
ALMA MATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

ARCES – ADVANCED RESEARCH CENTER ON ELECTRONIC SYSTEMS

FOR INFORMATION AND COMMUNICATION TECHNOLOGIES E. DE CASTRO

CHAOS-BASED RANDOM NUMBER GENERATORS:

MONOLITHIC IMPLEMENTATION, TESTING

AND APPLICATIONS

Fabio Pareschi

TUTORS COORDINATOR

Professor Professor

Gianluca Setti Riccardo Rovatti

Professor

Riccardo Rovatti

PHD. THESIS

January, 2004 – December, 2006

PHD PROGRAM IN INFORMATION TECHNOLOGY

CYCLE XIX – ING-INF/01

“Concevons qu’on ait dressé un million de singes à frapper

au hasard sur les touches d’une machine à écrire, [..] ces

volumes se trouveraient renfermer la copie exacte des livres

de toute nature et de toutes langues conservés dans les plus

riches bibliothèques du monde.”

Èmile Borel, J. Phys. 1913

Contents

1 Introduction 1

2 Hardware Implementation of a Chaos-Based RNG 13

2.1 Pipeline A to D Converters . 13

2.2 ADC-based Chaotic Map . 15

2.3 Description of Basic 1.5 bit Cell 18

2.4 ADC-based Random Number Generator 20

2.5 Design of the Basic Cell . 22

2.6 Description of the 0.35um RNG prototype 26

2.7 Macromodel for 0.35um RNG prototype 28

2.8 Design of the RNG circuit in 180 nm technology 33

2.9 Conclusion . 35

3 How to Improve the Quality of a RNG 37

3.1 Information Theoretic Entropy 39

3.2 Increasing the Entropy of a Generator 40

3.3 Von Neumann Post-processing 42

3.4 Parity Based Post-processing . 43

3.5 Hash Function Based Post-processing 43

3.6 IIR Based Post-processing . 44

3.7 Conclusion . 46

4 Statistical Tests for Randomness 47

4.1 P-value Based Tests . 49

4.2 NIST SP 800-22 Test Suite . 50

4.3 DieHard Test Suite . 58

4.4 Second Level Tests . 59

4.5 Conclusion . 69

i

ii CONTENTS

5 Test Results 71

5.1 Estimated Entropy of the ADC-based RNG 71

5.2 Result of the QSR post-processing 73

5.3 SP 800-22 Test Results . 74

5.4 Conclusion . 76

6 Application of RNG: EMI Reduction 81

6.1 Generation of Spread-Spectrum Clock Signals 82

6.2 Description of the 0.35 um SSCG prototype 84

6.3 Description of the 180 nm SSCG prototype 91

6.4 Conclusion . 93

7 Design of SCA Resistant Digital Programmable Hardware 95

7.1 Programmable Interconnections 97

7.2 Programmable Logic . 99

7.3 A Realistic System . 105

7.4 Open Problems . 105

8 Final Conclusion 107

A Introduction to Discrete-time Chaos Theory 111

A.1 Chaotic maps . 111

A.2 The Perron-Frobenius Operator 112

A.3 Ergodic, Mixing and Exact Maps 113

A.4 Markov Chains and PWAM Maps 114

A.5 Robustness of a chaotic map . 116

A.6 Noise Robustness in PWAM Maps 118

B Hardware and Algorithms used in this dissertation 123

B.1 BBS Pseudorandom Generator 123

B.2 KISS Pseudorandom Generator 126

B.3 VIA PadLock Random Generator 127

B.4 Quantis Random Generator . 128

B.5 Data Acquisition and Testing Procedure 129

Chapter 1

Introduction

T
HE WORD RANDOM is used typically to express lack of purpose, cause, or-

der, or predictability. A random process is a repeating process in whose

outcomes it is impossible to find a describable deterministic pattern. The term

randomness is often used in statistics to signify well defined statistical proper-

ties, such as lack of bias or correlation. Saying that a variable is random means

that the variable follows a given probability distribution; under these terms,

random is different from arbitrary, because to say that a variable is arbitrary

does not imply that there is such determinable probability distribution.

The existence of random processes have been known and have been used

since ancient times. For example, the divination was the attempt of giving a

supernatural interpretation of some random events. However in all times and

cultures the prevalent association of random events was with gambling, as in

the common perception examples of random events include dice, coin flipping,

or the shuffling of playing cards.

Actually, nowadays, legalized gambling still represents a very important

economic aspect of modern society. For this reason, in every state where gam-

bling is legalized, plenty of stringent regulations exist regarding the devices

used to ensure the unpredictability of the outcome results. This is true both for

physical devices like dice, cards decks, etc; employed in gambling facilities like

Casinos, as well as for all electronic devices used for gambling [66].

The usage of random in electronic devices is strictly connected to the im-

plementation of electronic random number generators. By definition, Random

Number Generators (RNGs) are a class of devices whose aim is to generate a

sequence of perfectly independent and identically distributed (IID) symbols, with

the property that, when restarted, they do not reproduce every time the same

sequence (non repeatability). They find several application in many engineer-

1

2 CHAPTER 1

ing tasks, not limited to gambling devices. For example in Information and

Communication Technology (ICT) they are used widely in device testing and

simulation [80]; sequences of (pseudo) random numbers are often used to gen-

erate a white spectrum; or they can be used to generate a simulated network

traffic with certain statistical properties in order to perform an off-line test of

a network device. Random numbers are also used in computer simulation

(Monte-Carlo simulations) to include all non-idealities (e.g. noise, device mis-

matches, particle interactions) present in real systems.

However even though in device testing the requirements on the used gen-

erators are usually not so tight, since their only purpose is to introduce some

deviations from the ideal and perfectly deterministic behavior of a system, thus

mimicking a real system (roughly speaking, their purpose is to simulate a sys-

tem noise), an application where random numbers generators are fundamental

and where true unpredictability is a main issue is computer security. Particu-

larly in the last years, the increasing demand of electronic financial transac-

tions, as well as the storing and the managing of personal, sensible data over

an open and insecure public network as Internet, as well as the expanding use

of wireless communication, has led to define new high-security standards for

data encryption [43].

Data encryption is defined as the process of converting ordinary informa-

tion (plaintext) into something unintelligible (ciphertext); decryption is the re-

verse process, i.e. moving from unintelligible ciphertext to plaintext. A cipher

is a pair of algorithms which perform this encryption and the reversing de-

cryption. The detailed operation of a cipher is controlled both by the algorithm

and, in each instance, by a key. A cryptographic key is a secret parameter (that

means that is known only to the communicants) for the cipher algorithm. Keys

are fundamental in modern cryptography as ciphers without keys, though very

common in the early history of cryptography, are trivially breakable and so

rather less than useful.

In other words, modern cryptography has transferred all the unintelligi-

bility from the cipher to the key. Many standard algorithms exist; the more

commonly used ciphers are the DES [67] and the AES [69], which have been

designated cryptography standards by the US government (though DES’s des-

ignation was finally withdrawn after the AES was adopted in 2001).

These ciphers are public and universally studied, as well as known not to

present intrinsic flaws or weakness; the used key is a string of bits, usually

ranging from hundreds to thousands of bits depending on the type of cipher

used. However, like a common phrase often used by information security offi-

INTRODUCTION 3

cers is that “a chain is only as strong as its weakest link”, it is useless to develop

and use a high-security encryption/decryption scheme like the above standard

ciphers, if the generation and the distribution of the security key do not follow

the same high-security standards.

The generation of a cryptographic key is the link between modern cryptog-

raphy and random numbers. The key is secret; it has not to be exposed, but also

it is extremely important that it cannot be guessed by anyone. For this reason

the key is chosen randomly, i.e. essentially it is a strings of random bits. It is

fundamental that the key is truly random, i.e. it must not happen, for example,

that looking at the sequence of bits composing the key, some patterns or some

regularities are found, that may help to guess the key from the knowledge of

part of it. This would help in the effort to guess the key, lowering the security

of the system. In conclusion, good cryptography requires good random num-

bers [47, 65].

Historically, the first way used to generate random numbers in ICT was

represented by pseudorandom generators. They appeared in the early 50s to-

gether with the first electronic computing machine, thus substituting existing

random number tables used by researchers [24].

A pseudorandom number generator is an algorithm that generates a se-

quence of numbers which approximates some of the properties of random

numbers, while in fact, they are deterministically computed starting from an

initialization vector, called seed [23, 32]. The seed, which actually represents

the only uncertainty in this class of generator, is set at the system initialization;

it is not uncommon to initialize a pseudorandom generator with a sort of true

random vector, that can be taken, for example, from the lower bits of the sys-

tem clock. Of course the process is not random at all, as John von Neumann, a

pioneer in the field of modern computing and of theory of games, put it [23]:

“Anyone who considers arithmetical methods of producing random digits is,

of course, in a state of sin.”

In fact, because all pseudorandom generators run on a deterministic algo-

rithm, its output will inevitably have one property that a true random sequence

can never have: periodicity. In fact, a periodic system is a repetitive system,

and so completely predictable after the disclosing of the period. Such a gen-

erator is usually implemented on a finite state machine, i.e a machine whose

model of behaviour can be described in terms of a limited number of states,

which store information about the past evolution, and the possibility to change

from one state to another (i.e. a transition) depending on some external or in-

4 CHAPTER 1

ternal events. Since a pseudorandom generator is an autonomous system, its

transitions do not depend on external events (of course, neglecting the neces-

sary external clock signal), but only on the internal state of the system. Being

this machine fully deterministic, and given sufficient time, it will revisit a pre-

viously visited internal state, after which it will repeat the prior sequence for-

ever. Non-periodic algorithms can be designed, but internal numbers of states

(i.e. memory requirements) would grow without limit during runs; even if this

is theoretically possible, it is not practicable in real equipment. However, since

the length of the maximum period typically doubles with each bit added to

the computing precision of the machine used to implement the algorithm, it is

easy to build pseudorandom generators with periods so long that no computer

could ever complete a single period.

This, however, does not change the fact that a pseudorandom generator is

not a random generator.

In opposition to these generators, many devices exist which are based on

the direct observation of a physical process that exploits random-like features,

like the flip of a coin or the roll of a dice. The are called true random num-

ber generators, and instead of being based on the observation of macroscopic

phenomena like those described above, they are more commonly built upon a

microscopic phenomenon.

There are several physical phenomena presenting random like features,

ranging from the Brownian motion to quantum effects. All these phenomena

arise from the basic physical processes at the molecular or lower level, and are

usually referred as “noise”.

The history of noise is fascinating, and begins in the early days of the in-

vention of the microscope, when came the discovery that a drop of pond water

contains an incredible world of microscopic life, single-celled and multicelled

organisms of incredible varieties. Most of the organisms moved about seem-

ingly without rhyme or reason. Anyway, it was noticed that other things like

pollen also had erratic movements, and yet they seemed very different than

the obviously alive paramecium, amoebas, and such. Many thought that these

erratic movements were possibly due to some primitive life force. This ques-

tion is generally regarded as having been solved by the English botanist Robert

Brown in 1827 [12]. He started with the usual pollen and then went through

observing that an incredible number of materials that are obviously not alive

has the same, identical, behavior; in this way he was able to exclude that the

motion was due to pollen particles being “alive”, although the origin of the

INTRODUCTION 5

motion was yet to be explained.

The origin of the motion was explained by Einstein, in one of his paper of

the so-called year of miracles (1905). In that year there Einstein produces the

three so called miracles: one of them is the proof of the existence of atoms

based on the explanation of the Brownian motion [15, 18]; the other two were

the introduction of the basic ideas of the quantum physics [14] and of the spe-

cial theory of relativity [16, 17]. Einstein explained that the Brownian motion

is caused by the irregular thermal movement of the molecules of the liquid.

He also suggests that the relation could be used for the determination of the

so called (but at the time still unnamed) Avogadro’s number, thus establishing

an extremely important connection with the theory of heat. It was the french

physicist Jean Baptiste Perrin few years afterwards who did the experimen-

tal work to test Einstein’s predictions and computed the Avogadro’s number

[19], though, it was Einstein who developed the statistical properties and got

specific results.

Many phenomena that can be described in a very similar way to the Brow-

nian motion was discovered in the following years with the introduction of

the first electronic devices; the Johnson thermal noise over a resistor and the

Shot noise in vacuum tubes are just few examples. Also, with the introduction

of quantum mechanics, which is inherently probabilistic, new kind of noise

arose. The radioactive nuclear decay of instable isotopes is a well known ex-

ample of what could be referred as a quantum noise.

The basic idea of a true random generator is to embed a random like phe-

nomenon and observe it. The generation of the uncertainty is left to the ob-

served phenomenon, while the device itself acts only as an interface with the

phenomenon and to convert the uncertainty in a useful form of randomness

[49, 52, 81].

The meaning of “useful form of randomness” depends on the application.

Since our scope is ICT, it means “random bits”. Being the bit the basic infor-

mation unit, used to express any other information, it is possible from a string

of random bits of an adequate length to retrieve any possible random infor-

mation. Note that, for this reason, we can freely confuse a random number

generator with a random bit generator.

The generation of a random bit can be modeled as the result of the flips

of an unbiased fair coin where the sides “head” and “tails” is associated to

the bits “0”and “1”. The unbiased fair coin is a coin where each flip having

a probability of exactly 1/2 of producing a “head” or a “tail”; furthermore,

6 CHAPTER 1

"head" "tail"

1/2

1/2

1/21/2

Figure 1.1: Markov chain associated to the unbiased “fair” coin toss.

the flips are independent of each other: the result of any previous coin flip

does not affect future coin flips. In this way the value of the next element

in the sequence cannot be predicted, regardless of how many elements have

already been produced. This behavior can be described as the Markov chain

of Figure 1.1. A Markov chain could get various different definition; to our

purpose it is simply an autonomous finite-state machine whose transition from

one state to another is regulated by a discrete-time stochastic process [57, 59,

77]. At every time step, the probability to remain in the same state or to jump

to another one depends only by the current state. Briefly speaking, it is a finite

state machine in which transitions happen randomly. The arrows in figure

indicate the probability of of a transition between the two states, named “head”

and “tail”, and corresponding to the possible outcomes of the system.

For these reasons, all true random number generator can be schematized

like a device capable of elaborating a noise-like process to obtain a behavior

like the Markov chain in Figure 1.1. They can de described in terms of three

fundamental components:

ENTROPY SOURCE: this is the physical process from whose observation ran-

dom data are extracted. All the uncertainness generated depends on it;

so it represents the core of the device. Mathematically, it is very common

to refer to the quantity of uncertainty generated as entropy of the system;

hence the name entropy source.

HARVESTING MECHANISM: data from the entropy source has to be read

and to be converted in a sequence of bits; this process is called harvesting.

It is fundamental that the harvesting mechanism does not interfere the

physical process above, since this would result into a degradation of the

statistical properties of the above process, and so in a reduced amount of

available entropy.

POST-PROCESSING: although this component is not strictly necessary, it is

often used to digitally process the sequence of random bits and strength-

en the random number generator design. A post processing stage can

INTRODUCTION 7

be used to mask imperfection in the entropy source; more often it is nec-

essary to mask impairing in the observed process due to the harvesting

mechanism. Many algorithms have been developed for extracting a ran-

dom bit sequence out of almost any stream without any knowledge of

its generation process. One example was given by von Neumann, to be

used if a cheater has altered a coin to prefer one side over another (a biased

coin) [23]:

1. Toss the coin twice.

2. If the results match, start over, forgetting both results.

3. If the results differ, use the first result, forgetting the second.

The reason this process produces a fair result is that the probability of

getting heads and then tails must be the same as the probability of get-

ting tails and then heads, as the coin is not changing its bias between

flips. By excluding the events of two heads and two tails by repeating the

procedure, the coin flipper is left with the only two remaining outcomes

having equivalent probability. However, as in the example where for ev-

ery game we have to toss the coin at least twice, in such algorithms the

output data rate is usually slower than the input one.

One of the most famous random number generator, as one of the first low-

cost true random number generator in ICT, was the Intel random number gen-

erator presented in 1999 [54] and integrated in Intel chipsets up to few years

ago, when was retired due to some flaws discovered. The generator was based

on the direct observation of the thermal noise upon a resistor; this noise was

amplified and used to modulate a low-speed local oscillator. A second high-

speed local oscillator was sampled by the low-speed one, thus providing ran-

dom bits. After that, a von Nuemann post-processing is then used to improve

the quality. However the performances of the Intel random number generator

were not exceptional especially in terms of speed; it achieved a throughput of

about 75 Kbit/s, while many generators nowadays can reach speeds ranging

from Megabits to hundreds of Megabits per second.

In this dissertation a detailed description of two true random number gen-

erators is provided. Both generators have been designed in integrated CMOS

technology, the first one in AMS 0.35 µm technology and the second in UMC

180 nm. They both rely on a chaotic system as entropy source.

The concept of chaos is sometimes misinterpreted as “disorder” or maybe

even “random”. Mathematically, a chaotic system is a system which is effec-

8 CHAPTER 1

tively a deterministic system (since it is possible to write down all the evolution

equations), and presents two unique characteristics: (a) the presence of irregu-

lar, aperiodic trajectories; (b) an extreme sensitivity to initial conditions. If the

lack of periodicity is, as seen above, a necessary condition for unpredictabil-

ity, it is the second characteristic the more interesting one. The sensitivity to

initial conditions is often popularly referred to as the butterfly effect; the term

”butterfly effect” itself is related to the work of Edward Lorenz, who in a 1963

paper for the New York Academy of Sciences noted that “One meteorologist

remarked that if the theory were correct, one flap of a seagull’s wings could

change the course of weather forever”. Later speeches and papers by Lorenz

used the more poetic butterfly instead of the seagull, asking “Does the flap of

a butterfly’s wings in Brazil set off a tornado in Texas?”.

The concept of the butterfly effect is often used in popular media, usually

inaccurately. The basic concept is that, if we have two identical systems start-

ing at two initial condition, which are apparently identical, but instead present

a even very small difference, they may end up with two totally different evo-

lutions [46, 60]. In this way, a long term prediction of a chaotic system is prac-

tically impossible, due to the assumption that when observing a real system,

it is possible to measure the initial condition of the system only with a limited

precision. The classical example of such a system is the weather.

At this point, one could argue that chaos-based random number generators

and pseudorandom generators can be considered similar, since they are both

based on a deterministic algorithm., Hence, two aspects make them different.

First, being a chaotic circuit an analog machine, it is necessary to introduce a

quantization of the state to generate random bits. Being the quantization a

non-reversible operation, the internal state of the system cannot be retrieved

by the only knowledge of the quantized values. Second, like any other analog

electronic circuit, a chaotic circuit is influenced by the noise. Even neglecting

the noise during operation, which continuously modifies the internal state and

so the evolution, it would be enough to consider that the initial system condi-

tion is set by the noise at the system startup, thus regulating all the evolution

of the system, to consider this generator like a true random number genera-

tor. From this point of view, a chaos-based random number generator is not

different from a generator based on the direct observation of a noise-like phe-

nomenon.

In other words, choosing the right chaotic circuit and quantization func-

tion, it is possible to study the evolution of the quantized states just like a truly

probabilistic finite-state machine, i.e. a Markov chain, regardless of the deter-

INTRODUCTION 9

ministic trajectories followed by the analog state [20, 25, 58]. This is exactly the

situation of Figure 1.1.

Actually, the use of chaos, in particular of discrete-time chaotic circuit in the

realization of random numbers generators has been known since many years

[34, 44, 78, 79]. Ulam and von Neumann suggested the use of logistic map in

1947 [20], partly because it had a known algebraic distribution, and its iterated

values could be easily transformed into any desired distribution. The advan-

tages of dealing with a chaotic circuit is that it is theoretically possible to avoid

any interference with its statistical properties. Considering at design time both

the chaotic circuit and the harvester, all parasitics introduced by the harvester

can be included and compensated in the chaotic circuit model. This means that

there is no impairing of the chaotic circuit, and (theoretically) all the entropy

is available to the output bit stream. Also, as already noticed by Ulam and

von Neumann, the available entropy rate in a discrete time chaotic source is

directly proportional to the circuit speed. The higher the working speed of the

circuit, the higher the available entropy rate. The upper bound is set only by

the technology limit, and it does not depend on the underlying physical pro-

cess; this virtually allows to design a circuit generating any desired amount of

entropy.

The approach followed in this dissertation presents a second advantage,

i.e. that the used schematic is a slightly modification of a schematic already

used in pipeline analog-to-digital converters (ADCs) based on 1.5 bit/stage

cells [74]. This solution allow a vast re-use of design competences and macro-

blocks developed in this field and also ensure high embeddability in all mixed

signal integrated circuits, as well as a very high working speed, up to several

Megahertz. At this point it is necessary to recognize that the original idea of

this approach was firstly proposed by Sergio Callegari in 2002 [38]. Here that

idea was studied and developed from a circuit level point of view. The main

original work of this dissertation is the hardware implementation of that basic

idea.

The two implemented circuits are described accurately in Chapter 2; both

prototypes have been fabricated within the mini@sic Europractice framework,

thus allowing a reduction of fabricating costs. Many thanks are necessary for

the staff of the two Europractice centers (Fraunhofer-IIS, Erlangen for AMS

technology and IMEC vzw, Leuven for UMC technology) for the support and

the help given in the design process.

Being prototypes whose purpose was only to test the analog core, no post-

10 CHAPTER 1

processing stages have been integrated. However, several post-processing

stages have been considered during the test phase; a description of them can

be found in Chapter 3. Some of the post-processing functions considered are

completely new; for them, an evaluation of performance is given in terms of the

minimum complexity required to transform the output stream of the designed

prototypes into a true random bit stream.

Finally, an evaluation of the performances of the designed prototypes is

provided. A particular attention has been given to this section, since testing

and validating a random number generator is a non-trivial task.

Many tests for randomness exist; they are extensively described in Chapter

4 along with an interpretation of their results. We made an intensive use of the

SP 800-22 test suite, developed by the U.S. National Institute of Standard and

Technology and first published in October 2000 [70]. This suite was preferred

to other suites, in particular to Marsaglia DieHard suite, for two main reasons:

(a) the NIST suite is homogeneous, i.e. all tests in the suite analyze a sequence

of the same length; (b) for all tests in the suite a strong mathematical back-

ground is available. This does not happen, for example, in Marsaglia’s suite,

where the sequence length required could vary up to two orders of magnitude

among different tests. All the above tests are statistical tests; in fact, quoting the

NIST special publication, “Randomness is a probabilistic property; that is, the

properties of a random sequence can be characterized and described in terms

of probability.”

The meaning of this is briefly described in the following. Consider a ran-

dom number generator, and assume to have to test it. The only way to perform

a test is to let the generator run, and look at a generated a sequence. Suppose to

get “101101001011101110100101011. . . ”; it would be difficult, at a first glance,

to find a pattern in the generation of the bits, as difficult would be object about

its randomness. Instead after the sequence “111111111111111111111111111. . . ”

everyone will recognize a pattern, and will consider the generator under test

as completely non random. Actually, a statistical test works exactly in this

way, except the fact that the output of a test is not an answer “it is random”

or “it is not random”, but a probability. In fact, it is not true that the sequence

“111111111111111111111111111. . . ” is not random; actually this sequence has

the same probability to be generated by a random number generator as any

other sequence; on the contrary, a generator that is not capable of generating

this sequence is not to be consider random. The only thing that one could say

looking at such a sequence is “well, probably this sequence is not random”.

Starting from this, a statistical test gives the probability that, under some

INTRODUCTION 11

assumptions that depends on the test, the sequence comes from a random

number generator. The output of the test is called p-value which stands for

probability value and, informally speaking, indicates the probability that has a

perfect random generator to generate a sequence that is “less random” than

the sequence under test.

The test used here is slightly more complex than the above described. In-

stead of a single p-value, a number of them are considered, following the last

section of the NIST special publication, thus proving more reliable results. Dur-

ing the test phase, it was noted that this test is very sensible to the propaga-

tion of approximation errors introduced in the basic test, and can result in an

always-failed test. This has been investigated for the simplest cases, and a

proper solution was proposed and applied.

Results from tests on the two chaotic random number generators are pre-

sented in Chapter 5, as well as a comparison between the two proposed gener-

ators, and two high-end physical process based true-random generators. The

first one is the VIA PadLock generator [42] integrated in a VIA C3 processor

of an EPIA MX-II 10000 system; the second is an high end quantic generator

developed by idQuantique [53], based on single photon reflection on a semi-

transparent mirror. Results confirm that the approach proposed in this disser-

tation can effectively be used to design high-end random numbers generators,

since in terms of quantity of randomness generated the designed chaotic proto-

types outperforms the two commercial generators by one order of magnitude.

This dissertation ends with two chapters whose topic is slightly different

from the main theme. The first one (Chapter 6) describes an application of ran-

dom numbers, i.e. the reduction of Electromagnetic Interferences (EMI) using

a random modulation of the clock. Two prototypes implementing a spread

spectrum clock generator with EMI reduction were implemented, the first one

running at quite slow speed, while the second one was designed to work at

very high speed. The presentation of the design and of the measurements of

the first prototype, respectively, won the best paper award both at the 16th In-

ternational Zurich Symposium on Electromagnetic Compatibility, 2005 and at

17th European Conference on Circuit Theory and Design, 2005. This topic was

studied in collaboration with Luca Antonio De Michele, ARCES - University of

Bologna.

Chapter 7 describes another security related issue, that is the so called de-

sign of side channel attack resistant circuit, which is a main problem of all

the embedded security integrated circuits. This last topic was studied during

a study-abroad period in collaboration with Katholieke Universiteit Leuven,

12 CHAPTER 1

Belgium.

The main innovative points developed by author during the described pe-

riod are here briefly summarized, listed in chronological order.

• A theoretical noise robustness condition for PWAM chaotic maps has

been elaborated. It is described in Appendix A, Section A.6, and it links

the noise robustness only to topological properties of the chaotic maps.

The condition found has a very general validity, since it does not make

any assumption on the noise shape. See [1, 11].

• A prototype implementing an ADC-based RNG has been designed and

tested. Its description can be found in Chapter 2, while results of testing

are in Chapter 5. The performances of this prototype are very high, since,

with a comparable quality, outperforms the two high-end commercial

RNGs used in the comparison by one order of magnitude. This prototype

was the first implementing the ADC-based RNG idea. For this topic, see

[3, 8].

• Two prototypes of a spread spectrum clock generator for EMI reduction

which use a random modulation are implemented. They are described

in Chapter 6 and they use an ADC-based RNG as source of randomness.

These prototype are the first implementing a frequency binary modula-

tion, which is a modulation where the driving signal is a binary PAM

signal, and allows a maximum EMI reduction with respect to all other

known modulations. See [4, 7, 9, 10].

• A new, simple and effective post-processing scheme is proposed and ana-

lyzed. Its description can be found in Chapter 3, Section 3.6, while results

on the effectiveness of this post-processing stage are reported in Chapter

5, Section 5.2. See [5]

• A bound on the application of second level NIST statistical tests for ran-

domness has been found. This is described in Chapter 4, Section 4.4 and

relates the approximation errors introduced into the reference distribu-

tion of the test, to a maximum error in the test outcome. For this topic,

see [2].

Chapter 2

Hardware Implementation of

a Chaos-Based RNG

T
HIS CHAPTER describes the implementation of the two designed RNG pro-

totypes, starting from a brief overview of pipeline A/D converters, rec-

ognizing the similarity between a pipeline A/D converter stage and a chaotic

map, and describing the two prototypes in detail, along with the guide-line

used in the design. The theoretical demonstration that the proposed circuits

can, in ideally conditions, generate true random bits is out of the purpose of

these chapter, and can be find in Appendix A.

2.1 Pipeline A to D Converters

A pipeline A/D converter belongs to the category of successive approximation

converters, in which the mapping between the analog input and the digital

output is completed in more than one step, exploiting a binary search of the

digital value closer to the input analog quantity. In particular, in pipeline con-

verters this is done by performing a series of h coarse intermediate conversions

over different hardware blocks at different time steps [74].

The typical structure of these converters is presented in Figure 2.1, depict-

ing a h-stages converter which provides a representation of an input variable

v(in) defined on an interval X into a l-bits numerical notation. Note that, even if

this is supposed in this dissertation, it is not strictly necessary that all stages are

identical; in particular the last stage, having nothing downhill, always presents

a simpler structure and it is usually composed by a simple flash converter.

The i-th stage computes, usually with a small and fast flash converter, a

13

14 CHAPTER 2

digital correction logic

Φ

D(0)=d(0,m-1)...d(0,0)
D(h-1)=d(h-1,m-1)...d(h-1,0)

S/H

Φ Φ

S/H

ADC

stage 2 stage h-1

D(2)=d(2,m-1)...d(2,0)

DAC

+

m m

e(2)
v(2)

-

v(h-1)
S/H

ADC

stage 0

DAC

+

m

e(0)
v(0)

-

D(1)=d(1,m-1)...d(1,0)

ADC

stage 1

DAC

+

m

e(1)
v(1)

-
ADC

B=b(l-1)...b(0)

k k k

l

v(in)

Figure 2.1: Basic structure of a pipeline ADC.

coarse m-bit representation D(i) = d(i,m−1) . . . d(i,0), of its input v(i) sampled at

the time step n, and then calculates (and rescales) an analog error conversion e(i)

to be passed at the time step n + 1 to the following stage (i + 1)-th as its input

v(i+1).

In this design, only the first stage provides a direct conversion of the input

v(in) ≡ v(0); all other stages provide a representation of the intermediate con-

version errors. Since the conversion error e(i) of the stage i is bounded in an

interval smaller than X , it is sensible to rescale it before passing it to the next

stage as v(i+1) in order to let every v(i) span the whole available range X . Note

that this is a necessary condition for having identical stages; otherwise no ad-

ditional information about the conversion can be retrieved from all stages be-

yond the first. Then, a digital correction logic processes the digital outputs of all

the h stages in order to retrieve the l bits b(l−1) . . . b(0) of the conversion, with

l ≤ h · m.

It is easy to see that if k = 2m (e.g. m = 2 bits, k = 4), then the conversion is

done exactly as in a SAR (Successive Approximation Register) converter, and the

conversion word is obtained just by collecting in the right order all the inter-

mediate conversion bits, with l = h · m. However in the general case, k < 2m

and the number of significative bits l in the conversion is smaller then the total

number of computed bits h · m; this means that there is a sort of redundancy.

This redundancy, associated to a proper correction logic (hence, the name “dig-

ital correction logic”) can be used to relax some constraints about the accuracy

in the circuital implementation.

For this reason, the maximum number of stages in the pipeline (the higher

the number of stages used, the higher the resolution of the converter) is not

limited by the accuracy of the implementation but by the noise. In particular

the noise introduced by the first stage, that passes through and is amplified by

all stages, is the main factor in the determination of the maximum number of

stages. In practical cases, the number of stages is limited to 8–10.

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 15

One major advantage of this approach is that the flow of information can

be synchronized exactly as in a digital pipeline. Since the various stages are

separated by sample and hold blocks (S/Hs), every stage is free to start operating

on the next piece of data as soon as the following S/H has stored the rescaled

conversion error. This permits to increase the throughput of the system up

to the inverse of the latency of a single stage, which is much larger than the

inverse of the time needed by the whole conversion, at the cost of an increasing

complexity of the digital correction logic, which has to process data coming

from different time instants.

One of the most used configuration for pipeline A/D converters is the so-

called one bit and a half per stage [33, 41]. In this arrangements, supposing X the

normalized interval X = [−1, 1], the A/D conversion function Q (x) employed

at each stage is:

Q (x) =

−1, for x < − 1
2

0, for − 1
2 ≤ x < 1

2

+1, for x ≥ 1
2

Obviously, to represent this three-level quantization function, at least two bits

are required. Usually the conversion is obtained by confronting v(i) with the

two values ±1/2 by means of two comparators; it is common to take a thermo-

metric coding for D(i), so that each d(i,j) is the output of a comparator:

D(i) = d(i,1)d(i,0) =

00, for v(i) < −1/2

01, for −1/2 ≤ v(i) < 1/2

11, for v(i) ≥ 1/2

(2.1)

Hence, e(i) = k
(

v(i) − Q
(

v(i)
))

, so if v(i) spans in X = [−1, 1], then e(i) spans

in [−k/2, k/2]. To take full advantage from this architecture, the rescaler has to

be set with a gain equal to k = 2, so all the v(i) take values in the same range as

v(in):

e (x) =

2x + 2, for x < − 1
2

2x, for − 1
2 ≤ x < 1

2

2x − 2, for x ≥ 1
2

(2.2)

The conversion function Q (x) and the error function e (x) are reported in Fig-

ure 2.2.

2.2 ADC-based Chaotic Map

A complete treatment about chaotic maps, PWAM maps and Markov chain can

be found in Appendix A. In this chapter, it is enough the following

16 CHAPTER 2

x

Q(x)

1-1 -0.5 0.5

-1

-0.5

0.5

1

x

e(x)

1-1 -0.5 0.5

-1

-0.5

0.5

1

(a) (b)

Figure 2.2: (a) Quantization function Q (x); and (b) error function e (x) of the 1.5 bits A/D converter.

REMARK 1. A chaotic map is defined as the a discrete-time autonomous sys-

tem

xk+1 = M (xk) , M : X → X (2.3)

starting from an arbitrary initial condition x0 ∈ X , it generates the sequence

x0, x1, x2, x3, x4, x5, . . .

that, given some properties on M , has all features of a chaotic sequence, i.e.

aperiodicity, complexity, and strong dependence on initial condition. Addi-

tionally, a chaotic map is a Piece-Wise Affine Markov (PWAM) map when, in-

formally speaking, a partition X of X exists such that (a) M is piece-wise affine;

and (b) M is built upon the “grid” identified by the intervals of X . The main

property of a PWAM map is that the evolution of the system can be studied

with a Markov chain: each interval of X represents a state in the Markov chain,

and the jump from one interval to another in the map evolution corresponds

to a state transition in the associated Markov chain.

Actually, the error function e (x) of Figure 2.2b fulfills all the requisites for

being used in the implementation of a PWAM map, with M (x) = e (x) [39],

assuming a Markov partition X = {X0, X1, X2, X3} equal to

X =

{[

−1,−1

2

)

,

[

−1

2
, 0

)

,

[

0,
1

2

)

,

[

1

2
, 1

]}

.

The kneading matrix K and the four-state Markov chain associated to this map

(referring to state x0 if x ∈ X0, x1 if x ∈ X1 and so on) are shown in Figure 2.3a

and b, respectively.

The associated Markov chain is clearly not suitable for direct generation

of identically distributed symbols; however, due to its particular structure it

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 17

K =

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0

x0 x1

1/2

1/2

1/2

1/2

x2 x3

1/2

1/21/2
1/2

x0

x1

(a) (b)

Figure 2.3: (a) Kneading matrix associated to the ADC-based chaotic map; and (b) associated Markov chain.

d(i,1), d(i,0) partition interval state macro-state

00 X0 x0 x0

01 X1 or X2 x1 or x2 x1

11 X3 x3 x0

Table 2.1: Markov interval for the ADC based map and corresponding associated states and macro-states.

is possible to aggregate the states of the graph two by two, as shown with the

dotted lines of Figure 2.3b. If we introduce the two macro-states x0 and x1,

respectively x0 corresponding to the system being either in x0 or x3, while x1

corresponding to the system being either in x1 or x2, the resulting diagram is

identical to the ideal coin toss diagram.

Now, it is intuitive how a single 1.5 bits ADC stage can be used as a random

bit generator; it is sufficient to directly close the output in a loop onto the input

including a unity-delay block (that can be the S/H stage present inbetween

every stage of the pipeline) to achieve the dynamic behavior

v(i) ((k + 1)T) = e
(

v(i) (kT)
)

that is the same behavior as (2.3), where the time steps k, k + 1, . . . are sub-

stituted by the sampling instants kT, (k + 1)T, Also, in order to evaluate

whether the system is in macro-state x0 or x1, it is enough to look at the digital

outputs of the converter stage. In fact, the partition X is partially coincident

with the quantization intervals of (2.1). For determining the macro-state, is it

sufficient to take the exclusive-or between d(i,1) and d(i,0), as summarized by

Table 2.1. The complete arrangement is illustrated in Figure 2.4.

Furthermore, a fundamental property of the ADC-based map is that it is

a robust map, i.e. it is not affected by any problem discussed in Appendix A.

Assuming that the map is linearly extended, i.e. that Equation (2.2) is extend

18 CHAPTER 2

D(i)=d(i,1)d(i,0)

S/H

1.5bit
ADC

ADC stage

1.5bit
DAC

+

2

e(i)
v(i)

-
k

Φ

true random bit

Figure 2.4: Complete arrangement for achieving a random bit generator from a 1,5 bit A/D stage.

∀x ∈ R, we have that

• it is not possible that the state could escape from the invariant set X , since

the basin of attraction B = [−2, 2] is sensible larger then X = [−1, 1];

• no invariant sets other than the principal one exist or can arise due to

map parameter variations;

• the map has an uniform invariant density, and the restriction of the map

in Y = [−3/2, 3/2] is periodic with Π = 1, Since µ (X) = 2Π, the in-

variant density of the map is not affected by any noise bounded in N =

[−1/2, 1/2].

Hence, this map is an ideal candidate for a practical implementation of a

chaotic source, since a good chaotic behavior is ensured of the circuit even in

presence of non idealities. In addition, this is a very simple map, presenting

a constant slope and only two breakpoints. Among all possible PWAM maps,

only the Bernuolli map presents a simpler design, but it is well known not to be

robust. Furthermore, designing a chaotic map based on already existing hard-

ware, allows the implementation of a simple, reliable, chaotic map just simply

reusing IP design blocks, or by transferring all the know-how from ADC tech-

nology ubiquitously used in mixed signal systems.

2.3 Description of Basic 1.5 bit Cell

For the implementation of the 1.5 bit A/D cell the classical switched capac-

itor implementation shown in Figure 2.5 has been adopted. While a single-

ended configuration is shown for simplicity, the actual implementation is fully-

differential. This stage operates on a two-phase clock. In a first phase (at the

time step n, named “sample” phase), the input signal v
(i)
n ranging in X =

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 19

+

-

+

-

VR/4

-VR/4

L
A
T
C
H

MUX
Sw1

VR -VR0

Sw2

Sw3 Cs

Cf

+

-

2

v(i)

D(i)=d(i,1)d(i,0)

v(i+1)

Figure 2.5: Standard 1.5 bits A/D switched capacitor converter stage used for the circuit implementation.

[−VR/2, VR/2], is applied both to the coarse 1.5 bit ADC (a simple flash con-

verter made of two comparators with thresholds −VR/4 and VR/4) and to the

sampling capacitors Cs and Cf . The output of the ADC D
(i)
n = d

(i,1)
n d

(i,0)
n is

also latched at the end of the clock phase, while the analog error output v
(i+1)
n

is not significant.

During the second phase (“evaluating” phase, time step n + 1/2), Cf closes

the negative feedback loop around the op-amp while Cs is switched to the out-

put of the DAC (a simple three-inputs multiplexer). Due to Sw1 that opens

at the beginning of this time phase, the node connecting the switch Sw1, the

two capacitors and the inverting input of the operational amplifier (that is sup-

posed ideal in this brief analysis) is now an isolated node; this means that the

charge stored at this node (that is the total charge stored by the two capacitors)

remains constant during this phase. The total charge at the beginning at the

phase is

Qs + Qf = CsVs + CfVf = (Cs + Cf) v(i)
n (2.4)

while, due to the feedback, at the end of the transient it is:

Qs + Qf = Csv
(mux)

n+ 1
2

+ Cfv
(i+1)

n+ 1
2

(2.5)

where v(mux) is the output voltage of the multiplexer. Imposing the conser-

vation of the charge between (2.4) and (2.5), it is possible to write down the

equation of the system:

v
(i+1)

n+ 1
2

=

(

1 +
Cs

Cf

)

v
(i)
n − VR, v

(i)
n < −VR

4
(

1 +
Cs

Cf

)

v
(i)
n , −VR

4
< v(i)

n <
VR

4
(

1 +
Cs

Cf

)

v
(i)
n + VR, v

(i)
n >

VR

4

(2.6)

Setting Cs = Cf the resulting input/output characteristic is the desired one of

Figure 2.2b, with the definition set equal to X = [−VR/2, VR/2].

20 CHAPTER 2

L
A
T
C
H

MUX

VR -VR0

Cs

Cf

+

-
+

-

+

-

VR/4

-VR/4

L
A
T
C
H

Cs Cf

Stage A Stage B

L
A
T
C
H

MUX

VR -VR0

Cs

Cf

+

-

+

-

Stage B

(a)

Stage A

(b)

Figure 2.6: (a) In the first half time step, stage A provides a valid output and stage B is sampling it; while (b) during
the second half time step the output of the first stage is no more valid, but is disconnect from stage B.

A first advantage of this structure is represented by the accuracy of this cir-

cuit, that is expected to be very high. As can be noticed from (2.6) the quality

of the circuit relies only on the ratio of two, equal, capacitors and on the ratio

of the reference voltages ±VR, ±VR/4. However, the values of the capacity of

Cs and Cf , as well as the value of the reference voltage VR, are not important;

a change in the value of the capacitor affects only the transient time, while a

change in the value of VR implies only a scaling of the definition set X . Ap-

plying matching techniques in the design of the capacitors and of the voltage

sources allows to get a very high accuracy.

Also it is possible to notice that this circuit introduces a delay equal to half

time step. The input is sampled at (the end of) time step n, while the output is

available at (the end of) time step n + 1/2. This is particular important, since it

allows to directly connect the input of a stages to the output of the previous one

without the interposition of any S/H. In fact, if the two stages work on the two

different phases of the clock, when the first stage is computing the output the

second one is sampling it; as soon as the the first stage goes into the sampling

phase and its output is no more valid, the second one goes into the evaluating

phase, in which the input has already been sampled and it is no more used.

So, it is possible to avoid S/H stages in the pipeline by driving alternatively the

cells in the pipeline with two opposite clocks. This arrangement is illustrated

in Figure 2.6.

2.4 ADC-based Random Number Generator

Instead of being based on the basic model of Figure 2.4, the implemented RNGs

are based on the schematic of Figure 2.7 [39]. The main reason is to take ad-

vantages of the half time step delay present in the basic cell, thus avoiding the

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 21

stage 1 stage 2 stage h stage h+1
(incomplete)

Figure 2.7: Schematic used for the implementation of the ADC-based random number generators.

n n+1/2 n+1 n+3/2 n+2 n+5/2

clock

v(1)

v(2)

v(3)

v(4)

M1(·)

M3(·)

M2(·)

M4(·)

Figure 2.8: Example of evolution of the system of Figure 2.7 for h = 4.

S/Hs. The system is a closed pipeline composed of h identical stages, driven

alternatively by the two phases of the clock, and can be described by the fol-

lowing model:

v
(1)

n+ 1
2

= 0

v
(2)

n+ 1
2

= M1

(

v
(1)
n

)

· · ·
v
(h−1)

n+ 1
2

= 0

v
(h)

n+ 1
2

= Mh−1

(

v
(h−1)
n

)

v
(1)
n+1 = Mh

(

v
(h)

n+ 1
2

)

v
(2)
n+1 = 0

· · ·
v
(h−1)
n+1 = Mh−2

(

v
(h−2)

n+ 1
2

)

v
(h)
n+1 = 0

This is discrete-time, h-dimension autonomous system, with a h dimen-

sional state space. Despite its apparent complexity, it is very simple to analyze.

An example of the system evolution, assuming h = 4, is depicted in Figure 2.8.

The system is interleaved, in the sense that every of the h state of the system de-

pends only by one state at the previous half-time step. Of course the number

of stages after closing the pipeline has to be an even number.

22 CHAPTER 2

Furthermore, it is very easy to understand that if M1 ≡ M2 ≡ . . . ≡ Mh ≡
M (i.e. the h stages of the A/D are identical) the behavior of the system is the

same as h 1-D systems working in parallel. The only difference is that in the

interleaved system the data stream is continuously shifted between all different

h stages. Practically, the system is equivalent to h basic system of Figure 2.4,

half providing output in the first phase of the clock, half in the other phase.

Obviously the throughput of this system is equal to h bits per time step.

2.5 Design of the Basic Cell

We look now for some relationships between the operational amplifier’s char-

acteristics and the basic cell circuit (Figure 2.5) performances. In the following

brief analysis all components (comparators, capacitors, switches) are consid-

ered ideal, and the operational amplifier is modeled as an ideal amplifier with

a limited bandwidth, i.e. it is described by the low-pass first order transfer

function:

A (jω) =
A0

1 − j ω
ωc

where the open loop base-band gain A0 is very large, and ωc is the open loop

bandwidth; we call GBW its gain-bandwidth product GBW = A0 · ωc.

The operational amplifier has two completely different configuration in the

two phases. They are studied separately.

EVALUATING PHASE. In this phase (Figure 2.6a) Cs is connected to the multi-

plexer and Cf closes the feedback loop of the operational amplifier. They are

both precharged at the output voltage v
(i−1)
n−1/2 at the previous stage in the (half)

previous time step; the output changes to v
(i)
n after a brief transient. Due to

the simplified model, this transient has to be the same as any transient of the

circuit in Figure 2.9a in response of an ideal step at its input:

vout (t) = V0 + (V∞ − V0)

(

1 − e−
t
τ

)

(2.7)

where V0 and V∞ are, respectively, the output voltage at the beginning and at

the end of the transient (i.e. at time respectively, t = 0 and t → ∞), and the time

constant τ is the inverse of the bandwidth of the system. The step is supposed

starting at time t = 0.

What is interesting in this analysis is the relative error ε (t) in the response

which is:

ε (t) =
V∞ − vout (t)

V∞ − V0
= e−

t
τ

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 23

Sw2

Sw3

+

-
vin

voutZs

Zf

Sw2

Sw3

+

-vin voutZs

Zf

(a) (b)

Figure 2.9: Equivalent circuits for transients of the basic cell during the evaluating phase.

Supposing to have a limited time T available for the transient, if the relative

error has to bo smaller than ε at the end of the available time, the relation

needed is:

τ < − T

ln ε

For estimating τ it is enough notice that the circuit is a standard non invert-

ing amplifier, whose frequency domain behavior is

vout = A (jω)
(

V + − V −
)

= A (jω)

(

vin − vout
Zs

Zs + Zf

)

(2.8)

with V − and V + are the voltage at the inverting and non-inverting input of the

operational amplifier, and setting β =
Zs

Zs + Zf

Vout =
A (jω)

1 + βA (jω)
Vin

This comes in the standard form used in feedback system analysis; supposing

A0 >> 1, (a) the gain of the system is 1/β; and (b) the gain-bandwidth product

is constant, i.e. the bandwidth B of the system in closed loop in B = β ·GBW .

In this case, Zs = 1/jωCs, Zf = 1/jωCf , so β = 1/2; the time constant in the

transient is τ = 2/GBW .

Actually one could argue that the same circuit can be seen as a unity gain

inverting amplifier as in Figure 2.9b where, apparently, the gain is halved and

the bandwidth doubled with respect to the previous configuration. However,

a detailed analysis of the circuit shows that

vout = A (jω)
(

V + − V −
)

= −A (jω)
1

Zs + Zf
(Zfvin + Zsvout)

and, this time

vout = − A (jω)

1 + βA (jω)
vin (1 − β)

So, from the feedback analysis point of view, the signal vin (1 − β) = vin/2 is

amplified by a factor 2 with a time constant τ = 2/GBW . The time response of

the system is the same as in the previous case.

24 CHAPTER 2

Sw1

+

-
vin

vout

Figure 2.10: Equivalent circuits for transient of the basic cell during the sample phase.

Given this relation between τ and the operational amplifier GBW , the con-

straint is

GBW > −2 ln ε

T
(2.9)

SAMPLE PHASE. Now (Figure 2.6b) the inverting input of the amplifier is

grounded through Sw1 (i.e. all the charge present at the node at the previ-

ous time step is removed through the switch) while the feedback loop through

Sw2 is open. Actually in order to (a) speed-up the process; and (b) avoid the

open loop in the operational amplifier, an alternative schematic has been im-

plemented, i.e. Sw1 has not been connected between the inverting input of

the operational amplifier and ground but between the inverting input and the

output. The operational amplifiers works as in Figure 2.10 in a buffer config-

uration (unity gain configuration). Since the non-inverting input is grounded,

and due to the negative feedback loop, also the output (and so the inverting in-

put) will, after a brief transient, reach zero voltage; however in this case all the

residual charge is removed actively through the switch by the amplifier. The

time of the transient is not dependent on the RON of the switch (which is, in

the closed feedback loop model, divided by the open loop gain A0 of the am-

plifier) but only on the bandwidth of the amplifier. In this phase the behavior

of the system is the same as the response to an ideal step of the circuit in Figure

2.10.

Following the same procedure as in the previous step, β = 1, so the time

constant in the discharge is τ = 1/GBW and is smaller than in the previous

case. This means that the critical case is the evaluating phase.

SLEW-RATE. Another aspect to take into account in the design of the circuit

is the limited slew rate of the operational amplifier. The main reason why the

slew-rate mode has to be avoided is that, during the slew rate, the behavior

of the transient can be completely different from the first order transient; for

example it could happen that many transistors in the operational amplifier are

turned off, and turning them on again requires a certain amount of time. Dur-

ing this time the output is still rising, and could reach an unwanted overshoot,

as illustrated in Figure 2.11. As in the figure, it is possible that another system

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7

maximum slew-rate
slower system response

response in slew-rate mode

Figure 2.11: Considering two systems with the same slew-rate (dotted line), the slower system that does not enter
in slew-rate mode (solid line) could result in a smaller settling time with respect to a faster system (dashed line)
that enters in slew-rate mode.

with the same slew-rate, but that is slower in the response (that mean a smaller

bandwidth), does not enter into the slew-rate mode thus resulting in a shorter

settling time.

If ∆V is the output voltage step V∞−V0 during the transient, the maximum

variation in the output voltage can be obtained deriving (2.8)
∣

∣

∣

∣

dVout

dt

∣

∣

∣

∣

=
|∆V |

τ
e−

t
τ

and is maximum for t = 0

max

∣

∣

∣

∣

dVout

dt

∣

∣

∣

∣

=
|∆V |

τ

This quantity has to be smaller than the maximum slew-rate S.R. allowed by

the operational amplifier, and, referring to the evaluating phase, this results in

the constraint:

GBW <
2S.R.

|∆V | (2.10)

Actually, since it has been derived by a worst-case analysis and with a very

simplified model, (2.10) is too stringent. For example, it is false that the slew

rate is to be avoided; what should be avoided is that no transistors in the ampli-

fiers are turned off. This is of course a more relaxed constraint than requiring

to avoid the slew rate. Also, the response of the system is actually not exactly

as in (2.7) especially at the beginning of the transient, due to the non-ideality

of the switches. For these reasons, (2.10) is substituted by

GBW < α
2S.R.

|∆V | (2.11)

where α is a constant that is empirically computed with simulations to be equal

to α = 2.

26 CHAPTER 2

Note that the two constraints we have found in this paragraph come from

a very simplified model of the system, and must be paired with the support

given by simulations, to lead to an optimized design.

2.6 Description of the 0.35 µm RNG prototype

The first prototype has been designed in 0.35 µm C35B3C1 technology; this

technology, provided by AustriaMicroSystem AG, is a n-well CMOS technol-

ogy with a minimum MOS width of 0.35 µm and a minimum resolution of 0.05

µm. The technology also provides a double polysilicon layer (with a poly-poly

capacitor module and a high resistive polysilicon module) and three level of

metalization. This technology requires a power supply voltage of 3.3 V.

Instead of the single-ended configuration showed up to now, a fully dif-

ferential implementation has been chosen. This means that every signal is not

simply the voltage across a wire, but it is represented by the difference between

the voltages of two lines. More precisely, given a reference level Vref , the signal

v(i) is represented by the two voltages Vref + v(i)/2 and Vref − v(i)/2. Note the

the differential voltage swing is double with respect to the voltage swing of a

single line. Yet, the increment in the complexity of the circuit (every signal has

to be routed as two different interconnection lines, and every component has

to be doubled, including Cs and Cs) is balanced by the more robust circuit in

terms of noise and perturbations tolerance.

The reference voltage has been set to Vref = 1.2 V and VR = 500 mV; thus a

biasing stage is needed to generate the five voltage levels Vref , Vref ± VR/2 and

Vref ± 2VR. From these voltages it is possible to generate the five differential

voltages 0, ±VR and ±4VR needed by the converter stage. Notice that in this

sense, the complexity of the biasing stage is not increased with the introduction

of the fully differential architecture. These voltages have been generated with

a matched resistive ladder, biased with a constant current.

The nominal speed for this circuit has been set in fnom = 5 MHz, i.e. with a

settling time for each transient phase equal to T = 100 ns. Imposing a relative

error of ε = 0.001 in (2.9):

GBW > 22MHz

However handling (2.11) requires a more detailed circuit description. The

capacitors Cs and Cf are implemented through a matched array of 4×4 smaller

capacitors; they are parallely connected in group of four, reaching a value of

C = 2 pF. A microphotograph showing in detail of the capacitor array can be

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 27

A

D

C

DB

D

C

B

C

B

C

B

A

AD

A

Figure 2.12: Detailed microphotograph of the 4 × 4 array of capacitors used for Cs and Cf .

Load capacitance (considered): 5 pF

Compensation capacitance: 3 pF

Gain-Bandwith product: 30 MHz

Phase margin: 80◦

Differential gain: 43 dB

Common mode gain: -17 dB

Power consumption: 1.6 mW

Table 2.2: Electrical characteristic for the operational amplifier designed for the 0.35 µm circuit.

seen in Figure 2.12; the identification of the connected capacitors can be done

looking at the letters A–D in the corner of each array cell. In the evaluating

phase (Figure 2.6a) the load capacitance of the operational amplifiers is esti-

mated in CL = 8 pF, considering also the compensation capacitance; since the

two final stages of the operational amplifiers are biased with a current I = 200

µA each, the maximum slew rate to each output node is S.R. = I/CL = 25

V/µs. With this value, and considering that the maximum |∆V | (for a single

output line) is ∆V = VR

GBW < 32MHz

In the designed operational amplifier the GBW has been limited to 30 MHz.

The operational amplifier characteristics are reported in Table 2.2.

This prototype was designed including two pipelines. They are identical in

everything but the number of stages: the first one is composed by two stages

and includes two analog buffers for providing the internal state of the stages,

and it is intended for testing the correct behavior of the chaotic map. The sec-

28 CHAPTER 2

eight-stages
pipeline

BIAS BIAS

two-stages
pipeline

analog

output

buffers

Figure 2.13: Microphotograph of the designed 0.35 µm prototype of the ADC-based RNG.

ond pipeline is composed by eight stages and its purpose is to work as a ran-

dom bit generator. The two parts use two different biasing circuits to avoid

interferences. The circuit works with an external nominal clock of frequency

fin = 10 MHz, that is halved, thus the internal maps work at a frequency of

5 MHz and a settling time T = 100 ns. This means that the circuit nominal

output data rate is 40 Mbit/s for the eight-stages pipeline and 10 Mbit/s for

the two stages pipeline.

However, the digital outputs (as well as the analog one in the two stages

pipeline) are rearranged to provide a simpler interface. Instead of having a

number of output pins equal to the number of stages, only one output pin has

been connected to two stages. This also allows to synchronize all the output

signals with the input clock fin.

A microphotograph of the integrated circuit is shown in Figure 2.13 while

the circuit characteristics are reported in Table 2.3.

2.7 Macromodel for 0.35 µm RNG prototype

To validate the design, a netlist extracted from layout and affected by param-

eter variations reproducing fabrication imperfections must be simulated and

results matched against test for randomness. Due to the switched capacitor na-

ture of the circuit, time-domain simulations are necessary. These simulations

are extremely expensive in terms of computing power. With a state-of-the-art

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 29

Nominal working frequency: 5 MHz

Nominal data throughput: 5 Mbit/s per stage

(two-stages pipeline): 10 Mbit/s

(eight-stages pipeline): 40 Mbit/s

Area (with pads): 2.400 mm2

(1480 µm x 1620 µm)

Area (without pads): 0.752 mm2

(two-stages pipeline): 0.234 mm2

(eight-stages pipeline): 0.518 mm2

Power supply voltage: 3.3 V

Power consumption: 56 mW

(two-stages pipeline): 27 mW

(eight-stages pipeline): 29 mW

Table 2.3: Circuit characteristics of the designed 0.35 µm prototype of the ADC-based RNG.

CPU and a commercial spectre simulator, a speed of about 600bit/hour (i.e.

about 0.15bit/s) for the two stages-pipeline circuit was obtained. This is of

course unacceptable, since statistical tests require millions of bits to run. For

this reason an efficient macro-model capable of a throughput of several order

of magnitude higher than the full circuit simulation has been investigated. The

macro-model has been developed from the circuit implementing a two-stages

pipeline, aiming to describe the single stage and so to simulate a pipeline with

any number of stages.

Since the circuit is, ideally, 1D discrete-time and time independent, a 1D

discrete-time and time independent model has been selected, i.e. the focus has

been posed on modeling the profile of the implemented M and describe how

its varies depend on implementation inaccuracies. Due to the discrete-time na-

ture of the circuit, the M function can be analyzed only with a collection of

(xk+1, xk) points obtained from simulations. This could have been done with

a parametric simulation of a single time step with different initial values of

xk ; however there is no guarantees that the computed initial solution is the

actual one. So it was preferred to extract a set of the points (xk+1, xk) from a

single, long, transient simulation, and down-sample the output stream with a

sampling instant few ns before the front of the clock as shown in Figure 2.14,

where only the differential values of the circuit outputs are drawn for simplic-

ity. Since the points xk are ideally uniformly distributed in X , from these points

a good representation of M could be obtained. This simulation has also been

performed with different values of the actual process parameters to obtain a

30 CHAPTER 2

sampling
instants

Figure 2.14: Short time transient analysis for the two-stages pipeline.

model which includes all implementation inaccuracies.

So, many Monte-Carlo runs of about 25× 103 clock periods have been sim-

ulated for the two-stages pipeline circuit. From each of these runs, two sets

of about 25 × 103 points (xk+1,xk), one for every stage, have been extracted.

From these sets, a version of function M is computed for every stage of every

Monte-Carlo run; these functions have been analyzed to obtain a simple but

realistic map description including an evaluation of the differences which may

exist between two stages of two different pipelines or between two stages of

the same pipeline.

The model used for the M function is a piece-wise linear model. The

switched capacitor implementation ensures (Figure 2.15a) a very high linear-

ity, and also a very good precision on the multiplying factor. Also the fully

differential architecture ensures a high symmetry; so the M can be described

by

M (x) =

2x + β if condition λ1 (x) is true

2x if condition λ2 (x) is true

2x − β if condition λ3 (x) is true

The determination of the three condition λ1, λ2 and λ3 is non-trivial. Ideally,

two breakpoints α− and α+ exist, with λ1 (x) : x < α−, λ2 (x) : α− ≤ x < α+

and λ3 (x) : x ≥ α+. Yet, the real behavior of the system can be seen in Fig-

ure 2.15b, which represents a zoom of Figure 2.15a around the ideal breakpoint

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 31

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

-1

-0.5

 0

 0.5

 1

-0.52 -0.515 -0.51 -0.505 -0.5 -0.495 -0.49

(a) (b)

Figure 2.15: (a) A collection of (xk+1,xk) points for a single 1.5 bit ADC stage; and (b) zoom around breakpoint α−

 1

 0.5

 0

-0.49-0.495-0.5alpha--0.51-0.515-0.52

 1

 0.5

 0

 0.49 0.495 0.5 alpha+ 0.51 0.515 0.52

(a) (b)

Figure 2.16: (a) Density of points satisfying condition λ2 (solid line) and linear approximation p (x) (dotted line)
around α−; and (b) around α+.

α−. While at a certain distance from the breakpoint the behavior is fully deter-

ministic, a point very close to the breakpoint could sometimes verify condition

λ1 and sometimes λ2 (the gray area in the figure). This could be explained

considering interferences (for examples spikes on the power supply voltage)

coupling from the other parts of the circuit which may alter the behavior of the

two comparators. Due to the static nature of the macro-model, these interfer-

ences cannot be modeled in any way but as noise perturbation. So a stochastic

transition model has been implemented; in this model a probability function

decides which linear piece of M is used.

The solid lines of Figure 2.16 show the density of points around the break-

points verifying condition λ2 in a Monte-Carlo run; the figure has been ob-

tained with an histogram analysis. Assuming the system is ergodic, this func-

tion has been taken as the probability function p (x) that condition λ2 is verified

for a point x. With this the macromodel have been set

32 CHAPTER 2

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

-0.57 -0.56 -0.55 -0.54 -0.53 -0.52 -0.51 -0.5 -0.49 -0.48
 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25

(a) (b)

Figure 2.17: (a) Scatter plot for α− vs α+; and (b) for β vs α

M (x) =

2x + β x < 0, with probability 1 − p (x)

2x with probability p (x)

2x − β x > 0, with probability 1 − p (x)

Ideally p (x) = χ[α−,α+], where χ is the classical indicator function of an

interval. In this model, p (x) has been considered a trapezoidal function (the

dotted line in figure 2.16):

p (x) =

0 x < α− − 1

2s−

1

2
+
(

x − α−
)

s− α− − 1

2s−
≤ x < α− +

1

2s−

1 α− +
1

2s−
≤ x < α− − 1

2s+

1

2
−
(

x − α+
)

s+ α+ − 1

2s+
≤ x < α+ +

1

2s+

0 x ≥ α+ +
1

2s+

The breakpoints α− and α+ are the points where the (fitted) probability to

be in one or another of the two linear pieces of M is equal. These parameters,

as well as s− and s+, are computed through two separate linear regression,

including all points around α− (or α+ respectively) that verify condition λ2

in each Monte-Carlo run. All points far enough from the breakpoints to en-

sure a deterministic decision (i.e. when the density is 1 or 0) have not been

considered. Even if some slightly differences can be observed in the value

of α− and α+, they are strongly related (see Figure2.17a) so we can assume

α = α+ = −α−.

Numerical analysis shows that there can be large differences in these pa-

rameters for different pipeline implementations. However the differences be-

tween different stages in a single pipeline are very small. This reflects the fact

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 33

parameter(s) mean value standard deviation

β 2.0376 0.09806

∆α 0 0.004551

s+,s− 124.7316 60.177

Table 2.4: Expected value and deviation for model parameters.

that the latter differences depend only on inaccuracies such as matching errors,

which are typically limited.

For example, a variation up to ±20% from its nominal value can be ob-

served in β in different Monte-Carlo runs since it depends on reference volt-

ages which may strongly vary; however no sensible variation can be observed

in β for the two stages of a single Monte-Carlo run, since in a single simula-

tion (i.e. in a single pipeline) the reference voltages are the sames. So β in the

macro-model is assumed to be a global parameter for the entire pipeline. From

the analysis of β in all Monte-Carlo runs, its value is modeled as a normal dis-

tributed random variable with mean value and variation shown in Table 2.4.

On the contrary, a fluctuation on the value of α can be observed even between

the two stages of a single pipeline. The value of α in the macro-model so is

computed for every stage of a pipeline as α = α0 + ∆α where α0 is a global

parameter for the entire pipeline, and ∆α is computed for every stage as in Ta-

ble 2.4. Actually, α0 is not an independent parameter, and it is strongly related

to β (see Figure 2.17b). In the model it is taken α0 = β/4, since this is the ex-

pected relation between these two parameters. However, no relations between

the values of s−, s+ and the other parameters has been found; also since no

link with the other parameters can be anticipated based on circuit design, they

are taken as independent for each pipeline stage.

In the light of this, the proposed model has four parameters:

• β, which is assumed as a global random variable for the entire pipeline.

• ∆α, s− and s+, which are random variables computed for each stage of

the pipeline.

All these parameters have been assumed to be normal distributed random vari-

ables.

2.8 Design of the RNG circuit in 180 nm technology

A circuit implementing an ADC-based RNG was also designed in UMC 180 nm

technology as a RNG used in a spread spectrum clock generator see Chapter

34 CHAPTER 2

BIAS

four-stages pipeline

Figure 2.18: Layout of the designed ADC-based RNG.

6, Section 6.3. As the previous technology, this is a standard n-well CMOS

technology, but with it is optimized for digital applications. It has a single

polysilicon layer, up to six metal layers, and a metal/metal capacitor options

between the two top metal layers. The core power supply voltage is reduced

to 1.8 volts, but 3.3 volts transistors are available as I/O devices.

This prototype includes a four-stages pipeline, and it is the porting of the

previous design into the new technology. Many attentions have been given to

the circuit speed: its purpose was to give a throughput of about 47 Mbit/s,

thus working with a settling time equal to T = 42.5 ns for each phase; however

it was designed to reach much higher speeds.

The operational amplifier implemented has a differential GBW of about 200

MHz, and a phase margin of 67◦. Its power consumption was estimated in

about 2.7 mW. Due to the reduction in the power supply voltage, all reference

voltage have been scaled, i.e. Vref = 800 mV and VR = 150 mV. The value of Cs

and Cf was chosen in 500 fF.

The microphotograph of the area of the RNG is shown in Figure 2.18 while

a summary of the performance can be found in Table 2.5. Note that in this

circuit the output stage is slightly different from the first prototype. The input

frequency fin is divided by two before reaching the pipeline as in the 0.35 µm

circuit; however, to keep a low bitrate at the output pins, thus simplifying the

data acquisition, an output pin has been assigned to each stage. This is reflected

into the fact that the outputs are no more synchronized with the input clock,

but they change every two rising fronts of the input clock.

HARDWARE IMPLEMENTATION OF A CHAOS-BASED RNG 35

Nominal working frequency: 12 MHz

(throughput): 48 Mbit/s

Maximum working frequency: 25 MHz

(throughput): 100 Mbit/s

Active area: 0.126 mm2

(350 µm x 360 µm)

Power supply voltage: 1.8 V

Power consumption: 22 mW

Table 2.5: Circuit characteristic for the UMC 180 nm porting of the ADC-based RNG.

2.9 Conclusion

In this chapter the architecture of common pipeline ADCs has been analyzed

and reused for designing a robust chaotic circuit, thus implementing a chaos-

based random number generator. Two prototypes of a RNG has been pre-

sented; the first one is designed in 0.35 µm CMOS technology to operate at

a speed up to 40 Mbit/s, while the second one is designed in 180 nm CMOS

technology and can operates at a much higher speed.

36 CHAPTER 2

Chapter 3

How to Improve the Quality

of a RNG

W
HEN CONSIDERING a real implemented true random number genera-

tor it is always necessary to deal with implementation errors, parasitic

components, or simply with the non-ideality of the used devices. As an exam-

ple, theoretically the noise generated by the thermal agitation of the electrons

inside an electrical conductor in equilibrium (often referred as Johnson noise,

or Nyquist noise) is approximately white and Gaussian distributed, with a con-

stant power spectral density (i.e. voltage variance) per hertz given by

v2
n = 4kBTR

where kB is the Boltzmann’s constant, T is the resistor’s absolute temperature,

and R is the resistor value. Such a white (and so infinite-bandwidth) noise

signal is purely a theoretical construction. By having power at all frequencies,

the total power of such a signal would be infinite. Practically it is observed that

the white noise assumption is a very good approximation until few Gigahertz

at room temperature.

In the time domain, a white Gaussian noise has a Gaussian amplitude dis-

tribution; furthermore, labeling it as “white” describes that the noise is also

uncorrelated. This theoretically means that is enough to sample at the desired

frequency such a noise to have uncorrelated samples that, being the process

Gaussian, also independent.

However, since the white noise model is just an approximation, it is neces-

sary to set an upper bound in the sampling frequency to ensure that the cor-

relation between samples is limited. This problem is extremely relevant when

37

38 CHAPTER 3

we consider that we are trying to measure this noise, i.e. we connect the noise

process to an harvester.

The observed power spectral density is now far from being white, depend-

ing on the bandwidth of the measure circuit. For this reason, samples at the

harvester output can present a strong correlation, thus being no more indepen-

dent. Similar phenomena happen in all physical based RNGs.

For this reason, all physical RNGs are completed with some post-processing

functions (also called entropy distillation processes) to improve the quality of the

output stream. The use of a distillation process is needed to overcome the

production of an auto-correlated sequence of numbers (e.g., the occurrence of

long strings of zeros or ones in a bit stream) [23, 36, 82].

Correlation is defined as a coefficient that indicates the strength and direc-

tion of a linear relationship between two random variables. This coefficient

correlation cannot exceed 1 in absolute value. Mathematically the correlation

ρX,Y between two random variables X and Y is defined as:

ρX,Y =
E [(X − E [X]) (Y − E [Y])]

√

E [X2] − E2 [X]
√

E [Y 2] − E2 [Y]

where E is the expected value.

In a random sequence it is more appropriate to talk in terms of autocor-

relation, which is a function describing the correlation between the process at

different points in time:

R (t, s) =
E [(Xt − µ) (Xs − µ)]

σ2

with µ and σ the mean and the variance of the random process. The correla-

tion is 1 in the case of an direct linear relationship, -1 in the case of a inverse

linear relationship, and some value in between in all other cases, indicating the

degree of linear dependence between the variables. The closer the coefficient

is to either -1 or 1, the stronger the correlation between the variables.

If the variables are independent then the correlation is 0, but in general

the converse is not true because the correlation coefficient detects only linear

dependencies between two variables. Even if it is common to speak in terms

of correlation instead of independence because of its simple definition and of

the possibility to estimate the autocorrelation function in a sequence, this tool

cannot be used to measure the ”randomness” of the sequence.

Introducing a mathematical tool able to measure how “good” or how “bad”

a random sequence is, as well as to explain the concept of “strong” or “weak”

post-processing, is a necessary step before any further talk.

HOW TO IMPROVE THE QUALITY OF A RNG 39

3.1 Information Theoretic Entropy

The classical concept of entropy of a system comes from thermodynamic theory

and can be described qualitatively as a measure of disorder of a system; with

the development of statistical thermodynamics and quantum theory, entropy

changes have been described in terms of the mixing or ”spreading” of the total

energy of each constituent of a system over its particular quantized energy

levels.

The concept of entropy in information theory was introduced by Claude E.

Shannon in 1948, to describe how much information there is in a signal or event

[21]. In case of a random number generator, the “information” associated to a

generated sequence of symbols can be interpreted as the quantity of indepen-

dent symbols in the sequence, exactly like in a communication system where

all redundant data (for example, all the parity bits in a string) contain no ad-

ditional information, since they are deterministically computed from all other

data. Even if this is out of the scope of this dissertation, it is possible to prove

that there are close parallels between the thermodynamic entropy of a physical

system in the statistical thermodynamics established by Boltzmann and Gibbs

in the 1870s and the information-theoretic entropy of Shannon developed in

the 1940s.

The Shannon entropy (measured in bits) of a discrete random process is

defined in terms of the discrete random variable X , with possible states (or

outcomes) x0, . . . , xn−1 as:

H (X) = −
k−1
∑

i=0

π (xi) log2 π (xi) (3.1)

where π (xi) is the probability of the ith outcome X = xi.

Actually, when considering a RNG, the random variable X is the n bits

generated sequence. The possible outcomes are k = 2n, each (ideally) with the

same probability pi = 2−n. In this way, the entropy associated to the perfect

random bit generator is measured in n bits, and this is the maximum possible

value. Since this measure is dependent on the output sequence length, it is

more practical to consider the entropy per bit (or normalized entropy, usually

indicated as h), that is h = H (X) /n. The perfect RNG have an entropy per bit

equal to h = 1 bit; for any other generator h is a real number between 0 and 1.

Even if, from a theoretical point of view, the entropy is the only tool capa-

ble of fully characterize a RNG, it does not find any practically usage in the

RNG testing due to the impossibility to have a realistic estimation. The reason

is very simple. An estimation of entropy can be obtained very easily; many

40 CHAPTER 3

algorithms exist, the simplest one is just to take (3.1) and compute the entropy

by substituting the probability π (xi) of a symbol with its observed frequency

ν (xi) in the outcomes of the generator during a period of time. One can refer

to the n order entropy Hn as the entropy of the generator when considered as

a system generating strings of n bits

Hn = lim
k→∞

−
k−1
∑

i=0

ν (xi) log2 ν (xi)

However this is not a correct estimator of the system entropy. The problem

is that, when substituting the probability π (xi) with the observed frequency

ν (xi), it was implicitly supposed that (a) the system is ergodic; and (b) the sym-

bols generated are independent. None of these two assumptions are ensured.

This estimation is correct only considering very large n; in this way dependen-

cies among bits are reflected into non-uniform distribution of sequences:

h = lim
n→∞

Hn

n

Of course this estimation is not feasible in real systems, since any approxima-

tion would require extremely long sequences. In practical cases, in order to

test randomness some statistical tests are used; this will be discussed later in

Chapter 4. In this chapter the entropy is taken into account only from a the-

oretical point of view, and it is considered the main figure of merit of a RNG.

More precisely, the figure of merit considered is entropy per time unit (some-

times called the entropy rate) that has the physical meaning of the quantity of

independent bits that a RNG could produce per time unit. This normaliza-

tion is necessary since it is always possible to increase the entropy per bit of a

generator by applying a post-processing stage, it is not possible in any way to

increase the entropy per time unit.

3.2 Increasing the Entropy of a Generator

Suppose to have a non-perfect RNG, that in a given time produces N bits, of

which only M are discovered to be independent (i.e. the RNG has an entropy

per bit equal to h = M/N). Now suppose to have a numerical algorithm capa-

ble of separate these independent M bits from the stream; this algorithm would

be the perfect post-processing stage. The combination non-perfect RNG + per-

fect post-processing stage works as a perfect RNG; in this sense the quality of

the generator has increased. What is not changed applying the post-processing

is the entropy per time unit: in the given time, both generators produce M in-

dependent bits. Of course, there is the constraint M < N , thus meaning that

HOW TO IMPROVE THE QUALITY OF A RNG 41

data at the output data rate of the post-processing is lower than the input one;

such an algorithm is called compressive. The process of reducing the number of

bits in the stream is called decimation.

Understanding this concept is fundamental when applying a post-

processing to a random stream. At this point, it may help summarizing what a

post-processing can and what it cannot do.

• A post-processing can increase the entropy per bit of a RNG, introducing

a proper decimation. In this way, a post-processing function is a numer-

ical algorithm used, given a set of values, to “distillate” the independent

values from the dependent ones, thus creating a perfect random stream.

• A post processing cannot increase the entropy per time unit of a RNG.

All post-processing functions that try to increase the bit-rate of a gener-

ator, or simply that does not introduce decimation, do not increase the

quality of a random stream in the sense of increasing the entropy per bit.

Yet, they exist and may produce good results according to statistical tests;

however they work in the same way as a pseudorandom generator that

is continuously seeded by a true random generator. In fact, we can re-

mark that the entropy of a pseudorandomly generated stream is just the

entropy of the seed.

Of course the perfect post-processing exists only theoretically; in real cases,

finding a good post-processing function that increases the entropy per bit and

that does not reduce entropy per time unit is an hard task. Note that a simple

decimation is not an effective way to increase the quality of a random stream;

decimating a string by a factor n could reduce also the entropy per time in the

output stream, while the effect over the entropy per bit is uncertain, since if

some relationship among bits more distant then n exists, this process is unef-

fective.

Usually post-processing functions consider a long sequence, and “spread”

autocorrelation and the other order moments among all the sequence. In a

correlated bit stream the correlation coefficient of two bits next to each other

is usually much greater than the correlation coefficient of two very far bits,

thus meaning that the relationship between two bits next to each other is much

stronger than the relationship between two very far bits. In the same way it

is usually simpler for any (human or not) observer notice some dependence

between two close bits than between two far bits. A post-processing that only

reshapes the autocorrelation function in order to get a more flat profile could

get better results to statistical tests than a simple decimation function. In this

42 CHAPTER 3

way, the stream appears much more random, or, more precisely, it is more

difficult to find a relation among bits.

Yet, in order to speak in terms of “more random” and “less random”, as

well as of “good” and “bad” random sequence, one should only consider the

entropy: the higher the entropy, the better the sequence. In case of a post-

processing working only on the autocorrelation reshaping, one should not

speak in terms of “increasing” of the randomness; however ironically this kind

of post-processing usually gives sequences that appear much more random to

statistical tests, than sequences given by other post-processing that works only

on decimation, trying to effectively increment the entropy.

In the following some post-processing functions used in the testing phase

are presented. Actually all post-processing functions can be divided into two

main categories depending on their strategy

• algebraic: they take an input block of N bits and elaborate it, giving an

output block of M ≤ N without any memory of the previous blocks.

• dynamic: they are essentially based upon a digital filter (i.e. a FIR o IIR),

and every bit is processed depending on the previous history of the input

(or output) sequence.

3.3 Von Neumann Post-processing

This algorithm was introduced by John von Neumann in 1951 to remove bias-

ing in random sequences [23]. The technique divides the input sequence into

non-overlapping groups of two bits, and converts the bit pair 01 into the out-

put 0, the bit pair 10 into the output 1, and discards bit pairs 00 and 11. The

working principle is very easy. If the bits in the sequence are independent, but

not with the same probability , i.e. the probability of “1” is p and the probabil-

ity of “0” is q, with p 6= q, then the tho symbols “01” and “10” have the same

probability p · q, while the symbols “11” and “00”, with different probabilities

p2 and q2, are discarded. Also in this way long sequences of 0s and 1s (that can

be present in some class of generators, for example in continuous-time chaotic

circuits that observe the chaotic trajectory hopping between two different at-

tractors [55] are eliminated.

This algorithm does introduce decimation; however the decimation rate

cannot be computed a priori. When processing a near-to-random stream where

all four couplets are equally distributed, the decimation rate is expected to be

1 over 4; however if the sequence is far from random and in particular if long

HOW TO IMPROVE THE QUALITY OF A RNG 43

sequences of 1s or 0s exist (and this is the typical application, since it is the

case where we need a post-processing), the number of bits at the output of this

post-processor could be sensibly smaller than the number of bits at its input.

3.4 Parity Based Post-processing

The input stream in divided into contiguous non-overlapping N -bits strings.

For each string, the output is computed as the parity bit; then the string is

discarded.

Note that computing the parity bit in a string is equivalent to compute

the N -bit exclusive-or of the string; for this reason this post-processing is also

known as xor post-processing. We refer to it as xor-N , thus indicating also the

depth of the post-processing.

Note that this is an effective way to both reshape correlation and increase

the entropy of a stream. However the payload in terms of data reduction is

very heavy, since it results in a decimation factor equal to 1 : N

3.5 Hash Function Based Post-processing

A hash function is an algorithm for turning data (usually a message or a file)

into a number of fixed length. These functions provide a way of creating a

small digital ”fingerprint” from any kind of data. The function chops and

mixes (i.e., substitutes or transposes) the data to create the fingerprint, often

called a hash value.

Hash functions find several applications in cryptography such as authenti-

cation and message integrity checks. The main property of a good hash func-

tion is that yields few hash collisions, i.e. it is extremely difficult, given a mes-

sage with a certain hash value, to find another different message with the same

hash value.

Due to their chopping and mixing properties, they can be effectively used

as post-processing functions. The two most-commonly used hash functions

are MD5 [75] and SHA-1 [48]; they work respectively with hash value of, re-

spectively, 128 and 160 bits, while the input message can be of any size. So,

it is possible to get a string of M bits from the input stream, and get a string

of N = 128 or N = 160 bits at the output. In this way, they are completely

algebraic functions, since there is no memory of the previous hashed strings.

The decimation rate depends on M and N ; theoretically it is also possible to

“expand” a message, if M < N .

44 CHAPTER 3

M-bits SR

m2-bits SRm1-bits SR

interleaved section
m2m1

F1 F2

m1 m2

Figure 3.1: Block scheme of the finite-state machine used for the non linear shift register based post-processing.

The main problem of these algorithm is that they are computationally very

heavy. As an example, the SHA-1 works with an internal state space of 160

bits, i.e. five word states of 32 bits. In a single stage few basic operations

are performed on every word states are performed, including additions, bit

rotations, and a non-linear function that varies, depending on the stage. The

full algorithm consists of 80 stages; this means that these basic operations are

iterated 80 times.

3.6 IIR Based Post-processing

In signal processing, a linear infinite-impulse response filter is defined as

y[n] =

P
∑

i=0

bix[n − i] −
Q
∑

j=1

ajy[n − j] (3.2)

When applied to a sequence of bits, this is to be interpreted in modulo 2 arith-

metic, i.e. the addition is an XOR function and the multiplication is an AND

function. These schemes operate at no throughput loss, and every output bit is

computed as a linear combination of the current and the previous P − 1 input

bits and the previous Q − 1 output bits.

Even if many differences from (3.2) could exist, many post processing work

in a similar way. In particular, the applied filter does not necessary need to be

linear. Two variants are considered in this chapter.

HOW TO IMPROVE THE QUALITY OF A RNG 45

IN

OUT

S/R A S/R B

S/R C S/R D

Figure 3.2: Block scheme of the finite-state machine used for the quadri-shift register based post-processing.

3.6.1 NLSR

This scheme was firstly proposed in [73]; its block diagram of the first one

can be found in Figure 3.1 and it consists of three shift registers (SR) of length

respectively equal to M = m1 + m2, m1 and m2 bits, and two combinatorial

logics L1 and L2. Both logic L1 and L2 are based on elementary bit-processing

operations from the standard Secure- Hashing Algorithm (SHA). The version

used in this dissertation , the value of m1 and m2 is set respectively equal to

11 and 13. This schematic will be referred as a non-linear shift register (NLSR)

based post-processing. For a more detailed discussion about this scheme, see

[73].

3.6.2 QSR

The basic structure of the second scheme is depicted in Figure 3.2, and it as

firstly presented by author in [5]. Strictly speaking, the working principle of

the proposed stage is to XOR the bits coming from the RNG with bits com-

ing from the delayed bit-stream memorized into a linear shift register. This

architecture is very similar to a liner-feedback shift register used as a pseudo-

random number generator. In order to increase the effectiveness of the process,

this basic operation is repeated few times; also many XORs have been inserted

between the different shift registers to increase the complexity of the stage. This

post-processing is composed by four shift registers A, B, C, D, of lengths a, b,

c and d respectively, which can be chosen arbitrarily; note that, for their par-

ticular structure, the shift-register B and D has to be composed at least by two

stages, while A and C can be constituted by a single flip-flop. This schematic

will be referred as a quadri-shift register (QSR) based post-processing.

46 CHAPTER 3

3.7 Conclusion

In this chapter a brief analysis of some post-processing functions is provided,

ranging from well known historical algorithms to new proposed ones. Addi-

tionally, a method for evaluating the performance of a post-processing stage is

given, as well as an intuitive explanation of the reason why a post-processing

function is necessary and how a post-processing function can increase the qual-

ity of a random stream.

Chapter 4

Statistical Tests for

Randomness

I
F DESIGNING a good RNG is a non trivial task, being able to test and validate

is perhaps more complex. In the previous chapter the concept of entropy has

been introduced, as well as how to use it in order to measure the performance

of a RNG. It was also concluded that the estimation of entropy cannot be used

to perform accurate tests on a random number generator.

Here the concept of statistical tests is introduced. This concept is associated

to one of the most important property of a good RNG, that is unpredictability.

Briefly speaking, a system is unpredictable if, from the direct observation of its

outputs, it is not possible to retrieve any information about the future system

evolution. Even if this is a very clear and easy definition, it is impossible to

deal directly with it. For example, we can observe a sequence of numbers, no

matter how long it is (in theory also an infinite-length sequence), looking for

some patterns and, if a model is identified, we can try to predict the following

number with a probability greater than the probability given by pure luck. In

this case the examined generator is discovered not to be unpredictable. If any

model has not being identified, it does not necessary mean that no pattern is

present; just that we failed in the attempt of finding it. Roughly speaking, one

can check the predictability (i.e. the non-randomness) of a generator, but he

will never be able to find a proof that a generator is really unpredictable (that

means it is random).

Actually, this property is known as forward unpredictability. In a true ran-

dom system should also not be feasible to determine the past evolution from

the knowledge of any generated outputs (i.e., backward unpredictability is also

47

48 CHAPTER 4

required).

The purpose of a statistical test is to identify patterns that let guess some

information regarding the following number. As an example, the most simple

statistical test one can implement is a test that checks if the symbol produced

by the generator under test are equally distributed; in case they are not, it is

evident that expecting the most probable symbol gives an advantage in the

determination of the successive generated numbers.

Starting from this very simple example, it is possible to address the main

problem that can be found during the test phase. When analyzing a generator,

what one is looking at is just a generated sequence; if the generator can be iden-

tified as a stochastic process, what is available to the test is just a realization.

So, like every realization, a sequence has to be interpreted only in a probabilis-

tic way. Everybody, looking at a sequence of all 0s, says “well, this sequence is

not random at all”. However for a perfect RNG this sequence has statistically

the same probability of any other sequence; on the contrary, a RNG that is not

capable of generating this sequence is not to be consider random. The only

thing that one should do looking at a sequence of all 0s is recognize that the

assumption of randomness implies that in a bit sequence the number of 1s is

expected to be approximately equal to the number of 0s, and this is clearly not

verified.

More detailed, a statistical test can be considered composed by the follow-

ing two steps:

1. An initial assumption derived from the hypothesis of randomness of the

sequence has to be made; for example one could recognize that among all

possible randomly generated sequences, the sequences where the num-

ber of “0” and the number of “1” are approximately balanced are the ma-

jority; instead sequences where the number of “0” is very different from

the number of “1” are not common.

2. The sequence is checked under the terms of the initial assumption; re-

ferring to the previous example, the numbers of “0” and the number of

“1” are counted. This two numbers are expected to be similar; if not, ei-

ther one of the two following cases is verified: (a) the sequence comes

from a random generator, and it is one of the non common sequences

where the difference between the number of “0” and the number of “1”

is large; or (b) the sequence comes from a non-random generator. If one

supposes not to be in the improbable case (a), then the conclusion is that

the sequence is non random. However, there is a (typically very small)

STATISTICAL TESTS FOR RANDOMNESS 49

probability that the sequence is random; this probability is the tolerance

of the test (usually referred as the level of significance of the test).

Under these terms, when analyzing a single sequence, the only thing that

is possible is to give a probability that the sequence comes from a random gen-

erator. In fact, as the famous NIST publication SP 800-22 says, ”Randomness

is a probabilistic property; that is, the properties of a random sequence can be

characterized and described in terms of probability.” This concept is at the base

of all statistical tests.

4.1 P-value Based Tests

P-value stands for Probability value. The p-value is the typical output of a sta-

tistical test for randomness, and intuitively speaking indicates the probability

that the sequence under test is generated by a random generator. Formally, a

p-value indicates “the probability that an ideal random generator produces a

sequence that, in terms of the statistical feature examined by the test, is less

typical than the sequence under test”; strictly speaking, the probability that

the examined sequence has to be more random than a truly random sequence.

The concept of more random is of course not rigorous; what is intended can be

understood looking in detail how the statistical tests work.

Every test analyzes the input sequence, looking for a particular statistical

feature, and expressing it as numerical quantity s0 ∈ S. Typically this quantity

s0 is a vector or, in simpler cases, a scalar value. In the above example, s0 can be

the difference between the numbers of 0s and the numbers of 1s in a sequence.

Then, s0 is compared to the one s derived for a sequence composed of truly

random bits. Clearly, since perfect random sequences can be characterized only

in terms of probability, s is a random variable with mean value E [s] = s and

probability density function fs : S → R+. If the norm ‖·‖ : S → R+ is defined,

then ‖s − s‖ is a new random variable defined in R+ that indicates how far is

the observed property from the expected one, whose cumulative distribution

function F‖·‖ : R+ → [0, 1] can be computed from fs.

Then the p-value p is computed as p = 1 − F‖·‖ (‖s0 − s‖). In this way:

• p = 1, if s0 = s;

• p → 0, if ‖s0 − s‖ → ∞;

• for a perfect random generator, p is a random variable that is uniformly

distributed in [0, 1].

50 CHAPTER 4

In other terms, p indicates how similar is the statistical feature observed in the

sequence under test to the expected one.

What is intended in the above definition of p when saying that a sequence

is more random than another one is, simply, that a sequence has a p-value greater

than another sequence. Mathematically, being X a randomly generated se-

quence, and X0 the sequence under test, the above definition of p-value can be

expressed as

Prob{p (X) < p (X0)} = p (X0)

A first, intuitive, way to interpret a statistical test is to consider the test

passed if p is high, and consider the test failed if p is low. In fact, this is the

standard way to interpret a test, under the following assumptions commonly

used in inferential statistic.

Let H0 be the null hypothesis

H0 : “the sequence under test comes

from a perfect random generator”

Given α ∈ [0, 1], H0 is rejected (i.e. the test is considered failed) if p < α, while

H0 is accepted if p ≥ α. Of course, this interpretation not exact, since two errors

can be committed:

• reject H0 when the sequence is generated by a perfect random generator

(Type I error)

• accept H0 when the sequence is generated by a generator that is non ran-

dom (Type II error).

As far as the Type I error is concerned, its probability can be computed since

a perfectly random sequences is completely characterized. Since p is uniformly

distributed for a perfect RNG, the probability of a Type I error is simply α. For

this reason, α is also called level of significance.

However, it is impossible to have a characterization a priori of the Type II

error. To be considered good, a test should look at statistical features that are

sensitive to the presence of pattern or regularities typical of non-ideal gener-

ator. In this way, the computed p-value drops to zero whenever a pattern is

recognized.

4.2 NIST SP 800-22 Test Suite

The SP 800-22 is a publication (titled “A statistical test suite for random and

pseudorandom number generator for cryptographic applications”) from the

STATISTICAL TESTS FOR RANDOMNESS 51

U.S. National Institute of Standard and Technology describing a suite of 16

different statistical tests [70]. The original publication was dated October 2000,

last update May 15, 2001.

Each test in the suite is applied to the same sequence of n bit (the NIST

suggests n = 106) and gives a p-value. Actually, few tests generate two (the

Cumulative Sum and the Serial tests) or more (Non-Overlapping Template Match-

ing, Random Excursion and Random Excursion Variant) p-values; however, being

strictly related, it is very common considering only one of them.

All test in the suite are well known tests and, for all of them, an exhaustive

mathematical treatment is available. Additionally, the C/C++ source code of

all tests in the suite is public available at the NIST website, and is regularly

updated, thus confirming the interest about this topic [71]. At the time of this

dissertation the latest version available is the 1.8, March 2005. In this new

version some known problems with few tests have been fixed: the reference

distribution in the Spectral test has been modified (see, for example, [50]) while

the Lempel-Ziv test has been removed.

Actually, the SP 800-22 suite is not the only suite of statistical tests pub-

lished by NIST. The Federal Information Processing Standard Publication 140-2

(shortly FIPS 140-2), was written as U.S. government computer security stan-

dard used to accredit cryptographic modules [68]. The title is “Security Re-

quirements for Cryptographic Modules”. First publication was in May 25, 2001

and was last updated December 3, 2002, supercedeing the old publication FIPS

140-1, January 11, 1994. This publication included in the first releases (as the

superceded one) a set of four ON/OFF statistical tests (monobit, poker, runs and

long runs tests) to be run as power-up self tests. These tests are not p-value

based tests and they are considered passed if the observed statistical feature

is within a predetermined interval. However, they are very easy to pass and

so not very significative in the analysis of a random number generator. They

are also discontinued by NIST, and have been eliminated in the last release of

the publication: the requirement of the four above test is substituted by the

need to perform a more generic cryptographic algorithm test, a software/firmware

integrity test and a critical functions test (see section 4.9 of the NIST publication).

For these reasons, these tests are not considered here.

In the following, a brief description of all test in the SP 800-22 test suite is

reported. The mathematical notation is kept as close as possible to the original

notation used in the NISP publication. Each test considers the sequence of

symbols Xi = {−1, +1}, i = 1 . . . n, since dealing with a zero-average variable

is simpler than dealing with the sequence of bits εi = {0, 1}, i = 1 . . . n. Of

52 CHAPTER 4

course, the relation between the two different notations is simply Xi = 2εi − 1.

4.2.1 Frequency Test

Given the input sequence Xi = {+1,−1}, i = 1 . . . n, the balance between

symbols −1 and symbols +1 is given by

Sn =

n
∑

i=1

Xi

Sn is a zero average random variable which is binomial distributed. If n is

large, the binomial distribution can be approximated with normal distribution,

with in this case mean µ = 0 and variance σ2 = n. Being Sn is normal, then

|Sn| is half normal (i.e. f|Sn| (x) = 2fSn
(x) , x ≥ 0). It is very easy to see that

p = 1 − F|Sn| (|Sn|) = 1 − (2FSn
(|Sn|) − 1) = erfc

(|Sn|√
2n

)

where erfc (·) is the complementary error function.

4.2.2 Block Frequency Test

Divide the input sequence Xi = {+1,−1}, i = 1 . . . n, into N contiguous non-

overlapping strings of M symbols, with n = N · M . For each i-th string, com-

pute πi, i = 1, . . . , N the observed frequency of symbols +1 among the string.

The expected value of each πi is 1/2; the distance of the sequence of πi from the

expected sequence is computed as:

χ2 = 4 M

N
∑

i=1

(

πi −
1

2

)2

πi is a random variable with a binomial distribution, which is approximated to

a normal distribution since M is large. Then χ2, that is the sum of N normal

variable, is distributed according to a chi-square distribution with N degree of

freedom. The p-value is computed through its cumulative density function,

which is known to be obtained from the regularized incomplete gamma func-

tion

Fχ2 (x) =
γ (k/2, x/2)

Γ (k/2)

where k is the number of degree of freedom; in this case k = M .

NIST suggests to consider a string length equal to M = 128 bits.

STATISTICAL TESTS FOR RANDOMNESS 53

4.2.3 Cumulative Sums Test

Given the input sequence Xi = {+1,−1}, i = 1 . . . n, consider all the interme-

diate sums Sk, k = 1, . . . , n defined as

Sk =

k
∑

i=1

Xi

The variable Sk can be described as a random walk process. Let also be

z = max
1≤k≤n

|Sk|

the maximum excursion from zero of the random walk. The cumulative distri-

bution of z, for large n, can be approximated with

Fz (z) =

k=(n
z
−1)/4
∑

k=(−n
z

+1)/4

[

Φ

(

(4k + 1) z√
n

)

− Φ

(

(4k − 1) z√
n

)]

+

k=(n
z
−1)/4
∑

k=(−n
z

−3)/4

[

Φ

(

(4k + 3) z√
n

)

− Φ

(

(4k + 1) z√
n

)]

where Φ (x) is the normal cumulative distribution function. This test is re-

peated twice: the first time considering k from 1 to n (forward test) and a sec-

ond time with k form n down to 1 (backward test). Hence, two p-values are

computed.

4.2.4 Runs Test

Given the input sequence Xi = {+1,−1}, i = 1 . . . n, this test computes the

total number vn of runs in the sequence. A run consist in an uninterrupted se-

quence of identical symbols, and bounded by two the opposite symbols. Math-

ematically

rk =

{

0 if Xk = Xk+1

1 otherwise

vn = 1 +

n−1
∑

k=1

rk

given the proportion π of symbols +1 in the input sequence, vn is approxi-

mated for large n with a normal distributed variable, with mean µ=2nπ (1−π)

and variance σ2 = 2π2 (1 − π)2.

54 CHAPTER 4

4.2.5 Longest Run of Ones Test

Divide the input sequence Xi = {+1,−1}, i = 1 . . . n, into N contiguous non-

overlapping strings of M bits, with n = N · M . For each string, compute

the length of the longest block composed only by symbols +1; among the N

computed maximum lengths, count the hits vi of each length i, with
∑

vi = N ,

and compare it to the expected value Nπi. Only the K + 1 most common

lengths have to be considered: for example, for n > 750, 000, it is M = 104 and

K = 6; the 7 lengths considered are i ≤ 10, i = 11, i = 12, i = 13, i = 14,

i = 15, and i ≥ 16. The distance of the distribution of the vi from the expected

distribution is computed with a chi-square goodness of fit test:

χ2 =

K
∑

i=0

(vi − Nπi)
2

Nπi

χ2 is distributed according to a chi-square distribution with K degrees of free-

dom. The expected frequencies πi and the number of degree of freedom K

are precomputed and tabulated according to the three values of M , M = 8,

M = 128 and M = 104, select according to the length of the sequence n.

4.2.6 Binary Matrix Rank Test

Divide the input sequence Xi = {+1,−1}, i = 1 . . . n, into N contiguous non-

overlapping strings of M · Q bits, with n = N · M · Q. With each string build a

binary M × Q matrix and compute its rank r, 0 ≤ r ≤ min (M, Q). The rank is

defined as the maximum number of lines or columns which are linearly inde-

pendent. Note that this has to be computed using the binary algebra defined

only on the symbols {−1, +1}. The probability that such a matrix has rank r is

given by

pr = 2r(Q+M−r)−MQ
r−1
∏

i=0

(

1 − 2i−Q
) (

1 − 2i−M
)

(1 − 2i−r)

The distance of the observed frequency from the expected probability is mea-

sured with a χ2 goodness of fit test with K degrees of freedom. NIST fixed

M = Q = 32 and K = 2.

4.2.7 Spectral Test

Given the input sequence Xi = {+1,−1}, i = 1 . . . n, its Discrete Fourier

Transform (DFT) is computed. A threshold value T is computed such that

in the unilateral frequency spectrum, the 95% of the bin should have an am-

plitude smaller than T . The effective number of bins N1 having an amplitude

STATISTICAL TESTS FOR RANDOMNESS 55

smaller than the threshold value T is normal distributed, with mean µ = N0 =
√

− ln (0.05) · n, and variance σ2 = 0.95 · 0.05 · n/4. 1

4.2.8 Non-Overlapping Template Matching Test

The input sequence Xi = {+1,−1}, i = 1 . . . n, is divided into N contiguous

non-overlapping strings of M symbols, with n = N · M . Then, given a tem-

plate sequence B of length m bits, Wi is the number of times the template B is

present as non-overlapping string in the i-th string, with i = 1 . . .N . Under the

assumption of randomness, such a number is normal with mean and variance

µ =
M − m + 1

2m
σ2 = M

(

1

2m
− 2m − 1

22m

)

From these N normal variables, the new random variable

χ2 =

N
∑

j=1

(Wj − µ)

σ2

has a chi-square distribution with N degrees of freedom. The value of N has

been fixed by NIST at the value N = 8.

This test produces a p-value for each used template; for the suggested value

m = 9, there are 148 templates in the NIST template file.

4.2.9 Overlapping Template Matching Test

As in the previous test, a template B of m symbols are researched into the input

sequence divided into N strings; however this time two hits of the template B

can partially overlap themselves. After examining the N block, vi is computed

as the number of blocks where the template B is present exactly i times, with
∑

vi = N . vi is poisson-distributed, with

λ =
M − m + 1

2m

The distance between the observed and the theoretical distribution is com-

puted with a chi-square goodness of fit test with K degrees of freedom.

In the test, the value of M is fixed at M = 1032, while K = 5. NIST suggests

m = 9; in the test, only the template composed by m symbols “+1” is used, so

only one p-value is computed.

1Actually, these values come in the last release of the NIST code, following the suggestion in

[50]. In the original NIST publication, these value were µ =
√

3 · n and σ2
= 0.95 · 0.05 · n/2

56 CHAPTER 4

4.2.10 Universal Test

Divide the input sequence Xi = {+1,−1}, i = 1 . . . n, into Q + K contiguous

non-overlapping strings of L symbols, with n = (Q + K) · L. Of these strings,

Q are used for the initialization and K for the test itself. A table Tj with j =

1, . . . , 2L is created and preset with Tj = 0, ∀j; each entry Tj of the table is

associated to one of all the 2L possible different strings of length L.

Then for i = 1, . . . , Q + K , consider the i-th string among all strings in

which the input sequence has been divided; consider also the entry of the table

Tj associated to the considered string. During the test initialization, i.e. for

i = 1, . . . , Q, update the table entry with the value Tj = i; during the test, i.e.

i = Q + 1, . . . , Q + K , starting from fQ = 0, build the sequence

fi = fi−1 +
1

K
log2(i − Tj)

and then update the table entry Tj = i. The random variable fQ+K is assumed

normal for large values of K , with mean and variance empirically precalcu-

lated and depending on the value of L.

The values suggested by NIST are L = 7 and Q = 1280.

4.2.11 Approximated Entropy Test

Given the input sequence Xi = {+1,−1}, i = 1 . . . n, n overlapping strings of

m bits are created (appending the first m−1 symbols to the end of the sequence

when necessary). Then, the m order entropy is computed

ϕ(m) =

2m

∑

i=1

πi log πi

where πi are the observed frequency of all the 2m possible blocks of m bits.

The quantity ϕ(m) −ϕ(m+1) is called approximated entropy; the random vari-

able

χ2 = 2n
(

ln 2 −
(

ϕ(m) − ϕ(m+1)
))

is, for large n, chi-square distributed with 2m degree of freedom.

The value suggested by NIST for m is m = 10.

4.2.12 Random Excursion Test

Starting from the input sequence Xi = {+1,−1}, i = 1 . . . n, consider the ran-

dom walk

Sk =

n
∑

i=1

Xi, k = 1, . . . , n

STATISTICAL TESTS FOR RANDOMNESS 57

Defining a zero crossing a point for which Sk = 0, and, for convenience, S0 =

Sn+1 = 0, in the sequence Sk, k = 0, . . . , n + 1 there are J + 1 zero crossings,

which separates J cycles, i.e. strings of Sk separated by two successive zero

crossing. Then, given an integer x, let be vi, i = 0, . . . , J is the number of

cycles in which x appears exactly i times, with
∑

vi = J . The sequence of

the vi is compared to the expected values (precomputed and tabulated) with

a chi square goodness of fit test with K = 5 degrees of freedom. This test is

performed only if there are a minimum number of cycles, and is repeated for

x ∈ {−4,−3,−2,−1, 1, 2, 3, 4}. Eight p-values are so generated.

4.2.13 Random Excursion Variant Test

From the same random walk Sk as in the previous test, compute ξ (x) equal to

the number of times a given integer x occurs in the walk, i.e. Sk = x. The limit

distribution of ξ (x) is a normal distribution with mean and variance

µ = J σ2 = J (4 |x| − 2)

This test is repeated 18 times for x ∈ {−9, . . . ,−1, 1, . . . , 9}, and, like the pre-

vious on, it is performed only if a minimum number of cycles exist. Note that,

due to this limitation, this test and the previous one are not always performed

even in case of a true random sequence. It can be shown that both tests are

performed, with the limitation introduced by NIST, only on 63% of perfectly

random sequences [56].

4.2.14 Serial Test

Given the input sequence Xi = {+1,−1}, i = 1 . . . n, n overlapping m bits

strings are created (appending the first m − 1 symbols to the end of the se-

quence when necessary). Let be vi, i = 1, . . . , 2m the observed frequencies of

all possible sequences of m symbols; then compute

Ψ2
m =

2m

n

2m

∑

i=1

ν2
i − n

From the two quantities

∇Ψ2
m = Ψ2

m − Ψ2
m−1

∇2Ψ2
m = Ψ2

m − 2Ψ2
m−1 + Ψ2

m−2

which are distributed according to a chi square distribution with, respectively,

m − 1 and m − 2 degrees of freedom, two p-values are computed. The value

suggested by NIST for m is m = 16.

58 CHAPTER 4

4.2.15 Linear Complexity Test

The input sequence Xi = {+1,−1}, i = 1 . . . n, is divided into N contigu-

ous non-overlapping strings of M bits, with n = N · M For each string, its

linear complexity Li , i = 1, . . . , N , is calculated with the Berlekamp-Massey

algorithm [65]. Given the sequence s(n) = (X1, . . . , Xn), its linear complexity

L
(

s(n)
)

is defined as the length of the shortest linear feedback shift-register

(LFSR) that generates s(n) as its first n terms for some initial state. The asymp-

totic distribution of Li for large M is non trivial; the NIST test computes

Ti = (−1)
M

(Li − µ) +
2

9

where µ is the theoretical mean

µ =
M

2
+

9 + (−1)
M+1

36
−

M
3 + 2

9

2M

The N values Ti, i = 1, . . . , N , are divided into 6 bins; the frequency of each

bins is compared the the expected theoretical one with a chi-square goodness

of fit test.

NIST suggests the value M = 500.

4.3 DieHard Test Suite

The Diehard tests suite is a battery of statistical tests developed by George

Marsaglia at the Florida State University over several years and first published

in 1995 on the CD-ROM The Marsaglia Random Number CDROM including the

Diehard Battery of Tests of Randomness [62]. A new version of the tests battery

is under development at the University of Hong-Kong [63], as remembered by

Marsaglia himself:

“Supported by a grant from the National Science Foundation, 1000

copies of that CDROM were distributed in 1995 to math and sci-

ence departments and to interested researchers worldwide. The

1000 copies were soon exhausted, but the CDROM has since been

frequently accessed via the Internet. A new version of the CDROM

is being prepared, and this file accompanies C source code for new

versions of the Diehard tests, as well as several new difficult-to-pass

tests.”

The battery includes various tests; many of them comes from popular cul-

ture or paradoxes, like the Birthday Spacing Test, referring to the Birthday Para-

dox [26, 28], that regards the fact that in a group of people the probability that

STATISTICAL TESTS FOR RANDOMNESS 59

at least two of them will have the same birthday is much greater that the one

which one could expect. Another test is the Monkey Test (changed into the Go-

rilla Test in the newer version of the battery), referring to the topos of the mon-

key striking randomly on a typewriter machine keys, started by the French

mathematician Èmile Borel in 1913, and known in the anglophone world as “If

a million monkeys were given a million typewriters, eventually one of them

might produce the complete works of Shakespeare”. However, in Borel’s inten-

tions, these monkeys would produce the whole content of the French National

Library (literally, the “greatest library in the world”).

Though implemented and used, no test results obtained with this battery

are reported in this dissertation. The reason is twofold. First, all of the imple-

mented tests are written to test the independency of 32 bits integer numbers

and do not consider the string as a sequence of bits like the NIST suite; most of

the tests, for example, turn a sequence of 32 bit value into a sequence of float-

ing in [0, 1]; or maybe, if a tests require an number of bits n < 32, it is repeated

many times, first considering bits from 0 to n − 1, then form 1 to n, and so on.

This also ends in generating many p-values (globally, the number of them gen-

erated by the suite is larger than 200) which are, of course, not independent,

and also in the requirements of many bits (the new gorilla test requires about

67M integers in 32 bits notation, that is nearly half of the data contained in a

CD-ROM). The second problem, is that all tests require a fixed number of bits,

which is different from test to test. Strictly speaking, the battery is not com-

posed by a set of homogeneous tests: each test analyzes a sequence of different

length, and gives a different numbers of p-values.

For these reasons only the NIST suite is considered in this dissertation;

DieHard tests has also been performed though in a non-systematic way, al-

ways confirming the quantitative and qualitative conclusion of the NIST suite.

4.4 Second Level Tests

The usual way to test a random number generator is to generate a sequence of

n bits and analyze it with a chosen test suite as described in Section 4.1. Given a

level of significance, the sequence is considered random if all tests in the suite

produce P-values greater then the level of significance, always remembering

the possibility to commit a Type I or Type II error. To limit the probability of a

Type I error, the value of α is usually kept low; a typical value for α is the value

suggested by NIST, i.e. α = 0.01.

The weakness of this approach is that it is well known that some pseudoran-

60 CHAPTER 4

dom generators can very easily pass all known statistical tests. Let consider a

periodic (and thus, non random) generator, whose period is the simple sequence

“101100”, and the above described frequency test. The generated sequence

101100101100101100101100101100101100 . . .

will always pass the frequency test, since the number of 1s and of 0s in the

period is well balanced, independently on the sequence length. However this

can be effectively used to discover the generator as non random. A perfect

random generator produces sequences that do not always pass the frequency

test, but that have a probability α of a failure. The above periodic generator has

a failure probability equal to zero. According to this intuitive idea, it is possible

to have a more reliable analysis, i.e. a lower probability of a Type II error, when

considering a number N of sequences instead of a single sequences. Such a test

involves several results from basic test; for this reason it is addressed as second

level test.

At this point one could argue that a comparison between a basic test and a

second level test is not fair, since while a basic test is performed on a sequence

of n bits, a second level test involves n · N bits, i.e. a much greater number of

bits. However it is easy to notice that, referring to the above periodic genera-

tor, even considering a longer sequence does not help in the effort to discover

the non-randomness of the generator with a single basic test, since the test is

always passed with p ≃ 1 independently of the number of bits.

Of course, a second level test is still a statistical test, characterized by a null

hypothesis H0 that usually is “data is random”, and by a probability of Type I

error and of Type II error. Before introducing some possible second level tests,

it may help remember the following

REMARK 1. Let X1, X2, . . . , Xn a succession of independent random variables,

that share the same probability distribution, with mean µ = E [Xi] and vari-

ance σ2 = E
[

X2
i

]

−µ2. The central limit theorem [31] asserts that, under some

convergence conditions that are always satisfied under the above assumptions,

the cumulative Fn (·) distribution of the random variable

Sn =
1

σ
√

n

n
∑

k=1

(Xk − µ)

converges to the normalized cumulative normal distribution Φ (·) (i.e. a cumu-

lative normal distribution with µ = 0 and σ2 = 1) as n approaches +∞. Also,

the convergence rate is quantified by the Berry-Esseén inequality, that affirms

STATISTICAL TESTS FOR RANDOMNESS 61

that a positive constant C exists such that

|Fn (x) − Φ (x)| ≤ CE
[

|Xi|3
]

σ3
√

n

Calculated values of the constant C have decreased markedly over the years,

from 7.59 (Esséen’s original bound) to 0.7975 in 1972 (by P. van Beeck [27]). The

best current bound is 0.7655 (by I. S. Shiganov in 1986 [29]).

NIST suggests, in Section 4 of its publication, to follow two strategies in

order to implement a second level test. The first one is based on the observation

that only a ratio equal to 1− α = 0.99 of sequences generated by an ideal RNG

should pass a basic test. So a number N of basic tests are performed, and

(independently for each test in the suite) the ratio of sequences with p > α is

computed and compared to the expected one. The deviation one may expect

from this number can simply be computed considering the following random

process

Xi =

{

1, with probability p

0, with probability q = 1 − p

and indicating µi = E [Xi] = p and σ2
i = E

[

X2
i

]

− µ2
i = pq, the central limit

theorem states that variable

SN =
1

N

N
∑

i=1

Xi

for a sufficient large N , is normal distributed with mean µ = p and σ2 = pq/N .

Passing a basic test can be schematized as the outcome Xi = 1, with p = 1− α;

the ratio of sequences passing the basic test is SN , i.e it is a normal distributed

variable with µ = 1−α and σ2 = α (1 − α) /N . From this, it is possible to com-

pute a reference interval, such that the probability to be out of this interval is

equal to a predetermined level of significance. In this way, the test can be con-

sidered passed if the observed ratio of passed test lies in the reference interval;

the probability of a Type I error is the significance level. It is common to adopt

the three-σ criterion in the calculation of the reference interval, i.e. the interval

is bounded by 1− α± 3
√

α (1 − α) /N ; the probability that a perfect generator

has not to pass this test is about 1% and is aligned with the probability of Type

I error in a basic test.

The second approach proposed by NIST consists in checking if the obtained

p-values are uniformly distributed in the interval [0, 1]. To this purpose, any

goodness-of-fit test can be used; in the NIST publication a chi-square test over

k = 10 bins is considered [13, 30]; here it is also considered a Kolmogorov-

Smirnov test [22, 30]. Both tests consider a set of values, compare their distri-

bution with a reference one (in this case, the uniform distribution in [0, 1]) and

62 CHAPTER 4

compute a p-value, that has to be interpreted exactly as in Section 4.1: i.e. p = 1

means that the two distribution are identical, while we get p = 0 if they cannot

be considered similar. In this case, H0 corresponds to “the two distributions

match”; again, H0 is rejected if p < α′, and accepted if p ≥ α′. The NIST publi-

cation considers a value α′ = 0.0001; this value seems however too small, and

in this dissertation the value α′ = 0.01 is used. In this way, the Type I error

probability is the same as the above three-σ criterion and of a basic test; the

comparison between these three strategies can be done fairly .

The effectiveness of this approach can be shown by an example. Two pseu-

dorandom generator have been considered: the 32 bits version of the KISS

[64], which is a very simple but effective generator, and the BBS generator

(also known as x2 mod n) that is a computationally very heavy pseudoran-

dom generator that has proven to be cryptographically secure (i.e. it passes

al polynomial-time tests)[35]. The C source code of these two algorithms can

be found in Appendix B For both generators a first level test on a single se-

quence, and a second level test , checking the distribution of N = 5, 000 and

N = 10, 000 p-values obtained from the same number of different sequences,

have been considered. Both the second level tests described above are per-

formed; with the three-σ criterion the reference interval is , in first case, the

interval [0.9858, 0.9942], and in the second the interval [0.9870, 0.9930], while

in the χ2 test for the uniformity test 16 bins have been taken into account. For

the Random Excursion and the Random Excursion Variant, due to the smaller

number of p-values generated, this interval is larger (see the description of

these tests in Section 4.2)

Results are shown in Table 4.1 where, depending on the test type, a p-value

or the ratio of p-values passing the standard test have been reported. All p-

values smaller than the level of significance, as well as the ratio out of the

reference interval, have been stressed in bold. It is easy to see that both gen-

erators pass all first level tests; however (apart from the Spectral test; this will

be discussed in the following) only the BBS generator passes the second level

tests. The proposed uniformity second level test is able to recognize the non-

randomicity of the KISS generator, while a simple first level test fails in this at-

tempt. Furthermore, the test performed on N = 10, 000 p-values has shown to

be much more sensitive with respect to the test performed on only N = 5, 000

p-values. The example shows that the uniformity second level test is the most

reliable one.

So, one could expect that increasing the number N of basic tests, the relia-

bility of a second level uniformity test is improved. Regrettably, this is not al-

STATISTICAL TESTS FOR RANDOMNESS 63

2nd level test on 5,000 p-values 2nd level test on 10,000 p-values

SP800-22 test single test ±3σ chi-square KS ±3σ chi-square KS

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.713479

0.129962

0.833869

0.768154

0.736930

0.224896

0.060580

0.085400

0.105840

0.711080

0.029426

0.692131

0.280164

0.870041

0.998535

0.991800

0.990000

0.992600

0.992400

0.988800

0.991400

0.987600

0.991400

0.990200

0.988800

0.988800

0.991125

0.983835

0.988800

0.991600

0.012855

0.003909

0.006522

0.572271

0.402453

0.533445

0.217923

0.133840

0.238932

0.768687

0.216497

0.028218

0.206242

0.888194

0.832451

0.010541

0.000106

0.000508

0.158968

0.341598

0.328789

0.040959

0.401997

0.091968

0.154318

0.081427

0.093570

0.284070

0.626380

0.330536

0.991500

0.987400

0.992000

0.991800

0.989800

0.988400

0.986200

0.990500

0.987900

0.989100

0.990500

0.990648

0.987843

0.990300

0.988500

0.000037

0.001542

0.001617

0.611109

0.664904

0.740669

0.000117

0.752961

0.020062

0.018867

0.429767

0.815752

0.297997

0.043204

0.661848

0.000001

0.000011

0.000001

0.158852

0.101711

0.312901

0.000022

0.174745

0.001076

0.000247

0.390263

0.737741

0.489387

0.016218

0.209730

(a)

2nd level test on 5,000 p-values 2nd level test on 10,000 p-values

SP800-22 test single test ±3σ chi-square KS ±3σ chi-square KS

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.783016

0.214954

0.790206

0.719370

0.991280

0.027857

0.152641

0.392848

0.358323

0.505726

0.730140

0.715979

0.288537

0.520702

0.814581

0.989800

0.992200

0.989800

0.990400

0.990200

0.988000

0.987400

0.987400

0.989400

0.988400

0.989000

0.988186

0.990421

0.988800

0.987800

0.524521

0.307848

0.833942

0.927969

0.934397

0.698415

0.198573

0.104923

0.914791

0.045007

0.090770

0.878736

0.995270

0.951673

0.846359

0.754246

0.393913

0.866127

0.871212

0.942403

0.541068

0.068148

0.214377

0.422329

0.323068

0.050686

0.463362

0.972168

0.821649

0.989176

0.989000

0.990600

0.990800

0.991600

0.990800

0.988400

0.986400

0.990600

0.988200

0.987700

0.989600

0.988949

0.989270

0.989800

0.988600

0.497291

0.425844

0.563001

0.157584

0.858312

0.527570

0.005823

0.682907

0.507020

0.283450

0.116893

0.450995

0.462840

0.834313

0.969684

0.901241

0.721963

0.400115

0.351341

0.691410

0.493364

0.001789

0.287446

0.150185

0.021532

0.030692

0.274106

0.537302

0.316490

0.887421

(b)

Table 4.1: (a) Results of randomness test for the KISS pseudorandom generator; and (b) for the BBS pseudorandom

generator.

64 CHAPTER 4

BBS VIA PadLock Quantis ADC based RNG

SP800-22 test chi-square KS chi-square KS chi-square KS chi-square KS

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.003718

0.255425

0.800947

0.256956

0.007613

0.000000

0.000000

0.828875

0.000000

0.000000

0.006100

0.000053

0.000006

0.897125

0.326050

0.548951

0.359622

0.166991

0.369664

0.015715

0.000006

0.000000

0.984424

0.000000

0.000000

0.000272

0.000002

0.000328

0.537821

0.224488

0.011355

0.418624

0.995862

0.874245

0.000212

0.000000

0.000000

0.491052

0.000000

0.000000

0.009827

0.004256

0.000000

0.753251

0.569766

0.014578

0.159548

0.789873

0.148838

0.001203

0.000054

0.000000

0.317815

0.000000

0.000000

0.000055

0.024853

0.000021

0.693649

0.221725

0.013303

0.127159

0.043241

0.181876

0.016752

0.000000

0.000000

0.379925

0.000000

0.000000

0.044520

0.123659

0.000000

0.681278

0.824617

0.194091

0.280038

0.550849

0.035706

0.019724

0.000015

0.000000

0.174608

0.000000

0.000000

0.000079

0.333511

0.000197

0.182290

0.461214

0.080238

0.735449

0.209272

0.229527

0.023731

0.000000

0.000000

0.744362

0.000000

0.000000

0.000157

0.036014

0.000267

0.933284

0.131702

0.236429

0.618841

0.663020

0.354083

0.068167

0.001051

0.000000

0.286197

0.000000

0.000000

0.000041

0.059785

0.000333

0.679118

0.639498

Table 4.2: Results of uniformity second-level randomness test for different RNGs, with N = 150, 000 sequences.

ways true. In fact, as reported by the example of Table 4.2, when N = 150, 000,

results are far from the desired ones, since nearly a half of the tests fails.

This does not happen only for the (non random) BBS, but also for the con-

sidered true random generators. The test was also repeated on three high-end

physical process based true random generators: the VIA PadLock generator

[42], the Quantis generator developed by idQuantique [53] (they are both de-

scribed in detailed in Appendix B) and the eight stages 0.35 µm implementa-

tion of the ADC based RNG described in Chapter 2. All three physical gen-

erators have been considered with a very strong additional post-processing,

composed by the QSR filter described in Chapter 3, Section 3.6, followed by a

SHA function with a decimation rate equal to 20/32; this in order to hide all

possible imperfections and be sure to analyze a stream as close as possible to a

sequence of independent and balanced bits.

This flaw is due to the fact that all reference distributions used in the basic

tests are just asymptotic distribution for very large value of some parameter,

usually n. This reflects in errors in the p-value computation, and thus in errors

in the p-value distribution.

In order to identify the problem, focus on the simplest Frequency Test. This

test is not a particularly critical one; however the obtained p-values are, espe-

cially in the chi-square test, very near to the significance level for all generator,

i.e. all the observed distributions of p-values are quite far from being uniform.

Figure 4.1 shows the observed distribution of the p-values for this test ap-

STATISTICAL TESTS FOR RANDOMNESS 65

 8800

 9000

 9200

 9400

 9600

 9800

 10000

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 10 20 30 40 50 60

observed frequency
expected value

expected variance
maximum propagated error

(a) p = 0.003718 (b) p = 0.000000

Figure 4.1: Comparison between expected deviation and measured deviation in the distribution of N = 150, 000
p-values in the interval [0, 1] for the Frequency Test in the cases: (a) n = 106, k=16; (b) n = 106, k=64.

plied to the BBS generator, in the case k = 16 bins and k = 64 bins. Consid-

ering the theoretical standard deviation in the distribution of N independent,

uniformly distributed values over k bins, the number of values found in a bin

as can be modeled as the sum of a N binary random variable with p = 1/k;

from Remark 1 this is, for large N , normal distributed, with µ = N/k and

σ =
√

N (k − 1)/k. In the cases of Figure, it is respectively σ ≃ 94 and σ ≃ 48.

The observed deviation is far from this value, and also this error seems to be

not dependent on the number k of bins.

This deviation can be identified with an error propagated from the compu-

tation of the p-value in the basic test, and due to the introduced approximations

with the central limit theorem.

In the test, the random variable Sn was computed as

Sn =

n
∑

i=1

Xi

with Sn is assumed normal with µ = 0 and σ2 = n.

Instead of Sn, one could consider the variable

Zn =
1√
n

Sn =
1√
n

n
∑

i=1

Xi

This comes exactly in the form of the Remark 1, since for each Xi, it is µ =

0 and σ2 = 1. The cumulative distribution FZ (·) of Zn for large n can be

confused with the normalized cumulative normal distribution, i.e. FZ (·) ≃
Φ (·). Considering the normalized variable Zn instead of Sn, the p-value can be

computed simply by:

p = 2FZ (|Zn|) ≃ 2Φ (|Zn|)
Now it is possible to notice that, since there is a proportional relation between

the p-value and the normalized cumulative normal distribution, Berry and

66 CHAPTER 4

 9200

 9250

 9300

 9350

 9400

 9450

 9500

 9550

 9600

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

 2200

 2250

 2300

 2350

 2400

 2450

 2500

 2550

 0 10 20 30 40 50 60

observed frequency
expected value

expected variance
maximum propagated error

(a) p = 0.959299 (b) p = 0.098405

Figure 4.2: Comparison between expected deviation and measured deviation in the distribution of N = 150, 000
p-values in the interval [0, 1] for the Frequency Test in the cases: (a) n = 107, k = 16; (b) n = 107, k = 64.

Esseèn inequality limits also the error ε on the p-value computation

ε = sup
x

|2FZ (x) − 2Φ (x)| = 2
CE

[

|Xi|3
]

σ3
√

n
= 2

C√
n

since σ = 1 and the third order moment is E
[

|ξi|3
]

= 1. If n = 106, then

ε = 1.6 · 10−3.

Assuming this bound on the error in the computation of a p-value, it is

possible to bound also the maximum error in the distribution of N p-values in

k bins. A P-value that should belong to a bin can be found into the nearby one

only if its distance from the border of the two bins is less than ε. If we have

N p-values uniformly distributed in [0, 1] the number of P-values that can be

found in the wrong bin is εN . Note that according to this, the propagated error

would be effectively independent of the numbers of bins, as observed in Figure

4.1.

Since all bins (but the first and the last), have two neighbors, the maximum

error ∆ in the number of P-values in a bin is ∆ = 2Nε. In the case of Figure 4.1,

N = 150, 000, so ∆ ≃ 480. This value is compatible with what we can observe

in both plot.

If the analysis were correct, increasing n one would see this propagated er-

ror decreasing as 1/
√

n. To get an experimental verification, the second level

uniformity test has been repeated with n = 107 bits; in this case ∆ ≃ 150.

The obtained distribution for the Frequency Test is shown in Figure 4.2; as ex-

pected the error is bounded in an interval about three times smaller than in the

previous case.

The analysis applied to the Frequency Test can be applied as is to the Runs

Test. In this test

rk =

{

0 if Xk = Xk+1

1 otherwise

STATISTICAL TESTS FOR RANDOMNESS 67

 8800

 9000

 9200

 9400

 9600

 9800

 10000

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 10 20 30 40 50 60

observed frequency
expected value

expected variance
maximum propagated error

 9200

 9250

 9300

 9350

 9400

 9450

 9500

 9550

 9600

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

(a) p = 0.256956 (b) p = 0.226864 (c) p = 0.613857

Figure 4.3: Comparison between expected deviation and measured deviation in the distribution of N = 150, 000
p-values in the interval [0, 1] for the Runs Test in the cases: (a) n = 106, k=16; (b) n = 106, k=64; (c) n = 107, k=16.

i.e. under the assumption of randomness, rk is a random variable that can

assume with the same probability the two values 0 and 1. Finding a proper

variable change, thus reporting also this test in the form in which one could

apply the Berry and Esseèn inequality, is an easy task. The error bound is

exactly the same as in the previous case.

The observed error for the Runs test is reported in Figure 4.3 and, even if

the case does not seem particularly unlucky (the second level uniformity test

is still passed even for k = 64) it is possible to notice the error has the same

behavior as in the previous case.

All other tests in the suite use a different, more complex, reference distri-

bution, for which such a relation is hard to write down. Many tests use a chi-

square distribution; a chi-square distribution can be obtained starting from K

normal random variables X1, X2, . . . , XK as

Q =

K
∑

i=1

(Xi − µi)
2

σ2
i

(4.1)

Q is said to have a chi-square distribution with K degree of freedom. In the

Pearson chi-square goodness of fitness test [13] the construction is slightly dif-

ferent, but the distribution is exactly the same.

In any case, a closed form for the propagated error for the chi-square dis-

tribution has not been found; intuitively, one can think that in tests where the

degrees of freedom K is constant (for example, the Matrix Rank Test) increas-

ing the number of bits n is reflected in educing the error introduced by the

approximation of all Xi variables with normal variables and thus in a smaller

propagated error. On the other hand, in test when increasing n is reflected in

increasing K , the error introduced by the approximation of all Xi variables

with normal variables is constant, and from this point of view, no reduction of

the propagated error is expected.

68 CHAPTER 4

 8800

 9000

 9200

 9400

 9600

 9800

 10000

 10200

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 10 20 30 40 50 60

observed frequency
expected value

expected variance
maximum propagated error

 9200

 9250

 9300

 9350

 9400

 9450

 9500

 9550

 9600

 9650

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

(a) p = 0.000000 (b) p = 0.000000 (c) p = 0.913093

Figure 4.4: Comparison between expected deviation and measured deviation in the distribution of N = 150, 000
p-values in the interval [0, 1] for the Matrix Test in the cases: (a) n = 106, k=16; (b) n = 106, k=64; (c) n = 107, k=16.

 8800

 9000

 9200

 9400

 9600

 9800

 10000

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 10 20 30 40 50 60

observed frequency
expected value

expected variance
maximum propagated error

 9200

 9250

 9300

 9350

 9400

 9450

 9500

 9550

 9600

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

(a) p = 0.255425 (b) p = 0.134417 (c) p = 0.366536

Figure 4.5: Comparison between expected deviation and measured deviation in the distribution of N = 150, 000
p-values in the interval [0, 1] for the Block Frequency Test in the cases: (a) n = 106, k=16; (b) n = 106, k=64; (c)
n = 107, k=16.

However these cases require more investigation. The observed errors for

the Matrix Rank Test and for the Block Frequency Test are reported in Figure

4.4 and Figure 4.5. To allow a comparison with the two previous cases, the

maximum propagated error for the Frequency and Runs Tests is indicated also

in this case.

The case of the Frequency Test must be considered apart. Like the Fre-

quency Test and the Runs Test, the Frequency Test uses a binomial distribution

and considers a normal asymptotic distribution. However the observed error

can be seen in Figure 4.6. It is evident that errors different from the simple

asymptotic approximation make the distribution of p-values not uniform, as

low-value p-values are much more common then what expected. Investigat-

ing the error propagation in this case does not help in the effort of increasing

the test reliability.

In conclusion, the propagated error is typically dependent on n, that is the

number of bits in the analyzed sequences; for a reliable second-level test, this

error should be smaller, or at least, approximately equal to the random vari-

STATISTICAL TESTS FOR RANDOMNESS 69

 8500

 9000

 9500

 10000

 10500

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

observed frequency
expected value

expected variance
maximum propagated error

 8500

 9000

 9500

 10000

 10500

 0 2 4 6 8 10 12 14 16

observed frequency
expected value

expected variance
maximum propagated error

(a) p = 0.000000 (b) p = 0.000000 (c) p = 0.000000

Figure 4.6: Comparison between expected deviation and measured deviation in the distribution of N = 150, 000
p-values in the interval [0, 1] for the Spectral in the cases: (a) n = 106, k=16; (b) n = 106, k=64; (c) n = 107, k=16.

ance, which depends on the number of analyzed sequences N . In this case, the

propagated error can be confused with a random probabilistic error, and does

not affect the results of the test. Based on the analysis on the frequency test and

with n = 106 as suggested by NIST, and k = 16, with the relations found above

the number of sequences N used in the second-level test should be limited to

N ≤ 20, 000.

4.5 Conclusion

In this chapter the concept of statistical tests for randomness has been intro-

duced, and an overview on the most used tests is provided. Additionally, a

more reliable test method called second level test, already proposed by the NIST,

has been analyzed in detail. In particular, an estimation of the maximum error

introduced by approximations in the basic test, and of the effect of the prop-

agation of this error to a second level test, has been made in simplest cases.

Starting from this estimation, an upper bound limit on the applicability of a

second level test has been found.

70 CHAPTER 4

Chapter 5

Test Results

I
N THIS LAST chapter about random numbers, some of the results of statisti-

cal tests on the designed prototypes are presented. Both prototypes have

been intensively tested, and results compared with other two commercial so-

lutions: the RNG included in the PadLock core of the new microprocessors

produced by VIA Technologies, Inc; and the quantic RNG developed by the

swiss idQuantique SA. Both these RNGs are described in Appendix B.

Of course only the most significative results are here reported; the standard

procedure used for the test is the procedure described in Chapter 4, Section

4.4, i.e. a test on the uniform distribution of 10,000 p-values obtained from the

same number of generated sequences.

5.1 Estimated Entropy of the ADC-based RNG

As a first, preliminary test, an evaluation of entropy as described in Chapter 3

was performed. Even if this test is not a rigorous way to test a RNG, it can be

very useful to compare the RNG results at different working speeds.

For this test, a sequence of 64 Mbits has been acquired at various speed;

the entropy of the string has been estimated in the simplest possible way: the

sequence was divided into contiguous non overlapping strings of k bits, and

the frequency νi of each possible 2k string have been computed. According

to the notation used Section 3.1, the k order entropy has been computed and

normalized as:

h =

−
2k−1
∑

i=0

νi log2 νi

k

71

72 CHAPTER 5

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 2 4 6 8 10 12 14

E
nt

ro
py

 p
er

 b
it

Input frequency (MHz)

8-bit entropy
7-bit entropy

Figure 5.1: Estimated 7-bits and 8-bits entropy for the 0.35 µm two-stages pipeline at different frequencies.

Results for k = 7 and k = 8 for the two-stages pipeline of the 0.35 µm

prototype are reported in Figure 5.1.

Two main aspects can be noticed. The first one is that the two entropy

curves are slightly, but constantly, different. The 7 bit entropy is always higher

then the 8 bit, thus indicating that in the stream there is a higher correlation

between groups of 8 bits with respect to groups of 7 bits. This could be ex-

plained with the internal parallelism. The pipeline can be schematized as two

different circuits working in parallel; any imperfection in the realization of the

pipeline is transferred in equivalent imperfections in the the parallel circuits

model. Briefly speaking, the pipeline (exactly as the parallel circuit) elaborates

two autonomous and independent streams of bit, every one of them however

presents an autocorrelation due to the above imperfections. This will be evi-

dent analyzing the sequence of bits two by two (yet, if in a group of two bits

each of them comes from a different stream), and consequently, also in group

of four, six, or eight bits. The other interesting aspect is that, as expected the

entropy decrease at high frequency, but it decrease at low frequencies too. This

is effectively unexpected and not easy to explain. Yet, switched capacitors cir-

cuits (like any dynamical circuits) have problems at very low speed, but this is

not the case, since performances are expected to become lower at frequencies

orders of magnitude smaller than the observed ones. However, it can be inter-

esting notice the presence of a peak in the performance of the circuit around

3-4 MHz.

Results for the eight-stages pipeline are reported in Figure 5.2. Actually,

being the same circuit as above, one could expect a very similar behavior. It

can be noticed a larger difference in the two curves, and also that the presence

in the peak is evident only in the 8 bits entropy. This peak is however exactly

in the same position as in the two-stages pipeline.

For what concerns the 180 nm RNG, its behavior can be observed in Figure

TEST RESULTS 73

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 2 4 6 8 10 12 14

E
nt

ro
py

 p
er

 b
it

Input frequency (MHz)

8-bit entropy
7-bit entropy

Figure 5.2: Estimated 7-bits and 8-bits entropy for the 0.35 µm eight-stages pipeline at different frequencies.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 10 20 30 40 50 60 70 80

E
nt

ro
py

 p
er

 b
it

Input frequency (MHz)

7-bit entropy

Figure 5.3: Estimated 7-bits entropy for the 180 nm four-stages pipeline at different frequencies.

5.3. As already noted, the circuit was intended to work with a throughput of

about 47 Mbit/s, i.e. an input frequency of about fin = 24 MHz, but designed

to work a much higher frequencies. Indeed, the circuit has a peak in the perfor-

mances around 35 MHz (i.e. with a throughput of 70 Mbit/s) and has a quite

good behavior up to fin = 50 MHz. For higher frequencies, the entropy is far

from optimal.

5.2 Result of the QSR post-processing

The QSR post-processing proposed in 3.6 has a number of different parameters,

which are the length a, b, c and d of the four shift register adopted, with a, c ≥ 1

and b, d ≥ 2.

It is obvious that the performances of the stage depends on the parame-

ters; it is not obvious that the more complex the stage (i.e. the higher the total

memory of the circuit, that is the total number of flip flops present), the higher

the performances. In order to test it, this post-processing stage has been ap-

plied to the eight-stages 0.35 µm prototype, and results have been compared

with results obtained from a xor post-processing. Furthermore, the test was

74 CHAPTER 5

repeated on data acquired from prototype running at various frequencies, and

so generating different quality random stream, according to the Figure 5.2.

In Table 5.1 results for processing data coming from the prototype of the

RNG running at the nominal speed of 10 MHz are presented; while in Table 5.2

are reported results from the prototype overclocked at 12 MHz. A number of

10,000 sequences of length equal to 1 Mbits (after the decimation introduced

by the post-processing) have been analyzed, and a chi-square goodness of fit

test have been performed over 16 bins.

In term of post-processing, the following parameters are used:

• Xor based post-processing: this post-processing has been considered

with depth equal to 4, 8 and 16 bit, i.e. with a decimation rate equal

to 1:4, 1:8 and 1:16.

• Shift-register based post-processing: 5 possible architectures are con-

sidered, with different values of the four parameters a, b, c and d, corre-

sponding to a complexity of the stage ranging from 6 to 14 flip-flops.

In both case it is possible to notice that increasing the complexity of the

system is reflected in a better yield of the tests (i. e. in a better quality of the

random stream). In the first case increasing the complexity means increasing

the length of the string of which we compute the parity bit; this implies an

increment of the decimation rate, i.e. a reduction of the speed of the circuit.

While a depth of 4 is enough for passing all tests when the circuit is working at

the nominal speed, the depth has to be increased up to 16 for passing all tests

at the overclocked speed of 12 MHz.

In the second case, increasing the complexity means increasing the number

of flip-flops, i.e. increasing the hardware cost (both area and power consump-

tion). However, there is no payload in terms of decimation. For passing all tests

(neglecting the Frequency Test) at the nominal speed, a minimum complexity

of 10 FFs is required. For the circuit overclocked at 12 MHz, the minimum

required complexity is 12 FFs.

5.3 SP 800-22 Test Results

Results from testing the eight-stages pipeline of the 0.35 µm prototype with

different post-processing stages are shown in Table 5.3 and Table 5.4, for, re-

spectively, the optimal working speed fin = 3 MHz and the nominal working

speed fin = 10 MHz. The standard post-processing functions described in

Chapter 3 have been used, including the the two IIR filters (referred as NLSR

TEST RESULTS 75

and QSR) described in Section 3.6. For the QSR post-processing, a complexity

of 10 FFs have been considered. Additionally, the SHA hash function has been

taken into account, with a conversion 20 to 20 bytes (i.e. no decimation) and 32

to 20 bytes.

It is possible to notice that without any post-processing, many tests are not

passed; also the von Neumann post-processing seems inadequate fore this gen-

erator. If the xor-2 is effective for many tests, especially at low speed, an xor-4

post processing, an IIR filter or the SHA function is necessary in both cases to

pass all tests.

Results from testing of the 180 nm prototype, instead, are shown in Table

5.5 and Table 5.6, for, respectively, the optimal working speed fin = 35 MHz

and the maximum working speed fin = 50 MHz.

According to tables results, this prototype produces a sensible worse stream

than the previous one in terms of quality. Neglecting few tests where the ob-

tained p-value is very near to the lever of significance, a depth of 8 for the xor

post-processing is necessary for passing all tests at the lower speed, while this

depth is increased to 12 at the higher speed. Tests are also not passed when con-

sidering the IIR filters of Section 3.6; this is true both for the NLSR and for the

QSR, which has been considered with two different complexity, respectively

equal to 10 FFs and 14 FFs.

Instead, Table 5.7 and Table 5.8 report results of testing for the two commer-

cial RNGs considered: the VIA PadLock generator and the Quantis generator

described in Appendix B. Data from first generator were generated at the speed

of about 1 Mbit/s, while the Quantis generated data at a speed of 4 Mbit/s.

Unexpectedly, it seems that both generators cannot pass the second level

uniformity test without any post-processing. Even if the quality appears very

good, since nearly all tests are passed, few basic tests like the Block Frequency

Test and the Runs Test are not passed. A p-value equal to p = 0.000000 ensures

that this does not represent a Type I error. More unexpectedly, neither with

a xor-2 post-processing these generator can pass the second level test. In this

case, the critical tests are the Frequency Test and the Cumulative Sums Test.

Also this time a p-value equal to p = 0.000000 clearly indicates that this is not

the case of a Type I error.

For what said in Chapter 3 regarding the post processing, a comparison of

the test results can be done only considering the entropy per second generated

by the different RNGs. Also, since all IIR filters do not increase the entropy of

the stream, but just to make harder for a test to discover the non randomness

of a stream, here only the different xor post-processings are considered.

76 CHAPTER 5

The eight-stages pipeline of the 0.35 µm running at fin = 10 MHz, generates

random data at a throughput of 40 Mbit/s; however an xor-4 post processing

is needed in order to consider this stream a true random stream. This ends in

an entropy per second equal to 10 Mbit/s.

Conversely, the 180 nm prototype require much more decimation, that is 1

to 8 when running at low speed, and 1 to 12 when running at the higher speed.

In both cases, the entropy can be estimated in about 8 Mbit/s, that is lower

than the first prototype.

For what concerns the two commercial generators, like the 0.35 µm proto-

type, they need an xor-4 post processing to eliminate all non-idealities. This

ends in an entropy equal to 1 Mbit/s for the Quantis generator, and 250 kbit/s

for the PadLock generator.

As a conclusion, it possible to affirm that the 0.35 µm prototype outper-

forms all other generators. Also, the two commercial generators result in an

entropy per time unit that is one order of magnitude smaller than the entropy

generated by the 0.35 µm ADC-based chaotic generator.

5.4 Conclusion

This chapter provides testing results for the two RNG prototypes presented in

Chapter 2, as well as a comparison with two other commercial random gener-

ators. In particular, the prototype designed in AMS 0.35 µm CMOS technology

presents both a high quality signal, and a high working speed; in terms of

entropy per second, the designed prototype outperforms the two commercial

generators by one order of magnitude.

TEST RESULTS 77

chi-square goodness of fit test on the uniform distribution of 10,000 p-values over 16 bins

for different XOR depths for different lengths a-b-c-d of the four shift registers

SP800-22 test xor-4 xor-8 xor-16 1-2-1-2 (6) 2-3-1-2 (8) 3-4-1-2 (10) 4-5-1-2 (12) 5-6-1-2 (14)

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.174634

0.087331

0.769052

0.580840

0.728101

0.711307

0.054125

0.219398

0.094617

0.138028

0.584583

0.276340

0.029264

0.923711

0.556731

0.083777

0.428987

0.184878

0.468378

0.018813

0.021717

0.072093

0.506058

0.046303

0.881566

0.285668

0.603662

0.065300

0.316323

0.962670

0.319791

0.095986

0.185059

0.152085

0.537447

0.229438

0.001466

0.517269

0.236040

0.752089

0.804021

0.174795

0.802775

0.618969

0.287252

0.114550

0.538390

0.042983

0.938443

0.865959

0.662084

0.000062

0.364886

0.034607

0.069235

0.000000

0.612689

0.455994

0.000165

0.591324

0.633237

0.835267

0.584243

0.570979

0.974240

0.246619

0.741774

0.213503

0.023928

0.040840

0.000000

0.880022

0.254350

0.000000

0.299723

0.450953

0.164045

0.524990

0.257944

0.303152

0.642014

0.051472

0.182168

0.406271

0.020770

0.589894

0.091926

0.081032

0.756654

0.230033

0.968870

0.898429

0.248388

0.674979

0.163011

0.208219

0.040307

0.853623

0.536505

0.093492

0.187602

0.029166

0.243570

0.116980

0.417402

0.352940

0.833756

0.472781

0.600383

0.103492

0.644383

0.001187

0.924495

0.062333

0.039211

0.738676

0.046329

0.375608

0.737345

0.134919

Table 5.1: Results of randomness test for the ADC-based RNG running at fin = 10 MHz.

chi-square goodness of fit test on the uniform distribution of 10,000 p-values over 16 bins

for different XOR depths for different lengths a-b-c-d of the four shift registers

SP800-22 test xor-4 xor-8 xor-16 1-2-1-2 (6) 2-3-1-2 (8) 3-4-1-2 (10) 4-5-1-2 (12) 5-6-1-2 (14)

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.000000

0.000000

0.000000

0.000000

0.000000

0.599102

0.000000

0.000000

0.000000

0.000000

0.000000

N/A

N/A

0.297749

0.296882

0.000000

0.320856

0.000000

0.697706

0.642083

0.992495

0.198106

0.855524

0.515503

0.281840

0.253310

0.410255

0.198540

0.344407

0.487620

0.725135

0.310649

0.189158

0.361741

0.034446

0.500373

0.461719

0.342511

0.473496

0.695455

0.180118

0.225801

0.626131

0.755371

0.767979

0.125548

0.164275

0.058652

0.201256

0.000000

0.029229

0.000024

0.604197

0.000000

0.366093

0.000000

0.444707

0.345316

0.000000

0.606104

0.760909

0.618969

0.213209

0.306538

0.000000

0.416673

0.021044

0.942154

0.000000

0.000209

0.000000

0.743415

0.520963

0.000000

0.785783

0.368514

0.289688

0.596568

0.754919

0.002800

0.001415

0.000226

0.328036

0.310762

0.120616

0.000000

0.062891

0.930836

0.000000

0.292314

0.023796

0.618255

0.412461

0.846896

0.299035

0.695188

0.005268

0.809387

0.079343

0.010764

0.191596

0.326281

0.942527

0.162782

0.112330

0.939296

0.454302

0.667721

0.209883

0.014745

0.121608

0.000502

0.998892

0.014800

0.058555

0.193551

0.315667

0.128987

0.536740

0.126853

Table 5.2: Results of randomness test for the ADC-based RNG running at fin = 12 MHz.

78 CHAPTER 5

chi-square goodness of fit test on the uniform distribution of 10,000 p-values over 16 bins

SP800-22 test none neumann xor-2 xor-4 xor-8 qsr (10) nlsr sha-20 sha-32

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of 1s

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Var.

Serial

Linear Complexity

0.000000

0.000000

0.000000

0.000000

0.162097

0.312591

0.000000

0.000000

0.041005

0.000000

0.000000

0.678818

0.432355

0.000000

0.500065

0.000000

0.000000

0.000000

0.000000

0.024229

0.296370

0.000014

0.000000

0.643909

0.000000

0.000000

N/A

N/A

0.763127

0.520073

0.000000

0.000001

0.000000

0.820313

0.247447

0.447836

0.064616

0.646986

0.000000

0.446947

0.063051

0.204341

0.296772

0.346662

0.609441

0.697263

0.995665

0.538861

0.952586

0.065305

0.029359

0.005823

0.475509

0.747277

0.047678

0.353335

0.383543

0.723727

0.800813

0.488310

0.944664

0.558255

0.637747

0.912023

0.806413

0.293545

0.000299

0.771238

0.096880

0.027861

0.882484

0.608684

0.551584

0.501454

0.654782

0.110314

0.105967

0.124714

0.118212

0.491758

0.092769

0.010077

0.901436

0.012965

0.116718

0.631812

0.167508

0.164290

0.060917

0.504698

0.999274

0.678715

0.826809

0.360680

0.337560

0.101922

0.000004

0.876942

0.024316

0.094512

0.468248

0.181886

0.641419

0.368110

0.740669

0.959239

0.340257

0.305856

0.365289

0.448281

0.010154

0.007401

0.953487

0.545706

0.688017

0.064405

0.742872

0.333552

0.167294

0.127604

0.872575

0.642488

0.984634

0.455420

0.987497

0.035679

0.010795

0.767195

0.024338

0.140933

0.102469

0.926788

0.206864

0.339678

0.407123

Table 5.3: Results of randomness test for the 0.35 µm eight-stages pipeline running at fin = 3 MHz.

chi-square goodness of fit test on the uniform distribution of 10,000 p-values over 16 bins

SP800-22 test none neumann xor-2 xor-4 xor-8 qsr (10) nlsr sha-20 sha-32

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of 1s

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Var.

Serial

Linear Complexity

0.000000

0.000000

0.000000

0.000000

0.000000

0.182543

0.000000

0.000000

0.000000

0.000000

0.000000

N/A

N/A

0.000000

0.469606

0.000000

0.000000

0.000000

0.000000

0.000000

0.472554

0.000000

0.000000

0.000000

0.000000

0.000000

N/A

N/A

0.000014

0.776520

0.000000

0.000000

0.000000

0.000000

0.000000

0.077967

0.000026

0.000000

0.000000

0.000000

0.000000

0.796975

0.628486

0.744200

0.166594

0.174634

0.087331

0.769052

0.580840

0.728101

0.711307

0.054125

0.219398

0.094617

0.138028

0.584583

0.276340

0.029264

0.923711

0.556731

0.623253

0.354323

0.410749

0.138401

0.056885

0.007076

0.055902

0.528744

0.038176

0.971074

0.338329

0.461638

0.194737

0.429767

0.965536

0.450953

0.164045

0.524990

0.257944

0.303152

0.642014

0.051472

0.182168

0.406271

0.020770

0.589894

0.091926

0.081032

0.756654

0.230033

0.173703

0.276117

0.012204

0.056182

0.203693

0.503539

0.000010

0.145479

0.094879

0.007665

0.321094

0.972120

0.004918

0.136403

0.887126

0.174306

0.064405

0.597999

0.757521

0.141853

0.001537

0.083862

0.366698

0.011077

0.026409

0.493139

0.494889

0.468106

0.376441

0.553988

0.227661

0.567990

0.995600

0.143605

0.534386

0.023561

0.142779

0.246820

0.430640

0.002475

0.714427

0.984633

0.303025

0.772086

0.762482

Table 5.4: Results of randomness test for the 0.35 µm eight-stages pipeline running at fin = 10 MHz.

TEST RESULTS 79

chi-square goodness of fit test on the uniform distribution of 10,000 p-values over 16 bins

SP800-22 test xor-4 xor-8 xor-12 qsr (10) qsr (14) nlsr sha-20 sha-32

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.000000

0.000000

0.000000

0.000000

0.051992

0.000810

0.000000

0.000000

0.000000

0.067354

0.000000

0.017488

0.000418

0.034880

0.000072

0.007434

0.219205

0.027385

0.007018

0.020829

0.003676

0.056611

0.558185

0.144320

0.448111

0.011708

0.566293

0.078020

0.141890

0.017582

0.103019

0.626821

0.195390

0.667955

0.934953

0.169174

0.000802

0.506323

0.141137

0.027102

0.626821

0.102463

0.277339

0.637984

0.855020

0.274430

0.256977

0.000800

0.014855

0.002120

0.002400

0.000000

0.019217

0.000000

0.051300

0.000000

0.003259

0.000685

0.001534

0.101532

0.000004

0.000830

0.898429

0.020903

0.000721

0.492449

0.392776

0.267255

0.006052

0.249806

0.135314

0.024116

0.084428

0.349205

0.154925

0.000323

0.003277

0.000081

0.086610

0.003781

0.001695

0.000426

0.000509

0.000001

0.003058

0.024229

0.070335

0.000364

0.346662

0.037326

0.373585

0.724153

0.986653

0.935175

0.896543

0.002755

0.032040

0.267917

0.333159

0.013835

0.092697

0.861232

0.802326

0.550673

0.854672

0.020713

0.024492

0.025026

0.518904

0.366093

0.708961

0.000149

0.061369

0.061470

0.275272

0.001583

0.866288

0.890521

0.000336

0.299570

Table 5.5: Results of randomness test for the 180 nm four-stages pipeline running at 35 MHz.

chi-square goodness of fit test on the uniform distribution of 10,000 p-values over 16 bins

SP800-22 test xor-4 xor-8 xor-12 qsr (10) qsr (14) nlsr sha-20 sha-32

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.000000

0.000000

0.000000

0.000000

0.000000

0.032550

0.000000

0.000000

0.000000

0.000062

0.000000

0.000003

0.002415

0.133156

0.486933

0.000000

0.000004

0.000000

0.000002

0.001108

0.008522

0.000000

0.248231

0.002325

0.029359

0.000000

0.408774

0.014956

0.410108

0.026670

0.020728

0.756553

0.291778

0.491969

0.936169

0.013867

0.000002

0.270001

0.022503

0.135069

0.127165

0.083227

0.371283

0.442457

0.724760

0.039279

0.000017

0.279341

0.017511

0.000030

0.001001

0.000012

0.327658

0.003270

0.000069

0.000022

0.026350

0.000993

0.000000

0.464859

0.744640

0.000000

0.000232

0.017414

0.273085

0.011761

0.006484

0.132476

0.001485

0.000000

0.000373

0.002775

0.153910

0.049605

0.191596

0.044097

0.000077

0.125362

0.003536

0.350186

0.148966

0.002832

0.015023

0.000001

0.519839

0.206840

0.055225

0.457200

0.272080

0.010734

0.787771

0.479611

0.414821

0.427368

0.088461

0.318491

0.000492

0.506787

0.488999

0.235434

0.275104

0.835904

0.296293

0.239851

0.841119

0.262326

0.295839

0.080357

0.325210

0.892115

0.136105

0.013224

0.423672

0.021895

0.027442

0.022786

0.813223

0.910346

0.022438

0.784875

Table 5.6: Results of randomness test for the 180 nm four-stages pipeline running at 50 MHz.

80 CHAPTER 5

chi-square goodness of fit test on the uniform

distribution of 10,000 p-values over 16 bins

SP800-22 test none xor-2 xor-4 Neumann

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.510275

0.002671

0.383633

0.000000

0.078153

0.213805

0.004870

0.850278

0.003469

0.006685

0.499371

0.121354

0.203023

0.749906

0.534621

0.000000

0.166477

0.000000

0.283278

0.633950

0.027344

0.012112

0.650532

0.146003

0.638221

0.266429

0.091008

0.828277

0.509344

0.851867

0.582507

0.268746

0.728870

0.418696

0.231524

0.144852

0.092625

0.069516

0.001056

0.031536

0.317194

0.845354

0.910116

0.955692

0.398652

0.187985

0.790446

0.358885

0.004468

0.344908

0.682907

0.000023

0.925101

0.394450

0.603482

0.341997

0.764485

0.198517

0.415036

0.067573

Table 5.7: Results of randomness test for the VIA PadLock generator.

chi-square goodness of fit test on the uniform

distribution of 10,000 p-values over 16 bins

SP800-22 test none xor-2 xor-4 Neumann

Frequency

Block Frequency

Cumulative Sums

Runs

Longest Run of Ones

Matrix Rank

Spectral (DFT)

NOT Matching

OT Matching

Universal

Approx. Entropy

Random Excursion

Random Exc. Variant

Serial

Linear Complexity

0.960217

0.000001

0.125084

0.000000

0.559916

0.205467

0.000252

0.324084

0.043020

0.294955

0.208496

0.150665

0.166545

0.474372

0.621350

0.000000

0.100371

0.000000

0.874849

0.489918

0.000848

0.029152

0.122515

0.001064

0.088047

0.822234

0.802855

0.111642

0.443621

0.679880

0.892264

0.133547

0.649114

0.235737

0.115586

0.027442

0.000023

0.090065

0.004735

0.344519

0.464182

0.823094

0.003758

0.073312

0.394450

0.770601

0.000000

0.323897

0.000000

0.961811

0.021287

0.033505

0.902427

0.002606

0.008705

0.859516

0.682399

0.852521

0.704157

0.360281

Table 5.8: Results of randomness test for the Quantis generator.

Chapter 6

Application of RNG: EMI

Reduction

T
HE DESIGN OF electromagnetic compatible (EMC) timing signals in inte-

grated digital or mixed-signal circuits is of great practical concern. It is

worth noticing that common solutions to increase system EMC, based on a-

posteriori methodologies, such the adoption of filters, shielded cables and fil-

tered connectors cannot be employed in integrated technology; hence, design-

time solutions should be adopted [87], assuring that the implemented electronic

equipment generates electromagnetic interference with power spectral density

as flat as possible, so that its integral within any frequency range (and therefore

in the bandwidth of any unintentional receiver) is as low as possible.

This point of view is perfectly coherent with FCC and CE regulations [86]

that link compliance with the ability of fitting the interfering power spectrum

within a prescribed mask. Regrettably, clock signals are most likely to fail such

a compliance, due to their sharp edges and their periodic nature, which con-

centrate power at multiples of their frequency.

The key idea for reducing peak power density in clock signals is a frequency

modulation, producing a clock signal with edges which are slightly delayed or

anticipated to avoid perfect periodicity. Of course, it is assumed that the max-

imum frequency deviation is compatible with the devices depending on the

clock for proper operation. It can be intuitively accepted that the efficiency of

these methods critically depends on the statistical properties of the modulating

signal.

In classical literature [85, 88, 90, 91] emphasis is on continuous-valued fre-

quency modulation with large modulation indexes (slow-modulation) for which

81

82 CHAPTER 6

an analytical estimation of the spectrum profile can be provided. However

more recently it has been introduced a binary fast random modulation [92],

showing a better flattening properties as long as it is operated at proper mod-

ulation indexes, derived by means of numerical optimization. In this modula-

tion the modulating signal is a Pulse Amplitude Modulated (PAM) sequence

that can assume only two values (typically, -1 and +1) each with probability

p = 1/2. In this case the instantaneous output frequency can assume only the

two values f0−∆f and f0+∆f , where f0 is the carrier frequency and ∆f is the

maximum frequency deviation. Since both f0 and ∆f are typically fixed by the

application, the only degree of freedom is given by the frequency fm = 1/T of

the PAM signal. More commonly, this degree of freedom is expressed through

the modulation index m = ∆f/fm. This index is used to flatten the power

spectrum in the desired interval. A semi-analytical optimization shows that

the lowest peak on the fundamental tone is achieved by setting m ≃ 0.318

[83, 92]. Such value for m however is not optimized for higher harmonics, that

still feature peaks. Yet the power content of these harmonics is much lower

than that of the fundamental, and so are the corresponding peaks.

In this chapter two Spread-Spectrum Clock Generators (SSCGs) designed to

implement a fast binary modulation are described. For both, the SSCG struc-

ture is based on a PLL with few modifications to achieve a binary frequency

modulator; an ADC-based random number generator is used to generate the

random driving signal.

6.1 Generation of Spread-Spectrum Clock Signals

Consider clock signal s(t) as the result of a frequency modulation:

s(t) = sgn

(

cos

(

2πf0t + 2π∆f

∫ t

−∞

ξ(τ)dτ

))

where f0 indicates the carrier frequency, ∆f the frequency deviation and ξ(t)

the driving PAM signal:

ξ(t) =

+∞
∑

k=−∞

xkg (t − kT) (6.1)

given that g (t) is a unit pulse of duration T and that xk are random values (being

ρ (x) their probability density function) constituting the modulating sequence,

belonging to the interval [−1, 1].

It is possible to prove [85] that the contribution of each harmonic in the

power spectrum can be analytically described by its corresponding low pass

APPLICATION OF RNG: EMI REDUCTION 83

-30

-25

-20

-15

-10

-5

 0

-3 -2 -1 0 1 2 3

P
ow

er
 d

en
si

ty
 (

dB
)

Frequency (Hz)

m=0.250
m=0.318
m=0.350

Figure 6.1: Normalized (∆f = 1) low-pass equivalent for PSD in the binary frequency modulation for value of the
modulation index around mopt

equivalent:

ΦS̃S̃ (f) = Ex [K1 (x, f)] + Re

{

E2
x [K2 (x, f)]

1 − Ex[K3 (x, f)]

}

where:

K1(x, f) =
1

2
T sinc2(πT (f − ∆fx))

K2(x, f) = j
e−j2πT (f−∆fx) − 1

2π
√

T (f − ∆fx)

K3(x, f) = e−j2πT (f−∆fx)

where T is the pulse width in (6.1) and ∆f is the frequency deviation for

the considered harmonic, which is proportional to the harmonic number (and

equal to the modulation ∆f only for the fundamental tone). In the particular

case of binary modulation, it is:

ρ(x) =
1

2
δ(x + 1) +

1

2
δ(x − 1) (6.2)

while statistical independence of {xk} implies:

Ex[f(x)] =

∫

f(x)ρ(x)dx (6.3)

Given the exact expression for Φs̃s̃(f) and substituting (6.2) and (6.3), by means

of numerical optimization it has been found that peaks in the PSD are mini-

mized for the value of the modulation index m = ∆f T = mopt ≃ 0.318. Lower

values of m cause the PSD to increase around 0, while higher values increase it

around f = ±∆f (Figure 6.1).

Each harmonic is described by a different modulation index (m is propor-

tional to the harmonic number), so this optimization can be achieved only on

84 CHAPTER 6

÷N

VCO
outOSC

PFD CP
LPF

R1

C1

C2
in

Figure 6.2: Block diagram of the PLL modified to achieve a frequency modulator.

one single harmonic. Since the power content of the fundamental tone is much

higher than all other harmonics, and so are the corresponding peaks, best re-

sults in overall peak reduction are achieved when the modulation index is op-

timized for the fundamental tone, i.e. m = mopt. Such a reduction is the best

reduction with respect to all other known modulations [92].

6.2 Description of the 0.35 µm SSCG prototype

The first SSCG prototype here described has been implemented in 0.35µm AMS

technology. The SSCG structure is based on a PLL with few modifications to

achieve a frequency modulator. The PLL architecture is chosen to externally set

the center-spread frequency, for example with a high-precision quartz oscilla-

tor. As driving signal, a PAM signal cominging from an ADC-based RNG com-

posed by two stages has been used. The center-spread frequency has been set

to the nominal value of f0 = 100 MHz and the driving signal PAM frequency

equal to fm = 10 Mbit/s. The frequency deviation ∆f is set to ∆f = 3.18 MHz

to achieve the optimal modulation index m value.

The block diagram of the modulator is shown in Figure 6.2: neglecting

the driving signal, this scheme is the same of a conventional PLL-based clock

generator. It includes a reference clock oscillator, a phase-frequency detector

(PFD), a charge pump (CP), a second-order passive low-pass filter (LPF), a

voltage-controlled oscillator (VCO) and a divider by N on the feedback path.

Its purpose is to set the output frequency fout = Nfin, where fin is the fre-

quency of the reference clock. The closed-loop transfer function fout(s)/fin(s)

has a low-pass nature, with cut-off frequency ωn.

The conventional scheme is indeed modified with the addition of a driving

signal between LPF output and VCO input. If we suppose that this signal is

high frequency with respect to ωn, we can notice that it drives the VCO as in

an open-loop system, since it cannot pass through the loop composed by the

divider, the PFD, the CP and the LPF, due to the low-pass nature of the loop.

APPLICATION OF RNG: EMI REDUCTION 85

This is evident considering the standard linearized PLL analysis [84] in the

Laplace domain. The PFD and the CP can be modeled as a single component,

which looks at the phase differences ∆φ between the two inputs of the PDF,

and gives a serie of high frequency pulses of intensity ±Ipump and duty-cycle

proportional to the phase difference; a phase difference of ∆φ = 2π results in

an average output current Î = Ipump, while a phase difference of ∆φ = −2π

results in Î = −Ipump. Analytically:

Î =
Ipump

2π
∆φ = K1∆φ

Obviously, the the phase difference is bounded in the interval [−2π, 2π].

Since the LPF a cut-off frequency that is much lower (typically two or more

order of magnitude) with respect to the frequency of the pulses coming from

the CP (that is the frequency of the two input signals), only the average current

Î (s) can considered at its input:

Î (s) = K1∆φ (s)

Referring to Figure 6.2, the filter output voltage is

Vfilter (s) =
1 + sT2

sT1 (1 + sT3)
Î (s) = K2Î (s)

with
T1 = C1 + C2

T2 = R1 C1

T3 = R1
C1C2

C1 + C2

then, neglecting the input signal ξ (s) the VCO converts this voltage into an

output frequency

fout (s) = KVCO (Vfilter + ξ (s))

and, noticing that the phase φ (t) of a signal is just the integral of the instanta-

neous frequency ω (t) in the time domain

φout (s) =
ωout (s)

s
=

KVCO

s
Vfilter (s) = K3Vfilter (s)

So the open-loop transfer function H0 (s) can be cast as

H0 (s) = K1K2K3 =
Ipump

2π

1 + sT2

sT1 (1 + sT3)

KVCO

s

and, with the interposition of the driving signal ξ (s), it is

φout (s) = H0 (s)∆φ (s) + K3ξ (s)

86 CHAPTER 6

Now, in the closed-loop system, it is ∆φ = φin − φout; the closed-loop

ωout (s) /ωin (s) characteristic is

H1 (s) =
ωout (s)

ωin (s)
=

φout (s)

φin (s)
=

H0 (s)

1 +
H0 (s)

N

(6.4)

It is very common considering C2 ≪ C1, so T3 ≃ 0 and

K2 ≈ 1 + sT2

sT1

Under this assumption, (6.4) can be recast as

H1 (s) = N
ω2

n (1 + sT2)

s2 + 2ωnζs + ω2
n

with

ωn =

√

IpumpKV CO

2πNT1

ζ =
ωnT2

2

This comes the standard form for analyzing a two poles transfer function; set-

ting a dumping factor ζ with a value near to the unity, H1 (s) is a transfer func-

tion with a low pass nature, presenting a double pole in ωn and a zero in 1/T2.

The transfer function cut-off frequency is ωn, while the base-band gain is N , as

expected.

However, when considering the transfer function between ωout (s) and ξ (s)

H2 (s) =
ωout (s)

ξ (s)
=

1

s

φout (s)

ξ (s)
= s

K3

1 +
H0 (s)

N

and applying the same simplification as above

H2 (s) =
s2/ω2

n

s2 + 2ωnζs + ω2
n

This transfer function presents a double zero in the origin, and a double pole

at ωn; this is a high-pass transfer function, with cut-off frequency equal to ωn

The core block for the modulation is the adder, which is integrated into the

VCO. The VCO is essentially composed of a seven-stage ring oscillator, which

is followed by a wave-shaping buffer, in order to obtain proper values of logic

levels and slew-rate for the output, and is controlled by an input stage, whose

purpose is mainly to supply the correct operating current to the ring oscillator,

and to decouple it from the other parts of the circuit.

Due to the discrete nature of this signal, a full analog adder is not necessary,

thus simplifying the circuit. The additive function is performed by the input

APPLICATION OF RNG: EMI REDUCTION 87

bias bias

Φ 2

VddL

Vctrl

1Φ
Vpol1

Vpol2

Figure 6.3: Modified input stage of the VCO

 70

 80

 90

 100

 110

 120

 130

 2.1 2 1.9 1.8 1.7 1.6

O
ut

pu
t f

re
qu

en
cy

 (
M

H
z)

Control voltage (Volt)

non-modulated
"0" modulated
"1" modulated

Figure 6.4: Voltage/Frequency characteristic of the VCO in non spread spectrum mode (solid line) and spread
spectrum mode (dashed lines).

stage of the VCO (Figure 6.3), through the two pass-transistors driven by Φ1

and Φ2, along with the two current sources Ibias. This circuit is designed to

work with Φ1 = Φ2 = Φ, where Φ is the signal coming from the random bit

generator; however its behavior is more evident considering these two signals

separately.

Supposing Φ1 = Φ2 = 0, the circuit acts as a linear voltage amplifier, where

VddL is proportional to Vctrl; the obtained VCO fout/Vctrl characteristic is rep-

resented by the solid line in Figure 6.4; the voltage/frequency ratio is set to:

KVCO = 518Mrad/s/V

corresponding to KVCO = 82.5MHz/V. When Φ1 = 1, the current Ibias is sub-

tracted from the current mirror, thus shifting up the fout/Vctrl characteristic.

On the contrary, Φ2 = 1 adds Ibias to the current mirror and shifts down the

characteristic. The two shifted characteristics are represented by dashed lines

in Figure 6.4. The distance between the curves is approximately constant in

the range of interest and represents the PLL ∆f . Its value depends on Ibias;

furthermore there is an almost linear relationship between ∆f and Ibias, that

88 CHAPTER 6

TL

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 2e−05 4e−05 6e−05 8e−05 0.0001 0.00012 0.00014

Figure 6.5: Simulation of the pull-in and lock-in process of the PLL.

is:

K∆f = 1.106 Mrad/s/µA

corresponding to K∆f = 0.176 MHz/µA.

In the project design, it has been set Ipump = 400µA and N = 64. To ensure

stability, the (external) filter has been designed with

C1 = 58 nF

C2 = 5.8 nF

R1 = 370 Ω

With these values, the closed-loop PLL bandwidth is equal to:

ωn =

√

IpumpKVCO

2πNC1
= 94.25krad/s

ζ ≃ 1

thus meaning a cut-off frequency of about 15 KHz, while the zero of H1 (s) is

at 1/T2 = 46.6krad/s, i.e. 7.4 KHz. Also, the PLL lock-in time can be estimated

to TL = 2π/ωn ≃ 66 µs.

Figure 6.5 shows a simulation of the VCO control voltage during the pull-

in process for the PLL without any driving signal. It is possible to notice that

the PLL eventually reaches stability; also the time between entering the lock

state (i.e. when major oscillations end) and reaching a complete settlement, is

almost equal to the estimated lock-in time TL.

The simulated power spectrum density of the output clock signal can be

seen in Figure 6.6. The figures have been obtained from a 1.2 ms simulations

and discarding the first 200 µs data, which is a sufficient time, according to

the bandwidth of the PLL, to consider all circuit transitories extinguished. The

APPLICATION OF RNG: EMI REDUCTION 89

-120

-110

-100

-90

-80

-70

-60

100e6 200e6 300e6 400e6 500e6 600e6

circuit simulation
theoretical spectrum density

-95

-90

-85

-80

-75

-70

-65

-60

90e6 95e6 100e6 105e6 110e6

circuit simulation
theoretical spectrum density

(a) (b)

Figure 6.6: Comparison between power spectrum density of the output clock obtained from the simulated circuit
and the theoretical power spectrum density of the binary modulation, for (a) a wide set of harmonics; and (b) only
for the fundamental tone.

-120

-110

-100

-90

-80

-70

-60

-50

100e6 200e6 300e6 400e6 500e6 600e6

spread spectrum
no spread

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

90e6 95e6 100e6 105e6 110e6

spread spectrum
no spread

(a) (b)

Figure 6.7: Comparison between power spectra density of the modulated and non modulated output clock for (a)
a wide set of harmonics; and (b) only for the fundamental tone.

simulated spectrum is also compared with the theoretical one from Section 6.1.

As can be seen, the simulated spectrum is very close to the theoretical one.

Figure 6.7 shows a comparison between the simulated power spectrum

density of the output clock signal and the same spectrum obtained from the

circuit without any driving signal, i.e. working as a standard PLL-based clock

generator. The resolution bandwidth is set to 120 kHz, as indicated by CISPR

regulations [89]. The comparison shows a peak reduction on the fundamental

tone of about 13 dB.

All the simulation results are confirmed by measurements on the prototype.

The chip microphotograph is shown in Figure 6.8 while Table 6.1 gives a per-

formance summary of the integrated SSCG. The active area occupies 0.38 ×
0.65 mm2 and the total area including pads is 1.38 × 1.20 mm2. The low-pass

filter is off-chip. Figure 6.9 shows the measured spectrum of the 100 MHz out-

put signal without any modulation (a) and modulated with the optimum index

value m = 0.318 (b). The measured peak reduction is about 18 dB.

90 CHAPTER 6

RNG

BIASPLL

Figure 6.8: Microphotograph of the 0.35 µm SSCG prototype.

Output frequency 100 MHz

Modulation type Binary Random

Modulation frequency 10 MHz

Frequency Deviation 3.18 MHz

Lock-range 63–108 MHz

Chip area 1.38 × 1.20mm2

Power consumption 20.5mW

Closed loop Bandwidth 15 KHz

C1 = 58nF, C2 = 5.8nF

R1 = 370Ω

Table 6.1: Performance summary of the 0.35 µm SSCG prototype

(a) (b)

Figure 6.9: (a) Measurements from the prototype in non spread spectrum mode; and (b) in spread spectrum mode.

APPLICATION OF RNG: EMI REDUCTION 91

-60

-50

-40

-30

-20

-10

 0

120e6115e6110e6105e6100e695e690e685e680e6

measured spectrum
theoretical spectrum

Figure 6.10: Comparison between the measured spectrum of Figure 6.9(b) and the theoretical one.

Figure 6.10 shows the comparison between the spectrum from Figure 6.9a

and the theoretical one; the matching is very good, confirming the effectiveness

of the proposed circuital approach.

6.3 Description of the 180 nm SSCG prototype

The above 0.35 µm integrated circuit has been completely redesigned in UMC

180 nm CMOS technology.

In this implementation, the center-spread frequency has been set to the

nominal value of f0 = 3 GHz and the frequency deviation ∆f is set to the 0.5%

of f0, i.e. ∆f = 15 MHz. This is a standard value for the frequency deviation,

and it is used, for example, in the Serial ATA protocol [93]. Thus, to achieve the

optimal modulation index m value, the random bit generator bit-rate is set to

fm = 47.17 Mbit/s. This random bit generator has been already described in

Chapter 2, Section 2.8. The microphotograph of the circuit is shown in Figure

6.11.

The unmodulated and modulated VCO fout/Vfilter characteristic for this im-

plementation is represented in Fig. 6.12; the voltage/frequency ratio is set to:

KVCO = 248 MHz/V.

The power spectrum density of the output clock signal can be seen in Figure

6.13a. The simulated spectrum is also compared with the theoretical one. As in

the previous prototype, the simulated spectrum is very close to the theoretical

one.

Figure 6.13b shows a comparison between the simulated power spectrum

density of the output clock signal and the same spectrum obtained from the

92 CHAPTER 6

RNG
PLL

Active
filter

Figure 6.11: Microphotograph of the 180 nm SSCG prototype.

3.050G

3.025G

3.000G

2.975G

2.950G

 1 0.95 0.9 0.85 0.8

O
ut

pu
t f

re
qu

en
cy

 (
H

z)

Control voltage (Volt)

non-modulated
"1" modulated
"0" modulated

Figure 6.12: Voltage/Frequency characteristic of the VCO in non spread spectrum mode (solid line) and spread
spectrum mode (dashed lines).

circuit without any driving signal, i.e. working as a standard PLL-based clock

generator. The comparison shows a peak reduction on the fundamental tone

of about 13 dB.

Regrettably, measurements from the prototypes indicate that the circuit

works in a range of frequencies that is sensibly lower than expected. In fact, the

lock range of the PLL (Figure 6.14a) goes from 2.2 GHz to 2.5 GHz, that is far

from the 3 GHz expected. This is due probably to an understimation of the the

parasitic effect in the VCO. However, as can be noticed from Figure 6.14b the

binary modulation is properly applied, and the frequency spectrum is exactly

the expected one. The peak reduction is measured in about 16 dB. A summary

APPLICATION OF RNG: EMI REDUCTION 93

-60

-55

-50

-45

-40

-35

-30

-25

3.04G3.02G3.00G2.98G2.96G

P
ow

er
 S

pe
ct

ru
m

 (
dB

V
2)

Frequency (Hz)

circuit simulation
theoretical spectrum density

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

3.04G3.02G3.00G2.98G2.96G

P
ow

er
 S

pe
ct

ru
m

 (
dB

V
2)

Frequency (Hz)

no spread
spread spectrum

(a) (b)

Figure 6.13: (a) Comparison between power spectrum density of the output clock obtained from the simulated
circuit and the theoretical power spectrum density of the binary modulation; and (b) comparison between power
spectra density of the modulated and non modulated output clock. The spectra are measured in dBV2, with
RBW = 120KHz.

(a) (b)

Figure 6.14: (a) Measured lock-range of the PLL; and (b) comparison between modulated and unmodulated power
spectra.

of the prototype characteristic is reported in Table 6.2.

6.4 Conclusion

In this Chapter an application of the designed RNG described in Chapter 2

is presented, that is the ElectroMagnetic Interference reduction with the intro-

duction of a spread spectrum clock. The spreading of the clock spectrum is

achieved through a frequency modulation involving a random binary PAM

signal as driving signal.

Two prototypes have been designed, the first one in CMOS 0.35 µm tech-

nology to operate at a clock of f0 = 100 MHz, and the second one in CMOS 180

94 CHAPTER 6

Output nominal frequency 3000 MHz

Lock range (designed) 2700-3150 MHz

(measured) 2200-2500 MHz

Modulation type Binary Random

Maximum modulation frequency 100 MHz

Frequency Deviation 0.5%

Chip area 1.48 × 1.48mm2

(without pads) 0.95 × 0.95mm2

Power consumption 35.5mW

(PLL only) 13.5 mW

Closed loop Bandwidth 45 KHz

Table 6.2: Performance summary of the 180 nm SSCG prototype

nm technology to operate at a frequency f0 = 3 GHz. Both prototype perform

the requested modulation achieving the desired clock power spectrum; how-

ever for the 180 nm prototype a maximum working frequency lower than the

expected one, and approximately equal to f0 = 2.5 GHz, has been measured.

Chapter 7

Design of SCA Resistant

Digital Programmable

Hardware

The security IC is the emerging vulnerability in the security of an embedded

application. They are an easy target for side-channel attacks (SCAs), which aim

at finding the secret key of an encryption algorithm by monitoring character-

istics such as the power consumption, the execution time, the electromagnetic

radiation and other information that is leaked by the switching behavior of dig-

ital CMOS gates. Side-channel attacks (SCAs) are non-invasive and directed at

observing the device in normal mode of operation [95, 96, 97, 100]. In general,

SCAs do not require expensive equipment and are rather easy to set up. Even

if measures are included to make the devices tamperproof, side-channel infor-

mation can leak out. SCAs are a real threat for any device in which the security

IC is easily observable, such as smart cards and embedded devices [98, 102].

Especially differential power analysis (DPA) is of great concern [97]. It is

very effective in finding the secret key and can be mounted quickly with off-

Figure 7.1: During a low-to-high output transition in CMOS logic there is a current request from the power supply,
while during a high to low transition there is no such current request.

95

96 CHAPTER 7

the-shelf devices. The attack is based on the fact that CMOS logic operations

have power characteristics that depend on the input data. As in the example of

Figure 7.1, a CMOS logic requires current from the power supply only during

a low-to-high output transition, but not during a high-to-low transition [101].

Next to this, it relies on statistical analysis to extract the information from

the power consumption that is correlated to the secret key [94, 97]. The at-

tack can be mounted without precise knowledge of the architecture and imple-

mentation. It is only necessary to know which algorithm is being used and to

have access to plaintext or ciphertext data. The only secure solutions to resist

SCAs are hardware solutions, i.e. circuit-level solutions that aim at not creat-

ing any side-channel information, instead of concealing or decorrelating the

side-channel information from the input data.

The idea is to create digital circuit styles that have a constant per cycle and

so data-independent power consumption. After all, precisely the data depen-

dent power consumption of traditional standard cells and logic (i.e., power

consumption is dependent on the signal activity), is the fundamental reason

that information is leaked through the power supply and power attacks are

possible. A CMOS logic style, in order to be input-data independent, must ful-

fills two requirements: (a) the logic style has a single switching event per cycle

and this independently of the input signals; and (b) the logic style charges a

constant capacitance during that switching event.

Implementing a dynamic and differential logic (DDL) style meets the first

requirement. It has a switching factor of 100%, since it alternates precharge and

evaluation phases, in which the output is precharged to high and conditionally

evaluated to low respectively. A differential logic style, on the other hand,

holds two output signals with opposite polarity. As a result, the combination

of dynamic and differential logic will evaluate exactly one of both precharged

output nodes to low in order to generate a complementary output and this

independently of the input value. During the subsequent precharge phase, the

discharged node is charged and this independently of the input sequence. To

fulfill the second requirement, simply the load at the two differential output

nodes should be balanced.

Of course there is a heavy payload in terms of current consumption: a

DDL circuit, with a switching factor of 100%, has a power consumption that

is twofold the power consumption of a standard dynamic logic, and fourfold

the power consumption of a standard static logic (when considering the same

load capacity).

In this chapter the DDL logic is applied to the design of a programmable

DESIGN OF SCA RESISTANT DIGITAL PROGRAMMABLE HARDWARE 97

P

Q

CPQ

CP

CQ

Figure 7.2: Model of the capacitive coupling between two transmission lines.

hardware, namely a FPGA. For the design, the UMC 130 nm CMOS technol-

ogy has been considered. Any programmable logic hardware can substan-

tially be dived in subcircuits belonging to two categories: logic and intercon-

nections. They are analyzed separately, focusing first on interconnection cir-

cuits, and then to logic circuits, trying to make their power consumption data-

independent.

7.1 Programmable Interconnections

The coupling between two transmission lines P and Q can be schematized as

in Figure 7.2 with three capacitors, CP between line P ang ground, CQ between

Q and ground, and a cross-coupling capacitor CPQ. The two transmission lines

P and Q can be:

• P and Q could be a differential line. In DDL style, both P and Q are

precharged to high during the precharge phase, while only one of them

is discharged to low during evaluating phase. First, it is possible to notice

that that CPQ has no influence, since it is discharged at every evaluation

phase and and then recharged in precharge phase independently of the

processed data. Instead, it is necessary that CP = CQ, otherwise it is

possible to leak, sensing the charging current, which one of the two lines

is being precharged.

• P and Q can be transmission lines coming from two different signals.

It does not matter if they represent both represent the true signal, the

inverted signal, or they are mixed. In this case, it is possible that in the

evaluating phase, neither, both, of only one of them is discharged, and

so recharged during the successive precharge phase. If one considers the

role of CPQ, it is precharged only if in the previous time period it was

98 CHAPTER 7

BIAS CDD+CJD CSS+CJS CDS CSD gDS

Vs = 0, Vd = 0

Vs = 0, Vd = V dd

Vs = V dd, Vd = 0

Vs = V dd, Vd = V dd

2.9E-16 + 6.72E-16

2.9E-16 + 4.23E-16

2.9E-16 + 6.72E-16

2.9E-16 + 4.23E-16

2.9E-16 + 6.72E-16

2.9E-16 + 6.72E-16

2.9E-16 + 4.23E-16

2.9E-16 + 4.23E-16

-2.73E-20

-4.2E-21

4.35E-23

-3.38E-28

-1.7E-20

4.35E-23

-4.2E-21

-1.12E-28

1.01E-8

4.38E-9

4.38E-9

4.12E-23

Table 7.1: Parameters of a NMOS in the OFF state.

P 6= Q; to ensure a perfectly data independent current profile, it has to

be CPQ = 0.

Regarding CP and CQ, they are connected to different signal lines; for

them the previous case has to be applied.

• As a last case, one of the two nodes can be a floating node. In this case

each clock cycle CPQ is partially charged and discharged, according to

the charge partition ratio. In other terms, there is a memory effect. To

ensure a constant current profile at every clock cycle, it has to be CPQ = 0.

Briefly, the following guidelines can be summarized:

1. balance the capacitance between the two transmission lines of a signal

and ground;

2. avoid directly coupling between two lines of two different signals;

3. avoid any floating node.

Programmable interconnections are realized substantially with pass–tran-

sistors; so the classical CMOS transfer gate has been taken into account.

Note that one could think to consider only NMOS pass transistors, since

the critical phase is the discharge to ground during the evaluation phase. This

solution presents many problems: for example in a chain of pass-transistors,

many node can be floating; also it is note ensured that all intermediate nodes

are precharged to vdd and additionally, if precharded, they are precharged

to vdd minus a threshold voltage. Thus, every intermediate node of a pass-

transistor chain should be independently precharged to vdd; however in this

way there is no evident reduction in the complexity of the circuit.

Then, a brief model for a MOS transistor in the OFF state (i.e. Vg = 0 for

a NMOS, Vg = vdd for a PMOS) is considered. For the reference technology,

and for a W/L = 1µ/120nm the obtained differential parameters for the NMOS

are reported in Table 7.1. The capacitance effect between drain and source is

5 order of magnitude less than the total source (or drain) capacitance, i.e. the

DESIGN OF SCA RESISTANT DIGITAL PROGRAMMABLE HARDWARE 99

P0

P0

P0

P0

A

B

C

D

P1

P1

A P0

A

P0

A P0

A

P0

Q

(a) (b)

Figure 7.3: (a) Simple four-inputs multiplexer schematics; and (b) tri-state buffer.

junction capacitance and the channel capacitance; the RDS is at least of the or-

der of magnitude of hundreds of megaohm. So effectively a MOS in OFF state

presents a very low coupling between source and drain and can be modeled as

an open circuit, just with CD and a CS capacitances.

The following structures are being considered:

• Multiplexer Figure 7.3a depicts a four inputs multiplexer, where P0 and

P1 are the two programming bits. Assuming that all inputs are low

impedance, this structure does not present any floating node nor any par-

asitic caps between two different lines.

• Tri-state buffer The schematic considered is depicted in Figure 7.3b,

where P0 is the enable bit. This schematics has advantages in terms of

speed and power consumption when driving a heavy capacitive line with

respect to a t-gate structure.

7.2 Programmable Logic

In this section a Look-up Table (LUT) based programmable logic is proposed,

following the implementation adopted in all Xilinx Spartan FPGA family, with

only small variants from one release to another [104]. The basic computational

unit is called slice and consists of a four inputs LUT and a Flip-Flop; it is re-

ported in Figure 7.4a where both a static output (coming directly from LUT)

and a dynamic output are provided.

100 CHAPTER 7

4-inputs
LUT

A
B
C
D

FFCk

sOUT

dOUT

Ck

A-C

D

sOUT

dOUT

τd

PRECHARGE EVALUATION

(a) (b)

Figure 7.4: (a) Basic slice architecture; and (b) overview of temporization of the signals inside the slice.

A n-inputs LUT is simply a programmable device in which an output is as-

sociated to all of the 2n possible input vectors. It can be considered simply as a

2n bits memory, in which the logic function to implement has been stored. The

static output is provided to connect more than one LUT in a chain, thus imple-

menting logic functions with more than four variables; this however makes the

design more complex. In fact in every dynamic logic, it is possible to take ad-

vantages of dynamic behavior interleaving circuit working at opposite phase

of the clock. For example, it is possible to directly connect a p-type gate to a

n-type gate, working with the same clock: due to their complementary when

one gate is in the precharge phase, the other is in the evaluating phase. Or

one could connect two n-type gates, running at the two opposite phases of the

clock; this time, however, the interposition of a small inverter between the out-

put of the first gate and the input of the second is required. In both solutions,

every two gates a unity delay is present.

So, one can think to make the LUT and the FF working on the two different

phases of the clock since they are connected in an interleaved way; however

this architecture will prevent any LUT chain connection because all LUTs of

the circuit work on the same clock phase.

An example of a temporization for this basic slice can be seen in Figure 7.4b.

When clock is low, both FF and LUT are in precharge state. When clock rises,

the output of the FF changes; and after a while (depending on the intercon-

nection capacitance) all the inputs coming from the dynamic outputs of other

LUTs (A to C in figure) also change. If we assume that D comes from the static

output of a LUT, it may require much more time to asset. When all inputs are

changed, the output of the LUT is elaborated in a time τD . After that, a time

greater than the setup time of the flip-flop is necessary before the precharge

phase in order to let the FF memorize the data from the LUT.

Both LUT and Flip Flop are designed following the sense amplifier based

DESIGN OF SCA RESISTANT DIGITAL PROGRAMMABLE HARDWARE 101

Ck Ck
OUT OUT

IN1

IN2

INn

IN1

IN2

INn

Ck

DPDN

X Y

Z
M3

NM0

M1M2

PM4
PM2 PM1

PM3

Figure 7.5: Basic architecture of the sense-amplifier based logic.

Ck Ck
iQ iQ

Ck

DD

Ck Ck
Q Q

Ck

iQiQ RST SET

RSTSET

Figure 7.6: Implemented SABL Flip Flop schematic.

logic (SABL) suggested by K. Tiri [103] and based on the StrongArm 110 flip

flop [99]. The flip flop is a standard D-type, composed by two SABL inverters

working on the two different phases of the clock. The basic n-type SABL archi-

tecture is reported in Figure 7.5; it is essentially composed by a sense amplifier

(M1,M2,PM1,PM2), a differential pull-down network (DPDN), and by a cou-

ple of additional MOSes that provide to precharge the circuit (PM3,PM4) and

to enable the sense amplifier (M3). The purpose of the DPDN is to connect to

node Z either the node X or Y depending on the inputs. When the sense am-

plifier is activated by M3, either OUT or OUT goes low depending on which

node is discharged through the DPDN. The additional MOS MN0 serves to

discharge both X and Y node after the circuit has take its decision whichever

102 CHAPTER 7

X

A

P3

A

P2

A

P1

A

P0

A

P3

A

P2

A

P1

A

P0

B B B B

Y

Z

DPDN
X

P3 A P2 A P1 A P0 A

B

Z

A AB

B

A AB

X

A

P3 P2

B

Z

A

P1 P0

A A

B

(a) (b) (c)

Figure 7.7: (a) Basic implementation of the DPDN; (b) fully connected implementation of the DPDN (particular);
and (c) resistive discharged DPDN (particular).

branch was discharged by the DPDN, thus deleting any memory effect.

Since both FF and LUT are designed with n-type SABL logic, i.e. the dis-

charge network is composed by NMOS transistors, the interposistion of static

inverters between the output of the LUT and the input of the FF, as well as

between the output of a slice and the input of another slice, is necessary.

The SABL Flip Flop designed (Figure 7.6) is composed by two inverters

working at the two opposite phases of the clock, with a delay line on the in-

put of both inverters. The delay line is necessary for correct operation, since

the second inverter begins the evaluation phase exactly when the first inverter

starts the precharge phase and charges its outputs to high; however the inputs

of the second inverter must remain unchanged for a setup time in order to let

the inverter memorize the data. The delay line is asymmetric; it has been de-

signed to obtain a longer delay when the input is rising (it is being precharged)

and a shorter delay when input is falling (it has been evaluated). This to en-

sure that (a) the input signal is stable for enough time before it goes into the

precharge phase, thus correctly setting the output of following DDL stage; and

(b) once the previous DDL stage has made a decision, this decision is trans-

ferred as soon as possible to the current stage. In particular, this is useful when

considering the connection with the LUT, that has unknown temporization.

The output from the LUT has to be transferred in the shortest time possible to

the FF to not increase the setup time of the slice. In addition, a SET/RESET

circuit for the FF has been added to the delay line; it is of course a synchronous

SET/RESET due to the dynamic architecture used (i.e. it is not possible to force

an output when it is in a precharge state). With the proposed circuit the delay

for the rising/falling edge of the input signal are respectively, about 220ps and

45ps.

The proposed LUT design is a SABL circuit, whose DPDN is based on the

multiplexer circuit (MUX) of Figure 7.7. Actually, only a two bits (i.e. four

inputs) MUX is presented for simplicity, but the actual implementation is a

four bits (i.e. sixteen inputs) MUX. P0, P1, etc are the inputs, while A and B the

DESIGN OF SCA RESISTANT DIGITAL PROGRAMMABLE HARDWARE 103

Figure 7.8: Typical current profile a the proposed slice.

programming bits. In the basic circuit design (Figure 7.7a), if we suppose that

A and B are low, the active path is either the branch composed by the NMOS

driven by A, B and P0, or the path driven by A, B and P0. This means that, if

P0 is high, the node X is discharged, and OUT goes low; if P0 is high, the node

Y is discharged and so OUT .

However, this schematic is not fully connected, since many internal node

are not discharged and may let arise a memory effect. A fully connected pull

down network is necessary to discharge all internal nodes, so deleting all in-

formation about the internal state of the DPDN; this is reported in Figure 7.7b.

Another possibility is to statically connect every node to ground with a re-

sistor (this means, in CMOS technology, a resistive MOS always in ON state),

like in Figure 7.7c. Note that in the last example the MOS NM0 connected

between nodes X and Y is no more necessary, since both nodes are already

discharged through their own resistor.

The performances of the three proposed DPDNs have been analyzed with

simulations. Even if the first one is not fully connected, it has been considered

since it is the simplest one with the smallest parasitic. To test the DPDN, four

slices have been considered and connected each other (the output of every slice

is connected to all four slices) and the LUTs programmed to implement a four-

bits counter. A typical profile of the power supply current is reported in Figure

7.8.

The current profile presents two peaks: the first, higher, at the beginning

104 CHAPTER 7

DPDN 1st peak 2nd peak average

Not connected 5.0mA ± 2.9uA 2.8mA ± 10uA 540uA

Fully connected 4.7mA ± 2.3uA 3.1mA ± 22uA 560uA

Resistive 5.1mA ± 0.4uA 2.9mA ± 0.6uA 590uA

Table 7.2: Comparison between the performance of the proposed slice with the three DPDNs of Figure 7.7.

of the precharge phase; the second, lower, in the evaluation phase. The speed

of the clock has been set to 250 MHz (4 ns clock period). Data extracted from

a 80 ns transient simulation, including (average) peak value, the maximum

difference among peak values, and the average current, are reported in Table

7.2.

All solutions present some differences in the peak values, more relevant

on the second highest peak (i.e. in the evaluation phase) which is the peak

due to the buffers driving the input of the LUT. Other differences could be

sometimes found on other peaks, but they are not considered because all other

peaks would be hard to recognize in a real system. An explanation for for the

observed differences is given in the following.

• one can address the floating nodes problem and so the memory effect

for the peak differences in the first (not-connected) solution. However,

due to the simplicity of the design, the parasitic capacitances are quite

small, so the differences among peaks are very limited, measurable in few

point per hundreds on the average current value and (the most important

factor) few points per thousands on the peak value.

• even if the fully connected pull down network does not present floating

nodes, it has affected by the same problem known as clock feedthrough

in transfer gates. Whenever a MOS device is turned off, all the charge

present in the MOS channel has to be eliminated; since all transistor in

the pull down network are off in the precharge phase, that charge cannot

be removed and affect the power supply current in the same way as if one

neglects the problem of the floating nodes. In addition, the circuit aver-

age current is increased since a fully connect pull down network require

about the double of transistors than a not connected network.

• if it is possible to afford the increment ot the average current, one could

introduce a static discharge on every node of the pull down network.

This is an effective way to get rid of the clock feedtrough problem, since

now all charges can be dispersed through the resistive channel. However

DESIGN OF SCA RESISTANT DIGITAL PROGRAMMABLE HARDWARE 105

DPDN 1st peak 2nd peak average

Not connected 4.9mA ± 3.3 uA 4.1 mA ± 23uA 790uA

Table 7.3: Performance of the proposed slice when considering a more realistic system.

other second-order problems are still present, due to the (possible) asim-

metricity of the programming bits. It is possible to consider for example

the gate current: in a single slice the current of the eight (all four inputs

and their complementary) inverters that drive the LUT inputs, a differ-

ence up to 0.5uA depending on the input combination can be measured.

This variation is of the same order of magnitude as the overall variation.

7.3 A Realistic System

A more real system has been considered, including 4 slices, eight tri-state buff-

ers connected to each output of the slice (i.e. both the dynamic output and the

algebraic output), eight interconnection lines, and a four-inputs multiplexer to

every slice input. Even if not particularly complex, this system contains all the

macroblocks of a FPGA and thus can be considered representative for a real cir-

cuit. The interconnections have been programmed to connect all four outputs

to every slice input, as in the previous example. The four, unused, connection

lines have been connected to ground to avoid floating nets. The slices have

been programmed to implement a four bit counter. Only the simplest DPDN

for the LUT, i.e the not connected one, has been considered. Also, all parame-

ters have been set as above for a comparison. What we can observe is reported

in Table 7.3.

7.4 Open Problems

First of all, one can notice a problem that, in various ways, affects all dynamic

logic. From the description of timing, in the precharge phase the outputs of the

LUT is in the precharged state “11”. As the clock rises, the inputs are expected

to change; as soon as the inputs change the LUT can take a decision and modify

its output from “11” to “10” or “01”. However, if the change arrives too late, or

does not arrive at all, the invalid state “11” is transmitted to the FF. Actually,

the invalid state is not transmitted; just as the LUT also the flip flop does not

see a change at its input, and cannot take a decision; for sake of simplicity, this

process is addressed as the transmission of an invalid state to the following

106 CHAPTER 7

stage. At the next clock cycle, the invalid state “11” of the FF is transmitted

to all other LUTs to which it is connected, and so on; the invalid state will

eventually reach all devices in the FPGA. If this is not generally a problem in a

dynamic logic, this can be a real problem here since in a programmable logic it

is not possible to compute a priori the maximum propagation time of a signal.

To cope with this problem the only solution is to slow down the clock signal,

and to add a check that halt the system as soon as an invalid state propagation

is detected.

Another problem that can be addressed is the fact that actually, the model

used for the power supply is an infinite-bandwidth model, when in the real

world all power supply have a limited bandwidth. In other words, one has to

consider all the distributed parasitic – inductors, capacitors and resistors – on

the power supply network, that are however quite difficult to estimate.

Also, a programmable device needs, of course, to be programmed. In this

study, all programming bits are considered coming from a bi-stable circuit (i.e.

a static memory bit block) whose value was given by the simulation initial con-

dition. It is possible, though unlikely, that some information can be transmitted

to the programmable logic. This should be investigated.

Chapter 8

Final Conclusion

T
HE MAIN TOPIC of this dissertation is the presentation of a monolithic

chaos-based Random Number Generator and of its testing results. How-

ever, this is not the only original contribute of this dissertation. All the origi-

nal results presented are summarized here, divided into theoretical results and

practical results. They are sorted in order of relevance, of course according

only to author’s point of view.

Theoretical Results

Second Level NIST Statistical Tests

The methodology to check for the uniform distribution on different p-values

coming from different analyzed sequences in statistical tests for randomness,

here addressed as second level test, has been investigated in order to improve

the reliability of the test. This approach is not new, and suggested also by NIST

in the last part ot if special publication. This approach is proved to increase

the reliability of the test, since it is able to recognize the KISS generator as a

pseudo-random generator.

This approach however presents a strong sensitivity on approximation er-

ror introduced in the reference distribution used in statistical tests for comput-

ing the p-value. Here for the simplest test, a mathematical theory has been

elaborated for the explanation and the estimation of the maximum propagated

error. In particular, it has been found that this propagated error is dependent

on the number of bits n in the analyzed sequence; for a reliable second-level

test, this error should be smaller, ot at least, approximately equal to the ran-

dom variance that one cold expect looking at results coming from a number N

107

108 CHAPTER 8

of sequences. In this case, the propagated error can be confused with a random

probabilistic error, and does not affect the results of the test. Based on the anal-

ysis on few basic tests included in the NIST SP 800-22 publication, and with

n = 106, the suggested number N of sequences to be used in the second-level

test it is N ≤ 20, 000.

Noise Robustness of Chaotic Maps

The behavior of chaotic system perturbed by an external additive map inde-

pendent noise has been investigated. As a prerequisite to tolerate the noise, it

has to be noticed that the map has to be somehow extended in order to tolerate

this noise. Then, a mathematical model of the extended system perturbed by

the noise has been studied; a mathematical condition for noise robustness has

been found when limited on chaotic maps with piecewise constant invariant

density, so including all PWAM maps. This condition can be easily verified

assuming that the extended map is the restriction of a periodic function, thus

linking noise robustness with topological properties of the map; for simple

maps it has also been shown that periodicity is also a necessary condition.

The given condition cannot be applied to any chaotic map, since includes

constraints that sometimes are impossible to satisfy by any extension of the

basic map; the condition can be used to investigate if, given a chaotic map,

a noise robust extension exists, but also as a synthesis tool, to design a noise

robust map from given statistical properties.

Practical Results

Design of a Monolithic Chaos-based RNG in 0.35 µm Technol-

ogy

By exploiting the statistical approach to the study of non-linear dynamic cir-

cuits, more precisely of chaotic maps, it was recognized that the architecture

used for common pipeline ADCs can be reused for designing a robust chaotic

circuit appealing for the generation of random numbers. Following this ap-

proach a prototype of a RNG has been designed in 0.35 µm CMOS technology.

The prototype is capable of generating up to 40 millions random bit per second.

The prototype has been tested with the most advanced tests for randomness

available considering few very simple post processing stages, and results com-

pared with results of two high end commercial generators. The results of the

FINAL CONCLUSION 109

comparison indicate that the designed circuit can be considered a high qual-

ity RNG, outperforming by one order of magnitude the commercial generators

considered, suitable for the most advanced security-related applications.

Design of a Monolithic Spread Spectrum Clock Generator for

EMI Reduction

The design and measurements of a spread-spectrum clock generator imple-

menting a random binary frequency modulator are presented. This modula-

tion is known to present the maximum peak reduction in the power spectrum

of the generated clock (i.e. the maximum electromagnetic interference reduc-

tion) with respect to all other known methods.

The spreading of the clock is driven by a random number generator im-

plemented through a chaotic map. A first prototype of this circuit has been

designed in 0.35 µm CMOS technology working at a center frequency f0 = 100

MHz. Both simulations and measurements confirms that the behavior of the

circuit is the expected one, as there is a very good matching between the theo-

retical power spectrum, the simulated power spectrum, and the measured one.

The observed peak reduction in the power spectrum between the spread spec-

trum clock generated by the prototype and a classical clock can be measured

in about 18 dB.

A second prototype has been designed in 180 nm CMOS technology, aiming

to work at f0 = 3 GHz. Regrettably, even if the circuit performs the expected

modulation, and the matching between the measured power spectrum and the

theoretical one is good, the maximum working frequency of the prototype is

only about f0 = 2.5 GHz.

Simple and Effective Post-Processing Stage for the Designed

Chaos-based RNG

When taking into account the effects of implementation errors in the design of

any RNG, a suitable post-processing function for their compensation and for

assuring robust behavior has to be considered. So, a simple post-processing

architecture that ensures a certain quality of the sequences generated by the

ADC-based RNG has been investigated.

Yet, strictly speaking, this topic should not be considered practical since this

post-processing has not been included in the prototype design; however since

a theoretical analysis of the post-processing function has not been provided,

110 CHAPTER 8

the practical category has been considered more adequate than the theoretical

one.

The post-processing function is based on four shift-registers closed into a

feedback loop with the interposition of some XOR gates; it does not introduces

decimation, and it has been tested with the 0.35 µm RNG prototype running

at 40 Mbit/sec and overclocked at 48 Mbit/sec. In both case, a minimum com-

plexity of the post-processing required to pass a second level NIST statistical

test for randomness has been found.

Appendix A

Introduction to Discrete-time

Chaos Theory

T
HIS APPENDIX is intended to give a general overview of discrete-time

chaos theory. In particular the attention is focused on two main aspects;

the first one is under which aspects a chaotic circuit can be analyzed as a

Markov chain. The second is the robustness of a dicrete time chaotic process.

A.1 Chaotic maps

Systems referred to as chaotic maps are 1-D discrete-time autonomous chaotic

dynamical systems [46, 60, 72]. Consider the domain X and a nonlinear, non-

invertible function M : X → X . These system are dynamical since they have

memory of the past; the domain X of M is called the state space of the transfor-

mation.

Starting from an initial point x0∈X , the successive states at times 1, 2, 3, . . .,

are given by the trajectory x1, x2, x3, . . . , where

xk+1 = M (xk) (A.1)

for k = 0, 1, 2,

In these systems, like in any chaotic systems, the observation of chaotic tra-

jectories is difficult and brings very little information, because a slight change

in the initial state give rise to a substantially different evolution of the system.

Typically, few iterations are sufficient to make the new trajectory almost uncor-

related from the previous one so that any error in the knowledge of the state

results in the impossibility to predict the position in the state space.

111

112 APPENDIX A

To cope with this problem, it is usual to consider a different approach, i.e. a

probabilistic approach. However, before introducing the main operators used

in the classical analysis, it is necessary to remind some definitions.

Denote with Mk the k-th iterate of M , so that for any set Y ⊆ X,

Mk (Y) is the set
{

y ∈ X | y = Mk (x) ∧ x ∈ Y
}

and M−k (Y) is the set
{

x ∈ X | y = Mk (x) ∧ y ∈ Y
}

. Indicate with A a σ-algebra of subsets of X and

with µ a measure on A. The triple (X,A, µ) is called a measure space. More-

over, if µ (X) = 1, then (X,A, µ) will be named a probability space. With regard

to a measure space (X,A, µ), a map M : X → X is said to be

1. nonsingular, if µ
(

M−1 (Y)
)

= 0 for all sets Y ∈ A such that µ (Y) = 0;

2. measure-preserving, if µ
(

M−1 (Y)
)

= µ (Y) for any set Y ∈ A.

A measure-preserving transformation is necessarily nonsingular.

A.2 The Perron-Frobenius Operator

Assume that the initial state x0 is a random variable drawn according to a

(probability) density ρ0 : X → R+. If the map is iterated, a new random vari-

able x1 = M (x0) is obtained and a link exists between ρ0 and the (probability)

density ρ1 associated to it

ρ1 (x) =
d

dx

∫

M−1([0,x])

ρ0 (ξ) dξ

Indicate with L1 the space of all the Lebesgue integrable functions φ : X → C

and with ‖·‖1 =
∫

X
|·| the associated L1 norm, and consider a measure space

(X,A, µ), where µ is the Lebesgue measure.

DEFINITION 1. If M is a nonsingular map, the unique operator P : L1 → L1

defined by

[Pφ] (x) =
d

dx

∫

M−1([0,x])

φ (ξ) dξ =

∫

X

φ (ξ) δ (M (ξ) − x) dξ

is called the Perron-Frobenius Operator (PFO) corresponding to M .

The PFO P is a functional linear operator characterized by the following

properties [60, 61]:

P is positive, i.e. Pφ ≥ 0, if φ ≥ 0 (A.2)

P conserves ‖·‖1 , i.e

∫

X

|[Pφ] (x)| dx =

∫

X

|φ (x)| dx (A.3)

The PFO corresponding to Mk is Pk = Pk (A.4)

INTRODUCTION TO DISCRETE-TIME CHAOS THEORY 113

Properties (A.2) and (A.3) assure that the PFO maps density functions into

density functions so that the restriction of the PFO to the set D (X) of probabil-

ity densities defined on X can be considered. Property (A.4) assures that the

PFO associated with the k-th iterate of the map is the k-th successive applica-

tion of the PFO associated to M . If the initial condition x0 of the map is drawn

according to ρ0, its state after k iterations is regulated by the density

ρk = Pρk−1 = Pkρ0

For all the maps considered here, and for k large enough, the density ρk =

Pkρ0 converges to a final density ρ independently of ρ0. Such a final density

must be a fixed point of the PFO associated to it, i.e. Pρ = ρ. This is usually

expressed by saying that ρ is the invariant density of the map. Moreover, Pρ = ρ

if and only if the measure dµ = ρdx is invariant under M [60, 61] and µ is

referred as the invariant measure of the map.

A.3 Ergodic, Mixing and Exact Maps

The existence of a unique invariant density ρ is linked to particular properties

of M .

DEFINITION 2. Consider a measure space (X,A, µ). A nonsingular map M :

X → X is said to be ergodic if every invariant set Y ∈ A is a trivial subset of X ,

i.e., if either µ (Y) = 0 or µ (X\Y) = 0.

A set Y is an invariant set if M (Y) = Y . The above definition states that

in an ergodic map, no invariant sets other than X can exist; X is also called

principal invariant set. The following theorem links ergodicity with the existence

of ρ.

THEOREM 1. Let (X,A, µ) be a measure space, M a nonsingular transformation, and

P the PFO associated to M . If M is ergodic, then there is at most one invariant density

ρ for P. Furthermore, if there is a unique invariant density ρ of P and if ρ (x) > 0

almost everywhere, then M is ergodic.

DEFINITION 3. A map M : X → X is called piecewise C2 if it exists a sequence

of points 0 = y0 < y1 < . . . < yn = 1 in X such that for any j = 1, . . . , n the

restriction of M to the open interval]yj−1, yj [is a C2 function which can be

extended to the corresponding closed interval [yj−1, yj] remaining of class C2.

M does not need be continuous at the points yj .

114 APPENDIX A

DEFINITION 4. Consider a probability space (X,A, µ) and a measure preserv-

ing transformation M . M is called mixing if for any Y1, Y2 ∈ A one has that

limn→∞ µ(Y1 ∩ M−n(Y2)) = µ(Y1)µ(Y2).

For a mixing map µ (Y1 ∩ M−n (Y2)) /µ (Y2) → µ (Y1) as n → ∞. The first

term is the probability (according to µ) that a typical system trajectory arrives

in Y1 after n time steps, given that it starts in Y2 while the second term simply

represents the probability that a typical trajectory is in Y1. It follows that for

large n the two events {x ∈ Y2} and {Mn (x) ∈ Y1} become statistically inde-

pendent.

A mixing map is also ergodic but has a much more complicated behavior;

in fact it is common to indicate as chaotic only those maps which are at least

mixing. Additionally, for a mixing map, it can be proven that

∥

∥

∥Pkρ0 − ρ
∥

∥

∥

BV
≤ H ‖ρ0‖BV rk

mix

for a suitable constant H > 0 [51] and a suitable defined bounded variation

norm ‖ · ‖BV [60] so that if the initial condition of a mixing map is randomly

chosen according to a bounded variation density ρ0, then the state xk dis-

tributes according to a density Pkρ0 which converges to the invariant one at

an exponential rate rmix (called rate of mixing) in the bounded variation norm.

Finally, some noninvertible transformations may possess a stronger form of

mixing, which is called exactness [60].

DEFINITION 5. Consider a probability space (X,A, µ) and a measure preserv-

ing transformation M : X → X . M is called exact if limn→∞ µ (Mn (Y)) = 1

for any Y ∈ A with µ (Y) > 0.

It can be proven that exact maps are also mixing; the chaotic maps that

found practical applications usually are exact maps.

A.4 Markov Chains and PWAM Maps

In mathematics, a Markov chain, named after the russian mathematician An-

dreyevich Markov, is a discrete-time stochastic process with the Markov prop-

erty, that is, briefly speaking, the property of a process to keep memory only of

the last realization (i.e. memory-1 property).

For the scope of this chapter, it is enough to consider a finite Markov chain,

that is a finite-state machine, where transition from one state to another, as well

as the possibility to rest in the same state, is regulated by a stochastic process.

INTRODUCTION TO DISCRETE-TIME CHAOS THEORY 115

x0 x1

1/2

1/2

1/21/2

Figure A.1: Example of Markov chain.

The Markov property ensure that the conditional probability distribution of

a state in the future can be deduced using only the current state; no additional

information is given by the knowledge of the past evolution. In other words,

the past states carry no information about future states.

A Markov chain is usually depicted as in Figure A.1, where two states x0

and x1 are present, and all the possible transitions between the states are indi-

cated with an arrow, and by the probability associated to this transition. This

is the Markov chain that describes the fair coin toss, where, for example, being

in the state x0 correspond to the outcome “head” of the toss, while the state

x1 is associated to the outcome “tail”. Every time we toss the coin, i.e. every

time the finite-state machine may change the state, the probability to stay in

the same state, i.e. to get the same outcome of the previous coin toss, or the

probability to change state, i.e. to have an outcome different from the previous

one, are both equal to p = 1/2.

Note that every Markov chain can be expressed as a stochastic matrix which

is a square matrix each of whose rows consists of nonnegative real numbers

and sums to 1. Each state of the Markov chain is associated to a row of the

matrix; each element of the row is the conditioned probability to be in the state

associated to the row, and have a transition towards one of all the possible

states. The stochastic matrix associated to the Markov chain of the example is

P =

(

1
2

1
2

1
2

1
2

)

The goal of this section is to introduce a particular class of chaotic maps

whose behavior can be described as a Markov chain.

DEFINITION 6. A map M : X → X is said to be a Piece-Wise Affine Markov

(PWAM) map with respect to a given partition Xn = {X1, X2, . . . , Xn} if the

intervals Xj are such that M is affine on each Xj and that for any couple of

indices j and k, either Xk ⊆ M (Xj) or Xk ∩ M (Xj) = ∅.

Under the assumption of an exact PWAM map, if one limits himself to ini-

tial probability densities ρ0 which are stepwise in X , all subsequent probability

116 APPENDIX A

ρk densities are then compelled to be stepwise on the interval partition. Note

that this analysis is not restrictive, since also ρ is compelled to be stepwise, and

for ergodic maps the existence of a unique invariant density has been proved.

Consider a partition Xn and indicate as Σn the n-dimensional subspace of

L1 generated by χXj
. Any function ϕ step-wise in X is belonging to Σn, and

can be expressed as a n-dimensional vector ϕ = (ϕ1, . . . , ϕn) with respect to

the basis
{

χXj
, Xj ∈ Xn

}

. Then, define the x × n matrix K as

Kj1,j2 =
µ
(

Xj2 ∩ M−1(Xj1)
)

µ (Xj2)

This is often referred to as the kneading matrix since its entry in the j1-th row

and j2-th column records the fraction of Xj2 that is mapped into Xj1 . It follows

that K is a stochastic matrix that can be used to express the evolution of density

step-wise in Xn starting from an arbitrary ϕ0:

ϕk+1 = Kϕk

In other words, K can be interpreted as the restriction of P into the finite-

dimensional subspace Σn. The invariant density ϕ can be simply computed as

ϕ = Kϕ, i.e. it is given by the right eigenvector e = (e1, . . . , en) of K with unit

eigenvalue.

Note that, supposing that the state xk at the time step k is in Xj , and ne-

glecting the exact knowledge of xk, the j-th row of K, by definition, represents

the probability that the following state xk+1 belongs to any intervals of Xn.

This means that the evolution of the map, when considering only the interval

of X)n where the state is, i.e. the evolution of the system in Σn, can be modeled

by the Markov chain associated to the stochastic matrix K. Note also that this

is not an approximation of the evolution of the map, but comes from the exact

analysis of the restriction of the evolution of the system in Σn.

Finally, the method to determine the exactness of PWAM maps relies on the

following theorem [76]

THEOREM 2. If M is a PWAM map and its kneading matrix is primitive, i.e., an

integer l exists such that K
l

has no null entries, then M is exact.

A.5 Robustness of a chaotic map

Robustness is the property of a chaotic circuit to maintain its statistical fea-

tures in presence of small perturbations. Regrettably, even very little errors,

INTRODUCTION TO DISCRETE-TIME CHAOS THEORY 117

unavoidable in any analog circuit implementation, as well as noise perturba-

tions during operation, may not only prevent the statistics of the signals gen-

erated by the map to align the desired ones, but even prevent the map from

achieving a chaotic behavior [37, 40, 45]. It is important to stress that every

implementation of a chaotic circuit must be an analog implementation. As a

consequence, the existence of maps with good statistical robustness properties

is of great practical concern.

In this paragraph two main issues about chaotic map robustness are con-

sidered. The first one is known as escape from principal invariant set.

Consider the normalized domain X = [−1, 1] and the a Bernoulli map

M (x) =

{

2x + 1 x < 0

2x − 1 x ≥ 0
(A.5)

Note that the Bernoulli map is the simplest possible PWAM map, since it is

build on a partition Xn composed only by two intervals, and it has a constant

slope.

Given the partition X = {[−1, 0[, [0, 1]} of X , the associated kneading ma-

trix is

K =

(

1
2

1
2

1
2

1
2

)

with eigenvector e = (1/2, 1/2), so the invariant density ρ of M is uniform in

X . Note that the Bernoulli map has the same stochastic matrix as the fair coin

toss.

A real implemented system working only on a closed interval such as it is

X is not feasible. Many reasons could drive the input data out of their nominal

definition sets, for example an external perturbation or just a wrong initializa-

tion; a real system accepts and elaborates these data, even if in this case the

system response is uncontrolled. A practical implementation of a real system

should consider also the response of the system for these unexpected data.

Suppose to extend the Bernoulli the map to the whole R in the simplest

possible way, i.e. (A.5) stands not only in X but in all R. Then suppose that the

state of the system, at time state k, is xk = −1 − ε, ε > 0. Such a state is not in

X and it is normally not reachable; however, this may happen due to a noise

perturbation, or even for a small error in the implementation of the map.

The evolution of the map, at the time steps k + 1, k + 2, k + 3, . . . is

−1 − 2ε,−1− 4ε,−1 − 8ε, . . .

i.e. the orbit has “escaped” from the principal invariant set X and is heading

to −∞ at exponential rate.

118 APPENDIX A

x1-1 -0.5 0.5

-1

-0.5

0.5

1

Parasitic stable
equilibrium points

Figure A.2: Since saturation is unavoidable in any circuital implementation of a chaotic map, parasitic stable
equilibrium points can exist.

A typical situation of a true implemented map is presented in Figure A.2. In

that implementation, the map has been linearly extended out of X until satura-

tion occurs. In this case the saturation creates two parasitic stable equilibrium

points, which work as attractor every time the state escape from X .

To cope with this, a classical solution [40] is to add to the map suitably

defined “hooks” i.e. to define the map even out from its definition set to reinject

all the escaped states into X . In other words, it is necessary to create a basin

of attraction B much greater than X . The basin of attraction is defined as the

set of points that, after one or more iterations, are reinjected into X , i.e. for a

sufficient large k it is Mk (B) = X . Mathematically

B =
{

x | ∃ k ∈ N : Mk (x) ∈ X
}

Another common problem is the loss of ergodicity, i.e. when due to imple-

mentation errors an invariant set Y ⊂ X with µ (Y) 6= 0 or µ (X\Y) 6= 0 exists.

In this case Y is called trap, due to the fact that if the state reaches a point of Y ,

is trapped in Y forever. A trap is common to arise whenever a breakpoint of

the map is close to a fixed point of M .

A.6 Noise Robustness in PWAM Maps

Let now assume that the disturbances present in a practical implementation

of a chaotic map M : X → X with X = [X−, X+] ⊂ R can be modeled as a

INTRODUCTION TO DISCRETE-TIME CHAOS THEORY 119

discrete-time, time-independent and map-indipendent stochastic process with

samples νk ∈ N = [N−, N+] ⊂ R, with, for sake of simplicity, N− < 0 and

N+ > 0, which are drawn according to the probability density function ρν .

Due the presence of such a superimposed noise, the map domain must be

extended to Y = [X− + N−, X+ + N+], so that the model of the evolution of

the system, as described in (A.1), changes into

xk+1 = ME (xk + νk) , ME : Y → X (A.6)

where the extended map ME is such that ME (x) = M (x) for all x ∈ X . This

assures that the unperturbed case (i.e. νk = 0 ∀k) is consistent with the ideal

evolution model.

REMARK 1. In (A.6) the codomain of ME has been set in X ; this is of course suf-

ficient, but not strictly necessary, to ensure that, eventually, any escaped state

is reinjected into X . However, for sake of simplicity, ME has been considered

as a function Y → X .

REMARK 2. Instead of (A.6), one could have considered an additive map-

independent noise as

xk+1 = ME (xk) + νk , ME : Y → X

It is easy to see that the two models are absolutely equivalent.

It is possible to introduce the companion dynamical system representing

the statistical evolution of (A.6). If we indicate with PE the PFO associated to

ME

[PEφ] (x) =

∫

Y

φ (ξ) δ (ME (ξ) − x) dξ (A.7)

it is easy to prove that P is the restriction of PE to densities whose support is X .

Considering that the probability density function of the sum of two indepen-

dent random variables is the convolution of their probability density functions,

the companion system model of (A.6) is simply expressed as

ρk+1 = PE (ρk ∗ ρν)

where ∗ is the usual convolution operator.

However, due to the presence of the superimposed noise, a regular behav-

ior of the system is not assured. In order to study system (A.6) through its

companion dynamical system it is necessary to require that, like in the ideal

case, for any choice of ρ0 and for the considered ρν , density ρk is convergent to

a new density ρ̃, which is the the unique density function that solves

ρ̃ = PE (ρ̃ ∗ ρν) (A.8)

120 APPENDIX A

This assumption is necessary to study the noise perturbed system through its

companion dynamical system and will be implicitly supposed in the following.

Generally, ρ̃ is different from the invariant density ρ of the unperturbed system,

depending on both ME and ρν . Obviously ρ̃ is equal to ρ in the unperturbed

case, i.e. for ρν = δ (0).

DEFINITION 7. Let M : X → X be a chaotic map, and ME : Y → X its

extension in Y . The extended map ME is noise robust if ρ̃ defined by (A.8) is

equal to the unperturbed map invariant density ρ, for any choice of ρν .

Hence, it is possible to prove the robustness of an extended chaotic map

ME by simply verifying that

ρ = PE (ρ ∗ ρν) , ∀ρν (A.9)

LEMMA 1. Let M : X → X be a chaotic map, and ME : Y → X its exten-

sion in Y . Let also ρ be the unperturbed system invariant density and ∆ρε (x) =

ρ (x)− ρ (x − ε) the difference between shifted and non-shifted invariant density. The

extended map ME is noise robust if and only if PE∆ρε = 0 ∀ε ∈ N .

Proof. For the necessary condition, it is enough to consider the linearity of PE

and a constant noise perturbation, i.e. a delta-like noise density ρν .

For the sufficiency, it is useful to introduce the shifted invariant density

ρε
T = ρ (x − ε) so, from the linearity of PFO

PEρ = PEρ ε
T , ∀ε ∈ N

i.e. PEρ ε
T = ρ ∀ε, and then (A.9) can be verified, namely

PE [ρ ∗ ρν] (x) = PE

[∫

N

ρν (ξ) ρ (x − ξ) dξ

]

=

∫

N

ρν (ξ)PEρ ξ
T (x) dξ =

∫

N

ρν (ξ) dξ ρ (x) = ρ (x)

Using the integral definition of PE in (A.7) the condition from Lemma 1 can

be rewritten as
∫

Y

∆ρ ε (ξ) δ (ME (ξ) − x) dξ = 0 , ∀x ∈ X, ∀ε ∈ N (A.10)

Although of general applicability, condition (A.10) is again relatively dif-

ficult to use in practice, since it does not show an explicit dependence on

the structure of the map. A simpler robustness condition can be obtained re-

stricting the attention over maps with piecewise constant ρ, thus including all

PWAM maps.

INTRODUCTION TO DISCRETE-TIME CHAOS THEORY 121

THEOREM 3. Let M : X → X be a chaotic map with a piecewise constant invariant

density that can be expressed as

ρ (x) =

m
∑

k=1

βkχ[X−

k
, X+

k](x) (A.11)

where, for k = 1, . . . , m,
[

X−
k, X+

k

]

is an arbitrary partition of X and βk are suitable

coefficients. The extended map ME is noise robust if and only if

m+1
∑

k=1

(βk − βk−1) δ
(

ME

(

X−
k + ε

)

− x
)

= 0 , ∀x ∈ X, ∀ε ∈ N (A.12)

where, for convenience, β0 = βm+1 = 0 and X−
m+1 = X+

m.

Proof. From (A.11)

∆ρ ε (x) =

m+1
∑

k=1

(βk− βk−1) χ[X−

k
, X−

k
+ε](x)

where ε>0 has been assumed (the case ε<0 can be treated similarly). Hence,

(A.10) can be rewritten as

∫

Y

m+1
∑

k=1

(βk− βk−1)χ[X−

k
, X−

k
+ε](ξ) δ (ME (ξ) − x) dξ =

m+1
∑

k=1

(βk− βk−1)

∫

[X−

k
, X−

k
+ε]

δ (ME (ξ) − x) dξ = 0

(A.13)

Conditions (A.12) and (A.13) are equivalent.

If (A.12) is true, then (A.13) is certainly verified. Also, supposing (A.13) is

verified and deriving both its terms

d

dε

m+1
∑

k=1

(βk− βk−1)

∫

[X−

k
, X−

k
+ε]

δ (ME (ξ) − x) dξ =

m+1
∑

k=1

(βk− βk−1) δ
(

ME

(

X−
k + ε

)

− x
)

= 0

the condition (A.12) is verified.

Even if a discussion on the general case is possible (see [1] for it), it is inter-

esting to consider the simplest possible case, i.e. a map with ρ uniform in X . In

this case ρ(x) = βχ[X−, X+](x) and, since β 6= 0, condition (A.12) can be recast

as

122 APPENDIX A

δ
(

ME

(

X−+ ε
)

− x
)

− δ
(

ME

(

X++ ε
)

− x
)

= 0, ∀ x ∈ X, ∀ε ∈ N

and, due to Dirac generalized function properties can be easily verified that

the condition is equivalent to say

ME

(

X−+ ε
)

= ME

(

X++ ε
)

, ∀ε ∈ N

This means that a map ME is noise robust in N if and only if ME is the restric-

tion in Y of a periodic function, with period Π = X+ − X− = µ (X).

As an example, the only robust extension of the Bernoulli map (A.5) is

M (x) =

2x + 3 x < −1

2x + 1 −1 ≤ x < 0

2x − 1 0 ≤ x < 1

2x − 3 x ≥ 1

with N = [−1, 1] and Y = [−2, 2].

Note that the complexity of the extended map is increased, since now two

additional branches are necessary.

Appendix B

Hardware and Algorithms

used in this dissertation

I
N THIS APPENDIX a brief overview of others physical based random number

generators and pseudorandom generators used in this dissertation, as well

as the hardware used for the data acquisition of the two implemented proto-

types, is provided.

B.1 BBS Pseudorandom Generator

The Blum-Blum-Shub (BBS) is a pseudorandom number generator proposed in

1986 by Lenore Blum, Manuel Blum and Michael Shub [35].

It takes the form:

xn+1 = (xn)
2

modM

where M = pq is the product of two large primes p and q. At each step of the

algorithm, some output is derived from xn; the output is commonly either the

bit parity of xn or one or more of the least significant bits of xn.

The two primes, p and q, should both be congruent to 3 modulo 4 (remem-

ber that two integers a and b are called congruent modulo n if a− b is divisible

by n, or, equivalently, if they give the same remainder when divided by n);

this guarantees that each quadratic residue has one square root which is also

a quadratic residue. Also, the greatest common divisor between the totient

function of p − 1 and q − 1 (the totient function of n is the number of positive

integers less than n which are relatively prime to n) should be small; this makes

the cycle period large.

123

124 APPENDIX B

The generator is appropriate for use in cryptography, because it is possi-

ble to prove its security. The security proof relates the quality of the generator

to the computational difficulty of integer factorization. When the primes are

chosen appropriately, and O (log2 log2 M) lower-order bits of each xn are con-

sidered as system output, then in the limit as M grows large, distinguishing the

output bits from random will be at least as difficult as factoring M . Thus the

primes p and q need to be large enough such that it computationally infeasible

to factor N . As of today, this means that p and q should be at least 512 bits.

This, however, makes the generator very slow, since every operation requires

a high precision arithmetic module.

The code used is the following, which uses the GNU multiprecision library

for achieving operations with an arbitrary precision.

/ *** ************************* /
/ * Algoritmo de Blum-Blum-Shub para generación de números p seudoaleatorios. * /
/ * * /
/ * Jaime Suarez <mcripto@bigfoot.com> 2003 * /
/ * en http://www.matematicas.net * /
/ *** ************************* /

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gmp.h"

/ * Este es el tamaño aproximado del módulo n * /
#define BITS_MODULO 1024

/ * Inicializa el generador de números aleatorios, s es una cad ena con un

* número en base 10 que sirve de semilla. Es importante que sea lo más

* aleatorio posible y de un tamaño similar al de n * /
void iniciarBBS(char * s);

/ * Devuelve un bit aleatorio de un generador ya inicializado * /
int bitBBS(void);

/ * Devuelve un byte aleatorio de un generador BBS ya inicializa do * /
int byteBBS(void);

/ *
* Comienzo del programa

* /

int main(int argc, char * argv[])
{

int i, nBytes;
unsigned char s[256];
FILE * fo;

if (argc!=3) {
printf("--- -----------\n");
printf(" Generador de números pseudoaleatorios Blum-Blu m-Shub.\n\n");
printf(" Uso: %s <n> <s>\n",argv[0]);
printf(" n: numero de bytes deseados.\n");
printf(" s: semilla, cadena de caracteres arbitrarios.\n");

HARDWARE AND ALGORITHMS USED IN THIS DISSERTATION 125

printf("--- -----------\n");
return 1;

}

/ * Leer l´ınea de comandos * /
nBytes=atoi(argv[1]);
strncpy(s,argv[2],256);
/ * Convertir la cadena s en un entero * /
for (i=0; i<strlen(s); i++) s[i]=(s[i]%10)+’0’;

/ * Inicializa generador y produce los bytes pedidos

* guardándolos en bbs.out * /
iniciarBBS(s);
fo = fopen("bbs.out", "wb");
for (i=0; i<nBytes; i++) {

fprintf(fo, "%c", byteBBS());
}
fclose(fo);
puts("Resultados en el fichero: bbs.out");
return 0;

}

mpz_t x; / * Último valor aleatorio * /
mpz_t n; / * Módulo para BBS * /

/ *
* Inicia el generador de numeros aleatorios a partir de la cade na s

* que contiene un entero en base 10 que sirve como semilla.

* /
void iniciarBBS(char * s)
{

mpz_t p, q, tmp;
gmp_randstate_t estado;

/ * Inicializar rng de la librer´ıa gmp3 * /
gmp_randinit_default(estado);
mpz_set_str(tmp, s, 10);
gmp_randseed(estado, tmp);

/ * Inicializar enteros largos * /
mpz_init(x); mpz_init(n); mpz_init(p); mpz_init(q);

/ * Tenemos que generar n como producto

* de dos grandes primos congruentes con 3 modulo 4 * /
do {

mpz_urandomb(p, estado, BITS_MODULO/2);
mpz_mul_ui(p,p,4);
mpz_add_ui(p,p,3);

} while (mpz_probab_prime_p(p,25)==0);

do {
mpz_urandomb(q, estado, BITS_MODULO/2);
mpz_mul_ui(q,q,4);
mpz_add_ui(q,q,3);

} while (mpz_probab_prime_p(q,25)==0);
mpz_mul(n,p,q);

/ * Ahora se produce la primera x = sˆ2 (mod n) * /
mpz_set_str(x,s,10);
mpz_mod(x,x,n);
mpz_mul(x,x,x);

126 APPENDIX B

mpz_mod(x,x,n);

/ * Limpiamos variables innecesarias en lo sucesivo * /
mpz_clear(p); mpz_clear(q);
return;

}

/ * * /
/ * Genera un bit pseudoaleatorio a partir de la variable global x * /
/ * previamente existente. Es necesario llamar a iniciarBBS an tes de * /
/ * utilizarlo. * /

int bitBBS(void)
{

mpz_mul(x,x,x);
mpz_mod(x,x,n); / * x = xˆ2 mod n * /

return mpz_tstbit(x, 0); / * devolver el bit menos significativo * /
}

/ *
* Devuelve un byte pseudoaleatorio. Debe llamarse una vez a in iciarBBS

* antes de comenzar a pedir bytes.

* /
int byteBBS(void)
{

int byte=0, i;

for (i=0; i<8; i++)
byte = byte * 2 + bitBBS();

return byte;
}

B.2 KISS Pseudorandom Generator

The KISS principle is a colloquial name for the empirical principle that simplic-

ity is an essential asset and goal in any systems. It is popular in software and

engineering in general. The term KISS is an acronym, corresponding in origin

to the phrase “keep it simple, stupid”.

This generator was proposed by George Marsaglia as the combination of

some easy pseudorandom generators, in order to get a much more complex be-

havior with respect to the original generators, while at the same time to main-

tain a very simple architecture. Many variants of this generator exist; the cose

used here is the C/C++ code written by Marsaglia as a porting of the 16 bits

Fortran code to 32 bits processors.

HARDWARE AND ALGORITHMS USED IN THIS DISSERTATION 127

unsigned long KISS() {
static unsigned long x=123456789,

y=362436, z=521288629, c=7654321;
unsigned long long t, a=698769069LL;
x=69069 * x+12345;
yˆ=(y<<13); yˆ=(y>>17); yˆ=(y<<5);
t=a * z+c; c=(t>>32);
return x+y+(z=t); }

The generator is the combination of three simple generators:

• a congruential generator (represented by the variable x in the code)

• a 3-shift generator (the variable y)

• a multiply-with-carry generator the variable z

and the achieved period is about 2124 bits.

B.3 VIA PadLock Random Generator

All new VIA Technologies, Inc. processors (C3, C5P and the new C7) include

VIA PadLock Security Engine, that is a block of hardware primitives designed

to implement many security-related features. The VIA Padlock is composed

by the VIA PadLock ACE (Advanced Cryptography Engine) and the VIA Pad-

Lock RNG [42]. The RNG is based on the jitter of two (the first one very fast,

the second slow) free running oscillators; the slow oscillator is used to sample

the fast one. Since the two oscillators cannot reach a synchronization, the sam-

pled values depend on the jitter of the slow one, thus generating random bits.

These random bits are post-processed with a von Neumann algorithm.

A short extract from VIA website is here reported.

To address this need for good random numbers in security applications, VIA

introduced the Nehemiah processor core in January 2003 that included the

VIA Padlock RNG, integrating a high-performance hardware-based random

number generator onto the processor die. The VIA PadLock RNG uses

random electrical noise on the processor chip to generate highly random

values at an extremely fast rate. It provides these numbers directly to secu-

rity applications via a unique x86 instruction that has built-in multi-tasking

support.

Capable of creating random numbers at rates of between 800K to 1600K

bits per second, the VIA PadLock RNG addresses the needs of security

applications requiring high bit rates that algorithmically increases the qual-

ity (randomness) of the entropy produced, for example by applying hashing

algorithms to the output.

128 APPENDIX B

The VIA PadLock RNG uses a system of Asynchronous Multi-byte Genera-

tion, where the hardware generates random bits at its own pace. These ac-

cumulate into hardware buffers with no impact on program execution. Soft-

ware may then read the accumulated bits at any time. This asynchronous

approach allows the hardware to generate large amounts of random num-

bers completely overlapped with program execution. This is opposed to

good software generators, which can be fast but consume a significant

number of CPU cycles and have a negative affect on affecting overall sys-

tem performance.

The processor used for testing was a VIA C3 1 GHz in an EPIA MX-II 10000

board. The generator speed was measured in about 1 Mbit/s.

B.4 Quantis Random Generator

The Quantis random generator by idQuantique SA, Geneva (CH), is a a ran-

dom number generator based on the reflection of a single photon on a semi-

transparent mirror [53]. Its characteristics can be found in the original idQuan-

tique flyer.

Quantis is a physical random number generator exploiting an elementary

quantum optics process. Photons - light particles - are sent one by one onto

a semi-transparent mirror and detected. The exclusive events (reflection -

transmission) are associated to ”0” - ”1” bit values. The operation of Quantis

is continuously monitored to ensure immediate detection of a failure and

disabling of the random bit stream.

Quantis is available as an OEM component for mounting on a printed circuit

board, as a PCI card, and now also as a USB module. It comes with drivers

for the main operating system platforms. Quantis is easily integrated in

existing applications.

Features

• True quantum randomness (passes all randomness tests)

• High bit rate of 4Mbits/sec (up to 16Mbits/sec for PCI card)

• Low-cost device, compact and reliable

• Continuous status check

• PCI card comes with drivers for Windows (2000/XP), Linux (2.4, 2.6),

FreeBSD (4, 5, 6) and Solaris (8, 9, 10 for SPARC, x86 and x64). A

console application and a library for developpers are supplied. More-

over a Windows-based graphical application is supplied that acquires

HARDWARE AND ALGORITHMS USED IN THIS DISSERTATION 129

random data in several formats and stores them in a file. A Labview

VI is also available.

• USB module comes with drivers for: Windows(2000/XP) and Linux

(2.4, 2.6). A console application and a library for developpers are

supplied. Moreover a Windows-based graphical application is sup-

plied that acquires random data in several formats and stores them in

a file. A Labview VI is also available.

The version used is the PCI card, with a single module installed, capable of a

speed of 4 Mbit/s.

B.5 Data Acquisition and Testing Procedure

To acquire data from the two designed prototypes, a specific hardware was

necessary. This is mainly due to two reasons: (a) data come with a very high

throughput, up to 100 Mbit/s for the 180 nm prototype; and (b) a very large

amount of data need to be memorized, since many DieHard tests require about

80 Mbit (after the decimation introduced by the post-processing) to be per-

formed.

These reasons pointed at the usage of a high-speed PCI acquisition card

for PC. The card used is a PCI-1755 card from Advantech Co., Ltd. A brief

description of its features ia available from Advantech website.

PCI-1755 Ultra-speed 32-ch Digital I/O Card Main Features:

• Bus-mastering DMA data transfer with scatter gather technology

• 32/16/8-bit Pattern I/O with start and stop trigger function, 2 modes

Handshaking I/O Interrupt hand

• On-board active terminators for high speed and long distance transfer

• Pattern match and Change state detection interrupt function

• General-purpose 8-ch DI/O

The PCI-1755 supports PCI-bus mastering DMA for high-speed data trans-

fer. By setting aside a block of memory in the PC, the PCI-1755 performs

bus-mastering data transfers without CPU intervention, setting the CPU

free to perform other more urgent tasks such as data analysis and graphic

manipulation. The function allows users to run all I/O functions simultane-

ously at full speed without losing data.

This card should allow a maximum burst transfer rate of 30 Mword/s, with

words up to 32 bits, and a continuous transfer speed of about 20 Mword/s.

130 APPENDIX B

Actually, a maximum continuous transfer speed of about 15 Mword/s was

detected. Of course this speed, equivalent to a transfer rate of nearly half a

Gbit/s, was sufficient for the purpose. However, due to the higher speed and

the lower parallelism of the output data from the random generators, a high-

speed serial to parallel converter was designed with standard high speed logic

circuitry and used for data acquisition.

Data acquired from the prototypes have been memorized into 1.5 Gbits (i.e.

192 Mbytes) files, each file corresponding to a single, non-interrupted run of

the generator. From each files, sequences of adequate length were extracted

and post-processed, and then tested. The code used for the test was exactly

line-by-line the code distributed by NIST (or by Marsaglia for the DieHard test

suite); only some additional code has been written to interface via stdin/stdout

the original NIST/Marsaglia code, thus providing a full automatization for the

extract/post-processing/testing procedure. The tests were performed on a 64

CPUs cluster, featuring Intel Xeon 2400 CPUs.

Publications

Journal Publications

[1] FABIO PARESCHI, Riccardo Rovatti, and Gianluca Setti, “Periodicity as

Condition to Noise Robustness for Chaotic Maps with Piecewise Con-

stant Invariant Density”, in International Journal on Bifurcation and Chaos,

to appear in vol. 16, no. 11, November 2006.

Internation Conference Publications

[2] FABIO PARESCHI, Riccardo Rovatti, and Gianluca Setti “Second Level

NIST Randomness Test for Improving Test Reliability”, to appear in

Proceedings of 2007 IEEE International Symposium on Circuits and Systems

(ISCAS2007). New Orleans (USA), May 27–30, 2007.

[3] FABIO PARESCHI, Gianluca Setti, and Riccardo Rovatti “A Fast Chaos-

based True Random Number Generator for Cryptographic Applica-

tions”, in Proceedings of 26th IEEE European Solid-State Circuit Conference

(ESSCIRC2006), pp. 130–133. Montreux (Switzerland) September 11–14,

2006.

[4] Luca Antonio De Michele, FABIO PARESCHI, Riccardo Rovatti, and Gi-

anluca Setti “3 GHz Spread Spectrum Clock Generator for Serial ATA-

II using Random Frequency Modulation”, in Proceedings of 2006 Interna-

tional Symposium on Nonlinear Theory and its Applications (NOLTA2006),

pp. 635–638. Bologna (Italy), September 11–14, 2006.

[5] FABIO PARESCHI, Riccardo Rovatti, and Gianluca Setti “Simple and Ef-

fective Post-Processing Stage for Random Stream Generated by a Chaos-

Based RNG”, in Proceedings of 2006 International Symposium on Nonlinear

Theory and its Applications (NOLTA2006), pp. 383–386. Bologna (Italy),

September 11–14, 2006.

131

132 PUBLICATIONS

[6] Michele Balestra, FABIO PARESCHI, Gianluca Setti, and Riccardo Rovatti

“Design of a Low EMI Hysteretic Current-Controlled DC/DC Boost Con-

verter Via Chaotic Perturbation”, in Proceedings of 2006 International Sym-

posium on Nonlinear Theory and its Applications (NOLTA2006), pp. 259–262.

Bologna (Italy), September 11–14, 2006.

[7] Luca Antonio De Michele, FABIO PARESCHI, Riccardo Rovatti, and Gian-

luca Setti, “Chaos-based High-EMC Spread-Spectrum Clock Generator”,

in Proceedings of 17th IEEE European Conference on Circuit Theory and De-

sign (ECCTD 2005), pp. 165–168. Cork (Ireland), August 29 – September

2, 2005. Winner of the best paper award.

[8] FABIO PARESCHI, Gianluca Setti, and Riccardo Rovatti, “A macro-model

for the efficient simulation of an ADC-based RNG”, in Proceedings of 2005

IEEE International Symposium on Circuits and Systems (ISCAS2005), pp.

4349–4353. Kobe (Japan), May 23–26, 2005.

[9] FABIO PARESCHI, Gianluca Setti, and Riccardo Rovatti, “Noise Robust-

ness condition for chaotic maps with Piecewise constant invariant den-

sity”, in Proceedings of 2004 IEEE International Symposium on Circuit and

Systems (ISCAS2004), vol. IV, pp. 681–684. Vancouver (Canada), May

23–26, 2004.

[10] FABIO PARESCHI, Luca Antonio De Michele, Riccardo Rovatti, and Gian-

luca Setti, “A PLL-based clock generator with improved EMC”, in Pro-

ceedings of 16th IEEE International Zurich Symposium on Electromagnetic

Compatibility (EMCZurich2005), pp. 367–372. Zurich (Swiss), February

13–18, 2005. Winner of the best student paper award.

[11] Luca Antonio De Michele, FABIO PARESCHI, Riccardo Rovatti, and Gian-

luca Setti, “A chaos-driven PLL based spread spectrum clock generator”,

in Proceedings of 2004 International Symposium on Nonlinear Theory and its

Applications (NOLTA2004), pp. 251–254. Fukuoka (Japan), November 29

– December 3, 2004.

Bibliography

References are organized in sections clustering them into homogeneous topics.

Within each section, references are sorted chronologically (for the historical

and general purpose references section) or alphabetically (for all other sections)

according to authors’ name.

Historical and General Purpose References

[12] R. Brown, “A brief account of microscopical observations made in the months of
June, July, and August, 1827 on the particles contained in the pollen of plants; and
on the general existence of active molecules in organic and inorganic bodies”, in
Philosophical Magazine, vol. 4, pp. 161–173, 1828.

[13] K. Pearson, “On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to hove arisen from random sampling”, in Philosophical Magazine, no.
50, pp. 157–172, 1900.

[14] A. Einstein, “Über einen die erzeugung und verwandlung des lichtes betreffenden
heuristischen gesichtspunkt” (On a heuristic point of view concerning the produc-
tion and transformation of Light), in Annalen der Physik, vol. 17, pp. 132–148, 1905.

[15] A. Einstein, “Über die von der molekularkinetischen theorie der wärme geforderte
bewegung von in ruhenden flüssigkeiten suspendierten teilchen” (On the move-
ment of small particles suspended in a stationary liquid demanded by the
molecular-kinetic theory of heat), in Annalen der Physik, vol. 17, pp. 549–560, 1905.

[16] A. Einstein, “Zur elektrodynamik bewegter körper” (On the electrodynamics of
moving bodies), in Annalen der Physik, vol. 17, pp. 891–921, 1905.

[17] A. Einstein, “Ist die trägheit eines körpers von seinem energieinhalt abhängig?”
(Does the inertia of a body depend upon its energy?), in Annalen der Physik, vol.
18, pp. 639–641, 1905.

[18] A. Einstein, “Zur theorie der Brownschen bewegung” (On the theory of Brownian
motion), in Annalen der Physik, vol. 19, pp. 371–381, 1906.

[19] J. Perrin, “Les Atoms” (The Atoms), Librairie Felix Alcan, Paris, 1913.

[20] S. M. Ulam and J. von Neumann, “On combination of stochastic and deterministic
process”, in Bulletin of American Mathematical Society, no. 53, pp 1120–1132, 1947.

133

134 BIBLIOGRAPHY

[21] C. E. Shannon, “A Mathematical Theory of Communication”, in The Bell system
technical journal, vol. 27, pp. 379–423, July 1948.

[22] F. J. Massey Jr., “The Kolmogorov-Smirnov test of goodness of fit”, in Journal of the
American Statistical Association, no. 46, pp. 68–78, 1951.

[23] J. von Neumann, “Various Technique Used in Connection with Random Digits”,
in Applied Math Series, notes by G. E. Forsythe, National Bureau of Standards, no.
12, pp. 36–38, 1951.

[24] RAND Corporation, “A Million Random Digits with 100,000 Normal Deviates”,
Free Press, New York, 1955.

[25] R. E. Kalman, ”Nonlinear aspects of sampled-data control systems”, in Proceedings
of Symposium of Nonlinear Circuit Analysis, vol. VI, pp. 273–313. New York (USA),
April 25–27, 1956.

[26] M. Klamkin, and D. Newman, “Extensions of the birthday surprise”, in Journal of
Combinatorial Theory no. 3, pp. 279–282, 1967.

[27] P. van Beeck, “An application of Fourier methods to the problem of sharpening
the Berry-Esseén inequality”, in Probability Theory and Related Fields, vol. 23, no. 3,
pp. 187–196, September 1972.

[28] D. Bloom, “A birthday problem” in American Mathematical Monthly no. 80, pp.
1141–1142, 1973.

[29] I. S. Shiganov, “Refinement of the upper bound of the constant in the central limit
theorem”, in Journal of Mathematical Sciences, vol. 35, no. 3, pp. 2545–2551, Novem-
ber 1986.

[30] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical
Recipes in C: The Art of Scientific Computing”, Cambridge University Press, 1992.
Available at http://www.nrbook.com/a/bookcpdf.php

[31] A. N. Shiryaev, and R. P. Boas “Probability” (Graduate Texts in Mathematics),
Springer-Verlag, 1995.

[32] D. E. Knuth, “The Art of Computer Programming”, Volume 2: Seminumerical Al-
gorithms (3rd edition), Addison-Wesley Professional, 1997.

Chaos and Random Number Related References

[33] A. M. Abo, P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-
Digital Converter”, in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599–606,
May 1999.

[34] G. M. Bernstein, and M. A. Lieberman, “Secure Random Number Generation us-
ing Chaotic Circuit”, in IEEE Transaction on Circuit and Systems I: Fundamental The-
ory and Applications, vol. 47, no. 9, pp. 1157–1164, September 2000.

[35] L. Blum, M. Blum, and M. Shub, “A Simple Unpredictable Pseudo-Random Num-
ber Generator”, in SIAM Journal on Computing, vol. 15, pp. 364–383, May 1986.

[36] M. Blum, ”Independent unbiased coin flips from a correlated biased source – A
finite Markov chain”, in Combinatoria, vol. 6, no.2, pp 97–108, 1986.

http://www.nrbook.com/a/bookcpdf.php

BIBLIOGRAPHY 135

[37] S. Callegari, and R. Rovatti, “Analog chaotic maps with sample-and-hold errors”,
in IEICE Transaction on Fundamentals of Electronics, Communications and Computer
Sciences, vol E82A, no. 9, pp. 1754-1761, September 1999.

[38] S. Callegari, R. Rovatti and G. Setti, “Efficient chaos-based secret key generation
method for secure communications” in Proceedings of 2002 International Symposium
on Nonlinear Theory and its Applications (NOLTA2002), Xi’an, China, October 7–11,
2002.

[39] S. Callegari, R. Rovatti, and G. Setti, “Embeddable ADC-Based True Random
Number Generator for Cryptographic Applications Exploiting Nonlinear Signal
Processing and Chaos”, in IEEE Transaction on Signal Processing, vol. 53, no. 2, pp.
793–805, February 2005.

[40] S. Callegari, G. Setti, and R. Rovatti, Robustness of Chaos in Analog Implementations,
Chapter 12 in M. P. Kennedy et al. “Chaotic Electronics in Telecommunications”,
pp. 397–442, CRC International, 2000.

[41] T. B. Cho, and P. R. Gray, “A 10 b, 20 Msample/s, 35mW Pipeline A/D Converter”,
in IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp. 166–172, March 1995.

[42] Cryptography Research, “Evaluation of VIA C3 Nehemiah Random Number
Generator”, white paper prepared by Cryptography Research, Inc., San Farn-
cisco (USA). February 27, 2003. Available at http://www.cryptography.com/
resources/whitepapers/VIA_rng.pdf

[43] J. Daemen, and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption
Standard Springer-Verlag, 2002.

[44] M. Delgado-Restituto, F. Medeiro, and A. Rodrı́guez-Vázquez, “Nonlinear
Switched-Current CMOS IC for Random Signal Generation”, in Electronics Letters,
vol. 29, pp. 2190–2191, December 1993.

[45] M. Delgado-Restituto, and A. Rodrı́guez-Vázquez, “Integrated chaos generator”,
in Proceedings of the IEEE, special issue on “Applications of Nonlinear Dynamics
to Electronic and Information Engineering”, vol. 90, no. 5, pp. 747-767, May 2002.

[46] R. Devaney, An introduction to Chaotic Dynamical System, Addison-Wesley, (Second
Edition) 1989.

[47] D. E. Eastlake, S. D. Crocker, and J. I. Shiller, “RFC 1750: Randomness recommen-
dation for security” in Internet Society Request for Comments, Internet Engineering
Task Force, December 1994.

[48] D. E. Eastlake, and P. E. Jones, “RFC 3174: US Secure Hash Algorithm 1 (SHA1)” in
Internet Society Request for Comments, Internet Engineering Task Force, September
2001.

[49] R. C. Fairfield, R. L. Mortenson, and K. B. Coulthard, “An LSI random number
generator (RNG)”, in Advances in Cryptology - Proceedings of Crypto’84, pp. 203-230,
Springer-Verlag, 1984.

[50] K. Hamano, “The Distribution of the Spectrum for the Discrete Fourier Transform
Test included in SP800-22”, in IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E88, no. 1, pp. 67–73, January 2005.

[51] F. Hofbauer, G. Keller, Ergodic Properties of Invariant Measures for Piecewise Mono-
tonic Transformations, Mathematische Zeitschrift, Springer-Verlag, vol. 180, no. 1,
pp. 119–140, March 1982.

http://www.cryptography.com/resources/whitepapers/VIA_rng.pdf
http://www.cryptography.com/resources/whitepapers/VIA_rng.pdf

136 BIBLIOGRAPHY

[52] W. T. Holman, J. A. Connelly, and A. B. Downlatadadi, “An Integrated Ana-
log/Digital Random Noise Source”, IEEE Transaction on Circuit and Systems I: Fun-
damental Theory and Applications, vol. 44, no. 6, pp. 521-528, June 1997.

[53] idQuantique, “Random Numbers Generation using Quantum Physics” white pa-
per, 2004. Available at http://www.idquantique.com/products/files/
quantis-whitepaper.pdf

[54] B. Jun and P. Kocher, “The Intel Random Number Generator”, Crypt.
Reasearch, Inc. white paper prepared by Cryptography Research, Inc. for
Intel Corp., April 1999. Available at http://www.cryptography.com/
resources/whitepapers/IntelRNG.pdf

[55] A. Johansson, and F. Heinrik, “Random number generation by chaotic double
scroll oscillator on chip”, in Proceedings of 1999 IEEE International Symposium on
Circuits and Systems (ISCAS1999), vol. 5, pp. 407–409. Orlando (USA), May 30 –
June 2, 1999.

[56] S. Kim, K. Umeno, A. Hasegawa, “On NIST Statistical Test Suite for Randomness”,
in IEICE Technical Report, Vol. 103, no. 449, pp. 21-27, 2003.

[57] B. P. Kitchens, Symbolic Dynamics, Springer-Verlag, 1998.

[58] T. Kohda, “Information Sources Using Chaotic Dynamics” in Proceedings of the
IEEE, special issue on “Applications of Nonlinear Dynamics to Electronic and In-
formation Engineering”, vol 90, no. 5, pp. 641–66, May 2002.

[59] T. Kohda, and A. Tsundea, Information Sources using Chaotic Dynamics, Chapter 4
in M. P. Kennedy et al. “Chaotic Electronics in Telecommunications”, CRC Inter-
national, 2000.

[60] A. Lasota, and M. C. Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dy-
namics, Springer-Verlag, 1994.

[61] A. Lasota, J. A. Yorke, “On the Existence of Invariant Measure for Piecewise Mono-
tonic Transformations”, in Transactions of the American Mathematical Society, vol.
186, pp 481-488, December 1973.

[62] G. Marsaglia, “The Marsaglia Random Number CD-ROM including the DieHard
Battery of test of randomness”. Available at http://stat.fsu.edu/pub/
diehard/

[63] G. Marsaglia, “The diehard test suite”, 2003. Available at http://www.csis.
hku.hk/ ˜ diehard/

[64] G. Marsaglia, and A. Zaman, “The KISS generator”, Technical Report, Department
of Statistics, University of Florida, 1993.

[65] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1996.

[66] Nevada Gaming Commission and State Gaming Control Board, “Gaming Statutes
and Regulations”. Available at http://gaming.nv.gov/stats_regs.htm

[67] National Institute of Standard and Technology, “Data Encription Stan-
dard”, Federal Information Processing Standard (FIPS) publication 43-3, Octo-
ber 25, 1999. Available at http://csrc.nist.gov/publications/fips/
fips46-3/fips46-3.pdf

http://www.idquantique.com/products/files/quantis-whitepaper.pdf
http://www.idquantique.com/products/files/quantis-whitepaper.pdf
http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/
http://www.csis.hku.hk/~diehard/
http://www.csis.hku.hk/~diehard/
http://gaming.nv.gov/stats_regs.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

BIBLIOGRAPHY 137

[68] National Institute of Standard and Technology, “Security requirements for cryp-
tographic modules,” Federal Information Processing Standards 140-2, Decem-
ber 3, 2002. Available at http://csrc.nist.gov/publications/fips/
fips140-2/fips1402.pdf

[69] National Institute of Standard and Technology, “Advance Encription Stan-
dard”, Federal Information Processing Standard (FIPS) publication 197, Novem-
ber 26, 2001. Available at http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf

[70] National Institute of Standard and Technology, “A statistical test suite for random
and pseudorandom number generators for cryptographic applications”, Special
Publication 800-22, May 15, 2001. Available at http://csrc.nist.gov/rng/
SP800-22b.pdf

[71] National Institute of Standard and Technology, “Random Number Generation and
Testing”. Available at http://csrc.nist.gov/rng/

[72] E. Ott, Chaos in Dynamical Systems, Cambridge University Press, 1993.

[73] S. Poli, S. Callegari, R. Rovatti, G. Setti, ”Post-Processing of data generated by a
chaotic pipelined ADC for the robust generation of perfectly random bitstreams”,
in Proceedings of 2004 IEEE International Symposium of Circuit and Systems (IS-
CAS2004), vol. IV, pp. 585-588. Vancouver (Canada), May 23–26, 2004.

[74] B. Razavi, Principles of Data Conversion System Design, Wiley-IEEE Press, November
1994.

[75] R. Rivest, “RFC 1321: The MD5 Message-Digest Algorithm” in Internet Society
Request for Comments, Internet Engineering Task Force, April 1992.

[76] R. Rovatti, G. Setti, G. Mazzini, “Chaotic Complex Spreading Sequences for Asyn-
chronous CDMA - Part II: Some Theoretical Performance Bounds”, IEEE Transac-
tion on Circuit and Systems I: Fundamental Theory and Applications, vol. 45, no. 4, pp.
496-505, April 1998.

[77] G. Setti, G. Mazzini, R. Rovatti, and S. Callegari, “Statistical modeling of discrete
time chaotic processes: Basic finite dimensional tools and applications”, in Pro-
ceedings of the IEEE, special issue on “Applications of Nonlinear Dynamics to Elec-
tronic and Information Engineering”, vol. 90, no. 5, pp. 662-690, May 2002.

[78] T. Stojanovski, and L. Kocarev, “Chaos-Based Random Number Generators - Part
I: Analysis”, in IEEE Transaction on Circuit and Systems I: Fundamental Theory and
Applications, vol. 38, no. 3, pp. 281-288, March 2001.

[79] T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-Based Random Number Genera-
tors - Part II: Practical Realization”, in IEEE Transaction on Circuit and Systems I:
Fundamental Theory and Applications, vol. 38, no. 3, pp. 382-385, March 2001.

[80] J. Schoukens, R. Pintelon, E. van der Ouderaa, J. Renneboog, “Survey of Excitation
Signals for FFT Based Signal Analyzers”, IEEE Transactions on Instrumentation and
Measurements, vol. 37, no. 3, pp 342–352, September 1988.

[81] B. Sunar, W. J. Martin, and D. R. Stinson “A Provably Secure True Random Num-
ber Generator with Built-in Tolerance to Active Attacks”, Technical Report CACR
2005-20, University of Waterloo (Canada), 2005

[82] L. Trevisan, and S. Vadhan, ”Extracting randomness from samplable distribu-
tions”, in Proceedings of 41st IEEE Symposium on Foundations of Computer Science
(FOCS’00), pp. 32–42. Redondo Beach (USA), November 12-14, 2000.

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/rng/SP800-22b.pdf
http://csrc.nist.gov/rng/SP800-22b.pdf
http://csrc.nist.gov/rng/

138 BIBLIOGRAPHY

EMI Reduction Related References

[83] M. Balestra, R. Rovatti, G. Setti, “Power Spectrum Density Tuning in Random
and Chaos-based Timing Signal Modulation Techniques with Improved EMC”
in Proceedings of IEEE 11th Workshop on Nonlinear Dynamics of Electronic Systems
(NDES2003), pp 24–28. Scuol (Switzerland), May 18–21, 2003.

[84] R. E. Best, Phase-locked Loops: Design, Simulation and Applications, McGraw-Hill,
1999.

[85] S. Callegari, R. Rovatti, G. Setti, “Spectral Properties of Chaos-based FM Signals:
Theory and Simulation results”, IEEE Transaction on Circuit and Systems I: Funda-
mental Theory and Applications, vol. 50, no. 1, pp. 3–15, January 2003.

[86] Federal Communication Commission “FCC methods of measurement of radio
noise emission from computing devices”, FCC/OST MP-4, July 1987.

[87] K. B. Hardin, J. T. Fessler, D. R. Bush, “Spread spectrum clock generation for the
reduction of radiated emission”, Proceedings of the IEEE International Symposium
on Electromagnetic Compatibility (EMC’94), pp. 227–231. Rome (Italy), September
13–16, 1994

[88] K. B. Hardin, J. H. Fessler, D. R. Bush, J. J. Booth, “Spread Spectrum Clock Gener-
ator and Associated Method,” U.S. Patent n. 5,488,627, 1996.

[89] International Special Committee on Radio Interference (CISPR), Publication 16-1,
2002.

[90] F. Lin, D. Y. Chen, “Reduction of Power Supply EMI Emission by Switching Fre-
quency Modulation”, in IEEE Transactions on Power Electronics, vol. 9, no. 1, pp.
132–137, January 1994.

[91] R. Rovatti, G. Setti, S. Graffi, “Chaos based FM of clock signals for EMI reduc-
tion”, in Proceedings of 14th IEEE European Conference on Circuit Theory and Design
(ECCTD’99), vol 1, pp. 373-376. Stresa (Italy), August 29 – 2 September 2, 1999.

[92] S. Santi, R. Rovatti, G. Setti, “Advanced chaos based frequency modulations for
clock signal tuning” in Proceedings of 2003 IEEE International Symposium on Circuits
and Systems (ISCAS2003), vol 3, pp 116–119. Bangkok (Thailand), May 25–28, 2003.

[93] Serial ATA Workgroup, “Serial ATA II: Electrical Specificaion”, Revision 1.0, May
2004.

FPGA and SCA Related References

[94] J. Coron, P. Kocher, and D. Naccache, “Statistics and Secret Leakage”, in Financial
Cryptography (FC2000), Lecture Notes in Computer Science, vol. 1962, pp. 157–173,
February 2000.

[95] E. Hess, N. Janssen, B. Meyer, and T. Schuetze, “Information Leakage Attacks
Against Smart Card Implementations of Cryptographic Algorithms and Counter-
measures – a Survey”, in Proceedings of Eurosmart Security Conference, pp. 55–64.
Marseilles (France) June 13–15 June, 2000.

[96] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems”, in Advances in Cryptology - Proceedings of Crypto’96, Lecture Notes
in Computer Science, vol. 1109, pp. 104–113, August 1996.

BIBLIOGRAPHY 139

[97] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, in Advances in Cryp-
tology - Proceedings of Crypto’99, Lecture Notes in Computer Science, vol. 1666, pp.
388–397, August 1999.

[98] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi, “Security as a New
Dimension in Embedded System Design”, in Proceedings of the 41st Design Automa-
tion Conference (DAC 2004), pp. 753–760. San Diego (USA), June 7–11, 2004.

[99] J. Montanaro, R. Witek, K. Anne, A. Black, E. Cooper, D. Dobberpuhl, P. Donahue,
J. Eno, W. Hoeppner, D. Kruckemyer, T. Lee, P. Lin, L. Madden, D. Murray, M.
Pearce, S. Santhanam, K. Snyder, R. Stehpany, and S. Thierauf, “A 160-MHz, 32-b,
0.5-W CMOS RISC Microprocessor”, in IEEE Journal of Solid-State Circuits, vol. 31,
no. 11, pp. 1703–1712, November 1996.

[100] J. Quisquater, and D. Samyde, “ElectroMagnetic Analysis (EMA): Measures and
Counter-measures for Smard Cards”, in Smart Card Programming and Security -
Proceedings of Esmart 2001, vol. 2140, pp. 200–210. Cannes (France), September 19–
21, 2001.

[101] J. Rabaey, Digital Integrated Circuits: A design perspective, Prentice Hall, 1996.

[102] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper Resistance Mechanisms
for Secure, Embedded Systems”, in Proceedings of 17th International Conference on
VLSI Design (VLSID 2004), pp. 605–610. Mumbai (India), January 5–9, 2004.

[103] K. Tiri, M. Akmal, and I. Verbauwhede, “A Dynamic and Differential CMOS
Logic with Signal Independent Power Consumption to Withstand Differential
Power Analysis on Smart Cards”, in Proceedings of 28th European Solid-State Cir-
cuits Conference (ESSCIRC 2002), pp. 403–406. Florence (Italy), September 24–26,
2002.

[104] Xilinx Inc., “Spartan and Spartan-XL Families Field Programmable Gate Arrays”,
available at http://direct.xilinx.com/bvdocs/publications/ds060.
pdf , June 27, 2002.

http://direct.xilinx.com/bvdocs/publications/ds060.pdf
http://direct.xilinx.com/bvdocs/publications/ds060.pdf

	Title Page
	Contents
	Introduction
	Hardware Implementation of a Chaos-Based RNG
	Pipeline A to D Converters
	ADC-based Chaotic Map
	Description of Basic 1.5 bit Cell
	ADC-based Random Number Generator
	Design of the Basic Cell
	Description of the 0.35um RNG prototype
	Macromodel for 0.35um RNG prototype
	Design of the RNG circuit in 180 nm technology
	Conclusion

	How to Improve the Quality of a RNG
	Information Theoretic Entropy
	Increasing the Entropy of a Generator
	Von Neumann Post-processing
	Parity Based Post-processing
	Hash Function Based Post-processing
	IIR Based Post-processing
	Conclusion

	Statistical Tests for Randomness
	P-value Based Tests
	NIST SP 800-22 Test Suite
	DieHard Test Suite
	Second Level Tests
	Conclusion

	Test Results
	Estimated Entropy of the ADC-based RNG
	Result of the QSR post-processing
	SP 800-22 Test Results
	Conclusion

	Application of RNG: EMI Reduction
	Generation of Spread-Spectrum Clock Signals
	Description of the 0.35 um SSCG prototype
	Description of the 180 nm SSCG prototype
	Conclusion

	Design of SCA Resistant Digital Programmable Hardware
	Programmable Interconnections
	Programmable Logic
	A Realistic System
	Open Problems

	Final Conclusion
	Introduction to Discrete-time Chaos Theory
	Chaotic maps
	The Perron-Frobenius Operator
	Ergodic, Mixing and Exact Maps
	Markov Chains and PWAM Maps
	Robustness of a chaotic map
	Noise Robustness in PWAM Maps

	Hardware and Algorithms used in this dissertation
	BBS Pseudorandom Generator
	KISS Pseudorandom Generator
	VIA PadLock Random Generator
	Quantis Random Generator
	Data Acquisition and Testing Procedure

	Publications
	Bibliography

