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Introduction

During the 20th century, our understanding of the Universe has significantly improved thanks
to some discoveries that have become milestones of science. From a cosmological point of view,
among that, the most important are 1916 Einstein’s General Relativity, Lemaître’s discovery
and Hubble’s confirmation of the Universe expansion in the late ’20s and the 1964 detection of
the cosmic microwave background (CMB) radiation by Penzias and Wilson. Einstein’s theory
unveiled the intrinsic connection between the geometry of spacetime and its matter-energy
content, which ended in the formulation of the Friedmann-Robertson-Walker (FRW) model of
the Universe. At the time, the Universe was thought to be static, and since the general solution
of Einstein’s equation is either an expanding or a contracting universe, Einstein’s artificially
added a cosmological constant term in order to obtain a static solution. Beside the fact that
such a solution is unstable, the addition of a cosmological constant term was also unnecessary
because, as discovered by Lemaître and Hubble, the Universe is indeed expanding. Still, for
a twist of fate, this term, even if with a completely different meaning, is nowadays part of
the concordance cosmological model. The discovery of the expansion of the Universe was an
outstanding result, obtained by mixing up theoretical expectations from General Relativity
and astronomical observations. Indeed, the observed redshift of nearby galaxies could have
in principle been explained as a local phenomenon, but, thanks to the underlying theory, it
was correctly interpreted as a general property of the Universe. The great question about the
expansion of the Universe was linked to the fact that, if it is nowadays expanding, it should be
contracting going back in time. If this is the case, then in the very first instants it should have
been concentrated in a high-density/high-temperature small region, and now we should see
the relics of these times in the actual Universe. The missing piece was found by Penzias and
Wilson that, while searching for a completely different thing, observed an isotropic, diffuse
radiation in the radio-wavelengths at 3K, interpreted as the background radiation cooled down
by the expansion of the Universe. Along with other important discoveries, these three findings
were the basis of the so-called hot Big Bang model.

One of the crucial parameter of the FRW model is the total matter-energy density of
the Universe, in particular in relation to a quantity known as critical density, because the
ratio of the two indicates if the Universe is open, closed or flat, i.e. if it will expand forever,
it will eventually stop its expansion and then recollapse, or it will keep on expanding but
with an asymptotically zero velocity. It had been known since the ’30s, thanks to Zwicky
and Smith, that luminous matter was not sufficient to explain the dynamical behaviour of
galaxies and galaxy clusters. Thus, the presence of an electromagnetically non-interacting
dark matter component had already been supposed at those times. Even the discovery of
a hot, X-ray emitting plasma in the ’60, which had a great impact on the study of galaxy
clusters, was not sufficient to explain the dynamical missing mass, and so dark matter is still
considered to be a major component of the total matter-energy budget of the Universe. Now
the point is, how much matter is there in the Universe? It had been already known from
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2 Introduction

studies on galaxy clusters that a low matter density universe was favoured over a high matter
density universe. Following results from CMB experiments also showed that the Universe
was almost flat, thus highlighting a discrepancy between the need to have an almost critical
density and the low matter density requirements from observations of astrophysical objects.
In between, the discovery from Type Ia supernovae (SN Ia) observations that the Universe
expansion is accelerating, opened a new possibility to fill the missing matter-energy density
with a component responsible for this accelerated expansion.

Over the last decade great observational evidence (Riess et al., 1998; Perlmutter et al.,
1999; Jarosik et al., 2011; Vikhlinin et al., 2009b) has shown that at the present time the
Universe is expanding at an accelerated rate. This fact can be attributed to a component
with negative pressure, which is usually referred to as dark energy, that today accounts for
about 3/4 of the entire energy budget of the Universe. The simplest form of dark energy is a
cosmological constant term Λ in Einstein’s equation, within the so-called ΛCDM cosmologies.
Though in good agreement with observations, a cosmological constant is theoretically difficult
to understand in view of the fine-tuning and coincidence problems. A valid alternative consists
in a dynamical dark energy contribution that changes in time and space, often associated to a
scalar field (the ‘cosmon’ or ‘quintessence’) evolving in a suitable potential (Wetterich, 1988;
Ratra & Peebles, 1988). Dynamical dark energy allows for appealing scenarios in which the
scalar field is the mediator of a fifth force, either within scalar-tensor theories or in interacting
scenarios (Wetterich, 1995; Amendola, 2000; Boisseau et al., 2000; Pettorino & Baccigalupi,
2008; Mota et al., 2008, and references therein). In view of future observations, it is of
fundamental interest to investigate whether dark energy leaves some imprints in structure
formation, giving a practical way to distinguish among different cosmologies, as recently
investigated in Hu & Sawicki (2007); Baldi et al. (2010), Zhao et al. (2010), Baldi (2011),
Baldi & Pettorino (2011) and Wintergerst et al. (2010).

The dark energy problem is nowadays studied through many different methods, ranging
from CMB observations (the outstanding results of the WMAP satellite are the basis of
modern cosmology) to SN Ia studies, from galaxy cluster analysis to the promising baryonic
acoustic oscillations (BAOs) technique. These methods provide in general orthogonal probes
for the different cosmological parameters, and thus they are complementary one to each other.
In Fig. 1 we show some recent results taken from Vikhlinin et al. (2009b), where it is clear that
the combined use of different methods can significantly improve the quality of the constraints
that we can put on the cosmological parameters. Despite these successful results, there can be
degeneracies among different cosmological models. For example, deviations from the predicted
ΛCDM mass function can be the results of a simple quintessence model, of a model in which
there is a coupling between dark energy and gravity or between dark energy and dark matter,
of primordial non gaussianities in the power spectrum or of some form of warm dark matter
(e.g. neutrinos). To disentangle these degeneracies, it is fundamental to study other properties
of the different sources of cosmological information.

In this work, we study the general properties of galaxy clusters in different dark energy
cosmologies. Galaxy clusters are the largest virialized objects in the Universe and are con-
sidered to be a fair sample of the overall matter distribution of the Universe itself. They
contain a large amount of gas in the form of diffused ionized plasma known as intracluster
medium (ICM), which emits in the X-ray band. The X-ray properties of galaxy clusters
such as luminosity and temperature trace the total mass of the cluster itself, and hence can
be used to study global properties of these objects. A lot of observational work (Chandra,
XMM-Newton) has been made in recent years, and future missions (e.g. Athena, eROSITA,
WFXT) are under study to improve the characterization of these objects in the X-rays. The
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Figure 1: (Left panel) Comparison of the dark energy constraints from X-ray clusters and from other
individual methods (SNe, BAOs, and WMAP). (Right panel) Dark energy constraints in a flat universe
from the combination of all cosmological data sets. From Vikhlinin et al. (2009b).

properties of galaxy clusters, in particular their mass, can be investigated also in the optical
region of the spectrum through gravitational lensing, which gives independent estimates from
X-rays. Galaxy clusters are well suited for cosmological studies and their complex structure
leave space to study the effect of different dark energy models on their internal properties,
such as the concentration.

Since galaxy clusters occupy the highly non-linear regime of structure formation, we need
numerical simulations to follow their evolution from a theoretical point of view. In this work
we present the Padme simulation set, a set of N -body and hydrodynamical simulations of
galaxy clusters in different dark energy cosmologies. This is the first set of cosmological
simulations to treat baryon physics in extended quintessence models.

The work is organized as follows. In Chapter 1 we introduce and discuss the different
dark energy models under investigation, namely a reference ΛCDM cosmology, two ordinary
quintessence models and two extended quintessence models. In Chapter 2 we describe galaxy
clusters both from a theoretical and an observational point of view, starting from the theory of
structure formation and concluding with the observed X-ray quantities. After introducing the
Padme simulation set, in Chapter 3 we discuss the general properties of the halos extracted
from this set, in particular the mass function, the X-ray quantities and the baryon fraction.
Chapter 4 is dedicated to the study of the concentration-mass (c−M) relation, with special
attention to the role of baryons and dark energy in modifying the predictions for dark matter
in ΛCDM. We discuss our results in Conclusions.





Chapter 1

Dark Energy

In this chapter we will present the different dark energy models under investigation in this
work, namely a concordance ΛCDM model (Section 1.1), two models with dynamical dark en-
ergy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) (Section
1.2) and two extended quintessence models (EQp and EQn) where the quintessence scalar field
interacts non-minimally with gravity (scalar-tensor theories) (Section 1.3). As a reference, we
will also briefly discuss coupled quintessence (CQ) models, where the quintessence scalar field
is coupled to dark matter (Section 1.4). Finally, we will compare some features of EQ and
CQ models (Section 1.5). Useful references on these models can be found in Amendola &
Tsujikawa (2010) and Pettorino & Baccigalupi (2008). For the derivation of the equations
of General Relativity see Appendix A. In the following of the chapter, where not otherwise
specified, we set ~ = c = 1.

In General Relativity, the geometry of the Universe is linked to the matter-energy content of
the Universe itself through the Einstein equation

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν . (1.1)

The Einstein equation can be derived from the variation of the Hilbert action

S =
1

2κ
SH + SM =

∫

d4x

(

1

2κ

√−gR+ LM
)

(1.2)

with respect to the metric which is given, in an homogeneous and isotropic universe, by the
Robertson-Walker metric

ds2 = dt2 + a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]

, (1.3)

where a(t) is the scale factor and k is the curvature of the universe1.
The redshift z is linked to the scale factor a through

z =
a0

a
− 1 , (1.4)

1See equation (A.39)
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6 Dark Energy

where a0 is the present time value of the scale factor and it is usually set a0 = 1.
The general equations describing the evolution of a homogeneous and isotropic universe are
the Friedmann equations

ȧ2

a2
=

8πG

3
ρ− k

a2
(1.5)

and

ä

a
= −4πG

3
(ρ+ 3p) , (1.6)

that can be cast in the form

H2 = H2
0

[

∑

i

Ω0i exp

(

−3

∫ a

a0

1 + wi(a
′)

a′
da′
)

+
(a0

a

)2
(1 −

∑

i

Ω0i)

]

(1.7)

and

Ḣ +H2 = −H
2
0

2

∑

i

Ω0i(1 + 3wi) exp

(

−3

∫ a

a0

1 + wi(a
′)

a′
da′
)

. (1.8)

Here, the Hubble parameter is defined as H ≡ ȧ/a (where the dot denotes the derivative
with respect to the cosmic time t), Ω0i ≡ ρ0i/ρ0c is the current density parameter of the i-th
component of the universe, ρ0c ≡ 3H2

0/8πG is the critical density at the present time, wi is
the equation of state parameter of the i-th component (wi ≡ pi/ρi) and the sum is taken
over all components. The first term in equation (1.7) includes densities associated to each
constituent of the universe while the second term accounts for any possible deviation from
flat geometry.
The continuity equation

ρ̇+ 3H(ρ+ p) = 0 (1.9)

holds if the evolution of the universe is adiabatic.

For our Universe, there are three pieces of observational evidence:

• (a) the Universe is flat, i.e. k = 0 and
∑

iΩ0i = 1 ;

• (b) the Universe is now expanding at an accelerated rate, i.e. ȧ0 > 0 and ä0 > 0 ;

• (c) Ω0m ≃ 0.27, i.e. matter is not nowadays dominating.

From (a):

H2 =
ȧ2

a2
=

8πG

3
ρ = H2

0

∑

i

Ω0i exp

(

−3

∫ a

a0

1 + wi(a
′)

a′
da′
)

. (1.10)
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Thus equation (1.8) can be written as

Ḣ = −4πG(ρ+ p) . (1.11)

From (b) and (c): there exists a dark energy (DE) component which nowadays dominates
(Ω0DE ≃ 0.73) and such that

ρ0DE + 3p0DE < 0 . (1.12)

From continuity equation (1.9), this implies

−1 < wDE < −1

3
(1.13)

in order not to have ρ̇DE > 0 (phantom dark energy).

We can assume that the Universe is constituted by three different components: matter
[baryons and cold dark matter (CDM)], for which wm = 0; radiation (photons plus rela-
tivistic matter) with wr = 1/3, whose contribution is nowadays negligible as shown by CMB;
dark energy (DE), which, in the simplest case, behaves as a fluid with negative wDE and
provides the present accelerated expansion of the Universe.
In Fig. 1.1 we show the evolution with redshift of the energy density of matter, radiation
and dark energy (Ωm, Ωr, and ΩΛ, respectively) in four different cosmological models. As we
will discuss in Chapter 2, structure formation is more important while Ωm ≈ 1, because, in
that epoch, positive density perturbations exceed the critical density. The redshift at which
Ωm equals Ωr is earlier for larger present-day values of Ωm, while the redshift at which Ωm

starts to decline clearly depends on the dark energy model. Because structure formation is
strongly influenced by these two epochs, observations of galaxy clusters evolution provide
good opportunities to constrain Ωm, ΩΛ and w.

The question we have to answer to is: what is the nature of dark energy?

For our analysis we will consider three possible sets of cosmological models. The first is the
standard ΛCDM model, that we use as a reference model, where dark energy is represented
by the cosmological constant. This model is in agreement with present observations, though
theoretically it is intrinsically affected by fine-tuning and coincidence problems.
Alternatively, dark energy could be a dynamical component, seen as a quintessence scalar
field rolling down a potential (Wetterich, 1988; Ratra & Peebles, 1988). If the scalar field
is minimally coupled to gravity, this class of scenarios is still affected by fine-tuning and
coincidence problems, as much as in the standard ΛCDM model. However it is interesting,
for our analysis, to consider such dynamical cases, where a time varying equation of state is
present. Numerical simulations of quintessential cold dark matter have been presented, for
example, in Jennings et al. (2010).
More interestingly, the dynamical scalar field could be coupled to other species, as addressed
in Wetterich (1995), Amendola (2000) and Pettorino & Baccigalupi (2008). We limit ourselves
to the case in which the coupling involves universally all species, as it happens in scalar-tensor
theories (Boisseau et al., 2000). The latter have been also investigated within F (R) theories in
Schmidt et al. (2009) and Oyaizu et al. (2008). N -body simulations of extended quintessence
were studied in Li et al. (2011).



8 Dark Energy

Figure 1.1: Evolution with redshift of Ωm, Ωr, and ΩΛ in four different cosmological models: a
concordance ΛCDM model with Ωm = 0.3, ΩΛ = 0.7, and w = −1 (solid lines); a flat dark energy
model with Ωm = 0.3, ΩΛ = 0.7, and w = −0.8 (dotted lines); a flat universe model with Ωm = 1 and
ΩΛ = 0 (short-dashed lines); an open universe model with Ωm = 0.3 and ΩΛ = 0 (long-dashed lines).
From Voit (2005).

1.1 Cosmological Constant

The simplest candidate for dark energy is the cosmological constant Λ, which is so called
because its energy density is constant in time and space. From continuity equation (1.9), this
implies wΛ = −1. The evolution of a ΛCDM universe is thus given by equation (1.10)

H2 = H2
0

[

Ω0m

(a0

a

)3
+ Ω0r

(a0

a

)4
+ Ω0Λ

]

= (1.14)

=
8πG

3

[

ρ0m

(a0

a

)3
+ ρ0r

(a0

a

)4
+ ρ0Λ

]

. (1.15)

Since the metric gµν satisfies ∇µgµν = 0, it is possible to add the term Λgµν to the Einstein
equation

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν − Λgµν = 8πGT̃µν , (1.16)

where

T̃µν = Tµν −
Λ

8πG
gµν = ρ̃uµuν + p̃(gµν + uµuν) , (1.17)

and
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ρ̃ = ρ+ ρΛ = ρ+
Λ

8πG
, (1.18)

p̃ = p+ pΛ = p− Λ

8πG
. (1.19)

The Lagrangian density for the ΛCDM model is simply given by the linear term in R plus Λ.
Actually, the variation of the action

S =

∫

d4x

[

1

2κ

√−g(R− 2Λ) + LM )

]

(1.20)

with respect to the metric gµν yields equation (1.16) if κ = 8πG.2

Using equations (1.18) and (1.19), equation (1.6) can be rewritten

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.21)

where it is clear that Λ works as a repulsive force against gravity.

The matter density ρm coincides with the cosmological density ρΛ at

zcoinc =

(

Ω0Λ

1 − Ω0Λ

)1/3

− 1 , (1.22)

which, for Ω0Λ ≃ 0.73, is zcoinc ≈ 0.4. The fact that dark energy started to dominate only
at very recent times, suggesting that we are now in a particular moment in the history of the
Universe, is one of the criticisms moved against the ΛCDM model and goes under the name
of coincidence problem.

In order to realize the cosmic acceleration today, the cosmological constant Λ is required to
be of the order of the square of the present-day Hubble parameter H0 = 100h km sec−1Mpc−1:

Λ ≈ H2
0 = (2.13h × 10−42GeV)2 . (1.23)

In terms of energy density, it is equivalent to

2Indeed

δS =
1

2κ

Z

d
4
x

ˆ√
−gRµνδg

µν + (R − 2Λ)δ(
√
−g) +

√
−gg

µν
δ(Rµν)

˜

+ δSm =

=
1

2κ

Z

d
4
x

»√
−g(Rµν − 1

2
Rgµν + Λgµν)δgµν +

√
−g∇µ

vµ

–

+ δSm =

=
1

2κ

Z

d
4
x

»√
−g(Rµν − 1

2
Rgµν + Λgµν − 8πGTµν)δgµν +

√
−g∇µ

vµ

–

if δSm is given by equation (A.22) with αM = 2κ.
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ρΛ ≈
Λm2

pl

8π
≈ 10−47GeV4 , (1.24)

with h ≈ 0.7 and Planck mass mpl =
√

~c/G ≈ 1019GeV.

If the dark energy comes from the vacuum energy 〈ρ〉 of an empty space then

ρvac ≈
k4
max

16π2
, (1.25)

where kmax is a cut-off scale.
Indeed, the zero-point energy of some field of mass m with momentum k and frequency ω is
given by E = ω/2 =

√
k2 +m2/2 (in units of ~ = c = 1).

Summing over the zero-point energies of this field up to the cut-off scale kmax (≫ m), we
obtain the vacuum energy density

ρvac =

∫ kmax

0

d3k

(2π)3
1

2

√

k2 +m2 . (1.26)

Since the integral is dominated by the modes with large k (≫ m), we find that

ρvac =

∫ kmax

0

4πk2dk

(2π)3
1

2

√

k2 +m2 ≈ k4
max

16π2
. (1.27)

General Relativity is believed to be valid up to the Planck scale mpl. Taking the cut-off scale
kmax to be mpl, the vacuum energy density is

ρvac ≈ 1074GeV4 , (1.28)

about 10121 times larger than the observed value.

For the QCD scale kmax ≈ 0.1GeV we have ρvac ≈ 10−3GeV4, still much larger than ρΛ.
The fact that the observed value of Λ is many orders of magnitude lower than the theoretical
value of the vacuum energy density, but still non-zero, is another criticism moved against the
ΛCDM model, and goes under the name of fine-tuning problem.

In the framework of dark energy, despite the fine-tuning and coincidence problems, the
cosmological constant Λ is still the simplest model that is able to explain the observational
constraints. For some arguments in favor of the ΛCDM model see Bianchi & Rovelli (2010).

1.2 Quintessence

The second case that we consider here is that of a dynamical dark energy, given by a
quintessence scalar field φ with an equation of state w = w(a) (Wetterich, 1988; Ratra &
Peebles, 1988). Quintessence is a canonical scalar field φ with a potential V (φ) responsible
for the late-time cosmic acceleration. It interacts with all the other components only through
standard gravity. The quintessence model is defined by the action
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S =

∫

d4x
√−g

[

1

2κ
R+ Lφ + Lfluid

]

, (1.29)

where

Lφ = −1

2
∂µφ∂µφ− V (φ) , (1.30)

and we have defined Lfluid ≡ LM/
√−g .

The evolution of the scalar field φ is described by the Klein-Gordon equation3

∂µ∂
µφ− ∂V (φ)

∂φ
= 0 . (1.31)

The energy-momentum tensor of quintessence is given by

Tµν [φ] = − 2√−g
δ(
√−gLφ)
δgµν

= ∂µφ∂νφ− gµν

[

1

2
∂ρφ∂ρφ+ V (φ)

]

. (1.32)

In a FRW background, the energy density and pressure of the field are

ρφ = T00 [φ] =
1

2
φ̇2 + V (φ) (1.33)

and

pφ = a−2Txx [φ] =
1

2
φ̇2 − V (φ) (1.34)

respectively, which give the equation of state

wφ ≡ pφ
ρφ

=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (1.35)

The evolution of a quintessence universe is given by

H2 =
κ

3

[

ρ0m

(a0

a

)3
+ ρ0r

(a0

a

)4
+ ρφ

]

, (1.36)

where

ρφ = ρ0φ exp

[

−3

∫ a

a0

1 + wφ
a′

da′
]

. (1.37)

3See equation (A.31.)
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Combining the continuity equation (1.9) with equations (1.33) and (1.34), the evolution of
the quintessence scalar field is given by the Klein-Gordon equation

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0 . (1.38)

During radiation- or matter-dominated epochs, the energy density ρM of the fluid domi-
nates over that of quintessence, i.e. ρM ≫ ρφ. We require that ρφ tracks ρM so that the dark
energy density emerges at late times. In order to realize the late-time cosmic acceleration,
we require that wφ < −1/3, which translate in the condition φ̇2 < V (φ). Hence the scalar
potential needs to be shallow enough for the field to evolve slowly along the potential.
We note from equation (1.35) that when the kinetic term φ̇2/2 is negligible compared to the
potential term V (φ), then wφ → −1 and the ΛCDM case is recovered.
We consider “freezing models” in which the field was rolling along the potential in the past,
but the motion gradually slows down after the system enters the phase of cosmic acceleration.
The representative potentials that belong to this class are the so called Ratra-Peebles (RP)
potential

V (φ) =
M4+α

φα
, (1.39)

with α > 0 and its generalization, suggested by supergravity arguments, known as SUGRA
potential

V (φ) =
M4+α

φα
exp(4πGφ2) . (1.40)

The first potential does not possess a minimum and hence the field rolls down the potential
towards infinity. The second potential has a minimum at which the field is eventually trapped
(corresponding to wφ = −1).
Equation (1.36) can be expressed as

H2 =
κ

3

[

ρM +
1

2
φ̇2 + V (φ)

]

, (1.41)

where ρM = ρm + ρr.
If we introduce the dimensionless variables

x ≡
√

κ

6

φ̇

H
, y ≡

√

κV

3

1

H
, (1.42)

then equation (1.41) can be written as

ΩM ≡ κρM
3H2

= 1 − κ

6

φ̇2

H2
− κV

3

1

H2
= 1 − x2 − y2 . (1.43)
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We also define the energy fraction of dark energy

Ωφ ≡ κρφ
3H2

= x2 + y2 . (1.44)

Equation (1.11) can be written as

Ḣ = −κ
2
(φ̇2 + ρM + pM ) = −κ

2

[

φ̇2 + ρM (1 + wM )
]

, (1.45)

and we obtain

Ḣ

H2
= − κ

2H2
φ̇2 − κ

2H2
ρM (1 + wM ) = −3x2 − 3

2
(1 + wM )(1 − x2 − y2) . (1.46)

In that case, the effective equation of state is given by

weff =
ρtot
ptot

= 1 − 2

3

Ḣ

H2
= 1 + 2x2 + (1 + wM )(1 − x2 − y2) =

= wM + (1 − wM )x2 − (1 + wM )y2 . (1.47)

The equation of state of dark energy (1.35) can be expressed as

wφ =
x2 − y2

x2 + y2
. (1.48)

Differentiating the variables x and y with respect to the number of e-foldings N = ln a, we
obtain

dx

dN
= f(x, y,wM , λ) , (1.49)

dy

dN
= g(x, y,wM , λ) , (1.50)

where

λ ≡ − 1√
κ

1

V

∂V

∂φ
. (1.51)

The quantity λ characterizes the slope of the field potential, which obeys the following equation

dλ

dN
= −

√
6λ2(Γ − 1)x , (1.52)

where

Γ ≡ V

(∂V/∂φ)2
∂2V

∂φ2
. (1.53)

If λ is constant, the cosmological dynamics can be well understood by studying fixed
points of the system, which can be derived by setting dx/dN = dy/dN = 0. If there are no
attractors, the trajectories with respect to x(N) and y(N) run from unstable fixed points to
stable points. Two important stable points are given by
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• (c) (x, y) = (λ/
√

6, [1 − λ2/6]1/2), Ωφ = 1,
weff = −1 + λ2/3, wφ = −1 + λ2/3.

• (d) (x, y) = (
√

3/2(1 + wM )/λ, [3(1 − w2
M )/λ2]1/2), Ωφ = 3(1 + wM )/λ2,

weff = wM , wφ = wM .

The point (c) corresponds to a scalar-field-dominated solution, which exists for λ2 < 6. The
cosmic acceleration is realized if weff < −1/3, i.e. λ2 < 2. In the limit that λ → 0 (i.e.
V (φ) → V0) we recover the equation of state of cosmological constant (weff = wφ = −1).

The point (d) is the so-called scaling solution in which the ratio Ωφ/ΩM is a non-zero con-
stant. The existence of the scaling solution demands the condition λ2 > 3(1 +wM ) from the
requirement Ωφ < 1. Since wφ = wM for scaling solutions, it is not possible to realize cosmic
acceleration unless the matter fluid has an unusual equation of state (wM < −1/3).

Let us consider a realistic case in which the equation of state of the fluid is in the region
0 ≤ wM < 1. Then the stability of the fixed points is summarized as follows.

• Point (c): Stable for λ2 < 3(1 + wM ).

• Point (d): Stable for λ2 > 3(1 + wM ).

If λ is not constant, the fixed points derived in the constant λ case can be regarded as
“instantaneous” fixed points changing in time, provided that the time scale for the variation
of λ is much smaller than H−1. For the RP potential, V (φ) = M4+αφ−α (α > 0, φ > 0), we
have that Γ = (α + 1)/α > 1 and x > 0 (because φ̇ > 0), in which case the quantity λ (> 0
from equation (1.51) because ∂V/∂φ < 0) decreases with time from equation (1.52). This
means that the so-called tracking condition Γ > 1 is always satisfied in this case and that
the solutions finally approach the accelerated “instantaneous” point (c) even if λ2 > 2 during
radiation and matter eras.

The tracking condition can be derived in the following way. We first define the quantity

ξ ≡ 1 + wφ
1 − wφ

=
φ̇

2V
. (1.54)

Taking the derivative of ξ in terms of N and using the definition (1.44), we find

λ =

√

3(1 + wφ)

Ωφ

(

1 +
1

6

d ln ξ

dN

)

, (1.55)

where we take the plus sign of the square root because λ > 0 for the RP potential. Differen-
tiating equation (1.55) with respect to φ, we get the following relation:

Γ = 1 +
3(1 − Ωφ)(wM −wφ)

(1 + wφ)(6 + γ′)
− γ′a(wφ, γ

′, ξ) − 2γ′′b(wφ, γ
′) , (1.56)

where γ′ ≡ d ln ξ/dN . Let us consider the evolution during the radiation- and matter-
dominated epochs where Ωφ can be negligible compared to unity. If Γ varies slowly in time,
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equation (1.56) implies that there is a solution in which wφ is nearly constant and its deriva-
tives (γ′ and γ′′) are negligible. Hence the equation of state of quintessence is nearly constant:

wφ ≃ wM − 2(Γ − 1)

1 + 2(Γ − 1)
. (1.57)

Since Γ > 1, we have wφ < wM so that the quintessence energy density evolves more slowly
than the background energy density. Hence the tracking solution can be realized under the
condition Γ > 1 for Γ nearly constant (|d(Γ − 1)/dN | ≪ |Γ − 1|).

The epoch of the late-time cosmic acceleration is quantified by the condition

λ2 =
1

κV 2

(

∂V

∂φ

)2

< 2 , (1.58)

i.e.

φ >
α

4
√
π
mpl , (1.59)

which is independent of the mass scale M . From the Friedmann equation (1.41) we can
estimate the present potential energy of quintessence to be V (φ0) ≈ H2

0m
2
pl, where φ0 ≈ mpl.

Then the mass M is constrained to be

M ≈
(

H0

mpl

) 2

4+α

mpl ≈ 10−
46−19α

4+α GeV , (1.60)

where we have used H0 ≈ 10−42GeV. For α = 2 and α = 4 we have that M ≈ 10−1GeV and
M ≈ 104GeV, respectively. These energy scales can be compatible with those appearing in
particle physics.

Beside fixed points, phase spaces can be characterized also by special trajectories that
“attract” other trajectories. Tracking solutions have approximately constant wφ and Ωφ along
these specials attractors. A wide range of initial conditions converge to a common, cosmic
evolutionary tracker.
Here we take into account both radiation (energy density ρr) and non-relativistic matter
(energy density ρm) together with the quintessence field. In this case the total energy density
ρM and pressure pM of the fluids in equations (1.41) and (1.45) are given by ρM = ρr + ρm
and pM = ρr/3, respectively. In addition to the variables x and y defined in equation (1.42)
we introduce another variable:

z ≡
√

κρr
3

1

H
. (1.61)

Then the density parameters for quintessence, radiation, and non relativistic matter are

Ωφ = x2 + y2 , Ωr = z2 , Ωm = 1 − x2 − y2 − z2 . (1.62)
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Equation (1.45) can be written as

Ḣ = −κ
2

(

φ̇2 + ρM +
1

3
ρr

)

, (1.63)

and we obtain

Ḣ

H2
= − κ

2H2
φ̇2 − κ

2H2
ρM − κ

6H2
ρr = −3x2 − 3

2
(1 − x2 − y2) − 1

2
z2 . (1.64)

The effective equation of state reads

weff =
ρtot
ptot

= 1 − 2

3

Ḣ

H2
= x2 − y2 − z2

3
. (1.65)

The equation of state of quintessence is the same as equation (1.48).
The equations for x, y, and z are

dx

dN
= f̃(x, y, z, λ) , (1.66)

dy

dN
= g̃(x, y, z, λ) , (1.67)

dz

dN
= h(x, y, z) . (1.68)

From equation (1.57) the equation of state of quintessence in the tracking regime is given by

wφ ≃ αwM − 2

α+ 2
. (1.69)

If the tracking occurs during the matter-dominated epoch (wM = 0), then

wφ ≃ − 2

α+ 2
. (1.70)

From equation (1.55) the following relation holds

1

6

d ln ξ

dN
= ∆(t) − 1 , where ∆(t) ≡ λ

√

Ωφ

3(1 + wφ)
. (1.71)

From the definition of ξ in equation (1.54) we also obtain

1

6

d ln ξ

dN
=

1

3(1 − w2
φ)

dwφ
dN

. (1.72)

Since wφ is nearly constant for tracker solutions, it follows from equations (1.71) and (1.72)
that ∆ ≃ 1. Hence the tracker solution is characterized by
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Ωφ ≃ 3(1 + wφ)

λ2
, (1.73)

where wφ is given in equation (1.69). For fixed λ, the scaling fixed point (d) corresponds to
Ωφ = 3(1+wM )/λ2 and wφ = wM . In this case the tracker solution (1.73) recovers the scaling
solution in the regime λ2 > 3(1+wM ) (under which the scaling solution is stable). The accel-
erated fixed point (c) for constant λ corresponds to Ωφ = 1 and wφ = −1+λ2/3. The tracker
solution (1.73) also covers this case and the accelerated solution is stable for λ2 < 3(1+wM ).
Hence the tracker solution can be regarded as a stable attractor. For constant λ the stable
scaling solution (d) does not exit to the accelerated attractor (c), but for decreasing λ the
transition to the stable accelerated phase occurs through the tracking solution.

To sum up, the RP potential V (φ) = M4+α/φα is characterized by λ ∝ α/φ, decreasing
with time. Thus, following the tracker solution, as long as λ2 > 3(1 + wM ), in the scaling
regime the quintessence is tracked by the dominant cosmological component, then, when
λ2 < 3(1 + wM ), it starts to dominate and the accelerated phase takes place.

Compared to the RP case, the SUGRA exponential correction flattens the potential shape
noticeably at φ ≃ mpl, i.e. at the end of the tracking trajectory. That brings the present-day
SUGRA equation of state close to −1 even for steep potentials, i.e. with large values of α.
In other words, a given equation of state at present is obtained for noticeably higher values
of α than for RP (Dolag et al., 2004).

1.3 Extended Quintessence

Extensions to GR in which the dark energy might have an interaction to gravity via an explicit
coupling between quintessence and the Ricci scalar (Jordan frame, JF) have been considered.
This is the case of scalar-tensor theories, known as extended quintessence (EQ) scenarios in
the framework of dark energy. Here we consider the case in which φ interacts non-minimally
with gravity (Wetterich, 1988; Boisseau et al., 2000) and we refer in particular to the extended
quintessence models described in Perrotta et al. (2000), Pettorino et al. (2005) and Pettorino
& Baccigalupi (2008).

In the Jordan frame, a scalar-tensor theory in which EQ holds is in general described by
the following action:

S =

∫

d4x
√−g

[

1

2κ
f(φ,R) − ω(φ)

2
∂µφ∂µφ− V (φ) + Lfluid

]

, (1.74)

where R is the Ricci scalar, the function f(φ,R) specifies the coupling between the quintessence
scalar field and the Ricci scalar, ω(φ) and V (φ) specify the kinetic and potential terms re-
spectively and the Lagrangian Lfluid includes all the components but φ and can be expressed
as Lfluid = −m0ψ̄ψ + Lkin,ψ, where m0 is a constant. Here we assume for the sake of sim-
plicity a standard form for the kinetic part, ω(φ) = 1, and we define the coupling function as
f(φ,R) = κF (φ)R. In the case of EQ with a quadratic coupling, we work within the so-called
“non-minimally coupled” theories, in which F (φ) is the sum of a dominant constant term plus
a part depending on φ:
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F (φ) =
1

κ
+ ξ(φ2 − φ2

0) . (1.75)

Another very popular choice is represented by induced gravity (IG), in which only the quadratic
coupling is considered and no constant term is present.

Compared to GR, the Lagrangian has been generalized by introducing an explicit coupling
between the Ricci scalar and the scalar field, achieved by replacing the usual Ricci scalar R
with the function f(φ,R). This new term, which has the effect of introducing a spacetime de-
pendent gravitational constant, may either be interpreted as an explicit coupling between the
quintessence field φ and gravity (or equivalently, in the Einstein frame, between dark energy
and matter), or as a pure geometrical modification of GR admitting a nonlinear dependence
on R.
The EQ with a non-minimal coupling we consider is described by the action

S =

∫

d4x
√−g

[

1

2κ
R+

1

2
ξ(φ2 − φ2

0)R − 1

2
∂µφ∂µφ− V (φ) + Lfluid

]

. (1.76)

Here κ ≡ 8πG∗, where G∗ represents the “bare” gravitational constant, which is in general
different from the Newtonian constant G and is set in such a way that locally 1/κ+ξ(φ2−φ2

0) =
1/8πG in order to match local constraints on GR. The parameter ξ represents the “strength"
of the coupling. In particular we consider a model with positive coupling ξ > 0 (EQp) and
one with negative ξ < 0 (EQn). The limit of GR is recovered when ωJBD ≫ 1, where

ωJBD ≡ F (φ)

[∂F (φ)/∂φ]2
. (1.77)

Stringent constraints for this quantity come from the Cassini mission (Bertotti et al., 2003) on
Solar System scales, where ωJBD0 > 4×104. However, it has been noted that such constraints
may not apply at cosmological scales (Clifton et al., 2005) where complementary bounds,
obtained combining WMAP1 and 2dF large scale structure data, provide the less tight limit
of ωJBD0 > 120 at 95% confidence level (Acquaviva et al., 2005).
In EQ models, from the conserved scalar field stress-energy tensor

Tµν [φ] = ∂µφ∂νφ− gµν

[

1

2
∂ρφ∂ρφ+ V (φ)

]

+

+ ∇µ∇νF (φ) − gµν∇ρ∇ρF (φ) +

+

[

1

κ
− F (φ)

]

Gµν , (1.78)

we can define a conserved density and pressure for the scalar field, given by:

ρφ =
1

2
φ̇2 + V (φ) − 3HḞ (φ) + 3H2

[

1

κ
− F (φ)

]

, (1.79)

pφ =
1

2
φ̇2 − V (φ) + F̈ (φ) + 2HḞ (φ) − (2Ḣ + 3H2)

[

1

κ
− F (φ)

]

, (1.80)
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respectively (see Appendix). Combining the continuity equation (1.9) with equations (1.79)
and (1.80), the evolution of the scalar field is given by the Klein-Gordon equation

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
=

1

2

∂F (φ)

∂φ
R , (1.81)

where the Ricci scalar is given by4

R = 6(Ḣ + 2H2) . (1.82)

Indeed

ρ̇φ + 3H(ρφ + pφ) =

= φ̇φ̈+
∂V

∂φ
φ̇− 3ḢḞ − 3HF̈ + 6HḢ

(

1

κ
− F

)

− 3H2Ḟ +

+ 3H

[

φ̇2 −HḞ + F̈ − 2Ḣ

(

1

κ
− F

)]

=

= φ̇φ̈+ 3Hφ̇2 +
∂V

∂φ
φ̇− 3Ḟ (Ḣ + 2H2) = 0 ,

and dividing by φ̇

φ̈+ 3H +
∂V

∂φ
=

3Ḟ

φ̇
(Ḣ + 2H2) = 3

∂F

∂φ
(Ḣ + 2H2) . (1.83)

Equation (1.79) can be generally very different from equation (1.33), mostly because of the
gravitational term (κ−1 − F ). Under conditions in which F differs from κ−1, even by a small
amount due to a nonzero value of φ, the gravitational term switches on, feeding the scalar field
energy density itself with a term proportional to H2, which in turn is proportional to the total

cosmological energy density. At sufficiently early times the gravitational term dominates the
dynamics of ρφ and forces the scalar field to behave as the dominant cosmological component
(Perrotta et al., 2000). This process, named “gravitational dragging”, is also very important
for the dynamics of the dark energy perturbations.

In EQ scenarios, equation (1.10) can be expressed as

H2 =
κ

3

[

ρ0m

(a0

a

)3
+ ρ0r

(a0

a

)4
+ ρφ

]

, (1.84)

where ρφ is the conserved energy density defined in equation (1.79).

Looking at equations (1.75), (1.79), (1.80) we notice that minimally coupled quintessence is
recovered for ξ → 0.

4See equation (A.52).
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For an extensive linear treatment of EQ models we refer to Pettorino & Baccigalupi (2008).
Here we only recall that EQ models behave like minimally coupled quintessence theories in
which, however, a time dependent effective gravitational interaction is present. In particular,
in the Newtonian limit, the Euler equation for CDM can be written as

∇v̇m +H∇vm +
4πG̃Mmδ(0)

a2
= 0 , (1.85)

in terms of the cosmic time, where we have redefined the gravitational parameter as

G̃ =
2[F + 2(∂F/∂φ)2]

[2F + 3(∂F/∂φ)2]

1

8πF
. (1.86)

The latter formalism is general for any choice of F (φ). For the coupling given by equation
(1.75) we have

G̃ =

[

1
8πG∗

+ (1 + 8ξ)ξφ2 − ξφ2
0

]

[

1
8πG∗

+ (1 + 6ξ)ξφ2 − ξφ2
0

]

1
[

1
G∗

+ 8πξ(φ2 − φ2
0)
] . (1.87)

For small values of the coupling, that is to say ξ ≪ 1, the latter expression becomes

G̃

G∗

∼ 1 − 8πG∗ξ(φ
2 − φ2

0) , (1.88)

which manifestly depends on the sign of the coupling ξ.

If for the potential term V (φ) we consider a RP potential V (φ) = M4+αφ−α (α > 0, φ > 0),
then φ̇ > 0 and so φ2 < φ2

0. Thus G̃ > G∗ for a positive coupling ξ, while G̃ < G∗ for a
negative ξ. We note that, since the derivative of the RP potential in equation (1.39) with
respect to φ is ∂V (φ)/∂φ < 0, we have φ2 < φ2

0. This leads to the behaviour of G̃/G∗

discussed in Section 1.5.

1.4 Coupled Quintessence

Within the usual frame of GR (Einstein frame, EF), the effect of a coupling between dark
energy and dark matter [coupled quintessence (CQ)] has been investigated. Hydro-simulations
including a coupling to dark matter have been presented in Baldi et al. (2010), Baldi (2011) and
Baldi & Pettorino (2011). N -body simulations for coupled dark energy have been investigated
in Macciò et al. (2004) and Zhao et al. (2010). The action considered in this case appears as
follows:

S =

∫

d4x
√−g

[

1

2κ
R− ω(φ)

2
∂µφ∂µφ− V (φ) −m(φ)ψ̄ψ + Lkin,ψ

]

. (1.89)

The choice of m(φ) specifies the coupling to ψ matter fields while Lkin,ψ includes kinetic
contributions from all components different from φ.
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The equations used to describe the background evolution of each component i involved in
the interaction follow from the consideration that the coupling can be treated as an external
source acting on each stress-energy tensor T µν [i] in such a way that the total stress-energy
tensor is conserved:

∇µT
µ
ν [CDM ] = −CT∂νφ , (1.90)

∇µT
µ
ν [φ] = CT∂νφ , (1.91)

where C is a constant and T is the trace of T µν [CDM ]. Baryons do not couple with dark
matter or dark energy. The constant coupling term used here can be achieved in the case in
which the mass of cold dark matter field depends exponentially on φ:

m(φ) = m0e
−Cφ , (1.92)

corresponding, in the JF, to IG cosmologies.
IG theories in the JF (or equivalently CQ models in the EF with an exponential coupling in
the Lagrangian) force the coupling constant to be positive in order to get the right sign for
attractive gravity in action (1.74).

In the Newtonian limit, along the attractor, the full correction to the gravitational constant
assumes the following expression:

G̃ = G∗a
−2C2

= G(1 + 2C2)a−2C2

. (1.93)

This clearly shows how the correction behaves regardless of the sign of the coupling constant
(see Section 1.5).

1.5 Comparison

CQ and EQ models are strictly related through a conformal transformation called Weyl scal-
ing. Altering GR via a scalar-tensor theory (Jordan frame, JF) is mathematically equivalent to
coupling a scalar field universally with all matter fields within GR (Einstein frame, EF). Weyl
scaling consists in a conformal transformation of the metric which, joined to a redefinition of
matter fields, allows one to rewrite the action (1.89) into (1.74) or vice versa:

gµν = A2(φ)g̃µν , (1.94)

√−g = A4(φ)
√

−g̃ , (1.95)

R = A−2(φ)[R̃ − 6g̃µν∇ν(lnA)∇µ(lnA)] , (1.96)

ψ = A−3/2(φ)ψ̃ , (1.97)
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Figure 1.2: (Left panel) Evolution with redshift of radiation (blue), matter (black) and dark energy
densities in EQ both for a positive (red) and negative (green) coupling corresponding to ωJBD0 ∼ 30.
(Right panel) Evolution with redshift of radiation (blue), matter (black) and dark energy densities in
CQ with C = 0.05 (red) and C = 0 (green). From Pettorino & Baccigalupi (2008).

where we have used the tilde accent to identify quantities in the EF and distinguish them
from those in the JF. Note also that the scaling factor A(φ) is related to the coupling F (φ)
via the following relation:

A2(φ) =
1

κF (φ)
. (1.98)

Going from one frame to the other must lead to the same identical observable effects, even
if the description of the same model can be nasty in one frame and much simpler in the other.
With this in mind, we can now compare some features of EQ and CQ models in comparison
with ΛCDM, as discussed in Pettorino & Baccigalupi (2008).

At the background level, we show in Fig. 1.2 the energy densities of radiation, matter
and dark energy as a function of redshift both for EQ (left panel) and CQ (right panel). For
EQ, the energy density of the scalar field during the radiation-dominated era has a similar
behaviour independently of the sign of ξ, while the two patterns detach a bit during the matter-
dominated era. The effect of the coupling on the background evolution is an enhancement
of the amount of the quantity of dark energy in the past, due to the gravitational dragging.
For CQ, due to the coupling to cold dark matter, the dark energy density is attracted by the
dark matter component. This effect is referred to as “dark matter dragging” in analogy to the
gravitational dragging discussed in EQ.
Although the phenomenology and the energy density scaling are analogous for the EQ and
CQ models shown in Fig. 1.2, it is important to stress that the sign of the coupling leads
to different corrections to the Hubble expansion parameter, as we show in Fig. 1.3. We can
see that, for the chosen CQ model, the Hubble parameter is bigger in the past than in the
ΛCDM case, independently of the sign of the coupling. For the chosen EQ case, instead,
depending on the sign of the coupling, the Hubble parameter can be either enhanced or
reduced compared to the ΛCDM case. Moreover, the switch in sign does not lead to perfectly
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Figure 1.3: Evolution with redshift of the Hubble parameter in EQ (both for positive (red) and
negative (green) couplings corresponding to ωJBD0 ∼ 30) and CQ with C = 0.1 (blue). The ΛCDM
case (black) is also shown as a reference. From Pettorino & Baccigalupi (2008).

opposite contributions: when the coupling is negative, the effect is bigger than in the case of
a positive coupling with the same absolute value. An explanation for this fact can be that
the extra term of the Klein-Gordon equation (1.81) adds to the usual potential for a negative
coupling, thus favoring an enhancement in the dynamics of the field; on the contrary, for a
positive coupling, the extra term contrasts the effect of the potential, making it more difficult
to enhance the dynamics of the field.

At the linear perturbation level (see Section 2.1.1), the different couplings do affect the
cosmological growth factor. In Fig. 1.4 we show the ratio between the density perturbation
of cold dark matter and the scale factor, normalized to unity today. In the ΛCDM case, this
quantity is almost constant during the matter-dominated era (δ(a) ∝ a) and then increases
going back in time due to the presence of radiation. In the EQ case, δ(a)/a is higher than
in the ΛCDM case, meaning that, for a fixed primordial normalization of the perturbations,
the structure formation may be slower than in ΛCDM, depending on the sign and amplitude
of the coupling ξ. Consistently with what we have shown before, the effect is stronger in the
negative coupling case than in the positive coupling one. In the CQ case, the coupling to
cold dark matter leads to a lower value of δ(a)/a than in the ΛCDM case, meaning that the
the structure formation is enhanced compared to ΛCDM, independently of the sign of the
coupling constant.

This behaviour can have important consequences in the nonlinear regime, that in fact can be
used to constrain these theories, as we will see next.

Indeed, a coupling between dark energy and gravity or dark energy and cold dark matter
could have observable effects on structure formation. In the Newtonian limit, as shown in
equations (1.88) and (1.93), these couplings produce corrections to the gravitational constant.
We show the behaviour of the correction in the EQ and CQ cases in Fig. 1.5. In the EQ case,
the sign of the coupling has the effect of either increasing (positive coupling) or decreasing
(negative coupling) the gravitational strength, as it is clear from equation (1.88). In the CQ
case, the correction is independent of the sign of the coupling constant, and the gravitational
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Figure 1.4: Evolution with redshift of the growth factor in EQ (both for positive (red) and negative
(green) couplings corresponding to ωJBD0 ∼ 30) and CQ with C = 0.1 (blue). The ΛCDM case (black)
is also shown as a reference. From Pettorino & Baccigalupi (2008).

coupling is larger than the corresponding ΛCDM case, as it is evident from equation (1.93).
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Figure 1.5: Evolution with redshift of the correction to the gravity constant in EQ (both for positive
(red) and negative (green) couplings corresponding to ωJBD0 ∼ 30) and CQ with C = 0.1 (blue) and
C = 0.05 (black). From Pettorino & Baccigalupi (2008).

As the nonlinear regime is the interface to numerical simulations of structure formation in
these scenarios, it is of fundamental importance to have convenient prescriptions to implement
the features of these models into numerical codes. Pettorino & Baccigalupi (2008) present a
list of all the needed input quantities for N -body simulations of EQ and CQ models. Since
in this work we do not consider CQ models, here we will only recall the modifications needed
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to run cosmological simulations of EQ models. In addition to the different expansion history
represented by the Hubble parameter, that also enters in RP and SUGRA models, only
the correction G̃/G∗ to the gravitational interaction between dark matter particles needs
to be applied. In the case in which baryons are also considered, the same correction must
be applied both to the interactions between baryon particles and between dark matter and
baryon particles.





Chapter 2

Galaxy Clusters

Clusters of galaxies sit on top of the pyramid of hierarchical structure formation in the ΛCDM
cosmological paradigm. They are the largest virialized objects that detached from the Hubble
flow and formed in relatively recent times compared to the history of the Universe. The seeds
of these structures were the small inhomogeneities of the primordial Universe that allowed
clumps of dark matter (halos) to form and collapse under the action of the gravitational
force. The gravitational potential of these halos started to attract baryons from the outside,
eventually allowing the formation of the first stars and galaxies. From then on, the evolution
of halos proceeded through minor and major mergers until the formation of the large galaxy
clusters we see today. In this chapter we will review the theory of structure formation along
with the main properties of baryons in galaxy clusters, using a multi-wavelength approach.
In Section 2.1 we will concentrate on structure formation from the dark matter point of view,
while in Section 2.2 we will discuss the observational properties of baryons inside dark matter
halos. Useful references on these topics can be found in Allen et al. (2011) and Voit (2005).

2.1 Structure Formation

In the early Universe, despite the hypothesis of homogeneity and isotropy being valid at suffi-
ciently large scales, the matter distribution was not perfectly uniform, but was characterized
by some density fluctuations. If we indicate the mean matter density of the Universe with
〈ρm〉, then the density fluctuation field is expressed, as a function of position ~x, by

δ(~x) ≡ ρm(~x) − 〈ρm〉
〈ρm〉

, (2.1)

which can be represented in the Fourier space as

δ̃(~k) =
1

(2π)3/2

∫

δ(~x)ei
~k·~xd3x . (2.2)

The primordial power spectrum can be described as

P (k) = 〈|δ̃(~k)|2〉 ∼ kns , (2.3)

with spectral index ns expected to be close to unity.

27
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In general, δ(~x) is considered to be a Gaussian random field, but other choices are also
possible depending on the inflationary model. If δ(~x) is also isotropic, then P (k) is a complete
statistical description of the initial perturbation spectrum. If we start from the power law
expression (2.3) of the power spectrum and we consider the variance in mass σ2

M inside a
given volume element, filtered with a spherical window function WR, we find

δM (~x) =

∫

δ(~y)WR(|~x− ~y|)d3y , (2.4)

or, in Fourier space,

σ2
M =

1

(2π)3

∫

P (k)W̃ 2
R(k)d3k , (2.5)

where W̃R(k) is the Fourier transform of the window function. For a top-hat spatial filtering

W̃R(k) = 3

[

sin(kR)

(kR)3
− cos(kR)

(kR)2

]

. (2.6)

The shape of the power spectrum is fixed once the matter density parameter Ωm, the
baryon density parameter Ωb and the Hubble parameter H0 are known, but its normalization
must be fixed through observations of either the CMB radiation or the large-scale structure
distribution. For historical reasons, this normalization is generally evaluated with respect to a
top-hat window function having a comoving radius of 8 Mpc h−1, and it is thus indicated with
σ8. The motivation for this choice is that the variance in galaxy number counts was found
to be order of unity on this length scale. Moreover, the mass contained in the volume of the
top-hat filter turns out to be M ≃ 6 × 1014 Ωm M⊙ h−1, which is typical of a galaxy cluster.
Therefore galaxy clusters can be used to constrain the normalization of the power-spectrum.

2.1.1 Growth of linear density perturbations

Once the seeds of the primordial density fluctuations are sown, they start to evolve under
the action of the gravitational attraction driven by the overdense region itself. For small
perturbations, in a universe with negligible density of radiation, the evolution of density
perturbations δ ≡ δρ/ρ is given by

δ̈ + 2
ȧ

a
δ̇ = 4πG〈ρm〉δ . (2.7)

This equation describes the growth of Jeans instabilities in a pressureless fluid, mitigated
in some way by the term 2(ȧ/a)δ̇ which describes the effect of the Hubble expansion of the
Universe. The general solution of equation (2.7) can be expressed by

δ(a) = δ+D+(a) + δ−D−(a) , (2.8)

where D+ and D− describe the growing and decaying modes of the density perturbation,
respectively. Conventionally, the linear growth factor is normalized such that D+(a) = 1 at
z = 0. The rate of perturbation growth does not depend on the scale of the perturbation. In
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a flat matter-dominated universe, the perturbations evolve proportionally to the scale factor,
D+(a) ∝ a. In a ΛCDM universe, the perturbation growth is frozen after the redshift at
which the cosmic expansion rate becomes faster than the gravitational instability one, i.e.

1 + z = Ω
−1/3
m (Borgani, 2006). The exact expression for the growth of perturbations is given

by

D+(z) =
5

2
ΩmEz

∫

∞

z

1 + z′

E3
z′

dz′ , (2.9)

with Ez = Hz/H0
1. A simple parametrization of equation (2.7) is given by

d ln δ

d ln a
= Ωm

γ , (2.10)

where γ is the growth index. General Relativity predicts a scale-independent and nearly
constant value of γ ≈ 0.55.

2.1.2 Spherical Collapse

Cluster formation from perturbations of the cold dark matter density distribution is a hier-
archical process. Small dark matter clumps are the first to detach from the Hubble flow and
to undergo gravitational collapse. These small halos then merge to form progressively larger
structures like cluster-sized objects.
The basics of cluster formation can be described by a spherically symmetric collapse model.
In this model, the matter that forms a cluster starts as a low-amplitude density perturbation
that at the beginning expands along with the rest of the universe. The perturbation’s grav-
itational attraction gradually slows down the expansion of this matter and eventually stops
and reverses the expansion. Then a clump of matter forms at the centre of the perturbation
and, according to the initial radial density distribution of the perturbation, starts to accrete
additional matter onto the halo.
A common toy model to describe the cluster formation process is the spherical top-hat model
in which the perturbation leading to a cluster is assumed to be a spherical region of constant
overdensity ∆ = ρ/ρm. In Newtonian mechanics, a shell of matter at distance R from the
centre of a spherical overdensity with uniform density ρ moves according to

d2R

dt2
= −GM(R)

R2
= −4

3
πGρR . (2.11)

Since, during the matter-dominated era, the background density scales as

ρm =
3M(R0)

4πR0
3a3

, (2.12)

where R0 is the initial size of the perturbation, we can define a density contrast

δ =

(

aR0

R

)3

− 1 (2.13)

1See equation (A.79).
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inside the shell and δ = 0 outside. The crucial assumption is that δ is a top-hat function,
which allows us to cancel out all spatial derivatives. Multiplying on both sides equation (2.11)
by 2dR/dt, the resulting equation can be integrated to obtain the cycloid equation

(

dR

dt

)2

=
2GM

R
− C , (2.14)

whose solution, for a positive integration constant C, can be parametrized through τ ∈ (0, 2π)
as R = GM(1 − cos τ)/C and t = GM(τ − sin τ)/C3/2. Substituting in equation (2.13) and
choosing C such that δτ=0 = 0, we obtain, in the Einstein-de Sitter case (Ωm = 1 and
ΩDE = 0), for which a = a0(t/t0)

2/3,

δ =
9

2

(τ − sin τ)2

(1 − cos τ)3
− 1 (2.15)

and

δL =
3

5

[

3

4
(τ − sin τ)

]2/3

, (2.16)

where δL is the solution of the linearized equation. As expected, at first the radius R increases
(the perturbation expands with the cosmological background), then it reaches a turnaround
value at τ = π and starts to decrease (the perturbation collapses under its own gravity).
For τ = 2π, in a time which is exactly twice the one required to reach the turnaround, the
overdensity δ eventually collapses. This happens when

δL = δc = (3/5)(2π/2)2/3 ≈ 1.686 . (2.17)

The critical value δc of the linear fluctuation δL expressed by equation (2.17) is relevant
in cosmological context because it is used in the Press-Schechter formalism to calculate the
abundance of collapsed objects (see Subsection 2.1.3). In an Einstein-de Sitter universe, this
value is independent of time. However, in other cosmological models, δc depends on time. An
approximation for dark energy with a constant equation of state in a flat universe is given,
e.g., in Weinberg & Kamionkowski (2003).

For minimally coupled and extended quintessence models (see Chapter 1), δc grows slowly
during the matter-dominated era, reaches a maximum, then decreases as soon as dark energy
starts to dominate. In contrast with the minimally coupled case, in EQ models δc does not
approach the Einstein-de Sitter value during the matter-dominated era, but it is higher for
positive values of the coupling constant ξ and lower for negative values of ξ. This is expected
since, from equation (1.88), the effective gravitational constant which enters in equation (2.7)
is G̃ > G∗ for positive values of ξ an vice versa. Thus, since

δc = lim
a→0

[

D+(ac)

D+(a)
(∆(a) − 1)

]

, (2.18)

where ac is the scale factor at the time of collapse, the linear density contrast should be higher
for models with higher values of the coupling constant.
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Given that the matter overdensity of a top-hat perturbation can be approximated, in a
flat universe with a nonzero cosmological constant, by (Bryan & Norman, 1998)

∆th = 18π2 + 82x− 39x2 , (2.19)

where

x =

[

Ω0m(1 + z)3

E2
z

− 1

]

, (2.20)

the spherical top-hat model leads to a pragmatic definition of the virial radius of a halo as
the radius rth within which the mean matter density is ∆thρc,

Rth =

(

3Mth

4π∆thρc

)1/3

. (2.21)

However, since in a flat, matter-dominated universe, ∆th = 18π2 ≈ 178, other definitions
are commonly used. In particular, R200, within which the mean matter density is 200ρc,
and R180m, within which the mean matter density is 180 times the mean background density
Ωmρc, are popular choices. As long as Ωm ≈ 1, both R200 and R180m are nearly identical to
Rth, but since current data suggest now Ωm ≈ 0.3, these radii are nowadays different, with
R200 < Rth < R180m. When generally speaking of virial radius, this multiplicity of definitions
can indeed lead to some confusion.

2.1.3 Mass Function

A powerful tool to constrain cosmological parameters through the evolution of galaxy clusters
is given by the cluster mass function, n(M,z), which counts the number of halos of a given
mass within a given volume. Expressed as a differential function of mass, it reads

dn(M,z)

d lnM
=
ρm
M

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

f(σM , z) , (2.22)

where ρm = Ωmρc is the comoving2 mean matter density and f(σ) is a model-dependent
function of the filtered perturbation spectrum (2.5). This function needs to be calibrated

2If we have, in physical coordinates,

ρm = ρ0m(1 + z)3 ,

ρc = ρ0cE
2
z ,

ρth = ∆thρ0cE
2
z ,

then we have, in comoving coordinates,

ρm = ρ0m ,

ρc =
ρ0cE

2
z

(1 + z)3
,

ρth = ∆th
ρ0cE

2
z

(1 + z)3
.
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against numerical simulations as done, e.g., by Sheth & Tormen (1999) and Tinker et al.
(2008). One way to obtain semianalytic prescriptions for this function is to combine the
spherical top-hat collapse model with the growth function for linear perturbation theory, as
done for example by Press & Schechter (1974). In a Press-Schechter-like formalism, where
the density perturbations collapse and virialize if their density contrast does exceed a critical
threshold δc,

f(σM , z) =

√

2

π

δc
σM(z)

exp

[

− δ2c
2σ2

M (z)

]

. (2.23)

Adopting this formalism with δc ≃ 1.69 (see Subsection 2.1.2), independently of redshift, gives
accepting results for the mass function at different redshifts, even if its derivation is rigorous
only for spherical collapse. This expression has been generalized taking into account also
non-spherical collapse in Sheth et al. (2001) and a formula from a fit of numerical results was
proposed by Jenkins et al. (2001):

f(σM , z) = 0.315 exp(−| lnσ−1
M + 0.61|3.8) . (2.24)

In minimally coupled and extended quintessence models, since the linear density contrast
δc which appears in the exponent of equation (2.23) is different compared to the Einstein-de
Sitter case (see Subsection 2.1.2), we expect visible changes in the mass function. In partic-
ular, higher values of the mass function are expected for lower values of the linear density
contrast δc and vice versa.

The importance of the cluster mass function relies on the fact that by measuring it, one has
a direct evaluation of σM on scales of 1014−1015 M⊙ and is left only with a degeneracy between
Ωm and σ8. Since the former can be measured through other methods, this degeneracy can
be broken and the mass function can be used to evaluate σ8.

2.1.4 Internal structure of dark matter halos

The ΛCDM paradigm predicts that dark matter halos are self-similar independently of their
mass and that their profiles are different from the one describing a singular isothermal sphere.
From numerical simulations, Navarro, Frenk & White (1996) (hereafter NFW) found that a
two-parameter profile was a good description for the structure of dark matter halos. The
NFW profile can be written as

ρ(r)

ρc
=

δc
(r/rs)(1 + r/rs)2

, (2.25)

where ρc is the critical density, rs is the scale radius and δc is a characteristic density contrast.
The two free parameter rs and δc are linked through the concentration of the halo with respect
to a given overdensity ∆,

c∆ ≡ R∆

rs
, (2.26)

by
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δc =
∆

3

c3∆
[ln(1 + c∆) − c∆/(1 + c∆)]

. (2.27)

It is possible to convert the halo concentration (2.26) defined at a given overdensity ∆1 with
respect to the one defined at another overdensity ∆2 in an easy way, as shown by Hu &
Kravtsov (2003), as long as the halo mass at the two overdensities is known:

c∆2
= c∆1

(

M∆2

M∆1

∆1

∆2

)1/3

. (2.28)

Besides the NFW profile and its three-parameter generalization

ρ(r)

ρc
=

δc
(r/rs)α(1 + r/rs)3−α

, (2.29)

other possibilities have been considered. In particular, Moore et al. (1999) proposed a slightly
different two-parameter model

ρ(r)

ρc
=

δc
(r/rs)1.5[1 + (r/rs)1.5]

, (2.30)

while a completely different form is given by the Einasto profile

ln [ρ(r)/ρ−2] = (−2/α)[(r/r−2)
α − 1] , (2.31)

where r−2 marks the radius at which the logarithmic slope of the profile γ(r) = −d ln ρ/d ln r
equals the isothermal value, γ = 2, and ρ−2 is the corresponding density, ρ−2 ≡ ρ(r−2).
Navarro et al. (2010) showed indeed that the latter profile is a better description of galaxy-
sized halos than the original NFW one, arguing about the effective self-similiarity of dark
matter halos. Moreover, it is known that cold dark matter halos have strongly triaxial shapes,
with a slight preference for nearly prolate systems (Frenk et al., 1988; Jing & Suto, 2002; All-
good et al., 2006). This fact has important consequences both on the theoretical and on the
observational side.

Because of the hierarchical nature of structure formation and the fact that collapsed
objects retain information on the background average matter density at the time of their
formation (Navarro, Frenk & White, 1996), concentration (2.26) and mass of a dark matter
halo are related. Since low-mass objects form earlier than high-mass ones, and since in the
past the background average matter density was higher, low-mass halos are expected to have
a higher concentration compared to high-mass ones. These expectations have been confirmed
by the results of N -body numerical simulations which find, at z = 0, a concentration-mass
relation c(M) ∝ Mα, with α ∼ −0.1 (Gao et al., 2008; Zhao et al., 2010). For a given mass,
the concentration evolution with redshift, if any, is still matter of debate (see e.g. Bullock
et al., 2001; Eke et al., 2001; Neto et al., 2007; Duffy et al., 2008; Jing & Suto, 2002; Allgood
et al., 2006; Prada et al., 2011).
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2.2 Baryons in clusters

Beyond the simple picture outlined above, real galaxy clusters are indeed complex objects.
What we call a galaxy cluster is a very different thing depending on the component we are
considering, on the wavelength at which we are observing it and on the technique we are using
to detect and analyze it. Regarding the dark matter component we have addressed so far, a
galaxy cluster is a region which collapsed due to gravitational attraction, with density higher
than the mean density of the Universe and mass of the order of 1014 − 1015 M⊙. On the
one hand, unfortunately, since cold dark matter does not emit electromagnetic radiation, this
component, which counts for the large majority of a cluster mass, is not directly observable,
even if it can be inferred from gravitational lensing measurements. On the other hand, the deep
potential well of the dark matter halo does attract baryons from the outside permitting the
formation of stars and galaxies, which are mainly visible in optical and infrared wavelengths.
From this point of view, a galaxy cluster is a region in the sky where the abundance of galaxies
is higher than the mean. Actually, this is the way in which galaxy clusters were originally
identified and classified by Abell, and this is the reason why they are called in this way.
Still, only a small per cent of the total baryon budget of a cluster is in the form of stars and
galaxies. Most of the baryons reside in a diffuse gas component that goes under the name of
intracluster medium (ICM). Due to the deepness of a cluster gravitational potential, this gas
is in the form of a hot, almost completely ionized plasma which emits at X-ray wavelengths
through bremsstrahlung. Galaxy clusters are characterized by having an extremely luminous,
diffuse and extended X-ray emission. The presence of the ICM inside a cluster has an effect
on the photons coming from the CMB and passing through it. This effect, known as Sunyaev-
Zel’dovich (SZ) effect, results in a distortion of the blackbody spectrum of the CMB, produced
through inverse Compton scattering by the high-energy electrons of the ICM. Thus, at mm-
wavelengths, galaxy clusters can be detected and studied through the SZ effect. Finally, as
predicted by General Relativity, the total mass distribution of a galaxy cluster bends the light
coming from the sources beyond the cluster itself. This effect is known as gravitational lensing.
In particular, if the projected mass density of the lens is high enough, as it happens in the
central regions of galaxy clusters, the gravitational lensing produces multiple images, arcs and
rings of the background sources (strong lensing). In the outer regions, where the projected
mass density is lower, the gravitational lensing manifests itself as a statistical change in the
orientation of the sources beyond the lens (weak lensing).
Thus, if we consider also the baryonic component, galaxy clusters are very complex systems,
in which physics plays a crucial role at many different levels. But thanks to this, they contain
a great amount of information that can be used in cosmological context. Moreover, the
different cosmological constraints obtained from galaxy clusters are somehow orthogonal to
the ones coming from other probes, allowing us to break some degeneracies in the parameters
determination. As pointed out before, the most relevant physical quantity for a galaxy cluster
is its mass, but unfortunately the total mass is not directly observable. So, it is mandatory
to use other observable quantities as proxies for the mass and to have well calibrated scaling
relations between those quantities and the mass itself.

2.2.1 Observational properties of galaxy clusters

Starting from the pioneering works by Zwicky (1933, 1937), Smith (1936) and Abell (1958),
galaxy clusters were first identified through optical observations. Zwicky (1933) was the first
to measure galaxy velocity dispersion inside the Coma cluster, concluding that the visible mass
was not enough to explain the observed velocity dispersion and finding the first observational
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evidence for the necessity of dark matter. Smith (1936) did find the same necessity in the Virgo
cluster. They come to this conclusion by applying the virial theorem of classical mechanics,
that holds for gravitationally bound systems. Abell was the first to systematically catalog
galaxy clusters depending on the richness of galaxy in a given projected area. His catalog
was built by taking all the galaxies in a given area with magnitude brighter than a given
value, after subtracting the background level of galaxies taken from a cluster-free area of the
sky. Basically, given the necessary improvement, this is still the approach used today for the
optical identification of galaxy clusters.

A quantity which is usually linked to the optical galaxy richness is the cluster luminosity,
generally studied through a luminosity distribution function. That function was first proposed
by Schechter (1976) and takes the form

n(L)dL = N∗(L/L∗)−α exp(−L/L∗)d(L/L∗) , (2.32)

where L∗ is a characteristic luminosity (L∗ ≈ 2 × 1010 L⊙) and α ≃ 5/4.

Measuring galaxy velocity dispersion can help to disentangle projection effects and exclude
non-cluster members. This can be done by supposing that the distribution of cluster galaxies
is Gaussian and thus considering galaxies with velocities outside the best-fitting Gaussian
as non-cluster members. Both the virial theorem and the velocity dispersion of galaxies
can be used in principle to determine the mass of a galaxy cluster. But they rely on the
assumptions that galaxy clusters are isolated, steady systems. In reality, clusters are quite
young objects, often still undergoing their relaxation phase, and are not isolated from the rest
of the Universe. Those facts have to be taken into account when applying those techniques
to infer galaxy cluster mass.

Zwicky (1937) was also the first to recognize the importance of gravitational lensing to
trace the dark matter component, even if the first results in this field came out almost thirty
years later. Compared to other methods, gravitational lensing has the advantage that it does
not rely on any assumption about the dynamical state of the cluster. Strong lensing measures
the amount of mass contained in a cylinder limited by the Einstein radius of the system, which
is about one tenth of the virial radius. For this reason it is a very powerful tool to evaluate
the projected mass in the central region of clusters, but it is very sensitive to triaxiality if
one wants to deproject the obtained results. Moreover, the existence itself of arcs in the
strong lensing regime suggests that galaxy clusters should have steep central density profiles
(Hammer & Rigaut, 1989). Weak lensing analysis relies instead on the statistical distortion
of the shape and orientation of objects beyond the lens. This distortion, that can be split into
convergence and shear, is proportional to the gradient of the underlying mass distribution.
Thus weak lensing can be used to study the mass profile of the lens in the outer regions.
Projected mass profiles obtained from weak lensing are generally well fitted by a singular
isothermal sphere or by a NFW profile. An exhaustive review of gravitational lensing can be
found in Bartelmann (2010).

As we already pointed out, galaxy clusters are characterized by a diffuse X-ray emission,
with luminosities of the order of 1043 − 1045 erg s−1, mainly due to bremsstrahlung radiation
from the thermal hot plasma of the ICM. The ICM has typical temperatures of the order of
kT ∼ 1 − 10 keV and Hydrogen column densities of NH . 1022 cm−2. The first property
excludes that the emission can come from a non-thermal plasma with a power law electron
energy distribution, such as the one responsible for radio emission, while the latter excludes
that the origin of the emission resides in compact sources, confirming that the ICM is indeed
diffuse. At temperatures of the order of kT ∼ 1 − 10 keV (T ∼ 107 − 108 K) and electron
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density ne ∼ 10−2 − 10−4 cm−3 the ICM is completely ionized, with the exception of a small
fraction of heavy elements, which are only partially ionized, like Fe which is responsible for a
characteristic emission line at 7 keV. Since the mean free path of the electrons is far smaller
than the typical dimension of a cluster, the plasma can be treated as a fluid.
The most important radiative process that happens in the ICM is bremsstrahlung radiation.
If one integrates the emissivity ǫ(ν) over all the frequencies ν and on the total volume V of
the cluster, the total luminosity in the X-ray band is given by

LX =

∫

V
dV

∫

∆ν
ǫ(ν)dν , (2.33)

that at high temperatures can be approximated as

LX ∼ 〈n2
e〉T 1/2V . (2.34)

That means that the X-ray luminosity of a cluster strongly depends on the gas density, while
the dependence on the temperature is weaker. At densities typical of the ICM and scales
typical of galaxy clusters, the plasma is optically thin and it is transparent to the X-ray
radiation.
X-ray radiation is also the most efficient way of cooling galaxy clusters. The cooling time of
the whole system is comparable to the Hubble time, thus cooling is not so relevant as a global
feature, but plays a fundamental role in regulating the behaviour of galaxy cluster cores. In
principle, in the inner regions of clusters, the densities are so high that the energy loss due to
radiation is not negligible anymore. On the one hand, this is of crucial importance to permit
the formation of stars and galaxies, that can emerge only from cold gas. On the other hand,
if this cooling were not balanced by some form of heating, the system would not be able to
support the external pressure of the gas, ending up with the collapse of the system itself.
A fundamental role in balancing this cooling is played by the feedback from supernovae and
active galactic nuclei (AGNs).
The gas cooling is also very useful for the morphological classification of clusters of galaxies
in X-ray band. Clusters characterized by a well defined central peak in the luminosity also
show a decrease of the temperature in the central regions (r . 100 kpc) and are referred to
as cool-core clusters. They are somewhat representative of the population of relaxed objects,
as opposed to non cool-core clusters which are in general unrelaxed.
The most usual way to describe the radial distribution of the ICM is an extension to the King
model for the regular isothermal sphere (King, 1962) introduced in Cavaliere & Fusco-Femiano
(1976) and known as β-model,

ρgas(r) ∝
[

1 +

(

r

rc

)2
]−3β/2

, (2.35)

where rc is a core radius and

β =
µmpσ

2
r

kT
, (2.36)

where µ is the molecular weight, mp is the proton mass, σr is the velocity dispersion and T
is the temperature of the plasma. This model is in general a good description of the observed
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X-ray surface brightness profiles in the range [1 − 3]rc with βfit ≈ 2/3 and rc ∼ 0.1Rvir
(Jones & Forman, 1984). Despite being a good approximation to observed data, the β-model
is based on physical assumptions that are rather too simple and not always realized in nature.
In particular, it is known that galaxy clusters are not isothermal but show a temperature
profile T (r), than in principle can influence the value of β. Basically, one can fit a polytropic
model T ∝ ργ−1

gas , with polytropic index γ running between 1 and 5/3, corresponding to the
isothermal and adiabatic case, respectively.

Under the hypothesis of hydrostatic equilibrium, the total mass of a galaxy cluster can be
determined once the radial profiles of the ICM density and temperature are known. Under
this hypothesis, it is possible to recover the total gravitating mass as a function of radius
through

Mtot(r) = −kT (r)r

µmpG

(

d ln ρgas
d ln r

+
d lnT

d ln r

)

, (2.37)

which shows a stronger dependence on gas temperature than on gas density.

2.2.2 Baryon fraction

The census of baryons inside galaxy clusters depends on both the radius within which we are
considering the matter distribution and the total mass of the system. The gas-to-stellar mass
ratio increases from nearly unity in cores of small groups (∼ 1013 M⊙) to a factor of five more at
large radii of big clusters (∼ 1015 M⊙) (David et al., 1995; Gonzalez et al., 2007). Additionally,
since the ICM is more diffuse than dark matter, the gas fraction fgas = Mgas/Mtot is increasing
with radius in groups and clusters, reaching an almost constant value of about 0.13 at large
radii of hot and massive clusters (David et al., 1995; White & Fabian, 1995; Allen et al.,
2004; Vikhlinin et al., 2006; De Boni & Bertin, 2008). This value is somewhat smaller than
the cosmological one of 0.17 by an amount that can be expressed through the depletion
parameter bgas ≡ fgas/(Ω0b/Ω0m).

The gas fraction obtained from X-ray observations is an important quantity if one wants to
use galaxy clusters as cosmological probes. There are two methods, orthogonal to the others
involving different cosmological probes, which use galaxy clusters to constrain the amount
of matter and the geometry of the Universe (see e.g. Allen et al., 2004; Ettori et al., 2009).
On the one hand, together with independent determinations of Ωb from CMB and primordial
nucleosynthesis, fgas can be used to constrain the total amount of matter in the Universe
through Ωm = Y Ωb/fgas, where Y is a factor, estimated from hydrodynamical simulations,
accounting both for the depletion parameter and the fact that not all the baryons in a cluster
are contained in the ICM. On the other hand, since fgas ∝ dA

3/2, where dA(Ωm,ΩDE, wDE)
is the angular distance of the cluster, its value can be used to constrain the geometry of
the Universe, under the assumption that the gas fraction is constant with redshift. Allen
et al. (2008) applied this method using Chandra measurements of 42 X-ray luminous, hot and
relaxed galaxy clusters. In Fig. 2.1 we show a comparison between the apparent fgas value as
a function of redshift in a flat ΛCDM cosmology (Ωm = 0.3,ΩΛ = 0.7, h = 0.7) and the one
in a standard cold dark matter (SCDM) cosmology (Ωm = 1, h = 0.5). The gas mass fraction
is evaluated at R2500 which is the radius within which the matter density of the cluster is
2500 times the critical density. The results for ΛCDM are consistent with the hypothesis of
no evolution of fgas with redshift, while the results for SCDM are clearly inconsistent with
this prediction.
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Figure 2.1: Apparent variation of the X-ray gas mass fraction within R2500 as a function of redshift
for (left panel) a ΛCDM cosmology (Ωm = 0.3,ΩΛ = 0.7, h = 0.7) and (right panel) a SCDM
(Ωm = 1, h = 0.5) cosmology. From Allen et al. (2008).

2.2.3 Scaling relations

Since mass is not a directly observable quantity, one should rely on some proxies to infer the
total mass of galaxy clusters, which is used to constrain cosmological parameters. Moreover, it
is important to have robust, low-scatter scaling relations between these proxies and the mass.
X-ray observables are in general good proxies because they are relatively easy to observe and
are tightly correlated to total cluster mass.
Under the hypothesis of hydrostatic equilibrium,

d(ρgasT )

dr
≈ ρgasGMtot

r2
, (2.38)

one has Mtot ∝ TR and, given the definition of the total mass at a given overdensity ∆z,
Mtot ∝ E2

z∆zR
3,

Ez∆
1/2
z Mtot ∝ T 3/2 . (2.39)

In the same way, one can relate the luminosity LX and the temperature T of the plasma using
the fact that, at high temperatures, its emissivity is linked to the temperature by

ǫ ∝ Λ(T )n2
e ∝ T 1/2n2

e . (2.40)

Then,

LX ≈ T 1/2n2
eR

3 ≈ T 1/2f2
gasM

2
totR

−3 ≈ f2
gasT

2 , (2.41)

using equation (2.39), as long as fgas is independent of temperature and total mass. Starting
from these relations, one can derive a set of self-similar (not counting for additional heating
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or cooling) scaling laws between the physical properties of galaxy clusters. In particular,
combining all the cosmological dependence in the factor Fz = Ez(∆z/∆z=0)

1/2, one gets the
following scaling relations:

FzMtot ∝ T 3/2 , (2.42)

FzMgas ∝ T 3/2 , (2.43)

F−1
z LX ∝ T 2 , (2.44)

F−7/3
z LX ∝M

4/3
tot . (2.45)

Kravtsov et al. (2006) introduced a new quantity as mass proxy, namely the X-ray equiv-
alent of the SZ Compton parameter, YX = Mgas × T . The corresponding scaling relation is
given by

F 2/5
z Mtot ∝ Y

3/5
X . (2.46)

Using this proxy, which has a lower intrinsic scatter compared to the others, Vikhlinin et al.
(2009a) built a mass function for galaxy clusters observed with Chandra in two redshift bins.
The low-redshift sample contains 49 objects in the range 0.025 < z < 0.22, while the high-
redshift sample contains 36 objects in the range 0.35 < z < 0.9, with mean redshift 〈z〉 ≈ 0.55.
In Fig. 2.2 we show the measured mass functions at low and high redshifts compared with
predictions for a flat ΛCDM model (Ωm = 0.25,ΩΛ = 0.75, h = 0.72) and an open cold dark
matter model (OCDM) without dark energy (Ωm = 0.25,ΩΛ = 0, h = 0.72). In the ΛCDM
case, the measured mass function is in good agreement with theoretical expectations in both
redshift bins, while in the OCDM case the data are in tension with the predicted cluster
number density in the high redshift bin.

An analysis of the X-ray luminosity scaling relations in a sample of 31 galaxy clusters from
the Representative XMM-Newton Cluster Structure Survey (REXCESS) was presented in Pratt
et al. (2009). In Fig. 2.3, Fig. 2.4, and Fig. 2.5 we show the results for the LX −T , LX −YX ,
and LX −M relations, respectively. The luminosity in the bolometric [0.01 − 100] keV X-ray
band is evaluated both for the entire cluster emission within R500 and in the [0.15 − 1]R500

aperture. R500 is estimated iteratively from the YX −M500 relation of Arnaud et al. (2007).
For the REXCESS sample, the slopes of the LX−T , LX−YX , and LX−M best-fitting relations
are all steeper than the self-similar expectations. The simple exclusion of the emission within
0.15 R500 results in a reduction of the scatter in all the relations. The results strongly depend
both on the fitting method and the dynamical state of the systems in the sample.

2.2.4 Observed c − M relation

As we already said in Subsection 2.1.4, the concentration of a dark matter halo is linked to
its mass through the c−M relation. Numerical simulations generally agree with a power law
relation with slope ≈ −0.1, with a log-normal scatter ranging from 0.15 for relaxed systems
to 0.30 for disturbed ones (Jing, 2000). This is true for idealized, dark matter only clusters,
but in real objects the impact of baryon physics is strong, in particular in the inner regions.
Indeed, even if the ICM is described by a cored β-model profile (2.35), in the central region it
tends to cool and to form stars, which accumulate in the core of the cluster, thus increasing the
total concentration. Moreover, it is supposed that this baryon contraction does also affect the
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Figure 2.2: Measured mass functions and predicted models at low and high redshifts for (left panel)
a ΛCDM cosmology (Ωm = 0.25,ΩΛ = 0.75, h = 0.72) and (right panel) an OCDM (Ωm = 0.25,ΩΛ =
0, h = 0.72) cosmology. In the right panel, both the data and the models at high redshift are changed
relative to the ΛCDM case. From Vikhlinin et al. (2009a).

dark matter component, through an adiabatic contraction effect, leading thus to an increase
of the dark matter concentration. The adiabatic contraction model has been described in
Blumenthal et al. (1986) and Ryden & Gunn (1987), but, for an updated treatment, see also
Fedeli (2011) and references therein. Numerical simulations to study the impact of baryon
physics on the structure of dark matter halos were carried out in Duffy et al. (2010). The
reason for that was to try to reconcile the discrepancy between the expectations from dark
matter only simulations and the concentrations inferred from observations, as pointed out
in Duffy et al. (2008). Actually, there is still poor agreement between the observed c −M
relation and the predicted one, with the first having, in general, a steeper slope and a higher
normalization compared to the latter.

A census of the observed c−M relation from different authors can be found in Fedeli (2011).
In Fig. 2.6 we show, from that work, the comparison between the observed c−M relations of
Buote et al. (2007), Comerford & Natarajan (2007), Ettori et al. (2010), Oguri et al. (2012),
Schmidt & Allen (2007), and Wojtak & Łokas (2010) with the predictions from Gao et al.
(2008) at z = 0, namely a power law relation c ∝ M−α with α = 0.138. Fedeli (2011) found
that, in general, the observed c−M relation is steeper than the one predicted from numerical
simulations, independently of the way in which clusters are observed and selected. In the
cases where the slope is consistent with theoretical predictions, i.e. Comerford & Natarajan
(2007) and Wojtak & Łokas (2010), the normalization is too high to agree with a ΛCDM
cosmology with σ8 ∼ 0.8.
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Figure 2.3: (Top-left panel) LX − T relation for the REXCESS sample (quantities derived from all
emission within R500). The best-fitting power law relations for two different methods are overplotted
as solid red and blue lines. (Top-right panel) Histogram of the log space residuals about the best-
fitting LX − T relation, derived for each fitting method. (Bottom-left panel) LX − T relation for the
REXCESS sample (quantities derived from emission in the [0.15 − 1]R500 aperture). The best-fitting
power law relation is overplotted as a solid line. (Bottom-right panel) Histogram of the log space
residuals about the best-fitting LX − T relation. For the details, see Pratt et al. (2009).
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Figure 2.4: (Top-left panel) LX − YX relation for the REXCESS sample (luminosity derived from all
emission within R500). The best-fitting power law relation is overplotted as a solid line. (Top-right
panel) Histogram of the log space residuals about the best-fitting LX−YX relation. (Bottom-left panel)
LX − YX relation for the REXCESS sample (luminosity derived from emission in the [0.15 − 1]R500

aperture). The best-fitting power law relation is overplotted as a solid line. (Bottom-right panel)
Histogram of the log space residuals about the best-fitting LX − YX relation. For the details, see
Pratt et al. (2009).
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Figure 2.5: (Left panel) LX −M relation for the REXCESS sample, with the mass estimated from
the YX −M relation (luminosity derived from all emission within R500). The best-fitting power law
relation is overplotted as a solid line. (Right panel) LX −M relation for the REXCESS sample, with
the mass estimated from the YX −M relation (luminosity derived from emission in the [0.15− 1]R500

aperture). The best-fitting power law relation is overplotted as a solid line. For the details, see Pratt
et al. (2009).

The first explanation for the discrepancy between the predicted and the observed c −M
relations can be searched in the fact that N-body simulations lack the contribution from
baryonic physics. Numerical simulations including also hydrodynamics should give a more
realistic representation of observed objects. In particular, the cooling of gas in the very central
regions of halos and the consequent formation of galaxies should increase the concentration of
the halos, in particular in low-mass objects, thus increasing the slope of the c−M relation.
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Figure 2.6: Observed c −M relation for groups and galaxy clusters. The panels refer to different
catalogs. In each panel, the solid pink line represents the best-fit of a power law relation c ∝M−α to
the observed points, with quoted slope α, while the blue dashed line is the predicted c −M relation
from Gao et al. (2008). From Fedeli (2011).



Chapter 3

Padme Simulation: general properties

Since galaxy clusters occupy the highly non-linear regime of structure formation, we need
numerical simulations to follow the evolution of density perturbations in this regime. In this
chapter, we will introduce the Padme cosmological simulation set and discuss in detail its
general properties. After a brief discussion of numerical simulations techniques in Section
3.1, in Section 3.2 the Padme simulation set will be discussed and in Section 3.3 the study
of the mass functions of the selected sample will be analysed. Section 3.4 is centred on the
analysis of the X-ray L− T relation, while in Section 3.5 the X-ray observables functions will
be studied. In Section 3.6 we will describe the analysis and the results of the study of the
cluster baryon fraction, while conclusions will be drawn in Section 3.7. Most of the results
presented in this chapter can be found in De Boni et al. (2011).

3.1 Numerical simulations

We begin this chapter by briefly reviewing the techniques used to perform cosmological nu-
merical simulations similar to the ones used in this work. For extensive reviews, see Dolag
et al. (2008) and Borgani & Kravtsov (2009). Depending on the problem under investigation,
a numerical simulation is designed as a compromise between the simulated volume and the re-
quired resolution, given the amount of computational time. The typical sizes of the simulated
volume range from 1 Mpc to 1 Gpc and the typical mass resolution varies from 105 M⊙ to
1010 M⊙. Basically, numerical techniques can be split into two broad families: N -body codes
to simulate the evolution of dark matter particles and hydrodynamical codes to simulate the
behaviour of baryonic matter.

In N -body simulations, the cold dark matter can be described by a collisionless, non-
relativistic fluid obeying the collisionless Boltzmann equation and the Poisson equation. The
set of equations describing the motion of dark matter particles can be solved in different ways.
The most straightforward way is to directly sum the contributions of dark matter particles to
the gravitational potential. In principle, this should return the correct Newtonian potential,
but, given the finite resolution of the simulations, it is necessary to introduce a softening
length ǫ to reduce the two-body relaxation generated by the fact that the number of dark
matter particles in the simulations is not big enough to fully represent a collisionless fluid.
This method is the most accurate to solve the N -body problem but it is also computationally
demanding, with the computing time scaling as N2 if N is the number of particles.
Another method to solve the N -body problem is the so-called tree algorithm. This method
consists in grouping the particles into cells and treating distant groups as macroparticles.
This reduces the computing time proportionality to N logN . As a drawback, the final results
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of the tree algorithm is only an approximation of the true gravitational force.
A third possibility is the Particle-Mesh (PM) method which computes the force on a mesh,
by substituting differential operators with differences. The shortcoming of this technique is
its limited resolution, counterbalanced by the fact that it is extremely fast. The computation
time is proportional to N+Nc logNc, where Nc is the number of mesh cells. Given the limited
dynamical range, in cosmological simulations Adaptive Mesh Refinement (AMR) methods are
required to follow the formation of individual objects.
Hybrid methods built by combining the particle-mesh and tree techniques can substantially
improve the performance of the computation. In TreePM methods, the gravitational potential
is split in a long-range term (computed with particle-mesh methods) and a short-range term
(computed by tree algorithm). In comparison with the ordinary tree methods, in TreePM

there is a gain in the accuracy of the long-range force. An example of a code using TreePM

is the GADGET code (Springel, 2005), used here.

In hydrodynamical simulations, the baryonic content of the universe can be described
as an ideal fluid obeying the Euler equation, the continuity equation and the first law of
thermodynamics. Broadly speaking, the numerical schemes developed to solve the combined
system of collisionless dark matter and collisional baryonic fluids fall into two categories:
Eulerian (grid-based) methods and Lagrangian (particle-based) methods.
In Eulerian methods, the equations are solved on a grid representing the volume elements
of the fluid, and the thermodynamical variables are evaluated at fixed points in the space.
Modern methods do not consider the central value of the cell, but instead increase the order of
accuracy through, e.g., piecewise parabolic method (PPM). The main limitation of grid-based
methods is given by spatial resolution, while they work remarkably well in describing shocks
and both low- and high-density regions. Lagrangian methods are based on the smoothed
particle hydrodynamics (SPH), which discretises the fluid in mass (particle) elements. SPH
can achieve a good spatial resolution in high-density regions, but has limitations in low-
density regions and has resolution problems in describing shocks, due to the presence of non-
negligible artificial viscosity. Nevertheless, in cosmological context, the advantages of SPH
compensate these drawbacks, making this scheme the most commonly used in cosmological
hydrodynamical simulations. SPH methods are characterized by a smoothing length h that,
for each particle, describes the radius of a sphere containing n neighbours particles. The
choice of n, being a compromise between noise and systematics, depends on the problem
under investigation.

Beyond these simple schemes of gravitational instability and hydrodynamical flows, in
order to simulate more realistic cases, other astrophysical processes can be added in the
numerical codes. Typical examples are cooling, star formation, supernova and AGN feedback,
galactic winds. The inclusion of this additional physics is of fundamental importance if one
wants to compare the results of numerical simulations with real observations.

3.2 Padme Simulation

In order to study the formation and evolution of large scale structures in the different cos-
mological scenarios introduced in Chapter 1, we use a set of cosmological simulations, called
Padme, run by Klaus Dolag at the “Leibniz-Rechenzentrum” in Garching. Padme is a set of
N -body and N -body + hydrodynamical simulations done with the GADGET-3 code (Springel
et al., 2001; Springel, 2005), which makes use of the entropy-conserving formulation of SPH
(Springel & Hernquist, 2002). We extended the dark energy implementation as described in
Dolag et al. (2004) to allow the code to use an external, tabulated Hubble function as well as
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a tabulated correction to the gravity constant needed for the extended quintessence models,
as explained in Pettorino & Baccigalupi (2008). The hydrodynamical simulations include ra-
diative cooling, heating by a uniform redshift-dependent UV background (Haardt & Madau,
1996), and a treatment of star formation and feedback processes. The prescription of star
formation we use is based on a sub-resolution model to account for the multi-phase structure
of the interstellar medium (ISM), where the cold phase of the ISM is the reservoir of star
formation (Springel & Hernquist, 2003). Supernovae (SNe) heat the hot phase of the ISM
and provide energy for evaporating some of the cold clouds, thereby leading to self-regulation
of the star formation and an effective equation of state to describe its dynamics. As a phe-
nomenological extension of this feedback scheme, Springel & Hernquist (2003) also included
a simple model for galactic winds, whose velocity, vw, scales with the fraction η of the Type
II SN feedback energy that contributes to the winds. The total energy provided by Type II
SN is computed by assuming that they are due to exploding massive stars with mass > 8 M⊙

from a Salpeter (1955) initial mass function, with each SN releasing 1051 ergs of energy. We
have assumed η = 0.5, yielding vw ≃ 340 km s−1.

For the dark matter only N -body simulations, for each cosmological model, we simulated
a cosmological box of size (300 Mpc h−1)3, resolved with (768)3 dark matter particles with a
mass of mdm ≈ 4.4×109 M⊙ h−1. For the hydrodynamical simulations, for each cosmological
model, we simulated a cosmological box of size (300 Mpc h−1)3, resolved with (768)3 dark
matter particles with a mass of mDM ≈ 3.7 × 109 M⊙ h−1 and the same amount of gas
particles, having a mass of mgas ≈ 7.3 × 108 M⊙ h−1.

As in Dolag et al. (2004), we modified the initial conditions for the different dark energy
scenarios adapting the initial redshift for the initial conditions in the dark energy scenarios
determined by the ratio of the linear growth factors D+(z),

D+(zini)

D+(0)
=
D+,ΛCDM(zini

ΛCDM)

D+,ΛCDM(0)
. (3.1)

Additionally, the peculiar velocities of the particles are corrected according to the new redshift
to reflect a consistent application of the Zel’dovich approximation (Zel’dovich, 1970),1

ẋ(t) = Ḋ+(t)H(t)∇qΦ(~q) . (3.2)

Finally we also correct the velocities of the particles due to the changed displacement field at
the new redshift according to

~v ini = ~v ini
ΛCDM

Ḋ+(zini)H(zini)

Ḋ+,ΛCDM(zini
ΛCDM)HΛCDM(zini

ΛCDM)
. (3.3)

Therefore, all simulations start from the same random phases, but the amplitude of the initial
fluctuations is rescaled to satisfy the constraints given by CMB.

As a reference model we use the ΛCDM model, adapted to the WMAP3 values (Spergel
et al., 2007), with the following cosmological parameters:

1Note that, unlike in previous works, here we do not use the approximation (2.10) Ω0.6
m for Ḋ+(t) as this

would lead to small inaccuracies in some of the dark energy scenarios.
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Figure 3.1: Redshift evolution of the equation of state parameter w for the different cosmological
models considered: ΛCDM (black), RP (blue), SUGRA (green), EQp (cyan), and EQn (red).

• matter density: Ω0m = 0.268

• dark energy density: Ω0Λ = 0.732

• baryon density: Ω0b = 0.044

• Hubble parameter: h = 0.704

• power spectrum normalization: σ8 = 0.776

• spectral index: ns = 0.947

We trimmed the parameters of the four dynamical dark energy models so that w0 = w(0) ≈
−0.9 is the highest value still consistent with observational constraints in order to amplify the
effects of dark energy. Fig. 3.1 shows the evolution with redshift of w in each cosmology. The
parameters Ω0m, Ω0Λ, Ω0b, h, and ns are the same for all the models, but since we normalize
all the dark energy models to CMB data from WMAP3, this leads to different values of σ8

for the different cosmologies:

σ8,DE = σ8,ΛCDM
D+,ΛCDM(zCMB)

D+,DE(zCMB)
, (3.4)

assuming zCMB = 1089. This fact, along with the different evolution of the growth factor
D+ (shown in Fig. 3.2), has an impact on structure formation. In Fig. 3.3 we plot the star
formation rate density (SFRD) as a function of redshift for all the models considered. The
SFRD in general follows the growth of the perturbations as shown in Fig. 3.2. Table 3.1 lists
the parameters chosen for the different cosmological models.

In Fig. 3.4 we show a density slice of depth equal to 1/64 of the box size through the
whole box for each of the five models considered at z = 0. At first sight, we can see that the
structures form in the same place in the different cosmologies since the initial phases are the
same. Moreover, the differences among the models are small and cannot be seen with the eye;
indeed, an accurate statistical analysis is needed to understand the properties of the objects
in the different models.
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Table 3.1: Parameters chosen for the different cosmological models: α is the exponent of the inverse
power law potential; ξ is the coupling in the extended quintessence models; wJBD0 is the present
value of the parameter introduced in equation (1.77); w0 is the present value of the equation of state
parameter for dark energy; σ8 is the normalization of the power spectrum as in equation (3.4).

Model α ξ wJBD0 w0 σ8

ΛCDM — — — −1.0 0.776
RP 0.347 — — −0.9 0.746
SUGRA 2.259 — — −0.9 0.686
EQp 0.229 +0.085 120 −0.9 0.748
EQn 0.435 −0.072 120 −0.9 0.729

Figure 3.2: Redshift evolution of the growth factor D+, normalized to the corresponding σ8, for the
different cosmological models considered: ΛCDM (black), RP (blue), SUGRA (green), EQp (cyan),
and EQn (red).

Figure 3.3: SFRD as a function of redshift for the ΛCDM model (black), RP (blue), SUGRA (green),
EQp (cyan), and EQn (red) cosmologies.
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CDMΛ

RP SUGRA

EQp EQn

Figure 3.4: Density slice of depth equal to 1/64 of the box size through the whole simulation box for
the five different models at z = 0.
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Using the outputs of simulations, we extract galaxy clusters from the cosmological boxes,
using the spherical overdensity criterion to define the collapsed structures. We take as halo
centre the position of the most bound particle. Around this particle, we construct spherical
shells of matter and stop when the total (i.e. dark matter plus gas plus stars) overdensity
drops below 200 times the mean (as opposed to critical) background density defined by Ω0mρ0c;
the radius so defined is denoted with R200m and the mass enclosed in it as M200m. For this
part of the work, we consider only halos that have M200m > 1.42 × 1014 M⊙ (corresponding
to M200m > 1014 M⊙ h−1). We select and study objects at three different redshifts, z = 0,
z = 0.5, and z = 1. For the following analysis, we also calculate for each cluster selected in this
way the radius at which the overdensity drops below 200 (500) times the critical background
density and denote it with R200 (R500). The corresponding mass is indicated as M200 (M500).
Just as a reference, the most massive object of all the simulations has M200m = 3.15×1015 M⊙.
The number of clusters at each redshift is different for each cosmology: for example, the sample
at z = 0 is made up by 563 clusters in the ΛCDM cosmology, 484 in RP, 352 in SUGRA, 476 in
EQp, and 431 in EQn. This fact directly reflects the different values of σ8 and D+ leading to
differences in the formation history of the halos. No morphological selection has been made
on the sample considered, so that clusters in very different dynamical state are included.
Nevertheless, it is useful to define a quantitative criterion to decide whether a cluster can be
considered relaxed or not because, in general, relaxed clusters have more spherical shapes,
better defined centres and thus are more representative of the self-similar behaviour of the
dark matter halos. We use a simple criterion similar to that introduced in Neto et al. (2007):
first of all we define xoff as the distance between the centre of the halo (given by the most
bound particle) and the barycentre of the region included in R200m; then we define as relaxed
the halos for which xoff < 0.07R200m.

3.3 Mass function

As we have seen in Chapter 2, a standard way to use galaxy clusters as cosmological probe
is the study of their mass function. Since the total mass of these objects is dominated by
dark matter, it is a tracer of structure formation in different cosmological models. In the top
panel of Fig. 3.5 we plot the cumulative mass functions for the different cosmologies at three
different redshifts: z = 0, z = 0.5 and z = 1. This plot simply illustrates the number of halos
per unit volume having a total mass greater than a given mass threshold. We can see that the
shape and the properties of the mass functions are substantially the same at different redshifts
(with the obvious exception of the maximum mass of the formed halos), with ΛCDM forming
more clusters of a given mass compared to the other cosmologies; SUGRA is the cosmology
which forms fewer clusters, while RP, EQp and EQn lie in between, with RP and EQp being
the closest to ΛCDM. This fact seems to directly reflect the redshift evolution of the equation
of state parameter w (see Fig. 3.1) and of the growth factor (see Fig. 3.2), given the different
value of σ8 in the different models. Actually, for extended quintessence models, a positive
value of the coupling ξ leads to G̃ > G∗ in the past, and vice versa for a negative ξ. Therefore,
the linear density contrast is expected to be higher for EQp than for EQn. In a spherical
collapse model like the Press-Schechter formalism (Press & Schechter, 1974), this implies a
higher mass function for models with negative coupling (i.e. EQn) than for models with
positive coupling (i.e. EQp), when all the other parameters are kept fixed (see Subsection
2.1.3). In our case, this effect is somehow mitigated by the different σ8 used.

In the bottom panel of Fig. 3.5 we plot (always at z = 0, z = 0.5 and z = 1) the ratios
between the number of clusters in a given dark energy model with respect to the corresponding
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Table 3.2: Ratios between the number of clusters in the simulated volume for a given dark energy
model with respect to NΛCDM in the given M200m bin at different redshifts.

M200m [1014 M⊙] z NΛCDM RP SUGRA EQp EQn
> 1.42 0 563 0.86 0.63 0.85 0.77
> 1.42 0.5 202 0.81 0.52 0.80 0.69
> 1.42 1 45 0.78 0.47 0.76 0.64

1.42 − 5 0 507 0.88 0.65 0.86 0.78
5 − 10 0 45 0.69 0.42 0.69 0.67
> 10 0 11 0.82 0.36 0.82 0.64

value in ΛCDM. For each cosmology, we consider only bins in which we have more than one
object. The same results are summarized also in Table 3.2. At z = 0, RP, EQp, EQn, and
SUGRA form 86%, 85%, 77%, and 63% the number of objects formed in ΛCDM, respectively.
These numbers decrease with increasing redshift, reaching, at z = 1, 78%, 76%, 64%, and
47% for RP, EQp, EQn, and SUGRA, respectively. This fact indicates that the differences
in the formation history are more evident at high redshift. If we consider different mass bins
at z = 0, we see that the differences between ΛCDM and the other models are enhanced for
very massive objects, in particular for SUGRA.

Note that we have considered here minimally coupled models and scalar-tensor theories,
as illustrated in Chapter 1. Couplings with dark matter only, where, as in equation (1.85),
an additional velocity-dependent term is present, have been shown to lead to different results
(Baldi & Pettorino, 2011), increasing the number of massive clusters at high redshift. Differ-
ences between these sets of models have been illustrated in detail in Pettorino & Baccigalupi
(2008).

In principle, if we can count all the clusters above a given mass threshold, or in a given
mass bin, we can try to discriminate between different cosmologies just using cluster number
counts coming from cosmological surveys. From a practical point of view, evaluating the mass
of galaxy clusters requires the assumption of some hypotheses on their dynamical state, and
in general it is not an easy task to perform. So it is better to consider cluster properties that
are directly observable (like X-ray luminosity and temperature) in order to distinguish among
different cosmologies. We discuss these topics in the next two sections.

In Fig. 3.6 we show the cumulative M500 mass functions for our five cosmological models
at z = 0 and z = 0.5 and, as a comparison, the observed ΛCDM mass functions for the
z = 0.025 − 0.25 and z = 0.45 − 0.55 samples of Vikhlinin et al. (2009b) (see Subsection
2.2.3). If we take our ΛCDM model as a reference, we see that, within error bars, there is a
good agreement between our mass function at z = 0 and both observed data and theoretical
predictions. The discrepancy we see in the high-mass tail of the mass function is due to
sample variance caused by the finite size of our cosmological box. We discuss in more detail
the issue of the box size in Section 3.5, but we note here that the last three points of our mass
function, corresponding to 6 × 1014 M⊙, 7 × 1014 M⊙, and 8 × 1014 M⊙, represent 4, 2, and
1 objects respectively. We are using Poissonian errors σN = N1/2, where N is the number
of objects, but a better approximation when N is small is σN ∼ 1 + (N + 0.75)1/2 (see e.g.

Gehrels, 1986). At z = 0.5 there is a consistent agreement between our mass function and the
predicted one, while there is some tension with the data, which show a deficit at intermediate
masses as already noted by Vikhlinin et al. (2009b).

It is interesting to compare the observed mass function of Vikhlinin et al. (2009b) with the
one that we can recover by applying their Mtot − YX relation
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Figure 3.5: (Top panel) Cumulative mass function at z = 0, z = 0.5 and z = 1 for the ΛCDM (black),
RP (blue), SUGRA (green), EQp (cyan), and EQn (red) cosmologies. For each cosmological model
the mass of the most massive object at each redshift is marked by a cross. Error bars (shown only
for ΛCDM for clarity reasons) are Poissonian errors for the cluster number counts. (Bottom panel)
Ratios between the mass functions for different dark energy cosmologies and the corresponding values
for ΛCDM at z = 0, z = 0.5 and z = 1.
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Figure 3.6: (Top panel) Cumulative M500 mass function at z = 0 for the ΛCDM (black), RP (blue),
SUGRA (green), EQp (cyan), and EQn (red) cosmologies. Error bars (shown only for ΛCDM for
clarity reasons) are Poissonian errors for the cluster number counts. The violet points are observed
data from the z = 0.025−0.25 sample of Vikhlinin et al. (2009b). The violet line shows the prediction
from Tinker et al. (2008) for the adapted cosmological model (Ωm = 0.28, ΩΛ = 0.72, h = 0.72), with
only σ8 = 0.746 fit to the cluster data. (Bottom panel) The same as in the top panel, but for z = 0.5
and observed data from the z = 0.45 − 0.55 sample of Vikhlinin et al. (2009b).
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Figure 3.7: Cumulative M500 mass function at z = 0 (dashed black line) and mass function recovered
from the YX500 parameter (solid black line) for the ΛCDM cosmology. Error bars are Poissonian
errors for the cluster number counts. The violet points are observed data from the z = 0.025 − 0.25
sample of Vikhlinin et al. (2009b). The violet line shows the prediction from Tinker et al. (2008) for
the adapted cosmological model (Ωm = 0.28, ΩΛ = 0.72, h = 0.72), with only σ8 = 0.746 fit to the
cluster data.

M500 = 5.77 × 1014 M⊙ h1/2(YX/3 × 1014 M⊙ keV)0.57E(z)−2/5 , (3.5)

to our clusters. We will discuss the X-ray properties of our simulated clusters in the next
two sections, but we anticipate in Fig. 3.7 the results for the mass function. We see that
the agreement between our recovered mass function, the observed data and the theoretical
model is remarkable, while there is some discrepancy between the true mass function and the
recovered one. Still, the differences at a given mass are of the order of few objects, well within
the variance due to the finite size of the simulated box and the slightly different values of σ8.

3.4 L − T relation

Once we have analysed the general composition of our sample, we can now proceed with the
study of the properties of the objects inside the sample. We recall that, when considering
self-similar evolution of gravitational systems, we can derive simple scaling relations between
their properties. The existence of such scaling relations is confirmed by observations, even
if in general they have a different shape compared to the ones predicted by self-similarity,
indicating an important role of some non-gravitational physics in the evolution of these sys-
tems (see Subsection 2.2.3). We use the hydrodynamical runs of the Padme simulation set
in order to understand whether the baryon physics introduces any scale dependence that can
break the self-similarity of the scaling relations. Since one of the aims of this work is to
study whether there exist observable quantities that can be used to distinguish among the
different cosmologies considered, we start studying the X-ray L − T relation of our sample,
also comparing it to observations to verify that the observed relation holds for our simulated
objects too. In order to do that, for each cluster we want to analyse we produce 2D maps
of (5 Mpc)2 size of the X-ray luminosity LX and emission-weighted temperature Tew in the
[0.5 − 2] keV soft band. The latter is defined by



56 Padme Simulation: general properties

Tew ≡
∫

Λ(T )n2TdV
∫

Λ(T )n2dV
, (3.6)

where n is the gas density and Λ(T ) is the cooling function. As an example, we show in
Fig. 3.8 the 2D X-ray luminosity and emission-weighted temperature maps of two objects
extracted from the ΛCDM box at z = 0, one non cool-core cluster and one cool-core cluster
(see Subsection 2.2.1). In particular, the non cool-core system is the most massive cluster
in the whole Padme simulation set, while the cool-core one is a typical example of relaxed
cluster.
Then, for each object, we evaluate the total luminosity and the emission-weighted temperature
in the region [0.15 − 1]R500. We decide to cut the core for two reasons: first of all, despite
the fact we use accurate physical models to describe the hydrodynamics of the simulations,
still we do not include AGN feedback, so they are not optimized for the study of the central
regions of the clusters; secondly, we have checked that cutting the core we obtain a lower
dispersion of our data in the L−T plane. We stress that despite excluding the central region
of the clusters in our analysis we can still draw robust conclusions from a cosmological point
of view, avoiding the effects of detailed physical processes which can affect the inner parts.
Moreover this cut is often used in observations to avoid problems with cool-core emission that
can lead to a deviation from the self-similar scaling relation. Having generated luminosity
and temperature catalogues of our sample, we can proceed with the analysis of the L − T
relation.

In the top panel of Fig. 3.9 we plot the L−T relation at different redshifts (z = 0, z = 0.5
and z = 1) for the ΛCDM cosmology. Here we correct the luminosity using E−1

z ≡ H0/H,
which is a factor containing all the predicted dependence on the cosmology (see e.g. Ettori
et al., 2004). We can see that there are not substantial differences at the various redshifts,
but in general at high redshift we lack clusters in the luminosity region below 1043 erg s−1

and in the temperature region below 2 keV. This fact can be explained as a selection effect
in our sample: at high redshift, only more evolved (and thus more luminous and hotter)
clusters are massive enough to be included in our sample. We also provide a fit to our points,
fitting the linear relation between the logarithms of luminosity and temperature. We find a
slope of 1.81, which is slightly higher than the self-similar value of 1.5 expected for the soft
band considered. Finally we plot a collection of observed data at different redshifts compiled
by Pratt et al. (2009). The luminosities are taken exactly in the same way as we did, i.e.

in the [0.15 − 1]R500 region and in the [0.5 − 2] keV band, while they use spectroscopically
determined temperatures (see the details in Pratt et al., 2009). The slope of their best-fit
relation is 2.53 ± 0.16, steeper than what we found. Despite the difference in the slope,
we can see that in the high-temperature/high-luminosity region where we have a sufficient
number of both observed and simulated objects, the agreement is very good. In any case, we
stress that a direct comparison between simulations and observations is not the main target
of this work. Here, we just want to show that our simulated clusters lie in a region in the
L − T plane which is the same as the observed objects. Regarding the differences we find
in the low-temperature/low-luminosity region, we stress that it is not due to overcooling in
the simulations, since we are cutting the core; more likely, this region is populated by objects
with lower mass, for which the detailed physical processes acting in the inner regions (e.g.
AGN feedback) have important effects also on the overall properties of the clusters (see e.g.

Puchwein et al., 2008).
In the bottom panel of Fig. 3.9 we plot the evolution with redshift of the mean luminosity

and temperature in the different cosmologies. We consider only the relaxed clusters at z = 0,
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Figure 3.8: (Top panel) 2D maps of the X-ray luminosity in the [0.5−2] keV soft band for two objects
extracted from the ΛCDM box at z = 0, one non cool-core cluster (left) and one cool-core cluster
(right). (Bottom panel) 2D maps of the X-ray emission weighted temperature in the [0.5− 2] keV soft
band for the same two object as in the top panel. The size of each map is (5Mpc)2.
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z = 0.5 and z = 1. Then, for each cosmology, we select the ten most massive objects at each
redshift, using M200 for this selection. Actually, at z = 1 for the SUGRA model we only have
six relaxed clusters, and we consider all of them. At this point, at each redshift, we evaluate
the mean luminosity and temperature of the selected objects both in the region inside R500

and in the region [0.15 − 1]R500. We find that cutting the core results in both a lower mean
luminosity and lower mean emission-weighted temperature. As a general trend, either includ-
ing or cutting the core, both the mean luminosity and temperature increase with decreasing
redshift, independently of the cosmological model. This is in somehow expected, since at
late cosmic time the clusters are more evolved, and thus hotter and more luminous. The
differences in the values of mean luminosity and temperature among the different cosmologies
reflect the different histories experienced by objects in different dark energy environments,
substantially following the mass function.

3.5 X-ray observable functions

Using the same maps built to study the X-ray L− T relation, we can also analyse the X-ray
luminosity function (XLF) and the X-ray temperature function (XTF) of our samples. Since
the samples are mass selected (see Section 3.3), only the mass functions we have shown before
can be considered complete. XLFs and XTFs in a sense reflect the mass functions, but cannot
be considered complete for the selection effect discussed in the previous section. This means
that at higher redshift, we are missing more and more clusters in the low-luminosity region of
the XLF and in the low-temperature region of the XTF. We show in Fig. 3.10 the cumulative
XLFs and XTFs of our sample at z = 0. We cut the plots at 0.1 × 1044 erg s−1 and 1 keV in
order to be as complete as possible also in the low-luminosity and low-temperature regions.
In the top panel of Fig. 3.10 we show the cumulative luminosity function. In the middle
panel of the same figure we plot the ratios between the number of clusters in a given dark
energy model with respect to ΛCDM in every luminosity bin. As in the case of the mass
function, for each cosmology, we consider only bins in which we have more than one object.
The results for three luminosity bins are also summarized in Table 3.3. In general, despite
some noisy oscillations, the ratio is decreasing with increasing luminosity. Nevertheless, in
the range between 0.5 and 1 × 1044 erg s−1 it increases and in three models out of four the
number of objects is equal or even larger than in ΛCDM. This effect seems to be statistically
significant in particular for RP. In any case, by looking only at very luminous objects, the
differences with ΛCDM are significant for all models.

In the bottom panel of Fig. 3.10 we show the same as in the top panel, but for the
cumulative temperature function (see also Table 3.3). In this case, the decrease of the ratio
with increasing temperature is evident in all the dynamical dark energy cosmologies. Going
from objects in the range between 1 and 3 keV to objects with temperatures higher than 3
keV, RP goes from 87% to 70%, SUGRA from 64% to 33%, EQp from 86% to 57%, and EQn
from 78% to 43%.

In general, we see that the relative trend among the different cosmologies shown by the
mass functions at z = 0 is almost preserved in the XLFs and XTFs: in a given mass, luminosity
and temperature bin, ΛCDM forms more clusters than the other cosmologies do (except for
RP in a luminosity bin, as noted before). On the other hand, SUGRA is the cosmological
model that forms fewer clusters in each bin. EQp and EQn lie in between. This finding is
confirmed by the bottom panels of Fig. 3.10 where we show the ratios between the XLFs and
XTFs plotted in the top panels and the ones recovered by applying the L −M relation at
z = 0 for the ΛCDM cosmology to the mass functions of each dark energy model. This is
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Figure 3.9: (Top panel) The X-ray L−T relation in the [0.5−2] keV band, evaluated in the [0.15−1]R500

region at z = 0 (black), z = 0.5 (cyan), and z = 1 (red) for the ΛCDM cosmology. The dashed
black line is the best-fit of our simulated data. The violet squares are a collection of observed data
from Pratt et al. (2009), while the violet line is their best-fit of the same dataset. (Bottom panel)
Redshift evolution of the mean luminosity and temperature in the [0.5− 2] keV band for the ten most
massive relaxed objects in the ΛCDM (black), RP (blue), SUGRA (green), EQp (cyan), and EQn
(red) cosmologies. Circles refer to objects at z = 0, triangles to objects at z = 0.5 and squares to
objects at z = 1. Dashed lines and empty symbols indicate the evolution of the mean luminosity and
temperature evaluated inside R500, while solid lines and filled symbols refer to the same quantities
evaluated in the [0.15 − 1]R500 region. In both panels, the cosmological dependence is taken into
account using the factor E−1

z ≡ H0/H which multiplies the luminosity.
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Figure 3.10: (Top panel) The X-ray luminosity function (XLF) in the [0.5 − 2] keV band, evaluated
in the [0.15− 1]R500 region at z = 0 for the ΛCDM (black), RP (blue), SUGRA (green), EQp (cyan),
and EQn (red) cosmologies. For each cosmological model the luminosity of the object with the highest
luminosity is marked by a cross. Error bars (shown only for ΛCDM for clarity reasons) are Poissonian
errors for the cluster number counts. In the middle panel the ratios between the luminosity functions
for different dark energy cosmologies and the corresponding values for ΛCDM are shown. In the
bottom panel we plot the ratio between the luminosity functions shown in the top panel and the ones
recovered by applying the L−M relation at z = 0 for the ΛCDM cosmology to the mass function of
each dark energy model. (Bottom panel) The same as in the top panel, but for the X-ray temperature
function (XTF).
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Table 3.3: Ratios between the number of clusters in the simulated volume for a given dark energy
model with respect to NΛCDM in the given LX , Tew, Mgas500, and YX500 bin.

z = 0 NΛCDM RP SUGRA EQp EQn
LX [1044 erg s−1]
0.1 − 0.5 391 0.87 0.61 0.86 0.78
0.5 − 1 24 1.38 0.63 1.13 1.00
> 1 13 0.62 0.23 0.46 0.46
Tew [keV]
1 − 3 528 0.87 0.64 0.86 0.78
> 3 30 0.70 0.33 0.57 0.43
Mgas500 [1013 M⊙]
1 − 5 347 0.85 0.58 0.81 0.76
> 5 14 0.50 0.21 0.43 0.50
YX500 [1013 M⊙ keV]
1 − 5 392 0.87 0.63 0.82 0.79
5 − 10 55 0.98 0.49 0.96 0.96
> 10 29 0.69 0.38 0.62 0.66

done to disentangle the differences in the XLFs and XTFs due to a different mass function and
the ones due to baryon physics. The fact that the subsample considered in the bottom panel
of Fig. 3.9 reproduces the XLF and XTF of Fig. 3.10 also seems to indicate that relaxed
and massive objects are still a good representation of the whole sample. The general trend of
the mass, luminosity and temperature functions seems to reflect the evolution with redshift
of the dark energy equation of state parameter w = w(z), as we showed in Fig. 3.1. ΛCDM
tends to form massive clusters earlier than the other cosmologies, thus giving a larger number
of evolved (i.e. with high luminosity and temperature) objects at z = 0. The XTF seems
to better reflect the mass function, while the XLF is more influenced by baryonic physics, as
we can clearly see from the behaviour of the RP cosmology. So, in principle, we can try to
distinguish among different cosmologies by building the XTF of a sample of galaxy clusters.
The problem is that if we check, for example, the sample from Pratt et al. (2009), there are
very few clusters in the temperature range we have considered for our XTF. Being an X-ray
selected sample, in general they have a higher temperature compared with our simulated
objects, and so it is not easy to directly compare our results with their observational data.

In order to check whether other proxies could better trace the formation history of struc-
tures, we also analysed the X-ray Mgas500 and YX500 functions. Mgas500 is defined simply
by the mass of X-ray emitting gas contained in R500, while YX500 = Mgas500 × Tew, where
Tew is evaluated in the [0.15 − 1]R500 region. We plot these functions in Fig. 3.11. We see
from Table 3.3 that, for Mgas500 > 5 × 1013 M⊙, Mgas500 is in principle a very powerful tool
to distinguish between different cosmologies. In fact, all the models form at most 50% the
number of objects formed by ΛCDM, and, since Mgas500 is quite an easy quantity to estimate
from observations, it should be possible to rule out some models just by studying the Mgas500

function. The quantity YX500 does not seem to be as good as Mgas500, since the differences
between ΛCDM and the other models are less pronounced, and also the behaviour in the
different bins is not so smooth.

It is interesting to evaluate the volume that a cluster survey must cover to be able to
discriminate using the local (i.e. at z = 0) cluster counts among the different dark energy
models here considered. For that we assume Poissonian error bars and consider a 3σ level,
where σ is linked to the volume by
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Figure 3.11: (Top panel) The Mgas500 function at z = 0 for the ΛCDM (black), RP (blue), SUGRA
(green), EQp (cyan), and EQn (red) cosmologies. For each cosmological model the gas mass of the
most massive object is marked by a cross. Error bars (shown only for ΛCDM for clarity reasons) are
Poissonian errors for the cluster number counts. In the middle panel the ratios between the gas mass
functions for different dark energy cosmologies and the corresponding values for ΛCDM are shown.
(Bottom panel) The same as in the top panel, but for the YX500 function.
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σ =
√
V ol

|MFΛCDM −MFDE|√
MFΛCDM +MFDE

, (3.7)

where MF can be the mass function, or any other X-ray observable function linked to cluster
number counts. We plot the results for the mass function at z = 0 and z = 1 in Fig. 3.12,
while the results for the XLF and XTF are shown in Fig. 3.13.
Using the mass function with a threshold of 5 × 1014 M⊙, we find that cosmological volumes
larger than 1.6 × 107(Mpc h−1)3 are sufficient to distinguish between SUGRA and ΛCDM,
while 6.4×107(Mpc h−1)3 are required for EQn and 9.1×107(Mpc h−1)3 are required for RP
and EQp. Considering the XLF (with a threshold of 0.5 × 1044 erg s−1), larger surveys are
required: in fact volumes larger than 4.3 × 107, 3.4 × 108, 1 × 109, and 1.3 × 109(Mpc h−1)3

are necessary to discriminate among SUGRA, EQn, EQp, and RP and ΛCDM, respectively.
The situation is better when the XTF (with a threshold of 3 keV) is used: predictions for
the ΛCDM model are different at 3σ level with respect to the ones for SUGRA, EQn, EQp,
and RP, when volumes as large as 2.7 × 107, 4.3 × 107, 6.4 × 107, and 1.7 × 108(Mpc h−1)3

are considered, respectively. This fact confirms the importance of XLF/XTF in tracing the
number counts in a given cosmology, and again that the XTF is a better quantity to be used
in that kind of studies, if compared to the XLF. We recall that we are not considering any
selection function on XLF/XTF, being a proper treatment of any observational approach in
defining an XLF/XTF beyond the purpose of the present work. If we move to z = 1, using the
mass function with a threshold of 1.42 × 1014M⊙, 2.7 × 107(Mpc h−1)3 are still sufficient to
distinguish between SUGRA and ΛCDM, while EQn, EQp, and RP need 6.4×107(Mpc h−1)3,
1.7× 108(Mpc h−1)3, and 2.2× 108(Mpc h−1)3 to be distinguished from ΛCDM, respectively.
Larger cosmological boxes and larger observational samples with higher resolution and sensi-
tivity (i.e. lower flux limit), such as, e.g., the one expected with eROSITA (Predehl et al.,
2007) and WFXT (Giacconi et al., 2009), can provide better answers to the question.

3.6 The baryon fraction

In this section we focus on the baryon fraction fbar = fstar+fgas of our simulated galaxy clus-
ters, where fstar ≡Mstar/Mtot and fgas ≡Mgas/Mtot. Since we are considering galaxy clusters
in a cosmological context, it is better to re-express the star fraction fstar, the gas fraction fgas,
and the total baryon fraction fbar in units of the cosmic baryon fraction Ω0b/Ω0m = 0.164
adopted in these simulations. To do this we introduce the quantities

bstar ≡
fstar

Ω0b/Ω0m
; bgas ≡

fgas
Ω0b/Ω0m

; bbar ≡
fbar

Ω0b/Ω0m
, (3.8)

and indicate them as star, gas and baryon depletion parameter, respectively. In this section
we analyse the dependence of these quantities on mass, redshift and distance from the centre
of the object considered, as well as on the underlying cosmology.

In Fig. 3.14 we plot the distribution of bbar, bgas and bstar evaluated at R200 for the whole
sample at z = 0, z = 0.5, and z = 1 in order to check the spread of the values for the
single objects. We see that at z = 0 there is a substantial overlapping among the different
cosmologies, indicating that evolved objects have almost the same distribution whatever the
underlying cosmological background is. The same is true looking at z = 0.5 and z = 1. We
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Figure 3.12: (Top panel) Confidence level as a function of box size to discriminate between the RP
(blue), SUGRA (green), EQp (cyan), and EQn (red) cosmologies and the ΛCDM cosmology using
the mass function with a threshold of 5 × 1014 M⊙ at z = 0. (Bottom panel) The same as in the top
panel, but for the mass function with a threshold of 1.42 × 1014 M⊙ at z = 1.
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Figure 3.13: (Top panel) Confidence level as a function of box size to discriminate between the RP
(blue), SUGRA (green), EQp (cyan), and EQn (red) cosmologies and the ΛCDM cosmology using the
X-ray luminosity function (XLF) with a threshold of 0.5× 1044 erg s−1 at z = 0. (Bottom panel) The
same as in the top panel, but for the X-ray temperature function (XTF) with a threshold of 3 keV at
z = 0.
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Figure 3.14: Distribution of bbar, bgas, and bstar evaluated at R200 for the ΛCDM (black), RP (blue),
SUGRA (green), EQp (cyan), and EQn (red) cosmologies at z = 0 (top panel), z = 0.5 (middle panel),
and z = 1 (bottom panel).
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Figure 3.15: The evolution of stellar, gas and baryon depletion parameter evaluated at R200 with mass
at z = 0 (top panel) and z = 1 (bottom panel) for the ΛCDM (black), RP (blue), SUGRA (green),
EQp (cyan), and EQn (red) cosmologies. Crosses, triangles, and squares indicate bstar, bgas, and bbar

respectively. The depletion parameters are expressed in units of bnorm
bar , bnorm

gas and bnorm
star , the mean

values for clusters with M200 ≥ 1015M⊙ in the ΛCDM cosmology at z = 0. Error bars are r.m.s. of
the mean distribution.

can note a decrease of bgas going from z = 1 to z = 0, not completely compensated by an
increase of bstar. The net effect is a decrease of bbar going from z = 1 to z = 0.

In Table 3.4 we summarize the mean value of bstar, bgas, and bbar evaluated at R2500, R500,
and R200 for all the objects in the different cosmological models considered, at z = 0, z = 0.5,
and z = 1. We see that, on the one hand, for any cosmological model, at any redshift, bstar
is a decreasing function of radius, going from R2500 to R200. On the other hand, bgas is an
increasing function of radius. As a whole, bbar is slightly decreasing with radius. Fixing the
radius, either R2500, R500, or R200, bstar increases going from z = 1 to z = 0, while bgas
decreases. As we already noted from Fig. 3.14, bbar is slightly decreasing going from z = 1 to
z = 0. These trends are general, and they hold for all the cosmological models considered.

In the top panel of Fig. 3.15 we plot, for each cosmology, the ratio between the mean
values of bbar, bgas and bstar evaluated at R200 in four different mass ranges at z = 0 and
the mean value of bnormbar , bnormgas and bnormstar for clusters having M200 ≥ 1015M⊙ in the ΛCDM
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Table 3.4: Mean values of bstar, bgas, and bbar evaluated at R2500, R500, and R200 for all the objects
in the different cosmological models considered, at z = 0, z = 0.5, and z = 1. N indicates the number
of objects in the given model at the given redshift. Numbers in brackets are 1σ errors on the mean.

Model z N bstar2500 bgas2500 bbar2500 bstar500 bgas500 bbar500 bstar200 bgas200 bbar200

ΛCDM 0 563 0.508 0.535 1.043 0.269 0.680 0.948 0.207 0.731 0.937
(0.072) (0.067) (0.065) (0.032) (0.037) (0.036) (0.021) (0.027) (0.026)

0.5 202 0.461 0.578 1.039 0.236 0.724 0.961 0.182 0.767 0.949
(0.063) (0.055) (0.065) (0.025) (0.028) (0.032) (0.017) (0.022) (0.027)

1 45 0.454 0.624 1.078 0.222 0.749 0.971 0.168 0.777 0.944
(0.082) (0.063) (0.068) (0.029) (0.027) (0.035) (0.016) (0.018) (0.022)

RP 0 484 0.498 0.541 1.039 0.263 0.683 0.946 0.204 0.733 0.937
(0.069) (0.066) (0.063) (0.029) (0.037) (0.036) (0.019) (0.026) (0.024)

0.5 164 0.452 0.589 1.041 0.234 0.726 0.960 0.181 0.767 0.948
(0.061) (0.059) (0.069) (0.025) (0.031) (0.032) (0.016) (0.022) (0.026)

1 35 0.429 0.633 1.063 0.218 0.754 0.972 0.165 0.777 0.942
(0.070) (0.062) (0.073) (0.026) (0.025) (0.031) (0.015) (0.017) (0.016)

SUGRA 0 352 0.520 0.549 1.069 0.260 0.693 0.953 0.196 0.740 0.937
(0.076) (0.066) (0.066) (0.029) (0.036) (0.035) (0.018) (0.025) (0.024)

0.5 105 0.442 0.602 1.044 0.226 0.736 0.962 0.174 0.773 0.947
(0.066) (0.054) (0.064) (0.025) (0.028) (0.029) (0.015) (0.021) (0.024)

1 21 0.435 0.628 1.063 0.215 0.750 0.964 0.164 0.774 0.939
(0.063) (0.069) (0.089) (0.021) (0.027) (0.040) (0.010) (0.016) (0.015)

EQp 0 476 0.515 0.554 1.069 0.258 0.689 0.947 0.197 0.744 0.941
(0.078) (0.068) (0.075) (0.030) (0.037) (0.036) (0.018) (0.026) (0.026)

0.5 162 0.444 0.597 1.042 0.228 0.731 0.959 0.176 0.770 0.946
(0.061) (0.058) (0.61) (0.024) (0.031) (0.033) (0.016) (0.022) (0.026)

1 34 0.429 0.625 1.054 0.213 0.760 0.973 0.162 0.783 0.944
(0.072) (0.064) (0.078) (0.026) (0.026) (0.031) (0.015) (0.016) (0.018)

EQn 0 431 0.508 0.545 1.053 0.258 0.689 0.947 0.199 0.736 0.934
(0.070) (0.058) (0.070) (0.028) (0.034) (0.034) (0.018) (0.025) (0.024)

0.5 140 0.452 0.599 1.052 0.234 0.729 0.963 0.179 0.769 0.948
(0.063) (0.063) (0.054) (0.024) (0.028) (0.032) (0.016) (0.020) (0.024)

1 29 0.427 0.626 1.053 0.216 0.753 0.969 0.166 0.777 0.943
(0.068) (0.065) (0.071) (0.026) (0.026) (0.031) (0.013) (0.017) (0.018)
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cosmology at z = 0 (i.e. 0.921, 0.757 and 0.165 respectively). We have considered four mass
ranges: M200 < 1014 M⊙, 1014 M⊙ ≤ M200 < 5 × 1014 M⊙, 5 × 1014 M⊙ ≤M200 < 1015 M⊙,
and M200 ≥ 1015M⊙. We have evaluated the quantities at R200 instead of R500 as in Section
3.4 because this radius is representative of the cluster as a whole, including the external
regions, and indeed we want to check whether, in different cosmologies, these objects are a
fair representation of the underlying background. The first thing we notice is that, in every
mass bin, the values of bbar, bgas and bstar are similar, within error bars, among the different
cosmologies. So we can refer to a single cosmology (e.g. ΛCDM) in order to study the mass
dependence of these quantities. We see that bbar is almost constant, independently of mass.
On the one hand, bgas shows a slight positive trend, of the order of 5%, going from low-mass
to high-mass systems, but still compatible with a constant value within the error bars. On
the other hand, bstar shows a decrease up to 30% going from low-mass to high-mass clusters,
not compatible with a constant value. In the bottom panel of Fig. 3.15 we plot, for each
cosmology, the ratio between bbar, bgas and bstar evaluated at R200 at z = 1 and the mean
values for ΛCDM at z = 0 already used in the top panel. In this case we do not consider
different mass ranges, since at this redshift the cluster abundance starts to be low and all
the objects have 1014 M⊙ ≤ M200 < 5 × 1014 M⊙. Again, the cosmologies are completely
equivalent within error bars.

Here we stress again that our simulations do not follow AGN feedback. It is known
from literature (e.g. Puchwein et al., 2008) that the effect of this feedback is mass dependent,
leading to a lowering in the baryon fraction in groups and low-mass clusters, without affecting
significantly high-mass clusters.

We find in general a constant baryon fraction with respect to the mass. Some authors (e.g.
Giodini et al., 2009) claim that in observed objects the total baryon fraction shows an increase
with increasing mass. This difference with respect to our results could be due to the fact that
some relevant physical processes are still not included in our cosmological simulations. Such
processes may be able to affect the global properties of low-mass systems without changing
the high-mass clusters. Not including them in the simulations does not permit to us to fully
compare our results with observations. In particular, we note an overabundance of stars
(which obviously influences the total baryon fraction) in low-mass objects.

Combining the top and bottom panels of Fig. 3.15, we can study the evolution with
redshift of bbar, bgas and bstar. Since the differences among various cosmologies at the same
redshift are quite small, we rely on our reference ΛCDM model for the analysis of redshift
evolution. For clusters with 1014 M⊙ ≤M200 < 5× 1014 M⊙, the mean value of bbar is almost
constant, with a slight decrease of about 2%, going from z = 1 to z = 0. In particular, bgas
decreases of less than 10%, while the increase of bstar is of the order of 25%. A decrease of
the baryon fraction with decreasing redshift was already found in other simulations (see e.g.

Ettori et al., 2006), and a possible explanation is that at high redshift the radius at which the
baryons accrete is smaller than at low redshift, and so a greater number of baryons can fall
in the cluster potential well.

Finally, we study the star, gas, and baryon depletion parameters as a function of the
distance from the centre of the cluster, defined as the position of the most bound particle.
For each cosmology we select, as in Section 3.4, the ten most massive (in M200) relaxed
halos and generate the radial profile of the object obtained by stacking them. We do this at
z = 0, z = 0.5 and z = 1. We recall that, at z = 1, for SUGRA we only have six objects. The
resulting profiles, expressed in units of the cosmic baryon fraction Ω0b/Ω0m = 0.164, are shown
in Fig. 3.16. At z = 0, in the outer regions near R200, the five cosmologies are completely
equivalent, with bbar having almost the cosmological value, while looking toward the centre
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Figure 3.16: The evolution of stellar, gas and baryon depletion parameter with radius at z = 0 (top
panel), z = 0.5 (middle panel), and z = 1 (bottom panel) for an object obtained by stacking the ten
most massive relaxed clusters in the ΛCDM (black), RP (blue), SUGRA (green), EQp (cyan), and
EQn (red) cosmologies. Crosses, triangles, and squares indicate bstar, bgas, and bbar respectively. The
depletion parameters are expressed in units of the cosmic baryon fraction Ω0b/Ω0m = 0.164. Error
bars are r.m.s. of the mean distribution.
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some differences can be seen. This fact means that, as a whole, evolved relaxed clusters
contain the same amount of baryonic matter, independently of the underlying cosmological
model, but that the matter can be redistributed inside them according to their formation
history. This fact is confirmed by looking at z = 0.5 and in particular at z = 1, where
the differences among the models are clear even in the outer regions, indicating a sort of
self-regulating mechanism that leads to the same objects at z = 0 even if they can be very
different at higher redshifts. Again, the same features appear both in the mean values of the
whole sample and in more relaxed and massive objects, indicating that the latter are a fair
representation of the clusters in a given cosmological model.

As a general rule for the radial profiles, it is confirmed the well known relative trend of
the radial profile of gas and stars components, being the former increasing with radius and
the latter decreasing, giving a total baryon fraction almost constant (but slightly decreasing)
beyond 0.5R200. Then we note that the total baryon fraction at z = 1 is higher compared to
z = 0, in particular in the inner regions of clusters. The effect is mainly due to a higher star
fraction in the inner regions of clusters at z = 1. Another quite evident feature is that the
radius at which the gas starts to dominate over the stars increases with increasing redshift.
The explanation is that, as we have just seen, the gas fraction profile is almost independent
of redshift, while the star fraction at a given radius increases with redshift, and so at higher
redshift it remains the dominant baryonic component also at larger radii.

3.7 General properties: summary

In this chapter we have studied the general properties of the halos extracted from the Padme

simulation set. From our analysis we draw the following conclusions.

• Mass function: at z = 0 the total mass function evaluated at R200m shows different
behaviours in the different cosmologies, in particular in the normalization. The ΛCDM
model tends to form more clusters of a given mass compared to the other cosmologies;
SUGRA is the cosmology with the smallest abundance, while RP, EQp and EQn lie
in between, with RP and EQp being the closest to ΛCDM. This fact directly reflects
the redshift evolution of the equation of state parameter w and of the growth factor,
given the different assumed value of σ8 in the various models. Actually, for extended
quintessence models, a positive value of the coupling leads to a higher linear density con-
trast, and vice versa for a negative coupling. This would imply a higher mass function
for models with negative coupling (i.e. EQn) than for models with positive coupling
(i.e. EQp), keeping fixed all remaining parameters. In our case, this effect is somehow
mitigated by the different σ8 used. This trend is preserved also at z = 0.5 and z = 1.
The differences among the models are more pronounced in the high-mass tail of the
distribution. This is expected, because very massive objects form later and are repre-
sentative of the different structure formation time scale of the considered cosmologies.
We note here that our results are different from what has been found in the case of
coupling with dark matter (Baldi & Pettorino, 2011), where there is an enhancement
in the number counts of massive objects. Our mass functions for the ΛCDM model
at z = 0 and z = 0.5 are in good agreement with observed data from Vikhlinin et al.
(2009b) in the corresponding redshift bins.

• L− T relation: we compare the L− T relation of our simulated objects in the ΛCDM
reference models with a collection of observed objects (Pratt et al., 2009). Despite
the differences in the slope of the relation in the two cases (1.81 for our simulated
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objects vs 2.53±0.16 for their observed ones), we find that there is a good agreement in
the high-temperature high-luminosity region where X-ray selected observed objects are
found. The discrepancy in the low-temperature low-luminosity region is not worrying,
because low-mass systems are globally more affected by physical mechanisms not yet
fully understood and reproduced (e.g. Borgani et al., 2004), acting in the core. We
also study the evolution with redshift of the L − T relation for the ten most massive
relaxed objects in each cosmology, both keeping and cutting the core. We find that
cutting the core results in both a lower mean luminosity and lower mean emission-
weighted temperature. In general, both the mean luminosity and temperature increase
with decreasing redshift, independently of the cosmological model, because they trace
the hierarchical growth of structures.

• X-ray observable functions: the relative behaviour observed in the mass functions is also
qualitatively reproduced by the XLFs and XTFs evaluated in the [0.5 − 2] keV band in
the [0.15 − 1]R500 region, with few exceptions. In particular, in the range of luminosity
around 0.5 × 1043 erg s−1 RP tends to form 10% more clusters than ΛCDM. We also
check the X-ray Mgas500 and YX500 functions as proxies for the mass function. We
conclude that all the X-ray observable functions are more or less equivalent, with Tew
and Mgas500 being slightly more stable than LX and YX500, in tracing the mass function
and thus disentangle the growth of structures among different dark energy models. For
each dark energy model we evaluate the volumes that a cluster survey must cover in
order to be able to distinguish it from the concordance ΛCDM model, using the mass
function, the XLF, and the XTF.

• Baryon fraction: the analysis of the bstar, bgas, and bbar dependence on mass, redshift
and distance from the cluster centre shows that there is no significant difference among
the five cosmologies considered, if we limit ourselves to the values at R200 and at z = 0.
Therefore, at these conditions, bbar (and so the baryon fraction fbar) can be safely used as
a cosmological proxy to derive the value of other cosmological parameters. In addition,
we do not find any clear positive trend of the total baryon fraction with mass, while
we see a positive trend (of the order of 5%) of the gas fraction and a negative trend
(of the order of 30%) of the star fraction going from low-mass to high-mass systems.
Considering observations of real objects, in spite of finding the same trend for the gas
and star fraction as we do, other authors (e.g. Giodini et al., 2009) claim that the total
baryon fraction is increasing with increasing mass. Actually, for all the cosmological
models here considered, we find a slight decrease in the total baryon fraction with
increasing mass. Still, we have to recall that, despite the hydrodynamical treatments
in the simulations is based on sophisticated physical models, we do not include AGN
feedback in our simulations. It is known from literature (see e.g. Puchwein et al., 2008)
that AGN feedback is mass dependent, in the sense that it globally affects more low-
mass systems than high-mass systems. The net effect is the lowering of the total baryon
fraction in low-mass objects while not affecting more massive clusters. Finally, we find
a slight decrease (at most 5%) of the baryon fraction going from high to low redshift.
A similar trend was already noted by Ettori et al. (2006) and a possible explanation
is that at high redshift the radius at which the baryons accrete is smaller than at low
redshift, and so a greater number of baryons can fall in the cluster potential well.



Chapter 4

Padme Simulation: c − M relation

In this chapter we will present a comparison between dark matter only and hydrodynamical
simulations in order to study the impact of baryon physics on the c −M relation, also con-
sidering the possible consequences of the presence of a dynamical dark energy component.
After introducing different methods to define the concentration in Section 4.1, along with a
non-parametric definition in Section 4.2, we will compare our results for the ΛCDM model
with other results from literature in Section 4.3. Then, for the different dark energy cosmolo-
gies, we will analyse the dark matter only runs in Section 4.4 and the hydrodynamical runs
in Section 4.5. We will discuss the results in Section 4.6 and draw our conclusions in Section
4.7.

4.1 Fitting procedure

In this part of the work, we analyse both the dark matter only and the hydrodynamical
runs of the Padme simulation set. As in the previous chapter, we consider all the halos that
have M200m > 1014 M⊙ h−1 but, since we want to extend the c −M relation also to lower
masses, we add the 200 objects with M200m closest to 7 × 1013 M⊙ h−1, 5 × 1013 M⊙ h−1,
3 × 1013 M⊙ h−1, and 1013 M⊙ h−1. Starting from the centres of the halos, we construct
radial profiles by binning the particles in radial bins.

For the concordance ΛCDM model, for each cluster at z = 0 in the dark matter only
run, we perform a logarithmic fit, using Poissonian errors (ln 10 × √

ndm)−1 (where ndm is
the number of dark matter particles in each radial bin, of the order of 10− 103 depending on
the mass of the object), of the three-dimensional dark matter profile ρdm(r)/ρc in the region
[0.1 − 1]R200 (where the value of R200 is taken directly from the true mass profile) with a
NFW profile (Navarro et al., 1996)

ρdm(r)

ρc
=

δc
(r/rs)(1 + r/rs)2

, (4.1)

where ρc is the critical density, rs is the scale radius and δc is a characteristic density contrast.
Then, instead of defining c200 ≡ R200/rs, we directly find the concentration parameter c200
from the normalization of the NFW profile

δc =
200

3

c3200
[

ln(1 + c200) − c200
1+c200

] . (4.2)

73
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We require the central density parameter δc to be greater than 100 and the scale radius rs to
be within [0.1 − 1]R200. We exclude the inner regions from the fit because we are limited in
resolution inside a given radius. We indicate the dark matter concentration found in this way
as c200dm. We define the rms deviation σrms as

σ2
rms =

1

Nbins

Nbins
∑

i=1

[log10ρi − log10ρNFW ]2 , (4.3)

where Nbins is the number of radial bins over which the fit is performed.

In addition to the complete and relaxed samples discussed in Chapter 3, we create a
sample of “super-relaxed” objects defined as the ones having both xoff and σrms lower than
the median value extracted from the complete sample, namely 0.046 and 0.0358, respectively.
We do this to check if strict restrictions on both the dynamical state and the shape of the
profile of the objects can reduce the intrinsic scatter in the values of concentration. We stress
that the definition of super-relaxed objects is dependent on the way we fit the profile. In
the end, the complete sample, the relaxed sample and the super-relaxed sample at z = 0 are
constituted by 1357, 923, and 411 objects, respectively.

We bin the objects in the complete sample in groups of 200, so that we have bins around
1013 M⊙ h−1, 3 × 1013 M⊙ h−1, 5 × 1013 M⊙ h−1, and 7 × 1013 M⊙ h−1. For halos more
massive than 1014 M⊙ h−1, we bin the objects starting from the low-mass ones, so that
the most massive bin can contain less than 200 objects. For the relaxed and super-relaxed
samples, we select the relaxed and super-relaxed objects inside each bin. Once we have c200dm
for each object in each mass bin, since the distribution of c200dm is log-normal inside each bin,
we evaluate the mean M200 and the mean and rms deviation of log10c200dm in each bin, for
all the three samples. In the following of the chapter, when we indicate the value of c200dm in
a mass bin, we refer to 10 to the mean of log10c200dm.

In Fig. 4.1 we plot c200dm for each object in the complete sample. We see that there is a large
intrinsic dispersion in the values of the concentration inside each group of objects, which is
marked with a different colour. For objects more massive than 1014 M⊙ h−1, the maximum
value of c200dm clearly decreases with M200. Only when we bin the objects and plot the mean
value of c200dm in each mass bin we can see a general trend of concentration decreasing with
increasing mass, even if the rms deviations are quite large.

In Fig. 4.2 we plot the c200dm in each mass bin for the complete, relaxed and super-relaxed
samples, along with the number of objects in each bin. We note that, in all bins, more than
50% of the halos are relaxed and around 30% are super-relaxed. In each bin, the value of
c200dm for the relaxed sample is higher than the one for the complete sample, and the value
for the super-relaxed sample is even higher. In all three samples, c200dm is decreasing with
increasing mass. In Fig. 4.2 we also show the scatter in log10c200dm in each bin for the
complete, relaxed and super-relaxed samples. For the complete sample, the relative errors
range from 30% to 40%, with a positive trend with mass. It means that inside each mass
bin there are objects with different properties, in particular in the high-mass tail. For the
relaxed sample, the relative errors reduce to 20% up to 30%, meaning that part of the scatter
in the complete sample is due to objects in a particular dynamical state. If we move to the
super-relaxed sample, we notice that the relative errors stay between 15% and 20%. On the
one hand, that means that putting strong constraints on both the dynamical state and the
shape of the profile of the halos allows us to halve the intrinsic scatter; on the other hand,
even when considering the most relaxed and smooth objects in our sample we cannot reduce
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Figure 4.1: The values of c200dm for the complete sample of the ΛCDM model at z = 0. For each
object, we plot M200 and c200dm. Different colours indicate different M200m ranges. The black squares
indicate c200dm in each mass bin (see text for details). For each mass bin, we plot the mean M200 and
c200dm with rms deviation.

the intrinsic scatter below 15%. This fact reinforces the conclusions we have drawn from the
complete sample.
As a check, for the complete sample of the ΛCDM model at z = 0 we also evaluate c200dm by
fitting the NFW profile (4.1) in the range [0.01−1]R200 . We show the results for the values of
c200dm and the relative error in log10c200dm in each mass bin in Fig 4.3. We see that, by fitting
in the range [0.01 − 1]R200, we obtain concentrations up to 10% higher than by fitting in the
[0.1 − 1]R200 range. Moreover, by fitting including the inner regions in the fit, the intrinsic
scatter in concentration is lower by about 5%. These trends are almost independent of mass.
Since we want to compare the dark matter only runs with the hydrodynamical ones, and in
the hydrodynamical runs we do not completely resolve the baryonic physics on small scales,
we will take a conservative approach and fit in the range [0.1−1]R200. Still, it is important to
know what happens if we consider also the inner regions, in particular if we want to compare
our results with the ones in literature.

With the mean and rms deviation of log10c200dm in each bin at hand, we fit, for the
complete, relaxed and super-relaxed samples, the binned c−M relation using

log10c200 = log10A+B log10

(

M200

1014M⊙

)

, (4.4)

where log10c200 and M200 are the mean values in each bin. For the error on the mean of
log10c200dm in each bin, σc̄, we use the rms deviation of log10c200dm divided by the square root
of the number of objects in the bin. For each fit we also define the chi-squared as

χ2 =

Nbins
∑

i=1

(

log10c200i
− log10c200fit

σc̄i

)2

, (4.5)

where Nbins is the number of mass bins over which the fit is performed and σc̄ is the error
defined above. Finally, we evaluate the reduced chi-squared χ̃2, i.e. the chi-squared divided
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Figure 4.2: (Top panel) The values of c200dm in each mass bin for the complete (black), relaxed (blue)
and super-relaxed (pink) samples of the ΛCDM model at z = 0. For each mass bin, we plot the mean
M200, c200dm and the number of objects in the bin. (Bottom panel) Relative error in log10c200dm in
each mass bin for the complete (black), relaxed (blue) and super-relaxed (pink) samples of the ΛCDM
model at z = 0. For each mass bin, we plot the mean M200, the relative error σlog10c200dm

/log10c200dm

and the number of objects in the bin.



Padme Simulation: c−M relation 77

Figure 4.3: (Top panel) Ratio in each mass bin between c200dm evaluated from equation (4.2) by
fitting equation (4.1) in the range [0.1 − 1]R200 (black squares) and c200dm,fit evaluated by fitting in
the range [0.01 − 1]R200 (red points) and c200dm evaluated by fitting in the range [0.1 − 1]R200, for
the complete sample of the ΛCDM model at z = 0. (Bottom panel) Relative error in log10c200dm in
each mass bin for the [0.1− 1]R200 fit (black) and the [0.01− 1]R200 fit (red) for the complete sample
of the ΛCDM model at z = 0.
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Table 4.1: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c − M relation
(4.4) for dark matter only density profile fit in the region [0.1 − 1]R200 for the complete, relaxed and
super-relaxed samples of the ΛCDM model at z = 0.

Model σ8 A σA B σB χ̃2

ΛCDM 0.776 dm
all 3.59 0.05 −0.099 0.011 0.48

relaxed 4.09 0.05 −0.092 0.011 0.66
super-relaxed 4.52 0.06 −0.091 0.013 0.76

Table 4.2: Best-fit parameters and standard errors of the c −M relation (4.4) for dark matter only
density profile fit in the region [0.1 − 1]R200, considering only objects with M200m > 1014 M⊙ h−1,
for the complete, relaxed and super-relaxed samples of the ΛCDM model at z = 0.

Model σ8 A σA B σB

ΛCDM 0.776 dm
all 3.55 0.09 −0.087 0.038

relaxed 3.99 0.10 −0.055 0.042
super-relaxed 4.35 0.13 −0.010 0.049

by the number of degrees of freedom, which is given by Nbins minus the number of free
parameters of the fit. We list the best fit values A and B for each sample, along with standard
errors and reduced chi-squared, in Table 4.1. We see that, compared to the complete sample,
the normalization A increases by about 15% for the relaxed sample and by about 25% for
the super-relaxed sample, while the slope B does not change significantly, even if excluding
unrelaxed objects results in a shallower slope. The values of the reduced chi-squared indicate
that equation (4.4) is a good parametrization of the c−M relation in logarithmic scale.

In order to understand the impact of low-mass object on the c −M relation, we check how
the best-fit values of the c − M relation from equation (4.4) changes if we do not include
the less massive objects. We report the results we obtain by considering only objects with
M200m > 1014 M⊙ h−1 in Table 4.2. For all three samples, we find a flatter relation than when
including also low-mass objects, with high standard errors on the slope. The normalizations
are lower of few percentage points, while the relative errors are a factor of two higher compared
to the case where low-mass objects are also considered. Moreover, in this case the slope is
very sensible to the dynamical state of the objects included in the sample. Thus we conclude
that the inclusion of low-mass objects is necessary to find a significant correlation between
the concentration and the mass of the halos. We do not quote the reduced chi-squared in this
case because just 3 mass bins are considered with 2 parameters to be fitted.

To compare our results with the ones found in literature, for the dark matter only profiles
of the concordance ΛCDM model we also perform a logarithmic fit of equation (4.1) without
using Poissonian errors. In this case we evaluate c200 both from equation (4.2) and by directly
defining c200 ≡ R200/rs (using R200 from the true mass profile), and indicate the two values
as c200dm,fit and c200dm,rec, respectively.

Moreover, in order to check the robustness of our fit, we perform a logarithmic fit, using
Poissonian errors, of the dark matter profile times r2, and a logarithmic fit, using Poissonian
errors, of the dark matter profile times r3.

Finally, we perform a logarithmic one-parameter fit, using Poissonian errors, of equation (4.1)
re-expressed as
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ρdm(r)

ρc
=

200

3

c3200
[

ln(1 + c200) − c200
1+c200

]

1
[

c200r
R200

] [

1 +
(

c200r
R200

)]2 , (4.6)

where the only free parameter of the fit is directly c200, since R200 is the one taken from the
true mass profile.
Only at comparison, we also evaluate the halos concentration following Prada et al. (2011),
i.e. by solving

Vmax
V200

=

(

0.216 c

f(c)

)1/2

, (4.7)

where

Vmax = max

[

GM(< r)

r

]1/2

, (4.8)

V200 =

(

GM200

R200

)1/2

, (4.9)

and, for a NFW profile, f(c) is given by

f(c) = ln(1 + c) − c

1 + c
, (4.10)

We find that the best values [δc, rs], and therefore c200 from equation (4.2), found by fitting
the dark matter profile times r2 and the dark matter profile times r3 are equal to the ones
found from equation (4.1) with Poissonian errors, while the ones from equation (4.1) without
Poissonian errors, from equation (4.6), and from equation (4.7) are different. We show these
differences for the complete, relaxed, and super-relaxed samples in Fig. 4.4. For the complete
sample, we see from Fig. 4.4 that the unweighted fit gives values of c200dm slightly higher
compared to the Poisson weighted fits, with c200dm,rec always higher than c200dm,fit. The
values of c200dm found from the one-parameter fit of equation (4.6) are compatible with the
ones found from equation (4.1) with Poissonian errors. All these models are compatible within
few percentage points, while the method of Prada et al. (2011) gives systematically higher
values, with a positive trend with mass. In the most massive bin, the difference between
the concentrations is more than 20%. For the relaxed sample, the situation is similar, but
the differences among the different fits are somewhat smaller. Even for the method based
on equation (4.7), which is the one that gives very different results, the difference is at most
around 10%. For the super-relaxed sample, the differences among the different fits almost
disappear, with the exception of the method of Prada et al. (2011), which however now shows
differences below 5% and, in the lowest mass bin, recovers values of the concentration even
lower than the other methods.

In Table 4.3 we show the best-fit parameters, the standard errors and the reduced chi-
squared of the c−M relation, equation (4.4), for the different fits discussed above. As expected,
for all the three samples, the differences in the normalization and slope are limited to a few
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Figure 4.4: (Top panel) Ratio in each mass bin between c200dm (black points), c200dm,fit (blue points),
c200dm,rec (blue diamonds), c200dm found by fitting equation (4.6) (red points), and c recovered from
equation (4.7) (pink points) and c200dm evaluated from equation (4.2) by fitting equation (4.1) using
Poissonian errors, for the complete sample of the ΛCDM model at z = 0. (Middle panel) The same
as in the top panel, but for the relaxed sample. (Bottom panel) The same as in the top panel, but for
the super-relaxed sample.
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Table 4.3: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c−M relation (4.4)
for the different fits of the dark matter only density profile for the complete, relaxed and super-relaxed
samples of the ΛCDM model at z = 0.

Model σ8 A σA B σB χ̃2

ΛCDM 0.776 dm (all)
Poisson 3.59 0.05 −0.099 0.011 0.48
c200dm,fit 3.69 0.04 −0.102 0.010 0.49
c200dm,rec 3.71 0.04 −0.101 0.010 0.57

one-parameter 3.61 0.05 −0.096 0.011 0.50
Prada 4.18 0.04 −0.063 0.008 0.67
ΛCDM 0.776 dm (relaxed)
Poisson 4.09 0.05 −0.092 0.011 0.66
c200dm,fit 4.14 0.05 −0.096 0.010 0.53
c200dm,rec 4.17 0.05 −0.095 0.010 0.55

one-parameter 4.12 0.05 −0.088 0.011 0.74
Prada 4.40 0.04 −0.065 0.008 0.90
ΛCDM 0.776 dm (super-relaxed)
Poisson 4.52 0.06 −0.091 0.013 0.76
c200dm,fit 4.55 0.06 −0.092 0.013 0.67
c200dm,rec 4.56 0.06 −0.091 0.013 0.66

one-parameter 4.56 0.06 −0.086 0.012 0.63
Prada 4.69 0.06 −0.060 0.010 0.45

precent, with the exception of the method discussed in Prada et al. (2011). For this method
we find a flatter relation, due to the fact that it predicts higher concentrations for high-mass
objects compared to the usual fit of the NFW profile (4.1). Moreover, also the normalization
is higher (more than 15% for the complete sample, more than 5% for the relaxed sample, and
less than 5% for the super-relaxed one), given that the concentration found from equation
(4.7) is in general higher than the one found in the usual way. As already shown, the effect is
stronger for the complete sample than for the relaxed and super-relaxed ones. The values of
the reduced chi-squared indicate that equation (4.4) is a good parametrization of the c−M
relation also for these different definitions of the concentration.

Before moving to the hydrodynamical simulation, we sum up here our findings for the dark
matter only run of the reference ΛCDM model. The intrinsic dispersion in the logarithmic
values of c200dm for objects of similar mass is reduced by a factor of two if we limit our analysis
to objects that are both relaxed and with a clear NFW-like shape of the dark matter profile.
Still, at best, the intrinsic scatter is of the order of 15%. The more relaxed the objects in the
sample, the higher the normalization A of the c−M relation equation (4.4), while the slope
B is almost independent of the dynamical state of the halos. This is no longer true if we
focus our analysis to objects with M200m > 1014 M⊙ h−1, for which the slope is shallower for
the relaxed sample and almost flat for the super-relaxed one. If we limit ourselves in fitting
the dark matter profile with a NFW profile, we almost recover the same values of c200dm,
A, and B, independently of the way we treat the errors on the fit and on the number of
free parameters that we fit. Things do change if we use the method introduced in Prada
et al. (2011), which systematically overestimates the concentration compared to the others,
in particular for high-mass objects. This results in both higher values of A and B for this
method. With this in mind, in the following of this chapter, in particular when we study
the effect of dark energy on the c − M relation, we will always consider c200dm recovered
from equation (4.2) from the fit of equation (4.1) with Poissonian errors, and distinguish only
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Figure 4.5: Ratio in each mass bin between c200dm (squares) and c200tot (stars) for the complete
(black), relaxed (blue) and super-relaxed (pink) samples and c200dm for the complete sample of the
ΛCDM model at z = 0.

between the complete and the relaxed sample, whose definition is independent of the way we
find the concentration.

For the hydrodynamical run, we fit the total three-dimensional density profile ρtot =
ρdm + ρgas + ρstar in the range [0.1 − 1]R200 with equation (4.1), using Poissonian errors
(ln 10×√

ni)
−1 for each component (where ni is the number of particles of the i-th species) and

summing them in quadrature. We indicate the total matter concentration found from equation
(4.2) with c200tot. We show the differences between c200dm and c200tot for the complete, relaxed
and super-relaxed samples in Fig. 4.5. We clearly see that, in all three samples, starting from
objects with M200m > 1014 M⊙ h−1 the concentration in the hydrodynamical run is higher
than in the dark matter only case, and the effect becomes more relevant at higher masses.
This effect is less pronounced in objects with M200m < 1014 M⊙ h−1. Thus, the inclusion
of baryons appears to affect more massive galaxy clusters than small groups. In order to
check this fact, we evaluate the relative distribution of baryons and stars inside R200 and in
the range [0.1 − 0.3]R200, that means the innermost part of the range in which we fit the
NFW profile. We show the results in Fig. 4.6. We see that, while the total baryon fraction
at R200 is almost constant with mass, if we limit to the range [0.1 − 0.3]R200 the baryon
contribution to the total mass becomes more important for more massive objects. The same
happens for the stars, which are known to concentrate in the internal regions of halos. Thus,
in this simulation, the relative contribution of baryons and stars in the inner regions is more
relevant in massive galaxy clusters than in small groups, and this fact leads to an increase in
the concentration of massive objects when including baryonic physics in the simulations.

Then, we fit the c −M relation (4.4) as in the dark matter only case. We list the best-fit
parameters, standard errors and reduced chi-squared of the c−M relation for the complete,
relaxed, and super-relaxed samples in Table 4.4. For all samples, the normalization A is from
5% to 10% higher compared to the dark matter only case, while the slope is shallower by
about 30%. This is expected because, as we have already seen, in the hydrodynamical runs
high-mass objects are more concentrated than objects of the same mass in the dark matter
only simulations. For the hydrodynamical runs the values of the reduced chi-squared are quite
high. This fact seems to indicate that baryons introduce some dependence that equation (4.4),
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Figure 4.6: (Top panel) Star fraction fstar (red) and total baryon fraction fbar (black) at R200 (points)
and in the [0.1 − 0.3]R200 range (triangles) in each mass bin for the complete sample of the ΛCDM
model at z = 0. (Bottom panel) Ratio in each mass bin between fstar in the range [0.1 − 0.3]R200

and fstar at R200 (red triangles) and between fbar in the range [0.1− 0.3]R200 and fbar at R200 (black
triangles) for the complete sample of the ΛCDM model at z = 0.

even though it remains a good parametrization, is not able to completely characterize.
Finally, in order to study the evolution with redshift of the c − M relation, which is of
fundamental importance if we want to distinguish among different cosmological models, we
also consider objects at z = 0.5 and z = 1. We show the differences between c200dm and c200tot
for the complete and relaxed sample of the ΛCDM model at z = 1 in Fig. 4.7. Even if the
trend with mass is less clear than at z = 0, still we can see that, already at z = 1, c200tot is
greater than c200dm in both samples.
When we consider also objects at z = 0.5 and z = 1, we fit a generalized form of the c −M
relation (4.4) with an explicit redshift dependence, namely

log10c200 = log10A+B log10

(

M200

1014M⊙

)

+ C log10(1 + z) . (4.11)

We can perform this fit in two ways. Either we keep the best-fit values A0 and B0 found
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Table 4.4: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c−M relation (4.4)
for dark matter only and total density profile fit in the region [0.1 − 1]R200 for the complete, relaxed
and super-relaxed samples of the ΛCDM model at z = 0.

Model σ8 A σA B σB χ̃2

ΛCDM 0.776 all
dm 3.59 0.05 −0.099 0.011 0.48
tot 3.81 0.05 −0.061 0.011 1.69

ΛCDM 0.776 relaxed
dm 4.09 0.05 −0.092 0.011 0.66
tot 4.29 0.05 −0.064 0.011 1.54

ΛCDM 0.776 super-relaxed
dm 4.52 0.06 −0.091 0.013 0.76
tot 4.89 0.06 −0.062 0.011 1.34

Figure 4.7: Ratio in each mass bin between c200dm (squares) and c200tot (stars) for the complete
(black) and relaxed (blue) samples and c200dm for the complete sample of the ΛCDM model at z = 1.

at z = 0 fixed and fit only C in equation (4.11), or we perform a three-parameter fit by
keeping A, B and C free. We report the results of the different fits both for the complete
and relaxed samples of the dark matter only and hydrodynamical simulations in Table 4.5.
The first thing that we note is the fact that, in all cases, the redshift dependence is negative,
meaning that objects of a given mass have lower concentration at higher redshift. If we leave
the normalization and the slope free, we see that A changes at most of few percentage points,
while B can vary significantly. The redshift dependence seems to be insensitive to both the
way in which the fit is performed and the dynamical state of the halos, while it is different
for dark matter only and total concentration, being steeper in the former case and shallower
in the latter. In general, the reduced chi-squared of the fit of equation (4.11) are rather
high, in particular for the hydrodynamical runs. This can be an indication that the redshift
dependence we are considering is somehow too simple to fully reproduce the redshift evolution
of the c −M relation, and that the presence of baryons make this evolution more complex.
In the following sections, we will constrain the normalization and slope at z = 0, and then
study the redshift evolution keeping A and B fixed.
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Table 4.5: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c − M relation
(4.11) for dark matter only and total density profile fit in the region [0.1 − 1]R200 for the complete
and relaxed samples of the ΛCDM model at z = 0, z = 0.5 and z = 1 both fixing A and B at the
best-fit values at z = 0 and keeping all the parameters free.

Model σ8 A σA B σB C σC χ̃2

ΛCDM 0.776 dm (all)
fixed 3.59 — −0.099 — −0.33 0.02 1.68
free 3.63 0.04 −0.077 0.008 −0.32 0.03 1.41

ΛCDM 0.776 dm (relaxed)
fixed 4.09 — −0.092 — −0.31 0.02 1.22
free 4.13 0.05 −0.080 0.008 −0.31 0.03 1.24

ΛCDM 0.776 tot (all)
fixed 3.81 — −0.061 — −0.26 0.02 2.40
free 3.81 0.04 −0.046 0.007 −0.25 0.03 2.40

ΛCDM 0.776 tot (relaxed)
fixed 4.29 — −0.064 — −0.26 0.02 1.97
free 4.27 0.05 −0.071 0.007 −0.26 0.03 2.15

4.2 Model-independent concentration

All the fits we used in the previous sections are based on some assumptions that we made on
the shape of the density profile. In principle, it should be useful to have a model-independent
proxy for the concentration found from equation (4.2). Given the usual definition of the
concentration, a natural quantity could be the ratio between two physical radii, characterized
by a given overdensity. As already pointed out in Duffy et al. (2010), a good choice should
be R2500/R500 which are commonly used in X-ray observations. For each object, we evaluate
the ratio R2500/R500 taking R2500 and R500 directly from the true mass profile, without
assumptions on the density profile. We bin the objects in mass as in the previous sections.
The results for the complete, relaxed and super-relaxed samples, are shown in Fig. 4.8. The
first thing that we note is that, for a given sample, the variation of c200 is more than 30%
while the variation of R2500/R500 is less than 10%. That means that the ratio between R2500

and R500 is less dependent on the mass of the halo when compared to c200. The other thing
we note is that objects with higher concentration, i.e. with higher R200/rs, also have higher
R2500/R500. This result confirms the ones in Duffy et al. (2008), where a weak positive trend
of R500/R2500 with M500 was found. Finally, there is a clear dichotomy between the dark
matter only and the total profile fits. At a given concentration, when including baryons,
the ratio R2500/R500 is more than 5% higher with compared to the dark matter only case.
Moreover, in the dark matter only case, the relation between R2500/R500 and c200 closely
follows the one predicted from equation (2.28), indicating that the halos are well described
by a NFW profile. The different behaviour of the halos extracted from the hydrodynamical
run suggests that, when we consider the total (dark matter plus baryons) density profile, the
NFW profile is no longer a good approximation to the real profile.

4.3 Comparison with other works

In this section, we compare with previous works our results on the dark matter concentration
obtained by fitting equation (4.1) in the range [0.1−1]R200 . We use objects at z = 0, z = 0.5,
and z = 1 from the dark matter only simulations of the concordance ΛCDM model normalized
with WMAP3 data. We recall that, by fitting the c −M relation (4.11), we find that more
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Figure 4.8: Comparison between c200dm (squares) and c200tot (stars) and R500/R2500 for the complete
(black), relaxed (blue) and super-relaxed (pink) samples of the ΛCDM model at z = 0. The black
dashed-line represents the prediction for a NFW profile.

Table 4.6: Comparison with other works. See text for details.

Reference h Ωm σ8 dm (all) dm (relaxed)
A B C A B C

This work (fixed A and B) 0.704 0.268 0.776 3.59 −0.099 −0.33 4.09 −0.092 −0.31
This work (free A and B) 0.704 0.268 0.776 3.63 −0.077 −0.32 4.13 −0.080 −0.31

Macciò et al. (2008) 0.71 0.268 0.90 4.55 −0.119 — 5.31 −0.104 —
0.73 0.238 0.75 3.60 −0.088 — 4.13 −0.083 —
0.72 0.258 0.796 3.84 −0.110 — 4.46 −0.098 —

Neto et al. (2007) 0.73 0.25 0.9 4.85 −0.11 — 5.45 −0.10 —
Duffy et al. (2008) 0.742 0.258 0.796 4.06 −0.097 — 4.81 −0.092 —

0.742 0.258 0.796 4.23 −0.084 −0.47 4.85 −0.091 −0.44
Prada et al. (2011) 0.70 0.27 0.82 5.31 −0.074 — 5.55 −0.08 —

massive objects are less concentrated than less massive ones and that objects at high redshift
are less concentrated than objects at z = 0. Moreover, relaxed objects are more concentrated
compared to the complete sample. All these findings qualitatively confirm what can be found
in literature. For the sake of comparison with literature, some numbers are summarized in
Table 4.6, where we have adjusted the quoted normalization A to our pivot mass 1014M⊙

using the corresponding quoted slope B.

Macciò et al. (2008) make a comparison of the c −M relation for all and relaxed objects in
different ΛCDM cosmologies, namely the ones obtained using the parameters coming from
WMAP1, WMAP3 and WMAP5. They fit the dark matter profile with a NFW profile. They
span the mass range 1010 M⊙ h−1 . M . 1015 M⊙ h−1 and bin the objects in mass bins of
0.4 dex width. WMAP3 and WMAP5 have a lower matter density Ωm and a lower power-
spectrum normalization σ8 than WMAP1. This means that halos of a given mass form later,
and thus should be less concentrated. And indeed this is what they find, as it can be seen
from Table 4.6. The higher σ8 and Ωm, the higher the normalization and the steeper the
slope of the c−M relation. With respect to their results for the WMAP3 cosmology Macciò
et al. (2008), we find the same values of the normalization both for the complete and relaxed
samples, with a slightly steeper slope. We show this excellent agreement in Fig. 4.9.
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Figure 4.9: (Top panel) c200dm in each mass bin for the complete sample of the ΛCDM cosmology
at z = 0. The black dotted-dashed line is our best-fit of c −M relation (4.4) and the vertical bar is
the error on the normalization as listed in Table 4.6. The pink solid line is relation of Macciò et al.
(2008) for the WMAP3 cosmology. (Bottom panel) The same as in the top panel, but for the relaxed
sample.

Neto et al. (2007) make a comparison, using halos extracted from the Millennium Simulation
(MS) (Springel et al., 2005), between the complete sample and relaxed objects only. They
fit the dark matter profile with a NFW profile in the [0.05 − 1]Rvir range, without Poisson
weighting. They span the mass range 1012 M⊙ h−1 . M . 1015 M⊙ h−1 and bin the objects
in mass. They find that relaxed objects have more than 10% higher normalization compared
to the whole sample, while the slope is 10% shallower. We find the same trend, but there is
a discrepancy in the absolute numbers, both in the complete and relaxed samples. Indeed,
they find normalizations that are more than 30% higher than ours, which can be explained
with the higher σ8, and a 10% steeper slopes.

Duffy et al. (2008) make a comparison with Neto et al. (2007) using WMAP5 (CMB only)
data. They fit the dark matter profile with both a NFW and an Einasto profile in the
[0.05 − 1]Rvir range. We discuss the results for the NFW profile case. They span the mass
range 1011 M⊙ h−1 . M . 1015 M⊙ h−1 and bin the objects in mass. In comparison with
Neto et al. (2007), they find lower normalizations by about 15% due to a lower value of σ8.
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They also fit the c−M relation taking into account the redshift evolution from z = 0 to z = 2,
both for the complete sample and the relaxed objects only. They find a stronger dependence
on redshift than what we find, both for the whole sample and relaxed systems. A possible
explanation is that we fit in the range between z = 0 and z = 1, while they reach z = 2. If the
redshift evolution is not constant with redshift, but it is weaker at low redshift, this could be
a possible explanation for the different slope we find. They also find that the concentration of
their halos is lower than the one inferred from X-ray observations and ascribed that fact to the
effect of baryon physics that was missing in their simulations. However, in Duffy et al. (2010),
they show that even including baryon physics in the simulations they cannot reproduce both
observed concentrations and stellar fraction in galaxy groups and clusters. In general, at
z = 0, when including metals and AGN feedback, they find lower concentrations compared to
the dark matter only case, and the effect is more relevant in low-mass objects. When including
only primordial cooling, they find higher concentrations compared to the dark matter only
case, qualitatively in agreement with what we find in Fig. 4.5.
Prada et al. (2011), using the Bolshoi simulation (Klypin et al., 2011), evaluate the concen-
tration of the halos using equation (4.7), binning the objects in Vmax and fitting a c−σ(M,z)
relation. They find that the concentration c(σ) has a nearly universal U-shaped profile, with
some small dependencies on redshift and cosmology. They also provide a fit of equation (4.4)
for all their halos at z = 0. They find a higher normalization and a shallower slope in com-
parison with other works, as we do when we use equation (4.7), instead of equation (4.2), to
evaluate the concentration. For relaxed halos, selected by Vmax, they find a 5% higher nor-
malization, as we do. Moreover, they find that the differences in concentrations for relaxed
halos selected by Vmax are higher for high-mass objects than for low-mass ones.
In a more recent paper, Muñoz-Cuartas et al. (2011) fit the c −M relation using a formula
similar to equation (4.4), but incorporating the redshift dependence by letting A and B to
be functions of redshift themselves. For the cvir −Mvir relation, at z = 0 they are able to
reproduce the results of Macciò et al. (2008) with differences of the order of few percentage
points.

We conclude this section noting that, when the values of the cosmological parameters are
similar, our findings about the c − M relation in the reference ΛCDM model are in good
agreement with what already found in literature. So we can safely rely on our ΛCDM model
as a reference, when comparing the impact of different dark energy models on the c − M
relation.

4.4 Dark energy models: results on the dark matter profiles

From now on, we start to compare the c − M relation in the ΛCDM cosmology with the
ones derived for the other cosmological models under investigation. The c −M relation for
galaxy clusters extracted from dark matter only simulations of different dark energy models,
including RP and SUGRA, has been studied in Dolag et al. (2004). They fit a formula similar
to equation (4.11), but keeping C fixed to −1. They find that, when the same σ8 is used
for all the models, dark energy cosmologies have higher normalizations compared to ΛCDM,
depending on the ratio between the growth factors through

ADE → AΛCDM
D+,DE(zcoll)

D+,ΛCDM(zcoll)
, (4.12)

where the collapse redshifts zcoll are evaluated following the prescriptions of Eke et al. (2001).
When σ8 values are normalized to CMB data, as we do in this work, dark energy cosmologies
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have lower normalizations compared to ΛCDM. We find that, in order to recover the values
of the normalization they quote in this case, equation (4.12) should be multiplied by the ratio
between the values of σ8, σ8,DE/σ8,ΛCDM. This fact goes in the same direction as what found
in Macciò et al. (2008), where models with higher σ8 also have a higher normalization of the
c−M relation.

We recall that to obtain the concentration we fit equation (4.1) in the range [0.1− 1]R200

using Poissonian errors and use the best-fit parameters to obtain c200 from equation (4.2).
Then we bin the objects in groups of 200, starting from less massive ones, and also define a
relaxed sample by taking the relaxed objects inside each bin. Finally, we fit the binned c−M
relation with equation (4.4). We begin the comparison in this section with the dark matter
only runs at z = 0, while in the following section we will study the hydrodynamical runs, also
at higher redshifts.

In Table 4.7 we summarize the best-fit parameters, the standard errors and the reduced
chi-squared of the c − M relation (4.4) for the five cosmological models here considered,
both for the complete and relaxed samples. For the complete sample, the differences in the
normalization A between ΛCDM and the other cosmological models are less tha 10%, with
EQn being the only model having a higher normalization. The slope B is within 5% of
the ΛCDM value for all the models with the exception of EQn again, which shows a 30%
flatter slope. For the slope the differences among the models, excluding EQn, are smaller
than the standard errors, while for the normalization these differences are significant. If we
limit ourselves to the best-fit values, given that the slopes are almost identical and that all
the cosmological parameters except σ8 are fixed, we expect that the normalizations should
follow the values of σ8, i.e. the higher σ8 the higher the normalization (see Macciò et al.,
2008), and D+, i.e. the higher D+ at zcoll the higher the normalization (see Dolag et al.,
2004). The quantity controlling the normalization is thus expected to be σ8D+(zcoll). We
plot the ratio between the value of σ8D+ for a given dark energy model and the one for
ΛCDM as a function of redshift in Fig. 4.10. Independently of the precise definition of zcoll,
the cosmological model with the highest value of this quantity is ΛCDM, followed by RP,
EQp, EQn, and SUGRA. We do expect the normalizations of the c −M relation to follow
the same order, with ΛCDM having the highest and SUGRA the lowest. Instead we see that,
on the one hand, EQp which has the third highest σ8D+ has the lowest normalization while,
on the other hand, EQn which has the second lowest σ8D+ has the highest normalization.
The relative order of σ8D+ and A is preserved for ΛCDM, RP and SUGRA, as in Dolag
et al. (2004). We hint that this behaviour is linked to the different evolution of the linear
density contrast in extended quintessence models in comparison with ΛCDM and ordinary
quintessence models, as pointed out in Subsection 2.1.2. In fact, in contrast with ΛCDM,
RP and SUGRA, in EQ models δc does not approach the Einstein-de Sitter value during the
matter-dominated era, but it is higher for positive values of the coupling constant ξ and lower
for negative values of ξ. For the relaxed sample, compared to ΛCDM, the differences in the
normalization are less than 10%, while the differences in the slope can almost reach 15%, but
they are compatible with the standard errors. Also in this case, the most extreme cosmologies
are EQp and EQn, whose normalizations go in the opposite direction with respect to their
σ8D+. This fact reinforces the conclusions we have drawn from the complete sample. The
values of the reduced chi-squared indicate that equation (4.4) is a good parametrization of
the c−M relation for almost all cosmological models. Only SUGRA has high values both for
the complete and relaxed samples.

In a recent paper, Bhattacharya et al. (2011), using N -body numerical simulations of a ΛCDM
cosmology, find indeed a dependence of c200 on both D+ and ν = δc/σ(M,z). They evaluate
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Table 4.7: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c−M relation (4.4)
for dark matter only density profile fit in the region [0.1−1]R200 for the complete and relaxed samples
of the five different cosmological models at z = 0.

Model σ8 A σA B σB χ̃2

dm (all)
ΛCDM 0.776 3.59 0.05 −0.099 0.011 0.48

RP 0.746 3.54 0.05 −0.103 0.011 1.14
SUGRA 0.686 3.41 0.05 −0.098 0.013 1.50

EQp 0.748 3.36 0.05 −0.097 0.012 0.35
EQn 0.726 3.70 0.05 −0.069 0.013 0.78

dm (relaxed)
ΛCDM 0.776 4.09 0.05 −0.092 0.011 0.66

RP 0.746 4.08 0.05 −0.081 0.011 0.92
SUGRA 0.686 3.94 0.06 −0.081 0.012 1.55

EQp 0.748 3.84 0.05 −0.097 0.011 1.32
EQn 0.726 4.25 0.06 −0.081 0.013 0.51

Figure 4.10: Ratio between the value of σ8D+ for the ΛCDM (black), RP (blue), EQp (cyan), EQn
(red), and SUGRA (green) cosmologies and the value for ΛCDM as a function of redshift.

the overall dependence of c200 on the linear growth factor, both for their complete and relaxed
samples, to be D 0.5

+ . The dependence on the linear density contrast is also considered to be
a power law, νa. They find different values of a for the complete and relaxed samples, namely
a = −0.35 for the former and a = −0.41 for the latter. Thus, the higher the value of D+ the
higher the value of the concentration, and the lower the value of δc the higher the value of the
concentration. Our findings on the EQp and EQn models are in agreement with this picture.

We plot the best-fits of the c −M relation, along with the binned data for all the cos-
mological models, in Fig. 4.11. We clearly see that the results on the normalizations are
due to differences in the concentrations over a wide mass range. If we look, for example,
at the complete sample (top panel of Fig. 4.11), we see that the different slope of EQn is
mainly originated by the less massive bin. But with the exception of this bin, EQn shows
the highest concentration in almost all the mass bins, while in general EQp has the lowest
concentration. For the relaxed sample (bottom panel of Fig. 4.11), the relative behaviour of
the different cosmological models is even clearer, and indeed the differences in the slopes are
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Figure 4.11: (Top panel) The values of c200dm in each mass bin for the complete sample of the ΛCDM
(black), RP (blue), SUGRA (green), EQp (cyan), and EQn (red) cosmologies at z = 0. The lines of
the corresponding colours are our best-fit of c−M relation (4.4) and the vertical black bar is the error
on the normalization of ΛCDM as listed in Table 4.6. The symbols in the low part of the panel are
the ratios in each mass bin between c200dm for the model and c200dm for ΛCDM. The horizontal black
dashed-line marks a unity ratio. (Bottom panel) The same as in the top panel, but for the relaxed
sample.

less pronounced.

We also try to limit the fit of the c−M relation to the halos with M200m > 1014 M⊙ h−1,
in order to check the effect of including low-mass objects. We report the results in Table 4.8.
For the complete sample, we note that the slopes and the normalizations are compatible to
the fit including also low-mass objects, but that the standard errors are a factor of two higher
for the normalization and a factor of four higher for the slope, meaning that the relation is less
tight. Notable exceptions are EQn, which shows a steep slope, and SUGRA, which shows a
positive trend of c200dm with mass, with a large error, and a consequently low normalization.
The slope of EQn can be explained by the fact that, as we already pointed out, the lowest
mass bin is the one with the lowest concentration, and excluding it from the fit results in a
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Table 4.8: Best-fit parameters and standard errors of the c −M relation (4.4) for dark matter only
density profile fit in the region [0.1 − 1]R200 for objects with M200m > 1014 M⊙ h−1 in the complete
and relaxed samples of the five different cosmological models at z = 0.

Model σ8 A σA B σB

dm (all)
ΛCDM 0.776 3.55 0.09 −0.087 0.038

RP 0.746 3.54 0.11 −0.080 0.046
SUGRA 0.686 3.18 0.12 +0.035 0.060

EQp 0.748 3.35 0.10 −0.080 0.044
EQn 0.726 3.74 0.11 −0.114 0.048

dm (relaxed)
ΛCDM 0.776 3.99 0.10 −0.055 0.042

RP 0.746 4.00 0.12 −0.017 0.045
SUGRA 0.686 3.73 0.13 +0.051 0.059

EQp 0.748 3.76 0.11 −0.027 0.046
EQn 0.726 4.19 0.13 −0.079 0.053

steeper slope. The behaviour of SUGRA can be explained by the fact that this model lacks
very massive objects (see Section 3.3), that are the ones with the lower concentration.

For the same reason, the c−M relation for relaxed objects is flatter than when we include
low-mass objects. This is expected, because we do not have the low-mass objects that have
high concentration and we do not have the high-mass objects, which are in general more
disturbed, that have low concentration. Thus, in this mass range, the relation is in general
almost flat, with big uncertainties on the slope.

4.5 Dark energy models: results on the total profiles

In this section, we study the impact of baryon physics on the c−M relation by analysing the
hydrodynamical runs of our simulations for all the cosmological models under investigation.
This allows us to understand the effects of the presence of a dynamical dark energy component
on the internal matter distribution, including baryons, of the halos. We start this analysis
with the objects at z = 0, then we will consider the redshift evolution of the c −M relation
by including also objects at z = 0.5 and z = 1. As we already explained in Section 4.1, first
of all we fit equation (4.4) for the objects at z = 0, then, keeping fixed the best-fit values of
A and B, we fit equation (4.11) and evaluate the redshift evolution C.

In Table 4.9 we summarize the best-fit parameters, the standard errors and the reduced
chi-squared of the c − M relations (4.4) and (4.11) for the five cosmological models here
considered, both for the complete and relaxed samples. For all the cosmologies, the values
of A are larger than in the dark matter only case, indicating that the inclusion of baryons
leads to an increase in the concentration, while the standard errors remain the same. The
slope is somewhat flatter than in the dark matter only case for all the cosmological models.
We already noted both these features in the ΛCDM case (see Section 4.1), and the shallower
slope can be explained by the fact that the increase in the concentration due to the presence
of baryons is greater in high-mass objects than in low-mass ones. For the complete sample,
the total c−M relation reflects the one for dark matter, with the normalizations in the same
order, apart from an exchange between EQp and SUGRA, and EQn having the highest value.
The relaxed sample shows higher normalizations than the complete sample, as in the dark
matter only case, while the slopes are very similar to the ones of the complete sample. Also
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Table 4.9: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c−M relation (4.4)
for total density profile fit in the region [0.1 − 1]R200 for the complete and relaxed samples of the
five different cosmological models at z = 0, and of the c−M relation (4.11) including also objects at
z = 0.5 and z = 1, keeping the best-fit values of A and B found at z = 0 fixed.

Model σ8 A σA B σB χ̃2 C σC χ̃2

tot (all)
ΛCDM 0.776 3.81 0.05 −0.061 0.011 1.69 −0.26 0.02 2.40

RP 0.746 3.72 0.05 −0.073 0.012 1.06 −0.15 0.02 1.98
SUGRA 0.686 3.68 0.06 −0.057 0.013 0.70 −0.05 0.02 3.68

EQp 0.748 3.69 0.05 −0.085 0.012 0.88 −0.20 0.02 2.99
EQn 0.726 3.94 0.05 −0.052 0.012 1.55 −0.21 0.02 1.77

tot (relaxed)
ΛCDM 0.776 4.29 0.05 −0.064 0.011 1.54 −0.26 0.02 1.97

RP 0.746 4.24 0.05 −0.075 0.010 2.86 −0.15 0.02 1.84
SUGRA 0.686 4.25 0.06 −0.045 0.011 1.14 −0.08 0.02 1.11

EQp 0.748 4.13 0.05 −0.091 0.010 2.02 −0.16 0.02 2.79
EQn 0.726 4.48 0.05 −0.057 0.012 1.62 −0.16 0.02 1.02

in this case, in comparison with the order of σ8D+, the extreme case are EQp and EQn,
with ΛCDM, RP and SUGRA preserving the expected order. Thus, the trend with the linear
density contrast we find in the dark matter only runs still holds in the hydrodynamical runs.
The values of the reduced chi-squared indicate that for some models equation (4.4) is a good
parametrization also for the c −M relation of objects extracted from the hydrodynamical
runs, at least when the complete sample is considered. For relaxed objects only SUGRA
seems to be described quite well by this relation.

We plot the best-fits of the c−M relation, along with the binned data for all the cosmo-
logical models, in Fig. 4.12. Also in this case, we see that differences in the concentration
are present over a large mass range. For the complete sample, the lower normalization of
SUGRA compared to RP is mainly due to low-mass objects, which flatten the relation. The
same happens for the relaxed sample, where we also see a steepening in the relation from
EQp, mainly due to high-mass objects.

As for the dark matter only case, we also limit our analysis at z = 0 also to objects with
M200m > 1014 M⊙ h−1. We report the results in Table 4.10. We find that the normalizations
are similar to the one found including also low-mass objects, but the standard errors are higher,
and the slopes are generally flatter, with some exceptions. The most evident is SUGRA, for
which the trend of c200 with mass is increasing both in the complete and relaxed samples.
For the complete sample, EQp and EQn show a steepening in the slope, a behaviour which
is maintained by EQn also in the relaxed sample. For SUGRA, the explanation is the same
as the dark matter only case, i.e. the lack of very high mass, low-concentration systems. For
EQp and EQn, they show objects with low concentration in particular in the low-mass tail,
so when excluding these objects, the result is a steepening in the slope (see Fig. 4.12). In all
cases, the scatter in the relation is considerably higher than when we consider also low-mass
objects, up to a factor of three in normalization and a factor of four in the slope.

For the hydrodynamical simulations, we also study the redshift evolution of the c −M
relation by fitting equation (4.11) keeping the values of A and B fixed to the best-fit values
at z = 0. We report the results in Table 4.9. For all the models, the evolution with redshift
is negative, meaning that objects at higher redshifts have also lower concentrations. For the
complete sample, the redshift dependence is stronger for ΛCDM than for the other cosmolog-
ical models. The two EQ models have similar dependences, lower than ΛCDM, followed by
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Figure 4.12: (Top panel) The values of c200tot in each mass bin for the complete sample of the ΛCDM
(black), RP (blue), SUGRA (green), EQp (cyan), and EQn (red) cosmologies at z = 0. The lines of
the corresponding colours are our best-fit of c−M relation (4.4) and the vertical black bar is the error
on the normalization of ΛCDM as listed in Table 4.6. The symbols in the low part of the panel are
the ratios in each mass bin between c200tot for the model and c200tot for ΛCDM. The horizontal black
dashed-line marks a unity ratio. (Bottom panel) The same as in the top panel, but for the relaxed
sample.

RP and SUGRA, which shows a very weak evolution with redshift. If we focus on the relaxed
sample, we see that the ΛCDM model still shows the strongest redshift dependence, analogous
to the one for the complete sample. RP, EQp and EQn have similar evolutions, but while for
RP it is the same as for the complete sample, for EQ models it is weaker. SUGRA have a
flatter dependence compared to the other models, but more pronounced than for the complete
sample. The values of the reduced chi-squared are rather high for all the cosmological models,
both for the complete and relaxed samples. Two notable exceptions are the values for the
relaxed samples of SUGRA and EQn. The results shown in Table 4.9 seem to indicate that
equation (4.4), and its generalization (4.11), are only a limited parametrization of the c−M
relation of galaxy clusters extracted from hydrodynamical runs of cosmological simulations
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Table 4.10: Best-fit parameters and standard errors of the c−M relation (4.4) for total density profile
fit in the region [0.1 − 1]R200 for objects with M200m > 1014 M⊙ h−1 in the complete and relaxed
samples of the five different cosmological models at z = 0.

Model σ8 A σA B σB

tot (all)
ΛCDM 0.776 3.74 0.09 −0.031 0.034

RP 0.746 3.67 0.11 −0.027 0.040
SUGRA 0.686 3.49 0.13 +0.027 0.061

EQp 0.748 3.83 0.10 −0.130 0.041
EQn 0.726 3.94 0.12 −0.083 0.045

tot (relaxed)
ΛCDM 0.776 4.14 0.10 −0.007 0.036

RP 0.746 4.17 0.11 −0.004 0.041
SUGRA 0.686 4.00 0.15 +0.069 0.061

EQp 0.748 4.14 0.11 −0.054 0.043
EQn 0.726 4.41 0.14 −0.068 0.052

including dynamical dark energy, and of its redshift evolution.

Finally, we check the evolution with redshift of the normalization A both for the complete
and relaxed samples for all the cosmological models. We do that by fitting the c−M relation
(4.4) by keeping fixed the slope at the best-fit value for the complete sample of ΛCDM at
z = 0 (i.e. B = −0.061, see Table 4.9) and leaving only A as a free parameter. We compare
the different normalizations found by fitting equation (4.4) in this way for both the complete
and relaxed samples at z = 0 and at z = 1. In this way, we freeze the slope at z = 0 for
ΛCDM and force the other cosmological models, and objects at higher redshift, to adapt their
normalization to this value. Thus we can have a snapshot of the imprint on dark energy on
the concentration of the halos. We summarize the results in Table 4.11 and plot them in
Fig. 4.13. Indeed we see that, for a given sample at z = 0, the normalization is decreasing
going from ΛCDM to RP to SUGRA, as expected from σ8D+. Then, as we already saw, the
normalization of EQp is rather suppressed with respect to this simple expectation, while the
one of EQn is enhanced, due to the different values of the linear density contrast δc. If we
move instead to z = 1, the relative behaviour of the different cosmological models changes.
We find that, for both samples, the normalization is increasing going from ΛCDM to RP to
SUGRA, while EQp is still suppressed and EQn is still enhanced. This finding is in agreement
with the strong redshift evolution we found for ΛCDM and with the weak redshift evolution
we found for SUGRA. There is an evolution from a low-normalization to a high-normalization
relation for the first model, and vice versa for the latter. We show the values of the reduced
chi-squared of the fit as a reference, but do not discuss them because we are imposing the
slope for ΛCDM also to other models.

4.6 Dark energy models: discussion

In the final section of this chapter we discuss, for the different cosmologies, the results we
have found for the dark matter only runs with the ones for the hydrodynamical runs. We
start by comparing the normalization of the c −M relation at z = 0 for the complete and
relaxed samples in both runs. To do this, we fix the slope at the best-fit value for the complete
sample of the dark matter only run for ΛCDM at z = 0 (i.e. B = −0.099, see Table 4.7)
and we fit equation (4.4) with only A as a free parameter. We summarize the results in
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Table 4.11: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c−M relation (4.4),
with B fixed at the best-fit value for the complete sample of ΛCDM at z = 0, for total density profile
fit in the region [0.1 − 1]R200 for the complete and relaxed samples of the five different cosmological
models at z = 0 and z = 1.

z = 0 z = 1
Model σ8 A σA χ̃2 A σA χ̃2 A σA χ̃2 A σA χ̃2

tot (all) tot (relaxed) tot (all) tot (relaxed)
ΛCDM 0.776 3.81 0.05 1.69 4.30 0.05 1.30 3.21 0.05 6.43 3.62 0.06 2.09

RP 0.746 3.74 0.05 1.08 4.27 0.05 2.69 3.43 0.06 4.27 3.84 0.08 2.05
SUGRA 0.686 3.67 0.05 0.58 4.20 0.05 1.28 3.49 0.07 1.81 3.85 0.08 0.43

EQp 0.748 3.74 0.04 1.49 4.20 0.05 3.13 3.26 0.06 6.09 3.70 0.07 2.72
EQn 0.726 3.92 0.05 1.38 4.47 0.05 1.37 3.48 0.07 3.43 4.02 0.08 1.69

Figure 4.13: Best-fit normalization comparison for equation (4.4) with B fixed at the best-fit value
for the complete sample of ΛCDM at z = 0 for the ΛCDM (black), RP (blue), SUGRA (green), EQp
(cyan), and EQn (red) cosmologies. Crosses: total profile fit z = 0, complete sample. Stars: total
profile fit z = 0, relaxed sample. Triangles: total profile fit z = 1, complete sample. Squares: total
profile fit z = 1, relaxed sample. The vertical bars are the standard errors for the normalization of
the complete sample at z = 0.

Table 4.12 and plot them in Fig. 4.14, which contains almost all the information on the
c − M relation at z = 0 for the cosmological models under investigation. Indeed, we see
that inside each sample, objects in the dark matter only runs have a lower normalization
than objects in the hydrodynamical runs, independently of cosmology and dynamical state.
Moreover, inside each run, relaxed objects have a higher normalization compared to the
complete sample. Then, as a general trend, the normalization is decreasing going from ΛCDM
to RP to SUGRA, independently of the run and the dynamical state. Finally EQn always
has the highest normalization while EQp, at least for the dark matter only runs, alway
has the lowest. In particular, EQn has the highest normalization also in hydrodynamical
runs, while the suppression of the concentration in EQp is somehow mitigated in these runs.
The behaviour of ΛCDM, RP and SUGRA is in agreement with the simple idea that the
normalization of the c − M relation is driven by the value of σ8D+, but the one of EQp
and EQn is not. We ascribe the behaviour of the two EQ models to the different evolution
of the linear density contrast in the spherical collapse prescription, which is higher than the
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Table 4.12: Best-fit parameters, standard errors and reduced chi-squared χ̃2 of the c −M relation
(4.4), with B fixed at the best-fit value for the dark matter only complete sample of ΛCDM at z = 0,
for dark matter only and total density profile fit in the region [0.1 − 1]R200 for the complete and
relaxed samples of the five different cosmological models at z = 0.

Model σ8 A σA χ̃2 A σA χ̃2 A σA χ̃2 A σA χ̃2

dm (all) dm (relaxed) tot (all) tot (relaxed)
ΛCDM 0.776 3.59 0.05 0.48 4.08 0.04 0.62 3.76 0.04 3.36 4.23 0.05 3.06

RP 0.746 3.55 0.04 0.97 4.08 0.04 0.62 3.76 0.04 3.36 4.23 0.05 3.06
SUGRA 0.686 3.41 0.04 1.20 3.89 0.04 1.69 3.58 0.04 2.77 4.09 0.04 5.56

EQp 0.748 3.36 0.04 0.30 3.83 0.04 1.11 3.66 0.04 0.96 4.11 0.04 1.77
EQn 0.726 3.65 0.04 1.56 4.21 0.05 0.74 3.86 0.05 3.81 4.39 0.05 3.46

Figure 4.14: Best-fit normalization comparison for equation (4.4) with B fixed at the best-fit value for
the dark matter only complete sample of ΛCDM at z = 0 for the ΛCDM (black), RP (blue), SUGRA
(green), EQp (cyan), and EQn (red) cosmologies. Triangles: dark matter profile fit, complete sample.
Squares: dark matter profile fit, relaxed sample. Crosses: total profile fit, complete sample. Stars:
total profile fit, relaxed sample.

Einstein-de Sitter value for EQp and lower for EQn (see Subsection 2.1.2), leading thus to
a lower normalization for EQn and to a higher normalization fro EQp (see Section 4.4). We
show the values of the reduced chi-squared of the fit as a reference, but do not discuss them
because we are imposing the slope for ΛCDM also to other models.

Finally, we compare the concentrations obtained from the dark matter only runs with the
one obtained from the hydrodynamical runs. We do this by taking the ratio between c200tot
and c200dm in each mass bin both for the complete and relaxed samples at z = 0. We plot
the results in Fig. 4.15. In the top panel we analyse the ratio for the complete sample. We
see that all the cosmological models have c200tot/c200dm increasing with increasing mass. This
fact confirms that the baryon physics influences more the concentration of high-mass objects
compared to low-mass ones (see Fig. 4.5). In particular, while ΛCDM, RP and SUGRA
have c200tot < c200dm in some low-mass bins, EQp and EQn have in general c200tot > c200dm,
with a less pronounced evolution with mass. In the bottom panel we analyse the ratio for
the relaxed sample. Here the situation is a bit different. All the cosmological models still
show a general increase of c200tot/c200dm with increasing mass, but the evolution is rather
shallow. In particular, very massive objects in the RP, EQp and EQn models have low values
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Figure 4.15: Ratio in each mass bin between c200tot and c200dm for the complete sample of the ΛCDM
(black), RP (blue), SUGRA (green), EQp (cyan), and EQn (red) cosmologies at z = 0. The dashed
black line traces the one-to-one relation. (Bottom panel) The same as in the top panel, but for the
relaxed sample.

of these ratio. In any case, with few exceptions in some mass bins, we generally find that
c200tot > c200dm for all models. This analysis demonstrates that the inclusion of baryon physics
in the simulations is unable to solve the discrepancy between the predicted and observed c−M
relation. Indeed, in none of the cases we have analysed, the effect of the baryons is to increase
the concentration of low-mass objects without affecting the one of the high-mass ones. Of
course a possible explanation of this fact can be that we do not include some kinds of feedback
in our simulations, in particular AGN feedback. Still, Duffy et al. (2010) already showed that
none of the different hydrodynamical treatments they tried was able to both explain the
observed c−M relation and the stellar fraction in galaxy clusters.

Nevertheless, we have seen that different dark energy models leave an imprint in the c−M
relation. In particular, as already noted by Dolag et al. (2004), in ordinary quintessence
models, like our RP and SUGRA, the normalization of this relation compared to the ΛCDM
one is driven by the value of σ8D+(zcoll) with respect to the value for ΛCDM. We find that the
same thing is no longer valid for extended quintessence models like our EQp and EQn. Indeed,
in this cases we find that, in presence of a positive coupling, the value of the normalization
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is lower than what expected from σ8D+(zcoll) while in presence of a negative coupling it is
increased. We interpret this behaviour as due to the different evolution of the linear density
contrast in the spherical collapse model, as explained in Subsection 4.4. Unfortunately, given
the discrepancies between the observed and the predicted c−M relation, it is difficult to use
the observed c−M relation to disentangle different cosmological models through the imprints
left by dark energy.

4.7 c − M relation: summary

In this chapter we have studied the c −M relation for the halos extracted from the Padme

simulation set. From our analysis we draw the following conclusions.

• Concentration: the definition itself of the concentration of a halo can lead to very
different results. For the reference ΛCDM model at z = 0, we see that the usual
fit of a NFW profile, depending on the way in which the errors are weighted and the
concentration is evaluated from the fit, gives values of the concentration with differences,
at worst, of the order of 5%. The method used by Prada et al. (2011), instead, returns
similar values of the concentration only for super-relaxed objects, while in general gives
higher values of the concentration, up to 20%. The quantity R2500/R500, which is model
independent, is found to be well correlated with the NFW value of the concentration
for dark matter only simulations, indicating that dark matter halos are indeed well
described by a NFW profile. In a given mass bin, the mean concentration is higher and
the intrinsic scatter is lower for objects that are in a relaxed dynamical state and well
described by a NFW profile. Halos extracted from the hydrodynamical runs have, in
general, higher concentrations than their dark matter only counterparts. The effect is
more evident in high-mass systems, due to a higher baryon fraction in the inner regions.

• c−M relation: limiting our analysis to the ΛCDM model, there is a big intrinsic scatter
in the values of the concentration for objects of a given mass, ranging from 15% up to
40% depending on mass and dynamical state. Nevertheless, if we consider the mean
value of concentration in a given mass range, there is a good correlation between con-
centration and mass. The concentration is slightly decreasing with increasing mass, and
this relation is well described by a power law, with two free parameters, the normaliza-
tion and the slope. The normalization, that we define as the value of the concentration
of a halo with a mass of 1014 M⊙, is increasing going from the complete sample to
the relaxed and super-relaxed samples. The slope is similar for the different samples
considered. In general, we find a good agreement with the results from other works in
literature.
The normalization is higher for objects extracted from the hydrodynamical runs com-
pared to the one of the dark matter only runs. The slope is flatter for the hydrodynamical
simulations than for the dark matter only ones. This is expected because massive ob-
jects from the hydrodynamical simulations have higher concentrations than their dark
matter only counterparts.

• Redshift dependence: the c −M relation shows an evolution with redshift, with con-
centration decreasing with increasing redshift. For the ΛCDM model, considering also
objects at z = 0.5 and z = 1, the redshift evolution is more pronounced for the dark
matter only simulations than for the hydrodynamical ones, while it is similar for the
complete and relaxed samples.
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• Dark energy models: we find that the normalization of the c−M relation in dynamical
dark energy cosmologies is different from the ΛCDM one, while the slopes are more
compatible. In particular, at z = 0, the differences in the normalizations of RP and
SUGRA compared to ΛCDM reflect the differences in σ8D+, with models having a
higher σ8D+ also having a higher normalization. This simple scheme is not valid for the
EQp and EQn scenarios. In the former case, the normalization is lower than expected
from σ8D+, while in the latter it is higher, and indeed EQn is always the model with the
highest normalization, regardless of the dynamical state of the objects or the runs they
are extracted from. This behaviour is due to the different value of the linear density
contrast in these models, being higher than the Einstein-de Sitter value of ΛCDM and
ordinary quintessence models for EQp and lower for EQn.
For objects extracted from the hydrodynamical runs, we also study the redshift evolution
of the c − M relation. We find different evolution for different dark energy models.
ΛCDM has the strongest evolution, while SUGRA has the weakest, while RP lies in
between. For these three models, the behaviour is similar for the complete and relaxed
samples. EQp and EQn models, instead, show an evolution similar to ΛCDM for the
complete sample and similar to RP for the relaxed sample. The interesting thing to note
is that at z = 0 the normalization decreases from ΛCDM to RP to SUGRA, while at
z = 1 the situation is completely reversed. Independently of redshift, EQp has always
the lowest normalization while EQn has always the highest.



Conclusions

In this work we have analysed a sample of galaxy clusters extracted from the Padme simula-
tion set, a set of dark matter only and hydrodynamical simulations of different cosmological
models with dynamical dark energy. We simulate a cosmological box of size (300 Mpc h−1)3,
resolved with (768)3 dark matter particles, including the same amount of gas particles in the
hydrodynamical runs. The reference cosmology is a concordance ΛCDM model normalized to
WMAP3 data. The others are two quintessence models, one with a RP and the other with
a SUGRA potential, and two extended quintessence models, with a positive and a negative
coupling between quintessence and gravity, indicated as EQp and EQn, respectively. All mod-
els have a different dark energy equation of state w(z) and a different growth factor D+(z).
Moreover EQp and EQn also have a different linear density contrast δc. Since all models
are normalized to CMB data, they have different σ8, and thus different structure formation
histories. The aim of this work is to study the imprints of the different dark energy models
on large virialized objects like galaxy clusters.

First, we focus on the general properties of the considered objects, in particular the mass
function, the X-ray L − T relation, the X-ray luminosity and temperature functions (XLF
and XTF respectively) and finally the baryonic fraction in terms of the depletion parameters
bstar, bgas and bbar defined in equation (3.8). We select and study objects at three different
redshifts, z = 0, z = 0.5, and z = 1, with M200m ≥ 1014M⊙h

−1. We also define a criterion to
distinguish between relaxed and unrelaxed clusters.
We find that our ΛCDM model is in good agreement with the observed mass function of
Vikhlinin et al. (2009a) and L − T relation of Pratt et al. (2009), and can thus be used a
reference to study other dark energy models. The other models form less clusters of a given
mass with respect to ΛCDM, following the values of σ8, and so have different mass functions.
The differences we see in the mass functions remain also when the X-ray proxies for the mass
are considered. In particular, the X-ray temperature and the YX parameter, defined the gas
mass times the X-ray temperature, are found to be good indicators of the mass function. So,
in principle, X-ray observations of galaxy clusters can be used to disentangle among different
dark energy models through the mass function.
The analysis of the baryon fraction shows that there are no significant differences in the global
distribution of gas and stars inside halos in the cosmological models under investigation. In-
deed, evolved and relaxed clusters, if studied in regions sufficiently far from the centre, reveal
to be very similar despite the different dark energy models considered. It means that tech-
niques that rely on fgas to derive other cosmological parameters can be safely used even in
the case in which the underlying model is one of the quintessence models discussed in this work.
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Then, we focus on the c −M relation for objects extracted both from the dark matter
only and hydrodynamical runs. In this case, we also consider halos with lower masses, down
to M200m ≈ 1013M⊙h

−1, and bin the objects in mass.
We find that the dark matter only c−M relation for our reference ΛCDM model is in good
agreement with the one of Macciò et al. (2008) for the WMAP3 cosmology, both for the
complete and relaxed samples. Thus, we use ΛCDM as a guide to study the impact of dark
energy on the c−M relation. We find that RP and SUGRA have lower normalizations with
respect of ΛCDM, following the values of σ8D+. EQp and EQn do not follow this simple rule
because they have also different δc with respect to the other models. In particular, we find a
higher normalization for a lower δc (EQn) and a lower normalization for a higher δc (EQp).
This is an important point, because in principle one can use the c−M relation to break the
degeneracy between models having the same σ8D+.
In order to compare findings from our simulations to real data, we also study the c−M rela-
tion for halos extracted from the hydrodynamical runs. We find that the impact of baryons
on the c−M relation is to increase the normalization and to flatten the slope, due to a high
concentration of baryon in the inner regions of massive objects in our simulations. Still, the
important features for dark energy we find in dark matter only runs are also present in the
hydrodynamical runs. Unfortunately, there are still big discrepancies between the observed
and predicted c−M relations, both in slope and normalization, discrepancies that we cannot
eliminate neither considering hydrodynamical simulations nor limiting the analysis to relaxed
systems.

In the end, we can conclude that in models with dynamical dark energy considered in this
work, the evolving cosmological background leads to different formation histories of galaxy
clusters, but the baryon physics is not affected in a relevant way. So, on the one hand, galaxy
clusters can effectively be used as a probe to distinguish among different dark energy models
through their mass function or c−M relation. On the other hand, the distribution of baryons
inside cluster is similar in the different models, and thus fgas can be used to derive other
cosmological parameters also in these cosmologies.



Appendix A

Notes on General Relativity

In this appendix we derive the important quantities of General Relativity used throughout
this work. A comprehensive treatment of this topic can be found in Wald (1984).

A.1 Notation

For a scalar field φ, covariant differentiation is simply partial differentiation:

∇aφ = φ;a ≡ ∂aφ = φ,a (A.1)

For a contravariant vector field va, we have:

∇bv
a = va;b ≡ ∂bv

a + Γacbv
c (A.2)

For a covariant vector field ua, we have:

∇bua = ua;b ≡ ∂bua − Γcabuc (A.3)

For a type (2,0) tensor field T ab, we have:

∇cT
ab = T ab;c ≡ ∂cT

ab + ΓadcT
db + ΓbdcT

ad (A.4)

For a type (0,2) tensor field Tab, we have:

∇cTab = Tab;c ≡ ∂cTab − ΓdacTdb − ΓdbcTad (A.5)

For a type (1,1) tensor field Tb
a, we have:

∇cTb
a = Tb

a
;c ≡ ∂cTb

a = ΓadcTb
d − ΓdbcTd

a (A.6)

103



104 Notes on General Relativity

A.2 General Relativity

Spacetime is a manifold M on which there is defined a Lorentz metric gµν .
The curvature of gµν is related to the matter distribution in spacetime by Einstein’s equation

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν . (A.7)

• A manifold is a set of pieces that “look like" open subsets of R
n such that these pieces

can be “sewn together” smoothly.

• Lorentz metric signature: (−,+,+,+)

• Rµρ = Rµνρ
ν Ricci tensor, trace over the second and fourth (or first and third) indices

of the Riemann tensor.

• R = Rµ
µ scalar curvature, trace of the Ricci tensor.

• Tµν stress-energy tensor.

• Bianchi identity ∇µGµν = 0 implies local energy conservation.

• ∇µ (unique) derivative operator associated with gµν , i.e. ∇µgνρ = 0.

For a perfect fluid

Tµν = ρuµuν + p(gµν + uµuν) , (A.8)

where uµ is the 4-velocity, i.e. the unit tangent (as measured by gµν) to its world line, of a
particle. Local energy conservation holds:

∇µTµν = 0 . (A.9)

Klein-Gordon equation for a scalar field φ in curved spacetime:

∂µ∂µφ−m2φ = 0 . (A.10)

Stress tensor of the field:

Tµν = ∂µφ∂νφ− 1

2
gµν(∂

ρφ∂ρφ+m2φ2) , (A.11)

∇µTµν = 0 . (A.12)
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A.3 Lagrangian formulation

Hilbert action

SH =

∫

d4xLH , (A.13)

integral over spacetime of a Lagrangian density

LH =
√−gR =

√−gRµνgµν , (A.14)

where g denotes the determinant of gµν . Given that

δ(
√−g) = −1

2

√−ggµνδgµν , (A.15)

the variation of the Hilbert action with respect to the metric gµν yields

δSH
δgµν

=
√−g(Rµν −

1

2
Rgµν) = 0 , (A.16)

Einstein’s equation in vacuum.

Indeed

δLH =
√−gRµνδgµν +Rµνg

µνδ(
√−g) +

√−ggµνδ(Rµν) =

=
√−g(Rµν −

1

2
Rgµν)δg

µν +
√−g∇µvµ ,

where

vµ = ∇ν(δgµν) − gρσ∇µ(δgρσ) . (A.17)

When considering the variation of the Hilbert action, the term

∫

d4x
√−g∇µvµ (A.18)

is the integral of a divergence, ∇µvµ, with respect to the natural volume element d4x. Hence,
by Stroke’s theorem, this integral contributes only on a boundary term.
In presence of matter

L =
1

αM
LH + LM , (A.19)

where LM is the Lagrangian density for matter.
The variation of the action



106 Notes on General Relativity

S =
1

αM
SH + SM =

∫

d4x

(

1

αM

√−gR+ LM
)

(A.20)

with respect to the metric gµν yields

δS

δgµν
=

1

αM

√−g(Rµν −
1

2
Rgµν) +

δSM
δgµν

= 0 ; (A.21)

i.e., for a perfect fluid,

Tµν = − αM
8πG

1√−g
δSM
δgµν

= ρuµuν + p(gµν + uµuν) (A.22)

in order to recover Einstein’s equation.
Lagrangian formalism of a Klein-Gordon scalar field φ in a Minkowski spacetime (i.e. four-
dimensional flat Lorentz signature space)

LKG = −1

2
(∂µφ∂

µφ+m2φ2) , (A.23)

where ∂µ is the derivative operator associated with the flat metric ηµν .
The variation of the action

SKG =

∫

d4x

[

−1

2
(∂µφ∂

µφ+m2φ2)

]

(A.24)

with respect to the scalar field φ yields

δSKG
δφ

= ∂µ∂
µφ−m2φ = 0 , (A.25)

Klein-Gordon equation.
In curved spacetime

LKG = −1

2

√−g(gµν∂µφ∂νφ+m2φ2) (A.26)

and, if

L =
1

αKG
LH + LKG , (A.27)

then

Tµν = −αKG
8πG

1√−g
δSKG
δgµν

= ∂µφ∂νφ− 1

2
gµν(∂

ρφ∂ρφ+m2φ2) (A.28)

in order to recover Einstein’s equation, with αKG = 16πG.
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In general, for a Lagrangian of the form

Lφ =
√−g

(

−1

2
gµν∂µφ∂νφ− V (φ)

)

(A.29)

the Euler-Lagrange equation

∂µ

(

∂Lφ
∂(∂µφ)

)

− ∂Lφ
∂φ

= 0 (A.30)

reads

−∂µ∂µφ+
∂V (φ)

∂φ
= 0 . (A.31)

Klein-Gordon equation (A.10) is recovered for

V (φ) =
1

2
m2φ2 . (A.32)

A.4 Homogeneity and Isotropy

Homogeneity is the property of being identical everywhere in space, while isotropy is the
property of looking the same in every direction.
In the case of a homogeneous and isotropic spacetime, the surfaces Σt of homogeneity must
be orthogonal to the tangents, uµ, to the world lines of the isotropic observers.
The spacetime metric, gµν , induces a Riemannian metric, hµν(t), on each Σt by restricting
the action of gµν on each p ∈ Σt to vectors tangent to Σt.

• (i) Because of homogeneity, there must be isometries of hµν which carry any p ∈ Σt into
any q ∈ Σt.

• (ii) Because of isotropy, it must be impossible to construct any geometrically preferred
vectors on Σt.

(ii) implies that the Riemann tensor (3)Rµνρ
σ constructed from hµν on Σt satisfies

(3)Rµνρσ = Khρ[µhν]σ =
K

2
(hρµhνσ − hρνhµσ) . (A.33)

(i) [but also (ii)] implies that K must be a constant.

A space where equation (A.33) is satisfied (with K = constant) is called a space of constant

curvature.

All positive values of K (closed universe) are attained by the 3-spheres. In spherical coordi-
nates, the metric of the unit 3-sphere is
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dl2 = dψ2 + sin2 ψ(dθ2 + sin2 θdφ2) . (A.34)

The value K = 0 (flat universe) is attained by the ordinary three-dimensional flat space. In
Cartesian coordinates, this metric is

dl2 = dx2 + dy2 + dz2 . (A.35)

Finally, all negative values of K (open universe) are attained by the three dimensional hyper-
boloids. In hyperbolic coordinates, the metric of the unit hyperboloid is

dl2 = dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2) . (A.36)

Since the isotropic observers are orthogonal to the homogeneous surfaces, we may express the
four-dimensional spacetime metric gµν as

gµν = −uµuν + hµν(t) , (A.37)

where for each t, hµν(t) is the metric of either a sphere, flat Euclidean space, or a hyperboloid.
Expressed in convenient coordinates, the spacetime metric takes the form

ds2 = gµνdx
µdxν = −dt2 + a2(t)dl2 , (A.38)

where t is the proper time of the isotropic observers and dl2 is given either by (A.34), (A.35),
or (A.36).
The general form of the metric (A.38) is called a Robertson-Walker cosmological model.
It can be shown that the Robertson-Walker metric (A.38) can be expressed in the form

ds2 = dt2 + a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]

, (A.39)

with k = 0,±1.

A.5 Dynamics of a Homogeneous, Isotropic Universe

The aim is now to substitute the spacetime metric (A.39) into Einstein’s equation (A.7) to
obtain predictions for the dynamical evolution of the Universe.
The most general form consistent with homogeneity and isotropy Tµν can take is the perfect
fluid form

Tµν = ρuµuν + p(gµν + uµuν) , (A.40)

where ρ and p are the energy density and pressure (respectively) as measured in the rest
frame, and uµ is the four-velocity of the fluid. Because of isotropy, in comoving coordinates
the four-velocity is
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uµ = (1, 0, 0, 0) , (A.41)

and the energy-momentum tensor is then

Tµν =









ρ 0 0 0
0
0 gµνp
0









. (A.42)

For matter (baryons and cold dark matter) p = 0, for radiation (photons and relativistic
particles) p = ρ/3.
The task is to compute Gµν from the metric (A.39) and equating it to 8πGTµν . A priori, 10
equations corresponding to the 10 independent components of a symmetric two-index tensor.
However, on account of the spacetime symmetries, only two independent equations. Actually,
“time-space” components of Einstein’s equation are identically zero, off-diagonal “space-space”
components must vanish, and the diagonal “space-space” components yield the same equations.
Hence the independent components of Einstein’s equation are simply

Gtt = 8πGTtt = 8πGT00 = 8πGρ , (A.43)

G∗∗ = 8πGT∗∗ = 8πGa−2Txx = 8πGp , (A.44)

where Gtt = Gµνu
µuν and G∗∗ = Gµνs

µsν , where sµ is a unit vector tangent to the homoge-
neous hypersurfaces,

sµ =
1

a
√

3
(0, 1, 1, 1) . (A.45)

We can compute Gtt and G∗∗ in terms of a(t) using the coordinate basis components of the
Christoffel symbol

Γcab =
1

2

∑

d

gcd
{

∂gbd
∂xa

+
∂gad
∂xb

− ∂gab
∂xd

}

. (A.46)

The nonvanishing components of the Christoffel symbol are merely

Γtxx = Γtyy = Γtzz = aȧ , (A.47)

Γxxt = Γxtx = Γyyt = Γyty = Γzzt = Γztz =
ȧ

a
. (A.48)

Indeed
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Γtxx =
1

2

∑

d

gtd
{

∂gxd
∂xx

+
∂gxd
∂xx

− ∂gxx
∂xd

}

=

=
1

2
gtt
{

∂gxt
∂xx

+
∂gxt
∂xx

− ∂gxx
∂xt

}

=

= −1

2
gtt
∂gxx
∂xt

=

=
1

2

∂a2(t)

∂t
= aȧ ,

where the dot denotes the derivative with respect to the proper time t, i.e. ȧ = da/dt, and

Γxxt =
1

2

∑

d

gxd
{

∂gtd
∂xx

+
∂gxd
∂xt

− ∂gxt
∂xd

}

=

=
1

2
gxx

{

∂gtx
∂xx

+
∂gxx
∂xx

− ∂gxt
∂xx

}

=

=
1

2
gxx

∂gxx
∂xt

=

=
1

2
a−2(t)

∂a2(t)

∂t
=
ȧ

a
.

Hence, by

Rac =
∑

b

Rabc
b =

=
∑

b

∂

∂xb
Γbac −

∂

∂xa

(

∑

b

Γbbc

)

+
∑

e,b

(

ΓeacΓ
b
eb − ΓebcΓ

b
ea

)

(A.49)

the independent Ricci tensor components are calculated to be

Rtt = −3
ä

a
, (A.50)

R∗∗ = a−2Rxx =
ä

a
+ 2

ȧ2

a2
. (A.51)

Indeed

Rtt =
∑

b

∂

∂xb
Γbtt −

∂

∂xt

(

∑

b

Γbbt

)

+
∑

e,b

(

ΓettΓ
b
eb − ΓebtΓ

b
et

)

=

= − ∂

∂xt

(

∑

x

Γxxt

)

+
∑

x

(

− ΓxxtΓ
x
xt

)

=

= −3
∂

∂xt
Γxxt − 3ΓxxtΓ

x
xt =

= −3
∂

∂t

ȧ

a
− 3

ȧ2

a2
=

= −3
äa− ȧ2

a2
− 3

ȧ2

a2
= −3

ä

a
,
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where ä = dȧ/dt, and

Rxx =
∑

b

∂

∂xb
Γbxx −

∂

∂xx

(

∑

b

Γbbx

)

+
∑

e,b

(

ΓexxΓ
b
eb − ΓebxΓ

b
ex

)

=

=
∑

b

∂

∂xb
Γbxx +

∑

b

(

ΓtxxΓ
b
tb − ΓtbxΓ

b
tx

)

+
∑

b

(

ΓxxxΓ
b
xb − ΓxbxΓ

b
xx

)

=

=
∂

∂xt
Γtxx + 3ΓtxxΓ

x
tx − ΓtxxΓ

x
tx − ΓxtxΓ

t
xx =

=
∂

∂t
(aȧ) + aȧ2 ȧ

a
=

= ȧ2 + aȧ+ ȧ2 = aȧ+ 2ȧ2 .

Since

R = −Rtt + 3R∗∗ = 6

(

ä

a
+
ȧ2

a2

)

, (A.52)

thus

Gtt = Rtt +
1

2
R = 3

ȧ2

a2
= 8πGρ , (A.53)

G∗∗ = R∗∗ −
1

2
R = −2

ä

a
− ȧ2

a2
= 8πGp . (A.54)

Using (A.53), (A.54) can be rewritten as

3
ä

a
= −4πG(ρ+ 3p) . (A.55)

Repeating the calculation for the cases of spherical and hyperboloid geometries, the general
evolution equations for homogeneous, isotropic cosmology (Friedmann equations) are:

ȧ2

a2
=

8πG

3
ρ− k

a2
, (A.56)

ä

a
= −4πG

3
(ρ+ 3p) , (A.57)

where k = +1 for the 3-sphere, k = 0 for flat space, and k = −1 for the hyperboloid.
Defining the Hubble constant

H(t) ≡ ȧ

a
, (A.58)

the Friedmann equations (A.56) and (A.57) can be expressed by
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H2 =
8πG

3
ρ− k

a2
, (A.59)

Ḣ +H2 = −4πG

3
(ρ+ 3p) . (A.60)

Introducing the critical density

ρc ≡
3H2

8πG
, (A.61)

and the density parameter

Ω ≡ ρ

ρc
, (A.62)

the Friedmann equation (A.59) can be rewritten

k

a2
= H2(Ω − 1) , (A.63)

and the space is closed (k = 1), flat (k = 0) or open (k = −1) according to whether Ω is
greater than, equal to, or less than unity.
Since k is constant,

a2H2(Ω − 1) = a2
0H

2
0 (Ω0 − 1) , (A.64)

where a0, H0, and Ω0 are the present-day values of a, H, and Ω respectively.

A.6 Perfect Fluid Models

A perfect fluid, described by the energy-momentum tensor (A.40), forms the basis of the
Friedmann models. In order to study the cosmological solutions for homogeneous, isotropic
cosmology, one needs to specify an equation of state for the fluid in the form p = p(ρ). In
general,

p = wρ . (A.65)

Actually, p and ρ appearing in (A.40) are the sum of the pressures and densities of the different
components of the cosmological fluid respectively, i.e.

p =
∑

i

pi , (A.66)

ρ =
∑

i

ρi , (A.67)
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where pi is the pressure and ρi the density of the i-th component.
Each component has its own equation of state

pi = wiρi . (A.68)

If the evolution of the Universe is adiabatic, i.e.

d(ρa3) = −pda3 , (A.69)

then

a3dρ = −(ρ+ p)da3 = a3d(ρ+ p) − d
[

(ρ+ p)a3
]

, (A.70)

and

a3dp

dt
= −d

[

(ρ+ p)a3
]

dt
, (A.71)

which can also be expressed as

ρ̇+ 3H(ρ+ p) = 0 . (A.72)

Using (A.65), the continuity equation (A.72) can be rewritten as

ρ̇+ 3
ȧ

a
ρ(1 + w) = 0 . (A.73)

Integrating (A.73), we find

ρ = ρ0 exp

[

−3

∫ a

a0

1 + w

a′
da′
]

, (A.74)

being ρ0 and a0 the present-day values of ρ and a, respectively.
For matter (wm = 0) ρma

3 = const. = ρ0ma
3
0, for radiation (wr = 1/3) ρra

4 = const. = ρ0ra
4
0.

Defining the density parameter for each component

Ωi ≡
ρi
ρc

, (A.75)

the Friedmann equation (A.59) can be rewritten

H2 = H2
0

[

∑

i

Ω0i exp

(

−3

∫ a

a0

1 + wi(a
′)

a′
da′
)

+
(a0

a

)2
(1 −

∑

i

Ω0i)

]

, (A.76)

where Ω0i is the present-day value of Ωi.
In terms of redshift z and cosmic time t
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z =
a0

a
− 1 , (A.77)

dt = − dz

H0Ez(1 + z)
, (A.78)

where

Ez =
H

H0
=

=

[

∑

i

Ω0i exp

(

3

∫ z

0

1 + wi(z
′)

1 + z′
dz′
)

+ (1 + z)2(1 −
∑

i

Ω0i)

]1/2

. (A.79)
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