47	0.03
OGLE-LMC-RRLYR-20779	VMC84.663360 70.004120	84.663360	-70.004120	RRab	18.907	19.624	0.600291000	4.0E-7	726.42925	18.07	0.03
OGLE-LMC-RRLYR-22108	VMC85.870605 69.999560	85.870605	-69.999560	RRab	18.946	19.592	0.513562900	1.0E-6	2187.74306	17.97	0.03
OGLE-LMC-RRLYR-19878	VMC83.993445 ^{-70.007500}	83.993445	-70.007500	RRab	19.143	20.092	0.650047100	1.5E-6	726.54955	18.15	0.04
OGLE-LMC-RRLYR-21327	VMC85.105065 ^{-70.005040}	85.105065	-70.005040	RRab	19.391	20.370	0.540755100	4.0E-7	726.35320	18.46	0.03
OGLE-LMC-RRLYR-18921	VMC83.364150 ^{-70.003840}	83.364150	-70.003840	RRc	18.957	19.396	0.317210300	3.0E-7	455.54081	18.33	0.04
OGLE-LMC-RRLYR-18614	VMC83.170845 ^{-70.008140}	83.170845	-70.008140	RRab	18.744	19.344	0.554027700	5.0E-7	455.58511	18.22	0.04
OGLE-LMC-BRLYB-19338	VMC83.612700 ^{-70.009130}	83.612700	-70.009130	RRab	18,709	19.365	0.598832600	4.0E-7	455,15490	17.93	0.03
OGLE-LMC-BRLYB-22129	VMC85 895715 ⁻⁷⁰ 004090	85 895715	-70.004090	BBab	18 670	19.310	0.637227600	8 0E-7	2187 55515	17 79	0.03
OGLE-LMC-BRLYB-19025	VMC83 420340 ⁻⁷⁰ 010940	83 420340	-70 010940	BBc	18 954	19 426	0.331924000	3 0E-7	455 70071	18.62	0.06
OGLE-LMC-BRLYB-21155	$VMC84.959940^{-70.011150}$	84 959940	-70.0111150	BBab	19 633	20.613	0.506917000	5.0E-7	726 51332	18 15	0.03
OCLE IMC BRIVE 20866	VMC84 716805 70 012700	84 716805	70.012700	BBab	19.064	10 783	0.520728500	4.0E.7	726 40352	18.18	0.00
OCLE IMC DRIVE 10856	VMC82.072015 70.014100	82.072015	70.012130	DD_L	18.004	10.570	0.520128500	2.0E-7	726.20044	17.44	0.04
OGLE-LMC-RRLIR-19850	VMC85.975915 70.014190	03.973913	-70.014190	nnab DD 1	10.944	19.570	0.557506500	3.0E-7	720.29044	17.44	0.10
OGLE-LMC-RRLYR-19780	VMC83.923305 70.013900	83.923305	-70.013900	RRAD	19.188	20.012	0.519737400	9.0E-7	120.39810	18.20	0.04
OGLE-LMC-RRLYR-19528	VMC83.748660_70.012750	83.748660	-70.012750	RRab	18.686	19.359	0.632795900	6.0E-7	455.19888	17.99	0.03
OGLE-LMC-RRLYR-19106	VMC83.471520_70.013870	83.471520	-70.013870	RRc	19.093	19.650	0.295501800	4.0E-7	455.46961	18.73	0.05
OGLE-LMC-RRLYR-20338	VMC84.314385_70.018340	84.314385	-70.018340	RRab	19.894	21.201	0.564233200	1.2E-6	726.42552	18.43	0.04
OGLE-LMC-RRLYR-22062	VMC85.828365 70.010970	85.828365	-70.010970	RRab	18.744	19.392	0.601249900	2.6E-6	2187.67268	17.78	0.04
OGLE-LMC-RRLYR-20548	VMC84.476775 ^{70.019230}	84.476775	-70.019230	RRe	19.091	19.556	0.276118000	7.0E-7	726.61604	18.60	0.04
OGLE-LMC-RRLYR-19112	VMC83.474280 ^{-70.021190}	83.474280	-70.021190	RRab	18.920	19.490	0.516630200	4.0E-7	455.26213	18.38	0.04
OGLE-LMC-RRLYR-21750	VMC85.499190 ^{-70.016800}	85.499190	-70.016800	RRab	18.773	19.391	0.617544200	8.0E-7	726.60523	18.06	0.04
OGLE-LMC-RRLYR-21691	VMC85.432320 ^{-70.020970}	85.432320	-70.020970	RRab	18.648	19.414	0.719367700	2.0E-6	748.38863	17.87	0.03
OGLE-LMC-RRLYR-20361	VMC84.335325 ^{-70.026750}	84.335325	-70.026750	RRc	19.104	19.769	0.330997200	6.0E-7	726.69623	18.22	0.04
OGLE-LMC-RRLYR-22126	VMC85.893405 ^{-70.019910}	85.893405	-70.019910	RRab	19.513	20.087	0.351105000	3.0E-7	2187.47530	19.00	0.07
OGLE-LMC-BRLYB-21199	VMC85.006440 ^{-70.026300}	85.006440	-70.026300	RRab	19.128	20.074	0.631919100	8.0E-7	726.23641	18.08	0.03
OGLE-LMC-BRLYB-19302	VMC83.589015 ^{-70.028830}	83.589015	-70.028830	RRab	18.897	19.463	0.512098300	2.0E-7	455.34348	18.17	0.04
OGLE-LMC-BRLYB-19698	VMC83 857380 ⁻⁷⁰ 033600	83 857380	-70.033600	BBc	19 143	19 906	0.351144700	1 1E-6	726 80537	18 50	0.05
OGLE-LMC-BRLYB-20357	VMC84 333195 ⁻⁷⁰ 034090	84 333195	-70.034090	BBab	18 802	19 505	0 704224200	8 0E-7	726 48782	18.06	0.04
OGLE-LMC-BRLYB-19250	VMC83 560665 70 033150	83 560665	-70.033150	BBc	18 308	18 726	0.356017200	3.0E-7	455 66933	17.96	0.04
OCLE LMC BRIVE 21800	VMC85 645800 70 020030	85.645800	70.020030	BBab	10.000	10.720	0.550514800	5.0E 7	726 71166	18.27	0.04
OCLE I MC PRIVE 221030	VMC95 997075 70 027090	85.997075	70.027080	DDo	10 710	20.284	0.402100200	2 2 5 6	2187 50020	10.27	0.00
OCLE IMC PRIVE 10260	VMC82 626225 70 022800	82 626225	70.027980	DDab	19.710	10 525	0.402190200	2 OF 7	455 60200	19.07	0.09
OCLE IMC DRIVE 20105	VMC84.147045 = 70.033800	84 147045	-70.033800	DDab	10.009	19.525	0.000719400	7.0E-7	433.09290	10.03	0.03
OGLE-LMC-RRLIR-20105	VMC84.147045 70.052090	04.147045	-70.032090	nnab DD 1	19.250	20.071	0.477308300	7.0E-7	720.09404	10.40	0.04
OGLE-LMC-RRLYR-20756	VMC84.649260 70.035660	84.649260	-70.035660	RRAD	19.142	20.016	0.600851600	0.0E-7	120.13402	18.10	0.03
OGLE-LMC-RRLYR-18287	VMC82.989690_70.033030	82.989690	-70.033030	RRAD	18.607	19.151	0.532368500	2.0E-7	455.49836	18.12	0.03
OGLE-LMC-RRLYR-18998	VMC83.405895_70.028230	83.405895	-70.028230	RRab	18.728	19.213	0.560633300	3.0E-7	455.53209	18.28	0.04
OGLE-LMC-RRLYR-21195	VMC85.000785_70.041140	85.000785	-70.041140	RRab	19.287	20.102	0.539678400	3.0E-7	726.77385	18.18	0.03
OGLE-LMC-RRLYR-19820	VMC83.950680_70.040080	83.950680	-70.040080	RRe	19.400	19.970	0.281789700	6.0E-7	726.74346	18.91	0.05
OGLE-LMC-RRLYR-21064	VMC84.881085 70.043720	84.881085	-70.043720	RRab	19.486	20.400	0.519432100	4.0E-7	726.63447	18.48	0.04
OGLE-LMC-RRLYR-19819	VMC83.950005 ^{70.049190}	83.950005	-70.049190	RRab	19.106	19.898	0.539747100	3.0E-7	726.53028	18.21	0.03
OGLE-LMC-RRLYR-21823	VMC85.567335 ^{70.046160}	85.567335	-70.046160	RRab	18.590	19.124	0.612064100	4.0E-7	726.50552	17.96	0.03
OGLE-LMC-RRLYR-18500	VMC83.098785 ^{-70.046270}	83.098785	-70.046270	RRe	18.902	19.301	0.271831000	8.0E-7	455.69041	18.38	0.04
OGLE-LMC-RRLYR-18712	VMC83.220240 ^{-70.048580}	83.220240	-70.048580	RRab	18.605	19.123	0.577915400	2.0E-7	455.56300	18.08	0.03
OGLE-LMC-RRLYR-20331	VMC84.311130 ^{-70.054240}	84.311130	-70.054240	RRab	18.569	19.141	0.585712000	3.0E-7	726.29493	17.88	0.03
OGLE-LMC-RRLYR-21923	VMC85.677510 ^{-70.049990}	85.677510	-70.049990	RRab	18.584	19.209	0.634958800	2.4E-6	2187.36084	17.82	0.03
OGLE-LMC-RRLYR-21197	VMC85.005210 ^{-70.059110}	85.005210	-70.059110	RRab	19.001	19.717	0.598061400	4.0E-7	726.51096	18.13	0.04
OGLE-LMC-BRLYB-22102	VMC85.866105 ^{-70.055650}	85.866105	-70.055650	RRab	18.965	19.697	0.545805000	9.0E-7	2187.74601	18.20	0.03
OGLE-LMC-BRLYB-22084	VMC85 851465 70 059230	85 851465	-70.059230	BBab	18 608	19 257	0.727180000	9.6E-6	2187 63676	17.84	0.03
OGLE-LMC-BRLVB-20180	VMC84 199830 70 064930	84 199830	-70.064930	BBab	18 688	19 225	0.563164300	3 0E-7	726 68065	18 17	0.03
OCLE LMC BRIVE 10104	VMC83 518830 70.004930	83 518820	70.066300	BBab	18 8/1	10.465	0.635867000	0.0E-7	455 18020	17.58	0.03
OGLE-LMC-RRLVR-20057	VMC84 794010 70 062730	84 794010	-70.062730	BBe	19 091	19.405	0.033807000	3.0E-7	726 80817	18.26	0.04
OCIEIMC DDIVD 01100	VMC84 002610 70.002730	84.002610	70.065860	DDat	19.031	10.194	0.571907600	7057	726.45725	17.01	0.07
OGLE-LMO-RRL1R-21188	v 1v1C04.992010 (0.005800	04.992010	-10.000000	nnao	10.074	19.124	0.011091000	1.06-1	120.40100	11.91	0.03

OGLE-LMC-BRLYB-19945	VMC84.039675 70.070610	84.039675	-70.070610	RRab	18.892	19.468	0.573776100	4.0E-7	726.49454	18.12	0.03
OGLE-LMC-BRLVB-19677	VMC83 842050 ⁻⁷⁰ 071730	83 842050	-70.071730	BBc	19 101	19 755	0.360196500	6 0E-7	726 82632	18 47	0.05
OCLE I MC PRIVE 18421	VMC82 057505 70 065060	82.057505	70.065060	DDo	19 764	10.255	0.220418200	2057	455 46046	18 20	0.05
OGLE-LMC-RRLIR-18451	VMC85.057595 70.005900	03.037393	-70.003900	DD	10.704	19.200	0.529418200	2.011-7	400.40940	10.29	0.05
OGLE-LMC-RRLYR-20593	VMC84.507615_70.072870	84.507615	-70.072870	RRab	18.881	19.508	0.502730700	1.5E-6	726.74313	18.29	0.04
OGLE-LMC-RRLYR-20162	VMC84.187110 70.075670	84.187110	-70.075670	RRab	19.022	19.739	0.598546900	8.0E-7	726.33913	18.13	0.03
OGLE-LMC-RRLYR-20771	$VMC84.658020^{-70.073360}$	84.658020	-70.073360	RRab	19.093	19.884	0.446337900	5.0E-7	726.62888	17.94	0.05
OGLE-LMC-BBLYB-21302	VMC85.087290 ⁻⁷⁰ .075160	85 087290	-70.075160	BBc	19 363	20 119	0.325584500	4 0E-7	726 52440	18 44	0.04
OCLE IMC PRIVE 19192	VMC82.056720 70.072800	82.056720	70.072800	DDab	19 672	10.244	0.552222800	2057	455 22084	19 17	0.02
OGLE-LMC DDIVD 00164	VMC04 100055 70.072000	04.100055	-10.012030	DD	10.015	10.400	0.555222600	2.0E-7	400.02004	10.11	0.03
OGLE-LMC-RRLIR-20104	VMC84.188055_70.078920	84.188033	-70.078920	nnab	10.017	19.420	0.590857000	5.0E-7	120.51550	10.00	0.04
OGLE-LMC-RRLYR-19667	VMC83.834760_70.078690	83.834760	-70.078690	RRab	18.762	19.590	0.506383700	2.0E-7	726.56542	17.78	0.04
OGLE-LMC-RRLYR-21613	VMC85.353990 70.075940	85.353990	-70.075940	RRc	19.064	19.614	0.327279200	8.0E-7	726.77010	18.22	0.04
OGLE-LMC-RRLYR-19729	VMC83.882895 ^{70.075360}	83.882895	-70.075360	RRab	18.700	19.427	0.701129800	9.0E-7	726.62190	17.94	0.03
OGLE-LMC-BBLYB-19724	VMC83.881230 ^{-70.072400}	83.881230	-70.072400	RRab	18,793	19.194	0.497527500	2.0E-7	726.45549	18.02	0.03
OGLE-LMC-BBLVB-18811	VMC83 281260 ⁻⁷⁰ 075570	83 281260	-70.075570	BRab	18 503	19.074	0.606021700	4 0E-7	455 25588	17.87	0.03
OCLE I MC PRIVE 20282	$VMC84.277110^{-70.070120}$	84.277110	70.070120	PRo	18 720	10.014	0.266726600	1.65.6	726 80227	17.06	0.00
OGLE-LMC-RRLIR-20285	VMC84.277110 70.079120	04.277110	-70.079120	DD	10.739	19.222	0.300730000	1.01-0	720.80337	17.90	0.03
OGLE-LMC-RRLYR-21461	VMC85.215990 70.078030	85.215990	-70.078030	RRe	19.219	19.731	0.269496000	6.0E-7	720.00308	18.51	0.04
OGLE-LMC-RRLYR-20735	VMC84.633390 70.085570	84.633390	-70.085570	RRab	18.654	19.313	0.641559000	6.0E-7	726.32935	17.80	0.03
OGLE-LMC-RRLYR-19913	VMC84.020835 70.083270	84.020835	-70.083270	RRc	18.560	19.178	0.446550800	7.0E-7	726.80044	17.83	0.03
OGLE-LMC-RRLYR-20210	$VMC84.226665^{-70.083680}$	84.226665	-70.083680	RRab	18.868	19.452	0.524432100	2.0E-7	726.33845	18.06	0.03
OGLE-LMC-BBLYB-19397	VMC83 656860 ⁻⁷⁰ 088650	83 656860	-70.088650	BBab	18 537	20 202	0 540054200	2.0E-7	455 40907	17.65	0.07
OCLE LMC BRIVE 18723	VMC83 231550 70 087560	83 231550	70.087560	BBab	18 742	10 310	0 583049300	6 0E 7	455 46069	18 28	0.03
OCLE I MC DDIVD 21206	VMC95 094915 70 099100	00.201000 0F 00401F	70.089100	DDal	18,000	10 425	0.5355045500	2.0E 7	706 60019	10.20	0.03
OGLE-LMC-RRLIR-21290	VMC85.084215 70.088100	85.084215	-70.088100	nnab	18.900	19.435	0.550419000	3.0E-7	720.02018	10.24	0.03
OGLE-LMC-RRLYR-19753	VMC83.903160_70.089790	83.903160	-70.089790	RRC	19.108	19.617	0.293010100	3.0E-7	726.55996	18.06	0.06
OGLE-LMC-RRLYR-22055	VMC85.824285_70.085830	85.824285	-70.085830	RRc	18.912	19.440	0.327029800	1.1E-6	2187.74623	18.28	0.04
OGLE-LMC-RRLYR-19812	VMC83.947440 70.094260	83.947440	-70.094260	RRab	18.851	19.627	0.657308000	7.0E-7	726.47935	17.62	0.04
OGLE-LMC-RRLYR-21027	VMC84.856320 ^{-70.091240}	84.856320	-70.091240	RRc	19.451	19.856	0.418123500	1.7E-6	726.75380	19.08	0.05
OGLE-LMC-RRLYR-21291	VMC85.080480 ^{-70.093680}	85.080480	-70.093680	RRc	18.776	19.227	0.336960200	4.0E-7	726.79356	18.28	0.03
OGLE-LMC-RRLYR-18210	$VMC82.969080^{-70.090990}$	82.969080	-70.090990	RRc	19.013	19.439	0.288800900	2.0E-7	455.55371	18.90	0.06
OGLE-LMC-BBLYB-20067	VMC84.125430 ^{-70.098150}	84,125430	-70.098150	BBc	18.827	18.857	0.329536700	4.0E-7	726.78736	18.14	0.04
OGLE-LMC-BBLYB-21522	VMC85 274010 ⁻⁷⁰ 095160	85 274010	-70.095160	BBc	19.072	19.622	0.326366300	7 0E-7	726 83190	18 45	0.03
OCLE LMC BRIVE 10158	$VMC83 497890^{-70} 097190$	83 407800	70.007100	BBab	18 701	10.206	0.563487700	3 OF 7	455 59496	18.00	0.03
OGLE-LMC DDLVD 19950	VMC00 210700 70.007100	03.431030	-10.031130	DD	17.020	10.000	0.005401100	3.01-7	455.55450	17.00	0.03
OGLE-LMC-RRLIR-18850	VMC83.312790 70.090790	03.312/90	-70.090790	nnab	10.710	10.022	0.015008000	3.0E-1	455.04551	10.05	0.05
OGLE-LMC-RRLYR-19505	VMC83.737125_70.099110	83./3/125	-70.099110	RRC	18.719	19.301	0.405818300	9.0E-7	455.52001	18.25	0.05
OGLE-LMC-RRLYR-19100	VMC83.468160 70.098150	83.468160	-70.098150	RRab	18.735	19.354	0.648996300	1.3E-6	455.24532	18.02	0.04
OGLE-LMC-RRLYR-20491	VMC84.436305 70.100620	84.436305	-70.100620	RRc	19.240	19.771	0.281646300	4.0E-7	726.75905	18.70	0.05
OGLE-LMC-RRLYR-20222	VMC84.233745 ^{70.097640}	84.233745	-70.097640	RRab	18.886	19.567	0.620856900	1.1E-6	726.59914	18.26	0.04
OGLE-LMC-RRLYR-20977	$VMC84.814500^{-70.100970}$	84.814500	-70.100970	RRab	18.788	19.409	0.637839600	3.0E-7	726.62934	18.04	0.03
OGLE-LMC-RRLYR-18354	VMC83.019255 ^{-70.099130}	83.019255	-70.099130	RRc	18.911	19.366	0.296019700	2.0E-7	455.47410	18.58	0.05
OGLE-LMC-BBLVB-19734	VMC83 886570 ⁻⁷⁰ 100720	83 886570	-70 100720	BBab	18 636	19 302	0 717487100	9.0E-7	726 40287	17.91	0.03
OCLE LMC BRIVE 21480	VMC85 232340 70 101600	85 232340	70 101690	BRab	18 550	10.163	0.807633300	11E6	726 05120	17.71	0.03
OCLE IMC DRIVE 10002	VMC94 010410 69 790690	84.010410	68 780620	DDal	10.000	10 479	0.507055500	1.111-0	2187 20204	17.07	0.03
OGLE-LMC-RRLIR-19902	VMC84.010410_08.789020	84.010410	-08.789020	nnab	10.070	19.478	0.595411000	1.0E-0	2187.29304	10.10	0.03
OGLE-LMC-RRLYR-18359	VMC83.023275_68.879310	83.023275	-08.879310	RRAD	18.903	19.500	0.538687700	5.0E-7	2107.85107	18.10	0.04
OGLE-LMC-RRLYR-21775	VMC85.520970_69.001690	85.520970	-69.001690	RRc	19.057	19.540	0.292558400	8.0E-7	2187.73742	18.38	0.03
OGLE-LMC-RRLYR-21927	VMC85.678500 69.031430	85.678500	-69.031430	RRab	19.409	20.406	0.466404700	4.0E-7	2187.58154	18.39	0.04
OGLE-LMC-RRLYR-19642	VMC83.820495 ^{69.133530}	83.820495	-69.133530	RRab	20.948	-99.99	0.506663400	3.0E-6	2167.71746	18.72	0.06
OGLE-LMC-RRLYR-21819	$VMC85.564440^{-}69.154800$	85.564440	-69.154800	RRab	19.455	20.430	0.637086200	2.2E-6	2187.71885	18.00	0.03
OGLE-LMC-BBLYB-19897	VMC84 006390 69 161500	84 006390	-69 161500	BBab	18 577	19.053	0 577290300	7 0E-7	2187 19737	17 74	0.04
OCLE LMC BRIVE 19907	VMC84 015255 69 344950	84.015255	60 344050	BRab	18 837	10.347	0.468069400	4 0E 7	2187 53285	18 34	0.03
OCLE IMC DDIVD 19756	VMC82 252400 60 246080	82.010200	60.246080	DDal	10.007	10.404	0.406005400	9.0E-7	2107.55205	17.61	0.05
OGLE-LMC-RRLIR-18750	VMC85.252490_09.340080	85.252490	-09.340080	nnab	10.007	19.494	0.030843400	2.9E-0	2107.54095	17.01	0.05
OGLE-LMC-RRLYR-21131	VMC84.935085_69.486650	84.935085	-69.486650	RRab	19.530	20.289	0.465428500	8.0E-7	2187.32803	18.48	0.04
OGLE-LMC-RRLYR-19950	VMC84.044865 69.531780	84.044865	-69.531780	RRab	19.099	19.900	0.610635500	2.1E-6	2187.63763	18.16	0.03
OGLE-LMC-RRLYR-20167	VMC84.191955 ^{-69.553530}	84.191955	-69.553530	RRc	18.783	19.285	0.381338600	1.2E-6	2187.64413	18.04	0.04
OGLE-LMC-RRLYR-19739	VMC83.890830 ^{-69.555860}	83.890830	-69.555860	RRe	19.175	19.561	0.271107500	9.0E-7	2167.85589	18.59	0.04
OGLE-LMC-RRLYR-21376	VMC85.146510 ^{-69.574770}	85.146510	-69.574770	RRab	19.369	20.030	0.510776700	7.0E-7	2187.37050	18.28	0.04
OGLE-LMC-BBLYB-20102	VMC84 145080 69 584490	84 145080	-69 584490	BBab	19 137	19 937	0.646178400	3 5E-6	2187 19907	18 10	0.03
OGLE-LMC-BRLYB-20239	VMC84 247290 69 586120	84 247290	-69 586120	BBc	18 996	19 490	0.326591700	7 0E-7	2187 70737	18 24	0.05
OGLE LMC BRIVE 10727	VMC83 882265 60 505110	83 882265	60 505110	BBab	18 761	10 302	0.667246400	23E6	2167 37151	17.88	0.00
OCLE I MC DDIVD 21241	VMC95 049605 60 675490	00.004400 05.0044005	-09.090110	DDab	10.701	10.206	0.007240400	1.6E.6	2107.37131	17.00	0.03
OGLE-LMO-RRLIR-21241	v 1v1C85.042095_09.075480	00.042090	-09.070460	nnað	10.102	19.000	0.01/993100	1.05-0	2101.21341	11.44	0.04

OGLE-LMC-RRLYR-21069	VMC84.887145 69.692930	84.887145	-69.692930	RRab	19.505	20.345	0.566264400	2.0E-6	2187.59937	18.24	0.04
OGLE-LMC-RRLYR-21103	VMC84.912195 ^{69.803940}	84.912195	-69.803940	RRab	20.295	21.556	0.480494600	2.7E-6	2187.68118	18.79	0.04
OGLE-LMC-RRLYR-20597	VMC84.510825 ^{69.866540}	84.510825	-69.866540	RRab	18.855	19.440	0.543809600	7.0E-7	726.62412	18.07	0.03
OGLE-LMC-RRLYR-19769	VMC83.913240 ^{-69.873340}	83.913240	-69.873340	RRab	18.864	19.492	0.609469200	5.0E-7	726.69028	17.76	0.04
OGLE-LMC-RRLYR-19756	VMC83.905590 ^{-69.949190}	83.905590	-69.949190	RRc	18.832	19.280	0.333571400	4.0E-7	726.68591	18.15	0.04
OGLE-LMC-RRLYR-21720	VMC85.463370 ^{-69.954380}	85.463370	-69.954380	RRab	18.980	19.745	0.606700400	1.1E-6	726.76901	18.23	0.03
OGLE-LMC-RRLYR-20440	VMC84.388065 ^{69.965810}	84.388065	-69.965810	RRab	19.149	20.046	0.610235000	6.0E-7	726.36313	18.03	0.03
OGLE-LMC-RRLYR-21132	VMC84.935610 ^{-70.038750}	84.935610	-70.038750	RRab	19.243	20.127	0.634055600	3.9E-6	726.48290	17.86	0.04
OGLE-LMC-RRLYR-19122	VMC83.477460 ^{-70.065250}	83.477460	-70.065250	RRab	18.762	19.363	0.593087900	4.0E-7	455.52114	18.09	0.03
OGLE-LMC-RRLYR-21481	VMC85.232610 ^{-70.080580}	85.232610	-70.080580	RRab	19.160	19.795	0.494338100	3.0E-7	726.79429	18.08	0.04
OGLE-LMC-RRLYR-18390	VMC83.038725 ^{68.957060}	83.038725	-68.957060	RRab	19.344	20.245	0.590197700	1.4E-6	2167.87924	18.21	0.04
OGLE-LMC-RRLYR-20029	VMC84.097995 ^{68.975130}	84.097995	-68.975130	RRab	19.414	20.370	0.613943000	2.2E-6	2187.74795	18.19	0.03
OGLE-LMC-RRLYR-21224	VMC85.026120 ^{-69.007190}	85.026120	-69.007190	RRe	19.182	19.805	0.290408500	1.6E-6	2187.50271	18.55	0.04
OGLE-LMC-RRLYR-20313	VMC84.296295 ^{69.359520}	84.296295	-69.359520	RRab	18.706	19.185	0.540636400	8.0E-7	2187.30773	17.90	0.04
OGLE-LMC-RRLYR-19556	VMC83.765025 ^{-69.446560}	83.765025	-69.446560	RRc	19.023	19.523	0.294396800	5.0E-7	2167.72577	18.54	0.03
OGLE-LMC-RRLYR-20042	VMC84.107835 ^{69.452950}	84.107835	-69.452950	RRab	18.869	19.395	0.539172900	7.0E-7	2187.69069	18.09	0.03
OGLE-LMC-RRLYR-20279	VMC84.274575 ^{69.461300}	84.274575	-69.461300	RRc	18.908	19.334	0.292694300	1.3E-6	2187.56767	18.42	0.03
OGLE-LMC-RRLYR-18886	VMC83.334675 ^{-69.517360}	83.334675	-69.517360	RRab	18.999	19.626	0.547445600	9.0E-7	2167.40949	18.11	0.04
OGLE-LMC-RRLYR-18676	VMC83.202615 69.592060	83.202615	-69.592060	RRab	18.754	19.392	0.615660400	1.3E-6	2167.52881	18.05	0.03
OGLE-LMC-RRLYR-18328	VMC83.003310 ^{-69.705330}	83.003310	-69.705330	RRab	18.824	19.411	0.606289300	3.0E-7	455.10417	17.88	0.04
OGLE-LMC-RRLYR-20271	VMC84.268365 ^{-69.732370}	84.268365	-69.732370	RRab	20.025	21.331	0.551163900	8.0E-7	726.58406	18.24	0.03
OGLE-LMC-RRLYR-21016	VMC84.850185 ^{-69.815990}	84.850185	-69.815990	RRc	19.247	19.839	0.298570000	4.0E-7	726.66659	18.61	0.04
OGLE-LMC-RRLYR-19347	VMC83.617230 ^{-69.912980}	83.617230	-69.912980	RRab	18.981	19.680	0.506211300	1.3E-6	455.23954	18.22	0.03
OGLE-LMC-RRLYR-20685	VMC84.597015 ^{-69.918960}	84.597015	-69.918960	RRab	19.225	20.052	0.581219300	7.0E-7	726.53144	17.90	0.04
OGLE-LMC-RRLYR-20022	VMC84.093600_70.025790	84.093600	-70.025790	RRab	19.035	19.801	0.566133800	6.0E-7	726.32421	17.74	0.06

Table 5.7: Properties of RR Lyrae stars in the 30 Dor field. Column 1: OGLE III id of the star; Column 2: VMC id; Columns 3,4: RA,DEC from the OGLE III catalogue; Column 5: RR type; Column 6, 7: OGLE III *I*, *V* mean magnitudes; Column 8: period from OGLE III; Column 9: error in the period; Column 10: time of maximum light from OGLE III; Column 11: $\langle K_S \rangle$.
Chapter 6

First results for Classical Cepheids from the VMC survey

In this Chapter we present results for the Classical Cepheids contained in the SEP field and in the 30 Dor star forming region of the Large Magellanic Cloud (LMC).

6.1 VMC data for the Cepheids

As a result of the matching procedure between the VMC and the optical survey catalogues described in the previous sections, we found 12 and 326 Classical Cepheids in the SEP and 30 Dor fields, respectively.

Periods available from EROS-2 for the SEP Cepheids, and from OGLE-III for the 30 Dor variables, were used to fold the K_S -band light curves produced by the VMC observations, and derive average K_S magnitudes.

Examples of the VMC K_S -band light curves of Cepheids in the SEP and 30 Dor regions are shown in Figs. 6.1 and 6.2, respectively. Error bars of the individual K_S measurements are shown in the figures, they are of the same size of the data-points.

The Cepheid light curves are very well sampled and nicely shaped (see Figs. 6.1 and 6.2). To derive the (intensity) average $\langle K_S \rangle$ values we simply used custom software written in "c" language, that performs a spline interpolation to the data. Final $\langle K_S \rangle$ values are provided in Tabs. 6.1 and 6.2, for SEP and 30 Dor Cepheids, respectively, along with the star main characteristics (Id, coordinates, period, pulsation mode, time of maximum light, average magnitude, K-band amplitude and reddening). An "a" in the last column of Tab. 6.2 flags objects that were not used in the derivation of the *PLK* relations.

The very small number of Cepheids in the SEP field is consistent with the very

Figure 6.1: K_S -band light curves for a sample of Cepheids in the SEP field. Typical errors of the individual data points are of the order of 0.01-0.02 mag. F and FO stand for fundamental and first overtone pulsators, respectively. Note the nice light curve of a faint FO Cepheid (third panel from the top). Periods used to fold the light curves are taken from the EROS-2 catalogue.

Figure 6.2: Same as Fig 6.1, but for Cepheids in the in the 30 Dor field. Typical errors of the individual data points are of the order of 0.01-0.02 mag, hence have same size as the data points plotted in the figure. Periods used to fold the light curves are taken form the OGLE-III catalogue.

ID	RA J2000	DEC J2000	М	$\begin{array}{c} \langle V_{EROS-2} \rangle \\ \mathrm{mag} \end{array}$	Period d	$\langle K_S \rangle$ mag	$A(K_S)$ mag	$\sigma_{\langle K_S angle} \ \mathrm{mag}$
VMC89.1490000 65.7950600 VMC89.2963600 65.8544800 VMC89.1597100 66.0507000 VMC89.0557000 66.0993300 VMC89.0557000 66.3761100 VMC90.8548300 66.5234800 VMC90.8282200 66.8789600 VMC90.3222800 66.8888500 VMC90.3222800 66.9526700 VMC89.8422000 66.9526700 VMC89.9288000 67.0381800 VMC89.9288000 67.0381800	$\begin{array}{c} 89.14900\\ 89.29636\\ 89.15971\\ 88.87615\\ 89.05570\\ 89.85330\\ 90.85483\\ 90.82822\\ 90.32228\\ 89.84220\\ 88.89761\\ 89.9880\end{array}$	$\begin{array}{r} -65.79506\\ -65.85448\\ -66.05070\\ -66.09933\\ -66.37611\\ -66.49167\\ -66.52348\\ -66.87896\\ -66.88885\\ -66.95267\\ -67.03818\\ -67.06300\end{array}$	FO FO FO FO FO FO FO FO FO FO FO	$\begin{array}{c} 16.596 \\ 16.561 \\ 16.640 \\ 15.785 \\ 16.944 \\ 16.844 \\ 16.677 \\ 15.096 \\ 5.986 \\ 16.100 \\ 17.009 \\ 15.767 \end{array}$	$\begin{array}{c} 1.188733\\ 1.044436\\ 1.214786\\ 3.870460\\ 1.027683\\ 1.238489\\ 1.277076\\ 3.227865\\ 4.085779\\ 1.683674\\ 3.902331\\ 1.907595\end{array}$	$\begin{array}{c} 15.264\\ 15.284\\ 15.338\\ 14.145\\ 15.533\\ 15.681\\ 15.224\\ 13.631\\ 13.900\\ 14.788\\ 14.130\\ 14.515\end{array}$	$\begin{array}{c} 0.09\\ 0.10\\ 0.08\\ 0.15\\ 0.10\\ 0.09\\ 0.14\\ 0.09\\ 0.03\\ 0.11\\ 0.02\\ 0.09\end{array}$	$\begin{array}{c} 0.0037\\ 0.0040\\ 0.0040\\ 0.0062\\ 0.0060\\ 0.0113\\ 0.0154\\ 0.0045\\ 0.0070\\ 0.0032\\ 0.0079\\ 0.0023\\ \end{array}$

Table 6.1: Results for Classical Cepheids in the SEP field of the LMC.

peripheral location of this region, that is very far from the LMC bar/s, where most of the Classical Cepheids are located. It is also remarkable the predominance of first overtone (FO; 8) with respect to fundamental-mode (F; 4) pulsators, as well as the lack of Cepheids with periods longer than 4 d, in the SEP. This is likely related to the specific star formation history occurred in the SEP region.

Table 0.2. Results for Classical Cepheids in the 50 Dor held of the Ling	Table 6.2:	Results for	Classical	Cepheids i	in the 30	Dor field	1 of the LMC
--	------------	-------------	-----------	------------	-----------	-----------	--------------

ID	D A	DEC	м	Τ	V.	Danial	TMAX	/ K \	$\Lambda(\mathbf{V})$		$\mathbf{E}(\mathbf{V} \mathbf{I})$	Natar
ID	RA 12000	DEC	IVI	IOGLEIII	VOGLEIII	Period	1 ₀ ,	$\langle K_S \rangle$	A(K)	r.m.s.	E(V-1)	Notes
	J2000	J2000		mag	mag	a	a	mag	mag	mag	mag	
VMC82.7029600 69.8133300	82.70296	-69.81333	F	15.354	16.105	3.240862	452.93897	14.353	0.22	0.006	0.08	
VMC82.7478300 ^{-69.5920000}	82.74783	-69.59200	F	14.89	15.693	4.656827	452.97342	13.917	0.22	0.008	0.09	
VMC82.7537900 ⁻ 69.7590000	82.75379	-69.75900	F	14.724	15.453	4.874545	454.84077	13.775	0.23	0.004	0.08	
VMC82.7542900 ^{-69.1084200}	82.75429	-69.10842	F	15.779	16.722	3.130618	2165.82771	14.589	0.12	0.007	0.12	
VMC82.7570800 ^{-69.1059700}	82.75708	-69.10597	F	15.993	17.003	2.908321	2166.54407	14.694	0.2	0.010	0.12	
VMC82.7624600 ^{-69.5353300}	82.76246	-69.53533	F	14.816	15.547	4.641402	451.31822	13.957	0.25	0.009	0.09	
VMC82.8027900 ^{-70.0742500}	82.80279	-70.07425	F	14.949	15.679	4.226975	452.86098	14.041	0.22	0.008	0.02	
VMC82.8228700 ^{-69.9078600}	82.82287	-69.90786	F	14.357	15.133	5.976499	450.5059	13.388	0.21	0.004	0.1	
VMC82.8262500 ^{-69.6073300}	82.82625	-69.60733	Ē	14.875	15.716	4.83438	451,16849	13.833	0.14	0.008	0.1	
VMC82.8433700 ^{-69.8897200}	82.84337	-69.88972	F	15.058	15.643	3.408864	454.04755	14.12	0.19	0.009	0.1	
VMC82.8970400 ^{-69.3185600}	82.89704	-69.31856	F	14.202	15.019	7.809176	2166.0329	13.147	0.22	0.004	0.05	
VMC82 9099600 ⁻⁶⁹ 9482500	82 90996	-69 94825	F	15.24	16.081	3 880888	455 22749	14 151	0.18	0.015	0.09	
VMC82 9115800 69 9783300	82 91158	-69 97833	Ē	14 792	15 497	4 628197	455 39739	13 842	0.25	0.012	0.09	
VMC82 9222500 69 9534200	82 92225	-69 95342	Ē	15.24	15 956	3 307002	454 00423	14 057	0.27	0.022	0.09	2
VMC82 9345000 69 9698300	82 93450	-69 96983	Ē	15 163	15.879	3 380503	453 92686	14 305	0.25	0.075	0.09	a
VMC82 9505800 70 0242500	82 95058	-70 02425	Ē	14 861	15.62	4 132642	454 15633	13 873	0.20	0.020	0.07	
VMC82 9544600 70 1484200	82 95446	-70 14842	Ē	15.621	16 331	2 524455	454 17488	14 811	0.19	0.020	0.05	
VMC82.9544000 10.1464200 VMC82.9601700 60.9160000	82.95440	60 01600	F	15.021	15 762	2.524455	453 80204	14.011	0.13	0.020	0.05	
VMC82.9845000_60.2427800	82.08450	60 24278	E.	14.04	14 808	0.215051	2160 28652	12.074	0.25	0.009	0.00	
VMC82.9845000 09.2427800 VMC82.0042500 60.7080600	82.98430	-09.24278	L.	15 459	16 194	9.213931	455 46278	14.974	0.00	0.008	0.09	
VMC83.0042300 09.7980000 VMC82.0105800 60.6279800	83.00423	-09.79800	г Г	15.458	10.164	2.971140	453.40278	14.464	0.18	0.009	0.1	
VMC83.0103800 09.0372800	83.01038	-09.03728	г	15.155	10.910	5.712090	405.00071	14.195	0.22	0.007	0.11	
VMC83.0204600 69.3491900	83.02046	-69.34919	F	10.370	15.027	2.911571	2107.13778	14.5	0.2	0.006	0.06	
VMC83.0499200 70.0052800	83.04992	-70.00528	F	14.984	15.708	3.775564	454.9020	14.102	0.19	0.009	0.08	
VMC83.0516700_69.9766700	83.05167	-09.97007	F	15.20	15.88	2.942559	452.84033	14.453	0.19	0.014	0.09	
VMC83.0650800_70.0321700	83.06508	-70.03217	F	15.044	15.793	4.296477	454.18056	11.766	0.00	0.015	0.08	a
VMC83.0945800_69.0350000	83.09458	-69.03500	F	15.007	15.885	4.937826	2163.3717	13.896	0.25	0.004	0.16	
VMC83.0973300_68.9955300	83.09733	-68.99553	F,	13.973	15.076	14.190111	2156.10073	12.546	0.3	0.043	0.16	
VMC83.1038300_69.9773100	83.10383	-69.97731	F,	14.597	15.39	5.737309	450.71813	13.579	0.21	0.012	0.05	
VMC83.1105400_69.7727500	83.11054	-69.77275	F,	15.258	15.998	3.343827	453.71576	14.31	0.23	0.004	0.13	
VMC83.1372500 69.9969700	83.13725	-69.99697	F	14.869	15.625	4.654957	451.95253	13.878	0.25	0.009	0.03	
VMC83.1579200 ^{70.0825600}	83.15792	-70.08256	F	15.026	15.776	4.015951	454.02541	14.014	0.14	0.016	0.02	
VMC83.2432500 69.8655000	83.24325	-69.86550	F	15.222	16.154	4.800791	455.577	13.891	0.15	0.012	0.08	
VMC83.2438700 ^{-69.0845600}	83.24387	-69.08456	F	14.568	15.58	7.671496	2161.27411	13.284	0.14	0.004	0.19	
VMC83.2781200 ^{-68.7574400}	83.27812	-68.75744	F	14.882	15.632	4.431046	2166.06131	13.857	0.27	0.010	0.09	
VMC83.3068700 ^{-69.9155800}	83.30687	-69.91558	F	15.162	16.017	4.154816	452.58024	14.056	0.19	0.010	0.1	
VMC83.3183700 ^{-70.0649400}	83.31837	-70.06494	F	14.675	15.41	4.995947	454.73076	13.727	0.22	0.014	0.05	
VMC83.3449600 ^{-69.9555300}	83.34496	-69.95553	F	15.066	15.853	4.291601	452.2075	13.945	0.22	0.014	0.09	
VMC83.3741200 ^{-69.6191700}	83.37412	-69.61917	F	15.484	16.335	3.472105	2167.04769	14.404	0.11	0.008	0.1	
VMC83.3812100 ^{-69.0147500}	83.38121	-69.01475	F	15.406	16.237	3.448526	2166.74453	14.402	0.21	0.008	0.17	
VMC83.4026700 ^{-69.7548600}	83.40267	-69.75486	F	15.069	15.873	4.236821	452.173	13.845	0.12	0.008	0.09	a
VMC83.4186200 ^{-69.8830800}	83.41862	-69.88308	F	15.731	17.133	5.261907	450.9101	13.936	0.24	0.012	0.1	
VMC83.4523300 ^{-69.7535300}	83,45233	-69.75353	F	15.269	15,953	3.310933	455,13602	14.347	0.21	0.009	0.09	
VMC83 4768300 ⁻⁷⁰ 0486400	83 47683	-70.04864	F	14.28	14 7	5 064058	450 68856	13 528	0.19	0.008	0.08	
VMC83 4896200 69 5662200	83 48962	-69 56622	Ē	15 074	16 141	6 532017	2166 25924	13 658	0.11	0.004	0.11	
VMC83 4912500 ⁻⁷⁰ 1128100	83 49125	-70 11281	Ē	15 045	15 845	4 517043	451 75529	13 943	0.09	0.037	0.08	
VMC83 5038800 68 6811900	83 50388	-68 68119	Ē	14 683	15 539	5 798564	2163 85837	13 612	0.08	0.006	0.12	
VMC83 5165000 68 6531400	83 51650	-68 65314	Ē	14 927	15 722	4 659693	2163 29992	13 957	0.24	0.007	0.08	
VMC83 5265000 69 6000400	83 52650	-69 60994	Ē	15 121	15.96	4 261772	2165 91166	14 064	0.15	0.006	0.11	
VMC83 5314600 68 7268600	83 531/6	68 72686	F	14 049	15 754	4.17/311	2164 31600	13 004	0.10	0.000	0.12	
VMC92 6161200 60 8171700	82 61619	60 81717	L.	15 252	16 107	2 117961	454 70985	14 202	0.4	0.004	0.12	
VMC82 6261700 60 2217200	82 62617	-09.01/17	r F	15.332	16 446	2 260022	404.70200	14.393	0.10	0.009	0.11	
VMC82 6275400 69.3217200	03.0301/	-09.32172	r F	10.700	15 944	2.309933	2100.20017	12 100	0.21	0.013	0.12	
V1VIC83.0375400 08.8372200	03.03/04	-08.83/22	r E	14.341	10.344	0.90/181	∠159.00105 459.55441	13.123	0.03	0.004	0.17	
VMC83.0033800 70.0731100	83.00358	-70.07311	L, L,	15.254	16.051	3.335175	403.00441	14.225 12.707	0.2	0.013	0.1	
VIVIC83.0000800_08.8100000	03.00008	-08.81000	r E	10.189	10.200	0.070078	2104.42413	13.797	0.17	0.006	0.11	
v MC83.6732100 68.6906700	83.67321	-08.69067	F.	14.381	15.147	0.540879	2165.68434	13.383	0.27	0.004	0.11	

VMC83 6879200 69 9888100	83 68792	-69 98881	F	15 568	16 193	2 618309	454 53154	14 618	0.21	0.011	0.1
VMC83 6975800 69 9143100	83 69758	-69 91431	Ē	14 773	15 471	4 657003	452 43129	13.85	0.23	0.009	0.1
VMC83 7161700 69 4016900	83 71617	60 40160	F	14.110	15 102	8 257008	2150 08882	13 162	0.08	0.005	0.12
VMC82 7576700 60 6168600	82 75767	60 61686	L.	16 126	16 011	1 251011	2103.30002	15 120	0.03	0.005	0.12
VMC83.7576700 09.0108000	03.75707	-09.01080	г	10.120	10.911	1.651911	2107.22731	10.129	0.11	0.000	0.11
VMC83.7945000_69.6703900	83.79450	-69.67039	F	14.855	15.682	4.920229	2103.08/21	13.81	0.16	0.005	0.11
VMC83.7973700_69.9630300	83.79737	-69.96303	F.	15.291	16.016	3.221109	724.54147	14.324	0.23	0.019	0.1
VMC83.8090400 70.1044700	83.80904	-70.10447	F	15.324	15.986	2.839646	726.54495	14.521	0.29	0.012	0.13
VMC83.8416700 ^{69.9688900}	83.84167	-69.96889	F	15.521	16.283	2.942805	725.77439	14.552	0.18	0.006	0.1
VMC83.8513300 ^{-69.9568900}	83.85133	-69.95689	F	15.097	15.972	4.519293	725.80223	14.001	0.11	0.009	0.1
VMC83.8562500 ^{-68.7750300}	83.85625	-68.77503	F	15.115	15.868	3.618613	2185.22198	14.172	0.26	0.004	0.13
VMC83.8781700 ^{-69.9682500}	83.87817	-69.96825	F	15.616	16.914	4.225043	724,59231	14.102	0.25	0.005	0.1
VMC83 8824600 69 7228300	83 88246	-69 72283	F	14 294	15 084	6 935845	722 70818	13 259	0.21	0.007	0.12
VMC82 8026200 70 0005200	82 80262	70.00052	F	15 256	16.046	2 64626	726 26220	14 202	0.17	0.005	0.12
VMC82 8052700 70.0002200	03.03202 02.00527	70.000000	E E	15.200	16.070	2 200247	724.05207	14.202	0.14	0.000	0.10
VMC83.8953700 70.0903300	03.09037	-70.09033	г	15.220	15.072	5.200247	124.05297	14.134	0.14	0.009	0.10
VMC83.8958800_69.5750300	83.89588	-69.57503	F.	14.647	15.466	6.136573	2162.85028	13.643	0.15	0.012	0.09
VMC83.9537900_69.9442500	83.95379	-69.94425	F.	15.154	15.903	3.66089	723.69615	14.19	0.22	0.009	0.1
VMC83.9659600 70.0671900	83.96596	-70.06719	F	15.253	16.088	3.882611	724.2457	13.988	0.21	0.012	0.16
VMC83.9744600 68.6594400	83.97446	-68.65944	F	14.428	15.292	6.480397	2222.22239	13.448	0.15	0.002	0.11
VMC83.9817900 ^{-68.9933900}	83.98179	-68.99339	F	15.239	16.252	4.880068	2185.5541	13.916	0.18	0.004	0.33
VMC83.9966300 ^{-70.0736700}	83.99663	-70.07367	F	15.214	16.179	4.324082	725.21517	13.984	0.23	0.011	0.16
VMC84.0283300 ^{-68.8203900}	84.02833	-68.82039	F	13.222	14.123	18.715996	2179.63811	12.025	0.49	0.008	0.14
VMC84 0371200 69 8349200	84 03712	-69.83492	Ē	15 255	16 013	3 618591	726 23757	14 256	0.22	0.013	0.14
VMC84.0705800_60.0049200	84.07058	60.00435	F	12.01	14 719	0.610002	717 25084	12.200	0.26	0.010	0.12
VMC84.0774200 70.0115800	84.07749	70 01159	L.	15 519	16 71	4 202878	726.00069	14.004	0.20	0.002	0.15
VMC84.0774200 70.0115800	84.07742	-70.01158	F	14.057	15.71	4.302010	720.00908	12.034	0.27	0.007	0.10
VMC84.0896200 70.1103300	84.08902	-70.11055	r F	14.657	15.507	4.427440	723.14397	13.930	0.25	0.007	0.10
VMC84.0957500_68.8169400	84.09575	-68.81694	F.	16.719	17.23	1.163712	2187.1631	15.45	0.09	0.009	0.15
VMC84.0961200_70.0687200	84.09612	-70.06872	F.	15.515	16.277	2.91712	724.32914	14.492	0.23	0.002	0.16
VMC84.1130000 69.6797800	84.11300	-69.67978	F	15.362	16.115	3.318209	2185.86737	14.406	0.21	0.009	0.11
VMC84.1175000 ^{-69.8208900}	84.11750	-69.82089	F	13.861	14.75	10.071731	723.75258	12.774	0.09	0.005	0.14
VMC84.1188300 ^{-69.6737500}	84.11883	-69.67375	F	16.323	17.394	2.908452	2186.32344	14.767	0.22	0.005	0.11
VMC84.1256200 ^{-69.9641900}	84.12562	-69.96419	F	14.984	15.867	4.851802	724.59013	13.828	0.23	0.008	0.13
VMC84.1427900 ^{-70.0890000}	84,14279	-70.08900	Ē	15.054	15.896	4,416394	723.96114	14.0	0.23	0.003	0.16
VMC84 2236700 ⁻⁷⁰ 1067500	84 22367	-70 10675	F	14 746	15 504	4 888984	722 05615	13743	0.22	0.012	0.11
VMC84 2276700 69 9407200	84 22767	60 04072	Ē	15 861	16 854	2 830581	725 0778	14 616	0.2	0.005	0.21
VMC84 2641200 70 0760600	84.26412	70.07606	L.	15.000	15 77	2.030351	725 29679	14.015	0.2	0.005	0.21
VMC84.2041300 70.0700000	04.20415	-70.07000	г	15.029	10.11	3.929238	723.36076	14.075	0.22	0.000	0.11
VMC84.2751200_69.9433300	84.27512	-09.94333	F	15.37	16.315	3.59175	724.45749	14.231	0.24	0.012	0.21
VMC84.3236700_68.6712200	84.32367	-68.67122	F.	14.558	15.343	6.337916	2182.40849	13.514	0.07	0.003	0.17
VMC84.3435400_69.4831700	84.34354	-69.48317	F.	13.478	14.398	14.216367	2174.35713	12.302	0.38	0.011	0.18
VMC84.3682500 69.1951700	84.36825	-69.19517	F	17.007	18.404	2.389343	2187.68231	15.109	0.22	0.006	0.2
VMC84.3951700 ^{-69.0917800}	84.39517	-69.09178	F	15.983	17.02	3.133491	2187.30985	14.612	0.24	0.005	0.2
VMC84.4132100 ^{-70.1085800}	84.41321	-70.10858	F	14.296	15.399	4.109942	723.74314	12.698	0.05	0.012	0.12
VMC84.4258300 ^{-69.9806700}	84.42583	-69.98067	F	15.719	16.561	2.830818	725.09652	14.635	0.16	0.006	0.22
VMC84.4327100 ^{69.5863900}	84.43271	-69.58639	F	15.683	17.174	6.856682	2182.67429	13.591	0.22	0.007	0.17
VMC84 4332900 69 9852500	84 43329	-69 98525	F	14 465	15 298	5 950195	724 27584	13 392	0.24	0.008	0.22
VMC84 4707500 ⁻⁷⁰ 0320300	84 47075	-70.03203	F	14 834	15 554	4 185139	725 96612	13 884	0.23	0.014	0.16
VMC84 4717500 69 2077800	84 47175	60 20778	F	16.21	17 449	2 047501	2186 21/130	14 738	0.25	0.007	0.10
VMC84 5210200 60 0206400	84.52102	60.02064	L. L.	15 252	16 201	2.947301	2100.21439	14.756	0.25	0.007	0.2
VMC84 522200 69.9590400	04.00192	-09.93904	F	16.460	10.291	2.000080	0105 00407	14.207	0.13	0.008	0.24
VMC84.5323300_69.1518100	84.53233	-09.15181	F	16.469	17.711	2.999089	2185.08407	14.798	0.23	0.006	0.2
VMC84.5394600_69.7268900	84.53946	-69.72689	F.	15.67	16.555	3.070851	2186.04468	14.551	0.21	0.006	0.21
VMC84.5694600_69.7201100	84.56946	-69.72011	F	15.537	16.338	3.097344	2187.76931	14.501	0.23	0.015	0.21
VMC84.5818300 69.1553600	84.58183	-69.15536	F	16.154	17.319	3.452496	2185.95731	14.593	0.22	0.006	0.2
VMC84.6056200 ^{-68.6574700}	84.60562	-68.65747	F	16.284	99.999	4.269554	2185.03076	14.032	0.24	0.004	0.2
VMC84.6248300 ^{-70.0906400}	84.62483	-70.09064	F	15.211	16.415	5.61994	721.73745	13.716	0.22	0.013	0.2
VMC84.6292100 ^{-69.4912800}	84.62921	-69.49128	F	16.044	99,999	3.010677	2190.95985	14.745	0.23	0.005	0.2
VMC84.6906700 ^{-69.8426400}	84.69067	-69.84264	Ē	15.096	16.099	4.851884	726,48961	13.92	0.15	0.004	0.27
VMC84 7067900 70 0194700	84 70679	-70 01947	F	15 374	16 249	3 444329	726 55227	14 276	0.22	0.006	0.2
VMC84 7255800 69 7144200	84 72558	60 71442	Ē	16 188	17 558	4 358505	2184 31101	14 317	0.24	0.006	0 10
VMC84 7745400 60 1969600	84.72000	-09.11442	L.	15 051	17 126	2 514661	2104.01101	14.517	0.24	0.000	0.15
VMC94.0121700 60.2075000	04.77404	-09.12030	r	10.901	14 50	3.314001	2104.902	14.404	0.22	0.000	0.17
v 1v1C64.8131700_09.3275600	64.81317	-09.32/30	r	13.330	14.58	23.1107	2113.18238	11.735	0.41	0.021	0.2

a a

a

 $^{\mathrm{a}}$

a a

VMC84.8607500 69.2553600	84.86075	-69.25536	F	16.706	18.381	3.47036	2185.71285	14.647	0.17	0.006	0.2
VMC84 8947100 69 1663900	84 89471	-69 16639	Ē	16.83	18 183	2 27171	2186 80757	15 087	0.21	0.005	0.17
VMC04.0347100 05.1000500	04.00411	-05.10005	I I	14 700	15.700	7 100070	2100.00101	10.001	0.21	0.000	0.11
VMC84.9115000_70.0420600	84.91150	-70.04206	F	14.702	15.792	1.192972	122.48232	13.301	0.25	0.011	0.13
VMC84.9425400 69.7910000	84.94254	-69.79100	F	15.577	16.454	3.106948	2186.61457	14.438	0.2	0.009	0.15
VMC84 9472500 70 0213300	$84 \ 94725$	-70.02133	F	14 952	15 782	4 812791	726 51845	13 855	0.27	0.006	0.13
VMC84.0482200 70.0651700	04.04022	70.06517	Ē	15 095	16 025	4 01707	722 50122	12 000	0.22	0.004	0.12
VMC84.9485500_70.0051700	04.94033	-70.00517	г	15.085	10.035	4.91727	723.39123	13.808	0.25	0.004	0.15
VMC84.9702100 70.0807200	84.97021	-70.08072	F,	14.918	15.752	4.863336	722.44955	13.856	0.22	0.006	0.13
VMC84.9925000 ^{-69.0057500}	84.99250	-69.00575	F	15.79	16.743	3.09562	2185.19882	14.55	0.2	0.005	0.27
VMC85 0200000 69 3711100	85 02000	-69 37111	Ē	15 499	16 363	3 385188	2186 5575	14 423	0.14	0.006	0.22
VMC85.0406700_60.2818200	85.04067	60 20102	Ē	15 001	15 049	5 20412	2100.0010	19.756	0.14	0.000	0.22
VMC85.0490700_09.3818300	85.04907	-09.38183	r	15.001	15.942	5.30412	2187.39337	13.730	0.24	0.003	0.22
VMC85.0534200 69.6355800	85.05342	-69.63558	F,	16.191	17.524	4.364797	2185.81355	14.323	0.23	0.004	0.26
VMC85.0762100 ^{-68.7064700}	85.07621	-68.70647	F	15.542	16.292	2.89419	2185.6651	14.536	0.2	0.004	0.17
VMC85 1030400 60 8720800	85 10304	60 87208	F	14 823	15.84	6 27001	2185 45120	13 553	0.11	0.010	0.18
VNC05.1030400 03.8720800	05.10004	-03.01200	I' D	14.025	10.04	0.27001	2100.45125	10.000	0.11	0.010	0.10
VMC85.1324600_68.7918100	85.13246	-68.79181	F.	14.549	15.428	6.349792	2182.45427	13.396	0.23	0.002	0.15
VMC85.1391700 70.0307200	85.13917	-70.03072	F	15.606	16.444	3.206093	726.68396	14.515	0.19	0.004	0.13
VMC85 1434200 69 5984700	85 14342	-6959847	F	16.052	17 174	3 493634	2186 2858	$14 \ 489$	0.25	0.006	0.21
VMC85 1466300 60 0002800	85 14663	60 00028	Ē	16 022	17 030	2 807505	2103 70171	14 667	0.18	0.003	0.27
VNC05.1400300 03.0332800	05.14000	-03.03328	I' D	10.022	17.033	2.837505	2195.19111	14.007	0.10	0.000	0.21
VMC85.1826200_69.6577800	85.18262	-69.65778	F.	15.873	16.704	2.42071	2187.62677	14.772	0.23	0.006	0.21
VMC85.1870000 69.4558600	85.18700	-69.45586	F	15.184	16.089	4.320914	2183.58395	14.015	0.16	0.004	0.22
VMC85 1913300 68 7347500	85 19133	-6873475	F	14 706	15 46	5 322229	2183 34374	13662	0.17	0.004	0.17
VMC85 1050600 60 0220700	85 10506	60 02207	Ē	15 202	16 224	4 704257	2185 15272	12 024	0.19	0.006	0.19
VNC85.1959000_09.9559700	85.19590	-09.93397	r T	15.202	10.224	4.194201	2105.15572	13.924	0.18	0.000	0.18
VMC85.2872900 69.6189700	85.28729	-69.61897	F,	14.732	15.662	7.323349	2185.26855	13.516	0.09	0.004	0.13
VMC85.2963700 ^{-69.5409400}	85.29637	-69.54094	F	15.46	16.323	3.34595	2185.03397	14.406	0.2	0.006	0.19
VMC85 3070800 ⁻⁶⁹ 0644200	85 30708	-69.06442	F	13 731	14 541	11 446018	2178 50937	12.602	0.24	0.012	0.23
VMC85 2625000 60 1712200	85 26250	60 17122	Ē	14 702	15 727	6 60688	2191 50574	12 412	0.24	0.004	0.22
VMC85.3023000 09.1712200	05.00200	-09.17122	I' D	14.703	15.757	0.00088	2181.39374	13.412	0.24	0.004	0.23
VMC85.3720400_69.9175000	85.37204	-69.91750	F.	15.136	15.974	4.133014	2184.17821	14.098	0.14	0.006	0.11
VMC85.3815000 68.7943900	85.38150	-68.79439	F	15.244	16.184	4.370518	2187.75876	14.034	0.22	0.009	0.17
VMC85 4010000 69 6936400	85 40100	-69 69364	F	13 349	14 307	20.319628	2181 0316	12.007	0.39	0.008	0.09
VMC85 4522100 68 6878100	85 45221	69 69791	Ē	12 047	14 080	10 222240	2184 24041	11 77	0.45	0.022	0.17
VMC85.4522100 08.0878100	05.40415	-08.08781	I' D	15.047	14.089	19.222249	2184.34941	11.11	0.45	0.033	0.17
VMC85.4641700_69.4034400	85.46417	-69.40344	F.	15.471	16.259	3.199973	2185.06565	14.44	0.23	0.004	0.19
VMC85.4680000 ⁻ 69.8270300	85.46800	-69.82703	F	15.117	15.823	3.650866	2184.57804	14.117	0.21	0.004	0.09
VMC85.5329600 ⁻ 69.0053600	85.53296	-69.00536	F	14.476	15.339	7.875625	2181.14918	13.222	0.21	0.009	0.2
VMC85 5381200 60 2070400	85 53812	60 20704	F	15 202	16 208	4 080749	2184 50894	14 042	0.17	0.007	0.2
VMC05.5301200 05.2015400	05.55012	-03.20134	I.	15.232	15.00	9.0100745	0107 51059	14.140	0.17	0.007	0.2
VMC85.5497100_68.8388600	85.54971	-08.83880	F	15.164	15.93	3.913076	2187.51653	14.140	0.28	0.006	0.17
VMC85.5718700 69.9954200	85.57187	-69.99542	F	15.927	16.655	2.01031	725.30076	14.965	0.18	0.006	0.1
VMC85.6621700 ^{-68.6706700}	85.66217	-68.67067	F	14.422	15.479	5.406423	2183.38487	12.991	0.1	0.004	0.17
VMC85 7302500 60 9308100	85 73025	60 03081	F	14 767	15 498	4 630885	2186 52603	13 818	0.25	0.006	0.12
VMC85.7502500 05.5508100	05.75025	-03.33001	I.	14.707	15 110	4.030885	2100.02000	10.010	0.20	0.000	0.12
VMC85.7748700_69.4906900	85.77487	-09.49009	F	14.253	15.116	8.558805	2179.84056	13.128	0.19	0.005	0.15
VMC85.7879200 69.6108100	85.78792	-69.61081	F,	15.577	16.413	3.013363	2187.37171	14.541	0.18	0.004	0.11
VMC85.7937100 ^{-69.4696700}	85.79371	-69.46967	F	14.756	15.535	4.783125	2186.84477	13.806	0.17	0.006	0.15
VMC85 8988300 69 1297200	85 89883	-69 12972	F	16 256	17 131	1 986145	2186 36341	15 138	0.12	0.009	0.18
VMC86 0100600 68 8207800	86.01006	60 00070	Ē	15 000	16 201	2 21205	2100.00041	14.94	0.12	0.000	0.15
VMC80.0109000_08.8207800	80.01090	-00.02070	r	13.922	10.801	2.31293	2180.39283	14.64	0.17	0.010	0.15
VMC86.0410400 69.2085300	86.04104	-69.20853	F,	14.671	15.45	5.208322	2186.87375	13.676	0.23	0.002	0.16
VMC86.0615400 ^{-69.8610800}	86.06154	-69.86108	F	16.023	16.967	2.586469	2186.24343	14.82	0.3	0.013	0.11
VMC86 0699200 69 8645600	86.06992	-69 86456	F	16 315	17 456	2,704462	2186 36035	14 874	0.13	0.017	0.11
VMC86 0700800 60 2040800	86.07008	60 20408	Ē	12 822	14 810	12 000212	2178 40575	12 549	0.26	0.006	0.15
VMC80.0700800 09.3040800	80.07008	-09.30408	r E	13.032	14.019	12.090312	2178.40373	12.040	0.20	0.000	0.15
VMC86.1144600_69.5258900	86.11446	-69.52589	F.	14.731	15.51	4.297464	2187.02142	13.584	0.15	0.007	0.15
VMC82.7496700 69.8211900	82.74967	-69.82119	F/FO	14.994	15.758	3.685621	452.48892	13.963	0.09	0.024	0.1
VMC82 7868700 70 0875000	82 78687	-70.08750	F/FO	15 015	15.647	3446745	454 34056	14 21	0.13	0.024	0.03
VMC02.1000100 10.0010000	02.10001	-10.00100	E/EO	15.010	10.041	0.007010	459.97000	14.404	0.10	0.024	0.00
VMC83.4140800_69.9152800	83.41408	-69.91528	F/FO	15.369	16.099	2.937016	453.37663	14.464	0.14	0.033	0.1
VMC83.4864200 68.8912800	83.48642	-68.89128	F/FO	16.103	16.825	1.884077	2167.17594	15.102	0.03	0.028	0.11
VMC83 9859600 70 0809400	83 98596	-70.08094	F/FO	15.36	16.175	$3\ 455079$	$723 \ 47457$	14 279	0.12	0.001	0.16
VMC94 1207500 60 4714000	84 12075	60.47149	E/EO	15 507	16 202	0.706671	0105 70771	14 694	0.12	0.001	0.11
VMC84.1307500_69.4714200	84.13075	-09.47142	F/FO	15.597	10.392	2.720071	2185.78771	14.084	0.06	0.030	0.11
VMC84.5965000 69.8935000	84.59650	-69.89350	F/FO	15.433	16.233	3.209915	726.43209	14.381	0.04	0.030	0.24
VMC85 1482100 69 7457200	85 14821	-6974572	F/FO	16 575	17 422	1 498688	2187 06732	15 543	0.1	0.029	0.17
VMC82 6071200 60 7617200	82 60712	60 76172	140	14 594	15 201	2 267082	454 20725	12 75	0.1	0.002	0.07
VIVIC62.09/1200_09.701/200	02.09/12	-09.70172	FO	14.004	15.201	3.207083	404.00700	13.70	0.08	0.003	0.07
v MC82.7020000_69.4541700	82.70200	-09.45417	FO	15.051	15.694	2.417794	453.87777	14.293	0.08	0.020	0.07
VMC82.7167100 69.9463900	82.71671	-69.94639	FO	14.895	15.563	2.312054	455.48636	13.959	0.09	0.012	0.07
-											

а

a

a a

 \mathbf{a}

 $^{\mathrm{a}}$

VMC82 7201700 69 7738100	82 72017	60 77381	FO	14 025	14 731	5 27263	459 33337	13 14	0.07	0.006	0.1
VMC82 7613800 60 0533600	82 76138	60.05336	FO	14.025	15 503	3.048261	452.55557	13 017	0.07	0.000	0.06
VMC82.7013800 09.9535000	82.70138	-09.90000	FO	14.802	15.000	0.040201	454.14719	14 162	0.1	0.010	0.00
VMC82.8040800 09.4551900	82.80408	-09.45519	FO	14.809	15.425	2.529597	454.00407	14.105	0.05	0.002	0.00
VMC82.8215400_70.0583100	82.82154	-70.05831	FO	15.074	15.728	2.248646	454.18552	14.289	0.07	0.009	0.06
VMC82.8303700_70.0498100	82.83037	-70.04981	FO	15.378	16.015	1.823699	454.42274	14.618	0.06	0.010	0.06
VMC82.8427900 70.0593900	82.84279	-70.05939	FO	15.325	15.905	1.829813	455.40677	14.564	0.1	0.011	0.06
VMC82.8526300 ^{-70.0991900}	82.85263	-70.09919	FO	15.59	16.302	1.892952	454.23771	14.754	0.06	0.013	0.02
VMC82.8530000 ^{-69.2881400}	82.85300	-69.28814	FO	16.882	17.476	0.722922	2167.51188	16.146	0.11	0.020	0.06
VMC82.8918300 ^{-69.0518300}	82.89183	-69.05183	FÓ	16.673	17.331	0.960143	2167.53206	15.821	0.14	0.014	0.12
VMC82 8985800 ⁻⁷⁰ 0948300	82 89858	-70 09483	FÕ	18 417	18 987	0.269772	455 45924	17 48	0.07	0.064	0.05
VMC82 9025800 69 9453600	82 90258	-69 94536	FŐ	14 677	15 339	3 23636	454 99413	13 809	0.06	0.014	0.09
VMC82.0022000 60.7508600	82.00200	60.75086	FŐ	16 259	17.001	1 200066	454 51266	15 976	0.00	0.014	0.12
VMC82.9203300 09.7508000	82.92033	-09.10080	FO	15.238	15.679	2.214505	9167 16066	14.976	0.07	0.010	0.13
VMC82.9310800 70.0202200	82.93108	-70.02022	FO	10.049	17.002	2.314393	455 50000	14.270	0.09	0.010	0.07
VMC82.9357500_70.1480800	82.93575	-70.14808	FO	16.706	17.293	0.804268	455.52268	15.964	0.08	0.010	0.05
VMC82.9483300_69.9617800	82.94833	-69.96178	FO	15.047	15.673	2.455287	454.34384	14.206	0.1	0.017	0.09
VMC82.9832100_69.6821400	82.98321	-69.68214	FO	15.168	15.738	2.215576	453.54064	14.364	0.06	0.007	0.11
VMC83.0513300 69.0021700	83.05133	-69.00217	FO	15.156	15.949	2.737257	2165.62617	14.129	0.09	0.002	0.16
VMC83.0785000 ^{69.7777200}	83.07850	-69.77772	FO	14.737	15.498	3.50861	453.00126	13.698	0.08	0.006	0.12
VMC83.1158700 ^{-69.5715000}	83.11587	-69.57150	FO	16.396	17.086	1.271329	454.43027	14.952	0.05	0.009	0.13
VMC83.1515800 ^{-69.9600000}	83.15158	-69.96000	FO	14.973	15.635	2.699998	453.456	14.085	0.08	0.009	0.05
VMC83.1669600 ^{-69.3166700}	83.16696	-69.31667	FO	14,913	15.608	2.678595	2167.78835	14.056	0.07	0.006	0.08
VMC83 1920000 69 8714700	83 19200	-69 87147	FÕ	15 718	16 493	1 83664	454 01813	14 685	0.07	0.005	0.07
VMC83 1037100 60 3731400	83 10371	60 37314	FO	14 872	15 463	2 65046	2166 23215	14.008	0.08	0.003	0.08
VMC83 1075000 69 4250000	83 10750	69 42500	FO	15 405	16 136	2 138465	2165 01871	14.531	0.06	0.003	0.00
VMC82 222500 68 7001400	82 2222F	69.70014	FO	16.676	17 242	0.944755	2105.51011	15 761	0.00	0.003	0.03
VMC83.2232300 08.7091400	03.44343	-08.70914	FO	10.070	17.343	4.000014	2107.40021	19.701	0.10	0.009	0.09
VMC83.2953700_68.9160300	83.29537	-08.91003	FO	14.707	15.649	4.096914	2164.35521	13.051	0.13	0.004	0.13
VMC83.2962100_69.9728100	83.29621	-69.97281	FO	18.092	18.627	0.30217	455.56882	17.766	0.08	0.077	0.08
VMC83.3579600_69.6324400	83.35796	-69.63244	FO	15.212	15.878	2.323201	454.69593	14.346	0.08	0.004	0.1
VMC83.3607900 69.9425300	83.36079	-69.94253	FO	15.114	15.758	2.361496	454.13708	14.082	0.06	0.004	0.09
VMC83.3764600 ^{-68.7891100}	83.37646	-68.78911	FO	16.246	17.02	1.250556	2167.5369	15.257	0.11	0.004	0.14
VMC83.3947900 ^{68.6766100}	83.39479	-68.67661	FO	16.447	17.162	1.038564	2167.4122	15.569	0.09	0.006	0.14
VMC83.4035000 ^{-69.9046700}	83.40350	-69.90467	FO	15.197	15.816	2.162023	455.32129	14.265	0.07	0.005	0.1
VMC83.4157500 ^{69.9050800}	83.41575	-69.90508	FO	15.365	16.071	2.203441	454.05352	14.391	0.06	0.016	0.1
VMC83.4238700 ^{-68.8728300}	83.42387	-68.87283	FO	14.972	15.622	2.473558	2166.42877	14.16	0.04	0.004	0.11
VMC83 4291700 69 8537200	83 42917	-69 85372	FÕ	15.627	16.379	1 889387	454 28337	14 61	0.11	0.025	0.1
VMC83 4454200 69 9095800	83 44542	-69 90958	FŐ	15 245	15 989	2 284975	453 72226	14 323	0.06	0.012	0.1
VMC82 4624600 60 2014200	82 46246	60.20142	FŐ	15 990	16 72	1.600022	2167 22120	14.020	0.00	0.007	0.1
VMC82 4802100 60.2014200	00.40240	60.01000	FO	15 202	16.024	2.124965	AFE 11969	14.040	0.07	0.007	0.22
VMC83.4802100 09.9122200	03.40021	-09.91222	FO	10.070	10.034	2.134203	455.11602	14.000	0.07	0.008	0.1
VMC83.5097500 09.4125500	03.00970	-09.41233	FO	10.276	15.995	1.176909	2107.27495	14.992	0.05	0.009	0.1
VMC83.5650400_69.5732800	83.56504	-09.57328	FO	15.213	15.92	2.286305	2105.9571	14.305	0.08	0.005	0.1
VMC83.5775400_69.8940600	83.57754	-69.89406	FO	15.061	15.816	2.675345	454.10811	14.102	0.09	0.006	0.11
VMC83.5815400_70.0000800	83.58154	-70.00008	FO	16.01	16.58	1.21637	455.64199	15.272	0.1	0.008	0.1
VMC83.5856700_69.1230800	83.58567	-69.12308	FO	17.188	18.042	0.766376	2167.65798	16.162	0.07	0.010	0.22
VMC83.6169200 69.9031400	83.61692	-69.90314	FO	15.342	16.131	2.332323	454.01032	14.337	0.08	0.009	0.11
VMC83.6435400 ^{69.9017800}	83.64354	-69.90178	FO	15.144	15.811	2.292384	454.3579	14.262	0.03	0.005	0.11
VMC83.6604600 ^{-70.0788600}	83.66046	-70.07886	FO	15.196	15.874	2.232129	453.51255	14.259	0.07	0.002	0.1
VMC83.6857100 ^{-68.7021900}	83.68571	-68.70219	FO	14.586	15.359	3.981786	2167.21095	13.586	0.05	0.004	0.11
VMC83.6878300 ^{-69.2335300}	83.68783	-69.23353	FO	14.679	15.395	3.261288	2167.61024	13.766	0.02	0.003	0.26
VMC83.7338300 ^{-69.6795000}	83,73383	-69.67950	FO	16.86	17.518	0.73489	454.97274	16.091	0.12	0.010	0.11
VMC83 7495400 69 8999200	83 74954	-69 89992	FÕ	15 129	15 737	2 209189	453 83482	14 322	0.07	0.005	0.1
VMC83 7593700 69 5858300	83 75937	-69 58583	FŐ	16 747	17 413	0.844367	2167 44356	15 907	0.09	0.012	0 11
VMC 22 7026700 62 7620400	82 70867	68 76204	FO	16 944	17.410	0.060529	2107.44000	15 001	0.05	0.012	0.11
VMC82 8255000 60.1029400	03.19001	-00.70294	FO	14.029	15 655	0.900348	2101.00014	14 025	0.05	0.007	0.09
VMC00.830000 09.9801100	03.83000	-09.98011	FO	14.938	15.000	2.811448	124.10207	14.035	0.1	0.006	0.1
VMC83.8537900_68.6836700	83.85379	-08.68367	FO	15.001	15.798	3.070689	2185.73675	13.93	0.08	0.004	0.13
v wic83.8737100_70.0695600	83.87371	-70.06956	FO	15.399	15.914	1.975942	726.60706	14.382	0.06	0.005	0.16
VMC83.8763300_69.0235000	83.87633	-69.02350	FO	17.533	18.538	0.737576	2187.65845	16.298	0.07	0.006	0.34
VMC83.9102500_69.7253600	83.91025	-69.72536	FO	15.579	16.261	1.857334	726.07069	14.683	0.09	0.008	0.12
VMC83.9239200 ^{-69.0846900}	83.92392	-69.08469	FO	17.213	17.664	0.4651	2187.64608	16.79	0.1	0.026	0.33
VMC83.9515400 ^{-70.0641900}	83.95154	-70.06419	FO	15.358	16.16	2.265118	725.68269	14.39	0.08	0.010	0.16
-											

 \mathbf{a}

a a

 $^{\mathrm{a}}$

a

VMC83 9726200 70 0343600	83 07262	70.03436	FO	16 507	17 517	1 340417	726 77725	15 262	0.07	0.010	0.16
VMC82.0807500-70.0081100	00.01202 00.075	70.00911	FO	14 702	15 520	2 605221	704 21692	12 696	0.07	0.010	0.10
VMC85.9807500 70.0081100	03.90075	-70.00811	FO	14.703	10.002	3.093331	124.31083	15.080	0.07	0.000	0.10
VMC84.0166200_69.5241900	84.01662	-69.52419	FO	15.922	16.599	1.565745	2187.68567	15.033	0.12	0.006	0.1
VMC84.0186700 70.0321100	84.01867	-70.03211	FO	15.743	17.297	2.035364	725.39411	13.725	0.03	0.010	0.16
VMC84.0221700 ^{-70.0742800}	84.02217	-70.07428	FO	15.176	15.981	2.628979	726.01851	14.137	0.09	0.006	0.16
VMC84 0501200 69 3625000	84 05012	-69 36250	FO	14 944	15 687	2 910257	2186 48061	14 038	0.08	0.007	0.15
VMC84.0555400_60.4420000	84.05554	60.44200	FŐ	15 250	16,006	2.016425	2100.40001	14.000	0.00	0.007	0.11
VMC84.0555400_69.4420000	84.05554	-09.44200	FO	15.559	10.000	2.020425	2165.96901	14.48	0.02	0.007	0.11
VMC84.0585000_69.9390000	84.05850	-69.93900	FO	15.749	16.925	2.25822	724.73196	14.362	0.06	0.011	0.13
VMC84.0965400 70.0520600	84.09654	-70.05206	FO	15.28	16.11	2.581354	725.29979	14.221	0.09	0.008	0.16
VMC84.0993700 ^{-69.9015600}	84.09937	-69.90156	FO	15.39	16.106	2.065799	725.88851	14.521	0.08	0.006	0.13
VMC84.1065000 ^{-70.0901900}	84.10650	-70.09019	FO	15.593	16.399	2.000805	725.93043	14.586	0.08	0.007	0.16
VMC84 1946200 69 3700600	84 19462	-69 37006	FO	15 916	16 648	1 589839	2187 32214	14 986	0.09	0.005	0.18
VMC84 1062700 60 2267200	84 10627	60 22672	FO	17 620	18 611	0.410256	2197 75927	15 951	0.02	0.001	0.20
VMC04.1303700 03.2307200	04.13037	-03.23012	FO	15 205	16.011	1.050450	2107.75007	14 594	0.05	0.021	0.20
VMC84.2107100_09.3093000	84.21071	-09.30930	FO	13.365	10.058	1.938438	2185.95189	14.054	0.08	0.010	0.18
VMC84.2262900_69.9856100	84.22629	-69.98561	FO	15.883	16.747	1.804941	726.4283	14.819	0.05	0.006	0.21
VMC84.2327900 69.9218900	84.23279	-69.92189	FO	15.62	16.563	2.145398	726.07603	14.484	0.09	0.008	0.21
VMC84.2467900 ^{-69.9540800}	84.24679	-69.95408	FO	15.688	16.616	1.973307	726.80329	14.564	0.06	0.008	0.21
VMC84.2650800 ^{-70.0643900}	84.26508	-70.06439	FO	15.695	16.533	1.893779	726.50448	14.594	0.07	0.017	0.11
VMC84 2947100 69 9484700	84 29471	-69 94847	FŐ	16 996	17 885	0.883266	726 16631	15 919	0.09	0.010	0.21
VMC84 2058200 60 2602500	04.20592	60.26025	FO	14.025	15 700	2 162767	2186 62042	12.060	0.00	0.015	0.19
VMC84.2958500_09.5002500	04.29000	-09.30023	FO	14.935	10.722	3.103/07	2180.02045	13.909	0.09	0.015	0.18
VMC84.3185000_69.9013900	84.31850	-69.90139	FO	15.643	16.689	2.40556	726.24905	14.285	0.09	0.004	0.21
VMC84.3577900 70.0804200	84.35779	-70.08042	FO	15.092	15.74	2.264897	725.77867	14.272	0.06	0.006	0.12
VMC84.3698700 ^{-69.9333100}	84.36987	-69.93331	FO	15.638	16.566	2.112169	725.99354	14.496	0.06	0.009	0.22
VMC84.3867100 ^{-68.7111100}	84.38671	-68.71111	FO	15.106	16.044	3.228755	2185.0128	13.908	0.08	0.005	0.17
VMC84 3916200 69 6746900	84 39162	-69 67469	FO	16.062	16 79	1 316338	2187 67108	15 152	0.1	0.004	0.17
VMC84 2076700 70 0086400	84 20767	70.00864	FO	15 949	15 916	1 804524	725 68028	14 502	0.05	0.009	0.12
VMC04.4101200 C0.07C1000	04.00101	-10.05004	FO	15.240	15.010	0.541600	725.00050	14.1402	0.05	0.000	0.12
VMC84.4121300_69.9761900	84.41213	-69.97619	FO	15.133	15.909	2.541628	725.08883	14.146	0.07	0.005	0.22
VMC84.4355000_69.2457200	84.43550	-69.24572	FO	16.094	17.128	1.928963	2187.43048	14.781	0.1	0.037	0.2
VMC84.4957100 69.9243300	84.49571	-69.92433	FO	15.283	16.175	2.478877	724.38577	14.179	0.07	0.010	0.24
VMC84.5000800 ^{-69.2817800}	84.50008	-69.28178	FO	16.86	17.885	1.200558	2186.81002	15.559	0.09	0.008	0.18
VMC84.5173300 ^{-69.9514200}	84.51733	-69.95142	FO	15.428	16.174	1.990272	725.30922	14.49	0.04	0.006	0.24
VMC84 5540400 ⁻⁶⁹ 8775600	84 55404	-69.87756	FŐ	16 824	17 769	0.969189	726 37487	15 38	0.06	0.006	0.24
VMC84 6319200 69 9920000	84 63102	60 00200	FO	14 779	15 655	3 571087	723 63484	13 744	0.1	0.008	0.27
VMC84.6545000 69.5520000	04.05152 04.65450	60 57200	FO	16 711	10.000	1.050149	2107 500	14 976	0.1	0.008	0.21
VMC84.0545000 09.5729200	84.03430	-09.37292	FO	10.711	10.111	1.950142	2107.099	14.870	0.09	0.008	0.32
VMC84.6687900_70.1106400	84.66879	-70.11064	FO	15.907	17.004	1.953709	726.05477	14.652	0.08	0.006	0.2
VMC84.6926200 69.9358600	84.69262	-69.93586	FO	15.76	17.04	2.782939	725.77121	14.21	0.05	0.006	0.27
VMC84.6940000 ^{-69.6885800}	84.69400	-69.68858	FO	16.853	99.999	1.322446	2249.60191	15.297	0.07	0.006	0.19
VMC84.7540400 ^{69.8597500}	84.75404	-69.85975	FO	16.586	17.549	1.320541	726.25262	15.372	0.1	0.007	0.27
VMC84 8200400 ⁻⁷⁰ 1099700	84 82004	$-70\ 10997$	FO	15 794	16 545	1 587184	725 3721	14 868	0.11	0.010	0.12
VMC84 8294600 70 0746700	84 82946	-70 07467	ÊŎ	16 721	18 169	1 96575	726 72225	14 835	0.07	0.002	0.12
VMC84 8202500 70.0022600	84 82025	70.00226	FŐ	15 469	16 269	2 527675	725 00722	14 222	0.07	0.005	0.12
VMC84.8302300 70.0923000	04.03023	-70.09230	FO	15.408	10.508	2.007070	0107 100722	14.555	0.07	0.005	0.12
VMC84.8335400_69.5571100	84.83334	-09.55/11	FO	15.827	10.543	1.041313	2187.10300	14.700	0.02	0.015	0.2
VMC84.8459200_69.3685800	84.84592	-69.36858	FO	15.117	15.902	2.911248	2185.33494	14.079	0.07	0.0097	0.2
VMC84.8606200 70.0388900	84.86062	-70.03889	FO	15.235	16.023	2.503442	724.37086	14.229	0.07	0.0060	0.12
VMC84.8607500 ^{-69.6172200}	84.86075	-69.61722	FO	18.094	20.255	2.183252	2185.9854	15.031	0.06	0.0043	0.2
VMC84.8612900 69.8994700	84.86129	-69.89947	FO	16.322	17.283	1.413235	726.61113	15.085	0.09	0.0064	0.28
VMC84 9244600 69 6139700	84 92446	-69 61397	ÊŎ	16.27	17 477	2 080302	2186 88295	14 666	0.08	0.0058	0.26
VMC84.0412500_60.0014200	84.04125	60.00142	FŐ	15 541	16.41	2.0000002	725 78707	14.445	0.00	0.0000	0.17
VMC84.9412300 09.9014200	04.94123	-09.90142	FO	10.041	17.40	1.055519	0107 00114	15 400	0.09	0.0083	0.17
VMC85.0190400_68.8521700	85.01904	-08.85217	FO	16.646	17.40	1.055513	2187.09114	15.468	0.03	0.0171	0.18
VMC85.0530000 69.9610800	85.05300	-69.96108	FO	16.063	17.155	1.844226	725.40332	14.738	0.06	0.0064	0.17
VMC85.0706700 ⁻ 70.0889700	85.07067	-70.08897	FO	17.252	17.972	0.580853	726.49325	15.981	0.07	0.0115	0.13
VMC85.0858300 ^{-69.3965300}	85.08583	-69.39653	FO	15.626	16.28	1.584138	2186.67939	14.823	0.1	0.0045	0.22
VMC85.1360400 ^{-70.0261900}	85,13604	-70.02619	FÓ	15.81	16.653	1.848191	725,75518	14.733	0.07	0.0045	0.13
VMC85 1580000 60 0266400	85 15800	60 02664	FO	15 401	16 101	2 176327	2185 74512	14 306	0.06	0.0049	0.18
VMC85 2067000 60 5427200	85 20670	60 54979	FO	15 419	16 14	2.170327	2100.14012	14.590	0.00	0.0048	0.10
VMC65.2907900 09.5427800	05.29079	-09.04278	FO	10.410	10.14	2.001021	4101.40011	14.023	0.09	0.0040	0.19
v wiC85.3102100_68.9213900	85.31021	-08.92139	FO	16.995	17.774	0.785469	2187.6721	16.013	0.04	0.0056	0.17
VMC85.3533300_68.7182200	85.35333	-68.71822	FO	17.212	18.002	0.675793	2187.13439	16.217	0.09	0.0059	0.17
VMC85.3631700 ^{-69.8885800}	85.36317	-69.88858	FO	15.726	16.503	1.778921	2186.54678	14.702	0.11	0.0055	0.11
VMC85.5175800 ^{-70.1026900}	85.51758	-70.10269	FO	15.568	16.376	1.925496	725.3601	14.558	0.09	0.0149	0.14
			-								-

а

 \mathbf{a}

а

а

а

1/1/ COF F005000 00 0015500	05 50050	00 001 FF	TO	14,000	15 005	4 505505	0100 40040	10.000	0.00	0.00==	0.15
VMC85.5237900 08.8817500 VMC85 5661700 70.0046400	85.52379	-08.88175	FO	14.022	10.020	4.737397	2183.49048	16.61	0.09	0.0077	0.17
VMC85.5001700 70.0940400	00.00017 05 50502	-70.09404	FO	17.470	16.21	0.495000	720.40479	14 221	0.05	0.0185	0.14
VMC85.6187100_60.7892200	85.61971	60 78022	FO	15.15	16 425	1.205807	2187.07400	15.067	0.11	0.0092	0.1
VMC85.6227100_60.0661100	85 62271	-09.78233	FO	14 795	15 622	2 028221	725 21854	12.66	0.11	0.0056	0.1
VMC85.6272500 70.0772800	85.62725	70.07728	FO	14.785	17.033	0.415751	726 5850	16.679	0.03	0.0030	0.14
VMC85.6607100 70.0072800	85.66071	70.00280	FO	17.429	16 580	0.410701	725 61624	14 456	0.11	0.0241	0.14
VMC85 7250000 60 7336000	85 72500	60 73360	FO	16 122	17.068	1 830786	2187 20841	14.450	0.07	0.0030	0.13
VMC85.8637900_69.6055300	85 86379	-69 60553	FO	16.17	17.000	1 477193	2187 75508	15 137	0.07	0.0046	0.15
VMC85 8915000 69 3112800	85 89150	-69.31128	FŐ	14 543	15 736	3 083662	2185 09123	12 941	0.03	0.0053	0.15
VMC85 9160400 ⁻⁶⁹ 7380300	85 91604	-69 73803	FŐ	16.36	17 069	1 094458	2187 04359	15 465	0.09	0.0143	0.14
VMC85.9932900 ^{-68.9028100}	85,99329	-68.90281	FŐ	15.567	16.253	1.811681	2187.3588	14.64	0.06	0.0071	0.15
VMC85.9952500 ^{-69.4873600}	85.99525	-69.48736	FO	15.432	16.258	2.033228	2186.83039	14,429	0.11	0.0047	0.15
VMC85.9990400 ^{-68.8570800}	85.99904	-68.85708	FO	15.191	15.939	2.326961	2186.61535	14.245	0.05	0.0045	0.15
VMC86.0872900 ^{-69.8647500}	86.08729	-69.86475	FO	17.811	18.134	0.308278	2187.62609	17.431	0.06	0.0463	0.11
VMC86.1035400 ^{-69.9754700}	86.10354	-69.97547	FO	15.534	16.112	1.563193	2187.29978	14.746	0.08	0.0087	0.11
VMC86.1356300 ^{-70.0256700}	86.13563	-70.02567	FO	16.13	16.917	1.341401	2186.54489	15.151	0.06	0.0098	0.11
VMC86.1700800 ^{-69.9203100}	86.17008	-69.92031	FO	15.457	16.156	1.911485	2186.3996	14.499	0.09	0.0079	0.11
VMC83.2077900 ⁻ 70.0708900	83.20779	-70.07089	FO/SO	16.296	16.851	0.951998	455.62868	15.416	0.08	0.0407	0.05
VMC83.3057900 ^{69.8713100}	83.30579	-69.87131	FO/SO	17.148	17.793	0.628968	455.6168	16.317	0.1	0.0148	0.08
VMC83.5200400 ^{68.6412800}	83.52004	-68.64128	FO/SO	16.423	17.054	0.914905	2167.85454	15.683	0.11	0.0151	0.08
VMC85.5680800 ^{69.8773900}	85.56808	-69.87739	FO/SO	16.132	16.806	1.236071	2187.59048	15.015	0.07	0.0076	0.1
VMC83.6328300 ^{-69.7541100}	83.63283	-69.75411	FO/SO	16.746	17.322	0.749803	455.44006	15.95	0.13	0.0103	0.11
VMC84.0779600 ^{69.6683100}	84.07796	-69.66831	FO/SO	16.826	17.434	0.73008	2187.37178	16.047	0.1	0.0093	0.11
VMC82.8781200 ^{69.7410300}	82.87812	-69.74103	FO/SO	16.265	16.971	1.186461	455.20008	15.382	0.08	0.0182	0.13
VMC85.4944200 ^{69.3631100}	85.49442	-69.36311	FO/SO	17.578	18.123	0.416365	2187.60105	16.862	0.05	0.0131	0.15
VMC84.4185000 68.8450600	84.41850	-68.84506	FO/SO	17.214	17.949	0.668873	2187.13918	16.231	0.07	0.0193	0.17
VMC84.7129200 69.8227200	84.71292	-69.82272	FO/SO	17.111	17.763	0.611007	726.69542	16.295	0.08	0.0153	0.19
VMC83.6123300 ^{-69.0424200}	83.61233	-69.04242	FO/SO	17.798	18.609	0.498891	2167.4803	16.762	0.08	0.0144	0.21
VMC83.6189200 ^{-68.9502800}	83.61892	-68.95028	FO/SO	16.737	17.379	0.791267	2167.09583	15.921	0.1	0.0138	0.21
VMC84.4010000 69.7390600	84,40100	-69.73906	FO/SO	16.599	17.674	1.353017	726.18634	15.26	0.07	0.0081	0.23
VMC85 2746300 69 0552200	85 27463	-69 05522	FO/SO	16 513	17 295	1 011729	2186 89479	15 552	0.08	0.0076	0.23
VMC84 7009200 69 5859400	84 70092	-69 58594	FO/SO	18 167	19.622	0.833525	2187 07298	16 186	0.1	0.0133	0.32
	010002	00.00004	10,00	10.101	10.022	0.000020	210.01200	10.100	0.1	0.0100	0.01

а

 $^{\mathrm{a}}$

a a

α	σ_{lpha}	β	σ_{eta}	γ	σ_{γ}	r.m.s.
		$K^0_S {=} \alpha {+}$	$\beta \log P$			
$16.070 \\ 15.580$	$\begin{array}{c} 0.017\\ 0.012\end{array}$	$-3.295 \\ -3.471$	$\begin{array}{c} 0.018\\ 0.035\end{array}$			$\begin{array}{c} 0.102 \\ 0.099 \end{array}$
	W(V)	$V, K_S) =$	$\alpha + \beta l \alpha$	эgР		
$15.870 \\ 15.400$	$\begin{array}{c} 0.013\\ 0.008\end{array}$	-3.325 -3.530	$\begin{array}{c} 0.014\\ 0.025\end{array}$			$\begin{array}{c} 0.078\\ 0.070\end{array}$
	$K_S^0 = \alpha$	$+\beta \log^{1}$	$P+\gamma(V \cdot$	$-K_S)_0$		
$15.740 \\ 15.355$	$\begin{array}{c} 0.073\\ 0.070\end{array}$	$-3.346 \\ -3.545$	$0.013 \\ 0.026$	$\begin{array}{c} 0.216 \\ 0.163 \end{array}$	$0.014 \\ 0.014$	$\begin{array}{c} 0.073\\ 0.070\end{array}$
	lpha 16.070 15.580 15.870 15.400 15.740 15.355	$\begin{array}{c c} \alpha & \sigma_{\alpha} \\ \\ \hline \\ 16.070 & 0.017 \\ 15.580 & 0.012 \\ \hline \\ W(1) \\ 15.870 & 0.013 \\ 15.400 & 0.008 \\ \hline \\ K_S^0 = \alpha \\ 15.740 & 0.073 \\ 15.355 & 0.070 \\ \hline \end{array}$	$\begin{array}{c ccccc} \alpha & \sigma_{\alpha} & \beta \\ & K_S^0 = \alpha + \\ \hline 16.070 & 0.017 & -3.295 \\ 15.580 & 0.012 & -3.471 \\ \hline & W(V, K_S) = \\ \hline 15.870 & 0.013 & -3.325 \\ 15.400 & 0.008 & -3.530 \\ \hline & K_S^0 = \alpha + \beta \log \\ \hline 15.740 & 0.073 & -3.346 \\ 15.355 & 0.070 & -3.545 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 6.3: PL, Wesenheit and PLC relations for F and FO Classical Cepheids in the 30 Dor field. The Wesenheit function is defined as: $W(V, K_S) = K_S - 0.13 * (V - K_S)$.

6.2 Classical Cepheids in the 30 Dor field

The 30 Dor field contains 164 fundamental mode (F), 139 first overtone (FO), 8 F/FO, and 15 FO/SO (SO stands for second overtone) pulsators. The PLK relations of the 172 fundamental mode and the 154 first overtone¹ Classical Cepheids analysed in the 30 Dor field are shown in Fig. 6.3. Since the saturation level of the VMC survey in K_S limits the length of the periods we are able to measure to a maximum value of about 15-20 days, we complemented our data with the sample of Persson et al. (2004) that includes 84 F-mode Cepheids with periods mainly ranging between 10 and 100 days. To merge the two samples we first transformed Persson et al.'s original photometry from the LCO to the 2MASS system, using the relations by Carpenter (2001). These data are shown as light blue circles in Fig. 6.3. To account for the variable reddening that characterizes the 30 Dor region, we adopted the recent reddening evaluations by Haschke et al. (2011) (reported in column 12 of Table 6.2), while to correct Persson et al. (2004) dataset we adopted the reddening values provided by the Authors.

Finally, we performed least-square fits to the data of F- and FO-modes variables separately, adopting an equation of the form $K_S^0 = \alpha + \beta log P$. The coefficients derived from the fits are provided in the first portion of Table 6.3.

In addition to the PLK_S relation we also considered the Period-Wesenheit (PW)

 $^{^{1}\}textsc{Double}$ mode pulsators F/FO and FO/SO were included in the F and FO samples, respectively.

Figure 6.3: K_S -band PL relation for Cepheids in the 30 Dor field. Black open and filled circles show FO- and F-mode pulsators, respectively. Light blue filled circles show the F-mode Cepheid sample by Persson et al. (2004). Solid lines are the result of the least square fit to the data (see text for details).

and the Period-Luminosity-Color (PLC) relations. These relations are widely used in the literature and are particularly useful to study the 3D structure of the Magellanic System, as they have much smaller dispersions than a simple PLK_S relation.

The PW and PLC relations are usually calculated using the (V-I) color. However, given the data available to us we decided to build our PW and PLC relations using the $V - K_S$. As far as we know, this is the first empirical PW using Near-IR colors. Following Cardelli et al. (1989) the Wesenheit function is defined as $W(V, K_S) =$ $K_S - 0.13 * (V - K_S)$ and the equation we want to fit has the form: $W(V, K_S) = \alpha + \beta$ logP. Similarly, we will adopt a PLC relation of the form $K_S^0 = \alpha + \beta \log P + \gamma (V - K_S)_0$.

Results from such a procedure are shown in Figs. 6.4 and 6.5, for the PW, and PLC relations, respectively. Coefficients of the PW and PLC equations derived with this procedure are provided in the middle and lower portions of Table 6.3.

We can now compare our results with previous studies. Literature values for the coefficients of the PL, PW, and PLC relations are summarized in Table 6.4. The first three rows of the table report the empirical results for the PLK_S of fundamental mode pulsators by Groenewegen (2000); Persson et al. (2004); Testa et

Figure 6.4: Period-Wesenheit relation for Cepheids in the 30 Dor field. Black open and filled circles show FO- and F-mode pulsators, respectively. Light blue filled circles show the F-mode Cepheid sample by Persson et al. (2004). Solid lines are the result of the least square fit to the data (see text for details).

Figure 6.5: Period-Luminosity-Color relation for Cepheids in the 30 Dor field. Black open and filled circles show FO- and F-mode pulsators, respectively. Light blue filled circles show the F-mode Cepheid sample by Persson et al. (2004). Solid lines are the result of the least square fit to the data (see text for details).

156 First results for Classical Cepheids from the VMC survey

al. (2007), whereas the fourth row shows the theoretical result by Caputo et al. (2000a). Similarly, rows 5-6 display the empirical results by Groenewegen (2000) and the semiempirical results by Bono et al. (2002). A comparison between Tab. 6.3 and Tab. 6.4 reveals that for the PLK_S relation of the F-mode pulsators, there is general agreement within the errors between our results and Groenewegen (2000); Persson et al. (2004); Storm et al. (2011a) (only slope for the latter). Only marginal agreement is found instead with Testa et al. (2007), whose results are based on the Persson et al. (2004) sample complemented at shorter periods with Cepheids belonging to the LMC clusters NGC1866 and NGC2031. As for the comparison with theory, we we find that there is a satisfactory agreement between our slope and the slope predicted by pulsation models for the LMC chemical composition (Caputo et al., 2000a). The errors in the coefficients of our PLK_S relation are smaller than in previous studies. This is due to the large range in period spanned by the Cepheids in our sample, including for the first time a significant number of objects with near-infrared photometry and periods smaller than 5 days. In the case of the FO pulsators the agreement with Groenewegen (2000) is not as good as for F-mode Cepheids, this may be an effect of the deeper magnitude limit achieved by the VMC survey (Groenewegen, 2000, relies on 2MASS and DENIS data), that allowed us to reach the fainter FO-Cepheids populating the low-period tail of the PLK_S relation.

Since there are no empirical Wesenheit and the PLC relations in K available the literature we can only compare our PW and PLC relations with the theoretical results by Caputo et al. (2000a). The slope of our $W(V, K_S)$ relation is in agreement with the theoretical value, while a significant discrepancy is found between period and color-term coefficients.

The SEP Cepheids are too few to define independent PL, PW, and PLC relations. When plotted on the relations defined by the 30 Dor Cepheids (see Fig. 6.4) they show some scatter. However, it is not clear whether the scatter is due to them defining different relationships, or to projection effects.

Figure 6.6: Cepheids in the SEP (blue and yellow pentagons for F and FO pulsators, respectively) field overplotted on the PL, PW and PLC relationships defined by the 30 Dor Cepheids.

Table 6.4: Literature values for the coefficients of the PL, Wesenheit and PLC relations for F and FO Classical Cepheids. As before, the Wesenheit function is defined as: $W(V, K_S) = K_S - 0.13 * (V - K_S)$. The photometry of previous studies was converted to the 2MASS system, to be consistent with our results.

Mode	α	σ_{lpha}	β	σ_{eta}	γ	σ_{γ}	r.m.s.	Source
				$K^0_S =$	lpha+eta lo	οgΡ		
F	16.032	0.025	-3.246	0.036			0.168	Groenewegen (2000)
F	16.051	0.05	-3.281	0.040			0.108	Persson et al. (2004)
F	15.945	0.040	-3.19	0.040				Testa et al. (2007)
F	-2.36	0.04	-3.28	0.09			0.21	Storm et al. $(2011b)$
F	-2.65	0.01	-3.23	0.01			0.07	Caputo et al. (2000a)
\mathbf{FO}	15.533	0.032	-3.381	0.076			0.137	Groenewegen (2000)
FO	15.62	0.13	-3.57	0.03			0.14	Bono et al. (2002)
			И	$V(V, K_S)$	$) = \alpha - \alpha$	$+\beta$ logl	Р	
F	-2.92	0.09	-3.21	0.04			0.09	Caputo et al. (2000a)
			$K_{S}^{0} =$	$\alpha + \beta$	logP+~	$\gamma(V - $	$(K_S)_0$	
F	-3.37	0.04	-3.60	0.03	1.61	0.03	0.03	Caputo et al. (2000a)

Our main goal is to use the Cepheids (along with the RR Lyrae stars) to map the 3D geometry of the Magellanic System. However, this is not yet feasible with the few VMC tiles observed so far. Still, we can use the PL, PW and PLC relations derived in the previous section to estimate an absolute distance to the LMC, but need to calibrate their zero points. In the following we shall use mainly the PW and PLC relations, as they appear to be less dispersed than the PL, and will rely only on "direct" measurements of their zero points, based on the trigonometric parallaxes of Galactic Cepheids, and the Baade-Wesselink method applied to LMC Cepheids.

6.3.1 Zero points from the parallax of Galactic Cepheids

Accurate parallaxes for Galactic Cepheids are available for less than 20 objects, from observations with the Hipparcos satellite (van Leeuwen et al., 2007), and the Hubble Space Telescope (Benedict et al., 2007). From van Leeuwen et al. (2007) and Benedict et al. (2007) samples we only retained stars with most accurate parallax ($\delta \pi/\pi \leq 0.2$). Photometric data (including K-band photometry) and individual reddening values for these stars were taken from Fouqué et al. (2007), while for the Lutz-Kelker corrections we followed Benedict et al. (2007). We then computed the PL, PW and PLC relations. The color term in the PLC relation turned out to be not significant, thus the PL and PLC are identical and equal to: $K_S^0 =$ $-2.44 \pm 0.12 - (3.20 \pm 0.14)logP$. Similarly, for the Wesenheit function we have: $W(V, K_S) = -2.61 \pm 0.12 - (3.28 \pm 0.13)logP$. Although rather uncertain the slopes of these relations are in good agreement with our results from the 30 Dor Cepheids within the errors. We thus adopted our slopes from the 30 Dor Cepheids for the PL and PW relations and derived their zero points:

$$K_S^0(F) = -2.36 \pm 0.05 - (3.295 \pm 0.018) logP \tag{6.1}$$

$$W(V, K_S)(F) = -2.57 \pm 0.05 - (3.325 \pm 0.014) logP$$
(6.2)

where we used a weighted average and the error on the zero point is the standard

Figure 6.7: PL, PW and PLC relation for galactic Cepheids with accurate trigonometric parallaxes.

deviation of the mean. Similarly, by adopting our value of 0.216 for the $(V - K_S)$ color coefficient in the the PLC, we obtained: $W(V, K_S)(F) = -2.68 \pm 0.12 - (3.36 \pm 0.14) log P + (0.216 \pm 0.014)(V - K_S)_0$.

Since, also the term in logP is virtually identical to our result for the LMC (-3.346 ± 0.013) , we used this value to obtain the final zero point of the PLC by following the same procedure applied for the PW:

$$K_S^0(F) = -2.69 \pm 0.05 - (3.346 \pm 0.013) \log P + (0.216 \pm 0.014) (V - K_S)_0 \quad (6.3)$$

Here the errors on the zero points, as well as an estimate of the systematic errors due to the adoption of the same slope for the Galactic and LMC Cepheids, are based on the theoretical work by Caputo et al. (2000a). The PL, PW and PLC relations obtained with this procedure are shown in Fig. 6.7. By comparing Eq. 6.2 and 6.3 with the results in Tab. 6.3, we obtain distances to the LMC based on the F-mode Cepheids of: $(m-M)_0^{TRIG}(PW) = 18.44 \pm 0.05$, and $(m-M)_0^{TRIG}(PLC) =$ 18.43 ± 0.05 , respectively.

6.3.2 Zero points from the IRSB Baade-Wesselink method

Recently, Storm et al. (2011a,b) have applied the InfraRed Surface Brightness modification of the Baade-Wesselink technique to a sample of Galactic and LMC Cepheids (36 objects in the LMC). We used their absolute magnitudes in K^2 and V to calibrate the zero points of the PW and PLC relations. As done with the Galactic Cepheids, we adopted our slopes for the PW and PLC relations and determined the zero points. The assumption is well justified in this case as both our and Storm et al. (2011b) Cepheids belong to the LMC. As a result we obtain:

$$K_S^0(F) = -2.40 \pm 0.07 - (3.295 \pm 0.018) log P$$
(6.4)

$$W(V, K_S)(F) = -2.60 \pm 0.07 - (3.325 \pm 0.014) logP$$
(6.5)

$$K_S^0(F) = -2.72 \pm 0.07 - (3.346 \pm 0.013) log P + (0.216 \pm 0.014) (V - K_S)_0 \quad (6.6)$$

where the errors on the zero points include the dispersion of the measures, as well as the estimate of the systematic error due to the uncertainty on the "p-factor" (see e.g. Storm et al., 2011a, and references therein). The new zero points are in excellent agreement with those derived from the Galactic Cepheids. These relations lead to distance moduli for the LMC of: $(m - M)_0^{IRSB}(PW) = 18.46 \pm 0.07$, and $(m - M)_0^{IRSB}(PLC) = 18.46 \pm 0.07$, respectively.

6.3.3 Zero points from the CORS Baade-Wesselink method

A different implementation of the Baade-Wesselink technique, the so-called CORS method (see e.g. Caccin et al., 1981; Ripepi et al., 1997; Molinaro et al., 2011), has been applied by Molinaro et al. (2012) to 9 Cepheids (7 F- and 2 FO-mode) belonging to NGC1866, a populous young cluster in the LMC, deriving for the cluster a distance modulus of: $(m - M)_0(NGC1866) = 18.51 \pm 0.03$. This value can be used to calibrate the PW and PLC relations following the same procedure described

²Note that these K magnitudes were transformed to the 2MASS K_S system and referred to the center of LMC using the corrections by Storm et al. (2011b).

in the previous sections, and with the advantage that we can now calibrate also the relation for the FO-mode pulsators (although only on two stars). In this case we obtain:

$$K_S^0(F) = -2.44 \pm 0.07 - (3.295 \pm 0.018) \log P \tag{6.7}$$

$$K_S^0(FO) = -2.94 \pm 0.07 - (3.471 \pm 0.035) \log P$$
(6.8)

$$W(V, K_S)(F) = -2.62 \pm 0.07 - (3.325 \pm 0.014) \log P$$
(6.9)

$$W(V, K_S)(FO) = -3.10 \pm 0.07 - (3.530 \pm 0.025) \ logP \tag{6.10}$$

$$K_S^0(F) = -2.74 \pm 0.07 - (3.346 \pm 0.013) log P + (0.216 \pm 0.014) (V - K_S)_0 \quad (6.11)$$

$$K_S^0(FO) = -3.15 \pm 0.07 - (3.545 \pm 0.026) log P + (0.163 \pm 0.014) (V - K_S)_0 \quad (6.12)$$

Here, as in the previous section the errors in the zero points include both the dispersion of the measures, and the uncertainty in the "p-factor". Averaging the results for F- and FO-mode Cepheids, we obtain distance moduli of: $(m-M)_0^{CORS}(PW) =$ 18.49 ± 0.07 , and $(m-M)_0^{CORS}(PLC) = 18.49 \pm 0.07$. The -0.02 mag difference with Molinaro et al. (2012) is likely due to the distance between NGC1866 and the LMC center.

Summary and Conclusions

In this thesis we have used pulsating stars such as the RR Lyrae stars and the Cepheids as probes of the extended structure of galaxies, their formation and evolution history, by exploiting the potential of these variables as distance indicators and stellar population tracers.

We have first focused on the study of the pulsating variable stars in two "ultrafaint" new satellites of the Milky Way, namely, Leo IV and Hercules. Our main results are:

- the discovery of pulsating stars in both systems: Leo IV hosts 3 RR Lyrae stars and one SX Phoenicis, while Hercules hosts 9 RR Lyrae stars and one Anomalous Cepheid;
- the pulsation properties of the RR Lyrae stars in both systems are consistent with the Oosterhoff dichotomy observed in the Milky Way, and qualify both Leo IV and Hercules as Oosterhoff type II systems;
- the first V, B V color-magnitude diagram (CMD) of the Leo IV dwarf, and for Hercules the deepest V, V I CMD ever obtained;
- the measure of metallicities, from the Fourier analysis of the RR Lyrae light curves, in agreement with the spectroscopic estimates: $\langle [Fe/H]^{Her}_{C09} \rangle = -2.30 \pm 0.15 \text{ dex}; \langle [Fe/H]^{Leo IV}_{C09} \rangle = -2.27 \text{ dex}.$
- accurate distances for both systems from the RR Lyrae stars: $\mu_0^{Leo\,IV} = 20.99 \pm 0.07 \text{ mag} \ (d = 158 \pm 5 \text{ kpc}), \text{ and } \mu_0^{Her} = 20.63 \pm 0.08 \text{ mag} \ (d = 134 \pm 5 \text{ kpc}),$ for $M_V = 0.54$ at [Fe/H]=-1.5 dex;
- the discovery in both galaxies of RR Lyrae stars that lie well outside the galaxy half-light radius but perfectly fall on the Horizontal Branch of the

respective CMDs, thus suggesting that these galaxies are highly likely due to the interaction with the MW.

The second part of the thesis was focused on the analysis of the RR Lyrae stars and Classical Cepheids located in the South Ecliptic Pole (SEP) field and in the 30 Doradus (30 Dor) star forming region of the LMC, on the basis of the infrared K_S time series photometry obtained by the VMC survey of the Magellanic System. Our main results in thi spart of the thesis are:

- the classification of 11 Classical Cepheids and 106 RR Lyrae stars (76 RR_{ab} and 30 RR_c in the SEP field, where no public variable stars catalogues are currently available and construction of the K_S light curves;
- measure of photometric metallicities, from the Fourier analysis of the light curves, for the RR Lyrae in the SEP field where no spectroscopic metallicity estimates are available;
- the K band average magnitudes for RR Lyrae stars and Classical Cepheids in both in the SEP and the 30 Dor fields;
- the PL_K relation for RR Lyrae stars in both fields:

$$k_0^{SEP} = (17.351 \pm 0.035) - 2.450 \pm 0.133 \times logP \tag{6.13}$$

with r.m.s.=0.082; and

$$k_0^{30Dor} = (17.454 \pm 0.019) - 2.51 \pm 0.067 \times logP \tag{6.14}$$

with a r.m.s. of 0.181.

- the distance estimate for the SEP field using several PL_K relations present in literature: $\mu_0 = 18.58 \pm 0.03$ mag; and a very preliminary distance estimate also estimate for the 30 Dor field using the same method: $\mu_0 \sim 18.7$ mag
- the PL_K , PL_KC and Wesenheit relations for Fundamental mode and First Overtone Classical Cepheids in the 30 Dor field;
- the distance estimate for the 30 Dor field using the Classical Cepheids and a number of different methods to calibrate the zero point of the PL_KC and Wesenheit relations ($\mu_0 = 18.46 \pm 0.07$.

From these results obtained for Leo IV and Hercules, we can conclude that the ultra-faint dwarf galaxies are confirmed to be best candidates of the building blocks that may have contributed to the formation of the external Galactic halo.

For what concerns the geometrical structure of the LMC is clearly not yet possible to have a comprehensive view, given the very limited number of fields available so far. However, the data quality of the VMC survey was proved to be excellent for Classical Cepheids stars and very good for RR Lyrae stars. According to our preliminary results the Classical Cepheids are confirmed to be excellent distance indicators and population tracers in the central, more crowded regions of the LMC, while the RR Lyrae stars remain best probes of in the external regions, where the crowding is not an issue and Classical Cepheids are not available. The very preliminary results from the RR Lyrae in the 30 Dor field are very puzzling and need to be understood. The zero point of the RR Lyrae magnitude-metallicity relation still remains a controversial issue, thus using the PL_K relation seems the right direction to go. 166

Bibliography

- Abbe, C. 1867, MNRAS, 27, 257
- Adén, D., Wilkinson, M. I., Read, J. I., et al. 2009, ApJL, 706, L150
- Adén, D., Eriksson, K., Feltzing, S., et al. 2011, A& A, 525, A153
- Alcock, C., et al. 2000, ApJ, 542, 281
- Alcock, C., Allsman, R. A., Alves, D. R., et al. 1998, AJ, 115, 1921
- Alibert, Y., Baraffe, I., Hauschildt, P., & Allard, F. 1999, A& A, 344, 551
- Ansari, R., Cavalier, F., Moniez, M., et al. 1996, A& A , 314, 94
- Arnaboldi, M., Dietrich, J., Hatziminaoglou, E., et al. 2008, The Messenger, 134, 42
- Baade, W., & Swope, H. H. 1961, AJ, 66, 300
- Baade, W. 1952, Trans. I.A.U., 8, 397
- Bailey, S. I. 1902, Annals of Harvard College Observatory, 38, 1
- Baird S.R., 1981, ApJ, 245, 208
- Battinelli, P., & Demers, S. 1992, AJ, 104, 1458
- Beaulieu, J. P., Grison, P., Tobin, W., et al. 1995, A& A, 303, 137
- Bell, E. F., Slater, C. T., & Martin, N. F. 2011, ApJL, 742, L15
- Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJL, 647, L111
- Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2007, ApJ, 654, 897

- Belokurov, V., Walker, M. G., Evans, N. W., et al. 2008, ApJL, 686, L83
- Belokurov, V., Walker, M. G., Evans, N. W., et al. 2009, MNRAS, 397, 1748
- Belokurov, V., Walker, M. G., Evans, N. W., et al. 2010, ApJL, 712, L103
- Benedict, G. F., McArthur, B. E., Fredrick, L. W., et al. 2002, AJ, 123, 473
- Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2007, AJ, 133, 1810
- Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2011, AJ, 142, 187
- Bertin, E., & Arnouts, S. 1996, A& A Supp. , 117, 393
- Besla, G., Kallivayalil, N., Hernquist, L., et al. 2007, ApJ, 668, 949
- Besla, G., Kallivayalil, N., Hernquist, L., et al. 2010, ApJL, 721, L97
- Bland-Hawthorn, J., Sutherland, R., Agertz, O., & Moore, B. 2007, ApJL , 670, L109
- Blažko, S. 1907, Astronomische Nachrichten, 175, 325
- Blumenthal, G. R., Faber, S. M., Primack, J. R., & Rees, M. J. 1984, Nature , 311, 517
- Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A& A Supp. , 143, 33
- Bono, G., Caputo, F., Castellani, V., & Marconi, M. 1996, ApJL, 471, L33
- Bono, G., Caputo, F., Santolamazza, P., Cassisi, S., & Piersimoni, A. 1997, AJ , 113, 2209
- Bono, G., Caputo, F., Castellani, V., Marconi, M., & Storm, J. 2001, MNRAS, 326, 1183
- Bono, G., Groenewegen, M. A. T., Marconi, M., & Caputo, F. 2002, ApJL , 574, L33
- Bono, G., Caputo, F., Castellani, V., Marconi, M., Storm, J., & Degl'Innocenti, S. 2003, MNRAS, 344, 1097

- Bono, G., Marconi, M., Cassisi, S., et al. 2005, ApJ, 621, 966
- Borissova, J., Minniti, D., Rejkuba, M., et al. 2004, A& A, 423, 97
- Borissova, J., Minniti, D., Rejkuba, M., & Alves, D. 2006, A& A, 460, 459
- Borissova, J., Rejkuba, M., Minniti, D., Catelan, M., & Ivanov, V. D. 2009, A& A , 502, 505
- Bragaglia, A., Gratton, R. G., Carretta, E., et al. 2001, AJ, 122, 207
- Braun, R., & Thilker, D. A. 2004, A& A, 417, 421
- Brüns, C., Kerp, J., Staveley-Smith, L., et al. 2005, A& A, 432, 45
- Buonanno, R., Corsi, C., Bellazzini, M., Ferraro, F. R., Fusi Pecci, 1997, AJ, 113, 706
- Cacciari, C., Corwin, T. M., & Carney, B. W. 2005, AJ, 129, 267
- Cacciari, C., & Clementini, G. 2003, Stellar Candles for the Extragalactic Distance Scale, 635, 105
- Caccin, R., Onnembo, A., Russo, G., & Sollazzo, C. 1981, A& A, 97, 104
- Capaccioli, M., Mancini, D., & Sedmak, G. 2005, The Messenger, 120, 10
- Caputo, F., & degl'Innocenti, S. 1995, A& A , 298, 833
- Caputo, F. 1998, A&ARv, 9, 33
- Caputo, F., Marconi, M., & Musella, I. 2000, A& A, 354, 610
- Caputo, F., Castellani, V., Marconi, M., & Ripepi, V. 2000, MNRAS, 316, 819
- Caputo, F., Castellani, V., Degl'Innocenti, S., Fiorentino, G., & Marconi, M. 2004, A& A , 424, 927
- Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
- Carpenter, J. M. 2001, AJ, 121, 2851

- Carollo, D., Beers, T. C., Lee, Y. S., et al. 2007, Nature , 450, 1020
- Carretta, E., & Gratton, R. G. 1997, A& A Supp. , 121, 95
- Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A& A, 505, 117
- Cassisi, S., Castellani, M., Caputo, F., & Castellani, V. 2004, A& A, 426, 641
- Catelan, M., Pritzl, B. J., & Smith, H. A. 2004, Astrop. J. Supp., 154, 633
- Catelan, M. 2009, Ap& SS, 320, 261
- Chiba, M., & Beers, T. C. 2000, AJ, 119, 2843
- Cioni, M.-R., Loup, C., Habing, H. J., et al. 2000, A& A Supp. , 144, 235
- Cioni, M.-R. L., van der Marel, R. P., Loup, C., & Habing, H. J. 2000, A& A , 359, 601
- Cioni, M.-R. L., Clementini, G., Girardi, L., et al. 2011, A& A, 527, A116
- Clement, C. M., & Rowe, J. 2000, AJ, 120, 2579
- Clement, C. M., Muzzin, A., Dufton, Q., et al. 2001, AJ, 122, 2587
- Clementini, G., Di Tomaso, S., Di Fabrizio, L., et al. 2000, AJ, 120, 2054
- Clementini, G., Gratton, R., Bragaglia, A., et al. 2003, AJ, 125, 1309
- Clementini, G. 2010, Variable Stars, the Galactic halo and Galaxy Formation, Eds. N. Samus, C. Sterken, L. Szabados, Sternberg Astronomical Institute Publications, p. 111, (arXiv:1002.1575)
- Clementini, G. 2011, EAS Publications Series, 45, 267
- Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, MNRAS, 271, 781
- Coleman, M. G., de Jong, J. T. A., Martin, N. F., et al. 2007, ApJL, 668, L43
- Connors, T. W., Kawata, D., & Gibson, B. K. 2006, MNRAS, 371, 108

- Coppola, G., Dall'Ora, M., Ripepi, V., et al. 2011, MNRAS, 416, 1056
- Correnti, M., Bellazzini, M., Ibata, R. A., Ferraro, F. R., & Varghese, A. 2010, ApJ , 721, 329
- Cox, J. P., & Whitney, C. 1958, ApJ, 127, 561
- Cross, N. J. G., Collins, R. S., Hambly, N. C., et al. 2009, MNRAS, 399, 1730
- Da Costa, G. S., & Armandroff, T. E. 1995, AJ, 109, 2533
- Dall'Ora, M., Ripepi, V., Caputo, F., et al. 2003, AJ, 126, 197
- Dall'Ora, M., et al. 2004, ApJ, 610, 269
- Dall'Ora, M., Clementini, G., Kinemuchi, K., et al. 2006, ApJL, 653, L109
- Dall'Ora et al. in preparation
- Dalton, G. B., Caldwell, M., Ward, A. K., et al. 2006, Proc. SPIE, 6269,
- Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371
- Del Principe, M., Piersimoni, A. M., Storm, J., et al. 2006, ApJ, 652, 362
- Demers, S., & Harris, W. E. 1974, AJ, 79, 627
- Di Criscienzo, M., Marconi, M., & Caputo, F. 2004, ApJ, 612, 1092
- Di Criscienzo, M., Caputo, F., Marconi, M., & Cassisi, S. 2007, A& A, 471, 893
- Di Fabrizio, L., Clementini, G., Maio, M., Bragaglia, A., Carretta, E., Gratton, R., Montegriffo, P., & Zoccali, M. 2005, A& A , 430, 603
- Dolphin, A. E. 2000, PASP, 112, 1383
- Durrell, P. R., & Harris, W. E. 1993, AJ, 105, 1420
- Eddington, A. S. 1926, The Observatory, 49, 88
- Efremov, Y. N. 2003, Astronomy Reports, 47, 1000
- Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748

- Emerson, J. P. 2001, The New Era of Wide Field Astronomy, 232, 339
- Elmegreen, B. G., & Efremov, Y. N. 1996, ApJ, 466, 802
- Emerson, J., McPherson, A., & Sutherland, W. 2006, The Messenger, 126, 41
- Epchtein, N., Deul, E., Derriere, S., et al. 1999, A& A, 349, 236
- Ferguson, A. M. N., Chapman, S., Ibata, R., et al. 2006, Planetary Nebulae Beyond the Milky Way, 286
- Fernley, J., Skillen, I., Carney, B. W., Cacciari, C., & Janes, K. 1998, MNRAS, 293, L61
- Ferraro, F. R., Paltrinieri, B., Fusi Pecci, F., et al. 1997, ApJL, 484, L145
- Fiorentino, G., & Monelli, M. 2012, arXiv:1202.2752
- Fouqué, P., Arriagada, P., Storm, J., et al. 2007, A& A , 476, 73
- Frebel, A., Johnson, J. L., & Bromm, V. 2009, MNRAS, 392, L50
- Freedman, W. L., & Madore, B. F. 1990, ApJ , 365, 186
- Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47
- Gardiner, L. T., & Noguchi, M. 1996, MNRAS, 278, 191
- Gingold, R. A. 1976, ApJ, 204, 116
- Graham, J. A. 1975, PASP, 87, 641
- Gratton, R. G., Bragaglia, A., Clementini, G., Carretta, E., Di Fabrizio, L., Maio, M., & Taribello, E. 2004, A& A , 421, 937
- Gratton, R. G., Carretta, E., Bragaglia, A., Lucatello, S., D'Orazi, V. 2010, A&A, 517, 81
- Grebel, E. K. 2005, IAU Colloq. 198: Near-fields cosmology with dwarf elliptical galaxies, 1
- Greco, C., Dall'Ora, M., Clementini, G., et al. 2008, ApJL, 675, L73

- Grillmair, C. J. 2006, ApJL, 645, L37
- Grillmair, C. J. 2009, ApJ, 693, 1118
- Groenewegen, M. A. T. 2000, A& A , 363, 901
- Groenewegen, M. A. T., & Oudmaijer, R. D. 2000, A& A, 356, 849
- Guhathakurta, P., & Reitzel, D. B. 1998, Galactic Halos, 136, 22
- Gullieuszik, M., Groenewegen, M. A. T., Cioni, M. -. L., et al. 2011, arXiv:1110.4497
- Hacking P. et al., 1985, PASP, 97, 616
- Hambly, N. C., Collins, R. S., Cross, N. J. G., et al. 2008, MNRAS, 384, 637
- Harris, J. 2007, ApJ, 658, 345
- Haschke, R., Grebel, E. K., & Duffau, S. 2011, AJ, 141, 158
- Hayashi, E., Navarro, J. F., Taylor, J. E., Stadel, J., & Quinn, T. 2003, ApJ , 584, 541
- Heitsch, F., & Putman, M. E. 2009, ApJ, 698, 1485
- Helmi, A., Irwin, M. J., Tolstoy, E., et al. 2006, ApJL, 651, L121
- Hubble, E. P. 1936, Realm of the Nebulae, by E.P. Hubble. New Haven: Yale University Press, 1936. ISBN 9780300025002,
- Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Nature, 370, 194
- Ibata, R. A., Gilmore, G., & Irwin, M. J. 1995, MNRAS, 277, 781
- Ibata, R., Irwin, M., Lewis, G., Ferguson, A. M. N., & Tanvir, N. 2001, Nature , 412, 49
- Irwin, M. J., Kunkel, W. E., & Demers, S. 1985, Nature, 318, 160
- Irwin, M., & Hatzidimitriou, D. 1995, MNRAS, 277, 1354
- Irwin, M. J., Lewis, J., Hodgkin, S., et al. 2004, Proc. SPIE, 5493, 411

- Irwin, M. J., Belokurov, V., Evans, N. W., et al. 2007, ApJL, 656, L13
- Johnson, J. A., & Bolte, M. 1998, ApJ, 115, 693
- Johnson, J. A., & Bolte, M. 1998, AJ, 115, 693
- Jones, R. V., Carney, B. W., & Fulbright, J. P. 1996, PASP, 108, 877
- Jurcsik, J. 1995, Acta Astron., 45, 653
- Jurcsik, J., & Kovacs, G. 1996, A& A, 312, 111
- Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006, ApJ, 652, 1213
- Kallivayalil, N., van der Marel, R. P., Alcock, C., et al. 2006, ApJ, 638, 772
- Kaluzny, J., Kubiak, M., Szymanski, M., et al. 1997, A& A Supp. , 125, 343
- Kaluzny, J., Mochnacki, S., & Rucinski, S. M. 2006, AJ, 131, 407
- Kapakos, E., Hatzidimitriou, D., & Soszyński, I. 2011, MNRAS, 415, 1366
- Kauffmann, G., & White, S. D. M. 1993, MNRAS, 261, 921
- Kauffmann, G., & et al. 1999, Evolution of Large Scale Structure : From Recombination to Garching, 307
- Kereš, D., & Hernquist, L. 2009, ApJL, 700, L1
- King, D. S., & Cox, J. P. 1968, PASP, 80, 365
- Kirby, E. N., Simon, J. D., Geha, M., Guhathakurta, P., & Frebel, A. 2008, ApJL , 685, L43
- Kirby, E. N., Guhathakurta, P., Bolte, M., Sneden, C., & Geha, M. C. 2009, ApJ , 705, 328
- Kirby, E. N., Guhathakurta, P., Simon, J. D., et al. 2010, Astrop. J. Supp. , 191, 352
- Koch, A., McWilliam, A., Grebel, E. K., Zucker, D. B., & Belokurov, V. 2008, ApJL, 688, L13

- Kovács, G., & Walker, A. R. 2001, A& A, 371, 579
- Kraft, R. P., & Schmidt, M. 1963, ApJ, 137, 249
- Kravtsov, A. V., Klypin, A. A., Bullock, J. S., & Primack, J. R. 1998, ApJ, 502, 48
- Kubiak, M., & Udalski, A. 2003, Acta Astron., 53, 117
- Kuehn, C., Kinemuchi, K., Ripepi, V., et al. 2008, ApJL, 674, L81
- Landolt, A. U. 1992, AJ, 104, 340
- Laney, C. D., & Stobie, R. S. 1986, MNRAS, 222, 449
- Laney, C. D., & Stobie, R. S. 1994, MNRAS, 266, 441
- Lasker, B. M., Lattanzi, M. G., McLean, B. J., et al. 2008, AJ, 136, 735
- Leavitt, H. S., & Pickering, E. C. 1912, Harvard College Observatory Circular, 173, 1
- Lee, Y.-W., Demarque, P., & Zinn, R. 1994, ApJ, 423, 248
- Liu, T., & Janes, K. A. 1990, ApJ, 354, 273
- Lindegren, L., & Perryman, M. A. C. 1996, A& A Supp. , 116, 579
- Lindegren, L. 2010, IAU Symposium, 261, 296
- Longmore, A. J., Fernley, J. A., & Jameson, R. F. 1986, MNRAS, 220, 279
- Madore, B. F., & Freedman, W. L. 1991, PASP, 103, 933
- Madore, B. F., & Freedman, W. L. 2012, ApJ, 744, 132
- Marconi, M., Fiorentino, G., & Caputo, F. 2004, A& A, 417, 1101
- Marconi, M., Musella, I., & Fiorentino, G. 2005, ApJ, 632, 590
- Marconi, M., Bono, G., Caputo, F., et al. 2006, Mem. S.A.It., 77, 67
- Marconi, M., & Di Criscienzo, M. 2007, A& A, 467, 223

- Marquette, J. B. 1999, New Views of the Magellanic Clouds, 190, 523
- Martin, N. F., Ibata, R. A., Bellazzini, M., et al. 2004, MNRAS, 348, 12
- Martin, N. F., de Jong, J. T. A., & Rix, H.-W. 2008, ApJ, 684, 1075
- Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., & Stadel, J. 2005, MNRAS, 363, 509
- Mastropietro, C. 2009, IAU Symposium, 256, 117
- Mateo, M. L. 1998, AR&A, 36, 435
- Mathewson, D. S., Cleary, M. N., & Murray, J. D. 1974, ApJ, 190, 291
- Matsunaga, N., Fukushi, H., Nakada, Y., et al. 2006, MNRAS, 370, 1979
- Matsunaga, N., Kawadu, T., Nishiyama, S., et al. 2011, Nature, 477, 188
- McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2003, MNRAS, 343, 1335
- McGonegal, R., McAlary, C. W., Madore, B. F., & McLaren, R. A. 1982, ApJL, 257, L33
- McClure-Griffiths, N. M., Pisano, D. J., Calabretta, M. R., et al. 2009, Astrop. J. Supp. , 181, 398
- McNamara, D. H. 1995, AJ, 109, 2134
- McNamara, D. H., Clementini, G., & Marconi, M. 2007, AJ, 133, 2752
- Meylan, G., & Heggie, D. C. 1997, A&ARv, 8, 1
- Miszalski, B., Napiwotzki, R., Cioni, M.-R. L., et al. 2011, A& A, 531, A157
- Meschin, I., Gallart, C., Aparicio, A., Cassisi, S., & Rosenberg, A. 2009, AJ , 137, 3619
- Meylan, G., Sarajedini, A., Jablonka, P., et al. 2001, AJ, 122, 830
- Molinaro, R., Ripepi, V., Marconi, M., et al. 2011, MNRAS, 413, 942

- Molinaro, R., Ripepi, V., Marconi, M., et al. 2012, arXiv:1201.3478
- Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJL , 524, L19
- Moretti, M. I., Dall'Ora, M., Ripepi, V., et al. 2009, ApJL, 699, L125
- Morgan, S. M., Wahl, J. N., & Wieckhorst, R. M. 2007, MNRAS, 374, 1421
- Morris, P. W., Reid, I. N., Griffiths, W. K., & Penny, A. J. 1994, MNRAS , 271, 852
- Musella, I., Ripepi, V., Clementini, G., et al. 2009, ApJL, 695, L83
- Musella et al. in preparation
- Newberg, H. J., Yanny, B., Rockosi, C., et al. 2002, ApJ, 569, 245
- Nemec, J. M., Nemec, A. F. L., & Lutz, T. E. 1994, AJ, 108, 222
- Nidever, D. L., Majewski, S. R., Butler Burton, W., & Nigra, L. 2010, ApJ , 723, 1618
- Norris, J., & Zinn, R. 1975, ApJ, 202, 335
- Oosterhoff, P. T. 1939, The Observatory, 62, 104
- Paczynski, B. 1986, ApJ, 304, 1
- Payne-Gaposchkin, C. H. 1971, Smithsonian Contributions to Astrophysics, 13,
- Persson, S. E., Madore, B. F., Krzemiński, W., et al. 2004, AJ, 128, 2239
- Petersen, J. O. 1973, A& A, 27, 89
- Piersimoni, A. M., Bono, G., & Ripepi, V. 2002, AJ , 124, 1528
- Piersimoni, A. M., Bono, G., & Ripepi, V. 2002, AJ, 124, 1528
- Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797
- Piatek, S., Pryor, C., & Olszewski, E. W. 2008, AJ, 135, 1024

- Pojmanski, G. 1997, Acta Astron., 47, 467
- Poretti, E. 2003, A& A, 409, 1031
- Poretti, E., Clementini, G., Held, E. V., et al. 2008, ApJ, 685, 947
- Preston, G. W. 1959, ApJ, 130, 507
- Pritzl, B. J., Smith, H. A., Catelan, M., & Sweigart, A. V. 2002, AJ, 124, 949
- Pritzl, B. J., Smith, H. A., Stetson, P. B., et al. 2003, AJ, 126, 1381
- Putman, M. E., Staveley-Smith, L., Freeman, K. C., Gibson, B. K., & Barnes, D. G. 2003, ApJ , 586, 170
- Reid, M. J., Menten, K. M., Zheng, X. W., et al. 2009, ApJ, 700, 137
- Reitzel, D. B., & Guhathakurta, P. 2002, AJ, 124, 234
- Renault, C., Aubourg, E., Bareyre, P., et al. 1998, A& A, 329, 522
- Richardson, J. C., Irwin, M. J., McConnachie, A. W., et al. 2011, ApJ, 732, 76
- Ripepi, V., Barone, F., Milano, L., & Russo, G. 1997, A& A, 318, 797
- Rodríguez, E., & López-González, M. J. 2000, A& A , 359, 597
- Rubele, S., Kerber, L., Girardi, L., et al. 2011, arXiv:1110.5852
- Saha, A., Sandage, A., Tammann, G. A., et al. 2001, ApJ, 562, 314
- Sand, D. J., Olszewski, E. W., Willman, B., et al. 2009, ApJ, 704, 898
- Sandage, A. 1981, ApJL, 244, L23
- Sandage, A. 1981, ApJ, 248, 161
- Sandage, A. 1990, J. Roy. Astron. Soc. Can., 84, 70
- Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
- Schwarzenberg-Czerny, A. 1996, ApJL, 460, L107
- Searle, L., & Zinn, R. 1978, ApJ, 225, 357
- Shapley, H., & McKibben Nail, V. 1955, Proceedings of the National Academy of Science, 41, 829
- Shattow, G., & Loeb, A. 2009, MNRAS, 392, L21
- Schwarzschild, M., & Harm, R. 1970, ApJ, 160, 341
- Simon, J. D., & Geha, M. 2007, ApJ, 670, 313
- Simon, N. R., & Teays, T. J. 1982, ApJ, 261, 586
- Skillen, I., Fernley, J. A., Stobie, R. S., & Jameson, R. F. 1993, MNRAS, 265, 301
- Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
- Slater, C. T., Bell, E. F., & Martin, N. F. 2011, ApJL, 742, L14
- Smith, H. A., Silbermann, N. A., Baird, S. R., & Graham, J. A. 1992, AJ , 104, 1430
- Smith, H. A., & Wehlau, A. 1985, ApJ, 298, 572
- Sollima, A., Cacciari, C., & Valenti, E. 2006, MNRAS, 372, 1675
- Sollima, A., Cacciari, C., Arkharov, A. A. H., et al. 2008, MNRAS, 384, 1583
- Soszynski, I., Udalski, A., Szymanski, M., et al. 2002, Acta Astron., 52, 369
- Soszyński, I., Poleski, R., Udalski, A., et al. 2008, Acta Astron., 58, 163
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2008, Acta Astron., 58, 293
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2009, Acta Astron., 59, 1
- Soszyński, I., Poleski, R., Udalski, A., et al. 2010, Acta Astron., 60, 17
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2010, Acta Astron., 60, 165
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2010, Acta Astron., 60, 91

Stetson, P. B. 1987, PASP, 99, 191

- Stetson, P. B. 1994, PASP, 106, 250
- Storm, J., Gieren, W., Fouqué, P., et al. 2011, A& A , 534, A95
- Storm, J., Gieren, W., Fouqué, P., et al. 2011, A& A , 534, A94
- Stumpff, P. 1980, A& A Supp. , 41, 1
- Szewczyk, O., et al. 2008, AJ, 136, 272
- Szymanski, M. K. 2005, Acta Astron., 55, 43
- Testa, V., Marconi, M., Musella, I., et al. 2007, A& A, 462, 599
- Tisserand, P., et al. 2007, A& A , 469, 387
- Toomre, A., & Toomre, J. 1972, ApJ, 178, 623
- Turon, C., Luri, X., & Masana, E. 2012, arXiv:1202.3645
- Udalski, A., Szymanski, M., Kaluzny, J., Kubiak, M., & Mateo, M. 1992, Acta Astron., 42, 253
- Udalski, A., Szymanski, M., Kaluzny, J., et al. 1993, Acta Astron., 43, 289
- Udalski, A., Kubiak, M., & Szymanski, M. 1997, Acta Astron., 47, 319
- Udalski, A., Soszynski, I., Szymanski, M., et al. 1999, Acta Astron., 49, 223
- Udalski, A., Soszynski, I., Szymanski, M., et al. 1999, Acta Astron., 49, 437
- Udalski, A. 2003, Acta Astron., 53, 291
- Udalski, A., Szymanski, M. K., Soszynski, I., & Poleski, R. 2008, Acta Astron. , 58, 69
- van Albada, T. S., & Baker, N. 1971, ApJ , 169, 311
- van den Bergh, S., & Mackey, A. D. 2004, MNRAS, 354, 713
- van der Marel, R. P., & Cioni, M.-R. L. 2001, AJ , 122, 1807

- van Leeuwen, F., Feast, M. W., Whitelock, P. A., & Laney, C. D. 2007, MNRAS , 379, 723
- Walker, A. R. 1994, AJ, 108, 555
- Wallerstein, G. 1970, ApJ, 160, 345
- Wallerstein, G. 2002, PASP , 114, 689
- Walsh, S. M., Jerjen, H., & Willman, B. 2007, ApJL, 662, L83
- Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., & Dekel, A. 2002, ApJ, 568, 52
- Weiner, B. J., & Williams, T. B. 1996, AJ, 111, 1156
- Welch, D. L., Alcock, C., Allsman, R. A., et al. 1997, Variables Stars and the Astrophysical Returns of the Microlensing Surveys, 205
- Weldrake, D. T. F., Sackett, P. D., Bridges, T. J., & Freeman, K. C. 2004, AJ , 128, 736
- Westerlund, B. E. 1997, Book,
- Willman, B., Blanton, M. R., West, A. A., et al. 2005, AJ, 129, 2692
- Willman, B., Dalcanton, J. J., Martinez-Delgado, D., et al. 2005, ApJL, 626, L85
- Woolley, R. V. D. R., Sandage, A. R., Eggen, O. J., et al. 1962, Royal Greenwich Observatory Bulletins, 58, 31
- Yanny, B., Newberg, H. J., Grebel, E. K., et al. 2003, ApJ, 588, 824
- York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579
- Zaritsky, D., Harris, J., Grebel, E. K., & Thompson, I. B. 2000, ApJL, 534, L53
- Zaritsky, D., & Harris, J. 2004, ApJ, 604, 167
- Zaritsky, D., Harris, J., Thompson, I. B., & Grebel, E. K. 2004, AJ, 128, 1606
- Zentner, A. R., & Bullock, J. S. 2003, ApJ, 598, 49

- Zhevakin, S. A. 1953, Astr. Zh. 30, 161
- Zinn, R., & Searle, L. 1976, ApJ , 209, 734
- Zinn, R. 1980, Globular Clusters, 191
- Zinn, R., & West, M. J. 1984, Astrop. J. Supp., 55, 45
- Zucker, D. B., Belokurov, V., Evans, N. W., et al. 2006, ApJL, 643, L103
- Zucker, D. B., Belokurov, V., Evans, N. W., et al. 2006, ApJL , 650, L41