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"... e più ragionevole arrivarci a poco per volta, montando prima due pezzi soli, 
poi il terzo e così via. Non abbiamo quelle pinzette che sovente ci capita di sognare 

di notte, come uno che ha sete sogna le sorgenti, e che ci permetterebbero di 
prendere un segmento, di tenerlo ben stretto e diritto, e di incollarlo nel verso 

giusto sul segmento che è già montato. Se quelle pinzette le avessimo (e non e detto 
che un giorno non le avremo) saremmo già riusciti a fare delle cose graziose che 

fin adesso le ha solo fatte il Padreterno, per esempio a montare non dico un 
ranocchio o una libellula, ma almeno un microbo o il semino di una muffa."  

(Primo Levi, La Chiave a Stella, 1978) 
 
 

"...it is reasonable to proceed a bit at a time, first attaching two pieces, then adding 
a third, and so on. We don't have those tweezers we often dream of at night, the 
way a thirsty man dreams of springs, that would allow us to pick up a segment, 

hold it firm and straight, and paste it in the right direction on the segment that has 
already been assembled. If we had those tweezers (and it's possible that, one day, 
we will), we would have managed to create some lovely things that so far only the 
Almighty has made, for example, to assemble - perhaps not a frog or a dragonfly - 

but at least a microbe or the spore of a mold"  
(Primo Levi, The Monkey's Wrench) 
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CHAPTER 1 

 

Introduction 

 

1.1 Supramolecular chemistry 

Supramolecular chemistry is a highly interdisciplinary field that has developed 

astonishingly rapidly in the last four decades.1 In the late 1980s, following the 

award of the 1987 Nobel Prize to Pedersen, Cram, and Lehn, there was a sudden 

increase of interest in supramolecular chemistry, a highly interdisciplinary field 

based on concepts such as molecular recognition, preorganization, and self-

assembling.  

The classical definition of supramolecular chemistry is that given by J.-M. Lehn, 

namely “the chemistry beyond the molecule, bearing on organized entities of 

higher complexity that result from the association of two or more chemical species 

held together by intermolecular forces”.2 

There is, however, a problem with this definition. With supramolecular chemistry 

there has been a change in focus from molecules to molecular assemblies or 

multicomponent systems. According to the original definition, however, when the 

components of a chemical system are linked by covalent bonds, the system should 

not be considered a supramolecular species, but a molecule.  
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Although the classical definition of supramolecular chemistry as “the chemistry 

beyond the molecule” is quite useful in general, from a functional viewpoint the 

distinction between what is molecular and what is supramolecular can be better 

based on the degree of intercomponent electronic interactions.1a,3,4,5,6  

 

Figure 1.1. Schematic representation of the difference between a supramolecular system and a large 

molecule based on the effects caused by a photon or an electron input. For more details, see text. 

 

This concept is illustrated, for example, in Figure 1.1.7 In the case of a 

photochemical stimulation, a system A~B, consisting of two units (~ indicates any 

type of “bond” that keeps the units together), can be defined a supramolecular 

species if light absorption leads to excited states that are substantially localized on 

either A or B, or causes an electron transfer from A to B (or viceversa). By 

contrast, when the excited states are substantially delocalized on the entire system, 

the species can be better considered as a large molecule. Similarly (Figure 1.1), 
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oxidation and reduction of a supramolecular species can substantially be described 

as oxidation and reduction of specific units, whereas oxidation and reduction of a 

large molecule leads to species where the hole or the electron are delocalized on the 

entire system. In more general terms, when the interaction energy between units is 

small compared to the other relevant energy parameters, a system can be 

considered a supramolecular species, regardless of the nature of the bonds that link 

the units. It should be noted that the properties of each component of a 

supramolecular species, i.e. of an assembly of weakly interacting molecular 

components, can be known from the study of the isolated components or of suitable 

model molecules. 

 

1.2 Bottom-up approach to Nanotechnology 

Nanotechnology is  an experimental field of applied science and technology that 

has as its goal the realization of systems and devices for transforming matter, 

energy, and information, based on nanometer-scale components with precisely 

defined molecular features. The term nanotechnology has also been used more 

broadly to refer to techniques that produce or measure features less than 100 

nanometers in size. Two main approaches are used in nanotechnology: one is a 

"bottom-up" approach where materials and devices are built from smaller 

(molecular) components which assemble themselves chemically using principles 

such as molecular recognition; the other being a "top-down" approach where they 
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are synthesized or constructed from larger entities through an externally-controlled 

process. 

The bottom-up approach to nanotechnology is relatively new. Until a few decades 

ago, in fact, nanotechnology was not considered an obtainable target by physicists.8 

The dominant idea, derived from quantum theory,9 was that atoms are fuzzy 

entities that "must no longer be regarded as identifiable individuals",10 and "form a 

world of potentialities or possibilities rather than one of things or facts".11 From the 

point of view of quantum theory, molecular structure is not an intrinsic property, 

but a metaphor.12 Such ideas, of course, were never shared by chemists who long 

before had established that atoms are material and reliable building blocks for 

constructing molecules and that molecules have well defined sizes and shapes.13 

The idea that atoms could be used to construct nanoscale machines was first raised 

by R.P. Feynman "There is plenty of  room at the bottom".14 The key sentence of 

Feynman’s talk was: "The principles of physics do not speak against the possibility 

of maneuvering things atom by atom". As we will see below, however, chemists do 

not believe in the possibility of realizing an atom-by-atom approach to 

nanostructures. 

In the framework of research on supramolecular chemistry the idea began to arise 

in a few laboratories that molecules are much more convenient building blocks than 

atoms for construction of nanoscale devices and machines. The main foundations 

of this idea were: (a) molecules are stable species, whereas atoms are difficult to 

handle; (b) Nature starts from molecules, not from atoms, to construct the great 
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number and variety of nanodevices and nanomachines that sustain life (vide infra); 

(c) most laboratory chemical processes deal with molecules, not with atoms; (d) 

molecules are objects that already have distinct shapes and carry device-related 

properties (e.g. properties that can be manipulated by photochemical and 

electrochemical inputs); and (5) molecules can self-assemble or can be connected 

to make larger structures.  

In the following years supramolecular chemistry grew very rapidly1 and it became 

clear that the supramolecular "bottom-up" approach opens virtually unlimited 

possibilities concerning design and construction of artificial molecular- level 

devices and machines. It also became increasingly evident that such an approach 

can make an invaluable contribution to a better understanding of molecular-level 

aspects of the extremely complicated devices and machines that are responsible for 

biological processes.15  

It should not be forgotten that the development of the supramolecular bottom-up 

approach towards the construction of nanodevices and nanomachines was made 

possible by the large amount of knowledge gained in other fields of chemistry. 

Particularly important in this regard have been the contributions made by organic 

synthesis, which supplied a variety of building blocks, and by photochemistry,1a 

which afforded a means of investigating the early examples of molecular-level 

devices and machines (e.g. light-controlled molecular-level tweezers,16 triads for 

vectorial charge separation,17 and light-harvesting antennae18). 
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It should also be recalled that in the last few years the concept of molecules as 

nanoscale objects with their own shape, size and properties has been confirmed by 

new, very powerful techniques, such as single-molecule fluorescence spectroscopy 

and the various types of probe microscopy, capable of "seeing"19 or 

"manipulating"20 single molecules. It has been possible, for example, to make 

ordered arrays of molecules (e.g. to write words21 and numbers22 by aligning single 

molecules in the desired pattern) and even to investigate bimolecular chemical 

reactions at the single molecule level.23 

The  supramolecular systems studied in this thesis are the dendrimers. 

 

1.3 Dendrimers 

Dendrimers24 are globular size, monodisperse macromolecules in which all bonds 

emerge radially from a central focal point or core with a regular branching pattern 

and with repeating units constituting the branching points. The term dendrimer 

refers to its characteristic tree-like structure and it derives from the Greek word 

dendron (tree) and meros (part). From a topological viewpoint, dendrimers contain 

three different regions: core, branches and surface. Each repetition synthetic cycle 

leads to the addition of one more layer of monomers in the branches, called 

generation. Therefore, the generation number of the dendrimer is equal to the 

number of repetition cycles performed and to the number of branching points 

present from the core towards the periphery. 
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The first example of an iterative synthetic approach toward dendrimers has been 

reported in 1978 by Vögtle,25 who called it “cascade synthesis”. In the mid-1980s, 

Tomalia26 and Newkome27 independently reported the divergent synthesis of two 

new families of dendrimers: poly(amidoamine) and the so-called “arborols”, 

respectively. A growing interest on these macromolecules lead in 1990 to the 

convergent synthesis of aromatic polyether dendrimers by Fréchet.28 The two 

different synthetic approaches can be explained as follows: 

 in the divergent method, dendrimers are built from the core out to the 

periphery and in each step a new layer of branching units is added; 

 the convergent method follows the opposite path: the skeleton of a dendron, 

defined as an entire branch, is built up step by step and finally reacted with 

the core moiety. 

Dendrimer chemistry is nowadays a rapidly expanding field, as testified by the 

exponentially increasing number of papers published on this topic per year. 

Dendrimers keep attracting the attention of the scientific community because of 

their fascinating structure and unique properties: indeed the field of dendrimer 

chemistry has evolved from the initial pursue of synthesizing new large and 

aesthetically pleasant molecules, to their characterization and finally it has now 

moved towards functionality. Today dendrimers are used or are planned to be 

exploited in a variety of applications, taking advantage of the great number of 

functional units that can be incorporated inside them, their tree-like structure 

containing internal dynamic cavities, their well-defined dimensions close to that of 
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important biological molecules (Figure 1.2), like proteins and bioassemblies, the 

presence of an internal microenvironment different from the bulk of the solution, 

and their endo- and exo-receptor properties. As a result, applications ranging from 

the biological and medical field (artificial enzymes, drug-delivery and diagnostics 

systems) to nanoengeneering (molecular wires, light-emitting diodes), optical data 

transport (fiber optics), catalysis, energy-harvesting devices and mimics of natural 

photosynthesis are foreseen.29 

 

Figure 1.2. Dendrimer size in comparison with important biological molecules 

 

1.4 Dendrimers and light 

Currently, dendrimer research is developing swiftly in the direction of highly 

functional materials. Also in the field of photoactive dendrimers the complexity of 



Chapter 1 

 19

the systems has increased enormously. The investigation of dendritic structures 

functionalized with luminescent groups,30 photoswitchable units,31 energy and/or 

electron donor-acceptor components and the implementation of such functionalized 

dendrimers in devices,32 provide insight in the fundamental processes occurring in 

such complex systems and in their future applications.  

Since dendrimers can be functionalized with multiple chromophoric groups, that 

are in very close proximity, novel properties can arise compared to the single 

chromophoric system. Due to the stepwise synthesis, either divergent or 

convergent, chromophores can be implemented in the dendritic structure with high 

precision. The number of chromophores and the size of the dendrimer are very well 

controlled, which is of very great importance for some biological and biomedical 

applications. The presence of multiple chromophores in the same molecule enables 

the detection of single dendrimer via single molecule spectroscopy (SMS), which is 

particulary interesting for nanotechnology. Furthermore, an increased sensitivity 

with respect to specific classes of molecules can be established, enabling the 

detection of very low concentrations of these molecules. This is of great interest for 

the field of molecular recognition, e.g. for the development of biosensors (immuno-

diagnostic). 

A specific advantage of the dendritic framework is that a microenvironment can be 

crated around a single chromophore. By placing such protective environment 

around a chromophore its luminescence can be dramatically improved. Dendritic 
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substituents can also promote supramolecular organization of chromophores, e.g. 

inducing the formation of fibers or doughnut-like structures. 

The possibility to functionalize chromophores with large dendritic substituents is 

particularly interesting for the development of light emitting diodes (LEDs). The 

dendritic wedges do not only prevent the aggregation of chromophores, thereby 

reducing the amount of self quenching, but they also provide a way to improve the 

solubility of the chromophores in polymers, rendering a more homogeneous blend. 

The introduction of photoisomerizable groups, such as azobenzene derivatives, in 

dendrimers enables the controlled induction of a structural change, especially when 

those units are attached to the core or implemented in the branches. If attached at 

the periphery, these photisomerizable groups, can be used to “close” the surface of 

a dendrimer by means of a photoinduced increase of steric hindrance at the 

periphery. This type of dendrimers can be used as carriers of small molecules, 

while a controlled release of those guest molecules is possible using light, which 

induced the isomerization from cis to trans. In addition, azobenzene-functionalized 

materials are widely used in the field of datastorage. 

The implementation of chromophores in dendritic structures can also provide more 

insight in the structural features of dendrimers. Dyes can be used as internal probes 

to investigate the microenvironment created by dendritic branches. At the same 

time the influence of external factor, e.g. the solvent or ions, on the 

microenvironment can be studied. This may concern a change in the conformation 

of the dendritic structure, but also the accessibility of the dendritic structure by 
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other molecules. The implementation of multiple chromophores within one 

dendrimers allows the investigation of internal interactions between the 

chromophores, such as the formation of excimers and energy and electron transfer 

processes. To what extend these interactions take place will depend on the 

flexibility of the dendritic framework and the position of the chromophores within 

the dendritic structure. 
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CHAPTER 2 

 

Photochemistry and Related Processes 

 

2.1 Introduction 

In a supermolecule most of the intrinsic properties of each units are expected to be 

maintained with relative minor changes that can be ascribed to the mutual 

perturbations between the units contained in system. For this reason the 

investigation of the photophysical, photochemical and electrochemical properties 

of model compounds is absolutely necessary to understand the properties of 

supramolecular systems. These properties, however, are usually not the simple 

superposition of those of the component units. In fact, it is possible that processes 

involving two or more components take place in a supermolecule, such as (i) 

intercomponent energy or electron transfer and/or (ii) cooperative effects (for 

example complexation of guest molecules or modification of the physical or 

chemical properties of the units).    

The study of the new distinctive photochemical, photophysical and electrochemical 

properties of the supermolecule constitutes the object of supramolecular 

photochemistry and electrochemistry.  

Dendrimers can be functionalised, in their different topological regions, with 

luminescent moieties: photoactive units can also be non-covalently hosted in the 
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cavities or associated on the dendrimer surface. Coupling luminescence with 

dendrimers is of particular interest since: (i) luminescence signals offer a handle to 

better understand the dendritic structure and superstructure; moreover, it is possible 

to monitor the interactions of the macromolecule with other chemical species and 

with the environment. (ii) Cooperation among the photoactive components can 

allow the dendrimer to perform useful functions such as light harvesting and signal 

amplification for sensing purposes. 

 

2.2 Supramolecular photochemistry 

Photochemistry is a science focused on the description of physical and chemical 

process, induced by the absorption of photons. It is a very broad discipline, 

embracing an extensive range of energetic, structural and dynamic processes.  

While further investigations on the excited state properties of simple molecules are 

certainly required to arrive at complete understanding of the photochemical 

processes, there is an emerging need to study the photochemical behavior of 

supramolecular species in order to extend our knowledge of basic phenomena, 

make progress towards the understanding of complex photobiological processes via 

examination of simpler models, and find systems that might be useful for practical 

applications.1 

Relatively new but very interesting applications of photochemistry are in the field 

of molecular devices. For instance, the possibility of using light energy as input to 

induce molecular movements is very important because it offers the possibility to 
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mache molecular machine work without accumulation of waste products. Other 

advantages of using photochemical energy input are: (i) light can be switched on 

and off very easily and rapidly (ii) lasers provide the opportunity of working in a 

very small space and very short time domains (iii) photons, besides supplying the 

energy needed to make the machine work, can also be useful to “read” the state of 

the system and thus to control and monitor the operations of the machine.  

 

2.2.1 Basic aspects of photochemistry 

A historic and very useful diagram used in photochemistry to represent the 

deactivation process of the electronic excited states is the Jablonski diagram, 

(Figure 2.1).  

 

E

kisc

kfl

kic k'isc

kph

100% efficiency

S0

S1

S2

T1

T2

 

Figure 2.1. Jablonski diagram for an organic molecules. Sn Singlet state, Tn Triplet state, Kisc 

intersistem crossing rate constant, Kic internal conversion rate constant, Kfl fluorescence rate 

constant, Kph phosphorescence rate constant.  
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As reported on the diagram, in most cases the ground state of organic molecules is 

a singlet state (S0), and the excited states are either singlets (S1, S2, etc) or triplets 

(T1, T2, etc). In principle, transitions between states having the same spin value are 

allowed, whereas those between states of different spin are forbidden. Therefore, 

the electronic absorption bands observed in the UV-visible spectrum of molecules 

usually correspond to S0→Sn transitions. Excited states are unstable species that 

undergo fast deactivation by intrinsic (first order kinetics) processes. When a 

molecule is excited to upper singlet excited states, it usually undergoes a fast and 

100% efficient radiationless deactivation (internal conversion, ic) to the lowest 

excited singlet state, S1. Such an excited state undergoes deactivation via three 

competing processes: nonradiative decay to the ground state (internal conversion, 

rate constant kic); radiative decay to the ground state (fluorescence, kfl); conversion 

to the lowest triplet state T1 (intersystem crossing, kisc). In its turn, T1 can undergo 

deactivation via nonradiative (intersystem crossing, k'isc) or radiative 

(phosphorescence, kph) decay to the ground state S0. When the molecule contains 

heavy atoms, the formally forbidden intersystem crossing and phosphorescence 

processes become faster.  

The kinetic constants of the deactivation processes usually cannot be measured 

directly. What can be easily measured is the lifetime (τ) of an excited state, i.e. the 

time needed to reduce the excited state concentration by 2.718, which is given by 

the reciprocal of the summation of the first order deactivation rate constants: 
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τ (S1) = 1 / (kic + kfl + kisc)       (1) 

 

τ (T1) = 1 / (k'isc + kph)       (2) 

 

The orders of magnitude of τ (S1) and τ (T1) are approximately 10-9-10-7 s and 10-3-

100 s, respectively.  

Another quantity that can be measured is the quantum yield of fluorescence (ratio 

between the number of photons emitted by S1 and the number of absorbed photons) 

and phosphorescence (ratio between the number of photons emitted by T1 and the 

number of absorbed photons). These quantities, that can obviously range between 0 

and 1, are given by the following expressions: 

 

Φfl = kfl / (kic + kfl + kisc)       (3) 

 

Φph = kph kisc / [(k'isc + kph) (kic + kfl + kisc)]     (4) 

 

Deactivation of an excited state in fluid solution can occur not only by the above 

mentioned intrinsic (first order) decay channels, but also by interaction with other 

species (called “quenchers”) following second order kinetics. The two most 

important types of interactions are those leading to energy (eq. 6) or electron (eqs. 

7 and 8) transfer (*A and *B stand for excited molecules).2  
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* A + hν → *A         (5) 

 

*A + B → A + *B        (6) 

 

*A + B → A+ + B−        (7) 

 

*A + B → A− + B+        (8) 

 

In both cases, the luminescence of the species A is quenched, and in the case of 

energy transfer the luminescence of species A can be replaced by the luminescence 

of species B (sensitization process).  

 

2.2.2 Energy and electron transfer 

Energy and electron transfer processes can occur not only between distinct 

molecules in an encounter, but also between nearby molecular components in a 

supramolecular (multicomponent) species. For example, in a system consisting of 

A and B component units, excitation of A (eq. 9) may be followed by energy (eq. 

10) or electron (eqs. 11 and 12) transfer to B:2 

 

A—B  + hν →  *A—B       (9)  
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*A—B → A—*B        (10) 

 

*A—B → A+—B−        (11) 

 

*A—B → A−—B+        (12) 

 

Energy and electron transfer processes between components of a supramolecular 

species take place following first order kinetics. They must compete, of course, 

with the intrinsic excited state decay, 1/τ (eqs. 1 and 2, Figure 2.2). 

Energy transfer requires electronic interactions and therefore its rate decreases with 

increasing distance, r. Depending on the electronic interaction mechanism, the 

distance dependence may follow a 1/r6 (resonance, also called Förster-type, 

mechanism) or e-r (exchange, also called Dexter-type, mechanism).2 In both cases, 

energy transfer is favoured when the emission spectrum of the donor overlaps the 

absorption spectrum of the acceptor.  
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Figure 2.2. Diagram of deactivation processes that can occur between components of a 

supramolecular species. ken energy transfer rate constant, kel electron transfer rate constant, 1/τ 

luminescence rate constant.  

 

Quenching of an excited state by electron transfer needs electronic interaction 

between the two partners and obeys the same rules as electron transfer between 

ground state molecules (Marcus equation and related quantum mechanical 

elaborations)3, taking into account that the excited state energy can be used, to a 

first approximation, as an extra free energy contribution for the occurrence of both 

oxidation and reduction processes. 

 

2.2.3 Excimers and exciplex 

In most cases, quenching of an excited state (for example, by energy transfer) takes 

place by a weak electronic interaction. When the excited state and the quencher 

undergo a relatively strong electronic interaction, new chemical species, which are 

called excimers (from excited dimers) or exciplexes (from excited complexes), 

depending on whether the two interacting units have the same or different chemical 
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nature (chapter 6, 7 and 8). It is important to notice that excimer and exciplex 

formation is a reversible process and that both excimers and exciplexes sometimes 

(but not always!) can give luminescence. Compared with the “monomer“ emission, 

the emission of an excimer or exciplex is always displaced to lower energy (longer 

wavelengths) and usually corresponds to a broad and rather weak band. 

Excimers are usually obtained when an excited state of an aromatic molecule 

interacts with the ground state of a molecule of the same type. For example, 

between excited and ground state of anthracene units. Exciplexes are obtained 

when an electron donor (acceptor) excited state interacts with an electron acceptor 

(donor) ground state molecule. For example, between excited states of aromatic 

molecules (electron acceptors) and amines (electron donors). In dendrimers 

containing a variety of components both exciplex and excimer formation can take 

place4, 5. In such a case, as many as three different types of luminescence can be 

observed, namely “monomer“ emission, exciplex emission, and excimer emission 

(chapter 6).  

It may also happen that in a supramolecular structure like a dendrimer there is a 

non negligible electronic interaction between adjacent chromophoric units already 

in the ground state. In such a case, the absorption spectrum of the species may 

substantially differ from the sum of the absorption spectra of the component units. 

When the units have the same chemical nature, the interaction leads to formation of 

dimers. When the two units are different, the interaction is usually charge-transfer 

in nature with formation of charge-transfer complexes. Excitation of such dimers 
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leads to an excited state that is substantially the same as the corresponding 

excimers, and excitation of the charge-transfer ground state complexes leads to an 

excited state that is substantially the same as that of the corresponding exciplexes.



Chapter 2 

 35

References 

                                                 
[1]  V. Balzani, L. Moggi, F. Scandola, Supramolecular Photochemistry, (Eds. V. Balzani), 

NATO ASI Series, D. Reidel, Dordrecht, 1987.   

[2]  (a) V. Balzani, F. Scandola, Supramolecular Photochemistry, Chichester, UK:Horwood, 

1991. (b) N. J. Turro, Modern Molecular Photochemistry, Benjamin, 1978. (c) A. Gilbert, J. 

Baggott, Essentials of Molecular Photochemistry, Backwell, Oxford, 1991. (d) J. R. 

Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York, 1999.   

[3]  P. Piotrowiak, Relationship between Electron and Electronic Exitation Transfer, (Ed. V. 

Balzani), Electron Transfer in Chemistry, Wiley-VCH, Weinheim, 2001, Vol. 1, p. 215. 

[4]  S. C. J. Meskers, M. Bender, J. Hübner, Y. V. Romanovskii, M. Oestreich, A. P. H. J. 

Schenning, E. W. Meijer, H. Baessler,  J Phys Chem A 2001, 105, 10220. 

[5]  (a) J. Hofkens, L. Latterini, G. De Belder, T. Gensch, M. Maus, T. Vosch, Y. Karni, G. 

Schweitzer, F. C. De Schryver, A. Hermann, K. Müllen, Chem Phys Lett 1999, 304, 1. (b) Y. 

Karni, S. Jordens, G. De Belder, G. Schweitzer, J. Hofkens, T. Gensch, M. Maus, F. C. De 

Schryver, A. Hermann, K. Müllen, Chem Phys Lett 1999, 310, 73. 



 36

 



 37

CHAPTER 3 

 

Materials and methods 

 

3.1 Materials 

The synthesis of the investigated compounds and their structural characterization 

was performed by research groups that collaborate with our group since a long 

time.  

In particular, the synthesis of the dendrimers described in the chapters 4, 5, 6, 7, 8, 

9 and and their characterization have been performed by the research group of Prof. 

Fritz Vögtle of the Kekulé-Institut für Organische Chemie und Biochemie of the 

University of Bonn. The molecule studied and described in the chapter 10 was 

synthetized and characterized by the group of Prof. Marc Gingras of the  Nice 

Institute of Chemistry, Université de Nice-Sophia Antipolis,  France. The metal 

complex [Ru(bpy)(CN)4]2- was provided by Prof. Maria Teresa Indelli of 

University of Ferrara, Italy. 

In the chapter 11 is reported the work that I have done in the group of Prof. Frans 

De Schryver, Katholieke Universiteit of Leuven, Belgium. The molecule used in 

this work was synthetized by the group of Prof. Klaus Mullen of the Max Planck 

Institute in Mainz, Germany.  
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All the organic solvents were Merck Uvasol and were used without further 

purification. The salts, acids and bases solutions were prepared from commercial 

Fluka and Aldrich; products were used as received. Any other reagent or model 

compound occasionally used was of the best purity commercially available. 

For weighting the samples for solution preparation a Mettler AT261 balance 

(sensitivity 0.01 mg, experimental error estimated <10%) was used. 

 

3.2 Photophysical techniques 

3.2.1 Electronic absorption spectra 

All the absorption  spectra in the 190–1100 nm range were recorded at room 

temperature on solutions contained in quartz cuvettes (optical pathlength 1 cm and 

5 cm, Hellma®) by using a Perkin Elmer λ 40 spectrophotometer. The precision on 

the wavelength values was ± 2 nm. Molar absorption coefficient values were 

determined using the Lambert–Beer law; the experimental error, mostly due to 

weighting error, can be estimated to be around ± 5%.   

 

3.2.2 Luminescence spectra 

Fluorescence and phosphorescence emission and excitation spectra in the 250-900 

nm range were recorded with Perkin Elmer LS 50 spectrofluorimeters equipped 

with Hamamatsu R928 or R955 photomultiplier. In case of weak luminescence 

signals the more sensitive Fluorolog 3 from ISA (Jobin Yvon-Spex) was used. 
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Room temperature spectra were recorded in the same spectrofluorimetric suprasil 

quartz cuvettes described for the electronic absorption spectra. In order to have 

comparable luminescence intensity measurements some correction had to be 

applied to the experimental data. These corrections were introduced to take into 

account instrumental geometrical effects and the distribution of the exciting light 

among the species effectively present in the solution.1, 2 

Spectra in frozen matrix at 77 K were taken using quartz (or glass) tubes with an 

internal diameter of about 2 mm and a 20 cm length immersed in liquid nitrogen. A 

transparent dewar (glass or quartz) with a cylindrical terminal part with a 1 cm 

external diameter was employed. Such a device easily fit into the sample holder of 

the spectrofluorimeters above indicated. Luminescence spectra recorded in the 650-

900 nm region were corrected for the non-linear response of the photomultiplier 

towards photons of different wavelength making reference to a previously 

experimentally determined calibration curve obtained. The precision on the 

wavelength values was ±2 nm. 

Luminescence spectra in the near infrared (NIR) region were recorded by a home-

made apparatus based on an Edinburgh CD900 spectrofluorimeter, which uses a 

Xenon lamp as the excitation source and a liquid nitrogen cooled hyperpure 

germanium crystal as a detector.  
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3.2.3 Luminescence quantum yield 

Luminescence quantum yields were determined on solution samples at room 

temperature referring to the relative method optimized by Demas and Crosby. The 

quantum yield is expressed as: 

ΦS=ΦR(AS/AR)(nS/nR)2 

where Φ, A and n indicate the luminescence quantum yield, the area subtended by 

the emission band (in the intensity versus frequency spectrum) and the refractive 

index of the solvent used for the preparation of the solution, respectively; the 

subscripts S and R stand for sample and reference, respectively. AS and AR must be 

relative to the same instrumental conditions ant to the same solution absorption at 

the excitation wavelength. 

Different standards were selected depending on the spectral region of interests: 

naphthalene in degassed cyclohexane (Φ=0.23)3, Fluorescein in NaOH 0.01 M 

(Φ=0.90)4 or quinine sulphate in 1 M aqueous solution (Φ=0.546).5 The 

experimental error was ± 15%. 

 

3.2.4 Luminescence lifetime measurements 

Excited state lifetimes in the range 0.5 ns-30 μs were measured with an Edinburgh 

Instrument time correlated single-photon counting technique.6 A schematic view of 

this instrument is reported in figure 3.1. The excitation impulse is obtained by a gas 

discharge lamp (model nF900, filled with nitrogen or deuterium, depending on 
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excitation requirements) delivering pulses of 0.5 ns width at a frequency comprised 

between 1 and 100 kHz or by a pulsed diode laser (406 nm Picoquant). A 

photomultiplier tube (Hamamatsu R928P) cooled at –20°C and suitably amplified 

is used as stop detector.  

Lifetimes in the range between 10 μs and 5 s were measured with the same Perkin 

Elmer LS 50 spectrofluorimeter employed for the luminescence spectra acquisition. 

In this case the excitation pulse is generated by a Xe lamp (5-50 Hz) and the 

emission decay directly recorded. The experimental error on the lifetime 

measurements is ± 10%. 

Lamp M S

M

PM2TAC

Analyser
PC

PM1

 

Figure 3.1. Experimental set-up of the single photon counting. 

 

3.2.5 Titration experiments  

Titration experiments have been performed directly in the spectrofluorimetric 

cuvettes previously described. 2.5 ml of dendrimer solution was introduced in the 
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cell with conventional pipettes and increasing amounts of a solution of the ion 

under examination added. Small volumes (of the order of 1-20 μl) were added in 

order to minimize the dilution effect which anyway was taken into account during 

data elaboration. Host concentrations were typically in the 10-5 10-6 M range while 

guest solutions, before dilution, were between 10-3 - 10-4 M. During titration, 

usually both absorption and luminescence spectra were recorded. When possible, 

the fluorophores were excited at wavelength where absorption changes during the 

titration were small in order to simplify the luminescence spectra corrections. For 

the additions Hamilton microlitre syringes were used.  

 

3.2.6 Laser flash photolysis 

Laser flash photolysis experiments were carried out with a home made apparatus 

that is schematised in figure 3.2. In our set-up a Surelite Nd:YAG laser (pulse 

width ≤ 10 ns) was used as excitation source and a hight-pressure Xenon arc-lamp 

was used as analysing light. The signal after the sample was captured by a 

monochromator / photomultiplier detection system, recorded by a Tektronix 

TDS640A digitizer oscilloscope and transferred to a PC computer. 
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Figure 3.2. Laser flash photolysis experimental set-up. 

 

3.2.7 Photochemical experiments 

The experiments were carried out at room temperature on 3 ml solution 

(concentration in the range 10–5 to 10–4 M) contained in a quartz cell with optical 

pathlength of 1 cm. When necessary, the solution was degassed using the freeze–

pump–thaw method (at least 3 cycles). The solution was continuously stirred 

during the irradiation with a Hellma Microver apparatus. Irradiation in the UV 

region was performed with a medium pressure Q400 Hanau mercury lamp (150 

W); the wavelength of 287, 313, 365 and 436 nm were isolated by means of 

interference filters. The incident light intensity was measured using the ferric 

oxalate actinometer;7 and was of the order of 10–7 Nhν/min. Irradiation in the 

visible region was performed with a tungsten halogen lamp (150 W, 24 V). 

Photoreaction quantum yield were determined by monitoring the changes in 

absorbance associated with the disappearance of the reactants or the formation of 

the products, at a wavelength where the absorbance could be related to the 

concentration of these species. 
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3.3 Electrochemical experiments 

3.3.1 Electrochemical setup  

Electrochemical experiments were carried out with with an EcoChemie Autolab 30 

multipurpose instrument interfaced to a personal computer. 

The working electrode for the voltammetric experiments was a glassy carbon 

electrode (0.14 cm2, Amel) or a Pt ultramicroelectrode (r = 5 μm); their surface was 

routinely polished with a 0.3 μm alumina–water slurry on a felt surface 

immediately prior to use.  

The counter electrode was a Pt wire separated from the solution by means of a fine 

glass frit. This electrode was cleaned by burning on a Bunsen flame. 

A silver wire were used in voltammetric studies as a reference and quasi–reference 

electrodes, respectively. In all cases a reference compound was added to the 

solution as a standard for potential values. The criteria for the choice of such a 

standard were (i) its chemical inertness towards the species under examination, and 

(ii) the ability to give reversible, well defined oxidation and/or reduction processes 

not overlapping with those of the sample. The most used standard was ferrocene, 

which is known to give a reversible monoelectronic oxidation process8 and to be a 

relatively innocent species. 

The solvent used was CH3CN Romil of high–dry quality and taken under argon 

stream; the solution was continuously purged with argon during the experiments. 

The concentration of the examined compounds was around 5×10–4 M; 0.05 M 
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tetraethylammonium hexa-fluorophosphate (Fluka puriss.) were added as 

supporting electrolyte. These salts were dried at 110 °C for three days prior to use. 

All the potential values reported in the following Chapters are reduction potentials 

and referred to the SCE electrode, unless otherwise noted.  

 

3.3.2 Cyclic voltammetric experiments 

Cyclic voltammograms were obtained at sweep rates of 1-10 V s–1. The criteria of 

(i) separation of less than 80 mV between cathodic and anodic peaks, (ii) close to 

unity ratio of the intensities of the cathodic and anodic currents, and (iii) constancy 

of the peak potential on changing sweep rate in the cyclic voltammograms were 

used to establish the reversibility of a process. For reversible processes, the 

halfwave potential value was calculated from the average of the potential values for 

anodic and cathodic peaks. 

The number of electrons exchanged in a redox process has been evaluated by 

comparison of the current intensity of the corresponding voltammetric wave with 

that obtained for species undergoing redox processes which involve a known 

number of electrons. The following expression was used: 9 

 

nS/nR = (ISCR/IRCS) (MS/MR)0.275       

 

where n, I, C and M indicate the number of electrons exchanged in the process, the 

current intensity of the corresponding voltammetric wave, the concentration and 
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the molecular mass, respectively; the subscripts S and R refer to sample and 

reference, respectively. The term containing the molecular masses apply the 

correction for differences in the diffusion coefficient of the electroactive species. 

The experimental error on the potential values for reversible processes was 

estimated to be within ± 5 mV. 

The diffusion coefficients were determined by chronoamperometric experiments 

using either a glassy carbon (0.14 cm2, Amel) or a Pt ultramicroelectrode (r = 5 

μm) as working electrode. 

 

3.4 Wide-field defocused imaging 

Defocused imaging of a single molecule was performed using a wide-field 

fluorescent microscope (Figure 3.3c) consisting of an inverted optical microscope 

(IX71, Olympus) equipped with 1.3-N.A., 100x oil immersion objective (Plan 

Fluorite, Olympus) and a highly sensitive cooled CCD camera with 512 x 512 

pixels (cascade 512B, Princeton Instruments Inc.) with a pixel size of 16 x 16 μm2. 

For excitation, the 532 nm light from a diode-pumped solid state laser 

(CDPS532M-50, JDS Uniphase Co.) was used. The wide-field illumination for 

excitation was achieved by focusing the expanded and collimated laser beam onto 

the back-focal plane of the objective (Köhler illumination mode). The polarization 

of excitation light in the sample plane was carefully tuned to be circular using zero-

order λ/4 and λ/2 waveplates in order to compensate for polarization shift of the 

dichroic mirror. The power density in the plane was usually adjusted to 1 - 10 kW/ 
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cm2. Emission is collected by the same objective and imaged by the CCD after 

passing through a dichroic mirror (z532rdc, Chroma Technology Co.) and an 

additional spectral filter (HQ542LP, Chroma Technology Co.) removing the 

excitation light. The image was further magnified 3.3 times with a camera lens 

before the CCD camera, resulting in a maximum field of view of 24.6 x 24.6 μm2 

(48 x 48 nm2 per pixel). The imaging was performed under N2 atmosphere to 

reduce the effect of photobleaching. All measurements were done at 295 ± 2 K.  

By taking defocused images, the angular distribution of the emitted fluorescence 

of a single molecule is mapped as a spatial distribution of intensity, which reflects 

3-D molecular orientation. To obtain the images, the sample was positioned by ~1 

μm toward the microscope objective from the focus using a piezoelectric 

transducer (PI5173Cl, Physik Instrumente). Integration times per frame vary 

between 200 ms and 1 s, depending on the excitation power used. The obtained 

defocused images were analyzed using a routine written in MatLab software, in 

order to determine molecular orientation in each image frame. The images were 

first analyzed using a pattern matching routine to determine roughly the molecular 

orientation in each image frame, and then fitted precisely by a non-linear least-

square algorithm, which determines the molecular dipole orientation and its 

position coordinate with an accuracy limited by the finite signal-to-noise ratio of 

experimentally measured images. The images were filtered for high frequent noise 

by a low pass filter to improve accuracy of the fitting. 
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Figure 3.3. Four experimental approaches to detect single molecules: a) near-field microscopy, b) 

confocal microscopy, c) wide-field microscopy and d) total internal reflection (dark-field) 

microscopy . 
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CHAPTER 4 

 

Designing systems for a multiple use of light signals 

 

4.1 Introduction 

The photochemical and photophysical behavior of two dendrimers consisting of a 

benzophenone core and branches that contain dimethoxybenzene units has been 

investigated. 

Benzophenone is one of the most extensively studied molecules from a 

photochemical and photophysical viewpoint.1 Upon light excitation in deaerated 

solutions of inert solvents, benzophenone exhibits a weak (delayed) fluorescence 

and a strong phosphorescence, originating from the lowest n,π∗ S1 and T1 excited 

states, respectively. The T1 excited state is long lived and can easily be involved in 

hydrogen abstraction reactions2 and a variety of energy transfer processes.3 For 

these reasons, benzophenone is an interesting unit to be used as a dendrimer 

component,4 particularly when the dendrimer contains other photoactive groups. 

We have therefore synthesized two dendrimers (BBG1 and BBG2, Scheme 4) 

consisting of benzophenone as a core, and branches that contain 1,3-

dimethoxybenzene units (Frechét-type branches) that exhibit fluorescence and 

phosphorescence in the near UV spectral region. For comparison purposes, we 

have also investigated the behavior of dendron DB2, which is a branch of 
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dendrimer BBG2, and 4,4’-dimethoxybenzophenone (DMBP), a well known5 

derivative of benzophenone (BP). 
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Scheme 4. Structure formulae of benzophenone (BP), 4,4’-dimethoxybenzophenone (DMBP), 

dendron DB2, and dendrimers BBG1 and BBG2. 
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4.2 Results and discussion 

As discussed elsewhere, dendrimers containing photoactive units can be considered 

as supramolecular species made of more or less distinct components. The 

subdivision of a supramolecular structure into components, however, is not always 

clear-cut because of electronic interactions.6  From a purely structural viewpoint, 

dendrimers BBG1 and BBG2 can be considered as made of a benzophenone core 

with appended two dendrons (DB2 in the case of BBG2). The absorption and 

emission properties discussed below, however, show that benzophenone is not fully 

satisfactory as a model for the dendritic core. This result is not unexpected since it 

is well known5 that the properties of benzophenone are modified by the presence of 

substituents. We have therefore examined the properties of 4,4’-

dimethoxybenzophenone (DMBP) and we have found that it is an excellent model 

compound for the dendritic core. 

 

4.2.1 Absorption and emission spectra 

The absorption and emission spectra of the investigated compounds (Figure 4.1) 

have been recorded in deaerated acetonitrile solution at 298 K and butyronitrile 

rigid matrix at 77 K.  

Dendron DB2 shows a relatively weak absorption band with λmax= 280 nm (ε= 

7100 M-1 cm-1) and a fluorescence band (λmax= 310 nm, Φ = 6 × 10-3, τ < 1 ns). 

Phosphorescence can only be observed in rigid matrix at 77 K (λmax= 395 nm, τ = 

1.31 s).  
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The DMBP model compound of the dendritic core shows an absorption band with 

λmax= 290 nm (ε= 24700 M-1 cm-1), a very weak, delayed7 fluorescence band at 385 

nm, almost hidden by the onset of the much stronger phosphorescence band (λmax= 

444 nm, τ = 90 μs 8). At 77 K, the phosphorescence band (not shown) has λmax= 

433 nm and τ = 10.4 ms. 

For dendrimers BBG1 and BBG2, the absorption spectra are those expected from 

the presence of a DMBP unit and two or six dimethoxybenzene units, respectively 

(BBG1: λmax= 284 nm, ε= 30600 M-1 cm-1; BBG2: λmax= 284 nm, ε= 40400 M-1 

cm-1). At 298 K, BBG1 exhibits an emission spectrum identical to that of DMBP, 

but substantially less intense (λmax= 444 nm, τ = 38 μs), and BBG2 does not show 

any appreciable emission. At 77 K, however, BBG2 shows a strong 

phosphorescence band (Figure 4.1d; λmax= 436 nm, τ = 8.8 ms) which is almost 

identical (including lifetime) to those exhibited by DMBP and BBG1 under the 

same conditions.  
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Figure 4.1. Absorption (solid line) and emission spectra of dendron DB2 (a), 4,4’-

dimethoxybenzophenone DMBP (b), and dendrimers BBG1 (c) and BBG2 (d) in deaerated 

acetonitrile solution at 298 K. The phosphorescence bands of DB2 and BBG2 in butyronitrile rigid 

matrix at 77 K are also shown. The emission intensities are in arbitrary units to facilitate the 

comparison of the forms of the spectra. Excitation at 280 nm. Emission lifetimes and more details 

are given in the text. 

 

In aerated solution at 298 K, the phosphorescence bands of DMBP and BBG1 are 

completely quenched. 

The results obtained show that: (i) the fluorescence at 298 K and the 

phosphorescence at 77 K of the dimethoxybenzene units of the branches are 

completely quenched in the dendrimers; (ii) at 298 K, the strong phosphorescence 

band of DMBP is partially quenched in BBG1 and totally quenched in BBG2, but 

at 77 K the three compounds exhibit the same phosphorescence band with quite 
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similar lifetime; (iii) the phosphorescence bands exhibited by DMBP and BBG1 at 

298 K are quenched by dioxygen. 

  

4.2.2 Photochemical reactions 

It is well known1 that the T1(n,π∗) excited state of benzophenone and its derivatives 

abstracts hydrogen from donor molecules efficiently. The reaction mechanism and 

the nature of the products formed in such hydrogen abstraction reactions have been 

studied in great detail.1a From the experimental viewpoint, the occurrence of 

hydrogen abstraction can be easily monitored by the disappearance of the 

absorption band related to the presence of the carbonyl group. As shown in Figure 

4.1a, the dendrimer branches do not absorb at λ > 290 nm, so that the photoreaction 

of the benzophenone core of BBG1 and BBG2 can be studied by exciting with 313 

nm light and monitoring the change in absorbance above 290 nm. It is also well 

known that the photochemical hydrogen abstraction is quite efficient from solvents 

like aliphatic alcohols, whereas it is negligible in the case of acetonitrile.9 The 

photochemical reaction of DMBP, BBG1, and BBG2 has been investigated under 

the same irradiation conditions in deaerated 1:2 v/v propan-2-ol/acetonitrile 

mixture and neat acetonitrile. In the mixed solvent (Figure 4.2a), the photoreaction 

occurs quite efficiently for each compound with a small increase in rate constant on 

passing from DMBP to BBG1 and BBG2. In neat acetonitrile (Figure 4.2b), 

however, the photoreaction is negligible for DMBP, appreciable for BBG1 and 
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very efficient for BBG2. In aerated solutions, the reaction rate was quenched in all 

cases. 
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Figure 4.2. Changes in absorbance at 310 nm upon irradiation with 313 nm light for DMBP 

(circles), BBG1 (squares) and BBG2 (triangles) in 1:2 v/v propan-2-ol/acetonitrile (a) and neat 

acetonitrile (b) deaerated solutions. The intensity of the exciting light and the initial absorbance of 

the solution were the same in all cases. 

 

The results obtained suggest that in the dendrimers, particularly in BBG2, the T1 

excited state of the core is involved in intramolecular hydrogen abstraction, a 
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reaction that has already been observed for compounds in which the molecular 

structure allows a close approach between the excited carbonyl group and hydrogen 

attached to an sp3 hybridized carbon atom of the same molecule.10 In the present 

case, the benzylic –CH2− hydrogens linked to a dimethoxybenzene unit are easy to 

abstract because of the great stabilization of the radical cation formed. The 

intramolecular nature of the photoreaction is confirmed by the fact that no 

absorbance decrease was observed upon irradiation of an isoabsorbing solution 

containing separated core and branches, i.e. a mixture of DMBP and DB2. The 

results obtained (Figure 4.2b) show that the opportunity for intramolecular 

hydrogen abstraction is larger for BBG2 than for BBG1, as it can easily be 

understood from inspection of CPK models of the two dendrimers. Comparison of 

the data displayed in Figure 4.2a and 4.2b shows that in the hydrogen donating 

solvent mixture the intramolecular reaction competes with the intermolecular one 

for dendrimer BBG1 and, even more, for BBG2. Finally, it should be noted that, 

after the hydrogen abstraction reaction, the fluorescence and, at 77 K, the 

phosphorescence of the dimethoxybenzene units of the dendrimer branches can be 

observed. 

 

4.2.3 Intermolecular energy transfer processes  

As mentioned above, both the phosphorescence intensity of BBG1 and the 

hydrogen abstraction reactions of BBG1 and BBG2 are quenched by dioxygen. 

Quenching of the T1 excited state of benzophenone-type compounds by dioxygen is 
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well known and takes place, in part, by energy transfer with formation of singlet 

oxygen, 1Δ.11 We have found that in aerated acetonitrile solutions irradiation of 

BBG1 and BBG2 causes the appearance of the singlet oxygen emission band with 

λmax= 1260 nm. Since such an emission is very weak, it was not possible to check 

with sufficient accuracy whether the emission intensity is independent of the 

excitation wavelength.  

In the presence of Tb3+ as an energy acceptor (1.5 × 10-4 M Tb(CF3SO3)3), 

irradiation of DMBP, BBG1 and BBG2 (5.9 × 10-6 M) leads to the characteristic 

Tb3+ emission with λmax = 547 nm,12 due to a bimolecular energy transfer process.13 

A corrected excitation spectrum (emission wavelength 547 nm) of the solution 

containing BBG2 matches the absorption spectrum, showing that the light absorbed 

by the dendrimer branches is as effective as that absorbed by the dendritic core in 

sensitizing the Tb3+ emission. No sensitized Tb3+ emission was obtained when 

dendron DB2 was used in the place of dendrimer BBG2. These results shows that 

the above discussed quenching of the fluorescent excited state of the 

dimethoxybenzene units by the benzophenone core takes place by energy transfer. 

 

4.2.4 Overview of the photochemical and photophysical behaviour of BBG2 

Dendrimer BBG2 can be viewed as a supramolecular species made of a 

benzophenone-like core and two branches containing altogether six 

dimethoxybenzene units. Its photochemical and photophysical behavior can be 
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schematically summarized by the scheme and the energy level diagram shown in 

Figures 4.3 and 4.4.  
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Figure 4.3. Schematic representation of the processes that can occur upon light excitation of BBG2. 

 

Light excitation (λex = 280 nm) of DB2, which is a model compound of the 

dendrimer branches, causes fluorescence (λmax = 310 nm, Figure 4.1a) and, after 

inter system crossing, phosphorescence (at 77 K λmax = 395 nm) of the 

dimethoxybenzene units. In dendrimer BBG2 (Figures 4.3 and 4.4) the fluorescent 

S1 excited state of the dimethoxybenzene units is completely quenched via energy 

transfer (presumably by a resonance mechanism1) to yield the S1 excited state of 

the benzophenone-type core, that can also be directly populated by light absorption 

(λex= 320 nm). The S1 excited state of the core lies slightly above the correspondent 

T1 excited state. The two states, in fact, are in thermal equilibrium.7 Therefore, a 
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weak fluorescence and a stronger phosphorescence band would be expected, as it 

happens for DMBP (Figure 4.1b) and, to a smaller extent, for BBG1 (Figure 4.1c). 

However in the case of BBG2, the T1 excited state of the core is rapidly deactivated 

via intramolecular hydrogen abstraction (Figure 4.2b), a process that cannot occur 

for DMBP and that has low efficiency for BBG1. In a rigid matrix at 77 K, where 

hydrogen abstraction is prevented, the phosphorescence band exhibited by DMBP 

and BBG1 is also observed for BBG2 (Figure 4.1d). Since the rate of the 

photoreaction in 1:2 v/v propan-2-ol/acetonitrile is not much higher than that in 

neat acetonitrile for BBG2 (Figure 4.2), the intramolecular hydrogen abstraction in 

the larger dendrimer competes with the intermolecular one. It should also be noted 

that the occurrence of the hydrogen abstraction reaction causes the disappearance 

of the benzophenone core, and therefore the revival of the dimethoxybenzene 

fluorescence and phosphorescence upon 280 nm excitation. 
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Figure 4.4. Energy level diagram showing the excited states involved in the photochemical and 

photophysical processes of dendrimer BBG2. 

 

In aerated solution, the photoreaction rate of BBG2 is substantially smaller, 

showing that there is a competition on the T1 excited state between hydrogen 

abstraction and dioxygen quenching. The sensitized dioxygen emission observed 

for aerated acetonitrile solutions of BBG2 shows that the quenching is due, at least 

in part, to energy transfer.  
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The sensitized Tb3+ emission observed upon excitation at 320 nm of solutions 

containing BBG2 and Tb(CF3SO3)3 shows that the T1 excited state of the core can 

transfer energy to the metal ion. Finally, the lack of sensitized Tb3+ emission when 

BBG2 is replaced by DB2 and the fact that the intensity of the sensitized Tb3+ 

emission does not depend on the excitation wavelength across the dendrimer 

absorption spectrum shows that excitation of the dimethoxybenzene units of the 

dendrimer branches is followed by an efficient energy transfer to the Tb3+ ion via 

the T1 excited state of the dendrimer core.  

 

4.3 Conclusions 

Dendrimer BBG2 exhibits a quite complex photochemical and photophysical 

behavior that results from the competition among a variety of processes involving 

the dimethoxybenzene and benzophenone units: fluorescence, phosphorescence, 

intra- and inter-molecular quenching and sensitization, intra- and inter-molecular 

photoreactions. 

It is indeed remarkable how BBG2 makes a different use of light excitation 

depending on the experimental conditions, as shown by the following examples. 

Upon irradiation in deaerated acetonitrile solution at 77 K with 280 nm light, 

BBG2 shows a stable phosphorescence with maximum at 436 nm originating from 

the benzophenone core. On heating the solution at room temperature, such an 

emission can no longer be observed, but, on continued irradiation, a fluorescent 

band with λmax = 310 nm (typical of the dimethoxybenzene units) begins to appear 
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and its intensity progressively increases since the benzophenone core, which 

quenches the dimethoxybenzene fluorescence of the branches, undergoes hydrogen 

abstraction. On freezing again at 77 K the irradiated solution, the original 436 nm 

band does not reappear, and the 310 nm band, which is still present, is 

accompanied by an intense band with λmax = 395 nm (phosphorescence of the 

dimethoxybenzene units). Such a permanent memory of the room temperature 

irradiation is not present, however, if the initial solution contains a sufficient 

concentration of Tb3+ ions. In such a case, excitation at 77 K with 280 nm light 

causes again a 436 nm emission that on thawing the solution  is replaced by the 

Tb3+ emission at 547 nm. If the Tb3+ concentration is sufficiently high, the 

abstraction reaction is completely quenched and the interchange between the 436 

and 547 nm bands takes place upon successive freeze/thaw cycles.  

Finally, we would like to note that BBG2 is indeed an outstanding example of a 

chemical compound that can be used to illustrate most of the processes that are 

discussed in an entire photochemical course. 
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CHAPTER 5 

 

Forward (singlet-singlet) and backward (triplet-

triplet) energy transfer in a dendrimer with peripheral 

naphthalene units and a benzophenone core 
 

5.1 Introduction 

Continuing our studies on energy-transfer processes,1 we have investigated the 

photochemical and photophysical behaviour of two dendrimers consisting of a 

benzophenone core and branches that contain four (BNG1) and eight (BNG2) 

naphthalene units at the periphery (Scheme 5). Such dendrimers have been 

designed by purpose to investigate the occurrence of both forward (singlet-singlet 

naphthalene-to-benzophenone) and back (triplet-triplet benzophenone-to-

naphthalene) energy transfer. In the presence of Tb3+ ions, the latter process is in 

competition with intermolecular energy transfer from triplet benzophenone to the 

lanthanide ion. Preorganization of the chromophoric groups in the dendritic 

structure has been exploited to obtain triplet-triplet annihilation and energy up-

conversion in rigid matrix at 77 K, processes that are not feasible for mixtures of 

separated chromophoric groups. 
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Scheme 5. Structure formulae of 4,4’-dimethoxybenzophenone DMBP, 2-methylnaphthalene MeN, 

dendron DN2, and dendrimers BNG1 and BNG2. 

 

 

5.2 Results and discussion 

Benzophenone is one of the most extensively studied molecules from a 

photochemical and photophysical viewpoint.2 Upon light excitation in deaerated 
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solutions of inert solvents, benzophenone exhibits a weak (delayed) fluorescence 

and a strong phosphorescence, originating from the lowest n,π∗ S1 and T1 excited 

states, respectively. The T1 excited state is long lived and can easily be involved in 

hydrogen abstraction reactions3 and a variety of energy transfer processes.4 In 

compounds BNG1 and BNG2, benzophenone is linked to two 1,3-

dimethyleneoxybenzene-type (also called Fréchet-type) branches that carry 

naphthalene units in the periphery. Such units are known to exhibit a strong 

fluorescence and, in rigid matrix at 77 K, a very long-lived phosphorescence. The 

dimethyleneoxybenzene units contained in the dendrimers are potentially 

luminescent, but it has already been shown that their luminescent excited state is 

completely quenched by nearby naphthalene and dimethoxybenzophenone units.1  

In order to better understand the photochemical and photophysical properties of 

dendrimers BNG1 and BNG2, we have also investigated the behaviour of 4,4’-

dimethoxybenzophenone (DMBP),5 2-methylnaphthalene (MeN), and dendron 

DN2 as reference compounds (Scheme 5).  

 

5.2.1 Absorption spectra 

The absorption spectra (Figure 5.1) have been recorded in CH2Cl2 solution at 298 

K. The model compound DMBP of the dendritic core shows an absorption band 

with λmax= 290 nm (ε= 24700 M-1 cm-1) and the model compound DN2 of the 

dendritic branches shows a band with λmax= 277 nm (ε= 31000 M-1 cm-1). The 
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absorption spectra of the two dendrimers (BNG1: λmax= 277 nm, ε=49000 M-1cm-1; 

BNG2: λmax= 277 nm, ε= 89000 M-1cm-1) are those expected from the presence of 

the component units.  
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Figure 5.1. Absorption spectra of 4,4’-dimethoxybenzophenone DMBP (dashed-dotted-dotted 

line), dendron DN2 (dashed line), and dendrimers BNG1 (dashed-dotted line) and BNG2 (solid 

line) in CH2Cl2 solution at 298 K.  

 

5.2.2 Emission spectra 

The emission spectra of the investigated compounds have been recorded in CH2Cl2  

solution (298 K) and in CH2Cl2/CHCl3 1:1 v/v rigid matrix (77 K). The results 

obtained are summarized in Table 1. 

At 298 K in deaerated solutions, excitation at 300 nm of model compound DMBP 

causes a very weak delayed6 fluorescence band at 375 nm, almost hidden by the 

onset of the much stronger phosphorescence band (λ= 415 nm). On excitation at 
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270 nm, dendron DN2 and dendrimers BNG1 and BNG2 (Figure 5.2) show a 

fluorescence band with λmax=335 nm very similar to that of 2-methylnaphthalene 

MeN, except for a weak tail at lower energy (Figure 5.2, inset) that can be assigned 

to an excimer emission. The presence of two emitting species, namely naphthalene 

monomer and excimer, is proved by the double-exponential decay of the emission 

intensity: the longer lifetime component can be assigned to the excimer emission 

(weak tail in the 380-460 nm region). Corrected (see experimental section) 

emission spectra (Figure 5.2) and lifetimes (Table 5) showed that the fluorescence 

of the naphthalene units is strongly quenched in dendrimers BNG1 and BNG2  

compared to the model compound DN2. No benzophenone fluorescence or 

phosphorescence can be observed in deaerated CH2Cl2 solutions of the dendrimers 

even when excitation is performed in the benzophenone band at 300 nm. 
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Figure 5.2. Fluorescence spectra of dendron DN2 (dashed line), and dendrimers BNG1 (dashed-

dotted line) and BNG2 (solid line) in CH2Cl2 solution at 298 K. Inset shows the normalized 

fluorescence spectra of dendrimer BNG2 and 2-methylnaphthalene MeN in CH2Cl2, evidencing the 

excimer emission in BNG2 (see text). λexc=270 nm. 
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In CH2Cl2/CHCl3 1:1 v/v rigid matrix at 77 K, upon excitation at 300 nm reference 

compound DMBP shows a strong, structured phosphorescence band with its 

highest energy feature at 406 nm (Figure 5.3a) and a double exponential decay 

(Table 5). As expected,2,6 no fluorescence band can be observed. 2-

methylnaphthalene MeN and reference compound DN2 show a fluorescence band 

with its highest energy feature at 321 nm, and a phosphorescence band with its 

highest energy feature at 478 nm (Figure 5.3a). Upon excitation at 270 nm, 

dendrimers BNG1 and BNG2 show a fluorescence band similar to that exhibited 

by 2-methylnaphthalene, but lower in intensity and corresponding to a shorter 

lifetime (Table 5). Dendrimers BNG1 and BNG2 also show phosphorescence 

bands that, however, are quite different from one another (Figure 5.3b and 5.3c). 

aλex = 300 nm. bDelayed fluorescence in deaerated solution. cλex = 270 nm. 

 

Table 5.  Photophysical data in CH2Cl2 solution at 298 K and in CH2Cl2/CHCl3 1:1 (v/v) rigid 

matrix at 77K. 

Fluorescence Phosphorescence 

298 Κ  77 Κ  77 K  

λmax / nm Φem τ / ns  τ / ns  λmax / nm τ / s 

DMBPa 375b - -  - 406 3.4×10-3, 17.6×10-3 

MeNc 335 0.068 10  21.0 478 1.32 

DN2c 335 0.024 5.4 (92%) 
66 (8%) 

 17.7 478 1.05 

BNG1c 335 0.003 0.8 (88%) 
6.4 (12%) 

 <0.4 - 
478 

- 
1.13 

BNG2c 335 0.009 2.1 (78%) 
8.4 (22%) 

 8.2 406 
478 

1.2×10-3, 5.4×10-3 
1.04 
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Figure 5.3. Phosphorescence spectra of (a) 4,4’-dimethoxybenzophenone DMBP (dashed-dotted-

dotted line) and dendron DN2 (dashed line), (b) dendrimer BNG1 (dashed-dotted line) and (c) 

dendrimer BNG2 (solid line) in CH2Cl2/CHCl3 1:1 (v/v) rigid matrix at 77 K. λex=270 nm. 
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The phosphorescence band of dendrimer BNG1 is very similar to that of model 

compound DN2, whereas that of BNG2 contains the spectral features of both 

reference compounds, DMBP and DN2.7 Selective excitation of the benzophenone 

unit of the two dendrimers at 320 nm leads to the same result. In particular, no 

emission at 406 nm is obtained for BNG1, which only exhibits the band with its 

highest energy feature at 478 nm. It can be noticed that the phosphorescence band 

of reference compound DMBP, as well as the corresponding spectral features of 

dendrimer BNG2, exhibit a two exponential decay. Such a behaviour is likely due 

to the fact that the n,π∗ and π,π∗ triplet excited states of the 

dimethoxybenzophenone core are very close in energy.8 In fluid solution at 298 K, 

where the two states are likely thermally equilibrated, DMBP shows a single 

exponential decay (Table 5). 

The relative intensity of naphthalene phosphorescence upon excitation at 270 nm is 

higher for the dendrimers (particularly, for BNG1) compared with model 

compound DN2, and for BNG1 it is higher upon excitation at 300 nm compared 

with 270 nm. 

 

5.2.3 Intradendrimer energy transfer processes 

The results obtained can be rationalized on the basis of the energy level diagram 

shown in Figure 5.4. It can be noticed that overlap between the absorption spectra 

of the benzophenone core and naphthalene branches (Figure 5.1) prevents selective 

excitation of the naphthalene chromophoric group in the dendrimers. Therefore, 



Chapter 5 

 75

quantitative data concerning the quenching processes can better be obtained from 

lifetime measurements. Since phosphorescence of the naphthalene units can only 

be observed in rigid matrix, our discussion on the triplet-triplet energy transfer will 

mainly be based on the experiments carried out at 77 K.  
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Figure 5.4. Energy level diagram showing the excited states involved in the photochemical and 

photophysical processes of dendrimer BNG2. 

 

Excitation at 270 nm of dendrimers BNG1 and BNG2 leads mainly to the 

population of the S1(π,π∗) fluorescent excited state of the naphthalene units. 

Comparison between the fluorescence lifetimes at 298 and 77 K of compounds 
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DN2, BNG1, and BNG2 (as well as between the fluorescence quantum yields of 

the same compounds at 298 K, Table 5) shows that in the dendrimers the S1(π,π∗) 

excited state is quenched by the presence of the benzophenone core. The quenching 

of the fluorescence of naphthalene-type units by benzophenone-type ones had been 

extensively and thoroughly investigated in a variety of dyads9 and the conclusion 

was drawn that this process takes place by energy transfer from S1(π,π∗) excited 

state of naphthalene to the S1(n,π∗) excited state of the ketone. The rate constant of 

the energy transfer quenching process in dendrimers BNG1 and BNG2 can be 

estimated from the equation  

 

ket= 1/τ - 1/τ°         (1) 

 

where τ° and τ are the fluorescence lifetimes of reference compound DN2 and of 

the dendrimer, respectively. The values obtained are: ket = 1.1 × 109 s-1 at 298 K 

and > 2.5 × 109 s-1 at 77 K for BNG1; ket = 2.9 × 108 s-1 at 298 K, 7 × 105 s-1 at 77 

K for BNG2.  

Upon excitation of the S1(n,π∗) of the benzophenone core, or its population via 

energy transfer from the naphthalene S1(π,π∗) excited state, fast and 100% efficient 

intersystem crossing takes place,2 followed by triplet-triplet energy transfer from 

the T1(n,π∗) excited state of the core to the T1(π,π∗) excited state of the 

naphthalene units in the branches, as shown by the quenching of the benzophenone 

type phosphorescence and the sensitization of the naphthalene type one. In 
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particular, at 298 K for dendrimers BNG1 and BNG2, the strong phosphorescence 

of model compound DMBP can no longer be observed, showing that the rate of the 

energy transfer process has to be at least two orders of magnitude faster than the 

excited state decay of the T1(n,π∗), i.e. ket > 1 × 106 s-1. In CH2Cl2/CHCl3 rigid 

matrix at 77 K, dendrimer BNG1 shows no benzophenone phosphorescence, thus 

ket > 6 × 103 s-1. For dendrimer BNG2, using eq. 1 and the phosphorescence 

lifetimes of DMBP and BNG2 (406 nm feature), the rate constant for triplet-triplet 

energy transfer results to be ca. 3 × 102 s-1.  

As shown by Figures 5.2 and 5.3, both the quenching of the naphthalene 

fluorescence and of the benzophenone phosphorescence is stronger in BNG1 

compared with BNG2. 

In conclusion (Figure 5.4), the luminescence results show that excitation of the 

S1(π,π∗) excited state of peripheral naphthalene units of dendrimers BNG1 and 

BNG2 is followed by energy transfer to the S1(n,π∗) of the benzophenone core. 

This process is followed by fast intersystem crossing to the T1(n,π∗) excited state 

of the core which then transfers back the energy to the T1(π,π∗) excited state of the 

naphthalene units in the branches. Both the forward (singlet-singlet) and back 

(triplet-triplet) energy transfer processes are faster in BNG1 compared to BNG2, as 

expected because of the shorter separation distance between the two types of 

chromophoric groups in BNG1.  
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Interestingly, the relative intensity of the naphthalene phosphorescence is higher 

upon excitation to the S1(n,π∗) compared with the the S1(π,π∗) one, and it is higher 

in the dendrimers than in model compound DN2. This means that the population of 

the T1(π,π∗) excited state is more efficient via S0 → S1(π,π∗) → S1(n,π∗) → 

T1(n,π∗) → T1(π,π∗) than via the “shorter” S0 → S1(π,π∗) → T1(π,π∗) pathway 

because of the higher intersystem crossing efficiency of benzophenone (S1(n,π∗) → 

T1(n,π∗)) compared with  naphthalene (S1(π,π∗) → T1(π,π∗)). 

 

5.2.4 Energy transfer to Tb3+ ions 

The above reported results show that, in dendrimers BNG1 and BNG2, light 

excitation of the peripheral naphthalene units is followed by energy transfer to the 

benzophenone core, as happens in other light harvesting dendrimers.1 In BNG1 and 

BNG2, however, the excitation energy is then back transferred from the core to the 

peripheral units. Nevertheless, it should still be possible to exploit the excitation 

energy collected by the core before the occurrence of the back energy transfer 

process. In order to explore this possibility, we performed experiments using 

compounds DMBP, DN2 and BNG2 as energy donors towards Tb3+ as an energy 

acceptor. As shown in Figure 5.4, the lowest excited state of the Tb3+ ion lies below 

the T1(n,π∗) excited state of the benzophenone unit and almost at the same level as 

the T1(π,π∗) excited state of the naphthalene units. We have found that in deaerated 

acetonitrile solution both DMBP and BNG2 sensitize the Tb3+ luminescence, 
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whereas in the case of DN2 sensitization is almost negligible (Figure 5.5). From the 

concentration of Tb3+ (2.25 × 10-2 M), the lifetime of the T1(n,π∗) excited state of 

DMBP in the absence (90 μs1) of the quencher and the ratio between the emission 

intensities of DMBP in the absence and in the presence of Tb3+, we have estimated 

a value of ket(DMBP →Tb3+) = 6.8 × 108 M-1s-1 for the energy-transfer rate 

constant in the case of the model compound DMBP. Assuming that the energy-

transfer rate constant to the Tb3+ ion is the same for BNG2, from the relative 

intensities of the Tb3+ emission sensitized by DMBP and BNG2 (Figure 5.5)10 we 

conclude that the competing T1(n,π∗) → T1(π,π∗) energy transfer process has a rate 

constant of 3.1 × 107 s-1 at 298K, a value five orders of magnitude larger than that 

found in rigid matrix at 77 K. Such a large temperature effect is likely related to 

energy barriers found by the dendrimer branches to approach the core in the rigid 

matrix. 
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Figure 5.5. Sensitized phosphorescence spectra of a 2.25 × 10-2 M Tb(CF3SO3)3 solution containing 

4,4’-dimethoxybenzophenone DMBP (dashed-dotted-dotted line), dendron DN2 (dashed line), and 

dendrimer BNG2 (solid line) in deaerated acetonitrile solution at 298 K. The three solutions have 

the same absorbance at λex=300 nm. 

 

5.2.5 Delayed fluorescence and energy up-conversion 

It is well known that the lowest triplet excited state of the aromatic hydrocarbons 

are very long lived and that the encounter between two T1(π,π∗) excited molecules 

can lead to triplet-triplet annihilation with formation of a ground state S0 and a 

S1(π,π∗) excited state, thereby giving rise to a delayed fluorescence.2,11 We thought 

that the preorganization of chromophoric groups in a dendrimer can be exploited to 

favour triplet-triplet annihilation.  

We have excited isoabsorbing deaerated solutions of compounds MeN,12 DN2, and 

BNG2 in dichloromethane by a 266 nm laser source. In all cases, prompt and 

delayed fluorescence at 335 nm was observed, with the longer lifetime component 
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strongly dependent on the absorbance at the excitation wavelength and the laser 

intensity.13 Under the same experimental conditions, the values of the delayed 

fluorescence lifetimes were: 1510 ns (MeN), 310 ns (DN2), and 320 ns (BNG2). 

The lifetime is much longer in the case of MeN since diffusion and encounter of 

two triplet excited states are necessary to observe the delayed fluorescence, while 

intramolecular triplet-triplet annihilation is “preorganized” in the dendritic 

structures. The intensity of the delayed fluorescence is higher in MeN because of 

the higher (prompt) fluorescence quantum yield (Table 5).  

We have also performed the same experiment in rigid matrix at 77 K. Under such 

conditions, diffusion of the T1(π,π∗) excited molecules is prevented and therefore 

no delayed fluorescence is observed for MeN. In the case of DN2 and BNG2, 

however, a delayed fluorescence was again observed with lifetimes of 15 μs (DN2) 

and 8 μs (BNG2).  

In the case of dendrimer BNG2 delayed naphthalene fluorescence (λmax=335 nm) 

can also be obtained upon excitation at 355 nm (benzophenone absorption band), 

thus leading to energy up-conversion (ΔE=0.21 eV). Energy up-conversion of this 

type has already been observed in the case of benzophenone and naphthalene14 for 

solutions containing an excess (10-3 M) of the triplet donor and a small amount of 

the triplet acceptor (10-5 M).  
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5.2.6 Protection from photodecomposition 

It is well known that the T1(n,π∗) excited state of benzophenone and its derivatives, 

including DMBP (see chapter 4), abstracts hydrogen from donor molecules 

efficiently. The reaction mechanism and the nature of the products formed in such 

hydrogen abstraction reactions have been studied in great detail.2a In the case of 

dendrimers BNG1 and BNG2, where H abstraction can also occur 

intramolecularly,1 the benzophenone core is protected from hydrogen abstraction. 

Indeed, the T1(n,π*) excited state of the benzophenone core of BNG1 and BNG2 

has a significantly shorter lifetime (no benzophenone phosphorescence has been 

detected in deaerated solution under our experimental conditions) compared to 

model compound DMBP because of an efficient energy transfer to the naphthalene 

T1(π,π*) excited state. Indeed, irradiation at 313 nm for 15 minutes of two 

isoabsorbing solutions of DMBP and BNG2 in dichloromethane/2-propanol 1:1 

(v/v) mixture led to an 80% decrease of the dimethoxybenzophenone absorbance in 

the case of DMBP and no observable change in the absorption spectrum of BNG2. 

Therefore, triplet-triplet energy transfer from benzophenone to naphthalene in 

BNG2 is much faster than intra- and intermolecular (from solvent) H abstraction. 

 

5.3 Conclusions 

We have investigated the photochemical and photophysical behaviour of two 

dendrimers consisting of a benzophenone core and branches that contain four 
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(BNG1) and eight (BNG2) naphthalene units at the periphery. In both dendrimers, 

excitation of the peripheral naphthalene units is followed by fast singlet-singlet 

energy transfer to the benzophenone core, but on a longer time scale a back energy 

transfer process takes place from the triplet state of the benzophenone core to the 

triplet state of the peripheral naphthalene units. Selective excitation of the 

benzophenone unit is followed by intersystem crossing and triplet-triplet energy 

transfer to the peripheral naphthalene units. This sequence of processes, which is 

made possible by the preorganization of photoactive units in a dendrimer structure, 

can be exploited for several purposes. In hydrogen donating solvents, the 

benzophenone core is protected from degradation by the presence of the 

naphthalene units. In solutions containing Tb(CF3SO3)3, sensitization of the green 

Tb3+ luminescence is observed on excitation of both the peripheral naphthalene 

units and the benzophenone core. Upon excitation of the naphthalene absorption 

band (266 nm) with a laser source, intradendrimer triplet-triplet annihilation of 

naphthalene excited states leads to delayed naphthalene fluorescence (λmax=335 

nm), that can also be obtained upon excitation of the benzophenone core at 355 nm 

(energy up-conversion). 
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CHAPTER 6 

 

Cyclam-based dendrimers 

 

6.1 Introduction 

An important property of dendrimers is the presence of dynamic internal cavities.1 

This feature, coupled with the presence of coordinating moieties, has been 

exploited to host metal ions in the interior of dendrimers. Research on such host-

guest systems has been performed for a variety of purposes which include 

investigation of the dendrimer structure,2 preparation of encapsulated metal 

nanoparticles,3 dioxygen binding,4 ion transportation,5 ion sensing,6 light 

harvesting,7 stepwise complexation,8 reversible metal complex assembly.9 Metal 

ions have also been used to assemble coordinating dendrons10 and as branching 

centres in dendrimer synthesis.11 

1,4,8,11-Tetraazacyclotetradecane (cyclam) is one of the most extensively 

investigated ligands in coordination chemistry. Both cyclam and its 1,4,8,11-

tetramethyl derivative in aqueous solution can be protonated12 and can coordinate 

metal ions such as Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) with very large 

stability constants.13,14 Furthermore, cyclam and its derivatives have been studied 

as carrier of metal ions in antitumor15 and imaging16 applications and, most 

recently, as anti-HIV agents.17 In most cases, the cyclam derivatives contain 
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pendant functionalities to increase complex stabilities or to allow attachment of 

other chemical species to the macrocycle structure.  

In this chapter it is presented some results of our studies on cyclam based 

dendrimers. 

 

6.2 Absorption spectra, multiple luminescence and effect of protonation 

Therefore we have studied  two novel dendrimers (CyG1 and CyG2, Scheme 6.1), 

synthesized by the group of Professor Vögtle, consisting of a cyclam core with 

appended four dimethoxybenzene and eight naphthyl units (CyG1) and twelve 

dimethoxybenzene and sixteen naphthyl units (CyG2). The absorption and 

luminescence spectra of these compounds have been investigated in acetonitrile-

dichloromethane 1:1 v/v solution. For comparison purposes, the absorption and 

luminescence spectra of naphthalene (Naph), 2-naphthylmethylethylamine (NMA) 

and 1,4,8,11-tetrakis(naphthylmethyl)-cyclam (CyG0). Dendrimers CyG1 and 

CyG2 have been found to exhibit three types of emission bands, that have been 

assigned to a naphthyl localized excited state, a naphthyl excimer, and a naphthyl-

amine exciplex. Titration with trifluoroacetic acid has shown that the tetraamine 

cyclam core undergoes two successive protonation reactions that have dramatic 

effects on the luminescence properties. 
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Scheme 6.1. Structure formulae of naphthalene (Naph), 2-naphthylmethylethylamine (NMA) and 

dendrimers CyG0, CyG1 and CyG2 
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6.2.1 Unprotonated species 

All the compounds are soluble in acetonitrile-dichloromethane 1:1 v/v, which has 

therefore been chosen as a solvent for our experiments. The X-ray structure of 

cyclam14 shows that the macrocycle adopts an endodentate, centrosymmetric 

conformation with two three-centre hydrogen bonds. In compounds CyG0, CyG1 

and CyG2, of course, hydrogen bonds cannot be present because the hydrogens 

have been replaced by substituents. 

Absorption Spectra. The absorption spectra of compounds NMA, CyG0, CyG1 

and CyG2 are shown in Figure 6.1. The only chromophoric group present in 

compounds NMA and CyG0 is naphthalene. Accordingly, the spectra of these 

compounds show the well known naphthalene bands around 270 nm (S0→S2 

transition) and 310 nm (S0→S1 transition).18 Dendrimers CyG1 and CyG2 contain 

both naphthalene and dimethoxybenzene chromophoric groups. The 

dimethoxybenzene unit present in the dendrimers has an absorption maximum at 

275 nm with ε = 2200 M-1 cm-1,∗ much smaller than that of the naphthalene unit at 

the same wavelength (6000 M-1 cm-1 for compound NMA). As shown in the inset 

of Figure 6.1, the molar absorption coefficient at 275 nm of compounds CyG1 and 

CyG2 is higher than expected from the number of their naphthyl units because of 

the contribution of the dimethoxybenzene groups. If such a contribution is 

                                                 
∗ The value of the molar absorption coefficient for the dimethoxybenzene unit was obtained from the 

absorption spectrum of the dendron (see chapter 4).  
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subtracted, the molar absorption coefficients for CyG1 and CyG2 become slightly 

smaller than expected on the basis of the data obtained for NMA and CyG0, most 

likely because the naphthyl unit of NMA and CyG0 is not a perfect model for the 

naphthyl unit of CyG1 and CyG2, owing to the different substituents. We can 

conclude that the absorption spectra of the examined compounds are roughly those 

expected from the spectra of the component chromophoric units. 
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Figure 6.1. Absorption spectra of the investigated compounds in acetonitrile-dichloromethane 1:1 

v/v solution at 298 K. The inset shows the molar absorption coefficients at 275 nm (dark squares). 

The empty squares represent the molar absorption coefficients of dendrimers CyG1 and CyG2 after 

subtraction of the expected contribution of their dimethoxybenzene chromophoric units. 
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Emission Spectra. Both naphthalene and dimethoxybenzene are known to exhibit 

fluorescence. The fluorescent excited state of dimethoxybenzene is slightly higher 

in energy than that of naphthalene. Therefore excitation of dimethoxybenzene can 

be expected to be followed by energy transfer to the naphthalene unit. In order to 

elucidate this point, we have compared the emission intensities observed for 

compound CyG2 upon excitation at 275 nm (where 23% of the light is absorbed by 

the dimethoxybenzene units) and 305 nm (where absorption is only due to the 

naphthalene units). The results obtained show that dimethoxybenzene emission is 

almost completely quenched and the energy transfer does occur with efficiency 

>0.5.  
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Figure 6.2. Emission spectra of Naph (black line), NMA (purple line), CyG0 (blue line), CyG1 

(green line), CyG2 (red line) in acetonitrile-dichloromethane 1:1 v/v solution at 298 K. The 

intensities are directly comparable since in all cases the excitation wavelength was 275 nm, the 

solution absorbance at the excitation wavelength was 0.50. 

 

The emission spectra of compounds NMA, CyG0, CyG1 and CyG2 in 

acetonitrile-dichloromethane 1:1 v/v at 298 K are shown in Figure 6.2. In the same 

figure, the fluorescence spectrum of naphthalene (Naph) is also reported for 

comparison purposes. Since excitation has been performed at the same wavelength 

(275 nm) on solutions having the same absorbance (0.50), the intensities of the 

various bands are directly comparable. It can be noticed that the emission intensity 
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of compounds NMA and CyG0 at 337 nm is only 1 or 2% that of the naphthalene,# 

and that these compounds exhibit a broad emission with maximum at about 480 

nm. The quenching of naphthalene excited states by appended amine units is a well 

known phenomenon, usually ascribed to photoinduced electron transfer (PET) 

processes.19 In several cases, the quenching occurs via formation of an 

intramolecular exciplex between the excited naphthyl unit and amine.20,21,22,23 The 

broad band with maximum at about 480 nm can indeed be assigned to such an 

exciplex. A further indication of this assignment is the disappearance of this band 

in the emission spectrum of compound CyG2 in butyronitrile at 77 K, where 

formation of exciplexes is prevented by the lack of solvent repolarisation. As 

shown in Figure 6.2, dendrimers CyG1 and CyG2 display complex emission 

spectra which include (i) the locally excited naphthalene band exhibiting the 

characteristic vibrational structure, (ii) the exciplex band shown by NMA and 

CyG0, slightly displaced to higher energies, and (iii) an emission band in the 400 

nm region, overlapped with the other two bands, which is not present in Naph, 

NMA, and CyG0. Such an emission, which is particularly evident in the case of 

CyG2, was previously observed for other macrocyclic ligands bearing naphthyl 

chromophores24,25 and can be assigned to naphthyl excimers. As it could be 

expected, this excimer band is almost completely absent in butyronitrile rigid 

                                                 
# It cannot be excluded that such a weak emission is due to small amounts of impurities of strongly 

emitting naphthalene-type compounds 
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matrix at 77 K. The three different types of excited states responsible for the 

observed emissions are schematically shown in Figure 6.3a. 
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Figure 6.3. Schematic representation of the different types of excited states responsible for the 

observed emissions of the unprotonated (a) and protonated (b) forms of dendrimers CyG1 and 

CyG2. A indicates a naphthalene unit and N an amine unit. 

 

6.2.2 Effects of protonation 

It is well known that cyclam undergoes protonation in aqueous solution12,26 as well 

as in other solvents.27 In aqueous solution, the four successive pKa values are 11.6, 

10.6, 1.61, and 2.42,12 showing that cyclam can be easily mono- and di-protonated, 

but further protonation is difficult. It is also interesting to note that the fourth pKa 

value is larger than the third one, a result related to protonation-induced structural 

rearrangements. In dimethylformamide solution only two successive protonation 

steps have been observed with pKa values of 9.3 and 7.5.27 

Absorption spectra. It is well known that protonation of amines engages the lone 

pair of the nitrogen atoms and therefore moves the n(N)→ π* charge-transfer (CT) 

transitions to higher energy. The lack of any spectral change upon addition of 

trifluoroacetic acid shows that CT transitions do not contribute to the absorption 
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spectrum. This finding shows that there is no appreciable interaction between 

amine and aromatic moieties in the ground state. 

Emission spectra. Addition of trifluoroacetic acid causes strong changes in the 

emission spectra of compounds NMA, CyG0, CyG1 and CyG2. The spectra 

obtained at the end of acid titration are shown in Figure 6.4. Comparison with the 

spectra of Figure 6.2, which have been recorded under the same experimental 

conditions, shows that protonation causes (i) the disappearance of the exciplex 

band with maximum around 480 nm in all cases, and (ii) a strong increase in the 

intensities of the naphthyl localized band with λmax = 337 nm , particularly for 

compounds NMA and CyG0. Moreover, the protonated species of dendrimers 

CyG1 and CyG2 exhibit much stronger excimer bands than the corresponding 

isolated dendrons,28 suggesting that excimer formation is facilitated by the folding 

of the dendrimer structure.  
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Figure 6.4. Emission spectra of Naph (dark line), NMA (purple line), CyG0 (blue line), CyG1 

(green line), CyG2 (red line) in acetonitrile-dichloromethane 1:1 v/v solution at 298 K at the end of 

the titration with trifluoroacetic acid. The intensities are directly comparable since in all cases the 

excitation wavelength was 275 nm, the solution absorbance at the excitation wavelength was 0.50. 

Direct comparison with the spectra reported in Figure 6.2 can also be made. Notice, however, the 

different ordinate scale of the two figures. The normalized spectra shown in the inset evidence the 

presence of the excimer emission in compounds CyG1 and CyG2. 

 

More details on the protonation processes can be drawn from the changes in the 

emission intensities observed during titration.30a In the case of model compound 

NMA, which contains a single naphthylamine unit, the intensity of the exciplex 
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band decreases and the naphthyl-localized band increases linearly with increasing 

acid concentration and no further change is observed after addition of one proton 

per nitrogen atom. For compounds CyG0, CyG1, CyG2, however, the intensity of 

the naphthyl-localized, excimer, and exciplex bands do not change linearly with 

increasing acid concentration. Furthermore, the spectral changes take place only 

during the addition of the first two equivalents of acid. These results allow us to 

draw the following conclusions. 

(i) Under our experimental conditions (low polarity solvent), the tetraamine cyclam 

core apparently shows only two protonation reactions. This result is in agreement 

with the behaviour observed for cyclam derivatives in dimethylformamide 

solution.27  

(ii) Addition of acid prevents, as expected, exciplex formation. There is no need to 

protonate each nitrogen atom to suppress exciplex formation, showing that protons 

are in some way shared by nitrogen atoms. 

(iii) For all the examined compounds, the increase in the naphthyl-based 

fluorescence intensity (337 nm) mirrors the decrease in the emission intensity at 

480 nm, showing that the species emitting at 480 nm is formed in competition with 

the naphthyl fluorescence decay, as expected in the case of exciplex formation. The 

two different types of excited states responsible for the observed emission are 

schematically shown in Figure 6.3b. However, the intensity of the naphthyl-

localized emission at the end of the acid titration is much weaker for CyG1 and 

CyG2 than for NMA and CyG0 (Figure 6.4). This effect can be ascribed to the 
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formation of the excimer species in the dendritic structures, which provides a 

deactivation pathway in competition with the naphthyl fluorescence. 

(iv) For compound CyG0, the initial slope of the titration curve is very small and 

increases on increasing acid concentration until about one acid equivalent has been 

added. This result can be accounted for assuming that protonation of a nitrogen (or 

sharing a proton between two nitrogens) does not fully prevent exciplex formation 

between an excited naphthyl unit and a non protonated nitrogen. Formation of 

different types of exciplexes upon addition of acid is indicated by the slight, 

progressive displacement of the maximum of the exciplex band during titration. 

(v) For compounds CyG1 and CyG2, the slope of the titration curves based on the 

decrease of the exciplex band and the increase of the naphthyl band is very large at 

the beginning and tends to decrease on increasing acid concentration. Such a 

behaviour is completely different from that exhibited by compound CyG0. 

Apparently, for dendrimers CyG1 and CyG2 monoprotonation is sufficient to 

prevent most of exciplex formation. This result suggests that in dendrimers CyG1 

and CyG2 all the four nitrogen atoms share, in some way, the first proton, a result 

that requires the formation of an appropriate structure. 

(vi) Particularly in the case of dendrimer CyG2, the excimer band reaches its 

maximum intensity upon addition of only one proton per molecule. Since excimer 

formation is mostly due to folding of the dendrimer structure (see above), this 

result suggests that in the monoprotonated species the four dendrons lie on the 
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same side of the cyclam core, in a structure that could also be appropriate for the 

above mentioned sharing of the first proton among all the nitrogen atoms. 

In an attempt to obtain further information on the protonation processes, the spectra 

were implemented into the SPECFIT software.29 The resulting values for the two 

association constants are very large (for example, pK1 = 7.4 and pK2 = 7.0 for 

compound CyG1) and do not appreciably differ for compounds CyG0, CyG1, 

CyG2. The fitting procedure allows also to obtain the spectrum of the 

monoprotonated form. The calculated spectra of the monoprotonated forms of 

compounds CyG1 and CyG2 are very close to that of the diprotonated one, 

contrary to what happens for compound CyG0.  

 

6.3 Cyclam cored luminescent dendrimers as ligands for Zn(II), Co(II), Ni(II) 

and Cu(II) ions 

Continuing our investigations in the field of photoactive dendrimers containing a 

cyclam core, we have thus performed titrations in acetonitrile/dichloromethane 1:1 

(v/v) solutions of the two dendrimers (CyG0 and CyG2) with Ni(II), Co(II) and 

Cu(II) as nitrate salts. 

The complexation of the comparison compound  CyG0 (ca. 2.5 × 10-5 M) and 

dendrimer CyG2 (ca. 6.0 × 10-6 M) have been investigated in 

acetonitrile/dichloromethane 1:1 (v/v) solutions with Ni(II), Co(II) and Cu(II) as 

nitrate salts and the results have been compared with those previously obtained 

upon addition of Zn(CF3SO3)2 in the same solvent mixture.30 
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6.3.1 Zn(II) complexation  

Titration of CyG0 solutions with Zn(II) causes the disappearance of the exciplex 

emission (470 nm) and the appearance of a strong naphthyl-localized fluorescence 

(337 nm); the final emission spectrum is identical in shape and intensity to the 

spectrum obtained upon protonation. Zn(II) coordination to the cyclam unit, 

engaging nitrogen lone pairs, prevents exciplex formation and switches on the 

usual, intense naphthyl fluorescence. The titration plot shows the formation of the 

1:1 species, [Zn(CyG0)]2+. Similar, but not identical results were obtained by 

Zn(II) titration of dendrimer CyG2. The emission spectrum shows the decrease of 

the exciplex emission and the parallel increase of the emission intensity at 337 nm 

(naphthyl emission) and 400 nm (excimer emission); these changes yielded 

coincident linear plots that reach a plateau for 0.5 equivalents of Zn(II), showing 

the unexpected formation of a 1:2 Zn/ligand species, [Zn(CyG2)2]2+ (Table 6.1). 1H 

NMR experiments evidenced the gradual replacement of this species by 

[Zn(CyG2)]2+ upon further Zn(II) addition. Fluorescence experiments were unable 

to evidence the formation of the latter species. 

 

6.3.2 Ni(II) complexation 

Addition of Ni(NO3)2.6H2O to a CyG0 solution causes absorbance changes mainly 

localized in the 240-280 nm region (Figure 6.5a). The absorbance increase in this 

region is due not only to the added nitrate salt (this contribution has been 

subtracted in the plot reported in the inset of Figure 6.5a) but also to the formation 
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of a Ni(II) cyclam complex. In the case of CyG2, the use of a very low dendrimer 

concentration, leads to absorption changes too small to be profitably analyzed.  
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Figure 6.5. Absorption (a) and emission spectra (b) of CyG0 upon addition of Ni(NO3)2.6H20 in 

acetonitrile/dichloromethane 1:1 (v/v) solution at 298 K. Inset of  panel (a) shows absorption 

changes at 250 nm, after correction for nitrate absorption (see text). 
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On the contrary, strong changes have been observed in the emission spectra of both 

dendrimers (see e.g. Figure 6.5b and Figure 6.6). Upon addition of Ni(II), exciplex 

emission band decreases and naphthyl monomer emission intensity at 337 nm 

increases (in the case of dendrimer CyG2 an emission increase at 400 nm was also 

observed). These results were expected since it is known that Ni(II), like Zn(II), 

can be coordinated by cyclam nitrogens preventing exciplex formation and thus 

reviving naphthyl monomer emission (and excimer emission in the case of CyG2). 

However, detailed analysis of the shape and intensity of the emission bands shows 

that emission intensity at 337 nm is much lower than that observed upon Zn(II) 

complexation (Figure 6.7), especially in the case of compound CyG0. Moreover, 

exciplex emission does not completely disappear and is progressively shifted to 

higher energy (Figure 6.5b).31 The low intensity of naphthyl fluorescence can be 

rationalized on the basis of a double-faced effect of Ni(II) coordination: on one 

hand, it can increase naphthyl emission, engaging nitrogen lone pairs of cyclam, 

and, on the other hand, it can quench it offering additional deactivation pathways to 

the naphthyl singlet excited state via energy or electron transfer processes. It is well 

known that Ni(II) has metal centred excited states32 at energy lower than the 

fluorescent excited state of naphthalene (4.0 eV33). It is also known that this excited 

state is a reductant strong enough (E°(Naph+/*Naph) ca. – 2.3 V33) to reduce Ni(II) 

complexes.34 On the basis of our results, we cannot discriminate between the two 

mechanisms, even though we lean towards a photoinduced energy transfer pathway 

in agreement with the suggestion previously reported for a Ni(II) complex with 1-
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(2-naphthylmethyl)-1,4,8,11-tetraazacyclotetradecane ligand on the basis of 77K 

measurements.35 
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Figure 6.6. Normalized emission intensity changes observed upon addition of Ni(NO3)2.6H20 to 

CyG0 (a) and CyG2 (b) in acetonitrile/dichloromethane 1:1 (v/v) solution (298 K, λexc = 275 nm). 

Emission intensity was monitored at 337 nm (squares), 380 nm (open circles, only for CyG2), and 

480 nm (triangles). Solid lines represent the best fitting obtained by SPECFIT.29  
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As far as the incomplete disappearance (and blue shift) of exciplex emission two 

hypothesis can be done. 

i) Free dendrimer ligands are still present at the end of the titration because of low 

complexation (association) constants and competition with nitrate ions and water 

molecules to coordinate Ni(II). Indeed, upon addition of one equivalent of Ni(II), 

two equivalents of nitrate ions and six equivalents of water molecules are also 

added.36  

ii) Nitrate ions are good ligands for Ni(II) and high-spin hexacoordinated 

complexes can be formed. Indeed, it has been previously reported35 that, in low 

coordinating solvents, Ni(II) forms with cyclam low-spin square-planar complexes 

with anions like ClO4
−, CF3SO3

−, and high-spin pseudo-octahedral complexes with 

NO3
−, Cl−, NCS−. 

The first hypothesis can be discarded, since upon addition of an excess of metal 

ion, no significant change in the emission spectrum has been reported and high 

stability constant for Ni(II) complexes with cyclam derivatives have been 

reported.13a As to the second hypothesis, nitrate ions are likely present in the 

coordination sphere, therefore cyclam nitrogens are not so strongly linked to the 

metal ion. A fast exchange between bound and unbound cyclam nitrogen atoms 

takes place, so that formation of exciplexes is not completely prevented and the 

corresponding emission is shifted at higher energy compared to the initial one 

because of a partial engagement with metal ions. 
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In the case of CyG2, preventing the formation of exciplex not only naphthalene 

monomer but also excimer emission at 400 nm increases because more excited 

naphthalene units are free to deactivate by fluorescence or excimer formation. 

Global analysis by SPECFIT29 of the absorption (only for CyG0) and/or emission 

spectral changes during Ni(II) titration allows us to evaluate complex stoichiometry 

and association constants. For dendrimer CyG0, best fitting was obtained with logβ 

= 5.0 (Table 6.1) for a complex with 1:1 stoichiometry. In the case of the largest 

dendrimer, changes in the slope of the emission plots (Figure 6.6b) around 0.5 

equivalents of Ni(II) per ligand indicate the formation, at low metal ion 

concentration, of a 1:2 metal to ligand complex, [Ni(CyG2)]2+ replaced by a 1:1 

complex upon further addition of Ni(II). A similar behaviour was previously 

observed for CyG2 with Zn(II), and, like in that case, the formation of a 1:2 species 

shows the lack of an appreciable steric hindrance between the two dendrons of the 

same complex. Fluorescence study allows us to discriminate between 

[Ni(CyG2)2]2+ and [Ni(CyG2)]2+, at variance with Zn(II) complexation, where the 

conversion between the two species could be demonstrated only by  1H NMR 

study.30 In the present case, the 1:1 species shows a different shape of the emission 

spectrum with a lower intensity of the exciplex band and, correspondingly, higher 

naphthyl monomer and excimer emission intensities compared to [Ni(CyG2)2]2+. 

This is attributable to a better engagement of cyclam nitrogen lone pairs in 

[Ni(CyG2)]2+ compared to [Ni(CyG2)2]2+. 
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 As expected on the basis of cyclam association constants previously reported in 

water solution,13a the obtained Ni(II) association constants (Table 6.1) are much 

lower than those with Zn(II), even though different counterions in the two titration 

experiments can play a significant role. Indeed, nitrate ions, used thoroughly the 

present work, compete with cyclam much more strongly than triflate ions. 

 

6.3.3 Co(II) complexation 

The changes in the absorption spectra of CyG0 and CyG2 upon addition of Co(II) 

are qualitatively similar to those observed in the case of Ni(II). As far as the 

emission spectra are concerned, the emission band at 337 nm (and at 400 nm in 

CyG2) increases and the exciplex band decreases, owing to the Co(II) engagement 

of nitrogen lone pairs of cyclam. However, compared to Zn(II) titration, the 337 nm 

emission intensity is lower (Figure 6.7) because of the quenching of the naphthyl 

singlet excited state by the complexed Co(II) ion. Also in this case, like for Ni(II), 

metal ion complexation simultaneously lights up and quenches the dendrimer 

luminescence. The naphthalene fluorescence quenching process is 

thermodynamically allowed either via energy or electron transfer mechanisms since 

the excited state of the naphthyl unit is a good energy donor (4.0 eV) and a good 

electron acceptor (E(*Naph/Naph−) ca. +1.6 V33) and Co(II) amine complexes have 

low energy excited states37 and are easy to oxidize.38 
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Figure 6.7. Emission spectra of CyG0 (a) and CyG2 (b) and their 1:1 complexes with Zn(II), 

Ni(II), Co(II) and Cu(II) in acetonitrile/dichloromethane 1:1 (v/v) solution at 298 K. The intensities 

are directly comparable since in all cases the excitation wavelength was 275 nm, the solution 

absorbance at the excitation wavelength was identical, and the same experimental set up was used. 

Note that in panel (a) emission intensity of the [Zn(CyG0)]2+ complex was multiplied by 0.03 for 

comparison purposes. 
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A closer inspection of the emission spectral changes of both dendrimers upon 

addition of Co(II) (Figure 6.8) shows that the exciplex emission at 470 nm is 

reduced to about 20% of its initial value upon addition of 0.5 equivalent of metal 

ion per ligand, then it still decreases but with a much less steeper trend. Even the 

plot of the emission increase at 337 nm shows a break point at ca 0.5 equivalent of 

Co(II) added per dendrimer: for CyG0 it is only a slope change (Figure 6.8a), 

while in the case of CyG2, the monomer and the excimer emission intensities 

(Figure 6.8b) increase up to ca 0.5 equivalent and then decrease until the end of the 

titration. Therefore, at the beginning of the titration when the metal ion 

concentration is low, a complex with 1:2 metal to ligand stoichiometry is formed in 

both cases. Then, increasing Co(II) concentration, this species is gradually replaced 

by a 1:1 complex. Luminescence spectra of the Co(II) complexes are strongly 

related to their stoichiometry for CyG0 and, especially, CyG2. Therefore, 

luminescence measurements allows us to follow the progressive conversion of 1:2 

metal to ligand species into 1:1 complex. In particular, this conversion causes for 

both dendritic ligands a better nitrogen lone pairs engagement in metal ion 

complexation, as testified by a slight decrease of the exciplex emission band after 

0.5 equivalents of Co(II) added. However, the effect on the naphthyl monomer 

emission is opposite: in CyG0, as expected, emission intensity at 337 nm increases, 

while in CyG2 it decreases together with the excimer emission band. This 

behaviour is difficult to rationalize: it could reflect a higher efficiency of the energy 
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or electron transfer quenching of naphthalene S1 excited state, likely because of a 

closer donor/acceptor distance in the 1:1 species. 
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Figure 6.8. Normalized emission intensity changes observed upon addition of Co(NO3)2.6H20 to 

CyG0 (a) and CyG2 (b) in acetonitrile/dichloromethane 1:1 (v/v) solution (298 K, λexc = 275 nm). 

Emission intensity was monitored at 337 nm (squares), 380 nm (open circles, only for CyG2), and 

480 nm (triangles). Solid lines represent the best fitting obtained by SPECFIT.29  
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6.3.4 Cu(II) complexation 

Upon addition of Cu(II) ions, the absorption spectra of the two dendrimers change 

and a new broad band with maximum at 330 nm appears (see e.g. CyG0 in Figure 

6.9). Similar bands have been previously observed for Cu(II) cyclam complexes 

and they were assigned to ligand-to-metal charge transfer (LMCT) transitions 

involving cyclam amines.39 Therefore, we take the absorbance increase at 330 nm 

as a proof of the formation of a Cu(II) complex with the two dendrimers. Since 

Cu(NO3)2 absorbs in the same spectral region, correction are needed for a 

quantitative analysis of the spectral changes. In the case of CyG0 a plot of the 

absorbance at 330 nm (Figure 6.10) shows a steep and linear increase until a 

plateau is reached for one equivalent of metal ion per ligand added. SPECFIT 

analysis of the absorption spectra obtained during the titration suggests the 

formation of a 1:1 complex (Table 6.1). The corresponding association constant is 

lower than that already reported40 in tetrahydrofuran/water (70:30 v/v) mixture. In 

the case of CyG2 a less linear increase of 330 nm absorption is obtained, even 

though a plateau is again reached with one equivalent of metal ion. SPECFIT 

analysis in this case gives less straightforward results, but again points toward a 1:1 

complex (see Table 6.1). 
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Figure 6.9. Absorption spectra of CyG0 upon addition of Cu(NO3)2.3H20 in 

acetonitrile/dichloromethane 1:1 (v/v) solution at 298 K. 

 

The changes observed in the emission spectra of the two dendrimers are 

qualitatively similar to those observed for Co(II) titrations, although a lower 

intensity of the naphthyl localized and exciplex emission bands are found (Figure 

6.7), indicative of a more efficient quenching in this case. As for the Ni(II) case, 

naphthalene singlet excited state can be deactivated either via energy transfer by 

low-lying Cu(II) excited states (LMCT and metal centered states39) or via reductive 

electron transfer to form Cu(I) complexes.  

In the case of CyG0 (Figure 6.10a), the intensity decrease of the exciplex band at 

470 nm and the absorption increase of the LMCT band at 330 nm have a mirror-

like behaviour, showing that exciplex competes with the formation of Cu(II) 
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complex; the behaviour of the emission intensities at 337 nm has not been reported 

because of the big uncertainties introduced by the correction for the strong 

reabsorption of the emitted light.  
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Figure 6.10. Normalized absorption and emission intensity changes observed upon addition of 

Cu(NO3)2.3H20 to CyG0 (a) and CyG2 (b) in acetonitrile/dichloromethane 1:1 (v/v) solution (298 

K, λexc = 275 nm). Absorption changes are monitored at 330 nm (open squares) after correction for  

Cu(NO3)2.3H20 absorption (see text), while emission intensity was monitored at 480 nm (triangles). 
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In the case of CyG2 (Figure 6.10b), the intensity of the exciplex band decreases 

linearly until a plateau is reached at about 0.5 equivalent of metal ion per ligand. 

SPECFIT analysis applied to this spectral changes suggests, in contrast with the 

absorption treatment, the initial formation of a [Cu(CyG2)2]2+ complex. As for 

CyG0, the emission intensities at 337 nm is affected by the reabsorption of the 

emitted light; for this reason quantitative consideration on its behaviour must be 

avoided. Nevertheless, a behaviour qualitatively similar (initial emission increase 

until 0.5 equivalent and then a decrease) to that observed for the titration with 

Co(II) suggests the formation of the [Cu(CyG2)]2+ species upon further addition of 

Cu(II) to the initially formed [Cu(CyG2)2]2+ complex. Combining absorption and 

emission spectral changes allows us to discriminate between the two complexes 

with different stoichiometry. 

aThis value could not be obtained by fluorescence titration experiments (see text). 

 Ni(II) Co(II) Cu(II) Zn(II) 

[M(CyG0)]2+ 

[M(CyG0)2]2+

5.0 

- 

5.6 

11.4 

6.6 

- 

7.5 

- 
     

[M(CyG2)]2+ 

[M(CyG2)2]2+

3.8 

10.9 

7.1 

14.2 

7.5 

12.2 

-a 

13.4 

Table 6.1. Association constants (β values) of CyG0 and CyG2 with Ni(II), Co(II) and Cu(II) in 

acetonitrile/dichloromethane 1:1 (v/v) at room temperature. 

 

6.3.5 Conclusions 

The presently investigated dendrimers show fluorescence bands that can be 

assigned to naphthyl localized excited states (λmax = 337 nm), naphthyl-amine 
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exciplexes (λmax = 470 nm) and, for CyG2, naphthyl excimers (λmax ca 390 nm). 

The intensity and shape of these bands are strongly affected by coordination of 

Ni(II), Co(II) and Cu(II), as nitrate salts, to the cyclam core. Complexation with 

these metal ions, in contrast to the previously investigated Zn(II) complexes, has a 

double-faced effect: on one hand, it can increase naphthyl localized emission and 

suppress exciplex emission, engaging nitrogen lone pairs of cyclam; on the other 

hand, it can quench this fluorescence by offering additional deactivation pathways 

to the naphthyl singlet excited state via energy or electron transfer processes. 

Complexation with Cu(II) causes not only changes in the relative intensities of the 

fluorescence bands, but also the appearance of a new absorption band in the near 

UV spectral region. Analysis of the titration curves has allowed us to obtain clear 

evidence for formation not only of 1:1 species, but also 1:2 metal to ligand species. 

CyG2 shows a clear preference, compared to CyG0, in forming complexes with 

1:2 metal to ligand stoichiometry. This counterintuitive effect demonstrates that the 

bulky dendrons appended to the cyclam core do not hinder, but favour the 

formation of complexes with 1:2 metal to ligand stoichiometry. 

 

6.4 Dendrimers based on a bis-cyclam core as fluorescence sensors for metal 

ions 

In a further effort to explore the potentiality of cyclam-based fluorescent 

dendrimers as ligands for metal ions (and thus as fluorescent sensors), we have 

synthesized a novel dendrimer (BisCyc Scheme 6.2) based on two covalently 
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linked cyclam units41,42 as a core appended with six branches, each one consisting 

of a dimethoxybenzene and two naphthyl units. In this paper we report the changes 

caused by protonation and complexation with Zn2+ and Cu2+ on the fluorescent 

properties of this dendrimer. The results obtained are discussed by comparison with 

the properties of the parent monocyclam dendrimer CyG1.30a,43 
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Scheme 6.2. Bis-cyclam dendrimer 

 

6.4.1 Absorption and emission spectra of the bis-cyclam dendrimer (BisCyc) 

The absorption spectrum of dendrimers BisCyc and CyG1 are displayed in Figure 

6.11. The chromophoric groups present in the two compounds (Scheme 6.2) are 

dimethoxybenzene (six and four, respectively) and 2-methylnaphthalene (twelve 

and eight, respectively). 2-Methyl naphthalene exhibits absorption bands at 275 nm 

(S0→S2 transition, ε = 4800 M-1 cm-1) and 310 nm (S0→S1 transition, ε = 1100 M-1 

cm-1), and the  dimethoxybenzene unit has an absorption maximum at 275 nm (ε = 
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2200 M-1 cm-1). The absorption spectra of the two compounds are those expected 

on the basis of the component units. 
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Figure 6.11. Absorption spectrum of dendrimers BisCyc and CyG1 in air-equilibrated acetonitrile-

dichloromethane 1:1 v/v solution at 298 K. 

 

The emission spectrum of BisCyc in acetonitrile-dichloromethane 1:1 v/v at 298 K 

shown in Figure 6.12 is quite similar to that of CyG1.30 Both 2-methylnaphthalene 

(λmax = 335 nm, Φ = 6.6×10-2) and dimethoxybenzene (λmax = 300 nm, Φ = 1.1×10-

2) are known to exhibit fluorescence. Since the fluorescent excited state of 

dimethoxybenzene is higher in energy than that of 2-methylnaphthalene, excitation 

of dimethoxybenzene should be followed by energy transfer to the naphthyl unit. In 

order to elucidate this point, we have compared the emission intensities observed 

for compound BisCyc upon excitation at 275 nm (where 23% of the light is 
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absorbed by the dimethoxybenzene units) and 305 nm (where absorption is only 

due to the naphthyl units). The results obtained show that dimethoxybenzene 

emission is almost completely quenched and that energy transfer does occur with 

efficiency >0.5.  
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Figure 6.12. Emission spectrum of BisCyc (full line) and 2-methylnaphthalene (dotted line): The 

dashed and dotted-dashed lines are the spectra of BisCyc after addition of one and two equivalents 

of trifluoroacetic acid. Inset shows the normalized fluorescence intensity changes at 336 ( ■ ), 390 ( 

● ), and 510 ( ▲ ) nm. Experimental conditions: acetonitrile-dichloromethane 1:1 v/v solution, 298 

K, λexc = 275 nm, absorbance = 0.50. 

 

In Figure 6.12, the fluorescence spectrum of 2-methylnaphthalene is also reported 

for comparison purposes. Since excitation has been performed at the same 

wavelength (310 nm) on solutions showing the same absorbance (0.50), the 

emission intensities are directly comparable. As in the case of CyG1, the emission 

intensity of BisCyc at 336 nm is less than 10% of that exhibited by 2-
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methylnaphthalene, and other bands clearly contribute to the spectrum at longer 

wavelengths. 

The quenching of naphthyl excited states by amine units is a well known 

phenomenon, usually ascribed to photoinduced electron transfer (PET) processes.44 

In several cases, quenching occurs via formation of intramolecular exciplexes 

between excited naphthyl units and amines.45, 46, 47, 48 The broad band exhibited by 

BisCyc with maximum at about 510 nm can indeed be assigned to such exciplexes. 

A further indication of this assignment is the disappearance of this band in the 

emission spectrum of compound BisCyc in butyronitrile at 77 K, where formation 

of exciplexes is prevented by the lack of solvent repolarisation. Careful 

examination of the emission spectrum of BisCyc shows, in fact, that it receives 

contribution from a third component band in the 400 nm region, overlapped with 

the other two bands. Such an emission, previously observed for macrocyclic 

ligands bearing naphthyl chromophores,24, 25 can be assigned to naphthyl excimers. 

As expected, such an excimer band is almost completely absent in a butyronitrile 

rigid matrix at 77 K.  

We would like to note that the very low intensity of the naphthyl band of BisCyc, 

compared to the intensity of 2-methylnaphthalene, can be due not only to the direct 

engagement of excited naphthyl units in exciplexes and excimers, but also to the 

deactivation of such excited units by energy transfer to the lower lying exciplex and 

excimer levels. 
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Before studying the effect of addition of acid or metal ions to solutions containing 

BisCyc, we have performed experiments on its dimethoxybinaphthyl dendron and 

we have found that neither protons nor metal ions cause any change in the 

absorption and emission spectra.  

 

6.4.2 Effects of protonation 

It is well known that cyclam undergoes protonation in aqueous solution26 as well as 

in other solvents.27 In aqueous solution, the four successive pKa values are 11.6, 

10.6, 1.61, and 2.42,26 showing that cyclam can be easily mono- and di-protonated, 

but further protonation is difficult. It is also interesting to note that the fourth pKa 

value is larger than the third one, a result related to protonation-induced structural 

rearrangements.  

Protonation of amines engages the lone pair of the nitrogen atoms and therefore 

moves the n(N)→π* charge-transfer (CT) transitions to higher energy.44 The lack 

of any change in the absorption spectrum upon addition of trifluoroacetic acid to a 

1.1×10-5 M solution of BisCyc shows that CT transitions do not contribute to the 

absorption spectrum. This finding shows that there is no appreciable interaction 

between amine and aromatic moieties in the ground state. 

Addition of trifluoroacetic acid, however, causes strong changes in the emission 

spectrum of BisCyc (Figure 6.12), which are similar but not identical to those 

previously observed for CyG1.30 As shown in the inset of Figure 6.12, no further 

change was observed after addition of two equivalents of protons per dendrimer, 
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i.e, after formation of a BisCyc(2H+) species; the same 2:1 proton/dendrimer ratio 

was observed at the end of the titration of CyG1 which, however, contains only one 

cyclam unit (Scheme 6.2). These results suggest that the two cyclam units of 

BisCyc do not behave independently and that in the BisCyc(2H+) species the two 

protons are likely shared  by the two cyclam units in a sandwich-type structure. 

The spectra reported in Figure 6.11 show that protonation of BisCyc causes: (i) a 

linear increase in the intensity of the naphthyl localized band with λmax = 336 nm 

that, however, remains much weaker than the band of 2-methylnaphthalene; (ii) a 

decrease, but not the disappearance, of the exciplex band with maximum around 

510 nm; (iii) a moderate, slightly not linear increase in intensity of the excimer 

band around 390 nm. The non linear increase in intensity of the excimer band 

suggest that protonation causes a rearrangement in the structure of the dendrimer 

and the relatively small recovery of the intensity of the naphthyl fluorescence on 

protonation is likely related to the lack of disappearance of exciplexes and the 

further formation of excimers. From a SPECFIT analysis of the observed spectral 

changes the following values were obtained for the first and second protonation 

constants: logβ1:1 = 8.1 ± 0.6, and logβ2:1 = 14.1 ± 0.6. 

 

6.4.3 Complex formation with Zn2+ 

Upon addition of Zn(CF3SO3)2 (up to three equivalents) to a 1.1×10-5 M solution of 

BisCyc no change was observed in the absorption spectrum, whereas strong 

changes were observed in the emission spectrum (Figure 6.13). Such changes are 



Chapter 6 

 122

qualitatively similar to those caused by protonation, but there are some important 

differences: (i) the titration plot of the naphthyl fluorescence clearly shows a 

discontinuity after addition of one equivalent of Zn2+ per dendrimer and at the end 

of the titration, which occurs after addition of about two equivalents of metal ion, 

the naphthyl band is more intense than in the case of protonation; furthermore, 

most of the increase in intensity of the naphthyl fluorescence band takes place after 

addition of one equivalent of Zn2+; (ii) the exciplex band with maximum around 

510 nm decreases in intensity, shows a discontinuity, and does not disappear; (iii) 

the increase in intensity of the excimer band at 390 nm, once corrected for the 

contribution of the naphthyl fluorescence, reaches a plateau after addition of one 

equivalent of metal ion.  
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Figure 6.13. Emission spectrum of BisCyc before (full line) and after the addition of one (dashed 

line) and two (dotted-dashed) equivalents of Zn(CF3SO3)2. Inset shows the normalized fluorescence 

intensity changes at 336 ( ■ ), 390 ( ● ), and 510 ( ▲ ) nm. Experimental conditions: acetonitrile-

dichloromethane 1:1 v/v solution, 298 K, λexc = 275 nm, absorbance = 0.50. 
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These results clearly indicate that a 1:1 complex, [Zn(BisCyc)]2+, is first formed 

and then replaced by a 2:1 species, [Zn2(BisCyc)]4+. SPECFIT analysis yielded 

values of logβ1:1 = 9.7 ± 0.7, and logβ2:1 = 16.1 ± 0.8 for these two species, 

respectively. In the 1:1 complex [Zn(BisCyc)]2+, both the cyclam units are likely 

coordinated to Zn2+, as suggested by the formation of a 1:2 compound, 

[Zn(CyG1)2]2+, on titration of the monocyclam dendrimer CyG1 with Zn2+.30 In the 

1:1 complex of Zn2+ with BisCyc, [Zn(BisCyc)]2+, the metal ion is likely 

sandwiched between the two cyclam units, as is thought to happen in the 

[Zn(CyG1)2]2+ compound. All the metal complexes of cyclam and of non dendritic 

cyclam derivatives reported so far have a 1:1 stoichiometry. Apparently, the 

dendrimer branches not only do not hinder, but in fact favour coordination of 

cyclam units to metal ions with respect to solvent molecules and counter ions; 

indeed, even evidence for formation of [Eu(CyG1)]3+ has also been reported.30 

Presumably, the dendritic branches force the cyclam cores to adopt a structure in 

which only three N atoms are available for metal complexation. As in the case of 

[Zn(CyG1)2]2+, two limiting structures can be proposed for [Zn(BisCyc)]2+: (i) an 

“inward” structure, in which the branches of the two coordinated cyclam units are 

intermeshed, or (ii) an “outward” structure, in which the branches of the two 

coordinated moieties do not interact. An inward structure with intermeshed 

branches should favour formation of excimers. The results obtained, however, 

show that in going from [Zn(BisCyc)]2+ to [Zn2(BisCyc)]4+ the intensity of the 

excimer band does not change. It seems, therefore, more likely that in these 



Chapter 6 

 124

sandwich-type complexes the dendrimer branches extends outward and maintain 

the same structure in the [Zn2(BisCyc)]4+ species. 

 

6.4.4 Complex formation with Cu2+ 

Quite different results were obtained upon titration of a 1.1×10-5 M solution of 

BisCyc with Cu(CF3SO3)2. The absorption spectrum (Figure 6.14) showed the 

appearance of a broad tail in the 300-400 nm region. The absorbance values 

increase almost linearly up to the addition of 2 equivalents of metal ion per 

dendrimer (Figure 6.14, inset). A quite similar absorption band, assigned to ligand-

to-metal charge-transfer (LMCT) transitions, is obtained when a 2.2×10-5 M cyclam 

solution is titrated by Cu(CF3SO3)2. Therefore we can conclude that upon addition 

of Cu(CF3SO3)2 to BisCyc, both the cyclam units of the dendrimer coordinate a 

Cu2+ ion. SPECFIT analysis based on the changes in the absorption spectrum 

yielded a value of log 2:1 = 11.9 ± 0.3. 



Chapter 6 

 125

λ / nm

250 300 350 400 450

A

0.0

0.2

0.4

0.6

0.8

1.0

1.2

eq. Cu2+

0 1 2 3 4

A

0.0

0.5

1.0

 

Figure 6.14. Absorption spectrum of BisCyc before (full line) and after the addition of one (dashed 

line) and two (dotted-dashed) equivalents of Cu(CF3SO3)2. Inset shows the normalized absorption 

changes at 319 nm. Experimental conditions: acetonitrile-dichloromethane 1:1 v/v solution, 298 K. 

 

More details were obtained from the changes observed in the emission spectrum 

(Figure 6.15), that can be summarized as follows: (i) the intensity of the naphthyl 

band is almost constant up to the addition of one equivalent of metal ion and then 

decreases slightly; (ii) the intensity of the exciplex band decreases linearly and 

disappears after addition of two equivalents of metal ions; (iii) the intensity of the 

excimer band increases at the beginning of the titration, and reaches a maximum 

value after addition of one equivalent of metal ion and then decreases. SPECFIT 

analysis was not performed in the case of the emission spectrum because of the too 

complex behaviour and the relatively small intensity changes. 
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Figure 6.15. Emission spectrum of BisCyc before (full line) and after the addition of one (dashed 

line) and two (dotted-dashed) equivalents of Cu(CF3SO3)2. Inset shows the normalized fluorescence 

intensity changes at 336 ( ■ ), 390 ( ● ), and 510 ( ▲ ) nm. Experimental conditions: acetonitrile-

dichloromethane 1:1 v/v solution, 298 K, λexc = 275 nm, absorbance = 0.50. 

 

We would like to notice an important difference in the behaviour of the emission 

spectrum of BisCyc upon titration with H+ or Zn2+ (Figures 6.12 and 6.13), and 

titration with Cu2+ (Figure 6.15). In the case of H+ or Zn2+, the decrease in the 

intensity of the exciplex emission, caused by the engagement of the cyclam N 

atoms by protons or metal ions, is accompanied, as expected, by an increase in the 

intensity of the naphthyl emission. This does not happen, however, when titration is 

performed with Cu2+; in particular, at the end of the titration, when [Cu2(BisCyc)]4+ 

is formed, although exciplex formation is fully prevented by coordination of two 

metal ions, the naphthyl emission is clearly less intense than in the free dendrimer 
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BisCyc. This result can be easily rationalized considering that coordination of 

Cu2+, while preventing deactivation of the excited naphthyl units via exciplex 

formation, introduces another deactivation channel related to the presence of the 

low energy LMCT state.  

Figure 6.14 shows that from the view point of the interaction between cyclam and 

metal ion (i.e., from the behaviour of the MLCT absorption band), there are minor 

(if any) differences between the 1:1 and 2:1 species. In other words, the two cyclam 

units behave independently as far as the MLCT absorption is concerned. From the 

view point of the naphthyl units (Figure 6.15), however, it is clear that a 1:1 

complex, [Cu(BisCyc)]2+, is first formed, as suggested by the formation of a 1:2 

compound, [Cu(CyG1)2]2+ on titration of the monocyclam dendrimer CyG1 with 

Cu2+,49 and then replaced by a 2:1 species, [Cu2(BisCyc)]4+. 

 

6.4.5 Conclusions 

We have prepared for the first time a dendrimer with a bis-cyclam core. Such a 

dendrimer (BisCyc) contains in its branches 12 naphthyl units and exhibits three 

fluorescence bands assigned to naphthyl localized excited states (λmax = 336 nm), 

naphthyl excimers (λmax ca 390 nm), and naphthyl-amine exciplexes (λmax = 510 

nm). Titration with H+, Zn2+, and Cu2+ causes strong changes in the emission 

spectrum and, in the case of Cu2+, also in the absorption spectrum. Clear evidence 

for formation of 1:1 (BisCyc.(H+), [Zn(BisCyc)]2+, [Cu(BisCyc)]2+) and 2:1 

(BisCyc.(2H+), [Zn2(BisCyc)]4+, [Cu2(BisCyc)]4+) species has been obtained. The 
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three luminescence bands and, in the case of Cu2+, also an absorption band, offer 

the way to monitor not only the metal-ligand coordination process, but also its 

consequences on the interaction between the naphthyl units contained in the 

dendritic branches. The spectral changes are likely too weak and too complex to be 

used for sensory purposes. We would like to note,  however, that while the 

availability of dendrimers possessing a well defined ligand unit, like cyclam, opens 

the way to the construction of mixed-(dendritic)ligand complexes, dendrimers 

containing two cyclam units can be used, in principle, to construct dendrimers 

containing two different types of metal ions. 
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CHAPTER 7 

 

A cyclam core dendrimer containing dansyl and 

oligoethylene glycol chains in the branches: 

protonation and metal coordination 
 

7.1 Introduction 

Continuing our investigations in the field of coordinating dendrimers, we have 

synthesized a dendrimer (CycDans, Scheme 7) consisting of a cyclam core 

appended with four benzyl substituents that carry, in the 3 and 5 positions, a dansyl 

amide derivative (DEtGly) in which the amide hydrogen is replaced by a benzyl 

unit that carries, in the 3 and 5 position, a oligoethylene glycol chain. Dendrimer 

CycDans contains luminescent units (8 dansyl and 8 dimethoxybenzene-type 

moieties) and three distinct types of multivalent basic sites (the cyclam core, the 

amine moieties of the 8 dansyl units of the dendrimer branches, and the 16 

oligoethylene glycol  chains appended in the periphery) that, in principle, can be 

protonated or coordinated to metal ions. We hoped that this dendrimer could have 

been soluble in water because of the oligoethylene glycol  chains, but this was not 

the case. Therefore, we have studied the absorption and luminescence properties of 

CycDans and DEtGly in acetonitrile solution and the changes taking place upon 

titration with trifluoromethanesulfonic (triflic) acid and a variety of divalent (Co2+, 
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Ni2+, Cu2+, Zn2+) and trivalent (Nd3+, Eu3+, Gd3+) metal ions as triflate or nitrate 

salts.  
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Scheme 7. Structure formulae of the dendrimer (CycDans) and the model compounds (DEtGly and 

Dans) 

 

7.2 Absorption and emission spectra 

Since the cyclam core does not show absorption bands above 240 nm, the 

chromophoric groups present in dendrimer CycDans are those contained in its 
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branches (DEtGly), namely 8 dansyl- and 8 dimethoxybenzene-type units. As 

shown in Figure 7.1, the spectrum of DEtGly is almost exactly that expected on the 

basis of the spectra of the reference compound Dans and dimethoxybenzene 

(DMB). The small red shift of the dansyl band around 340 nm, which is due to a 

charge-transfer transition from the amine group to the aromatic moiety, suggests 

that in the acetonitrile solution the dansyl unit of DEtGly experiences a slightly less 

polar environment than Dans, presumably because of some wrapping by the 

oligoethylene glycol  chains. 
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Figure 7.1. Absorption spectra of dendron DEtGly and reference compounds Dans and 

dimethoxybenzene (DMB) in acetonitrile solution at 298 K. 

 

Figure 7.2 shows that in CycDans such a red-shift is more pronounced, indicating 

that in the dendrimer the dansyl unit indeed feels a less polar environment.   
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Figure 7.2. Absorption spectra of dendrimer CycDans compared with those of its chromophoric 

units in acetonitrile solution at 298 K. 

 

As far the emission spectra are concerned (Figure 7.3), Dans shows the typical 

dansyl emission bands with λmax = 505 nm, Φ = 0.30, and τ = 12 ns. Compound 

DEtGly, which contains the fluorescent dansyl and dimethoxybenzene moieties 

(λmax= 310 nm), shows only the dansyl band, slightly red shifted (λmax = 522 nm), 

with Φ = 0.30, and τ = 13 ns. These results indicate that the potentially fluorescent 

excited state of the dimethoxybenzene moiety is quenched by the nearby dansyl 

unit. Since the emission of the latter is not sensitized, the quenching process most 

likely takes place by electron transfer.1 In dendrimer CycDans, the dansyl units 

maintain their strong fluorescence, slightly red shifted (Figure 7.3; λmax = 532 nm, 
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Φ = 0.27, and τ = 15 ns), and, as for DEtGly, no dimethoxybenzene emission is 

present.  
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Figure 7.3. Emission spectra of the investigated compounds in acetonitrile solution at 298 K. The 

intensities are directly comparable since in all cases the excitation wavelength was 340 nm, the 

solution absorbance at the excitation wavelength was 0.20, and the same experimental set up was 

used. 

 

7.3 Protonation 

It is well known that cyclam undergoes protonation in aqueous solution2, 3 as well as 

in other solvents.4 In aqueous solution, the four successive pKa values are 11.6, 

10.6, 1.61, and 2.42,3 showing that cyclam can be easily mono- and di-protonated, 

but further protonation is difficult. It is also interesting to note that the fourth pKa 

value is larger than the third one, a result related to protonation-induced structural 

rearrangements. In dimethylformamide solution only two successive protonation 
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steps have been observed with pKa values of 9.3 and 7.5.4 Studies performed on 

other dendrimers also showed that the cyclam core undergoes only two protonation 

reactions in acetonitrile-dichloromethane 1:1 v/v solution.5  
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Figure 7.4. Absorption (a) and emission (b) spectra of CycDans recorded during the titration with 

triflic acid in acetonitrile solution at 298 K. The final spectrum correspond to the addition of 40 

equivalents of acid. Excitation wavelength at an isosbestic point (270 nm). 
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It is also well known that dansyl can be protonated at its amine moiety.6 This 

process causes strong changes in the absorption and emission spectra because of the 

charge transfer nature of the dansyl bands. More specifically, protonation of model 

compound Dans causes the disappearance of the absorption bands with λmax = 337 

and 252 nm, and of the emission band with λmax = 505 nm, and the concomitant 

appearance of the absorption (λmax = 287 nm) and emission (λmax = 335 nm, Φ = 

0.002, τ < 0.5 ns) bands of protonated dansyl. We have found similar results for 

dendron DEtGly. Qualitatively, dendrimer CycDans shows the same spectral 

changes (Figure 7.4a and 7.4b), but the titration curves reveal a much more 

complex behavior. In all cases, the initial spectrum could be obtained upon addition 

of a base (tributylamine). 

In the case of the simple dansyl unit Dans, the titration plot (Figure 7.5) shows that 

upon acid addition the decrease of the dansyl absorption band around 340 nm and 

emission band at 516 nm is accompanied by a concomitant increase of the 

protonated dansyl absorption band at 284 nm and emission band at 335 nm. After 

addition of slightly more than one equivalent of acid, the dansyl emission is 

completely quenched and the protonated dansyl emission reaches a plateau. The 

comparison between compounds DEtGly and Dans (Figure 7.5) seems to suggest 

that DEtGly is easier to protonate than Dans. In the case of dendron DEtGly 

(Figure 7.5), however, the decrease of the dansyl absorption and emission bands 

and the increase of the protonated dansyl absorption band are not accompanied by a 

symmetric and parallel increase of the protonated dansyl emission. These results 
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show that although protonation of the dansyl moiety does take place 

stoichiometrically also for dendron DEtGly, some process interferes with the 

emission of the excited state of the protonated species.  
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Figure 7.5. Normalized titration curves obtained for compounds DEtGly and Dans from absorption 

and emission measurements upon addition of triflic acid (acetonitrile solution, 298 K). Excitation at 

270 nm in all cases. Absorbance values at 285 nm (full squares) and 342 nm (full circles). Emission 

intensity values at 335 nm (open rhombi), 505 nm (open triangles). 
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Interestingly, such a process cannot be a simple quenching (regardless of the 

mechanism) by the moiety appended to the dansyl unit because all the quantities in 

Figure 7.5 are normalized to the values obtained at the end of the titration, that in 

the case of the emission of protonated dansyl takes place after ca. one acid 

equivalent. The anomalous behavior of the emission of protonated dansyl could be 

accounted for by assuming that the excited state of protonated dansyl exhibits a 

lower proton affinity than the ground state. Since this is not the case for the simple 

dansyl unit Dans, the moiety appended to dansyl in DEtGly must be in some way 

responsible for the observed behavior. Our interpretation is that in DEtGly the 

protonated dansyl unit is partially enfolded by the oligoethylene glycol chains that 

can help the excited state deactivation by the well known reversible proton transfer 

mechanism.7 As the concentration of acid increases, the oligoethylene glycol chains 

become more and more involved in ground state proton interactions and their 

interference on the deactivation of the excited state of protonated dansyl decreases.  

The titration plot of CycDans (Figure 7.6) reveals an even more complex behavior. 

First of all, the absorbance at λmax = 348 nm of the dansyl units (Figure 7.2) is only 

slightly affected by acid addition until two protons have been added. In parallel, 

almost no increase at 286 nm is observed, showing that protonated dansyl units are 

not formed. These results can be straightforwardly explained by the fact that the 

first two added protons associate with the nitrogens of the cyclam core (vide supra). 

The very small decrease of the dansyl absorbance at 348 nm caused by the first two 

protons (Figure 7.6) is actually due to a small red shift of the band, that can be 
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ascribed to the effect of the positively charged core on the charge transfer transition 

of the appended dansyl units. For more than two protons added, the parallel 

decrease at 348 nm and increase at 286 nm in absorption show that protonation of 

the eight dansyl units progressively takes place. It is worth noting that protonation 

of four out of eight dansyl units in the dendrimer (corresponding to 50% of 

absorbance change in Figure 7.6) is performed upon addition of six equivalent of 

acid. This result indicates that the first four dansyl units are protonated 

independently. As expected, protonation of the remaining dansyl units becomes 

more and more difficult as the overall charge of the dendrimer increases: complete 

protonation is obtained after addition of about 30 equivalents of acid, as mentioned 

above. The titration plots (Figure 7.6) also show that the decrease in intensity of the 

dansyl emission does not parallel the decrease of dansyl absorption. In fact, the 

emission intensity decreases even during the addition of the first two protons, i.e. 

when protonation takes place at the cyclam core. Furthermore, the emission 

intensity becomes negligible after addition of ca 10 protons, i.e. when, as shown by 

the absorption spectrum, 20% of the dansyl units are still unprotonated. The first 

result is ascribed to the influence of the positively charged core on the charge-

transfer emission band, that actually undergoes a small red shift. As we will see 

later, a similar effect is also observed upon metal ion coordination by the cyclam 

core. The larger than expected decrease of the dansyl emission intensity is due to 

electron transfer quenching of the dansyl excited states by protonated dansyl units, 

as previously observed for other partially protonated polydansyl dendrimers.8  
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Figure 7.6. Normalized titration curves obtained for dendrimer CycDans from absorption and 

emission measurements upon addition of triflic acid (acetonitrile solution, 298 K). Excitation at 270 

nm in all cases. Absorbance values at 286 nm (full squares) and 348 nm (full circles). Emission 

intensity values at 335 nm (open rhombi), 532 nm (open triangles).  

 

Finally, it can be noticed that the emission of the protonated dansyl units increases 

very slowly on addition of acid. In fact, when, according to the changes in the 

absorption intensity, about 80% of the dansyl units are protonated, less than 5% of 

the protonated dansyl emission intensity is observed. As in the case of compound 

DEtGly, this effect can be ascribed to the fact that the protonated dansyl moieties 

of CycDans are enfolded, presumably by a greater extent than in DEtGly, by the 

oligoethylene glycol chains that can help the excited state deactivation by reversible 

proton transfer. 
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7.4 Metal ion coordination 

As mentioned in the introduction, dendrimer CycDans contains three distinct types 

of multivalent, potentially coordinating sites: the cyclam core, the 16 oligoethylene 

glycol chains appended in the periphery, and the 8 amine moieties of the dansyl 

units. Comparison with the behavior of dendron DEtGly and reference compound 

Dans can throw some light on the role played by each type of coordination sites. 

We have titrated CycDans, DEtGly, and Dans in acetonitrile solution with Co2+, 

Ni2+, Cu2+, Zn2+, Nd3+, Eu3+, and Gd3+, as nitrate and/or triflate salts. In each 

experiment, the changes in the absorption and emission spectra of the dansyl 

moieties have been monitored.  

One can expect that coordination of the metal ion to the amine moiety of a dansyl 

chromophore has an effect similar to protonation, i.e. a decrease in intensity of the 

absorption and emission bands at 337 and 505 nm, and the appearance of 

absorption and emission bands at 287 and 335 nm, respectively (vide supra). If the 

coordinated metal has low lying metal-centered levels (e.g., Co2+, Ni2+, Cu2+), 

and/or it is easy to reduce (e.g., Cu2+), which implies the presence of low energy 

ligand-to-metal charge-transfer levels, quenching of the coordinated dansyl 

emission band at 532 nm could also occur. Coordination of a metal ion to the 

cyclam core or the oligoethylene glycol chains of the dendrimer is also expected to 

affect the absorption and emission bands of dansyl. The vicinity of a charged metal 

ion could perturb the transition moments, thereby altering the intensities of the 

dansyl absorption and emission bands. Furthermore, oligoethylene glycol or 
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cyclam complexes appended to the dansyl units could quench dansyl emission by 

energy and also by electron transfer, since dansyl can be easily oxidized (E1/2 = 0.9 

V vs SCE).8  
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Figure 7.7. Changes in absorption (340 nm, full symbols) and emission (530 nm, open symbols) 

intensities observed  for dendrimer CycDans upon addition of Eu3+ trifalte or nitrate (acetonitrile 

solution, 298 K). Excitation at 270 nm in all cases. 

 

The results obtained indeed show that titration of dendrimer CycDans and reference 

compounds DEtGly and Dans with metal ions affects the dansyl absorption and 

emission bands in various ways. First of all it should be noted that, in order to form 

metal complexes, ligands CycDans, DEtGly, Dans must compete with solvent 

molecules and counter anions of the added metal ions. We have found indeed that 

the interaction of the metal ions with ligands CycDans, DEtGly, Dans is much 

stronger when the counter ion is triflate compared with nitrate (Figure 7.7). In fact, 
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nitrate salts have been found to interact only with dendrimer CycDans, not with 

compounds DEtGly and Dans. 

Figure 7.8 shows the titration plots obtained on addition of Eu3+ (as triflate salt) to 

the “ligands” CycDans, DEtGly, and Dans. These results show that each of the 

CycDans, DEtGly, Dans ligands can coordinate Eu3+. Analogous titration plots 

have been obtained in the case of Nd3+ and Gd3+ and a qualitatively similar 

behavior was exhibited by Zn2+. 
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Figure 7.8. Changes in absorption (340 nm, full symbols) and emission (530 nm, open symbols) 

intensities observed for compounds CycDans, DEtGly, and Dans upon addition of Eu3+ trifalte 

(acetonitrile solution, 298 K). Excitation at 270 nm in all cases. 

 

For compounds DEtGly and Dans, metal ion (as triflate salts) complexation causes 

parallel decrease in the intensities of the absorption and emission bands of dansyl as 

it happens upon dansyl protonation (vide supra). The appearance of an absorption 
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band around 285 nm, and, in the case of Dans, also of an emission band at 335 nm, 

again similar to that found for protonated dansyl, is also observed. These results 

indicate that both DEtGly and Dans are able to coordinate metal ions by means of 

the amine moiety of the dansyl unit, albeit with a small association constant. 

Apparently, DEtGly is a slightly better ligand than Dans, presumably because the 

oligoethylene glycol chains help in keeping the metal ion coordinated to dansyl. 

In the case of CycDans, completely different results have been obtained (Figure 

7.8): (i) a discontinuity can be observed in the titration plots at one equivalent of 

added metal ion, whereas no such discontinuity is found in the case of DEtGly and 

Dans; (ii) up to one equivalent, addition of the metal ion has quite different effects 

on absorption and emission, which was not the case for DEtGly and Dans; (iii) the 

effect on the absorption band in CycDans is smaller than in DEtGly and Dans, 

whereas the reverse is true for emission band; (iv) after addition of one equivalent 

of metal ion, the slopes of the absorption and emission plots in the case of CycDans 

become smaller than those found for DEtGly and Dans. All these results 

demonstrate that in the case of dendrimer CycDans the first equivalent of added 

metal ion is not coordinated by the dansyl moieties as for DEtGly and Dans, but by 

the cyclam core. It seems likely that the access of metal ion to the cyclam core is 

facilitated by transient complexation with the oligoethylene glycol chains. The 

presence of the charged metal ion in the core has a small effect on the dansyl 

absorption band,  but a strong influence on the emission band which becomes 

weaker and slightly red-shifted. It can also be noted that once the cyclam core has 
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hosted a metal ion, further addition of metal ions implies coordination to the dansyl 

units, as shown by the decrease in intensity of both the absorption and emission 

dansyl bands with approximately the same slopes (Figure 7.8). Such slopes at high 

metal ion concentration are smaller than those found for DEtGly and Dans, 

presumably because the presence of a positively charged metal ion in the cyclam 

core makes more difficult coordination of another positively charged metal ion by 

the dansyl units of the branches. 
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Figure 7.9. Changes in emission (530 nm) intensities observed for dendrimer CycDans upon 

addition of nitrate salts (acetonitrile solution, 298 K). Excitation at 270 nm in all cases. 

 

Figure 7.9 compares the results obtained monitoring the intensity of the dansyl 

emission band upon titration of dendrimer CycDans with various metal ions as 

nitrate salts. Somewhat similar results have been obtained upon titration with 
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triflate salts. Clearly, there are effects strongly dependent on the chemical nature of 

the metal ion, with Cu2+ showing a quite distinct behavior that will be discussed 

below. In all cases, perhaps except for Co2+, there is some discontinuity around one 

equivalent of added metal ion, as already discussed for the titration with triflate 

salts (see, e.g., the curve for CycDans in Figure 7.8). This result suggests again that 

the first dendrimer site to be involved in metal coordination is the cyclam core. It 

should be pointed out that the slopes of the titration curves depend on two 

parameters, namely the association constant and the ability of the coordinated metal 

ion to quench, by any mechanism, the emission intensity of the dansyl units. As 

mentioned above, three quenching mechanisms can be expected for metal ions 

coordinated to the cyclam core, namely (i) an effect of the positive charge of the 

metal ion on the emission transition moment, (ii) an energy transfer quenching 

when the metal ion has low-lying excited states, and (iii) an electron transfer 

quenching for metal ions that can be easily reduced (the oxidation potential of 

excited dansyl is ~ −1.9 V vs SCE).9 Energy and electron transfer quenching, of 

course, will play a role only if they can compete with the excited state lifetime of 

dansyl (ca. 15 ns). It should also be considered that the counter ion, particularly in 

the case of nitrate salts, could play a role. Because so many parameters are 

involved, it is not easy to rationalize the results obtained. Among the metal ions 

used, Zn2+and Gd3+ do not have low lying metal-centered levels and are too difficult 

to oxidize or reduce. Therefore, when coordinated to the cyclam core, they should 

affect the dansyl emission only by a charge perturbation effect that is slightly 
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stronger (Figure 7.9) for the metal carrying a higher charge (i.e., Gd3+). The larger 

effect observed for Cu2+ could be attributed to either energy or electron transfer 

quenching. However, since Ni2+ and Co2+, which have low lying metal-centered 

excited states like the Cu2+complexes, behave similarly to Zn2+, we can conclude 

that the ability of Cu2+ to quench the dansyl excited state is related to the 

occurrence of an electron transfer process. The lack of energy transfer quenching is 

also apparent from the very similar behavior of Gd3+ and Nd3+, and the fact that 

Eu3+ behaves like Gd3+ and Nd3+ suggests that quenching by electron transfer is not 

effective for Eu3+. Other details of the observed results are difficult to interpret. For 

example, both Ni2+ and Co2+, which have low lying metal centered levels, would be 

expected to exhibit a larger quenching effect that Zn2+.  

 

7.5 Conclusions 

We have synthesized dendrimer CycDans that contains 16 potentially luminescent 

moieties (8 dansyl- and 8 dimethoxybenzene-type units) and three distinct types of 

multivalent sites (the cyclam nitrogens, the amine moieties of the 8 dansyl units, 

and the 16 oligoethylene glycol chains) that, in principle, can be protonated or 

coordinated to metal ions. We have investigated the absorption and luminescence 

properties of CycDans in acetonitrile solution and the changes taking place upon 

titration with acid and a variety of divalent (Co2+, Ni2+, Cu2+, Zn2+), and trivalent 

(Nd3+, Eu3+, Gd3+) metal ions as triflate and/or nitrate salts. The first site to be 

involved in the protonation (two equivalents of H+) and metal coordination (one 
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equivalent of metal ion) is the cyclam core, followed by the dansyl units. Once 

hosted by cyclam, the metal ion interacts with the appended dansyl units. The 

nature and extent of interaction depend in a complex way on the nature of the metal 

ion and of the counter ion.  

The results obtained show that: (i) cyclam is an ideal core for obtaining dendrimers 

capable of associating protons and metal ions; (ii) the dansyl chromophoric group is 

a useful unit to construct dendrimers sensitive to environment perturbations; (iii) it 

is possible to design and construct dendrimers that, thanks to the integration of the 

properties of suitable components, can perform complex functions that derive from 

the integration of the specific properties of the constituent moieties. Therefore, such 

design is interesting for understanding relations between complex structure and 

multiple functionality. 
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CHAPTER 8 

 

Proton-driven self-assembled system based on  

cyclam-cored dendrimers and [Ru(bpy)(CN)4] 2-  

 

8.1 Introduction 

The challenge for chemists engaged in artificial self-assembly processes resides in 

the “programming” of the system,1,2 i.e., in the design of components which carry, 

within their structures, the pieces of information necessary not only for the 

construction of the desired supramolecular architecture, but also for the 

performance of the required function. Since the function to be performed upon 

light excitation is often related to the occurrence of a reversible 

assembly/disassembly process,2 the system has to be programmed so as to be able 

not only to self-assemble under thermodynamic control, but also to disassemble 

under a suitable energy input. For information processing, even more interesting 

are those systems that are capable of existing in three or more forms that are 

interconverted by means of different stimuli.3,4 In fact, systems which respond to a 

given combination of multiple stimuli open the way to more complex switches 

(logic gates) at the molecular scale.3 From this viewpoint, fluorescence is an ideal 

output because of its ease of detection even at the single-molecule limit.5 Another 

remarkable feature of fluorescent signals is that they do not need to be wired to 
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operate. Light can indeed bridge the gap between the world of molecules and our 

macroscopic world.6 

Here we report the results of an investigation carried out on the 

assembling/disassembling of the luminescent dendritic hosts CyG0 and CyG2 with 

the luminescent metal complex [Ru(bpy)(CN)4]2- (Scheme8). The assembly process 

is proton driven and leads to formation of {[Ru(bpy)(CN)4]2-•(2H+)• CyG0} and 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG2} adducts with strong effects on the luminescence 

properties. The adducts can then be disassembled both by addition of a base, 

namely 1,4-diazabicyclo[2.2.2]octane (DABCO), and of an excess of triflic acid, 

giving rise to two different optical outputs that behave according to an XOR and 

XNOR logic. 

 

8.2 Dendrimers CyG0 and CyG2 

The absorption and luminescence spectra of these host compounds CyG0 and 

CyG2 (Scheme 8) in acetonitrile-dichloromethane 1:1 v/v solution have been 

previously investigated and reported in the previous chapters.7 Also the protonation 

of CyG0 and CyG2 has been extensively reported and analize in the previous 

chapters. 
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Scheme 8. Structure formulae of the dendrimers  CyG0 and CyG2 and the complex 

[Ru(bpy)(CN)4]2-. 

 

8.3 [Ru(bpy)(CN)4]2- 

The absorption and emission spectra of this complex have been thoroughly 

investigated by Scandola and co-workers in water and acid solution.8 The low 

energy absorption bands and the weak luminescence band exhibited in the visible 
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region are related to metal-to-ligand (bpy) charge-transfer (MLCT) excited states 

(spin-allowed states for the absorption bands; the lowest spin-forbidden state for the 

emission band). The energies of these excited states are strongly dependent on the 

interaction of the CN- ligands with solvents or protons. In aqueous solution, 

addition of sulphuric acid starting from pH 3 causes successive protonation of the 

four CN- ligands as shown by the progressive displacement of the absorption and 

emission bands to higher energies. The four protonation steps, however, are not 

separable and no definite emission spectra for the various protonated forms can be 

obtained.8b  
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Figure 8.1. Changes observed in the absorption spectrum of [Ru(bpy)(CN)4]2- (2.25 × 10-5 M) in 

acetonitrile-dichloromethane 1:1 v/v solution at 298 K upon addition of trifluoroacetic acid. The 

thick solid line is the spectrum before acid addition, and the thick dashed line the spectrum obtained 

after addition of 1 eq. of acid. Inset shows the normalized absorbance changes at 318 (o) and 535 nm 

(■). 
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In acetonitrile-dichloromethane 1:1 v/v solution, [Ru(bpy)(CN)4]2- shows two 

moderately intense MLCT absorption bands at 373 and 535 nm (Figure 8.1) and a 

very weak emission band at 770 nm (Figure 8.2). Upon titration with trifluoroacetic 

acid, the absorption bands move to higher energies with an isosbestic point that is 

maintained until one equivalent of acid has been added. Strong changes are also 

observed in the emission spectra (Figure 8.2) where a band arises at 630 nm upon 

addition of acid. The intensity of such a band increases linearly up to a plateau 

value that is reached at about one equivalent of acid. Addition of large amounts of 

acid causes further changes in the absorption spectra with a second family of 

isosbestic points and the corresponding emission band further shifts to higher 

energy and increases in intensity. Analysis by the SPECFIT software9 of the 

titration plots shown in the insets of Figures 8.1 and 8.2 yielded the following 

values for the first and second acidity constants: pKa1 = 7.1, pKa2 ca. 4.10 
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Figure 8.2. Changes observed in the emission spectrum of [Ru(bpy)(CN)4]2- (2.25 × 10-5 M) in 

acetonitrile-dichloromethane 1:1 v/v solution at 298 K upon addition of trifluoroacetic acid. The 

thick solid line is the spectrum before acid addition, and the thick dashed line the spectrum obtained 

after addition of 1 eq. of acid. Inset shows the normalized intensity changes at 630 nm. λex = 300 

nm. 

 

8.4 Assembling 

Formation of adducts between protonated polyazamacrocycles and 

[Ru(bpy)(CN)4]2- was previously exploited for promoting intercomponent energy-

transfer processes.11 The aims of our study were (i) to see whether the cyclam core 

of dendrimers is accessible to large potential guests, (ii) to understand whether the 

excitation energy collected by the dendrimer chromophoric units can be funneled to 

such a guest, and (iii) to explore whether the effect of adduct 

assembling/disassembling on the luminescence properties could be used for light-

signal processing. Since the behavior of the two examined systems 
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[Ru(bpy)(CN)4]2- and CyG0, and [Ru(bpy)(CN)4]2- and CyG2 is quite similar, we 

will mainly concentrate our discussion on that involving dendrimer CyG2. 

The absorption spectrum of a 1:1 mixture of [Ru(bpy)(CN)4]2- and CyG2 (3.0 × 10-

5 M) is displayed in Figure 8.3. Comparison with the spectra of the two separated 

components (Figures 6.1 and 8.1) shows that there is no interaction between the two 

compounds in the ground state. Lack of interaction in the excited state, as well, is 

demonstrated by the emission spectrum (Figure 8.4) which exhibits the 

characteristic bands of the isolated dendrimer (Figure 6.1) and metal complex 

(Figure 8.2). 
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Figure 8.3. Changes observed in the absorption spectrum of a 1:1 mixture of [Ru(bpy)(CN)4]2- and 

CyG2 (3.0 × 10-5 M) in acetonitrile-dichloromethane 1:1 v/v solution at 298 K upon addition of 

trifluoroacetic acid. The thick solid line is the spectrum before acid addition, and the thick dashed 

line the spectrum obtained after addition of 2 eq. of acid. Inset shows the normalized absorbance 

changes at 445 (o) and 535 nm (■). Note the different absorbance scale for the left and right part of 

the figure. 
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Titration of the above mentioned mixture with trifluoroacetic acid causes strong 

changes in the absorption and emission spectra. In the absorption spectrum (Figure 

8.3) the two bands of [Ru(bpy)(CN)4]2- at 373 and 535 nm move to higher energies 

(345 and 476 nm), but less than in the case of protonation (Figure 8.1) and 

isosbestic points are maintained up to the addition of two equivalents of acid. These 

results suggest that addition of acid promotes association of [Ru(bpy)(CN)4]2- and 

CyG2 and that after addition of two equivalents of protons a {[Ru(bpy)(CN)4]2-

•(2H+)• CyG2} adduct is formed, where the two protons bridge the cyclam core of 

the dendrimer to the CN- ligands of the metal complex (Figure 8.6). The behavior 

of the emission spectrum upon acid addition (Figure 8.4 and 8.5) confirms the 

hypothesis of the proton-driven formation of an adduct between [Ru(bpy)(CN)4]2- 

and CyG2.  Addition of acid up to two equivalents to the 1:1 mixture of 

[Ru(bpy)(CN)4]2- and CyG2 causes a decrease of the exciplex band at 450 nm 

which is accompanied by a decrease of the naphthyl band at 335 nm (Figure 8.4; 

excitation was performed at 288 nm, where ca 80% of the absorbed light causes 

naphthyl excitation). Such a behavior is different from that observed upon addition 

of acid to a solution containing CyG2 alone (decrease of the exciplex band and 

increase of the naphthyl band, see chap. 6). On excitation at 490 nm (where 100 % 

of the absorbed light causes excitation of the metal complex), addition of acid 

causes the appearance of a band with maximum around 680 nm (Figure  8.5), red-
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shifted compared with the band originated by addition of acid to [Ru(bpy)(CN)4]2- 

alone (Figure 8.2).  
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Figure 8.4. Changes in the emission spectra in the naphthyl  region of a 1:1 mixture of 

[Ru(bpy)(CN)4]2- and CyG2 (3.0 × 10-5 M) in acetonitrile-dichloromethane 1:1 v/v solution at 298 K 

upon addition of trifluoroacetic acid: 0 eq. (thick solid line), 2 eq. (thick dashed line), 2.5-6 eq. 

(dashed-dotted line). λex = 288 nm. Inset shows the normalized intensity changes at 335 (•) and 460 

nm (o). 

 

We have also performed titrations of [Ru(bpy)(CN)4]2- solutions by the diprotonated 

forms of CyG0 and CyG2, namely (CyG0.2H)2+ and (CyG2.2H)2+. The results 

obtained were fully consistent with those reported above. The absorption bands 

were displaced to higher energies, isosbestic points were observed up to the 

addition of ca. 1 equivalent of (CyG2.2H)2+, and the absorption spectrum after 

addition of one equivalent of (CyG2.2H)2+ was equal to that obtained upon addition 

of two equivalents of H+ to the 1:1 mixture of [Ru(bpy)(CN)4]2- and CyG2 (Figure 
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8.3). Similar results were obtained when (CyG0.2H)2+ was used in the place of 

(CyG2.2H)2+. 
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Figure 8.5. Changes in the emission spectra in the [Ru(bpy)(CN)4]2- region of a 1:1 mixture of 

[Ru(bpy)(CN)4]2- and CyG2 (3.0 × 10-5 M) in acetonitrile-dichloromethane 1:1 v/v solution at 298 K 

upon addition of trifluoroacetic acid: 0 eq. (thick solid line), 2 eq. (thick dashed line), 2.5-6 eq. 

(dashed-dotted line). λex = 490 nm. Inset shows the normalized intensity changes at 620 nm. 

 

Indeed, all the results obtained are consistent with formation of {[Ru(bpy)(CN)4]2-

•(2H+)• CyG0} and {[Ru(bpy)(CN)4]2-•(2H+)• CyG2} adducts. In such assemblies, 

the Ru complex must share the protons with the cyclam core of the dendrimer 

(Figure 8.6), which explains why the absorption and emission band of the metal 

complex are less shifted to higher energies than those of the protonated metal 

complex. As far as luminescence is concerned (Figure 8.4), on adduct formation the 

exciplex band of the dendrimer decreases because the cyclam core shares protons 
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with the metal complex; however, the intensity of the naphthyl band does not 

increase, as it would be expected upon disappearance of the exciplex, but decreases 

(to 15% of the fully protonated species). This shows that a new deactivation 

channel, namely energy transfer to the lower lying excited state of the metal 

complex, is available for deactivation of the naphthyl units in the adduct. In order to 

estimate the energy transfer efficiency, we prepared two solutions of 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG2} of different concentration, exhibiting the same 

absorbance at 287 and 374 nm. Excitation of these solutions mainly in the naphthyl 

bands (at 287 nm) and in the MLCT bands (at 374 nm), shows a metal complex 

emission intensity at 680 nm that is 88% lower in the former compared to the latter 

case.12 Taking into account that 20% of the light is directly absorbed by the Ru 

complex at 287 nm, it follows that the intra-adduct energy transfer efficiency is 

85%.  In the case of compound CyG0, the behavior is qualitatively similar, but the 

energy transfer efficiency is higher, ca. 100%. In conclusion, both dendrimers play 

the role of light harvesting hosts that, in the adducts, transfer the collected energy to 

the metal complex guest. 
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Figure 8.6. Schematic representation of the {[Ru(bpy)(CN)4]2-•(2H+)•CyG2} adduct. 

 

8.5 Disassembling 

The above described spectral changes upon acid titration are fully reversed by 

successive addition of a stoichiometric amount of a base, namely 1,4 

diazabicyclo[2.2.2]octane (DABCO), indicating an assembling/disassembling 

reversible behavior. 

 We have also found that, upon further  addition of an excess of acid to 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG0} and {[Ru(bpy)(CN)4]2-•(2H+)• CyG2},  novel 

spectral changes  are observed. For example, the isosbestic points of the absorption 

spectra disappear, the intensity of the naphthyl type emission at 335 nm increases 

(Figure 8.4), and the metal complex based emission at 680 nm increases in intensity 

and moves to higher energies (Figures  8.5). This behavior can be easily explained 

considering that both [Ru(bpy)(CN)4]2- and CyG2 (or CyG0) are Lewis bases, so 
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that when excess acid is present they do not need to share protons, but they are 

stabilized as independent protonated species, namely [Ru(bpy)(CN)2-n(CNH)2+n]n+ 

(n from 0 to 2) and (CyG2.2H)2+ or (CyG0.2H)2+ species. As shown by the inset to 

Figure 8.4, adduct formation between [Ru(bpy)(CN)4]2- and CyG2 upon acid 

addition exhibits an on-off-on behavior, i.e. the system performs as a luminescent 

threshold13 device.  

Energy transfer from a dendritic host to guest molecules or metal ions has already 

been reported,14 as well as reversible assembling and disassembling of the 

supramolecular system. For example, in a dendrimer consisting of a hexaamine core 

surrounded by 8 dansyl-, 24 dimethoxybenzene-, and 32 naphthalene-type units15 a 

very efficient energy transfer takes place from all the chromophoric groups of the 

dendrimer to an eosin guest molecule. In such a system, assembling requires 

extraction of eosin from acidic (pH=5-7) aqueous solution by shaking with a 

dichloromethane solution of the dendrimer, and disassembling requires shaking a 

dichloromethane solution of the adduct with a basic (pH>12) aqueous solution. 

Clearly, the assembling/disassembling process is much easier in the present system. 

In conclusion the {[Ru(bpy)(CN)4]2-•(2H+)• CyG0} and {[Ru(bpy)(CN)4]2-•(2H+)• 

CyG2} adducts can be disrupted (i) by addition of a base (DABCO), yielding the 

starting species [Ru(bpy)(CN)4]2- and CyG0 or CyG2, or (ii) by addition of triflic 

acid, with formation of (CyG0.2H)2+ or (CyG2.2H)2+ and protonated forms of 
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[Ru(bpy)(CN)4]2-. This means that the adducts behave as systems that respond to 

two different chemical inputs. 

 

8.6 Light-signal processes 

Upon 270 nm excitation (90% of the light is absorbed by naphthyl units), a solution 

of the {[Ru(bpy)(CN)4]2-•(2H+)• CyG2} adduct (3.0 × 10-5 M) shows emission 

bands at 335 and 680 nm (Figure 8.4 and 8.5). The intensities of these two optical 

channels (outputs) change upon addition of base or acid (inputs) as shown in Table 

8. Let us consider first emission at 335 nm. In a binary logic scheme,3 a threshold 

value of 25 can be fixed for the emission intensity and, in a positive logic 

convention, a 0 can be used to represent a signal that is below the threshold value 

and a 1 can be employed to indicate a signal that is above. We can thus write the 

truth table shown in Figure  8.7a, that shows that the system behaves as an XOR 

logic gate. Conversely, one can monitor the emission at 680 nm, establish a 

threshold value of 1.5 for the emission intensity, and use a 0 and a 1 to indicate 

intensity values below and above the threshold value, respectively.  

The truth table reported in Figure 8.7b shows that using this output channel the 

system behaves as an XNOR logic gate. 
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 aDABCO, 30 equiv. btriflic acid, 30 equiv. 

compound I335 nm / a.u. I680 nm / a.u. 

{[Ru(bpy)(CN)4]2-•(2H+)•CyG2} 12 3.2 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG2} + basea 29 0.4 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG2} + acidb 76 0.2 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG2} + acida + baseb 15 2.8 
 

Table 8. Emission intensities of {[Ru(bpy)(CN)4]2-•(2H+)•CyG2} under different experimental 

conditions in acetonitrile:dichloromethane 1:1 v/v solution. 
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Figure 8.7. Truth table and symbol of the (a) XOR and (b) XNOR logic gate. 
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8.7 Conclusions 

We have shown that the luminescent cyclam-based hosts CyG0 and CyG2 can be 

assembled with the luminescent metal complex [Ru(bpy)(CN)4]2- by a proton-

driven process that causes strong changes in the luminescence properties. In the 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG0} and {[Ru(bpy)(CN)4]2-•(2H+)• CyG2} adducts 

formed in this way, very efficient energy transfer takes place from the naphthyl 

units of CyG0 and CyG2 to the metal complex. 

We have also shown that the {[Ru(bpy)(CN)4]2-•(2H+)• CyG0} and 

{[Ru(bpy)(CN)4]2-•(2H+)• CyG2} adducts can be disrupted by two distinct 

chemical inputs, namely addition of DABCO, yielding the starting species 

[Ru(bpy)(CN)4]2- and CyG0 or CyG2, or addition of triflic acid, with formation of 

(CyG0.2H)2+ or (CyG2.2H)2+ and protonated forms of [Ru(bpy)(CN)4]2-. Such 

processes cause strong changes in the luminescent properties. In particular, in the 

case of {[Ru(bpy)(CN)4]2-•(2H+)• CyG2} there are two optical output channels, 

emission at 335 and 680 nm, that behave as XOR and XNOR logic gates, 

respectively. 

A large number of dendrimers playing the role of antennas for light harvesting have 

been reported in the literature.15 The system investigated in this paper is an example 

of a light harvesting antenna in which the energy collecting units can be reversibly 

assembled to/disassembled from the dendrimer core.11b,c This behavior introduces 
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more flexibility in view of the construction of systems useful for artificial 

photosynthesis. 
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CHAPTER 9 

 

Mechanisms for fluorescence depolarization in 

dendrimers 
 

9.1 Introduction 

We have selected four types of dendrimers to illustrate the different fluorescence 

anisotropy mechanisms that can be observed depending on the nature and position 

of the luminescent unit(s) in the dendritic structure (Gn is the dendrimer generation 

number).  
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Scheme 9.1. Dendrimers with a terphenyl T core. 
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Scheme 9.2. Poply(propylene amine) dendrimers with (a) dansyl D and stylbenyl S peripheral units; 

(b) eosin E encapsulated in G4 carrying 1,2-dimethoxybenezene B peripheral units. 

 

As shown in Schemes 9.1 and 9.2, the four selected systems are based on four 

different luminophores, namely terphenyl (T), dansyl (D), stilbenyl (S), and eosin 

(E). In the case of T (Scheme 9.1), the dendrimers have a single fluorescent 
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moiety, i.e. the T core. In the cases of D and S (Scheme 9.2a), multiple fluorescent 

units are appended in the periphery of poly(propylene amine) dendritic structures. 

In the case of E (Scheme 9.2b), the investigated luminophore does not belong to 

the dendritic structure, but is encapsulated in cavities of the low luminescent fourth 

generation poly(propylene amine) dendrimer G4B containing 1,2-

dimethoxybenzene (B) units at the periphery. 

 

9.2 Fluorescence anisotropy 

For a simple molecular species, fluorescence anisotropy depends on the different 

orientation of the absorption and emission transition moments.  The fluorescence 

anisotropy is defined as 

  r =  (I|| - I⊥) / (I|| + 2I⊥)     (1) 

where I|| and I⊥ are the emission intensities registered when the emission and 

excitation polarizers are oriented parallelly or perpendicularly, respectively. For 

randomly oriented molecules, directly after excitation, the anisotropy  (r0) will be 

0.4 if the transition dipole moments of the excited and the fluorescent states have 

the same orientation. The value of the anisotropy decreases if the transition 

moments are not collinear and when the molecule undergoes a change in 

orientation during the excited state lifetime.  

The fluorescence anisotropy decay can be fitted by a monoexponential model (2):  

r(t) = r0 e–t/θ       (2) 

where θ is the rotational relaxation time. 
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The rotational relaxation time θ can be related to the hydrodynamic volume Vh by 

the Stokes-Einstein-Debye equation. In particular, for compounds having a van der 

Waals volume much bigger than the volume of the solvent molecules, “sticking” 

boundary conditions are applicable, i.e. the form of the rotor has no influence since 

it moves together with solvent molecules, and θ can be expressed as 

θ = Vh η / kB T      (3) 

where η is the viscosity of the solvent, kB the Boltzmann constant, T the absolute 

temperature.  

If a supramolecular system contains only one fluorescent unit, fluorescence 

depolarization takes place, as for simple molecular species, if the absorption and 

emission transition moments are intrinsically non collinear, and as a result of 

change in orientation of the fluorophore during the excited state lifetime. Such a 

dynamic change in orientation may be caused by (i) rotation of the supramolecular 

system as a whole, and (ii) local motions of the fluorophore, in the case of a 

flexible supramolecular architecture. For a supramolecular system that contains 

more than one identical fluorescent unit with different orientations, fluorescence 

depolarization can also occur by (iii) energy migration from the originally excited 

unit to a differently oriented one. Of course, the rates of global rotation, local 

movements, and energy migration must compete with the rate of deactivation of the 

fluorophore excited state. At constant temperature, the rate of global rotation 

depends on the size of the species and the viscosity of the solvent, the rate of local 

movements depends on the specific position of the fluorophore in the 
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supramolecular structure and on the nature of the bonds that link the fluorophore to 

the supramolecular scaffold, and the rate of energy migration depends on the 

overlapping between the absorption and emission spectra of the fluorophore.  

As mentioned in the introduction, it is possible to construct dendrimers of different 

size that contain one or more selected fluorescent units in predetermined sites of 

the dendritic architecture. Furthermore, it is possible to incorporate fluorescent 

molecules in the dendritic cavities. We have exploited these possibilities to make 

systems that exhibit different fluorescence depolarization properties controlled by 

the three above mentioned mechanisms (global rotation, local motion, and energy 

migration). 

 

9.3 Dendrimers with a p-terphenyl core 

The absorption and emission properties of the G1T, G2T, and G3T dendrimers 

(Scheme 9.1) are similar to those of p-terphenyl T.1 In dichloromethane 

(DCM)/propylene glycol (PGly) 1:1 (v/v) solution, all the dendrimers exhibit the 

characteristic absorption and emission bands of the T unit with maximum at 300 

and 355 nm, respectively. The fluorescence quantum yield of the dendrimers is 

very high (close to unity) and the fluorescence decay is slightly shorter (ca. 0.6 ns) 

than that previously found in dichloromethane (DCM) solutions (0.8 ns).1  

Steady state properties. Figure 9.1 shows the fluorescence anisotropy spectrum of 

T and dendrimers G1T, G2T, and G3T in dichloromethane. The steady state 

anisotropy rss  is constant throughout the emission band, is practically zero for T 
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and increases with increasing mass of the dendrimer. In these compounds, 

depolarization channels related to energy migration are not available since the 

terphenyl core is the unique fluorescent component and the lowest excited state of 

the system. Furthermore, fluorescence depolarization via local motions is unlikely 

because the fluorescent unit is the core of the dendritic structure and even rotation 

of the terphenyl moiety around its molecular axis would not substantially change 

the relative orientation of the longitudinal absorption and emission transition 

moments.2 Therefore, fluorescence anisotropy has to be related to global rotation of 

the dendrimer that is affected by solvent viscosity.  

The maximum anisotropy value (r0) for T, measured in polystyrene matrix where 

rotation is prevented, is 0.333 because of the relative orientation of the absorption 

and emission dipoles. As shown in Figure 9.1, the p-terphenyl molecule undergoes 

full depolarization during the emission lifetime in dichloromethane solution,1 

showing that rotation is faster than the excited state lifetime. In the more viscous 

mixture of dichloromethane/propylene glycol 1:1 (v/v), rotation is slowed down 

and, correspondingly, an higher value of rss has been observed for T (Table 9.1). 

The G1T, G2T, and G3T dendrimers in the same viscous mixture of solvents 

exhibit a steady-state anisotropy that is higher than that observed in 

dichloromethane, and increases with dendrimer generation. These results confirm 

that depolarization takes place by global rotation of the dendrimer. In the case of 

G3T the value of rss (Table 9.1) is very close to the maximum value of terphenyl 
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anisotropy (r0 = 0.33), since rotation is almost prevented during the excited state 

lifetime by both solvent viscosity and dendrimer size. 
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Figure 9.1. Steady state fluorescence anisotropy rss in dichloromethane solution of compounds 

G1T, G2T, G3T and T at 298 K. The curve represents the interpolation of the rss values upon 

increasing molecular mass (M) considering as a limiting value r0 = 0.33 (open circle), typical of  T 

in rigid matrix.  

 

Time dependent properties. The fluorescent decay curves for the G1T, G2T, and 

G3T dendrimers in dichloromethane solution were collected under 0° and 90° 

polarization angles upon excitation at 300 nm and analyzed globally. The 

fluorescence anisotropy decay can be fitted to a monoexponential model (eq. 2) for 

all compounds. As expected, rotational relaxation times θ increase with dendrimer 

generation (Table 9.1), demonstrating a slower rotation for larger molecules. These 
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values are in good agreement with those calculated assuming a spherical rotor with 

a single fluorescence lifetime: 4        

θ
τ+

=
1

0rrss        (4) 

The rotational relaxation time θ can be related to the hydrodynamic volume Vh by 

the Stokes-Einstein-Debye equation (eq. 3). The calculated Vh values increase with 

dendrimer generation (Table 9.1) without reaching a plateau value: this 

demonstrates that there is no collapse of the dendrimer structure upon increasing 

generation.5 These values are in fair agreement with the ones obtained by 

molecular modeling, considering the non-spherical shape of the examined 

compounds.6 

No reliable data on the relaxation time θ  in propylene glycol/dichloromethane 

mixtures could be obtained with our instrumental equipment because of the too 

short excited state lifetime of the terphenyl fluorophore under these experimental 

conditions. 

In conclusion, fluorescence depolarization in G1T, G2T, and G3T can be 

essentially related to global rotation of the dendrimer. 
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9.4 Dendrimers with dansyl units at the periphery 

Dendrimers G2D, G3D, G4D, and G5D (Scheme 9.2) contain 8, 16, 32, and 64 

peripheral dansyl units D, respectively. Experiments were carried out in 

dichloromethane and propylene glycol mixtures. As mentioned above, in such 

systems depolarization can in principle occur by (i) global rotation of the 

dendrimer, (ii) local motions of the D fluorophores, and (iii) energy migration 

among the D units. In practice, however, the last mechanism is not highly efficient 

in these compounds because dansyl shows a very large Stokes shift between the 

absorption (λmax= 340 nm) and emission (λmax= 515 nm) bands. Indeed, according 

to Förster equation,7 the integral overlap between absorption and emission spectra J 

is 3 × 10-18 cm3 M-1 and the distance value where the rate of energy transfer and of 

intrinsic deactivation are equal (R0) is about 1.1 nm, as reported in Table 9.2. To 

estimate the energy migration efficiency, R0 should be compared to the average 

distance between two dansyl units in the GnD dendrimer family. Although to 

estimate this distance is difficult because of the high conformational flexibility of 

this dendrimer type, in the case of G4D in DCM a radius of about 2 nm has been 

calculated,8 that would lead to an average distance of about 1.3 nm, substantially 

larger than R0. Therefore, energy migration is not very efficient compared to 

intrinsic deactivation and is not supposed to significantly contribute to fluorescence 

depolarization. 

Steady state properties. Figure 9.2 shows the fluorescence anisotropy spectrum of 

the dansyl reference fluorophore D and of the largest dendrimer G5D in 
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dichloromethane. The steady-state anisotropy values obtained for the examined 

compounds are gathered in Table 9.1. As one can see, rss is constant throughout the 

emission band, is practically zero for D and increases with increasing dendrimer 

generation (filled circles in Figure 9.3).  
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Figure 9.2. Steady state fluorescence anisotropy rss in dichloromethane solution of compounds D, 

and G5D at 298 K. Inset shows r (black points) as a function of time for compound G5D. λex = 405 

nm; λem = 500 nm. 

 

In a dichloromethane/propylene glycol 1:30 (v/v) mixture, rss (Table 9.1) is higher 

than in pure dichloromethane because of the increased viscosity. Indeed, also in the 

case of model compound D and the smallest investigated G2D dendrimer, non-zero 

values of rss have been measured, at variance with results in dichloromethane 

solution. The steady-state anisotropy measured for the dendrimers GnD is: (i) much 

lower (ca. 0.2) than the maximum anisotropy value r0 = 0.31 for dansyl 

fluorophore,9 suggesting that motion is still present under these experimental 
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conditions, (ii) increase with dendrimer molecular mass, (iii) but are much less 

sensitive to this parameter, compared to dichloromethane solution (the same rss 

values have been obtained for G3D-G5D, squares in Figure 9.3). These results 

suggest that anisotropy decay takes place by two processes, a slower one whose 

rate decreases with increasing dendrimer generation, and a faster one that is not 

largely dependent on dendrimer generation and that is the dominant one in more 

viscous solvents. We assign the slow process to the global rotation of the 

dendrimer, and the fast one to local motions of the peripheral dansyl units 

appended to the dendritic scaffold. The close similarity of steady-state anisotropy 

observed for G3D, G4D and G5D in the more viscous mixture of solvents is 

because local motions are not strongly influenced by the dendrimer generation and 

they are mainly responsible for fluorescence depolarization.  

Time dependent properties. In dichloromethane solution the anisotropy decay of D 

is too fast to be measured with our equipment since it undergoes full depolarization 

during the excited state lifetime. For the dendrimers, the rotational relaxation time 

θ (Table 9.1) can be obtained by fitting the anisotropy data with a mono 

exponential decay (see e.g., inset of Figure 9.2) and upon setting the time-zero 

anisotropy r0 equal to that of the dansyl unit, 0.31. The obtained θ  values are not 

strongly different going from G2D to G5D (from 0.6 to 2.4 ns, Table 9.1), despite 

the large variation in molecular mass and volume. Furthermore, these  values are 

not in agreement with those predicted for a spherical rotor from equation 4. The 

hydrodynamic volume Vh calculated from equation 3 increases with dendrimer 
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generation (Table 9.1), but the corresponding values are quite close and too small 

for the larger dendrimers. For example, in the case of G4D a radius of 1.6 nm is 

estimated by the corresponding hydrodynamic volume, while molecular model 

suggest a more expanded structure (r ca. 2 nm).10 These results iindicate that this 

family of dendrimers may not be considered as simple spherical rotors. Indeed, as 

evidenced by steady-state measurements, the local motion is an additional process 

that contributes to depolarize fluorescence and shorten rotational relaxation times. 
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Figure 9.3. Steady state anisotropy rss in DCM (circles) and DCM:PGly 1:30 (v/v) (squares) 

solutions of dendrimers GnD and model compound D at 298 K. λex = 405 nm; λem = 500 nm. Note 

that empty circle refers to anisotropy values below the detection limit of 0.05. 

 

Time-dependent data are not presented in dichloromethane/propylene glycol 

mixtures since in this solvent mixture a double exponential decay is observed, 

which prevents fitting of the corresponding anisotropy decays. 
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aλex = 300 nm. λem = 370 nm. bRotational relaxation time θ cannot be measured accurately because 
of the very short lifetime of the corresponding emitting excited state (ca. 0.6 ns).  cλex = 405 nm. λem 
= 500 nm. dDouble-exponential decay of fluorescence precluded an accurate determination of the 
corresponding θ values. eλex = 290 nm. λem = 330 nm. fλex = 405 nm. λem = 550 nm. 

 solvent rss 
θ 

(ns) 

Vh 

(nm3) 

Ta DCM 
DCM/PGly 1:1 

<0.01 
0.01 

< 0.5 
-b  

G1Ta DCM 
DCM/PGly 1:1 

0.19 
0.26 

1.1 
-b 

10.1 
- 

G2Ta DCM 
DCM/PGly 1:1 

0.22 
0.29 

1.7 
-b 

15.6 
- 

G3Ta DCM 
DCM/PGly 1:1 

0.24 
0.31 

2.8 
-b 

25.6 
- 

     

Dc DCM 
DCM:PGly 1:30 

< 0.01 
0.04 

< 0.5 
-d  

G2Dc DCM 
DCM:PGly 1:30 

< 0.01 
0.15 

0.6 
-d 

5.8 
- 

G3Dc DCM 
DCM:PGly 1:30 

0.01 
0.18 

1.3 
-d 

12.6 
- 

G4Dc DCM 
DCM:PGly 1:30 

0.02 
0.18 

1.8 
-d 

17.4 
- 

G5Dc DCM 
DCM:PGly 1:30 

0.05 
0.18 

2.4 
-d 

23.3 
- 

     

Se AN 
AN:PGly 1:30 

0.21 
0.30 

-b 
-b  

G2Se AN 
AN:PGly 1:30 

0.16 
0.16 

-b 
-b  

     

Ef DCM < 0.01 -  
E ⊂ G4B (0.1:1)f DCM 0.09 -d  
E ⊂ G4B (7:1)f DCM 0.03 -d  

Table 9.1. Steady-state and time-resolved anisotropy of fluorescence. 
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9.5 Dendrimer with stilbenyl units at the periphery 

Similarly to the GnD family, the poly(propylene amine) dendrimer G2S contains 

identical fluorescent units (in this case, stilbenyl units S) appended in the 

periphery. Therefore, also for G2S depolarization can in principle occur by (i) 

global rotation of the dendrimer, (ii) local motions of the peripheral S fluorophores, 

and (iii) energy migration among the S units. Contrary to what happens for the 

GnD dendrimers, in the case of G2S energy migration is expected to be fast 

because of the strong overlap between the absorption (λmax= 310 nm) and emission 

(λmax= 353 nm) bands of the stylbenyl moiety,11 as demonstrated by the much 

higher values of J and R0 reported for stylbenyl rather than dansyl fluorophores 

(Table 9.2). Experiments were performed on reference compound S and dendrimer 

G2S in various acetonitrile and propylene glycol mixtures. 

Since the excited state lifetime is very short (<200 ps)11 for both reference 

compound S and dendrimer G2S, the fluorescence anisotropy decay could not be 

measured with our equipment. Interesting results, however, have been obtained by 

measuring steady state anisotropy in different solvent mixtures. 

Steady state properties. As shown in Figure 9.4a, the fluorescence anisotropy of the 

reference compound S increases upon increasing the fraction of propylene glycol in 

the solvent mixtures (from pure acetonitrile to 1:30 (v/v) acetonitrile/propylene 

glycol). This is an expected result since in such a molecular system the 

fluorescence anisotropy depends on the competition between excited state lifetime 

and  rotational relaxation time, with the latter increasing upon increasing solvent 
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viscosity (eq. 3). On the other hand, for dendrimer G2S an increase in solvent 

viscosity does not cause any appreciable increase in fluorescence anisotropy 

(Figure 9.4b), maintaining a rss value around 0.16 at 330 nm. The fact that the 

fluorescence anisotropy of the dendrimer is not affected by rotational dynamics 

means that another mechanism is responsible for depolarization, i.e. local motions 

of the S fluorophores appended at the dendrimer periphery and/or energy migration 

among the eight S units. In order to elucidate which mechanism is actually 

involved, we studied the behaviour of the corresponding dansylated second 

generation dendrimer, G2D, in the same mixture of solvents. This dendrimer is 

supposed to have roughly the same dimensions as G2S, as well as the same local 

flexibility for random motions of the fluorophores. We have found that, contrary to 

what happens to G2S, in going from acetonitrile to acetonitrile/propylene glycol 

1:30 (v/v), the fluorescence anisotropy of G2D is strongly affected and it increases 

approximately by a factor of ten. These results show that the lack of increase in the 

fluorescence anisotropy of G2S with increasing solvent viscosity can be attributed 

to a faster depolarization mechanism independent on solvent viscosity, i.e. energy 

migration among the S units, consistent with the previously reported formation of 

excimers11 between nearby S units. 
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Figure 9.4. Steady state anisotropy rss in ACN (squares), ACN:PGly 1:2 (v/v) (triangles), 

ACN:PGly 1:30 (v/v) (circles) solutions at 298 K of compounds S (a) and G2S (b). Emission 

spectra in acetonitrile solution are also reported. λex = 290 nm. 

 

Another interesting feature of G2S fluorescence anisotropy spectrum (Figure 9.4b) 

is that it is not constant all over the  investigated spectral region: it decreases from 

0.16 at 330 nm to ca. 0.02 at 500 nm. This result is consistent with the fact that in 

the spectral region from 330 to 550 nm two different species, stilbenyl monomers 

and excimers, are emitting light with different emission lifetimes (τ1 < 200 ps for 
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the emission band at 350 nm and τ2 = 3.5 ns corresponding to the tail at lower 

energy).11 The lower rss value observed for G2S (Figure 9.4b) compared to S 

(Figure 9.4a) in acetonitrile solution is indicative of the fact that the rate of energy 

migration among stilbenyl units in G2S is higher than that of rotation of S in 

acetonitrile solution.  

 

9.6 Eosin molecules enclosed in a dendrimer 

It is well known12, 13 that poly(propylene amine) dendrimers in dichloromethane 

solution can extract eosin from aqueous solution. We have performed experiments 

on systems made of fluorescent eosin molecule(s) encapsulated in the cavities of 

the fourth generation poly(propylene amine) dendrimers G4D and G4B (Scheme 

9.2). For technical reasons related to excitation wavelength and spectral overlap,14 

the experiments made with G4B were easier than those with G4D, although the 

results obtained for the two systems were comparable. Both dendrimers can host 

one or more eosin molecules, depending on the relative concentrations of 

dendrimer and eosin in the dichloromethane and aqueous solutions used for the 

extraction. In all cases, the average number of eosin molecules per dendrimer can 

be determined by measuring the absorbance of the water solution at 515 nm, where 

eosin shows an intense absorption band (ε = 70000 M-1 cm-1).  

Steady state properties. Eosin (as tetrabutyl ammonium salt) in dichloromethane 

does not show any fluorescence anisotropy (rss < 0.01). This means that rotational 

depolarization occurs faster than the excited state lifetime. The steady state 
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anisotropy values for dichloromethane solutions of eosin hosted in G4B with 0.1:1 

and 7:1 eosin/G4 concentration ratios are shown in Figure 9.5. For solutions with 

0.1:1 eosin/G4B ratio, where no more than one eosin molecule is hosted inside a 

G4B dendrimer, a steady state fluorescence anisotropy of 0.09 can be observed. 

However, solutions with 7:1 eosin/G4B ratio, in which 7 eosin molecules, as an 

average, are encapsulated in each dendrimer, exhibit a much smaller (0.03) steady 

state anisotropy. Since there is no reason that rotational depolarization is faster 

when more eosin molecules are contained into the dendrimer cavities, the strongly 

reduced anisotropy observed for the solution with 7:1 eosin/G4B concentration 

ratio is assigned to the occurrence of a fast energy migration among the eosin 

molecule hosted in the same dendrimer. This result is consistent with the small 

Stokes shift between absorption (λmax= 515 nm) and emission (λmax= 546 nm)13 and 

the consequent high values of J and R0 (Table 9.2). 

aData from ref. 13a. bData from ref. 11. 

fluorophore solvent Φem τ / ns J / 10-15 cm3 M-1 R0 / nm 

D DCM 0.46a 16a 0.03 1.1 

S AN 0.05b 0.1b 3.4 1.7 

E DCM 0.65a 3.8a 55.2 4.2 
Table 9.2. Photophysical parameters and integral overlap between absorption and emission spectra, 

J, and distance at which energy transfer has 50% efficiency (R0), calculated according to Förster 

equation7 for energy transfer between identical fluorophores. 

 

Time dependent properties. In dichloromethane solution the anisotropy decay of E 

(as tetrabutyl ammonium salt) is too fast to be measured with our equipment, since 



Chapter 9 

 191

it undergoes full depolarization during the excited state lifetime. The anisotropy 

decays for eosin encapsulated in G4B with 0.1:1 or 7:1 ratio are shown in the inset 

of Figure 9.5. The rotational relaxation time is lower when more eosin molecules 

are encapsulated inside a dendrimer, but estimation of reliable θ values is precluded 

by the biexponantional nature of the eosin fluorescence decay, as previously 

observed.13 These qualitative time-resolved results and the steady-state 

measurements suggest that (i) when, at most, one eosin molecule is encapsulated 

inside G4B its motion is slowed down, so that rss and θ values are higher than in 

pure dichloromethane solution, and (ii) upon encapsulation of more than one eosin 

molecule per dendrimer an additional mechanism, i.e. energy migration, 

contributes to depolarize fluorescence. 

λ / nm
550 600 650

r ss

0.0

0.1

0.2

0.3

(7:1)
t / ns0 2 4

r

0.0

0.1

(0.1:1)

E     G4B⊂ (0.1:1)

(7:1)

 

Figure 9.5. Steady state anisotropy rss and anisotropy decay as functions of time (inset) in 

dichloromethane solution of E ⊂ G4B with ratio 0.1:1 and 7:1 at 298 K.  λex = 405 nm; λem = 550 

nm. 
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9.7 Conclusions 

The four dendritic systems presented in this paper, based on four different 

luminophores, namely terphenyl (T), dansyl (D), stilbenyl (S), and eosin (E), 

provide representative examples of different mechanisms of fluorescent 

depolarization. 

In the first case, the fluorophore T constitutes the core of the dendrimer and 

fluorescence depolarization is due to global rotation of the dendrimer. In the second 

and third cases, multiple D and S luminophoric units, respectively, are appended in 

the periphery of poly(propylene amine) dendritic structures. However, the 

photophysical properties of D and S are so different that energy migration is very 

efficient only among the S units. In the more viscous mixtures of solvents, 

fluorescence depolarization occurs mainly by local motion for the GnD family and 

by energy migration for the G2S dendrimer. In the fourth case, the investigated 

luminophore (E) is non-covalently encapsulated in cavities of a fourth generation 

poly(propylene amine) dendrimer G4B, containing 1,2-dimethoxybenzene (B) units 

at the periphery. In this case, the study of fluorescence anisotropy of eosin 

evidenced that eosin rotation inside G4B dendrimer cavities is restricted and that 

when, as an average, more than one eosin is encapsulated inside a dendrimer, 

efficient energy migration takes place. 

Fluorescence anisotropy reveals once more a very useful tool to investigate 

dendrimer structures and energy migration processes. 
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CHAPTER 10 

 

A novel synthesis of small gold nanoparticles: Au(I) 

disproportionation catalyzed by a persulfurated 

coronene dendrimer 

 

10.1 Results and discussion 

Two of the most exciting topics in the field of nanoscience are those of 

dendrimers1,2 and nanoparticles.3,4 It has already been shown5 that these two 

research areas can profitably overlie to yield a variety of intradendrimer 

encapsulated6 and interdendrimer stabilized7 nanoparticles.  

S S
S

S

S

S
SS
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S

S

S

CPG1  

Scheme 10. Structure formulae of the persulforated coronene dendrimer CPG1 
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Gold nanoparticles are usually obtained8 by reducing HAuCl4 with NaBH4, but 

reduction of HAuCl4 by a stabilizing polymer9 or by light excitation in ethylene 

glycol,10 and reduction of Au(I) phosphine complexes by a borane complex11 have 

also been reported. In this paper we describe the synthesis of gold nanoparticles by 

a novel method, i.e. the disproportionation of Au(I) catalyzed by a dendrimer 

(CPG1, Scheme 10) consisting of a coronene-core appended with 12 thiophenyl 

units.  

Compound CPG1 is a member of a large family of dendrimers obtained by 

persubstitution of aromatic cores with thiophenyl units.12 The coronene 

chromophoric unit that constitutes the core of dendrimer CPG1 is strongly 

perturbed by the appended thiophenyl substituents, as evidenced by comparing the 

absorption spectrum of CPG1 with that of coronene (Figure 10.1).  
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Figure 10.1. Absorption spectra of coronene (dashed line) and dendrimer CPG1 (full line) in 

dichloromethane solution at 298 K. 
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Dendrimer CPG1, as well as other members of the same family, can coordinate a 

variety of soft metals ions.13 Titration of CPG1 dissolved in dichloromethane 

(7.5×10-6 M) with an acetonitrile solution of HAuCl4 (2.5×10-3 M) causes the 

spectral changes displayed in Figure 10.2a. A substantial perturbation of the 

dendrimer bands at 320 and 435 nm is accompanied by the  formation of a broad 

band in the near infrared spectral region (λmax= 840 nm, ε max ≈ 1500 M-1 cm-1, 

Figure 10.2a). The two isosbestic points at 390 and 460 nm are no longer 

maintained after addition of about 1.5 equivalents of HAuCl4, demonstrating that 

dendrimer CPG1 coordinates Au3+ to give a stable 1:1 species 

 

CPG1 + Au3+  CPG1⊃Au3+       (1) 

 

Since Au3+ can be easily reduced14 and CPG1 undergoes oxidation at 0.72 V vs 

NHE, we assign the new weak and broad band with λmax = 840 nm to ligand-to-

metal charge-transfer transitions. Such an assignment is supported by the fact that 

upon titration with HAuCl4 of the analogous benzene-cored dendrimer, which is 

much more difficult to oxidize (E1/2 = 1.08 V vs NHE), a similar band is formed 

with maximum at 565 nm. Dendrimer solutions titrated with an excess of HAuCl4 

show an absorption spectrum in which the isosbestic points are no longer 

maintained. Experiments on these solutions by high resolution transmission 

electron microscopy (HR-TEM) did not show any evidence of nanoparticle 

formation.  
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Figure 10.2. Spectral changes observed upon titration of compound CPG1 in dichloromethane 

(7.5×10-6 M) with (a) an acetonitrile solution of HAuCl4 (2.5×10-3 M), and (b) an acetonitrile 

solution of AuCl (2.2×10-3 M): 0 equivalent of gold ions (dashed line), 1.5 equivalents of gold ions 

(dotted line). 

 

Titration of CPG1 in dichloromethane solution (7.5×10-6 M) with up to 1.5 

equivalents of an acetonitrile solution of AuCl (2.2×10-3 M) caused only very 

minor spectral changes in the region of the dendrimer bands and the formation of a 

tail at lower energy (Figure 10.2b). The small spectral changes in the 300-600 nm 

region are qualitatively similar to those observed upon titration with HAuCl4 
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(Figure 10.2a). Because of the well known tendency of AuCl solutions to undergo 

disproportionation,15 we assign such spectral changes to the presence of small 

amounts of Au(III)16 species in the AuCl solution used for titration. Apparently, 

CPG1 either does not coordinate Au+ or, more likely, coordination does not 

substantially affect the dendrimer bands.  

 

Figure 10.3. HR-TEM images of gold nanoparticles formed upon titration of a dichloromethane 

solution of dendrimer CPG1 with 30 equivalents of AuCl. 

 

Isosbestic points in the absorption spectra are maintained upon addition of 30 

equivalents of AuCl per dendrimer and a proportional increase of the tail at low 

energy is observed. This tail present is consistent with formation of dispersed 

nanoparticles.  Examination of the titrated solution with HR-TEM indeed showed 
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the presence of nanoparticles with size ranging from 1.5 to 3.5 nm (Figure 10.3). 

EDX (Energy Dispersive X-ray) spectra clearly indicated that the observed 

particles were made of gold. Magnification of the TEM images (Figure 10.4) has 

evidenced linear arrays of gold atoms with an interlayer distance of 0.234 nm, 

consistent with Au (101) crystals, and the presence in the particles with greater size 

of several twins (Figure 10.4b). The small size of the nanoparticles is consistent 

with the absence of the plasmon resonance band in the absorption spectrum typical 

of larger nanoparticles.17  

 

Figure 10.4. Detailed view of two nanoparticles: (a) the interlayer distance (0.234 nm) is consistent 

with that of Au (101) crystals; (b) the presence of several twins is clearly evident in nanoparticles of 

greater size. 

 

Since the observed gold nanoparticles have been directly obtained by titration of 

CPG1 with AuCl without addition of any reductant, two reaction mechanisms can 

be taken into consideration, namely: (i) reduction of Au+ by the dendrimer, and (ii) 

disproportionation of Au+ to Au0 and Au3+. Mechanism (i) is plausible since 



Chapter 10  

 201

formation of nanoparticles upon “spontaneous” reduction of HAuCl4 by a 

stabilizing polymer has been previously reported.9 For our system, however, 

involvement of the dendrimer as a reductant seems unlikely for the following 

reasons: a) judging from the absorption spectra, formation of nanoparticles upon 

titration with AuCl is not accompanied by a decrease of the dendrimer 

concentration since isosbestic points are maintained upon addition of up to 30 

equivalents of Au+ per dendrimer; b) addition of an excess of 11-mercapto-1-

undecanol liberates dendrimers molecules, as evidenced by the fact that the 

absorption spectrum of the dendrimer is completely recovered. Therefore, we 

believe that the observed gold nanoparticles are formed from the disproportionation 

of Au+ to Au0 and Au3+, with a mechanism similar to that proposed by Eustis and 

El-Sayed to interpret generation of gold nanoparticles by photochemical reduction 

of HAuCl4.10  

In blank experiments we have verified that nanoparticles are generated neither from 

CPG1 and Au3+ nor from Au+ alone. We must conclude that formation of 

nanoparticles requires participation of species in which Au+ ions are coordinated by 

the dendrimer, e.g.  CPG1⊃Au+. Since gold nanoparticles have been obtained from 

solutions containing an excess (10 to 30 times) of AuCl compared to the dendrimer 

concentration, the formation of polinuclear species, particularly of CPG1⊃(Au+)2, 

cannot be excluded.  
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In our system, the first step could be the coordination of Au+ by CPG1 (for the sake 

of simplicity, the Cl- counter ions, which can play the role of ancillary ligands, are 

not indicated hereafter):  

 

CPG1 + Au+  CPG1⊃Au+       (2) 

 

A disproportionation reaction of the Au+ species should then follow either in the 

form of reactions 3a  

 

CPG1⊃Au+ + CPG1⊃Au+ → CPG1⊃Au2+ + CPG1⊃Au0   (3a) 

 

followed by dissociation of the complex between dendrimer and gold atom  

 

CPG1⊃Au0  CPG1 + Au0      (3b) 

 

or of the equivalent reactions 4 and 5: 

 

CPG1⊃Au+ + Au+  → CPG1⊃Au2+ + Au0     (4) 

 

CPG1⊃(Au+)2  → CPG1⊃Au2+ + Au0     (5) 
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The disproportionation of Au+ is known to be very slow for Au+ halides18 because, 

as pointed out by Eustis and El-Sayed,10 it requires formation of a bimolecular 

species involving a gold-gold bond. In our system the dendrimer could favor 

encounters of two Au+ species (eqs. 3a and 4) or, more likely, of two Au+ ions in 

polymetallic species like CPG1⊃(Au+)2 (eq. 5), thereby catalyzing 

disproportionation. Encounters of Au atoms  should then rapidly lead to formation 

of gold nanoparticles, most likely stabilized by dendrimer molecules: 

 

nAu0 → (Au0)n        (6) 

 

The CPG1⊃Au2+ species formed in eq. 3a, 4 and 5 should undergo 

disproportionation to the initial CPG1⊃Au+ and the stable CPG1⊃Au3+ 

complexes, as it happens for other Au2+ species.10 

 

CPG1⊃Au2+ + CPG1⊃Au2+ → CPG1⊃Au+ + CPG1⊃Au3+  (7) 

 

Stability of the gold nanoparticles in the presence of dendrimer CPG1 is 

demonstrated by the fact that TEM experiments do not show any substantial 

variation in the nanoparticle size distribution with aging of the solutions or by 

removal of the solvent and redissolution. 
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In conclusion, we have discovered a new route to obtain gold nanoparticles of 1.5 

to 3.5 nm size. The process is based on the disproportionation of Au+ in the 

presence of the relatively simple dendrimer CPG1 that not only favors encounters 

between Au+ ions, but also protects the resulting small nanoparticles from further 

aggregation. The effects of reactant concentrations, dendrimer generation, and 

nature of the dendrimer core on the efficiency of the process and on the size of the 

resulting particles are under investigations. 
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CHAPTER 11 

 

Visualizing spatial and temporal heterogeneity of 

single molecule rotational diffusion in a glassy 

polimer by defocusing wide-field imaging 

 

11.1 Introduction 

Over the last 15 years, single molecule spectroscopy (SMS) has been established as 

a new tool in the ever expanding range of spectroscopic methods. SMS is 

especially useful to study inhomogeneous systems.1 Biological systems are by their 

nature highly heterogeneous and as such perfect targets for SMS. From this it is 

clear that, next to biological samples, polymers form a study object of SMS as 

polymers are very often heterogeneous in their behavior. Many theories that 

describe polymer properties are based on a microscopic picture2 that now can be 

evaluated experimentally by applying single molecule techniques. A variety of 

polymers and several SM techniques have been exploited for these studies. Some 

groups focused their attention on unraveling the complex photophysics of 

conjugated polymers and tried to establish a relationship between single polymer 

chain conformation, interaction with the surrounding inert matrix and the observed 

photophysics.3 Other groups devoted effort in testing and validating, on a 
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microscopic level, the theories developed to describe the physical properties of 

polymers. Especially the behavior close to the glass transition temperature of the 

polymer under consideration has drawn a lot of attention. In order to validate 

theories describing this transition, probe molecules are embedded in the polymer. 

One approach consists of measuring changes in the radiative lifetime of a single 

molecule below or close to the glass transition temperature.4 According to the free 

volume theory, the free volume that can be thought of as sub-nanometer holes 

caused by structural disorder in the polymer, fluctuates around the probe molecule 

both in time and in space. This in turn causes changes in the local density around 

the probe molecule and subsequent changes in the radiative life time. Alternatively, 

segmental relaxation above Tg can be probed by the rotational motion, of a probe 

molecule, induced by the relaxation process.5 The rotation of single molecules is 

typically followed by measuring the degree and orientation of linear polarization of 

fluorescence, resulting from the projection of the emission dipole orientation on a 

two-dimensional plane. This usually leads to a loss of the out-of-plane information 

of the molecule under investigation. 

However, several detection schemes were developed for measuring the 3D 

orientation of single molecules via the orientation of their transition dipole 

moment.6 Scanning near field optical microscopy6a as well as confocal microscopy, 

eventually modified by using annular beams,6c have been used for this goal. Also, 

fluorescence wide-field microscopy has been applied to get information about the 

angular distribution of single molecule’s fluorescence emission (and hence 3D 
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orientation) by defined image defocusing or by introducing aberrations. The latter 

approach was used by Dickson and co-workers in their study of polymer 

(poly(methyl methacrylate)) below Tg. Here we use defocused wide-field imaging 

in combination with an extremely robust perylendiimide dye (Figure 11.1) to study 

rotational motion of the dye in a polymer with a Tg close to room temperature. 
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Figure 11.1. (a) The chemical structure of compound 1. (b) 3D representation of 1 from different 

view points; along the vertical axis of the plane of the perylenediimide core (left) and along the long 

axis of the perylenediimide core (right). 

 

Defocused imaging offers several advantages: it allows for highly parallel data 

collection by looking at many molecules in the field of view and it gives exact 
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information on the 3D orientation as mentioned before. Furthermore the 

photostability of the dye used allows imaging for an extended period of time (more 

than 30 minutes). In this way, spatial and temporal inhomogeneities of the 

rotational movement of the dyes could be demonstrated. The high quality of the 

images allows for a decomposition of the movement in the x-y plane and the z-

plane. We could demonstrate both static and temporal heterogeneity in polymer 

relaxation, in good agreement with previous literature reports. Furthermore, the full 

3-D rotational diffusion can be analyzed using a model for an isotropic rotor. The 

detailed analysis suggests the existence of different relaxation regimes for the 

polymer used. 

 

11.2 Sample preparation 

Thin polymer films (thickness of 50 - 100 nm) were prepared on cleaned glass 

cover slips by spincoating from 0.5 - 1.0 wt% solution of poly(methyl acrylate) 

(PMA, bulk Tg ~ 8 °C, Mn=11,340 g/mol, Mw/Mn = 3.65,  purchased from Aldrich 

and used without further purifications) containing 1 – 10 nM of a perylene diimide 

substituted with polyphenylene groups in the bay positions (compound 1, 

MW=2601.25, see the structure in Figure 11.1) in toluene. The number-average 

molecular weight (Mw) and polydispersity index (Mw/Mn) was estimated using Size 

Exclusion Chromatography (SCL-10Avp, Shimazu Co.). The films were put in 

vacuum at room temperature for more than 2h in order to remove residual solvent. 

All samples were kept in vacuum before the experiment and measured within one 
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day after preparation. Note that the glass transition temperature of a thin film can 

be lower than the glass transition temperature measured in bulk.7 

 

4 μm4 μm  

Figure 11.2. A typical defocused image of 1 embedded in a 50 nm film of PMA with 1 μm 

defocusing toward the sample. The white dashed circles indicate molecules which are substantially 

oriented out of plane. The white square are the molecules discussed in Figure 11.5-11.7. 

 

11.3 Results and discussion 

Figure 11.2 shows a typical defocused image of 1 embedded in a thin PMA film at 

an excitation power of 1 kW/cm2 with 1 second integration. Although various 

emission patterns are observed, the majority of spots show a clear two-lobe pattern. 

As can be seen in the picture, 25 % of the molecules show a substantial out of 
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plane contribution (molecules indicated by the dashed white circles). The 

fluorescence intensity varies from molecule to molecule. Especially molecules 

oriented out of plane are not excited efficiently8 and therefore show lower emission 

intensity. The center position of the defocused pattern corresponds to the spatial 

coordinate of the corresponding single molecule, and can be determined by the 

image analysis. No translational mobility could be observed. The center part of the 

defocused pattern (the bright two-lobe) is imaged with 22 x 22 pixels so that the 

pattern of a single molecule occupies an area of about 1 x 1 μm2 on the image. 

Thus, molecules separated by this distance can be analyzed by our analytical 

method. For precise analysis of the out-of-plane orientation, the ideal separation 

between molecules is 1.5 μm, because the outer rim of the pattern is very helpful 

for the analysis (see below). 

Figure 11.3 shows examples of calculated emission patterns for different out-of-

plane orientations (θ) of the transition dipole moment of a single molecule 

(defocusing depth 1 micrometer, for details on the calculations see 6e). The in-

plane orientation of the transition dipole moment was kept constant during the 

calculation. In order to demonstrate the changes in calculated patterns for different 

out of plane orientations, the patterns are calculated for changes in θ of 10 degrees. 

Clearly the bilaterally symmetric two-lobe pattern at 90 degree (completely in-

plane orientation) changes into asymmetric ringed pattern as the out-of-plane angle 
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(θ) decreases. At 0 degree (complete out-of-plane), the pattern has a symmetric 

circular ring shape.  
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Figure 11.3. Calculated defocused patterns of a single molecule for 10 different out-of-plane 

orientations. These values of θ are the same as those used in pre-analysis using the pattern-

matching. 

 

The size of the inner lobe part and the symmetry of the outer rim are crucial in 

addition to the shape for the analysis. The size of lobe is very sensitive to the out-

of-plane angle. The symmetry of the rim is often helpful to determine the in-plane 
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angle, especially for images with a low signal-to-noise ratio. Note that it becomes 

progressively harder to distinguish patterns with an out of plane angle of less than 

50°. 
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Figure 11.4. (a) Snapshots of experimentally observed emission patterns (sequence A) and 

corresponding computed patterns (sequence B) as a function of time. Transition dipole orientation 

trajectories and their first time derivatives are shown for the in plane (b) and out of plane component 

(c), respectively. 

 

The sequence shown in Figure 11.4a consists of snapshots of an individual 

molecule showing rotational diffusion in a PMA film as function of time. An image 

is shown every 1.4 seconds (with 1 second integration and 0.4 second interval 
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time). The sequence A represents experimental data, the sequence B shows the 

corresponding calculated patterns. By fitting each emission pattern as function of 

time, transition dipole orientation trajectories are obtained (Figure 11.4b). The first 

derivative of such trajectory clearly shows that the rotational diffusion is not 

unidirectional but random instead. This is to be expected since the dynamics of the 

probe molecule are driven by polymer segmental motions and hence result from 

relaxations of the polymer chains which should be random. 

Figure 11.5a shows 3 molecules that are relatively close to each other in space. 

Figure 11.5 b-d show the projection maps for molecules 1-3 shown in Figure 11.5a, 

respectively. The defocused images were obtained with 1 second integration and 

0.4 second interval time. Two different types of behavior can be observed in the 

maps. Molecule 2 (Figure 11.5c) exhibits fast rotations with no preference for any 

orientation. On the other hand, molecules 1 and 3 are temporarily locked in one 

orientation and occasionally jumps to a completely different orientation occur. For 

example, molecule 1 is first oriented in the region indicated by the black line but 

undergoes a jump in orientation, indicated by the red line, after 970 second. 

Molecule 3 shows an even more complex behavior: though it is locked in three 

different orientations for 1760 seconds, it starts rotating in rather wide range of 

angles afterwards. From that point on, completely different rotational dynamics are 

observed. This clearly reflects temporal heterogeneity of polymer relaxations. Most 

interestingly, molecule 3 passes through the initial region on the projection map, 

observed between 0 and 190 seconds and indicated in black, when jumping from 
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the green region into the red region after 890 seconds. These results clearly indicate 

temporal heterogeneity and may point to a memory effect in polymer relaxation at 

the dimension of the probe molecule, meaning approximately 3 nm.  
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Figure 11.5. Spatial and temporal heterogeneity of dynamics at 295 K. (a) A zoom of the three 

molecules indicated by the white square in Figure 11.2.  Molecules are separated by ∼ 1.5 μm. (b) - 

(d) projection maps for molecule 1-3, respectively. The red lines indicate the x-y image plane and 

blue line is the optical (z) axis: 0-960 s (black) and 960-2380s (red) in (b), 0-190s (black), 190-895s 

(green), 895-1763s (red), and 1763-2940 (blue) in (d). 
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A more quantitative evaluation of the phenomena seen in the projection maps can 

be obtained by constructing time trajectories of the dipole orientation and analyzing 

the observed fluctuations by correlation functions.   
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Figure 11.6. Transition dipole orientation trajectories in plane and out of plane and their time 

derivatives for molecule 1 (a) and (d), 2 (b) and (e), and 3 (c) and (f). 

 

Figure 11.6 shows the time trajectories of the dipole orientation and their first 

derivatives for the three molecules in Figure 11.5a. Several important observations 

can be made for these molecules. First, the analysis of the rotational movement of 

these molecules clearly indicates spatial heterogeneity on a micrometer scale (see 

Figure 11.5a). Secondly, molecule 1 (Figure 11.6a) shows no large changes in 

rotation rate during the observation time of 2500 seconds. The behavior of 

molecule 2 (Figure 11.6b) is in striking contrast with the behavior of molecule 1. 

Clear changes in the rotational rate can be observed, both for the in and the out of 
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plane part of the rotation. This difference between these molecules is also reflected 

in the correlation function of the rotational movement (vide infra). Molecule 3 

(Figure 11.6c) shows a wide variety of behaviors. Changes of the rotation rate for 

both in and out of plane rotation components occur after 1800 seconds. These 

changes correspond to the wide angular distribution observed in the projection map 

in Figure 11.5 after 1800 seconds, indicated in blue. Note that for the kind of 

polymer matrix used, temporal heterogeneity is expected on a time scale of about 

500 s at room temperature.  

In order to evaluate our experimental technique and in order to compare the results 

obtained with data reported earlier in literature, we first estimate the in plane 

component of the rotational diffusion using a similar analysis as reported in. The 

autocorrelation function was calculated using 

( ) )'()'()'()'( tAtAttAtAtC +=       (1) 

where ( ) ( )( )ttA φ2cos= . The decay of C(t) is then fitted with Kohlrausch-Williams-

Watt (KWW) stretched exponential function:  

( )[ ]∑ −=
i

KWWi
KWWittC βτexp)(       (2) 

The averaged time scale of rotational diffusion (τC) is estimated by ∫
∞

=
0

)( dttCcτ . 

The correlation functions and the fitting results of the three molecules in Figure 

11.5a are illustrated in Figure 11.7. The individual molecules show significantly 

different behavior.  
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Figure 11.7. Correlation function of the in-plane transition dipole orientation of molecule 1 (a) (τc = 

164 s, τKBB = 160 s, βKBB = 0.95), 2 (b) (τC=47s, τ1 KBB = 4.2 s, β1 KBB = 1.0 and τ2 KBB = 49 s, β2 KBB = 

0.65), and 3 (c) (τc = 231 s, τKBB = 169 s, βKBB = 0.65),  

 

The correlation function of molecule 1 and 3 can be fitted with a stretched 

exponential decay with a βKWW close to one. The τC was estimated to be 164 and 

230 seconds for molecule 1 and 3, respectively. These values are more than twice 
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slower than the correlation times of rhodamine 6G and rubrene embedded in PMA 

in the earlier reports. This is not surprising since it is known that rotation of large 

probes is more hindered and can deviate from the collective relaxation of 

surrounding matrix, resulting in high βKWW value and large τKWW.9 On the other 

hand, molecule 2 shows a much faster average decay of τC=47 s actually consisting 

of two components, yielding τ1 KBB = 4.2 s (β1 KBB = 1.0) and τ2 KBB = 44 s (β2 KBB = 

0.7). This smaller value of τ2 KBB can be related to spatially heterogeneous 

dynamics present in polymers, especially in the very poly-disperse PMA matrix 

used. However, interfacial effects at the air/polymer or polymer/glass interfaces 

where the probe molecule might exhibit different dynamics can not be excluded.. 

The τ1 KBB might represent a shorter second relaxation regime of the polymer. Note 

that the mismatch between the correlation function and the exponential at the initial 

part of molecule 1 might also indicate the presence of this faster polymer relaxation 

regime. However, it was recently argued that for the approach described above, e.g. 

analyzing a 3D rotation by only considering the in plane contribution by 

calculating the linear dichroism, even an isotropic rotational diffusion can lead to 

non-exponential correlation functions.10 If so, the obtained stretched exponential 

behavior of the correlation functions might be the result of a complex mixture of an 

analysis artifact and polymer dynamics. Indeed, assume one is interested in the 

probability that the dipole orientation, within time t, changes its polar angle from 

0θ  to 1θ , and its in-plane angle by φ, as shown in the Figure 11.8.  
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Figure 11.8. Schematic representation of the angular changes in a time interval t for a 3 D rotational 

diffusion of the transition dipole. The in plane projection of the transition dipole is also shown. 

 

For an isotropic rotator, the associated probability distribution is given by: 
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where m
nP  are associated Legendre polynomials. rotD  is the rotational diffusion 

constant.  Knowing this distribution, one can compute the average of the φ2cos as  

( )
( )
( ) ( ) ( ) ( )[ ]

( ) ( )
( ) ( )[ ]∑

∑∫∫

∫∫∫

∞

=

∞

=

+−
+
−

+=

+−
+
−+

=

=

1

2
0

22

0 000

2

0 00 000

122exp
!22
!22148

1expcoscos
!2
!2

2
12sinsin

2cos|,,sinsin2cos

n
rot

n
rotnn

tDnn
n
nn

tDnnPP
n
nndd

tPddd

θθθθθθ

φθφθφθθθθφ

ππ

πππ

  (4) 

which is a complicated infinite series of exponential decays. As stated above, it is 

difficult to interpret the physical meaning.  

A very recent report claims, however, that the above mentioned effect is minimal 

when one uses high NA objective lenses.11 The authors state that to best compare to 

ensemble measurements of reorientation dynamics it would be ideal to measure the 
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full three-dimensional orientation of the molecule. They also mention that  single 

molecule techniques able of measuring the 3-D orientation require many photons to 

determine the orientation and thus limit the length of trajectories and impairing 

useful  correlation analysis.. Here, we demonstrate measurements of long 

trajectories of the full 3D orientation with high signal-to-noise ratio that allow 

correlation analysis. 

The 3D rotational diffusion equation for an isotropic rotational diffusion with 

diffusion constant rotD  on the other hand is simply is given by 

( ) ( ), ,1 sin
sinrot

h t h t
D

t
∂ Ψ ∂ Ψ∂

= Ψ
∂ Ψ ∂Ψ ∂Ψ

     (5) 

where h(Ψ, t) is the orientation distribution function. Ψ is angular change as 

defined by ( )arccos t t t+δΨ = ⋅n n , where nt is the unit orientation vector of the 

molecular dipole moments at time t. The average of ( )cos Ψ  over Ψ as function 

of time, 

( ) ( ) ( ) ( ) ( ) ( )
0

cos sin , cos exp 2 rotd h t D t
π

Ψ = Ψ Ψ Ψ Ψ = −∫   (6) 

shows a single exponential decay. The relaxation time is given by rotD21=τ .  

We analyzed 54 of the molecules shown in Figure 11.9 using the mathematics for a 

3D isotropic rotor as outlined above (equations 5 and 6). The images were taken 

with 200 ms integration time and no interval time between the different frames.  

Although in this contribution trajectories are analyzed with 1000 data points  (200 

ms integration time per image) to demonstrate the method, it is possible to obtain 
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trajectories with more than 10,000 data points if one uses integration times of 50 

ms. Note that the image in Figure 11.9a sample film of more than 100 nm was used 

to rule out the earlier dicussed interfacial effects. 

 

4 μm4 μm  

Figure 11.9. A defocused image used for the statistical analysis of 54 of the molecules in view. The 

images were taken with 200 ms integration and no interval time between frames. 

 

Figure 11.10a shows typical decays and fitting results. Again, two different time 

scales were found in the correlation functions. The best fitting could be obtained by 

using bi-exponential decays. The obtained values of the diffusion coefficients for 

40 of the 54 molecules, showing a clear bi-exponential decay, are shown in Figure 

11.10b. Note that the difference between the fast and the slow rotational component 

is nearly two orders of magnitude. The fast component of most molecules is 

distributed between 0.1 second and 10 seconds and the slow decay between several 

hundreds to thousands of seconds. From a phenomenological point of view, it is 
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well know that fast local rearrangements of a polymer (referred as Johari-Goldstein 

β process, or secondary relaxation) are followed by the main slower relaxation, 

commonly termed as α process.  
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Figure 11.10. (a) Typical autocorrelation functions (o) and bi-exponential fits (solid line) for 4 

molecules from Figure 11.9. (b) The distribution of diffusion coefficients for 40 of the molecules in 

Figure 11.9. 
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This process involves cooperative molecular motions. The observed relaxation time 

scale may reflect different relaxation regimes of polymer relaxation dynamics. 

Namely, the observed fast relaxation of molecular rotation might reflect the β-

process polymer relaxation and the slower rotational diffusion could reflect the 

collective polymer motion. The tentative assignment made here to different 

relaxation regimes will be further investigated in detail by using a variety of 

fluorescent probes with different sizes and aspect ratios in well-defined mono-

disperse polymer matrixes. 

 

11.4 Conclusions 

We demonstrated the potential of defocused wide-field fluorescence microscopy to 

monitor molecular rotational diffusion in a glassy polymer. Due to the good signal-

to-noise ratio of the fluorescence images, 3D reorientation of molecular dipole 

moment could be followed. Using the full 3D rotation avoids the introduction of 

analysis artifacts. The data clearly evidence non-directional molecular rotation, 

resulting from random polymer relaxation. We showed that the autocorrelation 

function for the rotation of different probe molecules can vary greatly, resulting in 

large differences in rotational correlation times.  This is due to the highly poly-

disperse PMA matrix used. The advantage of wide-field imaging (parallel data 

collection of many molecules) allows us to prove spatially heterogeneous dynamics 

on the sub-1 μm scale, which is a promising result for investigating local 

environmental changes in phase separation processes or for investigating changes 
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in viscosity during polymerization reactions. The 3-D rotational correlation 

function could only be fitted bi-exponential. This might relate to different 

relaxation regimes predicted by polymer theories. In order to evaluate this 

hypothesis, experiments in better-defined, mono-disperse polymers will be 

conducted. 
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