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Introduction

In the last decades the scienti�c community was able to build a cosmological
standard model which explains coherently many observational data. This
model, based on the gravitational theory condensed in Einstein's General
Relativity, is able to describe properly both the measured expansion of the
Universe and the formation of cosmic structures we observe. According to the
standard model, the baryonic matter that forms planets, stars and galaxies
represent only a tiny fraction (∼ 4%) of the total matter/energy content of
the Universe. The major components are the so-called Dark Matter, which
drives the gravitational collapse and accounts for∼ 23% of the matter/energy
content, and the Dark Energy, which gives rise to the accelerated expansion
of the Universe and is nowadays dominant, containing ∼ 73% of the energy
of the Universe. Unfortunately, our knowledge of the nature of these two
components is very limited. We detect Dark Matter through the gravitational
force it produces, but its electromagnetic interactions must be very weak as
we are not able to observe it emitting or absorbing photons. Dark Energy is
even more subtle: we do not even know if it exists as a separate �eld or it is
the consequence of some unknown physics.

In order to gain new insights on these mysterious components of the Uni-
verse, and to improve the very basic description we are able to o�er, a new
experimental e�ort is needed. From this point of view, a very useful cosmo-
logical tool is cosmic shear, i.e. the analysis of the small distortions in the
shapes of observed galaxies produced by the intervening large-scale structure.
The strength of this observable lies in the fact that few physical assumptions
are needed to extract cosmological information from the data. In fact, the
lensing e�ect is due to the total matter distribution along the line of sight, ir-
respectively of its nature, temperature, pressure, chemistry and so on. From
the statistical analysis of observed shapes of galaxies it is possible to draw
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very precise measurements of cosmological parameters, such as the equation
of state of Dark Energy. Moreover, with large data-sets of galaxies, such as
those obtained from weak lensing observations, other important cosmological
probes can be derived, such as the abundance of galaxy clusters as a function
of mass and redshift. Clusters of galaxies grew from the highest peaks in the
primordial density �uctuations and are the largest objects which are gravi-
tationally bound. Their distribution thus describes both the original density
�eld and the history of cosmic growth.

To unfold all the cosmological potential of these observables, many dan-
gerous systematics must be put under control. In particular, the measure of
cosmic shear needs a large angular density of observed galaxies to kill the
statistical uncertainty due to the distribution of intrinsic shapes and a very
good redshift measurement to slice the sample and observe the growth of
cosmic structures as a function of redshift. The employment of clusters of
galaxies as cosmological tools depend on the ability to detect complete and
pure samples from the data, and to obtain a robust measurement of their
mass. Simulations of observations, that reproduce in a realistic way many
sources of noise present in the real data, are thus a very useful way to test
performances of instruments, surveys and analysis tools. Submitting mock
observations to programs that are usually run on real data, it is possible
to test the performances of future observations, and the precision of output
data that will be used for cosmology.

In this work we show our technique to perform simulations of observations
and we apply this tool to a future space-based mission named Euclid. Euclid
is an ESA-approved satellite that aims to measure with unprecedented pre-
cision the expansion of the Universe and the formation of structures through
two main independent observables: cosmic shear and galaxy clustering. In
particular we will focus on the precision of photometric redshift measure-
ments and on the amount of clusters that will be detected in Euclid data.
The outline of the Thesis is as follows:

• In Chapter 1 we will overview the description of the history of the
Universe which makes up the cosmological standard model. We will
describe �rst the evolution of the smooth background, focusing on the
accelerating expansion which shows us the e�ect of Dark Energy, and
then on the formation of cosmic structures and on how the biggest of
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INTRODUCTION

them can be used as tracers of cosmological parameters.

• In Chapter 2 we will introduce gravitational lensing in general and
then focus on cosmic shear, both from the theoretical and from the
observational point of view. In the last Section, we introduce the main
characteristics and expected performances of the Euclid mission.

• In Chapter 3 we will describe our code to perform realistic simulations
of observations and we will show an application to the estimate of
cluster masses from lensing data.

• Chapter 4 is devoted to the discussion of cluster detection from optical
data. In particular, we will describe the construction of an optimal
�lter for cluster detection from galaxy distribution and we will show
its usage on real data from the COSMOS survey.

• In Chapter 5 we will apply the techniques described in the previous
Chapters to the Euclid survey. We will �rst use mock images to esti-
mate the precision of photometric redshift measurements, and then we
will make use of this knowledge to assess the ability of detecting galaxy
clusters from photometric catalogues.

• In the Conclusions we will summarise the research work presented in
this Thesis and present our main results.
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Chapter 1

Cosmology

1.1 Evolution of background

1.1.1 Robertson-Walker metric

The global evolution of the Universe is governed by gravity, which is de-
scribed by Einstein's General Relativity. This theory connects the geometry
of the four-dimensional space-time to the distribution of energy, including
that in the form of matter or radiation. To describe the global dynam-
ics of the Universe, we need to make some assumptions about its symme-
tries. In particular, we postulate the so-called Cosmological Principle, which
states that the Universe is homogeneous and isotropic. This means that
the three-dimensional space geometry must be invariant under rotations or
translations. This assumption is supported by the observation of the Cosmic
Microwave Background, the imprint of the conditions of the Universe at its
early stage, whose inhomogeneities are at the 10−5 level. At the present age,
the existence of stars and galaxies means that the homogeneity is valid only
for certain scales, namely those larger than the biggest structures. However,
this does not a�ect our considerations as long as these scales are much smaller
of the cosmological distances between these structures. In fact, we will �rst
describe the evolution of an ideal smoothed Universe and then focus on how
residual inhomogeneities grew to form cosmic structures.

There are three geometrical surfaces that ful�l the aforementioned as-
sumptions, with the following line elements:

5



1.1. EVOLUTION OF BACKGROUND

• hypersphere

dl2 =
dr2

1− r2
+ r2(dθ2 + θ2dφ2) (1.1)

• hyperplane

dl2 = dr2 + r2(dθ2 + θ2dφ2) (1.2)

• hyperboloid

dl2 =
dr2

1 + r2
+ r2(dθ2 + θ2dφ2) . (1.3)

In the previous de�nitions, r represents the distance coordinate, while θ and
φ are the angular coordinates. The di�erent line elements can be summarised
in the form

dl2 =
dr2

1−Kr2
+ r2(dθ2 + θ2dφ2) , (1.4)

where the constant K is 0 in case of a �at geometry, +1 in case of a closed
geometry, and -1 in case of an open one.

The Cosmological Principle allows us to de�ne the so-called cosmic time

t, that is the proper time of a particle travelling perpendicular to the homo-
geneous three-dimensional space. Given the symmetry of the Universe, its
evolution is described by a single scalar function a(t), that modulates the
distance scale as a function of time. The complete space-time line element is
thus

ds2 = (cdt)2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.5)

the so-called Robertson-Walker metric. The geometry of the space-time,
generally contained in the tensor G, is thus described by the constant K and
the scalar function a(t) only. They are linked to the energy content of the
Universe through the Einstein equation,

Gαβ =
8πG

c2
Tαβ + Λgαβ , (1.6)

where T is the energy-momentum tensor and the last term, proportional
to the metric tensor g, was introduced by Einstein to allow the existence
of a static Universe. The content of the Universe is generally described as
a perfect �uid, where the only non-zero terms of T are the diagonal ones,
explicitly (ρc2, p, p, p).
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CHAPTER 1. COSMOLOGY

1.1.2 Redshift

As the scale factor a(t) varies with time, the wavelength of the photons
changes during their path from the place where they are emitted to the ob-
server. In particular, in an expanding phase of the Universe, as the one we
are experiencing, the so-called cosmological redshift takes place. If the coor-
dinates of the source and of the observer do not change as a function of time,
leaving apart the e�ect of the expansion of the Universe, their (comoving)
distance is

dc =

∫ r

0

dr′

(1−Kr′)1/2
=

∫ to

te

cdt

a(t)
=

∫ to+δto

te+δte

cdt

a(t)
. (1.7)

Considering two photons that were emitted in times separated by a little
interval δte this implies

δte
a(te)

=
δto
a(to)

, (1.8)

where δto is the (little) interval between their arrival times. Thus, as the
emitted frequency νe is inversely proportional to the emitting time, we can
write

δto
δte

=
νe
νo

=
λo
λe
. (1.9)

The redshift z is de�ned as

z ≡ λo − λe
λe

. (1.10)

From Eqs. (1.8) e (1.9) we can get the relation between the redshift and
scale factor:

1 + z =
a(to)

a(te)
. (1.11)

The redshift of an astronomical source can then be interpreted as a measure
of the expansion su�ered by the Universe between the times in which the
photons were emitted and observed.

1.1.3 Friedmann equations

Given the assumptions we made on the geometry and the energy content
of the Universe, equation (1.6) can be converted in the so-called Friedmann
equations:

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
(1.12)
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1.1. EVOLUTION OF BACKGROUND

(
ȧ

a

)2

=
8πGρ

3
− Kc2

a2
+

Λ

3
, (1.13)

where dots represent derivatives with respect of time.
In many interesting cases, the relation between pressure and density of a

perfect �uid can be expressed as

p = wρc2 . (1.14)

In particular, we have w ∼ 0 for non-relativistic matter and w = 1/3 for
radiation. In the rest of this Section we assume that the free parameter
Λ, called cosmological constant, is null. We will come back to this point in
Sect. 1.1.7. In case of a �at geometry, the Friedmann equations can then be
solved to write

a(t) = a0(t/t0)
2
3

(1+w) . (1.15)

Thus, the expansion of the Universe proceeds as

a(t) = a0(t/t0)2/3 (1.16)

in case the �uid is made by matter, and

a(t) = a0(t/t0)1/2 (1.17)

if it is made by radiation. It is worthful to notice that in both cases the
expansion of the Universe is decelerated by the gravitational attraction acting
on the �uid itself. The derivative ȧ goes as (t/t0)−

1
3

(1+w) and thus the velocity
of the expansion remains always positive but tends to zero when the time
goes to in�nity. In case the geometry is not �at, Eqs. 1.16 and 1.17 are
not valid anymore. In particular, a closed universe will reach a maximum
value of a, where ȧ is equal to zero, after which the expansion stops and the
universe collapses back. On the other hand, an open universe will continue
its expansion inde�nitely, with a speed ȧ that remains positive and does not
tend to zero, in opposition to the �at case.

A general feature of these models is that for small values of t, a tends to
zero, indicating the existence of a period when the dimensions of the Uni-
verse were extremely small, from which the so-called Big Bang started. The
validity of this description ends when the size of the Universe becomes so
small that the Heisenberg principle comes into play on cosmological scales.
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CHAPTER 1. COSMOLOGY

This is the Planck era, that lasted around 10−43 seconds, when the quan-
tum �uctuations were active on the scale of the cosmological horizon, and
therefore are not negligible, neither in �rst approximation.

1.1.4 Critical density

The actual geometry of the space-time depends on the energy content of the
Universe. In fact, Eq. 1.13 can be rewritten as

H2 =
8πGρ

3
− Kc2

a2
, (1.18)

where we substituted the Hubble constant H to ȧ/a. At the present time t0,
the relation between the geometry parameter K and the energy density is

ρ0 =
3

8πG

(
H2

0 +
Kc2

a2

)
, (1.19)

where we indicated with the subscript 0 the quantities evaluated at t0. We
can then de�ne the critical density ρcr as the density the Universe would
have if the geometry was �at:

ρcr,0 =
3H2

0

8πG
. (1.20)

If the present density of the Universe is bigger than ρcr,0, we have K > 0

and the geometry is closed; if it is smaller than ρcr,0, K is negative and the
geometry is open. (K can always be rescaled to 1 or -1, changing accordingly
a and r, without a�ecting any physical quantity.) It is usual to rephrase this
in terms of the density parameter Ω0, de�ned as

Ω0 ≡
ρ0

ρcr,0
. (1.21)

Then, the geometry of the Universe will change if Ω0 is bigger, equal to, or
smaller than 1. It is important to note that to this end it is not important
what the Universe is made of; if di�erent components are present, the geom-
etry of the Universe will be determined by the sum of their densities. Thus,
Eq. 1.20 can be used as an absolute scale to measure the amount of the each
ingredient. For example, we de�ne Ωm as the contribution of the matter to
the density parameter.

9



1.1. EVOLUTION OF BACKGROUND

As the energy of the radiation in contained mainly in the (Cosmic Mi-

crowave Background, CMB), that has today a temperature TCMB ' 2.73K,
its contribution to the critical density Ω0 is

ΩCMB,0 = 2.4× 10−5h−2 . (1.22)

Relativistic matter, as neutrinos, has the same equation of state of radiation
and thus can be summed up in this perspective, obtaining a total contribution

ΩR,0 = 3.2× 10−5h−2 . (1.23)

The energy density of baryonic matter is estimated via primordial nucleosyn-
thesis and CMB mainly. The results converge on

ΩB,0 ∼ 0.04. (1.24)

The existence of another type of matter, called dark matter was �rst de-
duced studying the dynamics of clusters and galaxies, and it has then been
con�rmed by gravitational lensing and structure formation studies. This
matter behaves like the ordinary one with respect to gravity, but it must
have very weak electromagnetic interactions, as we cannot observe it in any
wavelength range. Its density is estimated to be around 5 times the baryonic
matter one. The total contribution of matter to the critical density is thus

ΩM,0 ∼ 0.3 . (1.25)

The Λ term in Friedmann equations can be interpreted as the result of
a negative pressure �uid, called dark energy. In this case, its contribution
would be the one missing to achieve the observed �atness of the Universe,
namely

ΩΛ,0 ' 0.7 . (1.26)

1.1.5 Cosmological distances

In a curved space-time, the concept of distance is no more straightforward
as in the Euclidean three-dimensional space. Di�erent de�nition of distances
can be used to di�erent purposes.

10



CHAPTER 1. COSMOLOGY

The proper distance dP is the distance measured by a chain of observers
connecting two points at time t. From Eq. 1.4 one gets

dP =

∫ r

0

adr′

(1−Kr′)1/2
= af(r) , (1.27)

where a is the scale factor at time t, and f(r) is

f(r) =


arcsin r (K = 1)

r (K = 0)

arcsinh r (K = −1).

(1.28)

The proper distance at the actual time t0 is the comoving distance dc,
which we already introduced in Sect. 1.1.2.

The luminosity distance dL is de�ned in such a way that the �ux F

received by a source with luminosity L follows the Euclidean law

F =
L

4πd2
L

, (1.29)

or equivalently

dL =

(
L

4πF

)1/2

. (1.30)

In their path the photons su�er a loss of energy proportional to a, and a
dilatation of time again proportional to a. The received �ux F is a2 times
weaker than it would be in an Euclidean space. Thus, to keep Eq. 1.30 valid,
the luminosity distance must be

dL = r × a−1 . (1.31)

Analogously, the angular diameter distance is the one that conserves the
geometrical law that connects the physical dimension dP of an object to the
subtended angle ∆θ when seen from an observer.

∆θ =
dP
dA

. (1.32)

From Eq. 1.5, one derives dP = ar∆θ and thus

dA = ar = dLa
2 . (1.33)
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1.1. EVOLUTION OF BACKGROUND

1.1.6 Expansion history of the Universe

We saw in Sect. 1.1.3 the solutions to the Friedmann equations in case of
single-component universes. As we saw in the Sect. 1.1.4, our Universe is
made of di�erent ingredients. In this case, the Eq. 1.13 generalises to

H2(t) = H2
0

[
ΩR,0

(
a

a0

)−4

+ ΩM,0

(
a

a0

)−3

+ ΩΛ,0 −
Kc2

H2
0

(
a

a0

)−2]
. (1.34)

At very early epochs, that correspond to very small values of a, ΩR dominates
the second term of the equation, and thus the expansion. As we have shown
in Sect. 1.1.3, the behaviour of the scale factor as a function of time in this
case is a(t) ∝ a1/2. It is important to underline that the geometry of the
Universe at early times must be very close to �atness. In fact, one can derive
from the Friedmann equations the following relation:

Ω−1(t)− 1 =
Ω−1

0 − 1

a−(1+3w)
. (1.35)

For smaller and smaller values of a, Ω(t) becomes closer and closer to unity.
Moreover Eq. 1.35 shows that, if Ω0 > 1 (Ω0 < 1, Ω0 = 1) at time t0, the
same relation must hold at any time t.

We de�ne the equivalence time as the moment matter reached the same
energy density of radiation, and then became dominant:

aeq =
ΩM

ΩR

. (1.36)

After aeq we can approximate the expansion of the Universe to be matter-
dominated and thus follow a(t) ∝ t2/3. At an even later time, the Λ com-
ponent becomes dominant. We can see its e�ect on the expansion history of
the Universe, by writing

K =

(
H0a0

c

)2

(ΩM,0 + ΩΛ,0 − 1) , (1.37)

where we considered that ΩR,0 � ΩM,0. Thus we have

H2(t) = H2
0

[
ΩR,0

(
a

a0

)−4

+ΩM,0

(
a

a0

)−3

+ΩΛ,0−(1−ΩM,0−ΩΛ,0)

(
a

a0

)−2]
.

(1.38)
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CHAPTER 1. COSMOLOGY

To understand the evolution of the scale factor as a function of time, it is
useful to introduce the deceleration parameter q, de�ned as

q(t) ≡ − ä(t)a(t)

ȧ2(t)
, (1.39)

which is positive when the expansion of the Universe is slowing down. Using
Eqs (1.12), (1.13) and (1.37), the actual value of the deceleration parameter
can be written as a function of ΩM,0 and ΩΛ,0. One gets

q0 =
ΩM,0

2
− ΩΛ,0 . (1.40)

In presence of a dark energy component (or a cosmological constant), which
we will discuss in the next Section, if ΩΛ,0 >

ΩM,0
2
, q0 becomes negative and

we have an accelerating expansion of the Universe, which cannot be obtained
just with radiation and matter. In particular, extrapolating for large values
of t, for which we can totally neglect the other components, the expansion
proceeds as

a(t) ∝ exp

[(
1

3
Λ

)1/2

ct

]
, (1.41)

in a so-called De Sitter universe.

1.1.7 Accelerated expansion and Dark Energy

Two teams working independently in the mid-to-late 1990s, the Supernova
Cosmology Project and the High-z Supernova Search, found that distant su-
pernovae are 0.25 mag dimmer than they would be in a decelerating universe
(see Fig. 1.1), indicating that the expansion has been speeding up for the
past 5 Gyr (Riess et al., 1998; Perlmutter et al., 1999). This result alone, in
the framework of General Relativity, proves the presence of a component of
the universe with w < 1/3. Since then, many di�erent cosmological probes
(CMB spectrum, cosmic shear, baryon acoustic oscillations) converged on
a cosmological model where a dark energy component is dominant at the
present epoch, ΩΛ ' 0.7. The equation of state of this component is compat-
ible with w = −1, the same that a cosmological constant term in Friedmann
equations would create (see Fig. 1.2).

There are many di�erent proposals about the nature of dark energy, rang-
ing from the quantum vacuum to a new, ultralight scalar �eld. Alternatively,
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1.2. FORMATION OF COSMIC STRUCTURES

cosmic acceleration may arise from new gravitational physics, perhaps involv-
ing extra spatial dimensions. For dark energy, the equation-of-state parame-
ter w provides a useful phenomenological description (Turner &White, 1997).
As it is the ratio of pressure to energy density, it is also closely connected to
the underlying physics. Its evolution with redshift is usually parametrised
through

w(a) = w0 + (1− a)wa = w0 +
z

1 + z
wa . (1.42)

Although the existence of cosmic acceleration is now well established, and
the dark energy density is determined at the precision of a few percent (see
Fig. 1.3), trying to catch its nature by measuring the evolution of its equation
of state is much more challenging. Apart from supernovae observations, the
other three main probes of dark energy nature are clusters of galaxies, BAO
and cosmic shear. The amount of clusters of galaxies and the strength of
cosmic shear signal are sensitive both to the e�ect of dark energy on the
expansion of the Universe and to its consequences on the growth of cosmic
structures. We will come back to these probes later, after having introduced
the theory of cosmic structure formation in the next Section.

1.2 Formation of cosmic structures

1.2.1 Jeans theory

The standard model of structure formation is based on the growth of little
�uctuations in the density distribution through gravitational collapse. The
main quantity in the following discussion is the density contrast δ, de�ned as

δ(~x, a) ≡ ρ(~x, a)− ρ̄(a)

ρ̄(a)
, (1.43)

where ρ̄(a) is the mean density of the considered component. As long as the
perturbation is small (δ � 1) we can use the linear theory of perturbation;
to analyse the evolution of the perturbation from the moment in which δ ' 1

we need di�erent analytic approximations or numerical simulations. In the
linear regime, if we Fourier transform the density �eld, each �uctuation with
wavelength k = 2π/λ evolves independently following

δ̈ + 2
ȧ

a
δ̇ + (v2

sk
2 − 4πGρ)δ = 0 , (1.44)
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where vs = (∂p/∂ρ)1/2 is the speed of sound. Thus, a perturbation can
grow when the force of gravity that acts to make it collapse prevails over the
expansion of the Universe and on the pressure which tends to bring it back
to equilibrium. This happens usually for �uctuations above a certain scale,
called Jeans scale λJ , which depends on the kind of �uid the perturbation
is made of and on the background mean conditions. When the component
that tends to collapse is the dominant one, we have

λJ ' vs

(
π

Gρ

)1/2

. (1.45)

Another important scale is the horizon scale dH , which indicates the size of
the regions of the Universe which are causally connected at a given cosmic
time. Using as a temporal scale the inverse of the Hubble constant, the
photons at a certain time t travelled a comoving distance

dH(a) =
c

H(a)a
. (1.46)

Beyond this scale, the Jeans theory is no more correct and we need a purely
relativistic treatment, where the �uctuations in the metric tensor gαβ are con-
sidered. The relativistic and non-relativistic treatment, in the linear regime,
show that the matter perturbations grow as

δ(a) ∝
{
a2 before aeq
a after aeq.

(1.47)

So the behaviour of the perturbations changes depending on the component
(matter or radiation) that dominates the Universe. Eq. 1.47 is valid exactly
in a �at universe with ΩM,0 = 1 and ΩΛ,0 = 0. In the general case, we have

δ(a) = δ0a
g′(a)

g′(a0)
= δ0ag(a) , (1.48)

where δ0 is the density contrast at the present epoch and the growth function

g′ can be approximated as (see Carroll et al., 1992)

g′(a; ΩM,0; ΩΛ,0) =
5

2
ΩM,0

[
Ω

4/7
M (a)−ΩΛ(a)+

(
1+

ΩM(a)

2

)(
1+

ΩΛ(a)

70

)]−1

.

(1.49)
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1.2. FORMATION OF COSMIC STRUCTURES

The behaviour of the growth function for di�erent cosmological parameters
can be seen in Fig. 1.4.

The observations of the Cosmic Microwave Background (CMB) reveal
temperature density �uctuations of the order of 10−5. The matter-radiation
decoupling happened at z ∼ 1000, at a time adec � aeq. Applying Eq. 1.47
the density �uctuations should be of order of 10−2 at the present epoch. This
goes against the observation of collapsed structures, with δ � 1. This appar-
ent contradiction is solved invoking dark matter, which we already introduced
in Sect. 1.1.4. While radiation and matter have been linked through electro-
magnetic processes until decoupling, dark non-collisional matter decoupled
much earlier and started to collapse on density peaks. These �uctuations,
which did not leave any imprint on CMB, are the ones which gave rise to
structures we observe nowadays. After decoupling, baryonic matter has been
free to fall in the already formed dark matter potential wells, thus growing
much faster than in the linear prescription.

1.2.2 Power spectrum

In the standard cosmological model, the primordial inhomogeneities derive
from quantum �uctuations originated in an early phase of exponential expan-
sion, called in�ation. Many models suggest that these �uctuations should
follow a Gaussian statistic. In this case, their distribution is completely
determined by the power spectrum Pδ(k), de�ned by

〈δ̂(~k)δ̂∗(~k′)〉 = (2π)3δD(~k − ~k′)Pδ(k) , (1.50)

where δ̂(~k) is the Fourier transform of δ. It is generally assumed that the
primordial power spectrum is described by a power law, Pi(k) ∝ kn. Given
that before aeq the density contrast grows as δ ∝ a2, the spectrum grows as
P (k) ∝ a4. A perturbation with comoving scale λ enters in the horizon when
λ = dH(a). For all scales λ < dH(aeq), or equivalently k > kH = d−1

H (aeq),
the spectrum at the moment they enter the horizon aenter is thus

Penter(k) ∝ a4Pi(k) ∝ k−4Pi(k) . (1.51)

It is generally accepted that the total power of the �uctuations when they
enter the horizon should be scale-invariant, that is k3P (k) = cost. This
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brings Pi(k) ∝ k. This spectrum is called Harrison-Zel'dovich spectrum.
If k > kH , the perturbation enters the horizon when the radiation is still
dominant (aenter < aeq). In this case its growth stops, because the rapid
expansion produced by radiation prevents the collapse. We can see this also
by comparing the characteristic time scale of the expansion of the Universe,
texp, with the characteristic time scale of the gravitational collapse:

texp ∼ (GρR)1/2 � (GρM)1/2 ∼ tcoll . (1.52)

Outside the horizon, on scales that the photons cannot have travelled yet, the
growth proceeds as δ ∝ a2. Thus the dimension of the horizon at the equiv-
alence dH(aeq) is an important scale for the evolution of the perturbations:
the ones with k > kH su�er the so-called stagnation, and are decremented
by a factor (aenter/aeq)

2.
Going back to the power spectrum, this translates in

Pδ(k) ∝
{
kn for k � k0

kn−3 for k � k0

(1.53)

at equivalence. In particular, for a Harrison-Zeldovich spectrum this becomes

Pδ(k) ∝
{
k for k � k0

k−3 for k � k0

(1.54)

From then on, the dark matter perturbation can grow around density
peaks following Eq. 1.47 on every scale, because the Jeans scale for dark
matter perturbations, once they are decoupled from radiation, is negligible
from the cosmological point of view.

1.2.3 Nonlinear regime

Once the density perturbations enter the nonlinear regime, their evolution
cannot be described with the equations we introduced above. In particular,
the di�erent modes denoted by their scale k do not evolve independently
anymore. To make an analytic description of the collapse one must make
some strong assumptions on the initial conditions of the system. The simplest
case is that of a spherically symmetric density perturbation that collapses
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along the radial direction. In absence of a cosmological constant, the radius
R of a mass shell will obey the equation

d2R

dt2
= −GM

R2
, (1.55)

where M is the mass inside the shell. Integrating this equation, one obtains
the energy budget of the system

1

2

(
dR

dt

)2

− GM

R
= E . (1.56)

If E < 0, the shell collapses. In particular, the maximum expansion of the
system, with R = Rmax at t = tmax, is obtained when the density of the
perturbation is ρ(tmax) = (3π/4)2ρ̄(tmax) ' 5.5ρ̄(tmax), if ρ̄ is the average
density of the background. Then R starts to decrease and reaches the sin-
gularity at R = 0 at the collapse time tc = 2tmax, when the density ideally
reaches in�nity at the center.

In fact, when the density is high, small departures from spherical symme-
try will result in the formation of shocks and important pressure gradients.
Heating of the material will occur due to the dissipation of shocks which
converts the kinetic energy of collapse into heat. The �nal result will there-
fore be an equilibrium state which is not a singular point but some extended
con�guration with radius Rvir and mass M . This happens when the system
reaches the virial equilibrium. From the virial theorem the total energy of
the perturbation is

E = −1

2

3GM2

5Rvir

. (1.57)

If we equalize this value with that of the perturbation at time tmax,

E = −3GM2

5Rmax

. (1.58)

we see that the virial radius Rvir is half Rmax. Therefore, the density of
the perturbation in the equilibrium state is ρ(tvir) = 8ρ(tmax). Numerical
simulations of the collapse allow an estimate of the time taken to reach
equilibrium: one �nds that tvir ' 3tmax. The perturbation density in terms
of the critical density at tc is

∆c ≡
ρ(tc)

ρcr(tc)
= 18π2 ' 178 . (1.59)

18



CHAPTER 1. COSMOLOGY

An incorrect extrapolation of the linear results would give a density con-
trast δc(tc) = 1.68, which corresponds to a value of 2.68 for the ratio of the
densities, instead of the value of Eq. 1.59.

The real e�ects of the nonlinear regime on the power spectrum can be
calculated only through numerical simulations. The scales that are more
a�ected by the nonlinear evolution are the smallest ones, as can be seen in
Fig. 1.5.

The previous sections give the theoretical expectations for the shape and
growth rate of the density perturbation spectrum but do not specify its
normalization. Because in�ationary theories do not make �rm predictions
about the amplitude of the primordial power spectrum, the normalization
of P (k) must be determined observationally. For example, measurements of
the present-day mass distribution of the Universe indicate that δM/M ' 1

within comoving spheres of radius 8 h−1 Mpc, as suggested by early galaxy
surveys showing that the variance in galaxy counts was of order unity on
this length scale (Davis & Peebles, 1983). This feature of the Universe is the
motivation for expressing the power-spectrum normalization in terms of the
quantity σ8, where

σ2
8 =

1

(2π)3

∫
P (k)|Wk|2d3k (1.60)

is the variance de�ned with respect to a top-hat window functionW (r) having
a constant value inside a comoving radius of 8 h−1 Mpc and vanishing outside
this radius. When using this formula, one must keep in mind that P (k) refers
to the power spectrum of linear perturbations evolved to z = 0 according to
the growth function δ(z), which is valid only for small perturbations.

1.2.4 Mass function

The mass function n(M) of cosmic structures is de�ned by the relation

dN = n(M)dM (1.61)

which gives the number of structures per unit volume with mass between M
and M + dM . Press & Schechter (1974) proposed a model to calculate ana-
lytically the mass function using some knowledge derived from the spherical
collapse approximation. This formalism �rst smooths the density �eld δ(~x),
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by �ltering it on a spatial scale R, de�ning a �eld δM ,

δM = δ(~x;R) , (1.62)

where the mass M is related to the scale R through the mean density of the
Universe. If the density �eld possesses Gaussian statistics, the distribution
of the �uctuations is given by

P (δM)dδM =
1

(2πσ2
M)1/2

exp

(
− δ2

M

2σ2
M

)
dδM . (1.63)

The probability that the smoothed density �eld exceeds at some point a
threshold value δT is by construction

P>δT (M) =

∫ ∞
δT

P (δM)dδM . (1.64)

It is interesting to set this threshold to δc ∼ 1.68, that is the density contrast
derived from linear theory of structures which have collapsed and reached
their maximum density. If we want to count the objects with mass in the
range between M and M + dM , we must then calculate

n(M)MdM = 2ρmax[P>δc(M)− P>δc(M + dM)] = 2ρmax

∣∣∣∣dP>δcdσM

∣∣∣∣∣∣∣∣dσMdM

∣∣∣∣dM ,

(1.65)
where the factor 2 accounts for accretion from underdense regions, which
represent half of the �eld, but would not otherwise be taken into account. If
the RMS mass �uctuation can be expressed by a power law,

σM =

(
M

M 0

)−α
, (1.66)

one obtains the following expression for the mass function,

n(M) =
2√
π

ρmaxα

M2
?

(
M

M ?

)α−2

exp

[
−
(
M

M ?

)2α]
. (1.67)

Thus, the mass function has a power-law behaviour with an exponential cut-
o� for masses bigger than

M? =

(
2

δ2
c

)1/2α

M0 . (1.68)

An improvement of this calculation has been done by Sheth & Tormen
(1999), considering the ellipsoidal collapse instead of the spherical one. The
major modi�cation is an increase of objects at the high mass tail, in better
agreement with the results of N-body simulations.
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1.2.5 Galaxy clusters

Clusters of galaxies are the largest virialised structures of the Universe. They
trace the high-mass tail of the mass function, and therefore their abundance
as a function of mass and redshift can be used to constrain the cosmological
parameters. This can be seen if we write the Sheth and Tormen result in a
di�erential expression,

dnM
d lnσ−1

= As

√
2as
π

[
1 +

(
σ2

asδ2
c

)ps]ΩMρcr,0
M

δc
σ

exp

[
− asδ

2
c

2σ2

]
, (1.69)

with As = 0.3222, as = 0.707, and ps = 0.3. The variance σ depends on mass
M and redshift z through the linear evolution of the primordial spectrum

σ2(M, z) =
g2(z)

(2π)3

∫
P (k)|Wk(M)|2d3k , (1.70)

where Wk(M) is the Fourier-space representation of a top-hat window func-
tion that encloses mass M . The exponential sensitivity of the cluster mass
function to mass and redshift makes cluster counts and their evolution with
redshift a very powerful probe of cosmological parameters (see Fig. 1.6). On
the other hand, any systematic errors in the measurement of cluster mass
are also exponentially ampli�ed by the steepness of the mass function.

In order to measure the mass function using a large sample of clusters,
we need to relate cluster mass to an easily observable quantity. One of the
most di�use techniques is to measure the temperature of the X-ray emitting
gas, because it is closely related to the depth of a cluster's potential well
and can be readily observed to z ∼ 1 with current X-ray telescopes. Given
the precision reached in the observations, systematic uncertainty in the link
between mass and temperature is the main factor limiting this technique.
Although mass and temperature are simply related for a cluster in hydro-
static equilibrium, this condition is often not met in real objects, where the
turbulent velocities can sometimes be 20-30% of the sound speed. In this
case, the hydrostatic assumption would lead to masses underestimated by
10-15% (Rasia et al., 2004).

Another possible proxy for the mass of a cluster is its galactic content.
Optical telescopes have gathered much larger cluster samples than have X-
ray telescopes, but deriving a mass function from these samples is not so
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straightforward, because of projection e�ects and of the di�culty to measure
the e�ective volume associated with a given cluster mass in a richness-selected
survey. From the theoretical point of view, there is the need to calibrate the
light-to-mass ratio, which introduces another uncertainty. For these reasons,
optical richness alone is not a competitive method to weigh large samples of
clusters for cosmological purposes.

Weak lensing is a very promising method for measuring cluster masses,
because, as we will see later, it is independent of a cluster's baryon con-
tent, dynamical state, and mass-to-light ratio. The main systematic problem
in weak-lensing mass measurements comes from lensing produced by mass
outside the virial radius but along the line of sight through the cluster.
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Figure 1.1: Distance modulus (m-M) as a function of redshift for Supernovae
Ia. Figure taken from Frieman et al. (2008).
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Figure 1.2: Constraints on ΩM and the equation-of-state parameter w from
di�erent observables. Figure taken from Frieman et al. (2008).
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Figure 1.3: Constraints on ΩM and ΩΛ from di�erent observables. Figure
taken from Frieman et al. (2008).
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Figure 1.4: The function ag(a) introduced in Eqs. (1.48) and (1.49) for
Ω0 = Ω0,M variable between 0.2 and 1. Taken from Bartelmann & Schneider
(2001)
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Figure 1.5: Theoretical CDM power spectrum at t0, in a �at model without
cosmological constant, normalised according to the local density of cluster
of galaxies. The in�uence of the non-linear growth of perturbations can be
seen at small scales, where the spectrum detaches from ∝ k−3. Taken from
Bartelmann & Schneider (2001).

27



1.2. FORMATION OF COSMIC STRUCTURES

Figure 1.6: Mass-function evolution in �ve di�erent cosmologies. The �ducial
model in all cases is the ΛCDM model with ΩM = 0.3, ΩΛ = 0.7, w = -1,
and σ8 = 0.9. The upper left panel compares cluster evolution in the ΛCDM
case with a standard cold dark- matter model (SCDM) having ΩM = 1.0,
ΩΛ = 0.0, and σ8 = 0.5. Retaining ΩM = 1.0 and ΩΛ = 0.0 while adjusting
the power spectrum so that Γ = ΩMh exp[−Ωb(1 +

√
2h/ΩM) = 0.21 gives

a τCDM model (lower left). Dispensing with dark energy while keeping the
matter density low gives an OCDM model (ΩM = 0.3, ΩΛ = 0, σ8 = 0.9;
upper right). In the lower right panel, it is considered a model (ωCDM)
identical to ΛCDM, except for ω = -0.8.
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Chapter 2

Weak lensing surveys

2.1 Gravitational lensing

2.1.1 De�ection angle

Light travels in the space-time along null geodesics. In an ideal perfectly
homogeneous Universe, photon would follow straight trajectories. The pres-
ence of inhomogeneities and structures perturbs the space-time and forces
photons to deviate from their initial direction. This phenomenon is named
gravitational lensing. The most simple cases is that of a single gravitational
potential Φ embedded in a homogeneous Universe. If the potential is rela-
tively small (Φ � c2) and moving much slower than the speed of light, it
de�ects the photon trajectory by an angle

~̂α =
2

c2

∫
~∇⊥Φdl , (2.1)

where the notation ~∇⊥ means that the gradient must be computed perpen-
dicularly to the light path. In this simple case, one can perform the so-called
thin lens approximation, that describes the trajectory of the photon as a bro-
ken line, that changes direction only once passing next to the location of the
potential. The real angular position of the source and the one that appears
to the observer are connected through the lens equation. For convenience,
one de�nes a plane at the source distance, named source plane, and a par-
allel one where the de�ection happens, named lens plane. We call DD the
angular diameter distance of the lens, DS the one of the source, DDS the
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distance between the source and the lens. We remind that, for a general (not
�at) space-time, DDS 6= DS −DD. The two-dimensional vector ~η represents
the position on the source plane, ~ξ, the one on the lens plane; ~β = ~η/DS e
~θ = ~ξ/DD are the corresponding angular coordinates. From Figure 2.1 one
derives the geometrical relation

DS
~θ = DS

~β +DDS
~̂α(DD

~θ) , (2.2)

where ~̂α is again the de�ection angle. Although ~̂α is the physical quantity

Figure 2.1: Schematic representation of the gravitational lensing in the thin
lens approximation. Figure taken from Bartelmann & Schneider (2001)

a�ected by lensing, it is not an observable. So it is common to de�ne the
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reduced de�ection angle ~α as

~α(~θ) =
DDS

DS

~̂α(DD
~θ) , (2.3)

that corresponds to the angular di�erence between the observed source po-
sition and the real one. In fact, from Eqs. 2.1 and 2.2, one obtains

~β = ~θ − ~α(~θ) , (2.4)

that is the lens equation we were looking for.
As noted already in Eq. 2.1, the lensing e�ect of a single lens depends

on the gravitational potential integrated along the line of sight. This can be
formalised by de�ning the lensing potential Ψ as

Ψ(~θ) =
DDS

DDDS

2

c2

∫
Φ(DD

~θ, z)dz . (2.5)

Now, the (reduced) de�ection angle is equal to the gradient of Ψ

∇θΨ =
DDS

DS

2

c2

∫
∇⊥Φ(~ξ, z)dz =

DDS

DS

~̂α = ~α . (2.6)

2.1.2 Shapes of extended sources

As the de�ection angle changes as a function of the position on the source
plane ~η, the shape of an extended source is not conserved by gravitational
lensing. In principle, the lens equation should be solved for any in�nitesimal
element of the image to calculate the original shape of the source. In case
the scale over which the properties of the lens change is much larger than the
source image, a linearisation of the lens equation around the center of the
image is enough to understand the e�ects of lensing. The jacobian matrix
Aij is de�ned as

Aij ≡
∂βi
∂θj

. (2.7)

Remembering Eq. 2.4, it becomes

Aij = δij −
∂αi
∂θj

= δij −
∂2Ψ

∂θi∂θj
. (2.8)

The matrix A can be written as

A =

(
1−Ψ11 −Ψ12

−Ψ12 1−Ψ22

)
, (2.9)
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where Ψi stands for ∂Ψ/∂θi. De�ning the convergence κ as

κ =
1

2
∇2Ψ =

1

2
(Ψ11 + Ψ22) (2.10)

and introducing the two components of the shear γ = γ1 + iγ2 ,

γ1 =
1

2

(
∂2Ψ

∂θ2
1

− ∂2Ψ

∂θ2
2

)
=

1

2
(Ψ11 −Ψ22) , (2.11)

γ2 =
∂2Ψ

∂θ1θ2

= Ψ12 , (2.12)

Eq. 2.9 can be rewritten as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
. (2.13)

The e�ect of the matrix A on the observed shape of the image can be clari�ed
by writing it as the sum of two parts:

A = (1− κ)I − γ
(

cos 2φ sin 2φ

sin 2φ − cos 2φ

)
, (2.14)

where I is the identity matrix and we introduced 2φ as the argument of the
complex shear,

γ1 = γ cos 2φ, γ2 = γ sin 2φ . (2.15)

From Eq. 2.14 we see that the convergence produces an isotropic distortion of
the source, whilst the shear contribution is anisotropic, as shown in Fig. 2.2.
In particular one can show that a lens with γ 6= 0 transforms a circular source
into an ellipse with axes proportional to (1− κ± γ)−1 in the direction φ.

2.1.3 Lensing phenomenology

The astronomical realizations of gravitational lensing are usually split in two
broad classes: strong lensing happens when an object is double imaged or
strongly distorted by a lens, while the name weak lensing applies to small
deviations in the observed shape of astronomical objects that can be detected
only via statistical procedures.

Examples of strong lensing features are:
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Figure 2.2: E�ects of convergence and shear on an idealised galactic image.
Figure taken from Narayan & Bartelmann (1996).

• multi-imaged quasars, that were the �rst extragalactic lensing phe-
nomenon do be recognised. From the time delay between the luminos-
ity variations of the di�erent images, it is possible to draw estimates of
H0;

• Einstein rings, that happen when a source is exactly aligned with a
spherically symmetric lens. The radius of the ring gives a good estimate
of the enclosed mass of the lens;

• gravitational arcs, that form when the source is next to a caustic, the
locus where the magni�cation is theoretically in�nite. Also this elon-
gated images can be used as tools to measure the matter distribution
of the lens.

A special kind of strong lensing events are those in which the di�erent images
of the source cannot be resolved, because of the little angular separation,
but nevertheless a variability in the source �ux is detected. This happens
for example when quasars are lensed by extragalactic stars, or when stars
in the nearby galaxies are lensed by compact object in our galaxy. This
phenomenon is named microlensing.
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Weak lensing, instead, cannot be detected or studied through a single
image, but changes the statistics of the galaxy population. The appearance
of each galaxy is modi�ed by the intervening matter, both in single mas-
sive objects like clusters of galaxies, or in the large-scale distribution of the
Universe. This e�ect is usually negligible with respect to the intrinsic distri-
bution in magnitude and ellipticity of the galaxy population. As we will see
in the next Chapter, though, employing statistical methods it is possible to
extract important information about the lens properties. Apart from shear,
which we will focus on in the following, it is possible to detect lensing also
through the magni�cation bias, that is the increased brightness of objects
due to lens focusing. Anyway, this measure is much more di�cult and it has
been done in practice just a few times until now (see e.g. Hildebrandt et al.,
2009).

2.1.4 Ellipticity and shear

If all galaxies were intrinsically circular, the ellipticity induced on them by
lensing would directly tell us the second derivatives of the potential Φ. As
instead galaxies have an intrinsic ellipticity distribution, meaningful infor-
mation can be deduced only via statistical analysis over a large sample of
them. In the following we will describe how to relate the observed shape of
galaxies to the shear �eld. Let I(~θ) be the surface brightness of a galaxy at
the angular position ~θ. If the galaxy is isolated, we can measure I to large
distances from the center ~̄θ = (θ̄1, θ̄2), de�ned as

~̄θ =

∫
d2θqI [I(~θ)]~θ∫
d2θqI [I(~θ)]

, (2.16)

where qI [I(~θ)] is a weight function. For example, if qI = H(I − Ith) is a
Heaviside step function, ~̄θ is the center of the area delimited by the isophote
Ith; else if qI = I, then ~̄θ is the center of light. Once the proper qI [I(~θ)] has
been chosen, the second brightness moment tensor is de�ned as

Qij =

∫
d2θqI [I(~θ)](θi − θ̄i)(θj − θ̄j)∫

d2θqI [I(~θ)]
,where i, j ∈ 1, 2 . (2.17)

We can quantify its shape by the complex ellipticity ε

ε =
Q11 −Q22 + 2iQ12

Q11 −Q22 + 2(Q11Q22 −Q2
12)1/2

, (2.18)
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If the image has elliptical isophotes, with major axis a and minor axis b, the
measured ellipticity is

ε =
1− b/a
1 + b/a

e2iϑ (2.19)

where ϑ is the angular position of the major axis. According to this de�nition,
the ellipticity is invariant under a rotation by an angle π. We can de�ne the
center of the source ~̄β and its moments Q(s)

ij in analogy with Eqs. (2.16) and
(2.17). From the jacobian matrix A (2.7), we get that

Q(s) = AQAT = AQA . (2.20)

We can then de�ne the complex ellipticity of the source ε(s) in analogy with
Eq. 2.18. In this case the transformation is

ε(s) =


ε− g

1− g∗ε for |g| ≤ 1,

1− gε∗
ε∗ − g∗ for |g| > 1.

(2.21)

where we introduced the reduced shear g

g =
γ

1− κ . (2.22)

The relations between ε and ε(s) show that the resulting shape depends on
the reduced shear only. Thus, measures of ellipticity allow to estimate the
complex shear, and not the shear and the convergence separately. This can
be seen if we rewrite the jacobian matrix as

A = (1− κ)

(
1− g1 −g2

−g2 1 + g1

)
. (2.23)

The (1 − κ) factor changes the size of the image, but leaves untouched its
shape. In the weak lensing regime, where k � 1 and |γ| � 1 (and thus
g � 1), the �rst part of Eq. 2.21 reduces to ε ' ε(s) + g.

If we assume to have a sample of sources at the same redshift, and that
the expectation value of their source ellipticity vanishes,

〈E(ε(s))〉 = 0 , (2.24)

35



2.1. GRAVITATIONAL LENSING

the expectation value of the measured ellipticity is

E(ε) =

{
g if |g| ≤ 1

1/g∗ if |g| > 1,
(2.25)

In the weak lensing regime, |g| � 1, and thus γ ∼ g ∼ 〈ε〉.
The previous result can be extended in case the sources are distributed

in redshift. In that case, the expectation value depends on an integral over
the redshift of the lens properties multiplied by a weighting function that
depends on the redshift distribution of the sources.

The previous de�nitions cannot be applied directly when analysing real
observations. For example, if we use the weighting function qI(I) = IH(I −
Ith), the choice Ith that delimits the object depends on the noise present in
each pixel, that would in�uence the shear measurement in a very nonlinear
way. It is common to substitute qI(I) with IW (~θ), where W (~θ) depends
explicitly on ~θ. Another problem to face when dealing with real observations
is the atmospheric turbulence, that translates a point-like source in an ex-
tended image. If I(~θ) is the surface brightness of the source, the observed
surface brightness is

I(obs)(~θ) =

∫
d2ϑI(~ϑ)P (~θ − ~ϑ), (2.26)

where P (~θ) is the point-spread function (PSF) that describes the appearance
on the CCD of a point-like source. The e�ect of the PSF can be separated
in two parts: it makes small images more roundish and it introduces a sys-
tematical ellipticity in the measurements.

To extract shear information from real images, di�erent methods can
be employed. They can be roughly divided in two classes: passive methods,
which measure the quadrupole moments of the galaxy image and then correct
for the PSF (see e.g. Kaiser et al., 1995) and active methods, which �t the
image with the result of the convolution between a galaxy model and the
observed PSF (see e.g. Kitching et al., 2008). Their performances are usually
summarised through

gm − gt = mgt + c , (2.27)

where gt and gm are the true and measured shear, respectively, while m and c
are the multiplicative and additive errors. The performances of the methods
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can be tested analysing simulations of observations with known input shear
values, as is shown in Massey et al. (2007) and Bridle et al. (2010). Di�erent
methods are able to reach sub-percent values of the multiplicative bias m
and an additive bias below 0.001.

2.2 Cosmic shear

2.2.1 De�ection by matter distribution

Apart from single massive objects, such as galaxies or clusters, the whole
matter distribution produces distortions in the space-time, and thus de�ects
photon paths. The e�ect of this phenomenon on the observed shapes of
galaxies is named cosmic shear.

To study cosmic shear, we need to introduce the general treatment of light
propagation in curved space-times. One can show that in a homogeneous
and isotropic Universe the comoving angular separation ~x = ~ξ/a between
two light rays varies according to

d2~x

dω2
+K~x = 0 . (2.28)

The solution depends on the geometric parameter K. In the �at case, K = 0,
the separation is a linear function of the comoving distance ω; in general, so-
lutions are trigonometric (if K > 0) or hyperbolic (if K < 0) functions.
We now add small (Φ � c2) and slow (v � c) perturbations on this ide-
alised smooth Universe. If the length scales relevant for the perturbations
are smaller than the curvature scale of the Universe, we can assume the back-
ground geometry as �at when the deviations due the inhomogeneities take
place. In analogy with Eq. 2.1, the variation in the photon trajectory due to
a potential Φ is

d2~x

dω2
= − 2

c2
∇⊥Φ . (2.29)

On top of considering the general geometry of the space-time, another dif-
ference occurs with respect to the single-lens approximation. It is no longer
interesting to consider the de�ection angle with respect to an idealised unper-
turbed trajectory, as every photon will su�er many de�ections along its path.
Thus, we instead measure the variation of the angular distance between two
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neighbouring rays as a function of the comoving distance from the observer.
Adding up Eqs. (2.28) and (2.29), we obtain

d2~x

dω2
+K~x = − 2

c2
∆{∇⊥Φ[~x(~θ, ω) , ω]} , (2.30)

where we introduced the di�erence ∆ between the de�ections su�ered by the
two rays. Solving Eq. 2.30, we get that the angular separation between the
two rays as a function of distance is

~x(~θ, ω) = fK(ω)~θ − 2

c2

∫ ω

0

dω′fK(ω − ω′)∆{∇⊥Φ[~x(~θ, ω), ω]} , (2.31)

where the �rst term is due to the geometry of the smooth background space-
time and follows the de�nition of the angular-diameter distance fK(ω), while
the second one is an integral over the di�erent de�ections taken by the light
rays. Assuming that the variation of the angular separation between the two
rays is small with respect to the angular separation of the unperturbed rays,
the integral can be evaluated on the unperturbed trajectory fK(ω′)~θ, instead
that on ~x(~θ, ω′). Now we can write the de�ection angle ~α at a distance ω,
de�ned as

~α(~θ, ω) =
fK(ω)~θ − ~x(~θ, ω)

fK(ω)
, (2.32)

that is the separation between the two rays in a smooth universe minus their
real separation, divided by the angular diameter distance. We get

~α(~θ, ω) =
2

c2

∫ ω

0

dω′
fK(ω − ω′)
fK(ω)

∇⊥Φ[fK(ω′)~θ, ω′] . (2.33)

Because of its de�nition, this angle is not unique. All the physical quantities
depend on derivatives of ~α.

2.2.2 Convergence power spectrum

Analogously to the single lens case, we can de�ne an e�ective convergence

κeff as

κeff (~θ, ω) =
1

2
∇θ·~α(~θ, ω) =

1

c2

∫ ω

0

dω′
fK(ω − ω′)fK(ω′)

fK(ω)

∂2

∂xi∂xi
Φ[fK(ω′)~θ, ω′] .

(2.34)

38



CHAPTER 2. WEAK LENSING SURVEYS

The derivatives are on the directions perpendicular to the line of sight. In
order to make use of the cosmological Poisson equation,

∇2Φ =
3H2

0 Ω0

2a
δ , (2.35)

we can add the derivative of the lensing potential along the line of sight, as
it goes to zero in our approximation. Thus we obtain

κeff (~θ, ω) =
3H2

0 Ω0

2c2

∫ ω

0

dω′
fK(ω − ω′)fK(ω′)

fK(ω)

δ[fK(ω′)~θ, ω′]

a(ω′)
, (2.36)

where the e�ective convergence is linked to the perturbations encountered
along the photon path. As every measurement regarding weak lensing is
obtained by averaging over the line of sight, it is useful to de�ne κ̄eff as
the mean value of κeff with respect to ω, weighted according to a source
distribution G(ω),

κ̄eff (~θ) =

∫ ωH

0

dωG(ω)κeff (~θ, ω) , (2.37)

where ωH is the horizon distance. Inserting Eq. 2.36, one can rewrite

κ̄eff (~θ) =
3H2

0 Ω0

2c2

∫ ωH

0

dωW̄ (ω)fK(ω)
δ[fK(ω)~θ, ω]

a(ω)
, (2.38)

where W̄ (ω) is the function that weighs perturbations at distance ω,

W̄ (ω) =

∫ wH

w

dω′G(ω′)
fK(ω′ − ω)

fK(ω′)
. (2.39)

As the mean e�ective convergence κ̄eff is a weighted mean over the z dimen-
sion of the density contrast δ, one can use the Limber's equation to link the
2-d spectrum of the former to the 3-d spectrum of the latter. The result is:

Pκ(l) =
9H4

0 Ω2
0

4c2

∫ wH

0

dω
W̄ 2(ω)

a2(ω)
Pδ

(
l

fK(ω)
, ω

)
. (2.40)

Cosmology role in Eq. 2.40 is twofold. The background evolution of the
Universe in�uences the way angular modes l are related to linear scales at
di�erent redshifts, while the growth of structure de�nes the power spectrum
Pδ.
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Convergence is a very di�cult quantity to measure, so lensing obser-
vations usually focus on shear measurements. Luckily, the shear and the
convergence, being both second-order derivatives of a potential Ψ, share the
same power spectrum. Thus, measuring shear estimates over a patch of the
sky, one can extract information about cosmology through Eq. 2.40. In prac-
tice, di�erent statistics can be applied to data. The most common one is the
two-point correlation function,

ξγ(φ) = 〈γ(~θ)γ∗(~θ + ~φ)〉 . (2.41)

Given that the correlation function is by de�nition the Fourier anti-transform
of the power spectrum, we have

ξγ(φ) =

∫
d2l

(2π)2
Pκ(l) exp(−i~l · ~φ) =

∫ ∞
0

ldl

2π
Pκ(l)J0(lφ) . (2.42)

The integration over the angle enclosed by ~l and ~φ gives rise to the Bessel
function J0(x). If Pκ is made explicit through Eq. 2.40, one gets

ξγ(φ) =
9H4

0 Ω2
0

4c4

∫ wH

0

dωf 2
K(ω)

W̄ 2(ω)

a2(ω)
×
∫ ∞

0

kdk

2π
Pδ(k, ω)J0[fK(ω)kφ] .

(2.43)
The angular correlation function ξγ is thus an integral over the perturbation
power spectrum, weighted by a window-function in the Fourier space.

Until now we have considered a single galaxy population with a angular
distance distribution G(ω), or equivalently a redshift distribution P (z) =

dz/dωG(ω). Sometimes we have information not only on the redshift distri-
bution of the total population, but also on the redshifts of single galaxies. In
this case, we can subdivide our sample into redshift bins and calculate the
cross-correlation power spectrum P ij

κ (l), that is given theoretically by:

P ij
κ (l) =

9H4
0 Ω2

0

4c2

∫ wH

0

dω
W̄i(ω)W̄j(ω)

a2(ω)
Pδ

(
l

fK(ω)
, ω

)
. (2.44)

where the W̄i function is derived from Gi as in Eq. 2.39. In this way, it
is possible to measure the evolution of the cosmic structure, weighing the
power spectrum as a function of redshift in di�erent ways with di�erent sets
of objects, as can be seen in Fig. 2.3.
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Figure 2.3: Sensitivity to the matter distribution as a function of redshift for
two samples of galaxies. Figure taken from Hu (1999).

2.3 Observational uncertainties

2.3.1 Statistical noise

The distortion produced by the matter distribution on the galaxy observed
shape is on average one order of magnitude smaller than the average galaxy
ellipticity. This means that, on a single galaxy image, it is not possible to
disentangle the lensing distortion from the intrinsic physical anisotropy of
the object. The analysis must be made on a statistical basis, averaging over
many observed objects. In practice, the considered observable is often the
2-point correlation function between the galaxy shear estimates, as described
in Sect. 2.2. We assume that the correlation function is to be estimated in
bins of angular width ∆θ. We de�ne the function ∆θ(φ), which is 1 for
θ−∆θ/2 < φ ≤ θ+ ∆θ/2 and 0 otherwise. An estimator for the correlation
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function ξ̂+(θ) is then

ξ̂+(θ) =
Σij(εitεjt + (εi×εj×)∆theta

~θ(|~θi − ~θj|)
Np(θ)

, (2.45)

where the number of pairs Np is given by

Np(θ) = Σij∆θ(|~θi − ~θj|) , (2.46)

and εt and ε× are the tangential and cross components of the shear with
respect to the line connecting the two galaxies. The expectation value of this
estimator is obtained by averaging over the source ellipticities, assumed to
be randomly oriented, and an ensemble average of the shear �eld. Since

〈εitεjt + εi×εj×〉 = σ2
εδij + ξ+(|~θi − ~θj|) , (2.47)

where σε is the dispersion of the intrinsic galaxy ellipticity, we see immedi-
ately that ξ̂+(θ) is an unbiased estimator of ξ+(θ),

〈ξ̂+(θ)〉 = ξ+(θ) . (2.48)

The covariance Cov(ξ̂+, θ1; ξ̂+, θ2) of this estimator is de�ned as

Cov(ξ̂+, θ1; ξ̂+, θ2) = 〈(ξ̂+(θ1)− ξ+(θ2))(ξ̂+(θ2)− xi+(θ2))〉 . (2.49)

Schneider et al. (2002) showed that its expectation value is

E(Cov(ξ̂+, θ1; ξ̂+, θ2)) = Dδ̄(θ1 − θ2) + q++ + r+1 + r+0 , (2.50)

where D is the only term that depends on the bin size and can be written as

D = 3.979×10−9

(
σε
0.3

)4(
A

1deg2

)−1(
n

30arcmin−2

)−2(
θ

1arcmin

)−2(
∆θ/θ

0.1

)−1

,

(2.51)
where n is the galaxy number density and A is the survey area. The delta
function δ(θ1 − θ2) means that this term matters only for the autovariance.
The other three terms can be written as

q++ =
2σ2

ε

πAn
Q++ (2.52)

r+1 =
2

πA
R+1 (2.53)
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r+0 =
1

2πA
R+0 (2.54)

where Q++, R+1 and R+0 are integrals of the correlation function. We note
that only the autovariance is a�ected by the bin width ∆θ and that all
terms are proportional to the inverse of A. The last two terms, which are
independent of σε and n, represent the cosmic variance and set a limit for the
precision on the evaluation of the shear correlation function independently
of the quality of the observation.

2.3.2 Image quality

As we have shown in Sect. 2.2, to perform shear measurements it is funda-
mental to correct for the PSF. To perform such a correction, the PSF must
be known with high precision at each point in the �eld-of-view of the instru-
ment during the observing time. Paulin-Henriksson et al. (2008) have shown
that the multiplicative bias induced by the PSF is

m =
1

Pγ

(
µ+

σ[R2
PSF ]

R2

)〈(
RPSF

Rgal

)2〉
(2.55)

for a galaxy population with radius Rgal. In the previous equation, Pγ ∼
1.84 is the shear polarisability and µ is a measure of the accuracy of the al-
gorithm used to measure galaxy shapes. This term depends on the fractional
uncertainty in the knowledge of the PSF size σ(R2

PSF )/R2
PSF . Similarly for

the same population of galaxies the additive bias is given by

σ2
sys =

1

Pγ

〈(
RPSF

Rgal

)2〉[(
σ[R2

PSF ]

R2
+ c

)2

|ePSF |2 + 2σ2[ePSF ]

]
(2.56)

which also depends on the absolute PSF ellipticity ePSF and the uncertainty
in the knowledge of the ellipticity σ2(ePSF ). The parameter c is a measure of
how well the algorithm used to measure galaxy shapes can correct for PSF
anisotropy. These de�nitions enable us to relate the PSF properties directly
to systematic biases: for example the larger R2

PSF the larger the correction
for the PSF blurring required.

2.3.3 Photometric redshifts

Photometric redshifts are crucial to perform weak lensing tomography. As to
perform weak lensing analysis we need to observe a large amount of galaxies
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to overwhelm the intrinsic ellipticity dispersion, it is virtually impossible to
perform spectroscopic observations for the majority of them. Then, we must
rely on photometric techniques that relate the observed �ux of galaxies in a
small (from 4 to ∼ 30) number of bands to the redshift of the galaxy. To this
end, di�erent methods can be used and they can be subdivided in two groups:
template �tting methods, which �t the observed �ux of the galaxy with a set
of spectra, and training set methods, which use a spectroscopic subsample to
obtain empirical relations between �uxes and redshift. The former are more
elastic, because they do not need a spectroscopic coverage of the survey, at
the price of making harder assumptions on the galaxy population observed.
Regardless of which technique is used, the e�cacy of the method depends
on the spectral type of the galaxy and the wavelength region covered by
the observed wave bands. The primary redshift signal from photometric
data arises from prominent breaks in the galaxy SED, such as the 400 nm
Balmer break, and the Lyman break. Galaxies with large spectral breaks
which are straddled by the �lter bands (preferably with at least one band
completely on each side of the break) will have the most robust and accurate
measurements. For example, for data solely in the observed optical bands,
early-type galaxies at low redshift (z < 0.8, beyond which the 400 nm break
enters the I band), or star-bursting galaxies at high redshift (z > 3, where
the Lyman break enters the U band) will have the strongest redshift signal.
The typical redshift uncertainty is of the order of 0.01 - 0.1, depending on
the depth and the band coverage of the survey. A catastrophic error in
photometric redshift determination occurs when two templates with very
di�erent redshifts occupy regions in the multi-color space that are too close,
so that for a variety of reasons, the template with the incorrect redshift is
chosen. This could be the result of poor signal-to-noise ratio in the data,
unrealistic templates being used, or simply a real degeneracy arising from
the very coarse spectral information available within both the data and the
templates. The simplest example of catastrophic error in a sample spanning
a su�ciently large redshift range arises from the confusion of the Lyman
break with the 400 nm break.
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2.4 The Euclid mission

2.4.1 Characteristics

Euclid is an ESA-approved experiment that will take place in 2019-2022. It
aims at mapping the geometry of the Dark Universe through two comple-
mentary probes: weak lensing and galaxy clustering. In order to do so, three
observing instruments will be used: an imager in the visible band, a multi-
band photometer and a spectrometer in the near infrared. In this work I will
focus on the weak lensing observations (imaging and photometry).

Weak lensing observations from the ground are limited by the presence
of the atmosphere, that blurs the galaxy images. Although we can take
into account this e�ect in the analysis, the spatial and time variation of the
atmosphere conditions, together with the �nite number of stars that can
be observed to map the PSF, make it impossible to go below σsys ∼ 10−4.
With this precision, a survey that observes 15000 square degrees will be
practically useless, because the systematic error will dominate the statistical
error. Observing from space, on the other hand, permits to achieve a better
control of the PSF, and a di�raction limited resolution. Moreover, from space
it is possible to observe with no gaps the wavelength range between 1 and
2 microns, which is partially obscured from earth. This fact is fundamental
for the galaxy clustering part of the experiment, as the Hα line lies in this
wavelength range for galaxies with redshift between 0.7 and 2. The weak
lensing experiment takes advantage of this feature with the multi-band near-
infrared photometer, that will characterise the spectral-energy distribution of
galaxies, and help in the determination of their photometric redshifts. The
data of these bands, as we will see later, is very important especially for
galaxies in the redshift range between redshifts 1 and 2.5.

2.4.2 Expected performances for cosmic shear

In the Wide Survey, that will cover 15000 deg2 of extragalactic sky, the
observing limit for a 10σ detection should be equivalent to a magRIZ = 24.5
for extended sources. This should give around 30 galaxies per arcmin2 useful
for weak lensing analysis, for an unprecedented total of 1.5 billion galaxies.
In order to measure the shape of galaxies correctly, not only the PSF must
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be stable and well-known, but it must also be signi�cantly smaller than the
galaxy size. With a PSF FWHM equal to 0.2�, virtually no galaxies will be
discarded because of this limit.

The three near-infrared bands should reach a 5σ depth for point sources
with magY JH = 24. These data, together with their optical counterparts
from ground-based collaborations, should be su�cient to ful�l the require-
ments about photometric redshift precision. To reach the desired accuracy on
cosmology, the precision in the redshift measurement for each single galaxy
must be such that σz/(1 + z) < 0.05 and the mean redshift for each tomo-
graphic bin should be smaller then 0.002(1 + z). In the following we will
study in deep detail this aspect. The redshift distribution of the sources is
expected to have a median z equal to 0.9.

To extract the cosmological signal through cosmic shear tomography (see
Sect. 2.2.2), the galaxy sample will be divided into 10 redshift bins that will
contain approximately the same number of galaxies. Considering the uncer-
tainties described in the previous Section, one can derive the expected preci-
sion on cosmological parameter determination for the Euclid survey through
a Fisher matrix analysis, as done in Amara & Refregier (2007). The derived
precision on the dark energy equation of state determination is ∆wp = 0.015
and ∆wa = 0.15.

2.4.3 Secondary probe: galaxy clusters

The Euclid mission is driven by two observables, that are cosmic shear and
galaxy clustering. The setup of the instrument and of the survey is aimed
to give the best results for these two kinds of observations. Nonetheless,
the Euclid high-quality data will be useful for many other astrophysical and
cosmological subjects, such as galaxy evolution, type Ia supernovae, high-
redshift Universe through galaxies and quasars, and so on. Here we will
focus on galaxy clusters, whose abundance as a function of mass and redshift
will also give additional cosmological constraints to the ones of the main
science drivers of the mission.

Galaxy clusters can be detected in Euclid data in many ways, including
�ltering of the weak lensing signal or searching for close galaxies in the spec-
troscopic data. The main channel for cluster detection will nevertheless be
the analysis of photometric data, as already performed in other surveys, such
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as SDSS. Many di�erent techniques can be used to this goal. In the following,
we will come back to this subject and present an optimal �ltering method. It
is important to underline that the calibration of the mass-richness relation,
one of the main uncertainties in the cosmological interpretation of optical
cluster samples, will be helped by the presence of weak lensing data, that
allow for an independent measure of the cluster mass.

The abundance of galaxy clusters brings information mainly about the
distribution of the primordial �uctuations and about the physics of gravita-
tional collapse. Their e�ect on the determination of the cosmological param-
eters can be seen in Fig. 2.4.

Figure 2.4: Forecast on the precision in the cosmological parameters deter-
mination by Euclid. Figure taken from Laureijs et al. (2011)
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Chapter 3

Simulation of observations

3.1 Introduction

The systematics described in the previous Chapter need to be properly eval-
uated to estimate the possible achievements of future weak lensing experi-
ments. The measurement of the ellipticity and of the photometric redshift of
the galaxies depend in a nonlinear way on the instrumental and survey char-
acteristics, such as pixel size, PSF width and wavelength coverage. Thus,
it is important to assess the systematics present in the procedure used to
extract information from data by working on simulated images that mimic
the ones obtained by observations. In the following Section, we will describe
the code used in our work, which was �rst presented in Meneghetti et al.
(2008).

3.2 Our code

3.2.1 Galaxy catalogue

The �rst step in performing a realistic simulation of observations is the cre-
ation of a source catalogue, that in our case will be composed of galaxies.
For the topic we are covering, it is fundamental to have good morphological
and photometric data for the galaxies, and a realistic distribution in lumi-
nosity, redshift and spectral type. To obtain this result one can use data
taken from real observations, or extract them from some model distribution
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for each quantity. Starting from a catalogue drawn from observations has
the advantages of being realistic by construction and of retaining all corre-
lations between di�erent measures which are present in the real data. The
price to pay is the limited number of available sources and the impossibility
of extrapolating objects which lie beyond the capabilities of the survey, e.g.
dimmer than the photometric limit.

For the work described in Sect. 5.1, we use the galaxy catalogue ex-
tracted from the Hubble Ultra-Deep Field (Coe et al., 2006). It is composed
by more than 9000 objects with a spectral type and a photometric redshift
assigned from 6-band photometry in the optical and near-infrared. To per-
form our simulations, we use the luminosity in the i band and the colour
and k-correction derived from the appropriate spectral-energy distribution
(SED). The SEDs assigned by Coe et al. (2006) to each object of the sample
are taken from a catalogue with 8 members: 4 from Coleman et al. (1980)
that represent ellipticals, spirals and irregulars, 2 from Kinney et al. (1996),
for starburst galaxies, and 2 simple-stellar population models from Bruzual
& Charlot (2003) to account for the bluest objects in the sample. Two in-
terpolations between neighbouring SEDs are allowed. The complete set of
SEDs is shown in Fig. 3.1.

Each galaxy in the sample has a morphological description via decompo-
sition in a set of basis functions called shapelets, that were �rst introduced in
Refregier (2003). They allow to store the characteristics of the appearance
of the galaxy in a few coe�cients, and to perform in a simple way modi�ca-
tions such as rotations, rescaling, shearing etc. The light distribution of each
galaxy is written in terms of the basis functions Bn(~x, β),

I(x) =
∞∑

n1,n2=0

InBn(~x− ~xc; β) , (3.1)

where In are the coe�cients of the decomposition and β is a scale parameter.
The functions Bn(x; β) are

Bn(~x; β) = β−1Φn1(β
−1x1)Φn2(β

−1x2), (3.2)

where the one-dimensional functions Φn(x) are related to Gauss-Hermite
polynomials Hn(x),

Φn(x) = [2nπ1/2n!]−1/2Hn(x) exp(−x2/2). (3.3)
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Figure 3.1: Set of template SEDs used for the galaxies in the HUDF cata-
logue. Figure taken from Coe et al. (2006).

The set of functions de�ned by Eq. 3.2, once �xed the scale parameter
β, is a complete set of orthonormal functions, so that each continuous and
integrable two-dimensional function f(x), has one decomposition with coef-
�cients In,

In =

∫
d2xf(x)Bn(x; β) . (3.4)

The shapelets of the three lowest orders are shown in Fig. 3.2.
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Figure 3.2: The 2-dimensional shapelets Bn(x; β) of the three lowest orders,
for �xed β. The light and dark regions correspond respectively to negative
and positive regions. Figure taken from Refregier (2003).

3.2.2 Survey implementation

The implementation of an observation starts with the de�nition of the in-
strument that is used. The quantities that matter in the simulation are:

• the e�ective diameter of the mirror,

• the pixel size,

• the gain,

• the instrumental sources of noise, as read-out-noise and �nite �atness
of the �eld,

• the throughput curves of the mirror, the optics and the CCD.
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The survey is de�ned by the exposure time, the �eld of view and the observing
band. The quality of the image is also a�ected by the instrumental PSF, the
atmospheric seeing and the background sky magnitude.

3.2.3 Image creation

We �rst determine the catalogue of sources we observe. If we start from an
observed catalogue, we calculate the needed amount of galaxies by multiply-
ing the �eld of view of our mock observation by the galaxy angular density of
the original catalogue. Galaxies, in this case, are placed randomly in the ob-
serving �eld. For each galaxy, the luminosity in the given band is calculated
considering its SED and the �lter response as a function of wavelength. The
shape of the galaxy is obtained by convolving its stored properties with the
instrumental PSF. This operation is performed in the shapelets space. The
relation between the coe�cients of the convolved image hn and the original
ones fn is

hn =
∑
m,l

Cn,m,lfmgl , (3.5)

where gl are the coe�cients of the function with which the convolution has
to be performed. If we call α, β, e γ respectively the scale parameters of f ,
g e h, the C matrix can be written as the product of two one-dimensional
convolution matrices

Cn,m,l(γ, α, β) = Cn1,m1,l1(γ, α, β)Cn2,m2,l2(γ, α, β) , (3.6)

which are calculated as

Cn,m,l(γ, α, β) = (2π)1/2(−1)nin+m+l

∫ ∞
−∞

dxBl(x, γ
−1)Bm(x, α−1)Bn(x, β−1) .

(3.7)
A good choice for the scale parameter γ is given by γ2 = α2 + β2. Now the
galaxy with the derived brightness distribution I(~x) can be observed. If the
telescope has pixel size p and diameter D, the number of photons collected
by the pixel ~x in the time texp, is given by (see Grazian et al., 2004)

nγ(~x) =
πD2texpp

2

4h
I(~x)

∫
T (λ)

λ
dλ , (3.8)

where h is the Planck constant, T (λ) is the total transmission, given by
the product of the atmospheric extinction A′(λ) and the e�ciencies of CCD
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C(λ), �lter F (λ), mirror M(λ) and optics O(λ). The number of photons nλ
is then converted in ADU depending on the instrumental gain g

ADU(~x) =
nγ(~x)

g
. (3.9)

To this ideal image of the galaxy, one must add the photons due to back-
ground light, calculated as

ADUsky =
πD2texpp

2

4hg

∫
T (λ)S(λ)

λ
dλ , (3.10)

where S(λ) is the sky surface brightness. We assume that the number of
photons collected by a pixel follows a Poissonian distribution, with expected
value given by the sum of (3.9) and (3.10). The statistical and instrumental
uncertainty is simulated adding a random quantity with Gaussian probability
and standard deviation σN

σN(~x) =

{
nexp

(
RON

g

)2

+(ADU(~x)+ADUsky)+

(
f+

A2

n2
exp

)
[ADU(~x)+ADUsky]

2

}1/2

,

(3.11)
where RON is the chip read-out-noise, nexp is the number of exposures, A
is the �at-�eld term. The quantity f measures the �at-�eld accuracy, that
depends on the number of exposures and on the sky brightness as

f = (Nff · ADUsky · g)−1 . (3.12)

Lensing e�ects are included by applying the lensing equation (2.4). Each
pixel position ~θ is connected to the position ~β on the plane where the ADU
counts are assigned,

ADUlensed(~θ) = ADU [
~

β(~ )θ] . (3.13)

In case of strong lensing, di�erent coordinates ~θ can refer to the same point
~β on the source plane.

3.3 Application to cluster mass estimation

As yet noted in Sect. 1.2.5, one of the biggest problems in using galaxy
clusters as cosmological probes is the evaluation of their mass from obser-
vations. Both X-ray and lensing measurements su�er from systematics due
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to the strong assumptions made to perform the calculations: hydrostatic
equilibrium and sphericity. To evaluate properly the precision of the mass
measurements made with these techniques, we perform simulations of obser-
vations both in the optical and in X-ray of clusters extracted from dynamical
simulations. We summarise here this work, which is presented in Meneghetti
et al. (2010).

Three clusters are observed along three orthogonal line of sights, for a
total of nine objects to be analysed. For what concerns optical mock obser-
vations, we use the SkyLens code. For each cluster line of sight, a de�ection
map is created with a ray-tracing technique. Then, a proper amount of
background galaxies are created according to the description of the previous
Section. Two telescopes are simulated: HST and Subaru. For the SUBARU
simulations, we assume an exposure time of 6000 s in the I band, with a
seeing of 0.6". The PSF is assumed to be isotropic and modelled using a 2D
Gaussian. For the HST simulations, we assume an exposure time of 7500 s
with the F775W �lter. An example of the simulated images can be seen in
Fig. 3.3

The weak lensing measurements are done using the standard KSBmethod,
proposed by Kaiser et al. (1995) and subsequently extended by Luppino &
Kaiser (1997) and by Hoekstra et al. (1998). By selecting the galaxies with
S/N > 10, we end up with catalogues of galaxy ellipticities containing ∼ 30
sources/sq. arcmin. Di�erent methods are used to extract a mass estimate
from these catalogues: a �t of a NFW pro�le (Navarro et al., 1997), the
aperture mass densitometry (Fahlman et al., 1994; Clowe et al., 1998), and a
nonparametric reconstruction of the lens, where also strong lensing features
are taken into account.

The comparison between the estimated mass from lensing and the true
mass of the cluster are shown in Figs. 3.4 and 3.5. In the �rst case, the con-
sidered cluster mass is named 2D, because it is measured as all the matter
was projected on the cluster lens plane. The accuracy of the mass estimates
depends on the morphology of the lenses and on their substructures. Meth-
ods that assume that the lensing e�ect is due to a single mass clump tend
to underestimate the mass when signi�cant substructures are present. The
nonparametric SL+WL method, on the other hand, does not require any
assumption about the symmetry of the lensing signal, because substructures
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Figure 3.3: Left panel: color-composite image of a simulated galaxy cluster,
obtained by combining three SUBARU exposures of 2500 s each in the B,V,
I bands. The �eld-of-view corresponds to ∼ 450" × 450". Right panel:
an HST/ACS composite image of the the central 100" × 100" of the same
cluster. The image has been produced by combining mock observations with
the �lters F475W, F555W and F775W. Figure taken from Meneghetti et al.
(2010).

are included in the mass model by construction. For this reason, the SL+WL
method can recover the input mass with good precision even in the case of
morphologically disturbed clusters. We �nd that the deviations between es-
timated and true masses are typically below the 10% level.

Lensing is sensitive by construction on the total mass projected on the
lens plane. To extract a 3D mass from lensing measurements, it is needed
to �t the derived mass distribution with a suitable function (a NFW pro�le
in our case) and to calculate the mass from this distribution. The geometry
between the main axis of the cluster and the line of sight becomes very im-
portant in this procedure: we �nd that, in the cases of good alignment (i.e.
small angles) between the major axis of the cluster and the projection axis,
the lensing masses tend to be systematically larger than the true masses,
while the opposite occurs in those cases where the major axis is nearly per-
pendicular to the line of sight. The scatter in the mass measurement due to
triaxiality is around 20%.
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Figure 3.4: Comparison between the weak-lensing and the true 2D-masses of
all the simulated clusters. From left to right, the panels refer to the methods
based on the NFW �t of the shear pro�le, on the aperture mass densit-
ometry, and on the non-parametric SL+WL reconstruction of the lensing
potential, respectively. Shown are the ratios between the estimated and the
true masses measured at three characteristic radii, namely R2500 (diamonds),
R500 (triangles), and R200 (squares), versus the cluster names.

Figure 3.5: As in Fig. 3.4, but comparing the estimated and true 3D-masses.

X-ray measurements, in comparison, su�er less scatter but are usually
biased low by ∼ 10 %, because of pressure support induced by bulk motions.
In general, the two measures can di�er by up to 100 %, because they probe
di�erent physical quantities: the mass distribution projected along the line
of sight in the case of lensing, and the depth of the gravity potential felt
by the gas in case of X-ray observations. Interestingly, there are hints that
the ratio of X-ray-to-lensing masses can be used as a tracer of hydrostatic
equilibrium in the observed clusters.
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Chapter 4

Cluster detection

4.1 Introduction

Clusters of galaxies lie in the densest regions of the Universe. In the stan-
dard cosmological model, they form from the highest peaks of the primordial
density �uctuations. Their abundance as a function of mass and redshift is
an extremely important tool to determine cosmological parameters and the
history of structure formation. It is therefore fundamental to build robust
tools to detect galaxy clusters in di�erent observational bands.

In optical surveys, clusters of galaxies can be succesfully identi�ed via
overdensities of galaxies with respect to the mean �eld and via the coherent
distortion of background galaxies due to gravitational lensing. These two
observables come together with the same data but have very di�erent prop-
erties. On one hand lensing analyses have the advantage of directly mapping
dark matter structures, but to be performed they need high-quality imaging
data, and their results are intrinsically very noisy. On the other hand, de-
tecting clusters through galaxy overdensities is much less demanding from an
observational point of view, because it does not require any shape measure-
ment. Moreover, if an optical cluster identi�cation is performed on a lensing
survey �eld, it can be used as a useful tool to eliminate spurious detections.

A common approach in lensing is to convolve galaxy ellipticities with a
suitable �lter to �nd the cluster signal beyond the noise induced by intrinsic
ellipticity of galaxies and cosmic shear by large-scale structures. Di�erent
�lters have been proposed so far, including the Gaussian �lter (Miyazaki et

59



4.2. OPTIMAL FILTERING: WEAK LENSING

al., 2002), the aperture mass in the version of Schneider et al. (1998), its
modi�cations by Schirmer et al. (2004), and the one proposed by Hennawi
& Spergel (2005). Maturi et al. (2005) proposed an optimal �lter, which
minimizes noises due to both the intrinsic ellipticity and the cosmic shear,
selecting the scales on which the cluster signal-to-noise ratio is expected to
be maximum. A comparison of the performance of the di�erent �lters used
to �nd dark matter halos in cosmological simulations has been presented in
Pace et al. (2007). An application to GaBoDs data of the optimal �lter is in
Maturi et al. (2007).

To build an optimal linear �lter for galaxy overdensities, we start from
the pioneering approach proposed by Postman et al. (1996), who developed
an optical �lter to analyse the data of the Palomar Distant Cluster Survey.
Many authors have proposed di�erent modi�cations of the original Postman
�lter: for example Kepner et al. (1999) introduced Poisson (instead of the
Gaussian) statistics and a rough usage of photometric redshifts; Dong et al.
(2008) allowed the radius of the �lter to change to adapt it to the detected
signal; Milkeraitis et al. (2009) tuned the parameters using mock light-cones
extracted from the Millennium Simulation (Springel et al., 2005).

In the following, we construct a Postman-like �lter as a linear �lter, using
the estimated richness of the cluster and not the likelihood of the data as
main object of analysis. This allows us to keep the linearity with respect to
the galaxy density and to calculate an error estimate analytically. We also
introduce the information from photometric redshifts in the procedure.

The reference article for this Chapter is Bellagamba et al. (2011).

4.2 Optimal �ltering: weak lensing

The linear matched �lter for weak lensing cluster detections has been pre-
sented in Maturi et al. (2005). We refer the reader to that paper and to Pace
et al. (2007) for a detailed description of its speci�c derivation, the compar-
ison with other �ltering techniques and tests of its performances. Here we
summarise the main properties of the �lter and how it can be applied to real
data.

The observable quantity in weak lensing analyses is the reduced shear g
(see Eq. 2.22), a measure of the distortion of background galaxies by inter-
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vening structures (i.e. galaxy clusters). The weak lensing �lter for cluster
detection is expressed in Fourier space for convenience. Its shape is given by

Ψ̂(k) =
1

(2π)2

(∫
τ̂ 2(k)

PN(k)
d2k

)−1
τ̂(k)

PN(k)
, (4.1)

where τ̂ is the Fourier transform of the weak lensing signal expected from a
lensing cluster, i.e. the reduced shear, and PN represents the power spectrum
of the noise, due to the intrinsic ellipticity of the sources, their �nite number
on the sky and the additional shear induced by large-scale structures. The
weak lensing signal model for clusters is computed assuming a spherically
symmetric NFW density pro�le for the dark matter distribution. We also
assume that the projected radial matter distribution of the cluster Σ(x) fol-
lows an NFW model (Navarro et al., 1997; Bartelmann, 1996; Meneghetti et
al., 2002):

Σ(x) =
2ρsrs
x2 − 1

f(x), (4.2)

with

f(x) =


1− 2√

x2−1
arctan

√
x−1
x+1

(x > 1)

1− 2√
1−x2 arctanh

√
1−x
1+x

(x < 1)

0 (x = 1)

,

where x ≡ r/rs. This distribution, apart from the normalization ρs, depends
on the scale radius rs only, corresponding to R200/c, where R200 is the scale
where the galaxy density is 200 times the critical density, and c is the so-called
concentration parameter. The shape of the cluster signal, of the di�erent
sources of noise and of the resulting �lter is shown in Fig. 4.1.

The estimate of the lensing signal is obtained by convolving the shear
data, D(θ), with the �lter Ψ,

A(θ) =

∫
D(θ′)Ψ(θ − θ′)d2θ′ . (4.3)

The variance of the estimate is

σ2
A =

1

(2π)2

∫
|Ψ̂(k)|2PN(k)d2k . (4.4)

The �lter in Equation 4.1 was constructed requiring that the estimate of
the amplitude of the signal A given by Equation 4.3 is unbiased and has
minimum variance.
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Figure 4.1: Cluster signal, noise produced by large-scale structure and by in-
trinsic ellipticity, and resulting shape of the �lter, as a function of wavenum-
ber k. Figure taken from Maturi et al. (2005).

The application of the weak lensing �lter to the data is done evaluating
A(θ) over a grid of angular positions. Equation 4.3 is then discretized to be
applied to real data. It becomes

A(θ) =
1

ng

N∑
k=1

εtkΨ(|θk − θ|) , (4.5)

where ng is the number density of galaxies used for weak lensing measurement
and εtk denotes the tangential component of the k-th galaxy ellipticity with
respect to the angular position. Thus, the �ltering is performed in the real
domain, which requires to back-Fourier transform the �lter function de�ned
in Equation 4.1. For every estimate of A, its error σ2

A is also computed,
according to Equation 4.4. Peaks with S/N > 3 are selected from the map
and considered as detections.
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4.3 Optimal �ltering: galaxy distribution

4.3.1 The �lter

To derive the optimal �lter, we assume that positions, magnitudes (at least
in one band), and possibly photometric redshifts of the galaxies in a surveyed
�eld are available. Furthermore, we assume that bound structures like galaxy
clusters present in the �eld can be traced by the galaxy distributions within
them and that the spatial distribution of background galaxies is random.
Under these assumptions, given the characteristics of the survey, bands of
observation and depth, it is possible to de�ne a cluster model, describing the
expected spatial and magnitude distributions of the cluster galaxies and a
noise model describing the background distribution of �eld galaxies.

Thus we de�ne a model nm(θ,m) for the observed distribution of galaxies
as a function of the position θ and magnitude m, given by the sum of a �eld
and a cluster component (Postman et al., 1996):

nm(θ,m) = nf (m) + Λnc(θ,m) = nf (m) + ΛP (θ − θc)φ(m) , (4.6)

where nf (m) is the magnitude distribution of �eld galaxies, θc is the cluster
centre, P is the projected radial pro�le of the cluster galaxies number den-
sity, φ(m) is the cluster luminosity function and Λ is a richness parameter,
proportional to the total number of cluster galaxies.

The detection of a cluster in the input catalogue is based on the compar-
ison of the observed distribution of galaxies to the model nm. More speci�-
cally, for a �xed cluster centre θc, we compute the value of Λ for which our
model distribution best describes the observed distribution nd(θ,m). The
likelihood of the observed data nd given the model nm is

L = −
∫

[nd(θ,m)− nm(θ,m)]2

nm(θ,m)
dΩdm

= −
∫

[nd(θ,m)− nf (m)− Λnc(θ,m)]2

nf (m)
dΩdm , (4.7)

assuming that the background noise is Poissonian noise and that the galaxy
density is high enough such that the Gaussian approximation holds.

We derive the value of the richness Λ that maximizes L by imposing

dL
dΛ

= 2

∫
nc
nf

(nd − nf )dΩdm− 2Λ

∫
n2
c

nf
dΩdm = 0 , (4.8)
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which leads to

Λ =

∫
nc
nf

(nd − nf )dΩdm∫
n2
c

nf
dΩdm

=

∫
nc
nf
nddΩdm−

∫
ncdΩdm∫

n2
c

nf
dΩdm

. (4.9)

Only the �rst term in the numerator depends on the spatial distribution of
the data with respect to θc. Thus, Equation 4.9 can be re-written as

Λ =

∫
Φ(θ − θc,m)nd(θ,m)dΩdm−B , (4.10)

where Φ is the optical linear �lter de�ned as

Φ(θ − θc,m) =

(∫
n2
c

nf
dΩdm

)−1
nc(θ,m)

nf (m)
, (4.11)

and B is the contribution of background galaxies that is subtracted to work
on a zero-mean noise �eld,

B =

(∫
n2
c

nf
dΩdm

)−1 ∫
ncdΩdm . (4.12)

If we insert Λ obtained from Equation 4.9 back into Equation 4.7, we obtain
the corresponding value of the likelihood

L = L0 +

[∫
nc
nf

(nd − nf )dΩdm

]2

∫
n2
c

nf
dΩdm

, (4.13)

where L0 is a (negative) constant that does not depend on the position of the
cluster θc. Comparing Equations 4.13 and 4.9, we see that the varying part of
L is proportional to Λ2. This squared dependence of L on Λ re�ects the fact
that the χ2 approach returns high likelihoods also for galaxy underdensities,
for which Λ would be negative.
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This is why we consider convenient to search for galaxy clusters as peaks of
the distribution of Λ as a function of the sky position θc, instead of likelihood
maxima. In fact, we take full advantage of the linear response to the data,
provided by Equation 4.10, and of the physical direct interpretation of Λ,
which is a suitably normalized number of visible galaxies belonging to the
cluster (see Section 4.3.2).

The variance of Λ is given by σ2
Λ ≡ 〈(Λ − Λ̂)2〉, where Λ̂ is an estimate

of the true value of Λ, given by Equation 4.10. Since Λ̂nc(m, θ) and n̂f (m)

are random realizations of the cluster and �eld populations, the resulting σ2
Λ

has two contributions: the �rst term is induced by the random �uctuations
in the background, the second by the random sampling of the cluster model:

σ2
Λ =

(∫
n2
c

nf
dΩdm

)−1

+ Λ

∫
n3
c

n2
f

dΩdm(∫
n2
c

nf
dΩdm

)2 . (4.14)

By applying the formalism of linear matched �lters, one can see that the �lter
minimizes the variance of the estimated Λ due to random �uctuations only.
The second term in Equation 4.14 gives the intrinsic Poissonian �uctuation
of the cluster realization.

In case multi-band observations are available and a model for the colour
distribution is assumed, the previous equations can easily be generalised to
use a magnitude vector ~m, instead of a scalar m.

4.3.2 Modelling the galaxy clusters - single-band case

In the single band case, the cluster optical model is speci�ed by the spatial
and luminosity distribution of cluster galaxies. We take these distributions
from the analysis of observed galaxy clusters. For simplicity, we assume
spherical symmetry. We also assume that the projected radial distribution
of the cluster members follows an NFW model, as the matter distribution
(see Eq. 4.2). Our choice is motivated by the analysis made by Hansen et
al. (2005) on a large sample of optically-selected clusters from the SDSS.
They found that the NFW model is a good description of the cluster galaxy
distribution up R200. The concentration parameters derived from galaxy dis-
tributions described by the NFW model depends on the richness but it is

65



4.3. OPTIMAL FILTERING: GALAXY DISTRIBUTION

in general smaller (1 < c < 3) than those found in numerical simulations
for dark matter halos of similar mass. In this context we use a scale radius
rs = 500 kpc/h, that represents a good estimate for quite rich clusters (see
Figs. 7 and 8 in Hansen et al., 2005). The resulting radial pro�les computed
at di�erent redshifts are shown in Fig. 4.2, as examples. For the cluster lumi-
nosity distribution, we assume the Schechter luminosity functions (Schechter,
1976), with parameters taken from Popesso et al. (2005), who analysed 97
clusters observed in the SDSS. Since these are calculated from galaxy counts
inside a radius of 1 Mpc/h from the cluster centre, we apply the same cut to
the radial density pro�le. For a realistic concentration parameter c = 2, this
implies that we limit our analysis within R200, where the projected NFW is
a good description of observed clusters, as discussed. Then, we normalize
properly the cluster model nc to set the richness parameter Λ to be the total
number N of visible galaxies in a cluster. Integrating the cluster model, we
get:

N = Λ

∫
nc(θ,m)d2θdm (4.15)

= Λ

∫∫
P (θ)d2θ

∫
φ(m)dm . (4.16)

To set N = Λ, we impose the integrals of the angular distribution and the
luminosity function to be normalized to unity, that is∫∫

P (θ)d2θ = 1 , (4.17)∫ mlim

0

φ(m)dm = 1 , (4.18)

where mlim is the limiting magnitude of the sample.

4.3.3 Modelling the galaxy clusters - multi-band case

In this Section we describe another way to build the galaxy cluster model,
that allows us to derive the galaxy content of a cluster for larger ranges of
observing bands and cluster richness. In particular, this method is well-suited
to derive a colour distribution for the cluster galaxies, and thus to consider
combined multi-band information in the analysis. We will make use of this
cluster model in Sect. 5.2. The main ingredients for this method are taken
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Figure 4.2: Radial pro�les of the cluster model at di�erent redshifts, as
labelled in the �gure. The pro�le is �attened inside 100 Kpc/h to avoid the
central divergence, while the cut o� at large radius corresponds to the R200

limit.
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Figure 4.3: Magnitude functions of the cluster model at di�erent redshifts,
as labelled in the �gure.
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from the analysis of the MaxBCG cluster catalogue extracted from SDSS
data (Hansen et al., 2009; Sheldon et al., 2009; Hao et al., 2009). We use the
relations between M200, r200 and N200 derived in Sheldon et al. (2009):

M200 = 1.751012h−1M�N
1.25
200 , (4.19)

R200 = 0.182h−1MpcN0.42
200 . (4.20)

The angular density of galaxies as a function of angular distance r to the
cluster center, in terms of R200, is taken from Sheldon et al. (2009), for
di�erent values ofN200, as shown in Fig. 4.4. In order to derive a model for the
cluster appearance in di�erent observing bands, we need to assume a spectral-
energy distribution for the cluster galaxies. In particular, we split them in
two broad classes, blue and red galaxies, following the well-known bimodality
of galaxy colours (see e.g. Balogh et al., 2004). For each point in the (r, ~m)

space, we write the density of galaxies as the sum of the contributions given
by the red and the blue populations,

n(~m, r) = nred(~m, r) + nblue(~m, r) . (4.21)

Each contribution is calculated as

ni(~m, r) = fiφ(m1)

nb−1∏
j=1

G(mj −m1) , (4.22)

where fi is the fraction of galaxies belonging to that type, φ(m1) is the lumi-
nosity function in the �rst band and G(mj −m1) is the colour distribution.
The fraction of red galaxies fred as a function of the distance from the clus-
ter center is taken again from Hansen et al. (2009), for di�erent values of
N200. The luminosity functions in the i band for the two kind of galaxies
are described with Schechter functions by Hansen et al. (2009). Then we use
the work by Loh et al. (2008), who compared the observed colours of the
red and blue clumps to the standard templates of Coleman et al. (1980) and
Kinney et al. (1996), which we already introduced in the previous Chapter.
We thus express the mean SEDs of the blue and red populations as linear
interpolations of the aforementioned template SEDs. In this way we calcu-
late the colour and the k-correction and obtain the proper m∗ for each kind
of galaxy, from the one observed in the i band. Using the same SEDs we
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calculate also the mean colour for each kind of galaxy, in case multi-band
information is needed. A Brighter Cluster Galaxy (BCG) is added at the
center of the cluster, with an i-band luminosity given by

LBCG = 0.387 logN200 − 0.312 , (4.23)

and a SED analogue to the one for red satellites. Di�erently from the single-
band case described in the previous Section, the normalisation of the model
is done in such a way that Λ = 1 corresponds to a realistic galaxy distribution
for a cluster of the chosen mass M200.

Apart from the cluster model, the other ingredient of our recipe is the
distribution of �eld galaxies, that we assume to be random with a �xed mean
angular number density. The magnitude distribution of the �eld galaxies
nf (m) can be estimated from the distribution of the whole galaxy sample,
provided that the �eld is large enough such that the contribution of cluster
galaxies can be considered negligible.

4.3.4 Map making

Clusters are searched in three-dimensional space, where their positions are
given by the angular coordinates θc and by the redshift zc. We create maps
of Λ estimates for di�erent values of the redshift, and we search for cluster
detections in these maps. Comparison of detections in di�erent redshift slices
is done subsequently (see Section 4.3.5).

At a �xed redshift zc, we build a two-dimensional map evaluating Λ over
a grid of angular positions θc. Since we deal with discrete quantities, the
integral in Equation 4.9 must be approximated as a sum over the galaxy
positions. Only the �rst term in the numerator needs to be evaluated for
every grid position θc, while the second one is equal to unity because of the
normalization. The denominator for a given redshift is a constant for all sky
positions. We denote it by C. Thus the discretized version of Equation 4.9
reduces to

Λij = Λ(θi, θj) =
Aij − 1

C
, (4.24)

where

Aij =
N∑
k=1

nc(rk, ~mk)

nf (~mk)
=

N∑
k=1

P (rk)φ(~mk)

nf (~mk)
. (4.25)
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Figure 4.4: Distribution of galaxies as a function of angular distance to the
cluster center. Figure taken from Sheldon et al. (2009)
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In the formula above, rk is the angular distance of the galaxy from the centre

rk = |θk − (θi, θj)| , (4.26)

and the index k runs over all N galaxies of the sample. Clusters candidates
are identi�ed with the peaks of the resulting Λ-map. To select only signi�cant
peaks, we calculate their signal-to-noise ratios using the variance given in
Equation 4.14.

4.3.5 Redshift determination

To estimate the cluster redshift, we cannot just maximize Λ with respect to
zc. Indeed, this would introduce a bias as discussed below. The analytic
response of the algorithm as a function of the search redshift zc for a cluster
at a redshift z̄c and with a galaxy distribution n̄c is

Λ(zc) =

∫
nc
nf
n̄cdΩdm∫

n2
c

nf
dΩdm

. (4.27)

This corresponds to Equation 4.9 when applied to a known distribution nd =

nf + n̄c. By construction, Λ = 1 when zc = z̄c, but there is no reason why
this should be a maximum for the function Λ(zc). This is shown in Fig. 4.5,
where we plot the analytic response for two clusters located at z = 0.2 and
z = 0.4. For both of them the maximum of Λ as a function of zc is found at
a higher redshift than the cluster's.

For a correct redshift estimate, the likelihood L (Equation 4.13) in the
peaks of the 2D distribution of Λ must be used. By de�nition, the value of
L is maximal when the cluster is �ltered by a model at the correct redshift
(See Fig. 4.6).

If the photometric redshift is available for each galaxy, we can use this
further information in our analysis. Assuming that a redshift probability
distribution pk(z) is derived for the k-th galaxy of the sample, pk(zc) can
be used as a weight factor for that galaxy when estimating the �eld number
density, nf , the cluster richness, Λ, and the likelihood, L, at a redshift zc..

On the other hand, this can be interpreted as an extension of the two-
dimensional linear matched �lter to a three-dimensional one, where the red-
shift probability function represents the cluster pro�le along the line of sight.
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Figure 4.5: Analytic response of the algorithm (Eq. 4.27) for two clusters at
redshifts 0.2 and 0.4. When the cluster is seen at the correct redshift, the
value of the response is unity by de�nition (black points).
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In fact, in an ideal case where all galaxies have the same redshift probability
distribution, which for simplicity we assume to be a Gaussian distribution
centered on their most probable location, zest,k, with a constant rms, σz,

pk(z) =
1√

2πσz
exp

(
− (zest,k − z)2

2σ2
z

)
, (4.28)

the three-dimensional model with a cluster at redshift zc is

nm(θ,m, z) = nf (m, z) + Λnc(θ,m, z)

= nf (m, z) + ΛP (θ − θc)φz(m)p(z) , (4.29)

where

p(z) =
1√

2πσz
exp

(
− (zc − z)2

2σ2
z

)
. (4.30)

If we then further assume that the background distribution is only slowly
changing with redshift, so that the background nf (m, z) for zc − σz < z <

zc + σz is constant, the richness estimate at redshift zc is

Λ =

∫
nc(θ,m, z)

nf (m, zc)
(nd(θ,m, z)− nf (m, zc))dΩdmdz∫
n2
c(θ,m, z)

nf (m, zc)
dΩdmdz

. (4.31)

This is equivalent to Equation 4.9, but with the additional dimension. In
practical applications, Equation 4.31 has to be discretized in analogy with
Equation 4.24. Thus,

Aij =
N∑
k=1

P (rk)φ(mk)pk(zc)

nf (mk, zc)
. (4.32)

In this case the numerator is evaluated weighting every galaxy with pk(zc).
The constant denominator C, that does not depend on the observed galaxy
spatial distribution, can be evaluated using a model for σz, possibly depend-
ing on the magnitude and the redshift estimate of the galaxies. The same
model is also necessary for the evaluation of the variance that, in analogy
with Equation 4.14, is

σ2
Λ =

(∫
n2
c

nf
dΩdmdz

)−1

+ Λ

∫
n3
c

n2
f

dΩdmdz(∫
n2
c

nf
dΩdmdz

)2 . (4.33)
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The �lter is applied to the data as usual, creating maps for di�erent
redshift slices and selecting peaks, as described in Section (4.3.4). The most
likely redshift estimate for a detection is then chosen.

4.3.6 Comparison with other optical cluster �nding meth-

ods

The optimal matched �lter we use for cluster detections (both optical and
weak lensing) relies on the general knowledge we have of galaxy clusters, as
incorporated in the cluster model, and selects all physical properties which
enables us to distinguish them from the �eld. It is in fact a general approach
which can incorporate at once di�erent cluster aspects in contrast to other
methods which aim at a single signature such as galaxy overdensities, cluster
galaxy red-sequence, cD galaxies, etc. In other words, instead of enforcing
some criteria which is later applied to data, we �rst de�ne the general prop-
erties of galaxy clusters and then let the �lter �nd what are the distinctive
features for their detection given the actual data noise.

In the rest of this Section we discuss the main techniques applied in
literature and how they compare with the one presented in this work.

Looking for galaxy overdensities in astronomical images by eye was the
�rst method used to detect galaxy clusters. In the last decades di�erent
automated methods were proposed, such as friend-of-friend algorithms (Li &
Yee, 2008), Voronoi tesselation (Ramella et al., 2001), �ltering by wavelets
(Finoguenov et al., 2007), adapting kernels (Mazure et al., 2007) or matched
�lters (e.g. Postman et al., 1996; Kepner et al., 1999; Gilbank et al., 2004;
Dong et al., 2008; Menanteau et al., 2009; Milkeraitis et al., 2009). Together
with the additional features discussed in the following sections, our algorithm
incorporates the mentioned matched �lters. In fact it includes the angular
clustering information on the sky according to the P term of Eq. 4.32 or,
if photometric redshifts are available, the full three-dimensional clustering
information thanks to the p term of Equ. 4.32. In more details, the main
di�erences with respect to the matched �lters mentioned in this Section are:

1. our �lter can take advantage of the information from photometric red-
shifts in a very �exible way, accounting for their uncertainty. Instead
of simply slicing the data-set and neglecting all galaxies outside a �xed
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redshift range (e.g. Milkeraitis et al., 2009), we consider all galaxies
belonging to the data set by weighing them according to their own
redshift probability distribution.

2. It uses distinct luminosity functions for galaxy clusters and �eld galax-
ies to de�ne the cluster model and the noise contribution. Although
this seems an obvious choice, previous �ltering algorithms use the lumi-
nosity functions taken from the whole population of galaxies, including
the �eld, to de�ne the cluster model.

3. It is linear with respect to the data, because it makes use of the richness
Λ instead of the likelihood L as the main object of analysis. In fact,
even if they are based on the same statistical distribution, Λ is linear,
in contrast with L which is quadratic, and therefore is capable to dis-
tinguish positive overdensities from negative underdensities to which L
would assign high probabilities.

4. It gives as a natural output an estimate of the number of observed
galaxies in a cluster, which can be easily corrected for redshift dimming
to get a meaningful physical quantity (see Section 4.4.3). With the
second implementation of the cluster model, we also have a measure of
the galaxy population of the cluster in terms of the expected population
for a cluster of mass M200.

The algorithm used by Koester et al. (2007), based mainly on red-sequence
information, includes a cut-o� term for the brighter cluster galaxy luminos-
ity, such that detections without a very brilliant central galaxy are discarded.
In our approach, instead of looking for a speci�c cluster member, we let the
�lter select in an optimal way the whole luminosity function φ expected for
a cluster at a given redshift in contrast with the �eld luminosity function nf ,
as in Equation 4.32. As the most massive and luminous galaxies are found
preferably at the center of the clusters, at low magnitudes the ratio between
the cluster model luminosity function and the observed �eld distribution will
increase. The algorithm will assign large weights to very luminous galaxies
and thus they will be a strong indication of the presence of clusters. The ad-
vantage of our approach is that the �lter is de�ned according to well de�ned
statistical quantities and not to a free parameter. In addition we allow the
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algorithm to be sensitive to a broad range of systems, from rich clusters to
groups which might otherwise fall below a given threshold.

Red-sequence cluster �nders rely on the fact that the center of galaxy
clusters is typically populated by elliptical galaxies whose color is on average
redder than the one of the �eld galaxies at the same redshift. Usually a
cut in a colour-magnitude diagram is performed to select these red galaxies
overdensities that identify the galaxy cluster candidates. This technique, pre-
sented in Gladders & Yee (2000), has been succesfully used in di�erent galaxy
surveys (e.g. Gladders & Yee, 2005; Koester et al., 2007; Lu et al., 2009; Than-
javur et al., 2009). When adopting the second method for model creation,
we make use of the colour information by de�ning a multi-band luminosity
distribution for the cluster. The expected density in the magnitude-colour
space depends explicitly on the fraction of red objects in galaxy clusters. As
this is known to be larger than the corresponding �eld value, red galaxies
will receive large weighs by the algorithm, and thus will be markers of the
presence of a cluster. As in the case of the BCG, we underline that this is
done not by de�ning a cut-o� in the color space but by de�ning the proper
weight to each galaxy performing an optimized analysis.

4.4 Application to the COSMOS �eld

In this Section, we will show the application of the algorithm to real data,
namely the i′ band galaxy catalogue of the COSMOS �eld (Ilbert et al.,
2009), limited at i′ = 25. In this work, the �rst method to draw the galaxy
cluster model is used. Before applying the �lter to data, we have to evaluate
the capability of our algorithm to detect clusters and to correctly measure
their richness and redshift. In these tests we use the �eld distributions mea-
sured from the COSMOS data to de�ne the �lter. Thus, we use the speci�c
implementation of the algorithm that will be later adopted for the �nal data
analysis.

4.4.1 Signal-to-noise estimates

We now evaluate the expected signal-to-noise ratios for clusters with di�erent
redshift and richness, as described by our cluster model, once the actual prop-
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erties of the galaxies in the COSMOS catalogue are assumed. The expected
signal-to-noise ratios when the photometric redshifts are neglected are shown
in the upper panel of Fig. 4.7. In this case, the expected signal and noise are
given by Equations 4.9 and 4.14, respectively, and the signal-to-noise ratio
peaks at z ∼ 0.45. To explain this behaviour, we plot separately in Fig. 4.8
the expected signal of a cluster with 100 visible galaxies at z = 0.2 and the
two noise terms as a function of redshift. The signal, i.e. the number of
visible galaxies of the modeled cluster, decreases for increasing z as expected
(solid line). The trend for the noise is di�erent: on one hand, the term re-
lated to the background galaxies only (dot-dashed line) grows monotonically
as a function of redshift up to z ∼ 0.5 after which it basically stays constant;
on the other hand, the intrinsic �uctuations of the cluster signal decreases
monotonically with z. As a result the latter term is dominant at low redshifts
(up to z . 0.4).

This noise behaviour derives from the fact that for low-redshift clusters,
the �lter, being proportional to nc(m)/nf (m), selects the bright end of the
cluster luminosity function, that has almost no background. Therefore the
background noise decreases with redshift while the intrinsic �uctuations of
the cluster signal increase because the Λ estimate depends in practice on the
very few bright galaxies only.

In order to consider the case in which photometric redshift information
is available, we use the values for the redshift (zest) and its 68% con�dence
levels (zmin, zmax) reported in the COSMOS catalogue to associate to each
galaxy a probability distribution given by

p(z) =
1√

2πσm
exp

(
− (z − zest)2

2σ2

)
, (4.34)

where

σ =

{
zest − zmin if z < zest
zmax − zest if z > zest

, (4.35)

and
σm = (zmax − zmin)/2 . (4.36)

When estimating the normalization constants, i.e. the denominator of
Equation 4.31 and the variance (Equation 4.33), which do not depend on the
observed spatial galaxy distribution, we use the mean redshift error for dif-
ferent classes of objects, estimated from the comparison with a spectroscopic
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subsample (Ilbert et al., 2009). For our data-set, these errors are:

σ∆z/1+z =


0.007 for 0.2 < z < 1.5, i′ < 22.5

0.011 for 0.2 < z < 1.5, 22.5 < i′ < 24

0.053 for 0.2 < z < 1.5, 24 < i′ < 25

0.06 for z > 1.5

. (4.37)

As we can see in the lower panel of Fig. 4.7, using the photo-z informa-
tion, the picture becomes more confused, as the sensitivity depends on the
�eld population density nf (m, z) at the search redshift (see Equation 4.33).
The only clear trend is the decrement of the sensitivity at high redshift due
to the dimming of the cluster signal. In this case we do not have any wors-
ening of the performance at low redshift because the weight given by the
�lter through the nc(m)/nf (m, z) ratio selects almost the same part of the
luminosity function at each redshift.

4.4.2 Simulations with mock catalogues

We then test the application of our algorithm to mock galaxy catalogues,
built from the COSMOS data. To create realistic catalogues for the �eld
galaxies, we �rst randomize the positions of the galaxies to cancel any struc-
tures contained in the �eld. We assume that the cluster galaxies do not
a�ect the photometric properties of the overall sample because their number
is negligible with respect to that of the �eld galaxies. On the top of this
random background, we add some mock clusters. The cluster galaxies are
distributed according to the model for the spatial and luminosity distribu-
tion of the cluster members (see Section 4.3.2). The photometric redshifts
are assigned following a Gaussian redshift probability distribution with er-
rors given by Equation 4.37. For illustrative purposes, we �rst generate a
square �eld with side 1 degree, containing 25 galaxy clusters of di�erent rich-
ness and redshift placed on a regular grid. In Fig. 4.9 we show the results
of the analysis of this �eld without the usage of photometric redshifts, at a
search redshift zc = 0.4. All clusters leave an imprint on the Λ-map, whose
strength depends on the richness and the redshift, with clusters at z = zc
being brighter than the others with the same Λ.

Other simulations are done to verify the linear response of the �lter with
respect to the cluster richness. In this case, we assume for simplicity all clus-
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Figure 4.7: Expected signal-to-noise values for the detection of a cluster,
without (top panel) and with (bottom panel) photometric redshifts, for the
COSMOS i′ band catalogue. The black contours refer to di�erent integer
values for S/N, starting from unity at the bottom (see the color bar on the
right). The value on the y-axis is the number of galaxies of the cluster that
are detected when it is located at z = 0.2.
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Figure 4.8: Signal and noise for a cluster with 100 visible galaxies at z = 0.2

as a function of redshift. The signal (in red) corresponds to the number of
galaxies below i′ = 25, calculated from the model luminosity function. The
dot-dashed line represents the noise due to the background galaxies, while
the dashed line represents the noise due to the �uctuations in the cluster
galaxy distribution. The solid blue line represents the total noise. Scales for
noise and signal are shown on the left and right, respectively.
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Figure 4.9: Distribution of the richness Λ at zc = 0.4. Colorbar for Λ is
reported on the right. The grid identi�es the input positions of the mock
clusters. The labels along the axes indicate the richness and redshift of the
cluster at that position.
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Figure 4.10: Calibration of the values for the richness Λ values obtained by
the algorithm with and without redshift information. Clusters are located at
z = 0.4. The shaded area represents the analytic estimate of the uncertainty,
when the photometric redshift information is used.

ters at z = 0.4 and compare the input number of galaxies to the estimated
one. The results are shown in Fig. 4.10 where we also verify the good agree-
ment of the analytic estimate of the variance given in Equation 4.33 with the
one resulting from our Monte Carlo simulations.

We also use simulations to test the capability of the algorithm to estimate
correctly the redshift of a cluster. The results are shown in Fig. 4.11. The
mock clusters were composed requiring that they have 200 galaxies under
the magnitude limit at z = 0.2. At higher redshifts, fewer galaxies are seen
and analysed, explaining the increasing variance of the measurement. Note
that even with single-band observations a redshift estimate for the clusters
is possible albeit with larger errors with respect to the case in which the
photometric redshift information is included. A similar result was obtained
by Dietrich et al. (2007).

We now apply the optical �lter and the weak lensing �lter to the COS-
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Figure 4.11: Redshift determination obtained by the algorithm, using the
likelihood L instead of the richness Λ, with and without redshift information.
When photometric redshift are used, error bars become negligible.

85



4.4. APPLICATION TO THE COSMOS FIELD

MOS �eld, a 2 square degree equatorial �eld that has been observed with the
Hubble Space Telescope and with many other instruments, covering wave-
lengths from X-ray to radio (Scoville et al., 2007a).

4.4.3 Optical detections

For the optical analysis, we use the public galaxy catalogue with photometric
redshifts (Ilbert et al., 2009), considering the angular position, the photomet-
ric redshift, and the i′-band magnitude measured with Subaru (Taniguchi et
al., 2007). The photometric redshifts presented in the catalogue were ob-
tained from the galaxy �uxes in 30 di�erent bands, ranging from the ultravi-
olet to the near infrared. To each galaxy a SED has been assigned during the
determination of the photometric redshift. We use this additional informa-
tion to calculate the k-correction. We search for clusters between z = 0.1 and
z = 0.8, with steps of ∆z = 0.02. The upper limit of z = 0.8 is motivated
by two factors: �rst, the model that we assume for the cluster luminosity
function is based on low-redshift objects, and cannot be extrapolated to too
high redshifts; second, if the k-correction becomes too strong for a given type
of galaxies, our sample can no longer be assumed complete up to a given rest-
frame magnitude. We scan an area smaller than the full �eld of view, such
that, for each redshift, the �lter (cut at r = 1 Mpc/h) is completely inside
the survey �eld. In this way we avoid any border e�ect, at the price of loos-
ing some possible detections of structures that have their centre inside the
COSMOS area, but which are not completely contained in the �eld of view.

In Fig. 4.12, as examples, we show the results for the slices at z = 0.48,
0.50, 0.52 where the detections with S/N > 3 are marked with circles. Note
that some structures are visible in more than one slice. In that case we
assign as redshift of the detection the one where the likelihood is maximal,
as discussed is Section 4.3.5. In this way we obtain 140 signi�cant detections
with a redshift estimate.

Since the absolute magnitude limit changes with redshift, the richness of
clusters with the same galactic population is redshift dependent. In particular
the richness decreases as the redshift increases. To correct for this e�ect and
to obtain a quantity which depends on the cluster galaxy content only, we
make use of the luminosity function φ(m) of a cluster at an arbitrary redshift
zc = 0.2 to compute the normalization factor
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Figure 4.12: Maps of the estimates of the richness Λ on the COSMOS �eld,
at redshifts z = 0.48, 0.5, 0.52, from top to bottom. Red circles indicate sig-
ni�cant peaks, while red crosses represent a cluster detection at that redshift.
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Figure 4.13: Redshift and (corrected) richness of the detected clusters. The
black line represents the detection limit, that depends on model and �eld
distributions at di�erent redshifts. Clusters found in the optical analysis
only are marked in red, those with a counterpart in the lensing analysis are
marked in blue.

R(z) =

∫ mlim(z)

0

φ(m)dm . (4.38)

This quantity represents the part of φ(m) visible at a given redshift z. Divid-
ing the measured richness Λ for R(z), where z is the estimated redshift of the
cluster, we obtain a value that is directly proportional to the physical galactic
content of a cluster. More precisely this `corrected richness' corresponds to
the number of cluster galaxies that would be visible if the cluster was located
at z = 0.2. The `corrected richness' of our detections is shown in Fig. 4.13,
together with the selection threshold S/N = 3 for optical detections already
derived and shown in the lower panel of Fig. 4.7. Notice that the hills and
wells of the curve are due to the change of the �eld population as a function
of redshift.
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4.4.4 Lensing detections

The weak lensing cluster detections in COSMOS are performed by applying
Equation 4.5 as discussed by Maturi et al. (2005) on the shear catalogue
obtained with the Suprime-Cam mounted on SUBARU (Miyazaki et al.,
2007). The galaxy number density in the catalogue is 42 arcmin−2. Follow-
ing Miyazaki et al. (2007), we assume that the mean redshift of the sources
is 0.8. The weak lensing cluster model used in the �lter construction is the
signal expected from a cluster of mass 5× 1014M� at z = 0.5.

The total number of signi�cant (e.g. with S/N > 3) detections is 82. The
expected number of spurious detections at this S/N level is around 40%, as
computed by Pace et al. (2007). The derived weak lensing detections are
related to the optical overdensities using a correlation length of 500 kpc/h.
This quite severe constraint is justi�ed by the absence of any redshift in-
formation in the lensing data. The 27 detections satisfying this correlation
criterion are listed in Table 4.1, while optical detections without a lensing
counterpart are listed in Table 4.2.

In Fig. 4.14 we show the redshift distribution of our combined detections.
From the source redshift distribution it is possible to evaluate the redshift
sensitivity function for weak lensing, that is a measurement of how much
the shear of observed galaxies is sensitive to structures at di�erent redshifts.
In Fig. 4.14 we also show the optical sensitivity function, computed as the
S/N of a cluster with 100 visible galaxies at z = 0.2. The ratio of lensing-
con�rmed clusters over the total number of optical detections in our analysis
does not show any clear trend with redshift, but this could be due to the
poor statistics.

4.4.5 Comparison with literature

We can compare our results to published catalogues of clusters previously ex-
tracted from the COSMOS �eld. Previous analyses were done by Finoguenov
et al. (2007), combining optical and X-ray information and by Olsen et al.
(2007), who found galaxy overdensities, by applying a Postman-like �lter to a
previous version of the galaxy catalogue with no redshift information. Scov-
ille et al. (2007b) analysed the COSMOS �eld with a wavelet method, and
presented a catalogue of large-scale structures. We note that these structures
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Figure 4.14: Top panel: redshift distribution of all optical detections (dashed
line) and of the lensing-con�rmed clusters (solid line). Bottom panel: lensing
sensitivity function and optical sensitivity function, de�ned as the S/N of a
cluster with 100 visible galaxies at z = 0.2, in arbitrary units.
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are in general much larger than our targets, and that their size in some cases
exceeds 10 Mpc in comoving coordinates. The few previous cluster detec-
tions in this �eld via lensing were reported by Kasliwal et al. (2008), while
comparing the performance of ground-based and space-based telescopes for
weak lensing, and by Miyazaki et al. (2007).

Correlating our detections with results from literature, we use di�erent
criteria depending on the characteristics of the catalogues. For sources pre-
sented in Finoguenov et al. (2007) and Olsen et al. (2007), we match detec-
tions using a physical correlation length of 1 Mpc/h, i.e. the cut-o� applied
to our radial �lter. Instead, for the larger structures presented in Scoville et
al. (2007b), we use a correlation length equal to the FWHM of their density
peaks. In all these cases, the correlation along the line-of-sight is performed
considering di�erences in redshift smaller than 0.05. This can be quite se-
vere for Olsen et al. (2007), as their redshift determination was based on
single band observations without any redshift information. For the lensing
detections presented by Kasliwal et al. (2008) and Miyazaki et al. (2007), we
use the same criterion we adopted for the internal matching with our lensing
detections, i.e. a correlation length of 500 kpc/h. Regarding Finoguenov et
al. (2007), we must stress that the comparison can only be done with their
catalogue of X-ray con�rmed clusters, obtained correlating 420 optical over-
densities with 150 X-ray di�use sources. This justi�es some discrepancies
between the two analyses.

The existence of previous detections of the objects found in our optical
and lensing analysis is reported in the last columns of Tables 4.1 and 4.2.

We note here the ability of our optical �lter to distinguish di�erent galaxy
clusters that are aligned along the line of sight, despite their signals are degen-
erate in weak lensing analyses. In fact, the two detections with identi�cation
numbers 4 and 7 correspond to SLJ1000.7+0137, a weak lensing and X-
ray source studied by Hamana et al. (2009) with spectroscopic observations.
They found that it is actually made by two, or possibly three, overdensities
of galaxies at di�erent redshifts, almost at the same angular position. Our
method is able to disentangle the two structures at z = 0.22 and z = 0.34

using information from photometric redshifts only. A similar case is that of
SLJ1001.2+0135, described by Hamana et al. (2009) as the superposition of
two overdensities, located at z = 0.22 and z = 0.37. Our detection 8 corre-
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ID z R.A. Decl. S/N richness previous
detections

1 0.12 150.395 2.446 5.280 102.89 X
2 0.18 150.060 2.200 3.327 40.11
3 0.20 150.616 2.425 3.802 70.95 X
4 0.22 150.192 1.650 6.628 244.74 XL
5 0.26 149.911 2.603 4.832 105.93 XSO
6 0.34 149.939 2.607 4.375 124.31 O
7 0.34 150.193 1.658 3.573 85.70 SL
8 0.34 150.299 1.609 3.749 93.49 XS
9 0.36 149.890 2.452 4.770 141.92 XS
10 0.38 150.142 2.053 3.831 95.29
11 0.40 150.646 2.807 3.089 53.56
12 0.46 150.687 2.400 3.419 67.07
13 0.48 149.760 2.798 4.473 122.87 X
14 0.54 149.521 1.884 4.131 96.47
15 0.60 149.926 2.519 3.202 78.57 L
16 0.62 149.572 1.882 3.018 74.84 S
17 0.62 150.590 2.473 4.035 127.47
18 0.64 149.628 1.906 3.989 112.74 S
19 0.64 150.443 1.883 3.089 71.56
20 0.68 149.718 1.816 3.428 82.65
21 0.68 150.088 2.193 5.331 173.71 O
22 0.68 150.290 1.580 3.453 83.61
23 0.70 150.308 2.406 3.975 114.17 S
24 0.72 149.921 2.521 8.721 532.42 XL
25 0.72 150.141 2.069 4.953 187.60
26 0.76 150.641 2.804 3.764 129.46 S
27 0.80 150.437 2.763 4.705 177.08 S

Table 4.1: Catalogue of the clusters detected with both optical and lensing
�lters. The angular position is the one of the detection from optical data. In
the last column we indicate whether the cluster has been found previously
with other techniques: `X' stands for Finoguenov et al. (2007), `S' for Scoville
et al. (2007b), `O' for Olsen et al. (2007), `L' for Kasliwal et al. (2008) or
Miyazaki et al. (2007).
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ID z R.A. Decl. S/N richness previous
detections

28 0.12 149.862 1.765 4.279 69.35 X
29 0.12 150.432 2.630 3.925 59.13
30 0.16 150.387 2.069 3.246 44.64
31 0.22 150.102 2.358 5.042 144.29 XSO
32 0.22 150.395 2.460 4.397 111.20 O
33 0.22 150.620 2.707 4.070 96.12 S
34 0.26 149.842 2.682 3.436 56.19 S
35 0.26 150.089 2.474 3.640 62.42
36 0.26 150.268 2.672 3.305 52.37 S
37 0.28 149.594 2.150 3.978 75.93
38 0.28 149.969 2.450 3.190 50.52 S
39 0.28 150.044 2.225 4.159 82.51 SO
40 0.28 150.194 1.747 3.280 53.16 S
41 0.30 150.186 2.794 3.517 74.18
42 0.30 150.572 1.942 3.337 67.24 X
43 0.32 150.456 2.049 5.332 182.39 S
44 0.32 150.652 2.313 3.531 83.32 S
45 0.34 149.596 2.820 4.773 146.29 XS
46 0.34 149.767 2.329 3.336 75.73 S
47 0.34 150.070 2.378 3.372 77.19 X
48 0.34 150.185 1.765 4.804 148.11 XS
49 0.34 150.373 2.444 3.691 90.87 XS
50 0.34 150.536 2.730 4.186 114.54 S
51 0.36 149.787 2.167 3.900 98.05 S
52 0.36 150.119 2.689 5.227 168.45 X
53 0.36 150.523 2.570 4.385 121.46
54 0.38 149.675 2.413 3.133 66.70 S
55 0.38 149.767 1.625 3.112 65.94
56 0.38 149.821 2.275 4.637 135.17 SO
57 0.38 149.966 1.678 4.250 115.08 X
58 0.38 150.234 2.474 3.609 85.62
59 0.38 150.387 2.413 4.162 110.80 X
60 0.38 150.663 2.559 3.077 64.64
61 0.40 149.578 2.533 3.343 61.52
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ID z R.A. Decl. S/N richness previous
detections

62 0.40 149.971 2.748 3.401 63.40
63 0.40 150.356 2.651 4.816 119.47
64 0.42 149.674 2.731 3.336 72.20
65 0.44 149.961 2.210 3.315 66.64 XO
66 0.44 150.494 2.070 5.034 142.59 XSO
67 0.44 150.690 2.021 3.695 80.85
68 0.46 149.667 1.625 4.658 118.42 S
69 0.46 150.354 2.741 3.178 58.86
70 0.46 150.653 2.271 4.031 90.50
71 0.46 150.721 2.244 3.160 58.26
72 0.48 149.561 2.519 3.407 74.82
73 0.48 149.707 2.506 4.519 125.21 S
74 0.50 149.525 2.441 3.519 78.18 S
75 0.50 149.695 2.657 3.148 64.27
76 0.50 150.113 2.559 4.855 140.51 XS
77 0.50 150.328 2.735 3.562 79.87 S
78 0.52 149.542 1.719 3.733 73.37
79 0.52 149.714 2.267 3.885 78.72 O
80 0.52 149.823 1.821 3.785 75.19
81 0.52 150.059 1.629 3.646 70.42
82 0.52 150.141 1.597 4.453 100.43
83 0.52 150.295 1.680 5.809 163.77
84 0.54 150.135 1.853 4.970 135.34
85 0.54 150.216 1.821 4.928 133.21 X
86 0.54 150.260 1.765 3.528 72.84
87 0.54 150.360 1.627 3.883 86.33
88 0.54 150.467 2.066 5.088 141.32 X
89 0.54 150.573 2.166 3.591 75.14
90 0.56 149.525 1.760 4.173 123.00
91 0.58 149.578 1.683 3.028 78.39 S
92 0.60 149.617 1.740 5.134 184.96 S
93 0.60 150.063 2.798 3.874 110.18
94 0.60 150.253 2.346 3.334 84.34
95 0.60 150.301 2.804 3.445 89.34
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ID z R.A. Decl. S/N richness previous
detections

96 0.60 150.491 2.745 3.851 109.03 X
97 0.60 150.574 2.608 3.827 107.78
98 0.60 150.616 2.780 3.527 93.14
99 0.60 150.717 2.537 3.799 106.39
100 0.62 150.052 2.321 3.082 77.73
101 0.62 150.520 2.473 3.620 104.23
102 0.62 150.707 2.759 3.306 88.25
103 0.62 150.725 2.625 3.492 97.54
104 0.64 150.633 2.715 3.738 100.25
105 0.64 150.737 2.825 3.644 95.81 X
106 0.66 149.802 1.804 3.204 83.66 S
107 0.66 150.185 2.158 3.438 94.33
108 0.66 150.196 2.238 3.613 102.74
109 0.66 150.687 1.667 3.469 95.77
110 0.68 149.673 2.277 3.670 92.24
111 0.68 149.925 2.597 3.092 70.21 S
112 0.68 149.948 2.097 4.162 113.53
113 0.68 150.010 2.119 3.810 98.07
114 0.68 150.060 2.608 6.305 234.42 SO
115 0.68 150.173 2.518 5.706 195.95 S
116 0.68 150.257 1.968 3.895 101.70
117 0.70 149.647 2.828 3.514 93.08
118 0.70 149.964 2.673 4.606 146.79 S
119 0.70 149.986 2.578 5.200 181.54 XSO
120 0.70 150.003 2.451 5.684 212.81 S
121 0.70 150.152 2.601 3.509 92.83 S
122 0.72 149.899 2.394 3.789 118.18 S
123 0.72 150.086 2.460 4.479 157.29 S
124 0.72 150.108 2.565 3.475 102.36 S
125 0.72 150.207 2.361 3.056 83.12 S
126 0.72 150.593 2.129 3.011 81.17
127 0.72 150.736 2.416 3.731 115.19 S
128 0.74 149.523 2.656 3.344 101.46
129 0.74 149.866 2.492 4.466 170.82 S
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ID z R.A. Decl. S/N richness previous
detections

130 0.74 149.986 2.563 3.305 99.40 SO
131 0.74 150.024 2.688 3.388 103.83 S
132 0.74 150.051 2.302 3.821 128.61 S
133 0.74 150.116 2.705 4.030 141.57 SO
134 0.74 150.171 1.703 3.449 107.13
135 0.74 150.296 2.378 3.196 93.72 S
136 0.74 150.547 2.803 3.212 94.55 S
137 0.76 149.559 1.647 3.054 88.26
138 0.76 149.732 2.761 3.248 98.66
139 0.76 149.839 1.684 3.468 111.29
140 0.76 150.114 2.255 3.080 89.62 S
141 0.80 149.706 2.265 3.251 91.47
142 0.80 150.040 2.652 3.906 126.31
143 0.80 150.368 2.005 3.546 106.42 X
144 0.80 150.506 2.222 3.229 90.37
145 0.80 150.538 2.148 3.097 84.12 O
146 0.80 150.580 2.652 4.594 169.49 S
147 0.80 150.702 2.769 3.850 123.09

Table 4.2: As Table 4.1, but for clusters detected with the optical �lter
without lensing counterpart.
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sponds to the latter, while at lower redshifts that angular position is outside
the scanned area, because the �lter would not be completely contained in
the �eld of view (see Section 4.4.3). However, if we force our algorithm to
analyse that region, we �nd an overdensity at z = 0.24 with coordinates
(R.A. = 150.329, Dec. = 1.609), con�rming the alignment of two di�erent
structures.

4.4.6 Characterizing our sample

In Fig. 4.15 we plot the number of detections obtained with our analysis
(both optical and optical plus lensing, dashed and solid lines respectively), as
a function of their optical S/N ratio together with the corresponding amount
of detections already reported in literature. As expected, the percentage of
`matched' detections increases as a function of S/N. The only detection with
S/N > 5 without a counterpart is actually near to a large structure observed
by Scoville et al. (2007b) with a redshift mismatch of ∆z = 0.06, only slightly
larger than the limit we adopted.

To investigate the selection function of our method with respect to the
mass, we plot in Fig. 4.16 the number of detections with respect to the X-ray
masses estimated by Finoguenov et al. (2007). We include in this analysis
only those X-ray clusters which lie inside the volume of our search, avoiding
borders of the �eld and too high redshifts, as already discussed in Section
4.4.3. We see that the rate of X-ray clusters that are optically con�rmed by
our analysis increases with their mass, and it is above 50% for clusters of
mass above 1.5× 1013M�.

Finally we compare in Fig. 4.17 the corrected richness, corresponding to
a measurement of the mass in galaxies, with the X-ray mass estimates made
by Finoguenov et al. (2007). The proportionality between the two `mass
estimates' is clear although the scatter is very large. Note that the corrected
richness is only a relative measure of the cluster stellar mass, in the sense
that we do not quantify the physical mass scale. Note also that our �lter has
a �xed physical size, while the X-ray analysis was done inside an estimated
r500 for each cluster, partially explaining the di�erences. The noise in the
richness estimate for low-mass clusters is likely to be due to the �eld galaxies
we observe inside our �xed spatial �lter. This is expected given the error
bars that show our analytic estimate.
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Figure 4.15: S/N distribution of all the signi�cant optical detections (solid
red), and of the detections with a counterpart in other analyses (dotted
red). In blue we show the same distributions, but considering only combined
(optical+lensing) detections. The black crosses indicate the percentage of
our optical detections having at least one counterpart (scale on the right).
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Figure 4.16: Mass distribution of all the X-ray detected clusters (in black), of
the clusters we detect in the optical analysis (in red), and of those we detect
in both optical and lensing analyses (in blue). The black crosses indicates
the percentage of clusters detected in our optical analysis.
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Figure 4.17: Correlation between the X-ray mass derived by Finoguenov et al.
(2007) and our corrected richness. In red we show all the optical detections,
in blue the lensing-con�rmed clusters.
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4.4.7 Summary and conclusions

In this Chapter we have presented an optimal linear �ltering technique for
the detection of galaxy clusters from optical and weak lensing data. The �lter
was �rst presented by Maturi et al. (2005) for weak lensing analysis and we
now use the same formalism to extend it to optical data. The �lter relies on
a physical model for clusters and thus it accounts for all the known proper-
ties of galaxy clusters which can be inferred from photometric observations.
Di�erent information can be included and in this work we decided to restrict
our analysis to the following observed properties of the galaxies: positions,
magnitudes in one band, and photometric redshifts if present. The algorithm
starts from a galaxy catalogue with the mentioned physical quantities and
creates a map of values for the richness parameter Λ at di�erent redshifts.
The peaks of these maps represent the possible locations of galaxy clusters.
The redshift of the clusters is determined by maximizing the likelihood of
the data as a function of the redshift of the cluster model.

Our algorithm o�ers a number of improvements over existing �ltering
methods. Photometric redshifts are included in a �exible way, that adapts
itself to the precision of the measurement of each galaxy, avoiding any sharp
cut of the catalogue in redshift slices. It uses results from observed galaxy
clusters to build a suitable model for cluster galaxy distributions. The rich-
ness calculated by the algorithm at the position of the cluster is a measure-
ment of the number of galaxies in the detected cluster, that can be corrected
for redshift dimming. Moreover, from the expected spatial pro�le and lumi-
nosity distribution of the clusters, and from the observed �eld population,
it is possible to evaluate the noise of the detection and its signi�cance. We
tested the algorithm with numerical simulations, probing that it is able to
obtain an unbiased estimate of the richness of the cluster, with an uncertainty
predicted analytically from the model, and also its redshift.

We applied both the weak lensing and the optical �lters to real data,
obtaining a catalogue of candidate galaxy clusters for the COSMOS �eld.
We presented a catalogue of 27 lensing-con�rmed clusters, 11 of which do
not have any previous detection in the literature. For the subsample of
objects that have been analysed through their X-ray emission, we found that
we are able to detect more than 50% of the clusters with an X-ray mass over
1.5× 1013 M� and we found a good correlation between our galaxy richness
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parameter and the cluster mass determined from X-ray temperature.
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Chapter 5

Evaluating the performances of

the Euclid mission

5.1 Galaxy density and photometric redshift

precision

5.1.1 Introduction

In this Section we apply the SkyLens code, described in Sect. 3.2, using
the expected characteristics of the Euclid mission, which we introduced in
Sect. 2.4. As we already said in Sect. 2.3, some of the most severe require-
ments to perform precision cosmic shear measurements concern the galaxy
angular density and the photometric redshift precision. We simulate realis-
tic observations of patches of the sky, and submit them to codes normally
used to analyse real observations, to verify that the instrumental and survey
setups are suitable for the scienti�c purposes of the mission. The reference
article for this Section is Bellagamba et al. (2012).

The telescope and detector characteristics of EUCLID are folded into
SkyLens. The key parameters for the simulations are listed in Tab. 5.1.
Taking into account all re�ections and transmissions in the telescope design
(�ve mirrors and a dichroic) and the detector/�lter QEs, the total throughput
varies as a function of wavelength as shown in Fig. 5.1. For producing the
simulated images, we use system PSF models that are constructed on the
basis of the expected optical PSFs and Attitude and Orbit Control System
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PRECISION

parameter value
Diameter 1.2 m
Obscuration 11 %
Pixel scale 0.101� (VIS)

0.3� (NIP)
R.O.N. 5e− (VIS)

7e− (NIP)
dark current 2 e−/pixel/hr (VIS)

0.05 e−/pixel/s (NIP)
Throughput see Fig. 5.1

Table 5.1: Key parameters used in the simulations.

pattern (AOCS), taking into account also possible additional detector e�ects.
As an example, we show a system PSF model at 800nm in Fig. 5.2.

5.1.2 Galaxy angular density

To estimate correctly the number counts in the Euclid exposures, it is impor-
tant to describe in a realistic way the contribution of the background light to
the photon counts. The principal background contributor in the wavelength
range where EUCLID will observe is the zodiacal light. This is the light of
the sun re�ected from the dust in the inner solar system. A model for the
zodiacal light near the North-Ecliptic-Pole (NEP) has been derived by Lein-
ert et al. (1998) and later revised by Aldering et al. (2004). The spectrum
can be represented by a `broken log-linear relation', given by

log10[sλ(λ)] =

{
−17− 755 (400 ≤ λ ≤ 610)

−17− 755− 0.730(λ− 610) (610 ≤ λ ≤ 2200)
, (5.1)

where λ is given in nanometers and sλ(λ) is in erg cm−2 s−1 Å−1 . This
spectrum corresponds to a `low' background level and is normalized to a
V-band surface brightness of 23.3 mag arcsec−2. We de�ne an `average'
background level as that normalized to a V-band surface brightness of 22.7
mag arcsec−2. We also de�ne the `high' background level, which is normal-
ized to a V-band surface brightness of 22.1 mag arcsec−2 . The `average'
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EUCLID MISSION

Figure 5.1: Total throughputs of the EUCLID visual (blue line) and NIP
(magenta, red, and orange lines) channels.

Figure 5.2: A model PSF used in the image simulations (λ = 800nm).
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PRECISION

background is therefore 1.74 times brighter than the `low' background level,
while the `high' background level is 3.03 times brighter than the `low' back-
ground. In terms of AB magnitudes, the above spectra provide a surface
brightnesses in the wavelength range covered by the VIS broad band (riz) of
22.95, 22.35, and 21.75 for the `low', `average', and `high' background cases,
respectively. Similarly, estimates of the brightness of the sky are derived also
for the infrared bands.

Some examples of our simulations in the VIS band are shown in Fig. 5.3.
The upper panels show a patch of the sky, which corresponds to a region
of 85� × 45�, as it might be seen by EUCLID combining two (left) and
four (right) exposures of 540s each, assuming the `average' sky background.
Instead, the bottom panels show the same patch observed combining four
exposures, assuming the `high' (left) and the `low' sky background levels,
respectively. Similar images have been analyzed to assess the number counts
of galaxies useful for the weak lensing analysis. These are de�ned as galaxies
with signal-to-noise ratio (SNR) larger than 10 and size larger than 1.25 times
the PSF size. The SNR and the size of each galaxies were measured in the
EUCLID simulated images using the software SExtractor (Bertin & Arnouts,
1996). The resulting number counts for a range of e�ective exposure times
and possible sky background levels are shown in Fig. 5.4.

5.1.3 Multi-band photometry

In the rest of this Section, we will assess what is the achievable precision in
the redshift estimation using Euclid space data in connection with multi-band
optical ground-based observations. This kind of study has been performed up
to now by creating multi-band mock galaxy catalogues with MonteCarlo tech-
niques, considering the nominal depth of the survey, and thus the expected
error on the photometric measurements (Abdalla et al., 2008; Bordoloi et
al., 2010). With this work we study in deeper detail this process, by using
complete simulations, from the images of the galaxies in di�erent observing
bands to the photometric redshift estimation. In this way, the photometry
of each galaxy has a more realistic uncertainty and we can take into account
more sources of error in the measurements, such as those due to proximity of
the galaxies. We start from a 800”× 800” image of a simulated sky observed
with the Euclid experiment (see Fig. 5.5). We underline that this broad band
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Figure 5.3: Simulated EUCLID-VIS observations of a patch of the sky (8�
× 45�). The upper panels refer to di�erent exposure times: the left and
the right panels show the result of combining two and four 540s-long expo-
sures, respectively. The left and the right bottom panels show the same �eld
assuming a high- and a low-level sky background.
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Figure 5.4: Number counts of galaxies useful for weak lensing in future EU-
CLID observations. These are galaxies with SNR>10 and size larger than
1.25 times the PSF size. In the left panel, the counts are shown as function
of the e�ective exposure time for the `average' sky background level. In the
right panel, we �x the exposure time to 2160s and vary the sky brightness be-
tween 22.95 (low background) and 21.75 mag/arcmin−2 (high background).
The goal is to design the survey strategy such that the counts are in the
grey-shaded region to match the EUCLID requirements, 30-40 objects per
arcmin2.
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Figure 5.5: Simulation of an observation with Euclid in the RIZ band. The
picture has a side of 400 arcsec. The exposure time is 1800 sec.

is proposed by the Euclid experiment to maximize the galaxy density used
in cosmic shear measurements, but it is practically useless in photometric
redshift determination, so the results of this work do not depend strongly
on this choice. We then simulate the near-infrared coverage of the same sky,
in particular considering the three Euclid NIP bands (Y J H). Finally, we
simulate the observation of the same sky with di�erent ground-based instru-
ments and di�erent observing conditions. In the following, we explain how
we analyse these images to extract the redshift estimation. In Fig. 5.6 we
show as an example the appearance of the same galaxy in di�erent observing
bands and conditions.

Our intent is to submit the images to software pipelines usually adopted
for the analysis of real observations, to thoroughly simulate the extraction
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Figure 5.6: A galaxy observed with Euclid in the RIZ band (left), with Euclid
in the H band (centre), and with Subaru in the i band (right) .

of a redshift estimate from images taken with di�erent instruments. A fun-
damental step to get a good photometric redshift estimate is to correctly
measure the colours from multi-band observations of the same galaxy. As
the images have di�erent PSFs and di�erent levels of noise, measuring naively
the magnitude in each band in a matched aperture is not appropriate. In-
stead, we use the Colorpro software, presented by Coe et al. (2006), that
measures all the magnitudes in the same aperture, and then corrects them
for the di�erent PSFs. This software has been used in many experiments,
including some that combine space-based and ground-based data, as in our
case (e.g. Umetsu et al., 2010; Rafelski et al., 2009).

In particular, we use the image of the galaxy in the RIZ band as the detec-
tion image, where the galaxy is detected and its aperture de�ned. To catch
possible optical dropouts, we detect galaxies also in the H-band image, and
we merge the two catalogues. Then the images in all the bands are remapped
to the higher resolution of the RIZ image, and SExtractor MAG_ISO magni-
tudes are measured from these images, considering the apertures previously
de�ned. We underline that all the apertures we use for the photometry
are drawn from the space-based RIZ image, to take advantage of the better
PSF. Then, to estimate the amount of �ux lost in each band due to the
worse seeing, the RIZ image is degraded to the PSF of each band, and its
new MAG_ISO measured. The di�erence between this magnitude and the
MAG_AUTO measured on the original RIZ frame is the desired correction.
All magnitudes stated in the following are AB magnitudes.

An example of the precision in the colour measurements obtained ap-
plying Colorpro to our simulations is shown in Fig. 5.7, where we plot the
mean o�set of measured colours with respect to the input values. We con-
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Figure 5.7: Precision in the colour measurement of our simulated images
(Euclid + LSST) by Colorpro. For every couple of bands we show the mean
of the colour bias over the galaxy sample, while the error bars represent
the standard deviation of the measurement. This test has been performed
observing one galaxy at a time, to avoid pollution from neighboring galaxies.

sidered combinations between the four space-based bands (RIZ Y J H) and
the ground-based bands that will be used in the photometric redshift esti-
mation (griz). For the purpose of this plot, we simulated the observation of
a small �eld around one galaxy at a time, to avoid blending and pollution
and thus check the robustness of the photometry estimation process in an
ideal case. We see that in this conditions the mean bias is negligible and the
standard deviation is below 0.1 magnitudes. We then focus on a single colour
(g-J) and plot in Fig. 5.8 the error in the colour measurement as a function
of the photometric uncertainty for each object in the sample. We see that
most of the objects have very small values of bias and that the statistical
standard deviation is in good accordance with the uncertainty quoted by the
program. This means that the implemented method is able to compensate
for the di�erent PSFs and pixel sizes of the images.
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Figure 5.8: Precision in the colour measurement (LSST r band - Euclid
J band) of our simulated images by Colorpro. For each object we show
the colour bias as a function of the photometric uncertainty. The red bars
show the mean and the standard deviation of the measurement in bins of
photometric uncertainty.
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5.1.4 Redshift estimation

With the procedure described above, we have obtained realistic multi-band
catalogues, with luminosity measurements in the 4 space-based bands (RIZ,Y,J,H)
and in the proper ground-based optical bands. Now we use these catalogues
in the proper estimation of photometric redshifts for the galaxies. As before,
we perform this task applying a method that is developed for and usually
applied to real data. Di�erent techniques have been proposed to extract
the redshift estimate of a galaxy from its multi-band photometry, such as
template �tting (e.g. Bolzonella et al., 2000; Benitez, 2000; Feldmann et al.,
2006) and training-set methods (e.g. Collister & Lahav, 2004; Way & Srivas-
tava, 2006). They are probed to obtain similar results (Abdalla et al., 2011),
with the former being more �exible, because they do not need to be trained
with a complete spectroscopic subsample. For this work we use the BPZ
software (Benitez, 2000), the implementation of a Bayesian template-�tting
method, that has been applied to real data in many works (e.g. Mei et al.,
2006; Menanteau et al., 2006). It requires as input a set of galaxy template
SEDs, from which the program calculates the colours when observed through
the considered �lters at di�erent redshifts. The probability of a galaxy with
colours C of being at redshift z is then evaluated applying

p(z|C,m0) ∝
∑
T

p(z, T |m0)p(C|z, T ) (5.2)

where m0 is the magnitude used to compute the prior and T is the index
that runs over the templates. In particular, p(z, T |m0) is the prior given by
the i band distribution, as observed in the Hubble Deep Field North, while
p(C|z, T ) is the likelihood of the colours given the template and the redshift,
calculated via a χ2 approach,

− log p(C|z, T ) ∝ χ2(z, T, a) =
∑
α

(fα − afTα)2

σ2
fα

, (5.3)

where fTα, fα and σfα are the theoretical �ux of the template, the observed
�ux and the noise in the band α, respectively, and a is the normalisation of
the template. The BPZ software has been proven to perform competitively
with other methods in Abdalla et al. (2011). Further details and a little
modi�cation of the original algorithm can be found in the next Subsection.
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In our case, we know the SEDs of our simulated galaxies, so we give the
`right' template SEDs to the program. This set, which we already introduced
in Sect. 3.2, is formed by the six templates used by Benitez (2000), plus the
two added by Coe et al. (2006) to �t the bluest galaxies of the HUDF sample.
This is an ideal case, as in photo-z template-�tting algorithms the correct
choice of the template set is one of the critical steps (Yee, 1998; Rowan-
Robinson et al., 2008). The input magnitude that BPZ uses to compute the
prior is the one measured in the i band by the appropriate ground-based
instrument.

5.1.5 Correction to BPZ algorithm

In Section 3.2 of Benitez (2000), the author introduces the normalisation
parameter a of the template SED as a nuisance parameter in the Bayesian
formalism. The probability of observing the colours C given the template T
and the redshift z is obtained by integrating the χ2 likelihood (see Eq . 5.3)
over a, instead of considering only the best-�t value amin as in the simple
maximum-likelihood approach. Thus, we have

p(C|z, T ) ∝
∫
da p(a|m0) p(C|z, T, a), (5.4)

where m0 is the magnitude value used as a prior. The prior of a with respect
of m0, p(a|m0), is conservatively assumed �at. Evaluating the integral, he
gets

p(C|z, T ) ∝ F
−1/2
TT exp

[
− χ2(z, T, amin)

2

]
, (5.5)

where

FTT =
∑
α

f 2
Tα

σ2
fα

. (5.6)

Eq. 5.5 and 5.6 mean that the value of p(C|z, T ) depends over the ratios of
the expected �uxes over the observed errors in the di�erent bands and thus
over the input normalisation of the templates (i.d., their value with a = 1).
Without any indication on the way one should normalise fTα, this introduces
an arbitrary factor in the calculation.

To overcome this problem, one can repeat the calculations assuming this
time that the template is re-normalised at its best-�t parameter. We de�ne
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our new templates f ′Tα ≡ aminfT and we introduce the nuisance parameter
a′ ≡ a/amin. In this way, we avoid any arbitrariness in the calculation, by
de�ning the templates and the nuisance parameter in a physically motivated
way. With the new de�nitions, Eq. 5.5 becomes

p(C|z, T ) ∝ F
′−1/2
TT exp

[
− χ2(z, T, a′min = 1)

2

]
, (5.7)

where F ′TT is the analogue of FTT with the new template, and the value of a′

that maximizes the likelihood is unity by de�nition. We can now re-express
Eq. 5.7 in terms of the original templates. We have

√
F ′TT =

(∑
α

f ′2Tα
σ2
fα

)1/2

=

(∑
α

a2
minf

2
Tα

σ2
fα

)1/2

. (5.8)

We now make use of Eq. 8 of Benitez (2000)

amin =
FOT
FTT

, (5.9)

where
FOT =

∑
α

fTαfα
σ2
fα

. (5.10)

Inserting Eqs. 5.9 and 5.8 in Eq. 5.7, and using Eq. 5.6, we get

p(C|z, T ) ∝
√
FTT
FOT

exp

[
− χ2(z, T, amin)

2

]
. (5.11)

Now, in the term
√
FTT/FOT the input normalisation of the original template

cancels out, as we desire. Moreover, we can rewrite (see Eq. 7 of Benitez
(2000))

χ2(z, T, amin) =
∑
α

f 2
α

σ2
fα

− F 2
OT

FTT
. (5.12)

By comparing Eq. 5.11 and Eq. 5.12 we see that, given the data, the errors
and the χ2 goodness of �t with an unknown template, we have a certain
determination of the probability integrated over the normalisation parameter
of the template.

In practice, we have modi�ed the BPZ program by inserting Eq. 5.11
in the place of Eq. 5.5. This change eliminated some issues we had es-
pecially with late-type galaxies at high redshift, reducing by more than a
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factor of two the number of catastrophic failures. We note here that Coe et
al. (2006) preferred to eliminate the F−1/2

TT term in 5.5, reporting numerical
instabilities. Actually this would give results very similar to ours, because
the
√
FTT/FOT term in Eq. 5.11 is almost irrelevant with comparison to the

maximum-likelihood exponential.

5.1.6 Catalogue cleaning

Photometric redshift estimation su�ers from colours degeneracy for galaxies
at distinct redshifts. Although the Bayesian prior implemented in Eq. 5.2
reduces this problem, e.g. avoiding that very brilliant galaxies are given high
redshift estimates, it does not solve it completely. When two templates
at di�erent redshifts have very similar theoretical colours, photon noise will
sometimes move the observed magnitudes of a galaxy towards the wrong tem-
plate, and the redshift extracted from the algorithm will be catastrophically
wrong. Because of this, to match the strong requirements on the precision
in the photometric redshifts for cosmic shear surveys, we need to clean our
catalogue from galaxies that are likely to have a wrong redshift estimate. A
way to do so is looking at the full redshift probability distribution of the
galaxy, instead of considering only the most probable value. Galaxies that
have colours in regions of degeneracy, i.e. that lie near the theoretical colours
of templates at di�erent redshifts, will have a multi-peaked probability distri-
bution. Galaxies that have a controversial photometry, for example because
are polluted by brilliant neighbours, will not show a single strong peak, but
a di�use distribution with much of the probability outside the vicinity of the
most probable redshift. Thus, measuring the integral of the redshift proba-
bility distribution of the galaxy in the proximity of the most prominent peak
will give an indication of how certain is the redshift estimation. This can be
done via the ODDS parameter calculated by BPZ. It is de�ned as

ODDS =

∫ z′+2∆z

z′−2∆z

p(z), (5.13)

where z′ is the most probable redshift value, and ∆z is a free parameter, set
by default in BPZ to 0.067(1 + z′). ODDS is thus a measure of how much
the distribution is concentrated around the principal peak. This is indeed a
powerful way to assess the goodness of the estimate, as can be seen in Fig. 5.9,
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Figure 5.9: Example of the power of the ODDS parameter in the identi�ca-
tion of catastrophic failures. The error of the photometric redshift estimate
is plotted against the ODDS value computed by BPZ. Data taken from the
100 sec observation with the ideal telescope, u band excluded (See Section
3.)

where we plot for each galaxy the error in the redshift estimate against the
ODDS parameter calculated from its p(z). The fraction of galaxies with a
catastrophic redshift estimate decreases rapidly as ODDS increases.

If ODDS > 0.95, it means that the distribution is more peaked than a
Gaussian with a width equal to ∆z. This may seem a reasonable cut for the
catalogue, and has been used in some works (Coe et al., 2006; Hildebrandt
et al., 2008), while Erben et al. (2009) preferred a looser limit of 0.90. In
the example of Fig. 5.9, we see that catastrophic failures become rarer for
galaxies with an increasing ODDS value, and disappear for galaxies with
ODDS > 0.80. In general, we need to trade o� the amount of galaxies to
be kept in the catalogue with the mean accuracy of the redshift estimation.
In the following, we will try to optimise the selection, by looking at how the
standard deviation of the redshift measurements varies as a function of the
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ODDS value used as a minimum threshold. An optimised selection is crucial
in cosmic shear observations, as it is important to consider as more galaxies
as possible to reduce the noise induced by the intrinsic shape of the galaxies.

In particular we will measure the precision of the redshift estimates cal-
culating the normalised standard deviation

〈 σz
1 + z

〉
=

1

N

[ N∑
i=1

(zi,real − zi,phot)2

1 + zi,phot

]1/2

, (5.14)

where the index i runs over the N galaxies of the sample in the redshift
range 0.3 < z < 3. We �x the requirement on the precision in the redshift
measurement to 〈 σz

1+z
〉 < 0.05, that is considered valid to extract cosmolog-

ical information from cosmic shear experiments, such as Euclid (Laureijs et
al., 2009). We will measure how many galaxies we must eliminate from the
sample via a selection based on the ODDS parameter to ful�l this condition.
As an example, in Fig. 5.10 we plot the value of 〈 σz

1+z
〉 as a function of the

ODDS value used as a lower threshold, for one of the simulated observations.
In practice, we continue to throw away galaxies from the sample according
to their ODDS value until the normalised standard deviation of photo-z es-
timates goes below 0.05. In this procedure, we will unavoidably eliminate
some of the galaxies with a good photo-z estimate, and we will as well keep
in the catalogue some outliers, as the indication given by ODDS is obviously
only valid in a statistical sense. Nonetheless, the mean standard deviation
drops almost monotonically increasing the ODDS threshold, so in this way
we are in the end able to extract a robust galaxy sample from the data.

For every survey setup our main result will be the ratio of the number of
galaxies that are kept in the catalogue after the cut over the total number of
galaxies in the initial sample. We will take into account only galaxies with
a measured RIZ magnitude below the declared limit of the Euclid mission
(24.5). Although with a Euclid-like setup we are able to go slightly deeper
than this limit in the optical imaging observation, some tests we did including
dimmer galaxies proved not to improve our results, probably because they
su�er from poor infrared photometry, so we decided to concetrate on a RIZ-
magnitude limited sample. To increase the statistic, we create 1000 random
realisations of each catalog via bootstrap resampling, and report the mean
of the measurements.
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Figure 5.10: Normalised standard deviation (solid line) and fraction of avail-
able galaxies (dashed line) as a function of the ODDS value used as the
minimum threshold for the photo-z catalogue. Data taken from the 100 sec
observation with the ideal telescope, u band included (See below.) In this
case, we must cut the catalogue at ODDS ' 0.80 and eliminate ' 15 % of
the sample to get to the required precision, 〈 σz

1+z
〉 = 0.05.
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ideal CTIO PAN-STARRS LSST
Area ratio 1. 0.149 0.193 0.628
u e�. 1. - - 0.533
g e�. 1. 0.539 0.478 0.713
r e�. 1. 0.615 0.679 0.786
i e�. 1. 0.669 0.706 0.813
z e�. 1. 0.484 0.316 0.360
Pixel size 0.2 0.27 0.3 0.2

Table 5.2: Comparison of the performances of the considered telescopes and
optics. E�ciencies of the ideal telescope are equal to 1 by de�nition.

5.1.7 Dependence on survey parameters

In order to obtain general results that do not depend on the speci�c in-
strument or survey, we �rst simulate some optical ground-based multi-band
observations taken with a �ctional ideal instrument. This instrument has
a very large collecting area (diameter = 8.2 m), a pixel angular size of 0.2
arcsec and does not su�er from any losses due to mirrors and optics. The
considered �lters are the standard SDSS ugriz. The performances of this
unrealistic setup are compared with the ones of real telescopes considered in
this paper in Tab. 5.2. Given the exposure time in a certain band with the
ideal telescope, it is easy to calculate what is the time needed to reach the
same depth with another telescope, considering the e�ciency and the area
of the instruments.

We underline that all the results presented in the following are obtained
using data from the 4 space-based bands (RIZ Y J H), plus the indicated
ground-based data.

The quality of the photometry, and thus of the photometric redshifts,
depends primarily on the depth of the survey. In this view, we simulate a
set of observations with a constant exposure time in each griz band. (The
importance of the u band will be studied separately in the next Section.) The
results of the simulation are shown in Fig. 5.11, where we show the standard
deviation of the total sample (i.e. formed by all the galaxies with RIZ mag-
nitude < 24.5, without any selection based on ODDS), and the fraction of
galaxies that are kept in the catalogue after a selection analogue to Fig. 5.10
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is performed. We see that the standard deviation of the whole sample does
not improve signi�cantly as the exposure time increases, but there is a great
enhancement of the number of available galaxies after the cut is performed.
This happens because the standard deviation of the total sample depends
mainly on catastrophic failures due to redshift-colours degeneracies. These
are only partially avoidable improving the quality of the photometry, because
they are an intrinsic drawback of the photometric redshift estimation. Above
this, we have a number of galaxies with poor photometry due to bright com-
panions or to blending with close dim neighbours. In this case, the observed
�ux is the sum of two di�erent objects, and thus the observed SED will likely
not correspond to any of the two physical states. Luckily, the selection via
the ODDS parameter allows us to reject these galaxies. The improvement
in the fraction of available galaxies after the selection for longer exposures
is then given by the more precise photometry that we obtain. Reducing the
errors on the measured magnitudes, the non-pathological galaxies (i.e. not
exactly on a redshift-space degeneracy and without close companions) will
be assigned a redshift with a smaller uncertainty. Thus they will have a more
peaked redshift probability distribution and a bigger ODDS parameter. This
will avoid them from being confused with catastrophic failures when the se-
lection is performed. We note that with the deepest exposure, 1000 sec, just
the 14% of the total sample of galaxies brighter than 24.5 in the RIZ band
must be excluded to meet the requirements in the redshift precision.

It is sometimes possible to extend the observed wavelength range using
the u band. This band is more time consuming then the others due to the in-
creased absorption of the atmosphere with respect to the redder wavelengths
and to the lower quantum e�ciency of the CCD detectors. It is then usually
necessary to trade o� the availability of data at shorter wavelength with the
loss of depth in the other bands. To test the importance of u-band data, we
run the BPZ algorithm on the same images of the previous Section, but with
an additional u-band observation of the same exposure time. The results are
shown in Fig 5.12.

We see that even the shorter exposure that includes the u band (50 sec,
corresponding to a 10-σ depth equal to 23.5) gives a total redshift standard
deviation lower than with the deepest exposure with the griz bands only.
This result is not surprising as the power of the u band in photometric redshift
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Figure 5.11: Quality of the photometric redshifts obtained with the griz
bands of the ideal telescope as a function of the exposure time. The solid
line represents 〈 σz

1+z
〉 as a function of the observing time, while the dashed

line represents the fraction of galaxies with observed RIZ magnitude < 24.5
that are available after a cut is performed to reduce the redshift standard
deviation below 0.05.
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Figure 5.12: As Fig. 5.11, but including also the u band data.

estimation is widely recognised in the literature (Abdalla et al., 2008; Dahlen
et al., 2010) . In particular, it helps in identifying galaxies at low redshift (z
. 0.5) thanks to the ultraviolet continuum, and the ones at z ∼ 3 when the
Lyman break enters the blue side of the �lter. The realisation of this can be
seen in Fig. 5.13, where we plot the output redshift against the input one,
both with and without using the u-band data. The reduction of catastrophic
failures especially for galaxies at high redshift is very evident.

On the other hand, when considering the number of galaxies after the
selection, we see that the results are closer to the ones with the griz bands
only, thanks to the fact that many catastrophic failures are in that case
pointed out and eliminated. The di�erence between the two setups is around
10 % of the total number of galaxies for the whole range of exposure times
tested. With the longest exposures, the ugriz con�guration permits to use
around 94 % of the sample.

A problem that in�uences the quality of the photometry in ground-based
observations is the blurring of the images that occurs as the light travels
through the atmosphere. This is often quanti�ed by the seeing, i.e. the
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Figure 5.13: Estimated redshift against input redshift of the sample galaxies,
considering the u band (red points) or discarding it (blue points). Data are
taken from the observations with an exposure time equal to 100 sec per
�lter. The alignment of some group of points along the y-axis is caused by
the repetition of the same galaxy in di�erent sky positions, due to the limited
amount of galaxies in the initial HUDF catalogue.
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Figure 5.14: Quality of the photometric redshifts obtained with the griz
bands of the ideal telescope as a function of seeing. The solid line represents
〈 σz

1+z
〉 as a function of the seeing, while the dashed line represents the fraction

of galaxies with observed RIZ magnitude < 24.5 that are available after a
cut is performed to reduce the redshift standard deviation below 0.05.

mean FWHM of the observed image of an intrinsic point-like source as a
star. The method used to perform these simulations allows us to study the
in�uence of this parameter on the precision of the photometric redshifts. In
particular, we simulated �ve di�erent observations of 100 sec per �lter with
the ideal telescope, with a seeing varying from 0.4 to 1.2. Results are shown
in Fig. 5.14.

As in the case of the observing time, the change in the precision of the
whole sample is not signi�cant, while much more evident is the improvement
in the number of available galaxies after the cut is performed. In fact, the
number of galaxies with a certain redshift estimate can change by a factor of
two depending on the quality of the atmosphere of the telescope site. This of
course depends on the leakage of light between di�erent galaxies that occurs
if the seeing is greater than the angular distance between them. This creates
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an observed SED without a corresponding galaxy template and thus with a
poor redshift estimate.

In reality, many astronomical images are the sum of exposures taken in
di�erent moments and with di�erent observing conditions, i.e. without a
single seeing value that can be attributed to the whole image, as in our
idealised work. Nonetheless, our results are a strong indication that good
observing sites are required to perform the high-precision photometry needed
for redshift estimation of deep and vast galaxy catalogues.

5.1.8 Planned surveys

Di�erent projects are considered as possible ground-based counterparts of
space-based weak lensing observations. We underline that any space-based
mission that will observe both the northern and southern sky will need col-
laboration from di�erent projects covering di�erent regions of the sky. In
some sense, some of the projects we study will not be competitors against
each other in practice, because any space-based project will need a patchwork
of collaborations around the globe.

In this work we consider three ground-based surveys: the Dark Energy
Survey (DES), Pan-Starrs and the Large Synoptic Survey Telescope (LSST).
The �rst two are o�cially supporting the Euclid mission, while the third is a
case we chose in order to explore the potential of observations that consider
the u band, following the results of the previous Section. In Table 5.3 we
show the exposure times and the depths of the three surveys, calculated with
our simulator.

• DES is a project that will begin in late 2011 with the Blanco 4-meter
telescope at Cerro Tololo Inter-American Observatory, on which a new
camera named Decam will be mounted at the scope (Abbott et al.,
2005). It will observe 5000 square degrees in the South Galactic Gap
for 525 nights in 5 years.

• Pan-Starrs is a new telescope, consisting of four mirrors, one of which
is already working at Mount Haleakaka in Hawaii (Kaiser et al., 2002).
It will observe the 30000 square degrees visible from the site. The
exposure times of Table 5.3 are calculated from the ones declared for
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Band DES DES PAN-ST. PAN-ST. LSST LSST
time depth time depth time depth

u - - - - 1800 25.7
g 500 24.3 2400 25.6 2400 26.6
r 500 24.0 1200 24.9 5400 26.6
i 900 24.1 1200 24.5 5400 26.2
z 2100 24.0 1200 24.1 4920 25.7

Table 5.3: Exposure time and 10σ point-source sensitivities for the simulated
surveys. Although some of the experiments foresee to observe also in the y
band, we did not consider it because its wavelength range is well covered by
the space Y band.

the ongoing 3-years 3π survey (Magnier et al., 2007), multiplied by
10/3, to make them realistic for a 10-year project.

• LSST is a telescope that will start observing in 2017 from Cerro Pachon
in Chile (Abell et al., 2009). It will observe the southern half of the
sky. The observing times are the ones declared for the 10-year total
observing project.

For each project, we perform the simulations keeping the seeing �xed at
0.8 arcsec. This is a reasonable value, that can be obtained in all three sites
(Els et al., 2009; Schöeck et al., 2009; Tokovinin & Travouillon, 2006). The
results are given in Fig. 5.15.

As expected from the simulations with the ideal telescope, there is a big
di�erence between the two griz instruments and LSST, when concerning the
standard deviation in the redshift measurement of the whole sample. On
the other hand, the number of galaxies available after the selection di�ers
a lot also between the two griz instruments. The longer exposure times of
Pan-Starrs make its results almost the best achievable for a griz survey, with
more than 80 % of the galaxies retained after the selection. The LSST-like
survey is the only one that goes beyond 90 %, as could be guessed by the
simulations with the ideal telescope. A detailed plot of the redshift standard
deviation as a function of the fraction of galaxies kept in the sample can
be seen in Fig. 5.16. From this �gure it is possible to evaluate a possible
trade-o� between redshift precision and galaxy fraction for the di�erent in-
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Figure 5.15: Quality of the photometric redshifts obtained with the di�erent
ground-based surveys. The solid line represents 〈 σz

1+z
〉, while the dashed line

represents the fraction of galaxies with observed RIZ magnitude < 24.5 that
are available after a cut is performed to reduce the redshift standard deviation
below 0.05.
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struments. We see that, even with the most severe selection, the redshift
standard deviation remains above 0.03 in all three cases. This is due to very
unfortunate overlapping of galaxies, that were detected as single objects by
our routines. The redshift deduced by the combined photometry of the two
galaxies is then compared to the one of the most brilliant object in the RIZ
band, that is sometimes totally di�erent. This kind of problem depends very
mildly on the number of bands and on the quality of the photometry and
has been only partially solved running a detection on the H-band image, in
addition to the one on the RIZ image (See Sect. 5.1.3).

The trade-o� between redshift precision and galaxy fraction is also strongly
connected to the e�ectiveness of the procedure of removing galaxies that are
likely to have a wrong redshift. We used a selection via ODDS, while other
authors preferred using the 1-σ error quoted by the photometric redshift
code (Abdalla et al., 2008), or investigating the presence of secondary peaks
(Bordoloi et al., 2010). We tried these other methods, but the results were
in general poorer that the ones we obtained with ODDS. If we were able to
make an ideal selection, knowing perfectly what are the most wrong redshifts
in the sample, we would need to remove ∼ 1% of the galaxies with the LSST
data, and ∼ 5% with the DES and PanStarrs ones, to get to the required
precision.

Our simulations are of course a simpli�ed version of what is done to
measure redshifts from multi-band real images, nonetheless they are more
realistic than the simple creation of dirty catalogues. Thus, is not surpris-
ing that our results are in general worse than what is obtained by previous
works done with that method (Abdalla et al., 2008; Bordoloi et al., 2010).
For example, Bordoloi et al. (2010) �nd, for a DES-like survey, a standard
deviation of the selected sample equal to 0.064 (so in fact higher than our
threshold) after removing 12 % of the galaxies. As can be seen in Fig. 5.16,
we instead would need to eliminate ∼ 15 % of the sample to get to the same
precision. To better understand this di�erence, we made some tests using
simulated catalogues created without going through image simulation. We
calculated magnitudes in the necessary bands from the theoretical SEDs of
the galaxies in our sample, and we cut the resulting catalogue at RIZ <

24.5. Then, we added Gaussian noise according to the observing depth for
the Euclid-like survey and for the three realistic ground-based surveys. The
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Figure 5.16: Redshift standard deviation as a function of the fraction of
galaxies kept in the sample via a ODDS selection for the three simulated
surveys.
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Figure 5.17: As Fig. 5.16, but from mock catalogues obtained without going
through image simulation. The points represent the results obtained by
Bordoloi et al. (2010).

resulting multi-band catalogues have been submitted to BPZ and analysed
in the same way as those obtained from Colorpro on the simulated images.
In Fig. 5.17 we show the results, namely the redshift standard deviation as
a function of the fraction of galaxies kept in the catalogue. The results we
obtain in this way are signi�cantly better than the ones obtained with the
complete simulation (Fig. 5.16), and are in close agreement with Bordoloi et
al. (2010).

As can be seen from Figs. 5.16 and 5.17, the improvement we obtain
with the simpler set of simulations is relevant especially in the cleaning pro-
cedure, that becomes more e�ective. This may depend on the fact that in
this case the errors quoted in the photometry catalogue are by construction
the real uncertainties on the magnitudes, while the procedure of multiband
photometry when dealing with images can bring hidden errors, such as those
due to the matching of images with di�erent quality. As the errors in the
photometry translate in the uncertainty in the redshift determination, the
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value of the ODDS parameter is certainly more trustable in the simpler case
and cleaning the catalogue from possible catastrophic outliers is thus more
straightforward.

The work of Abdalla et al. (2008) di�ers in that they use the neural-
network code ANNz to compute the redshifts. This may explain some di�er-
ences on the importance of di�erent bands between this work and theirs. In
fact, they quote a σz (note: without dividing by 1 + z) of 0.307 for a DES
survey, 0.274 for Pan-Starrs, 0.197 for LSST. We get 0.398 (0.359 with the
`simple' simulations) in the DES case, 0.400 (0.311) for Pan-Starrs, 0.146
(0.131) for LSST. Thus, they perform slightly better in the griz cases, while
we do better when the u-band is available. This re�ects also in the fact that
they are able to get a σz = 0.113, below the LSST case, for an `ideal' optical
survey, while we do not obtain such a result, as shown in Section 5.1.7. This
is reasonably due to the completely di�erent techniques adopted. Although
in general they get comparable results, it is possible that in this case we are
showing strengths and weaknesses on both sides. Of course a �rm statement
on this topic can be done only submitting the same photometric catalogue
to di�erent photo-z algorithms.

5.1.9 Summary and conclusions

We investigated the quality of photometric redshifts that can be obtained
for the galaxies observed by future space-based missions targeted to measure
cosmic shear. In order to create a realistic setup for our work, we chose to
simulate a Euclid-like mission, with imaging in an optical band and multi-
band photometry in the near infrared (Laureijs et al., 2009). Ful�lling the
requirement on photometric redshift precision is a crucial step to reduce the
error in cosmic shear measurement, and it is important as well in other sci-
enti�c subjects that can be studied with the same data (e.g. galaxy clusters,
galaxy evolution). To this end, the space-based survey will need the collab-
oration of ground-based multi-band observations to characterise the SED of
the galaxies in the optical range. We studied this topic using complete sim-
ulations, from realistic images of a patch of the sky, obtained with Skylens
(Meneghetti et al., 2008), through multi-band photometry, to the photo-
metric redshift estimation itself, performed with a template-�tting method
(Benitez, 2000). This allowed us to consider many sources of uncertainty in
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the process of determining a galaxy photo-z. Our main aim was to determine
what fraction of the galaxy sample observed by a Euclid-like survey must be
discarded to achieve 〈 σz

1+z
〉 < 0.05, a precision considered suitable for cosmic

shear precision measurements.
We �rst studied the impact of di�erent parameters (depth, seeing, bands)

on the quality of the redshift estimation. We found that:

• The number of good photo-zs increases as expected with the exposure
time, as more and more galaxies acquire a good photometry that en-
ables to assign to them a certain redshift. The improvement is not so
relevant if we instead consider the mean precision of the whole sample,
as some pathological galaxies (a�ected by light of neighbouring ob-
jects, or by severe colour-redshift degeneracies) pollute the catalogue
even with the deepest survey we simulated.

• Seeing is potentially as important as depth, as blurring of the images
is a great source of noise in the photometry, especially for FWHM > 1
arcsec. Increasing the seeing from 0.8 to 1.2 arcsec, we need to remove
twice the number of galaxies to reach the same precision in photo-z
estimation.

• Having u-band observations seems very important to improve the good-
ness of photo-zs. Even a relatively shallow survey with a 10-σ magni-
tude limit equal to 23.5 has a great impact on the redshift standard
deviation of the total sample. Ultraviolet light is particularly relevant
for galaxies at redshift below 0.5 and above 2.5 and resolves a lot of
magnitude-colour degeneracies between these two ranges. The impact
is not so strong when dealing with the fraction of available galaxies:
in this case the improvement is around 10 % of the total sample in
comparison with a corresponding griz survey.

Then, we moved to some more speci�c tests, aimed to study the results that
would be obtained with some of the ground-based surveys that are currently
considered as possible Euclid counterparts. We focused on three projects:
DES, Pan-Starrs and LSST. DES and Pan-Starrs su�er the lack of u-band
observations, and to clear the catalogue from the catastrophic failures and
get to the required precision we need to eliminate respectively ∼ 35 % and
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∼ 15 % of the galaxies of the sample. LSST performs much better than the
other two, and seems to be the best, even if the farthest in time, counterpart
to a space-based cosmic-shear mission.

With the aim of comparing our results with previous works, we made
also some simpler simulations, creating catalogues with known photometric
uncertainties without making mock observations. In this way, as expected,
the results improve signi�cantly, especially in the cleaning procedure. This
means that the depth of the survey alone does not include all the information
about the noise of the observation. Other uncertainties are added because of
the proximity of galaxies, that pollute each other's photometry, and to the
necessity of matching images obtained with di�erent observing conditions
and telescopes. A possible solution to the problems caused by the proximity
of galaxies would be to use some automatic algorithm to eliminate a priori
objects that appear to be very close to each other or even completely blended
(i.e., detected as a single object). This points towards the need of even more
realistic simulations, where it will be possible to optimize the procedure of
object detection and multi-band photometry extraction from the images, a
topic we did not tackle in this work. For example Kuijken et al. (2008) pro-
posed a more complex approach, that makes use of shapelets decomposition
to model both the source and the point-spread function.

We want to stress here that we used a photometric redshift code that
has performed well in other applications to real and simulated data, but
we did not select it as the best in the treatment of the speci�c data set
we applied it to, nor we optimised it in this view. Our sample cleaning
method could maybe be improved too, e.g. tuning the integration limits in
the ODDS calculation, or considering secondary peaks, as done by Bordoloi et
al. (2010), or the 1-σ error quoted by the photometric redshift code, as done
by Abdalla et al. (2008). In general, our results should not be considered as
optimal forecasts for a Euclid-like experiment, but more as a quanti�cation of
strengths and challenges for this kind of mission. In particular, the di�erence
between results obtained with noisy catalogues (Fig. 5.17) and with image
simulations (Fig. 5.16) hints at the importance of multi-band photometry
extraction and a-priori object selection for this kind of measurement. Further
testing and development of the algorithms is needed to understand what is the
optimal way to extract photometric redshifts from this kind of observations

134



CHAPTER 5. EVALUATING THE PERFORMANCES OF THE

EUCLID MISSION

and to optimise the methods for each single case.

Overall, with the cautions we underlined above, our work show that it
is indeed possible to obtain precise (〈 σz

1+z
〉 < 0.05) and robust photometric

redshifts for more than 90 % of the galaxies with RIZ < 24.5, in case u-band
observations are available. In the case of griz ground-based observations, on
the other hand, to get to the required precision we need to eliminate at least
15 % of the sample (See Fig. 5.16), depending on the depth of the survey.

5.2 Cluster counts

5.2.1 Creation of mock catalogues

We now estimate the amount of galaxy clusters detectable by the Euclid sur-
vey via photometric observations. We perform this task by creating realistic
mock catalogues according to the characteristics of the survey and by sub-
mitting them to the optimal �lter described in Sect. 4.3. In principle, the
work should start from simulations of observations like the ones performed
in the previous Section, with the inclusion of realistic galaxy clusters on top
of the distribution of �eld galaxies. We decided instead as a �rst approach
to directly create a photometric multi-band catalogue, with the inclusion
of photometric redshift measurements. In the creation of the catalogue, we
make use of the knowledge we gained from the work described in the previous
Section about the photometric redshift accuracy. In particular, we create a
5 × 5 deg2 mock light-cone which is made of two components: a background
galaxy �eld and a realistic population of galaxy clusters.

The distribution of �eld galaxies is created starting from the COSMOS
photo-z catalogue (Ilbert et al., 2009), which we already introduced in Sect. 4.4.
Magnitudes in the Euclid bands are assigned to each galaxy in the catalogue
according to their spectral-energy distribution, which has been selected in the
process of redshift estimation. Given that we do not need high-resolution
morphology for this work, we preferred this catalogue with respect to the
HUDF one (Coe et al., 2006) because it covers a larger area and allows us
to span a wider range of galaxy properties. Only galaxies with magH < 24

and magY < 24 are considered, following the expected depth of Euclid in-
frared observations (see Sect. 2.4), in good agreement with tests we made on
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simulated images. Galaxy positions are assigned randomly inside the �eld of
view. The total �eld catalogue is made of around 4×107 galaxies.

The creation of the cluster galaxy component starts from the compilation
of a cluster catalogue, following the theoretical mass function, which we de-
scribed in Sect. 1.2.4. In this work we considered a standard ΛCDM model
with ΩM = 0.25, ΩΛ = 0.75 and σ8 = 0.8. The positions of the clusters are
assigned randomly inside the �eld of view. We focused on structures with
redshift 0 < z < 2 and mass above 1013.5 M�, for a total of 2376 objects.
From this cluster catalogue, two galaxy catalogues are created. The �rst
one, which we call `ideal', follows the model described in Sect. 4.3.3. To
verify the dependence of the results of cluster detection on the character-
istics of the cluster population, we then create a second `scattered' cluster
galaxy catalogue. In this case, we introduce a 20 % Gaussian scatter in
three parameters that describe the galaxy population: the cluster richness,
the red fraction and the L? parameter of the luminosity function. Both the
`ideal' and the `scattered' catalogues are made of around 2×106 galaxies. We
then add each cluster galaxy catalogue to the �eld catalogue, obtaining two
complete realistic catalogues.

A sensible step in the catalogue creation is the assignment of photometric
redshifts to the galaxies. We perform this task making use of the knowledge
we gained with the work presented in the previous Section. In particular,
we use the catalogue obtained from multi-band realistic observations with
Euclid and LSST. For each galaxy in the mock catalogue, we choose in the
Euclid+LSST catalogue the most similar object in terms of photometry and
redshift, and we use its error and the quoted 1-σ uncertainty in the red-
shift measurement. In this way, we assign to each galaxy a realistic redshift
measurement without the need to go again through the whole procedure
described in the previous Section.

5.2.2 Results

In the analysis, we choose to consider the infrared bands Y and H, which
allow us to observe a larger number of objects with respect to the optical RIZ
band. The model considered to create the �lter has a massM200 equal to 1014

M�. We compute the estimates of Λ over a grid with an angular resolution
equal to 0.5 R200 at redshift slices separated by ∆z = 0.05, which is enough
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considering the expected precision on photometric redshift measurements
(σz = 0.05 × (1 + z)). Peaks are extracted from the maps and a redshift
estimate is assigned to cluster candidates following the procedure described
in Sections (4.3) and (4.4). We then match cluster detections with the original
cluster catalogue with a tolerance equal to R200 × log(Λ0.42) in the angular
position and 0.1 in the redshift. The factor proportional to the richness Λ

follows the relation between N200 and R200 and allows us to search for a
counterpart in the input catalogue in an area that is reasonably linked to
the e�ective size of the cluster. The redshift tolerance is larger than the one
we adopted in Sect. 4.4 because of the di�erent redshift precision of the two
catalogues.

In the analysis of the `ideal' catalogue, we obtain 898 cluster detections
with this procedure. With the linking lengths described above, we get 853
associations between input clusters and detections. As there are both single
detections associated with more than an input cluster and vice versa, from
this value we cannot get any conclusion about purity and completeness of our
sample. We �rst evaluate the purity of our sample by calculating the fraction
of detections above a given threshold which have at least a counterpart in
the cluster catalogue. The results are shown in Fig. 5.18. We see that our
detected sample has a purity around 90% for S/N > 4 and it is very close to
be perfectly pure for S/N > 5. This last result con�rms what we got from
the analysis of the COSMOS �eld (see Fig. 4.15).

We now show the amount of detected clusters as a function of their mass,
considering both the S/N = 3 and the S/N = 4 thresholds. The results are
shown in Fig. 5.19. Considering the safer threshold (S/N = 4) for detections,
we get a > 80% completeness above logM/M� = 14.1. In this simulation,
this corresponds to ∼ 3 objects per square degree. This value con�rms the
expected total cluster counts in the Euclid survey, which is 60000 (see Laureijs
et al., 2011). We note here that these results are slightly better than those
we obtained naively applying to all the galaxies a redshift error equal to the
requirement, σz = 0.05 × (1 + z), as we show in Fig. 5.20. This depends
on the fact that many bright galaxies have a redshift estimate which is more
precise than the requirement. Given that the most brilliant galaxies are those
that receive larger weights from our algorithm, and thus that drive the cluster
detection, the high quality of their photometric redshifts helps to pinpoint big
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Figure 5.18: Amount of detections at a given signi�cance which have at least
a counterpart in the cluster input catalogue. The red histogram represents
the total amount of detections, the blue histogram the ones with at least a
counterpart, the blue points the fraction of con�rmed detections.
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Figure 5.19: Mass distribution of the total cluster sample (red histogram), of
the ones detected at S/N > 3 (blue histogram) and of the ones detected at
S/N > 4 (black histogram). The blue points represents the fraction of clusters
detected at S/N > 3, the black points the fraction of clusters detected at S/N
> 4 (scale on the right).

structures in the analysis. This compensates for the fact that many dimmer
galaxies have redshift uncertainties bigger than the requirement, and su�er
from catastrophic failures, as shown in the previous Chapter.

To extract information on the cosmological parameters from cluster counts,
high redshift (z > 1) detections are very important. Thus we measure
the abundance of cluster detections as a function of redshift, as shown in
Fig. 5.21. We see that the fraction of detected clusters declines rapidly with
redshift above z = 1. We must use detections at S/N > 3 to have a large
enough sample of detected clusters, none of which has a redshift larger than
1.6. The amount of detected clusters above z = 1 is expected to be around
10000 by Laureijs et al. (2011), with an angular density equal to ∼ 0.7 objects
per deg2. We obtain around 0.5/deg2 counts only if we consider detections
at S/N > 3.
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Figure 5.20: Mass distribution of the total cluster sample (red histogram),
of the ones detected in the catalogue with realistic photo-z errors (blue his-
togram) and of the ones detected in the catalogue with photo-z errors that
match the Euclid requirements (green histogram). The blue points represents
the fraction of detected clusters in the former catalogue, the green points in
the latter (scale on the right). The detection threshold is assumed to be S/N
= 3 in both cases.
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Figure 5.21: Redshift distribution of the total cluster sample (red histogram),
of the ones detected at S/N > 3 (blue histogram) and of the ones detected at
S/N > 4 (black histogram). The blue points represents the fraction of clusters
detected at S/N > 3, the black points the fraction of clusters detected at S/N
> 4 (scale on the right).
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Figure 5.22: As Fig. 5.19, but for the `scattered' galaxy cluster catalogue.

We now consider the analysis of the `scattered' catalogue, that contains
clusters with a galaxy population that deviates from our model. The com-
pleteness as a function of mass and redshift is shown in Figs. 5.22 and 5.23,
respectively, while the purity of the sample is shown in Fig. 5.24. The total
number of matches between the detections and the input catalogue low-
ers from 853 to 653 changing the cluster galaxy distribution. The �lter is
optimised to detect clusters which follow the model we built starting from
observed data. When we modify the parameters of the clusters present in the
catalogue, the signal-to-noise of the detection of each cluster gets lower and
some objects go under the S/N = 3 threshold. As a result of this, comparing
Figs. 5.19 and 5.22 we see that the completeness as a function of mass of
detections at S/N > 3 in the `scattered' catalogue is very similar to the one
of detections at S/N > 4 in the original catalogue. Unfortunately, this results
in an increased impurity of the sample, as can be seen in Fig. 5.24, because
detections with a signi�cance between S/N = 3 and S/N = 4 contain a ∼ 30
% rate of false positives. The redshift distribution of the detections is very
similar to the `ideal' case, as can be seen in Fig. 5.23.
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Figure 5.23: As Fig. 5.21, but for the `scattered' galaxy cluster catalogue.

 0

 100

 200

 300

 400

 500

 600

 3  4  5  6  7  8  9  10
 0

 0.2

 0.4

 0.6

 0.8

 1

n
u
m

b
er

 o
f 

d
et

ec
ti

o
n
s

p
er

ce
n
ta

g
e

detection s/n

Figure 5.24: As Fig. 5.18, but for the `scattered' galaxy cluster catalogue.
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5.2.3 Tests on cosmological simulations

We now test our algorithm on a catalogue extracted from a cosmological
simulation. We make use of the `Magneticum Path�nder' simulation run
with the Gadget-3 code (Springel, 2005; Dolag & Stasyszyn, 2009), which
is a tree-smoothed particle hydrodynamics code that fully conserves entropy
during the evolution of the gas component, taking into account radiative
cooling, heating by an ultraviolet meta-galactic background to emulate the
reionization era and a subresolution scheme to treat star formation, super-
nova feedback and galactic winds. The data are taken from the simulation
with a box-size equal to 128 Mpc/h, and a particle mass equal to 3.6×107

M�/h for dark matter and 7.3×106 M�/h for baryons. For the star for-
mation recipe it is assumed that each star particle of the simulation is a
single stellar population where the relative number of stars with di�erent
masses is obtained by means of the initial mass function, which is that of
Salpeter (1955) normalized in the 0.1-100 M� mass range. The luminosities
of the simulated galaxies are computed using the stellar population synthesis
model of Bruzual & Charlot (2003) in di�erent spectral bands, summing up
the contributes of each stellar population.

The resulting light-cone has a side equal to 3 degrees and a limiting
redshift z = 1. From the resulting galaxy catalogue, we select the objects
within the Euclid limiting depth in the near-infrared bands and we change
their redshifts according to the observational uncertainties as described in
Section 5.2.1. We then submit the resulting catalogue to our algorithm and
we perform the search as usual in redshift slices with a distance ∆z =0.05r.
We then match the resulting detections to the catalogue of structures ex-
tracted directly from the simulation boxes, which is limited to M = 1014

M�. The resulting completeness as a function of mass is shown in Fig. 5.25.

Although the sample is quite small, we con�rm the ability to detect struc-
tures with mass M above 1014.2M�.

5.2.4 Summary and future prospects

In this Section we tested the capability of detecting clusters through Euclid
photometric data. For this purpose, we applied the optimal �lter introduced
in Sect. 4.3 on mock catalogues obtained from other observations and from
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Figure 5.25: Completeness as a function of mass for the test done on cata-
logues extracted from a cosmological simulation. The symbols are the same
used in Fig. 5.19.
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cosmological simulations. The catalogues were cut at the expected Euclid
limiting depth, and photometric redshifts were assigned to the galaxies ac-
cording to the precision we calculated in Sect. 5.1. In the case where the
clusters were drawn from the model used in the �lter, we get a > 80% com-
pleteness above logM/M� = 14.1, considering safe detections at S/N = 4.
When a scatter in the cluster properties is allowed, the signal-to-noise of the
detections slightly worsens, and we need to use less safe detections at S/N =
3 to reach the same completeness. The application of the �lter on catalogues
extracted from cosmological simulations shows a very similar trend, although
the catalogue is too limited to draw quantitative conclusions. Nevertheless,
this test was important to assess the ability of our algorithm to detect struc-
tures in a more realistic scenario, where we had no control on the properties
of the input galaxy clusters. A summary of the 70 % detection threshold as
a function of redshift is shown in Fig. 5.26.

In the future we wish to extend this work by making use of a light-cone
with a larger angular size and a higher redshift limit and by performing end-
to-end simulations, that start from mock observations. The larger size is
required to improve the statistics and to include a more varied population of
objects in the data. The higher redshift limit will allow us to test the abil-
ity to detect clusters in a very important range, where clusters counts are
very sensible to the cosmological parameters. With the usage of mock ob-
servations we can introduce more realistic sources of noise: for example, the
density of the galaxy population in clusters can produce bigger uncertainties
in the estimation of photometry and redshift. Moreover, we can introduce
the lensing e�ects on galaxy observed shapes and then run a combined search
using information coming from both weak lensing data and galaxy distribu-
tion, as we did on the COSMOS �eld. We will then be able to assess in a
more robust way the capability to detect galaxy clusters in Euclid data.
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Figure 5.26: Mass threshold for a 70 % detection rate in cluster detection.
The red line refers to the analysis of the `ideal' catalogue, while the blue line
refers to the `scattered' catalogue. The black line refers to the analysis of the
catalogue extracted from the Magneticum Path�nder simulation.
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Conclusions

In this Thesis we have presented our work on the production of mock simu-
lations of observations and on their application to test the performances of
future weak lensing surveys. Experiments such as the ESA-approved Euclid
mission promise to constrain cosmological parameters with unprecedented
accuracy through the analysis of the cosmic shear signal produced by the
large-scale structure on the observed shape of galaxies. To ful�l this task,
however, many systematics must be put under control and the analysis rou-
tines must be tested on synthetic realistic data. The creation of mock ob-
servations which contain many of the sources of noise present in real data
allows us to assess the precision that can be obtained in the data analysis.

In Chapter 3, we have shown how simulations of observations can be
created starting from observed galaxy catalogues and considering character-
istics of the telescope and of the survey. We then applied this tool to verify
the sources of errors and inconsistencies in the mass measurement of galaxy
clusters from lensing data. We have shown that the alignment between the
major axis of the cluster and the line of sight is an important source of er-
ror in lensing mass estimates, producing a 20 % scatter around the correct
value. On the other hand, lensing does not su�er from the bias due to incor-
rect assumptions on the cluster gas physics, such as methods based on X-ray
data.

In Chapter 4, we approached the problem of cluster detection from weak
lensing and photometric data. We built an optimal �lter for cluster detection
that automatically selects the important features to distinguish a cluster
population from the �eld one. After having tested it on mock data, we
applied it to the COSMOS �eld together with its weak lensing counterpart.
We presented a catalogue of 27 lensing-con�rmed clusters, 11 of which do
not have any previous detection in the literature. Comparing the sample of
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detected clusters with previous catalogues obtained from X-ray observations,
we veri�ed that we were able to detect more than 50% of the clusters with
an X-ray mass over 1.5 × 1013 M�.

In Chapter 5, we applied the techniques presented in the previous Chap-
ters to the Euclid mission. We �rst veri�ed the precision in the photometric
redshift measurements for galaxies detected by Euclid. Photometric red-
shifts are key data to perform lensing tomography and the Euclid mission
will need ancillary data from ground-based facilities to properly sample the
galaxy SEDs. We simulated observations with Euclid instruments and with
�ctional and real ground-based instruments. We veri�ed the importance of
good observing sites (with seeing < 1 arcsec) and of the presence of u-band
observations to reduce the number of catastrophic failures. In particular, con-
sidering possible Euclid ground-based counterparts, we found that we must
eliminate ∼ 15% of the sample to reach the required precision in case LSST
data are used, while the discarded fraction rises to 35% in case Pan-Starrs
or DES data are considered.

We then applied our cluster �nder algorithm to Euclid mock data to assess
the amount of galaxy clusters that can be observed. We used both catalogues
created from observations with ad-hoc clusters on top of the �eld population,
and catalogues extracted from cosmological simulations. In both cases, we
veri�ed that is possible to get an almost complete sample for masses above
log M� = 14.2 and z < 1, with a low (∼ 20%) rate of false detections. Above
redshift z = 1, the cluster detection becomes more di�cult, but the data
were not su�cient to draw conclusions on the limiting mass. In total, the
number of clusters detected from Euclid photometric data should be close to
the expected value of 60000.
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Ma allo stesso modo tu puoi trarne la conclusione opposta: che la vera

mappa dell'universo sia la città d'Eudossia così com'è, una macchia che di-

laga senza forma, con vie tutte a zig-zag, case che franano una sull'altra nel

polverone, incendi, urla nel buio.

(Italo Calvino, Le città invisibili)

But you could, similarly, come to the opposite conclusion: that the true

map of the universe is the city of Eudoxia, just as it is, a stain that spreads

out shapelessly, with crooked streets, houses that crumble one upon the other

amid clouds of dust, �res, screams in the darkness.

(Italo Calvino, The invisible cities)
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