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Chapter 1

Introduction

1.1 The context

Computer vision can be defined as the deduction of information about the world by au-

tomatic analysis of images taken from either a single or multiple viewpoints. Computer

vision is a fascinating and challenging research field, with many established (e.g., auto-

mated visual inspection, robot guidance, optical character recognition, medical imag-

ing, remote sensing) as well as emerging (e.g., video surveillance, traffic monitoring,

human-computer communication) application domains.

In the last decade, a wide range of research areas concerned with real-time applica-

tions have received a growth in attention , due to a considerable performance boost of

off-the-shelf computing platforms. Among these, it is worth pointing out those paving

the way for emerging applications in unconstrained environments wherein, unlike es-

tablished industrial application, a complex and changing world must be accurately and

reliably modeled.

One of these research fields is undoubtedly change detection. Change detection

deals with the automatic detection of changes occurring in a scene by the elaboration

of single or multiple video sequences of the scene captured from single or multiple

view-points by fixed or moving imaging devices. Change detection is the first cru-

cial processing step in many Computer vision applications, such as video-surveillance,

traffic monitoring and remote sensing. In fact, upon a reliable preliminary change de-

tection step higher level capabilities can be built, such as those concerned with objects

tracking, classification and behavior analysis.

1
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1.2 The problem

The input of a typical change detection algorithm at time t = t̄ is a set It̄ of synchro-

nized video sequences Sv
t̄ of the same scene captured by different imaging devices from

different view-points:

It̄ =
(

S1
t̄ , S2

t̄ , . . . , SV
t̄

)

(1.1)

Depending on the number V of different view-points (i.e. of input video sequences),

change detection is denoted as multi-view (V > 1) or single-view (V = 1). Each in-

put video sequence Sv
t̄ consists of a finite number of digital (discrete domain, discrete

range) images Iv
t of the scene captured by the same imaging device at different discrete

times t ≤ t̄:

Sv
t̄ =

(

Iv
t̄−T , . . . , Iv

t̄−1 , Iv
t̄

)>
(1.2)

It is worth pointing out that in case of multi-view change detection the input video

sequences are assumed to be synchronized, so that they contain the same number (T+1)

of images, captured at common times (t̄, t̄ − 1, . . . , t̄ − T ). As a consequence, the input

information St̄ of a typical change detection algorithm can be written as a matrix of

(T+1) ·V digital images, where (T+1) is the number of images in each video sequence

and V is the number of different views-sequences:

It̄ =













































I1
t̄−T I2

t̄−T . . . IV
t̄−T

...
...

...

I1
t̄−1 I2

t̄−1 . . . IV
t̄−1

I1
t̄ I2

t̄ . . . IV
t̄













































(1.3)

It is clear that each column of It̄ represents a different input video sequence Sv
t̄ , but it is

worth noticing that each row (denoted as Rt) contains a set of simultaneous images of

the monitored scene taken from different view-points. Each input digital image Iv
t can

be regarded as a function mapping a pixel coordinates l-dimensional integer vector p
(hereinafter, pixel) to a pixel intensities m-dimensional integer vector c = Iv

t (p) (pixel

color):

Iv
t : Z

l 3 p 7→ c = Iv
t (p) ∈ Zm (1.4)

Typically, m = 1 (e.g., grey level images) or m = 3 (e.g., RGB color images), but other

values are possible. For instance, multi-spectral images have values of m in the tens,

while hyper-spectral images have values in the hundreds. Typically, l = 2 (e.g., satellite

or surveillance images) or l = 3 (e.g., volumetric medical or biological microscopy

data). In the rest of the thesis, we will take into consideration just change detection for

planar grey level images (l = 2, m = 1), mapping a 2-dimensional pixel p = (i, j) to a

scalar grey level g = Iv
t (i, j):

Iv
t : Z

2 3 p = (i, j) 7→ g = Iv
t (i, j) ∈ Z (1.5)
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Figure 1.1(a) shows the input of a typical multi-view change detection algorithm.
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Figure 1.1: Input (a) and output (b) of a typical multi-view change detection algorithm (V = 3).

The output of a typical multi-view change detection algorithm at time t = t̄ is a set

Ot̄ of V images Cv
t̄ , one for each view-point, called change masks:

Ot̄ =
(

C1
t̄ , C2

t̄ , . . . , CV
t̄

)

(1.6)

so that a multi-view change detection algorithm can be regarded as a function CDMV

mapping, at each time t, the input It to the output Ot:

Ot = CDMV(It) (1.7)
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Each change mask Cv
t̄ is a binary image having the same domain as the images con-

tained in the corresponding (i.e. relative to the same view-point) input sequence Sv
t̄ and

defined as follows:

Cv
t̄ (p) = CDv

MV (It̄) =















1 if a significant change occurred at pixel p of Iv
t̄

0 otherwise
(1.8)

The output of a typical multi-view change detection algorithm is shown in figure 1.1(b).

To make the change mask definition in equation 1.8 clear, it is necessary to give an

answer to the following two questions:

a) What does ”significant” change mean?

b) What should a change be detected with respect to?

1.2.1 What does significant change mean?

When a scene is imaged by a capturing device, it can be regarded as 3-dimensional (not

necessarily planar) surface, that is the portion of the physical surface of the objects in

the scene that is visible through the perspective projection characterizing the imaging

device, immersed in a 3-dimensional Euclidean space, that is the physical space. A

digital image of the scene is a geometrical appearance model of the scene. On one

hand, it is a geometrical model since it is a perspective projection of the 3-dimensional

scene surface to the 2-dimensional image plane of the capturing device. On the other

hand, it is an appearance model since it is a measure of the radiance (i.e. the electro-

magnetic radiation in the visible spectrum), emitted by the scene surface. Hence, the

intensity of a pixel in a scene image is a measure of the radiance emitted by the patch of

scene surface connected to the pixel itself by the central projection (through the optical

center) of the capturing device (figure 1.2).

We call a scene (or semantic) information an information on the 3-dimensional

geometry of the scene surface. On the other hand, we call an image (an appearance)

information an information contained in the scene image (i.e. the measured pixel in-

tensities). In general, given an image information it is not straightforward to infer

scene information about the connected patch of scene surface. In fact, any given 3-

dimensional position in the imaged scene is univocally connected with a pixel in the

scene image. On the contrary, given a pixel in the scene image all the 3-dimensional

positions in the imaged scene lying on the line (optical ray) passing through the pixel

and the optical center are possible (figure 1.2). Shape from shading, photometric stereo

and multi-view stereo are disciplines in the computer vision field aiming at inferring

scene information from image information. In particular, shape from shading aims

at computing the 3-dimensional shape of a scene surface from a single image of the
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Figure 1.2: Image formation process: a scene image is a geometric appearance model of the

imaged scene.

scene. The shape is inferred by assuming a reflectance model (i.e. a model of the light

reflection physical phenomenon) for the physical scene surface and then computing

the 3-dimensional shape which maximizes the likelihood of the scene image given the

assumed reflectance model. It is well-known that the shape from shading problem is in

general (i.e. for a generic shape of the scene surface) ill-posed, even in the case of sim-

ple reflectance models (e.g. Lambertian reflectance model). Also in the simple cases

where a solution exists (thanks to the assumption of scene surface smoothness con-

straints), more than just local image information has to be processed. Instead of using

a single image, photometric stereo tries to solve the recovering problem by processing

the information contained in two or more different scene images. The images are taken

by the same imaging device and from the same view-point, but the light source position

in the scene is different. The problem is mathematically well-posed, that is the orien-

tation of the normal to the scene surface can be, in theory, determined for each surface

patch connected to a scene image pixel. However, it is clear how photometric stereo can

not be used in unconstrained environments, where the light source (or, better, sources)

position can not be controlled. Multi-view stereo recovers information on the scene

surface geometry by using two scene images taken from different view-points and, in

general, by different imaging devices. By detecting couples of points (i.e. pixels) in

the two images corresponding to the same scene surface patch (matching procedure)

and by exploiting geometrical properties related to the central projection characteriz-

ing the capturing device (disparity computation), the depth of the pixels is computed,

that is the distance between the scene surface patch imaged by the two pixels and the
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imaging devices principal plane. Multi-view stereo provides good results also in case

of unconstrained environments, however:

a) the imaging devices must be carefully calibrated and temporally synchronized;

b) the matching procedure is the most important and also the most critical part of a

multi-view stereo algorithm. In fact, not all the couples of points which actually

correspond to the same scene surface patch can be detected.

All this discussion was aimed at pointing out how the inference of scene infor-

mation from image information is a complex and hard-to-solve problem. By aiming

”lower”, that is by passing from the absolute continuous formulation of the problem

(i.e. to compute the scene surface 3-dimensional geometry) to the differential di-

chotomic one (i.e. to detect if a change of the 3-dimensional scene surface geometry

has occurred), a more tackleble problem is attained. This is the change detection prob-

lem. Finally, we can answer the question giving the title to this paragraph by saying

that change detection aims at detecting scene (or semantic) changes, that is changes of

the scene surface geometry. Hence, ”significant” in equation 1.8 can be replaced by

”scene” so that the output of a change detection algorithm is a change mask defined as

follows:

Cv
t̄ (p) = CDv

MV(It̄) =















1 if a scene change occurred at pixel p of Iv
t̄

0 otherwise
(1.9)

It is worth spending right now some words about the two main problems arising in

change detection, that is camouflage and disturbance factors. Both the problems can

be the cause of detection errors, but in general of opposite ”sign”. In fact, camouflage

always gives rise to missed detections (i.e. false negatives) while disturbance factors

almost always yields false detections (false positives). As regards camouflage, it is due

to the fact that a change of the scene surface 3-dimensional geometry does not neces-

sarily cause a change of the emitted radiance and, as a consequence, of the measured

pixel intensities. As an example, we can think of a moving object having a very similar

color (i.e. radiance) to that of the covered scene surface. As one can easily understand,

this problem is inherently not solvable on a local basis, that is by just considering the

measured intensities in a small neighborhood of pixels. In fact, images are nothing

else than a measure of the radiance emitted from the scene surface. If the radiance

does not change, nothing can be said about possible scene changes. The problem can

be afforded just at a higher level, that is at the objects-level. In practice, more or less

explicit assumptions about the foreground objects shape have to be made. These as-

sumptions can be directly included within the change mask computation procedure or

implemented as a change mask post-processing (e.g. mathematical or statistical mor-

phology). Apart form chapter 4, where we present an ad-hoc filling algorithm aimed
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at removing possible missed detections (which, however, are not due to camouflage),

in this thesis we focus our attention on low-level change detection algorithms without

any morphological assumption. Hence, we renounce in advance to detect ”almost per-

fectly” camouflaged scene changes. In this framework, we can say that all the scene

changes we aim to detect by our algorithms give rise to a measurable image change,

that is:

scene change =⇒ image change (1.10)

The opposite problem to the one just discussed, that is the detection of false scene

changes, can arise in change detection as well. In fact, not all the measurable image

changes are in general due to scene changes. We call disturbance factors all the pos-

sible causes of measurable image changes not related to changes of the scene surface

geometry. The most important disturbance factors are the following:

a) scene illumination changes: changes of the amount of light emitted by the sources

present in the scene.

b) imaging system noise: statistical error affecting the measured pixel intensities

due to a variety of phenomena occurring along the imaging process.

c) dynamic adjustments of the imaging system parameters: changes of the parame-

ters which characterize the transfer function mapping the sensed scene radiances

to the measured pixel intensities.

The first disturbance factor is the only one actually affecting the radiance emitted from

the scene surface. The other two, in fact, arise in the scene radiance measurement step

inside the imaging device. However, the effect of all disturbance factors is an image

change, so that we can write:

disturbance factors =⇒ image change (1.11)

By remembering that a change detection algorithm aims at detecting scene changes

(i.e. the cause) from images (i.e. the effect) and by looking at rules 1.10 and 1.11,

change detection can be regarded as the logical abduction problem shown in figure 1.3

: In practice, if no image change is measured (i.e. pixel intensities are unchanged)

no scene change is detected. On the contrary, if an image change is measured the

abduction of the right (i.e. the true) cause has to be carried out between scene changes

and disturbance factors. Finally, a good change detector should be able to discriminate

between (i.e. to classify) the effects of scene changes and of disturbance factors on the

measured image intensities.
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Figure 1.3: Change detection as a logical abduction problem.

1.2.2 What should a change be detected with respect to?

The discussion carried out in the previous paragraph is valid both for multi-view and

for single-view change detection. On the contrary, a distinction has to be made to say

what a change should be detected with respect to. In fact, since a multi-view change de-

tector elaborates scene images taken at different times and from different view-points,

changes can be detected in the temporal (given a view-point, along frames captured at

different times) as well in the spatial (given a capturing time, along frames taken from

different view-points) domain. Moreover, a variety of hybrid solutions are possible as

well. In this thesis, we propose a hybrid solution in which the detection of changes in

the temporal domain represents the main part. In practice, single-view change detec-

tion is carried out independently for each view-point. Just as a final processing step,

the information contained in all the attained single-view change masks is fused by the

multi-view spatial constraint. The aim of this final processing step is to filter-out a par-

ticular type of false changes (i.e. very local false changes, such as those due to shadows

cast by foreground objects), which can be hardly dealt with by a single-view approach.

Indeed, most of this thesis is devoted to single-view change detection. The multi-view

change masks fusion approach is presented in the last chapter. For this reason, we post-

pone to that point the discussion of how time, space or a combination of both can be

the basis on which changes are detected in a multi-view change detection approach.

As regards single-view change detection, changes are necessarily detected on a
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temporal basis. However, as far as the answer given to the question put in this para-

graph is concerned, two main classes of single-view change detection algorithms can

be identified:

a) algorithms based on temporal frame-difference: at time t = t̄, changes occurring

in a pixel p of the current frame It̄ (to simplify notations, hereinafter we drop the

superscript v when dealing with single-view change detection) are detected with

respect to one (two-frame difference) or two (three-frame difference) previous

frames. The change mask computation rule of equation 1.9 can be expressed as

follows:

Ct̄ (p) = CDSV (It̄ = St̄) =















1 if d
(

It̄(p), It̄−1(p), . . .
)

> T

0 otherwise
(1.12)

where CDSV denotes the overall single-view change detection algorithm, map-

ping the input information It̄, corresponding to the single-view input sequence

St̄, to the single-view output change mask C t̄. d is a function giving a measure

of dissimilarity between the current and the previous frame intensities.

b) algorithms based on background subtraction: changes in the current frame are

detected with respect to the ”stationary” part of the scene surface, commonly

called scene background. An almost philosophical discussion may be carried

out about the meaning of background, that is of the adjective ”stationary”. In

the most common acceptation, background is the portion of imaged scene sur-

face having a constant 3-dimensional geometry since a sufficiently long time.

Hence, background subtraction consists in the comparison between the current

frame It̄ and an image (or, more frequently, an appearance model) of the scene

background B̂t̄.

Ct̄ (p) = CDSV(It̄ = St̄) =















1 if d
(

It̄(p), B̂t̄(p)
)

> T

0 otherwise
(1.13)

In general, algorithms based on temporal frame difference are computationally very

efficient since, at each capturing time, they just have to compute the dissimilarity be-

tween the current and the previous frame intensities. Moreover, disturbance factors are

a problem just when they cause very fast image changes (e.g. a light turned on/off in the

imaged scene) and just during the change transitory (i.e. after the light has been turned

on/off, no more false changes are detected). In fact, capturing frame rate of common

imaging systems is in the order of tens, so that the inter-frame acquisition time is in the

order of hundredths of seconds. Even a light switch produces an image change which

is spread over some frames. Slower changes, such as those related to the time of the

day, does not cause inter-frame image changes which can be confused with the ones
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produced by scene surface changes. Besides, the change mask computation process by

temporal frame difference is a ”process without memory”, in the sense that the binary

decision for a pixel to be changed or unchanged is taken without considering the past

decisions. By remembering that each decision for the current frame is taken just on the

basis of a comparison with the previous frame, it is easy to understand how, even for

sudden image changes due to disturbance factors, a problem can arise just during the

change transitory. However, temporal frame difference suffers from two inherent prob-

lems, called ghosting and foreground aperture, respectively. Figure 1.4, on the left,

shows the effects of these two problems for a couple of successive frames of a sample

sequence. The ghosting problem consists of false detections occurring in the pixels not
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Figure 1.4: An example of change masks computed by temporal frame difference (on the left)

and background subtraction (on the right) change detection algorithms.
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covered by foreground objects in the current frame but covered in the previous one.

Foreground aperture can be regarded as a particular type of camouflage, occurring be-

tween different surface patches of the same foreground object. While ghosting can be

dealt with quite effectively (e.g. by using more than just two successive frames), the

foreground aperture problem is actually inherent to the temporal difference method. To

understand this, it is sufficient to think of a perfectly evenly ”colored” foreground ob-

ject moving in the scene or to whatever foreground object staying still in the scene. In

these cases, temporal frame difference is trying to detect scene changes by comparing

image intensities which actually correspond to the same emitted radiance. The result

is a set of unavoidable missed detections.

As regards background subtraction, it suffers neither from ghosting nor from the

foreground aperture problem. In fact, given that the background model is a ”perfect”

appearance model of the stationary part of the imaged scene (i.e. an exact measure

of the radiance emitted by the scene background surface), the detection rule of equa-

tion 1.13 allows to detect exactly all the pixels which are sensing an incoming radiance

different from the radiance emitted by the scene background surface. In other words,

apart from possible missed detections due to camouflage, a perfect change mask should

be attained. Also if we admit the presence of imaging system noise, an accurate change

mask can be computed by choosing a proper value for the threshold T in the detection

rule. In figure 1.4, on the right, we show the change mask computed by the detec-

tion rule of equation 1.13 for the same sample frame considered in the temporal frame

difference case. In particular, the background model is simply an image of the scene

captured before the person enters the scene and a value T = 9 has been chosen. The

change mask is clearly much better than the one attained by the temporal frame differ-

ence approach. Some missed detections are present, due to a partial camouflage effect

occurring in some pixels. Due to the absence of inherent problems, background sub-

traction is the most studied and the most applied change detection approach. Thought

not inherent, the big problem arising in background subtraction is the maintenance

of the background model. In fact, assumed that a good initial model has been gen-

erated, disturbance factors can subsequently change the radiance emitted by the scene

background surface (illumination changes) or, however, the measured image intensities

(adjustments of the imaging system parameters). Two main classes of background sub-

traction algorithms can be identified, based on a different way of facing the disturbance

factors problem:

a) algorithms based on a temporally adaptive statistical model of the scene back-

ground appearance: the background model is a statistical model of the appear-

ance (i.e. the sensed radiance) of the scene background surface. The detection

rule is just a comparison between the appearance of the scene in the current frame
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and the appearance of the scene background expressed by the background model.

In particular, for each pixel the probability of observing (i.e. the likelihood of)

the currently measured intensity given that the pixel is imaging the background

surface is computed and then thresholded. Clearly, for the algorithm to be ro-

bust to the effects of disturbance factors the background model must be updated.

Actually, the background model updating procedure is the most important and,

at the same time, the most critical part of the background subtraction algorithms

belonging to this class. In fact, if it is true that the imaging system noise effects

are dealt with effectively by the statistical nature of the background model, il-

lumination changes and dynamic adjustments of the imaging system parameters

can be faced just by updating the background model.

b) disturbance factors invariant algorithms: the background model is usually a

much simpler statistical model of the scene background appearance. Moreover,

the model does not need to be updated. All the efforts to filter-out the effects of

disturbance factors are concentrated in the background comparison step, that is

in the dissimilarity computation procedure. To this purpose, an accurate mod-

eling of the disturbance factors effects on the image intensities must be carried

out. Besides, differently from the algorithms of class a), the decision for a pixel

to be changed or unchanged can not be taken on a totally local basis, that is by

just comparing the pixel currently measured intensity with the pixel intensity in

the background model. In fact, for the disturbance factors effects to be distin-

guishable from actual scene changes effects at least a small patch of neighboring

pixels has to be considered.

In this thesis, both the classes a) and b) of background subtraction algorithms will be

dealt with. In particular, two very different algorithms we devised will be presented,

each one belonging to a different class. For simplicity, hereinafter we call temporally

adaptive and disturbance factors invariant the change detection algorithms of class a)

and b), respectively.

We conclude this discussion on the change detection problem by pointing out two

requirements that every good change detector should fulfill:

r.1) detection accuracy, that is the ability to compute accurate change masks;

r.2) computational efficiency, that is the ability to process a high number of frames

per second.

Every change detection algorithm is a trade-off between r.1 and r.2. Obviously, the

goal of a researcher in this field should be to achieve the best trade-off, given a target

detection accuracy.
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1.3 The Solution and the Structure of the Thesis

The research work carried out during my PhD was almost entirely focused on the

change detection problem. Actually, not just ”pure” but also applied research was

conducted. In other words, not all the PhD was dedicated to the aim of devising new

algorithms. In fact, thanks to the opportunity of the research results to be applied and

commercialized within a spin-off company of which I am a current partner, part of the

efforts were spent for the accurate implementation of the devised algorithms.

The first two years of the PhD were devoted to the single-view change detection

problem. A deep investigation of the existing literature allowed me to get a clear idea

of the state of the art in the field. In particular, the two classes of change detection

algorithms mentioned in the previous section arose as the most studied as well as the

ones providing the best results.

In the very first part of the PhD, an algorithm belonging to the first class was de-

vised. The algorithm is presented in chapter 2. It is a background subtraction algo-

rithm based on a statistical, temporally adaptive, non-parametric model of the scene

background appearance. In particular, the statistical background model consists of a

temporally adaptive couple of percentiles (i.e. a lower and an upper percentile) of the

background process ensemble pdf. At each processing step, for each pixel the change

mask is computed by checking whether the currently measured intensity falls inside the

interval between the two percentiles. The novelty of the algorithm consists mainly in

the procedure which provides the two percentiles. A statistical non-parametric model

of the imaging system noise is inferred once and for all by an initial training sequence

of frames. At each subsequent processing step, the model allows to have reliable per-

centiles at disposal for the change mask computation.

An algorithm belonging to the second class was devised as well. It is presented

in chapter 3. A very simple background model is generated by processing a training

sequence of frames. Differently from the algorithm presented in chapter 2, the back-

ground need not to be updated. Detection of changes in each pixel is computed by

comparing the intensities (in the current frame and in the background model) not just

of the pixel itself but also of a small neighborhood of pixels. In particular, based on

the assumption that disturbance factors produce image changes identifiable with local

monotonic non decreasing intensity mapping functions, a maximum likelihood iso-

tonic regression procedure is used to discriminate between the disturbance factors and

the scene changes effects.

Chapter 4 presents an hybrid or, better, a comprehensive solution. In particular, a

coarse-to-fine approach to the single-view change detection problem is proposed. The

basic idea consists in assigning to a preliminary coarse-level detection the task to filter-

out most of the possible effects of disturbance factors. In particular, the disturbance
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factors invariant algorithm presented in chapter 3 is used. As a consequence, reli-

able coarse-grain change masks are attained, which are a superset of the semantically

changed pixels. The coarse-grain masks can be used as a work-area by the subsequent

fine-level detection algorithm.

In chapter 5, a multi-view change detection approach is presented. It relies on

single-view change detection, in the sense that the multi-view constraint is applied

just as a final processing step. In practice, single-view change detection is carried out

independently in each view. The attained change masks are then fused to filter-out very

local false detections, such as those due to specularities and to shadows.



Chapter 2

Temporally Adaptive Change
Detection

In this Chapter we present a change detection algorithm for grey level sequences aimed

at achieving a good trade-off between time performance and detection quality. The al-

gorithm relies on background subtraction and on the extraction of a statistical model of

the imaging system noise. In particular, in Section 2.1 the noise model extraction algo-

rithm is presented. Section 2.2 outlines the procedure used to initialize the background

model and Section 2.3 describes the background subtraction and updating algorithms.

2.1 Imaging System Noise Modeling

Apart from change detection, many other computer vision algorithms (e.g. shape from

shading, photometric stereo) require precise measures of scene radiance. The more

accurately the measured image brightness represents the scene radiance, the higher the

performance of the algorithms is. Unfortunately, real imaging devices deviate from

an ideal behavior, mainly for two reasons. Firstly, the camera response function (the

function which relates scene radiance to image brightness) is generally non-linear. Sec-

ondly, the imaging process is inherently affected by various sources of noise, ranging

from the shot photon noise which depends on radiation physics to the technological

read-out noise. An accurate photometric calibration should allow to recover not only

the camera response function but also the imaging system noise (hereinafter, camera

noise, CN) characteristics.

However, most of the works in literature dealing with photometric calibration focus

on recovering the camera response function. The classical and most popular approach

consists in imaging a uniformly illuminated chart with patches of known reflectance,

15
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such as the Macbeth chart, as done in [10]. Recently, a number of algorithms have

been proposed (“chartless” or “self-calibration” methods) which estimate the camera

response function from multiple images of an arbitrary scene taken with different ex-

posures ([13, 31, 29, 17]). Only a few works exist that try to extract a model of the

CN. In [9] the authors analyze the noise of the cameras based on ionization sensors,

such as the vidicon and the CCD cameras. In particular, they single out three dif-

ferent sources of noise. The electronic noise (leakage currents and Johnson noise)

is modeled as Gaussian and spatially stationary (i.e., independent of the pixel posi-

tion), with correlations expected only in the read-out scan direction. The photon noise,

due to the quantum nature of light, is considered spatially stationary as well, but it

is statistically characterized by a Poisson distribution, thus a variance depending on

the signal level is expected. At last, the fixed pattern noise for the CCD cameras is

considered. By experimentally measuring the pixel intensity variations for uniformly

dark and uniformly bright scenes, the authors validate the proposed models for the

electronic and the photon noises. In [11] the statistics of the granular camera noise of

high-quality pick-up tube cameras are investigated. First of all, the authors highlight

the relative unimportance of chrominance noise with respect to luminance noise. Then,

the granular camera noise for each pixel is shown to be a stationary random process,

not to be Gaussian, not to be zero-mean and to have a variance that depends on the

pixel luminance and chrominance level. Finally, by a spatio-temporal extension of the

Kolmogorov-Smirnov test, the authors demonstrate that the noise is white in the tem-

poral domain but mildly colored in the spatial one. In [30] the noise of the CCD sensors

is analyzed. The authors recognize three different noise regimes, each one correspond-

ing to a different range of the signal level and to the predominance of a particular noise

component: the low regime is dominated by the CCD on-chip amplifier noise (read-

out noise), the intermediate regime by the photon shot noise and the high regime by

the fixed pattern noise. Although these works discuss the statistical characteristics of

the CN, they do not propose methods to extract these statistics. In [20] the CCD cam-

eras imaging process is accurately modeled by explicitly accounting for both the two

classes of spatially stationary and non-stationary noise sources corrupting the digital

pixel values. By making a priori assumptions on the statistics of the different noise

components, the spatially uniform noise is shown to be a zero-mean random variable

and to have a variance linearly depending on the signal level. Both the classes of noise

are estimated by using flat field images. Also in [38] the authors model accurately the

various steps of the CCD imaging process and the different noise sources. Besides,

they account for some of the artificial transformations possibly occurring in the current

cameras, such as the white balancing, the gamma correction and the auto gain control.

They propose a self-calibration procedure that utilizes a set of images of an arbitrary
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static scene taken under different exposure settings. The series of values for each pixel

are separately considered, thus decoupling the temporal random noise from the spa-

tially non-stationary noise. In this way, by a non-parametric iterative algorithm the

authors infer the camera response function. Finally, the variances of the shot photon

noise, of the thermal noise and of the read-out noise are separately estimated. In [40]

the photometric calibration is performed by using the method presented in the previous

work. Differently from all the other approaches, in this work the authors show how the

noise level, given a camera response function, can be seen as a function of the mea-

sured pixel brightness instead of the incoming radiance. The noise is modeled as a zero

mean Gaussian random variable.

Hence, only a few works exist dealing with the self-calibration of the CN character-

istics ([38],[40]). All of them rely on a priori assumptions regarding both the different

types of noise sources they account for and the parametric form of the statistical mod-

els employed. This yields methods that depend on the actual structure of the imaging

system device. Besides, these approaches extract the CN characteristics by processing

images taken at different exposures.

We present a simple self-calibration algorithm aimed at inferring a reliable statisti-

cal model of the CN. In particular, the proposed approach models the imaging system

as a “black-box” and uses a non-parametric statistical model for the CN. This yields

a method totally independent of the actual structure of the imaging device. Besides,

the model is extracted directly from the pixel intensity variations measured along a

short training sequence of an arbitrary scene. The only a priori assumption, widely

accepted in literature and confirmed by experiments, is that the noise level for a pixel

only depends on its brightness value.

2.1.1 Probabilistic Framework and Theoretical Assumptions

Let us consider the scalar integer brightness values pi(t) that a pixel i ∈ [1; n] (where n

is the total number of pixels) assumes in the 8-bit grey level frames of a time (frame)

interval I. Then we define a time series PI
i as follows:

PI
i = {pi(t) : t ∈ I} (2.1)

Now let us define the relative temporal histogram hI
i (v) as the relative frequency of the

values v ∈ [0; 255] the pixel i assumes along I. µI
i and medI

i represent the temporal

mean and the temporal median, respectively. Using the terms of Mathematical Statis-

tics, the values that a pixel i may assume over time can be considered as a one-sided

discrete time scalar stochastic process called pixel stochastic process (Pi(t)). There-

fore, a time series PI
i represents a realization of the underlying random process Pi(t).

A pixel stochastic process is characterized by ensemble statistics, such as the ensem-
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ble probability density function pdf i(t, v), the ensemble mean µi(t) and the ensemble

median medi(t).

The proposed algorithm infers the CN model from a scene not necessarily free of

moving objects but where the background must be stationary. Hence, let us consider a

pixel i belonging to a stationary background, where lighting changes and background

motion (e.g., camera vibrations or swaying trees) are negligible (that is, the pixel mea-

sures a constant radiance). The stochastic process Pi(t) of pixel i can be modeled as the

sum of two distinct processes:

Pi(t) = Bi(t) + Ni(t) = Bi + Ni(t) (2.2)

where Bi(t) is a deterministic constant process Bi, giving the value of the background

pixel as if it was measured by an ideal noiseless camera, and Ni(t) is a stochastic process

representing the CN affecting the pixel. Besides, as for Ni(t) in case of a pixel measur-

ing a constant radiance we assert the following three claims:

- C. 1: Ni(t) is modeled as a scalar stochastic process, that is any spatial statistical

dependence is neglected;

- C. 2: Ni(t) is a stationary and ergodic stochastic process (briefly, a SESP);

- C. 3: Ni(t) statistical properties only depends on Bi, that is on the pixel i deter-

ministic ideal noiseless value.

Based on the claims, for 8-bit grey level sequences the CN can be modeled by means

of 256 scalar SESP , Nw(t), one for each possible integer brightness value w ∈ [0; 255].

Hence expression 2.2 becomes:

Pi(t) = Bi + Nw=Bi(t) (2.3)

Since a SESP is completely defined by its ensemble probability density function, the

statistical CN model (hereinafter, sCNM) we are going to infer consists of 256 en-

semble probability density functions pdf w(v). As for C. 2, stationary (stat) means that

ensemble statistics are constant over time, while ergodic (erg) means that the tempo-

ral statistics computed for a single realization are a good estimation of the underlying

SESP ensemble statistics if the cardinality of the sample set is greater than a certain

value cerg. Hence, for Nw(t) and for a SESP in general:


























pdf i(t, v) stat
= pdf i(v)

erg' hI
i (v)

µi(t)
stat
= µi

erg' µI
i

medi(t)
stat
= medi

erg' medI
i

(2.4)

Let us now look at equation 2.3: since both Nw(t) (C. 2) and Bi(t) (it is a deterministic

and constant process) are SESP, we can state that the stochastic process Pi(t) for a

stationary background pixel is a SESP as well, thus satisfying expression 2.4.
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2.1.2 The Camera Noise Model Extraction Algorithm

The non-parametric sCNM is generated by processing a training sequence (correspond-

ing to a frame interval I) of few seconds acquired by a static camera and free of moving

objects. As well as other initialization methods ([18], [2]), our algorithm relies on a

background that must be stationary along the training sequence. Since in practice the

lower the elapsed time the higher the probability of the stationarity assumption to be

fulfilled, we aim to keep the training sequence as short as possible. Hence, we process a

training sequence such that card(I) = cerg. To extract the sCNM, first we compute sta-

tistics of the stationary background process for each pixel, then we use these statistics

for the non-parametric inference.

In particular, for each pixel i we build the temporal relative histogram hI
i (v). Since

the background is assumed to be stationary along the training sequence, equation 2.3

and expression 2.4 (Section 2.1.1) hold. Thus, the attained temporal relative histogram

hI
i (v) represents the ensemble probability density function pdf i(v) of the pixel i station-

ary background process. Hence, we vote the temporal mean µI
i (which is equivalent to

the ensemble mean µi) as the ideal noiseless background value for each pixel:

Bi = µ
I
i (2.5)

By using the computed statistics and by exploiting the claims asserted in Section 2.1.1,

we can extract the non-parametric sCNM. From expression 2.2 and equation 2.5:

Ni(t) = Pi(t) − Bi = Pi(t) − µI
i (2.6)

Hence, the ensemble probability density function pdf N
i (v) of the CN stochastic process

Ni(t) for each pixel i can be deducted by simply translating by an horizontal offset

Oi = −Bi = −µI
i the previously computed ensemble probability density function pdf i(v)

of the pixel i background process. Following from the assumption that the statistics of

the CN affecting a stationary pixel only depends on its ideal noiseless intensity (C. 3):

Nw=Bi(t) = Ni(t) = Pi(t) − Bi (2.7)

Practically speaking, the time series of the CN values for a pixel i can be considered

not just a realization of the random process Ni(t) representing the CN for that pixel,

but also a realization of the more general stochastic process Nw=Bi representing the CN

for the grey value w = Bi. Therefore, the time series of the CN values for all the

pixels which have had the same background value according to equation 2.5 represent

different realizations of the same random process. Hence, for each grey level w we

sum the attained pdf N
i (v) of all the pixels i to which we assigned w as the background

value. Then we normalize the outcome, thus attaining a unique non-parametric ensem-

ble probability density function (that is a relative histogram) pd fw(v) for each grey level
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w, that is the sCNM. Finally, by extracting a lower and an upper percentile (perclow
w and

percup
w , respectively) with fixed ranks from each pd fw(v), we also build a deterministic

CN model (dCNM).

2.1.3 Experimental Results

In order to validate the model and the method we conceived, we show how for a given

imaging device the extracted CN models are strongly scene-independent. In fact, if

the noise for a pixel depends significantly on other factors apart from the brightness

level of that pixel (e.g., on the pixel position in the image or on the brightness level

of the pixel’s neighbors), inferring the CN models from training sequences of different

stationary scenes would give rise to remarkable dissimilarities among the models them-

selves. In particular, in figure 2.1 we show the results for four test sequences (S1, S2, S3

and S4) acquired with a Sony DCR-TRV900E and sampled in progressive scan mode

at 12,5 Hz at a resolution of 720x576. Figures 2.1(a,d,g,j) show a sample frame for

each test sequence. We have chosen two indoor (S1 and S2) and two outdoor (S3 and

S4) sequences in order to represent very different lighting conditions. The CN models

extracted for the four sequences are shown as well. In particular, figures 2.1(b,e,h,k)

depict the statistical CN models, that is the 256 probability density functions represent-

ing the CN distribution for each grey level. Figures 2.1(c,f,i,l) show the deterministic

CN models, that is the 256 couples of lower and upper percentiles. The strong similar-

ity of the inferred deterministic CN models allow to assess the validity of the proposed

CN model extraction approach. Finally, we can say that a “black-box” modeling of the

imaging system together with a non-parametric form of the noise model and a fully

automatic procedure to extract the model itself give rise to a really “general-purpose”

approach.

2.2 Background Initialization

The background subtraction technique relies on the feasibility to have a reliable back-

ground model at disposal along the processing stage. Hence, the background model has

to be initialized and then updated. As far as the background model initialization is con-

cerned, some algorithms ([39],[33]) infer the model by assuming to have a bootstrap

sequence free of moving objects at disposal. These methods fail when the area being

monitored can not be easily controlled, so that a sequence of background frames can

not be acquired. As for the methods dealing with the presence of moving objects, they

can be divided into two main classes: the “blind” and the “selective” methods. The

formers generate a background model for each pixel by means of temporal statistics

computed using the whole time series of the pixel intensities. These background sta-
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(c) S1: dCNM
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(f) S2: dCNM

(g) S3: sample frame
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(i) S3: dCNM

(j) S4: sample frame
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(l) S4: dCNM

Figure 2.1: Camera noise model extraction results for four test sequences.

tistics may be “dirty”, by retaining information not just about the background process

but also about some possible foreground processes due to the moving objects covering

the pixel along the bootstrap sequence. On the contrary, the selective approaches try

to isolate the background process for each pixel, thus computing “clean” background

statistics. Moreover, as for the selective methods a further distinction can be done

between the temporal and the spatio-temporal methods. The formers extract the back-

ground model for each pixel by using just the intensities assumed by the pixel itself.
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The latters exploits also spatial information, that is the values of other pixels (only the

neighbors or even all the pixels) in the image.

As for the blind methods, in [36] the authors vote the temporal mode as the back-

ground value for each pixel, implicitly assuming that the background value will be

more frequent than any other possible foreground value. The temporal median is used

in [16], based on the assumption that the background at every pixel will be visible

more than fifty percent of the frames during the bootstrap sequence. Although the

blind methods are very efficient, in case of sequences containing many moving objects

they need a great number of bootstrap frames to extract a reliable background model.

As regards the selective temporal methods, in [19] a two-stage algorithm is used

to generate the background model. The first stage extracts a temporary background

by means of a median filter applied to a bootstrap sequence of several seconds. The

second stage uses that background for detecting reliable background regions where to

extract the clean statistics to be used for generating the final background model. This

method is similar to our approach, but it requires a much longer bootstrap sequence

(more than 10 seconds). The authors in [35] propose a single-stage algorithm, based

on a simple background detection consisting of a temporal frame difference followed

by a morphological opening. As soon as a pixel is detected as belonging to the back-

ground, its value is voted as the final background value. The method is efficient and

needs a low number of bootstrap frames, but it easily includes in the background model

the pixel intensities due to the foreground objects. In [28] the “adaptive smoothness

method” is presented. It finds intervals of stable intensity for each pixel, then uses

a heuristic which chooses the longest and most stable interval as the one most likely

representing the background process. This approach is effective, but it requires a quite

long batch processing of the bootstrap sequence. In [26] a running mean and variance

for each pixel are incrementally computed over the bootstrap frames. When the vari-

ance drops below a predefined threshold, the pixel is considered stable and the mean is

voted as the background value. The method is quite efficient, but stationary foreground

objects can be easily included in the background model. In [12] the temporal evolu-

tion of each pixel intensity is modeled by means of a HMM. The parameters of each

HMM are inferred by using a standard Baum-Welch procedure, then are used to build

the background model for each pixel. The method is effective, but the computational

burden of the training procedure leads to a long batch processing phase.

As for the selective spatio-temporal methods, in [2] the author presents a single-

stage approach based on the Bayes theory. It performs a background detection by using

a simple temporal frame difference. It exploits spatial information, in fact the informa-

tion about the whole reliable background regions are used to update the likelihood-

based background model of each pixel. In case of slow moving objects this method
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can include in the background model the foreground pixel intensities, thus requiring a

long bootstrap sequence. In [18] the authors isolate the background process by means

of a two-stage algorithm performing a batch processing of the bootstrap sequence. The

first stage works in the time domain, locating for each pixel all the time intervals of

stable intensity. The second stage exploits spatio-temporal information for choosing

the time interval most likely representing the background process. In particular, the

optical flow in the neighborhood of the pixel is computed for each bootstrap frame.

Then, from the chosen time interval the background model is extracted . This method

is effective, but the optical flow computation make it less efficient than all the previous

approaches. In [27] a two-stage algorithm is presented, called “ComMode” (Competi-

tive Mode Estimation) by the authors. As well as in [18], the first stage uses temporal

information and detects the time intervals of stable intensity for each pixel. To this

purpose, a region growing algorithm in the time domain is used. The second stage ex-

ploits spatial information to choose the best time interval. In particular, a competitive

spatial propagation of the clusters (called “modes”) detected in stage 1 is performed

until stability is reached (5-10 iterations). Finally, for each pixel the temporal mean of

the chosen cluster is voted as the background value. The approach is effective, but as

well as the ones in [18] and [28] it requires a long batch processing of the bootstrap

sequence.

We propose a novel selective spatio-temporal approach which allows to generate a

reliable deterministic model of a stationary background by using a bootstrap sequence

of few seconds where moving objects can also be present. By performing a sequential

processing of the frames of the sequence, it aims to be efficient and effective. The

algorithm works with pixel-wise temporal statistics and consists of three subsequent

stages.

2.2.1 The Multi-stage Background Initialization Algorithm

The deterministic background model is generated by means of a three-stage algorithm.

The first two stages isolate the background process, thus voting the temporal median

as the good background value. In the third stage a model of the imaging system noise

is inferred by applying the algorithm presented in Sec. ?? to the background process

statistics computed in the second stage. Then, the noise model is used to complete the

background model generation. We divide the bootstrap sequence into three consecutive

time (frame) intervals I1 = [t0; t1], I2 = (t1; t2] and I3 = (t2; t3], each one correspond-

ing to a different stage. While t1 and t2 are fixed (we use t1 = 10, t2 = 50), t3 varies

depending on the number of frames necessary to complete the background model ini-

tialization. The algorithm relies on a background that must be stationary along the

bootstrap sequence. In figure 2.2(a) we show a frame of a sample 8-bit grey level
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bootstrap sequence, while figures 2.2(b,c,d) depict the backgrounds output of the three

stages.

(a) sample sequence (b) output of Stage 1

(c) output of Stage 2 (d) output of Stage 3

Figure 2.2: Subsequent steps of the background initialization algorithm.

Stage 1: rough background

We extract a temporary rough background to be used in the further stage. To this pur-

pose, we try to isolate the stationary background process for each pixel by performing

a rough background detection for each frame in I1. In particular, the background re-

gions are detected by means of a simple temporal two-frame difference with an a priori

fixed threshold T1, spatially (over the different pixels) and temporally (over the differ-

ent frames) constant. To improve the reliability of the detected background regions, we

aim at minimizing the number of false negatives among the changed pixels by using a

low value for T1 (we use T1 = 10, which is a low value even for low-noise cameras)

and by performing a series of morphological operations on the computed binary image.

In particular, we use an initial size-filtering operator (area-opening) followed by a mor-

phological closing with a kernel of size 3x3 and by a filling. Hence, for each pixel i we

compute the selective absolute temporal histogram H I1
i

i by using just the sample values

assumed in the set of frames I1
i ⊆ I1 in which i has been detected as a background

pixel. Finally, we vote the selective temporal median medI1
i

i as the background value



TEMPORALLY ADAPTIVE CHANGE DETECTION 25

for each pixel i:

B̂r
i = medI1

i
i (2.8)

This could be a rough background because of the rough background detection em-

ployed (the temporal two-frame difference suffers of well known limits).

Stage 2: good background

To compute more reliable background process statistics, for each frame in I2 we per-

form a background subtraction with the background just extracted by using a threshold

T2 = T1/
√

2. Then, we apply the same morphological operations used in stage 1, thus

identifying more reliable background regions where to infer the new background sta-

tistics. In particular, as well as in the previous stage we compute for each pixel i the se-

lective absolute temporal histogram H I2
i

i by using the sample values assumed in the set

of frames I2
i ⊆ I2 in which i has been detected as a background pixel. If card(I2

i ) ≤ Cerg

(we use Cerg = 20), i is marked as an “unreliable” pixel and a background value will

be inferred in stage 3. On the contrary, the computed statistics are regarded as reliable

and the selective temporal median medI2
i

i is voted as the good background value:

B̂g
i = medI2

i
i (2.9)

Stage 3: background completion

To extract a background value for the “unreliable” pixels, the model of imaging system

noise is inferred by applying the algorithm presented in Sec. ?? to the selective back-

ground process statistics computed in Stage 2. Then, this model is used to complete

the background model generation as follows. The CN allows to identify time (frame)

intervals of stationary intensities (i.e. grey level variation can be explained well by the

noise model). In fact, a necessary condition for a pixel intensity to be stationary is that

it is affected by the variations due just to the CN. Therefore, if the measured distribution

of these variations computed around a central real value V matches with the distribu-

tion of the inferred dCNM corresponding to the integer grey level [V], the pixel can

be considered stationary. Hence, for each “unreliable” pixel i, we search incrementally

for the first time (frame) interval Istat
i ⊆ I3 of stationary intensities having a sufficient

length in terms of frames (card(Istat
i ) > Cstat, we use Cstat = 10). To this purpose, for

each pixel we use a FIFO queue to store the last Cstat sample intensities and at each

new frame t ∈ I3 we compute the distribution of the variations of the intensities in the

queue using the computed median medIstat
i

i as the central value. To perform a simpler

matching operation, we extract a lower and un upper percentile from the distribution,

thus comparing them with the ones in the dCNM corresponding to the integer grey

level [medIstat
i

i ]. If they match, the computed median is voted as the background value



26 CHAPTER 2

and the pixel i is removed from the “unreliable” pixels set. The algorithm stops when

the percentage of the number of “unreliable” pixels in respect of the total number of

pixels either decreases below a predefined threshold or becomes stable.

2.2.2 Experimental Results

To test the proposed approach, we have compared its performance with the ones of two

different selective spatio-temporal background generation algorithms. In particular, we

have chosen the methods proposed in [2] and in [18]. We have run the algorithms on

several sequences, having different amounts of motion. Figure 2.2.2 shows a sample

frame for each of the two test sequences (S1 and S2) chosen to outline the results.

They have been taken by a static CCD camera, sampled in progressive scan mode at

(a) S1: a sample frame (b) S2: a sample frame

Figure 2.3: A sample frame for each of the two test sequences.

12,5 Hz at a resolution of 320x240. The sequences represent approximately the same

background scene but are characterized by an increasing amount of motion, given by

the number of persons walking in the scene (two and three, respectively). Since we

want to compare the algorithms on the basis of the quality of the estimated background,

we need a ground truth and a function to compute the distance from that ground truth.

Ground truth and distance function

To generate a reliable ground truth for the generated backgrounds, we have taken the

test sequences so that they contain two different subsequences. The former, that we call

the truth subsequence, consists in an interval of frames IT representing the background

scene free of moving objects. The latter, namely the estimation subsequence, is the

actual test sequence on which the algorithms will be run and consists of a different

interval of frames IE imaging the same background scene but in which moving objects

can be present. From the truth subsequence, for each pixel i we compute the relative

temporal histogram hIT

i . The set of all these histograms represents the ground truth.

Figure 2.4(a) shows the ground truth for a sample pixel.
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Figure 2.4: Ground truth and distance function for a pixel.

In order to define the distance function, from the truth subsequence we extract also

the temporal median medIT

i , the temporal minimum mIT

i and the temporal maximum

MIT

i for each pixel i (in figure 2.4(b) and in expression 2.10 we drop the superscript

IT ). Hence, we define a local distance di which represents a measure of the distance

between the ground truth of the pixel i, that is the histogram hIt

i , and the background

value B̂i estimated for the same pixel by the background generation algorithm. It is a

piece-wise linear continuous function, represented in figure 2.4(b) for the same sample

pixel of figure 2.4(a) and mathematically defined as follows:

di(B̂i)=



















































































1 if B̂i∈A1

1 − (1−α)(B̂i−mi+∆)
∆

if B̂i∈A2

α − α(B̂i−mi)
medi−mi

if B̂i∈A3

0 if B̂i=medi

α − α(B̂i−medi)
Mi−medi

if B̂i∈A4

1 − (1−α)(Mi+∆−B̂i)
∆

if B̂i∈A5

1 if B̂i∈A6

(2.10)

where α and ∆ are a priori fixed parameters having the same value for all the pixels (we

use α = 0.6 and ∆ = 10) and Ai, i = 1, · · · , 6 are the six pieces (intervals) the function

domain is divided into (figure 2.4(b)). Then, we define the global distance D of the

estimated background from the ground truth by the following simple expression:

D =
∑n

i=1 di

n
(2.11)

where n is the total number of pixels. While the meaning of the global distance is clear,

representing a simple averaging of all the local distances, it is worth spending some

words about the choice of the local distance function. The quality criteria that drove

this choice is based on the idea that the background will be used to detect foreground

points by thresholding the absolute difference between the current pixel intensity and
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the estimated background value. Since the median of a random variable X is the sta-

tistical estimator X̂ that minimizes the expected value of the absolute error |X − X̂|,
the median of the ground truth histogram for a pixel i is the best value a background

generation algorithm can estimate for that pixel (di(B̂i) = 0). In fact, it allows the

use of the lowest threshold in the background differencing stage, thus minimizing the

false negatives due to the possible camouflaging between the foreground objects and

the background. As for the rest of the function, we assign the same maximum distance

(di(.) = 1) to all the values differing more than a fixed parameter ∆ from the ground

truth minimum mi (A1) or maximum Mi (A6). In other words, we consider all these val-

ues equally wrong with reference to the background differencing stage. If we consider

the ground truth as a perfect estimate of the background model to be generated, a value

∆ = 0 could be used. Nevertheless, this is not the case, mainly for two reasons: firstly,

the truth and the test subsequences are temporally deferred, secondly, the ground truth

is inferred from a finite number of sample background values. Hence, the parameter ∆

defines a sort of tolerance area around the ground truth (A2 ∪ A5). Finally, the para-

meter α manages the slope of the distance function in the ground truth (A3 ∪ A4) and

tolerance (A2 ∪ A5) intervals.

Algorithms comparison

For each test sequence, we have generated the ground truth from the truth subsequence,

then we have run the three compared algorithms, hereinafter denoted with A ([2]), B

([18]) and C (the proposed approach), on the estimation subsequence, thus attaining the

three different background models B̂A
i , B̂B

i and B̂C
i , respectively. Hence, we have com-

puted all the local distances by expression 2.10, thus attaining the three local distance

maps dA
i , dB

i and dC
i . Finally, by equation 2.11 we have computed the global distances

DA, DB and DC. Figure ?? depicts the background models and the local distance maps

generated by the compared algorithms. As for the maps, to visualization purposes we

have divided the range of the possible distance values into three classes, related to the

pieces of the distance function domain: C1 = A3∪medi∪A4 (low distances, azure-light

grey in the figure), C2 = A2 ∪ A5 (medium distances, green-grey) and C3 = A1 ∪ A6

(high distances, red-black). Table 2.1 shows the global distances. From these results

A B C

S1 0.32 0.24 0.13

S2 0.31 0.26 0.14

Table 2.1: Global distances.

we can state that the proposed approach generates a background model of higher global
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(a) S1: B̂A
i (b) S1: dA

i

(c) S1: B̂B
i (d) S1: dB

i

(e) S1: B̂C
i (f) S1: dC

i

Figure 2.5: Generated backgrounds and distance maps for S1.

quality in respect with the other compared methods.

2.3 Background Subtraction and Updating

Many temporally adaptive change detection algorithms based on background subtrac-

tion have been proposed in the past. In [39] the authors model the background process

for each pixel as a unique spatially independent stochastic gaussian process. The pa-

rameters of the gaussian distribution representing the ensemble pdf for each pixel are

initialized through a bootstrap sequence free of moving objects. While the mean is re-

cursively updated using a simple adaptive filter, the covariance matrix is extracted once

and for all, thus yielding a threshold that does not adapt to scene changes. Authors in
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(a) S2: B̂A
i (b) S2: dA

i

(c) S2: B̂B
i (d) S2: dB

i

(e) S2: B̂C
i (f) S2: dC

i

Figure 2.6: Generated backgrounds and distance maps for S2.

[15] model the pixel process instead of the background process only: a spatially inde-

pendent random process is used for each pixel, representing both the background and

the foreground processes due to moving objects and to cast shadows possibly covering

the pixel. A weighted sum of three gaussian distributions (background, moving objects

and shadow distributions) is used to model the ensemble pdf for each pixel. Neverthe-

less, the background is still represented by a unique gaussian random process for each

pixel. Background subtraction consists in choosing for each pixel which of the three

classes has the highest a posteriori probability. An incremental EM algorithm is used

to both learn and update the distribution parameters. A generalization of the previous

approach is presented in [37]. Each pixel is still modeled as a spatially independent

stochastic process having a mixture of K (a small number from 3 to 5) gaussian dis-
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tributions as ensemble pdf. At each time step and for each pixel, the distributions are

ordered according to the value of a ratio attained dividing the evidence of the distribu-

tion by its variance. The first B distributions are selected to represent the background

process and if the pixel value is not represented by any of these distributions it is clas-

sified as moving. The parameters of the mixture are updated by means of a simple

adaptive filter. In [22] authors improves the method outlined in [37]. In particular,

they present a different approach for initialising and for updating the parameters of the

mixture model, based on an incremental EM algorithm. A further generalization of the

previous approaches is outlined in [14]. The ensemble pdf of the spatially independent

stochastic process of each pixel is modeled in a non-parametric manner. At each time

step and for each pixel the ensemble pdf is non-parametrically estimated by means of

a gaussian kernel estimator function applied to a window of recent sample intensities

for that pixel. The model update consists in simply shifting the samples window. Even

though the methods described in [15]-[14] model the background more and more accu-

rately, their complexity make them not suitable to be used efficiently in many real-time

applications.

In this Section we show how the imaging system noise model extracted by the

procedure illustrated in Section 2.1 can be used to attain a background subtraction

approach which achieves a good trade-off between time performance and quality of

the detection. In fact, by scaling all the percentiles of the inferred dCNM by a unique

factor greater than one, we attain 256 couples of thresholds (tsin f (v) and tssup(v)), one

for each grey level v ∈ [0; 255], to be used in the background subtraction. In this

way we retain both the advantages arising from the simplicity of setting up a unique

threshold and the effectiveness of 256 different couples of thresholds. This results in an

effective yet efficient thresholding operation. In particular, for each pixel the algebraic

difference between the current frame Fi, j and the background Bi, j is computed. The

outcome is then compared with the couple of thresholds tsin f (v) and tssup(v), depending

on the current background value Bi, j, thus attaining a binary image Mi, j representing

the moving pixels:

Mi, j(t) =















1 if Fi, j(t) − Bi, j(t) < Ai, j(t)

0 if Fi, j(t) − Bi, j(t) ∈ Ai, j(t)
(2.12)

where Ai, j = [tsin f (Bi, j(t)); tssup(Bi, j(t))].

The deterministic background is updated by a simple and efficient adaptive recur-

sive filter:

Bi, j(t + 1) = (1 − α)Bi, j(t) + αFi, j(t) (2.13)

where α ∈ [0; 1] represents the adaptation rate.



32 CHAPTER 2

2.3.1 Experimental Results

Tests were performed on several 8-bit grey level sequences representing typical sur-

veillance scenes, taken by a single stationary CCD camera and sampled at 25 Hz at a

resolution of 320x240. The target PC is an AMD Athlon MP 1800+, 1 GB RAM. The

experimental results we accomplished assess both the efficiency and the effectiveness

of our algorithm. As for the effectiveness, we stated that our method acts as we apply

256 couples of different thresholds, one for each grey level. As one could infer, it is

impracticable such an experiment, therefore we will assess the effectiveness by show-

ing the capability of our algorithm to detect moving pixels in situation of camouflage

between the background and the moving objects. The results of our algorithm run on

four test sequences are shown in figure 2.7. The attained change masks are very accu-

rate, thus validating the proposed approach. As regards time performance, our method

reveals to be very efficient, working off-line at 40 fps.

2.4 Considerations

The presented background subtraction algorithm, as well as all the algorithms based on

a continuously updated background model, has two problems:

a- a blind or a selective background updating procedure has to be chosen. If a blind

procedure is chosen, slowly moving objects may be included in the background

model. On the contrary, false changes due to disturbance factors may be contin-

uously detected, since they can not be absorbed in the background model.

b- the background model adaptation rate must be chosen accurately. However, it

always represents a trade-off between the ability of the updating procedure to

adsorb false changes and the risk to include foreground objects in the background

model

However, sudden changes of pixel intensities due to disturbance factors can not be dealt

with successfully by this class of background subtraction algorithms.



TEMPORALLY ADAPTIVE CHANGE DETECTION 33

(a) background (b) background

(c) change mask (d) change mask

(e) change mask boundaries (f) change mask boundaries

Figure 2.7: The change detection results.



34 CHAPTER 2



Chapter 3

Disturbance Factors Invariant
Change Detection

In this chapter we present a change detection algorithm which is very different from the

one presented in chapter 1. In fact, detection of changes in a pixel is not performed by

computing a distance between the measured current intensity and a temporally adap-

tive statistical model of the scene background appearance at the same pixel. Instead,

classification of a pixel as changed or unchanged is carried out by comparing the mea-

sured intensities of a patch of pixels (around the considered one) in the current frame

with the intensities of the same patch in the background image. In particular, based

on an accurate investigation of the possible disturbance factors effects on the image

intensities, a Maximum-Likelihood isotonic regression procedure is proposed to detect

changes.

The chapter is organized as follows. In section 3.1 the problem of change detection

for disturbance factors invariant approaches is defined and formalized. An accurate

investigation of the possible effects of disturbance factors on the measured intensities

is carried out in section ??. The proposed algorithm is presented in section 3.3. Exper-

imental results are discussed in section ?? and conclusions are drawn in section 3.5.

3.1 Problem Definition and Formalization

Let us consider two grey level images captured at different times by the same station-

ary camera. To the purpose of detecting changes, we can identify the images as the

background B and the currently processed frame F (figures 3.1(a,b)):

B, F : D 3 p = (i, j) 7→ g = B, F(p) ∈ R (3.1)

35
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It is worth pointing out that the images have a common domain D ⊂ Z2 and a common

range R ⊂ Z since they are acquired by the same imaging device. Moreover, since the

device is stationary a common pixel in the two images measures the radiance of the

same portion of the scene. Let p = (i, j) be a pixel and P(p) a connected domain patch

(i.e a connected set of pixels) containing p:

p ∈ P(p) ⊂ D (3.2)

Although what we are going to say is valid for a generic patch, for the sake of simplic-
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Figure 3.1: Domain patch (a,b), range patches (c,d) and 2-dimensional representation of the

features vector f = (X,Y) (e) for a sample semantically unchanged pixel in two images of the

same scene taken at different times.



DISTURBANCE FACTORS INVARIANT CHANGE DETECTION 37

����������	�
���
�� �	��
����������	��� ����������	�
���
�� �	��
�������	���������

�

��

�������	���
���
����	��������	���	�����
����	�����	�

����
������������������� ��������

�

�

�

�� ��

Figure 3.2: Domain patch (a,b), range patches and 2-dimensional representation of the features

vector f = (X,Y) (c) for a sample semantically changed pixel.

ity let us consider a symmetric p-centered square patch of odd side s pixels:

P (p = (i, j)) = (pz = (k, l) : i−∆ ≤ k ≤ i+∆, j−∆ ≤ l ≤ j+∆, z = 1, . . . ,N) (3.3)

where ∆ = s−1
2 and N = s2 is the number of pixels contained in the patch. In fig-

ures 3.1(a,b) a 3× 3 square patch P for a sample pixel is pointed out in the background

and the current frame images, respectively. Let B(P) and F(P) be the range patches

induced by P on B and F, that is the set of intensities assumed by the images in the

pixels of the patch (figures 3.1(c,d), on the left):

B, F(P) = (gz = B, F(pz), pz ∈ P, z = 1, . . . ,N) (3.4)

To simplify notations, hereinafter we denote the range patches as follows:

B(P) = X = (x1, x2, . . . , xN) F(P) = Y = (y1, y2, . . . , yN) (3.5)

where the pixels are taken in lexicographical order, as shown in figures 3.1(c,d), on the

right.
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To detect scene changes occurring in a pixel p of the current frame F, a typical

disturbance factors invariant change detector exploits just the information contained in

X and Y. In other words, information about the temporal dynamics of pixel intensi-

ties is neglected. Typically, the binary change mask C is computed by thresholding a

particular function measuring the dissimilarity between X and Y:

C(p) = t (d(X,Y)) =















1 if d(X,Y) > T

0 otherwise
(3.6)

The problem can be formalized into a binary classification framework. The N-dimensional

vectors X and Y can be merged into a 2N-dimensional features vector f :

Z
2N ⊃ F 3 f = (X,Y) = (x1, y1, . . . , xN , yN) = (P1, . . . , PN) (3.7)

where F is the features space and Pi = (xi, yi) denotes a point in a 2-dimensional

representation of the features space, as shown in figure 3.1(e). On the basis of f a pixel

has to be classified into one of the two following classes:

C: a local scene change has occurred. As an effect, a local image change has oc-

curred as well (∃i : xi , yi);

U: no local scene change has occurred. As a consequence, no local image change

has occurred (xi = yi ∀i) or a change has occurred due to disturbance factors

(∃i : xi , yi).

It is worth pointing out that a scene change always yields an image change but the

observation of an image change does not allow to abduct a scene change as the certain

cause. In fact, disturbance factors (e.g. scene illumination changes, imaging system

noise, dynamic adjustments of the imaging system parameters) can yield changes of

pixel intensities even stronger than those produced by scene changes. In figure 3.1(e) a

2-dimensional representation of the features vector f for the sample patch P is given.

A quite strong image change occurs (some of the points Pi lie quite far off the bisector

b of the quadrant), but the imaged scene portion is clearly unchanged. In fact, the

image change is due to a variation of the scene illumination. Figure 3.2(c) shows the

features vector for a different patch of pixels (figures 3.2(a,b)). A remarkable image

change occurs as well, but in this case it is due to both the illumination change and the

presence of the person.

Therefore, the dissimilarity function of expression 3.6 can not be too ”simple” since

it must be able to discriminate between intensities variations due to disturbance factors

and intensities variations due to scene changes. For example, by using the well known

SSD (Sum-of-Square-Differences) function:

d(X,Y) = SSD(X,Y) =
N

∑

i=1

(xi − yi)2 (3.8)
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a bad discrimination is obtained. In the 2-dimensional representation of f (figures 3.1(e)

and 3.2(c)), the SSD function is equivalent to the sum of the square vertical distances

di of the points Pi from the bisector b of the quadrant (figure 3.2(c)). It is quite clear

by looking at figures 3.1(e) and 3.2(c) that a good discrimination in the features space

F between the features vectors of semantically changed and semantically unchanged

patches is not possible by means of the SSD dissimilarity function.

A clear statistical formalization of the problem is worth to be carried out. To the

purpose, let us formalize the binary classification problem into a Bayesian framework.

The Bayes MAP (Maximum A Posteriori) decision rule is the following:


























p(U | f ) < p(C| f ) ⇒ C

otherwise ⇒ U
=⇒



























p( f |U)p(U) < p( f |C)p(C) ⇒ C

otherwise ⇒ U
(3.9)

where p(C | f ) and p(U | f ) are the posterior class probabilities, p(C) and p(U) the prior

class probabilities, p( f |C) and p( f |U) the features vector likelihoods. Dividing both

sides of the expression by p( f |C)p(U) (which is a positive number) and by noticing

that p(U) = 1 − p(C), we attain the likelihood ratio formulation:
































p( f |U)
p( f |C)

<
p(C)

1 − p(C)
⇒ C

otherwise ⇒ U
(3.10)

The right-hand side of expression 3.10 allows to set a spatially (across different pixels

in a given frame) and temporally (across different frames in a given pixel) adaptive

threshold for the decision rule, based on the prior probability of the considered pixel

(patch) in the current frame to be the image of a semantically changed scene portion,

p(C). This prior could be set by exploiting temporal (e.g. prediction of objects position

by tracking) and/or spatial (e.g. statistical morphology) information. However, here we

are interested in change detectors which exploits just the information contained in the

features vector f , so we assign equal prior probabilities to the classes (p(U) = p(C) =

0.5), thus attaining a ML(Maximum Likelihood) classification rule:
































p( f |U)
p( f |C)

< 1 ⇒ C

otherwise ⇒ U
(3.11)

Unfortunately, a statistical characterization of the likelihood p( f |C) is in general un-

feasible. In fact, p( f |C) represents the probability of observing the measured features

vector f given that a foreground object is covering the patch. But, unless a priori

assumptions are made about the appearance (e.g., colour and orientation) of objects

entering the scene, a local scene change does not yield a statistically predictable pat-

tern in the features space. On the contrary, the likelihood p( f |U) (i.e. the probability

of observing the features vector f given that only disturbance factors are acting in the
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considered patch) can be characterized once the classes of disturbance factors to be

considered are chosen and their effects in the features space are made clear. Therefore,

without the above-mentioned prior assumptions about the foreground objects appear-

ance, from a statistical point of view the change detection problem consists in testing

the hypothesis that just disturbance factors are acting in the pixels of the considered

patch. In particular, a test statistics S depending on the likelihood p( f | U) has to be

chosen, so that change detection is carried out by a thresholding of the statistics. Within

this statistical framework, the change detection rule of expression 3.6 becomes:

C(p) =















1 if S(p( f |U)) > T

0 otherwise
(3.12)

In the next Section we show how disturbance factors yield a recognizable pattern in the

chosen features space.

3.2 Disturbance Factors

Figure 3.3 shows a model of the imaging process for two images of the same scene

captured at different times (t1→ I1; t2→ I2) in which just disturbance factors are acting.

We give here the definition of two important radiometric quantities:

- radiance: emitted energy (from a source or a surface). In particular, it is the

power emitted from a unit area of the surface in a specified direction per unit

solid angle (measured in Wm−2sr−1);

- irradiance: incident energy (upon a surface). In particular, it is the power falling

upon a unit area of a surface (measured in Wm−2).

When dealing with electromagnetic radiations in the visible spectrum (visible light),

radiance and irradiance are also called luminance and illuminance, respectively. Scene

illuminance Qt(p) is the power of light incident at time t upon the patch of the scene

surface S (p) imaged by the pixel p. It is worth pointing out that we are assuming that

no semantic change occurs in the scene (i.e. just disturbance factors act), hence all the

quantities related to scene surface physical properties can be assumed to be constant in

time, thus dropping the subscript t. Light incident on the surface patch S (p) is reflected,

so that the incoming scene illuminance Qt(p) is transformed into the outgoing scene

radiance Lt(p), as shown in figure 3.3(a). This process follows a generic reflectance

model r which can be expressed as follows:

Lt(p) = r (Qt(p),m(p), g(p)) (3.13)

where m(p) denotes a set of local physical properties of the surface patch (e.g. material,

roughness) and g(p) a set of geometrical properties related to the reciprocal position of
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Figure 3.3: Model of the imaging process for two images of the same scene captured at different

times.
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light source, surface patch and observer (i.e. the considered pixel). It is worth noticing

that, for a given pixel (surface patch), a variation of scene radiance can occur only as

a consequence of a variation of scene illuminance. In fact, all the other quantities in

equation 3.13 are related to surface patch physical and geometrical properties, which

are assumed to be constant in time. Various reflectance models have been proposed

in the field of computer vision. In general, they can be divided into two main classes:

the physical models and the geometrical models. The physical models use electro-

magnetic wave theory to analyze the light reflection phenomenon. It is a very general

approach, since it can describe reflection from almost every type of material and sur-

face. However, physical models are often inappropriate for use in machine vision as

they have functional forms which are very difficult to manipulate. On the other hand,

geometrical models are derived by just analyzing the surface and illumination geom-

etry and have simpler functional forms. One of the most commonly used reflectance

models is the Phong model ([34]). This model takes into consideration both the diffuse

(Lambertian) and the specular reflection. Moreover, ambient light is accounted for.

According to this model, we can say that scene irradiance (illuminance) is mapped into

scene radiance by a locally order-preserving transformation.

By passing through the imaging system optics, the scene radiance Lt(p) is trans-

formed into the image irradiance Et(p), that is the amount of light incident at time t

on the pixel p of the capturing system image plane (figure 3.3(b)). Simple geometrical

considerations allows to formalize the transformation as follows:

Et(p) =
(

cos4α(p)
f 2

)

·
(

πd2
t

4
∆t

)

· Lt(p) = k(p) · et · Lt(p) (3.14)

where α(p) is the angle between the direction of the principal ray incident on p and

the optical axis of the imaging system lens (it just depends on the pixel position), f

is the focal length (we assume fixed focal length), dt is the lens aperture diameter (it

may vary along time) and ∆t is the exposure time, that is the time per frame the image

detector is exposed to the incoming light (it may vary along time as well). Hence, the

quantity k(p) depends on the pixel position but it is constant in time. On the contrary,

the quantity et, which is called the exposure of the imaging device, is global to all the

pixels in the frame, but it may vary along time due to Auto-Exposure (AE) mechanisms

of the device.

As shown in figure 3.3(c), image irradiance Et(p) is processed by the imaging sys-

tem electronics and transformed into the ideal noiseless (we will consider noise as a

separate effect) discrete image intensity Ĩt(p) (that is, apart from noise, the pixel grey

level we take as input in our algorithms) by a transfer function ht, commonly called

camera transfer function:

Ĩt(p) = ht (Et(p)) (3.15)
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The camera transfer function is a characteristic of each particular imaging system de-

vice. In general, it can be assumed spatially invariant. In other words, at a given time

t equal values of image irradiance incident on different pixels are mapped by ht to

the same image intensity. On the contrary, the camera transfer function is in general

time-variant. In fact, mechanisms of dynamic adjustment of the transfer function para-

meters (e.g. auto-gain control, AGC) are often present in modern cameras. Although

the transfer function is in general non linear, at a given time it is always monotonic

non-decreasing.

Finally, the measured image intensity It(p) is affected by noise. In fact, the imag-

ing process is inherently affected by various sources of noise (e.g., shot photon noise,

thermal noise, read-out noise and quantization noise). However, to change detection

purposes this noise can be modeled as an additive statistical disturb nt(p) affecting the

output ideal noiseless image intensity Ĩt(p), as shown in figure 3.3(d):

It(p) = Ĩt(p) + nt(p) (3.16)

The overall imaging process can thus be formalized as follows (equations 3.13,3.14,

3.15, 3.16):

It(p) = Ĩt(p) + nt(p) = ht

(

k(p) · et · r
(

Qt(p),m(p), g(p)
)

)

+ nt(p) (3.17)

In case that no scene change occurs, considering a pixel p at two different times t1 and

t2 an image (intensity) change occurs if:

I1(p) , I2(p) (3.18)

The causes of this change are the disturbance factors, which can be derived from equa-

tion 3.17:

Q1(p) , Q2(p) : change of the scene illuminance (illumination);

e1 , e1 : change of the imaging system exposure;

h1 , h1 : change of the imaging system transfer function;

n1(p) , n2(p) : statistical fluctuation of intensity due to noise.

Actually, we are not just interested in the effects of disturbance factors on the inten-

sity measured in a pixel. In fact, we aim at investigating if and how the effects of

disturbance factors can be expressed by a relation r1→2 between the intensities of the
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pixels in a common domain patch P of the two images I1 and I2, captured ”before” and

”after” the action of disturbance factors (figure 3.3(e)). In other words, we look for a

subsetD of the features space F which is able to delimitate all the disturbance factors

effects. Apart from noise, which will be dealt with in the next section, we can say that

disturbance factors yield an order-preserving (i.e. monotonic non decreasing) relation

between the ideal noiseless intensities of the pixels in a common domain patch. In fact,

the overall imaging process transformation (equation 3.17) from the incoming scene

illuminance to the ideal noiseless image intensity is order-preserving, since it is the

composition of an order-preserving scene illuminance to scene radiance transformation

(equation 3.13, under the Phong reflectance model), a linear (order-preserving) scene

radiance to image irradiance transformation (equation 3.14, imaging system optics)

and an order-preserving image irradiance to image (noiseless) intensity transformation

(equation 3.15, imaging system transfer function). By considering two pixels p1 and

p2 at times t1 and t2, we can write:














(

Ĩ1(p1) − Ĩ2(p1)
)

· (Q1(p1) − Q2(p1)) ≥ 0
(

Ĩ1(p2) − Ĩ2(p2)
)

· (Q1(p2) − Q2(p2)) ≥ 0
(3.19)

By assuming a smooth variation of the scene illumination, we can write:

(Q1(p1) − Q2(p1)) · (Q1(p2) − Q2(p2)) ≥ 0 (3.20)

Finally, from expressions 3.19 and 3.20:

(

Ĩ1(p1) − Ĩ2(p1)
)

·
(

Ĩ1(p2) − Ĩ2(p2)
)

≥ 0 (3.21)

That is, the relation between intensities of corresponding pixels of two images taken at

different times is order-preserving.

3.2.1 Imaging Process Noise

Differently from the other disturbance factors, noise inherently affects the imaging

process. Even when all is stationary, the measured image intensities are affected by

a statistical error due to noise. For this reason, in every change detection algorithm

noise must be accounted for and more or less accurately modeled. As stated before,

imaging process noise can be modeled as an additive statistical disturb affecting the

output image intensity (equation 3.16). As far as the noise probability distribution is

concerned, different choices are possible depending also on how the change detection

algorithm will use the distribution. For example, the non-parametric modeling we pre-

sented in Chapter 2 is useful for a change detector that exploits the distribution just

to extract the threshold for the change mask computation. On the contrary, a change

detector that performs a Maximum Likelihood regression to test the hypothesis that a
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pixel is changed or unchanged needs a parametric distribution. In practice, for distur-

bance factors invariant change detectors, the most common assumption is that noise

affecting a pixel p at time t is zero-mean gaussian:

nt(p) ∼ N
(

0, σ2
t (p)

)

(3.22)

As a consequence, the measured image intensity It(p) is a gaussian random variable as

well, with the same variance of the noise and with mean equal to the ideal noiseless

image intensity Ĩt(p):

It(p) ∼ N
(

Ĩt(p), σ2
t (p)

)

(3.23)

Let us now consider the features vector f , which is the input to our change detection

problem. We are interested in the noise affecting all the pixel intensities both in the
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Figure 3.4: Features vector f = (X,Y) for a sample pixel.

background B (figure 3.4, on the left) and in the current frame F (figure 3.4, on the

right). To this purpose, let f̃ = (x̃1, . . . , x̃N , ỹ1, . . . , ỹN) be the ideal noiseless features

vector. According to the assumptions made so far, the distributions are:

xi ∼ N
(

x̃i, σ
2
B(i)

)

yi ∼ N
(

ỹi, σ
2
F(i)

) (3.24)

where the subscripts B and F indicates a time (i.e. the times at which the background

and the current frame images were captured) and the index i denotes a pixel position in

the patch. It is reasonable to assume that noise affecting image intensities is white in

the spatial as well as in the temporal domain. Namely, noise affecting a pixel at a given

time is independent from noise affecting the same pixel at a different time and from

noise affecting different pixels at the same time. Hence, the probability distribution of

the entire 2N-dimensional features vector f is multi-variate gaussian:

f ∼ 1
(2π)N/2Σ1/2 exp

(

− 1
2

(

f − f̃
)>
Σ−1

(

f − f̃
) )

(3.25)
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with diagonal covariance matrix Σ:

Σ =



























































σ2
x(1) 0 · · · 0

0 σ2
y(1)

...
. . .

...

σ2
y(N) 0

0 · · · 0 σ2
y(N)



























































(3.26)

In this formulation, the variance of the noise depends both on time and on the pixel

position. This is the most complete and effective formulation. in fact, actually the

noise varies from pixel to pixel in a given frame and from frame to frame in a given

pixel. However, to use this formulation is unfeasible in practice, since an estimation

of the noise variance should be performed at each capturing time and for each pixel.

The opposite solution, that is the simpler and less effective, consists in assuming a

variance which is constant in time and space. In other words, the variance is the same

for all the pixels in all the frames. This assumption is quite far from reality. However,

it has the advantage that the value of the variance could be estimated once and for

all at the beginning of the elaboration. We chose an intermediate solution, based on

the assumption that noise affecting a pixel p at time t just depends on the pixel ideal

noiseless image intensity Ĩt(p):

σ2
t (p) = σ2

(

Ĩt(p)
)

(3.27)

This assumption is the same we used in Chapter 2 to infer a non-parametric model of

the noise. After the estimation of a probability distribution for noise affecting each

possible ideal noiseless intensity, a couple of percentiles was extracted from each dis-

tribution. Here, the same algorithm can be used to estimate the parametric model of

equation 3.27. In fact, we just have to compute the variance of each distribution instead

of extracting the percentiles. It is worth pointing out that this model yields a variance

which varies with time and space (through the variation of pixel intensities), but the

estimation is computed once and for all by processing a short bootstrap sequence.

Based on equations 3.25, 3.26, 3.27, the probability distribution of the features

vector f can be written as:

f ∼ 1

(2π)N/2 ΠN
i=1

(

σ(x̃i)σ(ỹi)
) e
−1

2

∑N

i=1

(xi − x̃i)2

σ2(x̃i)
+

(yi − ỹi)2

σ2(ỹi) (3.28)

If the background image is just a frame captured when the scene was free of foreground

objects, the above equation holds. In fact, it relies on the assumption that pixels in the

current frame and pixels in the background image are affected by the same ”amount”

of noise, given by the noise model of equation 3.27. In particular, the algorithm used to
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infer the model yields a model for the noise affecting a raw frame. However, sometimes

the background image is estimated through a statistical elaboration of a sequence of

frames (e.g., by a temporal averaging of pixel intensities). In general, the higher is the

number of frames used to infer the background image, the lower is the ratio between the

noise variances of the background and the current frame, respectively. If the sequence

of frames used to generate the background is long (tens or even hundreds of frames),

the noise variance of the background can be reasonably set to zero, thus attaining the

following simplified features vector distribution:

f ∼ 1

(2π)N/2 ΠN
i=1

(

σ(ỹi)
) e
−1

2

∑N

i=1

(yi − ỹi)2

σ2(ỹi) (3.29)

In other words, the imaging process noise affects just the measured intensities of the

current frame (i.e. the yis), while the measured (i.e. estimated from a set of measured)

intensities of the background (the xis) are assumed to be deterministic and equal to the

ideal noiseless intensities:

xi = x̃i ∀ i = 1, . . . ,N (3.30)

3.3 The Proposed Algorithm

To apply the change detection rule of expression 3.12, at each time and for each pixel

we have to compute the likelihood p( f | U), that is the probability of observing the

measured (noisy) features vector f = (x1, . . . , xN , y1, . . . , yN) given that no local se-

mantic change is occurring, that is given that just disturbance factors are acting. But

we know that disturbance factors yield order-preserving relations between the ideal

noiseless intensities of pixels in a common domain patch. In other words, disturbance

factors yield an ideal (noiseless) features vector f̃ = (x̃1, . . . , x̃N , ỹ1, . . . , ỹN) belonging

to the subspace D of the features space F containing all the features vectors repre-

senting order-preserving relations. Hence, the likelihood p( f | U) can be regarded as

the probability of observing the noisy feature vector f given that the noiseless feature

vector f̃ belongs to the subspaceD:

p( f |U) = p( f | f̃ ∈ D) (3.31)

Practically speaking, the likelihood p( f | U) can be seen as a statistical distance be-

tween the measured features vector f and the subspace D characterizing the distur-

bance factors effects. To compute the projection of f onto D, f̃ML we can perform a

(non-parametric) Maximum-Likelihood isotonic regression ([1]). The inference prob-
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lem can be formalized as follows:

f̃ML = argmax p( f | f̃ )
f̃∈D

(3.32)

Once the projection f̃ML has been inferred, the likelihood p( f |U) can be obtained by

computing the statistical distance between f and f̃ML:

p( f |U) = p( f | f̃ML) (3.33)

By making p( f | f̃ ) as well as D explicit and by transforming likelihood maximization

into log-likelihood minimization, the inference problem of equation 3.32 can be written

as follows:

f̃ML = argmin
∑N

i=1

(xi − x̃i)2

σ2(x̃i)
+

(yi − ỹi)2

σ2(ỹi)f̃

(x̃i − x̃ j)(ỹi − ỹ j) ≥ 0

i, j ∈ [1,N] (3.34)

or as follows:

f̃ML = argmin
∑N

i=1

(yi − ỹi)2

σ2(ỹi)f̃

(xi − x j)(ỹi − ỹ j) ≥ 0

i, j ∈ [1,N] (3.35)

depending on the procedure used to generate the background model. If the background

is just an image of the scene free of foreground objects, the noise model of equa-

tion 3.28 can be used, thus attaining the inference problem of equation 3.34. If the

background model is extracted by a statistical estimation procedure, the problem of

equation 3.35 is attained by exploiting the noise model of equation 3.29. Both 3.34

and 3.35 are convex programming problems, since the cost function is quadratic and

the constraints are convex. In particular, 3.34 is characterized by 2N unknowns (i.e. the

entire ideal noiseless features vector f̃ = (x̃1, . . . , x̃N , ỹ1, . . . , ỹN)) and
(

N
2

)

constraints.

On the other hand, 3.35 is characterized by N unknowns (i.e. just the half of the ideal

noiseless features vector f̃ corresponding to the pixel intensities in the current frame

Ỹ = (ỹ1, . . . , ỹN)) and (N − 1) constraints.

Hereinafter, we assume that the background model is generated by an estimation

procedure and take into consideration the problem of equation 3.35. It is a classical

isotonic non-parametric regression problem, that can be solved by an O(N) iterative

algorithm, called Pool Adjacent Violators Algorithm (PAVA) ([1]). To illustrate the

algorithm, let us consider a sample 8-dimensional measured (noisy) features vector

f = (X,Y) = (x1, . . . , x4, y1, . . . , y4) corresponding to a 2 × 2 domain patch, as shown

in figure 3.5. We denote as f o = (Xo,Yo) = (x1
o, . . . , x4

o, y1
o, . . . , y4

o) the features

vector attained by ordering the X vector components and shuffling the Y components

accordingly, as shown in figure 3.5. The problem of equation 3.35 can be written as
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Figure 3.5: Range patches and features vector 2-dimensional representation for a sample 2 × 2

domain patch.

follows:

f̃ML = argmin
∑N

i=1

(

yo
i − ỹi

)2

σ2(ỹi)
i ∈ [1, 4]

f̃

ỹi ≤ ỹi+1 i ∈ [1, 3]

(3.36)

that is:

f̃ML = argmin
[

(240 − ỹ1)2

σ2(240)
+

(110 − ỹ2)2

σ2(110)
+

(185 − ỹ3)2

σ2(185)
+

(10 − ỹ4)2

σ2(10)

]

f̃

(ỹ1 ≤ ỹ2) ∧ (ỹ2 ≤ ỹ3) ∧ (ỹ3 ≤ ỹ4)

(3.37)

In practice, the points in the features vector 2-dimensional representation of figure 3.5

has to be ”moved” toward the ”nearest” isotonic configuration (i.e. a configuration

satisfying the constraints). In particular, since the measured pixel intensities in the

background are assumed to be deterministic the points can be moved just along the

y axis. Figure 3.6 shows the processing steps of the PAVA algorithm applied to the

sample problem of equation 3.37. Once computed the projection f̃ML, we use the cost

function in equation 3.37 as the statistics to be thresholded in the change detection rule

of expression 3.12. It is worth pointing out that this cost function is nothing else than

the Mahalanobis distance between the measured features vector f and the subspaceD
characterizing the disturbance factors effects.
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Figure 3.6: Steps of the PAVA algorithm for a sample features vector.

3.4 Experimental Results

Experiments have been carried out by comparing the detection results provided by the

proposed approach with the results attained by three different state-of-the art distur-

bance factors invariant algorithms ([41], [40], [32]). For simplicity, hereinafter we

denote by C, B and O the algorithms proposed in [41], [40] and [32], respectively.

Moreover, we denote our approach by P. In figures 3.7-3.18 the detection results are

shown. Each figure corresponds to a different sample frame. The first six frames be-

longs to an indoor video sequence, in which real and sudden scene illumination changes
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occur. The other frames belongs to an outdoor sequence, in which synthetic changes

have been created by applying non-linear intensity mapping functions. In each fig-

ure, the left column shows the results attained by using a 3 × 3 image patch as the

support for the algorithms decision rule. The results attained by a 7 × 7 support are

depicted in the right column. In each of the change masks brighter points represents

higher probabilities of change. In the second row of each figure we depict the com-

paragram JB̂ → F. The comparagram is nothing else than a generalization of the

features vector 2-dimensional representation used so far. Namely, the comparagram

is the 2-dimensional joint histogram of the intensities of corresponding pixels in the

two considered images (here, the background model B̂ and the current frameF). The

comparagram provides an indication of the intensity mapping functions between B̂ and

F.

By looking at the change masks, it is straightforward pointing out how the proposed

approach outperforms all the other algorithms in the outdoor sequence, where synthetic

non-linear intensity mapping functions have been applied. In the indoor sequence, just

O provides comparable results.

3.5 Conclusions

In this chapter we have presented a disturbance factors invariant single-view change de-

tection algorithm aimed at filtering-out most of the possible disturbance factors effects.

Apart from the imaging system noise which can be modeled as an additive gaussian

disturb, the global effect of disturbance factors on the measured intensities in a small

patch of pixels can be reasonably assumed to be a monotonic non-decreasing intensity

mapping function. Hence, a maximum-likelihood isotonic regression procedure can

be used to recognize and discriminate false appearance changes caused by disturbance

factors. We have carried out experiments by comparing the detection results provided

by the proposed algorithm with the ones attained by three state-of-the-art disturbance

factors invariant approaches. Apart from the quite rare case in which disturbance fac-

tors yield a linear local intensity mapping function, the proposed algorithm gives the

best results. As well as all the disturbance factors invariant change detection algo-

rithms, the proposed approach suffers of an inherent problem of missed detections in

correspondence of poorly structured patch of pixels. In the next chapter we present a

coarse-to-fine change detection approach, which solves this problem by using the algo-

rithm presented in this chapter at a reduced resolution level and a temporally adaptive

algorithm at the full resolution level.
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Figure 3.7: Comparative detection results.
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Figure 3.8: Comparative detection results.
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Figure 3.9: Comparative detection results.
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Figure 3.10: Comparative detection results.
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Figure 3.11: Comparative detection results.
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Figure 3.12: Comparative detection results.
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Figure 3.13: Comparative detection results.
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Figure 3.14: Comparative detection results.
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Figure 3.15: Comparative detection results.
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Figure 3.16: Comparative detection results.
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Figure 3.17: Comparative detection results.
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Figure 3.18: Comparative detection results.
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Chapter 4

Coarse-to-Fine Approach

In chapters 2 and 3 we have presented two very different single-view change detec-

tion approaches. Each of the approaches belongs to one of the two different classes of

change detection algorithms pointed out in chapter 1. In particular, a temporally adap-

tive approach is presented in chapter 2 and a disturbance factors invariant algorithm

is proposed in chapter 3. Though the presented approaches provide good detection

results, they suffer of different problems, which unfortunately are inherent to every de-

visable algorithm in their class. In particular, temporally adaptive approaches can not

deal effectively with sudden appearance changes of the scene background surface (e.g.

sudden scene illumination changes, dynamic adjustments of the imaging system para-

meters). On the other hand, disturbance factors invariant approaches are very robust

to sudden appearance changes, but they can detect semantic changes just in correspon-

dence of quite structured patch of pixels.

In this chapter we show how the two approaches can be used together in a coarse-

to-fine framework to attain better results. The basic idea consists in assigning to an

efficient preliminary coarse-level (reduced resolution level) the task to filter-out effec-

tively most of the possible false appearance changes, thus providing the subsequent

fine-level (full resolution level) with a coarse-grain reliable and tight super-mask of the

semantically changed pixels. In particular, we apply the disturbance factors invariant

change detection algorithm proposed in chapter 3 at a reduced resolution. In other

words, reduced resolution versions of the background model as well as of the currently

processed frame are computed, so that the background subtraction algorithm of chap-

ter 3 can be applied to these ”smaller” images. The attained coarse-grain super-mask

can be used at the fine-level for a threefold purpose. Firstly, it can act as a reliable

work-area for the fine-level detection, that has just to switch-off the pixels it detects as

unchanged. Secondly, the complement of these super-mask (that is a tight sub-mask

of the semantically unchanged pixels) can represent a just as reliable work-area for
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a robust selective background updating procedure at the fine-level (the fine-level is a

temporally adaptive background subtraction algorithm, hence a continuous updating

of the background appearance model has to be carried out). Finally, the complement

can be used also to infer information on global false appearance changes possibly oc-

curring in the scene, such as those due to global scene illumination changes and to

dynamic adjustments of the imaging system parameters, so that a tonal registration of

the fine-level current background can be carried out. In this way, the temporally adap-

tive change detection algorithm used at fine-level can face sudden appearance changes

as well.

The chapter is organized as follows. In section 4.1 the proposed coarse-to-fine ap-

proach is presented. Experimental results are discussed in section 4.2 and conclusions

are drawn in section 4.3.

4.1 The Proposed Approach

From the full resolution background B and the full resolution current frame F (fig-

ures 4.1(a,b)), the ρ-reduced resolution versions ρB and ρF (figures 4.1(c,d)) are ex-

tracted by a regular resolution reduction. Namely, both the full resolution images are

divided into equal non-overlapping square blocks of side length ρ pixels (in figure 4.1

a value ρ = 8 is used). To each block is assigned a unique grey level by computing the

median of the intensities of all the pixels contained in the block. Resolution reduction

by median intensity commutes with images transformations by order-preserving (i.e.

monotonic non-decreasing) intensity mapping functions. Hence, disturbance factors

yield local order-preserving intensity transformations at reduced resolution as well, so

that the assumption standing at the basis of the algorithm proposed in chapter 3 is

still valid. This is not rue, for example, by computing a resolution reduction by mean

intensity. Actually, the reduced resolution background is computed once and for all

at the beginning of the elaboration. In fact, differently from the temporal adaptive

approaches, disturbance factors invariant algorithms need not to update the appearance

background model. In particular, the reduced resolution background model is extracted

from the full resolution background model generated by the fine-level background ini-

tialization procedure. On the contrary, the reduced resolution current frame has to be

extracted at each processing step from the new incoming frame.

Hence, at each processing time we apply the algorithm presented in chapter 3 by

using the reduced resolution background and current frame, thus attaining a reduced

resolution change probability map (figure 4.1(e)). The map gives for each patch of

pixels in the reduced resolution domain, that is for each patch of blocks of pixels in the

full resolution domain, the statistical distance between the measured features vector
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Figure 4.1: Main processing steps of the proposed coarse-to-fine approach.

and the sub-space of all the isotonic features vectors. In other words, the map gives

for each block a measure of the probability to be the image of a semantically changed

scene background surface patch. The map is convolved by a 3×3 gaussian kernel, thus
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attaining a ”smoother” change probability map (figure 4.1(f)). The smooth map is then

thresholded (figure 4.1(g)), filled and dilated by a 3×3 binary kernel (figure 4.1(h)). As

pointed out in chapter 3, we are using a disturbance factors invariant change detection

algorithm which inherently suffers of the missed detections problem in correspondence

of poorly structured patch of pixels (here, of blocks of pixels). On the other hand, the

algorithm has very good detection capabilities in correspondence of structured patches.

In particular, foreground objects boundaries are detected in a quite continuous manner.

Here, we are applying the algorithm at reduced resolution. The effect is that the de-

tected coarse-grain objects boundaries are almost always continuous. In practice, at

reduced resolution the application of simple binary morphological elaborations allows

to solve the missed detections problem, so that reliable super-masks of the semanti-

cally changed pixels are very likely to be attained. Conversely, the complements of this

change masks are very likely to contain just semantically unchanged pixels. Therefore,

both in the full resolution background and in the full resolution current frame the pix-

els belonging to the complement of the currently computed coarse-grain change mask

are very likely imaging the scene background surface (figures 4.1(i,k)). In particular, a

common pixel in the background and in the current frame is imaging the same scene

background surface patch. Since the coarse-level detection we are using is very robust

to even very fast appearance changes of the background surface, as it is the case in fig-

ure 4.1, the complement of the computed coarse-grain change mask can be exploited

to ”understand” the effects of the occurring appearance changes before the fine-level

detection is performed. In practice, the measured intensities in the background and in

the current frame for all the pixels belonging to the complement can be ”compared”

to infer the intensity mapping function that best explains the appearance changes ef-

fects. In figure 4.1(j) we show the comparagram computed by using the background

and current frame intensities of all the pixels in the complement. The intensity mapping

function may be computed by a simple comparagram regression, after having assumed

a parametric functional form. To avoid arbitrary assumptions, we use an alternative

method, called histogram specification. In practice, the two cumulative histograms of

the intensities of the complement pixels in the background and in the current frame

are computed. The intensity mapping function is inferred by looking for the function

which best transforms the background histogram into the current frame histogram. In

figure 4.1(j) we show the intensity mapping function inferred by the histogram specifi-

cation procedure by drawing it on the comparagram.

Once the intensity mapping function has been computed, it can be applied to the

current full-resolution background model. In this way we perform a tonal registration

of the background ”toward” the current frame. What we are doing is filtering-out the

effects of the scene surface appearance changes. As a consequence, the subsequent
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fine-level will always have at disposal a tonally registered background model, even in

case of sudden changes. Moreover, since the coarse-grain change masks are very likely

a superset of the semantically changed pixels, just the foreground pixels in the coarse-

grain change masks have to be considered. In practice, for each of these pixels the fine-

level computes the background subtraction by comparing the intensities in the current

frame and in the registered background. In figure 4.1(l) we show the fine-level change

mask attained by applying the background subtraction procedure proposed in chapter

2. Figures 4.1(m,n) depict the final change mask, attained after a simple morphological

elaboration.

4.2 Experimental Results

We present the detection results of the proposed coarse-to-fine approach for two dif-

ferent sample frames, each one belonging to a different video sequence. In figure 4.2 a

sample frame of an indoor video sequence is taken into consideration. In particular, a

real scene illumination change (a scene darkening) is occurring, yielding a quite linear

intensity mapping function. In figure 4.3 a frame of an outdoor sequence is shown.

Here, a synthetic non linear intensity mapping function has been applied to the frame

before the elaboration. It is straightforward noticing how in both the cases the pro-

posed approach allows to attain quite accurate change masks. These results can be

attained neither by the temporally adaptive approach presented in chapter 2 nor by the

disturbance factors invariant algorithm proposed in chapter 3.

4.3 Conclusions

In this chapter we have presented a single-view change detection approach based on

a coarse-to-fine strategy. In particular, we have shown how a disturbance factors in-

variant approach and a temporally adaptive approach can be used together in a coarse-

to-fine framework to attain very good detection results. This approach allows to deal

effectively with all the disturbance factors yielding effects corresponding to global (i.e.

spatially invariant in the entire frame) intensity mapping functions. Actually, very lo-

cal false changes, such as those due to specularities and shadows cast by foreground

objects, can not be filter-out by the algorithm. In the next chapter, we show how a

multi-view change detection approach allows to face this challenging problem as well.
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Figure 4.2: Main processing steps of the proposed coarse-to-fine approach for a sample frame

of an indoor sequence in which a real scene illumination change is occurring.
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Figure 4.3: Main processing steps of the proposed coarse-to-fine approach for a sample frame

of an outdoor sequence in which a synthetic non-linear intensity mapping function has been

applied.
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Chapter 5

Multi-view Change Detection

By means of a coarse-to-fine strategy, the single-view change detection approach pre-

sented in the previous chapter allows to attain accurate change masks also in case that

most of the possible disturbance factors are acting. In particular, quite ”global” scene

illumination changes as well as all the possible disturbance factors due to the capturing

device (e.g. noise, AE, AGC, γ-correction) can be dealt with effectively by the pro-

posed algorithm. On the contrary, the effects of very local scene illumination changes,

such as those due to specularities and to shadows cast by foreground objects, can be

filtered-out neither by the disturbance factors invariant coarse-level nor by the tonally-

registered temporally adaptive fine-level. Indeed, specularities are inherently a very

hard-to-solve problem in change detection, since their effect is often very local and

strongly dependent on the scene surface physical properties. In other words, specu-

lar reflection is a complex phenomenon which yields hardly predictable effects on the

measured image intensities. This is even more the case for change detection from grey

level images, where no color information can be exploited to recognize specularities

effects. As regards shadows, many algorithms have been proposed aimed at detecting

and removing image changes due to shadows from single-view video sequences. Most

of them rely on photometric assumptions concerning the local effects of shadows on ra-

diance emitted by the scene surface, that is on the measured intensities. In this chapter

we present a multi-view change detection approach aimed at filtering-out all the local

false image changes by exploiting just a geometrical constraint.

The chapter is organized as follows. In section 5.1 the multi-view change detection

problem is defined and formalized. In section 5.2 the state-of-the-art in multi-view

change detection is outlined. The proposed algorithm is presented in section 5.3. Ex-

perimental results are discussed in section 5.4 and conclusions are drawn in section 5.5.
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5.1 Problem Definition and Formalization

At time t = t̄ , the input It̄ of a typical multi-view change detection algorithm is a

matrix of (T+1) · V different scene images, as illustrated in figure 5.1(a):

It̄ =













































I1
t̄−T I2

t̄−T . . . IV
t̄−T

...
...

...

I1
t̄−1 I2

t̄−1 . . . IV
t̄−1

I1
t̄ I2

t̄ . . . IV
t̄













































(5.1)

where V is the number of different view-points and (T + 1) is the number of dif-

ferent images taken as input for each view-point. In particular, each column Sv
t̄ =

(

Iv
t̄−T , . . . , Iv

t̄−1 , Iv
t̄

)>
represents a different input video sequence, that is it contains

a set of (T+1) scene images captured at different times from the same view-point. On

the other hand, each row Rt =
(

I1
t , I2

t , . . . , Iv
t

)

contains a set of V scene images

taken at the same time from different view-points.

At time t = t̄ , the output Ot̄ of a typical multi-view change detection algorithm is

in general a set of change masks, that is of binary images. In particular, three different

output types are possible:

o.1) the output consists of V different change masks, that is a change mask is com-

puted for each one of the original views (figure 5.1(b)):

Ot =
(

C1
t̄ , C2

t̄ , . . . , CV
t̄

)

(5.2)

o.2) the output consists of a single change mask, computed for one of the original

views, called the ”reference” or ”primary” view (figure 5.1(c)):

Ot =
(

Cr
t̄

)

r ∈ [1,V] (5.3)

o.3) the output consists of a single change mask, computed for a virtual view (fig-

ure 5.1(d)):

Ot =
(

CVt̄
)

(5.4)

In general, a multi-view change detection algorithm is a procedure aimed at com-

puting the output Ot̄ given the input It̄ :

Ot = CDMV(It) (5.5)

As regards the different types of possible procedures, we define:

c.1) temporal consistency constraint: the frames contained in a column of the input

matrix It̄ of equation 5.1 are images of the same scene taken at different times

from the same view-point;
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Figure 5.1: Typical input and outputs of a multi-view change detection algorithm (V = 3).

c.1) spatial coherence constraint: the frames contained in a row of the input matrix

It̄ of equation 5.1 are images of the same scene taken at the same time from
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different view-points;

By applying just the temporal consistency constraint, we perform V independent single-

view change detections, one for each different view-point. On the other hand, by ap-

plying just the spatial coherence constraint the simplest multi-view change detection

approach is attained. In practice, at each time t the output Ot is attained by processing

the row Rt, that is by comparing all the current simultaneous scene images captured

from different view-points. Finally, by applying both the temporal consistency and the

spatial coherence constraints, all the available information is exploited. Hence, this

is in theory the most effective approach. We present a multi-view change detection

algorithm of this type. In particular, we apply the temporal consistency constraint as

a first processing step by performing a single-view change detection in each original

view. Then, the spatial coherence constraint is applied by computing a ”fusion” of the

attained change masks in a virtual top-view.

5.2 Related Work

In [21] a ”lighting independent” multi-view change detection algorithm is presented.

Stationarity of the capturing devices as well as of the scene background surface geom-

etry is assumed, so that the geometric transformations warping one of the views (called

”primary” view) into all the other views (called ”auxiliary” views) can be computed

off-line. On-line, just the change mask in the primary view is computed. Moreover,

just the spatial coherence constraint is applied. In practice, at each time the color of

every pixel in the primary view is compared with the color of corresponding pixels

(through the geometric transformations) in the auxiliary views. If color is similar (ac-

cording to a simple metric consisting in the absolute value of the Euclidean distance),

the pixel in the primary view is marked as background; otherwise, it is marked as fore-

ground. This approach inherently suffers from both false and missed detections. False

detections (called ”occlusion shadows”) occur when a background pixel in the primary

view is occluded by a foreground object in the auxiliary view. Missed detections occur

when an evenly colored foreground object occludes a pair of corresponding pixels, for

color being very similar. The authors propose to filter-out false detections by using

more than two views (at least two auxiliary views) and ANDing the binary masks at-

tained by comparing the primary view to each of the auxiliary views. However, they

do not discuss how to deal with missed detections.

The work in [25] is aimed at improving the approach proposed in [21]. As in [21],

the change mask in the primary view is computed by just applying the spatial coherence

constraint. However, the following improvements are proposed:
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a) a slightly more complex and effective metric (i.e. a normalized color difference

averaged on a n × n neighborhood of pixels) is used to measure color similarity

between corresponding pixels in different views;

b) the occlusion shadows problem is addressed by a sensor planning perspective.

In particular, it is shown how false detections can be removed by using just two

views, provided that a suitable configuration of the capturing devices is adopted;

c) the missed detections problem is tackled as well. The particular sensors configu-

ration adopted to filter-out occlusion shadows yields missed detections localized

only at the lower portion of each detected foreground blob. However, a complex

and quite fragile algorithm is proposed to fill-in the possible missed detections.

In fact, for each foreground blob in the primary view detected by the spatial co-

herence constraint application, all the ”top-most” pixels along each epipolar line

passing through the blob bounding-box are identified. For each of these pixels,

the corresponding ”base-point” pixel is computed, that is the pixel lying below

on the ground plane. The computation is performed by an iterative search along

the epipolar line through the top-most pixel;

d) specularities tend to be removed as a side effect of the missed detections reduc-

tion algorithm explained in c).

Both the algorithms in [21] and [25] rely on the assumption that a patch of the

scene background surface yields a very similar color into simultaneous images taken

from different view-points (figure 5.2). If this is true, a total invariance to temporal

Figure 5.2: Sample patch of a scene background surface imaged simultaneously by different

view-points.

changes of the radiance emitted by the scene background surface (e.g. scene illumina-

tion changes, shadows) is achieved, since such changes will affect simultaneous views

in an identical manner. However, in practice this assumption may not be satisfied,

mainly for two reasons. Firstly, in case of non-lambertian surfaces the reflected light

intensity depends on the viewing angle (specular reflection). Secondly, dynamic ad-

justments of the capturing devices parameters (e.g. auto-gain and auto-exposure) may
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occur for different views at different times and by a different intensity mapping func-

tion. As for specularities, [25] can deal with this problem as a side effect of the method

used to reduce missed detections. Conversely, dynamic adjustments of imaging sys-

tems parameters cannot be handled inherently by neither [21] nor [25]. In turn, [21]

recommends explicitly to disable the auto-gain mechanism of the capturing devices.

However, to disable these dynamic adjustment mechanisms is a strong limitation in

many practical applications, especially as regards outdoor installations.

The most related work to the approach we are going to propose in this chapter is

that presented in [23]. It is focused on tracking but relies on multi-view change de-

tection as the first processing step. People moving on a ground plane (i.e. a planar

background surface) are tracked by their ground locations, that is the feet. At each

processing time, feet are detected by a multi-view change detection approach, that we

call here ”Change Maps Fusion” (CMF): the ground plane homographies warping a

reference view into each of the other views are inferred off-line. On-line, single-view

change detection is performed independently in each view to attain a change probabil-

ity map. To this purpose, a well-known background subtraction algorithm ([37]) based

on a statistical temporally adaptive background modeling by mixture of gaussians is

deployed. Hence, the computed change probability maps are warped in the reference

view by using the inferred homographies and then multiplied together, thus attaining

a ”synergy map”. It is easy to understand how this map gives for each pixel in the

reference view the probability to be the image of a scene background surface patch

(i.e. of the ground plane) for which the emitted radiance is changed (with respect to the

current appearance background model and according to the chosen single-view change

detection algorithm). Finally, the synergy map is thresholded. By this procedure, the

authors assume to detect just the ground plane locations of people, that is the feet.

Hence, feet are tracked in the reference view by a spatio-temporal clustering approach

(graph cuts). However, the proposed use of the CMF approach will inherently detect

as foreground not just the feet but also possible appearance changes of the scene back-

ground surface due to specularities and shadows, unless such changes are filtered-out

by the single-view change detection processes (indeed, this would not happen with the

approach used in [37]). Hence, detection of shadows or specularities in addition to feet

is likely to induce failures in the tracking algorithm proposed in [23].

5.3 The proposed algorithm

We assume a stationary scene background surface and stationary capturing devices.

Moreover, we consider a planar background surface (hereinafter, ground plane). Off-

line, for each original view v we infer the homography Hv warping each pixel (xv, yv)
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imaging a ground plane patch in the original view into the pixel (xt, yt) imaging the

same ground plane patch in a common virtual top-view T :

Hv : R2 3 (xv, yv) 7→ (xT , yT ) ∈ R2 Hv :































xT =
hv

1 · xv + hv
2 · yv + hv

3
hv

4 · xv + hv
5 · yv + 1

yT =
hv

6 · x
v + hv

7 · yv + hv
8

hv
4 · xv + hv

5 · yv + 1

(5.6)

where hv = (hv
1, h

v
2, . . . , h

v
8) is the homography parameters array. The inference is com-

puted by considering a set of N>4 chosen original view↔ top-view points correspon-

dences:
(xv

1, y
v
1) 7→ (xT

1 , y
T
1 )

(xv
2, y

v
2) 7→ (xT

2 , y
T
2 )

...

(xv
N , y

v
N) 7→ (xT

N , y
T
N)

(5.7)

and by solving the following over-determined system of linear equations:
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(5.8)

In particular, a simple least squares solution is computed as follows:

hv =
(

(Av)> · Av
)−1
· (Av)> · bv (5.9)

An input and output example for the homographies inference procedure is illustrated

in figure 5.3.

As far as the on-line elaboration is concerned (figure 5.4), at each processing time

t the temporal consistency constraint is firstly applied by performing a single-view

change detection independently in each original view. A set of V binary change masks

Cv
t , one for each original view v, is attained (figures 5.4(d-f)):

Cv
t = CDSV(Sv

t ) v = 1, 2, . . . ,V (5.10)

The spatial coherence constraint is then applied by projecting all the change masks

(actually, just the change masks portion inside the ground plane limits are projected)

into the virtual top-view, thus attaining a set of V top-view change masks Cv,T
t (fig-

ures 5.4(g-i)):

Cv,T
t = Hv (

Cv
t
)

(5.11)
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Figure 5.3: Off-line inference of the original views↔ top-view homographies

Hence, a common top-view change mask CT
t is attained by computing the intersection

of all the top-view change masks (figure 5.4(j)):

CT
t (p) =

∏V

v=1
Cv,T

t (p) (5.12)

The procedure outlined so far is very similar to the change maps fusion approach pre-

sented in [23]. The only difference is that change maps binarization is performed di-

rectly as a final processing step of the temporal consistency constraint application. On

the other hand, in [23] binarization is carried out in the virtual top-view after the spatial

coherence constraint has been applied as well. We can call change masks fusion this

slightly different approach and synergy mask the binary mask of equation 5.12. The

synergy mask is nothing else than a binary (i.e. thresholded) version of the synergy
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Figure 5.4: On-line main processing steps of the proposed multi-view change detection ap-

proach

map computed in [23]. In practice, the synergy mask contains the pixels characterized

by a high probability to be the image of a ground plane patch for which the emitted

radiance is changed (i.e. people feet as well as shadows cast by people on the ground
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plane). Now, we utilize the synergy mask in a ”dual” manner with respect to [23].

Instead of looking at the synergy mask as to a detection of just the foreground objects

ground locations (people feet), we consider it as a detection of just the false changes

due to variations of the ground plane emitted radiance (shadows). Hence, instead of

considering the synergy mask as the final output of the multi-view change detection,

we back-project the synergy mask into all the original views, thus attaining a set of V

original views synergy masks CT,v
t :

CT,v
t = (Hv)−1

(

CT
t

)

(5.13)

Finally, for each view v we filter-out the foreground pixels of the just computed original

view synergy mask CT,v
t from the previously computed original view change mask Cv

t ,

thus attaining a set of V final change masks Cv, f
t (figures 5.4(k-m)):

Cv, f
t (p) =















0 if CT,v
t (p) = 1

Cv
t (p) otherwise

(5.14)

Differently from [23], where the output is a single change mask in the virtual top-view,

we attain a set of V change masks, one for each different view.

The proposed approach is ”general-purpose”, in the sense that all the scene appear-

ance changes detected by the employed single-view change detection algorithm which

satisfy the spatial coherence constraint (i.e. which arise ”near” the ground plane in

a 3-dimensional sense) are filtered-out. In fact, no selectivity criterion is utilized in

the removing rule of expression 5.14. In practice, just a geometrical constraint is ap-

plied, without considering any photometric information. On one hand this approach is

general-purpose, but on the other hand a missed detections problem may arise due to

the following two causes:

a) part of the foreground objects ground locations (people feet) may be removed

together with the actual false changes (shadows) from the final change masks

(figure 5.4(k)). This is an inherent and easy to understand problem of the pro-

posed approach, since ground locations of foreground objects yield appearance

changes lying ”near” the ground plane (i.e. they satisfy the spatial coherence

constraint);

b) some ”off-ground” portions of the foreground objects may be removed as well.

This may occur for the original views in which the ground plane appearance

changes are covered by foreground objects (figure 5.4(l)). This is an inherent

problem as well. In general, the higher is the number of foreground objects

present in the scene, the higher is the probability of this problem to occur.

To face these two inherent problems, we propose a less ”general-purpose” removing

rule than the one in expression 5.14. We call this rule a ”shadows-focused” removing
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rule. In fact, we try to compute a selective removal of just the ground plane appearance

changes due to shadows. To this purpose, we exploit simple, well-known and com-

monly used photometric properties characterizing scene surfaces covered by shadows.

The basic idea is that the measured intensity of a pixel imaging a scene background

surface patch decreases according to a limited darkening factor d when covered by

a cast shadow, independently from the considered view-point. Hence, the selective

”shadows-focused” removing rule is the following:

Cv, f
t (p) =























0 if
(

CT,v
t (p) = 1

)

∧
(

dlow <
Fv

t (p)
B̂v

t (p)
< 1

)

Cv
t (p) otherwise

(5.15)

where dlow is the lower darkening factor assumed for shadows effect and Fv
t , B̂v

t are,

respectively, the current frame and the current background model used by the single-

view change detection algorithm in the original view v. In practice, for each view v

the final change mask Cv, f
t is not attained by filtering-out blindly all the foreground

pixels of the original view synergy mask CT,v
t from the original view change mask Cv

t .

Instead, just the foreground pixels satisfying the shadows photometric constraint are

removed.

5.4 Experimental Results

Experiments have been carried out by elaborating several multi-view input video se-

quences, all taken by the same outdoor multi-view installation. The installation consists

of three synchronized capturing devices imaging a common scene from very different

view-points. Here we present the detection results for four different capturing times

(i.e. for four different triples of simultaneous frames) of one of these sequences. In

figures 5.5-5.8 the on-line main processing steps of the proposed algorithm are shown

for each one of the four chosen capturing times. In particular, the results attained by the

general-purpose approach (blind removing rule in 5.14) are depicted. To point-out how

the shadows-focused approach (selective removing rule in 5.15) can improve the detec-

tion results, in figures 5.9-5.12 we directly compare the change masks attained by the

general-purpose and the shadows-focused versions of the proposed multi-view change

detection algorithm. In particular, a value dlow = 0.5 is used in the shadows-focused

removing rule.

5.5 Conclusions

In this chapter we have presented a multi-view change detection approach aimed at

being very robust to most of the possible disturbance factors. To this purpose, the task
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to filter-out the effects of ”global” false changes, such as those due to global scene illu-

mination changes or to dynamic adjustments of the capturing devices parameters (e.g.

AE, AGC and γ-correction) is assigned to a single-view change detection performed

independently in each original view (for example, by the algorithm presented in chapter

4). A very hard-to-solve problem in single-view change detection is the effect of local

changes of the radiance emitted by the scene background surface (e.g. changes due to

specularities and shadows cast by foreground objects). By applying the spatial coher-

ence constraint as a final processing step, the proposed multi-view approach filters-out

effectively all these local false changes, as pointed out by experiments. However, a

missed detections problem may arise, due to causes which are inherent to the proposed

algorithm. For this reason, a less general-purpose version of the algorithm has been

proposed, aimed at removing just local false changes due to shadows. Since the avail-

able sample multi-view sequences are all characterized by the presence of local false

changes only due to shadows, the shadows-focused approach yields better results than

the general-purpose approach.
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Figure 5.5: On-line main processing steps of the proposed multi-view change detection ap-

proach (general-purpose version) for frame 76.
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Figure 5.6: On-line main processing steps of the proposed multi-view change detection ap-

proach (general-purpose version) for frame 123.
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Figure 5.7: On-line main processing steps of the proposed multi-view change detection ap-

proach (general-purpose version) for frame 333.
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Figure 5.8: On-line main processing steps of the proposed multi-view change detection ap-

proach (general-purpose version) for frame 355.
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Figure 5.9: Comparison between the change masks attained by the general-purpose (center row)

and the shadows-focused (bottom row) versions of the proposed multi-view change detection

approach for frame 76 (top row).

Figure 5.10: Comparison between the change masks attained by the general-purpose (center

row) and the shadows-focused (bottom row) versions of the proposed multi-view change detec-

tion approach for frame 133 (top row).
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Figure 5.11: Comparison between the change masks attained by the general-purpose (center

row) and the shadows-focused (bottom row) versions of the proposed multi-view change detec-

tion approach for frame 333 (top row).

Figure 5.12: Comparison between the change masks attained by the general-purpose (center

row) and the shadows-focused (bottom row) versions of the proposed multi-view change detec-

tion approach for frame 355 (top row).
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Conclusions

This thesis deals with the development and evaluation of change detection algorithms

aimed at being robust to most of the possible disturbance factors arising in the typical

unconstrained environments concerned by the most common change detection appli-

cations (e.g. video-surveillance, traffic monitoring).

Two very different change detection approaches have been presented in chapters

2 and 3. The algorithm proposed in chapter 2 is a temporally adaptive method, that

is it relies on a statistical appearance model of the scene background surface which

has to be updated along time. As well as all the algorithms of this type, the proposed

approach yields accurate detection results in ”common” cases, that is when no sudden

appearance changes of the scene background surface occur. On the contrary, if these

changes occur a remarkable false detections problem unavoidably arises. The approach

presented in chapter 3 is a disturbance factors invariant algorithm. The classification

of each pixel of the current frame as changed or unchanged is carried out by exploiting

the information contained in a neighborhood of pixels. In particular, the hypothesis

that just disturbance factors are acting in the neighborhood is tested by a maximum-

likelihood isotonic regression approach. The background model has not to be updated

and disturbance factors are dealt with effectively. However, an inherent missed detec-

tions problem arises in correspondence of ”poorly structured” scene regions.

In chapter 4 we show how the two algorithms can be used together to attain a very

effective change detection approach. In particular, by using the algorithms within a

coarse-to-fine framework all the ”global” effects of disturbance factors are filtered-out

effectively. However, very local effects can not be dealt with by this approach.

In chapter 5 we propose a multi-view change detection, aimed at improving the re-

sults attained by the single-view coarse-to-fine approach, that is at filtering-out possible

local effects of disturbance factors, such as shadows and specularities. We show how

the application of the multi-view spatial coherence constraint as the final processing

91
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step (i.e. after the temporal consistency constraint) allows to remove quite effectively

this local false changes as well.

Depending on the single-view or multi-view available installation, the algorithms

presented in chapters 4 and 5 allows to attain accurate change masks. Hence, they can

be used as e reliable first processing step upon which higher level capabilities (e.g.

objects tracking, classification and behavior analysis) can be built.

Parts of the research results presented in this thesis have been published in [4], [3],

[8], [7], [6], [5], [24]. The other results will be the subject of future papers.
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