
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN
INFORMATICA

Ciclo XXIV

Settore Concorsuale di afferenza: 01/B1
Settore Scientifico disciplinare: INF01

Semantic Publishing: issues, solutions
and new trends in scholarly publishing

within the Semantic Web era

Presentata da: Silvio Peroni

Coordinatore Dottorato: Relatore:
Maurizio Gabbrielli Paolo Ciancarini

Esame finale anno 2012

Abstract

This thesis aims at introducing theories, formalisms and applications for opening
up Semantic Publishing to an effective interaction between scholarly documents and
their related semantic and formal descriptions. Namely, I investigate and propose
solutions for three of the main issues that semantic publishing promises to address:
the need of tools for linking document text to a formal representation of its meaning,
the lack of complete metadata schemas for describing documents according to the
publishing vocabulary, and the absence of effective user interfaces for easily acting
on semantic publishing models and theories.

The first part of my work is about markup theory and technology. A better
comprehension of a document derives from its structural organisation and from
the formal semantics defined within it. In digital documents, the way we use to
say something about a text is that of markup. Markup has been used for years
for decorating documents at all levels of granularity, from the digital document
as a whole to its sub-components. However, the most commonly used document
formats in publishing (i.e., XML and PDF) were not developed to enable semantic
enhancement, although it may be possible in principle to use them for this purpose.
Trying to fill the gap between document markup and semantic markup, I have
developed an OWL-based markup metalanguage called EARMARK. The basic idea
is that EARMARK documents are collections of addressable text fragments, and
such fragments are associated to OWL assertions that describe structural features
as well as semantic properties of (parts of) that content.

Of course, (digital) documents and their content represent the core aspect of
Semantic Publishing, since it promotes their discovery and connection to document-
related resources and contexts, such as other articles and raw scientific data. Un-
fortunately, existing Semantic Web vocabularies are too abstract and incomplete to
cover all the needs claimed by the actors involved in the publishing process (pub-
lishers, editors, authors, etc.). Thus, there is an acute need for new standards
(ontologies) that comprehensively cover all the different aspects of the publishing
domain. Trying to address these issues, in the central part of my work I propose
a suite of orthogonal and complementary OWL 2 DL ontology modules, called Se-

iii

mantic Publishing And Referencing (SPAR) ontologies, for describing all the aspects
of bibliographic publications as comprehensive machine-readable RDF metadata.

Finally, in the last part of my thesis I deal with the issue of enabling users to use
and interact with semantic technologies and semantic data. This aspect is particu-
larly crucial for Semantic Publishing, since its end-users are publishers, researchers,
readers, librarians and the like rather than experts in semantic technologies. The use
semantic models and data should be supported by proper interfaces that simplify the
work of Semantic Publishing people. In this thesis I illustrate my personal contri-
bution in this direction. I introduce four different tools that I developed to support
users when understanding an ontology (LODE, KC-Viz), when formalising/present-
ing it (Graffoo), and when defining semantic data according to it (Gaffe).

iv

Acknowledgements

I have never been able to write acknowledgements. I always feel to forget somebody
– by the way, I am quite sure it will happen again. Actually, it is already happening.
Let me begin.

First of all, I would like to thanks my family, especially Tiziana for having always
and unconditionally endured, supported and encouraged me in everything.

A big thanks to my tutor, prof. Fabio Vitali, who has involved me in his extraor-
dinary research group and who has continuously encouraged me, my ideas and my
work – it is really a pleasure working with you. Another thanks to the rest of my
commissione, my advisor prof. Paolo Ciancarini and prof. Claudio Sacerdoti Coen,
for having always been ready to discuss my Ph.D. topics.

I would also like to thank other two people who have been fundamental to my
research: prof. Enrico Motta and prof. David Shotton. I am really pleased to have
been part of their respective research groups.

Another big thanks goes to all my external referees – namely, dr. Jeni Tennison,
prof. Yves Marcoux, prof. Pompeu Casanovas and prof. Daniel Apollon – for their
precious comments and advices.

Last but not least, I would like to thank all the other members of my research
group, dr. Angelo Di Iorio, Gioele Barabucci and Francesco Poggi, for having sup-
ported my work.

v

vi

Contents

Abstract iii

Acknowledgements v

List of Tables xiii

List of Figures xv

1 Introduction 1

2 The digital publishing revolution 5
2.1 Towards semantics-aware markup languages 7

2.1.1 Overlapping markup . 8
2.1.2 Markup semantics and semantic markup 11

2.2 Metadata schema, vocabularies and ontologies for publishing 14
2.2.1 Dublin Core . 14
2.2.2 PRISM . 15
2.2.3 BIBO . 15
2.2.4 MARC 21 . 16
2.2.5 FRBR . 17
2.2.6 SWAN Citations Ontology . 19
2.2.7 SKOS . 19

2.3 How to help users: tools and applications for semantic data 20
2.3.1 Ontology documentation . 20
2.3.2 Ontology sense-making . 22
2.3.3 Visual modelling of ontologies 24
2.3.4 Authoring tools for ontologies 25

2.4 Projects, conferences and initiatives about Semantic Publishing . . . 28
2.4.1 JISC’s Open Citation and Open Bibliography projects 28
2.4.2 JISC’s Lucero project . 29

vii

2.4.3 SePublica and Linked Science 30
2.4.4 Beyond Impact, the PDF and Research Communication 30
2.4.5 New Models of Semantic Publishing in Science 31

3 Enhancing markup documents 33
3.1 EARMARK, a Semantic Web approach to metamarkup 34

3.1.1 Ghost classes . 36
3.1.2 Shell classes . 39
3.1.3 An example and an API . 41

3.2 The issue of overlapping markup . 43
3.2.1 Range and markup item overlap 44
3.2.2 EARMARK as a standoff notation 46
3.2.3 Looking for authorial changes in Office Documents 48

EARMARK for processing office documents 50
An evaluation . 56

3.2.4 Overlapping with Microformats and RDFa 58
3.2.5 Wikis: no overlapping where some should be 61

3.3 Structural validation of semantically-defined markup 67
3.3.1 Defining content-models on EARMARK documents 67
3.3.2 Structural patterns . 70

Assessing structural patterns on EARMARK documents . . . 71
Experimental results . 74

3.3.3 Validation of document markup 75
3.4 Dealing with Markup Semantics . 76

3.4.1 Searches on heterogeneous digital libraries 80
3.4.2 Validation of “Markup sensibility” 82

4 The Semantic Publishing And Referencing Ontologies 89
4.1 Representing bibliographic information using FaBiO 91

4.1.1 Bibliographic reference metadata encoding using DC Terms . 92
4.1.2 Bibliographic reference metadata encoding using BIBO 94
4.1.3 Bibliographic reference metadata encoding using FRBR 96
4.1.4 Bibliographic reference metadata encoding using FaBiO 97

Using external models . 99
Extending FRBR within FaBiO 100
Categorising bibliographic resources with SKOS 101

4.2 Characterising citations with CiTO 103
4.3 Documents and their bibliographic references 107

4.3.1 Describing the bibliographic reference lists of articles with BiRO109

viii

An URI for the reference . 110

Semantic enhancement of literal elements in references 111

EARMARK ranges for describing references 114

4.3.2 C4O: how much, where and what someone is citing 116

4.4 Characterising document parts with DoCO 120

4.4.1 Building blocks for structuring documents 121

4.4.2 Mixing rhetorical characterisation and structural components . 124

4.5 In the past you were it, now you are not it 127

4.5.1 Using class subsumptions . 128

4.5.2 Using property links . 128

4.5.3 Using inter-linked classes . 130

4.5.4 Using n-ary class modelling 133

4.5.5 A general pattern for roles and statuses 134

Querying a TOC-based model via SPARQL 136

Reusing external classes as categories 137

Constructing second-order inferences 138

4.5.6 Identifying person’s roles with PRO 139

4.5.7 Specifying document statuses with PSO 141

4.6 Describing publishing workflows with PWO 145

4.7 How communities uptake SPAR . 149

4.7.1 SWAN ontology . 149

4.7.2 CiteULike . 151

4.7.3 WordPress . 151

4.7.4 Linked Education . 151

4.7.5 Virtual Observatory . 151

4.7.6 Open Citations Corpus . 151

4.7.7 WebTracks . 152

4.7.8 Società editrice il Mulino . 152

4.7.9 Utopia . 153

ix

5 Interfaces for the masses 155

5.1 LODE: generating HTML documentation from ontologies 156

5.1.1 What axioms are used to create the documentation 157

5.1.2 Special parameters to call the service 159

Parameter “owlapi” . 161

Parameter “imported” . 161

Parameter “closure” . 161

Parameter “reasoner” . 161

Parameter “lang” . 162

5.1.3 URI fragments . 162

5.1.4 Content negotiation via .htaccess 162

5.2 KC-Viz, a tool for visualising and navigating ontologies 163

5.2.1 Key Concept Extraction . 165

5.2.2 KC-Viz main features . 166

Description of nodes and arcs 167

Expansion . 167

Hiding . 168

Refresh visualization . 169

Integration with NeOn . 169

Dashboard . 170

Preferences . 172

5.2.3 Empirical evaluation . 172

5.3 Graffoo, a framework for visual ontology modelling 176

5.3.1 Introducing classes and properties 178

5.3.2 Defining restrictions and additional class axioms 179

5.3.3 Linking class individuals . 180

5.3.4 Defining assertions between ontologies 180

5.4 Gaffe, a flexible and user-friendly authoring tool for semantic data . . 183

5.4.1 OWiki: ontology-driven generation of templates and forms for
semantic wikis . 185

The architecture of OWiki . 186

Using ontologies to model the domain 187

Using ontologies to model the interface 189

5.4.2 Studying OWiki through a use-case 190

From ontologies to forms . 190

Forms customization and filling 191

From semantic data to templates and views 192

x

6 Conclusions 195
6.1 EARMARK: future works . 197
6.2 SPAR: future works . 198
6.3 LODE: future works . 198
6.4 KC-Viz: future works . 199
6.5 Graffoo: future works . 199
6.6 Gaffe: future works . 199

References 201

xi

xii

List of Tables

3.1 All the versions of a wiki page modified by different authors. 63
3.2 A brief summary of the structural pattern theory of [43] extended

with two more patterns: headed container and popup. 86
3.3 Testing associations between elements and patterns on the “Paradise

Lost” example through an OWL reasoner. 87

4.1 Mappings between TOC entities and PRO classes. 140
4.2 Mappings between TOC entities and PSO classes. 143

5.1 Ontology Engineering Tasks. 173
5.2 Usability scores. 175

xiii

xiv

List of Figures

2.1 The four FRBR layers, with a specification of roles that people may
play in each layer. 18

3.1 A Graffoo (see Section 5.3) representation of the EARMARK ontology. 35

3.2 Three EARMARK examples of overlapping between elements p. . . . 45

3.3 Encoding in EARMARK the ODT change-tracking example. 51

3.4 A graph summarizing the results of the first experiment. 57

3.5 A graph summarizing the results of the second experiment. 58

3.6 The abstract model of the EARMARK document solving the micro-
formats issue. 61

3.7 The wiki sample versions encoded in a single EARMARK document. 66

3.8 Graffoo diagram that summarises the classes describing the pattern
theory. 73

3.9 The EARMARK document, in the form of a graph, of the first three
verses of the Paradise Lost by John Milton. 74

3.10 A diagram summarizing the ontology pattern linguistic act. 78

4.1 A simple architectural diagram showing the interactions and depen-
dencies between the component ontologies of SPAR. 91

4.2 The main FRBR object properties relating FRBR endeavours (work,
expression, manifestation, item), and the related new object proper-
ties introduced by FaBiO (fabio:hasManifestation, fabio:hasRepresentation,
fabio:hasPortrayal) to provide shortcuts between Work and Manifes-
tation, Work and Item, and Expression and Item, respectively. 102

4.3 The extension to the common SKOS classes and relations imple-
mented in FaBiO. 103

xv

4.4 The diagram shows the CiTO v 2.0 object properties grouped in terms
of their characterisation as rhetorical and/or factual, and, for the for-
mer, in terms of their connotation (positive, neutral or negative). All
the properties shown, except cito:cites and cito:sharesAuthorsWith,
are sub-properties of cito:cites itself. The inverse property of cito:cites,
namely cito:isCitedBy, and its inverse sub-properties, are not shown. . 106

4.5 Graffoo diagram summarising the Bibliographic Reference Ontology
(BiRO). 110

4.6 Graffoo diagram summarising the Literal Reification pattern. 113

4.7 Graffoo diagram summarising the C4O entities used for counting ci-
tations and references. 118

4.8 Graffoo diagram summarising the C4O entities used for describing
citation contexts. 119

4.9 Diagram describing the composition and the classes of the Document
Components Ontology (DoCO). 126

4.10 A graphical representation of the time-indexed situation ontological
pattern. 133

4.11 The Graffoo diagram of the time-indexed owning in context ontologi-
cal pattern. 135

4.12 Graffoo representation of the Publishing Roles Ontology (PRO). . . . 140

4.13 Graffoo representation of the Publishing Status Ontology (PSO). . . . 142

4.14 Graffoo representation of the Publishing Workflow Ontology (PWO). 146

4.15 The SWAN ontology ecosystem before (above) and after (below) the
harmonisation activity that resulted in the inclusion of FaBiO and
CiTO in the SWAN Commons set of ontologies. 150

5.1 The beginning of the Web page generated through LODE starting
from the EARMARK Ontology, annotated with OWL assertions in
Turtle showing how they are rendered in HTML. 159

5.2 Two possible kinds of descriptions: pure string (for literals) and media
object (for resources). 160

5.3 How entities (classes, properties and individuals) are rendered by
LODE. 160

5.4 All the possible ways, according to specific needs, for making a request
to LODE. 161

5.5 The summarisation made by KC-Viz after its first application on an
ontology. 166

5.6 Tooltips that appear hovering nodes and edges. 168

5.7 The menu popped up after clicking on the “Expand” option. 169

xvi

5.8 The two options for hiding concepts: “Hide”, applied on the class
Metadata, and “Hide others...” used on the class Work. 170

5.9 The option “Visualize Class with KC-Viz” to highlight (and eventu-
ally add) the class in the current KC-Viz panel. 171

5.10 The dashboard which allows the user to move back and forth through
the history of KC-Viz operations, to modify the formatting of the
layout, and to save the current display to a file, among other things. . 171

5.11 The preference panel of KC-Viz. 172
5.12 Performances (in seconds) for each task. 175
5.13 The legend for all possible Graffoo objects. 177
5.14 Widgets defining prefixes, classes, object/data properties and prop-

erty axioms. 179
5.15 Widgets defining restrictions and other class axioms. 180
5.16 Widgets defining individuals and related assertions. 181
5.17 Widgets for defining ontologies and related assertions. 182
5.18 An example page of the Beer OWiki. 188
5.19 A graphical representation of the OWiki domain ontology about beers.191
5.20 A customized form generated by OWiki. 192

xvii

xviii

Chapter 1

Introduction

This work is concerned with the increasing relationships between two distinct mul-
tidisciplinary research fields, Semantic Web technologies and scholarly publishing,
that in this context converge into one precise research topic: Semantic Publishing.
In the spirit of the original aim of Semantic Publishing, i.e. the improvement of
scientific communication by means of semantic technologies, this thesis proposes
theories, formalisms and applications for opening up semantic publishing to an ef-
fective interaction between scholarly documents (e.g., journal articles) and their
related semantic and formal descriptions. In fact, the main aim of my work is to
increase the users’ comprehension of documents and to allow document enrichment,
discovery and linkage to document-related resources and contexts, such as other
articles and raw scientific data1.

In order to achieve these goals, I investigate and propose solutions for three of
the main issues that semantic publishing promises to address, namely: the need of
tools for linking document text to a formal representation of its meaning, the lack
of complete metadata schemas for describing documents according to the publishing
vocabulary, and absence of effective user interfaces for easily acting on semantic
publishing models and theories.

Semantic Publishing pioneers’ visions, e.g. [164] [167] and [45], go beyond the
current interest of publishers and Semantic Web practitioners, i.e., the “mere” addi-
tion of semantic data to published articles with the intention of recognising entities
(such as persons, places and proteins) or, in general, inclusion of subject-predicate-
object statements. In fact, their final aim is to be able to represent, semantically,
the scientific discourse of a document, i.e., how arguments are modelled within the
text. This, of course, requires one to identify formal meanings and relations be-
tween different part of textual content of a document (e.g., a sentence representing

1In this way, my purposes conform to the principles that the research data contained in journal
articles should be open, asserted in the Brussels Declaration on STM publishing [101].

2 Chapter 1. Introduction

the main claim, supported by other sentences stated as its evidences), as well as to
indicate the rhetoric functions of clearly bounded parts of the article, such as the
Introduction, the Background, the Results, and the Conclusions.

Moreover, in this context, an additional complication is given by the need to be
aware of the intrinsic provenance of the conversion into formal statements of natural
language texts. This is because multiple semantic interpretations can co-exist for
the same text, and these can be defined in alternative, and even contrasting, formal
representations. Since different people who may differ in their expertise with formal
languages can make such semantic interpretations, a reader may trust one particular
conversion more than others, depending on his/her confidence in the translators.

The practice that allows one to enrich natural language documents, associating
explicit or implicit semantics to it, is that of markup. Markup has been used for
years for decorating documents at all levels of granularity, from the digital document
as a whole to its sub-components (chapters, paragraphs, sentences, people, places,
events, etc.). Multiple and overlapping markup (being either document markup or
semantic markup2) must be able to co-exist within the same textual content so as
to allow one to express different – even alternative – semantics on it. The most
commonly used document formats in publishing (i.e., XML and PDF) were not
developed to enable semantic enhancement, although it may be possible in principle
to use them for this purpose.

In this thesis, I investigate the plausible paths for reaching a full and synergistic
integration between document markup (usually used for describing the structural
components of documents) and semantic markup (used for specifying semantic an-
notations on textual content). To this end, I propose a markup metalanguage called
EARMARK that allows one to instantiate the markup of a text document as an
independent OWL document separated from the text strings it annotates. Through
appropriate OWL characterizations, it can define structures such as trees or graphs
and can be used to verify validity constraints, including semantic constraints and
co-constraints that are currently not available in most validation languages. When
used with a particular instantiation of an ontology developed to create semantics
descriptions according to a semiotics model, called Linguistic Meta-Model [143],
EARMARK allows one to specify formal semantics for any document markup item
or text content.

Of course, markup is also used to add metadata to a document or to its sub-parts.
It is a firm intention of semantic publishing to adopt effective and complete metadata

2Currently, a distinction is made between document markup (or structural markup), to en-
close fragments of the text within markup elements (e.g., <title>Moby Dick</title>), and se-
mantic markup, in which fragments of text become objects of RDF statements (e.g., :document
dcterms:title “Moby Dick”). In my opinion, these are just two sides of the same coin. Both can be
used, either interchangeable or coupled, to represent the semantics of the content of a document.
I think the reason that document and semantic markup are not used in this interchangeable way,
thereby deserving two different names, is because of the different expressive powers of their most
famous instances, i.e., XML for document markup and RDF for semantic markup.

Chapter 1. Introduction 3

schemas. Unfortunately, existing Semantic Web vocabularies are too abstract and
incomplete to cover all the needs claimed by the actors involved in the publishing
process (publishers, editors, authors, etc.). Thus, there is an acute need for new
standards (ontologies) that comprehensively cover all the different aspects of the
publishing domain.

To address these needs, I propose a suite of orthogonal and complementary
OWL 2 DL ontology modules, the Semantic Publishing And Referencing (SPAR)
ontologies, that enable one to describe all the aspects of bibliographic publications
comprehensively in machine-readable RDF metadata. In the past, several works3

attempted to define general models for describing the whole publishing domain, but
they are too abstract, are not interoperable with other models, or are very specific
to particularly scenarios, and are thus not fit for purpose. In contrast, I define
eight reusable SPAR ontological modules, that can be used either individually or in
conjunction, as need dictates, each of them precisely and coherently covering one
aspect of the publishing domain using terms with which publishers are familiar.
Together, they provide the ability to describe bibliographic entities such as books
and journal articles, reference citations, the organization of bibliographic records
and references into bibliographies, ordered reference lists and library catalogues,
the component parts of documents, and publishing roles, publishing statuses and
publishing workflows.

Semantic publishing involves different kinds of users, from Semantic Web prac-
titioners to publishers, some of whom may not have access to ontology modelling
tools, or may not be expert in using formal languages, logic and inferences systems.
Nevertheless, these users want to understand semantic publishing ontologies, to make
sense of them, to adopt them and, finally, to produce data according to them. We
thus require the development of interfaces that hide the complexity of ontology for-
malisms, and enable better interaction between non-experts and machine-readable
datasets.

My contribution in this area has been the development of applications, that sim-
plify and clarify the interaction with ontologies. First of all, tools are needed to
help in ontology understanding and sense-making4. Furthermore, an essential step
to open up the effective use of semantic publishing technologies to non-experts re-
quires the development of customisable user interfaces that can be adapted quickly
to particular contexts. Such interfaces must allow one to add/modify/remove se-
mantic data correctly and intuitively, while hiding the complexity of the underlying
ontologies.

3E.g., DC Metadata Elements [64], DC Metadata Terms [63], FRBR [100], PRISM [99] and
BIBO [42], that are introduced in detail in Chapter 2.

4“Sense-making” is here used to refer to a specific ontology engineering task, where the user
is primarily concerned with understanding the contents and overall structure of the ontology, i.e.,
acquiring an overview of the concepts covered by the ontology and the way they are organized in
a taxonomy, so as to comprehend what the ontology can be used for.

4 Chapter 1. Introduction

An important part of my work has thus been to address these issues. Specifically,
I have developed:

• LODE, an application that automatically extracts ontological definitions so as
to render them in a human-readable HTML page designed for browsing and
navigation by means of embedded links;

• KC-Viz, a second application that implements a novel approach for visualizing
and navigating ontologies, by providing concise overviews of large ontologies,
and that also supports a “middle-out” ontology navigation approach, starting
from the most information-rich ontological classes;

• Graffoo, a tool for presenting the formalisms of ontologies as easy-to-comprehend
graphical diagrams; and

• the new version of Gaffe, a tool that makes it possible to build customizable
editors for semantic data and that allows users to decorate a resource with
semantic descriptions (i.e. OWL assertions) according to any scheme expressed
through an OWL ontology.

In my thesis, I introduce these three elements – markup, ontologies, and tools – in
turn, emphasising their importance and innovativeness within semantic publishing
communities and explaining why current available tools fail to address users’ needs
in the same effective way.

The thesis is thus structured as follows. Chapter 2 discusses related works and
main issues in semantic publishing. Chapter 3 introduces EARMARK, my markup
metalanguage that enables semantic enhancement of markup structures and textual
content. Chapter 4 illustrates my SPAR ontologies for modelling bibliographic data
in the context of digital publishing. Chapter 5 focuses on the tools I have developed
to help users when trying to understand ontologies and create semantic metadata
using them. Final remarks and ideas for future works are contained in Chapter 6.

Chapter 2

The digital publishing revolution

In this chapter I discuss the most relevant research areas in semantic publishing. I
focus particularly on my fields of interest: markup models to enable the addition of
semantics within published scholarly documents, document metadata schemas and
ontologies, and interfaces to allow a better comprehension and use of semantic data.

First of all, in order to better understand the general context where my work
is set, it is useful to briefly digress on the changes happened to digital publishing
during the last decade. Scholarly authoring and publishing are in the middle of
a revolution that is exploring the potentiality derived, on the one hand, from the
use of Web-related technologies (e.g., transport protocols, markup languages, the
Semantic Web) as medium of communication, and, on the other hand, from the
adoption of new publishing and editorial processes that seem to aim at converging
to a fully-open accessibility of editorial contents and metadata.

The first step of this revolution was possible by means of the Web, which turned
publishers to consider the digitalisation process and, consequently, the online publi-
cation as new effective ways of bibliographic publication. As predicted in past [136],
to date the social and research impact of the online scholarly material is still con-
tinuing to grow. One of the main causes of this growth has been the introduction
to the Open Access (OA) clause1. Through it, publishers can either directly – the
gold OA – or indirectly – the green OA [89] – (i.e., asking authors2 for choosing
to) publish online articles so as to offer their complete and free-of-charge worldwide
readability and accessibility (in terms of being reachable).

Originally, the use of OA was considered a bet with low possibilities of success.
However, previous works, such as [116] [88] [182], give empirical evidence about
the advantages of OA in terms of better visibility, findability and accessibility for
research articles. These factors and the development of clear and established strate-
gies [171] [19] for shifting publishers’ business model from a non-OA service to an
OA publishing process are some of the most important reasons of the success of OA

1Probably, the first formal document that uses the words “open access” is [28].
2In this case, authors can either publish in their own repositories or in journals’ OA archives

(obviously paying a conspicuous fee).

6 Chapter 2. The digital publishing revolution

ideas – and of the (increasing) growth and consensus in digital online publication.
Moreover, innovative publishing approaches have been recently proposed (e.g., the
Liquid Publications Project [168]) so as to show how to use Web technologies and
Open Access principles to change and improve the current publication process.

Of course, we have covered only a first bit of the long way towards a success-
ful and widely accepted Web-oriented digitalisation and publishing of bibliographic
materials. In fact, publishers have not adopted Web standards for their work yet.
Rather, they still employ a variety of proprietary XML-based informational models
and document type definitions (DTDs). While such independence was reasonable
in the pre-Web world of paper publishing, it now appears anachronistic, since publi-
cations from different sources and their metadata are incompatible, requiring hand-
crafted mappings to convert from one to another. For a large community such as
publishers, this lack of standard definitions that could be adopted and reused across
the entire industry represents losses in terms of money, time and effort.

In contrast, modern web information management techniques employ standards
such as RDF [32] and OWL 2 [127] to encode information in ways that permit
computers to query metadata and integrate web-based information from multiple
resources in an automated manner. Since the processes of scholarly communication
are central to the practice of science, it is essential that publishers now adopt such
standards to permit inference over the entire corpus of scholarly communication rep-
resented in journals, books and conference proceedings. This requires the availability
of appropriate ontologies and tools that are specially tailored to the requirements of
authors, publishers, readers, librarians and archivists.

In the past some research institutes and companies that investigated upon pub-
lishing topics started to figure out whether and how Web technologies could address
the above issues. In retrospect, that moment can be marked as the beginning of
what we today call semantic publishing.

Semantic publishing is the use of Web and Semantic Web technologies to enhance
a published document such as a journal article so as to enable the definition of formal
representations of its meaning, facilitate its automatic discovery, enable its linking to
semantically related articles, provide access to data within the article in actionable
form, and allow integration of data between papers [167] [164]. As confirmed by
a number of recent initiatives3, semantic publishing and scholarly citation using
Web standards are presently two of the most interesting topics within the scientific
publishing domain. I identify some significant research areas in this domain, that
include:

1. the development of markup technologies that facilitate the creation of com-
plex and semantically-enhanced markup documents, so as to make possible to

3The various initiatives that have been involved research communities around the topics and
issues of Semantic Publishing, e.g. the Elsevier Grand Challenge and the SePublica 2011 Workshop,
will be introduced in Section 2.4.

Chapter 2. The digital publishing revolution 7

have, simultaneously, a formal semantic description of their structures (e.g.,
chapters, introduction, paragraphs) as well as of their content;

2. the development of semantic models (vocabularies, ontologies) that meet the
requirements of scholarly authoring and publishing;

3. the development of visualization and documentation tools that permit such on-
tologies to be easily understood by users being neither masters nor technicians
of particular modelling languages;

4. the development of annotation tools that allow these models to be used by
end-users (e.g., publishers, editors, authors) for enhancing documents with
relevant semantic assertions;

5. the development of new algorithms that can take advantages of this new se-
mantic layer of annotations, for example when searching over large sets of
on-line documents;

6. the development of new business models that arrange effective publishing pro-
cesses for the creation, use and dissemination of semantic assertions;

7. the study and realisation of empirical evaluations that prove benefits and/or
drawbacks of Semantic Publishing for both authors and publishers, such as
understanding whether its use increases the impact factor of articles and/or
the amount of visits of publishers’ Web pages;

8. the organisation of events, such as conferences, workshops, projects, journal
issues, for publicising and promoting semantic publishing principles and ad-
vantages to a broader audience.

In the rest of this chapter I outline related works that propose solutions for
addressing the issues concerning the first four points of the above list, that represent
the research areas in which my work is set. I conclude this chapter listing a series
of events (i.e., projects, workshops, journal issues, competitions) that characterise
development on semantic publishing between 2010 and 2011.

2.1 Towards semantics-aware markup languages

The original definition of markup clearly states that it is used for saying something
about the content of a document [40]. Understanding what “something” refers to is
strictly dependant on the particular semantics adopted by the markup vocabulary
considered. Of course, this “semantics” can be implicit (as in XML, where the
semantics lives either in the mind of the language author), explicit and not formalised

8 Chapter 2. The digital publishing revolution

(e.g., defined through a natural language and non-machine-readable description), or
explicit and formalised (e.g., defined via logic languages such as prolog and OWL).

Besides having explicit or implicit semantics, overlapping markup structures are
needed when different agents associate multiple (even discording) semantics to the
same document fragment. Note that having two different interpretations of a par-
ticular document passage is possible, in particular within a domain – i.e., Semantic
Publishing – where the analysis and formalisation of the scientific discourse are
encouraged. Thus, the topic of overlapping markup, that has been discussed and
investigated for years, becomes extremely significant in this context.

In the following sections I introduce past studies about both overlapping markup
and markup semantics, which are two of the most interesting topics in markup
research communities.

2.1.1 Overlapping markup

The need for multiple overlapping structures over documents using markup syntaxes
such as XML and SGML is an age-old issue, and a large amount of literature exists
about techniques, languages and tools that allow users to create multiple entangled
hierarchies over the same content. A good review can be found in [48].

Some of such research proposes to use plain hierarchical markup (i.e., XML)
and employ specially tailored elements or attributes to express the semantics of
overlapping in an implicit way. The TEI Guidelines [186] present a number of
different techniques that use SGML/XML constructs to force multiple hierarchies
into a single one, including:

• milestones, through which one hierarchy is expressed using the standard hi-
erarchical XML markup and the elements belonging to the other ones are
represented through a pair of empty elements representing the start and the
end tags, and connected to each other by special attributes;

• flat milestones, that represents each of the hierarchy elements as a milestone,
i.e., an empty element placed where the start or the end tag should be, all of
them contained as children of the same root element;

• fragmentation, in which one hierarchy (the primary) is expressed though the
standard hierarchical XML markup, and the elements of the secondary hi-
erarchies are fragmented within the primary elements as needed to suit the
primary hierarchy and are connected to each other by special attributes;

• twin documents, in which each hierarchy is represented by a different docu-
ment, which contains the same textual content but marks up the elements
according to the individual hierarchy;

Chapter 2. The digital publishing revolution 9

• stand-off markup, which puts all the textual content in a single structure
with the possible specification of the shared hierarchy, and puts the remain-
ing elements in other structures (e.g., files) with the positional association of
each starting and ending location to the main structure, using, for instance,
XPointer [49] locations.

Given the large number of techniques to deal with overlapping structures in
XML, in [122] Marinelli et al. present a number of algorithms to convert XML
documents with overlapping structures from and to the most common approaches,
as well as a prototype implementation.

In [151] Riggs introduces a slightly different technique for fragmentation within
XML structures. In this proposal, floating elements, i.e., those elements that do not
fall in a proper or meaningful hierarchical order, are created using the name of the el-
ement followed by an index referring to its semantically-related parent element. For
example, the floating element <name.person[2]>John</name.person[2]> means
that <name>John</name> is semantically child of the second occurrence of the ele-
ment person, even though the floating element is not structurally contained by its
logical parent.

Other research even proposes to get rid of the theory of trees at the base of
XML/SGML altogether, and use different underlying models and newly invented
XML-like languages that allow the expression of overlaps through some kind of
syntactical flourishing.

For instance, GODDAG [176] is a family of graph-theoretical data structures to
handle overlapping markup. A GODDAG is a Direct Acyclic Graph whose nodes
represent markup elements and text. Arcs are used to explicitly represent contain-
ment and father-child relations. Since multiple arcs can be directed to the same
node, overlapping structures can be straightforwardly represented in GODDAG.
Full GODDAGs cannot be linearised in any form using embedded markup, but re-
stricted GODDAGs, a subset thereof, can be and has been linearised into TexMecs
[97] [120], a multi-hierarchical markup language that also allows full GODDAGs
through appropriate workarounds, such as virtual elements.

LMNL [185] is a general data model based on the idea of layered text fragments
and ranges, where multiple types of overlap can be modelled using concepts drawn
from the mathematical theory of intervals. Multiple serializations of LMNL exist,
such as CLIX and LMNL-syntax.

XConcur [160] is a similar solution based on the representation of multiple hier-
archies within the same document through layers. Strictly related to its predecessor
CONCUR as it was included in the SGML, XConcur was developed in conjunction
with the validation language XConcur-CL to handle relationships and constraints
between multiple hierarchies.

The variant graph approach [158] is also based on graph theory. Developed to
deal with textual variations – that generate multiple versions of the same document

10 Chapter 2. The digital publishing revolution

with multiple overlapping hierarchies – this theory proposes a new data model to
represent literary documents and a graph linearisation (based on lists) that scales
well even with a large number of versions. Schmidt et al. recently presented an
extension of their theory that also allows users to merge multiple variants into one
document [157]. In [145] a detailed survey about overlapping approaches was pre-
sented, also discussing the MultiX2 data model – that uses W3C standard languages
such as XInclude to link and fetch text fragments within overlapping structures –
and a prototype editor for the creation of multi-structured documents.

In [188] a proposal for using RDF as a standoff notation for overlapping structures
of XML documents was proposed. By means of the open-source API RDF Textual
Encoding Framework (RDFTef), Tummarello et al. demonstrate a plausible way for
handling overlapping markup within documents and identifying textual content of
a document as a set of independent RDF resources that can be linked mutually and
with other parent resources.

Besides giving the possibility to define multiple structural markup hierarchies
over the same text content, the use of RDF as the language for encoding markup
allows one to specify semantic data on textual content as well. But the real main
advantage of RDF is the possibility of using particular built-in resources that de-
scribe different kinds of containers, either ordered (rdf:Seq) or unordered (rdf:Bag),
as defined in the RDF syntax specification [32]. Thus, RDF resources can be used
to represent every printable element in the text – words, punctuation, characters,
typographical symbols, and so on – while RDF containers can be used to combine
such fragments and containers as well.

Although RDF is not sufficient to define a formal vocabulary for structural
markup – does a given resource represent an element, an attribute, a comment
or a text node? In which way is a resource of a certain type related to others? –
the specification of an RDFS [24] or of an OWL [127] layer can successfully ad-
dress this issue. Hybrid solutions obtained by mixing different models, even when
they are built one upon another, may seem elegant but not necessarily the best
choice. In fact, there exist well-known interoperability limits between OWL 2 DL
and RDF [113] that prevent the correct use of Semantic Web tools and technologies.
In particular:

• any markup document made using RDF containers (e.g. to describe what
markup items contain and in which order) and OWL ontologies (e.g. to de-
fine classes of markup entities and their semantics) results in a set of axioms
that end up outside of OWL DL and reach the OWL Full expressive power.
This limits the applicability of the most frequently used Semantic Web tools,
that are usually built upon the (computationally-tractable) description logic
underlying OWL 2 DL;

• the individual analysis of each language may be not applicable when we have
to check particular properties that lay between RDF and OWL layers. For

Chapter 2. The digital publishing revolution 11

example, verifying the validity of a markup document against a particular
schema, which is one of the most common activities with markup, needs a work
with both markup item structures (that would be defined in RDF) and logical
constraints about classes of markup items (e.g., elements only, attributes only,
the element “p”, all the element of a particular namespace, etc., all of them
definable in OWL).

Being able to express everything we need directly in OWL addresses both issues
quite straightforwardly. The well known absence of containers and sequences in
OWL can be overcome by modelling classes in specific ways using specific design
patterns such as [35] and [61].

2.1.2 Markup semantics and semantic markup

The advent of the Semantic Web (and social web) has induced a shift of meaning
for some terms that are traditionally associated with markup languages. Originally,
the act of marking up was strictly associated with document markup, where the
term “tag” was used to refer to markup elements: syntactic items representing the
building blocks of a document structure. While, in the original definition, markup
“tells us something about [the text or content of a document]” [40], in the Semantic
Web the term “markup” is sometimes used to identify any data added to a resource
with the intention to semantically describe it (as well as “metadata” or “resource
description”). Because of this recent re-drawing of the markup meaning, the term
“tag” has also drastically changed its definition to “a non-hierarchical keyword or
term assigned to a piece of information (such as an Internet bookmark, digital image,
or computer file)”4.

Partially because of this shift of meaning – that brought, as first consequence,
the fact of having two different (and often unrelated) visions of the Web: the Web
of documents and the Web of data – the Semantic Web has not considered in detail
the issue of markup semantics (e.g., what is the meaning of a markup element title
contained in a document d?), concentrating all its efforts in dealing with semantic
markup (e.g., the resource r has the string “Semantic enhancement of document
markup” as title) [149].

However, markup semantics is a very well-known and relevant issue for markup
languages and consequently for digital libraries. Nowadays, a large amount of
content stored in digital libraries is encoded with XML. XML, as any markup
(meta)language, provides a machine-readable mechanism for defining document
structure, by associating labels to fragments of text and/or other markup. This
association has a particular meaning, since each markup element asserts something
about its content. What is asserted by the markup is not an issue of the markup

4http://en.wikipedia.org/wiki/Tag %28metadata%29

12 Chapter 2. The digital publishing revolution

itself. One of the goals of markup metalanguages is to avoid imposing any partic-
ular semantics: they express mere syntactic labels on the text, leaving the implicit
semantics of the markup to the interpretation of humans or tools programmed by a
human. Of course, a lot of markup languages, such as HTML, TEI and DocBook,
are accompanied by natural language descriptions of their markup, but those de-
scriptions are not machine-readable; in other words, there is no formal mechanism
to embed markup semantics within markup language schemas.

Previous works [149] [150] [178] pointed out some clear advantages in having a
mechanism to define a machine-readable semantics of markup languages: enabling
parsers to perform both syntactic and semantic validation of document markup; in-
ferring facts from documents automatically by means of inference systems and rea-
soners; simplifying the federation, conversion and translation of documents marked
up with different and non-interoperable markup vocabularies; allowing users to query
upon the structure of the document considering its semantics; creating visualizations
of documents by considering the semantics of their structure rather than the specific
vocabulary in which they are marked up; increasing the accessibility of documents’
content, even in the case of tag abuse [62], i.e., “using markup languages construction
in ways other than intended by the language designer”; promoting a more flexible
software design for those applications that use markup languages, guaranteeing a
better maintainability even when markup language schemas evolve.

For instance, it could be interesting to query documents for specific XML struc-
tures (e.g., all data tables in a collection of scientific papers written by a specific
author, regardless of the fact that they were marked up with different vocabularies),
or verifying semantic constraints of XML elements regardless of their position within
the document (e.g., the utterer of each instance of the speech fragments as tran-
scribed in a parliamentary debate document is uniquely assigned to the individual
that purportedly made the speech).

Although the Semantic Web might directly address XML semantics in order to
gather the above-mentioned advantages, the Semantic Web community has always
considered XML only as a serialization language for RDF or OWL, or as a way to
encode relational data to be subsequently extracted and expressed in RDF. However,
these two usages depart from the original goal of XML, i.e. to provide a mechanism
for marking up digital documents (books, papers, messages, etc.). Consequently, it
is often the case that e.g. relational data in XML encode both domain and docu-
ment semantics; in such cases, extracting semantics from markup by means of bulk
recipes generates semantic issues, because the dataset and/or ontologies obtained
from that extraction will be unreliable (due to the usually conflicting data/text
implicit semantics). A case study of this heterogeneity is the translation of FAO
FIGIS document management schemata5, which generates an ontology describing
real world entities as well as documents, provenance, interfaces, versioning data, etc.

5http://www.fao.org/fi/figis/devcon/diXionary/index.html

Chapter 2. The digital publishing revolution 13

There is a large literature about semantics applied to markup. One of the first
attempts for describing formal markup semantics is introduced in [177]. The basic
idea of Sperberg-McQueen et al. is to point out how users apply markup: through it,
they make inferences about the document structures and the text those structures
contain. According to them, “the meaning of markup is the set of inferences it
licenses”. The general framework they developed to associate semantics to markup
and to make inferences on it needs some representation of the markup document, a
sentence skeleton for each item of the markup language we are considering in order
to associate a meaning, and a set of (categorized) predicates and rules for allowing
inferences. In this work, all the examples are illustrated using Prolog both for the
representation of the nodes and for defining/inferring semantics using predicates and
rules.

Focusing on the best-known meta-markup language, XML, in [150] Renear et
al. discuss problems characterizing schema languages for XML, from DTD to
XMLSchema: those languages only permit a clear definition of the language syntax,
and some of them (RelaxNG [37], XMLSchema [75]) allow the declaration of a simple
semantics on the datatypes, and little more. Although annotations can be specified
for XMLSchema structures, there is no predefined semantics associated to them.
Everything else concerning semantics – the meaning of an element, the relationships
among items, etc. – is not expressible in a machine-readable format through those
schema languages. The Renear et al. propose the BECHAMEL Project as a candi-
date solution to express markup semantics. As they explain in [149], BECHAMEL
allows one to associate semantics with markup by adding new hierarchies to the
original structure of the document. Using these additional hierarchies, one can de-
fine the meaning of the elements and properties that cannot be expressed using the
schema languages alone.

A different approach is used in [169]. Simons et al. developed a framework to
associate semantics with any XML document D in a three-step process:

1. defining an OWL ontology O to express all the meanings they want to use;

2. writing a set of rules R in a specific XML language to associate those meanings
to a set of elements D;

3. through a XSLT transformation, processing D using O and R, so obtaining a
new semantically-enriched XML document.

Similarly to the previous one, other works, such as [133] [76] [189], propose a
general process that, starting from an XMLSchema S, an XML document D (written
according to S) and an ontology O (that can be generated starting from S), allows
one to convert all the data in D, described by XML elements and attributes, into
appropriate RDF instances consistent with O.

The approach introduced in [119] and [121] does not provide a formal machine-
readable specification for defining markup semantics, but it is useful when human

14 Chapter 2. The digital publishing revolution

interpretation is needed in structuring a document. Marcoux et al. describe Inter-
textual Semantics, a mechanism to associate meaning with markup elements and
attributes of a schema as natural language constructs; this happens by associating
a pre-text and a post-text with each of them. When the vocabulary of a schema
is used correctly, the markup content is combined with the pre-text and post-text
descriptions to make a correct natural language text that describes the entire in-
formation contained in a document. The difference between the common natural
language documentation and Intertextual Semantics is that in the latter the mean-
ing of a markup item is dynamically added when writing a document, and, as a
consequence, can be read sequentially in the document editor itself.

Of course, eRDF6 and RDFa [2] may be valid choices for associating – and
extracting by means of GRDDL [39] applications – formal semantics with arbitrary
text fragments, and to markup elements within documents. Although they are very
helpful for annotating documents and adding semantic information about markup
elements and their content, their use is possible only by adding new attributes
or, worse, new elements, therefore changing the document structure. The problem
here is that the need of modifying the document structure is not easily suitable for
domains, for example within organizations that deal with administrative or juridical
documents, which must always preserve their structure as it is.

2.2 Metadata schema, vocabularies and ontolo-

gies for publishing

The definition of vocabularies and ontologies that enable the description of document
metadata is crucial for the Semantic Publishing. A large amount of these metadata
schemas came to light in the nineties, and only years after their related Semantic
Web versions were developed, either as RDF/RDFS vocabularies or OWL ontologies.

Several vocabularies and/or models for the publishing domain have been devel-
oped in the past. In this section I specifically list those that are usually adopted
and currently defined through Semantic Web languages and technologies.

2.2.1 Dublin Core

Born as consequence of a conference held in Dublin, Ohio, USA in 1995 that involved
both technicians (librarians, publishers, archivists) and academics (researches, soft-
ware developers), the current versions of the Dublin Core (DC) Metadata Elements
[64] and of the DC Metadata Terms [63] are the most widely used vocabularies for
describing and cataloguing resources.

6http://www.egeneva.ch/w3c-RDF-ResourceDescriptionFramework/

Chapter 2. The digital publishing revolution 15

These vocabularies have become particularly important and relevant for sharing
metadata about documents among different repositories [111] and digital libraries
[125], as well as being used to describe documents in HTML [65], DocBook [194] and
other XML formats such as Open Document (OpenOffice document format) [104].

While very useful for the creation of basic metadata for resource discovery, the
main limitations of DC is a consequence of the generic nature of its terms.
For example, using DC Terms one can identify a creator but not an author, a
bibliographic resource but not a journal article, an identifier but not an ISSN, and
a date but not a publication date.

2.2.2 PRISM

The Publishing Requirements for Industry Standard Metadata (PRISM) [99] is a
specification defining a rich set of metadata terms for describing published works. It
was born from the needs of publishers to address emerging requirements for meta-
data sharing and aggregation, and it nowadays involves some of the most important
publishers and related companies, such as Adobe Systems, the McGraw-Hill Com-
panies, Reader’s Digest, Time Inc., the Nature Publishing Group, and U.S. News
and World Report.

The PRISM metadata terms are expressible both in XML, according to a specific
DTD, and in RDF [87]. These terms are explicitly recommended for the specification
of metadata of documents expressed through markup languages such as DocBook
[194]. Moreover, these terms are also included in ontologies describing the publishing
domain, such as the Bibliographic Ontology (BIBO)7 [42], which is discussed below.

While PRISM has a much richer set of terms that describe bibliographic entities
than DC, its main limitation is that it is a flat structure, lacking hierarchies. This
prevents its use for a complete description of the characteristics of bibliographic
entities. For example, while the data property prism:volume permits the volume
number of a bibliographic reference to be represented as a string, PRISM lacks the
concept of “Volume” as a distinct class among other bibliographic classes that have
a hierarchical partitive relationship to one another (i.e. Journal Article > Issue
> Volume > Journal), and whose members can possess other properties, such as
having authors and editors.

2.2.3 BIBO

BIBO, i.e. the Bibliographic Ontology [42], is an OWL Full ontology that allows one
to write descriptions of documents (bibo:Document is the core class of that model) for
publication on the Semantic Web. It includes both DC terms [63] and PRISM [99]
to cover common needs, and it adds other classes and properties to better describe
the publishing domain, such as bibo:AcademicArticle, bibo:Journal, bibo:Collection,

7BIBO, the Bibliographic Ontology: http://purl.org/ontology/bibo/.

16 Chapter 2. The digital publishing revolution

bibo:Book, bibo:Chapter and bibo:Issue. BIBO is a good ontology that is widely used
among the bibliographic community.

From a pure computational perspective, BIBO defines the range of the property
bibo:authorList usingeither an rdf:List or an rdf:Seq, therefore making the model
non-compliant with OWL 2 DL. This limits the applicability of reasoners and other
Semantic Web tools that are usually built upon the (computationally-tractable)
description logic underlying OWL 2 DL.

2.2.4 MARC 21

Another relevant work in this field, widely used in the Libraries community and
developed before the introduction of the Semantic Web, is the MARC 21 Format for
Bibliographic Data [118]. Dating from an original start in 1961, MARC 21 is a very
complex code for describing bibliographic resources as one of seven different primary
types: book, continuing resource, computer file, maps, music, visual materials and
mixed materials. To each resource can be associated different kinds of metadata,
such as titles, names, subjects, notes, publication data, etc.

In MARC21, each type of metadata is represented by a three-digit code (called a
tag in the MARC21 specification) that identifies the main metadata category of rel-
evance. Other characters can follow this tag so as to specify additional information.
For example, let me introduce a simple bibliographic reference describing [121]:

Yves Marcoux, Elias Rizkallah (2009). Intertextual semantics: A seman-
tics for information design. http://onlinelibrary.wiley.com/doi/10.1002/
asi.21134/full.

To express these data in MARC21 I would have to use the following tags:

100 1#$aMarcoux , Yves

100 1# $aRizkallah , Elias

260 ## $c2009

145 10 $aIntertextual semantics: $bA semantics for information

design

856 40 $uhttp :// onlinelibrary.wiley.com/doi /10.1002/ asi .21134/

full

where “100” is used for identifying a personal name, “260” indicates the year
of publication, “145” the title of a work, and “856” the electronic location of that
entity.

With the advent of the Semantic Web, MARC21 was formalised as an RDF
vocabulary [180] in order to be adopted and used in Semantic Web applications.
However, many librarians now regard MARC as too complex and esoteric, and are
undergoing a mind shift to more pragmatic open standards.

Chapter 2. The digital publishing revolution 17

2.2.5 FRBR

The Functional Requirements for Bibliographic Record (FRBR) [100] is a general
model, proposed by the International Federation of Library Association (IFLA),
for describing documents and their evolution. It works for both physical and digital
resources and has proved to be very flexible and powerful. One of the most important
aspects of FRBR is the fact that it is not associated with a particular metadata
schema or implementation.

The following brief description outlines FRBR’s basic concepts and the way they
can be applied within a publishing domain. FRBR describes all documents from four
different and correlated points of view, those of Work, Expression, Manifestation and
Item, each of which is a FRBR Endeavour. These can be illustrated by consideration
of the book Alice’s Adventures in Wonderland by Lewis Carroll:

• Work. A FRBR Work is a high-level abstract Platonic concept of the essence
of a distinct intellectual or artistic creation, for example the ideas in Lewis
Carroll’s head concerning Alice’s Adventures in Wonderland, independent of
any representation of these ideas in a particular form. A Work is realized
through one or more Expressions;

• Expression. A FRBR Expression is the realisation of the intellectual or
artistic content of a Work. Thus the original text of Alice’s Adventures in
Wonderland and its Italian translation Le Avventure di Alice nel Paese delle
Meraviglie refer to different Expressions of the same Work. An Expression is
embodied in one or more Manifestations;

• Manifestation. A FRBR Manifestation of a work defines its particular phys-
ical or electronic embodiment, for example, the particular format in which “Al-
ice’s Adventures in Wonderland” is stored: as a printed object or in HTML,
that are two quite different Manifestations. In publishing, different manifesta-
tions of a journal article will all bear the same Digital Object Identifier (DOI),
which identifies the Expression of the work, not its various Manifestations.
However, a paperback and a hardback version of a book will bear different
International Standard Book Numbers (ISBNs), since these identifiers are as-
signed at the Manifestation level. A Manifestation is exemplified by one or
more Items;

• Item. A FRBR Item is a particular physical or electronic copy of Alice’s
Adventures in Wonderland that a person can own, for example the printed
version of that book you have in your bookcase, or the Mobipocket format
copy you have downloaded to read on your e-book device. All Items that
are identical to one another – for example books from the same printing, are
exemplars of the same Manifestation.

18 Chapter 2. The digital publishing revolution

Figure 2.1: The four FRBR layers, with a specification of roles that people may
play in each layer.

In Fig. 2.1, I summarise these four distinct FRBR layers with particular reference
to the publishing domain, using as our example Alice’s Adventures in Wonderland,
and I indicate the most common roles (Author, Publisher and Reader/Viewer) that
usually people have with respect to each layer.

Despite the increased expressivity enabled by these layers, the greatest limitation
of FRBR with respect to the publishing domain is its lack of terms that permit
publications to be described in normal everyday language (e.g. “research
paper”, “review”, “book chapter”, “newspaper editorial”) rather than using the
more abstract and esoteric FRBR-specific terms “work”, “expression”, “manifesta-
tion” and “item”.

A further limitation that FRBR has in common to other standards – i.e., DC
[64] [63], PRISM [99] – is that is has hitherto been implemented and shared only as
XML or RDF vocabularies, rather than as OWL DL ontologies, preventing them
from being used within applications that employ reasoning based on description logic
models.

There now exist two different implementations of the core concepts of FRBR

Chapter 2. The digital publishing revolution 19

using standards that permit the encoding of proper formal semantics: the first is
authored in 2005 by Richard Newman and Ian Davis in RDFS8 and the second,
developed from the first, was created in 2010 by Paolo Ciccarese and I in OWL 2
DL9.

2.2.6 SWAN Citations Ontology

Another model previously used to define bibliographic resources is the Citations
Ontology10 included in the SWAN (Semantic Web Applications in Neuroscience)
Ontologies, version 1.2 [35]. In this ontology, the main class Citation11 is used as
super-class, of which all the other resources (e.g. JournalArticle, WebArticle and
Book) are sub-classes.

The main advantage of that ontology is that it is completely developed in OWL
2 DL. Contrary to BIBO, which defines the range of the property bibo:authorList
usingeither an rdf:List or an rdf:Seq therefore making the model non-compliant with
OWL 2 DL, the Citation Ontology uses the SWAN Collections Ontology module12.
This is an OWL 2 DL ontology that enable one to handle lists of authors and
contributors of a bibliographic object, thus enabling the specification of ordered
lists while still keeping the ontology locally consistent.

The main problem of the Citations Ontology is the sparseness of its vocabulary,
and the problem of aligning it with other structurally complex models such as FRBR,
because, as with BIBO, it collapses all bibliographic entity descriptions within the
single class Citation.

2.2.7 SKOS

Publishers need to classify the documents they published according to discipline-
specific thesauri or classification schemes, for example those belonging to economics13

or computer science14.

The Simple Knowledge Organization System (SKOS) [123] is an RDFS model to
support the use of knowledge organization systems (KOS) such as thesauri, clas-
sification schemes, subject heading lists and taxonomies within the framework of

8The FRBR Core in RDFS: http://vocab.org/frbr/core.
9The FRBR Core in OWL 2 DL: http://purl.org/spar/frbr.

10SWAN Citations Ontology Module: http://swan.mindinformatics.org/spec/1.2/citations.html.
11Note that in SWAN the concept “Citation” is used to represent the cited object itself, rather

than the performative act of making a citation.
12SWAN Collections Ontology Module: http://swan.mindinformatics.org/spec/1.2/ collec-

tions.html.
13The Journal of Economic Literature Classification Scheme:

http://www.aeaweb.org/jel/jel class system.php.
14The Association for Computing Machinery (ACM) Computing Classification System 1998:

http://www.acm.org/about/class/1998.

20 Chapter 2. The digital publishing revolution

the Semantic Web. The reception of this language has been particularly positive: a
large number of well-known thesauri and classification systems have started to con-
vert their respective specifications into SKOS documents15 , 16 , 17 , 18. This makes
SKOS the de facto standard for encoding controlled vocabularies for the Semantic
Web.

2.3 How to help users: tools and applications for

semantic data

Semantic publishing end-users must be supported when choosing which ontology to
adopt according to their needs. Obviously, understanding which ontology fits better
within a particular domain may be not so trivial, in particular when users are
not experts in ontology formalisms, the ontology has not a human-comprehensible
documentation, or it is so large that it becomes difficult to quickly make sense
of it. An additional complication is introduced when we need/want to develop new
ontologies or to add/modify semantic data according to specific models. To this end,
it is crucial to have functional interfaces that support the creation of an ontology
and the addition of semantic data according to it.

In this section, I introduce a series of works that try to address all the issues I
introduced above, namely: ontology documentation, ontology sense-making, visual
modelling and authoring tools for ontologies.

2.3.1 Ontology documentation

The production of the natural language documentation of ontologies is an impor-
tant and crucial part of any ontology development process. Such a documentation
enable users to comprehend the extent of an ontology without caring about the
particular formal language used to define its axioms. At the same time, writing
the documentation is an activity that costs an important amount of effort. Thus,
in order to help authors of ontologies to document them, applications were de-
veloped for the creation of a first draft of the documentation starting from labels
(i.e., rdfs:label), comments (i.e., rdfs:comment), other kinds of annotations (e.g.,
dc:description, dc:creator, dc:date) and the logical structure of the ontology itself.

SpecGen19 is a Python tool for the generation of ontology specifications, released
under the MIT license20. It is available as standalone application and it was used

15AGROVOC: http://aims.fao.org/website/AGROVOC-Thesaurus/sub.
16The Medical Subject Headings (MeSH): http://www.ncbi.nlm.nih.gov/mesh.
17The Library of Congress Subject Headings (LCSH): http://id.loc.gov/search/.
18Nuovo Soggettario of the National Central Library in Florence: http://thes.bncf.firenze.sbn.it/.
19SpecGen: http://forge.morfeo-project.org/wiki en/index.php/SpecGen.
20MIT license: http://www.opensource.org/licenses/mit-license.php.

Chapter 2. The digital publishing revolution 21

to prepare the HTML documentation of well-known ontologies, such as SIOC21 [20].
SpecGen generates the documentation by processing an HTML template and adding
the list of ontological classes and properties in specifiable positions within that
template. As result, we obtain a new HTML document where the natural language
description of the ontology come entirely from the template made by authors, while
the software takes care of adding all the information related to the logical structure
of the ontology.

Contrarily to SpenGen that needs a base HTML template to work, VocDoc22

is a (very little) Ruby script that allows one to produce documentation starting
from RDFS vocabularies and OWL ontologies. It is able to produce both HTML
documents and LaTeX files containing the description of the ontology/vocabulary.

Like VocDoc, OWLDoc23 is a fully-automatic generator of a set of HTML pages
describing the target ontology. It organises the documentation of each ontological
entity in different parts: the taxonomy involving the entity, the usage of this entity
in the context of the ontology, and all the formal logical axioms related to the entity
(in Manchester Syntax [95]). OWLDoc has been developed as plugin of Protégé24

[110] and as Web application25.

Oriented to Linked Data applications rather than to ontology documentation,
Paget26 is a PHP framework that, getting an input URL through a browser, is able
to dispatch the request according to the particular mime-type specified by the client.
Paget returns RDF entities in four different formats: RDF, HTML, Turtle, JSON.
It can be used to describe a set of pure RDF statements (subject-predicate-object)27

and, to some extents, to produce an HTML human-comprehensible description from
the axioms of an OWL ontology28.

Neologism29 [12] is a Web-based editor for the creation of RDFS vocabularies
and (very simple) OWL ontologies. Moreover, it implements a publishing system
that allows the publication of vocabularies and ontologies on the Web, rendered into
natural language HTML pages. Basca et al.’s main goal is to reduce the time needed
to create, publish and modify vocabularies for the Semantic Web.

Finally, Parrot30 [184] is a Web service for the generation of HTML+Javascript
documentation of OWL ontologies and RIF rules [21]. This service allows one to

21The Semantically-Interlinked Online Communities (SIOC) project: http://sioc-project.org.
22VocDoc: http://kantenwerk.org/vocdoc/.
23OWLDoc: http://code.google.com/p/co-ode-owl-plugins/wiki/OWLDoc.
24Protégé: http://protege.stanford.edu/.
25Ontology browser: http://code.google.com/p/ontology-browser/.
26Paget: http://code.google.com/p/paget.
27Ian Davis’ Linked Data profile, rendered through Paget: http://iandavis.com/id/me.html.
28A vocabulary for describing whisky varieties, rendered through Paget:

http://vocab.org/whisky/terms.html.
29Neologism: http://neologism.deri.ie.
30Parrot: http://ontorule-project.eu/parrot/parrot.

22 Chapter 2. The digital publishing revolution

specify multiple URLs identifying ontologies in order to produce an HTML summary
of them “on the fly”, starting from their logical structure and annotations.

2.3.2 Ontology sense-making

The issue of how best to support visualization and navigation of ontologies has
attracted much attention in the research community. As Wang and Parsia emphasize
[196], “effective presentation of the hierarchies can be a big win for the users”, in
particular, but not exclusively, during the early stages of a sense-making process,
when a user is trying to build an initial mental model of an ontology, focusing less on
specific representational details than on understanding the overall organization of
the ontology. In particular, as discussed in [163], there are a number of functionalities
that an effective visualization system needs to support, including (but not limited
to) the ability to provide high level overviews of the data, to zoom in effectively on
specific parts of the data, and to filter out irrelevant details and/or irrelevant parts
of the data.

An approach to addressing the issue of providing high level overviews of hier-
archical structures focuses on maximizing the amount of information on display,
through space-filling solutions, such as those provided by treemaps [162]. Treemaps
have proved to be a very successful and influential visualization method, used not
just to represent conceptual hierarchies but also to visualize information in several
mainstream sectors, including news, politics, stock market, sport, etc. However,
while treemaps define a clever way to provide concise overviews of very large hier-
archical spaces, they are primarily effective when the focus is on leaf nodes and on
a particular dimension of visualization, in particular if colour-coding can be used to
express different values for the dimension in question.

However, as pointed out in [196], treemaps are not necessarily effective in sup-
porting an understanding of topological structures, which is what is primarily needed
in the ontology sense-making context. State of the art ontology engineering toolkits,
such as Protégé [110] and TopBraid Composer31, include visualisation systems that
use the familiar node-link diagram paradigm to represent entities in an ontology and
their taxonomic or domain relationships. In particular, both the OwlViz visualizer
in Protégé and the “Graph View” in TopBraid make it possible for users to navigate
the ontology hierarchy by selecting, expanding and hiding nodes. However OwlViz
arguably provides more flexibility, allowing the user to customize the expansion ra-
dius and supporting different modalities of use, including the option of automatically
visualizing in OwlViz the current selection shown in the Protégé Class Browser.

SpaceTree [144], which also follows the node-link diagram paradigm, is able to
maximize the number of nodes on display, by assessing how much empty space is
available. At the same time it also avoids clutter by utilising informative preview

31TopBraid Composer: http://www.topbraidcomposer.com.

Chapter 2. The digital publishing revolution 23

icons. These include miniatures of a branch, which are able to give the user an idea
of the size and shape of an un-expanded subtree at a very high level of abstraction,
while minimizing the use of real estate.

Like treemaps, CropCircles [196] also uses geometric containment as an alterna-
tive to classic node-link displays. However, it tries to address the key weakness of
treemaps, by sacrificing space in order to make it easier for users to understand the
topological relations in an ontology, including both parent-child and sibling rela-
tions. The empirical evaluation comparing the performance of users on topological
tasks using treemaps, CropCircles and SpaceTree introduced in [196] showed that, at
least for some tasks, users of CropCircles performed significantly better than those
using treemaps. However, SpaceTree appears to perform significantly better than
either treemaps or CropCircles on node finding tasks.

A number of hybrid solutions also exist, such as Jambalaya [179] and Knoocks
[112], which attempt to combine the different strengths of containment-based and
node-link approaches in an integrated framework, by providing both alternative
visualizations and hybrid, integrated views of the two paradigms.

The group of techniques categorized in [105] as “context + focus and distortion”
are based on “the notion of distorting the view of the presented graph in order to
combine context and focus. The node on focus is usually the central one and the rest
of the nodes are presented around it, reduced in size until they reach a point that
they are no longer visible” [105]. These techniques are normally based on hyperbolic
views of the data and offer a good trade-off – a part of the ontology is shown in
detailed view, while the rest is depicted around. A good exemplar of this class of
approaches is HyperTree [172].

Finally, I should also consider the most ubiquitous and least visual class of tools,
exemplified by plugins such as the Class Browser in Protégé and the Ontology Nav-
igator in the NeOn Toolkit32 [181]. These follow the classic file system navigation
metaphor, where clicking on a folder opens up its sub-folders. This approach is ubiq-
uitous in both file system interfaces and ontology engineering tools and, in the case
of ontologies, it allows the user to navigate the ontology hierarchy simply by clicking
on the identifier of a class, to display its subclasses, and so on. While superficially a
rather basic solution, especially when compared to some of the sophisticated visual
metaphors that can be found in the literature, this approach can be surprisingly
effective for two reasons:

• it is very familiar to users;

• it makes it possible to display quite a lot of information in a rather small
amount of space, in contrast with node-link displays, which can be space-
hungry.

32NeOn Toolkit: http://www.neon-toolkit.org.

24 Chapter 2. The digital publishing revolution

As a result it is not surprising that these interfaces often perform better in evalu-
ation scenarios than the graphical alternatives. For instance, the evaluation reported
in [106] shows that subjects using the Protégé Class Browser fared better than those
using alternative visualization plugins in a number of ontology engineering tasks.

2.3.3 Visual modelling of ontologies

Usually, people who want to model ontologies have to be experts in formal languages
(e.g., description logic) that must be enough expressive to enable the definition
of all the semantic constraints required by particular needs of conceptualisation
of a domain. As consequence of that, years ago a new professional role arose to
specifically deal with the development of ontologies: the ontology engineer.

Nowadays an increasing amount of people of several fields (e.g., biology, medicine,
literature, software engineering) is beginning to develop ontologies for their own
needs. To this end, they usually adopt visual approaches that enable the develop-
ment of complex ontologies hiding the intrinsic complexity of the formal language
used. Moreover, as side effect, these visual approaches help when presenting ontolo-
gies to an audience that is not expert in formal languages.

One of the most common of these approaches is that of semantic networks [197].
A semantic network is a “graphic notation for representing knowledge in patterns of
interconnected nodes and arcs” [174]. Ontology classes and individuals are defined
as nodes of a graph (i.e., the visual representation of a semantic network). At the
same time, direct and labelled arcs can interlink nodes so as to represent predicates
between them: sub-class relations, belongingness to a class, individual assertions,
etc. Although this tool is commonly used for representing OWL ontologies, it has
been developed within the Artificial Intelligence field, years before the Semantic
Web.

Another interesting approach coming from software engineering fields is that
of using modified versions of UML [135], opportunely adapted to describe OWL
ontologies. In [79], Gasevic et al. propose a new UML profile for the definition
of OWL ontologies that is entirely based on the UML class notation. Moreover,
they illustrate a process that allows one to produce OWL ontologies by applying an
XSLT transformation to the XMI version of an UML document made through an
UML editor (such as Poseidon33).

Brockmans et al. [27] [26] propose another UML profile that enables one to
define OWL entities using an extended set of UML-based graphic notations. In par-
ticular, the UML class notation is used for the representation of classes and, when
opportunely decorated with dedicated stereotypes, class restrictions. Properties are
represented as UML n-ary associations, eventually with some stereotypes specified

33Poseidon for UML: http://www.gentleware.com/products.html.

Chapter 2. The digital publishing revolution 25

according to property characteristics (e.g., functional, symmetric, reflexive). In-
dividuals belonging to particular OWL classes are represented by using the UML
“object:Class” notation, while OWL data types are represented as UML classes.

Two years ago, the industry consortium responsible of UML, i.e. the Object Man-
agement Group, released an official UML profile [134] for defining OWL ontologies,
called Ontology Definition Metamodel (ODM), which incorporates and harmonises
works done previously on this topic. All these UML-like proposals appear to be less
intuitive than the semantic network approach, since they ask users to learn at least
some basic principles of the UML notations. Of course, the UML-like approach has
been very successful in software engineering communities, because it introduced,
with a relatively low effort, software engineers to ontology modelling.

2.3.4 Authoring tools for ontologies

Decorating resources (e.g., documents) with semantic data is usually a tedious task
without the support of appropriate applications that make this activity practicable,
intuitive and relatively quick. Luckily nowadays there exist many tools that help
users to deal with metadata enrichment, such as metadata editors and automatic
content processing mechanisms.

For instance, DC-dot34 retrieves Web pages and automatically proposes related
metadata according to Dublin Core Metadata Elements [64] and Terms [63]. Meta-
data can be edited using the form provided by the system, which is also accompanied
by a context-sensitive help. However, DC-dot only provides text areas for Dublin
Core resources, and does not allow domain-specific constraints and any other kinds
of customizations to the Dublin Core standard.

Another tool specifically designed for Dublin Core data is Metamaker35. This
editor allows the creation of metadata from the scratch through simple web forms.
Metadata can be saved in different formats, e.g. HTML, XHTML, XML, RDF or
AGRIS AP36. Unlike DC-dot, Metamarker allows one to use terms from external
sources, such as the AGROVOC thesaurus37.

TKME38 is an application that allows the creation and modification of metadata,
and organises them according to hierarchical structures (i.e., trees). Since TKME
does not oblige the use of a particular metadata schema, it allows one to customise
its interface according to alternative semantic models.

In contrast to TKME, Metasaur [107] provides a general visualisation tool for
ontologies describing a particular domain. Through Metasaur, users can create
lightweight ontologies according to existing metadata schemas as well as change

34DC-dot: http://www.ukoln.ac.uk/metadata/dcdot.
35Metamarker: http://www.fao.org/aims/tools/metamaker.jsp.
36AGRIS Application Profiles: http://aims.fao.org/standards/agmes/application-profiles/agris.
37AGROVOS thesaurus: http://aims.fao.org/website/AGROVOC-Thesaurus/sub.
38TKME: http://geology.usgs.gov/tools/metadata/tools/doc/tkme.html.

26 Chapter 2. The digital publishing revolution

existing ontologies adding new constraints and restrictions. As drawback, Metasaur
has not a flexible user interface. In fact, although it creates automatically a form
starting from the ontology in consideration, it does not allow users to customise and
personalise in any way the form itself.

Some other approaches address metadata editing through Web applications, such
as Wikis. Several approaches to semantic wikis have been developed to bring to-
gether the benefits of the free editing philosophy of wikis and ontological data.
Semantic wikis can be organized into two main categories according to their con-
nections with the ontologies: “wikis for ontologies” and “ontologies for wikis” [30].
In the first case, the wiki is used as a serialization of the ontology: each concept is
mapped into a page and typed links are used to represent object properties.

Such a model – initially proposed in the ontology for MediaWiki articles, called
WikiOnt [90] – has been adopted by most semantic wikis. SemanticMediaWiki
[193] is undoubtedly the most relevant one. It provides users with an intuitive
syntax to embed semantics, i.e. RDF statements, within the markup of a page.
SemanticMediaWiki allows users to freely edit the content without any limitation.
The more the information is correctly encoded the more semantic data are available,
but no constraint is imposed over the authoring process. SemanticMediaWiki has
been developed with the idea of creating a machine-readable version of Wikipedia, to
better exploit that huge amount of information and the competencies and enthusiasm
of its community.

The original term Wikitology [109] summarized very well the potentialities of
such approach. The DBPedia project [6] is also worth mentioning, being the most
recent effort in translating the Wikipedia content into RDF. One of the main obsta-
cles to the realization of Wikitology and similar projects is certainly the difficulty in
creating semantic content. Although the syntax is very simple, in fact, authors still
have to learn some new markup and above all to manually write correct statements.
SemanticForms39 is an extension of SemanticMediaWiki that addresses such issue by
allowing users to create semantic content via pre-defined forms. SemanticForms gen-
erates forms from templates, whose fragments and data have been previously typed.
The generation process exploits an embedded mapping between each datatype and
each type of field (radio-buttons, checkboxes, textareas, etc.). Users do not need to
manually write statements anymore as they are only required to fill HTML forms.

The difficulties in generating SemanticMediaWiki data have been mitigated by
an ad-hoc importer that allows the creation of multiple articles from an input OWL
ontology [192]. This tool uses a PHP API for managing OWL and automatically cre-
ates wiki content according to the basic MediaWiki model: each concept is mapped
into a page and each property into a typed link. Some checks about the consistency
of the ontology and the duplication of non-relevant data are also performed.

Other wikis provides users with mixed interfaces for creating semantic data.

39SemanticForms: http://www.mediawiki.org/wiki/Extension:Semantic Forms.

Chapter 2. The digital publishing revolution 27

MaknaWiki [47] is a JSP wiki-clone that allows users to embed semantic statements
or to fill HTML forms for querying and adding data to the ontology represented by
the wiki. These forms provide general tools for aided navigation of the semantic
data, do not depend on the domain of the wiki and their structure is hard-coded in
the system.

Rhizome [173] provides friendly interfaces and textareas where users can write
statements directly. It relies on ZML (a textual syntax serialisable into XML), a
generic language to express semi-structured data, and an engine to apply rules for
intermixing semantics and free texts.

A novel solution is provided by AceWiki [8] and CNL-approach [44]. AceWiki is
a semantic wiki that allows users to write ontological statements by simply writing
sentences in the ACE (Attempo Controlled English) language. The system includes
a predictive authoring tool that suggests options to the users and autocompletes
fields consistently to the ontology represented by the wiki. The same editor can be
used to extend the ontology by creating new classes, instances and relations. In [44]
De Coi et al. proposed a similar approach for SemanticMediaWiki, as they designed
a CNL (Controlled Natural Language) interface able to convert sentences written in
multiple languages into semantic data.

The second category of semantic wikis, based on the principle of “ontologies
for wikis”, includes all those wikis that are actually built on top of ontological
foundations. The idea is to exploit ontologies to create and maintain consistent
semantic data within a wiki so that sophisticated analysis, queries and classifications
can be performed on its content. IkeWiki [156] was one of the first wikis to adopt
this approach. Its deployment starts by loading an OWL ontology into the system
that is automatically translated into a set of wiki pages and typed links. Multiple
interfaces are provided to the users for editing the plain wiki content, adding new
metadata or tagging pages. IkeWiki strongly relies on Semantic Web technologies:
it even includes a Jena OWL40 [31] repository and a SPARQL [78] engine used for
navigation, queries and display of the semantic content of the wiki.

Similarly, OntOWiki [7] is a complete ontology editor. It relies on a strong dis-
tinction between the ontological back-end of the system and a user-friendly interface.
Data are natively stored as OWL/RDF statements that are dynamically rendered
into the final HTML wiki pages. OntOWiki provides users with multiple views of the
same content: (1) ontological data can be navigated by listing classes, individuals,
properties, etc., (2) domain-specific views can be added as plugins (for instance, a
MapView of geographical data can be dynamically mashed-up form GoogleMaps)
and (3) editing-views are natively available in the system.

SweetWiki [30] implements a user-friendly ontology tool designed for both expert
and non-expert users. Two aspects characterize the system: the strong connection
with the ontologies and the provision of Ajax-based interfaces for editing content and

40Jena: http://jena.sourceforge.net.

28 Chapter 2. The digital publishing revolution

metadata. SweetWiki defines a “Wiki Object Model”, i.e. an ontology describing the
wiki structure. Concepts like “document”, “page”, “link”, “version”, “attachment”
are all codified in an OWL file that is accessed and manipulated through the wiki
itself. These concepts are made explicit in SweetWiki, although they are usually
hard-coded in most semantic wikis. SweetWiki also allows users to import external
ontologies and to access and manipulate those ontologies through ad-hoc interfaces
(similar to those provided by the above mentioned full ontology editors). Finally,
the system provides “assisted social tagging” facilities: users can add metadata to
any page and can put pages in relation. These metadata values form a folksonomy
that, on the one hand, is freely editable by users and, on the other, is built on top
of ontological data. The interface for tagging, in fact, suggests consistent metadata
by exploiting SPARQL queries and autocompletion features.

Finally, UFOWiki [138] is another project that aims at integrating wikis, ontolo-
gies and forms. UFOWiki is a wiki farm, i.e. a server that allows users to set up
and deploy semantic wikis. The overall content is stored in a centralized repository
as RDF triples that express both the actual content of each page and its metadata.
The same farm deploys multiple wikis, so that they can share (ontological) data in
a distributed environment.

2.4 Projects, conferences and initiatives about Se-

mantic Publishing

Between 2010 and 2011, a large number of initiatives arose with the precise intention
of advertising Semantic Publishing to a broader audience. Everything, from projects
to workshops and journal issues, seems to confirm that semantic publishing and
scholarly citation using Web standards are presently two of the most interesting
topics within the scientific publishing domain.

In this section I list the most important initiatives about Semantic Publishing in
2010/2011, sponsored by both academia and companies. They represent the first for-
mal starting point of the increasing interest that semantic publishing is engendering
in scientific and industrial research.

2.4.1 JISC’s Open Citation and Open Bibliography projects

In mid-2010, JISC funded two sister projects: the Open Citation project41 and the
Open Bibliography project42, held respectively by the University of Oxford and the
University of Cambridge. Their broad goal is a study on feasibility, advantages
and applications at using RDF datasets and OWL ontologies when describing and
publishing bibliographic data and citations.

41Open Citation project blog: http://opencitations.wordpress.com.
42Open Bibliography project blog: http://openbiblio.net.

Chapter 2. The digital publishing revolution 29

The Open Citation project, in which I took part actively, proposes to increase
the effectiveness of scientific publishing and scholarly communication, making avail-
able on the Web bibliographic information as RDF data, according to particular
ontologies developed for the description of the publishing domain. In particular, it
aims at creating a semantic infrastructure that describes articles as bibliographic
records and their citations to other related works.

The main outcomes of this project are:

• the development of a suite of ontologies, called Semantic Publishing And Ref-
erencing (SPAR) ontologies, I developed under the supervision of professor
David Shotton when I was at the University of Oxford, and that represents an
important part of my work (Chapter 4);

• the development of two tools for ontology documentation, i.e. the Live OWL
Documentation Environment (LODE), and visualisation, i.e. the Graphical
Framework for OWL Ontologies (Graffoo), that I developed to support users
when understanding and documenting ontologies. They are introduced in
detail in Section 5.1 and Section 5.3 respectively;

• a corpus of interlinked bibliographic records43 obtained converting the whole
set of reference lists contained in all the PubMed Central44 Open Access arti-
cles into RDF data according to SPAR ontologies. The converted RDF data
are published as Linked Open Data.

The Open Bibliographic project aimed at publishing a large corpus of biblio-
graphic data as Linked Open Data, starting from four different sources: the Cam-
bridge University Library45, the British Library46, the International Union of Crys-
tallography47 and PubMed48. The key strategies promoted by this project were:

• the transformation of publishers’ models so as to natively include the open
publication of bibliographic data as Linked Open Data;

• the immediate and continuing engagement of the scholarly community.

2.4.2 JISC’s Lucero project

The Lucero project49 is another JISC project, held by the Open University, which
aimed at exploring the use of Linked Data within the academic domain. In particu-
lar, it proposes solutions that could take advantages from the Linked Data to connect

43It is available online at http://opencitations.net.
44PubMed Central: http://www.ncbi.nlm.nih.gov/pmc/.
45Cambridge University Library: http://www.lib.cam.ac.uk.
46British Library: http://www.bl.uk.
47International Union of Crystallography: http://www.iucr.org.
48PubMed: http://www.ncbi.nlm.nih.gov/pubmed/.
49Lucero project blog: http://lucero-project.info.

30 Chapter 2. The digital publishing revolution

educational and research content, so as students and researches could benefit from
semantic technologies.

Lucero main aims are:

• to promote the publication as Linked Open Data of bibliographic data through
a tool to facilitate the creation and use of semantic data;

• to identify a process in order to integrate the Linked Data publication of
bibliographic information as part of the University’s workflows;

• to demonstrate the benefits derived from exposing and using educational and
research data as Open Linked Data, through the development of applications
that improve the access to those data.

2.4.3 SePublica and Linked Science

Two of the most important Semantic Web conferences, i.e. the extended and the
international ones, began to explicitly promote Semantic Publishing through two
specific workshops.

The workshop SePublica50, co-located with the 8th Extended Semantic Web Con-
ference, is the first formal event entirely dedicated to Semantic Publishing. The aim
of the workshop was to investigate upon the different aspects of using semantic tech-
nologies within the publishing industry. In this half-day workshop were presented
seven different papers, one of which was awarded as best workshop paper (Elsevier
sponsored 750 dollars for that).

The Linked Science51 workshop, co-located with the 10th International Semantic
Web Conference, is a full-day event that involved research and practitioners dis-
cussing new ways of publishing, sharing, linking and analysing scientific resources,
such as articles, datasets and results. Each of the five workshop sessions relates to
a particular topic, from data-based applications to semantic integration of data, to
end up in an open meeting to discuss about the topics of the workshop.

2.4.4 Beyond Impact, the PDF and Research Communica-
tion

Recently the interest in proposing and adopting new formats for the improvement of
research communications appeared to be self-evident. More or less all research and
industrial communities agreed that current formats are not enough for covering the

50The 1st International Workshop about Semantic Publication (SePublica 2011):
http://sepublica.mywikipaper.org.

51The 1st International Workshop on Linked Science (LISC2011):
http://data.linkedscience.org/events/lisc2011.

Chapter 2. The digital publishing revolution 31

needs of a Web-based research communication. The workshop Beyond the PDF52,
organised at the University of California San Diego in January 2011, went to that
direction. The scope of this event was to identify a set of requirements, applications
and deliverables that can be used to accelerate knowledge sharing and discovery.

Beyond the PDF was not the only event organised with the aim of exploring
new research possibilities and directions in scholarly publication. The workshop on
The Future of Research Communication53, held in Dagstuhl in August 2011, was an-
other gathering where scientist and practitioners coming from different disciplines
met each other to discuss about future directions in scholarly publishing. They
discussed about all the prominent topics of scientific communication. In particular,
they proposed new formats, addressed the changes in media and modes of communi-
cation, draw opportune infrastructures and outlined social challenges with the aim
of making a sign on the future scholarly communication evolution.

From a broader point of view but always considering the Web as prominent
medium of communication, the Beyond Impact Workshop54 (held in London in May
2011) tried to establish different forms of impact – that is a measure of how research
outcomes influence and are used by other people – in today’s and future ways of
publishing. The output of this workshop is a document55 that introduces research
collaborations and future works to be done in the next years.

2.4.5 New Models of Semantic Publishing in Science

Journals about Semantic Web technologies and digital publishing started to be ac-
tively interested in Semantic Publishing topics. An example is a special issue of
the Semantic Web Journal56: New Models of Semantic Publishing in Science57.
The central topic spotted by that issue is about the promotion of emergent forms of
Web-based publications, so as to allow a rapid and automatic integration of research
information, making it readily available and reproducible.

Towards this goal, the issue call identifies Semantic Web technologies as key
tool for providing effective opportunities to new modes of scientific publications and
asks for submissions of researches in various related fields: Semantic Publishing,
Computer Supported Collaborative Work, Linked Data, eScience and Workflow-
driven tools, and Digital Libraries. The editors’ hope is to promote and advertise
all the important researches there were underway in this field.

52The Beyond the PDF Workshop: http://sites.google.com/site/beyondthepdf/.
53The Future of Research Communication Dagstuhl Workshop:

http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=11331.
54The Beyond Impact Workshop: http://beyond-impact.org/
55Beyond Impact Workshop Report: https://docs.google.com/document/d/1sH3JOW5Luki4i37

Ve1mOnI2wNZJbaUOx1T42S 7txQ0/edit?hl=en GB.
56Semantic Web Journal: http://www.semantic-web-journal.net.
57New Models of Semantic Publishing in Science: http://www.semantic-web-

journal.net/blog/special-issue-new-models-semantic-publishing-science.

32 Chapter 2. The digital publishing revolution

Chapter 3

Enhancing markup documents

The semantic enhancement of markup documents is a crucial requirement of Seman-
tic Publishing. It is stated in more than one important work in this field, e.g. [45],
that a better comprehension of a document derives also from the formal semantics
defined within it. The formal semantic layer, thus, becomes a vehicle to extend the
amount of ways through which we practice science. Although a large amount of the-
oretical studies discuss the different kinds of semantics applicable to a text, it seems
they miss a crucial point: the semantics of a document, such as a scientific article,
must be intrinsically and explicitly tied with the textual content of the document
itself.

The way we use to say something about a text is that of markup. In people’s
mind, there still exists a clear distinction between document markup (e.g., XML),
that we commonly use to define a the structure of a document, and the semantic
markup (e.g., RDF), usually needed when we want to represent, in a particular for-
malism, the meaning (or, better, a subjective interpretation) of the natural language
text of a document1. Document markup and semantic markup are, actually, two
sides of the same coin. However a large amount of people sees them living in two
separated levels. Even if the document markup is used to structure a document in
the most cases, it is not denied to having some markup elements that characterise
textual fragments as real-world entity, e.g. a person.

Within a text, the element <person>2 and the class foaf:Person3 are (habitually)
used to convey the same meaning, at least from the markup author’s perspective.
What really differs between them is that the latter define a formal representation
of their semantics (e.g., in OWL 2 Direct Semantics [126]), while the former usually
does not. As all the XML-like languages, the markup semantics is left to the human

1The document structure on its own can be seen as a particular kind of semantics. In fact,
when we speak about a text as structured in terms of its paragraphs, sections, chapters, etc., what
we are doing is to associate a semantic role of particular parts of the text.

2The element person as defined in TEI [186]: http://www.tei-c.org/release/doc/tei-p5-
doc/en/html/ref-person.html.

3The class Person as defined in FOAF [25]: http://xmlns.com/foaf/spec/#term Person.

34 Chapter 3. Enhancing markup documents

interpretation of a natural language definition or, in the worst case, of the markup
on its own.

Besides this difference, what XML-like languages really miss is an appropriate
expressiveness for the description of multiple and overlapping markup on the same
text. Overlapping markup is a crucial feature to express multiple (even discording)
semantic interpretations on the same fragment. If we agree that XML markup
elements convey semantics, then our field of action is limited by the syntactic rules
of XML itself that impose to structure the markup as a tree. Previous works, such
as TEI [186] and RDFa [2], propose to go beyond the fixed syntactic limits of XML,
in order to have multiple overlapping markup elements and RDF statements within
the same text. The problem is that those languages are not enough to address all
the possible scenarios. For example, on the one hand, XML documents with TEI-
like overlap workarounds present problems when trying to validate them against a
particular schema. On the other hand, RDFa uses the document content to define
formal statements, but it does not allow one to link a particular piece of text, e.g.
a sentence, to a semantic formalisation of it.

Trying to address the aforementioned issues, in this chapter I propose a new
markup metalanguage called EARMARK (Extremely Annotational RDF Markup)
defined by means of Semantic Web technologies. Among the lines of other rep-
resentational frameworks for documents such as [190], EARMARK is a logic-based
model that tries to be a nexus between document markup and semantic markup, and
aims to reach an intuitively complete equivalence between them. Besides presenting
EARMARK, in the following sections I investigate upon issues strictly related to
markup expressiveness, i.e., handling multiple and overlapping hierarchies on the
same fragment, the validation (against a particular schema) of documents having
overlapping markup, and the definition of the semantics of markup elements and
textual content.

3.1 EARMARK, a Semantic Web approach to meta-

markup

This section discusses a different approach to metamarkup, called EARMARK (Ex-
tremely Annotational RDF Markup) [55] [142] [56] [57] [58] [140] [11] [59] based
on ontologies and Semantic Web technologies. The basic idea is to model EAR-
MARK documents as collections of addressable text fragments, and to associate
such text content with OWL assertions that describe structural features as well as
semantic properties of (parts of) that content. As a result EARMARK allows not
only documents with single hierarchies (as with XML) but also multiple overlapping
hierarchies where the textual content within the markup items belongs to some hi-
erarchies but not to others. Moreover EAMARK makes it possible to add semantic
annotations to the content though assertions that may overlap with existing ones.

Chapter 3. Enhancing markup documents 35

One of the advantages of using EARMARK is the capability to access and query
documents by using well-known and widely supported tools for Semantic Web. EAR-
MARK assertions are simply RDF assertions, while EARMARK documents are
modelled through OWL ontologies. The consequence is that query languages (such
as SPARQL 1.1 [78]) and actual existing tools (such as Jena [31] and Pellet4 [170])
can be directly used to deal with even incredibly complicated overlapping structures.
What is very difficult (or impossible) to do with traditional XML technologies be-
comes much easier with these technologies under the EARMARK approach.

In the rest of this section I give a brief overview of the EARMARK model and
how it can be used for addressing issues of overlapping markup, validation and
semantics. The model itself is defined through an OWL document5, summarized in
Fig. 3.16, specifying classes and relationships. We distinguish between ghost classes
– that define the general model – and shell classes - that are actually used to create
EARMARK instances.

Figure 3.1: A Graffoo (see Section 5.3) representation of the EARMARK ontology.

4Pellet: http://pellet.owldl.com.
5EARMARK ontology: http://www.essepuntato.it/2008/12/earmark.
6This and the following diagrams comply with the Graphic framework for OWL ontologies

(Graffoo), introduced in Section 5.3. A legend for all Graffoo diagrams can be found in Fig. 5.13
on page 177.

36 Chapter 3. Enhancing markup documents

3.1.1 Ghost classes

The ghost classes describe three disjoint base concepts – docuverses, ranges and
markup items – through three different and disjoint OWL classes7.

The textual content of an EARMARK document is conceptually separated from
its annotations, and is referred to through the Docuverse class8. The individuals
of this class represent the object of discourse, i.e. all the containers of text of an
EARMARK document.

Class: earmark:Docuverse

DatatypeProperty: earmark:hasContent

Characteristics: FunctionalProperty

Domain: earmark:Docuverse

Range: rdfs:Literal

Any individual of the Docuverse class – commonly called a docuverse (lowercase
to distinguish it from the class) – specifies its actual content with the property
hasContent.

We then define the class Range for any text lying between two locations of a
docuverse. A range, i.e., an individual of the class Range, is defined by a starting
and an ending location (any literal) of a specific docuverse through the properties
begins, ends and refersTo respectively.

Class: earmark:Range

EquivalentTo:

earmark:refersTo some earmark:Docuverse and

earmark:begins some rdfs:Literal and

earmark:ends some rdfs:Literal

ObjectProperty: earmark:refersTo

Characteristics: FunctionalProperty

Domain: earmark:Range

Range: earmark:Docuverse

DatatypeProperty: earmark:begins

Characteristics: FunctionalProperty

7All our OWL samples are presented using the Manchester Syntax [95] and Turtle [147],
which are two of the standard linearisation syntaxes of OWL. The prefixes rdfs and xsd re-
fer respectively to RDF Schema and XML Schema namespaces, while the prefix earmark
refers to the EARMARK ontology URI plus “#”. Moreover, we use the prefix co to indi-
cate entities taken from an imported ontology made for the SWAN project [35], available at
http://swan.mindinformatics.org/spec/1.2/collections.html.

8This class (and its name) is based on the concept introduced by Ted Nelson in his Xanadu
Project [132] to refer to the collection of text fragments that can be interconnected to each other
and transcluded into new documents.

Chapter 3. Enhancing markup documents 37

Domain: earmark:Range

Range: rdfs:Literal

DatatypeProperty: earmark:ends

Characteristics: FunctionalProperty

Domain: earmark:Range

Range: rdfs:Literal

There is no restriction on locations used for the begins and ends properties. That
is very useful: it allows us to define ranges that follow or reverse the text order of
the docuverse they refer to. For instance, the string “desserts” can be considered
both in document order, with the begins location lower than the ends location or
in the opposite one, forming “stressed”9. Thus, the values of properties begins and
ends define the way a range must be read.

The class MarkupItem is the superclass defining artefacts to be interpreted as
markup (such as elements and attributes).

Class: earmark:MarkupItem

SubClassOf:

(co:Set that co:element only

(earmark:Range or earmark:MarkupItem)) or

(co:Bag that co:item only

(co:itemContent only

(earmark:Range or earmark:MarkupItem))

DatatypeProperty: earmark:hasGeneralIdentifier

Characteristics: FunctionalProperty

Domain: earmark:MarkupItem

Range: xsd:string

DatatypeProperty: earmark:hasNamespace

Characteristics: FunctionalProperty

Domain: earmark:MarkupItem

Range: xsd:anyURI

Class: co:Collection

Class: co:Set

SubClassOf: co:Collection

Class: co:Bag

SubClassOf: co:Collection

Class: co:List

9http://en.wikipedia.org/wiki/Palindrome#Semordnilaps

38 Chapter 3. Enhancing markup documents

SubClassOf: co:Bag

Class: co:Item

Class: co:ListItem

SubClassOf: co:Item

ObjectProperty: co:element

Domain: co:Collection

ObjectProperty: co:item

SubPropertyOf: co:element

Domain: co:Bag

Range: co:Item

ObjectProperty: co:firstItem

Characteristics: FunctionalProperty

SubPropertyOf: co:item

Domain: co:List

ObjectProperty: co:lastItem

Characteristics: FunctionalProperty

SubPropertyOf: co:item

Domain: co:List

ObjectProperty: co:itemContent

Characteristics: FunctionalProperty

Domain: co:Item

Range: not co:Item

ObjectProperty: co:nextItem

Characteristics: FunctionalProperty

Domain: co:ListItem

Range: co:ListItem

A markupitem individual is a collection (co:Set, co:Bag or co:List, where the
latter is a subclass of the second one and all of them are subclasses of co:Collection)
of individuals belonging to the classes MarkupItem and Range. Through these col-
lections it is possible to define a markup item as a set, a bag or a list of other
markup items, using the properties element (for sets), item and itemContent (for
bags and lists). Thus it becomes possible to define elements containing nested ele-
ments or text, or attributes containing values, as well as overlapping and complex
structures. Note also that handling collections directly in OWL allows us to reason
about content models for markup items, which would not be possible if we had used

Chapter 3. Enhancing markup documents 39

the corresponding constructs in RDF10.

A markupitem might also have a name, specified in the functional property
hasGeneralIdentifier (recalling the SGML term to refer to the name of elements
[81]), and a namespace specified using the functional property hasNamespace. Note
that we can have anonymous markup items – as it is possible in LMNL [185] and
GODDAG [176] – by simply asserting that the item belongs to the class of all those
markupitems that do not have a general identifier (i.e., earmark:hasGeneralIdentifier
exactly 0).

3.1.2 Shell classes

The ghost classes discussed so far give us an abstract picture of the EARMARK
framework. We need to specialize our model, defining a concrete description of our
classes. These new shell subclasses apply specific restrictions to the ghost classes.

First of all, the class Docuverse is restricted to be either a StringDocuverse (the
content is specified by a string) or an URIDocuverse (the actual content is located
at the URI specified).

Class: earmark:StringDocuverse

DisjointWith: earmark:URIDocuverse

SubClassOf:

earmark:Docuverse ,

earmark:hasContent some xsd:string

Class: earmark:URIDocuverse

SubClassOf:

earmark:Docuverse ,

earmark:hasContent some xsd:anyURI

Depending on particular scenarios or on the kind of docuverse we are dealing
with – it may be plain-text, XML, LaTeX, a picture, etc. – we need to use different
kinds of ranges. Therefore, the class Range has three different subclasses:

• PointerRange defines a range by counting characters. In that case, the value
of the properties begins and ends must be a non-negative integer that identifies
unambiguous positions in the character stream, remembering that the value 0
refers to the location immediately before the 1st character, the value 1 refers
to the location after the 1st character and before the 2nd one, and so on. By
using the hasKey OWL property, we also assert that two pointer ranges having
equal docuverse, begin and end locations are the same range;

10A blog post by Paolo Ciccarese explaining why RDF collections cannot be used in OWL
contexts: http://hcklab.blogspot.com/2008/12/moving-towards-swan-collections.html.

40 Chapter 3. Enhancing markup documents

• XPathRange defines a range considering the whole docuverse or its particular
context specifiable through an XPath expression [15] as value of the property
hasXPathContext. Note that, by using these ranges, we implicitly admit that
the docuverse it refers to must be an XML structure. Moreover, the properties
begins and ends have to be applied on the string value obtained by juxtaposing
all the text nodes identified by the XPath. By using the hasKey OWL property,
we also assert that two xpath ranges having equal docuverse, XPath context,
begin and end locations are the same range;

• XPathPointerRange is an XPathRange in which the value of the properties
begins and ends must be a non-negative integer that identifies unambiguous
positions in the character stream as described for the class PointerRange.

Class: earmark:PointerRange

HasKey: earmark:refersTo earmark:begins earmark:ends

SubClassOf:

earmark:Range ,

earmark:begins some xsd:nonNegativeInteger and

earmark:ends some xsd:nonNegativeInteger

Class: earmark:XPathRange

SubClassOf: earmark:Range

EquivalentTo:

earmark:hasXPathContext some rdfs:Literal

HasKey:

earmark:refersTo earmark:begins

earmark:ends earmark:hasXPathContext

Class: earmark:XPathPointerRange

SubClassOf:

earmark:XPathRange ,

earmark:begins some xsd:nonNegativeInteger and

earmark:ends some xsd:nonNegativeInteger

DatatypeProperty: earmark:hasXPathContext

Characteristics: FunctionalProperty

Domain: earmark:XPathRange

Range: rdfs:Literal

MarkupItem is specialized in three disjointed sub-classes: Element, Attribute and
Comment, which allow a more precise characterization of markup items.

Class: earmark:Element

SubClassOf: earmark:MarkupItem

Chapter 3. Enhancing markup documents 41

Class: earmark:Attribute

SubClassOf: earmark:MarkupItem

Class: earmark:Comment

SubClassOf: earmark:MarkupItem

DisjointedClasses: earmark:Element , earmark:Attribute ,

earmark:Comment

3.1.3 An example and an API

In order to understand how EARMARK is used to describe markup hierarchies,
let me to introduce an XML excerpt, using TEI fragmentation [186] to express
overlapping elements upon the string “Fabio says that overlhappens”:

<p>

<agent >Fabio </agent > says that

<noun xml:id="e1" next="e2">overl </noun >

<verb >

h<noun xml:id="e2">ap </noun >pens

</verb >

</p>

Here, the two elements noun represent the same element fragmented and over-
lapping with part of the textual content of verb, i.e., the characters “ap”. The
EARMARK translation of it is the following (linearised in Turtle [147]):

@prefix earmark: <http :// www.essepuntato.it /2008/12/ earmark

#>.

@prefix co: <http :// swan.mindinformatics.org/ontologies /1.2/

collections />.

@prefix ex: <http :// www.example.com/>.

ex:doc earmark:hasContent "Fabio says that overlhappens" .

ex:r0 -5 a earmark:PointerRange ; earmark:refersTo ex:doc

; earmark:begins "0"^^ xsd:nonNegativeInteger

; earmark:ends "5"^^ xsd:nonNegativeInteger .

ex:r5 -16 a earmark:PointerRange ; earmark:refersTo ex:doc

; earmark:begins "5"^^ xsd:nonNegativeInteger

; earmark:ends "16"^^ xsd:nonNegativeInteger .

ex:r16 -21 a earmark:PointerRange ; earmark:refersTo ex:doc

; earmark:begins "16"^^ xsd:nonNegativeInteger

; earmark:ends "21"^^ xsd:nonNegativeInteger .

42 Chapter 3. Enhancing markup documents

ex:r21 -28 a earmark:PointerRange ; earmark:refersTo ex:doc

; earmark:begins "21"^^ xsd:nonNegativeInteger

; earmark:ends "28"^^ xsd:nonNegativeInteger .

ex:r22 -24 a earmark:PointerRange ; earmark:refersTo ex:doc

; earmark:begins "22"^^ xsd:nonNegativeInteger

; earmark:ends "24"^^ xsd:nonNegativeInteger .

ex:p a earmark:Element ; earmark:hasGeneralIdentifier "p"

; co:firstItem [co:itemContent ex:agent

; co:nextItem [co:itemContent ex:r5 -16

; co:nextItem [co:itemContent ex:noun

; co:nextItem [co:itemContent ex:verb]]]] .

ex:agent a earmark:Element

; earmark:hasGeneralIdentifier "agent"

; co:firstItem [co:itemContent ex:r0 -5] .

ex:noun a earmark:Element

; earmark:hasGeneralIdentifier "noun"

; co:firstItem [co:itemContent ex:r16 -21

; co:nextItem [co:itemContent ex:r22 -24]] .

ex:verb a earmark:Element

; earmark:hasGeneralIdentifier "verb"

; co:firstItem [co:itemContent ex:r21 -28] .

I designed and implemented a framework for the creation, validation and ma-
nipulation of EARMARK documents, such as the above one. The API is hosted
by SourceForge11 under the Apache 2.0 license and fully implements the current
EARMARK model.

All the code is written in JavaTM and uses well-known libraries in the Semantic
Web community such as Jena [31]. The implementation of the EARMARK data
structure follows exactly what is defined in the EARMARK ontology and uses ghost
and shell classes, encoding OWL properties as methods of these classes.

The JavaTM classes EARMARKDocument, Range and MarkupItem have been
written taking into consideration a particular interface, called EARMARKNode,
directly derived from the Node interface of the JavaTM DOM implementation12.
This choice has been made to maintain the EARMARK data structure as close as
possible to a well-known and used model for XML documents.

11http://earmark.sourceforge.net
12http://java.sun.com/xml

Chapter 3. Enhancing markup documents 43

The API makes it simple to create/load/store/modify EARMARK documents
directly in a JavaTM framework. Let me take again into consideration the simple
example previously introduced. In the followings excerpts I illustrate how to build
that document using the API.

Let me start creating a new EARMARK document and a docuverse, containing
all the text content of our document:

EARMARKDocument ed =

new EARMARKDocument(URI.create ("http ://www.example.com"));

String ex = "http :// www.example.com /";

Docuverse doc = ed.createStringDocuverse(ex+"doc",

"Fabio says that overlhappens ");

The next excerpt shows how to create ranges starting from the above docuverse:

Range r0_5 = ed.createPointerRange(ex+"r0_5", doc , 0, 5);

...

Finally, I define all the markup items we need to build the structure of the
document. Usually, a markup item needs three different values in order to be created:
a string representing its general identifier, an identifier for the item and the type for
the collection it defines (either set, bag or list). In the following excerpt we show
the creation of three different elements, composed in order to define hierarchical
relations among them by using the method appendChild:

Element p = ed.createElement(

"p", ex+"p", Collection.Type.List);

Element agent = ed.createElement(

"agent", ex+"agent", Collection.Type.List);

ed.appendChild(p); p.appendChild(agent);

agent.appendChild(r0_5);

...

As seen, the API allows one to create EARMARK documents with very simple
and straightforward methods. Even rather complicated structures can be created
with a few lines of Java code.

3.2 The issue of overlapping markup

There are multiple applications of EARMARK. The most interesting for this section
concerns its capability of dealing with overlapping structures in an elegant and
straightforward manner. Under EARMARK such structures do not need to be
specified through complex workarounds as with XML, but they are explicit and can

44 Chapter 3. Enhancing markup documents

be easily described and accessed. Sophisticated searches and content manipulations
become very simple when using this ontological model.

Thus, the goal of this section is to demonstrate the soundness and applicabil-
ity of EARMARK by introducing theoretical aspects about overlapping markup in
Section 3.2.1 and Section 3.2.2, and by discussing how some real-case scenarios are
addressed (Section 3.2.3, Section 3.2.4 and Section 3.2.5). Notice that through-
out the following sections I investigate multiple EARMARK data structures and
documents, focussing on the feasibility and potentiality of such an ontological rep-
resentation.

3.2.1 Range and markup item overlap

The presence of overlap in EARMAK is worth discussing more in detail. Different
types of overlap exist – according to the subset of items involved – and different
strategies are needed to detect them. In particular, there is a clear distinction
between overlapping ranges and overlapping markup items.

By definition, overlapping ranges are two ranges that refer to the same docuverse
and so that at least one of the locations of the first range is contained in the interval
described by the locations of the second range (excluding its terminal points). To-
tally overlapping ranges have the locations of the first range completely contained
in the interval of the second range or vice versa, while partially overlapping ranges
have either exactly one location inside the interval and the other outside or identical
terminal points in reversed roles.

Thus, if we consider the ranges ex:r21-28 and ex:r24-24 of the example in Sec-
tion 3.1.3, we can infer, through a reasoner such as Pellet [170], that these two ranges
overlap by using the following rule13 (expressed in SWRL-like syntax [96]):

earmark:begins(x,b1) , earmark:ends(x,e1) ,

earmark:begins(y,b2) , earmark:ends(y,e2) ,

earmark:refersTo(x,d) , earmark:refersTo(y,d) ,

DifferentFrom(x,y) , P

-> overlapping:overlapWith(x,y)

where P is one of:

• lessThan(b1,e1) , greaterThan(b2,b1) , lessThan(b2,e1)

• lessThan(b1,e1) , greaterThan(e2,b1) , lessThan(e2,e1)

• lessThan(e1,b1) , greaterThan(b2,e1) , lessThan(b2,b1)

• lessThan(e1,b1) , greaterThan(e2,e1) , lessThan(e2,b1)

13In the excerpt, the prefix overlapping refers to “http://www.essepuntato.it/2011/05/overlapping/”.

Chapter 3. Enhancing markup documents 45

The case of overlapping markup items is slightly more complicated. We define
that two markup items A and B overlap when at least one of the following sentences
holds:

1. [overlap by range] A contains a range that overlaps with another range
contained by B;

2. [overlap by content hierarchy] A and B contain at least a range in common;

3. [overlap by markup hierarchy] A and B contain at least a markup item in
common.

The three possible scenarios for such item overlap are summarized in Fig. 3.214.

Figure 3.2: Three EARMARK examples of overlapping between elements p.

The EARMARK ontology, in fact, is completed by another ontology15 that mod-
els all overlapping scenarios, either for ranges or markup items, and includes rules
for inferring overlaps automatically, through a reasoner.

14The EARMARK documents describing these three overlapping scenarios
and all the other ones presented in the following sections are available at
http://www.essepuntato.it/2011/jasist/examples.

15The EARMARK Overlapping Ontology: http://www.essepuntato.it/2011/05/overlapping.

46 Chapter 3. Enhancing markup documents

3.2.2 EARMARK as a standoff notation

If we ignore for a moment the semantic implications of using EARMARK and con-
centrate only on its syntactical aspects, it is easy to observe that EARMARK is
nothing but yet another standoff notation, where the markup specifications point
to, rather than contain, the relevant substructure and text fragments.

Standoff notations, also known in literature as out-of-line notations [186], are
hardly new, but never really caught on for a number of reasons, most having to do
with their perceived fragility under the circumstances of desynchronized modification
to the text. In [80] and [14] we can find a pair of recent and substantially complete
analysis of their merits and demerits. In particular, according to [80], “standoff
annotation has [...] quite a few disadvantages:

1. very difficult to read for humans

2. the information, although included, is difficult to access using generic methods

3. limited software support as standard parsing or editing software cannot be
employed

4. standard document grammars can only be used for the level which contains
both markup and textual data

5. new layers require a separate interpretation

6. layers, although separate, often depend on each other”16.

And yet, although EARMARK is in practice a standoff notation, it provides a
number of workarounds to most of the above-mentioned issues.

Firstly, since EARMARK is based on OWL and can be linearised in any of
the large number of OWL linearisation syntaxes, it follows that 1) readability, 2)
access and 3) software support for it are exactly those existing for well-known,
widespread and important W3C standards such as RDF and OWL. Being able to
employ common RDF and OWL tools such as Jena and SPARQL for EARMARK
documents was in fact a major motivation for it.

Issue 4 should be examined beyond the mere validation against document gram-
mars and towards a general evaluation of the level of compliancy of the markup to
some formally specified expectations. EARMARK documents, while being subject
to no document grammar in the stricter XML sense, allow the specification of any
number of constraints, expressed either directly in OWL, or in SWRL [96] or even in
SPARQL [78], that trigger or generate validity evaluations. In [58] we tried to show
that a large number of requirements, from hierarchical well-formedness in the XML

16In order to individually address the issues, we edited the original bullets into a numbered list.

Chapter 3. Enhancing markup documents 47

sense, to validation requirements in terms of XML DTDs, to adherence to design
patterns, can be expressed satisfactorily using these technologies.

Item 5 regards the difficulty of standoff notations to provide inter-layer analysis
on XML structures: separate interpretation of markup layers is easy, but identifi-
cation and validation of overlapping situations is more complex: standoff markup
is mainly composed of pointers to content, and does not have any direct way to
determine overlap locations without some kind of pointer arithmetics to compute
them. Validation of contexts allowing overlaps as describable using rabbit-duck
grammars [175] is also not trivial. In this regard EARMARK provides yet again a
solution that does not require special tools: although OWL does not allow direct
pointer arithmetics, SWRL on the contrary does, as shown in Section 3.2.1 where
we described a batch of (SWRL-implementable) rules that do in fact determine
overlapping locations on EARMARK documents with good efficiency.

Finally, issue 6 refers to the fact that evolution of separate markup annotation
layers need to take place synchronously, lest one of them become misaligned with the
new state of the document. This is, in summary, the fragility of pointers, which can
be considered the fundamental weakness of standoff, as well as of any notation that
has markup separate from its content: if a modification occurs to the underlying
(probably text-based) source, all standoff pointers that could not be updated at
the same time of the change become outdated and possibly wrong. All standoff
notations fall prey of this weakness, and there is no way to completely get rid of it.

What is possible is to identify exactly what are the conditions under which such
weakness acts, and see if there is a way to reduce the mere frequency of such events.
In order for a standoff pointer to become outdated, several conditions must take
place at the same time:

• the standoff notation must be used as a storage format, rather than just as a
processing format;

• the source document must make sense even without the additional standoff
markup (i.e., the standoff notation contains no information that is necessary
for at least some types of document modifications);

• the source document must be editable (and, in fact, must be edited) on its
own;

• the standoff pointers must rely on positions that change when the source is
edited (e.g., character-based locations);

• editing must be done in contexts and with tools that cannot or do not update
the standoff pointers;

• there must be no computable way to determine the modifications of the doc-
ument (e.g. via a diff between the old and the new version).

48 Chapter 3. Enhancing markup documents

Of course, no standoff notation can rule out that these conditions occur on their
documents. But it is worth pointing out that all six of them must occur, for standoff
pointers to become outdated. EARMARK is not safe from these occurrences either,
but, at least for some use cases, one or more of these conditions simply do not
apply. For instance, when EARMARK is used as a processing format, with no need
to save it on disk (conversion from the source formats, e.g. MS Word, is described
in Section 3.2.3 and does not require special storage), the data format described is
either in a very specific format (such as MS Word or ODT) that in fact already does
handle internally its data changes and requires the overlapping data exactly for this
purpose, or is in fact the result of a diff action on successive versions of a document
(as in the case of the wiki pages, as introduced in Section 3.2.5).

Finally, EARMARK allows references to relatively stable fragment ids of the
documents (by using XPath ranges without specifying explicitly begin and end lo-
cations), rather than the extremely fragile character locations, further reducing the
chances of outdated pointers.

For this reason, without being able to completely rule out the possibility of
standoff pointers to go wrong, we tend to consider it as a significantly little risk, at
least for the use case here described.

3.2.3 Looking for authorial changes in Office Documents

Word processors such as Microsoft Word and Open Office Writer provide users with
powerful tools for tracking changes, allowing each individual modification by in-
dividual authors to be identified, highlighted, and acted upon (e.g. by accepting
or discarding them). The intuitiveness of the relevant interfaces actually hides the
complexity of the data format and of the algorithms necessary to handle such infor-
mation.

For instance, the standard ODT format [104] used by Open Office, when saving
change tracking information, relies on two specific constructs for insertions and
deletions that may overlap with the structural markup. While adding a few words
within a paragraph is not in itself complex, as it does not require the breaking of
the fundamental structural hierarchy, conversely changes that affect the structure
itself (e.g. the split of one paragraph in two by the insertion of a return character,
or vice versa the joining of two paragraphs by the elimination of the intermediate
return character) require that annotations are associated to the end of a paragraph
and the beginning of the next, in an unavoidably overlapping pattern. ODT uses
milestones and standoff markup for insertions and deletions respectively, and also
relies on standoff markup for annotations about the authorship and date of the
change.

For instance, the insertion of a return character and a few characters in a para-
graph creates a structure as follows:

Chapter 3. Enhancing markup documents 49

<text:tracked -changes >

<text:changed -region text:id="S1">

<text:insertion >

<office:change -info >

<dc:creator >John Smith </dc:creator >

<dc:date >2009 -10 -27 T18 :45:00 </dc:date >

</office:change -info >

</text:insertion >

</text:changed -region >

[... other changes ...]

</text:tracked -changes >

[... content ...]

<text:p>The beginning and

<text:change -start text:change -id="S1"/></text:p>

<text:p> also <text:change -end text:change -id="S1"/> the end

.</text:p>

The empty elements <text:change-start/> and <text:change-end/> are mile-
stones marking respectively the beginning and the end of the range that constituted
the insertion, while the element <text:insertion>, before the beginning of the
document content, is standoff markup for the metadata about the change (author
and date information).

Similarly, a deletion creates a structure as follows:

<text:tracked -changes ><text:changed -region text:id="S2">

<text:deletion ><office:change -info >

<dc:creator >John Smith </dc:creator >

<dc:date >2009 -10 -27 T18 :46:00 </dc:date >

</office:change -info ><text:p/><text:p/></text:deletion >

</text:changed -region >

[... other changes ...]

</text:tracked -changes >

[... content ...]

<text:p>The beginning and

<text:change text:change -id="S2" />also the end.</text:p>

The element <text:change/> represents a milestone of the location where the
deletion took place in the content, and the corresponding standoff markup annota-
tion <text:deletion> contains not only the metadata about the change, but also the
text that was deleted.

The OOXML format [103] (the XML-based format used by Microsoft Office
2007), on the other hand, uses a form of segmentation to store change-tracking
information across all previous elements involved.

<w:p>

<w:pPr ><w:rPr >

50 Chapter 3. Enhancing markup documents

<w:ins w:id="0" w:author ="John Smith"

w:date ="2009 -10 -27 T18 :50:00Z"/>

</w:rPr ></w:pPr >

<w:r><w:t>The beginning and </w:t></w:r></w:p>

<w:p>

<w:ins w:id="1" w:author ="John Smith"

w:date ="2009 -10 -27 T18 :50:00Z">

<w:r><w:t>also </w:t></w:r></w:ins >

<w:r><w:t>the end.</w:t></w:r></w:p>

This heavily simplified version of an OOXML document shows two separate
changes: the first is the insertion of a return character and the second is the in-
sertion of a word. These modifications are not considered as a single change, and
therefore the segments are not connected to each other, but simply created as needed
to fit the underlying structure. In fact, change tracking in OOXML is a fairly com-
plex proposition. Although providing more complete coverage of special cases and
situations than ODT, dealing with its intricacies is not for the casual programmer.

EARMARK for processing office documents

At this point, it is clear that the use of complex data structures in ODT and
OOXML, needed with storing overlaps generated by change-tracking functionali-
ties, make it very difficult to search and manipulate the content when using XML
languages and tools. Even very simple edits generate a rather tangled set of over-
lapping elements.

EARMARK, on the other hand, stores overlapping data in a direct and stream-
lined manner that does not require tools to rebuild information from the twists of
a tree-based XML structure. The information is already available and expressed
through consistent RDF and OWL statements. Fig. 3.3 on the facing page graphi-
cally shows the corresponding EARMARK document.

The original paragraph content and the new string “also” are now encoded as two
docuverses over which the ranges r1, r2 and r3 are defined. The original paragraph is
then composed of the (content of) ranges r1 and r2, while the paragraphs resulting
after the (text and carriage return) insertion now comprise respectively range r1 and
ranges r2, r3. Metadata about the author and the modification date are encoded as
further RDF statements.

Individual: doc1 Types: earmark:StringDocuverse

Facts: earmark:hasContent "The beginning and the end"

Individual: doc2 Types: earmark:StringDocuverse

Facts: earmark:hasContent " also"

Individual: r1 Types: earmark:PointerRange

Chapter 3. Enhancing markup documents 51

Figure 3.3: Encoding in EARMARK the ODT change-tracking example.

Facts:

earmark:refersTo doc1 ,

earmark:begin "0"^^ xsd:nonNegativeInteger ,

earmark:end "17"^^ xsd:nonNegativeInteger

Individual: r2 Types: earmark:PointerRange

Facts:

earmark:refersTo doc1 ,

earmark:begin "17"^^ xsd:nonNegativeInteger ,

earmark:end "25"^^ xsd:nonNegativeInteger

Individual: r3 Types: earmark:PointerRange , insJS

Facts:

earmark:refersTo doc2 ,

earmark:begin "0"^^ xsd:nonNegativeInteger ,

earmark:end "5"^^ xsd:nonNegativeInteger

Individual: p-b Types: earmark:Element

Facts: co:firstItem p-b-i1

Individual: p-b-i1

Facts: co:itemContent r1 , co:nextItem p-b-i2

Individual:

p-b-i2 Facts: co:itemContent r2

Individual: p-m Types: earmark:Element , insJS

Facts: co:firstItem p-m-i1

52 Chapter 3. Enhancing markup documents

Individual: p-m-i1

Facts: co:itemContent r3 , co:nextItem p-m-i2

Individual: p-m-i2

Facts: co:itemContent r2

Individual: insJS Types: Insertion

Facts:

dc:creator "John Smith" ,

dc:date "2009 -10 -27 T18 :45:00"

Individual: p-t Types: earmark:Element

Facts: co:firstItem p-t-i

Individual: p-t-i

Facts: co:itemContent r1

The advantages of streamlining overlaps become apparent if we consider tasks
a little beyond the mere display. For instance, the query for “the textual content
of all paragraphs inserted by John Smith” ends up rather entangled if we used
XPath [15] on the ODT structure. The process for finding that textual content
needs to browse the current version of the document, look for all the text:change-
start/text:change-end pairs that refer to an insertion made by John Smith involving
the creation of a new paragraph (i.e., text:change-start is in a first paragraph while
its pair, text:change-end, is in the following one), that are either currently present
in the document body or hidden behind a subsequent deletion made by someone
else. Once identified the paragraphs, I need to retrieve the content that originally
was contained there, i.e., the text fragments that still are within those boundaries or
that may have been deleted in subsequent versions. The following XPath represent
an implementation of the above process:

for $cr in (// text:changed -region) , $date in ($cr/text:

insertion //(@office:chg -date -time | dc:date)) return $cr

[.// text:insertion [(.// @office:chg -author = ’John Smith ’

and count($cr//text:p) = 2) or (.//dc:creator = ’John

Smith ’ and (// text:change -start[@text:change -id = $cr/

@text:id]/ following ::text:p intersect //text:change -end[

@text:change -id = $cr/@text:id]/(ancestor ::text:p)))]]/

root()//((text:change -start[@text:change -id = $cr/@text:id

]/(following ::text:p//((text()|(for $tc in (text:change)

return //text:changed -region[@text:id = $tc/@text:change -

id and not(text:insertion //(@office:chg -date -time | dc:

date) > $date)]// text:p[1]// text())) except ((for $tc in (

text:change) return $tc[count (// text:changed -region[@text:

Chapter 3. Enhancing markup documents 53

id = $tc/@text:change -id and not(text:insertion //(@office:

chg -date -time | dc:date) > $date)]// text:p) = 2]/ following

::text()) union (// text:changed -region/text:deletion [.//dc

:date <= $date]/text:p//text()))))) | (text:change[@text:

change -id = $cr/@text:id]/(following ::text()[ancestor ::

text:p] | (for $tc in (following ::text:change) return //

text:changed -region[@text:id = $tc/@text:change -id and not

(text:insertion //(@office:chg -date -time | dc:date) > $date

)]// text:p[1]// text())) except ((for $tc in (following ::

text:change) return $tc[count (// text:changed -region[@text:

id = $tc/@text:change -id and not(text:insertion //(@office:

chg -date -time | dc:date) > $date)]// text:p) = 2]/ following

::text()) union (// text:changed -region/text:deletion [.//dc

:date <= $date]/text:p//text()))) | $cr//text:p[2]// text()

) except (//(text:change|text:change -end)[@text:change -id

= $cr/@text:id]// following ::text:p[not((text:change -end|

text:change -start|text:change)[1]/ self::text:change -end)

]/(. | following -sibling :: element ())//(text() | (for $tc

in (text:change) return //text:changed -region[@text:id =

$tc/@text:change -id]// text())))

The XML structure of a MS Word file, using segmentation rather than mile-
stones, does simplify a bit the query, but still presents some radical complexities.
The process starts by choosing all those w:p elements that were inserted by John
Smith, as well as all their previous and contiguous w:p elements that were deleted
before or inserted after the first ones. In OOXML, each sequence of contiguous w:p
elements represents implicitly one paragraph. Therefore, I can now take all the text
fragments contained in each w:p sequence that were inserted before or deleted after
the paragraph defined by the sequence itself. The following is the resulting XPath
for an OOXML document:

for $p in (//w:p[w:pPr//w:ins/@w:author = ’John Smith ’])

return for $date in ($p/w:pPr//w:ins/@w:date) return ($p|(

$p/preceding -sibling ::w:p[w:pPr//w:del[@w:date <= $date]|w

:pPr//w:ins[@w:date > $date]] except $p/preceding -sibling

:: element ()[not(self::w:p) or empty(w:pPr//w:del[@w:date

<= $date]|w:pPr//w:ins[@w:date > $date])]/(.| preceding -

sibling :: element ())))//(w:t|w:delText)[empty(ancestor ::w:

ins[@w:date > $date]| ancestor ::w:del[@w:date <= $date])]

The complexity of both XPath queries is due to the intrinsic complexity of the
data structure the query has to work on. Although the interface of OpenOffice or MS
Word may provide tools to directly deal with these queries using specific strategies
on the internal data structures, applications working directly on the XML structure
have very little help in disentangling the mess of the data formats.

54 Chapter 3. Enhancing markup documents

On the other hand, since EARMARK documents are actually OWL files it is
possible to access and query them with plain Semantic Web tools. Powerful searches
can be then performed without using niche-specific tools or complex and long XPath
expressions but simply with mainstream technologies such as SPARQL 1.1 [78].

The corresponding SPARQL query for (“the textual content of all paragraphs
inserted by John Smith”) can therefore be written as follows:

SELECT ?p ?r WHERE {

?r a earmark:Range .

?p a [a :Insertion ; dc:creator "John Smith"]

; earmark:hasGeneralIdentifier "p"

; earmark:hasNamespace "http ://..."

; co:item/co:itemContent ?r . }

But EARMARK is useful for even more than querying: EARMARK also de-
creases the costs, in terms of efforts and lines of code, for manipulating documents.

Let me consider the task of generating an intermediate version (i.e., neither the
first nor the last one of a version chain), from a document that includes change-
tracking information about the whole document history.

The process of rebuilding these versions by working on the XML structure with-
out specific APIs is complex and inefficient at the same time. For example a basic
XSLT that returns an XML document defining the desired version requires at least
to:

• define templates for all the elements actively involved in the change tracking
– e.g., for ODT, text:changed-region, text:change-start, text:change-end and
text:change, and similarly for OOXML– in order to understand, by looking at
their creation date, whether they must be considered or ignored when building
the requested version. In particular, we must exclude insertions following and
deletions preceding the version we are building;

• define templates for paragraphs, in order to handle cases where the paragraph
is the result of an insertion or a deletion of other paragraphs, in order to
identify whether it should be considered for the result and, in such case, finding
out its real text content and remembering that, in the following versions, such
content may have spread out among other paragraphs;

• define templates for handling insertions/deletions for structures such as im-
ages, sections, lists, and tables;

• define an identity template for the other elements, in order to visit the entire
document.

Even the most basic and incomplete implementation of such XSLT requires hun-
dreds of lines of complex and convoluted code and a large number of ad hoc decisions

Chapter 3. Enhancing markup documents 55

based on the specificities of whether we start from ODT or OOXML. Notice also
that a Java-based implementation (or in any other procedural language) of the same
process would be equally or even more complex.

The same result can be achieved on EARMARK documents with a few lines of
Java code:

public EARMARKDocument getVersion(

EARMARKDocument d, String creator , String date) {

private final boolean RECURSIVELY = true;

EARMARKDocument version = null;

String query =

"PREFIX earmark: <http ://www.essepuntato.it /2008/12/ earmark

#>" +

"PREFIX co: <http :// swan.mindinformatics.org/ontologies

/1.2/ collections />" +

"PREFIX dc: <http :// purl.org/dc/elements /1.1/ >" +

"PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>"

+ "SELECT ?root" +

"WHERE {" +

"?root a earmark:Element ; dc:creator \"" + creator +

"\"; dc:date \"" + date + "\"." +

"FILTER NOT EXISTS { ?mi a earmark:MarkupItem ;" +

"co:item/co:itemContent ?root . } }";

EARMARKElement theRoot = d.findNode(query) ;

version = new EARMARKDocument(

URI.create ("http ://www.example.com/version "));

version.copyNode(theRoot , RECURSIVELY);

return version;

}

This approach uses the EARMARK Java API presented in Section 3.1.3 and
a single SPARQL query, runnable on any SPARQL 1.1 processor such as Jena,
to identify the root node of the subtree of the version that is associated with the
specified date and creator. Then, it performs a simple recursive deep-first visit
in order to clone all the nodes in the tree and to combine them in the output
EARMARK document.

This method heavily uses Semantic Web technologies on the structures provided
by EARMARK whose characteristics are always explicit and clear. Since all versions
coexist within the EARMARK document and each version can be encoded explicitly
as a tree within the overall graph, this operation is straightforward and fast.

56 Chapter 3. Enhancing markup documents

An evaluation

One of the most frequent criticisms when proposing a different approach to solving
a well-known problem in ICT is that the new solution may simplify the difficul-
ties of the specific problem, but brings with it hidden costs in terms of size of the
data structure, computation efforts or conversions restrictions that compensate the
advantages. In our case, one of the anonymous reviewers of our paper [55] won-
dered whether a difference in file size could weigh in on the convenience of adopting
EARMARK as opposed to working with the original files.

As such, a discussion of cost functions of EARMARK versus other formats is
in order. Yet, a systematic discussion of the relative costs (e.g., in byte size) of
some original XML-based data structures versus their EARMARK equivalent is an
open-ended undertaking that heavily depends on the original XML data structure
and the specific features present in the document, and is badly defined anyway:
while XML is a linearisation format immediately expressible in actual bytes, OWL
(or, more precisely, RDF, the language in which OWL ontologies are expressed) is
an abstract structure that allows a large number of linearisation formats (including
XML itself) with corresponding huge differences in the final byte counts.

For these reasons, in order to provide at least an initial test of meaningful con-
cepts, I selected two XML-based data formats (OOXML and ODT), and specifically
a set of documents where overlapping tricks were present (i.e., where change-tracking
was active). And to bypass the size discussion, I decided to test not byte-lengths
(which are not meaningful and easily skewed, e.g., by reducing the string length of
the element names or of the class names), but the number of nodes for XML docu-
ments and of triples for OWL documents. This comparison is again not particularly
appropriate (triples are naturally numerous in OWL ontologies, and it is customary
to deal with hundreds of thousands and even millions of assertions in Semantic Web
applications), but closer to meaningfulness than mere byte count.

Our comparison was carried on a small set of documents in ODT and OOXML
that included change-tracking information. As discussed in the previous sections,
change-tracking facilities generate rather complex overlaps even for basic operations
on small text fragments, which in turn are expressed as a potentially huge number
of standoff and milestone markup within the XML hierarchy. The same documents
were individually converted into EARMARK. I then charted how simple edits under
change-tracking affect the number of nodes in XML formats and of statements in
OWL files17.

I created seven different versions, named after the Seven Dwarfs for recognis-
ability, by applying very common edits (the insertion of few words, the deletion of
some sentences, the split of a paragraph, and so on) on a small document, creating
multiple overlaps. Fig. 3.4 on the next page shows the results of our comparison.

17The full details about each version and each format are also available at
http://www.essepuntato.it/2011/jasist/discussion.

Chapter 3. Enhancing markup documents 57

The overall trend is interesting and comforting: while in simple documents with
no overlap the node count of XML is lower than the assertion count of EARMARK
triples, the presence of overlaps makes EARMARK and XML formats comparable.
The growth of EARMARK statements is in fact very close to the growth of XML
nodes when the number of overlaps increases. EARMARK is even more efficient
than XML for more complex documents.

Figure 3.4: A graph summarizing the results of the first experiment.

The measure for each format was done by counting only those nodes and state-
ments instrumental to encode content and (overlapping) structures: I did not take
into account neither the presentational information for ODT and OOXML (each file,
for instance, includes a very long list of style definitions that are not relevant for the
purposes of our analysis) nor namespace declarations (OOXML files, for instance,
lists all relevant namespaces for the Office toolkit) nor ignorable white-spaces (that
are only added to indent content and improve readability).

Interestingly, EARMARK and ODT show a very similar increase in size, while
OOXML is much more verbose and grows faster. The content of the first version,
for instance, is encoded using 4 nodes in ODT, 13 statements in EARMARK and 54
nodes in OOXML; the last one contains 241 ODT nodes, 233 EARMARK statements
and 452 OOXML nodes. To return to our original enquiry, anyway, it is clear that
the weight of EARMARK documents is very good compared to the other ones.

It is also worthy of note the regularity in the growth of EARMARK statements.
Regardless of the actual modifications applied to the document, in fact, EARMARK
adds about 40 statements for each edit. Both OOXML and ODT, on the contrary,
show a more irregular “pace”. The reason is that EARMARK externalizes all as-
sertions, so that all modifications (either to leaf-nodes or to intermediate nodes in
the original XML) are “flattened” onto the docuverses and do not depend on the
complexity of the structure within which the edit took place.

58 Chapter 3. Enhancing markup documents

Fig. 3.5 shows the results of a similar comparison on a different set of documents
and edits. We collected seven versions named after the weekdays and created by
seven different authors when editing a very simple document. The overall trend
does not change and shows that EARMARK and ODT have again a comparable
behaviour, far better than OOXML.

Figure 3.5: A graph summarizing the results of the second experiment.

In conclusion, although preliminary, this study shows clear trends of a very
conservative behaviour of EARMARK with respect to document size.

3.2.4 Overlapping with Microformats and RDFa

Microformats [4] add semantic markup to web documents by using common struc-
tures of the HTML language itself, in particular the class attribute.

The HTML code is annotated using microformats so as to provide new semantic,
machine-processable assertions. In the following example, a plain HTML table is
enriched with metadata about events18 and people19:

<body >

<p class=" vevent">

WWW 2010 Conference :

<abbr class =" dtstart" title ="2010 -04 -26" > April 26</abbr >

-<abbr class=" dtend" title ="2010 -10 -30" >30 </abbr >,

Raleigh , NC , USA .</p>

<table >

<tr><th>Name </th ><th >Role </th ></tr >

<tr class ="vcard">

<td class="fn">Juliana Freire </td >

18HCalendar: http://microformats.org/wiki/hcalendar
19HCard: http://microformats.org/wiki/hcard

Chapter 3. Enhancing markup documents 59

<td class="role">Program Committee Chair </td ></tr >

<tr class ="vcard">

<td class="fn">Michal Rappa </td >

<td class="role">Conference Chair </td ></tr >

<tr class ="vcard">

<td class="fn">Paul Jones </td >

<td class="role">Conference Chair </td ></tr >

<tr class ="vcard">

<td class="fv">Soumen Chakrabarti </td >

<td class="role">Program Committee Chair </td ></tr >

</table >

<body >

The table was enriched by additional data declaring it to be an event (a con-
ference) and data about the event itself – the url, summary, location – and about
four relevant individuals – with their names and roles within the conference – were
associated where necessary to the actual content of the table.

So far, so good, and no overlap to speak about. Things change dramatically,
though, when the overall structure of the main hierarchy (the HTML table) is at
odds with the intrinsic hierarchy of the microformat data, for instance if the people
are organized in columns rather than rows. For instance:

<table >

<tr >

<td>Program Committee Chair </td >

<td>Conference Chair </td >

<td>Conference Chair </td >

<td>Program Committee Chair </td ></tr >

<tr >

<td>Juliana Freire </td >

<td>Michael Rappa </td >

<td>Paul Jones </td >

<td>Soumen Chakrabarti </td ></tr >

</table >

Unfortunately, vcards are a hierarchy themselves, and if the hierarchy of vcards
is organized differently from the hierarchy of the HTML table, as in the latter case,
it is just impossible to define the four vcards for the four people organizing the
conference. Thus in plain HTML the choice of one of two possible presentation
models for the main hierarchy of content makes it trivial or completely impossible
the existence of the second hierarchy.

A possible and partial solution to express vcard hierarchies in the latter ex-
ample is RDFa [2], a W3C recommendation. It describes a mechanism to embed
RDF statements into HTML documents by using some HTML attributes (href, rel,

60 Chapter 3. Enhancing markup documents

rev, content) in combination with other ad hoc attributes (property, about, typeof)
proposed in the recommendation itself.

<table

xmlns:vc="http ://www.w3.org /2006/ vcard/ns#"

xmlns:my="http ://www.essepuntato.it /2010/05/ myVCard#">

<tr >

<td about ="my:pcc" typeof ="vc:Role">

Program Committee Chair </td >

<td about ="my:cc" typeof ="vc:Role">

Conference Chair </td>

<td about ="my:cc" property ="vc:hasName">

Conference Chair </td>

<td about ="my:pcc" property ="vc:hasName">

Program Committee Chair </td ></tr >

<tr >

<td about ="my:jf" rel="vc:role" resource ="my:pcc">

Juliana Freire </td >

<td about ="my:mr" rel="vc:role" resource ="my:cc">

Michael Rappa </td >

<td about ="my:pj" rel="vc:role" resource ="my:cc">

Paul Jones </td >

<td about ="my:sc" rel="vc:role" resource ="my:pcc">

Soumen Chakrabarti </td ></tr >

</table >

Since all attributes live in the context of elements, the price to pay is that to
assert everything we want to assert we often need to add some structurally unnec-
essary elements to the current markup hierarchy of a document, needed only to add
the RDF statements (e.g., the span elements emphasized above). Even if that does
not represent a significant problem for strict Semantic Web theorists, document
architects and markup expert see this as a kludge and an inelegant compromise.

Converting the Web document with annotations into an EARMARK document
allowing both semantic and structural annotations to coexist can solve these issues.
Through EARMARK, I can explicitly express both markup structures and vcard
assertions. Fig. 3.6 on the next page shows how the vcard example can be modelled
(once again we show a graphical representation for the sake of clarity).

The textual content of the original table cells is now encoded in two different
docuverses, one for the header (with roles) and one for the body (with names of com-
mittee members). Ranges r1, r2, ..., r8 are then created to distinguish each role and
name. Two independent and coexisting hierarchies are then built on top of the same

Chapter 3. Enhancing markup documents 61

Figure 3.6: The abstract model of the EARMARK document solving the micro-
formats issue.

set of ranges: the HTML table that includes one cell for each range (in blue) and the
Vcards about each person (in green) that include only the relevant ranges and over-
lap the previous one. Notice also that the Vcards are defined in such a way that does
not interfere with the structural features of the table. The full linearisation in OWL
of this example can be found at http://www.essepuntato.it/2011/jasist/examples.

3.2.5 Wikis: no overlapping where some should be

The strength of wikis lies in their allowing users to modify content at any time. The
mechanisms of change-tracking and rollback that are characteristics of all wikis, in
fact, promote users’ contributions and make “malicious attacks” pointless in the
long run, since previous versions can be easily restored.

A number of tools exist that automatically discover “wiki vandalisms” and pro-
vide users with powerful interfaces to surf changes, diff subsequent versions and
revert content. For instance, Huggle20 is an application dealing with vandalism in

20Huggle: http://en.wikipedia.org/wiki/Wikipedia:Huggle.

62 Chapter 3. Enhancing markup documents

Wikipedia, based on a proxy architecture and .NET technologies. A straightforward
interface allows users to access any version of a page, highlights contributions of a
specific user and reverts the content to old versions.

Even client-side tools – meant to be installed as browsers extensions or book-
marklets – exist to extend the rollback mechanisms of Wikipedia, giving users more
flexibility and control over (vandalistic) changes. For instance, Lupin21 is a set of
javascript scripts that check a wiki page against a list of forbidden terms so that
authors can identify undesirable modifications and restore previous (good) versions
without a continuous control over the full content of the page; yet again, Twin-
kle22 provides users powerful rollback functions and includes a full library of batch
deletion functions, automatic reporting of vandals, and users notification functions.

These tools are successful in highlighting vandalism and in identifying versions
created by malicious users. However, although it is possible to revert the page to
any previous version, all changes (even acceptable ones) that were subsequent to the
malicious version cannot be automatically inherited by the restored page.

For instance, let me consider versions V1, V2, and V3 of a wiki page, where
versions V1 contains a baseline (acceptable) content, V2 is identified as a partial
vandalism and is agreed to be removed, but V3 contains (possibly, in a completely
different section than the target of the malicious attack) relevant and useful content
that was added before the vandalistic version V2 was declared as such. The task
of removing the modifications of version V2 while maintaining (whatever is possible
of) version V3 is a difficult, error-prone and time-consuming task if done manually,
yet there is no tool we are aware of that automatically filters contributions from
multiple versions and merges them into a new one (or, equivalently, removes only
selected intermediate versions).

Yet, it is possible to characterize the interdependencies between subsequent
changes to a document in a theoretical way. Literature has existed for a long time
on exactly these themes (see for instance [67] [66]). Although a detailed discussion
of abstract models of interconnected changes is out of scope for this paper – details
and authoritative references can be found in the above mentioned works – what is
relevant in this discussion is that they happen to assume a hierarchical form that is
frequently at odds with the hierarchical structure of the content of the document,
and as such most issues derive from the data structures in which content is stored
and from the model for manipulating these structures. For instance, the fact that in
the wiki perspective each version is an independent unit that shares no content (even
unchanged content) with the other versions prevents considering multiple versions
as overlapping structures coexisting on the same document. If we were able to make
these hierarchies explicit we would be able to create models and tools to manipulate
these documents in a more powerful way and to exploit the existing interconnections
between the overlapping hierarchies.

21Lupin, the Anti-vandal tool: http://en.wikipedia.org/wiki/User:Lupin/Anti-vandal tool.
22Twinkle: http://en.wikipedia.org/wiki/Wikipedia:Twinkle.

Chapter 3. Enhancing markup documents 63

EARMARK can be used to improve wiki reversion mechanisms and overcome
the limitations discussed above: the automatic filtering and merging of contributions
from multiple versions of the same page is now still a manual process, but it can
be fully automatized if the overlapping structures buried in the whole history of the
page become explicit.

The role of EARMARK is to make those structures explicit and available for
more sophisticated content manipulation. In order to understand to what extent
EARMARK structures can be derived from wikis and how they can be exploited by
the final users, we use as our example the wiki platform MediaWiki23, i.e., the wiki
engine of Wikipedia.

MediaWiki offers sophisticated functionalities for creating diffs of wiki content.
Users can compare any two revisions in the page history and highlight changes in a
friendly interface that shows modifications with a word-level granularity. Diff pages
contain metadata about each compared version (when the version was created, who
was the author or which IP address an anonymous author was connected from, etc.)
and a two-column table showing the changes side-by-side. Changes are detected
a posteriori by comparing two arbitrary versions, not even requiring them to be
temporally contiguous.

The output of the MediaWiki diff engine has regularities that can be exploited
to automatically build the overlapping structures of the diff and to express them in
EARMARK. Let us consider a fictitious example summarized in Table 3.1, where
an initial text is revised three times by different authors.

Table 3.1: All the versions of a wiki page modified by different authors.

Version V1 V2 V3 V4

Author 151.61.3.122
Angelo Di Io-
rio

Silvio Peroni Fabio Vitali

Content

Bob was
farming
carrots and
tomatoes

Bob was
farming
carrots,
tomatoes
and beans

Bob was
farming
carrots, toma-
toes and
green beans.
They were
all tasteful.

Bob was farming
carrots, tomatoes
and green beans.
[new paragraph]
They were all taste-
ful.

To display the differences between V1 and V2, Mediawiki creates a page whose
HTML code is as follows24:

23MediaWiki: http://www.mediawiki.org.
24For the sake of clarity we removed all markup irrelevant to our discussion.

64 Chapter 3. Enhancing markup documents

<table class="diff"><tbody >

<tr valign ="top">

<td class ="diff -otitle">

<div id="mw -diff -otitle1">

 Revision as of 15:46, 8

November 2009</div >

<div id="mw -diff -otitle2"><a >151.61.3.122 </div >

</td>

<td class ="diff -ntitle">

<div id="mw -diff -ntitle1">

 Revision as of 15:47, 8

November 2009</div >

<div id="mw -diff -ntitle2">Angelo Di Iorio </div >

</td ></tr>

<tr >

<td class ="diff -marker">-</td >

<td class ="diff -deletedline">

<div >Bob was farming carrots <del class=" diffchange

diffchange -inline">and tomatoes.</div ></td>

<td class ="diff -marker">+</td >

<td class ="diff -addedline">

<div >Bob was farming carrots

<ins class =" diffchange diffchange -inline">

, </ins > tomatoes

<ins class =" diffchange diffchange -inline">

and beans </ins >.</div ></td ></tr >

</tbody ></table >

This is an HTML table of two rows, the first showing metadata (date and author
of the modification) and the second the actual modifications. The first cell of the
second row contains all the unmodified text and a del element for each inline fragment
that was deleted. The second cell contains all the unmodified text and an ins element
for each inline fragment that was inserted. Thus, these cells share exactly the same
unmodified part(s) of the two compared versions.

When the structure itself is modified, rather than merely the text, the source
code of the MediaWiki diff is slightly different. Thus the diff between V3 and V4
(which splits a paragraph in two) is as follows:

<tr>

<td class="diff -marker">-</td >

<td class="diff -deletedline">

<div >Bob was farming carrots , tomatoes and green beans.

They were all tasteful.</div ></td >

<td class="diff -marker">+</td >

<td class="diff -addedline">

Chapter 3. Enhancing markup documents 65

<div >Bob was farming carrots , tomatoes and green beans.&

nbsp;</div ></td ></tr >

<tr>

<td colspan ="2" >& nbsp;</td ><td class="diff -marker">+</td >

<td class="diff -addedline"><div > </div ></td ></tr >

<tr>

<td colspan ="2" >& nbsp;</td ><td class="diff -marker">+</td >

<td class="diff -addedline">

<div >They were all tasteful.</div ></td ></tr >

The diff output is neither complete nor sophisticated, and of course it is a com-
pletely different task to re-plan such algorithm (but for a first idea of natural changes
in recognising differences of XML documents, see [51]). Thus, limitations of that
algorithm are inevitably shared by any EARMARK representation. Yet, this output
is sufficiently rich to allow us to extract the overlapping information we need. For
instance, the insertion of a non-breakable-space or a carriage-return generates rows
according to specific rules that can be easily detected to capture the actual change
by the author.

Fig. 3.7 on the next page shows the above example rebuilt in EARMARK. All
versions are encoded in the same document by creating overlapping assertions over
the docuverses. Metadata and RDF statements are layered on top of those asser-
tions and create a rich knowledge base about the history of the documents and, in
particular, about the history of each fragment.

Due to the complexity of the example we labelled arrows with numbers indicating
the position of each range within each markup item. Consider for instance version
V4: it is composed of two DIV elements, the first one containing the concatenation
of “Bob was farming carrots” + “,” + “tomatoes” + “and” + “green” + “beans”
+ “.”, and the second one contains the string “They are all tasteful”.

Implementing a wiki content filtering mechanism on top of such a structure is
rather simple. For instance, the removal of all the contributions of “Angelo Di
Iorio”, that leaves untouched all the content written (previously and subsequently)
by “Silvio Peroni” and “Fabio Vitali”, can be performed straightforwardly. Three
steps are enough to apply such an intermediate content reversion:

1. the identification of the fragments written by “Angelo Di Iorio”, which is a
straightforward SPARQL query on the embedded statements;

2. the creation of a new version where references to those fragments are removed
and references to fragments no longer in the document are correctly fixed;

3. the translation of that document into an actual MediaWiki page through the
serialization process described in [142].

Of course, an automatic process may generate ambiguities or even errors in the
resulting content (some parts may become dangling, wrong or unclear after removing

66 Chapter 3. Enhancing markup documents

Figure 3.7: The wiki sample versions encoded in a single EARMARK document.

text fragments elsewhere); grammar discrepancies might also be generated by the
same approach. Linguistic and semantic problems, however, become a problem once
the technical issues of managing independent yet successive edits are solved. What
is important is that all the information about overlaps and dependencies among
fragments are available in EARMARK and can easily be searched, filtered and
manipulated. Besides, foreseeing a manual intervention for checking and polishing
automatically-filtered content is perfectly in line with the wiki philosophy, so that
the wiki community itself can use the reversion tools wisely to revise the content
and adjust any intervening minor nuisances or imperfections. Such checks would
still be far simpler and faster than the manual process of partially reverting versions
as we have today.

Chapter 3. Enhancing markup documents 67

3.3 Structural validation of semantically-defined

markup

One of the most important issues addressed by document markup concerns the
possibility to express and verify specific syntactic properties:

• the well-formedness, that depends to the syntax specified for the particular
markup language considered – e.g., in XML-based languages the begin and
end tags which delimit elements must correctly nest without overlapping;

• the validity against a vocabulary, that (formally) restricts the set of values
we can use for naming elements and attributes – definable by using schema
languages such as XML Schema and RelaxNG for XML;

• the validity against a content model, that defines contexts in which a particular
named element can or cannot be25 – definable by using schema languages as
well. Particularly interesting in this context is the validity of a document
against a set of patterns, i.e., a set of recurring rules and content models.

In this section I discuss how most correctness properties typical of the structural
markup, such as the validity against a schema, can be expressed through OWL
ontologies and verified upon EARMARK documents at a semantic level by means of
reasoners, such as Pellet [170], even when dealing with multi-hierarchical structures.
In order to support this claim, I also introduce two different running examples, the
former based on a simple markup schema and the latter on a specific meta-level
theory for document structures based on structural patterns [43].

3.3.1 Defining content-models on EARMARK documents

The assessment of ontological properties in the semantic domain is in a way compa-
rable and can be made to act as validation in the XML domain, that is the process
of verification of whether relevant markup items of a well-formed XML document
satisfy the constraints embodied in the relevant components of a schema. In the
world of XML, several schema languages have been introduced such as DTD [23],
XML Schema [75] and RelaxNG [37]. They have different expressive power but they
share the same objectives and basic principles: the validator checks the structural
properties of a well-formed document by verifying all the syntactical constraints
expressed in the schema.

Moving from a syntactic perspective to a semantic one – as proposed by EAR-
MARK – opens new perspectives for a general approach to assessment as well. A

25More formally, for XML-based languages, a content model of a markup element is “a simple
grammar governing the allowed types of the child elements and the order in which they are allowed
to appear” [23].

68 Chapter 3. Enhancing markup documents

key point of such approach is the translation of many markup properties from a syn-
tactical to an ontological level. In the case of XML schema validation, for instance,
this means expressing (a) schema definitions as ontology classes and properties and
(b) schema documents as ontology instances and assertions, that express hierarchies
as semantic relations. Starting from an ontological TBox representing the schema
and an ABox representing the document, we can then conclude that the document
is valid according to the schema if and only if the ABox is consistent with the TBox.

My goal is to design a framework and to implement tools that verify if an EAR-
MARK document is compliant to any property P over its syntax, structure and
semantics. The same approach can thus be used for common validation as well as
for all the other above-mentioned constraints we want to verify on our documents.
My approach – that is meant to be instantiated for each specific case – can be
summarized as follows:

1. define an ontology fragment O that details the particular property P we want
to verify;

2. associate the EARMARK document instances to O, so as to obtain an ABox
for O;

3. use a reasoner to prove whether the ABox is consistent (i.e., that property P
is held) or not (and P is not held).

In order to illustrate how to assess properties on EARMARK documents defin-
ing specific ontologies, we first take into consideration simple syntactical property
definitions, such as those specifiable for the content models of markup items using
schema languages such as DTD, XML schema or RelaxNG.

For instance, let us consider the following seven-sentences informal description
of a schema:

1. it is only possible to use elements (e.g., no attributes are allowed anywhere);

2. no element is associated to a namespace;

3. all elements must specify a general identifier;

4. each element contains the other nodes in a specific order;

5. no element with a general identifier different from “phrase”, “noun” and “verb”
can be used;

6. each element with general identifier “phrase” can contain, in any order, only
an unlimited number of elements with general identifier “noun” or “verb”, and
cannot contain text;

Chapter 3. Enhancing markup documents 69

7. each element with general identifier “noun” or “verb” can contain only text
and no other elements.

Using a RelaxNG Compact-like syntax [38], opportunely extended to allow us to
define more than one root element for our documents in the structure start (when
applied to XML documents, RelaxNG only allows one to define one root), the pre-
vious informal schema may be formally expressed as follows:

start = (e.phrase | e.noun | e.verb)*

e.phrase = element phrase { (e.noun | e.verb)* }

e.noun = element noun { text }

e.verb = element verb { text }

As I have previously introduced, in order to understand whether an EARMARK
document is written according to the previous sentences and, consequently, to the
previous schema, I have to develop an OWL ontology that implements them. In this
case, we can obtain implicit associations between EARMARK document instances
and the above property constraints to assess by extending the EARMARK ontology
itself.

First of all, I can limit the use of elements (sentence 1) simply defining all markup
items equivalent to elements only, as shown in the following excerpt:

Class: earmark:MarkupItem

EquivalentTo:

earmark:Element and

not(earmark:Attribute or earmark:Comment)

This sentence also results in asserting, by inference, that Attribute and Com-
ment are subclass of the OWL class Nothing, which represents the empty set: no
individuals can belong to it.

Then, I express sentences 2 to 4 by adding three subclass relations to the Element
class:

Class: earmark:Element

SubClassOf:

earmark:hasNamespace exactly 0 , co:List ,

earmark:hasGeneralIdentifier some xsd:string

To express sentences 5 to 7, we create a new object property to describe the
parent-child relations among EARMARK nodes (i.e., markup items and ranges):

ObjectProperty: earmark:hasChild

SubPropertyChain:

co:item o co:itemContent

Since it is defined by a property chain between the properties item and item-
Content, I can say that if an Element individual e has an item i that refers to a
particular EARMARK node m – that is a typical parent-child relation concerning

70 Chapter 3. Enhancing markup documents

EARMARK elements expressed by bags or lists – then we can infer that e has m as
child.

Then, using this property, I can easily cover the remaining sentences (4-7) by
adding another subclass relation to the Element class:

(earmark:hasGeneralIdentifier value ’phrase ’ and earmark:

hasChild only

(earmark:hasGeneralIdentifier some {’noun ’ , ’verb ’})) or

((earmark:hasGeneralIdentifier some {’noun ’ , ’verb ’}) and

earmark:hasChild only earmark:Range)

That’s it: the above assertions are sufficient to assess whether an EARMARK
document is valid against the schema presented26. For instance, when I try to verify,
through a reasoner, whether the EARMARK document in Section 3.1.3 is consistent
with the model introduced in this section, I will receive an inconsistency exception
because the element p of the sample document is not allowed.

Property definitions through OWL ontologies can be used to define schemas for
EARMARK documents. Yet, rather than discussing validation, that is addressed in
other works, such as [68] [152] [198], in the following sections we will concentrate, as
an extensive example, on the assessment of the properties connected to structural
patterns, such as the ones discussed in [43] and [50].

3.3.2 Structural patterns

The idea of using patterns to produce reusable and high-quality assets is not new
in the literature. Software engineers [69], architects (as Alexander who first in-
troduced this term [3]) and designers very often use – or rather reuse – patterns
to handle problems that recur over and over. Patterns have also been studied to
modularize and customize web ontologies [146]. They guarantee the flexibility and
maintainability of concepts and solutions in several heterogeneous scenarios.

My research group has been investigating patterns for XML documents for some
time [43] [50]. The overall goal of our research is to understand how the structure of
digital documents can be segmented into atomic components, which can be manip-
ulated independently and re-flowed in different contexts. Instead of defining a large
number of complex and diversified structures, a small number of structures/patterns
has been identified, sufficient to express what most users need. The idea is that ten
patterns, shown in Table 3.2 on page 86, are enough to capture the most relevant
document structures.

The two main characterizing aspects of such pattern theory are:

• orthogonality – each pattern has a specific goal and fits a specific context. The
orthogonality between patterns makes it possible to associate a single pattern

26The model is available at http://www.essepuntato.it/2011/03/schemaexample.

Chapter 3. Enhancing markup documents 71

to each of the most common situations in document design. Then, whenever
a designer has a particular need he/she has to only select the corresponding
pattern and to apply it;

• assemblability – each pattern can be used only in some locations (within other
patterns). Although this may seem a limitation, such strictness improves
the expressiveness and non-ambiguity of patterns. By limiting the possible
choices, patterns prevent the creation of uncontrolled and misleading content
structures. This characteristic still allows the presence of overlapping items –
for example, a block that contains two different inlines that overlap upon the
same segment continues to be a valid structure in terms of patterns because
its content model is not violated, even though the presence of overlapping
descendants.

These patterns allow authors to create unambiguous, manageable and well-
structured documents. The regularity of pattern-based documents makes it pos-
sible to perform easily complex operations even when knowing very little about the
documents’ vocabulary. Designers can implement more reliable and efficient tools,
can make hypotheses regarding the meanings of document fragments, can identify
singularities and can study global properties of sets of documents.

There are two main methods to check if (and how) a document uses patterns
or can be normalized into a new pattern-based resource. A procedural approach
requires ad hoc tools – written in a procedural programming language and running
on a software platform – that are difficult to write, test, maintain, and extend. A
declarative approach, on the other hand, guarantees more flexibility, extensibility
and portability. The ontological model adopted by EARMARK is particularly suit-
able for such a context: verifying that a document meets the requirements given by
patterns, in fact, only requires verification using a reasoner of some properties of an
OWL ontology.

In the next section I will propose an example of this approach, made even more
complex by the presence of an overlapping structure that makes property verification
through XML technologies much more complex, and possibly even impossible.

Assessing structural patterns on EARMARK documents

The first step to verify patterns-related properties of EARMARK documents is
obviously to build an ontology that describes such patterns and their relationships.
We developed the ontology through a set of hierarchical class/sub-class relations,
summarized in Fig. 3.8 on page 73.

We have three levels of abstraction modelling different aspects of our theory:

• the top-level classes describe the general features of a pattern. In particular,
they characterize their content model expressing the possibility for the element

72 Chapter 3. Enhancing markup documents

to contain text (Textual) or not (Structural) and to contain other elements
(Hierarchical) or not (Leaf);

• the middle-level classes – i.e., Marker, Bucket, Flat and Mixed – model all the
combinations of top-level classes and express their disjointness;

• the bottom-level classes include all the “instanceable” classes, i.e., all those
classes which document elements can explicitly belong to.

This ontology allows me to verify whether or not an EARMARK document
follows the structural patterns. In particular, it allows me to verify if a given asso-
ciation between elements and patterns (that assigns one pattern to each element)
is valid. That, again, means checking whether the ontological association of each
element to a particular pattern is consistent.

For assessing patterns on an EARMARK document D, we need to apply the
following steps:

1. for each element in D, associate an instanceable pattern to the element;

2. for each element in D, assert the elementbelongs to the class defined by the re-
striction pattern:isContainedBy exactly 0 pattern:Pattern27 whether it
is not contained by any other element – where isContainedBy is the inverse of
the property contains shown in Fig. 3.8 on the facing page;

3. launch a reasoner to check if the pattern ontology with these added assertions
is consistent (all the pattern constraints hold) or not (there are some errors
when assigning patterns to elements).

Before presenting experimental results, let me show some excerpts from the pat-
tern ontology developed, just to sketch out how we formally define those structural
properties. First of all, I need to express containment relations among patterns
through specific OWL object properties, as shown as follows:

ObjectProperty: pattern:contains

Domain: pattern:Hierarchical

Range: pattern:Pattern

ObjectProperty: pattern:isContainedBy

InverseOf: pattern:contains

Expressing EARMARK markup item containments in terms of these two prop-
erties is straightforward by using particular rules to infer new assertions:

earmark:MarkupItem(x), co:Set(x),

co:element(x,y), earmark:MarkupItem(y)

-> pattern:contains(x,y)

27The prefix pattern refers to “http://www.essepuntato.it/2008/12/pattern#”.

Chapter 3. Enhancing markup documents 73

Figure 3.8: Graffoo diagram that summarises the classes describing the pattern
theory.

earmark:MarkupItem(x), co:item(x,y),

co:itemContent(y,z), earmark:MarkupItem(z)

-> pattern:contains(x,z)

Taking into consideration the above properties and assertions, I illustrate, as
example, the definition of inline and block patterns, discussing the main differences
among them. I implement them through two OWL classes:

Class: pattern:Inline

SubClassOf:

pattern:Mixed and pattern:contains only

(pattern:Inline or pattern:Milestone or pattern:Popup),

pattern:isContainedBy some pattern:Block

Class: pattern:Block

SubClassOf:

pattern:Mixed and pattern:contains only

(pattern:Inline or pattern:Milestone or pattern:Popup)

DisjointWith: pattern:Inline

74 Chapter 3. Enhancing markup documents

As shown, content models for these classes are defined by adding restrictions in
form of superclasses, such as:

pattern:Mixed and pattern:contains only

(pattern:Inline or pattern:Milestone or pattern:Popup)

All Textual individuals are inferred starting from markup items containing some
ranges:

earmark:MarkupItem(x), co:Set(x),

co:element(x,y), earmark:Range(y)

-> pattern:Textual(x)

earmark:MarkupItem(x), co:item(x,y),

co:itemContent(y,z), earmark:Range(z)

-> pattern:Textual(x)

The entire pattern ontology definition is available online28 and uses SWRL [96]
as the rule language.

Experimental results

In the following I discuss an explicative example on the first three verses of the
Paradise Lost by John Milton, which are often quoted as a standard example for
enjambement in poetry:

Figure 3.9: The EARMARK document, in the form of a graph, of the first three
verses of the Paradise Lost by John Milton.

28The Pattern Ontology: http://www.essepuntato.it/2008/12/pattern.

Chapter 3. Enhancing markup documents 75

Of Man ’s first disobedience , and the fruit

Of that forbidden tree whose mortal taste

Brought death into the World

I want to describe two different hierarchies, one for the verses and another one
for the syntactical units giving rise to the enjambments, and we use an HTML-like
syntax for the general identifiers. Fig. 3.9 on the preceding page shows the graph
representation of a corresponding EARMARK document29.

Table 3.3 on page 87 summarizes our experiments running a reasoner to verify
patterns on the previous example30. I tried eight different combinations of patterns
and – for each combination – I checked whether it generated a consistent ontology.

The fourth column of the table shows the output of the reasoner. The answer
“yes” indicates that a specific combination does not violate the constraints of the
relevant patterns. That combination is then valid and can be used for identifying
structural roles of document’s elements. Negative results are very relevant because
the reasoner is able to identify that requirements are not respected, and why. For
instance, the reasoner detects that an element div cannot be an inline, being the
root of a hierarchy.

Although this example is very simple (and focuses only on a few patterns), it
should give readers the idea of how a reasoner and the ontological descriptions of a
set of constraints can give validity results on rules expressed over an EARMARK
document, and regardless of whether the document is in fact a single hierarchy
(i.e., an XML document) or actually represents a multiplicity of hierarchies hard
or impossible to express in XML. The fact that here I deal with patterns is just
an example, and does not affect the generality and applicability of this approach:
additional classes and additional SWRL rules would allow us to test other properties
of the same documents.

3.3.3 Validation of document markup

Two particular topics are relevant to what we examine in previous sections: the
ontological representation of digital document properties such as schema validity
and other non-ontological approaches for validating complex overlapping structures.

After generating a well-defined document structure mapped into ontological as-
sertions through EARMARK, we would like to verify whether it satisfies some par-
ticular properties or not – for example, validation against a document schema. Doc-
ument schemas can also be good starting points for developing or reengineering
ontologies, as pointed out in [68]. Proposing a translation mechanism from an XML
document into a set of RDF assertions that describe it, Ferdinand et al.’s main aim
is to define a way to translate an XML Schema document into an OWL ontology

29http://www.essepuntato.it/2010/04/ParadiseLost
30http://www.essepuntato.it/2010/04/ParadiseLost/test

76 Chapter 3. Enhancing markup documents

in order to obtain a complete TBox+ABox from a document with markup and its
schema.

Similar to the previous work but following a different approach, [152] introduces a
framework for producing an ABox starting from an XML document, passing through
an existing OWL ontology and the XML Schema document used by the original
document. The JXML2OWL31 framework thus generates such an Abox via some
XSLT processing, made possible through handmade associations between the XML
Schema declarations and the OWL classes. The result of this process is a set of
OWL instances related to the OWL ontology used for the transformation. Proving
the consistency of these instances with respect to the ontology means verifying the
validity of the original document against the referred schema.

Another study that works similarly is [198]. After introducing the main dif-
ferences between XML Schema and ontologies in general, Yang et al. propose an
ontology-based approach for representing mappings between that document schema
language and ontologies. The goals of this work are round-trip translations from an
XML document into ontology instances and the realization of an ontology-mediated
transformation between different XML documents, in order to allow seamless data
exchange between heterogeneous XML data source.

Considering non-ontological approaches, the rabbit/duck grammars mechanism
[175] is a good technique for the validation of documents with overlaps. The basic
idea of this approach is simple: to define different document schemas whose intersec-
tion describes the markup language to be validated. In each schema, each markup
element is associated to one out of four classes – normal, milestones, transparent
and opaque – that define how elements have to be considered in the context of the
schema taken into consideration. Given a complete set of rabbit/duck grammars,
each element must belong to the class normal in at least one schema of the set.
Then, a document is considered valid against the set of rabbit/duck grammars if
and only if it is valid against each schema in the set.

3.4 Dealing with Markup Semantics

Complementary to existing Semantic Web research work, which typically aims at
studying uses and applications of semantic markup (i.e., defining relations among
resources), in this section I address the issue of markup semantics: the formal defini-
tion of meanings of markup elements, besides the syntactical structure of a markup
document [149].

EARMARK is suitable for expressing markup semantics straightforwardly. How-
ever, I want to associate coherent semantics to markup items following precise and
theoretically-founded principles, which makes our application interoperable across
different vocabularies used e.g. in digital libraries.

31JXML2OWL: http://jxml2owl.projects.semwebcentral.org.

Chapter 3. Enhancing markup documents 77

As a matter of fact, different existing vocabularies tackle the representation of
terms vs. meanings vs. things in general, and this is not only true for XML markup
languages, but also for semantic web ontologies such as SKOS, FRBR, CIDOC,
OWL-WordNet, LIR, LMF, etc. Unfortunately, each of them has a particular ap-
proach depending on the original requirements they were designed for (thesauri
encoding, media item representation, standardizing digital library vocabularies, lex-
icon or (multi-)linguality representation, etc.), so that aligning all or part of them
for a specific use is a difficult operation, specially when we consider the domain of
document structures, where arbitrary representations lead to different realizations
for the user, to lack of interoperability, and lock markup semantics into islands.

A viable solution to get around this problem is to align existing vocabularies to
more general and comprehensive theories. The main benefit of using shared prin-
ciples and well-grounded studies – e.g., patterns (e.g., documental [43], ontological
[146]), linguistic theories (e.g., Pierce’s semiotic triangle [139], Saussure’s semiology
[155], Jakobson’s communication model [102], Searle’s linguistic acts [161]), NLP
approaches (e.g., Guthrie et al.’s [86]) – is that they enable the interoperability
between different vocabularies.

In this work I have adopted the linguistic act32 (LA) ontology, based on the
Linguistic Meta-Model (LMM) [143]. It provides a semiotic-cognitive representation
of linguistic knowledge. The general idea beyond it is to handle the representation
of different knowledge sources developed according to different (and even implicit)
semiotic theories, putting each of them in the context of the semiotic triangle [139]
and some related semiotic notions, as shown in Fig. 3.10 on the next page.

The linguistic act is defined through an OWL ontology that implements the basic
ideas of semiotics:

• References: any individual, set of individuals, or fact from the world we are
describing. They can have interpretations (meanings) and can be denoted by
information entities. For example: Fabio, the set of Fabio’s relatives, or the
fact that Fabio is a professor;

• Meanings: any (meta-level) object that explains something, or is intended
by something, such as linguistic definitions, topic descriptions, lexical entries,
thesaurus concepts, logical concepts or relations, etc. They can be “interpre-
tants” for information entities, and “conceptualizations” for individuals and
facts. For example, concepts such as person, paragraph, having a role;

• Information entities: any symbol that has a meaning, or denotes one or more
references. They can be natural language terms, sentences or texts, symbols
in formal languages, icons, or whatever can be used as a vehicle for communi-
cation – for example: the string “Fabio”, the markup elements p, agent, noun

32Linguistic Act Ontology: http://ontologydesignpatterns.org/cp/owl/semiotics.owl.

78 Chapter 3. Enhancing markup documents

Figure 3.10: A diagram summarizing the ontology pattern linguistic act.

and verb. They have at least one meaning and can denote references. More-
over, each information entity can be an expression (e.g., the string “Fabio”)
realized in one or more manifestations (e.g., the string “Fabio” contained in a
particular XML file stored on somebody’s hard drive) having the same inter-
pretation.

• Linguistic acts: any communicative situation including information entities,
agents, meanings, references, and a possible spatio-temporal context (i.e. when
and/or where the act has been performed). For example, dialogs, taggings,
writings.

Considering these premises, EARMARK markup items are specific kinds of ex-
pressions expressing a particular meaning, usually assigned implicitly by the author
of a schema or a markup, which are used to denote local objects (e.g., their content,

Chapter 3. Enhancing markup documents 79

according to the definition of a markup object) and/or social entities (e.g., persons,
places, communication events, etc.).

For example, in the XML example introduced in Section 3.1.3 there are different
semantic blocks: firstly, the element agent expresses the meaning of “agent” (i.e., as
the resource defined by DBPedia33) and denotes a specific person (i.e., the person,
using FOAF, is known as “Fabio Vitali”), while the element p must be interpreted
as a paragraph (i.e. a specific document structure according to the DoCO ontology,
that will be introduced in Section 4.4) and denotes the string “Fabio says that overl-
happens” (rather than the corresponding concept). This in a way differs from the
XML syntactical structure in which the element p contains the elements agent, noun
and verb – that themselves express/denote/contain the other meanings/references.

In LA-EARMARK, it is possible to describe both the rigid syntactic structure,
as described in Section 3.1.3, as well as its semantic connotation:

@prefix ar: <http :// www.ontologydesignpatterns.org/cp/owl/

agentrole.owl#> .

@prefix la: <http :// www.ontologydesignpatterns.org/cp/owl/

semiotics.owl#> .

@prefix sit: <http :// www.ontologydesignpatterns.org/cp/owl/

situation.owl#> .

@prefix doco: <http :// purl.org/spar/doco/> .

@prefix dbpr: <http :// dbpedia.org/resource/> .

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

ex:r0 -28 a earmark:PointerRange

; earmark:refersTo ex:doc

; earmark:begins "0"^^ xsd:integer

; earmark:ends "28"^^ xsd:integer .

ex:p la:expresses doco:Paragraph

; la:denotes ex:r0 -28 .

ex:agent la:expresses dbpr:Agent , doco:TextChunk

; la:denotes ex:fv , ex:r0 -5 .

ex:fv a foaf:Person

; foaf:givenName "Fabio"

; foaf:familyName "Vitali" .

ex:markupAuthor a ar:Agent

; ar:hasRole [a ar:Role

; rdfs:label "markup author"] .

33DBPedia “agent” resource: http://dbpedia.org/resource/Agent.

80 Chapter 3. Enhancing markup documents

[] a la:LinguisticAct

; rdfs:comment "marking a paragraph up"

; sit:isSettingFor ex:p , ex:r0 -28

, doco:Paragraph , ex:markupAuthor .

[] a la:LinguisticAct ; rdfs:comment "marking text up"

; sit:isSettingFor ex:agent , ex:r0 -5

, doco:TextChunk , ex:markupAuthor .

[] a la:LinguisticAct

; rdfs:comment "markup element as instance"

; sit:isSettingFor ex:agent , ex:fv , dbpr:Agent .

...

The example introduced explains how it is possible to describe markup hier-
archies – and therefore their semantics – upon those markup items. In the next
sub-sections I show the advantages of using LA-EARMARK in two different use
cases, previously highlighted in [149]: querying documents marked up with the
same implicit semantics but marked up with different vocabularies that share the
same implicit semantics and the semantic validation of markup items.

3.4.1 Searches on heterogeneous digital libraries

Digital libraries about journal research articles use to actually store their documents’
content using specific XML formats, e.g. the common TEI [186], DocBook [194], or
other less common vocabularies developed expressly for a specific collection. Clearly,
the more digital libraries we consider, the more non-interoperable formats we will
find, although they express, more or less, the same kinds of documents and, conse-
quently, document semantics. Paragraph, sections (implicitly or explicitly labelled
as abstract, introduction, results, discussion, related works, conclusions, acknowl-
edgements, bibliography, etc.), figures, tables, formulas are a little but important
part of the elements that we will find in the markup of journal papers, regardless of
the actual vocabulary used.

In this scenario of heterogeneous formats expressing homogeneous content, look-
ing throughout a number of digital libraries for particular document fragments, such
as “All the tables that are part of the results sections of articles written by Silvio
Peroni”, can be approached only by addressing each digital library with a query
specific of the vocabulary used, and then merging the results. Obviously, the im-
plicit (shared) semantics of the query must be implemented in each digital library
in a (different) explicit way, for example by using tools for mapping the query into
each specific markup structure. This means requiring a particular ad hoc and non-
interoperable mechanism for each format of each digital library.

Chapter 3. Enhancing markup documents 81

Expressing semantics of elements in a journal article by considering a shared
model may help for increasing interoperability, but it is not enough, because the dif-
ferent formats will still be a substantial problem. For example, being a section pre-
senting results in a particular research article may be expressed differently depending
on the format used: <div class="section.results">, <section id="results">,
<sec class="results">, <results>, etc.

Expressing journal articles in LA-EARMARK – obtained, for instance, by trans-
lating the original XML documents via GRDDL [39] – allows one to specify the
semantics of markup elements according to some formal model, without attention
to the specific markup vocabulary34:

ex:div a earmark:Element

; earmark:hasGeneralIdentifier "div"

; co:firstItem [co:itemContent ex:classAttr]

; la:expresses doco:Section , deo:Results .

ex:results a earmark:Element

; earmark:hasGeneralIdentifier "results"

; la:expresses doco:Section , deo:Results .

As shown in the previous excerpt, both ex:div and ex:results elements express
the same semantics even if their names differ: they are syntactically different (their
content models differ), but semantically equivalent.

Enabling digital libraries to express each LA-EARMARK document as a named
graph, with all the document metadata referring to it, allows one to query more
than one digital library at the same time by using a single SPARQL 1.1 query [78].
For instance, a plausible SPARQL query for the above-mentioned request – “All the
tables that are part of results sections of the article written by Silvio Peroni” – is:

SELECT ?table WHERE {

GRAPH ?doc {

?table a earmark:Element

; la:expresses doco:Table

; (^co:itemContent /^co:item)+

[a earmark:Element

; la:expresses

doco:Section , deo:Results] } .

?doc dcterms:creator "Silvio Peroni" }

34The prefix deo refers to the Discourse Element Ontology (DEO), ontology for the charac-
terisation of the major rhetorical elements of a document (e.g., a research article), such as
the introduction part, the evaluation section, the conclusions and so on. It is available at
http://purl.org/spar/deo.

82 Chapter 3. Enhancing markup documents

3.4.2 Validation of “Markup sensibility”

Sometimes it is not possible to understand whether a particular markup element
that is valid at the syntactic and structural level is also valid at the semantic level,
i.e., the level that Bauman described as markup sensibility: “Does a construct make
sense, e.g., a proposition or an assertion?” [13]. A clear example of this difficulty
can be found with heavily interlinked documents that make systematic references
to precise concepts in their content.

For instance, Akoma Ntoso [10] [9] is an open legal XML standard for parlia-
mentary, legislative and judiciary documents, promoted by the Kenya Unit of the
United Nations Department for Economics and Social Affairs (UN/DESA) in 2004.
Originally meant for African Countries, it is now promoted also in Latin America,
Asia and various European countries. Akoma Ntoso describes structures for legal
documents using a vocabulary of common structures based on XML, references to
legal documents across countries using a common naming convention based on URIs,
and a systematic set of legal metadata values using an ontologically sound approach
compatible with OWL and GRDDL.

This markup language is defined by means of a very complex XML Schema
document, which defines the vocabulary and the content models of markup items.
Although that schema is enough to guarantee the validity of a document from a pure
syntactical point of view, there are semantic connections that are useful to verify
but cannot by simply using a schema language. Let us introduce an Akoma Ntoso
excerpt to clarify the point:

<akomaNtoso >

<meta >

...

<references source ="#fv">

<TLCPerson id="fv"

href ="/ ontology/it/person/FabioVitali">

<TLCPerson id=" smith"

href ="/ ontology/uk/person/JohnSmith">

<TLCRole id=" mineconomy"

href ="/ ontology/role/government/MinisterOfEconomy">

...

</references >

...

</meta >

<body >

...

<speech id="sp1" by="# smith" as="# mineconomy">

<p>Honorable Members of the Parliament , ... </p>

</speech >

...

Chapter 3. Enhancing markup documents 83

</body >

</akomaNtoso >

The elements TLCPerson and TLCRole, introduced within the metadata block
(element meta) of the document, are used for specifying the presence, in the doc-
ument in which it is defined, of two particular ontological entities, respectively a
person and a role, according to a specific underlying ontology. Wherever these ele-
ments are referred to by a markup element by means of its identifier (as expressed
in the attribute id), what really is referred to are the ontological individuals that
are specified by the attribute href. For instance, within the body of the document,
the element speech is used to mark up the transcription of a speech performed by
the person John Smith (attribute by) who is temporarily playing the particular role
of Minister of the Economy (attribute as). Moreover, the attribution of all the
metadata concerning the speech transcription is an editorial activity, rather than
authorial, made specifically by an agent identified through the attribute source of
the element reference. For self-containment, the attributes by and as do not refer
directly to the ontological concepts associated to John Smith and the Minister of
the Economy, but to an intermediate jumping station, i.e., the elements TLCPerson
and TLCRole in the metadata block.

Although it is a fundamental requirement of the language, the syntactic valida-
tion through XML Schema of the document does not provide sufficient information
to understand whether an Akoma Ntoso document is really correct and coherent,
because it cannot prove the sensibleness of markup. In the preceding example, we
also need to check:

• the validity of the elements TLCPerson and TLCRole as reflection of the
consistence of people and role individuals within an underlying ontology, par-
ticularly by checking whether each individual can really be a person (or a role)
without provoking an inconsistency with other classes the individual may be-
long to;

• the validity of the element speech as markup denoting a particular speech
event that involves only and at least a person as speaker. Moreover, because
it reflects a speech, it must contain some text.

• the fact that the person John Smith was, at the moment of the speech, either
the Minister of Economy or acting as an authorized delegate through a track
of explicit delegations starting from the current minister.

The XML Schema language is not able to express these kinds of constraints.
Naive or inexpert metadata authors could very well generate documents that are
syntactically and structurally valid, possibly even apparently correct from a seman-
tic point of view, but fundamentally incoherent. For instance, a common miscon-
ception is to confuse persons and roles, as in the following (syntactically valid but
ontologically incorrect) example:

84 Chapter 3. Enhancing markup documents

<speech id="sp1" by="# mineconomy">

<p>Honorable Members of

the Parliament , ...</p>

</speech >

The LA-EARMARK translation of the above fragment, that also includes its
semantic description, is the following35:

@prefix akomantoso: </ontology/entity/> .

</ontology/uk/person/JohnSmith >

a akomantoso:Person .

[] a la:LinguisticAct

; sit:isSettingFor

<smith > , akomantoso:Person

, </ontology/uk/person/JohnSmith > .

<sp_1 > a earmark:Element

; earmark:hasGeneralIdentifier "speech"

; la:expresses akomantoso:Speech

; la:denotes _:aSpeechEvent , _:p .

_:aSpeechEvent a akomantoso:SpeechEvent

; akomantoso:hasSpeaker

</ontology/uk/person/JohnSmith > .

_:p a earmark:Element

; earmark:hasGeneralIdentifier "p" .

[] a la:LinguisticAct

; sit:isSettingFor

<sp_1 > , _:aSpeechEvent

, </ontology/uk/person/JohnSmith >

, akomantoso:Speech .

[] a la:LinguisticAct

; sit:isSettingFor <sp_1 > , _:p

, akomantoso:Speech .

LA-EARMARK allows one to check the sensibility of markup precisely, by defin-
ing semantic constraints as ontological axioms, taking into account both classes and
properties defined in LA-EARMARK and in the underlying ontology behind Akoma
Ntoso. Inasmuch as such semantic constraints can be defined as axioms adhering to

35The prefix akomantoso is associated to the minimal glue ontology within the XML document
itself that connects markup structures to legal concepts according to the model explained in [10].

Chapter 3. Enhancing markup documents 85

or in contrast with axioms of the underlying ontologies, they can be directly applied
to reasonings even in open world frameworks such as OWL.

For example, a plausible ontological constraint (written in Manchester Syntax)
for all the markup elements speech is:

(earmark:Element that earmark:hasGeneralIdentifier

value "speech ")

SubClassOf

(sit:hasSetting only

(la:LinguisticAct that

sit:isSettingFor exactly 1

(earmark:Element and la:InformationEntity)

and

sit:isSettingFor exactly 1

(earmark:Range and la:Reference)

and

sit:isSettingFor value akomantoso:Speech)

or

(la:LinguisticAct that

sit:isSettingFor exactly 1

(earmark:Element and la:InformationEntity)

and

sit:isSettingFor exactly 1

((akomantoso:SpeechEvent and

la:Reference) that

akomantoso:hasSpeaker some

akomantoso:Person)

and

sit:isSettingFor

value akomantoso:Speech))

This specification would be able to capture ontological errors in the actual Akoma
Ntoso document such as the one presented previously, where the author of the speech
is specified as a role rather than a person.

86 Chapter 3. Enhancing markup documents

Table 3.2: A brief summary of the structural pattern theory of [43] extended with
two more patterns: headed container and popup.

Pattern Description
Example
(HTML)

May contain

Meta

an empty element whose
meaning depends on its
presence in a document

(rather than on its position)
and its attributes

meta EMPTY

Milestone
an empty element whose
meaning depends on its

position
br EMPTY

Atom
a unit of unstructured

information
title text

Block

a block of text mixed with
unordered and repeatable
inline elements, with the

same content model

p
text, milestone,
inline, popup

Inline

a block of text mixed with
unordered and repeatable
inline elements, with the

same content model

i
text, milestone,
inline, popup

Container
a sequence of heterogeneous,

unordered, optional and
repeatable elements

body
meta, atom, block,
record, container,

table

Headed
Con-
tainer

a sequence of heterogeneous,
unordered, optional and

repeatable elements headed
by a sequence of blocks

section
that

contains
h1

meta, atom, block,
record, container,

table

Record
a set of optional,

heterogeneous and
non-repeatable elements

html
meta, atom, block,
record, container,

table

Table
a sequence of homogeneous

elements
ul

meta, atom, block,
record, container,

table

Popup
a sequence of heterogeneous,

unordered, optional and
repeatable elements

math
meta, atom, block,
record, container,

table

Chapter 3. Enhancing markup documents 87

Table 3.3: Testing associations between elements and patterns on the “Paradise
Lost” example through an OWL reasoner.

div p span Is the ontology still consistent?

container block atom yes

container block inline
no: a container (syntax) cannot contain

inline

block block inline
no: a block (stanza) cannot contain at

any level another block

block inline inline yes

inline inline inline
no: inlines (both stanza and syntax)

cannot be the root of a hierarchy

block inline
inline for
unit1 and

atom for unit2

no: elements with the same general
identifier (unit1 and unit2) must have

the same pattern

atom atom atom
no: atoms (both stanza and syntax)

cannot contain other elements

table atom atom yes

record atom atom
no: records (stanza and syntax) can
contain only elements with different

general identifiers

88 Chapter 3. Enhancing markup documents

Chapter 4

The Semantic Publishing And
Referencing Ontologies

One of the main research areas in semantic publishing is the development of seman-
tic models (vocabularies and ontologies) that meet the requirements of scholarly
authoring and publishing. As introduced in Chapter 2, in the past several works
have proposed metadata schemas, vocabularies and ontologies to describe the pub-
lishing domain. However those models show some limitations. Some of them (e.g.,
Dublin Core Metadata Terms [63]) define bibliographic objects by means of abstract
concepts that do not fully comply with the vocabulary used by publishers. Others
(e.g., the Bibliographic Ontology [42]) have been developed to describe parts of the
publishing domain, but lack in describing specific topics (e.g., characterisation of
bibliographic citations, definition of agent’s publishing roles, description of publish-
ing workflows) and are not interoperable with other models (e.g., FRBR [100]).

It appears clear that the development of a set of models that aim at describing the
main part of the publishing domain must pass through the adoption of established
methodologies for ontology modularisation and development [148] [166]. These ac-
tivities may be eventually supported by the use of statistical clustering techniques,
e.g. [36], though I did not explicitly used them in this work. Moreover, the following
principles1 should be taken into account:

• to have an extensive interaction with publishers and members of academic
communities to clarify their requirements;

• any area of interest of the publishing domain (bibliographic description of
documents, characterisation of citations, person’s roles, etc.) should be covered
by separate yet interoperable ontologies;

• to permit maximum reusability of each ontology module, logical constraints,
for example domain and range constraints on properties, should be added only
where they are strictly required;

1All these principles are derived from my personal experience in developing ontologies for a
specific domain (i.e., publishing) and for specific end-users (primarily, publishers and authors).

90 Chapter 4. The Semantic Publishing And Referencing Ontologies

• where well-known and widely shared vocabularies covering parts of the domain
already existed, these should be properly imported and re-used;

• alongside the development of the ontologies themselves, it was important to
use or opportunely develop tools that assist people both to understand and to
use each ontology with minimum effort, without having to know the specific
technical language in which the ontology is implemented.

In this chapter, I describe the principles and architecture of eight ontologies cen-
tral to the task of semantic publishing: SPAR, the Semantic Publishing and Refer-
encing Ontologies2, a suite of orthogonal and complementary OWL 2 DL ontology
modules. They together permit the creation of comprehensive machine-readable
RDF metadata for all aspects of semantic publishing and referencing: documents
description, types of citations and their related contexts, bibliographic references,
document parts and status, agents’ roles and workflow processes, etc.

The main characteristics of SPAR, that mark it out as distinct from previous
contributions, are firstly the creation of ontologies of sufficient expressivity to meet
the requirements of academic authors and publishers, and secondly the development
of accompanying presentation technologies, LODE (introduced in Section 5.1) and
Graffoo (presented in Section 5.3), that enable these ontologies to be readily under-
stood by potential users such as academic researchers, publishers and librarians who,
while expert in their own domains, lack skill in ontology modelling and knowledge
formalisation.

The starting point for SPAR was version 1.6 of CiTO, the Citation Typing Ontol-
ogy, described in [165]. This was both preliminary and incomplete, and yet contained
within the single ontology both terms for handling both bibliographic document de-
scriptions and also properties to enable the characterisation of citations, as well as
terms to permit recording of the number of citations to a given article, both within
the citing paper and globally.

A simple architectural diagram of the eight SPAR ontologies is shown in Fig. 4.1
on the facing page. As the diagram indicates, the eight principal SPAR ontologies
are supported by three other OWL 2 DL ontologies that the SPAR ontologies import
as required – FRBR in OWL 2 DL, DEO, the Discourse Elements Ontology3, and
the Error Ontology4. They are also supported by the external FOAF Essentials5

and SWAN Collections6 ontologies, by three Ontology Design Patterns ontology

2The SPAR (Semantic Publishing and Referencing) Ontologies: http://purl.org/spar.
3DEO, the Discourse Elements Ontology: http://purl.org/spar/deo.
4The Error Ontology: http://www.essepuntato.it/2009/10/error.
5FOAF essentials in OWL: http://purl.org/swan/2.0/foaf-essential.
6CO, the Collections Ontology: http://swan.mindinformatics.org/ontologies/1.2/ collec-

tions.owl.

Chapter 4. The Semantic Publishing And Referencing Ontologies 91

modules (Time-indexed situation7, Sequence8, Participation9), and by the Patterns
Ontology10 for document structures.

Figure 4.1: A simple architectural diagram showing the interactions and depen-
dencies between the component ontologies of SPAR.

The characteristics and benefits of all the SPAR ontologies are outlined in the
following sections, to provide a comprehensive picture of the scope of SPAR. Where
appropriate, I also will show how to integrate SPAR semantic data with documents
defined through EARMARK (introduced in Section 3.1).

4.1 Representing bibliographic information using

FaBiO

The existing well-known and commonly used vocabularies described in Section 2.2
are either poor in concepts or are flat, preventing their use for accurately describing
publishing reality, I will illustrate this by considering the representation of a typical
bibliographic reference first using Dublin Core, then BIBO and finally FRBR. I will
then show how this information can be accurately described using FaBiO, which
incorporates elements of all three of these vocabularies. Consider the following
typical bibliographic reference describing [121]:

Yves Marcoux, Elias Rizkallah (2009). Intertextual semantics: A se-
mantics for information design. Journal of the American Society for In-
formation Science and Technology, 60 (9): 1895-1906. September 2009.

7Time-indexed situation pattern: http://www.ontologydesignpatterns.org/cp/owl/timeindexed
situation.owl.

8Sequence pattern: http://www.ontologydesignpatterns.org/cp/owl/sequence.owl.
9Participation pattern: http://www.ontologydesignpatterns.org/cp/owl/participation.owl.

10The Patterns Ontology: http://www.essepuntato.it/2008/12/pattern.

92 Chapter 4. The Semantic Publishing And Referencing Ontologies

John Wiley & Sons, Inc. DOI: 10.1002/asi.21134. First published online
(HTML and PDF) 21 August 2009.

From the previous description we can extract the following information:

1. the document is an academic research article – deducible from the journal in
which it is published;

2. Yves Marcoux and Elias Rizkallah are the authors of the article;

3. the article was published in 2009;

4. the article is entitled “Intertextual semantics: A semantics for information
design”;

5. it was published in the 9th Issue of the 60th volume of the Journal of the
American Society for Information Science and Technology;

6. the DOI of the article is “10.1002/asi.21134”;

7. the article was first published online on the 21st of August, 2009, in two
different formats (HTML and PDF);

8. the journal issue within which the printed version of the article was published
bears the publication date September 2009;

9. the page range of the article within the printed version is “1895-1906”;

10. the publisher of the journal is John Wiley & Sons, Inc.

4.1.1 Bibliographic reference metadata encoding using DC
Terms

In the following RDF encoding example11, we attempt to describe all these facts
using only terms from the DC Terms vocabulary [63]:

@prefix : <http :// www.example.com/> .

@prefix dcterms: <http :// purl.org/dc/terms/> .

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

@prefix text: <http :// purl.org/NET/mediatypes/text/> .

@prefix application: <http :// purl.org/NET/mediatypes/

application/> .

:intertextual -semantics a dcterms:BibliographicResource

11This and the following RDF encodings are written in Turtle [147].

Chapter 4. The Semantic Publishing And Referencing Ontologies 93

; dcterms:creator :marcoux , :rizkallah

; dcterms:title "Intertextual semantics: A semantics for

information design"

; dcterms:issued "2009"^^ xsd:gYear

; dcterms:issued "09 -2009"^^ xsd:gYearMonth

; dcterms:identifier "doi :10.1002/ asi .21134"

; dcterms:extent [a dcterms:SizeOrDuration

; dcterms:description "1895 -1906"]

; dcterms:hasFormat :html , :pdf

; dcterms:isPartOf [dcterms:identifier "9"

; dcterms:description "Issue"

; dcterms:isPartOf [dcterms:identifier "60"

; dcterms:description "Volume"

; dcterms:isPartOf [dcterms:title "Journal of the

American Society for Information Science and

Technology"

; dcterms:format text:html

; dcterms:publisher :wiley -and -sons]]] .

:html a dcterms:BibliographicResource

; dcterms:issued "21 -08 -2009"^^ xsd:date .

:pdf a dcterms:BibliographicResource

; dcterms:format application:pdf

; dcterms:issued "21 -08 -2009"^^ xsd:date .

:marcoux a dcterms:Agent

; dcterms:description "Marcoux Yves" .

:rizkallah a dcterms:Agent

; dcterms:description "Rizkallah Elias" .

:wiley -and -sons a dcterms:Agent

; dcterms:description "John Wiley & Sons , Inc." .

There are some obscure points that emerge from the preceding formalisation:

• There is no clear characterisation of the entities involved. We are able to speak
about a general “bibliographic resource” (dcterms:BibliographicResource) and
an “agent” (dcterms:Agent), but not about a journal article, a journal, a vol-
ume, or an issue of a journal, nor about persons, authors, etc.

• Some of the statements are too generic. E.g., the property dcterms:issued
that is used to represent the various dates associated with the publication
of this article, is itself employed in conjunction with three different date for-

94 Chapter 4. The Semantic Publishing And Referencing Ontologies

mats, i.e. "21-08-2009"^^ xsd:date, "09-2009"^^ xsd:gYearMonth, and
"2009"^^ xsd:gYear.

• Some of the statements hide the semantics within the textual content of the
statement. E.g., the statement dcterms:identifier “doi:10.1002/asi.21134” im-
plicitly says that the character string “10.1002/asi.21134” is a Digital Object
Identifier, i.e. a special type of identifier used to identify journal articles.
Similarly "1895-1906" implicitly says that the printed version (only) of the
article goes from starting page “1895” to ending page “1906”. While these
implied facts are understandable to human readers, they are not available to
computational agents processing such metadata.

• The relations between the various formats of the article are not clear. For
example, the manner in which the resource “:intertextual-semantics” relates
to the resources “:html” and “:pdf” is not specified. Do the latter represent
the content of the former in different formats, or there is something more?

4.1.2 Bibliographic reference metadata encoding using BIBO

Some of these points are addressed by BIBO [42]. BIBO is the first OWL ontology
specifically designed to address the domain under discussion, and expands the DC
Terms vocabulary with terms specific for bibliographic metadata, particularly relat-
ing to legal documents, and for various types of event. It also includes PRISM [87]
and FOAF [25] terms.

In the following RDF encoding example, the information given in the biblio-
graphic reference cited above is encoded using BIBO:

@prefix bibo: <http :// purl.org/ontology/bibo/> .

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

:intertextual -semantics a bibo:AcademicArticle

; bibo:authorList (:marcoux :rizkallah)

; dcterms:title "Intertextual semantics: A semantics for

information design"

; dcterms:issued "2009"^^ xsd:gYear

; dcterms:issued "09 -2009"^^ xsd:gYearMonth

; bibo:doi "10.1002/ asi .21134"

; bibo:pageStart "1895"

; bibo:pageEnd "1906"

; dcterms:hasFormat :html , :pdf

; dcterms:isPartOf [a bibo:Issue

; bibo:issue "9"

; bibo:volume "60"

; dcterms:isPartOf [a bibo:Journal

Chapter 4. The Semantic Publishing And Referencing Ontologies 95

; dcterms:title "Journal of the American Society for

Information Science and Technology"

; dcterms:publisher :wiley -and -sons]] .

:html a bibo:AcademicArticle

; dcterms:format text:html

; dcterms:issued "21 -08 -2009"^^ xsd:date .

:pdf a bibo:AcademicArticle

; dcterms:format application:pdf

; dcterms:issued "21 -08 -2009"^^ xsd:date .

:marcoux a foaf:Person

; foaf:givenName "Yves"

; foaf:familyName "Marcoux" .

:rizkallah a foaf:Person

; foaf:givenName "Elias"

; foaf:familyName "Rizkallah" .

:wiley -and -sons a foaf:Organization

; foaf:name "John Wiley & Sons , Inc." .

As this example shows, BIBO resolves many of the semantic ambiguities present
in the DC version – the DOI is specifiable through the specific data property bibo:doi,
the article is identified as a bibo:AcademicArticle, the authors and the publisher are
respectively foaf:Persons and foaf:Organization, etc. However, other ambiguities are
still unresolved. The relations between the various formats are still not clear, and
the date properties continue to be too generic. In addition, new issues emerge:

• BIBO specifies that the property for listing authors (bibo:authorList) must
have, as its range, either an rdf:List or an rdf:Seq. Since these RDF classes
are not supported by OWL 2, this has the disadvantage of making that model
non-compliant with the decidable and computable OWL 2 DL, thus preventing
OWL 2 DL reasoners from inferring new axioms from a current knowledge base
encoded using BIBO12.

• BIBO can record a volume number through the data property bibo:volume, but,
although it has the classes bibo:AcademicArticle, bibo:Issue and bibo:Journal,
it lacks the concept of “Volume” as a distinct class among other bibliographic
classes that have a hierarchical partitive relationship to one another (i.e. Jour-
nal Article > Issue > Volume > Journal).

12For a longer and clearer justification of why RDF collections and containers are not usable and
interpreted correctly by OWL 2 DL, please consult http://hcklab.blogspot.com/2008/12/moving-
towards-swan-collections.html.

96 Chapter 4. The Semantic Publishing And Referencing Ontologies

• Furthermore, because it lacks the layered structure of FRBR, it does not have
the flexibility to distinguish between concepts at these various levels, for exam-
ple an academic paper (a FRBR Work) and the various possible Expressions
of that paper as a journal article, a conference paper or a book chapter. The
class bibo:AcademicArticle is in fact a conflation of the concepts “academic
paper” and “journal article”.

4.1.3 Bibliographic reference metadata encoding using FRBR

It is possible to handle the third of the issues raised above by adopting the more
structured FRBR model [100], as expressed in the FRBR Core ontology, together
with DC terms for textual statements (i.e. those statements having a literal string
as their object). This is illustrated in the following example:

@prefix frbr: <http :// purl.org/vocab/frbr/core#> .

:intertextual -semantics a frbr:Work

; frbr:creator :marcoux , :rizkallah

; dcterms:title "Intertextual semantics: A semantics for

information design"

; frbr:realization :version -of-record .

:version -of-record a frbr:Expression

; dcterms:issued "2009"^^ xsd:gYear

; dcterms:identifier "doi :10.1002/ asi .21134"

; frbr:embodiment :printed , :html , :pdf

; frbr:partOf [a frbr:Expression

; dcterms:identifier "9"

; dcterms:description "Issue"

; frbr:embodiment :printed -issue

; frbr:partOf [a frbr:Expression

; dcterms:identifier "60"

; dcterms:description "Volume"

frbr:partOf [a frbr:Expression

; dcterms:title "Journal of the American Society for

Information Science and Technology"]]] .

:printed -issue a frbr:Manifestation

; frbr:producer :wiley -and -sons

; dcterms:issued "09 -2009"^^ xsd:gYearMonth

; frbr:part :printed .

:printed a frbr:Manifestation

; frbr:producer :wiley -and -sons

; dcterms:issued "09 -2009"^^ xsd:gYearMonth

Chapter 4. The Semantic Publishing And Referencing Ontologies 97

; dcterms:extent [a dcterms:SizeOrDuration

; dcterms:description "1895 -1906"] .

:html a frbr:Manifestation

; frbr:producer :wiley -and -sons

; dcterms:format text:html

; dcterms:issued "21 -08 -2009"^^ xsd:date .

:pdf a frbr:Manifestation

; frbr:producer :wiley -and -sons

; dcterms:format application:pdf

; dcterms:issued "21 -08 -2009"^^ xsd:date .

:marcoux a frbr:Person

; dcterms:description "Yves Marcoux" .

:rizkallah a frbr:Person

; dcterms:description "Elias Rizkallah" .

:wiley -and -sons a frbr:CorporateBody

; dcterms:description "John Wiley & Sons , Inc." .

Although it is possible to use FRBR in this manner to give a structured and
unambiguous description of all the bibliographic entities, this example makes clear
the severe limitations of FRBR, due to the lack of terms in the FRBR Core ontology
to permit publications to be described in normal everyday language.

4.1.4 Bibliographic reference metadata encoding using FaBiO

FaBiO, the FRBR-aligned Bibliographic Ontology, was developed precisely to ad-
dress all the issues revealed by the previous examples, while re-using the previous
fundamental work in this domain (so as not to re-invent the wheel). In particular,
DC Terms, PRISM, FRBR and SKOS terms that are all included in FaBiO.

Considering again the previous bibliographic reference example, a possible FaBiO
formalisation is:

@prefix fabio: <http :// purl.org/spar/fabio > .

@prefix prism: <http :// prismstandard.org/namespaces/basic

/2.0/> .

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#> .

@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

@prefix dcterms: <http :// purl.org/dc/terms/> .

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

98 Chapter 4. The Semantic Publishing And Referencing Ontologies

:intertextual -semantics a fabio:ResearchPaper

; dcterms:creator :marcoux , :rizkallah

; dcterms:title "Intertextual semantics: A semantics for

information design"

; frbr:realization :version -of-record .

:version -of-record a fabio:JournalArticle

; fabio:hasPublicationYear "2009"^^ xsd:gYear

; prism:doi "10.1002/ asi .21134"

; frbr:embodiment :printed , :html , :pdf

; frbr:partOf [a fabio:JournalIssue

; prism:issueIdentifier "9"

; frbr:embodiment :printed -issue

; frbr:partOf [a fabio:JournalVolume

; prism:volume "60"

frbr:partOf [a fabio:Journal

; dcterms:title "Journal of the American Society for

Information Science and Technology"]]] .

:printed -issue a fabio:Paperback

; dcterms:publisher :wiley -and -sons

; prism:publicationDate "09 -2009"^^ xsd:gYearMonth

; frbr:part :printed .

:printed a fabio:PrintObject

; dcterms:publisher :wiley -and -sons

; prism:publicationDate "09 -2009"^^ xsd:gYearMonth

; prism:startingPage "1895"

; prism:endingPage "1906" .

:html a fabio:Web page

; dcterms:publisher :wiley -and -sons

; dcterms:format text:html

; prism:publicationDate "21 -08 -2009"^^ xsd:date .

:pdf a fabio:DigitalManifestation

; dcterms:publisher :wiley -and -sons

; dcterms:format application:pdf

; prism:publicationDate "21 -08 -2009"^^ xsd:date .

:marcoux a foaf:Person

; foaf:givenName "Yves"

; foaf:familyName "Marcoux" .

:rizkallah a foaf:Person

Chapter 4. The Semantic Publishing And Referencing Ontologies 99

; foaf:givenName "Elias"

; foaf:familyName "Rizkallah" .

:wiley -and -sons a foaf:Organization

; foaf:name "John Wiley & Sons , Inc." .

With FaBiO, it thus becomes possible:

• To write semantic descriptions of a wide variety of bibliographic objects, in-
cluding research articles, journal articles and journal volumes, using terms
that closely resemble the language used in everyday speech by academics and
publishers13;

• To employ FRBR categories to define clear separations between each part of
the publishing process, involving different people (authors, publishers, readers)
depending on which aspect of the bibliographic entity we are considering: the
high-level conceptualisation of the research paper, the version of record of
that paper forming a journal article, the publication of that article in various
formats, and the individual physical or electronic exemplars of the published
article that people may read and own.

• To include with ease elements from other vocabularies for describing particular
entities involved in a publishing process that are not specified by FaBiO itself,
such as those from FOAF for persons and organizations.

Other advantages of FaBiO are outlined in the following sections.

Using external models

As already mentioned, FaBiO was developed with the minimum of restrictions to its
classes and to the domains and ranges of its properties. This flexibility has the great
advantage of allowing FaBiO to be used together with other models for describing
scenarios that may be needed in some situations. We have already seen how FOAF
can be used to describe agents. Another common requirement is to specify the order
of components in a list, for example authors in an author list. Unlike the use of
bibo:authorList, which breaks compliance as explained above, this can be achieved
in a manner that is compliant with the decidable and computable OWL 2 DL by
combining FaBiO with the Collections Ontology (CO)14, an OWL 2 DL ontology
specifically designed for defining orders among items, in the following way:

13This has come about through many meetings with different academics and publishers that we
have undertaken in order to understand their working practices and requirements.

14CO, the Collections Ontology: http://purl.org/co.

100 Chapter 4. The Semantic Publishing And Referencing Ontologies

@prefix co: <http :// purl.org/co/> .

:intertextual -semantics a fabio:ResearchPaper

; dcterms:creator :listOfAuthors .

:listOfAuthors a co:List

; co:firstItem [co:itemContent :marcoux

; co:nextItem [co:itemContent :rizkallah]] .

:marcoux a foaf:Person

; foaf:givenName "Yves"

; foaf:familyName "Marcoux" .

:rizkallah a foaf:Person

; foaf:givenName "Elias"

; foaf:familyName "Rizkallah" .

In this way we can still keep the model in OWL 2 DL. Additionally, because the
ranges of dcterms:creator and other properties within FaBiO have intentionally been
left unspecified, FaBiO guarantees a level of interoperation with other models with-
out incurring in any undesirable collateral effects, such as ontology inconsistencies
or the generation of undesired inferences.

Extending FRBR within FaBiO

One of the explicit requests from publishers and end-users was to be able to create
shortcuts between FRBR endeavours (work, expression, manifestation, item) that
were not part of the original FRBR model. Let me introduce an example to illustrate
this needs, by slightly changing the bibliographic reference we introduce previously:

Yves Marcoux, Elias Rizkallah (2009). Intertextual semantics: A seman-
tics for information design. http://onlinelibrary.wiley.com/doi/10.1002/
asi.21134/full.

In this reference, we have just a FRBR work – the paper by Marcoux and
Rizkallah – and the URL for a specific FRBR item that portrays that work – the
HTML version of the paper on the publishers’ website. If I wished to link these
concepts using the FRBR OWL ontology terms I have employed so far, I would be
obliged to specify each intermediate FRBR endeavour, namely the expression and
manifestation of that paper, even if we were not interested in doing that:

@prefix wiley: <http :// onlinelibrary.wiley.com/doi/> .

:intertextual -semantics a frbr:Work

; frbr:creator :marcoux , :rizkallah

Chapter 4. The Semantic Publishing And Referencing Ontologies 101

; dcterms:title "Intertextual semantics: A semantics for

information design"

; frbr:realization [a frbr:Expression

; frbr:embodiment [a frbr:Manifestation

; frbr:exemplar wiley :10.1002/ asi .21134/ full]] .

In order to avoid this kind of verbosity, it is possible to use the new FaBiO
properties shown in Fig. 4.2 on the next page15 to link a work directly to its man-
ifestations or to its items (fabio:hasPortrayal), or to link an expression directly to
its items (fabio:hasRepresentation).

Obviously, these added properties allows us to treat even the previous case quite
easily and in a less verbose way:

@prefix wiley: <http :// onlinelibrary.wiley.com/doi/> .

:intertextual -semantics a frbr:Work

; frbr:creator :marcoux , :rizkallah

; dcterms:title "Intertextual semantics: A semantics for

information design"

; fabio:hasPortrayal wiley :10.1002/ asi .21134/ full .

Categorising bibliographic resources with SKOS

One of the most important needs for a publisher is to categorising each bibliographic
entity it produces by adding free-text keywords and/or specific terms structured ac-
cording to recognised classification systems and/or thesauri developed for certain
academic disciplines. While through FaBiO the definition of keywords is possible
using the PRISM property prism:keyword, terms from thesauri, structured vocabu-
laries and classification systems are described using SKOS [123].

To facilitate this, FaBiO extends some classes and properties of SKOS as shown
in Fig. 4.3 on page 103.

As shown, any FRBR endeavour can be associated (fabio:hasSubjectTerm) with
one or more descriptive terms (fabio:SubjectTerm, a sub-class ofskos:Concept) found
in a specific dictionary (fabio:TermDictionary, a sub-class ofskos:ConceptScheme)
that is relevant to (fabio:hasDiscipline) particular disciplines (fabio:SubjectDiscipline,
also a sub-class ofskos:Concept) describing a field of knowledge or human activity
such as Computer Science, Biology, Economics, Cookery or Swimming. At the
same time, the subject disciplines can be grouped by an opportune vocabulary (i.e.,
fabio:DisciplineDictionary).

For instance, the previous example can be enriched in the following way:

15This and the following diagrams comply with the Graphic framework for OWL ontologies
(Graffoo), introduced in Section 5.3. A legend for all Graffoo diagrams can be found in Fig. 5.13
on page 177.

102 Chapter 4. The Semantic Publishing And Referencing Ontologies

Figure 4.2: The main FRBR object properties relating FRBR endeavours (work,
expression, manifestation, item), and the related new object properties introduced
by FaBiO (fabio:hasManifestation, fabio:hasRepresentation, fabio:hasPortrayal) to
provide shortcuts between Work and Manifestation, Work and Item, and Expression
and Item, respectively.

@prefix skos: <http :// www.w3.org /2004/02/ skos/core#> .

@prefix acm: <http :// www.acm.org/class /1998/ > .

@prefix dbpedia: <http :// dbpedia.org/resource/> .

:intertextual -semantics a fabio:ResearchPaper

; fabio:hasSubjectTerm acm:markup -languages , acm:semantics

; prism:keywords "semantics of markup" , "semiotic

Chapter 4. The Semantic Publishing And Referencing Ontologies 103

Figure 4.3: The extension to the common SKOS classes and relations implemented
in FaBiO.

application" , "xml" .

<http :// www.acm.org/class /1998> a fabio:TermDictionary

; skos:prefLabel "The 1998 ACM Computing Classification

System"

; fabio:hasDiscipline dbpedia:Computer_science .

acm:markup -languages a fabio:SubjectTerm

; skos:prefLabel "Markup languages"

; skos:inScheme <http ://www.acm.org/class /1998 >

; skos:broader acm:document -preparation .

acm:semantics a fabio:SubjectTerm

; skos:prefLabel "Semantics"

; skos:inScheme <http ://www.acm.org/class /1998 >

; skos:broader acm:formal -definitions -and -theory .

...

4.2 Characterising citations with CiTO

Bibliographic citation, i.e., the act of referring from a citing entity to the cited one,
is one of the most important activities of an author in the production of any bib-
liographic work, since the acknowledgement of sources that this activity represents

104 Chapter 4. The Semantic Publishing And Referencing Ontologies

stands at the very core of the scholarly enterprise. The network of citations cre-
ated by combining citation information from many academic articles and books is
a source of rich information for scholars, and can be used by publisher to create
new and interesting ways of browsing their data, as well as for calculating metrics
reflecting the relative importance of a journal (e.g. the impact factor) or an author
(e.g. the h-index).

The reasons that an author cites other publications are varied. Usually, it is
because the author has gained assistance of some sort, perhaps in the form of back-
ground information, ideas, methods or data, from the previously published cited
works, and wishes to acknowledge this. More rarely, citations may be made to re-
view, critique or refute previous works. Most citations are direct and explicit (as
in the reference list of a journal article). However, they can also be indirect (for
example, by means of a citation to a more recent paper by the same research group
on the same topic), or implicit (as in artistic quotations or parodies, or in extremis
in cases of plagiarism).

Classical scholarship has well-developed methods for citing individual sections,
paragraphs or verses of referenced works. In addition, it was not uncommon for the
citing author to reproduce entire sections of the cited work in his own document, so
that the reader could understand exactly the relationship of the earlier document
to the present one, since the author could not be sure the reader would have ready
access to the works of the cited authority (for example, Aristotle). In contrast, mod-
ern scientific practice takes the other extreme – a citation is made to the previously
published paper as a whole, with little or no indication give as to why this paper
has been cited or what portions of it are relevant to the discussion in hand, except
what the reader can glean from the citation context.

Of course, previously developed models for describing bibliographic objects al-
low for the existence of citations among bibliographic entities to be recorded. For
instance, taking again the previous example about the article “Intertextual seman-
tics: A semantics for information design”, using BIBO [42] it is possible to declare
citations as follows:

@prefix bibo: <http :// purl.org/ontology/bibo/> .

:intertextual -semantics bibo:cites :towards -a-semantics

, :meaning -and -interpretation

, :design -everyday -things

, :exploring -intertextual -semantics ...

Alternatively, it is possible to use the Discourse Relationships Module16 in SWAN
v1.2 [35] in the same way:

16The Discourse Relationships Ontology: http://swan.mindinformatics.org/spec/1.2/discourse
relationships.html.

Chapter 4. The Semantic Publishing And Referencing Ontologies 105

@prefix disrel: <http :// swan.mindinformatics.org/ontologies

/1.2/ discourse -relationships/> .

:intertextual -semantics disrel:cites :towards -a-semantics

, :meaning -and -interpretation

, :design -everyday -things

, :exploring -intertextual -semantics ...

However, while the cites properties in these two ontologies, as well as the more
generic property dcterms:relation in DC Terms, permit the bald existence of a
citation to be recorded, they do not permit the author to invest the citation with
any specific factual and/or rhetorical meanings that would describe the reasons the
author had in mind when creating citations to some particular documents rather
than to others.

CiTO, the Citation Typing Ontology
17

version 2.0, seeks to improve upon this
situation by making it possible for authors (or others) to capture their intent when
citing a particular publication, permitting them to create metadata describing their
citations, quite distinct from metadata describing the cited works themselves. CiTO
thus permits the motivations of an author when referring to another document to
be captured. For instance, the previous example may be rewritten using CiTO as
follows:

@prefix cito: <http :// purl.org/spar/cito/> .

:intertextual -semantics

cito:disputes :towards -a-semantics

; cito:citesAsRelated :meaning -and -interpretation

; cito:agreesWith :design -everyday -things

; cito:extends :exploring -intertextual -semantics ...

The current version of CiTO, version 2.0, contains and extends the citation-
specific object properties that were originally contained in CiTO version 1.6 [165],
to the exclusion of all other original classes and properties within CiTO v1.6, which,
as part of the modularization we have undertaken, have been moved into FaBiO
(Section 4.1) or into C4O (Section 4.3.2) and PSO (Section 4.5.7).

CiTO now contains just two main object properties, cito:cites and its inverse
cito:isCitedBy, each of which as thirty-two sub-properties, plus one additional generic
object property, cito:shareAuthorsWith, that may be used even outside a citation
act.

As shown in Fig. 4.4 on the following page, all these properties (and, conse-
quently, their inverses) may be classified as rhetorical and/or factual, with the
rhetorical properties being grouped in three sets depending on their connotation:
positive, informative (or neutral) or negative.

When developing CiTO v2.0 from CiTO v1.6, we intentionally removed the do-
main and range constraints from its object properties, so that this ontology could be

106 Chapter 4. The Semantic Publishing And Referencing Ontologies

Figure 4.4: The diagram shows the CiTO v 2.0 object properties grouped in terms
of their characterisation as rhetorical and/or factual, and, for the former, in terms of
their connotation (positive, neutral or negative). All the properties shown, except
cito:cites and cito:sharesAuthorsWith, are sub-properties of cito:cites itself. The
inverse property of cito:cites, namely cito:isCitedBy, and its inverse sub-properties,
are not shown.

easily integrated with other models. Obviously, it can be successfully used in con-
junction with FaBiO, so that descriptions of a bibliographic entity and its citations
can be mixed within a single RDF graph:

:intertextual -semantics a fabio:ResearchPaper

; dcterms:creator :marcoux , :rizkallah

; dcterms:title "Intertextual semantics: A semantics for

information design"

; cito:disputes :towards -a-semantics ...

:towards -a-semantics a fabio:ResearchPaper

; dcterms:creator :renear , :dubin , :sperberg -mcqueen

; dcterms:title "Towards a semantics for XML markup"

Chapter 4. The Semantic Publishing And Referencing Ontologies 107

; cito:isDisputedBy :intertextual -semantics ...

4.3 Documents and their bibliographic references

The word “citation” is often subject of misinterpretations and misuses. The main
problem is that it is used to identify objects having different purposes, at least in
scientific literature. For instance, we often identify as “citation” the act of citing
another work, a bibliographic reference put at the end of a paper (usually in a list),
as well as particular pointers (e.g., “[3]”) denoting that bibliographic reference.

In order to expand more on this topic, let me take into account the following
text from the article “Intertextual semantics: A semantics for information design”
[121] used in the previous examples:

Related Works

...

Renear, Dubin, and Sperberg-McQueen (2002, pp. 121–122) proposed a
formal semantic approach for structured documents. The basic premise
is that natural-language descriptions are insufficient and must be sup-
plemented by a separate, formal apparatus. Our approach (IS) does not
share that premise; in a way, we aim at operationalizing natural-language
descriptions in such a way that they can support document creation and
other operations on documents. We do not replace natural language;
we frame it with mechanisms that make it supportive of interactions
between humans and documents.

...

References

...

Renear, A., Dubin, D., & Sperberg-McQueen, C.M. (2002). Towards a
semantics for XML markup. In E. Munson (Chair), Proceedings of the
ACM Symposium on Document Engineering, (pp. 119–126). New York:
ACM Press.

The above excerpt contains a particular paragraph from the section “Related
Works” of the paper and a list item from the final “References” section. We can
clearly identify six different kinds of objects that relate to the introduced citation,
all of them having different purposes:

108 Chapter 4. The Semantic Publishing And Referencing Ontologies

1. the citing article, i.e. the article that contains such a text;

2. the cited article, i.e. the article that is got involved by the text;

3. the in-text reference pointer referring to a particular bibliographic reference
(usually contained in the section “References”), e.g. the text “Renear, Du-
bin, and Sperberg-McQueen (2002, pp. 121-122)”. In scientific literature it
can be presented in other forms – e.g., as an in-square-brackets number (i.e.,
“[3]”), as an in-square-brackets string with the first letters of each (at most
three) authors’ surname plus the last two digits of the publication year (i.e.,
“[RDS02]”), or as an in-round-brackets string with the first author’s surname
followed by “et al.,” and the publication year (i.e., “(Renear et al., 2002)”);

4. the citation context, the point of the paper (sentence, paragraph, section,
chapter, etc.) in which the in-text reference pointer appears;

5. the bibliographic reference, e.g. the list item at the end of the above excerpt
that briefly summarises some metadata of a particular paper. It is explicitly
denoted (by an in-text reference pointer) somewhere in the text;

6. the act of citing, i.e. a statement that connects two different articles (more
precisely, the citing document and the cited document) for a particular reason,
as described in Section 4.2.

Ontologies that want to describe such elements should be provided with appro-
priate entities (classes and properties) in order not to allow (or at least decrease)
the degree of ambiguity when modelling citing acts in documents.

Having a clear and unambiguous description of elements taking part in citations
is particularly relevant for those applications that extract citation contexts in an au-
tomatic and semi-automatic ways. For instance, the Citation-Sensitive In-Browser
Summariser (CSIBS) [195] is a tool for presenting a preview of possible excerpts
from the cited document that are relevant to a particular in-text reference pointer
in the citing document. One of its promised future works is to enable RDF-based
descriptions of these elements.

In Section 4.2 I introduced the SPAR ontology for the description of factual and
rhetorical aspects of citations. In this section I present two models focussed on
the remaining aspects of citing acts: the Bibliographic Reference Ontology (BiRO)
and the Citation Counting and Context Characterisation Ontology (C4O). They
are two SPAR ontologies developed for describing bibliographic lists, bibliographic
references, in-text reference pointers, citation contexts and mechanism for counting
locally (within an article) or globally (by means of particular platforms, such as
Google Scholar18) document citations.

18Google Scholar: http://scholar.google.com.

Chapter 4. The Semantic Publishing And Referencing Ontologies 109

4.3.1 Describing the bibliographic reference lists of articles
with BiRO

According to [164], the sixth rule that digital publishers should follow to participate
actively to Semantic Publishing is to make available at least reference lists of articles
in a machine-readable form. In principle, reference lists are the platform from where
we should start for building citation networks. In order to reach that goal, ontologies
modelling article references and reference lists are needed. Besides offering flexible
mechanisms for the description of references, these ontologies should also allow one
to link the reference to the particular semantic representation of the document it
references.

This is an important point to understand: the reference in the reference list of
a particular article is not the cited document. Rather, it is a compact description
considered (usually) sufficient to make readers aware of what document is cited.
Therefore, having references expressed in a machine-readable form should allow
machines to make the inference step, i.e. to link automatically the article containing
the reference (i.e., the citing document) to the article referenced by the reference
itself (i.e., the cited document).

I developed the Bibliographic Reference Ontology19 (BiRO) so as to offer a stan-
dard model for the description of reference lists and references according to (machine-
readable) Semantic Web standards. In particular, BiRO is an ontology structured
according to the FRBR model Section 2.2.5 to define bibliographic records (as sub-
classes of FRBR Work) in relation to bibliographic references (as subclasses of FRBR
Expression), and their compilation into bibliographic collections and ordered bibli-
ographic lists, respectively (as shown in Fig. 4.5 on the next page).

An individual bibliographic reference, such as one in the reference list of a pub-
lished journal article, may exhibit varying degrees of incompleteness, depending on
the formatting rules of the journal. For example, it may lack the title of the cited
article, the full names of the listed authors, or indeed a full listing of all the authors.
It will also lack other information that one would hope to find in the complete
bibliographic description for that article.

BiRO provides a logical system for relating such an incomplete bibliographic
reference:

• to the full bibliographic record for that cited article, which, in addition to any
author and title fields missing from the reference, may also be expected to
include the name of the publisher, and the ISSN or ISBN of the publication;

• to collections of bibliographic records, such as library catalogues; and

• to ordered bibliographic lists, such as reference lists.

19BiRO, the Bibliographic Reference Ontology: http://purl.org/spar/biro.

110 Chapter 4. The Semantic Publishing And Referencing Ontologies

Figure 4.5: Graffoo diagram summarising the Bibliographic Reference Ontology
(BiRO).

In order to understand how to use BiRO to describe reference lists, let me take
into account again the above introduced reference referring to [149]:

Renear, A., Dubin, D., & Sperberg-McQueen, C.M. (2002). Towards a
semantics for XML markup. In E. Munson (Chair), Proceedings of the
ACM Symposium on Document Engineering, (pp. 119–126). New York:
ACM Press.

An URI for the reference

A first, very quick, way for defining a simple machine-readable representation of
that reference using BiRO is the following one20:

:version -of-record frbr:part :reference -list .

:reference -list a biro:ReferenceList

; swan:firstItem [swan:itemContent :barwise83

; swan:nextItem [swan:itemContent :black37 ...

; swan:nextItem [

20The prefix swan refers to entities defined in the old version of the Collection Ontology (SWAN
Collection Ontology 1.2), currently imported in BiRO. The SWAN Collection Ontology is available
at http://swan.mindinformatics.org/ontologies/1.2/collections.owl.

Chapter 4. The Semantic Publishing And Referencing Ontologies 111

swan:itemContent :renear02 ...] ...]] .

:renear02 a biro:BibliographicReference

; biro:references :towards -a-semantics

; dcterms:bibliographicCitation "Renear , A., Dubin , D. &

Sperberg -McQueen , C.M. (2002). Towards a semantics for

XML markup. In E. Mudson (Chair), Proceedings of the ACM

Symposium on Document Engineering , (pp. 119 -126). New

York: ACM Press." .

Obviously the improvement given by this formal description is not so meaningful.
What I did is just to assign an URL to the reference list and to each of its references.
The semantics beyond the string representing the reference is still obscure. For
instance, at this stage I do not express that the strings “Renear”, “A.”, “2002”,
“Towards a semantics for XML markup” are, respectively, the surname of one of
the authors, the first letter of his name, the year of publication and the title of the
article.

Semantic enhancement of literal elements in references

A way to enable the semantic enhancement of strings is to use literals as subjects of
statements and assertions, which are not allowed by Semantic Web standards such
as RDF and OWL. Recently, within the Semantic Web community, this topic, i.e.
whether and how to allow literals to be subjects of RDF statements21, has been
actively discussed. This discussion failed to provide a unique and clear indication
of how to proceed in that regard.

Although one of the suggestions coming out of the discussion was to explicitly
include the proposal in a (future) specification of RDF, this topic is not actually
new, particularly in ontology modelling. The needs to describe “typical” literals
(specially strings) as individuals of a particular class has been addressed by a lot of
models in past, such as Common Tag22 (through the class Tag), SIOC [20] (through
the classes Category and Tag), SKOS-XL [123] (through the class Label), and LMM
[143] (through the class Expression). After considering the above-mentioned models
and other related and inspiring ones, I have developed – in collaboration with Aldo
Gangemi and Fabio Vitali – a pattern called literal reification to address this issue.
It allows one to express literal values as proper ontological individuals so as to use
them as subject/object of any assertion within OWL models.

Extending the pattern region23 [71], the pattern literal reification24 [74] promotes

21Literals as subjects: http://www.w3.org/2001/sw/wiki/Literals as Subjects.
22Common Tag: http://www.commontag.org.
23Region pattern: http://ontologydesignpatterns.org/cp/owl/region.owl. The prefix region

refers to entities defined in it.
24Literal reification pattern: http://www.essepuntato.it/2010/06/literalreification. The prefix

litre refers to entities defined in it.

112 Chapter 4. The Semantic Publishing And Referencing Ontologies

any literal as “first class object” in OWL by reifying it as a proper individual of the
class litre:Literal. Individuals of this class express literal values through the func-
tional data property litre:hasLiteralValue and can be connected to other individuals
that share the same literal value by using the property litre:hasSameLiteralValueAs.
Moreover, a literal may refer to, and may be referred by any OWL individual through
litre:isLiteralOf and litre:hasLiteral respectively.

Note that the pattern defines also a SWRL rule [96] that allows one to infer
the (not explicitly asserted) literal value of a particular literal individual when it is
connected to another literal individual via litre:hasSameLiteralValueAs:

litre:hasSameLiteralValueAs(x,y) , litre:hasLiteralValue(y,v)

-> litre:hasLiteralValue(x,v)

This pattern allows one to use each reified literal as subject or object of any
assertion, and it is able to address scenarios described, for example, by the following
competency questions:

• What is the context in which entities refer to a particular literal value?

• What is the meaning of a particular value considering the context in which it
is used?

Plausible scenarios of its application include:

• modelling domains concerning descriptive tags, in which each tag may have
more than one meaning depending on the context in which it is used;

• extending quickly the capabilities of a model by adding the possibility to make
assertions on values, previously referred through data properties, without mod-
ifying it.

As briefly introduced above and as also shown in Fig. 4.6 on the facing page, the
pattern literal reification is composed by a class, a data property and three object
properties, described as follows:

• class litre:Literal. It describes reified literals, where the literal value they rep-
resent is specified through the property litre:hasLiteralValue. Each individual
of this class must always have a specified value;

• data property litre:hasLiteralValue. It is used to specify the literal value that
an individual of litre:Literal represents;

• object property litre:hasSameLiteralValueAs. It relates the reified literal to
another one that has the same literal value;

• object property litre:hasLiteral. It connects individuals of any class to a reified
literal;

Chapter 4. The Semantic Publishing And Referencing Ontologies 113

• object property litre:isLiteralOf. It connects the reified literal to the individ-
uals that are using it.

Figure 4.6: Graffoo diagram summarising the Literal Reification pattern.

By means of this pattern and of the OWL 2 capabilities in meta-modelling, it be-
comes possible to link specific strings in the references and to enhance them through
semantic assertions according to specific vocabularies, as shown in the following ex-
cerpt:

:renear02 a biro:BibliographicReference

; biro:references :towards -a-semantics

; swan:firstItem [swan:itemContent :first -author -name

; swan:nextItem [swan:itemContent :second -author -name ...

; swan:nextItem [swan:itemContent :publication -year

; swan:nextItem [swan:itemContent

:paper -title ...]]]] .

:first -author -name a litre:Literal , foaf:name

; litre:isLiteralOf :renear # it is the URL identifying the

person

114 Chapter 4. The Semantic Publishing And Referencing Ontologies

; litre:hasLiteralValue "Renear , A."^^ xsd:string .

:second -author -name ...

:publication -year a litre:Literal , fabio:hasPublicationYear

; litre:isLiteralOf :towards -a-semantics

; litre:hasLiteralValue "2002"^^ xsd:gYear .

:paper -title a litre:Literal , dcterms:title

; litre:isLiteralOf :towards -a-semantics

; litre:hasLiteralValue "Towards a semantics for XML markup

."^^ xsd:string .

...

As shown above, now the bibliographic reference in consideration is described as
a list of literals, each of them having a particular semantic connotation.

EARMARK ranges for describing references

Another approach to deal with the semantic enhancement of bibliographic references
is to use LA-EARMARK ranges for associating appropriate semantic statements to
textual fragments, as illustrated in Section 3.4. For instance, let me consider the ar-
ticle by Marcoux et al. “Intertextual semantics: A semantics for information design”
[121] implemented as an EARMARK document. In that case, I will have a particu-
lar docuverse containing the text of the reference taken into account previously, for
example:

:renear02 -reference a earmark:StringDocuverse

; earmark:hasContent "Renear , A., Dubin , D. & Sperberg -

McQueen , C.M. (2002). Towards a semantics for XML markup

. In E. Mudson (Chair), Proceedings of the ACM Symposium

on Document Engineering , (pp. 119 -126). New York: ACM

Press." .

From this docuverse, I can define ranges for each string I want to use to describe
the bibliographic reference according to BiRO. These ranges, that cover the same
literal values used in the example in the previous section, can be defined as follows:

:renear02 a biro:BibliographicReference

; biro:references :towards -a-semantics

; swan:firstItem [swan:itemContent :first -author -surname

; swan:nextItem [swan:itemContent

:first -author -namefirstletter ...

; swan:nextItem [swan:itemContent :publication -year

; swan:nextItem [swan:itemContent

Chapter 4. The Semantic Publishing And Referencing Ontologies 115

:paper -title ...]]]] .

:first -author -surname a earmark:PointerRange # the string "

Renear"

; earmark:refersTo :renear02 -reference

; earmark:begins "0"^^ xsd:nonNegativeInteger

; earmark:ends "6"^^ xsd:nonNegativeInteger .

:first -author -namefirstletter a earmark:PointerRange # the

string "A"

; earmark:refersTo :renear02 -reference

; earmark:begins "8"^^ xsd:nonNegativeInteger

; earmark:ends "9"^^ xsd:nonNegativeInteger .

...

:publication -year a earmark:PointerRange # the string "2002"

; earmark:refersTo :renear02 -reference

; earmark:begins "48"^^ xsd:nonNegativeInteger

; earmark:ends "52"^^ xsd:nonNegativeInteger .

:paper -title a earmark:PointerRange # the string "Towards a

semantics ..."

; earmark:refersTo :renear02 -reference

; earmark:begins "55"^^ xsd:nonNegativeInteger

; earmark:ends "89"^^ xsd:nonNegativeInteger .

...

Now, using the Linguistic Acts ontology introduced in Section 3.4, it is possible
to link EARMARK ranges to their formal meaning and to their particular references,
i.e. literals. For instance, considering the range :first-author-namefirstletter, I can
say that:

1. this range denotes a particular literal (i.e., “Allen”) that is owned by the first
author;

2. this range express a particular meaning, i.e. the fact of having a first name;

3. this meaning is a conceptualisation of the literal considered introduced in the
first point of this list.

Thus, according to LA-EARMARK, I will have:

:first -author -namefirstletter a la:Expression # string "A"

; la:expresses foaf:givenName

116 Chapter 4. The Semantic Publishing And Referencing Ontologies

; la:denotes :renear -given -name .

:renear -given -name a litre:Literal

; litre:hasLiteralValue "Allen"

; litre:isLiteralOf :renear

: la:hasConceptualization foaf:givenName .

[] a la:LinguisticAct

; sit:isSettingFor

<http :// www.essepuntato.it/me> # myself , as author of

this interpretation

, :renear # as the person having a certain name

, :first -author -namefirstletter # The letter identifying

the name

, :renear -given -name # The full version of the name

, foaf:givenName . # The meaning associated to such a

string

4.3.2 C4O: how much, where and what someone is citing

Besides defining reference lists and bibliographic references in a machine-readable
form, I also focus on how these references are used in the citing paper. In particular,
I need entities that describe:

• in-text reference pointers within the citing paper;

• links to the bibliographic references denoted by in-text reference pointers;

• how much a particular document is locally cited by the citing document – i.e.,
the total amount of in-text reference pointers within the citing paper denoting
the same bibliographic reference;

• how much an article is globally cited (according to particular bibliographic
citation service);

• the contexts involved in a citation – i.e., the part P citing of the citing article
containing a particular in-text reference pointer and the part P cited of the
cited article that is relevant to P citing.

The Citation Counting and Context Characterization Ontology25 (C4O) has been
developed to allow the description of the above entities. This ontology enables the
characterisation of bibliographic citations in terms of their presence in an article by
means of the following classes (shown in Fig. 4.7 on page 118):

25C4O, the Citation Counting and Context Characterization Ontology:
http://purl.org/spar/c4o. The prefix c4o refers to entities defined in it.

Chapter 4. The Semantic Publishing And Referencing Ontologies 117

• class c4o:InTextReferencePointer. An in-text reference pointer is a textual
device denoting (property c4o:denotes) a single bibliographic reference that
is embedded in the text of a document within the context of a particular
sentence;

• class c4o:InTextReferencePointerList. A list containing (through the chain
swan:item and swan:itemContent) only in-text reference pointers denoting the
specific bibliographic references to which the list pertains (property c4o:pertains).
Such a list cannot contain more than one item containing the same in-text ref-
erence pointer;

• class c4o:SingleReferencePointerList. Defined as subclass of the previous one,
it is an in-text reference pointer list that pertains to exactly one bibliographic
reference;

• class c4o:GlobalCitationCount. The number of times a work has been cited
globally (property c4o:hasGlobalCountValue), as determined from a particular
bibliographic information source (property c4o:hasGlobalCountSource) on a
particular date (property c4o:hasGlobalCountDate).

C4O provides the ontological structures to permit one to record the number
of in-text citations (property c4o:hasInTextCitationFrequency, i.e. the number of
in-text reference pointers to a single reference in the reference list of the citing arti-
cle), and also the number of citations a cited entity has received globally (property
c4o:hasGlobalCitationFrequency), as determined by a bibliographic information re-
source such as Google Scholar26, Scopus27 or Web of Knowledge28 on a particular
date.

Taking into account the example in Section 4.3.1, I can write a set of assertions
according to C4O that describes how many times a reference is used within the
citing article and how much the cited article is globally cited (according to Google
Scholar):

:renear02 a biro:BibliographicReference

; biro:references :towards -a-semantics

; c4o:hasInTextCitationFrequency "1"^^ xsd:

nonNegativeInteger .

:towards -a-semantics c4o:hasGlobalCitationFrequency [

a c4o:GlobalCitationCount

; c4o:hasGlobalCountDate "2011 -12 -02"^^ xsd:date

; c4o:hasGlobalCountSource [

26Google Scholar: http://scholar.google.it.
27Scopus: http://www.info.sciverse.com/scopus/.
28Web of Knowledge: http://apps.isiknowledge.com.

118 Chapter 4. The Semantic Publishing And Referencing Ontologies

Figure 4.7: Graffoo diagram summarising the C4O entities used for counting cita-
tions and references.

a c4o:BibliographicInformationSource

; foaf:homepage <http :// scholar.google.com >]

; c4o:hasGlobalCountValue "5"^^ xsd:nonNegativeInteger] .

Moreover, C4O enables ontological descriptions of the context where an in-text
reference pointer appears in the citing document (modelled as shown in Fig. 4.8 on
the facing page), and permits one to relate that context to relevant textual passages
in the cited document.

Considering the previous bibliographic reference example, a possible C4O for-
malisation of the contexts involved by that citing act is:

:version -of-record frbr:part :in-text -renear02 .

:in -text -renear02 a c4o:InTextReferencePointer

Chapter 4. The Semantic Publishing And Referencing Ontologies 119

Figure 4.8: Graffoo diagram summarising the C4O entities used for describing
citation contexts.

; c4o:denotes :renear02

; c4o:hasContext :paragraph -in-version -of-record .

:paragraph -in-version -of-record a frbr:Expression

; c4o:hasContent "Renear , Dubin , and Sperberg -McQueen

(2002 , pp. 121 -122) proposed a formal semantic approach

for structured documents. The basic ..." .

:sentence -in-towards -a-semantics a frbr:Expression

; frbr:partOf :towards -a-semantics

; c4o:hasContent "The source of those problems is that even

though SGML/XML is thought of as providing access to a

document ’s meaningful structure , current SGML/XML

methods cannot represent the fundamental semantic

relationships amongst document components and features

in a systematic machine -processable way."

; c4o:isRelevantTo :paragraph -in-version -of-record .

120 Chapter 4. The Semantic Publishing And Referencing Ontologies

4.4 Characterising document parts with DoCO

A large amount of literature exists about models and theories for the description
of structural, rhetorical and argumentative functions of texts through the adoption
of Semantic Web technologies, as summarised in [159]. The description of these
alternative document layers is crucial for Semantic Publishing. As remarked in [45],
to effectively improve the users’ comprehension of documents, a formalisation of
the document discourse (e.g., the scientific discourse in scholarly articles) should be
explicitly represented in machine-readable forms within the document itself.

Issues related to the rhetorical and the argumentative layers in documents have
been discussed for years, e.g. [108] and [82], even in fields different from Computer
Science, such as Philosophy and Publishing. For example, in his fundamental work
[187], Stephen Toulmin introduces a model for the explanation of arguments (includ-
ing scientific arguments). In this model, each argument is composed of statements
belonging to one of the following six roles:

• Claim. A fact that must be established – “That is a scientific article”.

• Evidence. Another fact that represents a foundation for the claim – “That
article has been submitted to a scientific conference”.

• Warrant. A statement bridging from the evidence to the claim – “An article
submitted to a scientific conference is a scientific article.”.

• Backing (optional). Sort of credentials that certifies the warrant – the Call
for Papers of the particular conference where the article was submitted.

• Rebuttal (optional). Restrictions that may be applied to the claim – “Un-
less conference reviewers will reject it, considering it non-scientific at all”.

• Qualifier (optional). It expresses the degree of certainty concerning the
claim via words or phrases such as “certainly”, “possible”, “probably”, etc.

Similarly, in the field of publishing there exist specific constraints authors have
to follow when writing a paper. For example, some scientific journals, such as the
Journal of Web Semantics29, impose to their articles to follow a particular rhetorical
segmentation, in order to explicitly identify meaningful parts from a scientific point
of view – for example, introduction, background, evaluation, materials, methods,
conclusion, etc. Although these parts usually (but do not necessarily) correspond
to structural entities of the article, such as sections, they carry a specific semantics
that characterises all the text they contain. From this perspective, this text means
more than “being within a section”.

29Journal of Web Semantics, Guide for Authors: http://www.elsevier.com/wps/find/journal
description.cws home/671322/authorinstructions.

Chapter 4. The Semantic Publishing And Referencing Ontologies 121

During the development of the SPAR ontologies, these aspects were analysed
carefully. Particularly, I investigated about previous works that tried to address
the description of structural and rhetorical components of a document. For the
rhetorical part, I found out three models that deal with document segmentation: the
Ontology of Rhetorical Blocks (ORB) [33], the SALT Rhetorical Ontology [83] [84]
and the Medium-Grained structure [46]. These models offer, the formers, a coarse-
grained description (header, introduction, methods, claims, etc.) and, the latter, a
medium-grained description (hypothesis, objects of study, direct representation of
measurements, etc.) of the rhetorical components of a document.

Although all those models are effectively used, they do not deal with all the
compositional aspects of a document. Besides not allowing one to express all the
rhetorical functions SPAR needs, those models do not enable rich descriptions of
the document structure. One of the requirements of publishers is to have a model
that enables the description of the several sub-parts of a document according to
its structural components and their rhetorical characterisations. To this end, I
developed the Document Components Ontology30 (DoCO). It provides a structured
vocabulary of document components, both structural (e.g. block, inline, container),
rhetorical (e.g. introduction, discussion, acknowledgements, reference list, figure,
appendix) and mixed (e.g., paragraph, section, chapter), enabling these components,
and documents composed of them, to be described in RDF.

Namely, DoCO imports the Patterns Ontology presented in Section 3.3.2 and
the Discourse Elements Ontology31 (DEO) to describe, respectively, structural and
rhetorical components of documents. Moreover, the latter ontology uses seven
rhetorical block elements (background, conclusion, contribution, discussion, evalu-
ation, motivation and scenario) abstracted from the SALT Rhetorical Ontology32.
In the following subsections we analyse in detail the structural and rhetorical func-
tions expressible through DoCO entities.

4.4.1 Building blocks for structuring documents

A brief introduction of the theory about structural patterns for documents was
illustrated in Section 3.3.2 and in previous works [43] [50]. In this section I list the
instanceable patterns again, giving more precise definitions supported by HTML
examples33.

30DoCO, the Document Components Ontology: http://purl.org/spar/doco. The prefix doco
refers to entities defined in it.

31DEO, the Discourse Elements Ontology: http://purl.org/spar/deo. The prefix deo refers to
entities defined in it.

32SRO, the SALT Rhetorical Ontology: http://salt.semanticauthoring.org/ontologies/sro.rdfs.
33Notice that it is possible to create valid HTML documents that are not compliant with the

presented structural pattern theory. For that reason, in the examples that follow I use HTML ele-
ments considering their (informal) semantics as a strong requirement to make a correct document.
For sure, there are other markup formats that fit the structural pattern theory better than HTML,

122 Chapter 4. The Semantic Publishing And Referencing Ontologies

The first patterns I introduce are milestone and meta. They are defined as empty
elements that can have zero or more attributes. Moreover:

• the distinctive characteristic of the pattern milestone is the position it assumes
in the document. This pattern typically describes elements that change the
aspect of a document depending on where they are put. Moreover, this pattern
is usually followed by elements that are used to define the actual content of a
document. In HTML, the element img is a perfect example of this pattern;

• the main feature of the pattern meta is its existence, independently from the
position that it has within the document. All the elements following this
pattern are commonly used to define metadata about the document itself or
part of it, independently of where they are. In HTML, the elements meta and
link are good examples that comply with this pattern.

The pattern atom defines elements that can contain text only. Like meta, this
pattern is commonly used for the description of metadata or, at the most, text that
is not considered part of the document body. In HTML, the element title (inside the
element head) is an example of this pattern. The following HTML code summarises
the patterns introduced so far:

<html >

<head >

<title >S.’s home </title >

<link href=" layout.css"

rel=" stylesheet" type="text/css" />

<meta http -equiv="Content -Type"

content ="text/html; charset=UTF -8" />

</head >

<body >

</body >

</html >

The next two patterns I illustrate, i.e. inline and block, are followed by elements
that are commonly used for the specification of the document content. Both of
them can contain text and have the same content model that enable the definition
of hierarchical structures: they can contain other inline and milestone elements and
items that comply with the special container popup – I will introduce the latter in
few paragraphs. Elements compliant with the patterns inline and block differ for
two aspects:

• although inline elements can contain other inlines, block elements cannot con-
tains other blocks;

such as AkomaNtoso [10]. However, I defend the choice of using HTML since it is well-known and
easily understandable by readers.

Chapter 4. The Semantic Publishing And Referencing Ontologies 123

• inline elements cannot be used as root element of documents, but must always
be contained by block elements.

In HTML, there are many elements that comply with these two patterns. For
example, p and h1 follow the pattern block, while em and a comply with the pattern
inline.

Finally, the pattern container concerns the structural organization of a docu-
ment. All the elements following this pattern do not contain any non-empty text.
However, they can contain elements compliant with the following patterns: meta,
atom, block and all the subtypes of container but popup.

While the content model of container elements (e.g., HTML body) admit to
contain all optional and repeatable elements, particular restrictions are applied to
the subtypes of the pattern container in terms of element repeatability. In particular:

• the pattern table contains homogeneous and repeatable elements. In HTML,
elements that comply with this pattern are ul and table;

• the pattern record contains no repeatable elements (e.g., HTML element html);

• the pattern hierarchical container contains always a sort of header at the be-
ginning that must be formed by block elements only. In HTML, the element
section (when containing always an h1 as first child) is a good example of this
pattern;

• the pattern popup is a special container that can be contained by block and
inline elements only. It is often used for the inclusion of complex quotations
or other complex structures. In HTML, the element math is one of the most
representative of this pattern.

The following HTML code summarises latter set of patterns:

<html >

<head ><title >The formula </title ></head >

<body >

<section >

<h1 >The magic mathematical formula </h1 >

<p>In this section I would like to introduce two things

:</p>

<p>the magic mathematical formula;</p>

<p>the website

 that inspired me.</p>

<p>And now the magic mathematical formula ,

that is

<math >

124 Chapter 4. The Semantic Publishing And Referencing Ontologies

<mi >x</mi >

<mo >=</mo >

<mfrac >

<mrow >

<mo form=" prefix">-</mo >

<mi >3</mi >

<mo >*</mo >

<msqrt >

<msup >

<mi>y</mi >

<mn >2</mn >

</msup >

</msqrt >

</mrow >

<mrow >

<mn >2</mn >

</mrow >

</mfrac >

</math >.

Isn ’t it terrific?</p>

</section >

</body >

</html >

The ontology introduced in Section 3.3.2 implements the whole theory I presented
so far. As remarked in that section, a document compliant with this theory appears
to be more unambiguous, manageable and well-structured according to defined and
shared principles of document engineering.

I chose to use this theory as one of the building blocks of DoCO (by importing
the related ontology) for two reasons. On the one hand, it becomes then possible
to understand whether a document described in terms of DoCO entities is valid
against the pattern theory. I just need to check whether the ABox describing that
document is consistent or not. On the other hand, I give prescriptive recipes to
follow in case one wants to model a new document according to the pattern theory
from the scratch.

4.4.2 Mixing rhetorical characterisation and structural com-
ponents

Documents such as a scientific research articles are characterised by precise rhetorical
organisations, sometimes in a way that is partially independent from their structural
components. As stated previously, there exist models – e.g., [33] [82] [83] [84] [46] –
that try to describe rhetorical characterisations of documents from different perspec-
tives. Although these ontologies can be used for the description of rhetorical aspects

Chapter 4. The Semantic Publishing And Referencing Ontologies 125

of documents, some of them lack in linking explicitly and correctly pure structural
behaviours to rhetorical aspects. Probably, one of the principal causes of this lack
should be attributed to the intrinsic complexity of defining some components as
purely rhetorical or purely structural.

In order to clarify this point, let me consider as example a well-known document
component: the paragraph. The structural behaviour of a document component can
be described by the syntactic structures that it enables and do not relate to its
rhetoric nature. From this perspective, a paragraph cannot be considered a pure
structural component – i.e. a component carries only a syntactic function – since it
de facto carries a meaning through its natural language sentences. Thus paragraphs
have more than a syntactic attitude. At the same time, the aforementioned models
for the rhetorical characterisation of documents do not include the concept paragraph
as part of them. Are thus paragraphs neither structural components nor rhetorical
elements?

Of course, the truth must lie somewhere in the middle. Let me write down two
definitions that take active part to this discussion. On the one hand, the defini-
tion of rhetoric as “the art of discourse, an art that aims to improve the facility
of speakers or writers who attempt to inform, persuade, or motivate particular au-
diences in specific situations”34. On the other hand, the definition of paragraph as
“a self-contained unit of a discourse in writing dealing with a particular point or
idea”35. From these definitions I come to a particular conclusion: the fact that a
paragraph is a unit of discourse implies that it must have a rhetorical connotation,
since the rhetoric is the art of discourse. Thus, a textual fragment of a document
is a paragraph when it is more than a mere syntactic structure: it should express
some ideas and should carry some meanings.

On the other hand, document markup languages such as HTML and DocBook
define a paragraph as a pure structural component, without any reference to its
rhetoric function:

• “A paragraph is typically a run of phrasing content that forms a block of text
with one or more sentences” [92];

• “Paragraphs in DocBook may contain almost all inlines and most block ele-
ments” [194].36

Here the term “block of text” and the verb “contains” emphasise the structural
connotation of the paragraph, which is amplified by our direct experience as readers.
Experience that implicitly tells us that a particular textual fragment shown in a book
or in an HTML page is a paragraph rather than a chapter or a table.

34Wikipedia article “Rhetoric”: http://en.wikipedia.org/wiki/Rhetoric.
35Wikipedia article “Paragraph”: http://en.wikipedia.org/wiki/Paragraph.
36The words inline and block in these list items do not refer to the structural pattern theory

introduced previously, although some sort of overlapping exist.

126 Chapter 4. The Semantic Publishing And Referencing Ontologies

The Document Components Ontology (DoCO), shown in Fig. 4.9, has been devel-
oped so as to fill the gap between the pure structural characterisation of document
elements and their the pure rhetorical connotation. Besides including the Pattern
Ontology (describing structural components) and Discourse Element Ontology (de-
scribing rhetorical components), DoCO also defines other hybrid classes describing
elements that are structural and rhetorical at the same time. For instance:

• class doco:Paragraph. It is a discourse element based on the pattern block,
and contains some sentences;

• class doco:Sentence. It is a discourse element based on the pattern inline;

• class doco:Chapter. It is a discourse element based on the pattern container,
and it is part of the body-matter of a document;

• class doco:BodyMatter. It is a discourse element based on the pattern con-
tainer;

• etc.

Figure 4.9: Diagram describing the composition and the classes of the Document
Components Ontology (DoCO).

The following excerpt shows how to use DoCO to describe structural and rhetor-
ical aspects of the text of the example in Section 4.3:

:version -of-record a pattern:Container

; pattern:contains

:front -matter , :body -matter , :back -matter .

Chapter 4. The Semantic Publishing And Referencing Ontologies 127

...

:body -matter a doco:BodyMatter

; pattern:contains :introduction , :related -works , ...

:related -works a doco:Section , deo:RelatedWork

; pattern:contains :first -paragraph , ...

, :paragraph -in-version -of -record , ...

:paragraph -in-version -of-record a doco:Paragraph

; pattern:contains :sentence1 , :sentence2 , ...

:sentence1 a doco:Sentence

; pattern:contains :in-text -renear02 .

:in -text -renear02 a deo:Reference , pattern:Inline .

...

:back -matter a doco:BackMatter

; pattern:contains [a doco:Section

; pattern:contains :reference -list] .

:reference -list a doco:ListOfReferences

; pattern:contains

:barwise83 ,:black37 ... , :renear02 , ...

:renear02 a deo:BibliographicReference , pattern:Inline .

...

Moreover, as shown for BiRO (Section 4.3.1) and as illustrated in Section 3.4.1,
DoCO can be used in combination with LA-EARMARK to enhance the document
markup with axioms related to its structural and rhetorical aspects.

4.5 In the past you were it, now you are not it

When modelling a domain using ontologies, we may need to describe scenarios in
which an owner hold some owned entity during a specific temporal interval and/or
within a specific context. For instance, in the publishing domain, we may want to
describe when a status (e.g., under review, accepted for publication, draft) is gained or
lost by a document, to which institution a particular document’s author is affiliated,
or which roles are held by people at a particular time. All these scenarios involve

128 Chapter 4. The Semantic Publishing And Referencing Ontologies

the following specific objects as part of the discourse: the owner, the owned entity,
and the time and the context in which the act of owning holds.

Most ontologies are unable to model such scenarios effectively, for different rea-
sons. Three techniques have been used in attempts to address this modelling issue
– class subsumptions, property links, inter-linked classes and n-ary class modelling
– but each falls short in some aspect, as we will now explain.

4.5.1 Using class subsumptions

To clarify this design technique and the issues that arise from it, consider the agen-
t/role relations as described in the Portal Ontology37 of the AKT Reference On-
tology38. This ontology defines the class Student as a person (class portal:Person)
who studies at (property portal:studies-at) some educational organization (class por-
tal:EducationalOrganization), as defined as follows (in Manchester Syntax [95]):

Class: portal:Student

SubClassOf:

portal:Person that

portal:studies -at some portal:EducationalOrganization

The statement that a student is a person is fine. But a clear distinction needs
to be made between the classes Person and Student. The fact of being a person
is independent of the passage of time – Silvio Peroni is a living person; Kurt Von-
negut is a person who has died. His death does not prevent us describing him as
a person. However, the fact of being a student is strictly time-dependant – Silvio
Peroni is a graduate student now, but (hopefully) he will not be one for much longer!
This subsumption model shows a clear design issue: classes defining time-dependent
characteristics (namely, anti-rigid classes according to [85]) have been placed in the
same is-a hierarchy39 as classes defining time-independent characteristics (namely,
rigid classes according to [85]). As suggested in [85], I believe they should be part of
two separated hierarchies and conclude that descriptions of time-dependant entities
cannot be satisfactorily achieved by using subsumption.

4.5.2 Using property links

An alternative solution that properly takes into account time-dependant charac-
teristics is the use of properties for defining the owned entity (e.g., status), while
continuing to express the owner as an individual of a particular class (e.g. a doc-
ument). For instance, consider a person (the owner) as author (the owned entity)
of a particular document. Much ontologies for describing bibliographic resources,

37The OWL formalisation of the Portal Ontology is available at
http://www.aktors.org/ontology/portal. The prefix portal refers to entities defined in it.

38AKT Reference Ontology: http://www.aktors.org/publications/ontology/.
39That, in OWL, refers to the hierarchy defined through rdfs:subClassOf relations.

Chapter 4. The Semantic Publishing And Referencing Ontologies 129

such as DCTerms [63], FRBR [100] and BIBO [42], use object properties to model
this situation. The idea is to link the document, i.e. the object of discourse, to the
people who are its authors by the use of a ’role’ property, as shown in the following
RDF excerpt (using Turtle syntax [147])40:

Using DCTerms

:earmark -paper a dcterms:BibliographicResource

; dcterms:creator :peroni , :vitali .

:kce -paper a dcterms:BibliographicResource

; dcterms:creator :peroni , :motta , :daquin .

Using FRBR (Expression layer)

:earmark -paper a frbr:Expression

; frbr:realizer :peroni , :vitali .

:kce -paper a frbr:Expression

; frbr:realizer :peroni , :motta , :daquin .

Using BIBO

:earmark -paper a bibo:Article

; bibo:authorList (:peroni , :vitali) .

:kce -paper a bibo:Article

; bibo:authorList (:peroni , :motta , :daquin) .

This design approach has at least two problems. The first occurs when the
requirements of the ontology are not fully known at the time of development. For
instance, the number of roles that can exist for people involved in the publishing
domain (author, editor, publisher, etc.) may increase with time as new technologies
are developed, leading, for example, to the creation of a new role, such as linked-data
manager Clearly, an ontology describing publishing roles cannot take into account
all the possible roles that may be invented in the future. Consequently, the TBox
of the ontology will require frequent extensions to include new properties on a case
by case basis, requiring maintenance and increasing the risk of creating ontology
inconsistencies.

A possible solution that allows better extensibility of a model is to use data
properties rather than object properties. For instance, the W3C specification [98]
of the ontology41 for describing vCard objects in RDF prescribes the use of a (very
general) data property, vcard:role, for describing an individual’s roles. On the one
hand, this permits easy extensions to the ontology, since we can add arbitrary literals

40The following examples refer to [142] and [141].
41An Ontology for vCards: http://www.w3.org/2006/vcard/ns#. The prefix vcard refers to

entities defined in it.

130 Chapter 4. The Semantic Publishing And Referencing Ontologies

to represent new roles. However, the lack of a clear and defined vocabulary for roles
can cause ambiguity problems. For example, the literals“Ph.D.” and “PhD student”
are clearly referring to the same role, although they are different literals and end up
being formally different within the model.

A second problem, that affects the scenario whether the properties used are
object properties or data properties, is to discern in which context an owner/owned
entity association holds (e.g. to which journal does a person’s role of editor relate).
Consider the problem of an author having different institutional affiliations in the
context of different publications. Using the Semantic Web Conference Ontology42

[124], we can define affiliations for authors as follows:

For the EARMARK paper

:peroni swrc:affiliation :cs-unibo .

:vitali swrc:affiliation :cs-unibo .

For the KCE paper

:peroni swrc:affiliation :kmi .

:motta swrc:affiliation :kmi .

:daquin swrc:affiliation :kmi .

Institution descriptions

:cs -unibo a foaf:Organization

; dcterms:description "Department of Computer Science ,

University of Bologna , Bologna , Italy" .

:kmi a foaf:Organization

; dcterms:description "Knowledge Media Institute , Open

University , Milton Keynes , United Kingdom" .

This specification, although straightforward, does not differentiate between as-
sociations. It is still not possible to determine the affiliation of an author in the
context of a particular paper – e.g., “give me the institutional affiliation of the per-
son :peroni as author of the paper :earmark-paper”. There is no way of specifying
formally which of a person’s affiliations is associated with which document.

4.5.3 Using inter-linked classes

Another possible way to resolve the problem introduced in Section 4.5.1 is to link the
owner class and the owned entity class through object properties. Here, agent-role
relations, such as the above-mentioned Person/Student relationship, should involve
two classes that have no subclass subsumptions (declared or inferable) linked by a

42The Semantic Web Conference Ontology: http://data.semanticweb.org/ns/swc/ontology. The
prefixes swc and swrc refer to entities defined in it.

Chapter 4. The Semantic Publishing And Referencing Ontologies 131

specific property such as holdsRole. For instance, the Semantic Web Conference On-
tology implements such a design principle through two different classes, foaf:Person
and swc:Role, and the object property swc:holdsRole linking them.

In this way the extensibility of the ontology is guaranteed, reducing the possibil-
ity of undesirable inferential side effects. Adding new roles simply involves adding
new individuals to the class swc:Role. That requires no modification to the TBox
of the ontology, making it a very good design principle. However, this solution still
is unable to describe that a person holds a particular role during a specific time
period. To demonstrate this issue, consider the following description:

the person :peroni was a student from October 2005 to March 2008 as an
undergraduate, and from January 2009 until now as a PhD candidate,
at the University of Bologna. He was an intern at the Open University
from April 2008 to September 2008, and was an intern at the University
of Oxford from June 15, 2010 to December 15, 2010.

The SWC ontology, used together with FOAF [25], permits only a partial de-
scription of this scenario, as shown in the following excerpt:

:student a swc:Role .

:intern a swc:Role .

:peroni a foaf:Person

; swc:holdsRole :undergraduateStudent , :graduateStudent ,

:intern .

Obviously, the previous data cannot answer the question “Was :peroni a graduate
student in June 2008?”, because it lacks information about time. Of course, they
can be added using specific models, such as the Time ontology43 [93], as shown as
follows:

:atTime a owl:ObjectPropery

; rdfs:domain swc:Role

; rdfs:range time:TemporalEntity .

:undergraduateStudent :atTime

[a time:TemporalEntity

; time:hasBeginning [a time:Instant

; time:inDateTime [a time:DateTimeDescription

; time:month "10" ; time:year "2005"]]

; time:hasEnd [a time:Instant

; time:inDateTime [a time:DateTimeDescription

; time:month "03" ; time:year "2008"]]] .

43The Time Ontology: http://www.w3.org/2006/time. The prefix time refers to entities defined
in it.

132 Chapter 4. The Semantic Publishing And Referencing Ontologies

:graduateStudent :atTime

[a time:TemporalEntity

; time:hasBeginning [a time:Instant

; time:inDateTime [a time:DateTimeDescription

; time:month "01" ; time:year "2009"]]] .

:intern :atTime

[a time:TemporalEntity

; time:hasBeginning [a time:Instant

; time:inDateTime [a time:DateTimeDescription

; time:month "04" ; time:year "2008"]]

; time:hasEnd [a time:Instant

; time:inDateTime [a time:DateTimeDescription

; time:month "09" ; time:year "2008"]]] .

:intern :atTime

[a time:TemporalEntity

; time:hasBeginning [a time:Instant

; time:inDateTime [a time:DateTimeDescription

; time:day "15" ; time:month "06"

; time:year "2010"]]

; time:hasEnd [a time:Instant

; time:inDateTime [a time:DateTimeDescription

; time:day "15" ; time:month "12"

; time:year "2010"]]] .

The problem here is that the information about time is associated with the roles
themselves, rather than with the person holding those roles. This will create prob-
lems once we add another person with the same roles, since it will become impossible
correctly to relate the particular times certain roles are held to the people holding
them. Two co-authors of mine (now professors), namely David Shotton (resource
:shotton) and Fabio Vitali (resource :vitali), were once undergraduate students, but
in different periods from :peroni:

:shotton a foaf:Person

; swc:holdsRole :undergraduateStudent .

:vitali a foaf:Person

; swc:holdsRole :undergraduateStudent .

Things becomes even more complicated if we need to describe the context within
which the agent-role relation holds, for example, by specifying in which institution
:peroni was an intern on a given date.

Chapter 4. The Semantic Publishing And Referencing Ontologies 133

4.5.4 Using n-ary class modelling

Obviously, OWL ontologies and RDF-based models are not able to handle time
periods and contexts directly, but need workarounds such as reification or, more
generally, n-ary descriptions, in order to express the range of possible scenarios
mentioned in the previous sections. Some ontological patterns [146] [91] were pre-
viously developed to address these issues. For example, through the time-indexed
situation pattern44 [73], shown in Fig. 4.10, it becomes possible to link a subject to
a time-dependant description of a situation45.

Figure 4.10: A graphical representation of the time-indexed situation ontological
pattern.

Using this pattern, the scenario presented in Section 4.5.3 can be correctly defined
as follows:

University of Bologna

:unibo a foaf:Organization .

University of Oxford

:oxac a foaf:Organization .

Open University

:ouac a foaf:Organization .

44Time-indexed situation pattern: http://ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl.
The prefixes tisit:, sit: and ti: refer to entities defined in it.

45In this context, a situation is defined as a view on a set of entities. It can be seen as a “relational
context”, reifying a relation.

134 Chapter 4. The Semantic Publishing And Referencing Ontologies

:peroni tisit:hasTimeIndexedSetting

:peroniAsUndergraduateStudentInUnibo , :

peroniAsInternInUOAc

, :peroniAsGraduateStudentInUnibo , :peroniAsIndernInOxAc .

:peroniAsUndergraduateStudentAtUnibo a tisit:

TimeIndexedSituation

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate "2005 -10"^^ xsd:gYearMonth

; ti:hasIntervalEndDate "2008 -03"^^ xsd:gYearMonth]

; tisit:forEntity :unibo

; tisit:forEntity :undergraduateStudent .

:peroniAsInternInOUAc a tisit:TimeIndexedSituation

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate "2008 -04"^^ xsd:gYearMonth

; ti:hasIntervalEndDate "2008 -09"^^ xsd:gYearMonth]

; tisit:forEntity :ouac

; tisit:forEntity :intern .

:peroniAsGraduateStudentInUnibo a tisit:TimeIndexedSituation

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate "2005 -10"^^ xsd:gYearMonth]

; tisit:forEntity :unibo

; tisit:forEntity :graduateStudent .

:peroniAsInternInOxAc a tisit:TimeIndexedSituation

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate "2010 -06 -15"^^ xsd:date

; ti:hasIntervalEndDate "2010 -12 -15"^^ xsd:date]

; tisit:forEntity :oxac

; tisit:forEntity :intern .

Although this pattern can be used for formally describe the scenario in Sec-
tion 4.5.3, it is still too abstract, both as a model and in terms of its terminology. It
can be applied in billion of different contexts, of course, but is not specific enough
for our particular requirement – that of describing time- and context-dependant
relationships between an agent and an owned entity, or, more specifically, defining
roles and statuses within the publishing domain.

4.5.5 A general pattern for roles and statuses

What emerges from the preceding discussion is the needs for a model to describe
time-dependant and contextualised entities. In particular, we identified four different

Chapter 4. The Semantic Publishing And Referencing Ontologies 135

things involved in these kinds of scenarios:

1. the entity owner of something, e.g. a person or a document possessing a role
or a status;

2. the entity that is owned by someone, e.g. a role or a status;

3. the time period during which the owner owns that entity, e.g. from April 2008
to September 2008;

4. the particular context that characterises the act of ownership, e.g. being a
member of an institution or the editor of a particular journal.

In Section 4.5.4 we introduced a very useful ontological pattern that is able to
describe this scenario at a very abstract level. Using that as a starting point, we now
wish to define a new ontological pattern called t ime-indexed o wning in c ontext
(TOC), summarised in Fig. 4.11 and available as OWL implementation ontology46.

Figure 4.11: The Graffoo diagram of the time-indexed owning in context ontological
pattern.

Five different classes and four object properties compose this pattern:

• the class Owner refers to the agent, e.g. a person, holding (property holds)
something, such as a role or a status, here defined by OwnedEntity;

• the class Category identifies the kind of OwnedEntity the Owner is holding,
e.g. the role “student”;

46The time-indexed owning in context ontological pattern:
http://www.essepuntato.it/2011/11/toc. The prefix toc: refers to entities defined in it.

136 Chapter 4. The Semantic Publishing And Referencing Ontologies

• the classes Instant and Interval are used, respectively, to specify specific tem-
poral instants and time periods;

• the class Context refers to the specific environment or situation within which
the fact that the Owner holds the OwnedEntity is relevant. For example, the
University of Bologna is the institution related to a person, such as :peroni in
the previous Turtle excerpt, who holds the role of graduate student;

• finally, OwnedEntity is the hub that links together the Category of the owned
entity (property isDefinedBy) with the Owner, the time (property atTime)
and the context (relatesTo).

Using the TOC ontology, the excerpt introduced in Section 4.5.4 can be re-
written as follows:

:peroni toc:holds :peroniAsUndergraduateStudentInUnibo , ...

:peroniAsUndergraduateStudentAtUnibo a toc:OwnedEntity

; toc:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate "2005 -10"^^ xsd:gYearMonth

; ti:hasIntervalEndDate "2008 -03"^^ xsd:gYearMonth]

; toc:relatesTo :unibo

; toc:isDefinedBy toc:undergraduate -student .

...

where toc:undergraduate-student is an individual within the class toc:Category.
In the following sections we introduce general use cases and benefits of TOC.

Querying a TOC-based model via SPARQL

In principle, the TOC pattern allows correct answers to be returned in response to
a large number of SPARQL queries [78], from the simplest to the most complicated
ones. In this section, we present three queries, of increasing difficulty, as examples.
For instance, we can ask for all the categories (e.g., kinds of roles) held by a person,
such as :peroni:

SELECT DISTINCT ?cat WHERE {

:peroni a foaf:Person ; toc:holds/toc:isDefinedBy ?cat . }

This query can be refined to consider, for instance, only the categories that are
defined in a particular context, e.g. the University of Bologna (entity :unibo):

SELECT DISTINCT ?cat WHERE {

:peroni a foaf:Person toc:holds [toc:OwnedEntity

; toc:isDefinedBy ?cat

; toc:relatesTo :unibo }

Chapter 4. The Semantic Publishing And Referencing Ontologies 137

This will return both the undergraduate and the graduate student roles of :per-
oni. We can further filter the previous results to return just those roles that are
applicable in a particular date, such as “24 August, 2011”:

SELECT DISTINCT ?cat WHERE {

:peroni a foaf:Person toc:holds [a toc:OwnedEntity

; toc:isDefinedBy ?cat

; toc:relatesTo :unibo

; toc:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate ?start

; ti:hasIntervalEndDate ?end]

FILTER(

xsd:dateTime (? start) <=

"2011 -08 -24 T00 :00:00Z"^^xsd:dateTime &&

xsd:dateTime (?end) >

"2011 -08 -25 T00 :00:00Z"^^xsd:dateTime) }

This will return just the role of graduate student. If the condition toc:relatesTo
:unibo was omitted, the query would return both :peroni’s role as a graduate student
at the University of Bologna, and his concurrent role on that date as an intern at the
University of Oxford. More complicated and domain-specific queries are introduced
in Section 4.5.6.

Reusing external classes as categories

If required, it is possible, by means of the meta-modelling features of OWL 2, to
define classes of external ontologies as individuals of the class toc:Category. In this
way, we can use them interchangeably either as instances, when we want to associate
them to some toc:Owner, or as classes when we want to understand hierarchical
relationships between them. In addition to opening up the TOC ontology for reuse,
this may be very useful for inferring new data for specific categories, even when, in
a query, we use their more abstract generalisations (i.e., superclasses).

Suppose for instance, one has a dataset defined according to TOC that includes
some entities from the AKT Portal Ontology, introduced in Section 4.5.1, such as:

portal:Affiliated -Person a toc:Category .

portal:Student a toc:Category .

portal:PhD -Student a toc:Category .

portal:Employee a toc:Category .

...

The following statements are defined in the Portal Ontology

portal:Student rdfs:subClassOf portal:Affiliated -Person .

portal:PhD -Student rdfs:subClassOf portal:Student .

portal:Employee rdfs:subClassOf portal:Affiliated -Person .

...

138 Chapter 4. The Semantic Publishing And Referencing Ontologies

In this way, it is possible to query the dataset through SPARQL, asking for all the
people affiliated with the University of Bologna (the entity :unibo), independently
from the roles they may hold as a student, a Ph.D. student, an employee or other
subclass of portal:Affiliated-Person:

SELECT DISTINCT ?person WHERE {

?person toc:holds [a toc:OwnedEntity

; toc:isDefinedBy ?aff

; toc:relatesTo :unibo] .

{

SELECT ?aff WHERE {

{

?aff a toc:Category .

FILTER (?aff = portal:Affiliated -Person) }

UNION

{ ?aff rdfs:subClassOf+ portal:Affiliated -Person }

}

}

}

As highlighted in the previous example, TOC makes it possible and useful to
reuse specific parts of ontologies describing categories in form of classes, thus taking
advantages of the OWL 2 punning.

Constructing second-order inferences

Of course, it is sometimes desirable to reuse ontologies that specify categories (e.g.,
roles) through properties rather than classes, as introduced in Section 4.5.2. Con-
sider, for example, the BIBO ontology [42], that associates agent roles with docu-
ments through particular sub-properties (bibo:translator, bibo:director, bibo:editor)
of the general property dcterms:contributor. Using the BIBO ontology with TOC,
these object properties can be used as individuals of the class toc:Category, again
by means of OWL 2 punning. Moreover, it is possible, when needed, to construct
second-order inferences using toc:Category individuals as properties:

CONSTRUCT { ?document ?property ?person } WHERE {

?person a foaf:Person ; toc:holds [a toc:OwnedEntity

; toc:isDefinedBy ?property

; toc:relatesTo ?document]

{

SELECT ?property WHERE {

{

?property a toc:Category .

FILTER (?aff = dcterms:contributor) }

UNION

{ ?property rdfs:subPropertyOf+ dcterms:contributor }

Chapter 4. The Semantic Publishing And Referencing Ontologies 139

}

}

}

As shown in the previous query, through a model that combines TOC and an
ontology defining categories as property links, such as BIBO, it becomes feasible to
infer second-order logical statements. More generally, TOC can be used as inter-
mediate model for the conversion of Owner / Owned Entity data from one ontology
into another, independent of the particular design technique used by each ontology
(i.e., class subsumptions, property links, inter-linked classes or n-ary relationships).
This gives enormous descriptive power and usefulness.

4.5.6 Identifying person’s roles with PRO

The need to define publishing roles in SPAR was crucial for the completeness of this
suite of ontologies. The problems associated with the adoption of external ontologies
to handle this particular requirement have been discussed above. None of them were
fully able to satisfy the modelling requirements imposed by SPAR, particularly need
for ease of extendibility and for the simultaneous representation of time periods and
contexts.

Using TOC as the basis, we implemented PRO, the Publishing Roles Ontology47,
an OWL 2 ontology. This ontology, shown in Fig. 4.12 on the following page, permits
characterization of the roles of agents – people, corporate bodies and computational
agents – in the publication process. It permits one to specify the role an agent has
in relation to a particular bibliographic entity (e.g., author, editor, reviewer) or to
a specific institution (e.g., publisher, librarian), and the period during which each
role is held.

Using PRO, that implements TOC as illustrated by the mapping in Table 4.1
on the next page, it becomes possible to describe all the scenarios discussed in
Section 4.5.2 and Section 4.5.3, as shown as follows:

:peroni pro:holdsRoleInTime

[a pro:RoleInTime ### as author of two different papers

; pro:withRole pro:author

; pro:relatesToDocument :earmark -paper , :kce -paper]

, [a pro:RoleInTime ### as affiliate of UniBo CS

Department

; pro:withRole pro:affiliate

; pro:relatesToDocument :earmark -paper

; pro:relatesToOrganization :cs-unibo

; ti:atTime

[a ti:TimeInterval

47PRO, the Publishing Roles Ontology: http://purl.org/spar/pro. The prefix pro refers to enti-
ties defined in it.

140 Chapter 4. The Semantic Publishing And Referencing Ontologies

Figure 4.12: Graffoo representation of the Publishing Roles Ontology (PRO).

Table 4.1: Mappings between TOC entities and PRO classes.

TOC entity PRO class Description

Owner foaf:Agent
A class defining any kind of agents,

such as a person, a group, an
organization or a software agent.

OwnedEntity pro:RoleInTime
A particular situation that describes a

role some agent may have during a
particular time interval.

Category pro:Role
A role an agent may have. Currently,

31 roles are defined in the PRO
ontology as individuals of this class.

Instant or
Interval

ti:TimeInterval
Two (starting and ending) points in
time that define a particular period.

Context
foaf:Document

foaf:Organization

Classes defining, respectively, any
kind of bibliographic work or

publishing organization.

Chapter 4. The Semantic Publishing And Referencing Ontologies 141

; ti:hasIntervalStartDate "2005 -10 -01 T00 :00:00Z"^^xsd

:dateTime

; ti:hasIntervalEndDate "2008 -03 -19 T12 :00:00Z"^^xsd:

dateTime]]

, [a ti:TimeInterval

; ti:hasIntervalStartDate "2009 -01 -01 T00 :00:00Z"^^xsd

:dateTime]

, [a pro:RoleInTime ### as affiliate of OU KMi

; pro:withRole pro:affiliate

; pro:relatesToDocument :kce -paper

; pro:relatesToOrganization :kmi

; ti:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate "2008 -04 -01 T00 :00:00Z"^^xsd:

dateTime

; ti:hasIntervalEndDate "2008 -09 -30 T23 :59:59Z"^^xsd:

dateTime]]] .

As seen, through PRO we can model very rich scenarios, and thus answer complex
queries, such as the previously introduced “give me the institutional affiliation of
the person :peroni as author of the paper :earmark-paper”:

SELECT ?aff WHERE {

:peroni pro:holdsRoleInTime

[a pro:RoleInTime

; pro:with :author

; pro:relatesToDocument :earmark -paper]

, [a pro:RoleInTime

; pro:withRole :affiliate

; pro:relatesToDocument :earmark -paper

; pro:relatesToOrganization ?aff]

}

4.5.7 Specifying document statuses with PSO

The second subdomain of publishing that speaks about owner-owned entity relations,
again bound together with time and context, that had to be handled in SPAR is
that of the status of documents. In this case, it is a document (the owner), rather
than an agent, that holds a particular status (the owned entity) at a certain time,
as direct consequence of particular events (the context). For instance, a document
holds the status of being under review until all reviewers write their comments about
it and send them to the editors, who then make a decision to accept or reject the
paper. After that decision has been made, the status ’under review’ is no longer
valid: the document loses that status, and this should be formally describable using
an appropriate ontology. Moreover, it can sometimes be useful to link documents
to the decisions or events that cause the acquisition or loss of a particular status.

142 Chapter 4. The Semantic Publishing And Referencing Ontologies

Pre-existing ontologies describing the status of documents use the methods out-
lined in Section 4.5.2 (e.g., BIBO [42] and the Project Documents Ontology48 [191])
and in Section 4.5.3 (e.g., the Document Status Ontology49). As discussed in those
sections, property links and inter-linked classes approaches prevent proper descrip-
tions of scenarios that involve the temporal duration of a document status. With
the exception of the Document Status Ontology, that implements a mechanism for
describing status changes as events, the other ontologies fail to permit definition of
these contextual data, or do so only partially.

In order to address these issues in a more satisfactory manner, we developed PSO,
the Publishing Status Ontology50. This ontology (shown in Fig. 4.13) characterises
the publication status of a document or other publication entity at each of the various
stages in the publishing process (e.g. draft, submitted, under review, rejected for
publication, accepted for publication, version of record, peer reviewed, open access).
As with PRO, PSO was developed following the pattern TOC, as shown by the
mapping in Table 4.2 on the next page.

Figure 4.13: Graffoo representation of the Publishing Status Ontology (PSO).

48Project Documents Ontology:http://ontologies.smile.deri.ie/pdo#.
49Document Status Ontology: http://ontologi.es/status#.
50PSO, the Publishing Status Ontology: http://purl.org/spar/pso. The prefix pso and part refer

to entities defined in it.

Chapter 4. The Semantic Publishing And Referencing Ontologies 143

Table 4.2: Mappings between TOC entities and PSO classes.

TOC entity PSO class Description

Owner foaf:Document
A class defining any kind of

bibliographic work.

OwnedEntity pso:StatusInTime

A particular situation that describes a
status or condition a document may

have at a particular time as
consequence of one or more events.

Category pso:Status

A status or condition that a
document may have. Currently, 26

statuses are defined in the ontology as
individuals of this class.

Instant or
Interval

ti:TimeInterval
Two (starting and ending) points in
time that define a particular period.

Context part:Event

An event during a publishing process,
such as writing a draft, submitting a
preprint for publication, or publishing
a paper, that changes the status of a

document.

Using PSO, it becomes possible to describe the statuses of documents and how
they change over time. For instance, consider the following natural language de-
scription:

The paper :earmark-paper was submitted to DocEng 2009 on 24 April
2009 at 13:18. At noon on 26 April 2009, when the authors received
acknowledgement of safe receipt of the paper from the conference edito-
rial committee, the paper was considered “under review”. This status
lasted until, on 27 May 2009 at 17:38, the editorial committee notifies
the authors that the review process had been completed and that the
paper had been accepted. At that moment, the status “under review”
ended, and a new status, “accepted for publication”, began.

PSO can be used to represent this description formally, as follows:

:earmark -paper pso:holdsStatusInTime

:submitted , :under -review

, :reviewed -and -accepted -for -publication .

:submitted a pso:StatusInTime

144 Chapter 4. The Semantic Publishing And Referencing Ontologies

; pso:withStatus pso:submitted

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate

"2009 -04 -24 T13 :18:21Z"^^xsd:dateTime]

; pso:isAcquiredAsConsequenceOf :author -submits -paper .

:author -submits -paper a part:Event

; dcterms:description "An author submitted the paper

through the online conference submission system ." .

:under -review a pso:StatusInTime

; pso:withStatus pso:under -review

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate

"2009 -04 -26 T12 :00:00Z"^^xsd:dateTime

; ti:hasIntervalEndDate

"2009 -05 -27 T17 :38:01Z"^^xsd:dateTime]

; pso:isAcquiredAsConsequenceOf :reviewers -working

; pso:isLostAsConsequenceOf :reviewers -finish .

:reviewers -working a part:Event

; dcterms:description "Anonymous reviewers are working on

the paper." .

:reviewed -and -accepted -for -publication a pso:StatusInTime

; pso:withStatus pso:accepted -for -publication , pso:

reviewed

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate

"2009 -05 -27 T17 :38:01Z"^^xsd:dateTime]

; pso:isAcquiredAsConsequenceOf

:reviewers -finish , :committee -accepts

, :committee -notifies -to -authors .

:reviewers -finish a part:Event

; dcterms:description

"Reviewers finish to review the paper ." .

:committee -accepts a part:Event

; dcterms:description "Conference committee accepted the

paper according to reviewers ’ comments ." .

:committee -notifies -to-authors a part:Event

; dcterms:description "A notification of acceptance has

been sent to authors ." .

Chapter 4. The Semantic Publishing And Referencing Ontologies 145

4.6 Describing publishing workflows with PWO

Keeping track of publication processes is a crucial task for publishers. This activity
allows them to produce statistics on their goods (e.g., books, authors, editors) and
to understand whether and how their production changes during time. Organis-
ers of particular events such as academic conference have similar needs. Tracking
the number of submission in the current edition of the conference, the number of
accepted papers, the review process and the like are important statistics that can
be actually used to prevent emerging drawbacks in future edition of the conference
itself.

Some communities started to publish51 data describing those events as RDF
statements in the Linked Data, in order to allow software agents and applications
to check and reason on them and to infer new information. However, the descrip-
tion of processes, for instance the peer-review process or the publishing process, is
something that is not currently handled – although sources of related raw data exist.
Having also these kinds of data published would increase the transparency of afore-
mentioned processes and allow their use for statistical analysis. Of course, a model
for describing these data is needed. Moreover it should be easy to be integrated
and adapted according to needs and constraints of different domains (publishing,
academic conferences, research funding, etc.).

In order to accommodate these needs, I developed the Publishing Workflow On-
tology52 (PWO). This ontology permits one to describe the logical steps in a work-
flow, for example the process of publication of a document. Each step may involve
one or more events that take part to a particular phase of the workflow (e.g. authors
are writing the article, the article is under review, reviewer suggested to revise the
article, the article is in printing, the article has been published, etc.).

As shown in Fig. 4.14 on the following page, PWO is based on two main classes,
which are:

• class pwo:Workflow. It represents a sequence of connected tasks (i.e., steps)
undertaken by agents. A workflow may be seen as an abstract model of real
work;

• class pwo:Step. It is an atomic unit of a workflow, it is characterized by a
starting time and an ending time, and it is associated with one or more events.
A workflow step usually involves some input information, material or energy
needed to complete the step, and some output information, material or energy
produced by that step. In the case of a publishing workflow, a step typically
results in the creation of a publication entity, usually by the modification of

51Semantic Web Dog Food: http://data.semanticweb.org.
52PWO, the Publishing Workflow Ontology: http://purl.org/spar/pwo. The prefix pwo refers to

entities defined in it.

146 Chapter 4. The Semantic Publishing And Referencing Ontologies

Figure 4.14: Graffoo representation of the Publishing Workflow Ontology (PWO).

another pre-existing publication entity, e.g. the creation of an edited paper
from a rough draft, or of an HTML representation from an XML document.

The following excerpt presents the PWO description of the workflow describing
the publication of the article (i.e., the resource :earmark-paper) introduced in the
example in Section 4.5:

:workflow a pwo:Workflow

; pwo:hasFirstStep :stepOne

; pwo:hasStep :stepTwo , :stepThree , :stepFour .

:stepOne a pwo:Step # Authors write the paper

; pwo:involvesEvent [a part:Event

dcterms:description "Authors write the paper"]

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate

"2009 -02 -14 T00 :00:00Z"^^xsd:dateTime

; ti:hasIntervalEndDate

"2009 -03 -25 T00 :00:00Z"^^xsd:dateTime]

Chapter 4. The Semantic Publishing And Referencing Ontologies 147

; pwo:produces :earmark -paper

; pwo:hasNextStep :stepTwo .

:stepTwo a pwo:Step # Paper submitted

; pwo:involvesEvent :author -submits -paper

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate

"2009 -04 -24 T13 :18:21Z"^^xsd:dateTime

; ti:hasIntervalEndDate

"2009 -04 -24 T13 :18:21Z"^^xsd:dateTime]

; pwo:needs :earmark -paper

; pwo:produces :submitted # New status in time for the

paper

; pwo:hasNextStep :stepThree .

:stepThree a pwo:Step # Paper reviewed

; pwo:involvesEvent :reviewers -working , :reviewers -finish

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate

"2009 -04 -26 T12 :00:00Z"^^xsd:dateTime

; ti:hasIntervalEndDate

"2009 -05 -26 T12 :00:00Z"^^xsd:dateTime]

; pwo:needs :earmark -paper

; pwo:produces :review1 , :review2 , review3 .

; pwo:hasNextStep :stepFour .

:review1 a fabio:Comment # Review 1

; frbr:realizationOf [a fabio:Review]

; cito:reviews :earmark -paper

; pro:isDocumentContextFor [a pro:RoleInTime

; pro:withRole pro:author

; pro:isRoleHeldBy [a foaf:Person # First anonymous

reviewer

; pro:hasRoleInTime [a pro:RoleInTime

; pro:withRole pro:reviewer

; pro:relatesToDocument :earmark -paper]] .

:review2 a fabio:Comment ...

:stepFour a pwo:Step # Notification of acceptance

; pwo:involvesEvent

:committee -accepts , :committee -notifies -to-authors

; tisit:atTime [a ti:TimeInterval

; ti:hasIntervalStartDate

"2009 -04 -26 T12 :00:00Z"^^xsd:dateTime

148 Chapter 4. The Semantic Publishing And Referencing Ontologies

; ti:hasIntervalEndDate

"2009 -05 -27 T17 :38:01Z"^^xsd:dateTime]

; pwo:needs :review1 , :review2 , :review3

; pwo:produces

:reviewed -and -accepted -for -publication

, :acceptance -notification .

:acceptance -notification a fabio:Email # The e-mail notifying

the acceptance

; frbr:realizationOf [a fabio:Opinion]

; pro:isDocumentContextFor [a pro:RoleInTime

; pro:withRole pro:author

; pro:isRoleHeldBy [a foaf:Group # The committee] .

PWO was implemented according to three particular ontology pattern:

• the time-indexed situation pattern [73] to describe workflow steps as enti-
ties that involve a duration and that are characterised by events and objects
(needed for and produced by the step);

• the sequence pattern53 [72] to define the order in which steps appear within a
workflow;

• the participation pattern 54 [70] to describe events (and eventually agents in-
volved) taking part in steps.

In order to be consistent with real descriptions, PWO implements some strong
constraints on steps by means of a particular model: the Error Ontology55. This
ontology is a unit test that allows one to produce an inconsistent model if a par-
ticular (and incorrect) situation happens. It works by means of a data property,
error:hasError, that denies its usage for any resource, as shown as follows (in Manch-
ester Syntax [95]):

DataProperty: error:hasError

Domain: error:hasError exactly 0

Range: xsd:string

A resource that asserts to have an error makes the ontology inconsistent since
its domain is defined as “all those resources that do not have any error:hasError
assertion”.

53The sequence pattern: http://www.ontologydesignpatterns.org/cp/owl/sequence.owl. The
prefix seq refers to entities defined in it.

54The participation pattern: http://www.ontologydesignpatterns.org/cp/owl/participation.owl.
The prefix part refers to entities defined in it.

55The Error Ontology: http://www.essepuntato.it/2009/10/error. The prefix error refers to
entities defined in it.

Chapter 4. The Semantic Publishing And Referencing Ontologies 149

By means of the Error Ontology, I can oblige all the PWO workflow descriptions
by not having steps that need (property pwo:needs) something that is actually pro-
duced (property pwo:produces) by a following step. The following excerpt shows the
implementation of this constraint through a SWRL rule [96]:

step(?step1) , step(?step2) , needs(?step1 ,? resource) ,

produces (?step2 ,? resource) , sequence:precedes (?step1 ,?step2)

-> error:hasError (?step1 ,"A step cannot need a resource

that will be produced by a following step "^^ xsd:string)

4.7 How communities uptake SPAR

The SPAR ontologies are now being used or are being considered for adoption in
a variety of academic and publishing environments. The adoption of these models
by different communities can be ascribed, at least in part, to our adoption of the
following development strategies:

• Frequent ongoing interactions between the authors of SPAR, and publishers,
service developers and other end-users, that have allowed us to understand
their various needs and interests.

• The minimization of the constraints applied to the ontological entities, so that
the ontologies can be applied in a wide variety of situations.

The following sections briefly described how SPAR ontologies are now being used
in various communities.

4.7.1 SWAN ontology

The most recent version (v2.0) of the SWAN ontology ecosystem [35], introduced
above in Section 2.2.6, has recently been harmonised to include FaBiO and work
seamlessly with CiTO [34]. David Shotton and I undertook this harmonisation
collaboratively, while developing version 1.6 of CiTO [165] into CiTO v2.0 and
FaBiO v1.0, and by Paolo Ciccarese and Tim Clark (Harvard University), authors
of the SWAN Ontologies. The resulting combined CiTO/FaBiO + SWAN model
is specified in OWL 2 DL, is fully modular, and inherently supports agent-based
searching and mash-ups.

The principles adopted for its activity, which resulted in the harmonisation de-
scribed in Fig. 4.15 on the next page, involved:

• the renaming classes (concepts) or properties (relationships) in one or both
set of ontologies to avoid apparent overlap;

150 Chapter 4. The Semantic Publishing And Referencing Ontologies

• the re-definition of classes or properties to resolve actual overlap between con-
cepts; and

• the deprecation of elements of individual ontologies, or even whole ontologies,
in favour of others that more effectively serve the domain of knowledge under
consideration, having greater granularity or a more effective structure.

In summary, the SWAN Citations ontology module was deprecated in favour of
FaBiO, certain classes in the SWAN Discourse Relationship were renamed and rede-
fined, the property discourse- relationships:cites in that module was deprecated, and
CiTO was linked to that module by making cito:cites a sub-property of discourse-
relationships:refersTo. Full details are given in [34].

Figure 4.15: The SWAN ontology ecosystem before (above) and after (below) the
harmonisation activity that resulted in the inclusion of FaBiO and CiTO in the
SWAN Commons set of ontologies.

Chapter 4. The Semantic Publishing And Referencing Ontologies 151

4.7.2 CiteULike

Egon Willighagen of Uppsala University has pioneered the use CiTO56 to charac-
terize bibliographic citations within CiteULike57, the free service for managing and
discovering scholarly references. A user can add a CiTO relationship between arti-
cles via the CiteULike interface, provided that both the citing and the cited articles
are in the user’s library.

4.7.3 WordPress

In a blog post58, Martin Fenner describes a plug-in for WordPress called Link-
to-Link59, that makes it easy to add citation typing to references within a blog
post, using a sub-set of the most commonly used CiTO relationships presented in a
convenient drop-down menu.

4.7.4 Linked Education

The open platform Linked Education60, which aims at sharing and promoting the use
of Linked Data for educational purposes, months ago added CiTO to its listing and
recently all the other SPAR ontologies61 of RDF schemas and vocabularies suitable
for use in educational contexts, for example to describe educational resources.

4.7.5 Virtual Observatory

In a recent paper [1], Accomazzi and Dave report the adoption of the FaBiO and
CiTO ontologies as part of their efforts to create a semantic knowledge base allowing
easier integration and linking of the body of heterogeneous astronomical resources
into what they term a Virtual Observatory.

4.7.6 Open Citations Corpus

The Open Citations Corpus62 is a database of approximately 6.3 million biomedical
literature citations, harvested from the reference lists of all open access articles in

56http://chem-bla-ics.blogspot.com/2010/10/citeulike-cito-use-case-1-wordles.html.
57CiteULike: http://www.citeulike.org/.
58Blog post by Martin Fenner entitled “How to use citation typing ontology (CiTO) in your

blog post”: http://blogs.plos.org/mfenner/2011/02/14/how-to-use-citation-typing-ontology-cito-
in-your-blog-posts/.

59Link to link: http://wordpress.org/extend/plugins/link-to-link/.
60Linked Education: http://linkededucation.org/.
61Linked Education – Schemas and vocabularies: http://linkededucation.wordpress.com/data-

models/schemas/.
62The Open Citations Corpus: http://opencitations.net/.

152 Chapter 4. The Semantic Publishing And Referencing Ontologies

PubMed Central. These contain references to approx. 3.4 million papers, which rep-
resent ˜20% of all PubMed-listed papers published between 1950 and 2010, including
all the most highly cited papers in every biomedical field. The Open Citations Cor-
pus website allows one to browse these bibliographic records and citations, to select
an individual article, and to visualize its citation network in a variety of displays.
Details of each selected reference, and the data and diagrams for its citation net-
work, may be downloaded in a variety of formats, while the entire Open Citations
Corpus can be downloaded in several formats including RDF and BibJSON. SPAR
ontologies have been used to encode this information in RDF. Further information
is given on the Open Citations Blog63.

4.7.7 WebTracks

WebTracks64 is an open source project funded by the JISC Managing Research
Data Programme65 that is developing a peer-to-peer protocol to enable web-scale
link tracking.

Established techniques such as OAI-PMH and the emerging Linked Web of Data
provide tools to publish data for linking. WebTracks focuses on actually making
these connections, particularly between research datasets and related publications.

It provides a mechanism for informing the target of a hyperlink that a link has
been made to that target, so it can reciprocally link back – for example, by including
the correct DOI of a published paper in the metadata of a previously published
dataset to which the paper refers. WebTracks creates semantically annotated links
between data resources using CiTO yielding a graph of citation and provenance to
enable web-scaled data management by exposing links between related objects.

4.7.8 Società editrice il Mulino

The Italian scholarly publishing house Società editrice il Mulino66 is collaborating
with the Department of Computer Science of the University of Bologna, to explore
how best to benefit from Semantic Web technologies for the digital publication
and sharing of bibliographic objects such as books and articles, and their related
metadata.

This has led to the recent prototyping of an application called Folksauro (the
name comes from the concatenation of the words folksonomy and thesaurus). Us-
ing FaBiO and DoCO as its main ontologies, and one or more discipline-specific
thesauri developed in SKOS, Folksauro allows a user to associate terms from the

63The Open Citations Blog: http://opencitations.wordpress.com/.
64WebTracks: http://webtracks.jiscinvolve.org/wp/about/.
65JISC Managing Research Data Programme: http://www.jisc.ac.uk/whatwedo/programmes/

mrd.aspx.
66Il Mulino: http://www.mulino.it.

Chapter 4. The Semantic Publishing And Referencing Ontologies 153

thesauri and/or free-text keywords with the whole document, and/or with its sub-
parts (chapters, sections, paragraphs, etc.), by means of an intuitive interface that
hides the complexity of models and languages used.

4.7.9 Utopia

Utopia Documents67 [5] is a novel PDF reader that semantically integrates visu-
alization and data-analysis tools with published research articles. It brings PDF
documents to life by linking to live resources on the web and by turning static data
into live interactive content, and is now being regularly used by the editors of the
Biochemical Journal68 to transform static document features into objects that can
be linked, annotated, visualized and analysed interactively.

Utopia has a mechanism that deconstructs a PDF document into its constituent
parts, which are then annotated using DoCO. This is useful for a number of things:
generating bibliometric metadata, improving “mouse selection” in multi-column doc-
uments, and identifying the correct flow of text in the document, allowing annoying
intruding text such as running headers, footers and captions to be excluded. This
in turn is useful for text and data mining algorithms, which can now be targeted,
for example, at “all the main text excluding intruders” or “just the text in the fig-
ure captions”. The Utopia team are planning later this year to release a free web
service that takes a PDF document, deconstructs it, and returns DoCO-annotated
XHTML.

In addition, the Utopia team are presently developing an Open Citations plugin
that pulls bibliographic citation data live from the Open Citations Corpus and uses
it to display the citation network for the paper manifested by the PDF, or for any
of the articles references in that paper’s reference list.

67Utopia Documents: http://getutopia.com.
68http://www.biochemj.org/bj/424/3/.

154 Chapter 4. The Semantic Publishing And Referencing Ontologies

Chapter 5

Interfaces for the masses

Any strategy that guarantees the broad adoption of Semantic Web technologies must
address the development of applications for improving the human-interaction with
semantic models and data. Several amounts of research have been done on models,
theoretical approaches, development of tools to infer new information from data and
ontologies. However, the Semantic Web will be really integrated with the everyday-
Web only when it will be effectively available and accessible to every Web-users not
only to Semantic Web practitioners. This point is even more crucial for Semantic
Publishing since its end-users are definitely publishers, researchers, librarians and
readers rather than experts in semantic technologies. Semantic Web/Publishing
communities need to invest time and efforts in the development of proper user-
friendly interfaces that act as intermediate between semantic models and end-users.

Of course a good amount of work has been done in the past in this direction. For
instance, ontology development editors were implemented (e.g., Protégé1 [110] and
the NeOn Toolkit [181]), Web search engines to look for semantic resources were
launched (e.g., Sindice2 [137] and Watson3 [41]), and semantic desktop applications
were released (e.g., SemNotes4 [60]). However, what the Semantic Publishing com-
munity urgently needs are tools that assist people who are not expert in semantic
technologies in dealing with and publishing semantic data.

Usually, this activity is composed by the following steps:

1. once found ontologies suitable for the particular domain of interest, people
need (or want) to understand these models spending the minimum amount of
effort;

2. then, people develop new models when existing vocabularies/ontologies are not
able to fully describe the domain in consideration. The development process

1Protégé: http://protege.stanford.edu.
2Sindice: http://sindice.com.
3Watson: http://watson.kmi.open.ac.uk.
4SemNotes: http://smile.deri.ie/projects/semn.

156 Chapter 5. Interfaces for the masses

should plan the interaction with domain experts and end-users so as to produce
a model that address the domain in consideration as best it can;

3. finally, once agreed on the model to use, people have to add data according to
that model and, eventually, to modify those data in the future.

Each of these four operations – understanding, developing, adding and modify-
ing – should be supported by proper interfaces that simplify the work of people who
usually are not expert in ontology-related formalisms and Semantic Web technolo-
gies.

In this chapter, I describe my personal contribution in this direction. I introduce
four different tools I developed so as to help users when dealing with Semantic Web
technologies. Namely:

• the Live OWL Documentation Environment (LODE) is a Web service that
creates HTML documentation of ontologies starting from their sources;

• the Key Concept Visualiser (KC-Viz) is a plugin of the NeOn Toolkit that
helps users in ontology sense-making tasks. It allows one to visualise and
browse big ontologies starting from their most representative classes (i.e., the
key concepts [141]);

• the Graphical Framework For OWL Ontologies (Graffoo) allows one to create
graphical formalisations of OWL ontologies according to a palette of widgets
designed to be understood easily and learned quickly;

• the Generator of Advanced Forms and Friendly Editor (Gaffe) is an application
that takes, as input, an ontology describing a domain and another ontology
mapping domain entities to form widgets, and makes forms to add and modify
data according to the domain ontology.

5.1 LODE: generating HTML documentation from

ontologies

Usually, the first activity performed when someone wants to understand the extent
of a particular ontology is to look for its human-readable documentation. A large
number of ontologies, especially those used in the Linked Data, have a very good and
comprehensive Web page describing theoretical backgrounds and developed entities.

Problems arise when we look at underdeveloped models, since natural language
documentation is usually published only when an ontology becomes stable. This ap-
proach is justifiable: writing a proper documentation costs a big effort and changing
it every time the ontology is modified can be problematic.

Chapter 5. Interfaces for the masses 157

An additional complication is also given by the availability of several “stable”
ontologies that do not have any document describing them. Thus, the only way to
get a sense of them is to use an ontology editor so as to explore their logical axioms.
This approach may create problems to a person approaching the ontology world for
the very first time. First, he/she has to download and install the ontology editor, if
it is not already present on his/her machine. Second, he/she must learn the editor,
in order to use it. Finally he/she can try to get a sense of the ontology loading it in
the editor.

Obviously the accomplishment of the three previous steps is very time-consuming.
In order to address this issue, standalone tools and Web applications have been devel-
oped, as illustrated in Section 2.3.1. However they lack proper and quick mechanisms
for the conversion of all the ontology axioms into a human-readable documentation.

So as to address this issue, I developed theLive OWL Documentation Envi-
ronment5 (LODE). It is a service that automatically extracts classes, object prop-
erties, data properties, named individuals, annotation properties, meta-modelling
(punning), general axioms, SWRL rules and namespace declarations from any well-
formed OWL or OWL 2 ontology, and renders them as ordered lists, together with
their textual definitions, in a human-readable HTML page designed for browsing
and navigation by means of embedded links.

LODE is basically based on an XSLT stylesheet that takes RDF/XML lin-
earisation of an ontology produced through the OWLAPI6 [94] as input and con-
verts it into an HTML representation. If the target ontology is already linearised
in that form, it is possible to call the service directly specifying its URL (i.e.,
“http://www.essepuntato.it/lode/”) followed by the complete URL of the ontology,
for instance:

http :// www.essepuntato.it/lode/http :// www.essepuntato.it

/2008/12/ earmark

In the following subsections I introduce the most important features of LODE.

5.1.1 What axioms are used to create the documentation

Primarily, LODE uses the most common annotation properties used for the descrip-
tion of entities, in particular7: dc:contributor, dc:creator, dc:date, dc:description,
dc:rights, dc:title, dcterms:contributor, dcterms:creator, dcterms:date, dcterms:des
cription, dcterms:rights, dcterms:title, owl:versionInfo, rdfs:comment, rdfs:isDefined
By, rdfs:label. LODE adopts the following rules when transforming those annota-
tions in HTML documentation:

5LODE, the Live OWL Documentation Environment: http://lode.sourceforge.net.
6OWLAPI: http://owlapi.sourceforge.net.
7The prefixes dc, dcterms, owl and rdfs in the following list respec-

tively refers to “http://purl.org/dc/elements/1.1/”, “http://purl.org/dc/terms/”,
“http://www.w3.org/2002/07/owl#” and “http://www.w3.org/2000/01/rdf-schema#”.

158 Chapter 5. Interfaces for the masses

• in presence of Dublin Core annotations defined according to both DC Metadata
Elements [64] and DC Metadata Terms [63], the formers have precedence;

• dates (i.e., dc:date and dcterms:date) written according to the related XML
Schema datatype (i.e., yyyy-mm-dd) are automatically transformed in dd/m-
m/yyyy8;

• agents (i.e., dc:creator, dc:contributor, dcterms:creator and dcterms:contributor)
are rendered either as strings or as clickable URL according to their type, i.e.
literal and resource respectively;

• descriptions (i.e., dc:description and dcterms:description) are rendered either
as strings or as media objects according to their type, i.e. literal and resource
respectively;

• comments (i.e., rdfs:comment) and descriptions (i.e., dc:description and dc-
terms:description) represent respectively abstracts and detailed descriptions
of entities;

• labels (i.e., rdfs:label) are used to refer to all the entities of the ontology instead
of their URLs;

• all the entity names are always coupled with descriptive strings (i.e., “c”, “op”,
“dp”, “ap” and “ni”) according to their types (i.e., class, object property, data
property, annotation property and named individual).

In Fig. 5.1 on the facing page and Fig. 5.2 on page 160 is shown how these
annotations are rendered – I use the EARMARK Ontology introduced in Section 3.1
in the rendering examples.

Beside the annotations, LODE converts all the other axioms of the ontology into
Manchester Syntax definitions [95], as shown in Fig. 5.3 on page 160. I prefer to use
this syntax rather than others since it is the most human-comprehensible syntax for
ontological axioms.

Ontological axioms are rendered in particular grey boxes, one for each entity
declared in the ontology. The axioms taken into account by LODE refer to: super-
class and super-property, equivalent class and property, disjoint class and property,
property domain and range, property chain, keys, object/data property assertion,
type, imported ontology, generic axiom and SWRL rule. Moreover, LODE automat-
ically enriches those definitions adding information about sub-classes, domain/range
properties of classes, sub-properties and entity meta-modelling.

8I am currently working on an extensible template-based mechanism to enable the specification
of date formats according to user’s needs (e.g., dd MonthName yyyy).

Chapter 5. Interfaces for the masses 159

Figure 5.1: The beginning of the Web page generated through LODE starting from
the EARMARK Ontology, annotated with OWL assertions in Turtle showing how
they are rendered in HTML.

5.1.2 Special parameters to call the service

LODE can be invoked with a number of optional parameters so as to limit or extend
the final documentation produced. For instance, it is possible to take into account
all the entities in the ontology closure and/or the inferred axioms. The following
pseudo-URL describes how to call LODE:

http://www.essepuntato.it/lode/optional-parameters/ontology-url

In particular:

• www.essepuntato.it/lode is the URL to call the service;

• ontology-url is the full “http://...” URL of the OWL ontology that will be
processed by the service. It must be always the last item of the pseudo-URL,
and may be preceded by one or more (slash-separated) parameters.

160 Chapter 5. Interfaces for the masses

Figure 5.2: Two possible kinds of descriptions: pure string (for literals) and media
object (for resources).

Figure 5.3: How entities (classes, properties and individuals) are rendered by
LODE.

Fig. 5.4 on the next page illustrates the alternative ways to build the URL to
call LODE and the related modules used. The optional slash-separated parameters
are described in the following sub-sections.

Chapter 5. Interfaces for the masses 161

Figure 5.4: All the possible ways, according to specific needs, for making a request
to LODE.

Parameter “owlapi”

When this optional parameter is specified, the ontology defined in ontology-url will be
pre-processed via OWLAPI [94], in order to linearise it in the RDF/XML format ac-
cepted by LODE. This parameter is always strongly recommended: it allows LODE
to process ontologies implemented in all the formats supported by the OWLAPI.

Parameter “imported”

When this optional parameter is specified, the axioms in the imported ontologies of
ontology-url are added to the HTML description of the ontology. This parameter
implicitly specifies the owlapi parameter.

Parameter “closure”

When this optional parameter is specified, the transitive closure given by consid-
ering the imported ontologies of ontology-url is added to the HTML description of
the ontology. This parameter implicitly specifies the owlapi parameter. If both
the parameters closure and imported are specified (in any order), imported will be
preferred.

Parameter “reasoner”

When this optional parameter is specified, the inferred axioms of ontology-url (through
the Pellet reasoner [170]) will be added to the HTML description of the ontology.
This parameter implicitly specifies the owlapi parameter. Note that, depending on
the nature of the ontology to process, this computationally intensive function can
be very time-consuming.

162 Chapter 5. Interfaces for the masses

Parameter “lang”

When this optional parameter is specified, the selected language will be used as
preferred language instead of English when showing annotations of ontology-url. It
must be followed by an “=” and the abbreviation of the language to use. E.g.:
“lang=en” for English, “lang=it” for Italian, “lang=fr” for French, etc.

5.1.3 URI fragments

LODE offers intuitive mechanisms to refer to particular ontological entities within
the HTML documentation, according to the URL of the entity in consideration.
The following extension of the pseudo-URL introduced in Section 5.1.2 defines how
to refer to a particular entity of an ontology:

http://www.essepuntato.it/lode/optional-parameters/ontology-url #en-
tity

For instance, to generate the documentation of FaBiO (Section 4.1) and then
jumping directly to the point where the resource “http://purl.org/spar/fabio/Article”
is described, I need to invoke LODE as follows:

http :// www.essepuntato.it/lode/http :// purl.org/spar/fabio#

http :// purl.org/spar/fabio/Article

This request can be simplified if I look for descriptions of entities defined as frag-
ment of the ontology URL, such as the entity Element of the EARMARK ontology
– i.e., “http://www.essepuntato.it/2008/12/earmark#Element”. In this particular
case, I can use either the entire entity URL as illustrated previously or the entity
local name only, as shown as follows:

http :// www.essepuntato.it/lode/http :// www.essepuntato.it

/2008/12/ earmark#Element

5.1.4 Content negotiation via .htaccess

LODE can be freely used by third parties, as described in its documentation. In
particular, it may be very useful in conjunction with content negotiation mechanisms
to display a human-readable version of an OWL ontology when the user accesses
the ontology using a web browser, or to deliver the OWL ontology file itself when
the user accesses the ontology using an ontology development tool such as Protégé
[110] or the NeOn Toolkit [181]. For instance, an implementation of such a content
negotiation is given in [17] by using the .htaccess file:

Chapter 5. Interfaces for the masses 163

AddType application/rdf+xml .rdf

Rewrite engine setup

RewriteEngine On

Rewrite rule to serve HTML content

RewriteCond %{ HTTP_ACCEPT} !application/rdf\+xml .*(text/html|

application/xhtml \+xml)

RewriteCond %{ HTTP_ACCEPT} text/html [OR]

RewriteCond %{ HTTP_ACCEPT} application/xhtml \+xml [OR]

RewriteCond %{ HTTP_USER_AGENT} ^Mozilla /.*

RewriteRule ^ontology$ http :// www.essepuntato.it/lode/http ://

www.mydomain.com/ontology [R=303,L]

Rewrite rule to serve RDF/XML content if requested

RewriteCond %{ HTTP_ACCEPT} application/rdf\+xml

RewriteRule ^ontology$ ontology.owl [R=303]

Choose the default response

RewriteRule ^ontology$ ontology.owl [R=303]

LODE can be seen in action by opening, in a Web browser, any of ontologies pre-
sented in this thesis. For instance, the URL “http://purl.org/spar/fabio” resolves,
by content negotiation, to display the LODE HTML version of the FaBiO ontology
with the URL “http://www.essepuntato.it/lode/http://purl.org/spar/fabio”. As
shown previously, a similar syntax can be used to display the LODE visualization
of any other OWL ontology.

5.2 KC-Viz, a tool for visualising and navigating

ontologies

Sometimes the HTML documentation may not be enough to properly understand
an ontology. This is particularly true for very large ontologies that obviously make
a person lost when he/she tries to understand their overall structure. Having clear
natural language documentation may not adequately support users. In this case,
using abstraction mechanisms that try to take a first salient picture of the overall
organisation of the ontology can be extremely useful. Starting from this summary,
that may contain for instance the most representative concepts of the ontology, one
can start to make sense of the ontology itself.

When I speak about “making sense” of an ontology, I refer to a specific ontology
engineering task, where the user is primarily concerned with understanding the
contents and overall structure of the ontology, i.e., acquiring an overview of the

164 Chapter 5. Interfaces for the masses

concepts covered by the ontology and the way they are organized in a taxonomy.
Thus, the sense-making process includes:

• understanding the overall size9 and shape10 of the ontology;

• identifying the main components of the ontology and the typical exemplars
of these components. Informative exemplars can also help the user to predict
the siblings of the class (i.e., the exemplar) in question, thus playing a sum-
marisation role not just with respect to its subtree, but also with respect to
its siblings.

Of course, users need to be supported by interfaces and effective summarisation
techniques when trying to make sense of large ontologies. This because, once an
ontology is large enough, it is not possible to show its entire structure in the limited
space provided by a computer screen and therefore a difficult trade-off needs to be
addressed. On the one hand the information on display needs to be coarse-grained
enough to provide an overview of the ontology, thus ensuring the user can maintain
an overall mental model of the ontology.

In this scenario, an exploration process needs to be supported, where the user
can effectively home in on parts of the ontology, thus changing the level of analysis,
while at the same time not losing track of the overall organization of the ontology.

However, a problem affecting all the approaches discussed in Section 2.3.2 is that
all of them essentially use geometric techniques to providing abstraction. In contrast
with these approaches, human experts are able to provide effective overviews of an
ontology, simply by highlighting the key areas covered by the ontology and the
classes that best describe these areas. In particular, the work reported in [141],
that I briefly introduce in Section 5.2.1, provides empirical evidence that there is a
significant degree of agreement among experts in identifying the main concepts in
an ontology. It also shows that the algorithm presented for key concept extraction
(KCE) is able to retrieve a summarisation of the ontology maintaining the same
level of agreement with the experts, as they have among themselves [141].

In this section, I introduce KC-Viz, the key concept visualiser [131] [128] [129]
[130], a tool for ontology visualisation and browsing I developed in collaboration with
professor Enrico Motta and his research group (Open University, UK). Building on
its ability to abstract out from large ontologies through the KCE algorithm, KC-Viz
provides a rich set of navigation and visualization mechanisms, including flexible

9Given a node in the ontology, its size is the total number of its direct and indirect subclasses.
10Given a node in the ontology, its shape is an indication of the organization of the subclasses.

For instance, an ontology (or part of it) can have a horizontal (i.e., many subclasses and few levels
of depth), or a vertical (i.e., many inheritance levels and only a few subclasses at each level) shape
[183]. Understanding the shape of an ontology (or part of it) also means to understand whether
it is balanced, indicating that all parts of the (sub-)ontology in question have been developed to
a similar extent, or unbalanced, possibly indicating that some parts of the (sub-)ontology are less
developed than others.

Chapter 5. Interfaces for the masses 165

zooming into and hiding of specific parts of an ontology, history browsing, saving
and loading of customized ontology views, as well as essential interface customization
support, such as graphical zooming, font manipulation, tree layout customization,
and other functionalities. KC-Viz is a core plugin of the NeOn Toolkit [181].

In the following sections I give a general view of the KCE algorithm principles and
of the main features implemented in KC-Viz. Moreover, I also report on additional
findings gathered through questionnaires, which offer a number of other insights.

5.2.1 Key Concept Extraction

Informally, key concepts can be seen as the best descriptors of an ontology, i.e.,
information-rich concepts, which are most effective in summarizing what an ontology
is about. In [141] are considered a number of criteria to identify the key concepts
in an ontology, introduced as follows.

Natural Category. KCE uses the notion of natural category [153]11, to identify
concepts that are information-rich in a psycho-linguistic sense. This notion is ap-
proximated by means of two operational measures: name simplicity, which favours
concepts that are labelled with simple names, and basic level, which measures how
“central” a concept is in the taxonomy of an ontology.

Density. The notion of density highlights concepts that are information-rich in
a formal knowledge representation sense, i.e., they have been richly characterized
with properties and taxonomic relationships. The density is decomposed in two
sub-criteria, global and local density. While the global measures are normalised with
respect to all the concepts in the ontology, the local ones consider the relative density
of a concept with respect to its surrounding concepts. The aim here is to ensure
that “locally significant” concepts get a high score, even though they may not rank
too highly with respect to global measures.

Coverage. The notion of coverage is used to ensure that no important part of
the ontology is neglected, by maximizing the coverage of the ontology with respect
to its taxonomic relationships (rdfs:subClassOf).

Popularity. The notion of popularity, drawn from lexical statistics, is intro-
duced as a criterion to identify concepts that are likely to be most familiar to users.
Similarly to the density criterion, the popularity is decomposed in two sub-criteria,
global and local popularity.

Each of these seven criteria produces a score for each concept in the ontology
and the final score assigned to a concept is a weighted sum of the scores resulting

11Eleanor Rosch has been one of the pioneers of the prototype theory, i.e. a cognitive approach
for categorisation where some members of a particular category are considered more “central” than
others. Rosch’s works on categorisation have been the basis of significant following researches, such
as the notion of conceptual spaces by Gardenfors [77] and of conceptual metaphors by Lakoff [115]
[114]. In this work I have used an operative definition of Rosch’s natural category derived from her
notion of basic level.

166 Chapter 5. Interfaces for the masses

from individual criteria. As described in [141], which provides a detailed account of
our algorithm and a formal definition of the criteria it employs, the approach has
been shown to produce ontology summaries that correlate significantly with those
produced by human experts.

It is important to emphasize that in the current online version of KCE12 and
in KC-Viz the popularity criterion is not longer used, because of its computational
cost on large ontologies. However, on the basis of the analytical studies described
in [117], the weights associated with the other criteria has been parameterised, to
produce a vastly more efficient version, while at the same time maintaining the same
level of compliance with respect to the available human-generated benchmarks as
the version of the algorithm presented in [141].

5.2.2 KC-Viz main features

Running KC-Viz on an ontology (e.g., FaBiO) for the first time produce an initial
visualisation of the network of classes, which includes concepts at different levels in
the class hierarchy. The visualisation in Fig. 5.5 includes 26 concepts because I have
set the size of our ontology summary to 25 and the algorithm has automatically
added the most generic concept, owl:Thing, to ensure that the visualization displays
a connected graph.

Figure 5.5: The summarisation made by KC-Viz after its first application on an
ontology.

12KCE Live: http://www.essepuntato.it/kce.

Chapter 5. Interfaces for the masses 167

If we wish to display more or less succinct graphs, we can do so by changing the
size of the ontology summary. The solid grey arrows in Fig. 5.5 on the preceding
page indicate direct rdfs:subClassOf links, while the dotted green arrows indicate
indirect rdfs:subClassOf links.

Yet starting from the first visualisation, KC-Viz provides the size of the tree
under a particular class, which is indicated by a pair of integers, referring to the
number of direct and indirect subclasses. For instance, Fig. 5.5 on the facing page
tells us that class Endeavour has 4 direct subclasses and 191 total subclasses (direct
+ indirect). Although more exploration is obviously needed to get a thorough
understanding of the contents of the FaBiO ontology, it can be argued that as a
first step, the visualisation shown in Fig. 5.5 on the preceding page already provides
a rather effective starting point for the ontology sense-making process.

Description of nodes and arcs

By hovering the mouse over an element (node or edge) of the tree, as shown in
Fig. 5.6 on the following page, a tooltip is popped up with some information about
the element itself: the chain of rdfs:subClassOf relations or of domain/range links for
edges, while information about number of (shown and total) sub- or super- classes
for nodes. For the latter elements, there exists also a section, called “Reason”, which
indicates how a node (i.e., a class) fares with respect to the criteria used to determine
key concepts. KC-Viz uses a 0-5 scale of labelled values (0 very poor, 1 poor, 2 fair, 3
good, 4 strong, 5 very strong). Moreover, when hovering simultaneously on different
arcs, all their descriptions are merged in a single tooltip.

Expansion

If we click right on a class displayed in KC-Viz, in this case Work, we obtain a
menu that includes options for inspecting, expanding, and hiding a class. If we
select “Expand”, a menu pops up, which provides a rich set of options for exploring
the subtree under class Work, as shown in Fig. 5.7 on page 169. In particular, the
following four options for customizing the expansion algorithm are presented to the
user:

• whether to explore following taxonomic relations, other relations (through
domain and range), or any combination of these;

• whether or not to make use of the ontology summarisation algorithm, which
in this case will be applied only to the subtree of class Work;

• whether or not to limit the range of the expansion – e.g., by expanding only
to 1 or 2 levels;

168 Chapter 5. Interfaces for the masses

Figure 5.6: Tooltips that appear hovering nodes and edges.

• whether to display the resulting visualization in a new window (“Hide”), or
whether to add the resulting nodes to the current windows13.

Hiding

After right-clicking on a node, two options, “Hide” and “Hide others” implement a
flexible mechanism for hiding nodes, as shown in Fig. 5.8 on page 170. If we select

13In the latter case, some degree of control is given to the user with respect to the redrawing
algorithm, by allowing her to decide whether or not to limit the freedom of the graph layout algo-
rithm to rearrange existing nodes. This is particularly useful in those situations where expansion is
meant to add only a few nodes, and the user does not want the layout to be unnecessarily modified
– e.g., because she has already manually rearranged the nodes according to her own preferences.

Chapter 5. Interfaces for the masses 169

Figure 5.7: The menu popped up after clicking on the “Expand” option.

“Hide”, a menu pops up, which provides a rich set of options for hiding the class
selected and its subtree. By selecting “Hide others”, one can choose to hide all the
classes but the selected one and, optionally, its subclasses.

Refresh visualization

The pop-up obtained after right-clicking inside the KC-Viz view has a new option
called “Refresh”, which allows the user to re-sync the visualization with respect to
changes in the model, which may have occurred since the visualization was produced.

Integration with NeOn

KC-Viz is integrated with the core components of the NeOn Toolkit, including the
Entity Properties View and Ontology Navigator. This means that it is possible to
click on nodes in KC-Viz and highlight them in these components (option “Inspect”),
as well as clicking on items shown in the Ontology Navigator and adding them to
the visualization in KC-Viz, as shown in Fig. 5.9 on page 171.

170 Chapter 5. Interfaces for the masses

Figure 5.8: The two options for hiding concepts: “Hide”, applied on the class
Metadata, and “Hide others...” used on the class Work.

Dashboard

A dashboard containing buttons for acting on the current KC-Viz panel is positioned
immediately above the visualisation panel, as shown in Fig. 5.10 on the facing page.

In the dashboard there are history buttons that allow the user to move back
and forth through the history of KC-Viz operations. Each operation, or move,
can be distinguished in macro (extraction and hiding) and micro (re-layout, axis
adjustment, node movement) moves. It is important to notice that micro moves
can be cancelled/re-applied only if they are not preceded/followed by macro moves
in the operation history. For instance, considering the sequence “Mac1 mic1 mic2
Mac2 mic3...” and supposing to be visualizing in KC-Viz the window after mic2
and before Mac2, a user can decide:

• to cancel mic2;

• to cancel Mac1;

• to re-apply Mac2.

Chapter 5. Interfaces for the masses 171

Figure 5.9: The option “Visualize Class with KC-Viz” to highlight (and eventually
add) the class in the current KC-Viz panel.

Figure 5.10: The dashboard which allows the user to move back and forth through
the history of KC-Viz operations, to modify the formatting of the layout, and to
save the current display to a file, among other things.

Moreover, KC-Viz provides an essential interface customization support, such
as graphical zooming, font manipulation and tree layout customization. For the
latter, after clicking on the button “Re-layout” in the KC-Viz toolbar, a sub-menu
is opened, which asks the user whether he/she wants to redraw the current visual-
ization using a top-bottom orientation or a left-right orientation.

Finally, through the button “Snapshot” inside the dashboard, it is possible to
save the current display to a file or to load/delete a previously stored one.

172 Chapter 5. Interfaces for the masses

Preferences

KC-Viz has a preferences panel, shown in Fig. 5.11, which allows the user to set
defaults for the most common operations and also enables him/her to switch to a
more efficient (but sub-optimal14) algorithm when dealing with very large ontologies.
Moreover, all the weights of the formulas used in the KCE algorithm are customiz-
able by the user. In particular, the preference panel allows users to change the
relative weights of the different criteria used to calculate the overall score for each
class in an ontology. Customisation options are also provided for all the criteria.

Figure 5.11: The preference panel of KC-Viz.

5.2.3 Empirical evaluation

In order to gather initial data about the performance of KC-Viz, [128] introduces a
preliminary empirical evaluation, which required 21 subjects to perform four ontol-
ogy engineering tasks (max. 15 minutes per task), involving ontology exploration.

14When this preference is enabled the set of key concepts returned by the algorithm may not
guarantee the best possible coverage of the ontology.

Chapter 5. Interfaces for the masses 173

The tasks given to the subjects are shown in Table 5.1. This set of tasks was designed
to ensure coverage of different exploration strategies, which are typically required in
the context of a sense-making activity.

Table 5.1: Ontology Engineering Tasks.

T1
Which class has the highest number of direct subclasses in the
ontology?

T2

What is the most developed (i.e., has the biggest subtree) sub-
class of class Quantity found in the ontology at a concrete level
of granularity (i.e., do not consider abstract classes which have
the term ‘quantity’ in their id)?

T3

Find three subclasses of Agent, at the most abstract level pos-
sible (under Agent of course), which are situated at the same
level in the hierarchy as each other, and are also subclasses of
CorpuscularObject.

T4

We have two individual entities (a particular copy of the book
War&Peace and a particular 5p coin). Find the most specific
classes in the ontology, to which they belong, say P1 and P2,
and then identify the most specific class in the ontology, say
C1, which is a superclass of both P1 and P2 – i.e., the lowest
common superclass of both P1 and P2.

The 21 subjects were randomly allocated to three different groups, labelled A,
B, and C, where each group used a particular configuration of ontology engineering
tools. In particular members of group A carried out the tasks using the NeOn Toolkit
v2.5, without any visualization support. More precisely, they were only allowed to
use the search functionality, the Ontology Navigator and the Entity Properties View.
The role of this group was to provide a baseline to the experiment, providing us with
some data on how effectively people can tackle ontology exploration tasks, without
any visualization support.

The members of Group C were asked to solve the tasks using KC-Viz, together
with the search functionality provided by the NeOn Toolkit. To ensure a separation
between groups A and C, members of the latter group were explicitly forbidden from
using the Ontology Navigator for exploration, although they were allowed to use it
as an interface between the search facility in the NeOn Toolkit and KC-Viz.

Finally, the members of Group B carried out the tasks using the Protégé 4
environment, v4.1.0, in particular using the search functionality, the class browser
and the OwlViz plugin. This configuration was chosen for three reasons:

1. to compare KC-Viz to a robust tool, widely used in concrete projects by mem-
bers of the ontology engineering community, to maximize the value of the

174 Chapter 5. Interfaces for the masses

experiment to the community;

2. while OwlViz uses the same node-link paradigm as KC-Viz, its design is rather
different from KC-Viz; and

3. having considered the visualizers available in other state of the art ontology
engineering tools, such as the NeOn Toolkit (Kaon Visualizer) and TopBraid
(Graph View), OwlViz appears to provide a more user friendly and flexible
functionality than the comparable ones available in TopBraid and the NeOn
Toolkit.

Before the experiment, every subject filled a questionnaire, answering questions
about his/her expertise in ontology engineering, knowledge representation languages,
and with various ontology engineering tools, including (but not limited to) NeOn and
Protégé. At the end of the experiment, every subject filled free text questions on the
post-task questionnaire to provide views on the perceived strengths and weaknesses
of the tool used by each subject. Additionally, subjects who did not use KC-Viz
provided feedback following a demo. Note that none of the subjects had much direct
experience with the ontology used for the tasks (i.e., the SUMO ontology15).

Out of 84 tasks in total (4 * 21), 71 were completed within the 15 minutes
time limit, while 13 tasks were not completed, a 15.47% percentage failure. The 13
failures were distributed as follows: 5 in group A (NTK), 6 in group B (OwlViz),
and 2 in group C (KC-Viz).

Fig. 5.12 on the next page shows the average time (in seconds) taken by each
group in each task, as well as the total averages across groups and tasks16. As shown
in the table, on each of the four tasks the fastest mean performance was with KC-
Viz, whose overall mean performance was about 13 minutes faster than OWLViz,
which in turn was about two minutes faster than NTK. Although not significant,
the difference in total time taken across the four tasks with the three different tools
appeared to be approaching significance, F(2, 20) = 2.655, p = 0.098.

The difference in performance across the three tools on Task 1, was statistically
significant F(2, 20) = 9.568, p < 0.01. A Tukey HSD pairwise comparison revealed
a significant difference between both KC-Viz and NTK (p < 0.01) and KC-Viz
and OwlViz (p < 0.01). Although mean performance was faster for KC-Viz across
the board, performance differences on the other three tasks did not reach statistical
significance. Nevertheless these results suggest advantages for KC-Viz in supporting
users in such realistic browsing and visualization tasks.

15The SUMO ontology: http://www.ontologyportal.org/SUMO.owl.
16For tasks not completed within the time limit, we consider a 15 minutes performance. This

could be modified to consider ‘penalties’, such as a 5 minutes penalty for a non-completed task.
However, adding such penalties does not lead to meaningful changes in the interpretation of the
data, other than increasing the performance gap between the KC-Viz group and the others.

Chapter 5. Interfaces for the masses 175

Figure 5.12: Performances (in seconds) for each task.

From questionary data, usability scores were calculated using the SUS formula
[29] for each of the three conditions – see Table 5.2. The mean usability score
was slightly higher for KC-Viz, though very similar across the three tools and not
statistically significant.

Table 5.2: Usability scores.

NTK mean OWLViz mean KC-Viz mean

26,9 25,7 27,1

The free text questions on the post-task questionnaire were analysed through
a grounded theory approach [18]. This approach was used to build categories of
comments that either expressed positive feedback, offered criticism, or suggested
improvements. Categories were discarded when they only contained comments from
a single subject.

The three main categories of positive comments concerned:

• the flexible support provided by KC-Viz to manipulate the visual displays;

• the abstraction power enabled by the KCE algorithm;

• the value of the subtree summaries provided by KC-Viz.

These results are encouraging in the sense that they provide some initial indica-
tion that there is probably a direct causal link between the use of key concepts as
an abstraction mechanism and the good performance of KC-Viz on the evaluation
tasks, even though these were not designed specifically to map directly to KC-Viz
features.

176 Chapter 5. Interfaces for the masses

Of the three main categories of negative comments described in [128], only one
still remains unsolved in the current version of KC-Viz: the lack of integration
between KC-Viz and reasoning/query support in the NeOn Toolkit. Obviously,
future versions of the tool will be opportunely extended to address this and other
minor issues.

5.3 Graffoo, a framework for visual ontology mod-

elling

Twenty years ago the only way Web users had to publish Web pages was to write
HTML documents through text editors and, then, uploading them on the Web by
means of apposite transfer protocols (e.g., FTP). Obviously people might not be
self-sufficient to accomplish this task. A first step forward was done few years after
with the introduction of WYSIWYG editors for HTML documents (e.g., Microsoft
Frontpage). However, although these editors solved the issue of writing HTML pages
through the adoption of user-friendly interfaces, a problem still persisted: where and
how uploading those documents.

Everything changed, and in better, when the paradigm of creating and publishing
HTML documents started to involve Web-based application rather than desktop
applications. The introduction of blog platforms, wikis, CMSs and other social
tools has generated an exponential increase of people writing for and publishing on
the Web. The winning strategy has been characterised by two main points:

• to hide the complexity of the HTML markup behind Web interfaces;

• to reduce the entire publishing process to pressing a button.

Currently, some aspects of the Semantic Web, such as the creation of OWL
ontologies, still continue to stay confined inside unpopular community areas. With
that I do not want to say that these aspects are not important at all. Rather, I want
to highlight that people cannot deal with some important semantic technologies
unless having proper skills. Like the above-mentioned example about the creation
and publication of HTML documents, Web users will start to write and publish
OWL ontologies only when:

• there will exist proper interfaces that hide the intrinsic complexity of the OWL
framework behind user-friendly GUI, and

• the publication process of OWL ontologies will be automatised and reduced
to the press of a button.

Chapter 5. Interfaces for the masses 177

In this section I describe a work that make a step forward towards the needs
pointed out in the first of the above points. Along the lines of what I presented in
Section 2.3.3, here I introducetheGraphic framework for OWL ontologies17 (Graffoo).
It is a tool that can be used to present OWL ontologies, or sub-parts of them, as
clear and easy-to-understand diagrams.

All the objects that can be used in a Graffoo diagram are shown in Fig. 5.13.
These have been developed using the standard library of yEd18, a free diagram editor
running on Windows, Mac and Linux. The graphml format version of those objects
is also available19 and can be loaded as proper section in the yEd palette.

Figure 5.13: The legend for all possible Graffoo objects.

From some preliminary informal studies done, it seems that the Graffoo rep-
resentations of OWL ontologies can be comprehended without the viewer having
to understand all the details of OWL 2 or of any of its linearisations (Turtle, RD-
F/XML, Manchester Syntax, OWL/XML). In particular, when I was developing the
SPAR ontologies, I used Graffoo every time I needed to illustrate an ontology to

17Graffoo, the Graphic framework for OWL ontologies: http://www.essepuntato.it/graffoo.
18The yEd diagram editor: http://www.yworks.com/en/products yed about.html.
19http://www.essepuntato.it/graffoo/sources.

178 Chapter 5. Interfaces for the masses

users who were not expert in Semantic Web technologies, but who were interested
in understanding SPAR ontologies.

In the following sections, I illustrate how to use Graffoo widgets to formalise on-
tologies. As example, I use some excerpts from the EARMARK ontology introduced
in Section 3.1.

5.3.1 Introducing classes and properties

In Graffoo all the entities can be defined either as an URI surrounded by angular
brackets or as a CURIE with a prefix. All the prefixes can be defined within a
particular box (entitled “Prefixes”) as a list of prefix-URI couples.

The classes are drawn as yellow boxes, while green rhomboids describe datatypes,
and both widgets have solid black borders. Object and data properties are cre-
ated linking classes, restrictions (introduced in the following section) and datatype
through particular arrows. On the one hand, the object property declarations are
defined through blue solid lines, where the filled circle at the beginning identifies the
domain while the filled arrow at the end indicates the range. On the other hand, the
data property declarations are drawn as green solid lines, where the empty circle at
the beginning identifies the domain while the empty arrow at the end indicates the
range. Moreover, it is possible to associate additional axioms to properties putting
a light-blue box close to (or upon) the property it refers to.

For instance, the following excerpt is the Manchester Syntax linearisation of the
diagram in Fig. 5.14 on the facing page:

Prefix: earmark: <http :// www.essepuntato.it /2008/12/ earmark#>

Prefix: rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

Class: earmark:Range

Class: earmark:Docuverse

ObjectProperty: earmark:refersTo

Domain: earmark:Range

Range: earmark:Docuverse

Characteristics: Functional

DataProperty: earmark:begins

Domain: earmark:Range

Range: rdfs:Literal

DataProperty: earmark:ends

Domain: earmark:Range

Range: rdfs:Literal

Chapter 5. Interfaces for the masses 179

DataProperty: earmark:hasContent

Domain: earmark:Docuverse

Range: rdfs:Literal

Characteristics: Functional

Figure 5.14: Widgets defining prefixes, classes, object/data properties and prop-
erty axioms.

5.3.2 Defining restrictions and additional class axioms

The widget that defines restrictions is a light-yellow box having dotted border.
Classes and restrictions can be linked to create assertions (e.g., rdfs:subClassOf
relations) through black solid arrows, labelled opportunely according to the property
involved in the assertion in consideration. Moreover, I can associate additional
axioms (in Manchester Syntax) to classes using a light-blue box linked through a
dashed line.

For instance, the following excerpt is the Manchester Syntax linearisation of the
diagram in Fig. 5.15 on the next page:

Class: earmark:PointerRange

SubClassOf:

earmark:Range ,

(earmark:begins only xsd:nonNegativeInteger) and

(earmark:ends only xsd:nonNegativeInteger)

DisjointWith: earmark:XPathRange

HasKey: earmark:begins earmark:ends earmark:refersTo

Class: earmark:XPathRange

SubClassOf: earmark:Range

180 Chapter 5. Interfaces for the masses

Figure 5.15: Widgets defining restrictions and other class axioms.

5.3.3 Linking class individuals

Graffoo allows one to define also ABox of ontologies, by creating individuals having
a particular type. The widget used to define those individuals is a pink circle with
solid black border. Note that this widget specifies the URL/CURIE of the related
individual around it, rather than in the middle of it. As for all the other resources,
individuals can be linked to create assertions through (labelled) black solid arrows.

For instance, the following excerpt is the Manchester Syntax linearisation of the
diagram in Fig. 5.16 on the facing page:

NamedIndividual: ex:r0 -5

Types: earmark:PointerRange

Facts:

earmark:begins "0"^^ xsd:nonNegativeInteger ,

earmark:ends "5"^^ xsd:nonNegativeInteger ,

earmark:refersTo ex:doc

NamedIndividual: ex:doc

Types: earmark:StringDocuverse

Facts:

earmark:hasContent "Fabio says that overlappens "^^ xsd:

string

5.3.4 Defining assertions between ontologies

Graffoo includes a specific widget – a transparent box with a light-blue heading and
a dotted black border – for the specification of ontologies. The ontology URIs are
put in the heading of this widget.

Chapter 5. Interfaces for the masses 181

Figure 5.16: Widgets defining individuals and related assertions.

All the entities contained by this widget are formally defined within the related
ontology. Moreover, like the other resources, ontologies can be linked to create
assertions (e.g., owl:imports) through (labelled) black solid arrows.

For instance, the following excerpt is the Manchester Syntax linearisation of the
diagram in Fig. 5.17 on the next page:

Ontology: <http ://www.essepuntato.it /2008/12/ earmark >

Import: <http :// www.essepuntato.it /2010/05/ ghost >

Class: earmark:PointerRange

SubClassOf:

earmark:Range ,

(earmark:begins only xsd:nonNegativeInteger) and

(earmark:ends only xsd:nonNegativeInteger)

DisjointWith: earmark:XPathRange

HasKey: earmark:begins earmark:ends earmark:refersTo

Class: earmark:XPathRange

SubClassOf: earmark:Range

Class: earmark:Range

Annotations: rdfs:isDefinedBy

<http :// www.essepuntato.it /2010/05/ ghost >

Class: earmark:Docuverse

Annotations: rdfs:isDefinedBy

<http :// www.essepuntato.it /2010/05/ ghost >

ObjectProperty: earmark:refersTo

182 Chapter 5. Interfaces for the masses

Annotations: rdfs:isDefinedBy

<http :// www.essepuntato.it /2010/05/ ghost >

DataProperty: earmark:begins

Annotations: rdfs:isDefinedBy

<http :// www.essepuntato.it /2010/05/ ghost >

DataProperty: earmark:ends

Annotations: rdfs:isDefinedBy

<http :// www.essepuntato.it /2010/05/ ghost >

Figure 5.17: Widgets for defining ontologies and related assertions.

Chapter 5. Interfaces for the masses 183

5.4 Gaffe, a flexible and user-friendly authoring

tool for semantic data

The process of associating semantic data to resources, such as documents, is quite
complex in principle. The first issue is that several and alternative models (e.g.,
metadata schemas, vocabularies, ontologies) can be used to describe the same re-
source within a particular domain (e.g., publishing). Some of them are almost equiv-
alent, others are characterized by individual features. For instance, all metadata
models for the description of bibliographic documents are expected to include infor-
mation about the “author”, “publisher” and “year”. At the same time, a schema
describing Ph.D. theses needs to include similar information (for instance, “author”
and “year”) and more domain-specific data such as “id number”, “supervisor” and
“discipline”. The choice of the most suitable model depends on two main factors:

• the nature of the resource (e.g., a document);

• the applications (and users) that the resource is meant to be processed by
(e.g., Wikis and word processors).

Still, choosing the appropriate model is not enough. It is also important that the
interface enables the creation of semantic data in an intuitive and usable way, thus
hiding the complexity of the particular formalism or model used. A good model not
supported by a good editing interface risks to be useless: authors would often decide
not to insert data, considering it a pointless, time-consuming and postponable task.

I identify four main features that a flexible and user-friendly authoring tool for
semantic data should have:

• genericness, the editor should support any model in a flexible way;

• customizability, instead of generating a static form – strictly dependent on a
given model – the editor should be customizable for models, users’ needs and
preferences;

• proactivity, the editor should provide users with facilities that simplify the
authoring process, such as pre-filled form fields, suggestions, default values,
access to environment variables, and so on;

• validation, the editor should apply validation mechanisms to check the cor-
rectness of the inserted values.

A solid approach to flexible interfaces consists of adopting the “Model-View-
Controller” (MVC) pattern [69], as developed in the software engineering commu-
nity. This pattern implements a clear separation between the business logic of an
application and the user interface for visualizing/editing data: it allows designers

184 Chapter 5. Interfaces for the masses

to generate applications whose interfaces can be easily modified without affecting
the model and vice versa.

Discussing the benefits of MVC is out of the scope of this thesis, but what is im-
portant is exploring how this pattern can help to design a flexible and sophisticated
metadata editor. In the context of metadata editors, the three components of MVC
become:

• Model. The model corresponds to the actual semantic data as manipulated
by the editor and associated to the document/resource. Changing the model
describing semantic data means changing the model of MVC, and this should
at all times be possible, in order to obtain a model-independent editor;

• View. The view is the way semantic data are shown to the users. Usually,
the view can be classified according to two different types: the edit interface
and the visualisation interface. The edit interface has to be a rich graphical
interface, with a large number of graphical widgets to specify semantic data
values according to their type and expected values. The more widgets are
sophisticated and well-structured, the more easily users can create semantic
data. The visualisation interface shows the current resource-related data only,
without changing the internal model. The visualisation can happen through
deactivated form fields, but also with plain textual or tabular visualisation.
Since model and view are separated, it is possible to assign multiple views to
the same semantic model, each tailored to roles, personal preferences and local
policies of the intended users;

• Controller. The controller is the component in charge of managing the inter-
action between the users and the application. It has to store the values pro-
vided by users into the model. Moreover, it is expected to run a pre-processing
phase to provide default values to relevant form fields and a post-processing
one to validate metadata values as provided by the user. The controller thus
handles all input events and notifies the model the users’ actions that generate
changes in the model itself.

Of course, in past solutions that combined the MVC pattern with other ap-
proaches were proposed so as to address the issue of associating semantic data to
electronic documents. In particular, my research group has been working for years
on an approach consisting of two steps. First, creating ontological descriptions of the
domain and of the interfaces to manipulate semantic data. Second, transforming
those descriptions into actual interfaces shown to the users. My personal contri-
bution in this field is the development of the new Java implementation of Gaffe
(Generator of Advanced Forms and Friendly Editor) [22]. Gaffe is a MVC-based
API that makes it possible to build customizable editors for semantic data, so as to
allow users to decorate a resource according to any scheme as expressed through an
OWL ontology. More precisely, Gaffe uses two different ontologies:

Chapter 5. Interfaces for the masses 185

• the domain ontology represents the conceptual model. Since this ontology is
unconstrained, users can adopt any custom model without any restriction, as
long as it is expressible in OWL;

• the GUI ontology specifies the classes and properties of widgets and form ele-
ments of a graphical user interfaces, as well as the mapping between interface
widgets and properties of the domain ontology;

The instance document is an instantiation of the GUI ontology to describe an
actual interface, as generated by associating domain elements to graphical widgets
and by customizing the final appearance of each item.

In the following sections I introduce a Gaffe-based prototypical application called
OWiki, that was developed expressively for demonstrating the capabilities of the
Gaffe principles.

5.4.1 OWiki: ontology-driven generation of templates and
forms for semantic wikis

OWiki [52] [54] [53] is Gaffe-based extension of MediaWiki that supports users in
creating and editing semantic data. The basic idea of OWiki is to exploit ontolo-
gies and MediaWiki editing/viewing facilities to simplify the process of authoring
semantic wiki content.

In particular, OWiki exploits MediaWiki templates, infoboxes and forms. A
template is set of pair key-value, edited as a record and usually formatted as a
table in the final wiki page. Templates are particularly useful to store structured
information: very easy to edit, disconnected from the final formatting of a page,
very easy to search, and so on. Templates are defined in special pages that can be
referenced from other pages. These pages include fragments with the same structure
of the template but filled with instance data. The template-based component of a
page is also called infobox.

OWiki exploits ontologies to represent the (semantic) knowledge base of a wiki
and templates to display and add ABox assertions of that ontology through the
wiki itself. The integration and interaction between ontologies and templates can
be summarized in two points:

• each class of the ontology is associated to a template-page. Each property is
mapped into a key of the infobox;

• each instance of that class is represented by a page associated to that tem-
plate. Each line in the infobox then contains the value of a property for that
instance. Data properties are displayed as simple text while object proper-
ties are displayed as links to other pages (representing other instances of the
ontology).

186 Chapter 5. Interfaces for the masses

OWiki templates are actually transparent to users. Each template is associated
to a form that allows users to create and edit the relative instances. Users do not
modify the templates directly but they only access specialized form fields.

The crucial point is that even forms are generated automatically from ontological
data. Obviously, OWiki includes a GUI ontology describing widgets and interface
elements. The concepts and relations of the domain ontology – that is the ontology
according to which semantic data are specified – are mapped into form elements
that are delivered to the final user.

During the installation phase, OWiki creates a basic set of forms by merging
the domain ontology with the GUI one. At the editing phase, the system shows a
very basic form and saves it as a special page (template). This page can then be
organized as a new form by adding dynamic behaviours, moving buttons, changing
the field order and so on.

Before describing the internal architecture of the system, it is worth spending few
more words about the way OWiki uses ontologies. The extensive usage of ontologies
makes it possible (i) to make OWiki independent on the domain it is used for, (ii)
to easily customize forms and templates, and (iii) to fully describe the evolution of
a wiki page and its semantic content.

The architecture of OWiki

OWiki is an integrated framework composed of three modules, delivered with dif-
ferent technologies:

• a MediaWiki extension. It is a module integrated in MediaWiki written in
PHP that adds OWiki facilities;

• an Ontology manager. It is a Java web service that processes OWL ontologies
to produce forms for editing metadata. This manager uses internally both
Jena API [31] and OWLAPI [94];

• an Ajax-based interface: a client-side module that allows users to actually
insert data through the forms generated by the OWiki engine.

The PHP OWiki module follows the same architecture of any MediaWiki ex-
tension: some scripts and methods are overridden to provide new features. In par-
ticular, the module implements a revised editor that initializes OWiki environment
variables, sets the communication with the client and sets data necessary to store
forms in the MediaWiki database without interfering with existing data.

To manipulate ontologies, OWiki implements a web service that uses internally
the Jena API. Jena is integrated with the Pellet reasoner [170], which is exploited to
extract information about the instances in the ontology. Ranges of some properties,
as well as their values, are in fact derived from subsumptions or other relations
expressed in the ontology itself.

Chapter 5. Interfaces for the masses 187

The web-service actually generates templates from the ontological data, that
are later sent to the PHP module and stored in the right place of the MediaWiki
installation.

The connection between the PHP and Java modules, and the core of the overall
framework is the OWiki client. The client is a javascript application, based on
Mootools20, in charge of actually generating and delivering forms. It is strongly
based on the Model-View-Controller (MVC) pattern and its internal architecture
can be divided in four layers:

• The Connection Layer manages the overall environment, the initialisation
phase and the communication between all other layers.

• The Model Layer (Model of MVC) manages the data to be displayed on the
page. It is composed of a factory that creates wrappers for each type of data
and instantiates data from the ontology.

• The Look And Feel (View of MVC) manages the final representation of the
form, containing atomic and complex widgets, manipulators and decorators.

• The Interaction Layer (Controller of MVC) implements the logic of the appli-
cation, the communication with the web-service, the generation of semantic
data and the end-user interaction.

Using ontologies to model the domain

Since it implements the Gaffe architecture, in OWiki the entire domain of discourse
– i.e., all the topics each page talks about – is handled by using a domain ontology.
Two different kinds of classes exist in this ontology: those – page-domain classes –
that strictly relate to articles and pages visualized by the wiki, and others – data-
domain classes – that define additional data around the former ones.

Each page-domain individual results in a wiki page containing text content (the
content is now stored in the MediaWiki internal database) and all semantic data
directly related to that individual. Fig. 5.18 on the following page shows a page
about a particular beer21 that contains a textual description of it in the central page
area, while in the right box there are all metadata about the beer.

While some metadata such as “Beer Alcoholic content” or “Beer Brewed by”
are proper to any beer directly, since they are defined by OWL data or object
properties having the class Beer as domain, that is not true for other metadata,
such as “Winner Award” and “Winner Awarded on”. In fact, those properties are
handled using the data-domain class Awarding that represents an event concerning

20Mootools: http://mootools.net .
21The demo installation of OWiki I use in the following examples is available at

http://owiki.web.cs.unibo.it.

188 Chapter 5. Interfaces for the masses

a particular prize occurred at a specific time. The model of such properties for the
beer in consideration, shown in Fig. 5.18, is explained in the following excerpt (in
Turtle syntax):

:carlsberg a :Beer ; :hasAwarding :awardingEuropean2007 .

:awardingEuropean2007 a :Awarding ;

:hasAward :europeanBeerAward ;

:hasYear "2007" .

The values shown in the Carlsberg page are not directly extracted from the Carls-
berg ontological individual: they are taken from the awarding event the Carlsberg
beer participated to.

Figure 5.18: An example page of the Beer OWiki.

Even if they are not directly represented as wiki pages, OWiki uses data-domain
individuals to enrich even more the metadata of page-domain individuals. This
enrichment needs to retrieve related data from non-page-domain individuals making
at least two steps on the RDF graph represented by the model. We call property
flattening the visualization of those data-domain property values into a page-domain
individual.

Chapter 5. Interfaces for the masses 189

Using ontologies to model the interface

OWiki exploits ontologies to also model end-user interfaces. In particular, the sys-
tem includes a preliminary version of the GUI ontology developed for Gaffe. This
ontology is used for identifying all the components of web forms. The system instan-
tiates and merges that ontology with the domain one in order to generate the final
forms. The definitive version of the Gaffe GUI ontology is still under development
but the core concepts and relations are stable and already tested in the current
prototype.

Separating the GUI ontology from the domain one has a two-fold goal:

1. generating a declarative description of the interface widgets that can be reused
across multiple domains not being bounded to specific data;

2. allowing users to customize final interfaces by only changing the association
between content and interface widgets.

Note also that the GUI ontology can be designed once for all, while the domain
one requires different expertises for different application scenarios. The GUI on-
tology defines two types of graphical elements: controllers and panels. Panels are
containers for other elements (that can be panels, in turn) used to organize the
overall interface, while controllers are single widgets allowing users to actually fill
metadata.

The main class of the ontology is OWikiForm. Instances of this class will be
used to generate each form associated to each wiki page. Each instance will in
fact contain either graphical elements or property values from the domain ontology.
OWikiForms can contain simple or complex types of controllers. Simple types will
be associated to data properties in the domain ontology, while complex type will be
associated to object properties.

Simple types model the basic form elements (Textfield, ComboBox, CheckBox e
RadioButton) while complex types model constructs useful for mapping the GUI
ontology to the domain one. There are two complex types: ConnectField and Ob-
jectContainer. ConnectField model links to another wiki document. This will be
finally used to provide users with auto-completion operations on corresponding form
fields: when the user will fill this field, the system will suggest a set of linked docu-
ments she/he can choose from (or create a link to a completely new resource). These
links are in fact derived from the relations in the domain input ontology. Object-
Containers are widgets that include properties of a class non-directly linked to the
one defining a particular page, including into documents data about other (related)
subjects. This class implement what we illustrated previously as property flattening.

190 Chapter 5. Interfaces for the masses

5.4.2 Studying OWiki through a use-case

The main goal of OWiki is to simplify the creation of semantic data through and
within wikis. The complexity of such metadata authoring process, in fact, is hidden
behind the application in order to not force users to learn new interfaces and tools.
They can easily create semantic data by exploiting forms and templates that are
automatically generated from ontological data.

In this section I explain with much details this generation process, clarifying how
ontological data are converted into (customized) interfaces. Basically, the overall
OWiki process consists of three steps:

1. ontology import and forms generation;

2. forms customization;

3. templates and data generation.

From ontologies to forms

The first step consists of importing the input domain ontology into the wiki. Let us
consider a sample application we will discuss throughout the following sections: an
OWiki demo installation describing beers, breweries, ingredients, etc. Fig. 5.19 on
the facing page shows some classes and properties of a domain ontology suitable for
such an application.

Classes and properties are mapped into wiki pages as follows: each concept is
mapped into a page and properties are expressed through templates. In particular,
data properties become lines of templates infoboxes and object properties become
typed links.

Note that the overall status of the OWiki installation is consistent at this stage,
assuming that domain input ontology was consistent. The process is in fact a
straightforward translation of classes and relations into pages and links.

The OWiki conversion process also produces forms to edit the ontological con-
tent. Forms are dynamically built by analysing the class properties of the imported
ontology and by mapping each property in the proper element of the GUI interface.

In the example, the class Beer defines three properties: name, beerType and
alcoholContent. According to the type of these properties OWiki generates text
fields or radio buttons. The default element is a text field that allows any type of
value. Since in the input ontology the only possible values of the property beerType
are “Ale”, “Lager” and “Pilsner”, the system add to the form a RadioButton element
specifying those values.

For object properties OWiki chooses between two types of widgets according
to their range: whether the range class is associated (through the property ha-
sOWikiPage) to the class oWiki, the system adds a ConnectField to the form; oth-
erwise it adds an ObjectContainer. Since the class Beer has the object property

Chapter 5. Interfaces for the masses 191

brewedBy with the class Brewery specified as range, the system add to the form a
widget that allows one to include a link to a corresponding brewery page. This wid-
get will also provide auto-completion features built on top of the relations expressed
in the input ontology.

Figure 5.19: A graphical representation of the OWiki domain ontology about beers.

A point is very important at this stage: there is a default mapping between
classes of the domain ontology and elements in the GUI ontology based on the type
of the properties. The name of a property or its meaning in a specific domain is not
relevant.

There is actually a configuration file that specifies, for each type, which widget
to use and how to configure it. In the previous case, for instance, there was an
association between enumerations and radio buttons. That mapping is deployed
whenever a class has a property that may only have a finite set of values, regardless
of the actual domain ontology. A change in the OWiki configuration file would be
reflected in using a different widget for the same property.

Forms customization and filling

Furthermore OWiki includes a configuration interface that allows users to set a
domain-specific mapping between the input (domain and GUI) ontologies, and to
configure the overall organization of the form and its formatting properties.

OWiki shows a basic form the first time a user edits a page. The author can
then organize a new form adding dynamic behaviours, moving buttons, changing
fields order and so on. Fig. 5.20 on the next page shows a simple example of a
customized forms: while the original form only listed a set of plain text-fields, this
one is organized in panels and uses radio-buttons, images and dynamic widgets.

192 Chapter 5. Interfaces for the masses

Customization can happen at different level. The user can change colour, font,
background of the text to increase the appeal and impact of the form; she/he can
change the position and the order of the elements to increase the importance of
certain data; she/he can change the optionality of the elements, their default values,
and so on.

The current implementation requires users to customize forms by editing an
XML configuration file, through the wiki itself. Even if such an approach is not
optimal, the internal architecture of the system relies on a strong distinction between
the declarative description of the form (through the GUI ontology) and its actual
delivery. That makes possible to implement a user-friendly and graphic environment
to create and customize forms. One of our future activities is the implementation
of such an editor within the OWiki framework.

Figure 5.20: A customized form generated by OWiki.

From semantic data to templates and views

Automatically-generated forms are finally exploited by the wiki users to actually
write the semantic data. As described in the previous section, data are stored as
templates and templates are manipulated by forms in a transparent manner.

Let me consider again the Beer class of the example. OWiki generates a form to
create instances of those classes showing three main components:

• a text field to insert the name of the beer;

• a radio-button to select the type of the beer. Values in the radio button are
directly extracted from the domain ontology;

Chapter 5. Interfaces for the masses 193

• a text field to insert the brewery, which suggests breweries by exploiting in-
formation in the domain ontology.

These components can even be organized in multiple panels. Once the user fills
the form OWiki saves a template with the proper information. Infobox templates,
in fact, are used to display metadata and to cluster information about the same
document.

Each infobox line corresponds to a field in the form that, in turn, corresponds to
a parameter and its value in the domain ontology. As expected, the data properties
of a class are displayed as simple text while the object properties are displayed as
links to other documents.

The page corresponding to the Carlsberg beer in the example, that is an instance
of the class Beer and has been edited via the corresponding form, will contain the
following (partial) infobox:

{{ Infobox Beer |

hasoWikiNamePage=Carlsberg |

Beer_brewedBy =[[Brewery:Carlsberg|Carlsberg]] |

Beer_beerType=Lager |

Beer_hasAlcoholicContent =2.5 - 4.5 |

Hops_hasName=Galena | ... }}

Notice that the property Beer brewedBy contains a link to the page Carlsberg
that is now an instance of the Brewery class. Relations in the input ontology are
then mapped into the links between pages. And the Carlsberg instance follows the
same approach, being it described by the infobox:

{{ Infobox Brewery |

hasoWikiNamePage=Carlsberg |

Brewery_hasAddress=Valby 11 DK - 2500, Copenhagen |

Brewery_brews =[[Beer:Carlsberg|Carlsberg]] }}

Some final considerations are worth about the consistency of OWiki. First of
all, note that OWiki forms only work on the instances of the underlying ontology,
without any impact on the classes and relations among them. The consequence is
that, assuming that users do not corrupt infoboxes (that are anyway available in
the source code of a wiki page), the overall ontology keeps being consistent. The
OWiki instance is in fact consistent by construction with the domain and the GUI
ontology and it is populated via forms in a controlled way.

Thus, we can conclude – going back to the distinction between “wikis for ontolo-
gies” and “ontologies for wikis” proposed in Section 2.3.4 – that OWiki currently
belongs to the second group and does not properly use the wiki to build and update
ontologies. In the future we also plan to investigate a further integration between
the wiki and the ontology – and a further integration between the textual content of
a wiki page and the relative infoboxes – in order to also use OWiki as a full-fledged
simplified authoring environment for ontologies.

194 Chapter 5. Interfaces for the masses

Chapter 6

Conclusions

In the early days of the Web, the intrinsic meaning of the content of a document
such as a Web page was accessible only to human readers, using their capabilities to
conceptualise the particular semantics starting from natural language descriptions.
The Semantic Web was born from a desire to develop mechanisms for machine
understanding of that same content that would be as effective as that of humans.
Its final goal was to “bring structure to the meaningful content of Web pages” and to
provide “a new class of tools by which we can live, work and learn together” [16]. In
other words, it tried to link authored text (i.e., Web pages) to its formal semantics
in a way that “intelligent” applications can be developed so as to significantly assist
people in their everyday life.

To this end, the Semantic Web communities initially started to develop standards
and technologies with the aim of giving a theoretical and practical background to
enable the creation of intelligent applications and enhanced Web resources. Starting
from these bases, recently some research and institutional domains are trying to
make a further step towards the final aspirations of Semantic Web, putting people
and documents back into the roles as first actors and supporting them with Semantic
Web technologies and standards. This is the case for Semantic Publishing.

Semantic Publishing concerns “anything that enhances the meaning of a pub-
lished journal article [more generally, a document], facilitates its automated dis-
covery, enables its linking to semantically related articles, provides access to data
within the article in actionable form, or facilitates integration of data between pa-
pers” [164]. The Semantic Publishing approach goes beyond the current interest
of recognising relevant entities in the text and/or transforming natural language
statements into formal assertions. In fact, Semantic Publishing aims at describing
the entire discourse and argumentation of (bibliographic) documents through formal
tools and semantic technologies. The final aim is to increase the users’ comprehen-
sion of documents through software and applications that work “intelligently” on
the formal conceptualisation of the narrative of the documents themselves.

To realise this vision, the actors involved – i.e., publishers, authors, readers,
technologists and developers – must be part of an organised cooperative community.

196 Chapter 6. Conclusions

Given the intrinsic heterogeneity of the actors involved, Semantic Publishing must
be addressed from different perspectives.

Rather than explore the social and economical aspects of Semantic Publishing, I
have in this thesis focussed on its technological environment. In order to link a text
to the formal representation of its meaning and thus to represent its argumentative
discourse, Semantic Publishing needs at least two distinct resources: on the one
hand, a powerful and expressive document markup language that allows semantic
characterisations of its elements and content. On the other hand, shared models
(ontologies) that allow the formal description of all the aspects of a document, from
its structure to its argumentative discourse.

My contributions in this direction are shown in two projects: EARMARK and
SPAR. As illustrated in Chapter 3, EARMARK is a markup metalanguage that
allows one to create markup documents as sets of OWL assertions, without the
structural and semantic limits imposed by meta-markup languages such as XML.
EARMARK is a platform to link the content layer of a document with its intended
formal semantics. Having EARMARK as a solid base for defining the content of
documents and its syntactical organisation, I then developed the Semantic Publish-
ing And Referencing (SPAR) ontologies (Chapter 4), a collection of formal models
providing an upper semantic layer for describing the publishing domain. SPAR
is a set of eight modular and interoperable ontologies that precisely describe the
whole publishing domain using terms from publishers’ vocabulary: ranging from
bibliographic, structural and rhetorical descriptions of documents to specification of
publishing workflows. Thus, using EARMARK as a foundation for SPAR descrip-
tions opens up to a semantic characterisation of all the aspects of a document and
of its parts.

Of course, these two aspects – the markup and the semantics – must be un-
derstood, discussed, developed and used within an heterogeneous community that
includes people who do not care about the technologies, but who are extremely
competent in their own specific domains. Being domain experts, they know the
needs and constraints of their own communities. Thus, their contributions to the
development of sophisticated Semantic Publishing technologies are crucial.

However, such people may have difficulties in interacting with the Semantic
Publishing technologies. Thus, we need user-friendly interfaces that shield such
users from the underlying formalisms and semantic models of such technologies.

This is the reason why a good half of my research has concerned the development
of interfaces that hide the complexity of markup and ontology formalisms behind
user-friendly views. The tools I presented in Chapter 5 – LODE, KC-Viz, Graffoo
and Gaffe – will hopefully find extensively use for presenting ontologies to publishers,
for developing new ontologies to meet particular needs, and for allowing authors
to add semantic data to their own documents. These tools have had a crucial
role in the development of the SPAR ontologies themselves. Without doubt, they
have facilitated the frequent and productive interactions I had with publishers and

Chapter 6. Conclusions 197

domain experts, and have provided one of the main reasons for the early adoption
of SPAR in the publishing domain, as described in Section 4.7. LODE and KC-Viz
are currently being used in even broader domains and they have been flagged as
important contributions in the Semantic Web community1.

My future research will cover further aspects of Semantic Publishing. In the
following sections I introduce the planned future works for all the languages, models
and tools presented in my thesis.

6.1 EARMARK: future works

The main and urgent future development of my work on EARMARK, concerns a
study of the applicability of this approach to markup in different research domains.
In particular, my aim is to investigate real use-case scenarios that involve researchers
of different disciplines, such as Humanities or Law. For instance, a relevant issue
in Humanities is the use of overlapping markup structures to represent differences
among different copies of the same manuscript as a unique digital document. This
particular branch of Philology, called textual criticism, aims at reconstructing the
original text of a manuscript starting from an analysis held on multiple copies of
it written by different scribes. Although TEI [186] enables one to store all the
overlapping fragments of a critical edition via XML workarounds (introduced in
Section 2.1.1), my interest is to investigate how different approaches to overlapping
markup such as EARMARK can address this problem. Since an interaction with
humanists and other researchers that may not be expert in markup technologies
is needed, I plan to develop a user interface that facilitates the specification of
overlapping markup in EARMARK.

Although I have already carried out a first comparison between XML approaches
to overlap and EARMARK (introduced in Section 3.2.3), it may be interesting to de-
velop a complexity-based comparison as well, using a richer and more heterogeneous
set of input documents. Moreover, this set of documents will be useful for the eval-
uation of a conversion framework, called the EARMARK framework, I am currently
developing with my research group. The main aim of the EARMARK framework
is to enable the automatic conversion of XML documents with overlapping markup
from a format (e.g., ODT) into another (e.g., OpenXML). The framework has been
developed so as to use EARMARK as intermediate format to apply the conversion.
Part of this work has been already done and introduced in [11].

1For instance, LODE is listed in the W3C wiki page about tools for semantic data, available
at http://www.w3.org/2001/sw/wiki/LLDtools. Moreover, KC-Viz is now part of the core com-
ponents of the NeOn Toolkit.

198 Chapter 6. Conclusions

6.2 SPAR: future works

Although the SPAR ontologies are already being used within different communities
(Section 4.7), my prior interest is to empirically evaluate the goodness of all the
eight ontological modules to assess the quality of their vocabulary and their ease
of use. I also plan to carry out other formal evaluations to understand the quality
of those ontologies according to their logical organisation (e.g., through OntoClean
[85] and similar frameworks).

Moreover, I am currently working on the release of triplestores of bibliographic
information compliant with SPAR. In particular, in addition to the work already
done with the JISC OpenCitation project (Section 2.4.1), my research group and I
are collaborating with the publishing house Società Editrice il Mulino. Our aim is
to study a way to enhance its bibliographic objects through SPAR-based semantic
assertions and then to publish them as open linked data. Along the lines of the work
with the above publishing house, David Shotton (University of Oxford) and I are
now discussing with Mulberry Technologies Inc.2 to study an alignment strategy
between their Journal Article Tag Sets (JATS)3 – i.e., a set of XML DTDs to store
journal articles – and SPAR entities.

Another interesting aspect of my proposed research will be the study and devel-
opment of algorithms for the automatic or semi-automatic identification of struc-
tural and rhetoric characteristics of document parts. Starting from a pattern-based
description of a markup document (as introduced in Section 4.4.1), it should be
possible to deduce the structural roles of its components (sections, chapters, para-
graphs, figures, etc.) as well as their rhetoric functions (introduction, background,
experiment, results, etc.) without having an a priori knowledge of the intended
meaning of such markup elements. My aim is to develop automatic mechanisms
that assign structural patterns and DoCO characterisations (Section 4.4) to markup
elements of XML and EARMARK documents.

6.3 LODE: future works

I plan to evaluate the documentation produced by LODE in both quantitative and
qualitative terms. The idea is to develop a comparative user-testing that involves
LODE and all the tools introduced in Section 2.3.1.

In addition to the evaluation, I plan to extend the functionalities of the tool
with new features. In particular, future versions of LODE will support full multi-
language documentation and the explicit handling of the OWL 2 DL meta-modelling
capabilities (i.e., OWL punning) in entity descriptions. Moreover I plan to use the
KC-Viz abstraction capabilities, introduced in Section 5.2.1, to highlight the most

2Mulberry Technologies Inc.: http://www.mulberrytech.com.
3Journal Article Tag Sets: http://www.mulberrytech.com/JATS/.

Chapter 6. Conclusions 199

important classes of an ontology in its HTML documentation as rendered through
LODE and to develop two plugins, one for the NeOn Toolkit and the other for
Protégé, to use LODE within ontology development applications.

6.4 KC-Viz: future works

From the study of the user questionaries discussed in Section 5.2.3 interesting ideas
for future works arose. Although KC-Viz is already integrated within the NeOn
Toolkit, some criticisms came up with its integration with other plugins, in particular
with those supporting the reasoning and query infrastructure of the NeOn Toolkit.
I plan to work on extending KC-Viz in order to enable the key-concept extraction
mechanism and navigation according to both the declared and inferred ontological
axioms.

Moreover, I plan to increase the interface behaviours of KC-Viz by adding layout
mechanisms for coarse-grained views (or sky views) to show the entire ontology, by
extending the snapshot feature to handle multiple loaded snapshots at the same
time, and by highlighting connected links for a class when it is selected.

6.5 Graffoo: future works

There are several planned future developments of Graffoo, but the main priority will
be given to its empirical evaluation. In particular, I am interested in understanding
whether and how much Graffoo diagrams enable users to understand and develop
ontologies. To this end, I plan to carry out a user-testing session that involves people
of different fields (Semantic Web practitioners, computer scientists, humanists, etc.)
interested in ontologies. The aim is to understand whether Graffoo widget are
enough to make sense of a first informal presentation of an ontology.

Besides that, I also plan to work on possible prototypical applications based on
the Graffoo widget. First of all, I want to develop a set of XSLT stylesheets to enable
the automatic conversion of a set of yEd documents specifying Graffoo diagrams into
OWL 2 DL ontologies. The next step will be to develop and implementing a pure
Web-based editors for the development and publication of Graffoo diagrams as OWL
2 DL ontologies.

6.6 Gaffe: future works

I plan to carry out several evaluation studies to assess the advantages of using Gaffe
as authoring tool and form editor according to different kinds of users (ontologists,
publishers, semantic data publishers, etc.). In particular, I am now developing a
first user-testing session that aims at investigating the benefits introduced by Gaffe

200 Chapter 6. Conclusions

when ontologists use it to develop Web forms through the specification of instance
documents that link domain ontologies to ontological descriptions of the forms. My
aim is to demonstrate how experts in ontology development can make real and usable
Web forms despite their inexperience in the development of Web interfaces.

Moreover, I plan to extend the Gaffe API in order to use the systems in different
environment such as word processor. In particular I am now designing an integrated
system to support users when enriching documents through SPAR. The idea is to
use Gaffe as the main interface by which users can associate semantic metadata to
markup documents defined through EARMARK, keeping track of provenance infor-
mation (e.g., through the W3C Provenance Ontology [154]) of both the author(s) of
the formal semantic statements about the text and the author(s) of the text itself.

References

[1] Accomazzi, A., Dave, R. (2011). Semantic Interlinking of Resources in the Vir-
tual Observatory Era. ArXiv:1103.5958. http://arxiv.org/pdf/1103.5958 (last
visited March 12, 2012).

[2] Adida, B., Birbeck, M., McCarron, S., Pemberton, S. (2008). RDFa in XHTML:
Syntax and processing. W3C Recommendation, 14 October 2008. World Wide
Web Consortium. http://www.w3.org/TR/rdfa-syntax/ (last visited March 12,
2012).

[3] Alexander, C. (1979). The Timeless Way of Building. New York, New York,
USA: Oxford University Press. ISBN: 0195024029.

[4] Allsopp, J. (2007). Microformats: Empowering Your Markup for Web 2.0. New
York, New York, USA: Friends of ED Press. ISBN: 1590598146.

[5] Attwood, T .K., Kell, D. B., McDermott, P., Marsh, J., Pettifer, S. R., Thorne,
D. (2010). Utopia documents: linking scholarly literature with research data.
Bioinformatics, 26 (18): 568-574. DOI: 10.1093/bioinformatics/btq383.

[6] Auer, S., Bizer, C., Lehmann, J., Kobilarov, G., Cyganiak, R., Ives, Z. (2007).
DBpedia: A Nucleus for aWeb of Open Data. In Aberer, K., Choi, K., Noy,
N. F., Allemang, D., Lee, K., Nixon, L. J. B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (Eds.), Proceedings of 6th
International Semantic Web Conference and of the 2nd Asian Semantic Web
Conference (ISWC 2007 + ASWC 2007). Berlin, Germany: Springer.

[7] Auer, S., Dietzold, S., Riechert, T. (2006). OntOWiki – A Tool for Social, Seman-
tic Collaboration. In Cruz, I. F., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L. (Eds.), Proceedings of the 5th International
Semantic Web Conference (ISWC 2006). Berlin, Germany: Springer.

[8] Bao, J., Smart, P. R., Shadbolt, N., Braines, D., Jones, G. (2009).
A Controlled Natural Language Interface for Semantic Media Wiki. In
Proceedings of the 3rd Annual Conference of the International Tech-
nology Alliance (ACITA2009). September 23-24, 2009, Maryland, USA.

202 References

http://www.usukita.org/papers/4551/SemanticWikiv7.pdf (last visited March
12, 2012).

[9] Barabucci, G., Cervone, L., Di Iorio, A., Palmirani, M., Peroni, S., Vi-
tali, F. (2010). Managing semantics in XML vocabularies: an experience in
the legal and legislative domain. In Proceedings of Balisage: The Markup
Conference 2009. Rockville, Maryland, USA: Mulberry Technologies, Inc.
http://www.balisage.net/Proceedings/vol5/html/Barabucci01/BalisageVol5-
Barabucci01.html (last visited March 12, 2012).

[10] Barabucci, G., Cervone, L., Palmirani, M., Peroni, S., Vitali, F. (2009). Multi-
layer markup and ontological structures in Akoma Ntoso. In Casanovas, P., Pa-
gallo, U., Sartor, G., Ajani, G. (Eds.), Proceeding of the International Workshop
on AI approaches to the complexity of legal systems II (AICOL-II). Berlin, Ger-
many: Springer.

[11] Barabucci, G., Peroni, S., Poggi, F., Vitali, F. (2012). Embedding semantic an-
notations within texts: the FRETTA approach. To be published in Proceedings
of the 27th Symposium On Applied Computing (SAC 2012). New York, New
York, USA: ACM.

[12] Basca, C., Corlosquet, S., Cyganiak, R., Fernández, S., Schandl, T. (2008).
Neologism: Easy Vocabulary Publishing. In Bizer, C., Auer, S., Grimnes, G. A.,
Heath, T. (Eds.), Proceedings of the 4th Workshop on Scripting for the Semantic
Web. Aachen, Germany: SunSITE Central Europe. http://CEUR-WS.org/Vol-
368/paper10.pdf (last visited March 12, 2012).

[13] Bauman, S. (2010). The 4 “Levels” of XML Rectitude. Presented as poster in
Balisage: The Markup Conference 2010. August 3-6, 2010, Montréal, Canada.
http://bauman.zapto.org/˜syd/temp/XML rectitude.pdf (last visited March 12,
2012).

[14] Bański, P. (2010). Why TEI stand-off annotation doesn’t quite work: and
why you might want to use it nevertheless. In Proceedings of Balisage: The
Markup Conference 2010. Rockville, Maryland, USA: Mulberry Technologies,
Inc. http://www.balisage.net/Proceedings/vol5/html/Banski01/BalisageVol5-
Banski01.html (last visited March 12, 2012).

[15] Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J.,
Siméon, J. (2007). XML Path Language (XPath) 2.0. W3C Recommendation 23
January 2007. World Wide Web Consortium. http://www.w3.org/TR/xpath20/
(last visited March 12, 2012).

[16] Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web. In Scientific
American, May 17, 2001.

References 203

[17] Berrueta, D., Phipps, J. (2008). Best Practice Recipes for Publishing RDF
Vocabularies. W3C Working Group Note 28 August 2008. World Wide Web
Consortium. http://www.w3.org/TR/swbp-vocab-pub/ (last visited March 12,
2012).

[18] Birks, M., Mills, J. (2011). Grounded Theory: A Practical Guide. SAGE Pub-
lications Ltd. ISBN 978-1848609938.

[19] Bjork, B., Hedlund, T. (2009). Two Scenarios for How Scholarly Publishers
Could Change Their Business Model to Open Access. In Journal of Electronic
Publishing, 12 (1). DOI: 10.3998/3336451.0012.102.

[20] Bojars, U., Breslin, J. G. (2010). SIOC Core Ontology Specification.
http://rdfs.org/sioc/spec/ (last visited March 12, 2012).

[21] Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D.
(2010). RIF Core Dialect. W3C Recommendation 22 June 2010. World Wide Web
Consortium. http://www.w3.org/TR/rif-core/ (last visited March 12, 2012).

[22] Bolognini, V., Di Iorio, A., Duca, S., Musetti, A., Peroni, S., Vitali, F. (2009).
Exploiting Ontologies To Deploy User-Friendly and Customized Metadata Ed-
itors. In White, B., Isáıas, P., Nunes, M. B. (Eds.), Proceedings of the IADIS
Internet/WWW 2009 conference. Lisbon, Portugal: IADIS.

[23] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.,
Cowan, J. (2006). Extensible Markup Language (XML) 1.1 (Second Edi-
tion). W3C Recommendation 16 August 2006. World Wide Web Consortium.
http://www.w3.org/TR/xml11/ (last visited March 12, 2012).

[24] Brickley, D., Guha, R.V. (2004). RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation 10 February 2004. World Wide Web Con-
sortium. http://www.w3.org/TR/rdf-schema/ (last visited March 12, 2012).

[25] Brickley, D., Miller, L. (2010). FOAF Vocabulary Specification 0.98. Namespace
Document, 9 August 2010 - Marco Polo Edition. http://xmlns.com/foaf/spec/
(last visited March 12, 2012).

[26] Brockmans, S., Haase, P., Hitzler, P., Studer, R. (2006): A Metamodel and
UML Profile for Rule-Extended OWL DL Ontologies. In Sure, Y, Domingue,
J. (Eds.), Proceedings of the 3rd European Semantic Web Conference (ESWC
2006). Berlin, Germany: Springer.

[27] Brockmans, S., Volz, R., Eberhart, A., Löffler, P. (2004).Visual Modeling of
OWL DL Ontologies Using UML. McIlraith, S. A., Plexousakis, D., van Harme-
len, F. (Eds.), Proceedings of the 3rd International Semantic Web Conference
(ISWC 2004). Berlin, Germany: Springer.

204 References

[28] Bromley, A. (1991). Policy Statements on Data Management for Global Change
Research. http://www.gcrio.org/USGCRP/DataPolicy.html (last visited March
12, 2012).

[29] Brooke, J. (1996). SUS: a “quick and dirty” usability scale. In Jordan, P. W.,
Thomas, B., Weerdmeester, B. A., McClelland, A. L. (Eds.), Usability Evalua-
tion in Industry: 189-194. London, UK: Taylor and Francis. ISBN: 0748404600.

[30] Buffa, M., Gandon, F., Ereteo, G., Sander, P., Faron, C. (2008). Sweet-
Wiki: A semantic wiki. In Journal of Web Semantics 6 (1): 84-97. DOI:
10.1016/j.websem.2007.11.003.

[31] Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson,
K. (2004). Jena: implementing the semantic web recommendations. In Feldman,
S. I., Uretsky, M., Najork, M., Wills, C. E. (Eds.), Proceedings of the 13th
international conference on World Wide Web - Alternate Track Papers & Posters
(WWW 2004). New York, New York, USA: ACM.

[32] Carroll, J., Klyne, G. (2004). Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, 10 February 2004.
World Wide Web Consortium. http://www.w3.org/TR/rdf-concepts/ (last vis-
ited March 12, 2012).

[33] Ciccarese, P., Groza, T. (2011). Ontology of Rhetorical Blocks
(ORB). Editor’s Draft, 5 June 2011. World Wide Web Consortium.
http://www.w3.org/2001/sw/hcls/notes/orb/ (last visited March 12, 2012).

[34] Ciccarese, P., Shotton, D., Peroni, S., Clark, T. (2011). CiTO + SWAN: The
Web Semantics of Bibliographic Records, Citations, Evidence and Discourse Re-
lationships. Submitted for publication in Semantic Web – Interoperability, Us-
ability, Applicability.

[35] Ciccarese, P., Wu, E., Kinoshita, J., Wong, G., Ocana, M., Ruttenberg, A.,
Clark, T. (2008). The SWAN Biomedical Discourse Ontology. Journal of Biomed-
ical Informatics, 41 (5), 739-751. DOI: 10.1016/j.jbi.2008.04.010.

[36] Cimiano, P., Volker, J. (2005). Text2Onto - A Framework for Ontology Learn-
ing and Data-driven Change Discovery. In Montoyo, A., Munoz, R., Metais, E.
(Eds.), Proceedings of the 10th International Conference on Applications of Nat-
ural Language to Information Systems (NLDB05): 227-238. Berlin, Germany:
Springer.

[37] Clark, J. (2001). RELAX NG Specification. Committee Specification.
Organization for the Advancement of Structured Information Standards.
http://relaxng.org/spec-20011203.html (last visited March 12, 2012).

References 205

[38] Clark, J. (2002). RELAX NG Compact Syntax. Committee Specification.
Organization for the Advancement of Structured Information Standards.
http://relaxng.org/compact-20021121.html (last visited March 12, 2012).

[39] Connolly, D. (2007). Gleaning Resource Descriptions from Dialects of Lan-
guages (GRDDL). W3C Recommendation, 11 September 2007. World Wide Web
Consortium. http://www.w3.org/TR/grddl/ (last visited March 12, 2012).

[40] Coombs, J. H.,Renear A. H., DeRose, S. J. (1987). Markup Systems and the
Future of Scholarly Text Processing. Communications of the ACM 30 (11): 933-
947. DOI: 10.1145/32206.32209.

[41] d’Aquin, M., Motta, E. (2011). Watson, more than a Semantic Web search
engine. In Semantic Web – Interoperability, Usability, Applicability, 2 (1): 55-
63. DOI: 10.3233/SW-2011-0031.

[42] D’Arcus, B., Giasson, F. (2009). Bibliographic Ontology Specification. Specifi-
cation Document, 4 November 2009. http://bibliontology.com/specification (last
visited March 12, 2012).

[43] Dattolo, A., Di Iorio, A., Duca, S., Feliziani, A.A., Vitali, F. (2007). Structural
patterns for descriptive documents. In Baresi, L., Fraternali, P., Houben, G.
(Eds.), Proceedings of the 7th International Conference on Web Engineering
2007 (ICWE 2007). Berlin, Germany: Springer.

[44] De Coi, J. L., Fuchs, N. E., Kaljurand, K. Kuhn, T. (2009). Controlled English
for Reasoning on the Semantic Web. In Bry, F., Maluszynski, J., (Eds.), Se-
mantic Techniques for the Web – The REWERSE Perspective: 276-308. ISBN:
3642045806.

[45] De Waard, A. (2010). From Proteins to Fairytales: Directions in Semantic Pub-
lishing. In IEEE Intelligent Systems, 25 (2): 83-88. DOI: 10.1109/MIS.2010.49.

[46] De Waard, A. (2010). Medium-Grained Document Structure.
http://www.w3.org/wiki/HCLSIG/SWANSIOC/Actions/RhetoricalStructure/
models/medium (last visited March 12, 2012).

[47] Dello, K., Paslaru, E. B. S., Tolksdorf, R. (2006). Creating and using semantic
web information with makna. In Völkel, M., Schaffert, S. (Eds.), Proceedings of
the First Workshop on Semantic Wikis – From Wiki To Semantics. Aachen, Ger-
many: SunSITE Central Europe. http://www.ceur-ws.org/Vol-206/paper4.pdf
(last visited March 12, 2012).

206 References

[48] DeRose, S. (2004). Markup Overlap: A Review and a Horse. In Proceedings
of the Extreme Markup Languages 2004. Rockville, MD, USA: Mulberry Tech-
nologies, Inc. http://conferences.idealliance.org/extreme/html/2004/DeRose01/
EML2004DeRose01.html (last visited March 12, 2012).

[49] DeRose, S., Maler, E., Daniel, R. (2001). XPointer xpointer() Scheme.
W3C Working Draft, 19 December 2002. World Wide Web Consortium.
http://www.w3.org/TR/xptr-xpointer/ (last visited March 12, 2012).

[50] Di Iorio, A., Gubellini, D., Vitali, F. (2005). Design patterns for
document substructures. In Proceedings of the Extreme Markup
Languages 2005. Rockville, MD, USA: Mulberry Technologies,
Inc. http://conferences.idealliance.org/extreme/html/2005/Vitali01/
EML2005Vitali01.html (last visited March 12, 2012).

[51] Di Iorio, A., Marchetti, C., Schirinzi, M., Vitali, F. (2009). Natural and
Multi-layered Approach to Detect Changes in Tree-based Textual Documents. In
Cordeiro, J., Filipe, J. (Eds.), Proceedings of the 11th International Conference
on Enterprise Information Systems (ICEIS 2009). Berlin, Germany: Springer.

[52] Di Iorio, A., Musetti, A., Peroni, S., Vitali, F. (2010). Crowdsourcing semantic
content: a model and two applications. In Pardela, T. (Eds.), Proceedings of the
3rd International Conference on Human System Interaction (HSI10). Washing-
ton, District Columbia, USA: IEEE Computer Society.

[53] Di Iorio, A., Musetti, A., Peroni, S., Vitali, F. (2010). Ontology-driven gener-
ation of wiki content and interfaces. In New Review of Hypermedia and Multi-
media, 16 (1): 9-31. DOI: 10.1080/13614568.2010.497194.

[54] Di Iorio, A., Musetti, A., Peroni, S., Vitali, F. (2011). OWiki: enabling an
ontology-led creation of semantic data. In Hippe, Z. S., Kulikowski, J. L.,
Mroczek, T. (Eds.), Human-Computer Systems Interaction: Backgrounds and
Applications 2. Berlin, Germany: Springer. ISBN: 3642231711.

[55] Di Iorio, A., Peroni, S., Vitali, F. (2009). Towards markup support for full
GODDAGs and beyond: the EARMARK approach. In Proceedings of Balisage:
The Markup Conference 2009. Rockville, Maryland, USA: Mulberry Technolo-
gies, Inc. http://balisage.net/Proceedings/vol3/html/Peroni01/BalisageVol3-
Peroni01.html (last visited March 12, 2012).

[56] Di Iorio, A., Peroni, S., Vitali, F. (2010). Handling markup overlaps using
OWL. In Cimiano, P., Pinto, H. S. (Eds.), Proceedings of the 17th International
Conference on Knowledge Engineering and Knowledge Management (EKAW
2010). Berlin, Germany: Springer.

References 207

[57] Di Iorio, A., Peroni, S., Vitali, F. (2011). A Semantic Web Approach To Every-
day Overlapping Markup. In Journal of the American Society for Information
Science and Technology, 62 (9): 1696-1716. DOI: 10.1002/asi.21591.

[58] Di Iorio, A., Peroni, S., Vitali, F. (2011). Using Semantic Web technologies for
analysis and validation of structural markup. In International Journal of Web En-
gineering and Technologies, 6 (4): 375-398. DOI: 10.1504/IJWET.2011.043439.

[59] Di Iorio, A., Peroni, S., Vitali, F., Lumley, J., Wiley, T. (2009). Towards XML
Transclusions. In Vitali, F., Di Iorio, A., Blustein, J. (Eds.), Proceedings of
the 1st Workshop on New Forms of Xanalogical Storage and Function. Aachen,
Germany: Sun SITE Central Europe. http://ceur-ws.org/Vol-508/paper5.pdf
(last visited March 12, 2012).

[60] Dragan, L, Handschuh, S., Decker, S. (2011). The semantic desktop at work:
interlinking notes. In Ghidini, C., Ngonga Ngomo, A., Lindstaedt, S. N., Pel-
legrini, T. (Eds.), Proceedings the 7th International Conference on Semantic
Systems (I-SEMANTICS 2011). New York, New York, USA: ACM.

[61] Drummond, N., Rector, A., Stevens, R., Moulton, G., Horridge, M.,
Wang, H. H., Seidenberg, J. (2006). Putting OWL in Order: Pat-
terns for Sequences in OWL. In B. C. Grau, P. Hitzler, C. Shankey,
Evan Wallace (Eds.), Proceedings of the Workshop on OWL: Experi-
ences and Directions (OWLED 2006). Aachen, Germany: Sun SITE
Central Europe. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-216/submission 9.pdf (last visited March 12, 2012).

[62] Dubin, D. (2003). Object mapping for markup semantics. In Proceedings of
the Extreme Markup Languages 2003. Rockville, MD, USA: Mulberry Tech-
nologies, Inc. http://conferences.idealliance.org/extreme/html/2003/Dubin01/
EML2003Dubin01.html (last visited March 12, 2012).

[63] Dublin Core Metadata Initiative (2010). DCMI Metadata Terms. DCMI Recom-
mendation. http://dublincore.org/documents/dcmi-terms/ (last visited March
12, 2012).

[64] Dublin Core Metadata Initiative (2010). Dublin Core Metadata Element Set,
Version 1.1. DCMI Recommendation. http://dublincore.org/documents/dces/
(last visited March 12, 2012).

[65] Dublin Core Metadata Initiative (2010). Expressing Dublin Core meta-
data using HTML/XHTML meta and link elements. DCMI Recommendation.
http://dublincore.org/documents/dcq-html/ (last visited March 12, 2012).

208 References

[66] Durand, D. G. (1994). Palimpsest, a Data Model for Revision Control. Paper
presented at the Workshop on Collaborative Editing Systems, co-located with
the Computer Supported Cooperative Work Conference (CSCW94). October
22-26, 1994, Chapel Hill, North Carolina, USA.

[67] Durand, D. G. (2008). Palimpsest: Change-Oriented Concurrency Control for
the Support of Collaborative Applications. Charleston, SC, USA: CreateSpace.

[68] Ferdinand, M., Zirpins, C., Trastour, D. (2004). Lifting Xml Schema to Owl. In
Koch, N., Fraternali, P., Wirsing, M. (Eds.), Proceedings of the 4th International
Conference on Web Engineering 2004 (ICWE 2004). Berlin, Germany: Springer.

[69] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, Massachusetts, USA:
Addison-Wesley. ISBN: 0201633610.

[70] Gangemi, A. (2010). Submission: Participation.
http://ontologydesignpatterns.org/wiki/Submissions:Participation (last visited
March 12, 2012).

[71] Gangemi, A. (2010). Submission: Region.
http://ontologydesignpatterns.org/wiki/Submissions:Region (last visited
March 12, 2012).

[72] Gangemi, A. (2010). Submission: Sequence.
http://ontologydesignpatterns.org/wiki/Submissions:Sequence (last visited
March 12, 2012).

[73] Gangemi, A. (2010). Submission: TimeIndexedSituation.
http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedSituation
(last visited March 12, 2012).

[74] Gangemi, A., Peroni, S., Vitali, F. (2010). Literal Reification. In Proceedings
of the Workshop on Ontology Pattern 2010 (WOP 2010). Aachen, Germany:
Sun SITE Central Europe. http://CEUR-WS.org/Vol-671/pat04.pdf (last vis-
ited March 12, 2012).

[75] Gao, S., Sperberg-McQueen, C. M., Thompson, H. S. (2011). W3C
XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C
Candidate Recommendation 21 July 2011. World Wide Web Consortium.
http://www.w3.org/TR/xmlschema11-1/ (last visited March 12, 2012).

[76] Garcia, R., Celma, O. (2005) Semantic Integration and Retrieval of
Multimedia Metadata. In Proceedings of the 5th International Work-
shop on Knowledge Markup and Semantic Annotation (SemAnnot 2005).

References 209

Aachen, Germany: Sun SITE Central Europe. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-185/semAnnot05-07.pdf (last visited
March 12, 2012).

[77] Gardenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. Cam-
bridge, Massachusetts: USA. ISBN: 0262071991.

[78] Garlik, S. H., Seaborne, A. (2011). SPARQL 1.1 Query Language.
W3C Working Draft 12 May 2011. World Wide Web Consortium.
http://www.w3.org/TR/sparql11-query/ (last visited March 12, 2012).

[79] Gasevic, D., Djuric, D., Devedzic, V., Damjanovic, V. (2004). Converting UML
to OWL Ontologies. In Aßmann, U., Aksit, M., Rensink, A. (Eds.), Model
Driven Architecture, European MDA Workshops: Foundations and Applications
(MDAFA 2003 and MDAFA 2004). Berlin, Germany: Springer.

[80] Georg, R., Schonefeld, O., Trippel, T., Witt, A. (2010). Sustainabil-
ity of Linguistic Resources Revisited. In Proceedings of the Interna-
tional Symposium on XML for the Long Haul: Issues in the Long-term
Preservation of XML. Rockville, Maryland, USA: Mulberry Technologies,
Inc. http://www.balisage.net/Proceedings/vol6/html/Witt01/BalisageVol6-
Witt01.html (last visited March 12, 2012).

[81] Goldfarb, C. F. (1990). The SGML Handbook. New York, New York, USA:
Oxford University Press. ISBN: 0198537373.

[82] Groza, T., Handschuh, S., Decker, S. (2011). Capturing Rhetoric and Argu-
mentation Aspects within Scientific Publications. In Journal on Data Semantics
15: 1-36. DOI: 10.1007/978-3-642-22630-4 1.

[83] Groza, T., Handschuh, S., Möller, K., Decker, S. (2007). SALT – Semantically
Annotated LaTeX for Scientific Publications. In Franconi, E., Kifer, M., May, W.
(Eds.), Proceedings of the fourth European Semantic Web Conference (ESWC
2007). Berlin, Germany: Springer.

[84] Groza, T., Möller, K., Handschuh, S., Trif, D., Decker, S. (2007). SALT: Weav-
ing the claim web. In Aberer, K., Choi, K., Noy, N. F., Allemang, D., Lee, K.,
Nixon, L. J. B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (Eds.), Proceedings of 6th International Semantic Web Con-
ference and of the 2nd Asian Semantic Web Conference (ISWC 2007 + ASWC
2007). Berlin, Germany: Springer.

[85] Guarino, N., Welty, C. (2002). Evaluating ontological decisions with OntoClean.
In Communications of the ACM, 45 (2): 61-65. DOI: 10.1145/503124.503150.

210 References

[86] Guthrie, L., Pustejovsky, J., Wilks, Y., Slator, B. M. (1996). The role of lexicons
in Natural Language Processing. In Communications of the ACM, 39 (1): 63-72.
DOI: 10.1145/234173.234204.

[87] Hammond, T. (2008). RDF Site Summary 1.0 Modules: PRISM.
http://nurture.nature.com/rss/modules/mod prism.html (last visited March 12,
2012).

[88] Harnad, S., Brody, T. (2004). Comparing the Impact of Open Access (OA)
vs. Non-OA Articles in the Same Journals. In D-Lib Magazine, 10 (6). DOI:
10.1045/june2004-harnad.

[89] Harnad, S., Brody, T., Vallieres, F., Carr, L., Hitchcock, S., Gingras, Y., Op-
penheim, C., Stamerjohanns, H. and Hilf, E. R. (2004). The Access/Impact
Problem and the Green and Gold Roads to Open Access. In Serials Review, 30
(4): 310-314. DOI: 10.1016/j.serrev.2004.09.013.

[90] Harth, C., Gassert, H., O’Murchu, I., Breslin, J. G., Decker S., 2005.
WikiOnt: An Ontology for Describing and Exchanging Wikipedia Articles. In
Voss, J., Lih, A., Klein, S., Ma, C. (Eds.), Proceedings of Wikimania 2005.
http://meta.wikimedia.org/wiki/Wikimania05/Paper-IM1 (last visited March
12, 2012).

[91] Hayes, P., Welty, C. (2006). Defining N-ary Relations on the Semantic Web.
W3C Working Group Note, 12 April 2006. World Wide Web Consortium.
http://www.w3.org/TR/swbp-n-aryRelations/ (last visited March 12, 2012).

[92] Hickson, I. (2011). HTML5: A vocabulary and associated APIs for HTML
and XHTML. W3C Working Draft 25 May 2011. World Wide Web Consortium.
http://www.w3.org/TR/html5/ (last visited March 12, 2012).

[93] Hobbs, J .R., Pan, F. (2006). Time Ontology in OWL. W3C Working Draft,
27 September 2006. World Wide Web Consortium. http://www.w3.org/TR/owl-
time/ (last visited March 12, 2012).

[94] Horridge, M., Bechhofer, S. (2011). The OWL API: A Java API for OWL
ontologies. In Semantic Web – Interoperability, Usability, Applicability, 2 (1):
11-21. DOI: 10.3233/SW-2011-0025.

[95] Horridge, M., Patel-Schneider, P. (2009). OWL 2 Web Ontology Language:
Manchester Syntax. W3C Working Group Note October 27, 2009, World Wide
Web Consortium. http://www.w3.org/TR/owl2-manchester-syntax/ (last vis-
ited March 12, 2012).

References 211

[96] Horrocks, I., Patel-Schneider, P. F., Boley, H. Tabet, S., Grosof, B., Dean,
M. (2004). SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission 21 May 2004. World Wide Web Consortium.
http://www.w3.org/Submission/SWRL/ (last visited March 12, 2012).

[97] Huitfeldt, C., Sperberg-McQueen, C. M. (2003). TexMECS:
An experimental markup metalanguage for complex documents.
http://decentius.aksis.uib.no/mlcd/2003/Papers/texmecs.html (last visited
March 12, 2012).

[98] Iannella, R. (2010). Representing vCard Objects in RDF. W3C Mem-
ber Submission, 20 January 2010. World Wide Web Consortium.
http://www.w3.org/TR/vcard-rdf/ (last visited March 12, 2012).

[99] International Digital Enterprise Alliance (2009). Publishing Requirements
for Industry Standard Metadata Specification Version 2.0. Alexandria, VA,
USA: IDEAlliance. http://www.idealliance.org/specifications/prism (last visited
March 12, 2012).

[100] International Federation of Library Associations and Institutions
Study Group on the Functional Requirements for Bibliographic Records
(2009). Functional Requirements for Bibliographic Records Final Re-
port. International Federation of Library Associations and Institutions.
http://www.ifla.org/files/cataloguing/frbr/frbr 2008.pdf (last visited March 12,
2012).

[101] International STM publishing community (2007). Brussels Declaration on
STM Publishing. http://www.stm-assoc.org/brussels-declaration/ (last visited
March 12, 2012).

[102] Jakobson, R. (1960). Closing statements: Linguistics and Poetics. In Sebeok,
T. A. (Eds.), Style in language: 351-377. Cambridge, Massachusetts, USA: The
MIT Press. ISBN: 0262690101.

[103] JTC1/SC34 WG 4. (2011). ISO/IEC 29500-1:2011 – Information tech-
nology – Document description and processing languages – Office Open
XML File Formats – Part 1: Fundamentals and Markup Language Ref-
erence. Geneva, Switzerland: International Organization for Standardiza-
tion. http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?
csnumber=59575 (last visited March 12, 2012).

[104] JTC1/SC34 WG 6. (2006). ISO/IEC 26300:2006 – Information technol-
ogy – Open Document Format for Office Applications (OpenDocument)

212 References

v1.0. Geneva, Switzerland: International Organization for Standardiza-
tion. http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?
csnumber=43485 (last visited March 12, 2012).

[105] Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.
(2007). Ontology Visualization Methods – a Survey. ACM Computing Surveys,
39 (4). DOI: 10.1145/1287620.1287621.

[106] Katifori, A., Torou, E., Halatsis, C., Lepouras, G., Vassilakis, C. (2006). A
Comparative Study of Four Ontology Visualization Techniques in Protege: Ex-
periment Setup and Preliminary Results. In Proceedings of the 10th Interna-
tional Conference on Information Visualisation (IV 2006). Washington, District
Columbia, USA: IEEE Computer Society.

[107] Kay, J. Lum, A. (2003). An Ontologically Enhanced Metadata Editor. Uni-
versity of Sidney, School of Information Technologies, Technical Report 541.
http://www.it.usyd.edu.au/research/tr/tr541.pdf (last visited March 12, 2012).

[108] Kircz, J. G. (1991). Rhetorical structure of scientific articles: the case for
argumentational analysis in information retrieval. In Journal of Documentation,
47 (4): 354-372. DOI: 10.1108/eb026884.

[109] Klein, B., Höcht, C., Decker, B. (2005). Beyond Capturing and Maintaining
Software Engineering Knowledge – “Wikitology” as Shared Semantics, Work-
shop on Knowledge Engineering and Software Engineering. Presented during
the Workshop on Knowledge Engineering and Software Engineering at the
German Conference on Artificial Intelligence (KI 2005). Koblenz, Germany.
http://www.dfki.uni-kl.de/˜klein/papers/finalKESE05.pdf (last visited March
12, 2012).

[110] Knublauch, H., Horridge, M., Musen, M. A., Rector, A. L., Stevens, R., Drum-
mond, N., Lord, P. W., Noy, N. F., Seidenberg, J., Wang, H. (2005). The Protege
OWL Experience. In Grau, B. C., Horrocks, I., Parsia, B., Patel-Schneider, P. F.
(Eds.), Proceedings of the OWLED 05 Workshop on OWL: Experiences and Di-
rections. Aachen, Germany: SunSITE Central Europe. http://ceur-ws.org/Vol-
188/sub14.pdf (last visited March 12, 2012).

[111] Koutsomitropoulos, D.A., Solomou, G.D., Papatheodorou, T.S. (2008). Se-
mantic interoperability of dublin core metadata in digital repositories. In Pro-
ceedings of the 5th International Conference on Innovations in Information Tech-
nology. Washington, District Columbia, USA: IEEE Computer Society.

[112] Kriglstein, S. and Motschnig-Pitrik, R. (2008). Knoocks: A New Visualization
Approach for Ontologies. In Proceedings of the 12th International Conference

References 213

on Information Visualisation (IV 2008). Washington, District Columbia, USA:
IEEE Computer Society.

[113] Krotzsch, M., Simancik, F., Horrocks, I. (2011). A Description Logic
Primer. Ithaca, New York, New York: Cornell University Library.
http://arxiv.org/pdf/1201.4089v1 (last visited March 12, 2012).

[114] Lakoff, G. (1987). Women, Fire, and Dangerous Things. Chicago, Illinois:
USA. University Of Chicago Press. ISBN: 0226468046.

[115] Lakoff, G., Johnson M. (1980). Metaphors we live by. Chicago, Illinois: USA.
University Of Chicago Press. ISBN: 0226468011.

[116] Lawrence, S. (2001). Free online availability substantially increases a paper’s
impact. In Nature, 411 (6837): 521. DOI: 10.1038/35079151.

[117] Li, N., Motta, E. d’Aquin, M. (2010). Ontology summarization: an analysis
and an evaluation. In Gomez-Perez, A., Ciravegna, F., van Harmelen, F., Hefflin,
J. (Eds.), Proceedings of the International Workshop on Evaluation of Seman-
tic Technologies (IWEST 2010). Aachen, Germany: SunSITE Central Europe.
http://CEUR-WS.org/Vol-666/paper8.pdf (last visited March 12, 2012).

[118] Library of Congress - Network Development and MARK Standard Office
(2010). MARK 21 format for bibliographic data. 1999 edition, further updates
October 2001 and October 2010. http://www.loc.gov/marc/bibliographic/ (last
visited March 12, 2012).

[119] Marcoux, Y. (2006). A natural-language approach to modeling: Why
is some XML so difficult to write? In Proceedings of the Ex-
treme Markup Languages 2006. Rockville, MD, USA: Mulberry Technolo-
gies, Inc. http://conferences.idealliance.org/extreme/html/2006/Marcoux01/
EML2006Marcoux01.html (last visited March 12, 2012).

[120] Marcoux, Y. (2008). Graph characterization of overlap-only TexMECS and
other overlapping markup formalisms. In Proceedings of Balisage: The Markup
Conference 2008. Rockville, Maryland, USA: Mulberry Technologies, Inc.
http://www.balisage.net/Proceedings/vol1/html/Marcoux01/BalisageVol1-
Marcoux01.html (last visited March 12, 2012).

[121] Marcoux, Y., Rizkallah, E. (2009). Intertextual semantics: A semantics for
information design. Journal of the American Society for Information Science
and Technology, 60 (9): 1895-1906. DOI: 10.1002/asi.21134.

[122] Marinelli, P., Vitali, F., Zacchiroli, S. (2008). Towards the unification of for-
mats for overlapping markup. In New Review of Hypermedia and Multimedia,
14 (1): 57-94. DOI: 10.1080/13614560802316145.

214 References

[123] Miles, A., Bechhofer, S. (2009). SKOS Simple Knowledge Organization System
Reference. W3C Recommendation, 18 August 2009. World Wide Web Consor-
tium. http://www.w3.org/TR/skos-reference/ (last visited March 12, 2012).

[124] Moller, K., Bechhofer, S., Heath, T. (2009). Semantic Web Conference On-
tology. http://data.semanticweb.org/ns/swc/swc 2009-05-09.html (last visited
March 12, 2012).

[125] Montoya, E., Ruiz, M., Giraldo, J. (2005). BDNG: A Dublin Core-based ar-
chitecture for digital libraries. In Proceedings of the International Conference
on Dublin Core and Metadata Applications 2005. Singapore, Singapore: Dublin
Core Metadata Initiative.

[126] Motik, B., Patel-Schneider, P. F., Grau, B.C. (2009). OWL 2 Web Ontol-
ogy Language: Direct Semantics. W3C Recommendation 27 October 2009.
World Wide Web Consortium. http://www.w3.org/TR/owl2-direct-semantics/
(last visited March 12, 2012).

[127] Motik, B., Patel-Schneider, P. F., Parsia, B. (2009). OWL 2 Web
Ontology Language: Structural Specification and Functional-Style Syntax.
W3C Recommendation, 27 October 2009. World Wide Web Consortium.
http://www.w3.org/TR/owl2-syntax/ (last visited March 12, 2012).

[128] Motta, E., Mulholland, P., Peroni, S., D’Aquin, M., Gomez-Perez, J. M.,
Mendez, V., Zablith, F. (2011). A Novel Approach to Visualizing and Navigat-
ing Ontologies. In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N. F., Blomqvist, E. (Eds.), Proceedings of the 10th Interna-
tional Semantic Web Conference (ISWC 2011). Berlin, Germany: Springer.

[129] Motta, E., Peroni, S., d’Aquin, M. (2011). Latest Developments in KC-Viz.
To be presented during the demo session of the 10th International Semantic Web
Conference (ISWC 2011). Bonn, Germany.

[130] Motta, E., Peroni, S., Gómez-Pérez, J. M., d’Aquin, M., Ning Li, N. (2012).
Visualizing and Navigating Ontologies with KC-Viz. In Suárez-Figueroa, M.C.,
Gómez-Pérez, A., Motta, E., Gangemi, A. (Eds.), Ontology Engineering in a
Networked World. Berlin, Germany: Springer. ISBN: 3642247934.

[131] Motta, E., Peroni, S., Li, N., D’Aquin, M. (2010). KC-Viz: A Novel Ap-
proach to Visualizing and Navigating Ontologies. In a supplementary book of
the demo session of the 17th International Conference on Knowledge Engineering
and Knowledge Management (EKAW 2010). Lisbon, Portugal.

References 215

[132] Nelson, T. (1980). Literary Machines: The report on, and of, Project Xanadu
concerning word processing, electronic publishing, hypertext, thinkertoys, to-
morrow’s intellectual... including knowledge, education and freedom. Sausalito,
CA, USA: Mindful

[133] Nuzzolese, A., Gangemi, A., Presutti, V. (2010). Gathering Lexical Linked
Data and Knowledge Patterns from FrameNet. In Mark A. Musen, Óscar Corcho
(Eds.), Proceedings of the 6th International Conference on Knowledge Capture
(K-CAP 2011). New York, New York, USA: ACM.

[134] Object Management Group (2009). Ontology Definition Metamodel (ODM)
Version 1.0. http://www.omg.org/spec/ODM/1.0/PDF (last visited March 12,
2012).

[135] Object Management Group (2011). Unified Modeling LanguageTM (UML R©).
http://www.omg.org/spec/UML/2.4/ (last visited March 12, 2012).

[136] Odlyzko, A. (2002). The rapid evolution of scholarly communication. In
Learned Publishing, 15 (1): 7-19. DOI: 10.1087/095315102753303634.

[137] Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello,
G. (2008). Sindice.com: a document-oriented lookup index for open linked data.
In International Journal of Metadata, Semantics and Ontologies, 3 (1): 37-52.
DOI: 10.1504/IJMSO.2008.021204.

[138] Passant, A., Laublet, P. (2008). Towards an Interlinked Semantic Wiki Farm.
In Lange, C., Schaffert, S., Skaf-Molli, H., Völkel M. (Eds.), Proceedings of the
3rd Semantic Wiki Workshop (SemWiki 2008). Aachen, Germany: SunSITE
Central Europe. http://ceur-ws.org/Vol-360/paper-19.pdf (last visited March
12, 2012).

[139] Peirce, C. S. (1958). Collected Papers of Charles Sanders Peirce. Hartshorne,
C., Weiss, P. (Eds.). Cambridge, Machassusset, USA: Harvard University Press.
ISBN: 0674138001.

[140] Peroni, S., Gangemi, A., Vitali, F. (2011). Dealing with Markup Semantics.
In Ghidini, C., Ngonga Ngomo, A., Lindstaedt, S. N., Pellegrini, T. (Eds.), Pro-
ceedings the 7th International Conference on Semantic Systems (I-SEMANTICS
2011). New York, New York, USA: ACM.

[141] Peroni, S., Motta, E., d’Aquin, M. (2008). Identifying key concepts in an on-
tology, through the integration of cognitive principles with statistical and topo-
logical measures. In Domingue, J., Anutariya, C. (Eds.), Proceedings of the 3rd
Asian Semantic Web Conference (ASWC 2008). Berlin, Germany: Springer.

216 References

[142] Peroni, S., Vitali, F. (2009). Annotations with EARMARK for arbitrary, over-
lapping and out-of order markup. In Borghoff, U. M., Chidlovskii, B. (Eds.),
Proceedings of the 2009 ACM Symposium on Document Engineering (DocEng
2009). New York, New York, USA: ACM.

[143] Picca, D., Gliozzo, A., Gangemi, A. (2008). LMM: an OWL-DL MetaModel to
Represent Heterogeneous Lexical Knowledge. In Proceedings of the 6th Language
Resource and Evaluation Conference (LREC 2008). Luxembourg, Luxembourg:
European Language Resources Association.

[144] Plaisant, C., Grosjean, J., and Bederson, B. B. (2002). Spacetree: Supporting
Exploration in Large Node Link Tree, Design Evolution and Empirical Eval-
uation. In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis 2002). Washington, District Columbia, USA: IEEE Computer Society.

[145] Portier, P., Calabretto, S. (2009). Methodology for the construc-
tion of multi-structured documents. In Proceedings of Balisage: The
Markup Conference 2009. Rockville, Maryland, USA: Mulberry Technolo-
gies, Inc. http://balisage.net/Proceedings/vol3/html/Portier01/BalisageVol3-
Portier01.html (last visited March 12, 2012).

[146] Presutti, V., Gangemi, A. (2008). Content Ontology Design Patterns as prac-
tical building blocks for web ontologies. In Li, Q., Spaccapietra, S., Yu, E. S. K.,
Olivé, A. (Eds.), Proceedings of the 27th International Conference on Conceptual
Modeling (ER 2008). Berlin, Germany: Springer.

[147] Prud’hommeaux, E., Carothers G. (2011). Turtle, Terse RDF Triple Lan-
guage. W3C Working Draft 09 August 2011, World Wide Web Consortium.
http://www.w3.org/TR/turtle/ (last visited March 12, 2012).

[148] Rector, A. (2003). Modularisation of Domain Ontologies Implemented in De-
scription Logics and related formalisms including OWL. Gennari, J. H., Porter,
B. W., Gil, Y., (Eds.), Proceedings of the 2nd International Conference on
Knowledge Capture (K-CAP 2003). New York, New York, USA: ACM.

[149] Renear, A., Dubin, D., Sperberg-McQueen, C. M. (2002). Towards a Semantics
for XML Markup. In the Proceedings of the 2002 ACM Symposium on Document
Engineering. New York, New York, USA: ACM.

[150] Renear, A., Dubin, D., Sperberg-McQueen, C. M., Huitfeldt, C. (2003). XML
Semantics and Digital Libraries. In the Proceedings of the 3rd ACM/IEEE-CS
Joint Conference on Digital Libraries. Washington, District Columbia, USA:
IEEE Computer Society.

References 217

[151] Riggs, K.R. (2002). XML and Free Text. Journal of the American Society for
Information Science and Technology, 53 (6): 526-528. DOI: 10.1002/asi.10063.

[152] Rodrigues, T., Rosa, P., Cardoso, J. (2006). Mapping Xml to Existing Owl
Ontologies. In Nunes, M. B., Isáıas, P., Mart́ınez, I. J. (Eds.), Proceedings of
the IADIS International conference on WWW/Internet 2006. Lisbon, Portugal:
IADIS.

[153] Rosch, E. (1978). Principles of categorization. In Rosch, E., Lloyd, B. (Eds.),
Cognition and Categorisation. New Jersey, USA: Lawrence Erlbaum. ISBN:
0470263778.

[154] Sahoo, S., McGuinness, D. (2011). The PROV Ontology: Model and Formal
Semantics. W3C Working Draft, 13 December 2011. World Wide Web Consor-
tium. http://www.w3.org/TR/prov-o/ (last visited March 12, 2012).

[155] Saussure, F. (2006). Writings in General Linguistics. New York, New York,
USA: Oxford University Press. ISBN: 019926144X.

[156] Schaffert, S. (2006). IkeWiki: A Semantic Wiki for Collaborative Knowledge
Management. In Proceedings of 15th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises (WETICE 2006).
Washington, District Columbia, USA: IEEE Computer Society.

[157] Schmidt, D. (2009). Merging Multi-Version Texts: a Generic So-
lution to the Overlap Problem. In Proceedings of Balisage: The
Markup Conference 2009. Rockville, Maryland, USA: Mulberry Technolo-
gies, Inc. http://balisage.net/Proceedings/vol3/html/Schmidt01/BalisageVol3-
Schmidt01.html (last visited March 12, 2012).

[158] Schmidt, D., Colomb, R. (2009). A data structure for representing multi-
version texts online. In International Journal of Human-Computer Studies, 67
(6): 497-514. DOI: 10.1016/j.ijhcs.2009.02.001.

[159] Schneider, J., Groza, T., Passant, A. (2011). A Review of Argumentation
for the Social Semantic Web. Accepted for publication with Major Revision in
Semantic Web – Interoperability, Usability, Applicability. http://www.semantic-
web-journal.net/sites/default/files/swj138.pdf (last visited March 12, 2012).

[160] Schonefeld, O., Witt, A. (2006). Towards validation of con-
current markup. In Proceedings of the Extreme Markup Lan-
guages 2006. Rockville, MD, USA: Mulberry Technologies, Inc.
http://conferences.idealliance.org/extreme/html/2006/Schonefeld01/
EML2006Schonefeld01.html (last visited March 12, 2012).

218 References

[161] Searle, J. (1970). Speech Acts: An Essay in the Philosophy of Language.
Cambridge, UK: Cambridge University Press. ISBN: 052109626X.

[162] Shneiderman, B. (1992). Tree Visualization with Tree-Maps: A 2d Space-
Filling Approach. In ACM Transactions on Graphics, 11 (1): 92-99. DOI:
10.1145/102377.115768.

[163] Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations. In Proceedings of the 1996 IEEE Symposium on
Visual Languages (VL ’96). Washington, District Columbia, USA: IEEE Com-
puter Society.

[164] Shotton, D. (2009). Semantic Publishing: the coming revolution in scientific
journal publishing. Learned Publishing, 22 (2): 85-94. DOI: 10.1087/2009202.

[165] Shotton, D. (2010). CiTO, the Citation Typing Ontology. In Journal of
Biomedical Semantics, 1 (1): S6. DOI: 10.1186/2041-1480-1-S1-S6.

[166] Shotton, D., Caton, C., Klyne, G. (2010). Ontologies for sharing, ontolo-
gies for use. http://ontogenesis.knowledgeblog.org/2010/01/22/ontologies-for-
sharing/ (last visited 12 March, 2012).

[167] Shotton, D., Portwin, K., Klyne, G., Miles, A. (2009). Adventures in Seman-
tic Publishing: Exemplar Semantic Enhancements of a Research Article. PLoS
Computational Biology, 5 (4): e1000361. DOI: 10.1371/journal.pcbi.1000361.

[168] Simon, J., Birukou, A., Casati, F., Casati, R.,
Marchese, M. (2011). Liquid Publications Green Paper.
http://peerevaluation.org/data/ca75910166da03ff9d4655a0338e6b09/PE doc
28223.pdf (last visited March 12, 2012)

[169] Simons, G. F., Lewis, W. D., Farrar, S. O., Langendoen, D. T., Fitzsimons,
B., Gonzalez, H. (2004). The semantics of markup: mapping legacy markup
schemas to a common semantics. In Proceedings of the Workshop on NLP and
XML (NLPXML-2004). Stroudsburg, Pennsylvania, USA: Association for Com-
putational Linguistics. http://acl.ldc.upenn.edu/acl2004/nlpxml/pdf/simons-
etal.pdf (last visited March 12, 2012).

[170] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y. (2007). Pellet: A
practical OWL-DL reasoner. In Journal of Web Semantics, 5 (2): 51-53. DOI:
10.1016/j.websem.2007.03.004.

[171] Solomon, J. S. (2008). Developing Open Access Journals: A Practical Guide.
Chandos Publishing (Oxford) Limited, Oxford, UK. ISBN: 1843343394.

References 219

[172] Souza, K., Dos Santos, A., Evangelista, S. (2003). Visualization of Ontolo-
gies through Hypertrees. In Proceedings of the Latin American Conference on
Human-Computer Interaction. New York, New York: ACM.

[173] Souzis, A. (2005). Building a Semantic Wiki. In IEEE Intelligent Systems, 20
(5): 87-91. DOI: 10.1109/MIS.2005.83.

[174] Sowa, J. F. (1987). Semantic Networks. In Shapiro, S. C. (Eds.), Encyclopedia
of Artificial Intelligence. New York, New York, USA: John Wiley & Sons. ISBN:
0471503053.

[175] Sperberg-McQueen, C. M. (2006). Rabbit/duck grammars: a validation
method for overlapping structures. In Proceedings of Extreme Markup Lan-
guages Conference 2006. Rockville, Maryland, USA: Mulberry Technologies, Inc.
http://conferences.idealliance.org/extreme/html/2006/SperbergMcQueen01/
EML2006SperbergMcQueen01.html (last visited March 12, 2012).

[176] Sperberg-McQueen, C. M., Huitfeldt, C. (2004). GODDAG: A Data Structure
for Overlapping Hierarchies. In P. R. King, E. V. Munson (Eds.), Proceeding of
the 5th International Workshop on the Principles of Digital Document Processing
(PODDP 2000). Berlin, Germany: Springer.

[177] Sperberg-McQueen, C. M., Huitfeldt, C., Renear, A.. (2000). Meaning and
interpretation of markup. In Markup Languages: Theory & Practice, 2 (3): 215-
234. DOI: 10.1162/109966200750363599.

[178] Sperberg-McQueen, C. M., Marcoux, Y., Huitfeldt, C. (2009). Two repre-
sentations of the semantics of TEI Lite. In Proceedings of Digital Humani-
ties 2010. 7-10 July 2010, London, UK. http://dh2010.cch.kcl.ac.uk/academic-
programme/abstracts/papers/html/ab-663.html (last visited March 12, 2012).

[179] Storey, M. A., Musen, M.A., Silva, J., Best, C., Ernst, N., Fergerson,
R. Noy, N.F. (2001). Jambalaya: Interactive visualization to enhance ontol-
ogy authoring and knowledge acquisition in Protege. Presented during the
K-CAP 2001 Workshop on Interactive Tools for Knowledge Capture. Vic-
toria, Canada. http://www.isi.edu/˜blythe/kcap-interaction/papers/storey.pdf
(last visited March 12, 2012).

[180] Styles, R., Ayers, D., Shabir, N. (2008). Semantic Marc, MARC21 and
The Semantic Web. In C. Bizer, T. Heath, K. Idehen & Berners-Lee, T.
(eds.), Proceedings of the Workshop on Linked Data on the Web (LDOW2008).
Aachen, Germany: SunSITE Central Europe. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-369/paper02.pdf (last visited March 12,
2012).

220 References

[181] Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (2012).
Ontology Engineering in a Networked World. Berlin, Germany: Springer. ISBN:
3642247934.

[182] Swan, A. (2009). The Open Access citation advantages: Studies and results to
date. Technical Report, School of Electronics & Computer Science, University
of Southampton. http://eprints.ecs.soton.ac.uk/18516/ (last visited March 12,
2012).

[183] Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B. (2006).
OntoQA: Metric-based ontology quality analysis. In Proceedings of the IEEE
Workshop on Knowledge Acquisition from Distributed, Autonomous, Semanti-
cally Heterogeneous Data and Knowledge Sources. November 27, 2005, Huston,
Texas, USA. http://lsdis.cs.uga.edu/library/download/OntoQA.pdf (last visited
March 12, 2012).

[184] Tejo-Alonso, C., Berrueta, D., Polo, L., Fernandez, S. (2011). Metadata for
Web Ontologies and Rules: Current Practices and Perspectives. In Garćıa-
Barriocanal, E., Cebeci, Z., Okur, M. C., Öztürk, A. (Eds.), Proceeding of the
5th Interational Conference on Metadata and Semantic Research (MTSR 2011).
Berlin, Germany: Springer.

[185] Tennison, J., Piez, W. (2002). The Layered Markup and Annotation Language
(LMNL). Presented at the Extreme Markup Languages Conference 2002. 4-9
August 2002, Montreal, Canada.

[186] Text Encoding Initiative Consortium (2005). TEI P5: Guidelines for Elec-
tronic Text Encoding and Interchange. Charlottesville, Virginia, USA: TEI Con-
sortium. http://www.tei-c.org/Guidelines/P5 (last visited March 12, 2012).

[187] Toulmin, S. (1959). The uses of argument. Cambridge, UK: Cambridge Uni-
versity Press. ISBN: 0521827485.

[188] Tummarello, G., Morbidoni, C., Pierazzo, E. (2005). Toward Textual Encoding
Based on RDF. In Milena Dobreva, Jan Engelen (Eds.), Proceedings of the 9th
ICCC International Conference on Electronic Publishing (ELPUB2005). Leuven,
Belgium: Peeters Publishing Leuven.

[189] Van Deursen, D., Poppe, C., Martens, G., Mannens, E., Van de Walle, R.
(2008). XML to RDF Conversion: a Generic Approach. In Nesi, P., Delgado, J.,
Ng, K. (Eds.), Proceedings of the 4th International Conference on Automated
solutions for Cross Media Content and Multi-channel Distribution (AXMEDIS
08). Florence, Italy: Firenze University Press.

References 221

[190] Van Rijsbergen, C. J. (1986). A new theoretical framework for information
retrieval. In Proceedings of the 9th annual international ACM SIGIR conference
on Research and development in information retrieval (SIGIR86). New York,
New York, USA: ACM.

[191] Varma, P. (2010). Project Documents Ontology. http://vocab.deri.ie/pdo (last
visited March 12, 2012).

[192] Vrandecic, D., Krötzsch, M. (2006). Reusing Ontological Background Knowl-
edge in Semantic Wikis. In Völkel, M., Schaffert, S. (Eds.), Proceedings of
the 1st Semantic Wiki Workshop –From Wiki To Semantics (SemWiki 2008).
Aachen, Germany: SunSITE Central Europe. http://www.ceur-ws.org/Vol-
206/paper2.pdf (last visited March 12, 2012).

[193] Všlkel, M., Krštzsch, M., Vrandecic, D., Haller, H., Studer, R. (2006). Seman-
tic wikipedia. In Carr, L., De Roure, D., Iyengar, A., Goble, C. A., Dahlin, M.
(Eds.), Proceedings of the 15th international conference on World Wide Web
(WWW 2006). New York, New York, USA: ACM.

[194] Walsh, N. (2010). DocBook 5: The Definitive Guide. Sebastopol, CA, USA:
O’Really Media. Version 1.0.3. ISBN: 0596805029.

[195] Wan, S., Paris, C., Dale, R. (2010). Supporting browsing-specific information
needs: Introducing the Citation-Sensitive In-Browser Summariser. In Journal of
Web Semantics, 8 (2-3): 196-202. DOI: 10.1016/j.websem.2010.03.002.

[196] Wang, T. D., Parsia, B. (2006). Cropcircles: Topology Sensitive Visualization
of Owl Class Hierarchies. In Cruz, I. F., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M, Aroyo, L. (Eds.), Proceedings of the 5th In-
ternational Semantic Web Conference (ISWC 2006). Berlin, Germany: Springer.

[197] Woods, W. A. (1975). What’s in a Link: Foundations for Semantic Networks.
In Bobrow, D., Collins, A. (Eds.), Representation and Understanding: Stud-
ies in Cognitive Science. New York, New York, USA: Academic Press. ISBN:
0121085503.

[198] Yang, K., Steele, R., Lo, A. (2007). An Ontology for Xml Schema to Ontol-
ogy Mapping Representation. In Kotsis, G., Taniar, D., Pardede, E., Ibrahim, I.
K. (Eds.), Proceedings of the 9th International Conference on Information Inte-
gration and Web-based Applications & Services (iiWAS 2007). Vienna, Austria:
Austrian Computer Society.

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	The digital publishing revolution
	Towards semantics-aware markup languages
	Overlapping markup
	Markup semantics and semantic markup
	Metadata schema, vocabularies and ontologies for publishing
	Dublin Core
	PRISM
	BIBO
	MARC 21
	FRBR
	SWAN Citations Ontology
	SKOS
	How to help users: tools and applications for semantic data
	Ontology documentation
	Ontology sense-making
	Visual modelling of ontologies
	Authoring tools for ontologies
	Projects, conferences and initiatives about Semantic Publishing
	JISC's Open Citation and Open Bibliography projects
	JISC's Lucero project
	SePublica and Linked Science
	Beyond Impact, the PDF and Research Communication
	New Models of Semantic Publishing in Science
	Enhancing markup documents
	EARMARK, a Semantic Web approach to metamarkup
	Ghost classes
	Shell classes
	An example and an API
	The issue of overlapping markup
	Range and markup item overlap
	EARMARK as a standoff notation
	Looking for authorial changes in Office Documents
	EARMARK for processing office documents
	An evaluation

	Overlapping with Microformats and RDFa

	Wikis: no overlapping where some should be
	Structural validation of semantically-defined markup
	Defining content-models on EARMARK documents
	Structural patterns
	Assessing structural patterns on EARMARK documents
	Experimental results
	Validation of document markup
	Dealing with Markup Semantics
	Searches on heterogeneous digital libraries
	Validation of ``Markup sensibility''
	The Semantic Publishing And Referencing Ontologies
	Representing bibliographic information using FaBiO
	Bibliographic reference metadata encoding using DC Terms
	Bibliographic reference metadata encoding using BIBO
	Bibliographic reference metadata encoding using FRBR
	Bibliographic reference metadata encoding using FaBiO
	Using external models
	Extending FRBR within FaBiO
	Categorising bibliographic resources with SKOS
	Characterising citations with CiTO
	Documents and their bibliographic references
	Describing the bibliographic reference lists of articles with BiRO
	An URI for the reference
	Semantic enhancement of literal elements in references
	EARMARK ranges for describing references
	C4O: how much, where and what someone is citing
	Characterising document parts with DoCO
	Building blocks for structuring documents
	Mixing rhetorical characterisation and structural components
	In the past you were it, now you are not it
	Using class subsumptions
	Using property links
	Using inter-linked classes
	Using n-ary class modelling
	A general pattern for roles and statuses
	Querying a TOC-based model via SPARQL
	Reusing external classes as categories
	Constructing second-order inferences
	Identifying person's roles with PRO
	Specifying document statuses with PSO
	Describing publishing workflows with PWO
	How communities uptake SPAR
	SWAN ontology
	CiteULike
	WordPress
	Linked Education
	Virtual Observatory
	Open Citations Corpus
	WebTracks
	Società editrice il Mulino
	Utopia
	Interfaces for the masses
	LODE: generating HTML documentation from ontologies
	What axioms are used to create the documentation
	Special parameters to call the service
	Parameter ``owlapi''
	Parameter ``imported''
	Parameter ``closure''
	Parameter ``reasoner''
	Parameter ``lang''

	URI fragments
	Content negotiation via .htaccess
	KC-Viz, a tool for visualising and navigating ontologies
	Key Concept Extraction
	KC-Viz main features
	Description of nodes and arcs
	Expansion
	Hiding
	Refresh visualization
	Integration with NeOn
	Dashboard
	Preferences

	Empirical evaluation
	Graffoo, a framework for visual ontology modelling
	Introducing classes and properties
	Defining restrictions and additional class axioms
	Linking class individuals
	Defining assertions between ontologies

	Gaffe, a flexible and user-friendly authoring tool for semantic data
	OWiki: ontology-driven generation of templates and forms for semantic wikis
	The architecture of OWiki
	Using ontologies to model the domain
	Using ontologies to model the interface
	Studying OWiki through a use-case
	From ontologies to forms
	Forms customization and filling
	From semantic data to templates and views

	Conclusions
	EARMARK: future works
	SPAR: future works
	LODE: future works
	KC-Viz: future works
	Graffoo: future works
	Gaffe: future works
	References

