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”What is number? What are space and time? What is mind, and what

is matter? I do not say that we can here and now give definitive answers to

all those ancient questions, but I do say that a method has been discovered

by which we can make successive approximations to the truth, in which

each new stage results from an improvement, not a rejection, of what has

gone before. In the welter of conflicting fanaticism, one of the unifying

forces is scientific truthfulness, by which I mean the habit of basing our

beliefs upon observations and inferences as impersonal, and as much

divested of local and temperamental bias, as is possible for human beings.”

Bertrand Russell (1945)
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Introduction

Intermolecular Forces and Electric Properties play a key role in the understanding of

many physical and chemical phenomena and in the characterization of a molecular system

[1].

Electric properties (mainly multipole moments and polarizabilities) directly reflect

the electron density distribution of the system, influencing a significative amount of

molecular (or intermolecular) properties. We recall, for instance, their role on many

optical or spectroscopical properties, such as:

• refraction index

• absorption constant in optical spectroscopy

• selection rules in rotational and vibrational spectroscopy (Micro Wave, IR, Raman)

• optical activity

• non linear optical phenomena

It is clear that the determination of high quality value for those observables represents

a valuable target for Quantum Chemistry in order to give useful parameters for the

modeling of important systems both at micro and macro level.

Intermolecular Forces, on their side, show an analogous valuable importance in the

fields of theoretical or applied chemistry. In this context for Intermolecular Forces we

consider the forces, mainly due to electric type interactions, exercising among atoms

or molecules, the latter considered, in a wider sense, as stable aggregates of nuclei and

electrons (monomers). It is crucial to recall that Intermolecular Forces depend from the

Electric Properties of the single monomers and from their relative orientation [2]. Other

kinds of forces, such as gravitational, magnetic or nuclear, may be neglected due to their

low intensity (the first two types) or to their very short range (the latter one). Although

their intensity is some order of magnitude lower than the energy of the isolated molecules
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or the binding energy, Intermolecular Forces are of great importance in describing the

behavior of numerous systems in the fields of material science, catalysis, biochemistry.

As an example we may cite:

• transport properties in real fluid

• cohesion properties in condensed systems

• liquid crystal behavior and their response to external perturbations

• enzyme-substrate interactions in biochemistry and drug chemistry

• interaction in heterogenous catalysis

This thesis shows the study and application of high level ab initio quantum chemistry

methods (mainly Full CI and Coupled Cluster) to the determination of electric properties

and intermolecular forces of small systems. Moreover since this kind of problems are

computationally high demanding and require the use of different codes and software

some emphasis will be put on the building of a common format allowing the interfacing

of such codes, and ultimately on the moving towards grid computation.

Overview

The present thesis will be organized as follows:

• Chapters 1, 2 and 3 will be dedicated to the presentation of the theory of Inter-

molecular Forces and Electric Properties, of the common ab initio computational

strategies and to the briefly recall of the computational machinery used in this

work.

• Chapters 4, 5, 6, 7 and 8 will be devoted to the presentation and discussion of

innovative methods implemented or applied in our laboratory together with original

results.

• Chapters 9, 10 and 11 will be dedicated to the description of our proposal for a grid

oriented common format for Quantum Chemistry problems and of the FORTRAN

API and to the illustration of the first applications.



Part I

Intermolecular Forces and Electric

Properties: Theory





Chapter 1

Theory of Intermolecular Forces

1.1 Introduction

In the conditions of validity of Born Oppenheimer approximation one can define in-

termolecular interaction energy, for fixed nuclei position, as the difference between the

energy of the system A+B in a given particular configuration and the energy resulting

when A and B are brought to infinite separation. In that context assuming the distance

is such that we can safely neglect internal separation [3]. The interaction energy will

depend on the distance R defining the separation of the monomers and the Euler angle

Ω specifying their relative orientation.

Intermolecular Energies are extremely small, their ratio with respect to the energy of

the individual monomers being of the orders of 10−5 1 (Table 1.1) .

It is clear that the required interaction energies are in general so small compared

with the energies of the separated molecules that any attempt to calculate them at the

ab initio method is bound to meet great difficulties, and requires the use of an high

level of theory and of consistently large basis sets (possibly with diffuse and high angular

momenta functions); this leads to a significative increase in the computational cost of

the problem.

Two main approaches have been used in quantum chemistry to treat these phenom-

ena:

1. Supramolecular approach

2. Perturbation Theory

1Here and elsewhere, except where differently stated atomic units are used: length Bohr a0 = 5.29177·
10−11 m, energy hartree h = 4.35944 · 10−18 J, electron charge e=1 a.u.=1.60218 · 10−19 C, multipole
moments µl = eal

0, multipole polarizabilities αl,l′ = e2al+l′

0 h−1, intermolecular coefficients Cn = a−n
0 h.
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Table 1.1: Well depths at the experimental geometries, total energy of the isolated

molecules and their ratios for some small dimers [2]

Dimer He2 (H2)2 (N2)2 (HF)2 (H2O)2

R 5.6 6.5 8.0 5.1 5.6

Eint ·10−3 -0.034 -0.117 -0.392 -7.76 -8.92

E0 -5.807 -2.349 -218.768 -200.607 -152.877
Eint

E0
· 10−5 0.58 4.98 1.79 3.87 5.83

In the first one the energy of the dimer A+ B is computed for each geometry therefore

directly obtaining an intermolecular potential energy hypersurface [4, 5].

In the second one the interaction is treated as a small perturbation via an extension of

the common Rayleigh-Schrödinger perturbation theory [6, 7].

Both these approaches will be treated in this thesis in detail, while many original

applications will be shown and discussed; in particular for the determination of long

range dispersion interactions.

1.1.1 Classification of Intermolecular Forces

Intermolecular forces are repulsive at short range and attractive at large distances, we

can identify a number of facts that are responsible for attraction and repulsion of molec-

ular systems: this fact leads to a very well known classification of intermolecular forces

contributes in term of their physical meaning.

Electrostatic (coulombic) energy: it gives the semiclassical interaction between rigid

charge distribution of the two monomers. Strictly pairwise additive, it appears in

first order of perturbation theory. For systems with permanent multipole moments

it varies at long range as the R−n (R being the intermolecular separation and n

the order of the interaction), while at short range it decreases exponentially with

the distance.

Induction (polarization) energy: it is the additive term resulting from the distortion

of the charge distribution of one molecule by the mean electric field provided by

the other, and vice versa. If one or both monomers possesses permanent multipole

moments this will be a long range contribution. It is not pairwise additive and it

is described in second order perturbation theory.
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Dispersion energy: it describes the intermolecular electron correlation due to the in-

stantaneous coupling of the density fluctuation mutually induced in each molecule.

It is a long range interaction, pairwise additive and appears in second order per-

turbation theory. For neutral atom having spherical symmetry dispersion is more

important than induction at large distances, but at short range the situation is

reversed.

Exchange energy: it is the first order term arising from the antisymmetry requirement

of the wave function. Attractive for closed shell it is a 2-electron contribution

surviving even for zero-overlap.

Overlap (penetration) energy: it is the other first order contribution arising from

the antisymmetry requirement, it describes the Pauli repulsion due to the inter-

penetration of the charge clouds of molecules having a closed shell structure. It

comprises 1-electron and 2-electron terms, the first being larger but vanishing at

zero overlap. Like the first one it is a non-classical contribution depending on the

nature of the spin coupling of the interacting systems. Strictly non-additive it

decays exponentially with the intermolecular separation.

Second order penetration energy: it is a second order contribution including ex-

change and overlap corrections to induction and dispersion, it implies intermolec-

ular overlap between occupied orbitals of one molecule and vacant orbitals of the

other. It is usually a very small term that can be neglected without a too much

significant loss in accuracy.

1.2 Molecules in Static Electric Fields

1.2.1 Multipole Operators

As previously stated all the contributions to the intermolecular interaction energy derive

ultimately from the Coulombic interactions between their particles (electrons). In order

to derive a consistent theory we should be able to describe the way in which the charge

is distributed in a molecule. For most purposes this is done in a simple and compact way

using the so called multipole operators [1], and their expectation values the multipole

moments.

Multipole operators and moments can be defined in two ways. One uses the mathe-

matical language of cartesian tensors, while the other, the spherical tensors formulation,

is based on the spherical harmonics. The latter is more flexible and powerful expecially
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for more advanced works, but the first one is somehow easier to understand. In any case

the two descriptions are closely related and in many applications it is possible to use

either.

1.2.1.1 Cartesian Definition

In a formal way the first, and the simplest, multipole moment is the total charge q =∑
a e

a, with the sum running over all the charged particles in the molecules. The next

operator is the very famous dipole operator. The name derive from the fact that his

moment (expectation value) can be considered as being generated by two charges of

equal magnitude q separated by a distance d, in this case the magnitude of the moment

is q · d and the vector conventionally goes from the negative charge to the positive one.

More generally the operator for the z-component takes the form,

µ̂z =
∑

a

eaaz (1.1)

and similarly for µ̂x and µ̂y, where obviously the vector a has been used to describe

the position of each charged particle. The corresponding dipole moment is obtained by

the corresponding expectation value of the previous operator so for a system in the state

|n〉

µα = 〈n|µ̂α|n〉

=

∫
ρn(r)rαdr (1.2)

where α is one of the coordinates and the second equation has been expressed in

terms of molecular charges density (ρ(r)). If the integration is carried over the electron

coordinates only (including anyway the nuclear charge) we get the dipole moment for

a fixed nuclear geometry. In order to exactly match the experimental value we have to

integrate over the nuclear coordinates too, this means perform a vibrational averaging

of the dipole moment value.

The next of the multipole operators and moments is the quadrupole moment, the

name again recalls the fact that this charge distribution can be obtained with two charges

of equal magnitude, two positive and two negative. The operator is slightly more com-

plicated and can take the general form

Θ̂αβ =
∑

a

ea(
3

2
aαaβ −

1

2
a2δαβ) (1.3)
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where δ is the Kronecker delta δαβ = 1 if α = β, δαβ = 0 if α 6= β. From the previous

relation it follows that Θxx +Θyy +Θzz = 0 giving rise to the well know traceless relation

of quadrupole.

For the sake of simplicity we will skip the definition, in cartesian form, of the other

multipole operators, for instance octupole, let us only generalise what we derived to any

given rank: the multipole operator of rank n has n suffixes and takes the form:

ξ̂
(n)
αβ...ν =

(−1)n

n!

∑
a

eaa2n+1 ∂

∂aν

. . .
∂

∂aβ

∂

∂aα

(
1

a

)
(1.4)

from the previous definition it follows that ξ̂ is symmetric with respect to the permu-

tation of its suffixes, and it is traceless with respect of any pair of suffixes ξ̂ααγ...ν = 0,

moreover the maximum number of independent component is equal to 2n+ 1

1.2.1.2 Spherical tensor definition

In many cases, expecially when dealing with advanced applications or high rank multi-

poles, it is convenient to express the operators using the spherical harmonics, in fact even

if the corresponding formulae are sometimes more difficult to derive, their application

and use is simplified with respect to the analogous cartesian formalism [8].

In terms of the regular spherical harmonics multipole operators are defined as:

Q̂lm =
∑

a

eaRlm(a) (1.5)

where Rlm(a) are the corresponding spherical harmonics, in practice however it is

usually more convenient to use the real form:

Q̂lk =
∑

a

eaRlk(a) (1.6)

It should be noted how the independent spherical harmonics of rank n are exactly

2n + 1, so again for a given rank the independent multipole operator components are

2n+1, in accordance with the result previously obtained using cartesian tensor formalism.

1.2.2 The energy of a molecule in a static electric field

We may consider a molecule in an external potential V (r). This potential has an electric

field associated, which formally may be defined as Fα = − ∂V
∂rα

= −∇αV , consider more-

over the field gradient Fαβ = − ∂2V
∂rα∂rβ

= −∇α∇βV . Let us use the simplified notation

Vα = − ∂V
∂rα

and Vαβ = − ∂2V
∂rα∂rβ

in that case we will have Fα = −Vα and Fαβ = −Vαβ.
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If, after a suitable choice of the origin and the set of coordinates, we expand the

potential in a Taylor series we get:

V (r) = V (0) + rαVα(0) +
1

2
rαrβVαβ +

1

3!
rαrβrγVαβγ + · · · (1.7)

where we have used the Einstein sum rule: a repeated suffix implies summation over

the three coordinates values (x,y,z) of that suffix. We are interested to find out the

energy of the molecule in the presence of this potential, so the involved perturbation

Hamiltonian operator is

H′ =
∑

a

eaV̂ (a) (1.8)

where as usual sum is taken over all electrons and nuclei of the molecules, substituting

we obtain:

H′ = V (0)
∑

a

ea + Vα(0)
∑

a

eaaα +
1

2
Vαβ(0)

∑
a

eaaαaβ + · · · (1.9)

abbreviating for V (0) to V and so on and introducing the zeroth M̂ , first M̂α and

second M̂αβ moment we may write the perturbation as:

H ′ = V M̂ + VαM̂α +
1

2
VαβM̂αβ + · · · (1.10)

the zeroth moment is easily recognized as the charge operator q, as well as no dif-

ficulties arise in defining the first order moment as the dipole moment operator µ̂α, for

the second order momentum some algebraical work is necessary in order to get it in a

more recognizable form.

Let us define a new quantity M̂ ′
αβ = M̂αβ − kδαβ, where k is a constant an δαβ is the

Kronecker delta tensor. Since we are only interested in the energy value it follows that:

1

2
VαβM̂

′
αβ =

1

2
VαβM̂αβ −

1

2
kδαβVαβ

=
1

2
VαβM̂αβ −

1

2
kVαα

=
1

2
VαβM̂αβ (1.11)

the last line follows from the Laplace equation: Vαα =
∑

α
∂2V
∂α2 = ∇2V = 0 and

is obviously true for any value of k. We may therefore chose k so that it makes M̂ ′
αβ

traceless M̂ ′
αα = M̂ ′

xx + M̂ ′
yy

ˆ+M
′
zz = 0 so being δαα = 3 we have M̂αα − 3k = 0 and

k = 1
3
M̂αα = 1

3

∑
a e

aa2 therefore we obtain:

M̂ ′
αβ =

∑
a

ea(aαaβ −
1

3
a2δαβ) =

2

3
Θ̂αβ (1.12)
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We demonstrated how subtracting away the trace of the second moment, which, by

the way, does not contribute to the electrostatic energy one arrives to the quadrupole

moment, except for a numerical factor.

The higher momenta can be manipulated in a very similar way so we may generalise

the expression for the electrostatic perturbation Hamiltonian as:

H′ = qV + µ̂αVα +
1

3
Θ̂αβVαβ + · · ·+ 1

(2n− 1)!!
ξ̂

(n)
αβ...νVαβ...ν + · · · (1.13)

where (2n− 1)!! = (2n− 1)(2n− 3) · · · 5 · 3 · 1 and n is an integer defining the rank

of the multipole.

In term of the spherical tensor formulation the same expression can be written as:

H′ =
∑
lm

(−1)mQ̂l,−mVlm (1.14)

where Vlm = [(2l − 1)!!]−1Rlm(∇)V |r=0, in this case by Rlm(∇) we mean the regular

spherical harmonic whose argument is the vector gradient operator ∇, i.e. for example

R10(∇) = ∇z = ∂
∂z

. We will not show in details here the proof of the result, since it is

a little bit indirect and its derivation can be somehow cumbersome, the only point we

will like to underline is, again, the equivalence between cartesian and spherical tensor

formalism.

Moreover it is also possible to express the perturbation Hamiltonian in real, instead

of regular, spherical harmonics, in this case the equation becomes

H′ =
∑
lk

Q̂lkVlk (1.15)

obtaining a formulation which in many cases may be much more convenient.

1.2.2.1 First Order Energy

Once the perturbation Hamiltonian has been written in a convenient form it is trivial to

find out the first order energy for a given state following standard perturbation theory.

If, for instance, one is interested in the energy for the zero state |0〉 the first order

energy becomes simply 〈0|H′|0〉:

E ′ = qV + µαVα +
1

3
ΘαβVαβ +

1

15
ΩαβγVαβγ + . . . (1.16)

where as usual µα = 〈0|µ̂α|0〉 and so on for higher order multipoles. The previous

can be written in a more compact way following the spherical moments formalism as:

E ′ =
∑
lk

QlkVlk (1.17)
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where again Qlk = 〈0|Q̂lk|0〉.
It is important to underline how from the previous equations one can guess the energy

due to the dipole components depends only on the electric field Fα = −Vα, while the

energy due to the quadrupole involves only the field gradient Fαβ = −Vαβ.

1.2.2.2 Second Order Energy

The second order energy is again given, for the ground state, by the standard Rayleigh-

Scrödinger perturbation theory. The involved quantities can be expressed via the usual

some over the states and in this case we get:

E ′′ = −
∑
n6=0

〈0|H′|n〉〈n|H′|0〉
En − E0

(1.18)

If we substitute in the previous equation the expression for the perturbation Hamil-

tonian we derived previously, we may define a set of polarizabilities as:

αα,β =
∑
n6=0

〈0|µ̂α|n〉〈n|µ̂β|0〉+ 〈0|µ̂β|n〉〈n|µ̂α|0〉
En − E0

(1.19)

Aα,βγ =
∑
n6=0

〈0|µ̂α|n〉〈n|Θ̂βγ|0〉+ 〈0|Θ̂βγ|n〉〈n|µ̂α|0〉
En − E0

(1.20)

Cαβ,γδ =
1

3

∑
n6=0

〈0|Θ̂αβ|n〉〈n|Θ̂γδ|0〉+ 〈0|Θ̂γδ|n〉〈n|Θ̂αβ|0〉
En − E0

(1.21)

where the first equation represents the dipole-dipole polarizability, the second one

the dipole-quadrupole polarizability and the last one the quadrupole-quadrupole polar-

izability.

With these definitions we may now express the second order energy as:

E ′′ = −1

2
ααβVαVβ −

1

3
Aα,βγVαVβγ −

1

6
Cαβ,γδVαβVγδ + · · · (1.22)

It is important to notice how the zeroth order operator (the charge operator) drops

from the energy equation even if the molecules is charged, this is due to the fact it is a

constant and its matrix elements between different eigenstates are zero by orthogonality.

In the spherical tensor formalism, as well as we did for the first order momenta, we

may define a generic polarizability αlk,l′k′as:

αlk,l′k′ =
∑
n6=0

〈0|Q̂lk|n〉〈n|Q̂l′k′|0〉+ 〈0|Q̂l′k′|n〉〈n|Θ̂lk|0〉
En − E0

(1.23)
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in this case the second order energy takes the form:

E ′′ = −1

2

∑
lk,l′k′

αlk,l′k′VlkVl′k′ (1.24)

1.2.2.3 Physical Interpretation

To get a deeper insight on the physical meaning of these properties, which so far have

been described with a purely mathematical formalism it is useful to write down the

complete expression for the energy (let us consider a neutral molecule for the sake of

simplicity)

E = E0 + µαVα +
1

3
ΘαβVαβ +

1

15
ΩαβγVαβγ + · · ·

−1

2
ααβVαVβ −

1

3
Aα,βγVαVβγ −

1

6
Cαβ,γδVαβVγδ − · · · (1.25)

if we consider the derivative of the energy with respect to Vξ(in physical words the

variation of the energy due to the application of an electric field along ξ) we obtain

∂E

∂vξ

= µαδαξ −
1

2
ααβ(Vαδβξ + Vβδαξ)−

1

3
Aα,βγδαξVβγ − · · ·

= µξ − αξβVβ −
1

3
Aξ,βγVβγ − · · · (1.26)

from the previous equation we can recognize that the the static dipole can be defined

as:

µξ =

(
∂E

∂Vξ

)
V→0

(1.27)

this is, indeed maybe the most common, and surely most classical description, of

dipole moment, and is also the basis for some simple methods of calculating it (see for

instance the finite field technique). As the polarizability αβξ is concerned it is clear it

defines the additional dipole induce by the application of an electric field Fβ = −Vβ, and

the dipole-quadrupole polarizability Aξ,βγ the dipole induced by an applied field gradient

Fβ,γ = −Vβγ.

In the same way if we derive the energy with respect to a gradient potential Vξη we

get

3
∂E

∂Vξη

= Θξη − Aα,ξηVα − Cαβ,ξηVαβ − · · · (1.28)
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therefore the quadrupole moment, in analogy with the dipole moment is simply

Θξη =

(
∂E

∂Vξη

)
V→0

(1.29)

while A also describes the quadrupole moment induced by an electric field Fα = −Vα

and C describes the quadrupole moment induced by an electric field gradient Fαβ =

−Vαβ.

1.2.3 Dependence from the origin

A slight complication in the study of electric properties arises when one takes into account

the dependence from the origin of multipole moments and polarizabilities. In fact for a

given molecule only the first non zero element in the series (charge, dipole, quadrupole)

is invariant upon a translation of the coordinate system.

Let us consider for instance the dipole moment along z

µz = 〈0|µ̂z|0〉 =
∑

a

〈0|ea · z|0〉 (1.30)

now if we apply a translation to the coordinate system such as x0, y0, z0 → x0, y0, z0 + c

the dipole moment becomes:

µC
z = 〈0|µ̂z|0〉+ c ·

∑
a

〈0|ea|0〉 = µ0
z + c · q (1.31)

so if the molecule is charged (q 6= 0) the expectation value of the dipole moment

varies with the choice of the origin.

For the quadrupole operator a similar relation can be derived, and considering as an

example the Θzz component we have

Θ̂C
zz =

∑
a

ea

[
3

2
(az − c)2 − 1

2
(a2

x + a2
y + (az + c)2)

]
=

∑
a

ea

[
(
3

2
a2

z −
1

2
a2) + 2azc+ c2

]
= Θ̂0

zz + 2cµ̂z
0 + qċ2 (1.32)

for the other components undergoing the same translation the following relations can

be applied

Θ̂C
xx = Θ̂0

xx − cµ̂0
z −

c2

2
(1.33)
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Θ̂C
xz = Θ̂0

xz +
3

2
cµ̂0

x (1.34)

The same situation affects polarizabilities as well as multipole moments, with only

one simplification: the matrix elements of the total charge that might occur in the

sum over states are all zero, because q is a constant and states are orthogonal, so the

dipole-dipole polarizability will be independent of origin even for charged ions. However

higher rank polarizabilities will not be invariant and in general will depend on lower rank

ones. So considering, for instance, a linear molecule we will have for dipole-quadrupole

polarizabilities

AC
z,zz = A0

z,zz + 2cαz (1.35)

AC
x,xz = A0

x,xz +
3

2
cαx (1.36)

AC
z,xx = A0

z,xx − cαz (1.37)

and for quadrupole polarizabilities one should consider the formulae

CC
zz,zz = C0

zz,zz + 4cA0
z,zz + 4c2αz (1.38)

CC
xx,xx = C0

xx,xx − 2cA0
z,xx + c2αz (1.39)

CC
xz,xz = C0

xz,xz + 3cA0
x,xz +

9

4
c2αx (1.40)

1.3 Molecules in oscillating electric fields

If we apply to our molecule an electric field which oscillates with the time (for instance

electromagnetic radiation), we should use time dependent perturbation theory to describe

the response of the system. In fact the total Hamiltonian H = H0 +H′ consists of a time

independent part H0 together with a time dependent perturbation H ′ = V̂ f(t) which

can be described as the product of a time independent operator V̂ and a time factor

f(t).

Therefore the wave function can be written as

Ψ =
∑

k

ak(t)ψk(t) =
∑

k

akψke
−iωkt (1.41)

assuming a small perturbation and considering the system is initially in a state |n〉
the coefficients ak(t) satisfy the following condition

∂ak(t)

∂t
= − i

~
vknf(t)eiωknt k 6= n (1.42)
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integration from the tuning on of the field to the time t gives

ak(t) = − i
~
vkn

∫ t

−∞
f(τ)eiωknτdτ (1.43)

If we are dealing with optical frequencies the wavelength can be considered to be so

long, compared with the molecular size that electric field gradient and higher deriva-

tives can be neglected, moreover if we put ourselves in the steady state response, the

perturbation becomes

H′(t) = 2V̂ eεt cos(ωt) = V̂ (e(ε+iω)t + e(ε−iω)t) = V̂ f(t) (1.44)

with ε being an arbitrary small factor (later it will be allowed to tend to zero). Having

factorized the perturbation we may directly substitute and integrate in order to find the

evolution of the coefficient ak(t)

ak(t) = − i
~
vkn

∫ t

−∞
((e(ε+iωkn+iω)τ + e(ε+iωkn−iω)τ )dτ

=

ε→ 0
−Vkn

~

[
e(ε+iωkn+iω)τ

ωkn + ω − iε
+
e(ε+iωkn−iω)τ

ωkn − ω − iε

]t

−∞

= −Vkn

~

(
e(ε+iωkn+iω)τ

ωkn + ω − iε
+
e(ε+iωkn−iω)τ

ωkn − ω − iε

)
= −Vkn

~

(
ei(ωkn+ω)t

ωkn + ω
+
ei(ωkn−ω)t

ωkn − ω

)
(1.45)

We also note the coefficient ak(t) remains small provided that Vkn is small compared

with ~(ωkn ± ω).

We are now ready to evaluate the component µα of the dipole moment for the

molecule in its ground state, in the presence of the perturbation H′(t) = 2V̂ cos(ωt) =

−2µ̂βFβ cos(ωt) due to an electromagnetic field polarized in the β direction.

At the first order we have

µα(t) = 〈Ψ0 +
∑
k 6=0

ak(t)ψk|µ̂α|Ψ0 +
∑
k 6=0

ak(t)ψk〉

= 〈0|µ̂α|0〉+

{∑
k 6=0

ak(t)〈0|µ̂α|k〉eiω0kt + c.c.

}
(1.46)

where c.c. means complex conjugate; we may substitute the expression previously

derived for ak(t) and obtain
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µα(t) = 〈0|µ̂α|0〉+
∑
k 6=0

Vk0

~
〈0|µ̂α|k〉

{
eiωt

ωk0 + ω
+

e−iωt

ωk0 − ω
+ c.c.

}
= 〈0|µ̂α|0〉+ Fβ cos(ωt)

∑
k 6=0

ωk0(〈0|µ̂α|k〉〈k|µ̂β|0〉+ 〈0|µ̂β|k〉〈k|µ̂α|0〉)
~(ω2

k0 − ω2)

−iFβ sin(ωt)
∑
k 6=0

ω(〈0|µ̂α|k〉〈k|µ̂β|0〉+ 〈0|µ̂β|k〉〈k|µ̂α|0〉)
~(ω2

k0 − ω2)
(1.47)

If the molecule is in a non degenerate (real) state, then 〈0|µ̂α|k〉〈k|µ̂β|0〉 is real, while

the out of phase final term of the previous equation vanishes. So the expectation value

of the dipole moment is time dependent and becomes

µα(t) = 〈0|µ̂α|0〉+ ααβ(ω)Fβ cos(ωt) (1.48)

where we have introduced the frequency dependent polarizability ααβ(ω) defined as

ααβ(ω) =
∑
k 6=0

ωk0(〈0|µ̂α|k〉〈k|µ̂β|0〉+ 〈0|µ̂β|k〉〈k|µ̂α|0〉)
~(ω2

k0 − ω2)
(1.49)

where ωk0is the frequency of the transition between the state 0 and state n (~ωk0 =

Ek − E0).

For higher order multipole operators (quadrupole, octupole etc.) one can define a

dynamic polarizability in exactly the same way as we did for the dipole operator.

We would like to underline how the frequency dependent polarizability can be con-

sidered as a generalization of the static polarizability itself, in fact for the limit ω → 0 it

reduces to the static polarizability, and obviously describes the multipole moment pro-

duced on the molecules by the application of an oscillating electric field, and hence the

response of the molecule to that field.

It is also important to notice how the dynamic polarizability presents a singularity

for ω = ωk0, so it goes to infinity for a frequency equal to the transition frequency.

Some attempts [9] have been made to correct the curve and to describe properly also the

absorption emission zone, both via a quantum description of the electromagnetic field or

phenomenologically taking into account the spontaneous emission.

In either case the expression for the dynamic polarizability is slightly modified, and

takes the form:

ααβ(ω) = 2
∑
k 6=0

ωk0〈0|µ̂α|k〉〈k|µ̂β|0〉
~[ω2

k0 − (ω + 1
2
iΓk)2

] (1.50)
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where Γk is a constant describing the probability of transitions from state k. One

can see how the singularity at transition frequencies disappears, but the polarizability

becomes complex. The real part can be thought as describing the variation of the refrac-

tive index with the frequency, while the imaginary part describes the absorption process.

Anyway such an analysis is far beyond the scope of this thesis and therefore we will use

only the standard definition of dynamic polarizability.

1.4 Electrostatic interactions between molecules

In the previous Section we built a consistent theory of electric properties of molecules; in

this and the next section we will use the concept so far derived to describe intermolecular

forces (with a particular emphasis on long range interactions) using a multipole expansion

of the interaction and the language of perturbation theory. This will allow us to find an

efficient way to model and parametrise the intermolecular potential and will also provide

us with some tools that can be used in actual ab initio computations.

1.4.1 The electric field of a molecule

Suppose we are dealing with a molecule A located at a position A in some global coor-

dinate system; each particle of this molecule is at a position a relative to A, i.e. at the

global position a + A. We want to evaluate the potential at a point B where we will put

another molecule B.

In terms of the positions and charges of molecule A particles the potential is

V A(B) =
∑

a

ea

4πε0|B−A− a|
=

∑
a

ea

4πε0|R− a|
(1.51)

We may now expand this potential in a Taylor series as

V A(B) =
∑

a

ea

4πε0|R− a|

=
∑

a

ea

4πε0

{
1

R
+ aα

(
∂

∂aα

1

|R− a|

)
a=0

+
1

2
aαaβ

(
∂2

∂aα∂aβ

1

|R− a|

)
a=0

+ · · ·
}

=
∑

a

ea

4πε0

{
1

R
− aα

(
∂

∂Rα

1

|R− a|

)
a=0

+
1

2
aαaβ

(
∂2

∂Rα∂Rβ

1

|R− a|

)
a=0

+ · · ·
}

=
∑

a

ea

4πε0

{
1

R
− aα∇α

1

R
+

1

2
aαaβ∇α∇β

1

R
+ · · ·

}
(1.52)
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Figure 1.1: Schematic definition of position vectors for two interacting molecules

after a minor manipulation we may recognize the dipole operator
∑

a e
aaα, and the

second moment operator
∑

a e
aaαaβ; moreover as we did before we may easily substitute

the second moment operator with the quadrupole one Θ̂αβ; although not explicitly de-

rived here for the sake of simplicity one could show that even the higher momenta can

be treated similarly. When we perform these substitution we get

V A(B) =
1

4πε0

{
q

(
1

R

)
− µ̂α∇α

(
1

R

)
+

1

3
Θ̂αβ∇α∇β

(
1

R

)
+ · · ·

}
= Tq − Tαµ̂α +

1

3
TαβΘ̂αβ · · ·+

(−1)n

(2n− 1)!!
T

(n)
αβ...νξ

(n)
αβ...ν + · · ·

(1.53)

where we have defined the T−tensors as

T =
1

4πε0R
(1.54)

Tα =
1

4πε0

∇α
1

R
= − Rα

4πε0R3
(1.55)

Tαβ =
1

4πε0

∇α∇β
1

R
=

3RαRβ −R2δαβ

4πε0R5
(1.56)
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and in general

T
(n)
αβ...ν =

1

4πε0

∇α∇β · · ·∇ν
1

R
(1.57)

If we want to avoid ambiguity when dealing with a system of more than two molecules

one can label the T−tensors with the molecular labels: i.e. TAB, TAB
α ; however since

this tends to make the notation rather cumbersome in the two molecule case the label

are omitted. Notice thought it is important to establish whether we are dealing with

TABor TBA, or in other words if R = B−A or R = A−B, in fact the above definition

shows that T
BA(n)
αβ...ν = (−1)nT

AB(n)
αβ...ν .

Coming back to the equation 1.53 concerning the potential we may easily see the

potential due to a charge is q
4πε0R

, the potential due to a dipole is µαRα

4πε0R3 and so on.

Moreover having found the potential as a function of the position R, it is now quite easy

to find the electric field, field gradient and higher derivatives generated at the position

B.

Therefore we get for the electric field

FA
α (B) = −∇αV

A(B)

= −Tαq + Tαβµ̂β −
1

3
TαβγΘ̂βγ + · · ·

− (−1)n

(2n− 1)!!
T

(n+1)
αβ...νσξ

(n)
β...νσ + · · · (1.58)

and for the field gradient

FA
αβ(B) = −∇α∇βV

A(B)

= −Tαβq + Tαβγµ̂γ −
1

3
TαβγδΘ̂γδ + · · ·

− (−1)n

(2n− 1)!!
T

(n+2)
αβ...νστξ

(n)
γδ...νστ (1.59)

Two important general properties belonging to T−tensors bearing at least two suffixes

are: invariance with respect to interchange of suffixes (i.e. Txy = Tyx), and tracelsness

when at least two suffixes are equal (T
(n)
ααγ...ν = 0); these results follow from the fact that

differential operators commute and because ∇2( 1
R
) = 0. From these properties one can

guess T
(n)
αβγ...ν , just like ξ(n)

αβγ...ν has only 2n+ 1 independent components.

1.4.2 Electrostatic interactions

We are now able to calculate the interaction between a pair of molecule, we know, in fact,

the electrostatic potential exercised by molecule A, centred in A on the second molecule
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B centred in B, and we also know how to calculate the energy of a molecule in a given

electric potential.

Combining the formulae developed in the previous sections we get the expression for

the interaction Hamiltonian as

H′ = qBV A + µ̂B
αV

A
α +

1

3
Θ̂B

αβV
A
αβ + · · ·

= qB

[
TqA − Tαµ̂α +

1

3
TαβΘ̂A

αβ + · · ·
]

+ µ̂B
β

[
Tαq

A − Tαβµ̂β +
1

3
TαβγΘ̂

A
βγ + · · ·

]
+

1

3
Θ̂B

αβ

[
Tαβq

A − Tαβγµ̂γ +
1

3
TαβγδΘ̂

A
γδ + · · ·

]
+ · · ·

= TqAqB + Tα

(
qAµ̂B

α − µ̂A
αq

B
)

+ Tαβ
1

3

(
qAΘ̂B

αβ − µ̂A
α µ̂

B
β +

1

3
Θ̂A

αβq
B

)
+ · · · (1.60)

notice that some relabeling of the subscripts has been necessary in the derivation of

the final equation to avoid clashes, in any case we can see that for ions the leading term

is the electrostatic interaction between charges.

Let us now consider neutral molecules in which qA = qB = 0, in this case the leading

term is the dipole-dipole interaction and the equation becomes:

H′ = −Tαβµ̂
A
α µ̂

B
β −

1

3
Tαβγ

(
µ̂A

α Θ̂B
βγ − Θ̂A

αβµ̂
B
γ

)
+ · · · (1.61)

Obviously this expression (like the previous ones) is in operator form: if one is inter-

ested to get the electrostatic interaction (first order) Ues between the two molecules in

non degenerate states, it is necessary to replace each involved multipole operator by its

expectation value, thus for two neutral molecules we get

Ues = −Tαβµ
A
αµ

B
β −

1

3
Tαβγ

(
µA

αΘB
βγ −ΘA

αβµ
B
γ

)
+ · · · (1.62)

the previous equations have been derived for a pair of molecules isolated from any

others. However they are based on the Coulomb interactions between nuclear and elec-

tronic charges, which are strictly additive, so we can generalise this result to an assembly

of molecules simply by summing over the distinct pairs.

1.4.3 Spherical tensor formulation

For many purposes a spherical tensor formulation of the interaction is much more con-

venient, anyway it is best obtained by a somewhat different route. In fact the derivation
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starts with an expansion of 1
rab

, as we did for the cartesian formulation, but this time we

use the expansion in terms of spherical harmonics which takes the form [8]

1

|r1 − r2|
=

∑
lm

rl
<

rl+1
>

(−1)mCl,−m(θ1, ϕ1)Clm(θ2, ϕ2) (1.63)

where r<is the smaller and r> is the larger of r1 and r2. For our purposes we need
1

rab
= 1

|B+b−A−a| and so we take r1 = B − A = R and r2 = a − b and we assume

|a− b| < R we obtain

1

|R + b− a|
=

∞∑
l=0

l∑
m=−l

(−1)mRl,−m(a− b)Ilm(R) (1.64)

where Rl,−m and Ilm are the regular and irregular spherical harmonics.

We may now recall the standard addition theorem for spherical harmonics

RLM(a + b) =
∑
l1l2

∑
m1m2

δl1+l2,L(−1)L+M

[
(2L+ 1)!

(2l1)!(2l2)!

] 1
2

× Rl1m1(a)Rl2m2(b)

(
l1 l2 L

m1 m2 −M

)
(1.65)

where

(
l1 l2 L

m1 m2 −M

)
is a Wigner 3j coefficient, when L = l1 + l2 this 3j coeffi-

cient can be written in explicit formula(
l1 l2 L

m1 m2 −M

)
= (−1)l1−l2+Mδm1+m2,M

[
(2l1)!(2l2)!

(2l1 + 2l2 + 1)!

] 1
2

×
[(

l1 + l2 +m1 +m2

l1 +m1

) (
l1 + l2 −m1 −m2

l1 −m1

)]− 1
2

(1.66)

where

(
n

m

)
is the binomial coefficient n!

m!(n−m)!
.

Using this theorem, and remembering Rlm(−r) = (−1)Rlm(r)l we find

H′ =
1

4πε0

∑
a∈A

∑
b∈B

eaeb

|R + b− a|

=
1

4πε0

∑
l1l2

∑
m1m2m

(−1)l1

(
(2l1 + 2l2 + 1)!

(2l1)!(2l2)!

) 1
2
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×
∑
a∈A

eaRl1m1(a)
∑
b∈B

ebRl2m2(b)Il1+l2,m(R)

(
l1 l2 l1 + l2
m1 m2 m

)

=
1

4πε0

∑
l1l2

∑
m1m2m

(−1)l1

(
(2l1 + 2l2 + 1)!

(2l1)!(2l2)!

) 1
2

× Q̂
A(G)
l1m1

Q̂
B(G)
l2m2

Il1+l2,m(R)

(
l1 l2 l1 + l2
m1 m2 m

)
(1.67)

in the last line we introduced the multipole moment operators

Q̂
A(G)
lm =

∑
a∈A

eaRlm(a) (1.68)

the superscript G is used to remind us the expression is written in the global coordi-

nate system.

As we have seen however it is more convenient to express the interaction in terms

of multipole moments defined in the local coordinates system of each molecule. The

components in the local system are related to those in the global one by

Q̂
(L)
lk =

∑
m

Q̂
(G)
lm Dl

mk(Ω) (1.69)

where Ω = (α, β, γ) is the rotation that takes the global axes to the local axes, and

Dl
mk(Ω) is the Wigner rotation matrix element for this rotation. Equivalently we can

write the global components in terms of the local ones

Q̂
(G)
lm =

∑
k

Q̂
(L)
lk Dl

km(Ω−1) =
∑

k

Q̂
(L)
lk Dl

km [(Ω)]∗ (1.70)

Substituting the previous one in the expression for the interaction Hamiltonian ex-

pressed in global coordinate system gives

H′ =
1

4πε0

∑
l1l2

∑
k1k2

(−1)l1

(
(2l1 + 2l2 + 1)!

(2l1)!(2l2)!

) 1
2

Q̂
A(L)
l1k1

Q̂
B(L)
l2k2

×
∑

m1m2m

[
Dl1

m1k1
(Ω1)

]∗ [
Dl2

m2k2
(Ω2)

]∗
Il1+l2,m(R)

(
l1 l2 l1 + l2
m1 m2 m

)
(1.71)

The multipole operators are now referred to local molecular axes, and the orientation

and distance dependence is all contained in the sum over Wigner functions and irregular

spherical harmonics. We may define new functions of the orientation by
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S
k1k2

l1l2j = il1−l2−j

[(
l1 l2 j

0 0 0

)]−1

×
∑

m1m2m

[
Dl1

m1k1
(Ω1)

]∗ [
Dl2

m2k2
(Ω2)

]∗
Cjm(θ, ϕ)

(
l1 l2 j

m1 m2 m

)
(1.72)

here θ and ϕ are the polar angles describing the direction of the intermolecular vector

R. In terms of these functions the interaction Hamiltonian becomes:

H′ =
1

4πε0

∑
l1l2

∑
k1k2

(−1)l1+l2

(
(2l1 + 2l2 + 1)!

(2l1)!(2l2)!

) 1
2

× Q̂
A(L)
l1k1

Q̂
B(L)
l2k2

R−l1−l2−1

(
l1 l2 l1 + l2
0 0 0

)
S

k1k2

l1l2l1+l2
(1.73)

now dropping the superscript (L), since we will use local coordinate system from now

on and inserting the explicit formula for the 3j−Wigner symbol we obtain

H′ =
1

4πε0

∑
l1l2

∑
k1k2

(
l1 + l2
l1

)
Q̂A

l1k1
Q̂B

l2k2
S

k1k2

l1l2l1+l2
R−l1−l2−1 (1.74)

This formulation explicitly separates each term in the interaction into an operator

part, involving multipole operators in local molecular axes, a factor S
k1k2

l1l2l1+l2
that de-

scribes the orientation dependence, and a distance dependence R−l1−l2−1. Notice also

the orientational part involves a linear combination of product of the Wigner functions

and spherical harmonic, with coefficients given by 3j−Wigner symbols. This fact ensures

the result is scalar and invariant under rotation of the entire system, moreover it takes

account of the evidence that only five of the eight angular coordinates are independent.

The previous one is a very general and powerful formulation, but a little bit cumber-

some for routine use. Moreover it is at the moment expressed in terms of the complex

components of the multipole moments, we may transform it to the real components, giv-

ing rise to an equivalent expression. We may also obtain a more compact representation

by defining analogues to the T tensors of the cartesian formulation:

Tl1k1l2k2 =
1

4πε0

(
l1 + l2
l1

)
S

k1k2

l1l2l1+l2
R−l1−l2−1 (1.75)

the interaction just becomes:
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H′ =
∑
l1l2

∑
k1k2

Q̂A
l1k1

Q̂B
l2k2

Tl1k1l2k2 (1.76)

It is useful to underline the T tensors depend only on relative positions of the two

molecular axis systems, so they can be evaluated once and for all and be tabulated for

further use, some of them can be found for instance in [1].

Of course in order to have the first order value of the interaction (i.e. the electrostatic

term) we only have to determine the expectation value of the operator Q̂lk exactly in the

same way we did for the cartesian formulation.

1.5 Perturbation Theory of Long Range Intermolec-

ular Forces

Because intermolecular forces are relatively weak it is somehow natural to describe them

using perturbation theory. If the molecules are far enough the overlap between their

wavefunctions can be ignored, so the theory becomes much simpler. The determination

of long range intermolecular forces will be the main issue of this thesis so we will pay

some attention in the theoretical development of this kind of interaction.

The reason for the simplification occurring in treating well separated molecules has

to do with electron exchange. Suppose we have a wavefunction ΨA(1, 2, . . . , nA) that

describes molecule A and a wavefunctions ΨB(1′, 2′, . . . , n′B) for molecule B. Suppose

now there is a region of the space associated with ΨA such that ΨA is non zero only

when all its electron are in this region; likewise there will be another region associated

with ΨB and the two region will not overlap.

The wavefunction for the combined system A + B should be written as an antisym-

metrized product AΨAΨB. But this antisymmetrized product contains terms in which

electron of molecule A has been exchanged with electron of molecule B the overlap

between this and the original product function is∫
ΨA(1, 2, . . . , nA)∗ΨB(1′, 2′, . . . , n′B)∗ ×ΨA(1′, 2, . . . , nA)∗ΨB(1, 2′, . . . , n′B)dτ (1.77)

when we integrate over the coordinates of electron 1 we get zero because the two wave-

functions are non zero in different regions of the space. This means the terms in which

the allocation of electrons between the two molecules is different do not mix with each

other at all. Therefore the calculation may be performed without antisymmetrization

and the result will be the same.
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In practice, however, the overlap is never exactly zero, but the error made by ig-

noring it decreases exponentially with the distance between the two molecules. Overlap

becomes significant when molecules approach each other closely giving rise to the repul-

sion between the interacting monomers.

The consequence is that, when we are dealing with long range interactions, we can

identify a see of nA electrons as belonging to the molecule A, and therefore define a

Hamiltonian HA for molecule A in terms of these electrons; similarly the Hamiltonian

HB for molecule B will be defined in terms of its private set of nB electrons. The

unperturbed Hamiltonian for the combined system is therefore H0 = HA +HB and the

perturbation consists of the electrostatic interaction between the particles of molecule A

(electrons and nuclei) and those of molecule B

H′ =
∑
a∈A

∑
b∈B

eAeB

4πε0rab

(1.78)

where rab is the distance between a charged particle on molecule A and another one

on molecule B. The previous operator can be expressed in several other useful forms:

for examples following Longuet-Higgins [10] we define a charge density operator ρ̂A(r)

for molecule A

ρ̂A(r) =
∑
a∈A

eaδ(r− a) (1.79)

and similarly ρ̂B(r) for molecule B. In the previous we used the Dirac delta distri-

bution δ(r− a). In terms of these operators the perturbation becomes

H′ =

∫ ∑
a∈A

∑
b∈B

eaδ(r− a)δ(r′ − b)

4πε0|r− r′|
d3rd3r′

=

∫
ρ̂A(r)ρ̂B(r′)

4πε0|r− r′|
d3rd3r′ (1.80)

we may now notice that the potential at r due to the molecule B is

V̂ B(r) =

∫
ρ̂B(r′)

4πε0|r− r′|
d3r′ (1.81)

so we can again write the interaction operator as

H′ =

∫
V̂ B(r)ρ̂A(r)d3r (1.82)

or equivalently

H′ =

∫
V̂ A(r′)ρ̂B(r′)d3r′ (1.83)
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(Notice, incidentally, the variable that appears in these integration is a dummy, so

it does not matter whether it is r or r′; the choice of variable is made simply to retain

connection with the earlier formulae.)

Now if we switch our attention to the unperturbed states we may notice they are sim-

ple product functions ΨA
mΨB

n , which we abbreviate as |mn〉, and they are eigenfunctions

of the unperturbed Hamiltonian H0

H0|mn〉 = (HA +HB)|mn〉
= (EA

m + EB
n )|mn〉

= E0
mn|mn〉 (1.84)

For closed shell molecules, ordinary non degenerate Rayleigh Schrödinger perturba-

tion theory gives the energy to the first and second order of the ground 2 state of the

system (m = n = 0). So the energy may be expressed as:

E00 = E0
00 + E ′

00 + E ′′
00 (1.85)

where

E0
00 = EA

0 + EB
0 (1.86)

E ′
00 = 〈00|H′|00〉 (1.87)

E ′′
00 = −

∑
m=n6=0

〈00|H′|mn〉〈mn|H′|00〉
E0

mn − E0
00

(1.88)

This gives rise to the long range approximation to the interaction energy (sometimes

called the ’polarization approximation’ [11]). As the first order energy is concerned, this

is just the the ground state expectation value of the interaction Hamiltonian, and gives

rise to the electrostatic contribution we already discussed in the previous Section. Note

however if we write the perturbation using the charge density operator we can express

the interaction as

E ′
00 =

∫
ρA(r)ρB(r′)

4πε0|r− r′|
d3rd3r′ (1.89)

since the integration over the coordinates of the particles in molecule A just replaces

the operator ρ̂A(r) by it expectation value ρA(r) and the same holds for B; but the

previous formula is just the exact classical interaction energy of the two molecular charge

distribution in a forme that does not depend on the multipole expansion.

2In fact this need not to be the ground state; it may be a state in which one or both molecules are
excited. However it may not be a degenerate state of the combined system. This excludes all the excited
states in the case where the molecule are identical
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The second order energy describes the induction and dispersion contributions. To

better analyse it we first separate it in three parts. Noting that the only term excluded

in the sum over states is the one in which both molecules are in the ground state, we

consider separately the term in the sum for which the molecule A is excited but molecule

B is in its ground state, the term for which molecule B is excited while molecule A is in

ground state, and the terms where both molecules are excited. This gives:

E ′′ = UA
ind + UB

ind + Udisp (1.90)

UA
ind = −

∑
m6=0

〈00|H′|m0〉〈m0|H′|00〉
EA

m − EA
0

(1.91)

UB
ind = −

∑
n6=0

〈00|H′|0n〉〈0n|H′|00〉
EB

n − EB
0

(1.92)

Udisp = −
∑
m 6= 0

n 6= 0

〈00|H′|mn〉〈mn|H′|00〉
EA

m + EB
n − EA

0 − EB
0

(1.93)

these describes respectively the induction energy of molecule A, the induction energy

of molecule B, and the dispersion energy.

1.5.1 The induction energy

As in the case of the first order energy we may write the perturbation in term of the charge

density operator, this would lead to the ’non expanded’ expression for the induction

energy, that do not depend on the validity of the multipole expansion, and so can be used

at short range where it does not converge [10] . However, when long range approximation

is valid the multipole expansion proves to be the most simply and useful model to treat

this kind of interactions, we will, therefore, derive expressions for the induction energy

expanding the interaction operator H′ in multipoles

H′ = TqAqB + Tα(qAµ̂B
α − µ̂A

αq
B)− Tαβµ̂

A
α µ̂

B
β + · · · (1.94)

in the previous equation we dropped the term involving quadrupole, at least for

the moment, substituting this Hamiltonian in the equation for the induction energy of

molecule B we get

UB
ind = −

∑
n6=0

〈00|TqAqB + Tα(qAµ̂B
α − µ̂A

αq
B)− Tαβµ̂

A
α µ̂

B
β + · · · |0n〉
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× 〈0n|TqAqB + Tα′(q
Aµ̂B

α′ − µ̂A
α′q

B)− Tα′β′µ̂
A
α′µ̂

B
β′ + · · · |00〉

× (EB
n − E0

n)−1 (1.95)

We may rearrange the previous equation noting that the matrix elements of qB vanish

because the excited states are orthogonal to the ground state and the charge is just a

constant, moreover we may perform the implied integration over the coordinates of A

obtaining the expectation values of the multipole operators

UB
ind = −

∑
n6=0

〈0|Tαq
Aµ̂B

α − Tαβµ
A
α µ̂

B
β + · · · |n〉〈n|Tα′q

Aµ̂B
α′ − Tα′β′µ

A
α′µ̂

B
β′ + · · · |0〉

EB
n − E0

n

= −(qATα − µA
β Tαβ + · · ·)

∑
n6=0

〈0|µ̂B
α |n〉〈n|µ̂B

α′|0〉
EB

n − E0
n

(qATα′ − µA
β′Tα′β′ + · · ·)

(1.96)

we can recognize here the sum over states expression for the polarizability ααα′ so

the induction energy may be expressed as

UB
ind = −1

2
(qATα − µA

β Tαβ + · · ·)αB
αα′(q

ATα′ − µA
β′Tα′β′ + · · ·) (1.97)

If we recognize that the term (qATα − µA
β Tαβ + · · ·) is nothing but the inverse of the

electric field at B due to the molecule A (FA
α (B)), we found the induction energy can

be expressed as −1
2
FA

α (B)FA
α′(B)αB

αα′ , exactly the same result we would have expected

from a straightforward classical treatment of the field. (The only role played by quantum

mechanics is in fact to provide the formula for the polarizability).

In this derivation so far we ignored all the term of the multipolar expansion other

than dipole operator for molecule B. It is however clear, by analogy with the previous

formulae or by explicit calculation, that we shall have other terms in the induction energy,

involving dipole-quadrupole polarizability, quadrupole-quadrupole polarizability and so

on; in this case the induction energy takes the form

UB
ind = −1

2
FA

α (B)FA
α′(B)αB

αα′ −
1

3
FA

α (B)FA
α′β′(B)Aα,α′β′

−1

6
FA

αβ(B)FA
α′β′(B)Cαβ,α′β′ (1.98)

notice by the way the induction energy is always negative.

1.5.1.1 Non Additivity of the Induction Energy

A very important feature arises when we consider the case of a molecule surrounded by

several others. We can still express the induction energy as −1
2
FA

α (B)FA
α′(B)αB

αα′ , but
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the field is now the total field due to the other molecules. Consider now two contrasting

situations. In the first one molecule B is surrounded by one polar neighbor, so that

F (B) = 2µ
4πε0R3 and the induction energy is

UB
ind = − 2αµ2

(4πε0)2R6
(1.99)

Let us consider molecule B as surrounded by two polar neighbors, aligned in such a

way their fields are placed in the same direction at B; in this case the total field is just

twice the preceding one F (B) = 4µ
4πε0R3 and the induction energy becomes:

UB
ind = − 8αµ2

(4πε0)2R6
(1.100)

four times bigger than the original one. If now we consider the situation in which the

two neighbors have fields that are in opposite directions we will have a null field at B so

the induction energy will be zero.

With this very simple example we have illustrated very clearly the severe non addi-

tivity of induction energy.

Apart for these relatively simple effect we have a much more subtle source of non

additivity for the induction energy: consider, for instance, two spherical atoms with

polarizabilities αA and αB placed at a distance R and experiencing an external electric

field F . The field polarises both atoms inducing a dipole moment in both of them, but

the induced dipole of each atom produces an additional field at the other, and this must

be added to the applied field. Because the effective field experienced by each atom is

actually enhanced, the induction energy will be enhanced as well. We have used, for

the sake of simplicity, an undefined external electric field, to carry on our example, but

the same would have applied to the field produced by a polar molecule. It follows that

in general we can not expect to add together the fields due to the static moments of

the other molecules in order to calculate the induction energy, altought this is often a

reasonable, and even quite good, approximation expecially when dealing with not very

polar or polarizable systems.

1.5.2 The Dispersion Energy

Unlike the preceding components, which can be compared with classical analogues, dis-

persion interaction is a wholly quantic phenomen and can not be treated in any way

without the help of quantum mechanical formalism. It may however be physically in-

terpreted as the coupling of oscillations in the charge density (polarizability) of the two

molecules giving rise to attractive interactions.
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Let us go back to the dispersion energy expressed using the general perturbation

theory as we derived previously (for the moment we are concerned only with the dipole-

dipole contribution)

Udisp = −
∑
m 6= 0

n 6= 0

〈00|H|mn〉〈mn|H′|00〉
EA

m0 + EB
n0

(1.101)

where we have used the simplified notation EA
m0 = EA

m − EA
0 and EB

n0 = EB
n − EB

0 ,

we may now manipulate a little bit the preceding expression

Udisp = −
∑

mA 6= 0

nB 6= 0

〈0A0B|µ̂A
αTαβµ̂

B
β |mAnB〉〈mAnB|µ̂A

γ Tγδµ̂
B
δ |0A0B〉

EA
m0 + EB

n0

= −TαβTγδ

∑
mA 6= 0

nB 6= 0

(
1

EA
m0 + EB

n0

× 〈0A|µ̂A
α |mA〉〈mA|µ̂A

γ |0A〉〈0B|µ̂B
β |nB〉〈nB|µ̂B

δ |0B〉
)

(1.102)

Altought we have factorized the matrix elements in terms referring to A and terms

referring to B we were not able to do same for the denominator, so the previous expression

is quite uneasy to deal with.

There are mainly two commonly used approaches to handle it: the first one due

to London [12] and the second one due to Casimir Polder [13], we will anyway, show

the two approaches are absolutely equivalent. Usually, for practical applications the

London formula may be treated by the so called Unsöld or average-energy approximation

[14], in this case it will be equivalent to the Casimir Polder one only when the same

approximation it applied to the both of them.

We may write the dispersion interaction as

Udisp = −TαβTγδ

∑
m 6= 0

n 6= 0

EA
m0 · EB

n0

EA
m0 + EB

n0

×
〈0A|µ̂A

α |mA〉〈mA|µ̂A
γ |0A〉

EA
m0

〈0B|µ̂B
β |nB〉〈nB|µ̂B

δ |0B〉
EB

n0

(1.103)
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In the second part of the previous equation we can easily recognize the sum over state

expression for the polarizabilities αA
αβ and αB

γδ, the only problem arising from the factor
EA

m0·EB
n0

EA
m0+EB

n0
. We may however approximate this factor using average energies εA and εB.

We express this term in the form

EA
m0 · EB

n0

EA
m0 + EB

n0

=
εA · εB

εA + εB

(1 + ∆mn) (1.104)

where

∆mn =

1
εA
− 1

EA
m0

+ 1
εB
− 1

EB
n0

1
EA

m0
+ 1

EB
n0

(1.105)

with the latter being an identity for each particular value ofm and n. We may anyway

choose εA and εB so that ∆mnbecomes negligible for all m and n; the latter actually

requires that all the states |mA〉 that make important contributions have excitation

energies close to the average value εA, and likewise for |nB〉. With these developments

the dispersion energy becomes

Udisp = − εAεB

4(εA + εB)
TαβTγδ

×
∑

mA 6= 0

nB 6= 0

〈0A|µ̂A
α |mA〉〈mA|µ̂A

γ |0A〉
EA

m0

〈0B|µ̂B
β |nB〉〈nB|µ̂B

δ |0B〉
EB

n0

= − εAεB

4(εA + εB)
TαβTγδααβαγδ (1.106)

The latter is the well known London Formula [12], based on the static polarizabilities

of the two interacting monomers. Although sometimes used in practically computation

the London formula suffer from the impossibility of an a priori strict determination of

εAand εB, sometimes the two quantity are set equal to the lowest ionization energies of

A and B respectively to get an upper bound of the magnitude of the dispersion energy.

The Casimir Polder approach [13] led an alternatively formula that proved to be much

more useful; it is based on the identity

1

A+B
=

1

π

∫ ∞

0

AB

(A2 + ν2)(B2 + ν2)
dν (1.107)

applying this formula to the energy denominator of the dispersion energy expressed

as ~(ωm
A + ωn

B) one gets

Udisp = −2~
π
TαβTγδ
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×
∫ ∞

0

∑
m6=0

〈0A|µ̂A
α |mA〉〈mA|µ̂A

γ |0A〉
~(ωA

m)2 + ν2)

∑
n6=0

〈0B|µ̂B
β |nB〉〈nB|µ̂B

δ |0B〉
~(ωB

n )2 + ν2)

If we recall now the expression, developed using time dependent perturbation theory,

for the response to an oscillating electric field Fβe
−iωt with frequency ω, and in particular

the expression for frequency dependent polarizability

ααβ(ω) =
∑
m6=0

ωm〈0|µ̂α|m〉〈m|µ̂β|0〉
~(ω2

m − ω2)
(1.108)

we see that the dispersion energy can now be expressed in terms of the polarizability

at the imaginary frequency iν

Udisp = − ~
2π
TαβTγδ

∫ ∞

0

αA
αγ(iν)α

B
βδ(iν)dν (1.109)

the latter is the well known and widely used Casimir Polder formula where

αA
αγ(iν) =

∑
m6=0

ωA
m〈0A|µ̂A

α |mA〉〈mA|µ̂A
γ |0A〉

~((ωA
m)2 + ν2)

(1.110)

The concept of polarizability at imaginary frequencies may appear as physically very

bizarre. It could be thought of as describing the response to an exponentially increasingly

electric field, but this is stretching physical interpretation to perhaps unreasonable limits,

and it is better to view it merely as a mathematical formalism. Anyway its mathematical

properties are much more regular than those of polarizability at real frequencies, because

the denominator has no zero point and increases monotonically with ν. Accordingly

αA
αγ(iν) decreases monotonically from the static polarizability (ν = 0) to zero (ν →∞).

This means it can be determined quite accurately as a function of ν, either by ab initio

calculations or from experimental data. In the case of ab initio calculations the value of

polarizabilities are computed at some value of imaginary frequencies and then Casimir

Polder is solved using a numerical quadrature for the integral. Due to the mathematical

regularity of the imaginary frequency polarizabilities usually good results can be achivied

with a relative small number of computed polarizabilities.

The previous formulae have been obtained using the cartesian formalism and the

dipole operator, but exactly the same derivation can be performed with higher rank

multipole operators or in the spherical tensor formalism, and one may still get London

or Casimir Polder formula providing the dipole polarizability has been substituted with

the proper polarizability component depending on the specific multipole operator in use.
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1.6 Long Range Molecular Coefficients

As a consequence of the particular form assumed by the interaction potential at large

distances, and in particular as a consequence of the dependence on R−n of the T tensor,

each component of the interaction (electrostatic, induction, dispersion) can be expressed

as −CnR
−n the factors Cnbeing the long range intermolecular coefficients.

In particular, assuming the spherical tensor formalism we have

Ues =
∑
lalb

C lalb
n R−n (1.111)

Uind/disp =
∑
lalb

∑
l′al′b

C
lalb,l

′
al′b

n+n′ R−n−n′ (1.112)

where n = la + lb + 1, n′ = l′a + l′b + 1, and the parameters la, lb describes the order of

the involved multipole.

Long range molecular coefficients are useful not only because they can be used to

describe the long range behavior of the interaction, but also because they are very in-

teresting by themselves: in fact they embody all dependence on the electric properties

which characterize the charge distributions of the individual molecules and their relative

orientation in the dimer.

Assuming point multipoles located at the center of mass of each molecule and ne-

glecting translation of the reference frame we obtain the general formulae [15]

C lalb
n (es) = (−1)lb(la + lb)!

∑
qaqb

P lalb
qaqb

µA
laqa

µB
lbqb

(1.113)

C
lalb,l

′
al′b

n+n′ (ind, A) =
1

2
(−1)lb+l′b(la + lb)!(l

′
a + l′b)!

×
∑
qaqb

∑
q′aq′b

P lalb
qaqb

P
l′al′b
q′aq′b

αA
laqa,l′aq′a

µB
lbqb
µB

l′bq
′
b

(1.114)

C
lalb,l

′
al′b

n+n′ (ind,B) =
1

2
(−1)lb+l′b(la + lb)!(l

′
a + l′b)!

×
∑
qaqb

∑
q′aq′b

P lalb
qaqb

P
l′al′b
q′aq′b

µA
laqa

αB
lbqb,l

′
bq

′
b
µA

l′bq
′
b

(1.115)

C
lalb,l

′
al′b

n+n′ (disp) = (−1)lb+l′b(la + lb)!(l
′
a + l′b)!

×
∑
qaqb

∑
q′aq′b

P lalb
qaqb

P
l′al′b
q′aq′b

∑
lalb,l′al′b

D
lalb,l

′
al′b

n+n′ (1.116)
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where we have ignored the factors that are unity in atomic units coordinates (like ~)

and we have defined the dispersion constants D
lalb,l

′
al′b

n+n′ as

D
lalb,l

′
al′b

n+n′ =
1

4

∑
a

∑
b

εaεb

εa + εb

αA
laqa,l′aq′a

αB
lbqb,l

′
bq

′
b

=
1

2π

∫ ∞

0

αA
laqa,l′aq′a

(iω)αB
lbqb,l

′
bq

′
b
(iω)dω (1.117)

In the proceeding of this thesis we will focus mainly on the dispersion energy and

coefficients so let us spend a little more time on the latter expressions.

We may see how we were able to factorise, in the dispersion coefficients expression,

the components depending on electric properties, i.e. the dispersion constants, and the

factors depending also on geometrical (mutual orientation) parameters, i.e. the P factors.

It is clear the quantum chemical effort will be focused on the determination of Dn+n′ for

the symmetry allowed components, and then one will get dispersion coefficients Cn+n′

by a simple algebraical combination, once the P factors have been explicitated.

Probably the best way to find out working expression for the factors P is to make

explicit the dependence on the Euler angles (ΩA,ΩB) [2] and, obviously, to consider all

the consistent simplification arising from the local symmetry of the interacting monomer.

We will present explicit cases for two very simple systems of particular interest in this

work

• Two atoms in S−states. In this case all Euler angle are zero and the only non

vanishing dispersion constants will be the ones for which

n = n′ l′a = la l
′
b = lb (1.118)

furthermore we will have

[(la + lb)!]
2(P lalb

qaqb
)2 =

(
2la + 2lb

2la

)
(1.119)

in this case we have

C lalb
2n =

(
2la + 2lb

2la

)
Dlalb

2n (1.120)

if we consider some particular situations we will have:

dipole-dipole interaction: la = lb = 1, 2n = 6

C1,1
6 = 6D1,1

6 (1.121)
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Table 1.2: D6 Constants for linear molecules

D6

A (α‖‖)
A, (α‖‖)

B

B = C (α‖‖)
A, (α⊥⊥)B

D (α⊥⊥)A(α⊥⊥)B

dipole-quadrupole interaction: la = 1, lb = 2, 2n = 8

C1,2
8 = 15D1,2

8 (1.122)

• Two linear molecules in S−states. In this cases the situation becomes a little bit

more complicated, so let us only present the final results.

As concerns the case where la = lb = l′a = l′b = 1 we are treating an interaction in

which only the dipole operator is involved and we get n+n′ = 6. In Table 1.2 and

1.3 we show the actual values of D6 constants and C6 coefficients respectively in

terms of cartesian polarizability (α‖‖ means a dipole polarizability parallel to the

bond axis, while α⊥⊥ perpendicular to the same bond axis).

When we are dealing with the case la = 2 lb = l′a = l′b = 1 we are treating an

interaction in which the dipole and quadrupole operator are involved on the first

molecule, while only the dipole is acting on the second one, we get therefore n+n′ =

7. In Table 1.4 and 1.5 we show the result for dispersion constants and coefficients

respectively. (Again A‖‖,‖ means a dipole-quadrupole polarizability in which the

quadrupole moment operator has the two components along the bond axis, as

well as the dipole operator, for the other components the interpretation follows

accordingly. )
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Table 1.3: C6 Coefficients for linear molecules

LA LB M CLALBM
6

0 0 0 2
3
(A+ 2B + 2C + 4D)

0 2 0 2
3
(A−B + 2C − 2D)

2 0 0 2
3
(A+ 2B − C − 2D)

2 2 0 2(A−B − C +D)

2 2 1 −4
9
(A−B − C +D)

2 2 2 1
18

(A−B − C +D)

Table 1.4: D7 Constants for linear molecules

D7

A (A‖‖,‖)
A(α‖,‖)

B

B 2√
3
(A‖⊥,⊥)A(α‖‖)

B

C (A‖‖,‖)
A(α⊥⊥)B

D 2√
3
(A‖⊥,⊥)A(α⊥⊥)

Table 1.5: C7Coefficients for linear molecules

LA LB M CLALBM
7

0 1 0 −12
5
(A+

√
3B + 2C + 2

√
3D)

0 3 0 − 8
15

(3A−
√

3B + 6C − 4
√

3D)

2 1 0 −12
5
(A+

√
3B − C −

√
3D)

2 1 1 2
5
(A+

√
3B − C −

√
3D)

2 3 0 −28
15

(3A− 2
√

3B − 3C + 2
√

3D)

2 3 1 14
45

(3A− 2
√

3B − 3C + 2
√

3D)

2 3 2 − 1
45

(3A− 2
√

3B − 3C + 2
√

3D)





Chapter 2

The Computation of Intermolecular

Forces

In this Chapter we will present the most common, and classical, methods developed

and applied to compute Intermolecular Forces at ab initio level. In particular we will

focus our attention on the Supramolecular Approach, spending some time analysing, in a

preliminary way, the problem of the Basis Set Superposition Error, and in the application

of the Long Range Perturbation Theory (LRPT methods), considering in particular the

approaches based on London and Casimir Polder formulae. At the end some time will

be dedicated to the Symmetry Adapted Perturbation Theory (SAPT).

2.1 Supramolecular Approach

The Supramolecular Method’s philosophy is, actually, the most simple and straightfor-

ward. Let us, in fact, consider a molecular systems composed of two interacting fragments

A and B. The interaction energy can be expressed simply as the difference of the energy

of the complex AB and the energy of the isolated fragments A and B. Even if this may

seem a very simple and crude treatment it is, still nowaday, by far the most common

procedure for the quantitative determination of the interaction.

The first problem connected with this approach is the interaction energy is some

order of magnitude lower than the energy of the isolated monomers, so very accurate

computation are needed in order to get valuable result.

Moreover the Supramolecular Approach gives, in the field of the Born Oppenheimer

approximation, an interaction (hyper-)surface representing the combination of all the

contributions to the interaction. For this reason, in contrast with LRPT methods, is quite
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hard to get out the various contributes (electrostatic, induction, dispersion, exchange)

giving rise to the total interaction potential. These contributes as we saw in the previous

Chapter, have a well defined physical meaning, and is therefore, sometimes, important to

separate them. The latter is also quite important to define some model potential which

can be used, for instance, in Molecular Dynamics fields, since usually these potentials

have the form

U(R) = βe−αR −
∑

n

CnR
−n (2.1)

2.1.1 The Basis Set Superposition Error

There is however a more subtle and fundamental problem arising with this approach, a

problem that has, by the way, given rise to a tremendous amount of work in order to

find the most suitable solution, this is the Basis Set Superposition Error.

Again the interpretation of this problem is very simple, if one considers the descrip-

tion of the fragment A within the complex it is easy to see it can be improved by the

basis functions of the fragment B and vice versa, whereas such an effect is not possible

in the calculation of the isolated monomers. This unbalance provokes that the over-

all description of the complex AB is improved with respect to the description of the

monomers. Hence the interaction energy, expressed as the difference between the ener-

gies of the dimers and its constituent is biased by the fact that the basis set where the

corresponding wave functions are expanded are different. Moreover the variational prin-

ciple implies that the computed energy difference is artificially increased, as the complex

is expanded in a larger basis set compared with the ones in which the fragments are

expanded.

This effect was firstly pointed out by Jansen and Ros in 1969, even if the terminology

BSSE was first used by Liu and Mc Lean in 1973.

Since this problem was first evidenced a number of methods and strategies have

been developed to eliminate or, at least, minimise it. Obviously the most natural way of

eliminating BSSE, avoid the truncation of the basis so obtaining the exact wave functions

is practically unfeasible from a computation point of view, since it would imply the use

of infinite basis sets. It is however useful to improve the basis sets of the monomers

such as the presence of the functions from the other fragment would not improve their

description.

Another rather unexplored solution would be the use of a set of functions centred at

some given points in the space to compute the energy of the complex and its constituents,

the three dimensional space might be saturated of basis functions whose positions and

parameters should be kept constant for each calculations. However the so obtained
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wavefunctions will be neither translationally nor rotationally invariant, moreover linear

dependencies might easily appear if the space is too much saturated with basis functions.

A more promising tool, mostly applied in DFT methods with the local spin density, may

be the use of plane waves. This has been extensively used in Car-Parrinello molecu-

lar dynamic but is scarcely used in electronic structure computations. Nowadays most

recently efforts are going toward the combination of plane waves and nuclear centred

functions, in this case the BSSE problem in intermolecular calculation will still remain.

2.1.1.1 The Counterpoise Correction

The by far most used way to treat BSSE is still the so called Counterpoise Correction,

originating from a work by Boys and Bernardi [16] (1970).

The authors proposed the use of a Counterpoise Correction (CP) to calculate the

energy of the AB system in such a way that the separate energies of the fragments A

and B are computed using the full basis set used for the complex. For each fragment

calculations, the electrons belonging to the other monomers are omitted, the nuclear

charge of the latter is set to zero but the basis set functions are maintained, the difference

between the (CP) computed energies of the monomers and the usually computed ones

represents the Counterpoise correction.

The overall procedure may be schematized as follows

• Compute the energy of the complex AB (at the geometry R) using basis set A+B

EA+B
AB (R)

• Compute the energy of the monomer A using basis set A EA
A and the energy of the

monomer B using basis B EB
B

• Compute the energy of the monomer A and B using basis set A+B (ghost orbitals

of the other monomer are present) EA+B
A and EA+B

B (R) respectively

• Calculate CP Correction as

CP (R) = EA
A + EB

B − EA+B
A − EA+B

B (2.2)

• Calculate the BSSE corrected intermolecular energy as

ECP
AB (R) = EA+B

AB (R) + CP (R) (2.3)

The Counterpoise corrected curve ECP
AB (R) lies above the uncorrected results, and the

position of the minimum, as well as the general shape of the potential surface is similarly
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affected. The CP corrected curves have, always, minima at larger distances than the

uncorrected ones, although the effect on the minimum is of slightly smaller magnitude

than the one on the value of the energy itself.

After the Counterpoise Correction was introduced, and it proved efficient, there was

a widespread debate over the fact whether the BSSE was overestimated with this simple

and straightforward procedure. Some alternative Counterpoise schemes were proposed,

for instance it was suggested to calculate CP using only the virtual ghost orbital instead

of the complete set. However the BSSE being a completely unphysical effect it is rather

difficult to explain it with physical consideration like the Pauli exclusion principle. It

has been subsequently shown that the original CP scheme is the one better reproducing

inherent BSSE free values for small systems like Helium dimer.

One more subtle complication arises when one considers polyatomic interacting molecules,

in this case one should deal, in order to correctly design interaction potentials, with the

relaxation of the intermolecular coordinates due to the interaction. Unfortunately this

fact was not taken into account in the original formulation, because only interacting

atoms were considered.

The total CP corrected energy is, therefore, usually calculated as the sum of the

counterpoise corrected interaction energy at the supermolecular geometries and the frag-

ment relaxation energy, however while the CP corrected energy is calculated using the

total basis set A + B the relaxation is calculated used only the monomer basis adding

therefore another rather crude approximation.

The interplay within the intermolecular relaxation and BSSE is anyway all but a

trivial task: the conventionally CP scheme cannot, in fact, be applied in an unambiguous

way when geometries of the fragments become different from the ones of the monomers

because the position of the ghost orbitals becomes not defined. When dealing with such

a problem one should, therefore, differentiate between the interaction energy and the

stabilization energy. The former stands for the difference between the complex energy and

the ones of their monomers at the supramolecular geometries. The latter represents the

total stabilization energy resulting from bringing the monomers from infinite separation

to the equilibrium distance.

2.1.1.2 Aprioristic correction

Some quite different approaches to the treatment of the BSSE are the aprioristic correc-

tion methodologies. In these cases rather than recalculate the energy in the fragments,

one tries to eliminate the BSSE sources in the calculation of the complex itself. The

most common among these approaches is the Chemical Hamiltonian (CHA) firstly pro-
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posed by Mayer [17]. Briefly speaking starting from the SCF level one can, using second

quantization formalism, split the Hamiltonian in the sum of all the intramonomer con-

tributes and the pure intermolecular operator. The BSSE is eliminated projecting all

the intramonomer into the subspace spanned by the basis functions of the corresponding

fragment, the final result is therefore a description of the dimer where the BSSE has been

eliminated with no a posteriori treatment. So far this methodology has been applied at

HF, DFT, MP2 and CI level and the results converge well towards the CP corrected

ones. Despite of this finding the non hermitian nature of the resulting Hamiltonian and

the fact that the energy has to be computed using a different Hamiltonian resulted in

a not widespread success of the CHA methods. Some other methods, partly based on

the localization of molecular orbitals, have been proposed but almost all proved to be

unable to correctly reproduce CP and experimental results, their most important prob-

lem being a systematic overestimation of the interaction energy (or correspondingly a

systematic overestimate of the BSSE). Some preliminary study were performed by us

using a localization technique and a topological selection of excitation in order to elimi-

nate intermolecular excitations in the CI Hamiltonian but results are still far from being

acceptable.

2.1.2 Current trends

Nowadays CP correction is still the most widely used tool to eliminate the BSSE and

many authors used it in intermolecular calculations. In some very particular cases how-

ever, there is a strong tendency to use the largest possibly basis set in order to have BSSE

tending to zero and therefore simply neglecting its effects. Among the a priori method-

ologies only the CHA proves to be an efficient and practical computational methodology,

even if its use is still much less common than the CP correction. The success of the

Supramolecular Approach in the computation of intermolecular forces is due mainly to

its efficiency and to its conceptual and practical simplicity. In fact, it implies nothing

more than the simple calculation of molecular energies (at least using the very common

feature of ghost orbitals) and therefore, it can be performed without consistent effort

using almost any code capable of solving the Schrödinger equation for the energy at any

desired level of theory.

2.2 Perturbation Theory

The use of Perturbation theory in the computation of intermolecular interactions is

conceptually quite different from the supramolecular approach. While the latter is based
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on the direct calculation of energy differences between the complex and the fragments,

Perturbation Theory methods make direct use of the formalism derived in the previous

Chapter, hence they decompose the energy terms in the sum of electrostatic, inductive,

dispersive (and for the short range exchange) contributions. They are usually aimed

at the determination of the Intermolecular coefficients Cn appearing in the expansion

formula (ELR stands for energy at long range)

ELR = −
∑

n

CnR
−n (2.4)

As the name implies they make a consistent use of the Rayleigh Schrödinger Per-

turbation Theory and are capable of determining intermolecular coefficients from the

electric properties of a single monomer, moreover they usually give, the values of these

properties as byproducts.We may refer these methods as one-body, in contrast with the

Supramolecular two-body approaches in which it is always necessary to explicitly calcu-

late the energy of the dimer.

We will here briefly talk about long range perturbation theory (LRPT) where one

may get rid of the antisymmetry requirements and use the standard tools of perturbation

theory and at the end about the Symmetry Adapted Perturbation Theory.

2.2.1 Electrostatic and Inductive Terms

The determinations of electrostatic and inductive interaction terms is actually a very

simple task in the framework of LRPT, due to the very simple and straightforward form

assumed by the interaction.

Electrostatic contribution in fact requires only the knowledge of first order perturba-

tion quantity (multipole operators)

Cn ∝ QA
lqQ

B
l′q′ (2.5)

where Q are general multipole moments of monomer A and B respectively. They

may be very easily determined by a large variety of quantum chemistry codes, both

analytically solving the zero order perturbation theory (this task requires the knowledge

of the unperturbed wave function only)

Qlq = 〈Ψ0|Q̂lq|Ψ0〉 (2.6)

and numerically using the so called Finite Field technique. The latter makes explicitly

use of the definition of the multipole moment as minus the first derivative of the energy
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against an electric field (field gradient, and so on)

Qlq = −∂〈Ψ0|H|Ψ0〉
∂Flq

(2.7)

hence it requires only the determination of the monomer energy for various values of

electric field and subsequently a numerical derivation. This is a very common task easily

performed by almost all quantum chemistry codes, the only supplementary complication

being the capability to compute energies in the presence of an electric field.

As far as the induction energy is concerned the expression involved are only slightly

more complicated involving also the second order property: the polarizabilities. We

remind in fact the expression for the induction coefficients is

Cn ∝ QA
lqα

B
lq,l′q′Q

B
l′q′ (2.8)

the only difficulty may lie on the determination of the static polarizability. This can

be performed analytically solving the first order perturbation equation

α = 2〈Ψ0(E1 − Q̂lq)|(H− E0)
−1|(E ′

1 − Q̂l′q′)Ψ0〉 (2.9)

where we defined E1 = 〈Ψ0|Q̂lq|Ψ0〉E ′
1 = 〈Ψ0|Q̂l′q′|Ψ0〉E0 = 〈Ψ0|H0|Ψ0〉 (let us

underline the previous one is nothing but the general expression of first order perturbation

theory and its solution can be expressed via the sum over state we used in the definition

of polarizability in the previous chapter). Obviously the solution of this equation is a

little bit more complicated than the zero order one but can still be performed by a large

number of codes, some more complication may arise for method like Coupled Cluster

in which the Hamiltonian looses its hermicity. Anyway the static polarizability can still

be computed using the finite field methodology since it is defined like minus the second

derivative of the energy with respect to the electric field (or field gradient .....)

αlq,l′q′ = − ∂2E

∂Flq∂Fl′q′
(2.10)

this computation is performed exactly the same way like the multipole one, via the

computation of the energy for various values of field strength and numerical derivation

to the second order.

2.2.2 Dispersion Terms

If the calculation of electrostatic and inductive terms is very easily performed in the

framework of perturbation theory (requiring only very standard technique if used with
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finite field machinery) the same can not be said for the dispersion terms. The working

equation for the calculation of dispersion coefficients (and constants) using LRPT are the

Casimir-Polder and London formulae, we derived earlier. Among the two the Casimir-

Polder one is certainly, up to now, the most widely used in this context, as it is easy to

understand from the formula itself

Dn =
1

2π

∫ ∞

0

αA
laqa,l′aq′a

(iω)αB
lbqb,l

′
bq

′
b
(iω)dω (2.11)

it implies the computation of imaginary frequency polarizabilities for each molecule

and subsequently a numerical integration to get the value of the constants.

The frequency dependent polarizability is obtained solving the first order perturbation

equation

L±ω = 〈Ψ0(E1 − Q̂lq)|(H± ω − E0)
−1|(E ′

1 − Q̂l′q′)Ψ0〉
α(iω) = L+ + L− (2.12)

the latter can not be considered a trivial task to be performed, requiring an iter-

ative process in a complex space but can nonetheless be done by some commercial or

free codes like for instance ADF [18] or DALTON [19]. It is also possible to obtain

imaginary frequency polarizabilities using method which do not involve the iteration in

complex space, for instance one approximation we will talk about in the proceeding is the

Pade’ Approximation which allows to obtain lower and upper bound to the polarizabil-

ity from the Cauchy Moments. In any case once the polarizability has been determined

for a reasonable number of imaginary frequencies it is necessary to perform a numerical

quadrature. Usually this task is performed with the Gauss Legendre method∫ +1

−1

f(x)dx =
+1∑

i=−1

f(xi)γi (2.13)

where f(xi) states for the value of the integration function at the point xi and γi is

the weight at the point xi, if we consider the Casimir Polder formula we may see the

integration limits are not −1 and +1 so it is necessary to perform a variable substitution:

following Amos scheme [20] we set

y = ξ
1 + x

1− x
(2.14)

where ξ is an arbitrary variable, in that case we will have

lim
x→1+

y = 0

lim
x→1−

y = +∞ (2.15)
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which falls in the Gauss Legendre integration interval, upon substitution we have

(remembering dy
dx

= 2ξ
(1−x)2

)

∫ ∞

0

α(iω)α′(iω)dω = 2ξ

∫ +1

−1

α(
1 + iω

1− iω
)α′(

1 + iω

1− iω
)

1

(1− iω)2
d(

1 + iω

1− iω
)

= 2ξ
+1∑
−1

α(xi)α
′(xi)

γi

(1− xi)2
(2.16)

which led to the numerical quadrature considering γi

(1−xi)2
as modified weights and xi the

modified values of frequence at which polarizability has to be calculated.

In practical calculations it is often necessary to work with a number of integration

points of eight or sixteen frequencies in order to get reasonable results, while the ξ

parameter is usually kept at 0.2 or 0.3; the best results are probably the ones in which

the number of frequencies is kept to 32, even if the latter would imply a very high

computational cost, in the case one is directly computing dynamic polarizabilities with

perturbation theory and is not relying on approximate methods like Pade’ approximation.

Anyway, although the method is intrinsically not variationally bounded implying a

numerical quadrature, and in some instance it is not computationally economic. Casimir

Polder it is often considered as the standard de facto in LRPT dispersion calculation, as

far as the number of chosen point is kept reasonably high, and new approaches are often

tested against it. In fact a quite high number of dispersion constants has been calculated

using this approach (with dynamic polarizability determined at various levels of theory)

for a large variety of molecular and atomic systems.

Some other approaches exploit the London formula instead, and although less com-

mon than Casimir Polder based ones are worth to be mentioned here. In all these

approaches the computational effort relies on the determination of the pseudospectral

decomposition (i.e. the determination of the transition moments between ground and

excited states at the London formula’s numerator and the energy dimension terms at the

denominator), once the pseudospectra are obtained a straightforward application of the

London formula yields the values of the Dispersion Constants see for example the work

of Magnasco and coworkers [21].

2.2.3 Symmetry Adapted perturbation Theory (SAPT)

A very interesting and promising method which allows the inclusion of short range re-

pulsion on the perturbation theory framework is the Symmetry Adapted Perturbation

theory [22].
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Consider, for instance, two interacting molecule A and B we will have: H = HA +

HB + V = H0 + V and at the first order (H0 + V )Ψ = (E + Eint)Ψ. But the standard

Rayleigh Schrödinger perturbation theory, does not take into account the antisymmetry

property of the wavefunction in the resulting space HA ⊗ HB, the wavefunction being,

in fact, antisymmetric upon the permutation of two electrons. With SAPT on the other

hand the solution is forced to respect the correct perturbative symmetry with the use of

opportune antysimetrizers in the n−order perturbative equation

(Eint)n = 〈Ψ0|V G|Ψn−1〉 (2.17)

in this case the n− order eigenfunction becomes

Ψn = Ψ0 +R0[〈Ψ0|V G ′|Ψn−1〉 − V ]FΨn−1 (2.18)

where R0 represent the resolutor and G G ′F are opportune symmetrized projectors.

Different kind of SAPT solutions can be obtained depending on the use of different

symmetrized projectors, for instance in the case F = G ′ = 1 we have the simplest

solution (the feeblest antysimmetrization) called Symmetrized Rayleigh Schrödinger. We

will not proceed in an exhaustive treatment of the SAPT method but we would like to

remind how this method can be used at many level of theory and has been capable of

yeld very accurate values of intermolecular energies (expecially when used at Coupled

Cluster level), both for the attractive and repulsive part of the potential.

2.2.4 Final Considerations

As previously stated Perturbation Theory based methods allow for the separate determi-

nation of all the components of interaction energy which have a proper definite physical

meaning and it relates them to the electrical properties of the monomers. Supramolec-

ular Approach, on the other hand, only gives the interaction potential curve. For these

reasons the previous have to be preferred if one is interested in finding out the individual

contribution of the interaction in order to better investigate its nature. It is also worth

to be mentioned how these methods giving (mainly) the values of the intermolecular

coefficients allows for a very easy parametrization of the potential, helping in building

accurate intermolecular parameters to be used subsequently.

Moreover being One Body methods they are inherently BSSE free and usually they

are computationally cheaper than corresponding Two Body methods. The computational

demanding quantities depend only on the electric properties of one single monomer, so

they are computed in the space defined by that particular monomer. This is particularly
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important if one is interested in building tables of intermolecular coefficients involving

homo and hetero dimers.

On the contrary theoretical formulation and code needed are in general much more

complicated than the Supramolecular machinery, thus leading to a greater complexity

and difficulty in the use of these formulations.





Chapter 3

The Computational Machinery

During this thesis we, mostly, performed computations at FCI and Coupled Cluster (ex-

pecially R12−Coupled Cluster) level, moreover some innovative applications developed

at the previously cited levels of theory will be presented. For these reasons we will in-

troduce here the basic theory of these two methods, and some of their most common

features used in this work.

3.1 The Full Configuration Interaction Method

The problem we are addressing by the Full Configuration Interaction (FCI) [23] method is

to find an approximate but highly accurate (actually the most accurate possible solution

with a given basis set) of the molecular n−electron Schrödinger equation. We may even

say the FCI solution represent the exact solution to the wavefunction equation in the

subspace spanned by a given orbital expansion set.

Let us define the Schrödinger equation (using atomic units) as:

HΨ =
n∑

k=1

hk +
n∑

k<l

1

rkl

Ψ = EΨ (3.1)

Here the one electron operator hk includes kinetic energy and Coulomb attractions

by all the nuclei in the molecule, while the two electron terms 1
rkl

represent the electron

electron repulsion. We also remind the physical solution of the Schrödinger equation

must obey the Fermi-Dirac statistic, i.e. to be antisymmetric under electron exchange,

and should also be eigenfunctions to the total spin operators S2 and Sz.

Usually, since the very early days of quantum mechanics [24], the many body problem

we are talking about is solved building the n−electrons wavefunction from an orthonor-

mal set of spin-orbitals χk. These spin orbital are composed by a spacial part or orbital
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that is nothing but a function ϕ of the space coordinates x, y, z of the electron and a

spin part, α, β taken such as to be an eigenfunction of the spin operators S2, Sz. So

that we will have χ = αϕ, βϕ.

The most famous, and maybe the simplest, example of an antisymmetric function,

useful to express the solution of such an equation, is the Slater determinant, in fact the

latter offered a very simple alternative to the more esoteric theoretical group methods

[25], providing the conceptual framework to computational quantum chemistry.

In this framework the FCI method can be very simply defined by expanding the

wavefunction Ψ as a linear combination of all the Slater determinants one can obtain

from a given set of spin orbitals {ϕk}. The expansion coefficients are then obtained by

the Rayleigh-Ritz variational method: solving the eigenvalue problem of an Hamiltonian

matrix H. This is the reason why given a spin orbital basis set (and therefore an orbital

basis set) FCI represent the best variational solution one can obtain. At this point one

could surely enlarge the orbital basis and improve the approximation, moving towards

converge to the exact physical solution to the problem (some convergence theorems have

also been given [26]), however there is a serious drawback: the exceedingly rapid increase

of the dimension of the matrix H with the number of the electrons and spinorbitals. In

fact the numbers of Slater determinants grows combinatorially for nα, nβ electrons in N

orbitals

Ndet =

(
N

nα

) (
N

nβ

)
(3.2)

the combinatorial explosion of dimensions is the key problem of FCI, severely lim-

iting its applicability, for this reasons many methods to reduce the CI space have been

introduced giving rise to various CI truncating schemes (which have to be considered like

approximations to the FCI), the latter are nowadays commonly used much more than

the FCI itself. It has to be recalled however that the previous expression can be reduced

if one takes full advantages of the symmetry property of the molecular system. If we

consider, for instance, a molecule belonging to a point group with order h we will show

later how the number of determinants becomes

Ndet '
1

h

(
N

nα

) (
N

nβ

)
(3.3)

therefore the dimensions are reduced up to a factor eight if one is working with a

high symmetric system in the framework of Abelian symmetry groups.

A major step in the CI (and FCI) technique was, anyway, the one taken by Roos

with the introduction of the direct method [27], avoiding the explicit construction of the

Hamiltonian matrix H, with the use of iterative algorithms for computing eigenvectors
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like Lanczos or Davidson methods. In this context one starts from a vector guess x0 and

improves it at each cycle by various operation, all of them involving the same fundamental

operation (FO)

y = Hx (3.4)

the multiplication of the Hamiltonian matrix H by a vector x to give a new vector y

in the FCI space. It was, as we said, pointed out by Roos that this multiplication can be

performed without computing and storing the matrix H but directly from the one and

two electron integrals list. The latter is much shorter than the vector x, being of the

order N4/h, therefore the only quantities one needs to store are the two vectors x and

y, and the integrals. CI vectors can be stored as two dimensional arrays, in this case the

FO is performed running along the columns.

The first FCI algorithm allowing for large scale computation is due to Handy and

coworkers [28, 29] and implemented Siegbahn’s idea of the resolution of the identity

in FCI space to break down the two electron part of the Hamiltonian in a sum over

intermediate excited states. It was followed later by the method proposed by Olsen et

Al. [33] who used a resolution of the identity in string rather than in determinants space.

Here we will present the fundamental of the implementation of the code for direct FCI

expanded in Slater determinants developed and commonly used in our laboratory [34].

It is however important to underline that FCI is not only a computational challenge,

it is indeed a very useful tool to obtain benchmarks and to asses the reliability of the

approximate methods, like, for instance, truncated CI, MCSCF, Coupled Cluster etc...

3.1.1 Representation of the CI vectors

Let us assume the system belongs to a spacial Abelian symmetry group G of order

h. All the orbitals are taken to be symmetry adapted, and we will denote by Si the

symmetry species of the orbital i. The Slater determinants are represented by couples

of strings |θαθβ〉. Each string θ is an ordered sequence of occupation numbers like, for

instance, 1, 0, 0, 1, where a one in a position k means that orbital k is occupied (notice

however this convention implies the orbital are arranged in a definite order in the Slater

determinants). The association of strings to give a Slater determinants is, in fact, an

antisymmetrized tensor product

|θαθβ〉 = |θα〉 ∧ |θβ〉 (3.5)

|
∑

i

ciθα

∑
j

cjθβ〉 =
∑
ij

cicj|θαθβ〉 (3.6)



56 CHAPTER 3

We may now define the string symmetry S(θ) as the products of the symmetries of

its occupied orbitals, S(θ) = Si ∗ Sj (where ∗ is the group multiplication). We have to

point out all the strings are sequentially ordered in some way, therefore we may define

I(θ) as the address or ordinal number of θ, in such a way that any Slater determinant

|θαθβ〉 corresponds to the couple I(θα), I(θβ). Moreover the strings are separately ordered

symmetry by symmetry; that means the function I(θ) lists first strings of symmetry 1,

then strings of symmetry 2 and so on. Because the FCI eigenvector has a definite

symmetry too Sv, we will be able to combine only those strings that respect the relation:

Sv = S(θα) ∗ S(θβ) (3.7)

denoting by Θ(S) the set of strings of symmetry S, a general vector V in the FCI

space can be therefore written as

V =
∑

S

∑
θα∈Θ(S)

∑
θβ∈Θ(Sv∗S−1)

xS[I(θα), I(θβ)]|θαθβ〉 (3.8)

The components of the vector V are arranged as a sequence of two dimensional arrays

or blocks xS with S = 1, 2, . . . , h. Only one block at a time needs to be kept in core

memory, the others being stored on the disk. It is important to stress the key feature of

this way of addressing the vector: string addresses are precomputed and stored in lists

implementing the mapping generated by the Hamiltonian. The number of strings grows

only as the square root of the number of Slater determinants, and when nα = nβ a further

reduction by a factor 2 is achieved taking into account the spin reversal symmetry of the

Hamiltonian [33, 34].

3.1.2 The FCI Hamiltonian

We are now facing the problem of expressing the general Hamiltonian in a FCI space of

n electrons generated by a finite spin orbital basis set B composed of N orbitals of either

spin. If we are using the second quantization formalism we may write this operator as

H =
∑
i,j,σ

hi,ja
†
iσajσ +

1

2

∑
i,j,k,l,σ,τ

〈ij|kl〉a†iσa
†
jτalτakσ (3.9)

where we used Latin indeces (i, j, k, l) to label orbitals and Greek indices (σ, τ) to

label spins, hi,j represent the one electron integrals while 〈ij|kl〉 represent the two electron

ones in physical (Dirac) notation. Because of H being total symmetric all the matrix

elements (integrals) will vanish unless Si = S−1
j or Si ∗Sj = Sk ∗Sl; moreover the number

Nint of two electrons integrals is also decreased by a factor h.
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The Hamiltonian can be seen as being decomposed in a linear combination of elementary

one and two electrons operators a†iσajσ and a†iσa
†
jτalτakσ. Any of these operators when

acting on a Slater determinant |θαθβ〉 may only produce an other determinant ±|θα′θβ′〉
or annihilate the determinant itself. In order to implement the action of the Hamiltonian

operator we may consider two approaches: integral driven or string driven approach. Let

us first consider the easiest one electron part and analyse both of them.

Integral driven For each orbital couple (i, j) we may construct a set of NV Oij string

couples such as θiK = a†iajθ
jK for K = 1, 2, . . . , NV Oij. Actually what we will

work with will be the list of addresses plus the sign factor sK , we will, therefore,

have to deal with I(θiK), I(θjK) and sK .

String driven . In this case for each string θ we construct a list grouping together the

couples (i, j) and the string ξk = a†iajθ (as usual we will work with the strings

addresses) building the Hamiltonian from them.

The overall length of the one electron list will be the same in both cases, and therefore,

at this level the two choices are equivalent. The two electron part of the Hamiltonian

represents the most difficult but most important part to treat, we may, first of all, notice

the operator can be split in two types:

Hσσ =
1

2

∑
i,j,k,l,σ

〈ij|kl〉a†iσa
†
jσalσakσ (3.10)

Hστ =
1

2

∑
i,j,k,l,σ,τ

〈ij|kl〉a†iσa
†
jτalσakτ (3.11)

obviously the two represent the same spin (αα or ββ) and the opposite spin (αβ) contri-

bution. Let us start with the same spin (consider for instance the ββ part) we still have

two possibility:

Integral driven . We treat the operator Eijkl = a†iβa
†
jβalβakβ exactly in the same way

we did for the one electron case. Obviously the main difference will be the length

of the two electron lists, the latter being approximately

1

h

(
n

2

) (
N

n

) [(
N − n
n

)
+ 2(N − n) + 1

]
(3.12)

and therefore grows slowlier than the FCI space and it is computationally efficient

and simple.
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String driven . In this case the two electron operator is split as the product of two

one electron steps consisting of single excitation [33]

Eijkl = a†iβakβa
†
jβalβ − δjka†iβalβ (3.13)

In this case for each columns of yS we must compute contributions coming from

several columns of xS, a temporary linear array of length one column xS is needed.

The overall operation count for this step is the same in the two cases and it is roughly

given by
Ndet(N − nβ)2n2

beta

4
(3.14)

Obviously the αα part is implemented in exact the same way providing one interchanges

rows and columns in both xS and yS The most time consuming part of the entire oper-

ation is indeed the Hαβ; in this case we have

Hαβ|θαθβ〉 =
1

2

∑
i,k

(a†iαakα|θα〉) ∧
∑
j,l

(a†jβalβ|θβ〉) (3.15)

the full operator core has been decomposed in products of α factor affecting only rows and

β factor affecting only columns of the vectors xS and yS, which has to be implemented

as two nested one-electron operations. The external loop is performed using the integral

driven lists, the internal is performed with the string driven or integral driven lists either.

In our laboratory code this task is achieved using temporary arrays where all the rows of

xS and yS affected a given a†iαakα are gathered. Then all the operation corresponding to

the β part are performed using BLAS vector routines (DAXPY); the entire αβ process

can therefore be schematized as

1. gathering the needed rows and columns

2. a series of DAXPY over columns corresponding to to the β one electron loop

3. a scatter from the temporary arrays to xS and yS

It has to be noted however the one electron operators do not separately conserve spacial

symmetry, the requirement is, indeed, S(i) ∗ S(k) = S(j) ∗ S(l), therefore all the one

electron lists are needed, regardless of their symmetries. The overall length of the one

electron lists becomes approximately

n

(
N

n

)
(N − n+ 1) (3.16)
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which has to be compared with the length for the same spin component, the computa-

tional cost for this part becomes

Ndet[nβ(N − nα + 1][nα(N − nα + 1]

h
(3.17)

The vector performance, is strongly influenced by the length of the innermost loop, i.e.

by the average length of one electron lists for couple (i, j)

3.1.3 Davidson algorithm in CI method

One of the most used algorithm to solve iteratively the (F)CI problem is without any

doubt the Davidson one [35]. This particular algorithm, strongly related to the Krylov

type algorithms, proved to be very efficient in the case of large sparse matrices like the

CI Hamiltonian matrix H. It is, therefore, still widely used in many QC codes, although

it dates back to the seventies. Its main features are schematically presented here:

1. set i = 0

2. set a trial function (vector) xi

3. compute using the FO yi+1 = Hxi and εi+1 = 〈xiyi+1〉
〈xixi〉

4. compute the residual as ri+1 = yi+1 − xi, if ri+1 ≤ THR (THR being the chosen

convergence threshold) stop

5. precondition the vector ri+1, you get pi+1 = (DiagH − εi+1)
−1ri+1

6. orthogonalize the p vector to all the preceding

7. compute xi+1 =
∑i+1

j=0 p
ort
j

8. apply FO to compute yi+2 and the reduced matrix HR

HR(i, j) = xiyj (3.18)

9. diagonalize the reduced Hamiltonian matrix and compute the energies (eigenvalues)

and set i = i+ 1

10. go back to point 4

The Davidson method efficiency is due to the particular form of the preconditioner, and

to the diagonal dominance character of the CI Hamiltonian matrices.
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3.1.4 Second order perturbative solutions

The problem we address is the computation of second (and eventually higher) order prop-

erties at the (F)CI level. This implies the solution of the perturbation theory equation

which we may write as

(H− E0 ± ~ω)ψ± = (〈ψ0|V̂ |ψ0〉 − V̂ )ψ0 (3.19)

here ψ0 is an eigenstate of the H operator with energy (eigenvalue) E0 and V̂ rep-

resents a perturbation operator. The previous equation is nothing but the perturbative

equation we found out in the treatment of molecules in an oscillating electric field we

performed previously.

The solution of this equation can be approximated by expanding both ψ0 and ψ± in

a linear space L. In the first case this lead to the familiar eigenvalue problem for the

matrix H of the Hamiltonian in the chosen basis set,

Hv0 = E0v0 (3.20)

while the latter becomes a system of linear equations

(H− E0 ± ~ω)v1 = E1v0 −w0 (3.21)

where v0, v1 and w0 represent, respectively, the vectors of the components of the un-

perturbed eigenvector ψ0, of the first order function ψ±, and of the function V̂ ψ0. If we

choose L to be the FCI space we have, as we know, a factorial growth of L dimensions

with the number of electrons and atomic orbital; in this case our problem will be how to

deal with so large dimensions. System of linear equations can be solved using methods

which are similar to the ones used for the FCI eigenvalue problem, i.e. iterative methods

combining the idea of the Krylov space with the direct techniques, allowing therefore

the use of the FCI FO operation y = Hx. The analytic perturbative solution has many

advantages compared to the numeric finite field type, expecially:

• full exploitation of the symmetry of the molecule, avoiding computations with non

totally symmetric Hamiltonians including external fields

• allow access to frequency dependent polarizabilities

3.1.4.1 The computational algorithm

Let us take a deeper look at the actual way to solve the perturbative equation which has

been implemented in our laboratory FCI code [36].
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The right hand side of the perturbative equation in matrix form, b = E1v0−w0 is easily

computed from the eigenvector v0 obtained from a FCI computation. The perturbation

operator V̂ being, in this context, a general multipole operator which acts like a one

electron operator

V̂ =
∑
ij

Vija
†
iaj (3.22)

so its application to v0 can be accomplished using the standard FCI techniques. The only

feature to be pointed out concerns the fact V̂ will be, in general, non totally symmetric,

therefore V̂ ψ0 and ψ± may belong to different symmetry classes. We may now rewrite

the equation as

A(η)x = b (3.23)

where A(η) = H − (E0 + η)I and η = ±~ω. We notice, by the way, the matrix A(0)

is real symmetric with eigenvalues Ek −E0 corresponding to the excitation energy from

state v0 and that it also has a null eigenvector v0, we will moreover assume it is non

degenerate. The perturbative equation admits solutions only if at least one of the two

following conditions is fullfilled

• detA 6= 0

• b is orthogonal to the null space of A(η)

The first condition is fullfilled when η is different from an excitation energy Ek − E0

and from zero. This fact impose to restrict η to ± the distance of the closest eigenvalue

from E0, anyway this limitation is the same one imposed by perturbation theory itself.

Moreover since the right hand side b is orthogonal to v0 by construction so the solution

x will be. For this reason where η = 0 we fullfill the second validity condition and the

equation allows a linear manifold of solutions. In this manifold we choose the solution of

minimal norm, i.e. the one orthogonal to v0. In order to ensure a compact notation to

represent the solution and other quantities it can be useful to recall the reduced resolvent

[37] of the Hamiltonian R(η), which we may define as

R(η) = (H− E0 − η)−1P0 (3.24)

x = R(η)b (3.25)

where P0 is the projection on the eigenvector v0. With the help of the general varia-

tional principle we may now give a unified presentation of the numerical method used

to practically achieve the solution. The solution of the perturbative equation, in fact,

corresponds to a stationary point of the quadratic forms
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1. Q1(x) = 1
2
x†A(η)x−b†x This relation represent the Hylleras variational principle

in the linear space L, Q1 may also be defined Hylleras functional.

2. Q2(x) = ‖b−A(η)x‖2

The vector r = b−A(η)x is usually known as the residual norm associated to x, and the

latter can be accepted as a solution when r is small, i.e. when its norm is less than a given

threshold, moreover −r = ∇Q1. The stationary point will always be a minimum for Q2,

while for Q1 this condition is verified only when the matrix A(η) is real and positive

definite. The latter conditions define also the range of applicability of the minimization

of the Hylleras functional Q1, in the other cases the solution shall be obtained with the

minimization of the residual norm.

The conjugate gradient The condition for which one can use the minimization of

the Hylleras functional are fullfilled when −(E0±~ω) is greater or equal to the minimum

eigenvalue of H in the symmetry subspace defined by V̂ ψ0. In that case, the solution

will be achieved minimizing the Q1 functional, i.e. finding the solution to

∇Q1 = A(η)x− b = 0 (3.26)

the latter relation is solved iteratively using the so called conjugate gradient method.

The algorithm may be structured in the following way

1. compute the vector b

2. set i = 0

3. set a guess vector x0 and compute the residual r0 = b −Ax (usually x is chosen

to be null, in this case r = b)

4. set i = i+ 1

5. apply the preconditioner pi−1 = (DiagA)−1ri−1

6. compute ρi−1 = r†i−1pi−1

7. A-orthonormalize pi−1 to all the previous vectors1

8. compute pi = ri−1 + ρi−1

ρi−2
pi−2

1For A-orthonormalization it is intended an orthonormalization of the p vectors, performed using
the matrix A as the metric.
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9. compute Api

10. compute βi =
∑

k

Ap†kb

Ap†kAp

11. update the residual ri = ri−1 − βiApi

12. compute ‖ri‖ if it is less than a threshold stop

13. go back to point 4

The algorithm is based on the idea a good direction to find the minimum is found

moving along the residual, and even better along the direction fixed by the preconditioned

residual. The preconditioner is still based on the diagonal due to the nature of diagonal

dominance of the Hamiltonian matrix, the β is chosen so that to minimise Q1 in the

direction defined by p. As always the time consuming operation is the multiplication

Ap which can be assimilated to the FO of the FCI.

We may see the minimum of the Hylleras functional has a value which is equal to

Qmin = −1

2
b†A−1b (3.27)

In the case ω = 0 (static polarizability) we will therefore have α = −2Qmin, when ω 6= 0

we will have α(ω) = −Q+
min − Q−

min where Q+
min is the solution obtained with η = ~ω

and Q−
min with η = −~ω.

The Residual Norm Minimization In the case when A(η) is not positive definite,

as is commono for excited states, or when the frequence ω is an imaginary or complex

quantity, one can not rely on the Hylleras Functional to get a solution to the perturbation

equation. As already stated in this case we have to deal with the residual norm ‖r(x)‖ =

‖b−A(η)x‖2 and minimise it.

In this case we may express, following again Krylov and Davidson ideas, the solution as

a linear combination of vectors h

xn =
n∑

i=1

βihi (3.28)

where the vectors are chosen such as they respect the condition hi = Diag(A−1ri−1).

The main computational steps to be performed are summarized here:

1. set i = 0

2. compute the vector b
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3. choose a guess vector x0 and compute r0 = b −Ax0 if the guess is chosen to be

the null vector than r0 = b

4. set i = i+ 1

5. compute hi = Diag(A)−1ri−1 and write it on disk

6. compute Ahi

7. compute all the scalar products γji = pjA
†Ahi

8. othonormalize the vector Ahi to all the previous vectors Apj, and write on the

disk the orthonormal vector Api

9. compute ‖Api‖

10. compute the coefficients β =
∑

i
Ap†ib

Ap†iApi

11. update the residual according to the equation

ri = ri−1 + βiApi (3.29)

12. check convergence, if not converged go back to point 4

13. compute the expansion coefficients of the solution in the base hi by inverting the

triangular matrix γji

14. compute solution by linear combination with coefficients βi of the vectors hi

15. Schmidt orthogonalize the solution to v0 if needed and exit

Even if this algorithms uses tools whose computational cost is substantially equivalent to

the ones used by conjugate gradient, the convergence toward the soution is significantly

slower in the residual norm method, resulting in an overall increase in the required

computational time. Nevertheless it is applicable in cases in which the conjugate gradient

would have failed. In a case of a complex A matrix, the scheme is essentially unaltered

from the mathematical point of view. However the implementation is complicated by

the fact that all the vectors (with the exception of b) are complex and require therefore

twice as much disk space. Moreover the implementation is usually organized such as to

separate real and imaginary parts of the vector, therefore the computational cost per

iteration is, in complex cases, also doubled.
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3.2 The Coupled Cluster Method

Currently Coupled Cluster (CC) methods play undoubtedly one of the leading roles in

high precision ab initio calculations, and they are implemented in several high perfor-

mance packages. In particular this is true for the non degenerate single reference variant,

while multi reference CC (MRCC) is still far from being so universally accepted and used.

For this reason CC can be seen as a very useful method to determine non degenerate

ground states of many molecular systems, where its accuracy is often comparable to the

FCI one, but with a much lesser computational effort; in return, however, one has to pay

the prize of the loss of variational protection, which is not ensured by truncated Coupled

Cluster. Moreover with single reference CC it is practical impossible to treat, with an

high level of accuracy, degenerate systems, in which a single reference determinant is

not sufficient to get a correct description of the WF; this fact limits CC applicability,

preventing its use for several problems involving excited states, or magnetic systems,

where the truncated CI (in particular multi reference CI) is still preferable.

3.2.1 The Coupled Cluster Ansatz

Consider, as usual, the problem defined by the Scrödinger equation

HΨ = EΨ (3.30)

the key idea was to expand the WF Ψ by the use of an exponential Ansatz

|Ψ〉 = eT |Φ〉 (3.31)

〈Ψ| = 〈Φ|eT †
(3.32)

This idea was firstly introduced in the classical statistical mechanic field [38] and subse-

quently translated to the field of Nuclear Physics [39] and finally to quantum chemistry

by the pioneristic work of Č́ıžek [40]. In the previous equation Φ is a Slater determinant,

often referred to as the reference determinant while T is an excitation operator acting

on the Slater determinant, which can be expressed as follows:

T = T1 + T2 + T3 + · · ·+ Tn (3.33)

in this context T1 represents the operator for single excitations, T2 the operator for double

excitations and so on. The latter may be expressed in second quantization as:

T1 =
∑

i

∑
a

tai aia
†
a (3.34)
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T2 =
∑
ij

∑
ab

tab
ij aiaja

†
aa

†
b (3.35)

or in general

Tn = (n!)−2
∑
ab...n

∑
ij...n

tab...n
ij...n aiaj . . . ana

†a†b . . . a
†
n (3.36)

where the indices i, j represents occupied orbitals, the indeces a, b virtual orbitals a

and a† are normal ordered 2 creation and anhillation operators respectively, and t are

the coupled clusters amplitudes. Solving for the unknown amplitudes is the necessary

passage to get the CC approximate solution to the WF.

Before briefly recall the CC working equations let us just clarify one of the key features

of Coupled Cluster methods: size consistency. Consider a non interacting system A+B

whose Hamiltonian is H = HA +HB, assuming a truncation on T to n−excitations, and

using the fact excitations operators commute, we may write

ΨAB
n = eTAeTBΦAΦB = eTA+TBΦAΦB (3.37)

the energy will be

EAB
n =

〈eTAeTBΦAΦB|H|eTAeTBΦAΦB〉
〈eTAeTBΦAΦB|eTAeTBΦAΦB〉

=
〈eTAΦA|HA|eTAΦA〉〈eTBΦB|eTBΦB〉
〈eTAΦA|eTAΦA〉〈eTBΦB|eTBΦB〉

+
〈eTBΦB|HB|eTBΦB〉〈eTAΦA|eTAΦA〉
〈eTAΦA|eTAΦA〉〈eTBΦB|eTBΦB〉

= EA + EB (3.38)

therefore the energy for non interacting system will scale linearly with the number of

particles, like it is required by the definition of size consistency.

Let us assume, up to now, intermediate normalization, which follows directly providing

one considers the orthogonality of the basis

〈Φ|Ψ〉 = 1 (3.39)

and let us expand eT in a Taylor series

eT = 1 + T +
1

2
T 2 +

1

3!
T 3 + · · ·

= 1 + T1 + T2 +
1

2
T 2

1 + T1T2 +
1

2
T 2

2 + · · · (3.40)

2Normal ordered are defined those operators in which all the annihilation operators have been moved
to the right, and all the creation operators to the left, by the action of a commutator operator.
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This series is finite in practice because the number of molecular orbitals is finite, as is

the number of excitations. In order to simplify the task for finding the coefficients, the

expansion of T into individual excitation operators is terminated at the second or slightly

higher level of excitation (rarely exceeding four). This approach is warranted by the fact

that even if the system admits more than four excitations, the contribution of T5, T6 etc.

to the operator T is small. Furthermore, if the highest excitation level in the T operator

is n

T = 1 + T1 + ...+ Tn (3.41)

then Slater determinants excited more than n times do still contribute to the wave func-

tion |Ψ〉 because of the non-linear nature of the exponential Ansatz. Therefore, coupled

cluster terminated at Tn usually recovers more correlation energy than configuration in-

teraction with maximum n excitations.

Consider, in fact,

C0 = 1 (3.42)

C1 = T1 (3.43)

C2 = T2 +
1

2
T 2

1 (3.44)

C3 = T3 + T1T2 +
1

3!
T 3

1 (3.45)

...

(3.46)

it is possible to write the WF as

|Ψ〉 = eT |Φ〉 = (1 + C1 + C2 + C3 + . . .)|Φ〉 = C|Φ〉 (3.47)

therefore if all possible excitation from a given reference state have been taken into

account CI and CC prove to be fully equivalent, as soon as no approximations are

introduced.

3.2.2 Coupled Cluster Equations

The exponential Ansatz described above is essential to coupled cluster theory, but we

do not yet have a recipe for determining the cluster amplitudes (tai , t
ab
ij , etc.) which

parametrise the Coupled Cluster Schrödinger wave equation

HeT |Φ0〉 = ECC |Φ0〉 (3.48)
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one may left project the previous equation onto the reference state 〈Φ0| to get the the

energy

ECC = 〈Φ0|HeT |Φ0〉 (3.49)

and left project the same equation onto the space define by the excited determinants

〈Φab...
ij... | produced by the action of the cluster operator, T , on the reference state

〈Φab...
ij... |HeT |Φ0〉 = 0 (3.50)

the latter projection will give raise to an equation for each specific amplitude tab...
ij... (cou-

pled to other amplitudes). These equations are non-linear (due to the presence of eT )

and energy dependent. Furthermore, they are formally exact; if the cluster operator, T ,

is not truncated. This projective technique represent a particularly convenient way of

obtaining the amplitudes which define the coupled cluster wavefunction, eT Φ0. However,

the asymmetric energy formula shown does not conform to any variational conditions

when the energy is determined from an expectation value equation. As a result, the

computed energy will not be an upper bound to the exact energy in the very common

event that the cluster operator, T , is truncated

Although these energy and amplitudes expressions are useful for gaining a formal un-

derstanding of the coupled cluster method, they are not amenable to practical computer

implementation [41]. One must first rewrite these expressions in terms of the one- and

two-electron integrals arising from the electronic Hamiltonian as well as the cluster am-

plitudes, which, apart from the energy itself, are the only unknown quantities. To that

end, it is convenient to exercise mathematical foresight and multiply the Schrödinger

equation by the inverse of the exponential operator, e−T , obtaining the so called similar-

ity transformed Hamiltonian e−THeT . Upon subsequent left-projection by the reference,

Φ0, and the excited determinants, Φab...
ij... , one obtains modified energy and amplitude

equations,

ECC = 〈Φ0|e−THeT |Φ0〉 (3.51)

〈Φab...
ij... |e−THeT |Φ0〉 = 0 (3.52)

It may be shown [42] that these equation are fully equivalent to the previous ones but

present two many advantages. First, the amplitude equations are now decoupled from

the energy equation. Second, a simplification via the so-called Campbell-Baker-Hausdorff

formula [43] of e−THeT leads to a linear combination of nested commutators of H with

the cluster operator, T ,

e−THeT = H + [H, T ] + +
1

2!
[[H, T ] , T ] +

1

3!
[[[H, T ] , T ] , T ]
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+
1

4!
[[[[H, T ] , T ] , T ] , T ] + · · · (3.53)

(3.54)

This expression is usually referred to simply as the Hausdorff expansion, and although

it may not immediately appear to be a simplification of the coupled cluster equations,

the infinite series truncates naturally in a manner somewhat analogous to that described

earlier for the operator, HeT .

Let us now take a deeper look at how the nested commutators operate. Let us firstly

express the CC Hamiltonian in second quantization formalism as

H =
∑
pq

hpqa
†
paq +

1

4

∑
pqrs

〈pq|rs〉a†pa†qasar (3.55)

as usual in the previous equation hpq represents a one-electron matrix component of

the Hamiltonian while 〈pq|rs〉 (physical notation) represents the two-electron part. The

Hamiltonian equation contains general annihilation and creation operators (e.g., a†p or

aq) which may act on orbitals in either the occupied or virtual subspaces. The cluster

operators Tn, on the other hand, contain terms that are restricted to act in only one

of these spaces (e.g., a†b which may act only on the virtual orbitals). As pointed out

earlier, the cluster operators therefore commute with one another, but not with the

Hamiltonian, H. For example, consider the commutator of the pair of general second-

quantized operators from the one-electron component of the Hamiltonian with the single-

excitation pair found in the cluster operator, T1:[
a†paq, a

†
aai

]
= a†paqa

†
aai − a†aaia

†
paq (3.56)

the anticommutator relations of annihilation and creation operators may be applied to

the two terms on the right-hand side of this expression to give[
a†paq, a

†
aai

]
= a†pδqaai − a†aδipaq (3.57)

The important point here is that the commutator has reduced the number of general-

index second-quantized operators by one. Therefore, each nested commutator from the

Hausdorff expansion of H and T serves to eliminate one of the electronic Hamiltonian’s

general-index annihilation or creation operators in favor of a simple delta function. Since

H contains at most four such operators (in its two-electron component), all creation or

annihilation operators arising from H will be eliminated beginning with the quadruply

nested commutator in the Hausdorff expansion. All higher-order terms will contain

commutators of only the cluster operators, T , and are therefore zero. Hence, the equation
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for the Hamiltonian truncates itself naturally after the first five terms. This convenient

property it is a general feature resulting entirely from the two-electron property of the

Hamiltonian and the fact that the cluster operators commute; it is not dependent on

the number of electrons in the system, the level of substitution included in T , or any

consideration of the types of determinants upon which the operators act. Using the

truncated Hausdorff expansion, we may obtain analytic expressions for the commutators

and insert these into the coupled cluster energy and amplitude equations.

3.2.2.1 Coupled Cluster Working Equation

We will now briefly construct working equations for the coupled cluster singles and dou-

bles (CCSD) method. Beginning from the approximation T = T1 + T2, we use algebraic

techniques to sketch programmable equations for the cluster amplitudes, tai and tab
ij , in

terms of the one- and two-electron integrals of the electronic Hamiltonian. As a first step

we must introduce a few important tools of second quantization such as normal ordering

and Wick’s theorem to make the mathematical analysis much less complicated. The

approach described here may easily be extended to higher-order cluster approximations

(e.g., CCSDT and CCSDTQ, where the latter includes quadruple excitations), as well as

many-body perturbation theory expressions. The general quantum chemistry commu-

nity has been slow to accept diagrammatic analyses of many-body perturbation theory

and coupled cluster methods, but today this may be considered the standard formalism

to be used in this context. An extensive analysis of a similar diagrammatic technique

may be found in the text by Harris, Monkhorst, and Freeman [44].

Using the anticommutation relations an arbitrary string of annihilation and creation op-

erators can be written as a linear combination of normal-ordered strings (most of which

contain reduced numbers of operators) multiplied by Kronecker delta functions. These

reduced terms may be viewed as arising from so-called contractions between operator

pairs. A contraction between two arbitrary annihilation/creation operators, A and B, is

defined as

AB = AB − {AB}v (3.58)

where {AB}v indicates the normal ordered form of the pair. That is, the contraction

between the operators is simply the original ordering of the pair minus the normal-

ordered pair. For example, if both operators are annihilation or creation operators, the

contraction is zero because such pairs are already normal ordered:

apaq = apaq − {apaq}v = apaq − apaq = 0 (3.59)

a†pa
†
q = a†pa

†
q − {a†pa†q}v = a†pa

†
q − a†pa†q = 0 (3.60)
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In addition, a third combination where A is a creation operator and B is an annihilation

operator is also zero, since the string is again already normal ordered:

a†paq = a†paq − {a†paq}v = ap † aq − a†paq = 0 (3.61)

The final combination where A is an annihilation operator and B is a creation oper-

ator is not zero, however, due to the anticommutation relations

apa
†
q = apa

†
q − {apa

†
q}v = apa

†
q + a†qap = δpq (3.62)

Wick’s theorem [45] provides a recipe by which an arbitrary string of annihilation and

creation operators, ABC . . .XY Z, may be written as a linear combination of normal-

ordered strings. Schematically, Wick’s theorem is

ABC . . .XY Z = {ABC . . .XY Z}v
+

∑
single

{AB . . .XY Z}v

+
∑

double

{AB . . .XY Z}v + · · · (3.63)

If we apply the previous Wick theorem, to an operator A = apa
†
qara

†
s we obtain

A = a†qa
†
sapar − δpqa

†
sar + δpsa

†
qar − δrsa

†
qap + δpqδrs (3.64)

This result is identical to that obtained using the anticommutation relations, the use

of the Wick’s theorem, however, greatly simplifies the derivation of the coupled cluster

equation. The composite string of annihilation and creation operators may then be

rewritten using Wick’s theorem as an expansion of normal-ordered strings. However, the

only terms that need to be retained in this expansion are those that are fully contracted’.

All other terms will give a zero result, by construction. Moreover, in many-electron

theories such as configuration interaction or coupled cluster theory, it is more convenient

to deal with the n-electron reference determinant, |Φ0〉, rather than the true vacuum

state, | 〉. We will therefore alter the definition of normal ordering from the one relative

to the true vacuum to the one relative to the reference state |Φ0〉 (which is sometimes

called the Fermi vacuum). The one-electron states occupied in |Φ0〉 are referred to as hole

states, and those unoccupied in |Φ0〉 are referred to as particle states. This nomenclature

is based upon the determinant produced when annihilation-creation operator strings act

on the Fermi vacuum. That is, a hole is created when an originally occupied state is

acted upon by an annihilation operator such as ai , whereas a particle is created when an

originally unoccupied state is acted upon by a creation operator such as a†a. Therefore,
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we will refer to operators that create or destroy holes and particles as quasiparticle (or

just q-particle) construction operators. That is, q-annihilation operators are those which

annihilate holes and particles (e.g., a†i and aa) and q-creation operators are those which

create holes and particles (e.g., ai and a†a). Therefore, a string of second-quantized

operators is normal ordered relative to the Fermi vacuum if all q-annihilation operators

lie to the right of all q-creation operators. This new definition of normal ordering changes

our analysis of the Wick’s theorem contractions only slightly. Whereas before, the only

nonzero pairwise contraction required the annihilation operator to be to the left of the

creation operator, now the only nonzero contractions place the q-particle annihilation

operator to the left of the q-particle creation operator.

The second quantized form of the electronic Hamiltonian

H =
∑
pq

〈p|h|q〉a†paq +
1

4
〈pq|rs〉a†pa†qaras (3.65)

may be cast into normal-ordered form using Wick’s theorem and assume the expression

(if we skip all the details of the evaluation)

H =
∑
pq

〈p|h|q〉{a†paq}+
1

4
〈pq|rs〉{a†pa†qaras}

+
∑

i

〈i|h|i〉+
∑
ij

1

2
〈ij|ij〉 (3.66)

where i and j represents occupied orbitals and {} indicates a normal ordered operator

with respect to the Fermi level. The last two terms of the previous equation are not but

the Hartree Fock Energy obtained from a particular Slater determinant Φ0 (or in other

words the Fermi vacuum expectation value of the Hamiltonian). The notation for the

Hamiltonian can be slightly simplified as

H = FN + VN + 〈Φ0|H|Φ0〉 (3.67)

where the subscript N indicates normal ordering of all the component operators

strings. From these expression one may get a very general relation:

HN = H− 〈Φ0|H|Φ0〉 (3.68)

the normal-ordered form of an operator is simply the operator itself minus its reference

expectation value. For the example given above, the normal-ordered Hamiltonian is just

the Hamiltonian minus the SCF energy (i.e., HN may be considered to be a correlation

operator).
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Up to this point to get working equation one should take the normal ordered similarity

transformed Hamiltonian H = e−THeT and perform the Hausdorff expansion, remem-

bering an usefull corollary comes from the Wick’s theorem: the only nonzero terms in the

Hausdorff expansion are those in which the Hamiltonian, H, has at least one contraction

with every cluster operator, Tn, on its right. This fact drastically diminishes the number

of matrix elements to be computed. Accordingly the Coupled Cluster equation will be

ECC − ESCF = 〈Φ0|H|Φ0〉 (3.69)

for the energy

0 = 〈Φa
i |H|Φ0〉 (3.70)

for the single amplitudes and

0 = 〈Φab
ij |H|Φ0〉 (3.71)

for the doubles amplitudes. The latter can be solved using any algorithm for the numer-

ical solution of non linear equations, with the computational cost relying essentially on

the calculations of the normal ordered similarity transformed Hamiltonian components.

3.2.3 Linear R12 terms in Coupled Cluster

Highly accurate molecular electronic energies and properties can be obtained compu-

tationally when the molecular electronic trial function depends explicitly on the inter-

electronic distances rij = |ri − rj| in the system. This has been known since the early

days [46, 47] of quantum mechanics, but it proved very difficult to develop generally

applicable computational methods on the basis of explicitly correlated wave functions.

For small molecules truly impressive results have been obtained with Gaussian geminals

or exponentially correlated gaussian (ECG), but it appears difficult to extend such cal-

culations to systems larger than very small molecules (like H2, H+
3 , He2). Even if some

attempts have been made to adapt the theory of Gaussian geminals to larger systems

the evaluation of the many electron integrals poses a bottle neck which is very hard to

overcome. It is only in the late 1980’s and early 1990’s [49, 50] that affordable computa-

tional methods have been developed for molecules having more than four electrons. This

development has been possible through the numerical techniques that were applied to

avoid the many electrons integrals giving rise to the so called R12 methods. In partic-

ular an approximate resolution of the identity (closure relation) was inserted into those

integrals. We will here briefly recall an overview of the R12 methods at Coupled Cluster

level (CCSD(T)-R12) in the proceeding of this thesis some application of this technique

to the determination of electric properties will be presented.
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3.2.3.1 The R12 approach

The essence of the R12 approach can be summarized as follows: in order to satisfy the

electron-electron cusp condition, and thus to enhance the convergence of the calculated

energy with respect to increasing the basis set by functions with higher angular momenta,

it is sufficient to extend the usual wave function expansion by augmenting the reference

determinant by a singly linear term r12. In other words pair functions resulting from

multiplication of a product of two occupied orbitals with the inter-electronic coordinates

are introduced into the final wave function expansion. These idea can be formulated in

general as

|Ψ〉 =
1

2
r̂N |Φ〉+ Ω̂|Φ〉 (3.72)

where |Ψ〉 is the desired r12−dependent final wave function, and Ω̂ is an arbitrary wave

operator. The factor 1
2

was chosen to ensure the proper value of the wave function deriva-

tive for r12 → 0 (Kato Condition [48]). As it stand the previous Ansatz would not give

rise to practical algorithms for many electron system due to the appearance of three and

four electron integrals in the final working equations. Moreover there is a substantial

overlap between the conventional and the R12 term. Hence it is at first desirable to

outproject all the contributions that overlap with the conventional configuration space.

In the proceeding we will use the following notation: we will use, in our mathematical

treatment, a formal infinite and complete spin orbital basis {ϕκ} and a finite and in-

complete spin orbital basis set (the actual basis set in which we expand the conventional

problem) {ϕp}. The spin orbital occurring in the following formulation will respect this

convention: i, j, . . . belong to the space of occupied orbitals, a, b, . . . belong to the space

of virtual orbitals, while α, β, . . . belong to the space of the complementary orbitals (i.e.

they are orbitals of the formal infinite complementary basis), obviously in the final equa-

tion terms referring to complementary orbitals shall vanish.

Let us now examine what happens when the r̂N operators acts on the reference determi-

nant

r̂N |Φ〉 =

(
1

4
rij
abã

ab
ij +

1

4
rij
αβã

αβ
ij +

1

2
rij
aβã

aβ
ij + rij

aj ã
a
i + rij

αj ã
α
i

)
(3.73)

where rκλ
µν = 〈µν|r12|κλ〉 represents the anti symmetrized inter-electronics integrals while

ãµν
κλ are normal ordered N−body combination of creation and annihilation operators re-

ferred to the Fermi level vacuum. In the previous equation we have used the fact that

only terms with excitation operators survive; thus the subscript of any ã must refer to

occupied spin orbitals and the superscript to virtuals. Let us now assume our conven-

tional configurational space includes all single and double excitations, the projector onto
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this space, therefore, will be

M̂ = |Φ〉〈Φ|+ ãa
i |Φ〉〈Φ|ãi

a + ãab
ij |Φ〉〈Φ|ã

ij
ab + . . . (3.74)

Consequently since rN is a two particle operator and since the expectation value with

|Φ〉 is zero for any normal ordered operator the outprojector will become

(1− M̂)rN |Φ〉 =

(
1

4
rij
αβã

αβ
ij +

1

2
rij
aβã

aβ
ij + rij

αj ã
α
i

)
|Φ〉 (3.75)

From these equations one recognizes that the finite number of configuration space func-

tions created using the actual “computational” one-electron basis would now be sup-

plemented by single and double excitations created using the complementary subspace

{ϕα}. One can argue here that it is possible to have a basis set saturated such that the

last two terms vanish. Consequently, we can consider an Ansatz in which rij
αβã

αβ
ij |Φ〉 are

the only supplementary excitations

|Ψ〉 =
1

4
rij
αβã

αβ
ij |Φ〉+ Ω̂|Φ〉 (3.76)

we denote the supplementary excitations as R12 double excitations. The sum over α and

β in the previous Ansatz can be understood by rewriting it as

|ϕα〉〈ϕα| = |ϕκ〉〈ϕκ| − |ϕp〉〈ϕp| = 1− |ϕp〉〈ϕp| = 1− P̂ = Q̂ (3.77)

where P̂ is the projector onto the finite spin orbital basis and Q̂ the projector onto the

complementary spin orbital subspace. To illustrate the R12 double excitations, we can

operate with rij
αβã

αβ
ij onto the two-electron determinant |ij〉 to obtain

1

2
r̄ij
αβã

αβ
ij |ij〉 =

1

2
|αβ〉〈αβ|r12|ij〉

=
1

4
|ϕαϕβ − ϕβϕα〉〈ϕαϕβ − ϕβϕα|r12|ij〉

=
1

2
|ϕαϕβ〉〈ϕαϕβ|r12|ij〉 −

1

2
|ϕαϕβ〉〈ϕβϕα|r12|ij〉

= |ϕαϕβ〉〈ϕαϕβ|r12|ij〉 = Q̂12r12|ij〉 (3.78)

where we have introduced the notation

Q̂12 = |ϕαϕβ〉〈ϕαϕβ| = Q̂1Q̂2 = (1− P̂1)(1− P̂2) (3.79)

We can now extend the Ansatz by introducing the pseudo excitation operator

R̂kl
ij =

1

2
rkl
αβã

αβ
ij (3.80)
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in that case we get

R̂kl
ij |ij〉 = Q̂12r12|kl〉 (3.81)

Thus a pair function |ij〉 is substituted with the function Q̂12r12|kl〉 by the action of the

pseudo excitation operator R̂kl
ij . This extension of the R12 double excitation space gives

more flexibility and leads to a method that is invariant with respect to rotation upon

the occupied orbitals [51]

3.2.3.2 R12 Coupled Cluster Theory

Coupled Cluster is characterized by an exponential Ansatz for the wave operator Ω̂

|Ψ〉 = Ω̂|Φ〉 = eŜ|Φ〉 (3.82)

where in the conventional sense the operator Ŝ is identical with the global cluster excita-

tion operator T̂ . Similarly we may associate an amplitude to the R12 double excitation

operator. We define the operator

R̂ ≡ R̂2 =
1

4
cijklR̂

kl
ij (3.83)

therefore the wave equation will be

|Ψ〉 = R̂|Φ〉+ eT̂ |Φ〉 (3.84)

The operator R̂ commutes with the conventional excitation operator[
R̂, T̂

]
= 0 (3.85)

and one may add it to the exponential to give

Ŝ = R̂ + T̂ (3.86)

The Ansatz Ŝ defines the so called Coupled Cluster R12 theory (CC-R12) having

|Ψ〉CC−R12 = e(R̂+T̂ )|Φ〉 = eR̂eT̂ |Φ〉 (3.87)

It is interesting to notice that, when eR̂ is expanded in a Taylor series one can recognize

a similar formal structure as found in Hylleras type wave functions

|Ψ〉CC−R12 =
∞∑

m=0

1

m!
R̂m|Ψ(m)〉 (3.88)
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using R̂ instead of the original r̂ =
∑

i>j rij operators. With the similarity transformed

Hamiltonian defined one can obtain the equation for the correlation energy and the

cluster amplitudes projecting the Schrödinger equation in the space of the reference

determinant and of the conventional excited determinants respectively, but in this case

it is also necessary to project the equation in the space of the R12 double excitation. The

Coupled Cluster equations will therefore become

∆E = 〈Φ|e−ŜHNe
Ŝ|Φ〉 (3.89)

0 = 〈Φ|ãij...
ab...e

−ŜHNe
Ŝ|Φ〉 (3.90)

0 = 〈Φ|(R̂kl
ij )

†e−ŜHNe
Ŝ|Φ〉 (3.91)

3.2.3.3 The Resolution of the Identity

One of the key point in practical use of the CC-R12 method is concerned with the insertion

of the resolution of the identity [52] into many electron integrals. The equation derived in

the previous treatment, in fact, would imply the use of three and four electron integrals

whose evaluation and use would be very cumbersome, and would limit the applicability

of the present method to very small systems. It is therefore very important to introduce

an approximation which is capable of overcome this problem, allowing to discard these

many electron integrals, without a significant loss in accuracy.

Let us consider an othonormal spin orbital basis set {ϕp′} in which we assume

|ϕp′〉〈ϕp′| = 1 (3.92)

the previous equation is an approximation of the resolution of the identity (RI) in the

finite basis {ϕp′} which is used to replace the exact RI

|ϕκ〉〈ϕκ| = 1 (3.93)

in the infinite basis set. As an example let us see how the invocation of this approximation

will simplify the matrix elements involved. Consider for instance the element X

X̄kl
mn = 〈mn|r12Q̂12r12|kl〉 =

1

2
rαβ
mnr

kl
αβ

=
1

2
rµν
mnr

kl
µν −

1

2
rµq
mnr

kl
µq −

1

2
rpν
mnr

kl
pν +

1

2
rpq
mnr

kl
pq

= 〈mn|r2
12|kl〉 −

1

2
rµq
mnr

kl
µq −

1

2
rpν
mnr

kl
pν +

1

2
rpq
mnr

kl
pq (3.94)

The RI approximation consists of replacing the sums over µ and ν in the three-electron

integrals rµq
mnr

kl
µq and rpν

mnr
kl
pν by sums over p′ and q′

X̄kl
mn = 〈mn|r2

12|kl〉 −
1

2
rp′q
mnr

kl
p′q −

1

2
rpq′

mnr
kl
pq′ +

1

2
rpq
mnr̄

kl
pq (3.95)
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therefore three electrons integrals are avoided and are replaced by sums over products

of two electron integrals. On the other matrix elements the RI acts accordingly, these

situations will not be presented here for the sake of simplicity.

Obviously, a large spin orbital basis {ϕp′} is needed to make a good RI approximation,

but this basis need not to be as large as the one that would be required in conventional

coupled-cluster calculations in an attempt to match the highly accurate correlation en-

ergies of the R12 approach. Furthermore, the basis {ϕp′} need not be nearly complete

in all symmetries. For atoms, for example, the required highest angular symmetry `′ is

given by `′ = ` + 2`occ, where ` is the highest angular symmetry of the basis {ϕp} and

`occ the highest occupied angular symmetry; for molecules the relation is `′ = 3`occ.
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Chapter 4

Interpolative Computation of

Dispersion Interactions

The evaluation of Dispersion Constants via a numerical quadrature of the Casimir Polder

formula is a very common task,

Dab =
1

2π

∫ ∞

0

αA
a (iω)αB

b (iω)dω (4.1)

however the number of frequencies for which the polarizability has to be determined is

in general quite high (up to eight or sixteen at least) and moreover no explicit expression

for the dependence of the polarizabilities on the frequency is provided. An approach

allowing the overcoming of these limitations was proposed by Magnasco et Al. [53] re-

cently. In this procedure any available set of data, including values obtained for a given

polarizability together with the corresponding imaginary frequencies can be used to build

a simple interpolative expression providing an explicit continuous dependence on the fre-

quency. The adjustable parameters occurring in the interpolative formula are optimized

by imposing that some values of the polarizability, belonging to the initial set, ought to

be exactly intercepted. This representation is suggested as a useful and simple tool to

generate further values of polarizabilities from points which have been previously calcu-

lated only at some frequencies and, owing to its intrinsic easy integrability, to perform

fast direct evaluations of dispersion constants, thus removing any need of undertaking

numerical quadratures.
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4.1 The Interpolative Formula

The sum over state expression of the polarizability which represents this quantity in

terms of a finite number of parameters stating for effective oscillator strengths and tran-

sition energies can be be used as the starting point in the interpolative procedure. Any

imaginary frequency-dependent polarizability (FDP) can hence be represented through

a summation collecting n contributions from exact or approximate excited states of the

concerned atomic or molecular system

αlm,l′m′(iω) = 2
n∑

j=1

εjµ
lm
j µl′m′

j

ε2
j + ω2

(4.2)

An efficient rational interpolative formula for FDPs should hence have the following

structure

αlm,l′m′(iω) =
n∑

j=1

σj

τj + ω2
(4.3)

where optimization of the interpolation procedure follows from imposing a fully exact

reproduction for 2n available numerical values of the concerned FDP (α1; α2; . . . ; α2n)

provided by evaluations performed at known imaginary frequencies (iω1; iω2; . . .; iω2n):

n∑
j=1

σj

τj + ω2
1

= α1

n∑
j=1

σj

τj + ω2
2

= α2

· · · (4.4)
n∑

j=1

σj

τj + ω2
2n

= α2n

Since the previous algebraic system contains 2n equations, it is adequate to accomplish

the univocal determination of the 2n parameters σ and τ . The optimized values of the

non linear τ are exactly coincident with the n positive roots of a nth degree polynomial

equation, whose expression involves n nested summations

n+1∑
p(1)=1

n+2∑
p(2)=p(1)+1

. . .
2n∑

p(n)=p(n−1)+1

(−1)p(1)+p(2)+...+p(n) (4.5)

×wp(1)wp(2) . . . wp(n)

×wq(1)wq(2) . . . wq(n)αp(1)αp(2) . . . αp(n)

×
[
τ + ω2

p(1)

] [
τ + ω2

p(2)

]
· · ·

[
τ + ω2

p(n)

]
= 0 (4.6)
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where q(1), q(2), . . . , q(n) symbolize the n integers that are residual in the set 1, 2, . . . , 2n

after deleting the n integers p(1), p(2), . . . , p(n) with q(1) < q(2) < . . . < q(n), the

2n terms wp(1), wp(2), . . . , wp(n), wq(1), wq(2), . . . , wq(n) are products collecting differences

between squared values of the frequencies

wp(s) = dp(s),p(s)dp(s),p(s+1) . . . dp(s),p(n)

wq(s) = dq(s),q(s)dq(s),q(s+1) . . . dq(s),q(n)

s = 1, 2, . . . , n (4.7)

and

dκ,λ =


ω2

κ − ω2
λ (κ < λ)

1 (κ = λ)

ω2
λ − ω2

κ (κ > λ)

(4.8)

Once the non-linear parameters τ have been determined, mathematical manipulations

give the following general formula for the optimized values of the linear parameters σ

σj = (−1)j

∏n
q=1(τj + ω2

q∏n
q=1 tj,q

n∑
p=1

(−1)p αp

τj + ω2
p

×
∏n

q=1(τq + ω2
p∏n

q=1 dp,q

(j = 1, 2, . . . , n) (4.9)

where

tκ,λ =


τκ − τλ (κ < λ)

1 (κ = λ)

τλ − τκ (λ < κ)

(4.10)

The interpolative expressions become therefore a tool (i) to get further values of the

concerned multipole polarizabilities, thus enlarging the initial sets required for evaluating

the interpolative parameters, and (ii) to estimate dispersion constants, since the Casimir-

Polder integral can now be treated in the well-known analytical way

Dab =
1

2π

∫ ∞

0

αA
a (iω)αB

b (iω)dω

=
1

2π

nA∑
j=1

nB∑
k=1

∫ ∞

0

σA
j σ

B
k

(τA
j + ω2)(τB

k + ω2)

=
1

4

nA∑
j=1

nB∑
k=1

σA
j σ

B
k√

τA
j τ

B
k

(√
τA
j +

√
τA
j

) (4.11)
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It is apparent that, at least in principle, this interpolative approach can be used to

deal with any available set comprising frequencies and corresponding evaluations of a

given multipole polarizability. Also the number n of terms included in the calculation

is, still in principle, fully free from constraints, its upper limit being fixed by the size

of the foregoing set. High values of n, however, give rise to mathematical steps which

become quite tedious, especially because the evaluation of the non-linear parameters τ

involves the roots of a nth degree polynomial equation. While for n ≤ 4 their search is

supported by well-known analytical formulae [54, 55], the approach must be approximate

and iterative when n becomes larger, but in this case inaccuracies due to numerical

instabilities and usually yielding some unphysical negative τj have been observed. The

required frequencies may, in principle, be chosen freely, but some care should be taken

since the interpolated polarizabilities (and consequently dispersion constants) may be

strongly dependent on this choice; in some particularly case one can even obtain some

unphysical negative τj using a small number n of frequencies. It seems, in fact, important

and even crucial a dominant inclusion of contributions coming from the region of low

frequencies. A simple empirical formula was derived by us [56] for perform an efficient

choice of the frequencies

ωp =
p− 1

2N − (p− 1)
(p = 1, 2, 3, . . . , N) (4.12)

The previous formula mixes some intermediate and large values of the frequencies to the

low ones, whose prevalence is suitably kept, so that a detailed scansion of the overall

trend displayed by the polarizability is obtained in a balanced way.

4.2 C7 Calculation for LiH homodimer

Previous studies performed in our laboratory involved the determination of LiH C6 Dis-

persion Coefficients starting from Full-CI evaluations of frequency-dependent dipole and

dipole quadrupole polarizabilities for ground state LiH in the imaginary frequency range

0.−56.a.u., using both a limited set of 58 Gaussian type orbitals (GTOs) (about 700.000

Slater determinantsin each symmetry-adapted subspace) and 16-point Gaussian quadra-

ture of the Casimir-Polder formula and an enlarged basis of 109 GTOs [58] (107 symmetry

adapted determinants) with a 32 point quadrature of the Casimir Polder integral. We

decided, therefore, to apply the interpolative scheme previously described at the de-

termination of C7 LiH coefficients. Hence we limited the calculations to the first four

frequencies of the previous 32 point Gauss Legendre quadrature (plus the static values).

In this way, we avoid the need of enlarging too much the range of frequencies to account
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Table 4.1: FCI calculated values of frequency dependent dipole and dipole quadrupole

polarizabilities (atomic units) at few selected imaginary frequencies for ground state LiH

at R = 3.015a0 (109 GTOs)

ω α110 α111 α210 α211

0 26.15424 29.69799 -109.19560 -85.79136

0.02736 25.50401 29.08920 -106.96836 -84.46604

0.14388 16.61677 19.29949 -74.28072 -61.57549

0.35238 7.59846 8.01669 -34.89639 -29.10402

0.65094 3.45799 3.40626 -15.15589 -12.66231

Table 4.2: 2-term interpolation parameters σ and τ (atomic units) for the c.o.m. FDPs

reported in the previous table

α110 α111 α210 α211

σ 0.023566 0.032088 0.026041 0.037611

0.224820 0.299789 0.158118 0.196396

τ 0.448479 0.828835 -1.763250 -2.318699

1.592386 1.147266 - 6.537275 -4.735371

for the tails of higher polarizabilities, reducing, at the same time, the computation to

the frequency region relevant to the interpolation method. Since higher polarizabilities

are origin-dependent so are dispersion constants and dispersion coefficients. To facilitate

comparison with Literature results, we have chosen to present all results in the center-of-

mass origin. The AO basis set employed in the present work is the 14s9p4d3f/14s9p1d1f

GTOs on Li and 11s6p3d/11s6p1d on H and is near to the saturation for the LiH molecule,

the systems is kept at a nuclear distance of 3.015a0. In Table 4.1 and 4.2 we report the

values of frequency dependent polarizabilities (in spherical tensor phormalism) and of

the interpolation parameters σ and τ respectively.

Finally, the values of the four dipole-quadrupole dispersion constants A, B, C, D

resulting from FCI calculation of c.o.m. polarizabilities for ground state LiH have been

collected at the top of Table 4.3, where also the CLALBM
7 dispersion coefficients for the

LiH-LiH homodimer are given in the LALBM scheme. Lastly, we want to stress here that

calculations of cross-polarizabilities are not protected by any variational principle. As

far as possible, their calculation should hence rest on use of largely extended basis sets,

which must include the appropriate polarization functions, a goal that may be reasonably
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Table 4.3: Dipole Quadrupole Dispersion Coefficients and Constant for the LiH homod-

imer. Dispersion Constants: A = −77.398, B = C = −87.362, D = −71.099

LA LB M CLALBM
7

0 1 0 1458.15

0 3 0 82.47

2 1 0 -57.51

2 1 1 9.585

2 3 0 3.538

2 3 1 0.5896

2 3 2 -0.0421

reached if we can restrict calculations to few frequencies as we have done in the present

calculation.

4.3 BeH2 C6 Dispersion Coefficients

The structure of the 1Σ+
g ground state of the centrosymmetric linear BeH2 molecule has

only recently been obtained from the analysis of IR emission spectra [63, 64], giving a

Be-H distance of R = 2.506a0. Following our previous work on LiH [57], frozen core

FCI calculations of frequency dependent dipole polarizabilities (FDPs) of ground state

BeH2 at this distance have been performed using an extended set of 208 contracted GTO

functions ([9s9p5d3f] on Be [59] and [9s8p6d] on H [60]) involving about 58·106 symmetry

adapted Slater determinants at eight optimized imaginary frequencies. In such a way,

the analytic evaluation of the Casimir Polder integral over these optimized frequencies

allows for the evaluation of the three dipole dispersion constants for the BeH2-BeH2

homodimer, from which isotropic C6 and anisotropy γ6 coefficients are derived for the

first time. (In particular the latter is defined as γ6 =
C

LALBM
6

C000
6

).

4.3.1 Basis set Choice and numerical results

After preliminary FCI calculations using a small Sadlej basis set [61] containing 42 GTO

functions, attention was focused, as we already stated, on an extended set of 208 con-

tracted GTOs. Since a full electron FCI with such a large basis set (about 27 · 1010

determinants) is, to our knowledge, hardly possible today, the feasibility of frozen core
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versus full electron approximation was tested by computing the Cauchy moments at the

CCSD level and studying the convergence of [n, n− 1] Pade’ approximants to the polar-

izability [62]. In Table 4.4 we report the values of the approximants, as one can guess

substantial stability was obtained for the [6, 5] term, showing that frozen-core results are

within 0.6% of the full-electron results for α‖ while a somewhat larger error holds for α⊥.

The calculated CCSD molecular energy at R = 2.506a0 was E = 15.89012Eh with

static dipole polarizabilities (in atomic units) α‖ = 19.9920, α⊥ = 19.7256 and a

quadrupole moment Θ = 1.9852 for the full-electron case. The corresponding CCSD

frozen core results are, respectively, E = 15.85074Eh, α‖ = 19.8762, α⊥ = 19.7572 ,

Θ = 2.0017. An even larger basis set involving 1 more g functions on Be and two more f

functions on H was found, as expected, to have minor effects on the properties, improving

the energy by only 0.16 · 103Eh, and was therefore discarded. FCI calculations in the

frozen core approximation were then performed at the 8 optimized imaginary frequencies

provided by the selecting formula equation [57] and subsequently treated according to

the interpolation method for the FDPs. Polarisabilities results are collected in Table 4.5,

while Table 4.6 presents the values of the interpolative parameters σ and τ for N = 2

and N = 4, with frequencies for the N = 2 case being simply a subset of the N = 4 case.

Finally in Table 4.7 the N-term dispersion constants for the BeH2 homodimer are given,

while in table 4.8 we present the value of the CLALBM
6 dispersion coefficients computed

at N = 4 level. It can be seen that N = 2 gives values which are only slightly larger

(from 0.04% to 0.13%) than the N = 4 results. The results show that, the BeH2-BeH2

dispersion interaction in long range has a sensibly spherical leading term with very small

anisotropy coefficients γ6.

4.3.2 Concluding remarks

A frozen core FCI calculation of the static and frequency-dependent dipole polarizabilities

of the ground state of the centrosymmetric linear BeH2 molecule at the experimental Be-

H distance of R = 2.506 has been performed using an extended set of 208 contracted

GTO functions. The feasibility of frozen core versus full electron approximation was

tested in detail by computing the Cauchy moments at the CCSD level and studying the

convergence of [n, n− 1] Pade’ approximants to the polarizability. The calculations were

limited to a set of eight frequencies selected according to a simple formula developed by

us using N-term rational interpolation technique. The C6 dispersion coefficients of the

homodimer BeH2-BeH2 were then computed in the N = 4 approximation, showing that

the BeH2-BeH2 dispersion interaction in long range is sensibly spherical in its leading

term. A theoretical study of the static dipole polarizability of the polymeric beryllium
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hydride chain was recently done by Abdurahman [65] using large basis sets on either

Be and H. Even if a direct comparison is not possible because the bond length of the

single molecule is not reported in [65], the values of α‖ and α⊥ for the monomer BeH2

calculated there using CCSD(T) techniques seem to be in reasonable agreement with our

results.
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Table 4.4: Convergence of [n, n− 1] Pade’ approximants to frequency dependent dipole

polarizabilities of BeH2 at R = 2.506a0 in (i) full-electron and (ii) frozen-core calculations

using the [Be9s9p5d3f/H9s8p6d] 208 GTO basis set as a function of frequence iω

iω 0.14286 0.33333 0.60000 1.00000 1.66667 3.00000 7.00000

(i) Full Electron α‖
[1, 0] 17.69470 11.71273 6.07615 2.71565 1.07072 0.34317 0.06393

[2, 1] 17.71996 11.96271 6.51379 3.06106 1.24729 0.40652 0.07625

[3, 2] 17.72000 11.96880 6.55645 3.13052 1.29840 0.42822 0.08076

[4, 3] 17.72000 11.96899 6.56148 3.14783 1.31753 0.43814 0.08300

[5, 4] 17.72000 11.96899 6.56227 3.15402 1.32879 0.44583 0.08495

[6, 5] 17.72000 11.96899 6.56236 3.15601 1.33571 0.45297 0.08719

(i) Full Electron α⊥
[1, 0] 17.01258 10.55861 5.17331 2.23805 0.86878 0.27656 0.05139

[2, 1] 17.06328 10.99025 5.83884 2.72745 1.11067 0.36207 0.06792

[3, 2] 17.06335 11.00084 5.90689 2.83512 1.18965 0.39567 0.07492

[4, 3] 17.06335 11.00109 5.91382 2.86097 1.22057 0.41260 0.07883

[5, 4] 17.06335 11.00109 5.91399 2.86212 1.22249 0.41384 0.07914

[6, 5] 17.06335 11.00109 5.91397 2.86201 1.22230 0.41372 0.07911

(ii) Frozen Core α‖
[1, 0] 17.58433 11.62616 6.02465 2.69088 1.06061 0.33989 0.06331

[2, 1] 17.60885 11.86724 6.44314 3.01889 1.22758 0.39967 0.07493

[3, 2] 17.60889 11.87282 6.48109 3.07906 1.27103 0.41792 0.07870

[4, 3] 17.60889 11.87297 6.48498 3.09153 1.28405 0.42445 0.08015

[5, 4] 17.60889 11.87297 6.48548 3.09490 1.28937 0.42773 0.08095

[6, 5] 17.60889 11.87297 6.48553 3.09569 1.29145 0.42942 0.08141

(ii) Frozen Core α⊥
[1, 0] 17.04499 10.58609 5.18978 2.24589 0.87195 0.27759 0.05158

[2, 1] 17.09394 11.00270 5.83052 2.71565 1.10367 0.35941 0.06739

[3, 2] 17.09400 11.01231 5.89117 2.80967 1.17151 0.38801 0.07332

[4, 3] 17.09400 11.01251 5.89666 2.82894 1.19331 0.39950 0.07593

[5, 4] 17.09400 11.01251 5.89675 2.82941 1.19403 0.39994 0.07604

[6, 5] 17.09400 11.01251 5.89672 2.82925 1.19376 0.39977 0.07600
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Table 4.5: Frozen core FCI calculated values of frequency dependent dipole polariz-

abilities (atomic units) at 8 selected imaginary frequencies for ground state BeH2 at

R = 2.506 (208 GTOs)

iω α‖ α⊥
0.000000 19.94072 19.67005

0.142857 17.65902 17.02216

0.333333 11.89590 10.97265

0.600000 6.493246 5.878688

1.000000 3.098275 2.826123

1.666667 1.293614 1.203108

3.000000 4.320870 · 10−1 4.105680 · 10−1

7.000000 8.273100 · 10−2 7.986400 · 10−2

Table 4.6: N-term interpolation parameters τ and σ
τ‖ σ‖ τ⊥ σ⊥

N = 2

1.474240417 · 10−1 2.687187852 1.216995978 · 10−1 2.166374414

7.905210630 · 10−1 1.354249989 9.184312289 · 10−1 1.716594851

N = 4

1.318886010 · 10−1 1.940393032 1.044900679 · 10−1 1.489460843

2.888086521 · 10−1 1.292161534 2.859865552 · 10−1 1.306055224

9.979251902 · 10−1 7.417767521 · 10−1 1.134818275 9.294001376 · 10−1

12.24689544 1.338347707 · 10−1 8.752124445 2.593369001 · 10−1

Table 4.7: N-term BeH2 dispersion constants D

N A = D‖,‖ B = C = D‖,⊥ D = D⊥,⊥

2 20.45895 19.44097 18.49104

4 20.45078 19.42488 18.46691
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Table 4.8: Angle-dependent CLALB
6 dispersion coefficients γLALBM

6 anisotropy coefficients

in the BeH2-BeH2 from frozen core FCI calculations for BeH2 at R = 2.506 (208 GTOs)

LA LB M CLALBM
6 γLALBM

6

0 0 0 114.679 1

0 2 0 1.96124 0.0171

2 0 0 1.96124 0.0171

2 2 0 0.13584 0.00118

2 2 1 -0.03019 -0.000263

2 2 2 0.003773 0.000033





Chapter 5

LSDK: A Davidson computation for

the Dispersion Coefficients

We want in this Chapter to describe an alternative technique [66] we have implemented

in our FCI code and present high level results for Be (C6, C8) and LiH (C6, C7). We

recall, anyway, that in order to compute good quality values large AO basis sets including

many polarization functions are needed, and, in a FCI context, this is feasible only for

small systems.

5.1 Introduction

We are, in this context, dealing with a perturbative problem in the (tensor) product

space FCIA⊗FCIB [59] where the zeroth order Hamiltonian is given by the sum of the

FCI Hamiltonians of the the separated molecules A and B

H = HA +HB (5.1)

HA|ΦA〉 = EA|ΦA〉 (5.2)

HB|ΦB〉 = EB|ΦB〉 (5.3)

(5.4)

As usual the perturbation operator V̂AB is given by the Coulombic interactions between

all charged particles of molecule A and those of molecule B and can be expanded in

an (asymptotic) power series in the inverse of the intermolecular separation. The series

coefficients can be resolved into sums of products of multipoles centred on the interacting

molecules and angular factors accounting for their reciprocal spacial orientation. Due to

the linearity of perturbative equations, one can treat separately each product of multipole
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operators Q̂A Q̂B and write down for it a 1st order equations in the space FCIA⊗FCIB
for dispersion interactions:

(HA − E0
A +HB − E0

B)|ΦAB〉 = −(E1
A − Q̂A)|ΦA〉(E1

B − Q̂B)|ΦB〉 (5.5)

where EA
1 and E1

B represent the first order correction to the energy 〈Φ|Q̂|Φ〉 for molecule

A and B respectively. The Dispersion Coefficients may therefore be computed from the

dispersion constants having the general form

〈Q̂′
AQ̂

′
B|Q̂AQ̂B〉⊗ = 〈ΦAϕB|(EA

1 − Q̂A)(EB
1 − Q̂B)|ΦAB〉⊗ (5.6)

using the general formulae we gave in the previous chapters. Here we used the subscript

⊗ to stress the dispersion constants belong to the space of the two interacting monomers

FCIA ⊗ FCIB. Notice, moreover, that in general the multipole operators present in

the previous formula may be different: in particular in the case where Q̂′
A = Q̂A and

Q̂′
B = Q̂B the dispersion constant will be called diagonal, otherwise non-diagonal, and

computational methods will, in general, be different in the two cases. One common

method used to compute dispersion coefficients is the London formula [12] which uses

the eigenvectors of HA and HB and which we may expressed as

〈Q̂′
AQ̂

′
B|Q̂AQ̂B〉⊗ =

∑
iA>0,jB>0

〈0A|Q̂′
A|iA〉〈iA|Q̂A|0A〉〈0B|Q̂′

B|jB〉〈jB|Q̂B|0B〉
EA

i − EA
0 + EB

j − EB
0

(5.7)

where 〈iA|Q̂A|0A〉 is the overlap of the vector −(E1
A − Q̂A)|ΦA〉 with the excited eigen-

vector |iA〉 and similarly for B. This equation is not directly translated into a practical

computational procedure even if all involved quantities are in principle available in FCI.

In fact given the large dimensions of the FCI spaces (106 − 109 determinants), the sum

over the eigenvectors has to be truncated, and, more important, the computational cost of

obtaining several excited eigenvectors is exceedingly high. In [59] the previous was com-

puted by expanding the London formula in a Ritz Lanczos basis. The Lanczos recursion

is a way to generate an orthonormal basis of the Krylov subspace {Hib0, i = 1, 2, . . . , k}
of FCI space which moreover brings the Hamiltonian in a tridiagonal; here H is the FCI

Hamiltonian and b0 is an arbitrary starting vector.

Suppose we start a Lanczos recursion for molecule A from the vector bA
0 = −(E1

A −
Q̂A)|ΦA〉, and another recursion for molecule B from bB

0 = −(E1
B − Q̂B)|ΦB〉. After

nA and nB steps we will have two sets of Lanczos vectors spanning iterative subspaces

ISA and ISB of dimensions nA + 1 and nB + 1, respectively. If we diagonalize each

Hamiltonian in its subspace spanned by the Lanczos vectors we can use the eigenvectors
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(Ritz vectors) iRA〉, jR
B〉 as pseudostates and therefore we get the following approximation

of the London formula equation for the diagonal matrix element 〈Q̂′
AQ̂

′
B|Q̂AQ̂B〉

SnA,nB
=

nA∑
i=0

nB∑
j=0

R2
AiR

2
Bj

εA
i − EA

0 + εB
j − EB

0

(5.8)

where RAi = 〈(E1
A − Q̂A)ΦA|iA〉 is a transition multipole between the ground state ΦA

and the ith pseudostate |iRA〉, and εA
i is the eigenvalue corresponding to the ith eigenvector

(i.e. the pseudostate excitation energy). Loosely speaking, the idea in [59] is to improve

the approximation by enlarging the Lanczos subspaces and iterate until convergence on

the value of SnA,nB
is (hopefully) reached. As nA, nB increase the approximation im-

proves; the process may be continued until a stable value of SnA,nB
is reached. This does

not guarantee rigorous convergence to the exact value, but it is nonetheless a stopping

criterion. Notice that the Ritz eigenvectors and eigenvalues change at each step, because

the Lanczos space is enlarged. The procedure proved successful in a number of cases,

but in many other situations it failed, an example being the Beryllium atom with the B3

basis of Papadopulos et Al. [67]. As it was pointed out in [59] a reason for this failure is

probably the following. The Lanczos procedure is known to converge first to the extreme

eigenvalues of the matrix [68]. On the other hand, by inspection of London formula, the

states most contributing to the dispersion constants have:

• low excitation energies

• large multipole transition moments with the ground state.

Usually these states are found in the lower and medium portion of the spectrum of

the FCI molecular Hamiltonian. The Lanczos vectors, on the other hand, are too rich

in highly excited states with small transition multipoles: all the computational effort

is wasted in bringing in the wrong portion of the spectrum. Such situations arise with

uncontracted AO bases, especially those containing many s orbitals with high exponents,

like Papadopoulos B3 basis. An estimate (lower bound) of the highest eigenvalue is

obtained by the Lanczos procedure itself and is 700,000 hartree. The size of the FCI

space seems to be not as important. An example of small Full CI basis where the Lanczos

expansion failed was constructed by uncontracting the (small) basis of Sadlej and Urban

[61] for beryllium: this provided a Full CI space of only 170,000 determinants, but we

could not achieve convergence after 100 Lanczos iterations (the highest eigenvalue is

12,000 hartree).
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5.2 Preconditioned Expansion of the London For-

mula

The idea is to avoid generating vectors spanning the high energy portion of the spectrum

of HFCI by a Davidson like preconditioner based on the diagonal. We modify the previ-

ously described procedure in such a way that the iterative subspace ISn spans the lower

energy part of the spectrum, then, at each step, we project the FCI Hamiltonian in ISn

and use its eigenvalues and eigenvectors in the London formula. Let us consider first

the computation of a fully diagonal matrix element 〈Q̂′Q̂′Q̂Q̂〉 where we have only one

iterative subspace ISn spanned by the vectors b0,b1, . . . ,bn recursively generated. The

projection of the FCI Hamiltonian in this iterative subspace is the reduced Hamiltonian

matrix Hn of elements b†iHbk, the staring vector is b0 = −(E1−Q̂)|Φ〉 as in the Lanczos

expansion. The next step is to define a prescription to enlarge the iterative subspace. A

first prescription to generate a vector r not lying in ISn is

r = (HFCI − αbk) (5.9)

where α is a parameter at our disposal, in this case we take into account only the last

basis vector bk; we label this first possibility as a). Another possibility is the residual of

the equation

(HFCI − α)x = b0 (5.10)

where x is the solution of the same equation projected in the iterative subspace, we label

this possibility as b).

As Concerns α the Lanczos choice is α = bk †HFCIbk: in this case the previous equation

gives the projection of the gradient of the energy functional 〈ϕ|H|ϕ〉 in ϕ = bk along

the surface ‖bk‖ = 1 and therefore it is good for eigenvalues. We performed a number

of numerical experiments with different choices of α, including values changing from

iteration to iteration. The simplest choice α = E0 proved to be reasonably effective as

concerns convergence rate and we never observed numerical instabilities. Therefore we

decided to stick to this choice α = E0 in our computations. To the vector r obtained by

either rule a) or b), we apply the Davidson preconditioner D−1
σ according to:

r← {Diag(HFCI − σ}−1r = D−1
σ r (5.11)

where σ is a parameter; a sensible choice is σ = E0: the preconditioner is positive

definite and enhances the components close to E0 in energy. However, we loose the

orthogonality of the Lanczos scheme and the new vector r must be orthogonalized to

b0,b1, . . . ,bn. This implies that all the basis vectors should be stored on disk. Davidson’s
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Dσ preconditioner equation depresses the high energy components and enhances those

lying near σ as required by a method to compute an eigenvector of energy close to σ. In

our case we rather need to span all the low energy region of the Full CI Hamiltonian. The

Davidson’s σ preconditioner may depress too much the lower lying excited states with

high transition multipole. This can be avoided by defining a new diagonal preconditioner

St which leaves unaltered the components of energy up to a given value and acts as the

Davidson’s one for higher values. The (nonzero) matrix elements of this preconditioner

are:

Stii =

{
1 E0 < HFCI

ii ≤ −E0

2
1
2
E0

DiagHFCI−σ
−E0

2
≤ HFCI

ii

(5.12)

In this way only the components with energy higher than E0

2
are depressed. This pre-

conditioner, called STEP, is intermediate between Lanczos and Davidson and it proved

to be better than pure Davidson for the present purpose.

5.2.1 Description of the algorithm

The present form of the FCI algorithm for a fully diagonal matrix element is the following:

1. set k = 0, b0 = −(E1−Q̂)|Φ0〉
‖−(E1−Q̂)|Φ0〉‖

2. write bk on disk

3. perform FCI FO hk = Hbk

4. compute the kth row and column of the reduced Hamiltonian matrix Hk
ij = b†ihk

with i = 1, 2, . . . , k

5. diagonalize Hk to get transition energies εi and multipoles Ri

6. compute the London formula Sk,k. If |Sk,k − Sk−1,k−1| is less than convergence

criterion stop

7. compute r using either a) or b)rule

8. precondition r← Str

9. Schmidt orthogonalize r to all the previous vectors b

10. set k = k + 1, bk = r
‖r‖ and go back to point 2
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The computationally demanding step is as always 3, where we perform, in a direct way,

the FCI Hamiltonian by vector multiplication. The resulting vector hk = HFCIbk is used

to compute the matrix elements needed to add a new row and column to the reduced

Hamiltonian matrix of the previous iteration. At step 5 the eigenvectors of the reduced

Hamiltonian matrix provide a set of pseudostates and the first row of the eigenvector

matrix multiplied by ‖((E1 − Q̂)|Φ0〉‖ provides transition multipoles Ri needed to com-

pute Sk,k at step 6. A failure of the algorithm may result at step 9, if the new direction

r is lying in the iterative subspace. We did not attempt a stability analysis of the pro-

cedure, but limited ourselves to monitor the behavior of the sequence Sk,k and the norm

at step 9. The present algorithm was denoted by the acronym LSDK for London-Step-

Davidson-Krylov. The procedure is able to compute a fully diagonal matrix element and

takes advantage of the monotonous character of the associated sequence Sk to terminate

if a stable value is reached. At the end we also have an approximation to the solution

of the first order perturbative equation that can be exploited to compute nondiagonal

matrix elements by scalar multiplication with appropriate vectors (see later). A diago-

nal matrix element 〈Q̂AQ̂B|Q̂AQ̂B〉 where Q̂A 6= Q̂B may however be computed from the

transition multipoles and excitation energies obtained from two separate and converged

computations on the fully diagonal matrix elements.

5.3 Diagonal Matrix Elements: Results for Be

The previous computational procedure providing diagonal matrix elements is appropriate

for interacting systems of high symmetry like two atoms. The results of our computations

on Be are shown in Table 5.1, where we compare the results of our LSDK method with

the 16 points numerical quadrature of the Casimir Polder. We used three different AO

bases:

• the 126 AO B3 basis of Papadopoulos et Al. [67]

• the 9s9p5d basis used by Graham et Al. [69]

• a 9s9p5d3f2g derived from the 9s9p5d3f basis used in a previous work [59] by adding

two g functions with exponents 0.3 and 0.05.

The threshold for stopping is h = 0.5 · 10−7. Pre Full CI computations were performed

with the MOLPRO code version 2000.1 [85] The data reported show that the LSDK

method is capable of reproducing the Casimir Polder results with high accuracy. Con-

vergence of the LSDK values depends upon the multipole operator involved and the
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Table 5.1: Dipole (α) and quadrupole (CQ) polarizabilities, C6 and C8 dispersion coeffi-

cients for Be

AO basis B3 9s9p5d 9s9p5d3f2g

FCI dim. 8.0 · 106 0.8 · 106 3.1 · 106

FCI energy -14.665498 -14.656662 -14.656767

α 37.4705 37.5790 37.8066

CQ 95.4440 94.6803 99.3500

Method C6

CP-16 211.9030 213.1272 214.6724

LSDK a 211.9019 213.1270 214.6723

LSDK b 211.9030 213.1272 214.6724

Method C8

CP-16 4859.216 4863.328 5111.085

LSDK a 4859.176 4863.314 5111.091

LSDK b 4859.216 4863.328 5111.085

AO basis and it was achieved in 40 (dipole) to 60 (quadrupole) iterations. In any case,

at least in our implementation,the computational cost is much less, than that to com-

pute the 16 values of the polarizability at imaginary frequency needed by the Casimir

Polder integration. Indeed each iteration in the complex field involves two multiplications

HFCIb, one for the real and one for the imaginary part of the vector. We estimate on

average 10-12 iterations for each imaginary frequency to get convergence of 10−6 in the

residual norm of polarizability perturbative equation; therefore 40-60 LSDK iterations

are the equivalent of 2-3 imaginary frequencies. However, it should be noticed that other

implementations of the perturbative equation solution claim higher efficiency than ours.

Another advantage of LSDK is the variational bounding property of the diagonal matrix

elements. As concerns the AO bases, the reported values of the quadrupole polarizability

CQ and the C8 coefficient show the importance of the g functions. Comparison with the

values of quadrupole polarizability given by Komasa [70] (α = 37.755 and CQ = 100.32)

indicate that our C8 coefficient is probably of good quality.
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5.4 Nondiagonal Matrix Elements: LiH Results

For two interacting molecules we need to compute also nondiagonal matrix elements,

where Q̂′
A 6= Q̂A or Q̂′

B 6= Q̂B, or both. Let us consider the case Q̂A = Q̂B; at step k of

the iterative process we implicitly define an approximate solution

Φk
AB = −

k∑
i,j=1

RA
i |i〉 ⊗RB

j |j〉
εA

i − EA
0 + εB

j − EB
0

(5.13)

we can therefore compute non diagonal matrix elements by scalar multiplication of the

previous by the vectors (EA′
1 − Q̂′

A)|ΨA
0 〉 and (EB′

1 − Q̂′
B)|ΨB

0 〉. Suppose we want to

determine 〈µ̂xµ̂x|Q̂xzQ̂xz〉 the first idea is to use the solution obtained from the same

iterative subspace as for the diagonal matrix elements. However, our experience shows

that, in general, the scalar product does not show a convergent behavior like a diagonal

element. The problem arises when there are two different operators on both molecules.

In particular we find that the iterative subspace generated by the starting vector (Ex
1 −

µ̂x)|0〉 gives good results e.g. for 〈µ̂xQ̂xz|Q̂xzQ̂xz〉 (besides 〈µ̂xµ̂x|µ̂xµ̂x〉), but not for

〈Q̂xzQ̂xz|µ̂xµ̂x〉. On the other hand if we start from (Ex
1 − Q̂xz)|0〉 we get convergent

behavior for 〈µ̂xQ̂xz|Q̂xzQ̂xz〉 and again not for 〈Q̂xzQ̂xz|µ̂xµ̂x〉. We also tried iterative

subspaces generated by taking as starting vector a linear combination of (Ex
1−µ̂x)|0〉 and

(Ex
1 − Q̂xz)|0〉: we found always poor results. A satisfactory procedure is the following.

We start two parallel subspace iterations, one from (Ex
1 − µ̂x)|0〉, another from (Ex

1 −
Q̂xz)|0〉 and use the sum of the two subspaces ISx + ISxz to expand the solution of the

perturbative equation. The iterative subspace has double dimension, but only minor

modifications in the code are required. In our actual implementation, at each step we

have an orthonormal basis of ISx, another for ISxz, but we have a mixed overlap matrix S

between them. The overall metric and reduced Hamiltonian matrices have the following

structure:

overlap :

[
Ixx S

S Ixzxz

]
(5.14)

hamiltonian :

[
Hxx Hxxz

H†
xxz Hxzxz

]
(5.15)

Compared to the independent computation of the diagonal elements, at each step

we have to compute some extra scalar products between FCI vectors to update the

off diagonal blocks S and Hxxz. This involves no significant additional computational

cost because the time consuming operations are the same as those required for the two

diagonal elements. As concerns more general matrix elements, i.e., with three or four
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Table 5.2: Comparison of dispersion constants for LiH computed with various methods

and the 109 AO basis

LSDK CP-16 FM

Dispersion Constants for n = 6

A 17.785928 17.7398033 17.738885

B = C 20.081013 20.0240612 20.010608

D 22.714491 22.6457958 22.612709

Dispersion Constants for n = 7

A -77.476380 -77.3059769 -77.397927

B -63.112078 -62.9895401 -63.017266

C -87.458787 -87.2575912 -87.276522

D -71.211737 -71.0742487 -71.030147

different operators, we expect that three or four parallel subspace iterations are needed.

We did not investigate further this point.

5.4.1 Results for LiH

The computations were performed at fixed internuclear separation of 3.015 bohr, the z-

axis being parallel to the bond; the origin of axes was taken in the center of mass. A first

set of results concerning the comparison of different methods is displayed in Table 5.2.

We report the so called elementary dispersion constants A,B,C,D, directly connected to

the matrix elements of perturbative equation, as illustrated many time during this thesis.

The methods used are: LSDK, 16 points numerical integration CP-16 and the 4 points

interpolative method of Figari and Magnasco, FM [53]. These results were obtained using

the 109 AO basis used in a previous work [58, 57]. The data show the degree of agreement

between the various procedures. It should be remarked that the LSDK values for the A

andD constants of n = 6 are variational lower bounds and therefore they are closer to the

exact FCI values than Casimir Polder or Figari Magnasco. All other constants involve

nondiagonal matrix elements, and therefore are not variationally bound. As concerns the

computational cost, at least in our implementation, LSDK is again cheaper than CP-16

and also cheaper than 4 points FM. The second set of results was obtained using the sp,

spd and spdf AO bases of Tunega et Al. [60] and the LSDK method. In order to reduce

the dimension of the Full CI space, the largest (11s8p6d3f/9s8p6d2f) was contracted

to (11s8p6d1f/9s8p6d1f) as follows. A RHF calculation on LiH was performed and the
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Table 5.3: Energy and static electrical properties of LiH with Tunega Noga bases [60]

Basis sp (11s8p/9s8p) spd sp+(6d/6d) spdf spd+(1f/1f)

AO/FCI dim. 68/1.5 · 106 128/17.1 · 106 163/44.5 · 106

Energy -8.0630127 -8.0685194 -8.0693359

µz 2.3081 2.2942 2.2935

Θzz 3.1914 3.0969 3.0929

αz 26.81718 25.99266 25.93219

αx 27.81325 29.54676 29.56438

Az, zz -107.56880 -108.77857 -108.59122

Ax,xz -81.209588 -75.1877857 -75.116286

Czz 208.7490 213.7072 213.3282

Cxx 52.3572 103.0669 103.0434

Cxz 103.4504 116.3757 117.0246

contraction coefficients on Li and H were taken from the coefficients of the f functions in

the HOMO. Energy and static electrical properties are reported in Table 5.3, dispersion

constants A, B, C, D in Table 5.4. From the values of dispersion constants we computed

the dispersion coefficients displayed in Table 5.5 for the largest spdf basis. The latter

are reported in view of their interest as values obtained by an AO basis of higher quality

than previously reported data e.g., in [57]. It should be remarked that considerable loss

of significant figures occurs in the computation of CLALBM
6 and CLALBM

7 for high values

of LALBM .

5.5 Final Remarks

We have described the iterative technique LSDK to compute dispersion constants in the

framework of direct CI or similar methods. The technique expands the London formula

in a set of pseudostates recursively generated and incorporates ideas taken from the well

known Lanczos and Davidson methods for eigenvectors. LSDK proved to be capable

to produce results of quality comparable to numerical quadrature of the Casimir Polder

integral with less computational cost. The diagonal matrix elements computed by LSDK

enjoy variational bounding properties. Finally we applied LSDK to the computation of

dispersion constants of Be and LiH using AO bases of high quality.
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Table 5.4: Dispersion Constants for LiH computed with Tunega Noga bases [60] and

LSDK

sp (11s8p/9s8p) spd sp+(6d/6d) spdf spd+(1f/1f)

Dispersion Constants for n = 6

A 18.195133 17.624843 17.578319

B = C 19.515589 19.939737 19.918115

D 20.951796 22.603497 22.614698

Dispersion Constants for n = 7

A -76.824019 -75.972149 -76.717534

B -68.268604 -63.238170 -63.152191

C -82.433586 -86.980019 -86.917175

D -73.273160 -70.551389 -71.528631

Table 5.5: Expressions of the dispersion coefficients CLALBM for n = 6; 7 (a.u.) for LiH

computed with Tunega Noga spdf bases

LA LB M CLALBM
6

0 0 0 125.140

0 2 0 -5.1553

2 0 0 -5.1553

2 2 0 0.7136

2 2 1 -0.1586

2 2 2 0.0200

LA LB M CLALBM
7

0 1 0 1458.5

0 3 0 78.244

2 1 0 -59.299

2 1 1 9.8832

2 3 0 -2.9532

2 3 1 -0.4922

2 3 2 -0.0352





Chapter 6

Variational CI technique for

Dispersion Constants

In this Chapter we will again focus on the first order perturbative equation, we have

talked about many times. We can anyway rewrite this equation in a slightly different

way as [71]:

[(HA − E0
A)⊗ IB + IA ⊗ (HB − E0

B)]ΘAB = −qA ⊗ qB (6.1)

where ⊗ is the matrix Kronecker product HA is the matrix of the FCI Hamiltonian of

molecule A (and B correspondely), IA is the identity matrix of FCI space, and qA is

the vector of FCI coefficients of (Q̂A − E1
A)|ΦA〉 of dimension NA, ΘAB is the coefficient

vector of first order solution in ⊗ product space, and consequently qA ⊗ qB is a column

vector of dimension NA×NB. The previous equation represents a set of linear equations

which could, in principle, be treated by standard methods. The main difficulty is due

to its dimension, equal to the product of the FCIs of the interacting molecules. In this

case, not even a single vector of the FCIA ⊗ FCIB space can be kept in the computer

memory. One can anyway express the solution as

ΘAB ≈
∑
ij

cijzAi ⊗ zBj (6.2)

where zAi ∈ FCIA and zBj ∈ FCIB are expansion vectors, therefore we overcame the

difficulty connected with the vectors dimensions by handling only vectors belonging to

the CI space of a single molecule. Next, we may compute the coefficients cij by some

variational criterion of the type used for solving large linear systems, but now applied in

a subspace of FCIA ⊗ FCIB. The main criteria to come to a solution are

• projection of the perturbative equation to be solved in that subspace (i. e. Galerkin)
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• minimization of the residual norm (least squares)

At this point it is useful to remark that numerical Casimir Polder with integration point

iωk and weights wk may be considered as a particular case of the previous approximate

solution, where the expansion vectors are the real part of the solution for the imaginary

frequencies iωk perturbative equations and the matrix of the coefficients is assumed to

be diagonal and given by

ck =
wk

2π
(6.3)

Therefore, when the Casimir Polder integral is approximated by a numerical quadrature,

the coefficients are, in general, nonoptimal, although it is well known that this technique

provides good results using 8-16 Gaussian points. This also suggests using the real part of

the solution vectors of perturbative equation at the Gaussian points iωk as an effective

expansion set. In our variational scheme, we can also include the imaginary parts of

the solutions, which is discarded in classical Casimir Polder method. Similarly, another

effective expansion set is suggested by the Pade’ techniques using the Cauchy moments

[62]

zAi = (HA − E0
A)−i(E1

A − Q̂A)|ΦA〉 i = 1, 2, . . . , n (6.4)

The vectors defined by the previous equation are obtained by solving recursively a set of

linear perturbative equations at zero frequency, by plugging the solution of the i − 1th

equation into the ith. We will consider here only these two types of expansion sets; other

types of expansion sets could however be considered.

Once the expansion vectors are given for molecules A and B, we are dealing with four

kinds of vector (sub)spaces:

1. FCI spaces of molecules A and B, FCIA, FCIB; their dimensions NA and NB are

large, but vectors belonging to them can be handled by the standard techniques of

direct CI

2. Subspace SA of FCIA spanned by the vectors zAi, i = 1, . . . , kA, with kA � NA.

Similarly, for FCIB

3. Tensor product space FCIA ⊗ FCIB of dimension NA ×NB

4. Subspace SA ⊗ SB, of dimension kA × kB � NA × NB, spanned by the tensor

products zAi ⊗ zBj
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6.1 Variational equation for the coefficients

To work out the algebra, it is convenient to adopt a matrix notation for vectors in the ten-

sor product space. Given two ordinary vectors x, y with components xi, i = 1, . . . ,m

and yj, j = 1, . . . , n, their tensor product is a two-index object with components xi · yj

that can be written either as a column of length m · n or as an m × n matrix. The

same holds for a general vector in tensor product space, as it can always be expanded in

tensor products. Accordingly, the first-order PT equation in tensor product space can

be written in two forms. The first is the one we draw in the previous Section, and the

second is the following Sylvester equation:

XAB(HA − E0
A) + (HB − E0

B)XAB = −qBq†A (6.5)

where XAB is ΘAB rearranged as a n×m matrix. The matrix notation suggests a way to

compute the residual norm associated with our approximate XAB via traces of matrices

of small dimensions. The Euclidean scalar product between vectors in tensor product

space goes into the trace product Tr(A†B) between the corresponding matrices, and

one can exploit the invariance of the trace under cyclic permutation of the factors. Let

kA � NA be the number of expansion vectors zAi in space FCIA and collect them in a

matrix ZA of dimension NA×kA; therefore the coefficient equation may be rewritten as:

XAB = ZBcZ†
A (6.6)

where c is the kA × kB matric of the coefficients. The associated residual in matrix

notation is

R = ZBcZ†
AHA + HBZBcZ†

A + qBq†A (6.7)

While the residual is a dense matrix of the same dimensions as the FCI Hamiltonians,

its square norm ‖R‖2 can be computed as a sum of traces of small matrices. The key

point is to exploit the well-known property of the trace:

Tr(ABC) = Tr(BCA) = Tr(CAB) (6.8)

The norm therefore becomes:

‖R‖2 = q†BqBq†AqA + 2Tr(q†HZBcqZA) + 2Tr(q†ZBcqHZA)

+ Tr(H2ZBcSAc†) + Tr(H2ZAc†SBc) + 2Tr(q†ZBcHZAc†) (6.9)

where SA = Z†
AZA is the overlap HZA = Z†

AHZA is the outprojection of HA in SA,

H2ZA = (HAZA)†(HAZA) is the outprojection of H2 in SA, qZA = Z†
AqA and qHZA =
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Z†
AHqA (and similarly for B). All matrices are obtained by performing scalar products

of FCI vectors available in any code for the computation of second order properties at

FCI level. The relative residual norm

‖R‖√
q†BqBq†AqA

(6.10)

can be used to check convergence. Unfortunately, the matrices have mixed signs and loss

of accuracy can occur in the computation of ‖R‖2.

6.1.1 Coefficient from Galerkin Projection

The projection or Galerkin condition requires the residual R to be orthogonal to the

subspace SA ⊗ SB spanned by the products of expansion vectors; consequently one has

to deal with the following equations

Z†
AR†ZB = 0 (6.11)

SBcHZA + HZBCSB + qZBq†ZA = 0 (6.12)

The second equation is a small Sylvester equation for the coefficients c, the same equation

could be obtained by the Hylleras variational principle in the subspace SA ⊗ SB (see

[71]). As concerns the methods of solution, a first possibility is via diagonalization of

the matrices HZA, HZB, in the metrics SA, SB respectively. However, this works only

when the metrics are well conditioned; in practice, this applies only to a very small

number of expansion vectors. After some experiments, the following procedure was

adopted: we orthonormalize the basis within each subspace SA, SB and then compute

the matrices HZA, HZB by performing a FO (H − E0)zi in the FCI space for each

(orthogonalized) expansion vector. Compared with the numerical integration, this is

an additional computational cost, but much smaller than that needed to compute the

expansion vectors. The latter equation is reduced to an ordinary Sylvester equation and

we can use one of the well-known methods for small Sylvester equations, e.g., the Bartels

and Stewart algorithm [68]. Alternatively, we transform the (small) Sylvester equation

in a system of kAkB linear equations. Thus, we are able to include many more expansion

vectors, and therefore to approach more closely the exact solution of the perturbative

equation.

6.1.2 Coefficients from the Least Square Condition

The Least Square (MinRes) condition requires the residual norm Tr(R†R) to be minimal,

in this case however the residual vector R will no longer be orthogonal to the subspace
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SA ⊗ SB, the equation for the coefficient will be:

SBcH2ZA + 2HZBcHZA + H2ZBcSA + qZBq†ZA + qHZBq†HZA = 0 (6.13)

By the use of this expression we still obtain an upper bound to the exact FCI solution

and we have

Exact ≤ cGalerkin ≤ cMinRes (6.14)

as a consequence of the Hylleras principle. As concerns the numerical aspects of the

solution, the same consideration applied to the Galerkin equation apply in this case, and

once the expansion bases are orthonormalized the solution can be obtained via the use

of a system of kakB linear equations.

6.2 Result for BH and Comparison of the Methods

Our variational method has been used in the FCI determination of dispersion coefficients

for the BH molecule, in the same study a comparison with the interpolative method was

also performed. To perform the study we used two atomic basis sets the first one being

the so called b5 basis (89 A.O.) [71] and the second one the double augmented v5Z

(daug-v5Z) of Dunning and coworkers [80, 81, 82] (268 A. O.), the latter in particular

was retrieved by EMSL [83].

6.2.1 The b5 basis

As concerns the b5 basis we acted as follows:

• Frozen Core (1s2) FCI computations, FCI space 3.7 · 106 determinants in C2v sym-

metry group, (part of the computations at this level have allready been performed

in [71])

• String Truncated CI computation [86], CI space 104 · 106 determinants, using the

following truncation scheme:

– 2 molecular orbital (MO) are kept in core allowing double excitations

– 11 MO are kept fully active

– 19 MO are allowed to undergo double excitations

– 57 MO are allowed to undergo single excitations

• Frozen Core Coupled Cluster at CCSD level
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Table 6.1: BH energies and static electric properties computed using b5 basis. E is the

energy, µ is the dipole moment, α‖ and α⊥ the parallel and perpendicular component of

the polarizability respectively.

String Trunc. CI Froz. Core FCI Full Elect. CCSD Froz. Core CCSD

E -25.2490099 -25.23565361 -25.2514139 -25.2327909

µ 0.54382346 0.543885412 0.55914219 0.55399204

α‖(0) 23.016370 23.1779437 22.800214 22.8732838

α⊥(0) 20.637134 20.7647977 21.0325375 20.9871151

• Full Electron Coupled Cluster at CCSD level

Results for energies and static electric properties obtained at this level of theory are

collected in Table 6.1 As a first evidence one can see how the frozen core effect for

the energy appears to be quite important for this particular system, while first and

second order electric properties are affected to a much lesser extent, this fact justify our

choice to subsequently perform a Frozen Core FCI calculation with a larger expansion

basis set. CCSD dipole moments are larger than the corresponding CI values, on the

other hand the parallel component of the polarizability is greater at CI level while the

perpendicular components shows an opposite behavior. Our electric properties values

can be compared with the ones given by Halkier and coworkers [72, 73]. At Coupled

Cluster level we determined the values of imaginary frequencies polarizabilities by the

[3, 4] Pade’ approximants [62] using the Cauchy moments calculated with the Dalton

code [19]. Results are collected in Table 6.2. The frequency dependent polarizabilities

have also been determined at Frozen Core FCI level and String Truncated CI level

with perturbation theory formalism and by [3, 4] Pade’ approximants in the case of

Frozen Core CI, these results are collected in Table 6.3. Frequencies iω were chosen in

such a way to fulfill the empirical criterion for interpolative method we gave in [57].

Using the Pade’ approximants to the dynamic polarizabilities obtained at CCSD and

Frozen Core FCI level we computed the BH Dispersion Constants via the interpolative

procedure [53, 57], results are presented in table 6.4 Finally The Dispersion Constants

were computed using the variational method at Frozen Core FCI and String Truncated

CI level. In particular as expansion vectors we used the Real and Imaginary solution of

the perturbative equations for the polarizability (the frequencies being the ones chosen

for the interpolative technique) results are displayed in Table 6.5 for Frozen Core FCI

and 6.6 for String Truncated CI together with the value of the Dispersion Constants
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Table 6.2: BH CCSD frequency dependent polarizabilities from [3, 4] Pade’ approximants

and Cauchy moments

iω α‖(iω) α⊥(iω) α‖(iω) α⊥(iω)

FULL CCSD Froz. Core CCSD

3.000000 0.39722 0.31415 0.39375 0.31273

1.000000 2.91887 2.39986 2.90452 2.39330

0.333333 11.81269 9.56384 11.81726 9.57000

0.000000 23.01637 20.63713 23.17794 20.76480

Table 6.3: BH Frozen Core FCI and String Truncated CI frequencies dependent polariz-

abilities

String Trunc CI Frozen Core

Directly Computed Directly Computed Pade’[3,4]

iω α‖(iω) α⊥(iω) α‖(iω) α⊥(iω) α‖(iω) α⊥(iω)

3.000000 0.440486 0.415979 0.41777 0.397691 0.39406 0.35895

1.000000 2.977717 2.643298 2.9312 2.62848 2.90626 2.57833

0.333333 11.886704 9.571361 11.87538 9.56055 11.87524 9.55989

0.000000 23.016370 20.637134 23.17794 20.76480 23.17794 20.76480

7.000000 0.093441 0.090328 // // // //

1.666667 1.266689 1.163044 // // // //

0.600000 6.244658 5.314824 // // // //

0.142857 19.289442 15.227911 // // // //

Table 6.4: CCSD and Frozen Core FCI Dispersion Constants computed from Pade’

approximant to the polarizability by the interpolation approach

Full Elect. CCSD Frozen Core CCSD Frozen Core FCI

D‖,‖ 23.0307 23.1790 23.2947

D‖,⊥ 19.1660 19.2608 19.7090

D⊥,⊥ 15.9755 16.0309 16.7013
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Table 6.5: BH Frozen Core FCI Dispersion Constants. M.F. stands for Magnasco Figari

interpolative technique, Int. J. stands for our variational technique, 4 pt. indicates

that only the first subset of the frequencies dependent polarizability has been used, [Re]

indicates the use of the real part of the perturbative equation solution, [Im] the use of

the imaginary part and [Re] + [Im] the use of both, ‖R‖ is the residual norm

M.F. 4 pt Int. J. 4 pt [Re]

Low. Bound ‖R‖ Upp. Bound

D‖,‖ 23.3763 23.2497 0.4 · 10−2 23.4680

D‖,⊥ 19.9263 19.1895 0.1 · 10−1 20.4240

D⊥,⊥ 17.01171 15.88715 0.2 · 10−1 18.6087

// Int. J. 4 pt [Re]+[Im]

Low. Bound ‖R‖ Upp. Bound

D‖,‖ // 23.1635 0.8 · 10−5 23.1639

D‖,⊥ // 19.16325 0.6 · 10−5 19.1636

D⊥,⊥ // 15.88935 0.4 · 10−5 15.8896

obtained with the application of the interpolative technique itself. In table 6.5 and 6.6

we have indicated upper and lower bound values of Dispersion Constants, lower bound

has to be intendended as the value directly obtained from the variational method, while

upper bound is the value obtained from Temple’s VP extended to perturbation theory

[74]

ExactFCI ≤ < µ1
Aµ2

B|µ1
Aµ2

B > +
‖R‖2

Eexc − E0

(6.15)

where Eexc is the 1st excited level (of appropriate symmetry), and ‖R‖ is the residual

norm of the variational equation. As a first approximation we used only the Frozen Core

FCI excitation energies for state Σ (µ̂‖ operator) and Π (µ̂⊥) which are respectively

• EΣ − E0 = 0.21287256

• EΠ − E0 = 0.10652291

Rigorously speaking lower and upper bound should be referred to Temple’s VP and vari-

ational value respectively, but because the value of the dispersion constants would have

negative sign we have exchanged the two terms in order to avoid confusion. From the
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Table 6.6: BH String Truncated CI Dispersion Constants. M.F. stands for Magnasco

Figari interpolative technique, Int. J. stands for our variational technique, 4 pt. indicates

that only the first subset of the frequencies dependent polarizability has been used, [Re]

indicates the use of the real part of the perturbative equation solution, [Im] the use of

the imaginary part and [Re] + [Im] the use of both, ‖R‖ is the residual norm

M. F. 4 pt Int. J. 4pt [Re]

Low Bound ‖R‖ Upp. Bound.

D‖,‖ 23.2972 23.1627 0.5 · 10−2 23.4347

D‖,⊥ 19.8795 19.1603 0.1 · 10−1 19.6388

D⊥,⊥ 16.9892 15.8848 0.2 · 10−1 17.3760

// Int. J. 4 pt [Re]+[Im]

// Low. Bound ‖R‖ Upp. Bound

D‖,‖ // 23.1635 0.1 · 10−2 23.2179

D‖,⊥ // 19.1633 0.2 · 10−2 19.2833

D⊥,⊥ // 15.8893 0.2 · 10−2 16.0385

previous data it easy to see how dynamic polarizabilities computed by the Pade’ approx-

imants differs from the analytical perturbative values by some percents, expecially for

values of iω far from the real axes. (At Frozen Core FCI level the error on the perpen-

dicular component of the polarizabilities goes from 6.0 · 10−3% at iω = 0.333 to 10% at

iω = 3.0). As the Dispersion Constants are concerned the values computed by the inter-

polative method using the Pade’ approximants and using the analytical polarizabilities

at the same level of theory the error ranges from 0.5% for D‖,‖ to 1.8% for D⊥,⊥. Finally

we may underline that between the 4 points interpolative and variational methods there

is a substantial agreement if one excludes the value of the total perpendicular constant

D⊥,⊥, moreover the inclusion of the imaginary part of the solution vector in the varia-

tional expansion basis has little influences on the value of the constant itself, but has an

important effect on the residual norm.

6.2.2 The v5Z basis

As the v5Z (268 AO) basis is concerned we performed the following computation

• Frozen Core (1s2) FCI giving rise to 316 ·106 determinants in C2v symmetry group.
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Table 6.7: BH v5Z basis Frozen Core FCI and CCSD energies and static electric prop-

erties, E is the energy, µ is the dipole moment and α‖ and α⊥ are the parallel and

perpendicular component of the polarizability respectively

Frozen Core FCI CCSD Frozen Core CCSD

E -25.236833 -25.263980 -25.234065

µ 0.546760 0.563512 0.556943

α‖(0) 23.18200 22.75254 22.86952

α⊥(0) 20.54835 21.04137 21.01354

Table 6.8: BH v5Z Frozen Core FCI frequencies dependent polarizability

iω α‖(iω) α⊥(iω)

3.000000 0.417679 0.425199

1.000000 2.927977 2.791326

0.333333 11.86931 9.99817

0.000000 23.18200 20.54835

• Frozen Core and Full Electron CCSD

In table 6.7 we collected energies and static electric properties obtained from this ba-

sis. In Table 6.8 and 6.9 we present the frequency dependent polarizabilities obtained

analytically at Frozen Core FCI level, and as the Frozen Core and Full Electron CCSD

[3, 4] Pade’ approximants by the Cauchy moments respectively. Again the frequencies

iω have been chosen in such a way they respect our empirical formula [57], but due to

the dimension of the CI space, and to the computational cost required for each iter-

ation we limited only to the first 4 frequencies subgroup. Finally in Table 6.10 we

reported the Dispersion Constants computed at Frozen Core FCI level by the interpo-

lation method and by the variational method using the solutions of the polarizability

perturbative equations as the expansion basis; while in table 6.11 dispersion constants

obtained by the interpolative method at CCSD and Frozen Core CCSD are shown too.

As concerns the derivation of the Temple’s upper bound to the dispersion constants we

did not calculate the actual value of the BH excitation energy with the v5Z AO basis,

we used instead the values of excitation energies obtained at Forzen Core FCI with the

b5 AO basis. This choice is due to the very high computational cost of Frozen Core FCI
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Table 6.9: BH v5Z Frozen Core and Full Electron CCSD [3,4] Pade’ approximants to the

frequencies dependent polarizability

iω α‖(iω) α⊥(iω) α‖(iω) α⊥(iω)

Full Electrons Frozen Core

3.000000 0.39629 0.31388 0.39262 0.31243

1.000000 2.91416 2.39838 2.89972 2.39209

0.333333 11.79640 9.55320 11.81187 9.56683

0.000000 22.75254 21.04137 22.86952 21.01354

Table 6.10: BH v5Z Frozen Core FCI dispersion constants. M.F. stands for Magnasco

Figari interpolative technique, Int. J. stands for our variational technique, 4 pt. indicates

that only the first subset of the frequencies dependent polarizability has been used, [Re]

indicates the use of the real part of the perturbative equation solution, [Im] the use of

the imaginary part and [Re] + [Im] the use of both, ‖R‖ is the residual norm

M. F. 4 pt Int. Journ. 4 pt

Low. Bound ‖R‖ Upp. Bound

D‖,‖ 23.3676 23.2384 0.5 · 10−3 23.2657

D‖,⊥ 20.3078 19.6496 0.2 · 10−2 19.7696

D⊥,⊥ 17.6658 16.6541 0.8 · 10−3 16.7161

with the v5Z AO basis, and is however justified by the fact that this approximation will

lead to a (probably negligible) overestimation of the upper bound.

6.2.3 Concluding Remarks

Coupled Cluster and FCI (or string truncated CI) calculations of the BH dispersion

coefficients have been performed with a very high level basis set (268 A.O.). In the

meantime two innovative methods, derived or commonly applied in our laboratory, have

been tested and validated. In particular as concerns the variational method it enjoys

bounding properties both on the upper and lower side. By expanding the solution as

a linear combination of tensor products of CI vectors of the isolated molecules, we are

able to work in the huge dimensional tensor product space of the interacting molecules.

A convenient matrix notation makes the algebra easier and suggests a way to compute



116 CHAPTER 6

Table 6.11: BH v5Z CCSD Dispersion Constants from [3, 4] Pade’ approximants and 4

points interpolative method

Full Electron CCSD Frozen Core CCSD

D‖,‖ 22.7450 22.8706

D‖,⊥ 19.1470 19.1908

D⊥,⊥ 16.1590 16.1406

the residual norm in order to check convergence. The present calculations as well as

the results presented in [71] indicate that this new techniques allow for better accu-

racy than with numerical Casimir Polder or interpolative procedures for a comparable

computational cost.
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The BSSE: A test study on the

Neon dimer

We will present in this Chapter a detailed study [75] of the influence of BSSE in the

determination of Long Range Dispersion Coefficients, comparing this approach with the

perturbative one. In particular we will examine how the use of Counterpoise Correction

affect the behavior of CI and CC methods, expecially in connection with size consistency

problem.

7.1 Introduction

On both the theoretical and the experimental sides, the interest of chemists and physi-

cists in clusters involving rare-gas atoms increases [76, 77, 78]. In order to be able

to perform simulations on medium-size clusters, very accurate two-body potentials are

needed. These potentials can be conveniently computed by using high-level quantum-

chemistry algorithms on Rare-gas (Rg) dimers, Rg2. Because of the smallness of the

interaction, a very accurate value of the asymptotic limit of the potential energy curve

is extremely important. Since Rg2 dimers are closed-shell systems that dissociate into

two closed-shell atoms, a single determinant gives a qualitatively correct description of

the dimer for any value of the internuclear distance. For this reason, single-reference

methods can be successfully used even in the dissociation region, contrary to what hap-

pens for most chemical systems. In this context, one must be very cautious towards

truncated Configuration-Interaction (CI) methods, as they suffer from the well known

Size-Consistency (SC) problem. On the other hand, Coupled-Cluster methods are Size

Consistent and therefore they are not affected by this kind of problems.
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In order to obtain accurate values of the potential-energy curves, it is absolutely nec-

essary to take into account the Basis-Set Superposition Error (BSSE), and to accordingly

modify the energy values. BSSE arises because the Wave Function (WF) of the dimer

at finite internuclear distance is better described than the WF of the separated atoms,

since the orbitals of the two atoms are simultaneously used. For this reason, BSSE is

particularly important for small or medium-size basis sets, while it goes to zero in the

limit of complete basis sets.

As we said previously, the most diffuse procedure to overcome this problem is the use

of the Counterpoise Correction, proposed by Boys and Bernardi [16]. In this procedure, a

series of atomic energies are computed, by using a basis set (bt) composed of the atomic

orbitals of all the atoms of the system, and the differences between these energies and

the atomic values are subsequently used to correct the energy surface of the system. In

other words, the energy E(bt) of the complex, computed by using the basis set bt is

corrected by adding a geometry-dependent energy shift ∆, which is given by

∆ =
∑

I

∆I (7.1)

where I labels the atoms in the complex

∆I = EI(bI)− EI(bt) (7.2)

Here bI represents the atomic basis set of the atom I, while bt is the total LCAO basis,

given by the union of all the atomic basis sets. This procedure, although not an exact

one, give a satisfactory approximation and leads to a satisfactory approximation to the

BSSE In the present Chapter, the effect of the BSSE on the calculation of Dispersion

Coefficients at Configuration-Interaction (CI) and Coupled-Cluster (CC) level is inves-

tigated. As already well known, the BSSE must be corrected in order to obtain reliable

potential-energy curves of van der Waals (VdW) systems. However, although the BSSE-

corrected curves obtained by the different methods are at first sight qualitatively rather

similar, CI and CC methods show very different behaviors as far as the Long Range

Dispersion Coefficients are concerned [75]. Indeed, we found that, while CC approaches

are well adapted for this type of calculations, the corresponding truncated-CI values are

completely useless. The reason for this striking difference can be traced back to the lack

of Size Consistency of the truncated-CI methods.

Our dimer calculations were compared with Full-CI (FCI) results obtained on a single

atom by means of our perturbative scheme we have diffusely illustrated in the previous

Chapter. In our largest FCI calculation, the CI space contains more than one billion of

partly symmetry-adapted and spin-adapted Slater determinants. This represents, to the
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best of our knowledge, by far the largest calculation of second-order properties ever done

at Full-CI level.

7.2 Computational Details

In the present section, the basis sets and computational methods, that have been used in

[75], are described. The use of the interface Q5COST between different computational

codes is also illustrated and discussed.

7.2.1 Basis sets

As already stated several times in this thesis the computation of molecular dispersion

interaction is very sensitive to the quality of the computed polarizabilities of the con-

stituent atoms. These properties are, on their turn, critically dependent on the quality

of the basis sets, and in particular on the presence of diffuse atomic orbitals. For this

reason, diffuse orbitals are usually added to the standard atomic basis sets in these cir-

cumstances. Unfortunately, this fact can have the consequence of an even larger effect on

the BSSE. Some authors [79] report the use of the so called mid-bond functions, instead

of diffuse ones for the computation of Neon dimer potential energy curve; we decided to

discard this possibility mainly in order to use the same basis set in supramolecular and

long range perturbative approach. The calculations are performed with the Correlation

Consistent basis sets, optimized by Dunning and coworkers [80, 81, 82]. In particular,

the following two basis sets, retrieved from the Pacific Northwest Laboratory basis set li-

brary EMSL [83] have been used: triply-augmented valence double-zeta (taug-vDZ). and

quadruply-augmented valence triple-zeta (qaug-vTZ). Since these are valence basis sets,

it does not make sense to correlate core electrons, and in all the correlated computations

the 1s orbitals of the two Neon atoms have been kept frozen at Hartree Fock level. This

fact presents also the advantage of a considerable saving in computation time.

7.2.2 Computational Methods

The following methods have been used in the present study:

1. Long Range Perturbative Approach (LRPT) where the atom-atom interaction [1]

is treated by perturbation theory starting from the product of isolated fragments

wave functions.

The adopted computation strategy was the following: Using Full or String Trun-

cated CI formalism it is possible to immediately get the values of the Dispersion
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Coefficients via the use of our laboratory’s innovative perturbation-variational for-

malism [71]. Note that this technique involves only the use of isolated atoms wave

functions, so values obtained can be considered as BSSE free and size consistent by

construction. Moreover values of Neon atom dipole and quadrupole polarizabilities

are obtained as byproducts. The formalism involved implies solving the perturba-

tive equations for the dispersion interaction by expanding the solution as a linear

combination of tensor products of suitable FCI vectors. In the present computation

the latter where chosen to be the so called Cauchy vectors [71] strictly related to

the FCI computation of Cauchy moments. An expansion set of ten Cauchy vec-

tors provided satisfactory convergence. Both Full-CI (FCI) and string-truncated

CI calculations were obtained with the use of the program VEGA [84] Molecular

orbitals and their integrals were computed with the MOLPRO2000 code. [85]

In the String-truncated CI formalism [86], the determinants formed by strings hav-

ing up to a given level of excitation are retained in the CI space: single excitations

(CIS), single and double excitations (CISD), single, double and triple excitations

(CISDT). Notice that, if up to quadruply excited strings are considered (CISDTQ),

in the case of the Neon atom, one gets Frozen-Core FCI.

2. Supramolecular Approach. In this approach potential energy curves for the Ne2

dimer are computed using:

(a) Single-and-Double Truncated CI, CISD, program CASDI [87].

(b) Single-and-Double Truncated CC, CCSD, DALTON package [19].

(c) Single-and-Double Truncated CC with non iterative triple correction, CCSD(T),

DALTON package [19].

At CISD, CCSD, CCSD(T), the energy curve has been obtained performing energy

computation at various values of interatomic separation, the curve has been sub-

sequently counterpoise corrected, and linearized as described in the next Section

in order to get the values of Dispersion Coefficients. From the energy curves we

also derived values of minimum energy distance, well depth energy, zero points

energy and anharmonic vibrational frequency. As concerns the vibrational levels,

the computations were performed by the Numerov method [88] in matrix form as

formulated by Lindberg [89] implemented in a code described in [90]
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7.2.3 The use of Q5Cost wrappers

CASDI program used for the computation of CISD energy curves was originally inter-

faced with Molcas [91] program suite via the wrapper MOLCOST. In order to per-

form such a computation in the same environment as CC ones we decided to interface

CASDI with DALTON, using the new developed Q5Cost data format [92] and library

[93]. Q5Cost, as we will diffusely illustrate in the next part of this thesis, is a new data

format and Fortran libraries developed by us, that allows the easy exchange of the so

called “Quantum-Chemistry Binary Data” (mainly molecular integrals) among different

codes. In particular, for this work, atomic basis integral produced by Dalton [19] af-

ter SCF calculations were processed with a four indices transformation to get them in

molecular orbitals basis and written in Q5Cost format. Subsequently an interface or

wrapper (Q5MOLCOST) was designed and written in order to write molecular orbitals

in a MOLCOST format directly accessible by CASDI program.

7.3 Results

In Figure 7.1 (a and b), the potential energy curves are reported, for the different corre-

lated methods and obtained by using the two basis sets. The CISD, CCSD, and CCSD(T)

curves are rather similar. It can be seen that the position of the minimum is not strongly

affected by the BSSE correction, while the energy-well shape and depth are completely

changed by the BSSE.

The curves obtained by using the VDZ (Figure 7.1.a) and VTZ (Figure 7.1.b) are

extremely similar, a fact that indicates that the BSSE converges very slowly to zero as a

function of the basis-set size, probably due to the presence of diffuse functions [94] (we

remind that BSSE vanishes for a complete basis set). In Table 7.1, BSSE incorrect and

correct equilibrium distance and energy well depth are reported together with the zero

point energy, the number of vibrational bound states and the anharmonic vibrational

frequency, determined after counterpoise correction. Again this parameters show the

same behavior as the ones previously described.

In Figure 7.2 (a and b), the same curves are displayed, relatively to the asymptotic

region (from 12.0 to 20.0 Bohr). Again, the curves obtained by using the VDZ (Figure

7.2.a) and VTZ (Figure 7.2.b) are very similar, but it appears now that the behavior of

CI is extremely different than CC.

As discussed in this Chapter’s introduction, the leading terms of the asymptotic

energy are given by the equation

E(R) = E∞ + C6R
−6 + C8R

−8 (7.3)
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By multiplying this expression by R8 and rearranging the different terms, one gets

(E(R)− E∞)R8 = C6R
2 + C8 (7.4)

This means that, if one plots the quantity (E(R)−E∞)R8 as a function of R2, the result

should be a straight line for large values of R. The results of these plots are shown in

Figure 7.3, for four different cases: uncorrected CI and CC (7.3.a), and BSSE-corrected

CI (7.3.b) and CC (7.3.c). It is clear that, in the case of uncorrected energies, either

CI or CC, the long range curves are far from being straight lines. This implies that the

BSSE completely masks the correct long-range behavior of the potential energy for this

VdW species. On the other hand, once the BSSE has been corrected, the CC results

(either CCSD or CCSD(T)) have a correct linear behavior. Rather surprisingly, however,

this is not true for the CISD results, as it could have been guessed from the long-range

tail of the potential, Figure 7.2. Using a linear least square regression it was possible

to obtain values of the Dispersion Coefficients from the Coupled Cluster, BSSE correct,

potential curves: results are collected in table 7.2. These values can be compared with

the results obtained from LRPT treatment, and with experimental ones, reported again

in table 7.2. Moreover in table 7.2 computed or experimental values of polarizabilities

are presented too.

7.4 Discussion

Two main aspects can be underlined from the analysis of the data: The long range

behavior of the potential energy curves with the determination of Dispersion Coefficients,

in particularly for the failure of CISD; and the determination of spectroscopic properties

from the analysis of the equilibrium region of the curves.

7.4.1 Dispersion Coefficients: The failure of CISD

The remarkable difference in the long-distance part of potentials that are overall substan-

tially similar is rather unexpected. The reason can be traced back to a subtle interplay

between two different sources of error that affect CI calculations: Basis-Set Superpo-

sition Error and Size-Consistency Error (SCE). SCE originates from the fact that, in

truncated CI calculation, determinants that are present in the product of monomer WF

are absent in the dimer WF. For this reason, the CISD energy of two fragments sepa-

rated by such a large distance, that they are physically non-interacting is different from

the sum of the CISD energies of the isolated fragments. The SC error is far from being

negligible: in fact, the CISD energy of two non-interacting neon atoms is about 0.15
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hartree higher than the sum of the corresponding energies of isolated atoms. However,

the SCE depends only weakly on the geometry: once the BSSE has been taken into

account via the counterpoise correction, the CISD values for the equilibrium distance

and dissociation energy are in a reasonable accord with the corresponding CCSD values

(which are SC-error free) and also in a reasonable accord with the experimental [95, 96]

and previously computed values [97, 98]. For this reason, CISD can be used to compute

the spectroscopic quantities of a VdW dimer as Ne2, although the results are certainly

less accurate than those obtained from CCSD, and much less accurate than CCSD(T).

As expected the use of diffuse functions appears to be of great importance to improve

the computation of dispersion interactions, as an example we can consider the Ne2 CISD

BSSE corrected energy well depth computed with vDZ basis set during a preliminary

study: in that case a value of about 30 µh was obtained to be compared with 83.5 µh

for taug-vDZ (experimental value 134 µh).

Let us consider now the dispersion coefficients. Before being corrected to take into

account the BSSE, the long-range tail of the potential-energy curves gives absolutely

unreliable results. Once the BSSE has been taken into account via the CP correction, the

CC curves fit very well into the long-range expression, and the values of the dispersion

coefficients are in a good agreement with both the FCI and experimental ones. The

situation is completely different for the CISD calculations, that cannot be fitted with the

theoretical expression at large distance. In this case, the CP correction overcorrects the

energy values, that become even higher than the corresponding asymptotic values. This is

because the CP correction is extracted from atomic calculation, while it is used to correct

molecular energies. The (relatively small) error due to the lack of size consistency of CI

results has a dramatic effect on the long-range tail of the potential-energy curves. In fact,

the sum of the atomic energies is larger than the energy of non-interacting atoms, giving

therefore a too large correction. For this reason, the CP correction overestimates the

effect of BSSE, thus giving a long-range tail of the potential that is completely unnatural.

7.4.2 Spectroscopic Properties

As the spectroscopic properties are concerned, as already stated, our values can be

compared with a recent experimental work by Wüest and Merkt [96]. In that paper

the authors determine the position of rovibrational energy levels of the Ne2 dimer using

vacuum ultraviolet laser spectroscopy. The potential curve for the ground electronic

state was subsequently determined by means of a nonlinear fitting of a model interaction

potential to the measured position of the rovibrational levels. It is quite interesting

to see how the zero point energy level lies very high in energy, in fact it accounts for
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about 40% of the well depth, leading to a very low binding of the complex; this fact

is anyway confirmed by experimental results. Moreover Wüest and Merkt [96] observe

only two vibrational levels, in agreement with our results, but from the analysis of the

potential they predict the existence of a third vibrational level with a very low binding

energy. The existence of this level is anyway still uncertain and depends strongly from the

energy well depth and from the form of the long range tail of the potential due to the high

diffuse nature of the vibrational Wave Function. The computed spectroscopic properties

can be improved towards the basis set limit using a two point basis set extrapolation

formula [99]. Applying this formula to the CCSD(T) BSSE corrected results we obtain

Emin = −130µh, Rmin = 5.82bohr, ∆E0 = 12.38µh and ω = 13.5cm−1

7.5 Final Considerations

It has been shown that the BSSE plays a key role in the numerical calculation of the

dispersion coefficients of VdW species. No reasonable value of Dispersion Constant or

equilibrium properties can be obtained for the Ne2 dimer if one does not take into account

the BSSE correction. The use of Counterpoise Correction allows to obtain satisfactory

results provided one uses size consistent methods for the computation of the potential

energy curves of the dimer. Values obtained in such a way with CCSD or CCSD(T)

agree quite well with experimental values and with the BSSE-free LRPT values. On the

other hand, the application of the Counterpoise Correction to curves obtained with non

size consistent methods gives quite good values for the equilibrium properties but totally

wrong Dispersion Coefficients. This fact is due to a subtle interplay between Basis-

Set-Superposition and Size-Consistency Errors. By using the potential energy curves

obtained at CI and CC level, we computed the Zero-Point energy and the anharmonic

vibrational frequency for the fundamental electronic state of Ne2, showing the existence of

two bound vibrational states, our results agree quite well with spectroscopic experiments.
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Table 7.1: CISD, CCSD, CCSD(T), BSSE counterpoise uncorrected and corrected Min-

imum and vibrational frequencies: Runcorr
min interpolated value of the BSSE uncorrected

energy curve minimum (a0 bohr); Euncorr
min BSSE uncorrected potential energy well depth

(µEh); R
corr
min interpolated value of the BSSE corrected energy curve minimum (a0 bohr);

Ecorr
min BSSE corrected potential energy well depth (µEh); Nbs number of bound states for

BSSE corrected curves; ∆E0 Zero point energy calculated from the BSSE corrected well

depth (cm−1); ω anharmonic vibrational frequency from BSSE corrected curves (cm−1).

Runcorr
min Euncorr

min Rcorr
min Ecorr

min Nbs ∆E0 ω

taug-VDZ

CISD 5.7025 -456.71 6.3037 -52.675 1 7.2243 //

CCSD 5.6862 -475.50 6.2454 -70.022 2 8.2618 6.6990

CCSD(T) 5.6527 -540.83 6.1741 -83.488 2 9.1751 8.3160

qaug-VTZ

CISD 5.7514 -461.30 6.0995 -71.563 2 8.5749 6.9332

CCSD 5.7188 -490.46 6.0157 -93.766 2 9.9941 9.4897

CCSD(T) 5.6518 -521.52 5.9269 -116.44 2 11.430 11.960

Experiment

[95] 5.84 -134 // // //

[96]1 5.85 -134 2 12.56 13.76
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Table 7.2: Ne atom, taug-VDZ and qaug-VTZ basis set: Full and String-Truncated CI

Properties and Dispersion Coefficients. Dispersion Coefficient interpolated from BSSE

corrected potential energy curves. NCI is the number of CI determinants in D2h sym-

metry point group; E is the total energy of the atom (Eh hartree); αdip is the dipole

polarizability (atomic units a3
0 where a0 bohr); αquad is the quadrupole polarizability

(atomic units a5
0); C6 and C8 are the R−6 and R−8 dispersion coefficients, respectively

(Eha
6
0, Eha

8
0). When available, the experimental, or previous computed best values are

also reported.

NCI E αdip αquad C6 C8

taug-vDZ

CIS 2.929·103 -128.663720 2.436792 3.097065 -5.9899 -7.2528

CISD 1.926·106 -128.708024 2.649742 3.605931 -6.3270 -19.4611

CISDT 1.319·108 -128.709878 2.680308 3.666439 -6.3996 -19.7892

FCI 1.044·109 -128.709923 2.680788 3.667532 -6.4008 -19.7955

qaug-vTZ

CI-sd 7.100·107 -128.810697 2.649 7.005 -6.354 -35.550

Interpolated taug-vDZ

CCSD // // // // -5.8849 -21.9760

CCSD(T) // // // // -6.5433 -28.4863

Interpolated qaug-vTZ

CCSD // // // // -6.1717 -37.4064

CCSD(T) // // // // -7.1054 -37.8797

Experiment[100, 101] // // 2.669 7.52 -6.383 //
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Figure 7.1: The CISD, CCSD, CCSD(T) potential-energy curves as a function of the

inter-nuclear distance. 1a: taug-vDZ, 1b: qaug-vTZ. Units: distances in bohr and

energies in hartree
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Fig 1a: Ne cc-taug-VDZ Equilibrium region (BSSE corrected and uncorrected curves)

CISD BSSE corrected.
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Fig 1b: Ne cc-qaug-VTZ Equilibrium region (BSSE corrected and uncorrected curves)

CISD BSSE corrected.

CISD BSSE uncorrected.

CCSD BSSE corrected.

CCSD BSSE uncorrected.

CCSD(T) BSSE corrected.

CCSD(T) BSSE uncorrected.
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Figure 7.2: The CISD, CCSD, CCSD(T) BSSE corrected potential-energy curves in the

asymptotic region. 2a: taug-vDZ, 2b: qaug-vTZ. Units: distances in bohr and energies

in hartree.
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Fig 2a: Ne cc-taug-VDZ Long Distance (BSSE corrected curves)

CISD BSSE corrected.
CCSD BSSE corrected.

CCSD(T) BSSE corrected.
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Fig 2b: Ne cc-qaug-VTZ Long Distance (BSSE corrected curves)

CISD BSSE corrected.
CCSD BSSE corrected.

CCSD(T) BSSE corrected.
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Figure 7.3: ER8 as a function of R2 (see text), in the asymptotic region. 3a: taug-vDZ

and qaug-VTZ CISD, CCSD, CCSD(T) BSSE-uncorrected; 3b: taug-vDZ and qaug-VTZ

CCSD, CCSD(T) BSSE-corrected; 3c: taug-vDZ and qaug-VTZ CISD, BSSE-corrected.

Units: bohr2 versus hartree·bohr8.
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Fig 3c: BSSE correct Ne cc-taug-VDZ Ne cc-qaug-VTZ, linearized ER8=-C6R2-C8

taug-vdz CISD
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Figure 7.4: The computed points and the corresponding interpolated curves, in the

asymptotic region. 4a: taug-vDZ; 4b: qaug-vTZ. Units: distances in bohr and energies

in hartree.
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Chapter 8

R12 Coupled Cluster computation of

electric properties

In the present Chapter we will discuss the implementation and the first applications

of the analytical computation of electric properties at R12 CCSD level. In particular

preliminary results for first order properties (i.e. dipole moments) will be shown.

8.1 Coupled Cluster First Order Properties

The first order properties [102, 103] can be seen as first derivatives of the energy

Qχ =
∂E

∂χ

= 〈0|Q̂χ|0〉

= 〈0|∂H
∂χ
|0〉 (8.1)

where |0〉 represents a ground state wave function in Dirac notations. At Coupled Cluster

level we may obtain the value of the previous observable by straightforward differentiation

of the Coupled Cluster energy equations considering the exponential Ansatz eT

Qχ =
∂E

∂χ

= 〈0| ∂
∂χ

e−THeT |0〉

= 〈0|e−T ∂H
∂χ

eT |0〉+ 〈0|H∂T

∂χ
|0〉 (8.2)
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where H = e−THeT represents the similarity transformed Hamiltonian. Inserting a reso-

lution of the identity |h〉〈h| between the derivative cluster amplitudes and the similarity

transformed Hamiltonian one obtains

Q = 〈0|Hχ|0〉+ 〈0|H|g〉〈g|∂T
∂χ
|0〉 (8.3)

where we used the notation H
χ

= e−T ∂H
∂χ
eT while |g〉 represents an excited state obtained

as usual by the application of an appropriate excitation operator. Although strategies

for first order properties calculations based on this equation have been advocated [104],

it should be emphasized that such a strategy is unwise. The problem is the perturbed

amplitude T are required for all the degrees of freedom under consideation. Since the

computational scaling associated with the determination of ∂T
∂χ

is the same as that en-

countered in solving the non linear equations for the unperturbed amplitudes, the cost

of such a calculation scales linearly with the number of perturbation. An alternative

derivation can be obtained by differentiating the coupled cluster amplitude equations

〈g|e−THeT |0〉 = 0 (8.4)

and inserting a resolution of the identity. Following this procedure the linear equation

system becomes

〈g|∂T
∂χ
|0〉 = (〈g|E −H|g〉)−1〈g|Hχ|0〉 (8.5)

inserting the previous in the first order property equation one gets

Q = 〈0|Hχ|0〉+ 〈0|H|g〉+ (〈g|E −H|g〉)−1〈g|Hχ|0〉
= 〈0|Hχ|0〉+ 〈0|Λ|g〉〈g|Hχ|0〉 (8.6)

where Λ represents the solution to the perturbation independent linear equation

〈0|Λ|g〉 = 〈0|H|g〉(〈g|E −H|g〉)−1 (8.7)

Moreover Λ is a deexcitation operator and the form of its parametrization is identical to

that of the adjoint T

Λ = Λ1 + Λ2 + . . .+ Λn (8.8)

Λk =
1

k!2

∑
λi1i2...ik

a1a2...ak
a†i1aa1a

†
i2
aa2 . . . a

†
ik
aak

(8.9)

in the previous equation we used the notation a for virtual and i for occupied spin

orbitals. It should be noted that practically the same expression can be obtained if one
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adopts the matrix eigenvalue perspective [105]. In that case, in fact, we have Φ〉 = eT |0〉
which can be considered as the right eigenvector of H, but due to the non hermitian

nature of the similarity transformed Hamiltonian the left eigenvector will in general be

different and can it be shown to be equal to

〈Φ† = 〈0|e−T (1 + Λ) (8.10)

As usual with this notation case the expectation value for the first order property will

simply be

Q = 〈Φ†|Q̂|Φ〉 = 〈0|e−T (1 + Λ)|Q̂|eT |0〉 (8.11)

8.1.1 Application: Dipole Moments of Small Molecules

The previous formalism was implemented in the Bratislava R12 [52] code, allowing for

the determination of first order electric properties at CCSD-R12 level. Practically the T

amplitudes were computed fully exploiting the R12 theory, while Λ, and hence Q were

obtained using the previous R12 amplitudes but a conventional similarity transformed

Hamiltonian. The determination of the deexcitation operators Λ was actually the bottle-

neck, both from a computational and from a coding point of view. The first applications

were performed by computing CCSD-R12 dipole moments for some of the systems for

which Klopper reported, in a recent work [106], computation at MP2-R12 level. In Table

7.1 we present CCSD and CCSD-R12 results for the NH3 molecule; in this case, as well

as in the next ones, geometry is taken from [106], while AO basis set are retrieved from

[107]. The latter have been expecially optimized for R12 calculations, therefore they

are specifically designed to provide the appropriate approximation to the resolution of

the identity embedded in R12 environment. As previously stated, in order to fulfill this

particular requirement basis sets for molecules need, to be saturated at least for angular

momenta ` = 3 · `occ, i.e. up to angular momenta three times bigger than the highest

angular momentum of occupied orbitals. In Table 7.2 and 7.3 results for H2O and HF are

also reported. From these data it is easy to understand that as far as the energy is con-

cerned the introduction of R12 allows to speed up the converge towards the basis set limit

(using R12 one gets approximately the same value obtained with a conventional CCSD

performed with a basis saturated for two more angular momenta) for the dipole moment

the same behavior can be evidenced, even if the effect is somehow less pronounced (the

gain being of approximately one angular momentum).
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Table 8.1: NH3 CCSD and CCSD-R12 energy and dipole moments computed with dif-

ferent basis

CCSD CCSD −R12

spdf spdfg spdf spdfg

AO 224 320 224 320

E a.u. -56.3790 -56.3877 -56.3935 -56.3948

µ a.u. 0.5599 0.5609 0.5610 0.5619

Table 8.2: H2O CCSD and CCSD-R12 energy and dipole moments computed with dif-

ferent basis

CCSD

spdf spdfg spdfgh

AO 197 273 348

E a.u. -76.4087 -76.4185 -76.4211

µ a.u. 0.7292 0.7314 0.7321

CCSD −R12

spdf spdfg spdfgh

AO 197 273 348

E a.u. -76.4258 -76.427 -76.4277

µ a.u. 0.7304 0.7325 0.7329
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Table 8.3: HF CCSD and CCSD-R12 energy and dipole moments computed with different

basis

CCSD

spdf spdfg spdfgh

AO 170 226 280

E a.u. -100.38140 -100.3918 -100.3946

µ a.u. 0.6523 0.6568 0.6579

CCSD −R12

spdf spdfg spdfgh

AO 170 226 280

E a.u. -100.3946 -100.4013 -100.4029

µ a.u. 0.6568 0.6599 0.6605

8.2 Future developments: Equation of Motion Sec-

ond Order Properties

Using standard techniques of perturbation theory, elements of frequency dependent po-

larizability may be expressed as

αqiqj
(ω;−ω) = −〈Φ̃0|[qi − 〈qi〉][R±

0 + R∓
0 ][qj − 〈qj〉]|Φ0〉 (8.12)

the resolvent operator R±
0 may be defined as

R±
0 = |h〉〈h̃|E0 −H0 ± ω|h〉−1〈h̃| (8.13)

where |Φ0〉 and 〈Φ̃0| are the ground state wave function and its dual obtained from the

field free Hamiltonian H0, 〈qi〉 and 〈qj〉 are the ith and the jth components of the dipole

moment 〈Φ̃|Q̂|Φ〉, and finally 〈h̃| and |h〉 are functions that compose the complemen-

tary space and satisfy the orthogonality restrictions 〈h̃|0〉 = 0 and 〈0̃|h〉 = 0, with |0〉
and 〈0̃| representing a reference state and its dual. Obviously the suitability of any ap-

proach for calculating second and higher order properties is related to the accuracy of

the perturbed wave functions. In a sum over state (SOS) procedure, analogous to the

one we presented in Chapter 1, the perturbed wave functions are considered as linear

combinations of the unperturbed (zero field) states. For systems having ground states

that may be represented adequately by a single reference function, one approach which

has been shown to provide an accurate prediction of singly excited state is the equation
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of motion CC (EOM-CC) method in which wave functions and energy level are obtained

by diagonalizing the similarity transformed Hamiltonian H = e−THNe
T (HN being the

normal ordered Hamiltonian). Because this similarity transformation is nonunitary, the

resultant transformed Hamiltonian is non hermitian. Therefore the bra and ket wave

functions are not related by hermitian conjugation but rather form a biorthogonal basis

in which a state i is defined through

〈Φ̃CC
i | = 〈0|Lie

−T (8.14)

and

|ΦCC
i 〉 = eTRi|0〉 (8.15)

fullfiling the normalization condition

〈Φ̃CC
i |ΦCC

j 〉 = δij (8.16)

where R and L are the right and left hand eigenvectors of HN respectively. As we said

in the previous section the ground state left eigenvector will be

〈Φ̃CC
0 | = 〈0|(1 + Λ)e−T (8.17)

while R0 is simply the unity.

The total similarity transformed Hamiltonian in the presence of an electrical field ε

directed along q will become [108]

HN = H
0

N + εq (8.18)

where, obviously H
0

N represents the unperturbed transformed Hamiltonian in normal

order. With this choice of the Hamiltonian and the convenient computational partition-

ing in which |0〉 represents the reference Slater determinant and |g〉 the set of excited

determinants the equation for the frequency dependent polarizability may be written as

α(ω;−ω) =
1∑

l=0

〈0|(1+Λ)[qi−〈qi〉]|g〉[〈g|HN −ECC +(−1)lω]−1〈g|[qj−〈qj〉]|0〉 (8.19)

where ECC represents the coupled cluster energy and q the involved dipole moments

components, moreover the first order property’s expectation value 〈q〉 appearing in the

right hand side does not contribute to the polarizability, because of the biorthogonality

relation therefore the previous equation becomes:

α(ω;−ω) =
1∑

l=0

〈0|(1 + Λ)[qi − 〈qi〉]|g〉[〈g|[HN − ECC + (−1)lω]|g〉]−1〈g|qj|0〉 (8.20)
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which will represent our working equation. Implementation of the present equation

requires a small amount of code beyond that needed to solve Coupled Cluster equation

and compute first order property. In particular it will be necessary to solve the Cluster

equations equation

〈g|Xk±|0〉 = [〈g|[HN − ECC ± ω]|g〉]−1〈g|qk|0〉 (8.21)

Our planned computational strategy can therefore be summarized as follows:

1. Solve the Coupled Cluster R12 equations

2. Compute Λ with the equations given in the previous Section (Compute also first

order properties if needed)

3. Form the matrix elements 〈0|(1 + Λ)qk|g〉 and 〈0|qk|g〉

4. Solve the equation for the Xk± amplitudes

5. Evaluate the polarizability as

αqiqj
(ω;−ω) = [〈0|(1 + Λ)qk|g〉 − qi〈0|qk|g〉]〈g|Xj±|0〉 (8.22)

6. If the static polarizability is needed simply scale the previous value by a factor 2,

otherwise come back to point 4, reverse the sign of ω and accumulate the results

The present method has not been fully implemented yet in the Bratislava CC-R12, but we

are anyway planning to have it working correctly in the near future. This will allow us to

determine not only real frequencies dependent polarizabilities (important, for instance,

to study Raman spectroscopy intensities) but also the imaginary frequencies polarizabil-

ities which are needed for the determination of intermolecular dispersion coefficients via

Casimir Polder or related methods.
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Chapter 9

A Grid Oriented Common Format

for Quantum Chemistry data

”Computational Grids are the equivalent to the electrical power Grid”

[109]

”With Web Services we allow a thousand flowers to bloom. With a Grid

we organize the planting and growth of a crop of plants to make harvesting

easier. [110]”

9.1 The grid technology: an overview

The popularity of the Internet as well as the availability of powerful processors and high-

speed network technologies as low-cost commodity components is changing the way we

use computers today. These technological opportunities have bring the possibility of

using distributed computers as a single, unified computing resource, leading to what is

popularly known as Grid computing. The term Grid was chosen as an analogy to a power

Grid that provides consistent, pervasive, dependable, transparent access to electricity ir-

respective of its source; a detailed analysis of this analogy can be found in [109, 110].

This rather new approach to network computing is popularly known by several other

names, such as metacomputing, scalable computing, global computing, Internet com-

puting, and more recently peer-to-peer (P2P) computing. Grids, in practice, enable the

sharing, selection, and aggregation of a wide variety of resources including supercom-

puters, storage systems, data sources, and specialized devices that are geographically

distributed and owned by different organizations for solving large-scale computational
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and data intensive problems in science, engineering, and commerce. Therefore they act in

such a way to create a sort of virtual organizations which can be thought as a temporary

alliance of subjects that come together to share resources and skills, core competencies,

or computational power in order to better face the requirements of large-scale processes

and eventually better exploit business opportunities, and whose cooperation is supported

by computer networks. The concept of Grid computing, at the beginning, started as a

project to link geographically dispersed supercomputers, but now it has grown far be-

yond its original intent. The Grid infrastructure can, in fact, help many applications,

including collaborative engineering, data exploration, high-throughput computing, and

distributed supercomputing. In this context a Grid can be viewed as a seamless, inte-

grated computational and collaborative environment. The users interact with the Grid

resource broker to solve problems, and the latter on its turn performs resources discov-

ery, scheduling, and the applications of jobs on the distributed Grid resources. From the

end-user point of view, Grids can be used to provide the following types of services:

• Computational services. These are concerned with providing secure services for

executing, individually or collectively, applications on distributed computational

resources. In this case the so called Resources Brokers provide the services for

collective use of the distributed resources network. This kind of Grids are often

simply referred as Computational Grids. Some examples include: NASA IPG, the

World Wide Grid, and the NSF TeraGrid.

• Data services. These are concerned with providing secure access to distributed

datasets and to their management. In order to provide a scalable storage and

access to the datasets, the latter may be replicated, cataloged, and eventually be

stored in different locations to create an illusion of mass storage. The datasets are

processed using computational Grid services and this combinations are commonly

called Data Grids. Applications that need Data Grid to manage, share, and process

large datasets are, for instance, high-energy physics and drug design.

• Application services. This kind of Grid is used for the management of applications

and for the transparent access to remote software and libraries. Obviously this

service is, nowaday, mostly accomplished by web services.

• Information services. They are concerned with the extraction and presentation

of meaningful informations by using outputs provided by computational, data,

and/or application services. The low-level details in this case are related to the

way information is represented, stored, accessed, shared, and maintained.
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• Knowledge services. These are concerned with how the knowledge is acquired,

used, retrieved, published, and maintained to assist users in achieving their par-

ticular goals and objectives. Knowledge, in this context, should be thought as the

informations one needs to solve a problem, or execute a decision. An example of

this kind of service may be data mining.

To build a Grid, the development and deployment of a number of services is required.

These include security, information, directory, resource allocation and, in some cases,

payment mechanisms in an open environment. Moreover it is often necessary to build

high-level services for application development, execution management, resource aggre-

gation, and scheduling. Grid applications, in fact, usually refer to multidisciplinary and

large-scale processing applications, often coupling resources which cannot be replicated

at a single site, and which may be globally delocalized for whatever practical reason. The

latter are anyway some of the main driving forces behind the success of global Grids.

In this light, the Grid unquestionably allows users to solve larger or new problems by

exploiting resources that before could not be easily coupled. Hence, the Grid should

not only be considered a computing infrastructure for large applications, it is, indeed, a

technology that can bond and unify remote and diverse distributed resources providing

pervasive services to all the users that need them.

9.1.1 Grid Applications

A Grid platform could be used for many different types of applications. Grid-aware

applications are usually categorized into five main classes:

• distributed supercomputing (e.g. compute ab initio energies to build a potential

surface);

• high-throughput (e.g. quantum or molecular dynamic);

• on-demand (e.g. smart instruments);

• data intensive (e.g. data mining);

• collaborative (e.g. developing different high level codes to solve a complex prob-

lem).

A new emerging class of application that can benefit from the Grid is:

• service-oriented computing (e.g. application service built in such a way to provide

the users’ requirements driven access to remote software and hardware resources).
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There are several reasons for moving applications on a Grid, for example:

• to exploit the inherent distributed nature of an application;

• to decrease the total response time of a huge application;

• to allow the execution of an application which is outside the capabilities of a single

(sequential or parallel) architecture;

• to exploit the affinity between an application component and Grid resources with

a specific functionality.

• to easily interface different codes and algorithm one needs to solve a complex

problem (this represents our main concern)

It is now clear how, although wide-area distributed supercomputing has been a popu-

lar application of the Grid, a large number of other applications coming from science,

engineering, commerce, and education, can benefit from it. Grid distributed super-

computing may, on its turn, benefit from the existing applications developed using the

standard message-passing interface (e.g. MPI) for clusters. Many of them can, in fact,

run on Grids without change, since an MPI implementation for Grid environments is

available. Many of the applications exploiting computational Grids are, anyway, embar-

rassingly parallel in nature. The Internet computing projects, such as SETI@Home and

Distributed.Net, for instance, build Grids by linking multiple low-end computational re-

sources, such as PCs, across the Internet to detect extraterrestrial intelligence and crack

security algorithms, respectively. The nodes in these Grids work simultaneously on dif-

ferent parts of the problem and pass results to a central system for postprocessing. But

we are nonetheless, witnessing an impressive transformation of the ways computational

research is performed. Research is becoming increasingly interdisciplinary; in many cases

research start to be conducted in virtual laboratories in which scientists and engineers

routinely perform their work without regard to their physical location. They are able to

interact with colleagues, access instrumentation, share data and computational resources,

and access information in digital libraries. This exciting development has a direct impact

on the next generation of computer applications and on the way they will be designed

and developed. The complexity of future applications is expected to grow rapidly, there-

fore increasing the movement towards component frameworks, which enable the rapid

and widespread construction and use of cooperative environment. But this fact will also

imply grid architectures will be much more crucial in the closest future and technological

research, on its side, will be much more concerned about the easy interface of different
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applications, and about the use and development of on demand services and cooperative

environment.

9.2 A Common Format: Motivation

The activity reported in this Part has been carried out during the last few years within

a COST in Chemistry funded project (action D23 AbiGrid) [111, 112]; the same action

is now going on under a new COST project (action D37 DeciQ). The aim of the project

named [92], A meta-laboratory for code integration in ab-initio methods, is to build a

grid distributed laboratory where researchers would be able to use several codes, running

on different platforms, without worrying about boring details like file transfers, account-

ing, format translation and so on.

All the partners of the proposal have been developing quantum chemistry codes for in-

ternal use for many years. These codes are complementary and their combined use is

very important for the new collaboration. Moreover ”general purpose” programs are

needed in the workflow in order to compute some general and standard quantities that

will be used by the specific programs. The idea was to integrate all these codes in a single

meta-system for Post-SCF calculations, including heterogeneous computers, geographi-

cally distributed at the partners site. In fact, it is important to leave each code on the

platform it was originally designed for, under the responsibility of its owner for mainte-

nance and production, hence avoiding duplication of effort and the need for porting. The

first problem faced by the project was the different formats adopted by every code in

the chain, for this reason we report the work done on this very topic, i. e. how to enable

different programs, relying on different data formats, to communicate with each other In

general, one can imagine two different ways to make programs communicate. The first

one is to write interfaces converting the output of the first program into the input of the

second program. This means that we need a converter for each pair of communicating

codes. The second possibility, and the one we have chosenhere, is to design a ”common

format” and to write a converter for each program in the set. In this case only one con-

verter is needed for each code we are interested in. Of course, in order to avoid inventing

”yet another format”, we have made great efforts to design a format as general as possible

and to coordinate with other similar initiatives in Europe and elsewhere. First of all we

can identify two different kinds of information in quantum chemistry calculations: small

data quantities, mainly ASCII coded, like atom labels, geometry, symmetry, basis sets

and so on large datasets, normally binary, like integrals and expansion coefficients. The

data format we are interested in is mainly conceived for interchange. We do not think it

should be used as an internal format within programs, so we are more interested in func-
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tionality (it has to be general and complete) than in high performance and efficiency. As

far as the first type of data is concerned, several initiatives are active nowadays and in-

clude CML [113] (Chemistry Markup Language) and the activities carried out within the

E-science project in UK In all these projects, the choice for describing chemistry related

quantities relies upon an XML [114] based format that allows both human readability

and machine comprehension. We have adopted the same approach and spent some time

and effort in the definition of such a format. We called it QC-ML (Quantum Chemistry

Markup Language) and its description is reported. For an easy processing of QC-ML

files inside a QC program, we also need a specific library accessible from FORTRAN

programs, since FORTRAN is the most common language used in the QC environment.

No such library was available when we started this activity, so we devoted some effort

for producing it. The description of the library (f90xml) is reported subsequently. For

the second type of data, large binary ones, XML is not convenient, mainly due to its ver-

bosity. For several reasons HDF5 [115] was considered the best technology for designing

the large binary data format. A description of the data format (Q5cost), of the HDF5

technology and a discussion about its use in the data format is reported. A description

of the library used to access Q5 files will also be presented in the proceeding. Our main

idea is to have a sort of central repository containing all information about the chemical

system under investigation. The data in the repository are based on standard formats

(Q5cost and QC-ML). When a specific program has to be run on these data, a code

specific input-wrapper will translate the data from the repository into the code specific

input files. Then the program can be executed. The output data produced, through the

output-wrapper, will be used to update the central repository. In Figure 9.1 we show

a possible scheme for several codes running in sequence on the same data contained in

the central repository. In order to realize this vision we will need a common language

for describing the workflow and in addition, legacy and commercial licensed software

will need to be integrated in the infrastructure. The final infrastructure must satisfy

both grid requirements (fault tolerance, reliability) and human interface requirements

(web-based interfaces, user-friendly environments).

9.2.1 The QC Context: Intermolecular Forces and Linear Scal-

ing

As all the researchers in the present COST working group we share a common interest in

the implementation of QC ab initio algorithms for the treatment of molecular systems.

A peculiarity of the group is that most of the implemented codes concern nonstandard

algorithms, proposed and developed by the same persons that will take care of the imple-
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Figure 9.1: A Schemating representation of the integrated system



148 CHAPTER 9

mentation. In fact, although many highly efficient QC commercial codes are presently

available, the development of new techniques requires a huge programming work. In

particular, the attention is focused on algorithms and programs, for the treatment of the

electronic correlation. Nine Universities belonging to six different European countries

are and have been involved in the code development work:

• Bologna (Italy) a FCI [34] package, with calculation of energy and first and second

order properties;

• Budapest (Hungary) [116] participation to the COLUMBUS project: a general

purpose abinitio chain (SCF, CASSCF,CI);

• Budapest (Hungary): implementation of a direct MRCC [117] algorithm;

• Ferrara (Italy) NEVPT [118]: a MR perturbative algorithm;

• Toulouse (France) CASDI [87] a MR CI algorithm;

• Lille (France) EPCISO [119]: a spin orbit code;

• Valencia (Spain) PROP [120]: evaluation of molecular properties;

• Zurich (Switzerland) GAMESS US [121] a general ab initio package and Gemstone

[122] a grid architecture environment for QC;

• Tromsø (Norway): participation to the DALTON [19] project;

In recent years the interest has been particularly focused on the treatment of large

systems via the use of local orbitals, although not in an exclusive way (see the discussion

in the next section). These different codes are in many cases complementary, and the

interaction between different chains is extremely important. At the same time, the

flexibility and the experimental character of the single codes must be preserved, since

these are research products subject to a permanent evolution. For this reason, the

merging of these different codes into a single chain was not a viable solution. The need

for a closer integration among different codes, while keeping the independence of the

individual chains, was one of the reasons that motivated the activity of our WG.

9.2.1.1 The treatment of large systems

The computational complexity of typical quantum chemistry methods is very high start-

ing for instance, from N4 for Density Functional Theory (DFT) up to N7 in the case
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of the highly sophisticated Coupled-Cluster with the contribution of triple excitations

(CCSD(T)) method (here N is the number of atomic orbitals used in the calculation,

and hence is proportional to the system size). The Full Configuration Interaction (FCI)

method, which gives the ”exact” result for a given orbital basis, has an even faster

growth, with a factorial dependence. It is clear that, due to such fast computational

complexity, the application of QC methods to large realistic systems is extremely prob-

lematic. Unfortunately, large systems are precisely the most interesting ones for most

technological applications, like drug design, material science, catalysis, etc. In the last

decade new computational techniques have emerged, that enable the reduction of the

complexity of the algorithms to a linear behavior [123, 124, 125] as a function of the

system size. These are called Linear-Scaling (LS) methods and take advantage of the

locality of the molecular interactions to neglect all those contributions involving pairs

of atoms which are far apart in the molecule. LS methods use orbitals (either atomic

or molecular) that are localized as much as possible in a given region of the molecule.

Due to the fact that interactions between local orbitals in general decay very quickly

as a function of their separation, they can be neglected as soon as the distance reaches

a given cutoff. (The long-range two-center Coulomb interaction is an exception to this

behavior, and the corresponding integrals require a special treatment). For this reason,

the use of local orbitals in calculations is becoming a standard choice in modern QC.

In fact this has been the only successful way of achieving LS in the DFT, SCF, MP2,

and CC approaches. Current LS methods are of the Single-Reference (SR) type, which

means that there exists a particular Slater determinant that gives a reasonable zero-

order approximation of the wave function, and this determinant plays a special role in

the theory. However, SR methods give in general accurate results for closed-shell systems

only, and therefore are limited to describing molecules in their ground state and close

to the equilibrium geometry. Different situations of chemical or physical interest often

require a Multi-Reference (MR) approach. These include the treatment of electronic

spectroscopy, chemical reactivity, transition-metal complexes and, more generally, mag-

netic systems, charge/excitation processes and many others. For these reasons, it is clear

that MR approaches play a central role in QC and related areas, like material science,

nanotechnologies and biochemistry. At the same time, the extremely steep increase of

their computational complexity as a function of the system size limits these approaches

to quite small systems. MR algorithms that directly produce local orbitals, and that can

work on a local basis, can represent a first important step towards the development of

MR Linear-Scaling methods. The possible development of LS codes is far from being the

unique advantage of localization. As far as MR approaches are concerned, there can be a

significant benefit in using localized orbitals. Indeed the use of delocalized orbitals often
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allows a quite poor flexibility, for instance in choosing the active orbitals in CASSCF

calculations. In the case of many aromatic compounds, for instance, the complete π

system should often be taken as the active one. In large molecules, such an approach is

impossible. On the contrary, with localized orbitals, the effort may be focused on the

part of the system where the interesting phenomenon takes place. Moreover the use of

localized orbitals allows the interpretation of a MR wave function in terms of clear and

well defined electronic structures which are familiar to all Chemists.

9.3 Qcml: an Xml format for Quantum Chemistry

Each chemical system can be described, at the Quantum Chemistry level, by a collection

of data of very different kinds. A first and easy classification is to define them either as:

• Base facts: a fact that is given in the world and is remembered (stored) in the

system

• Derived facts: created by an inference or a mathematical calculation from terms,

facts, other derivations, or even action assertions

In this case, Base facts are the initial data for describing the physics of the system, like

stoichiometry, geometry, symmetry and basis set information. Derived facts are all those

quantities computed from the previous ones using QC algorithms, like different types of

energies, properties, integrals, coefficients, and so on. In the first category, we can devise

three different classes of data, describing respectively:

• Symmetry: the symmetry of the system in terms of group name and other symme-

try data;

• Geometry: the atomic composition of the system and its cartesian coordinates;

• Basis: the basis set information, either given by name or fully defined.

All these data are rather ”small” and can be effectively described using a mark-up lan-

guage for enhancing readability and standardization. A hierarchical scheme of Quantum

Chemistry objects was designed and described [92] with a XML based specific language,

that we called Qcml (Quantum Chemistry Mark-up Language). Qcml is defined by a

XML-Schema that can be found on the WEB

(http://sirio.cineca.it/abigrid/QCMLSchema.xsd)

together with the proper html documentation
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http://sirio.cineca.it/abigrid/workArea/QCMLdoc.html every Qcml file needs to be val-

idated against this schema. A brief description of XML and the motivation for using it

for describing QC data are reported in the next subsection. The first part of a Qcml file is

devoted to the description of Base Facts, grouped under the tag <molecule> containing

as attributes the number of electrons, the electric charge, the spin multiplicity and the

space symmetry of the (ground) state wave function. Inside the <molecule> tag three

sub-sections are present, describing respectively the spatial symmetry (<symmetry>) of

the molecular skeleton, the atomic composition and geometry (<geometry>) and the

atomic basis set (<basis>). In our present implementation these quantities are constant

under the run and are left untouched by any program in the chain. Here we show a

schemating represention of the basic format of the first section of a Qcml file:

<molecule nElectrons charge spinMultiplicity spaceSymmetry>

<symmetry ... />

<geometry ... />

<basis ... />

</molecule>

The system symmetry is described using the group name that references a repository

containing all possible Abelian Symmetry Groups described with their generators. The

system geometry is described by a list of atoms and their Cartesian coordinates; the user

can choose whether to list all atoms or only those unique by symmetry. In the second case

the Cartesian coordinates of the missing atoms are internally generated using the group

generators referenced by Symmetry tag. Atoms are described by their atomic symbol;

symbol Du can be used for special pseudoatoms of zero charge and mass, necessary in

most cases for using special bond functions. The system basis is described by means of

Gaussian type basis functions for each unique atom, with their exponents and contraction

coefficients. The user can explicitly introduce these quantities for each angular momenta

by means of tags <angularMom> for specifying basis function angular type (s, p, d, etc..)

and orbital <exponents> and <contractions> to write down actual parameters. As an

alternative it is possible to define a basis for each atom by means of standard names

(for instance vDZ, Sadlej, etc...); in this case exponents and contraction coefficients are

retrieved from the EMSL database, and can therefore be made available to wrappers if

needed for the specific QC program input.

The second section of the Qcml file is intended to contain Derived Facts , e.g. data that

are produced and computed as an effect of running a QC program. It is clear that while

the first section of the Qcml file is kept untouched once one has defined the QC problem

and system under investigation, the second one is constantly modified or upgraded during
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the QC runs. The fundamental tag defining this section is <computedData> which may

contain three fundamental subtags: energy, properties and file. Again we present the

structure of this second part of the Qcml file:

<computedData>

<energy unit levelOfTheory quality value>

<state spaceSymmetry spinMultiplicity excitationLevel />

<property unit levelOfTheory quality value>

<state "bra" spaceSymmetry spinMultiplicity excitationLevel />

<state "ket" spaceSymmetry spinMultiplicity excitationLevel />

<operator order name/>

<file address URL/>

</computedData>

The tag <energy> is used to store the computed values of molecular energies. It

requires the definition of the level of theory, and the specification of the electronic state

to which it refers by means of symmetry class, spin multiplicity and ordinal number

within the specified symmetry and spin subspace. Note that in each Qcml file more than

one tag <energy> can be present, each of them referring to different levels of theory on a

single state, or to different states. The tag <property> is used for storing properties of

(at least theoretically) any order, in the usual perturbation theory sense. It requires the

same qualifiers as the <energy> tag but more child tags: the left hand (’bra’ in the Dirac

notation) state and the right hand (’ket’) state, as well as the operators involved. For

first order properties only one operator will be defined, otherwise more than one operator

is needed (for instance two for second order properties and so on). If ’bra’ and ’ket’ states

are not the same, the stored property value is considered a transition matrix element

between the two states, like e.g. a transition dipole. The tag <file> contains the linking

information to a separate binary file that stores all the computed ”large” binary data,

like one and two electron integrals and MO coefficients. This file is identified by its name

(if stored on the same platform) or, more generally, with its Uniform Resource Location

(URL) that is a standard and unique way to identify a file over the network. The file data

format is Q5cost based on HDF5 and whose structure is described later. The information

described up to now is not sufficient to completely describe a Computational Chemistry

system. Still missing are all those specific directions necessary to actually run a QC

program chain and safely perform the given computation. Thus, we plan a final section

in the Qcml file containing the so-called work flow parameters of the computational

chain. We have not devised this section yet, since it is strongly connected to the choice

of specific grid architectures and techniques, while it adds little or nothing to the physical
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description of the problem. In order to use and change the Qcml file we need a program,

specifically designed for each QC code in the chain, capable of retrieving information

from, and writing information to, the file in accordance with the Xml syntax. For a

given QC code, the input wrapper reads data from the Qcml file and converts them

into the QC code specific input, while the output wrapper reads data from the QC code

specific output and adds them to the Qcml file. Many informatics tools with many

language bindings are nowadays available for performing such a task. Some of them

are object oriented (for instance DOM [128]) or events oriented (SAX), and libraries

to manipulate Xml files are quite common for JAVA, C++ or scripting languages like

Python or Perl. Even if today a limited number of FORTRAN libraries are available

(xmlf90, xml-fortran) [129], at the time we started this work there were no libraries usable

for the FORTRAN language. Since FORTRAN is the most common language used by

QC programmers we decided to write down a specific FORTRAN 90-XML library, to be

used for producing the wrappers. Specific details about the library will be given later,

here we just want to mention that the library is based on a publicly available C binding

(gdome2) [130], it implements a DOM [128] model and it allows users to write or read any

specific Xml element (tag and attributes), using a FORTRAN Application Programming

Interface (API). The library is completely general and does not contain any ”chemical”

concepts. It can be used for general programming involving Xml and FORTRAN. It is

available under the open-source license on the web address reported.

9.3.1 Xml: why the best choice?

A complete and exhaustive description of the Xml meta-language and its applications

will be far beyond the scope of this thesis, and will require a consistent amount of time,

but we think it is convenient to recall briefly its main feature justifying its choice as the

base for our Qcml. Extensible Markup Language (Xml) is a simple, very flexible text

format derived from SGML (ISO 8879). Originally designed to meet the challenges of

large-scale electronic publishing, XML is also playing an increasingly important role in

the exchange of a wide variety of data on the Web and elsewhere. Each XML document

has both a logical and a physical structure. Physically, the document is composed of

units called entities. An entity may refer to other entities to cause their inclusion in the

document. A document begins in a ”root” or document entity. Logically, the document

is composed of declarations, elements, comments, character references, and processing

instructions, all of which are indicated in the document by explicit markups. The logical

and physical structures must nest properly. Each XML document contains one or more

elements, the boundaries of which are either delimited by start-tags and end-tags, or, for
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empty elements, by an empty-element tag. Each element has a type, identified by name,

sometimes called its generic identifier (GI), and may have a set of attribute specifications.

Each attribute specification has a name and a value. Xml Schemas express shared

vocabularies and allow machines to implement rules made by people. They provide a

means for defining the structure, content and semantics of XML documents. Each XML

document should be validated against a proper Xml Schema. The main reason that led us

to the choice of Xml is its high versatility and its hierarchical structure, two features that

allow the definition of an high organized, self-consistent and self-describing file format,

i.e. a file format being in turn robust enough to allow easy exchange among different

codes, and flexible to be adapted to research codes under constant development. It is also

important to recall in Europe and abroad there is a large number of projects intended to

build Xml chemical languages, e.g. Xml based file formats to describe chemical entities.

Although most of these project are aimed to describe structural chemistry (consider for

instance Cml in the U.K.) it is very important to build a communication channel between

them and our quantum chemistry based project, allowing the ease implementation of

future integration and cooperation.

9.4 Q5Cost: a HDF5 format for Quantum Chem-

istry

For the large binary data distinctive of quantum chemistry, we need to find a suitable

technology that can merge characteristics like portability, efficiency, FORTRAN binding,

data compression, and easy access to information. Usability is also important but not

critical since it was our intention to build a new data model based on QC concepts and

a new library to access it. HDF5 was considered the best technology for designing our

abstract model. In fact, using it several important features come for free, like portability

across different hardware platforms, efficiency and data compression and tools for file

inspection. The main characteristics of the HDF5 technology is reported in the next sec-

tion and a complete discussion about the Q5cost library is reported in the next Chapter.

In this section we will present the abstract data model for large binary data in QC. It is

targeted toward computational chemical entities, which are mapped onto the appropri-

ate subroutines in the Q5cost library. Starting from a preliminary analysis among the

involved research groups, an extensible data model has been proposed based on some

firm criteria: The first criterion in this model is that many different types of simple data

must be handled (nuclear energy, molecular orbital labels, molecular symmetry and so

on). We will refer to these data as ”metadata”, in order to distinguish them from the
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real large information on the chemical system, the integral values. Metadata represent

well known chemical entities and belong to three generic data classes: scalars, vectors

and n-index arrays. For example, the nuclear repulsion energy is a floating point scalar,

molecular orbitals are an (N,M) floating point 2-indices array, the associated orbital en-

ergies are a floating point vector, the molecular orbital labels are a vector of strings and

so on. The library should provide an interface for accessing these data both as generic

or specialized entities. The second criterion is that in quantum chemistry large matri-

ces with an arbitrary number n of indexes (rank-n arrays) are common data structures.

This is the case for entities like two-electron integrals (n = 4), but also for other more

application-specific information, like the four particle density matrix (n = 8). These

data usually scale aggressively with the system size, and they are normally accessed with

a chunked approach. For the sake of simplicity we have chosen for the moment to store

only non-zero elements, each one associated to n indexes in the case of a rank-n array.

These large data arrays share common features:

• they usually are integrals, whose evaluation involves one or more operators and

a given (large) number of functions. These functions are referred by the indices

of the matrix. For example, two-electron integrals on the molecular orbital basis

are stored as a rank-4 array with indices referring to the molecular orbitals; in

the case of atomic basis set overlap integrals, the indices refer to the atomic basis

set orbitals. the rank of the matrix depends on the operator involved, a n-particle

operator giving rise to a rank-2n array. Atomic basis set overlap is described by two

indices, and can be stored as a rank-2 array, two-electron integrals has four indices

imposing a rank-4 array and the four particle density matrix has eight indices,

requiring a rank-8 array.

• additional information is needed to identify the operator involved. The latter is in

general a tensor in the physical space, so we also need to specify the component

(cartesian/spherical) for each matrix. The electron-electron repulsion is a scalar

two-body operator and generates the usual 4 index array of the two-electron inte-

grals; the dipole is a one-body vector operator and needs three rank-2 matrices,

one for each component; the quadrupole needs six matrices and so on. More-

over for each operator component one has to specify the spatial symmetry and

real/imaginary nature of the stored values (e.g. magnetic dipole). Symmetry may

also reduce the number of matrices to be stored.

This means that all these data objects could be described as one ”generic property”,

provided we give the matrix rank and the definition of the involved operator(s) and
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functions. Since some of these ”properties” are well known chemical entities and chemists

are used to refer to them by name, we chose to provide a specific library access to most

of them (e.g. overlap, one-electron integrals, two-electron integrals, etc), in addition

to a general interface to handle the ”generic property”. This should ensure both ease

of use and flexibility of the library. The last point to be taken into account is that all

these chemical objects are related within a hierarchical structure and logical containment

relations can be defined for them. A first (root) container, named System, represents

the molecular system as defined by its structural information (chemical composition

and spatial geometry). Multiple Systems make it possible to handle different molecular

geometries. To this container we can associate all the metadata that are invariant at

the level, mainly information about the spatial reference frame. A System can contain

several ”Domains”. The role of the Domain is to group together Property entities whose

indices conceptually refer to the same kind of functions. Three Domains have been

recognized as fundamental: AO for Atomic Orbitals, MO for Molecular Orbitals and

WF for wave functions. Each Domain can contain other containers, one for each actual

property. Moreover a set of invariant metadata, different for each type of domain, is

associated to it and stored as Scalar, Vector and Matrix entities.

• The AO Domain holds properties referring to the atomic basis set functions: over-

lap, one-electron and two-electron integrals on the atomic basis set, in addition to

the generic property. The invariant metadata consist of information on the Atomic

orbitals, such as their number, labels and symmetry features.

• The MO Domain holds properties referring to molecular orbitals: one-electron and

two-electron integrals on the MO basis set, in addition to the generic property.

The descriptive metadata for the domain refer to the MO basis description: their

number, labels and symmetry, the AO basis, the method/wavefunction they were

derived from (SCF, MCSCF, ...), the coefficient matrix, orbital energies, classifica-

tion and occupation numbers (where applicable).

• The WF Domain holds properties referring to the electronic states. Although under

development, the complete definition of this container is not available yet, but it

is not essential for the first deployment and test of the library and format.

For each of the domains, different occurrences can be defined by means of an identifier

(tag) chosen by the user, with a default value if no tag is provided. The aim is to provide

storage of multiple entries for each Domain, like in case of multiple molecular orbitals

in the MO Domain, or multiple basis sets in the AO Domain. The bottom level of the

hierarchical scheme defines the property container. Even if at the user level different
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Figure 9.2: The abstract model of the Q5Cost file system
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”properties” are available, and as we said all of them are different instances of the same

”generic property” object. This object holds the true data, i.e. the integral values

and the corresponding index values. Also here, in order to fully define the nature of

the actual property, some metadata are needed: name, rank, symmetry and type (i.e.,

real, imaginary or complex). In ab-initio codes, the two-electron integrals, either on the

atomic or the molecular basis set, are among the largest data set. For this reason, an

efficient management of these integrals is crucial for obtaining a good performance. The

whole set of N integrals, with the corresponding indices, therefore can be stored within

a linear structure like that reported below:

(val1; i1, j1, k1, l1)

...

(valN; iN, jN, kN, lN)

where val is the floating point integral value and i,j,k,l are the corresponding integer

indices. As already said the simplest solution is to store both the integrals and the four

indices, so the order of the records does not matter. Moreover, null or small integrals

can be simply omitted from the list, a fact particularly important when working with

local orbitals. For this reason, at the moment, this is the only strategy that was adopted

in the Q5cost data format. The price one has to pay is the additional storage of the

four integer orbital labels, leading to a memory/disk occupation that could be three

times larger than the one if only integrals were stored (in the common case of REAL*8

integrals and INTEGER*4 indices). In the case of very large integral files, this overhead

can be extremely heavy. For this reason, in many QC programs the integrals are stored

in a well defined order, the standard order, so that the orbital labels can be omitted

without loss of information. (In the presence of spatial symmetry, a large number of zero

integrals are present, and the standard order can be modified in order to take this fact

into account). At present only the simplest solution has been implemented in Q5cost.

This representation of the data, although not the most efficient solution in terms of space

occupation, is well known by the interested parties, easy to debug and already integrated

in the current library. Other strategies for storing integrals, for instance without indices

but with a given order, should be easy to implement. Of course we are aware that, for

the sake of generality, it is important to provide for the possibility to store integrals also

in the other way, allowing the choice among one or more definite orders.

9.4.1 HDF5: Why the best choice?

The Hierarchical Data Format (HDF) is a general purpose library and file format for

storing scientific data. HDF5 was created to address the data management needs of
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scientists and engineers working in high performance, data intensive computing environ-

ments. As a result, the HDF5 library and format emphasize storage and I/O efficiency.

For instance, the library is tuned and adapted to read and write data efficiently on par-

allel computing systems. HDF5 is developed and maintained by NCSA/University of

Illinois (http://hdf.ncsa.uiuc.edu). It consists of an abstract model for managing and

storing data, and a library (with bindings for several programming languages) to imple-

ment the data model. The HDF5 library provides a programming interface to a concrete

implementation of the abstract model. HDF5 can easily handle data described by con-

ventional data structures such as multidimensional arrays of numbers, tables or records,

and images, in addition to more complex data structures such as irregular meshes and

highly diverse data types. Other important issues are heterogeneous computational envi-

ronments, parallel data access and processing, the diversity of physical file storage media,

and varying notions of the file itself. It also addresses the issues of efficient data access

and storage, file portability and supports very large data volumes (practically unlimited).

Its flexible data model is extremely useful in multidisciplinary science applications. Some

HDF5 features that led us to the choice of this technology are:

• Unlimited file size, extensibility, and portability

• General data model

• Flexible, efficient I/O

• Unlimited variety of data types

An HDF5 file has a hierarchical structure and appears to the user as a directed graph,

conceptually similar to the UNIX type file system. The nodes of this graph are the

higher-level HDF5 objects that are exposed by the HDF5 Application Programming

Interfaces (APIs):

• Groups (corresponding to directories)

• Datasets (corresponding to files)

• Attributes (or metadata: low dimensional data describing the other data)

All the components of an HDF5 file can be easily managed by means of the HDF API.

Moreover HDF5 is unique in its ability to physically and conceptually separate data

from metadata (Attributes), even if they are stored in the same file. The available HDF5

software tools consist of a number of libraries for each supported programming language
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(Fortran 90 is one of them) and several utilities for managing data files (inspecting,

copying, merging, and so on). It is open source and freely downloadable from the HDF5

web site. Using this technology several specific data formats and applications were

created in different contexts. A wide list of tools (both commercial and open source)

based on HDF5 can be found on the web (http://hdf.ncsa.uiuc.edu/whatishdf5.html).



Chapter 10

Accessing the file: Fortran APIs

As previously stated in order to implement the easy access to the Qcml/Q5Cost file for-

mat we designed and wrote two APIs: F77/F90Xml [126] and Q5cost [93]. In particular

the previous is a general library to provide read/write access to any Xml file regardless

of its specific, i.e. ”chemical”, significance. The latter, on the contrary, is an higher

level library intended to provide specific access to Q5Cost file, therefore its istances and

objects are logically bound to quantum chemical entities.

10.1 Q5cost a FORTRAN API to handle Quantum

Chemistry large datasets

The Q5Cost library provides read and write access to files defined in accordance with

the data model described before (Q5cost data model). It provides a specifically designed

high-level access for quantum chemistry developers. The rationale is to provide a FOR-

TRAN interface based on well known chemical entities, rather than groups or datasets

like in the original HDF5 interface. HDF5 takes care of the low level management of the

file, and Q5Cost provides the high-level Application Programmer Interface for storage

and retrieval of chemical entities.

The library is written in FORTRAN 95 and consists of several modules, each one

providing different facilities. The most important modules are

• Q5Cost: defines the high-level API. This module provides subroutines designed

to be at the disposal of the final programmer.

• Q5Core: provides a wrapping facility for HDF5 routines, in order to perform

additional useful services like reference counting and debugging. It also provides
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simplified routines to perform frequently used low-level tasks.

• Q5Error: provides facilities for high level debugging of library and client codes.

This module implements a ring buffer for error messages, different logging levels,

generic reference counting for catching memory leaks and a subroutine call stack

trace.

The names of the subroutines in each module are identified by an appropriate prefix,

and have been chosen to provide an explicit and intention revealing interface to the en-

tities described in the previous section. Although FORTRAN 95 does not allow object

oriented (OO) programming, some OO concepts have been used in the development of

the library, but taking into account the possible procedural programming background of

future developers. The state is preserved in the HDF5 file, and subroutines refer to the

file directly through the HDF5 file identifier, an easier concept for FORTRAN program-

mers more used to file descriptors.

A test suite has been designed and implemented in order to verify the library correctness

in a high number of well-known critical situations. At present, more than 250 tests are

available, covering most common usage patterns and performing reference counting to

prevent leaks of HDF5 references. The test suite provides an effective tool for debug-

ging and bug fixing. Library documentation is embedded into the FORTRAN code as

comments, using a custom tag system to provide meta information about each com-

ment. A simple parser, written in the PYTHON programming language, extracts the

documentation producing HTML files.

10.1.1 The Q5Cost Module

This module is the main reference for the final user. It provides subroutines to read

and write HDF5 files in the Q5cost format with a high level of abstraction. Using this

library the users can deal with high level concepts without worrying about low level

implementation details. If a finer access is required for the underlying HDF5 file, the

Q5Core module provides this type of access in a simpler way with respect to the raw

HDF5 routines. All the routines in the Q5Cost module have the Q5Cost prefix and they

are organized in several classes:

• Init: initialize and de-initialize the library within the program.

• File: create, open, close the Q5Cost file and write/get root attributes, like creation

time, access time and file version.
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• System: create or check the existence of the System and set/get the specific

attributes

• AO: create or check the existence of a given occurrence of the AO Domain and

set/get its attributes

• AOOverlap: create the folder, read and write data for the atomic basis set overlap

property

• AOOneInt: create the folder, read and write data for the one-electron integrals

in atomic orbitals basis

• AOTwoInt: create the folder, read and write the data for the two-electron inte-

grals in atomic orbitals basis

• MO: create or check the existence of a given occurrence of the MO Domain and

set/get its attributes

• MOOneInt: create the folder, read and write data for the one-electron integrals

in molecular orbitals basis

• MOTwoInt: create the folder, read and write the data for the two-electron inte-

grals in molecular orbitals basis

• WF: create or check the existence of the WF domain and set/get its attributes

• Property: create the folder, read and write data for a generic property. The name,

domain, rank and type have to be defined by the user.

Additional routines are available for the generic access to the ”Property” class, allow-

ing the management of user defined properties. Subroutines like AOOverlap, MOOneInt

and MOTwoInt contain calls to these property routines, passing the specific parameters

of the involved property. The routines of the Q5Cost module provide a context-based

access to chemical entities. This access is converted into a path-based access, creating

an appropriate layout for HDF5 groups, datasets and attributes, and writing the user

provided data into the file. Some data are provided automatically by the library, like

the creation or access time and the Q5Cost library version. One important aspect of

this format is that the user is not forced to enter all the quantities; he can store the

quantities that are actually available, or in which he is interested, and add other data

later when available. Constraint checks are however mandatory in order to assure basic

file consistency. For example, a MO Domain can be created only if a System and an AO
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Domain exist, in order to guarantee the presence of fundamental data, like the order of

the symmetry group and the number of basis functions for each symmetry class.

10.1.2 The Q5Core and the Q5Error Modules

The Q5Core module is a low level module designed to provide wrapping facilities be-

tween HDF5 and Q5Cost. At the moment it is focused on providing additional debug

information, reference counting for HDF5 objects, additional low-level API for simplify-

ing common tasks and so on. This module provides path-based management of Scalar,

Vector and Matrix entities (in contrast with the context-based approach of the Q5Cost

module, which focuses on chemical concepts rather than HDF5 path). It also provides

routines for the easy handling of the Property data (indices and values), relative to

a CompactMatrix class (CM). End users in general should not access Q5Core module

routines. The Q5Core module guarantees the transparency of the Q5cost data model

with respect to the underlying technology. In case we decide to use another storage

format in place of HDF5, only this module should be modified. The Q5Cost module,

i.e. the end user interface, remains unchanged, being independent of the low-level format.

The Q5Error module provides subroutines for debugging and monitoring the behavior

of the library and the application code. A ring buffer is provided to keep track of error

messages generated by the library. A verbosity level can be set, from totally silent

to highly verbose; in the latter case each subroutine call and return is reported in the

buffer. Moreover, a stack for backtracking has been implemented to keep track of the call

tree. The tree is printed out when an error occurs or when error reporting is requested.

Different specific error codes have been provided for, to report anomalous behavior of

the application code or of the library itself. The error codes are defined as numeric

parameters, and report situations ranging from invalid parameters to non-existence of

some information in the file. The presence of an error condition is returned to the

application code through the last parameter of each subroutine.

10.1.3 See what you have: The q5dump

In order to facilitate the exchange features of our file format, we wrote a FORTRAN

application, miming the existing h5fdump which is distributed with hdf5. The q5dump

should be considered a part of the Q5cost library itself, and is capable of retriving the

most important metadata stored in a Q5Cost file and print them on the screen. This

allows a generic users to get valuable information on the file and on the data stored on
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it, but, in the future, it could also be used as a tool for a validation step that should be

performed on grid architectures in order to assure file integrity and compatibility.

q5dump makes use of both high level libraries call (basically Q5Cost and Q5Core mod-

ule’s ones), and lower level hdf5 native routines in order to get the most complete, flexible

and fast retriving of the information. The Q5Cost files are binary files, therefore the ex-

istence of a tool capable of interpreting the informations is of invaluable importance not

only in the case of distributed computing but in general situations, and this task would

not have been so easily accomplished using standard FORTRAN binary files. Here we

present, for the reader convenience, a real example of a q5dump output. The file which

has been examined stores molecular integrals computed at SCF level for the LiH molecule

in a Sadlej base (33 A.O.) in this case dipole moment integrals have been computed too:

************************************

* Q5Costdump *

* *

* a tool for analysis of *

* Q5Cost files *

* *

************************************

Enter the file name:

Creation time 2007/01/12 18.13.55

SYSTEM ATTRIBUTES

Title: Q5 Cost file produced from Dalton

Order of the symmetry group 4

Nuclear Repulsion (Core Energy) 0.995024875621890

Groups present 2

ao 1

tag-default

mo 1

tag-default

------------------------------------------------------

Properties of AO group <default>

Number of Orbitals 33

Orbital in Symm. Classes 17 7 7 2
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AO Labels:

Li1sLi1sLi1sLi1sLi1sLi2pzLi2pzLi2pzLi3d0Li3d2Li3d0Li3d2H 1sH 1sH 1sH 2pzH 2pz

Li2pxLi2pxLi2pxLi3d1Li3d1H 2pxH 2pxLi2pyLi2pyLi2pyLi3d1Li3d1H 2pyH 2pyLi3d2

Li3d2

Property-overlap is present

-------------------------

Properties of MO group <default>

AO REF: <default>

Number of Orbitals 33

Orbital in Symm. Classes 17 7 7 2

AO Labels:

Li1sLi1sLi1sLi1sLi1sLi2pzLi2pzLi2pzLi3d0Li3d2Li3d0Li3d2H 1sH 1sH 1sH 2pzH 2pz

Li2pxLi2pxLi2pxLi3d1Li3d1H 2pxH 2pxLi2pyLi2pyLi2pyLi3d1Li3d1H 2pyH 2pyLi3d2

Li3d2

XDIPLEN is present

YDIPLEN is present

ZDIPLEN is present

oneint is present

twoint is present

------------------------------------------------------

-----------------------------

10.1.4 Performance and efficiency assessment

As we have already discussed, the Q5cost format was intended as a file exchange format

between different platforms and codes, and not as an internal format to be used during

actual computations. For this reason, performance considerations have been considered

to be less important than other features such as transparency or code and file portability.

But to ensure that the library does not impose excessive overheads in terms of CPU time
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or disk space, we decided to undertake some comparisons with ordinary binary files. All

performance tests have been run on a single node of an IBM Linux Cluster 1350 at

CINECA (Intel Xeon Pentium IV, 3 GHz 512 Cache). The software was compiled with

the Intel FORTRAN Compiler 8.1 and run under Suse Linux SLES 8. In order to perform

the tests we wrote a specifically designed code that:

• Creates a proper Q5Cost file with its internal structure (System, AO, MO, . . .)

• Opens a normal binary file

• Writes in the Q5Cost file a number of two electron integrals specified by the user

with the proper format: a one-dimensional array of reals (values) and a four-

dimensional array of integers (indices) using a chunk whose size has been specified

by the user.

• Writes the same number of two electron integrals in a binary file together with the

four indices. For this operation a buffer of the same size of the chunk specified

previously is used

• Computes the time necessary to write the Q5Cost and binary files and calculates

their sizes.

In a first test we evaluated the time needed to write a file of approximately 300 Mb, using

different chunk sizes; the results are reported in Table 10.1. As it can be seen the time

needed to write the Q5Cost file is less than the time needed to write the ordinary binary

file for any chunk size. This feature is a direct consequence of the use of the HDF5

library, whose performance characteristics are well documented [115, 127]. Obviously

using chunks of high size, hence limiting the number of accesses to the file, decreases

rapidly the time needed for the entire process.

In the second test we studied the time needed to write Q5Cost and binary files with

a fixed chunk size (16384), and the corresponding size of the file so produced. The

results are collected in Table 10.2. It can be seen that the sizes of the Q5Cost files are

comparable with the binary file sizes. The Q5Cost files are in fact, only bigger by less

than 1% compared with the ordinary binary files. The main problem regarding disk

occupation is that all four indices are stored for two electron integrals and this leads to

large file sizes. It is possible to avoid storing the indices by using a predefined order; we

are currently working on implementing such a mechanism in our library.
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Table 10.1: Writing time (in seconds) versus chunk size. Number of integrals 15000064,

binary file size 343 Mb, .q5 file size 346 Mb

Buffer size Fortran Binary Q5cost

1,024 265.23 226.62

2,048 121.13 114.53

4,096 62.38 59.02

8,192 34.39 31.46

16,384 18.86 17.04

32,768 8.56 6.09

31,072 6.19 4.86

262,144 5.84 4.08

Table 10.2: Space occupation and writing time (in seconds) versus number of integrals

for a fixed chunk size of 16384 integrals

Number of Integrals Q5Cost Binary

size Write time size Write time

16,384 397Kb 5.00 10−2 384Kb 5.00 10−2

65,536 1.5Mb 1.00 10−1 1.5Mb 1.00 10−1

114,688 2.7Mb 0.15 2.6Mb 0.17

507,904 12.0Mb 0.62 12.0Mb 0.68

1,015,808 23.0Mb 1.21 23.0Mb 1.37

5,013,504 115.0Mb 5.88 115.0Mb 6.41

10,010,624 231.0Mb 11.11 229.0Mb 12.12

50,003,968 1.1Gb 56.19 1.1Gb 64.21

100,007,936 2.3Gb 125.32 2.2Gb 148.53
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10.2 F77/F90Xml: A Fortran API to handle general

Xml file

The present Section describes the design and the implementation details of F77/F90xml,

a Fortran 77/90 binding library that provides a DOM interface for accessing XML doc-

uments from the Fortran language. Xml (Extensible Markup Language), as already

stated, is a well established standard tool for data sharing. Its peculiar structure makes

it possible to describe both the data and their meaning in a structured way, by means of a

human-readable format which is also machine-parseable. An Xml document is organized

as a tree of nested nodes with a single root node including other nodes in a parent-child

relationship. Nodes are heterogeneous: they can be elements, comments, text nodes,

processing instructions and so on, all of them are indicated in the document by explicit

markups and manageable through specific interfaces. In a Xml document elements are

delimited by start-tags and end-tags. Each element has a type, identified by its name,

and may have a set of attribute specifications. Each attribute specification has a name

and a corresponding value. As defined in W3C (World Wide Web Consortium), DOM

(Document Object Module) is an interface for accessing and updating an Xml document,

and is platform and language independent. DOM builds an in-memory representation of

the Xml tree, in terms of elements, attributes, text nodes, and allows basic operations

like creation, deletion and retrieval of the nodes. DOM is only an interface specifica-

tion; specific implementations (also called ”bindings”) have to be made available for the

different programming languages. Since Xml is widely use for commercial applications

on the web, several bindings are available for languages like java, python, but not for

scientific languages like Fortran. After the definition of Qcml (based on Xml) a Fortran

access to XML files was a crucial demand from the involved partners, given the frequent

use of the latter by the Quantum Chemistry community, and the development of the

F77/F90xml library was, therefore, driven by the lack of an available DOM library for

the Fortran binding when the project started. Today several others Fortran interfaces

are available, although not always DOM compliant.

10.2.1 The FORTRAN API

The F77/F90xml library is written in C and is designed to provide a Fortran interface

to DOM [128]. It is build on top of gdome2 , an open source library that was developed

as part of the GNOME project. The gdome2 [130] implementation provides a nearly

complete ”DOM level 2” interface . The only missing feature is ”events”, which however

is not critical in the target environment. XPath support is available, although not
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tested, and therefore it must be considered as experimental. The F77/F90xml library

requires libgdome/gdome2 release 0.8.0, glib-1.2.10 and libxml2-2.5.11 . Moreover it

requires python 2.3 or above in order to be compiled. The library has been successfully

compiled on the Intel/AMD Linux platform, using gcc (C compiler) and the Intel Fortran

Compiler. On the IBM p5-575 (with AIX operating system) the compilation has been

performed with the XLF compiler suite. The library is released under the terms of the

LGPL license and can be downloaded from the web site reported in the References . The

F77/F90xml library has been designed with the Fortran 77 backward compatibility in

mind. The library provides two interfaces:

• Fortran 77 interface, based on specialized routines called ”multiplexers”

• Fortran 90/95 interface, fully DOM Level 2 compliant;

The F77 interface was an initial strong request from the interested parties, since some

researchers still work in a pure Fortran 77 environment. The F77 interface is not DOM

compliant, and therefore it is quite complex to use and error prone; however, it respects

the strict F77 standard rules for routines name length. To respect the standards and

to reduce namespace pollution, the library provides specialized routines, called ”multi-

plexers”, whose role is to dispatch function calls and parameters to the full DOM API

provided by gdome2. Each multiplexer gives access to a different set of DOM routines,

grouped by means of their type signature. The F90/95 interface is realized on top of

the F77 one and provides a clean and simple access, since in F90 the limitation on the

names length is less restrictive. All the gdome2 functions are mapped to Fortran sub-

routines with similar names and collected into a MODULE. A simple F90 code example

is provided:

INTEGER :: first, last, elem, err

!

!..<. get elem by some other call ...>

!

CALL f90xml_el_firstChild(first,elem,err)

CALL f90xml_el_lastChild (last ,elem,err)

This can be compared with the equivalent C code using the gdome2 library:

GdomeElement *elem;

GdomeNode *first, *last;

GdomeException exc;
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/* <... get elem by some other call ...> */

first = gdome_el_firstChild(elem, exc);

last = gdome_el_lastChild (elem, exc);

From the comparison it is easy to get the main features of F90xml library with respect

to gdome2. First of all, the standard prefix f90xml replaces gdome in the routine names

to provide a correctly name-spaced set. Another important difference is related to the

data reference handling. The gdome2 interface is structured in an Object Oriented style,

with all the Xml objects (nodes, elements, ...) handled by means of C pointers to dynam-

ically allocated structures. The handling of pointers is not straightforward in Fortran,

so an integer token is used to reference a particular pointer corresponding to a given ob-

ject (for example to GdomeNode, GdomeDomImplementation, GdomeDOMString and

so on). The library internally provides a cache space for the token/memory pointer asso-

ciation. It is used for mapping each token with the memory pointer, to store new pointers

and to produce the corresponding tokens. A Fortran client program always handles these

integer tokens, hereafter named codes, uniquely identifying a particular Xml object. The

current implementation makes use of a simple linked list for storing this correspondence.

It is kept in memory until the gdome2 object is completely deallocated. Substitution of

the linked list with a more efficient hash table can be implemented transparently in a

later version of the library. Another major difference is in the routines’ arguments layout:

in the F77/F90xml library, the first argument is always the corresponding gdome2 func-

tion returned value; therefore the F90 interface declares this argument as INTENT(OUT).

The following arguments are the same of the corresponding gdome2 routine and in the

same order, therefore they are marked as INTENT(IN) with the exception of the last one,

the returning error condition, that is marked as INTENT(OUT). If the gdome2 function

return value is void (no value), the corresponding F77/F90xml subroutine will return in

the first integer argument a standard numeric parameter NullCode, which evaluates as

zero.

String Handling In the F77/F90xml library string objects are handled with a code

token referring to a DOMstring object. For example, when a name of a Xml element is

requested, the subroutine returns a code referencing a DOMstring object. In the same

way, when an element must be given a name, a DOMString has to be allocated and filled

with the information, and its code token is then passed to the specific routine. So we

need a set of routines to convert Fortran strings to DOMstring objects and vice versa.

The following helper routines are available in the library to handle DOMstring objects:
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• f90xml str mkref: creates a new DOMstring from a Fortran CHARACTER string.

It accepts the Fortran string and returns a code referencing the newly created

DOMstring object.

• f90xml str length: accepts a DOMstring reference and returns its length. This

routine is useful to know in advance how many bytes are needed in a Fortran string

in order to receive the content of a DOMstring.

• f90xml str toFortran: converts a DOMstring object into a Fortran string. This

routine’s parameters are a DOMstring, a Fortran string, an INTEGER zero-based

offset and a LOGICAL return value. The content of the DOMstring will be translated

to the Fortran string starting at the position provided by the offset. No more

characters than the length of the Fortran string will be moved. The LOGICAL

return value is .TRUE. if the DOMstring has been extracted up to the last character,

otherwise is .FALSE.. This routine makes it possible to read long string data in a

chunked way, regardless of the actual size of the DOMstring and the Fortran string.

• f90xml str print: prints the DOMstring to standard output. Returns ”void”.

• f90xml str equal: compares a DOMstring with a Fortran string. Returns .TRUE.

if the strings are equal, otherwise .FALSE.

• f90xml str unref: delete the DOMstring object. Returns void

Errors The F77/F90xml library returns the error status in the last INTEGER argument

of each subroutine. The actual value depends on the kind of error, and a list of possi-

ble situations has been foreseen. The ERR NO ERROR value, which evaluates to zero, is

returned when no error occurs. The library checks for various error conditions, such as

• An actual argument is not of the expected type, for example if a DOMstring is

given where a DOMelement is expected;

• A referenced object has not an entry in the cached space;

• A NullCode is entered but the routine is unable to handle it;

• Internal errors returned by the gdome2 library.
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Library architecture and Fortran 77 interface Standard Fortran 77 expects names

limited to 6 characters, although at our knowledge no recent Fortran 77 compilers impose

this strict limit. Deploying the complete DOM interface in such limited namespace would

have been resulted in names collisions. This problem was solved using Multiplexers,

in order to provide access to the complete DOM interface with a reduced namespace

footprint. The Fortran 77 interface is based on few multipurpose C functions named

multiplexers. The role of multiplexers is to create a many-to-one correspondence between

a set of gdome2 routines and a single multiplexer function, on the basis of arguments

and return value similarities in terms of number and type. Each C multiplexer is directly

mapped in a one-to-one relationship to a Fortran 77 SUBROUTINE. Some extra code was

realized in order to interface Fortran77 and C, due to the different way they manage

strings, memory, routine names and parameters. These multiplexers are the real core of

the library. When a multiplexer is called, it dispatches (de-multiplexes) the call to the

appropriate function within the subset it describes. In turn, this function performs the

actual call to the gdome2 routine. To select which routine to call, a string containing

the name of the routine is passed as an argument. Internally, this information is used

to invoke the correct function. Each multiplexer routine and its Fortran interface have a

conventional name, that refers to the number and type of arguments it accepts. All the

Gdome2 routines have been classified in terms of their signature (the number and type

of accepted parameters and the returned value) and a short name has been devised for

each set. Routines with the same signature are handled by the same multiplexer.
As an example, the gdome2 functions given below:

GdomeNode* gdome_el_firstChild(GdomeElement *self, GdomeException *exc);

GdomeNode* gdome_el_lastChild (GdomeElement *self, GdomeException *exc);

can be used in a C program in the following way:

GdomeElement *elem;

GdomeNode *first, *last;

GdomeException exc;

/* <... get elem by some other call ...> */

first = gdome_el_firstChild(elem, exc);

last = gdome_el_lastChild (elem, exc);

This is how the same functions can be called from a F77 program:

CHARACTER*128 fnName
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INTEGER first, last, elem, err

!

C <... get elem by some other call ...>

!

fnName=’el_firstChild’

CALL xp3t1(first,fnName,elem,err)

!

fnName=’el_lastChild’

CALL xp3t1(last,fnName,elem,err)

The function name is case sensitive and has to be exactly the same of the gdome2

function, stripped of the gdome prefix. Since in F90 the restriction on the names length is

not so critical, the F90 interface can adhere to the DOM convention and adopt significant

and standard names for the routines. The Fortran 90 module is realized simply mapping

each subroutine to the corresponding multiplexer. This approach was chosen mainly in

order to reduce the development cost, since the library can be created in an automatic

way. A second reason was the idea to keep the potential Fortran 77 compatibility. A

large part of the library is developed using XML technology. An XML file contains all

the information to create the binding routines grouped in the same C multiplexers. The

C multiplexers and the Fortran 90 module are automatically generated from this XML

file. The file is parsed by a script in Python which collects the needed information,

and deploys the C code. The Fortran 77 interface is closely related to the internal

implementation of the library, therefore is important by itself, even if not used by client

codes.
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Wrappers and Workflow: How we

used the libraries

Based on the Q5cost data format and using the library for handling the I/O operations,

we wrote some interface programs (wrappers) for converting data from a particular ab-

initio program system to Q5cost and vice versa. In general, those wrappers should

accomplish a quite simple goal: read quantities stored in a given data format and write

them in a different data format using (when possible) the specific I/O library for the two

formats. The Q5cost library we propose here can be used to simplify the job of managing

data in the Q5cost data format. A schematic representation of the present situation can

be seen in the figure. Two zero-level programs (Columbus and Dalton) have been fully

integrated, and their integrals can actually be converted into the Q5cost format. The

Dalton+FE box refers to the Ferrara four index transformation that can transform the

Dalton integrals from the atomic basis to the molecular one.

Moreover a project has started to officially integrate Q5Cost in a MOLCAS module

to be distributed with the future versions of the code, the same kind of official integration

is scheduled to be done with DALTON and Gamess.

Columbus is one of the most popular ab initio suites, with several important and

useful features. It is mainly based on a very efficient implementation of a direct Multi-

Reference CI method with evaluation of analytic derivatives and molecular properties in

several electronic states. The multi-reference approach makes it possible to describe the

interaction of different states, very important for the study of non-adiabatic processes.

In addition, Columbus is free and open-source, available to everyone for non-commercial

purposes.

The DALTON program allows convenient, automated determination of a large number

of molecular properties based on an SCF, MP2, Coupled Cluster, or MCSCF reference
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Figure 11.1: A Schemating representation of the integrated system available wrappers
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wave function. The program consists of six separate components, developed more or

less independently. In particular HERMIT is the integral generator, generating ordi-

nary atomic and molecular integrals appearing in the time-independent, non-relativistic

Schrödinger equation, as well as an extensive number of integrals related to different

molecular properties. As well as Columbus, Dalton is a free open source program, easily

accessible to the scientific community.

Molcas is a quantum chemistry software developed by scientists to be used by scientists.

It is a commercial software widely used by the researchers in our groups. For this reason

it was among the first to be wrapped even if in a limited way due to the fact that Molcas

authors are not directly involved in the project.

Several wrappers have been written in order to take data from these general programs

and convert them into a Q5cost file: cas2q5 converts data from Molcas, dal2q5 from

Dalton and the Ferrara transformation, col2q5 from Columbus.

FullCI is a program designed to compute energies and eigenvectors at a FCI level, to-

gether with first and second order properties (both static and dynamic at real or imagi-

nary frequencies) and transition moments. It requires pre-computed integrals in molecu-

lar orbital base, so it has to be interfaced with a zero level program. FCI code originally

used MO integrals produced by the 4 index transformation contained in the DYCI-5

suite of programs by A. O. Mitrushenkov; the latter is interfaced with the Molpro 2000.1

code. However presently, it is fully integrated with Q5cost, so it can read data both in

its native format and from q5 files, and no wrapper is required.

The Toulouse chain is composed of a set of programs to perform CAS-SCF and MR-CI

calculations. Special emphasis is put on the use of local orbitals, and an ”a priori” lo-

calization procedure has been developed in Toulouse, in collaboration with the Ferrara

Group. Using this algorithm, CAS-SCF or quasi-CAS-SCF solutions can be obtained

as a combination of orbitals spatially located in a given region of the molecule. This

allows a very fine control over the nature of the active space, so avoiding many of the

convergence problems that often plague the CAS-SCF algorithms.

The Ferrara Chain mainly consists of a perturbation theory suite of programs based

on the NEVPT (second- and third-order, Quasi-Degenerate PT) formalism. It is suit-

able for the treatment of Multi-Reference problems, and avoids the problem of intruded

states that plague other perturbative treatments. A version working with non-canonical

orbitals has been developed, allowing the application of this technique to the case of

local-orbital descriptions.

The Toulouse and Ferrara chains take integral data from MOLCAS via a common format

(MolCost), that was proposed in the past by the same group of researchers as a first at-

tempt to allow code to communicate. It is simply based on a collection of binary files and
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a coded file in form of a FORTRAN namelist. The present data format (Q5cost + Qcml)

is a further elaboration of this original data model. In this case we decided to write a

wrapper (q5 to cost) to translate the Q5cost format into the MolCost format, so giving

access to all the programs in two chains. In the future the two chains will progressively

migrate from MolCost toward Q5Cost, so the use of this particular wrapper should be

thought only as a temporary solution.

11.1 Final Considerations

Wrapper design, or code direct interfacing, has been demonstrated to be a quite easy and

transparent task, and should be performed by the authors of the specific code. Three

libraries are required:

• HDF5

• Q5cost

• F77XML (or some other library for managing XML files)

the latter can be either installed at a system level or at user level, ensuring the maxi-

mum of flexibility even in third parts supercomputer environment. Moreover a thorough

understanding of the program to be wrapped is needed (the source code itself if a direct

interfacing is to be done). An input wrapper for a given code needs to read data from

the common format (using the Q5cost and F77Xml library) and write those pieces of

information in the proprietary format of the code, using an ad-hoc I/O library when

available. An output wrapper for a given code reads proprietary data (using ad-hoc

I/O libraries in case) and writes them in the common format using the Q5COST and

F77XML libraries. We would like to underline how those very first wrappers have given

the opportunity of interfacing programs that were not able to communicate before, and

we stress that all the tests performed gave correct results. A preliminary application of

this interface to the study of dispersion interactions has been performed. The Q5cost

library is easy to use and based on chemical concepts. It should be used by chemists for

designing the wrappers of their own codes or even for a direct interface as in the case of

the FCI code. Further extensions are needed, for example for adding other quantities to

the data format. However, we expect this to be a quite simple task, requiring only minor

changes in data format and simple additions to the library, due to its high modularity. In

fact, some important quantities, like for instance wave function coefficients, and library
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features,like the possibility to store the integrals without corresponding indices, are still

missing. This may limit the usability of the proposed data format, and we are therefore

planning to implement them as soon as possible.





Part IV

Conclusions
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Conclusions

During this thesis two main issues have been taken into account:

• The application of innovative mainly one body (i.e perturbative) methods for the

determination of electric properties and intermolecular forces at FCI and Coupled

Cluster level

• The development of a Grid Oriented Common Format for Quantum Chemistry

As concerns the first point we showed and described the application of a new interpola-

tive method to compute polarizabilities and intermolecular forces via Casimir Polder

formula. This method is based on a rational interpolation of the frequency dependent

polarizability equation and allows the determination of dispersion coefficients with rea-

sonable accuracy in the mean time significantly cutting the requested number of com-

puted polarizability values and hence the computational time. It has to be underlined,

however that the method is quite sensitive to the choice of the interpolation nodes, i.e.

the values of frequency for which polarizability is directly computed. An empirical for-

mula allowing a wise choice of such frequencies has been presented. Using the present

method higher order dispersion coefficients (C7) for LiH were derived for the first time,

C6 dispersion coefficients for the BeH2 homodimer were derived for the first time too.

Moreover we presented a Lanczos Davidson based method (LSDK) which computes dis-

persion coefficients expanding the London formula in a set of pseudostates iteratively

generated. LSDK was applied to the LiH molecule and the Be atom and proved its effi-

cacy producing results of quality comparable to the numerical quadrature of the Casimir

Polder formula, both for diagonal and non-diagonal matrix elements. The diagonal ele-

ments results moreover, are variationally bounded, even if a strict convergence criterion

based on the residual norm is still missing. Convergence test is performed on the value
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of the dispersion constant itself, but unfortunately such an approach is not capable to

discriminate between actual convergence or stagnation. The total computational time

one needs to get sensible results appears to be shorter than that required by classical

Casimir Polder and even interpolative method. This is also due to the fact Casimir

Polder and interpolative methods require imaginary frequency polarizabilities, hence one

has to solve perturbative equations in the complex field, therefore each iteration require

twice the time one needs for a real field computation. As the accuracy is concerned we

can easily see how the values obtained with LSDK appears to be better (i.e. closer to the

Casimir Polder ones) than corresponding values computed by the interpolative method,

moreover the dependence on the correct choice of frequencies is eliminated. Finally a

variational method based on the resolution of small Sylvester equations has been applied

to the computation of dispersion interactions for the BH molecule and for the Ne atom.

A convenient matrix notation suggests a straightforward way to compute the residual

norm in order to check the convergence. It can, also, be shown that expanding the so-

lution as a linear combination of tensor products of CI vectors of the isolated molecules

the classical Casimir Polder quadrature can be reduced to a non optimized solution of

the present variational conditions. While this method gives the lower variational bound

to the exact solution (exact in the FCI sense), the simple application of Temple’s VP

extended to perturbation theory allows to obtain the upper bound. We would like to

recall the Neon problem involved the resolution of a FCI whose configuration space was

bigger than one billion of symmetry adapted determinants, giving rise (to the best of our

knoweldge) to the biggest FCI computation of second order properties even performed.

As concerns the Ne2 dimer problem we, also, performed a test study to asses the role of

the BSSE and CP correction in the supramolecular determination of long range disper-

sion interactions. In particular results of dispersion coefficients obtained from a proper

interpolation of the interatomic energy potential curve where compared with the ones

calculated by our variational method and with experimental DOSD results. This study

showed that while CP correction works reasonably well for equilibrium properties both

at CI and CC level, the lack of size consistency seriously affects the CI corrected long

range tail of the potential curve, making it useless to compute long range dispersion co-

efficients. In the same study we also obtained as a by product spectroscopic properties of

Ne2 dimer which are in good agreement both with recent experiments and with previous

computations. At Coupled Cluster R12 level we started the implementation of analytical

computation of first and second order electric properties in the Bratislava’s code. It has

to be underlined that while at conventional CC level many code are able to perform the

analytical derivation of electric properties at CC-R12 level, to the best of our knowledge,

no such code actually exists (the only available code performs these calculations at MP2-
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R12 level). As concerns the first order properties (i.e. dipole moments) the first results

have been shown for some small molecules (about 10 electrons), computations have been

easily performed with basis set up to 300 spin orbitals, and they show that the inclusion

of R12 functions plays an important role in speeding up the convergence towards basis

set limit (although for dipole moment the influence is somehow less pronounced than for

energies). The implementation of static and dynamic second order properties has not be

completed yet.

As far as the second point is considered we designed and wrote an efficient file format

for easy file interchange among codes and platforms. The driving force beneath this

project is mainly due to the need of an easy interfacing of different QC codes, expecially

in the computation of intermolecular forces. Our format is based on Xml (Qcml) for the

small dimension data (i.e. geometry, basis set and so on) and HDF5 (Q5Cost) for big

dimension data (mainly atomic or molecular integrals and orbital coefficients). Moreover

we wrote two FORTRAN libraries to access Q5Cost files (q5cost library) and Xml files

(F90Xml). Using these two informatics tools we wrote the first interfaces among different

codes and we performed the first scientific applications.
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