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Abstract 

 

The continuous advancements and enhancements of wireless systems are enabling 

new compelling scenarios where mobile services can adapt according to the current 

execution context, represented by the computational resources available at the local 

device, current physical location, people in physical proximity, and so forth. Such services 

called context-aware require the timely delivery of all relevant information describing the 

current context, and that introduces several unsolved complexities, spanning from low-

level context data transmission up to context data storage and replication into the mobile 

system. In addition, to ensure correct and scalable context provisioning, it is crucial to 

integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and 

modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and 

replicate context data on mobile devices. These challenges call for novel middleware 

solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of 

delivering relevant context data to mobile devices, while hiding all the issues introduced 

by data distribution in heterogeneous and large-scale mobile settings. This dissertation 

thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic 

approach to the design of such type of middleware solutions. We discuss the main 

functions needed by context data distribution in large mobile systems, and we claim the 

precise definition and clean respect of quality-based contracts between context consumers 

and CDDI to reconfigure main middleware components at runtime. We present the design 

and the implementation of our proposals, both in simulation-based and in real-world 

scenarios, along with an extensive evaluation that confirms the technical soundness of 

proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, 

namely disaster areas, smart campuses, and smart cities, to better remark the wide 

technical validity of our analysis and solutions under different network deployments and 

quality constraints. 

 
 
Keywords: Mobile Systems, Context Awareness, Context Data Distribution 

Infrastructure, Quality of Context. 
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1. Introduction 

The widespread adoption of wireless technologies and mobile devices is pushing 

toward the provisioning of Internet-based services in an ‘anytime and anywhere’ manner. 

Mobile users assume to be able to access their own full service set while freely roaming 

between different physical places, and potentially changing the wireless technology used 

to enable service provisioning. Among other typical mobile services, in the last two 

decades we witnessed the uprising of a new class of services, usually called context-aware, 

capable of adapting their own runtime behaviour according to current working conditions, 

such as computational capabilities of the mobile device, people co-located in the physical 

surroundings, and so forth [1, 2]. 

Although both the capacity of the wireless networks and the computational power of 

mobile devices are constantly growing, the development of context-aware services in 

large-scale mobile settings is still an extremely complex and challenging task. From the 

network viewpoint, the provisioning of context information introduces a management 

traffic strictly related with the number of roaming mobile devices. In addition, since 

device mobility can implicitly lead to frequent context changes, context-aware services 

potentially require a continuous delivery of context data to promptly trigger adaptations 

based on up-to-date and precise context information. At the same time, both the storage 

and the processing of large amounts of context data produced into the mobile system 

require extremely distributed and scalable architectures capable of efficiently dealing with 

CPU and memory constraints, especially for more limited mobile devices. Finally, such 

challenging issues become even more complex when we consider the introduction and the 

enforcement of agreed quality levels on context provisioning; above all, the emerging 

notion of Quality of Context (QoC) enables context producers and consumers to negotiate 

the quality of provisioned context data, as well as of the involved delivery process [3, 4]. 

To be more clear, in our opinion context provisioning in large-scale mobile systems 

has to deal with main issues that we group along three directions: 

 Heterogeneity and mobile device resource limitations - Future mobile systems 

feature extremely heterogeneous mobile devices, that are battery-powered and with 

tight CPU and memory constraints. Apart from local limitations, mobile devices can 

exploit heterogeneous wireless infrastructures with scarce bandwidth, that can also 

change according to the employed technology. In addition, even if modern devices 
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are equipped with several wireless interfaces, communication opportunities have to 

be carefully managed to prevent excessive battery consumption. 

 Context data management and delivery scalability - Large-scale mobile systems 

feature thousands of sensors that continuously produce new context data, with 

different expressiveness, data payload, and production rates, all strictly related with 

described context aspects. Sensors can be deployed either on mobile devices or on 

wireless fixed infrastructures; although the former case is appealing due to the direct 

provisioning of context, it leads to higher device costs. As the system scale grows, 

both context data storage and processing introduce a fundamental scalability 

bottleneck; similarly, context data distribution, both from fixed infrastructures to 

mobile devices, and vice versa, has to be properly tailored depending on available 

resources. 

 Quality-based context provisioning - Quality constraints, both on the context data 

and on the distribution process, have a fundamental role in order to prevent useless 

and noisy adaptations. Real-world sensors introduce errors due to physical 

limitations, and multiple context producers can create and inject conflicting context 

data into the system. Similarly, unreliable wireless infrastructures can result in 

partial and imprecise context provisioning due to both transmission delays and 

packet droppings. 

To address the above issues, several framework and middleware solutions have been 

proposed in the research literature. However, to the best of our knowledge, previous works 

primarily focused on local issues, such as efficient context representation and notifications 

to running services, while typically leaving out the great deal of complexity introduced by 

the provisioning of useful context data to roaming mobile devices. Hence, although most 

previous efforts presented interesting and valid solutions for the sake of local context 

provisioning, this thesis work is motivated by the fact that additional research is needed to 

enable scalable and quality-based context data delivery in large-scale mobile systems. 

Our dissertation addresses this lack by highlighting the main challenges introduced by 

context data delivery in mobile systems, and by proposing new architectural models, as 

well as design choices, for Context Data Distribution Infrastructures (CDDIs) with 

scalability and quality goals. One of the main thesis claims is that CDDIs have to 

opportunistically exploit any mobile device and all connectivity opportunities to reduce 

context data distribution overhead, while enforcing quality constraints in context 
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provisioning. With finer degree of details, CDDIs should adopt both heterogeneous 

wireless standards, e.g., IEEE 802.11 (WiFi) and Bluetooth (BT), and modes, i.e., 

infrastructure-based and ad-hoc, to increase system scalability at the communication layer. 

If correctly handled, the usage of mobile devices as context data carriers can greatly 

reduce runtime data traffic over more limited and expensive fixed wireless infrastructures, 

by granting mobile devices exchange data through ad-hoc wireless links. This also 

alleviates the context data storage burden as the CDDI can exploit the memorization 

resources available on the mobile devices. In addition to this major claim, and to make a 

very synthetic preposition, the manifold contributions of this thesis can be grouped in the 

following main areas: 

 The introduction of a new unifying logical model for CDDIs in large-scale mobile 

systems - The thesis proposes a high-level logical architecture, by detailing main 

modules with associated realization issues and design choices. We thoroughly 

evaluate different realization choices, while also analyzing the impact of network 

deployments on context data distribution functions. To better assess the validity of 

our logical model, we used it to classify the most important research works currently 

available in literature [5]. 

 The design and the implementation of different CDDIs, targeted for three different 

and significant case studies - By considering that network deployments greatly 

affect the realization of context provisioning mechanisms, we organize part of this 

dissertation along three main case studies: context-aware services for emergency 

response scenarios, context-aware services for smart university campuses, and 

context-aware services for smart cities. In this way, we aim to better highlight how 

the main CDDI mechanisms interact and are affected by network deployment. As 

the system scale grows, we will introduce and employ different context data 

distribution protocols and solutions, in order to keep on ensuring system scalability 

and quality-based constraints. 

 The implementation of the main CDDIs components, both on network simulators and 

on real testbeds - To assess the technical soundness of our proposals, we 

implemented the main mechanisms introduced by our CDDIs as software 

components. In particular, we provide 1) a simulator-based implementation, useful 

to validate distribution protocols in large-scale systems and with different mobility 

patterns; and 2) a real-world implementation, useful to test important performance 
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indicators, such as CPU and memory overhead, on real deployments. By jointly 

exploiting such implementations, we aim to better evaluate our solutions in large-

scale systems, while always considering the runtime overhead that such solutions 

would introduce in real deployments. 

 A thorough evaluation of the performance reached by proposed context data 

distribution protocols, based on both simulations and on-the-field prototyping - For 

each case study, we extensively evaluate the effectiveness and the efficiency of 

proposed context data distribution mechanisms. If useful, such evaluation will be 

carried out by exploiting both approaches of simulation-based and real testbeds 

results. 

The thesis is organized along eight main chapters divided in two main parts. Starting 

with the first part, Chapter 2 introduces useful background knowledge, by detailing main 

context definitions and categorizations, as well as quality constraints in context data 

delivery. Chapter 3 presents and discusses both the main issues and the design guidelines 

for CDDIs in mobile systems, and introduces important related works in order to better 

focus main gaps in the current research literature. Finally, Chapter 4 introduces our novel 

CDDI logical model, by also discussing main involved layers, possible design choices, and 

network deployments; in addition, it presents important differences with traditional data 

distribution mechanisms available in literature, so to better highlight the need of additional 

research in this area. 

After this first part, primarily focused on modeling CDDI requirements and providing 

usable and valid design guidelines, Chapter 5 enacts as glue between the two thesis parts, 

and details our main case studies, in order to clarify both the main issues introduced by 

adopted network deployment, and the principal solutions introduced to provision context 

information. 

Then, Chapter 6, Chapter 7, and Chapter 8 analyze the design and the implementation 

of real-world CDDIs. Chapter 6 presents our CDDI for emergency response scenarios, 

called Reliable and Efficient COntext-aware data dissemination middleWare for 

Emergency Response (RECOWER), while Chapter 7 focuses on university smart campuses 

to present our CDDI Scalable context-Aware middLeware for mobile EnvironmtS 

(SALES). Then, in Chapter 8, we focus on the realization of CDDIs for smart cities 

scenarios, by extending our distributed architecture with Cloud-based solutions for the 

sake of context processing. We remark that, although the presentation of our solutions is 

divided along these three chapters, solutions proposed in one scenario can be also adopted 
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in the other ones; this structure has been adopted for the sake of clarity, in order to present 

proposed solutions in the most appropriate scenario. 

Finally, Chapter 9 and Chapter 10 end this dissertation by highlighting main thesis 

findings and by detailing still open challenges and future research directions, so as to 

better remark the main contributions of our work.  
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2. Context-aware Services in Future Mobile Systems 

In the last few years, context-awareness, as the provisioning of the current execution 

context to the service level, has received an increasing attention, up to becoming a core 

feature of next-generation mobile networks. The capacity to gather and timely deliver to 

the service level any relevant information describing the provisioning environment, e.g., 

computing resources, current location, and user preferences, enables new compelling 

scenarios where services can self-adapt to ensure provisioning and improve user 

experience [1]. 

Much work has been done to introduce a unified definition of context awareness, 

capable of considering all the aspects useful to perform service adaptation [1, 2, 5, 6]. 

Unfortunately, such generalizations usually led to extremely broad definitions, difficult to 

apply and to manage in real-world scenarios, with the main outcome that, at the current 

stage, there is no widely accepted definition. At the same time, several research works 

pointed out the need of provisioning context to mobile devices with agreed quality levels, 

useful to ensure correct, timely, and meaningful adaptations. Also this area is 

characterized by contradictory and partial definitions, usually related with specific types of 

context-aware services [3, 4, 7]. 

Main goal of this chapter is to introduce all needed background material and to clearly 

state all main definitions used in the remainder of this dissertation, as well as addressed 

main deployment scenarios. Section 2.1 presents some examples that clarify the great 

potential of context-aware services in everyday life. Section 2.2 introduces the definition 

of context with its associated categorization, while Section 2.3 details the Quality of 

Context (QoC) notion. Section 2.4 presents the main peculiarities of next generation 

mobile networks, so to better justify the need of additional research in this area. Finally, 

Section 2.5 remarks the main motivations of this thesis work.  

2.1. Context-aware Services 

Context is a fundamental basic issue but also an intrinsic and hidden concept in our 

everyday life [1]. We continuously and implicitly process information coming from our 

own physical surroundings to automatically react and adjust our behavior. Even more, 

human beings are able to process complex and hidden context information, such as people 

mood and emotions, to adapt their own reactions, for instance, by reducing the pitch of the 
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voice, dynamically changing the distance with the interlocutor, and so forth. 

Context-aware computing research strives at bringing this awareness to the computing 

world. For instance, when applied to mobile systems, context awareness allows novel 

scenarios where services can dynamically adapt according to time-varying and 

unpredictable conditions, usually consequence of user mobility. To clarify the great 

potential of context-aware scenarios, let us introduce few examples. 

Every year, thousands of tourists visit the beautiful monuments in our city, Bologna; 

of course, tourists do not know the city center, and do not usually have easy ways to 

discover the most attractive locations to visit. Different tourists may rate attractions in 

different ways, depending on their historical background, and could be interested in 

different types of museum, monuments, etc. In this case, a context-aware tourist guide [8] 

would be extremely suitable to provide useful descriptions of the monuments, as well as 

ratings and comments left by previous tourists. Such a service can exploit both tourists and 

monuments profiles, as well as current localization information, to suggest downtown 

tours. In a similar way, it could exploit aforementioned context information to recommend 

close restaurants matching particular cuisine preferences. 

In addition, Bologna features the oldest university in the occidental world. Thousands 

of students are currently enrolled in the different degree courses offered by our university; 

they usually spend several hours in the university area, close to the city center, where most 

of the university buildings are located. In this case, smart campus services could greatly 

enhance the social experience of our students, for instance, by recommending social 

events of interest, possible friendships with students sharing common interests, and so on 

[9, 10]. In addition, our university hosts several exchange students that want to carry on 

abroad studies. Those students usually need some time to settle in our city since they do 

not know the university area and do not have acquaintances and friends. By using current 

localization information, a smart campus service could automatically guide them in 

Bologna downtown, so to find university buildings in an easy way. Also, by exploiting 

student and place profiles, it could suggest possible friendships with both Italian and other 

exchange students, so to ease integration processes with local people, social customs, etc. 

All above examples clarify the significance of context-aware services in mobile 

computing scenarios. Context can comprehend several and heterogeneous information, 

mainly used to characterize involved people and physical places in previous examples. It 

comes without saying it that additional context information, related to used computing 

devices and resources, are also extremely useful to tailor service provisioning and to avoid 
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user dissatisfaction, e.g., by avoiding the visualization of extremely complex and detailed 

web pages on a smartphone with a display of few inches. To settle the required 

terminology and clearly define the context information considered in mobile context-

aware scenarios, next section delves into context definition and classification details. 

2.2. Context Definition and Classification 

Context is now a very wide meaning word, that may also express several and different 

senses according to specific scenarios and authors. From a merely practical viewpoint, 

context identifies the aspects the designer considers useful to model the environment 

where a particular service is deployed and executed; such aspects are usually used at 

runtime to trigger appropriate service adaptations. With a more theoretical connotation, 

several authors in the past introduced their own context definition. 

To the best of our knowledge, the oldest and most referenced context definition for 

mobile computing scenarios has been presented in [1], where authors say that “Three 

important aspects of context are: where you are, who you are with, and what resources 

are nearby. Context encompasses more than just the user’s location, because other things 

of interest are also mobile and changing. Context includes lighting, noise level, network 

connectivity, communication costs, communication bandwidth, and even the social 

situation”. In [2], authors supply a broader definition, saying that “Context is any 

information that can be used to characterize the situation of an entity. An entity is a 

person, place, or object that is considered relevant to the interaction between a user and 

an application, including the user and applications themselves”. In [11], authors write that 

“elements for the description of this context information fall into five categories: 

individually, activity, location, time, and relations”. Finally, [6] defines context as a four-

dimensional space composed by computing context, physical context, time context, and 

user context. 

Although these definitions may seem different due to adopted viewpoints, they 

actually agree upon the main context aspects considered to trigger service adaptations. For 

the sake of clarity, in the remainder we adopt the context definition presented in [6] since 

capable of covering the main context aspects with a straightforward classification. In 

addition, it shares important similarities with the definition of [1], hence we can safely 

assume that it is overall well-accepted by the research community. Next subsections 

clarify each single context dimension, namely computing context, physical context, time 

context, and user context, by also introducing examples of useful runtime adaptations. 
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2.2.1. Computing Context 

The computing context dimension deals with all those technical aspects related to 

computing capabilities and resources. It has a two-fold aim since it captures both local 

device aspects, such as network connectivity and bandwidth, display size and resolution, 

etc., and distributed ones, such as printers and servers in physical/logical proximity. 

First, the computing context captures all those heterogeneities usually present in 

mobile environments. Traditional context aspects, such as display size and network 

bandwidth, are already widely used in commercial products. For instance, both Google 

and Facebook dynamically adapt to the current characteristics of mobile devices, Web 

clients, and connectivity; also, several video streaming services, such as Youtube, adapt 

video quality to device capabilities, mainly screen resolution, to save computational 

resources. For the sake of battery preservation, in [12], the authors introduce a new 

algorithm to reduce LCD backlight, while accounting for image distortion; the proposed 

schema considers the peculiarities of the specific LCD adopted by the device, as well as of 

displayed images, to reach a good tradeoff between image quality and battery savings. 

Focusing on context-aware Web services, in [13] authors present a new conceptual 

framework, made by a modeling language and automatic code generation tools, to ease the 

design, the implementation, and the deployment of context-triggered adaptation actions. 

Second, computing context also takes into account the different resources that a 

mobile device encounters while roaming, such as printers, displays, connectivity 

opportunities, etc. [1]. In Always Best Connected (ABC) systems [14, 15], mobile devices 

melt together signal quality, battery status, pricing, and additional configuration policies, 

to select the best connectivity opportunity between available ones; connectivity selection 

is usually performed by using computing context aspects. Similarly, services that exploit 

close computing resources are attractive to enable impromptu collaborations between 

mobile users and devices, with no need of user-initiated reconfigurations. A smart printer 

service for university campuses can automatically find and redirect print commands to the 

closest printer, so to avoid students roaming in university buildings to find available 

printers [1]. 

2.2.2. Physical Context 

The physical context dimension accounts for all those aspects that represent the real 

world, and that are usually accessible by means of sensors deployed in the surrounding 

environment. Absolute device and user locations are notable basic examples of physical 
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context; other interesting aspects include people speed, traffic condition, noise level, 

temperature, and lighting data. Physical models and laws, such as cinematic laws useful to 

predict future physical states of the mobile system, belong to this context dimension. We 

remark that, due to imprecise sensing techniques and stochastic nature of physical 

processes, context aspects belonging to such context dimension are usually very prone to 

errors; hence, particular attention has to be paid in triggering service adaptations, for 

instance, by applying low-pass filters and forecasting techniques to received context data, 

in order to prevent wrong adaptations [3]. 

For the sake of clarity, let us introduce few examples where the physical context 

dimension is considered. First and foremost, traditional navigation systems adopted in 

modern cars use current location information, provided by the Global Positioning System 

(GPS), to compute route directions to the final destination; they surely represent the most 

common example of context-aware service based on physical context. Staying with 

vehicular scenarios, [16] proposes a context-aware solution for intelligent traffic lights 

that, based on current traffic jamming conditions, adapts red/yellow/green times to 

improve road condition. Similarly, many solutions use attributes belonging to this context 

dimension to perform environmental monitoring, such as monitoring systems that use 

video sensors deployed on vehicles to detect plate numbers of suspicious cars and prevent 

collisions with wild animals [17]. Finally, considering more local adaptations, in [18] 

authors present an adaptive method to scale LCD backlight according to the lighting 

conditions of the surrounding environments, so to preserve device battery. 

2.2.3. Time Context 

The time context mainly deals with the time dimension, such as time of a day, week, 

month, and season of the year, of any action performed into the system. Actions can be 

referred either to real-world, e.g., human beings, or computing actors, e.g., software 

agents. We remark that these context aspects can be of two main types, namely sporadic 

and periodic. Sporadic events are used to model unexpected actions triggered occasionally, 

even only once. Instead, periodic events model actions that present themselves in a 

repeated and predictable way. Of course, more complex time context events, for instance, 

based on event sequence, number of events in a particular time period, and so forth, are 

possible and should be properly supported by the system [2]. We also recall that the 

implementation of particular primitives is not straightforward in distributed systems as 

time synchronization between different devices is usually not enforced. 
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To consider real service scenarios, a sporadic event can be associated to a temporary 

network congestion that automatically triggers an adaptation action meant to reduce the 

quality of the video streaming provisioned on the mobile device. A periodic event can be 

consequence of an activity detection system that, for instance, automatically switches off 

the cell phone ringing tone every day, from 11pm to 7am, to avoid waking up users. 

Finally, complex time events can take into account, for instance, repeated network 

congestion occurrences; in this case, by monitoring congestion frequency and inter-arrival 

times, a context-aware service can decide to switch between different connectivity 

opportunities for the sake of user satisfaction. 

2.2.4. User Context 

The user context dimension contains high-level context aspects related to the social 

dimension of users, such as user’s profiles describing main interests and cuisine 

preferences, people located nearby, current social situation, and so forth [19]. Above all, 

let us remark that we are considering distributed mobile systems where users and devices 

interact among themselves, hence, as also noticed by [20], each node context contains 1) 

an individual dimension, descending from its own egocentric view (e.g., user profile and 

preferences); and 2) a social dimension, descending from the awareness of being part of a 

whole system (e.g., people in physical proximity and current social situation).  

Several systems already adopt this kind of context aspects to perform automatic 

recommendation and situation-based adaptation. For instance, in [21], authors exploit co-

localization patterns to infer common interests between users and to recommend new 

friendships; social events are described through profiles, later used by the system to 

understand if two events, although different, share commonalities in addressed topics. 

Similarly, [22] presents a situation-aware service that, by aggregating context information 

coming from running services, physical sensors deployed in the environment, and people 

profiles, understands if a work meeting is taking place; in that case, the service can 

automatically switch off the cell phone ringing tone until the end of the work meeting. 

2.3. Quality of Context (QoC) 

Aforementioned context aspects are widely used in literature to adapt services at 

runtime, so to fit the current execution environment characteristics and to make them 

satisfactory for final users. Notwithstanding the huge potential of these scenarios, 

important challenges have to be carefully addressed during the real-world realization of 
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context-aware services. Among others, the quality of the context data is fundamental since 

erroneous data can misguide service adaptations; at the end, such a reduced usability can 

mine the widespread adoption of this class of services since users will be upset by wrong 

and unexpected reconfiguration actions. 

Above all, it must be noted that some intrinsic errors, associated with sensing 

techniques, cannot be avoided; some context aspects, such as lighting condition and 

temperature of a room, are acquired by physical sensors that introduce approximations due 

to limited sensor resolution. Similarly, context data produced by logical sensors, such as 

user profiles fetched by a database, can present partial and incomplete information, as well 

as errors when produced by reasoning techniques; hence, even if usually more polished 

than physical ones, these context data also need proper management mechanisms to assess 

their quality. 

Consequently, the notion of Quality of Context (QoC) – defined as the set of 

parameters expressing quality requirements and properties on context data (e.g., 

precision, freshness, trustworthiness, …) – is fundamental to control and manage all the 

possible context inaccuracies [3, 4]. Several research works analyzed the usage of QoC-

based mechanisms useful, for instance, to solve conflicts between context data produced 

by different sensors [23]. Although it is widely recognized that QoC-based management 

mechanisms are essential in real-world context-aware scenarios, current research works 

present conflicting definitions and objectives, usually tailored for specific services and 

types of context data. Hence, the remainder of this section aims to clearly state the notion 

of QoC adopted in this dissertation, as well as the main quality attributes considered in 

both context data and distribution process. 

2.3.1. Definition and Motivations 

Similarly to context awareness in itself, QoC is an extremely blurred concept with 

several meanings. Some works have already studied both context quality parameters and 

their effects on context data distribution; following a temporal order, we now briefly detail 

the principal works in this area, starting from the oldest one. 

In [3], the authors define QoC as “any information that describes the quality of 

information that is used as context information. Thus, QoC refers to information and not 

to the process nor the hardware component that possibly provide the information”. This 

definition decomposes the quality problem along three main directions, namely 1) the 

quality of the physical sensors; 2) the quality of the context data; and 3) the quality of the 
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delivery process; according to authors’ definition, QoC deals with only the second 

dimension. More specifically, quality of context data contains the following main 

attributes: 1) precision, to describe how exactly the provided context information 

represents the reality, so to account for sensor resolution; 2) probability of correctness, to 

denote the probability that a context information is correct, and not wrong due to internal 

sensor problems; 3) trustworthiness to rank if the context data producer can be trusted; 4) 

resolution, to denote the granularity of the information in terms of spatial/temporal 

constraints; and 5) up-to-dateness, to account for context information aging. Although 

trustworthiness could seem overlapped with probability of correctness, it accounts for a 

different aspect: trustworthiness is used by a context producer to rate the quality of the 

other entity that originally produced the context information, while probability of 

correctness is attached by the context producer itself according to its own local beliefs. 

Moving toward more recent definitions, in [7], authors introduce a QoC notion based 

on four main parameters: 1) up-to-dateness, to deal with context aging; 2) trustworthiness, 

to indicate the belief we have in context correctness; 3) completeness, to account that 

context data could be partial; and 4) significance, to express the absolute priority of 

context data. Apart from some similarities with the classification proposed in [3], here 

authors introduce two new attributes, namely completeness and significance, and present 

algorithms to solve context data conflicts at runtime; a conflict resolution policy exploits a 

weighted combination of quality parameters, in order to select the data to be saved [23, 

24]. In addition, the significance parameter introduces connotations related to the context 

data delivery, thus being in contrast with the definition of [3]. 

Furthermore, [25] exploits a standard ISO vocabulary for measurements to define a 

new QoC framework. Authors critically analyze the ISO standard to understand what 

attributes can be adopted in real-world context-aware computing systems. First of all, the 

authors argue against the usage of the accuracy attribute as a means to rate how close a 

measurement is to the real value. In fact, the automatic evaluation of the accuracy by a 

context producer is unfeasible since the context producer should know the real value of the 

context information itself; of course, since there is no practical way to have such 

information, accuracy cannot be ever automatically calculated by the system itself. 

Instead, as suggested by the adopted ISO vocabulary, authors consider precision to rank 

how the results from measurement sensors are repeatable; for instance, although a 

temperature sensor can be inaccurate by reporting higher temperature values, if such 

values always present the same error in respect of real values, the precision of the sensor is 
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high. Hence, context data generated from a producer with a good precision exhibit relative 

dynamics that closely follow real context values. In addition, authors consider up-to-

dateness, resolution, and trustworthiness with meanings similar to the homonym attributes 

proposed by [3], and detail a new algorithm to dynamically evaluate trustworthiness 

parameter based on users’ feedbacks. 

Finally, in [26], authors focus on the quality of information produced in wireless 

sensor networks. They consider the notion of operational context to facilitate the dynamic 

binding between applications and sensors; in particular, they exploit the 5WH principle 

(why, when, where, what, who, and how) to describe both application requirements and 

produced data, and use these attributes to handle context data distribution at runtime. In 

addition, they consider spatial and temporal relevancy of produced data, in order to 

establish if a piece of information has temporal and spatial properties compatible with 

application requirements, and propose two metrics to evaluate such quality parameters. 

In conclusion, a widely-accepted QoC definition is still missing. Different authors 

focused on specific aspects and presented their own QoC framework. At the same time, 

some research works tend to separate the quality attributes associated with the context data 

from the ones associated with the context data delivery process [3]; differently from them, 

we think it is not always possible to clearly separate these dimensions, hence, we are more 

prone toward extended QoC definitions and contracts useful to clearly manage the whole 

context delivery process from producers to consumers. 

However, at least a common thought can be highlighted in all the aforementioned 

works: QoC is not about requiring perfect context data, such as context data with the 

highest possible up-to-dateness, but about having and maintaining a correct estimation of 

the data quality. In fact, context data without a proper quality characterization are both 

dangerous and useless, since service reconfigurations could be completely misled by low 

quality data. QoC is also motivated by the following main scenarios [3]: 

 QoC agreements - As Quality of Service (QoS) permits service consumers and 

producers to negotiate their requirements at acceptable service levels by 

considering the network available underneath [27], when several entities 

cooperate to the provisioning of context-aware services  we need proper quality 

contracts to tailor the interactions between context data producers and consumers. 

For instance, in many scenarios, the same context data can be produced by 

different sources, each one leading to particular QoC attributes; in this case, QoC 

is essential to perform an accurate selection of the final context producer to use. 
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Furthermore, whenever a context consumer receives new context data, it can take 

more accurate decisions, spanning from using the data, weighting it if partially 

incomplete, or completely discharging it due to the extreme low quality. QoC 

agreements can be also dynamically negotiated at runtime depending on available 

resources; for instance, due to network bandwidth limitation, a context producer 

and a context consumer can be forced to use a low data sending rate, thus 

experiencing limited context up-to-dateness. 

 Adaptation of context data reasoning - A fundamental task of every context-

aware system regards the production of new context data out of low-level 

information coming from single sensors. In this case, context data quality is 

fundamental, and must be considered during reasoning to assess if generated 

context data will be meaningful at all. In addition, it will be necessary to also 

determine the quality of the produced context data. Apart from context data 

reasoning, also simple filtering techniques, usually meant to filter low quality 

data for the sake of scalability and to interpolate historical information to 

highlight trends, have to consider data quality information to avoid wrong 

droppings and deductions. 

 Adaptation of context data distribution - Every context-aware system needs to 

memorize and distribute context data to interested mobile nodes. If context 

producers and consumers agree on particular QoC objectives, it is possible to 

introduce novel adaptive data distribution solutions to increase system scalability 

by reducing the runtime management overhead. For instance, if context 

consumers can accept context data with low up-to-dateness, we can supply 

cached context data to save resources; of course, this adversely affects QoC but, 

if correctly managed, does not reduce the quality stipulated with users.  

 Reconstruction of the context-aware service behaviour - As context data 

automatically trigger services adaptation, the usage of low quality data has a 

significant impact on the context-aware users’ experience. If only low quality 

data are available, it is important to warn the user to let him better evaluate both 

the current situation and the possible dangers introduced by automatic context-

aware reconfigurations and suggestions. In addition, if the context-aware service 

presents wrong behaviours, it is important to easily understand the real cause, 

e.g., either a traditional programming bug or low quality context data.  
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 Privacy policies - As several context-aware services make use of sensitive 

context data, QoC is important to restrict the access to personal and sensitive 

information. Access policies can depend on the quality of the context data; for 

instance, while a user will not consider the distribution of coarse-grained 

localization information as a privacy violation, he will surely want to restrict the 

distribution of localization information with spatial resolution in terms of 

hundreds of meters. Hence, QoC attributes and constraints are useful to detail and 

enforce appropriate privacy policies on context data. 

To conclude, QoC-based context data distribution is a core requirement to enable 

appropriate runtime system management in real-world scenarios. Also supported by 

aforementioned related works and requirements, we remark that there surely exist two 

main quality directions to consider: one related with the quality of the data, the other 

related with the quality of the context data distribution. Hence, in the remainder, we adopt 

a broader QoC notion that, apart from data quality attributes, considers the quality of the 

context data distribution (e.g., data delivery time, reliability, …) to ensure the availability 

of the context data with the right quality, in the right place, and at the right time [3]. 

2.3.2. Quality of Data 

Each context data instance has to be associated to and described by proper quality 

attributes, mainly to evaluate the usefulness of such piece of context information. We 

carefully consider the previous works on data QoC [3, 4, 7, 25], but we extend them to 

better fit our view. Now, we point out the data QoC framework adopted in the remainder 

of this thesis. 

In finer details, our QoC-based context data framework considers the following 

quality attributes. First of all, context data validity rates the compliance of the context data 

with the field of validity of the specific type; for instance, a time context data must 

conform to the Gregorian calendar format. Second, context data precision evaluates the 

degree of adherence between real and sensed values of a context data. We agree with some 

previous works in the area, such as [25], that it is not possible to dynamically evaluate the 

precision of each data instance as this supposes to know the real value of the context data; 

hence, our notion of precision exploits information coming from the resolution offered by 

sensing devices. For instance, focusing on precision, ultra-wide-band-based localization 

data are more precise than standard GPS-based ones. Third, context data up-to-dateness 

takes care of data aging, so to express how the usefulness of particular data changes over 
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time. Differently from previous approaches, this is not a simple timestamp but rather a 

more complex law that can also introduce non-linear functions between the absolute time 

elapsed from data generation and the current up-to-dateness value. For instance, the up-to-

dateness quality attribute associated with location information of a fixed resource, e.g., 

GPRS antenna, is not greatly affected by time elapsing, while the same attribute for a 

mobile entity, e.g., a mobile device carried by a user,  can quickly degrade according to 

current mobility patterns. Fourth, context data significance ranks the relative importance 

of a context data. This attribute is mainly used by the management infrastructure during 

conflict resolution phase and storage replacement to keep the most important data. Finally, 

similarly to the work of [3], context data trustworthiness is used to rate the quality of the 

other entity that had originally produced the context information, and context data 

probability of correctness is attached by the context producer itself at generation time to 

rate the local beliefs he has in sensor correctness. 

All the above QoC parameters should be taken into account in the QoC agreement 

specified at the service level and, at the same time, used by the context data distribution to 

measure and achieve the fulfillment of the QoC requirements. 

2.3.3. Quality of Delivery Process 

QoC has to consider the quality of the distribution process to ensure user satisfaction. 

Context data have to be dispatched from producers to consumers according to negotiated 

quality levels. For instance, a stale data is both useless, since it will be probably 

discharged at the consumer node, and dangerous, since it could lead to wrong adaptations 

if used by the consumer. In addition, since context data distribution usually takes place 

through best-effort wireless infrastructures that could introduce delays and droppings, thus 

leading to additional inaccuracies in the context received by mobile devices, it is also 

necessary to negotiate proper priority and reliability levels. 

Hence, in our opinion, QoC has to deal also with dynamic aspects related to the 

delivery of the context data to single consumers. To support this model, context data have 

to be tagged with proper quality parameters that, differently from the ones treated in the 

previous section, depend on the consumer requesting them. Let us clarify the meaning of 

the last sentence with two examples. A context data instance has an up-to-dateness value 

that mainly depends on the time elapsed from data generation; it does not matter which 

context consumer requires it, as long as the instance respects the QoC constraints imposed 

by the consumer. Hence, the up-to-dateness quality attribute will change only as 
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consequence of time elapsing, and not according to the consumer requesting the data. 

Instead, let us consider two different consumers that require context data from the same 

producer with different priority levels. For instance, the same context data describing the 

people contained in a particular physical place can be required by both friends finder 

service and by police for monitoring purpose; of course, the context data sent in answer to 

police requests must be dispatched with higher priority. Hence, these quality attributes on 

the context data distribution process depend on the consumer requiring them, and are 

dynamically determined at runtime according to the context data request. 

Even if Buchholz et al. already highlighted the importance of quality attributes on the 

distribution process [3], they clearly divided QoC, related to context data only, from QoS, 

connected instead to the distribution process. As stated before, we do not agree with this 

sharp separation as some quality attributes are actually entangled, thus presenting 

correlations between their values. For instance, some data quality parameters are 

intrinsically dynamic, as their value depends on the time elapsed from data generation. In 

this case, since delivery delays affect these quality parameters, context data matching 

consumer QoC requirements at the producer side could not match them when actually 

received by the consumer. Hence, the assumption that data QoC parameters do not depend 

on the quality parameters of the distribution process is violated [3]. Also, Buchholz et al. 

introduce a contradiction since they say that “QoC refers to information and not to the 

process nor the hardware component that possibly provide the information”; but the QoC 

trustworthiness parameter clearly depends on the process (e.g., the intermediate entities 

involved in context data routing) that provides the information to the final consumer. 

In conclusion, in the remainder we consider some main QoC parameters related to the 

dispatching process, namely 1) data retrieval time, to capture the maximum time limit 

between the request of context data and the actual delivery to the consumer; and 2) 

priority, to consider differentiated priorities depending on the consumer requesting the 

data, so to reconfigure intermediate dispatching processes.  

2.4. Next Generation Mobile Networks 

Although context-aware solutions have been adopted in different research areas, 

context-awareness reaches its maximum usefulness in mobile systems. In fact, context 

awareness permits mobile services to dynamically and efficiently adapt both to the current 

situation, such as current physical place and social activity, and to the challenging and 

highly variable deployment conditions typical of such mobile environments (device 
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resource scarcity, unreliable and intermittent wireless connectivity, …). The significance 

of context-aware capabilities in mobile computing is also evidenced by the plethora of 

research efforts proposed in the last years in this area [28-37]. 

Before proceeding further, it is necessary to clearly define our main deployment 

scenario. In fact, the realization of real-world context-aware services in mobile systems 

requires a deep understanding of many technological details and includes several non-

trivial operations, spanning different layers and also depending on executing platforms. 

For instance, different wireless technologies can limit and constraint the possibility of 

interactions between mobile nodes, while different operating systems for mobile devices 

can introduce peculiar limitations on the usage of connectivity opportunities. In addition, 

context delivery can introduce a high management overhead, especially when the system 

scales up to thousands of devices. In this case, the availability of specific technologies, 

such as ad-hoc communications between mobile devices in physical proximity, can greatly 

help the implementation and real-world realization of context distribution mechanisms. 

Also, there exist novel routing protocols that opportunistically exploit node encounters to 

spread data into the mobile system with a delay tolerant fashion [38]. Although such 

routing mechanisms are not common yet as further studies are required to better assess 

their runtime performance, we believe that they will soon become fundamental to perform 

message routing and data distribution in mobile systems for the sake of wireless 

infrastructure offloading. Finally, in the near future, mobile systems will integrate with 

Cloud architectures [39], with the main goal of dynamically offloading heavy 

computations, such as video and image processing, so to save device battery. 

For the sake of clarity, Figure 2.1 reports an example of future mobile system to 

highlight the main associated peculiarities, namely heterogeneous devices, heterogeneous 

wireless technologies and modes, etc. Starting with lower-level technological details, and 

moving toward higher-level routing stacks and Cloud solutions, next subsections detail 

what we mean with and expect from future mobile systems. 

2.4.1. Heterogeneous Environments 

The overwhelming success of mobile devices, wireless communications, and novel 

mobile development environments is paving the way to the anytime from everywhere 

connectivity view of pervasive computing. Notwithstanding several advantages of the new 

scenario, the design and the implementation of a context delivery support are very 

complex tasks because of both the high deployment scenario heterogeneity (in terms of 
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client characteristics, employed wireless technologies, etc.) and its inherent resource 

scarcity. 

First, future mobile systems will feature extremely heterogeneous devices, spanning 

from full-fledged laptops to resource-constrained and battery-powered PDAs. A big 

challenge is that different mobile development platforms, such as Java 2 Micro Edition, 

Windows Mobile, Apple iOS, and Android, implement different features and suggest 

different logical architectures for service development. There are already a few good 

papers analyzing the main differences of these platforms, and we refer interested readers 

to those works for a thorough analysis [40]. Here, we want to underline that all the main 

mobile platforms offer poor support of some basic features out of programmer direct 

control, such as garbage collection and object serialization, and typically introduce high 

dependencies on the mobile operating system. That latter problem affects especially cross 

mobile development platforms that, notwithstanding their goal of being independent of the 

hardware and software available underneath, often suffer from inconsistent 

implementations, especially for low-level and system-dependent libraries, such as wireless 

networking APIs. 

Second, since most of the devices that participate to context distribution are portable, 

battery-powered, and resource-constrained, particular attention should be paid in 

monitoring and controlling final overhead, to keep it low with respect to available 

resources. Let us note that context delivery is a continuous background process that 

introduces long-running management overhead in CPU utilization, memory usage, and 
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network bandwidth. From a general viewpoint, interesting context data should be 

continuously delivered to mobile devices, so to detect context-based situations and trigger 

proper reconfigurations; of course, partial offloading of context processing to fixed 

infrastructure is feasible as well, but possible only when there are reliable and not 

expensive means to exchange data between mobile and fixed servers. That latter 

assumption is not always ensured if we consider mobile devices roaming in a city with 3G 

network connectivity only. 

To conclude, a context management infrastructure for future mobile systems has to 

consider both heterogeneity and resource scarcity to avoid the introduction of unfeasible 

management overheads that, in their turn, could lead to the slowdown of context-aware 

services wide acceptance [6]. 

2.4.2. Hybrid Infrastructure-based/Ad-hoc Communications 

While mobile users keep asking for novel classes of services that require transferring 

huge amounts of data over fixed wireless infrastructures, such as video streaming services, 

current wireless communication technologies are suffering this increased bandwidth 

pressure, and are struggling to get behind the over increasing traffic demands of next 

years. It is important to note that, in December 2009, mobile data traffic surpassed voice 

one on a global basis, and is expected to double annually for the next five years [41] [42]. 

As main consequence, several European and US operators are considering the end of 

unlimited data plans to cool this surging demand [43]. 

Hence, there is a remarkable attention toward hybrid distributed architectures, capable 

of jointly exploiting both infrastructure-based and local ad-hoc communications between 

mobile devices, to reduce infrastructure traffic and increase system scalability. On the one 

hand, mobile devices, usually called relays, can distribute data to neighbours in physical 

proximity without additional load on the wireless fixed infrastructure; from the wireless 

infrastructure point-of-view, only one initial transmission, useful to transmit the data from 

the fixed infrastructure to the relay, is required to deliver the data to the entire one-hop 

neighbourhood of the relay. On the other hand, since the coverage of wireless fixed 

infrastructures is not always ensured, relays enacting as bridges can extend infrastructure 

coverage through multi-hop ad-hoc communications. In addition, ad-hoc communications 

enable data exchange between close devices everywhere; in specific deployment 

scenarios, such as the ones resulting from natural disasters or terrorist attacks, this type of 

communication is essential since wireless infrastructures could have been also damaged. 
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From the technological point-of-view, different wireless standards already allow ad-

hoc communications between mobile devices. The most remarkable ones are surely IEEE 

802.11a/b/g (WiFi) and Bluetooth (BT), currently available on a large portion of 

commercial mobile phones and PDAs. Although with different transmission ranges and 

bandwidth, WiFi and BT interfaces can be adopted to realize hybrid wireless networks. At 

the same time, mesh networks, namely hybrid wireless networks where intermediate nodes 

act as relays for the sake of infrastructure coverage and throughput, belong to an extremely 

active research area that, apart from featuring important standardization efforts (such as 

the IEEE 802.11s amendment), is proposing optimized MAC and routing protocols that 

can also suggest interesting solutions for hybrid mobile networks. 

Unfortunately, hybrid infrastructure/ad-hoc architectures introduce additional 

complexities that have to be properly addressed before the real-world production phase. 

Nodes acting as relays are usually resource-constrained mobile devices that greatly suffer 

from the additional management duties. Hence, proper incentive mechanisms need to be 

designed and realized to avoid final users acting selfishly. At the same time, if mobile 

devices are directly involved into the routing, we need proper resource reservation and 

security mechanisms to ensure service provisioning. Both throughput and fairness over 

multi-hop routing paths are hard to ensure, while message confidentiality and integrity are 

fundamental in real-world service provisioning. All these additional requirements further 

complicate the software stack needed to support hybrid networks in real-world scenarios. 

2.4.3. Opportunistic and Intermittent Connectivity 

Real-world service provisioning scenarios usually assume connected topologies where 

both the sender and the destination are available and willing to communicate at the same 

time. This time synchronization greatly limits possible interactions between nodes, and is 

usually not ensured in more dynamic mobile networks, such as Mobile Ad-hoc NETworks 

(MANETs) and Vehicular Ad-hoc NETworks (VANETs) [44, 45], where nodes 

continuously join and leave the system. In addition, apart from 3G cellular networks that 

usually ensure always-on city-wide coverage, connectivity with medium-range wireless 

networks, such as a wireless network composed by WiFi hotspots deployed in a university 

campus, is usually intermittent during user roaming. As main consequence, opportunistic 

networks, intended as self-organizing networks able to exploit all the communication 

opportunities available in the physical environment, are slowly emerging as one of the 

core mechanisms required by future mobile systems. 
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To be more specific, let us introduce a short example based on the context-aware 

tourist guide for the Bologna downtown. For the sake of service provisioning, a first 

seminal solution is to use WiFi hotspots to periodically offload important context data to 

mobile nodes, but this solution limits data availability since context data can be distributed 

only when mobile nodes are reachable via those fixed WiFi hotspots. However, mobile 

nodes can opportunistically exploit neighbours to carry context data requests into the 

system. While roaming, some mobile nodes could get closer to WiFi hotspots, where they 

can offload the requests on behalf of peers and store resulting data. With a similar 

mechanism, context data can be routed back and delivered to requesting nodes, thus 

enabling service provisioning also when there is no fixed infrastructure available. 

Unfortunately, such scenarios do not allow the introduction of strict quality guarantees 

since node mobility is generally difficult to predict. 

Following this main research direction, several academic research works have started 

to consider the opportunistic usage of mobile devices to perform data distribution into the 

system [38, 46]. Acting as data carriers, mobile nodes can distribute data to close devices 

by ad-hoc communications, with no additional overhead on wireless fixed infrastructures. 

Also, mobility is a fundamental means to speed-up data distribution into the system, by 

exploiting random and intermittent interactions between devices. Hence, although several 

challenges still need to be addressed, opportunistic networks will soon become an 

important part of traditional provisioning scenarios in mobile systems. 

2.4.4. Integration with Cloud Architectures 

Cloud technologies enable the dynamic provisioning of computational resources, with 

a pay-per-use billing model [39, 47]. At the current stage, different big players, such as 

Amazon, Google, and IBM, are adopting such technologies to offer computational 

resources to third parties, with the main goal of reducing data center operational costs. 

Above all, as Cloud solutions allow the rapid and dynamic scaling of provisioned 

resources, they well fit all those scenarios characterized by high fluctuations of demands. 

In fact, we do not need to overprovision IT infrastructures according to the worst-case load 

scenario but, if required, we only have to ask for additional computational resources to a 

Cloud. 

Mobile devices suffer severe resource limitations that make it unfeasible to execute 

heavy computational tasks, e.g., video stream processing, aboard. Similarly, context data 

have to be stored and processed to enable service adaptation; that can introduce a high 
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management load, hence, it may be useful to dynamically offload such computations to a 

Cloud reachable through wireless fixed infrastructures. We also remark that the capability 

of dynamic resource provisioning well matches mobile systems, where users randomly 

join and leave, thus perhaps leading to high load variations along the day. At the same 

time, it must be kept in mind that wireless fixed infrastructures may suffer bandwidth 

limitations, thus reducing the possibility of data transfer between the mobile infrastructure 

and the Cloud. Moreover, data transfer from/to wireless fixed infrastructures may lead to 

faster battery depletion. All these issues must be carefully considered to enable a fruitful 

integration between context-aware mobile systems and Cloud solutions. 

2.5. Motivations of the Thesis 

In the past years, much work has been done to enable context awareness and to ease 

the diffusion of context-aware services. One of the most cited and important papers on 

context-aware services in mobile systems by Schilit et al. is [1]; from that year, several 

works discussed the main mechanisms useful to enable context-aware facilities in mobile 

systems, as well as local support mechanisms to provision context to the service level. At 

the same time, several middleware solutions have been designed to transparently 

implement context management and provisioning in the mobile system.  

However, at the current research stage, we feel that an in-depth analysis of the context 

data distribution, namely the function in charge of distributing context data to interested 

entities, is still missing. Previous works mainly focused on the support mechanisms 

required to provision context to services from a more local viewpoint, e.g., context 

representation, reasoning, and local delivery, without considering the enormous 

complexities arising from the deployment of such services in large-scale mobile systems. 

One of the main goals of this thesis is to envision, design, implement, and test novel 

distribution primitives and mechanisms capable of ensuring context provisioning in a 

scalable and reliable way. 

In addition, as clarified in previous sections, future mobile scenarios will feature 

extremely heterogeneous devices, capable of interacting through different wireless modes 

(infrastructure-based/ad-hoc), and with the possibility of opportunistically exploiting both 

devices and wireless connectivity opportunities available in the physical proximity. 

Previous works analyzed context data distribution in small scale environments, such as 

houses and university buildings, where always-on WiFi WLANs can continuously provide 

context information to mobile devices with no particular issues. Due to the adopted 
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assumptions, we think they widely miss the need of quality-based context data distribution 

schema able to trade off quality constraints with the introduced management overhead. 

Hence, the impact of all the peculiarities introduced by future mobile systems on context 

distribution primitives is not clear, and deserves additional research to assess main 

potentialities and shortcomings. 

To conclude, starting from the core assumption that only effective and efficient 

context data distribution can pave the way to the deployment of truly context-aware 

services, in this thesis we aim to put together current research efforts to derive an original 

and holistic view of the existing research on context-aware systems. We present a unified 

architectural model and a new taxonomy for context data distribution, by considering and 

comparing different distribution primitives in deployment scenarios that jointly exploit 

heterogeneous wireless standards and modes. To better assess the technical soundness of 

our analysis, we then consider three main deployment scenarios, and we study the main 

consequences of network architectures on context-aware service provisioning. Finally, we 

conclude the thesis by drawing and identifying important directions of future work.  
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3. Context Data Distribution in Mobile Scenarios 

Context-aware capabilities ground on the continuous delivery of important context 

data to interested mobile nodes. From a general viewpoint, context data distribution is an 

extremely complex function that has to deal with different management phases involved in 

context provisioning to the service layer, namely context data representation, storage, 

aggregation, distribution, notifications to running services, etc. At the same time, the main 

peculiarities of future mobile systems also call for proper management solutions to 

efficiently deal with resource constraints, heterogeneous wireless standards and devices, 

etc. 

To transparently tackle all these issues and to ease the diffusion of context-aware 

services, we need proper middleware solutions, called Context Data Distribution 

Infrastructure (CDDI) in the remainder, capable of hiding all the main phases involved in 

context management [48]. In other words, context-aware services should only have to 

produce and publish context data and to declare their interests in receiving them from the 

CDDI, while the CDDI takes over distribution responsibility and transparently executes 

specific management operations to distribute context data. 

In this chapter, we delve into the details of context data distribution infrastructures for 

mobile systems. Section 3.1 clarifies the main issues such CDDIs have to address. Section 

3.2 presents our main design guidelines for scalable context provisioning in mobile 

systems, while Section 3.3 introduces an in-depth discussion of the context data life cycle. 

Then, Section 3.4 discusses related work on context-aware systems, so to better point out 

the current state-of-the-art. Finally, Section 3.5 ends this chapter by drawing intermediate 

conclusions. 

3.1. Main Issues 

Real-world CDDIs for large-scale mobile systems have to transparently address 

several issues related to the delivery of huge amounts of context data to resource-

constrained mobile devices. From a general viewpoint, we categorize the main involved 

issues along three main directions, namely heterogeneous and resource-constrained 

devices, context data management and delivery scalability, and quality-based context 

provisioning. 

Future mobile systems feature resource-constrained mobile devices that require 
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continuous access to their context while roaming. These devices are mainly battery-

powered, and with strict CPU/memory constraints that will not allow the execution of 

complex CDDIs. Similarly, most of the context reasoning algorithms will introduce 

prohibitive costs, thus requiring the offloading of such computation to fixed servers. Apart 

from device limitations, wireless networking introduces additional constraints that have to 

be carefully considered during CDDI design. Next generation mobile devices will feature 

numerous wireless interfaces, thus enabling different connectivity opportunities and data 

transfer facilities with differentiated tradeoffs between bandwidth, energy consumption, 

etc. While 3G/4G cellular network interfaces are extremely suitable for voice service 

provisioning due to the ensured coverage, WiFi and BT interfaces enable ad-hoc 

communications between mobile devices in physical proximity. However, even if 

available, all these interfaces cannot be always powered on due to excessive battery 

consumption. In conclusion, CDDIs for future mobile systems have to consider such 

resource constraints: they must be resource-aware in respect of device local resources and 

communication opportunities to properly handle context provisioning. 

Moreover, when we consider large-scale networks made by thousands of devices, for 

instance city-wide services, both the memorization and the delivery of context data 

introduce important CDDI scalability bottlenecks. Such systems feature thousands and 

thousands of sensors that continuously pump new context data. Context data production 

rates strictly depend on the described context aspects: while temperature and pressure 

sensors can produce new data with a period in the order of seconds, we expect that logical 

sensors associated with user profiles will produce new data with a period in the order of 

days. Although sensors can be directly deployed on mobile devices, if the limited 

resources do not allow the processing of the raw context data on the devices themselves, 

the usefulness of having these data suddenly drops since they must be offloaded to fixed 

infrastructures. At the end, the storage of all these data introduces a high overhead, that 

becomes even worse if the CDDI has to offer access to historical data. Similarly, the 

distribution of such context data from/to the mobile nodes introduces not negligible 

bandwidth overhead. The usage of 3G/4G networks for the sake of context data 

distribution would be probably prohibitive due to the limited bandwidth; it must be 

considered that the primary goal of cellular networks is to offer voice services, hence, data 

traffic over such infrastructures should be kept as small as possible to avoid excessive 

interferences with important core services. 

Last but not least, as introduced in Section 2.3, QoC attributes, both on the context 
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data and on the distribution process, play an important role to prevent useless and noisy 

adaptations. Real sensors come with sensing errors that can lead to wrong adaptations; 

even worse, the CDDI can distribute context data referring to the same aspect with 

contradictory values, thus introducing an ambiguity that must be solved through quality-

based approaches. At the same time, the usage of unreliable wireless infrastructures can 

lead to additional errors in the context provisioned to mobile nodes; both packet droppings 

and long transmission delays caused by temporary network congestions can lead to the 

usage of wrong and/or stale context information. All these issues become even more 

difficult to address if we consider distributed architectures that jointly use infrastructure-

based and ad-hoc communications. In this case, the enforcement of particular quality 

constraints, such as maximum data retrieval time, can involve complex resource 

reservation and negotiation protocols, spanning multi-hop routing paths based on 

intermediate mobile devices; at the same time, such routing paths can also include hops 

based on heterogeneous technologies, thus making the prediction of path stability and 

transferring times more difficult [49]. Hence, quality-based context provisioning in large-

scale mobile systems, perhaps based on heterogeneous wireless standards and modes, is 

not easy to enforce from the CDDI viewpoint; instead, it introduces a great deal of 

complexity since the impact of these quality constraints on the distributed context 

distribution function could lead to not trivial reconfigurations. 

3.2. Design Guidelines 

While a lot of research has been done as regards the design, the realization, and the 

deployment of context-aware middleware solutions, most of the previous works focused 

on rather small-scale deployments, with the main goal of studying the local middleware 

infrastructure useful to support context provisioning to service level. Instead, in the very 

last years, an increasing number of systems is requiring context provisioning in large-scale 

wireless systems; to mention few examples, VANETs and smart cities feature different 

context-aware services, such as accident prevention and environmental monitoring, that 

require to distribute huge amounts of context data with city-wide scope [17, 50]. As 

discussed in Section 3.1, here the context data distribution becomes a fundamental 

concern, requiring innovative solutions to efficiently deal with all the peculiarities of such 

large-scale scenarios. 

Hence, to effectively support such context-aware services, starting with low-level 

issues connected to mobile deployment scenarios, and moving to more high-level and 
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complex ones associated with context data management, we claim the significance of six 

fundamental design guidelines: 1) adaptation to mobile and heterogeneous environments; 

2) efficient context data life cycle management; 3) context data production/consumption 

decoupling; 4) context data visibility scopes enforcement; 5) cooperative context data 

delivery; and 6) QoC-based context data distribution. 

The CDDI should support mobile heterogeneous wireless scenarios. Mobile nodes 

executing context-aware services move in and out, even randomly, thus introducing 

variations in context needs; hence, the context data distribution has to promptly adapt to 

mobility, in order to distribute only currently needed context data. At the same time, the 

CDDI should deal with heterogeneous systems, including nodes with different 

computational capabilities, wireless interfaces belonging to different standards, and 

different wireless modalities. While the usage of heterogeneous wireless standards enables 

multiple transmissions happen at the same time with limited interferences, the usage of 

heterogeneous wireless modes lets the CDDI trade off context availability and 

management overhead: fixed wireless infrastructures offer reliable context access but 

introduce tight limitations on available resources, while ad-hoc communications let close 

peers exchange data without additional overhead on deployed wireless infrastructures. In 

conclusion, to exploit all the possibilities offered by future mobile systems, the CDDI has 

to adapt to currently available resources to increase system scalability, while preventing 

saturation conditions. 

The CDDI should efficiently manage the whole context data life cycle, starting from 

data generation to removal [51]. In particular, it has to implement efficient context data 

aggregation and filtering techniques, by also taking care of final context data removal 

when necessary. Aggregation techniques are useful to reason about raw/fine-grained 

context data, so to obtain more high-level and concise information. Instead, filtering 

techniques enable to shape context data distribution, so to reduce the management 

overhead according to service needs. Both these techniques should be supported in a 

distributed manner so, for instance, to filter the distribution of a data as close as possible to 

the node that had generated it. Moreover, the CDDI should offer some guarantees of 

availability by influencing the degree of replication of the data into the system. Hence, the 

CDDI has to automatically manage context data during the whole life cycle, by offering 

efficient aggregation and filtering techniques, and by memorizing context data at multiple 

places for the sake of reliability. 

The CDDI should transparently route produced context data to all the interested 
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consumers connected to the mobile system. To increase system scalability and context data 

availability, context data production and consumption should be possible at different times 

(time decoupling), and producers and consumers do not have to know each other (space 

decoupling); hence, communication should be asynchronous and anonymous among 

producers and consumers, similarly to what already happens for traditional pub/sub 

systems [52]. In fact, both space and time decoupling favour the asynchronous execution 

of context-aware entities, that can inject and retrieve context data according to their own 

needs. 

The CDDI should introduce and enforce differentiated visibility scopes for context 

data. Context data usually have a limited visibility scope that depends on physical/logical 

locality principles. For instance, physical context of a place is likely to be required only by 

nodes in the same place (physical locality); similarly, context data associated with a 

particular event are likely to be required only by its participants (logical locality). Hence, 

context data intrinsically have visibility scopes that the context data distribution should 

enforce to avoid useless management overhead. To effectively avoid context data storage 

and distribution bottlenecks, the CDDI should adopt decentralized and hierarchical storage 

architectures that exploit both physical and logical locality principles on context data to 

make them available as close as possible to interested consumers. 

The CDDI should realize cooperative context delivery mechanisms to increase both 

context availability and system scalability. Mobile nodes should cooperate among 

themselves to store and distribute the context data associated with the physical place 

where they are currently in; by doing so, newly arrived mobile nodes can retrieve 

interesting context data from neighbours through ad-hoc links, without any requests 

forwarded to the fixed infrastructure. Cooperative context distribution is also useful to 

refine context data; for instance, several devices, equipped with temperature sensors, can 

exchange readings to merge them by means of aggregation operators, such as average, 

median, etc., so to have a better assessment of the context data quality [53]. In addition, 

the CDDI should also introduce opportunistic network facilities to let mobile devices route 

context requests on behalf of others. 

The CDDI should introduce and enforce QoC constraints to enable correct system 

management. QoC constraints on context data, used to specify the quality of received 

context information, are useful to setup proper filtering operators [3]. In addition, as real-

world wireless systems present frequent topology changes, limited delivery guarantees, 

and intermittent disconnections, QoC constraints on context data distribution allow 
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enforcing data delivery with particular timeliness and reliability guarantees. Finally, since 

the CDDI can be deployed in distributed architectures where several servers, each one 

with its own local context data repository, process and route context data, we have to 

consider that context data could be available in multiple and conflicting copies into the 

system [54]. Therefore, as context data consistency is costly to handle in large-scale 

systems, it is advisable to avoid strong consistency by preferring best-effort approaches 

driven by QoC constraints. 

From aforementioned design guidelines, it comes without saying it that context data 

management is an extremely complex task, requiring several mechanisms from both a 

local and a distributed viewpoint. Hence, for the sake of clarity, next section introduces an 

in-depth presentation of context data life cycle, by highlighting and discussing the main 

involved phases; in this way, we aim to better justify the main mechanisms a CDDI for 

mobile systems has to introduce. 

3.3. Context Data Life Cycle 

One of the main management duties of a CDDI is to handle the whole context data 

life cycle, from context data production to removal. From a general viewpoint, context 

data life cycle is made by different phases, that can be also executed repeatedly to refine 

context information, and sometimes with no strict temporal order. 

After the initial sensing of the raw data, new context data are introduced into the 

system. These new data can be delivered to context-aware services, and can be stored by 

the CDDI to ensure persistency and later access; they can be filtered according to QoC 

constraints, as well as other filtering operators based on context data value, to reduce the 

number of stored and distributed data; they can be aggregated with pre-existing context 

data to produce high-level context information, such as merging together temperature and 

pressure data to understand if the weather is rainy; finally, they can be distributed to 

interested mobile devices to enable service adaptations. 

Although some life cycle phases present intrinsic strict temporal orders (e.g., context 

data production must be the first one), other intermediate phases can mix them together. 

For instance, the aggregation/filtering steps and their temporal order depend both on the 

needs of mobile services and on the availability of resources; the CDDI can store either 

raw context data or their aggregated/filtered counterparts, hence, storage phase has no 

strict temporal ordering with other phases; and so forth. At the same time, context data can 

go through some phases multiple times: a cyclic phase needs to be triggered in different 
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time instants since its usefulness and produced results change during time. For instance, 

context data aggregation is performed in a time-triggered manner to infer new context data 

based on the knowledge accumulated so far; similarly, context data delivery has to be 

performed multiple times if the set of interested mobile nodes changes. 

With aforementioned observations in mind, we decided to adopt a context data life 

cycle model based on five main phases, namely context data production, context data 

storage, context data aggregation, context data filtering, and context data delivery. Figure 

3.1 shows a general overview of the main phases involved in context data life cycle; the 

following subsections better detail each one of them. 

3.3.1. Context Data Production 

Context data production is the initial phase through which all the context data have to 

pass. This phase comprehends both the real access to the sensors in charge of producing 

the raw data, and an elaboration phase aimed to represent the context data according to 

specific representation techniques [55]. Before the real injection into the system, 

additional elaborations can be performed at the producer side, for instance, to apply low-

pass filters, evaluate quality attributes, etc. 

Following the definitions introduced in [48], sensors are usually categorized in three 

main categories: physical, virtual, and logical. Physical sensors include the many 

hardware sensors available today to capture physical data, such as temperature, pressure, 

humidity, lighting condition, etc. Virtual sensors acquire raw context data from software 

services; for instance, a virtual sensor can publish the current user situation by looking at 

his calendar, keyboard and mouse activities, as well as running services on his laptop. 

Similarly, a virtual sensor can fetch user profiles available on the Internet, such as the ones 
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Figure 3.1. Context Data Life Cycle Overview. 
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adopted by traditional social networking services, to better describe user interests. Finally, 

logical sensors combine context data coming from other sensors to produce high-level and 

more polished context data. For instance, user localization detected by means of GPS 

sensors is not always reliable since the user could have left the mobile phone in his car, 

hence, for the sake of precision, it is advisable to make use and merge together 

information coming from different sensors, such as an GPS readings, video reporting the 

user in specific places, Web browsing and login activities. Of course, logical sensors 

include aggregation operators and capabilities to produce new context data. 

After sensing, context data are represented by means of a proper representation 

technique, such as key-value pairs, XML-based documents, ontology-based solutions, etc. 

[55]. The different approaches, with associated pros and cons, will be better analyzed in 

Section 4.2.1. For now, we note that it is a producer duty to describe injected context data 

with additional management attributes, such as the ones used for lifetime and quality 

management. In addition, as sensors could be deployed on resource-constrained mobile 

devices that connect with fixed infrastructures through bandwidth-limited connections, the 

producer itself can apply filtering operators to raw context data so, for instance, to slow 

down data injection into the system. Finally, if suitable due to battery constraints, data 

prediction techniques can be used to forecast future values and schedule raw data 

samplings only when remarkable changes are expected. 

3.3.2. Context Data Storage 

In the context data storage phase, context data are stored into the distributed CDDI 

architecture to ensure context data availability and persistency. This phase can be omitted 

as not all the context data have to be stored; for instance, some context data should be 

provisioned only to the local device due to privacy reason, hence, they are not distributed 

at all. When required, the context data storage phase takes care of storing data into the 

system, by triggering all the required management mechanisms and coordination 

protocols. Storing context data is not as simple as it may appear since the system scale 

requires proper additional management mechanisms, such as context data caching and 

replication, to ensure system scalability. For the sake of clarity, let us briefly clarify that 

data copy into the system can happen by means of either caching or replication techniques 

[56, 57]: caching techniques reactively maintain data in response to requests, and usually 

keep them until deleted by local replacement operations, mainly due to memory saturation 

[58, 59]; instead, replication techniques proactively copy local data to remote nodes, and 
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keep them until explicitly deleted [60, 61]. 

As mentioned in Section 3.2, a CDDI should be able to exploit cooperative context 

data distribution mechanisms. In view of this guideline, context data can be either cached 

or replicated into the system. If each mobile node has a small context data repository 

shared with close neighbours by ad-hoc links, the CDDI can effectively reduce the 

management traffic toward the fixed infrastructure, so to foster scalability. However, both 

caching and replication techniques introduce additional management issues to be 

considered and properly managed. Especially if applied to mobile systems, those 

techniques have to adopt explicit mechanisms to handle the context data stored on mobile 

nodes in physical proximity, in order to avoid that they memorize the same set of data; in 

fact, if data repositories in the same physical area share a large set of common data, the 

CDDI will store a reduced number of different data, thus potentially leading to a higher 

number of requests forwarded to the fixed infrastructure. 

Apart from the adoption of caching/replication techniques, a fundamental point is that 

the CDDI has to organize the data storage to bring context data closer to the interested 

nodes, so to reduce data retrieval times and runtime overhead. Toward this direction, both 

physical and logical locality principles offer good hints to organize the context data 

storage. A straightforward application of the physical locality principle is to store context 

data produced by sensors deployed on a particular physical environment only on the nodes 

currently within that physical environment; for instance, temperature and pressure 

readings associated with a room are probably considered interesting only by the nodes in 

the room, or close to it, and such interest usually decreases with the distance from the 

production point. In other words, the higher the distance from the production point, the 

lower the interest usually expressed by the mobile nodes; hence, the CDDI should adopt 

hierarchical storage architectures to match such principle, so to keep the data as close as 

possible to their production point. Similarly, the logical locality principle suggests to tailor 

context data storage depending on the interests expressed by the nodes. For instance, 

consider a physical place, e.g., a university lab, that is usually crowded of Computer 

Science students; although some context data, such as data associated with a meeting of 

the Network Research Group currently taking place on the other side of the building, are 

produced far away, they should be stored and made available into the lab to simplify the 

distribution to incoming students. Hence, the usage of the logical locality principle should 

also affect the storage architecture adopted by the CDDI. 

Finally, service requirements can also greatly affect the complexity of the CDDI 
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storage architecture. Let us consider a simple context-aware service that performs high-

level reasoning on the people usually co-located in a particular physical place. In this case, 

the service needs historical data about user presence, as well as profiles and additional 

information on the people carrying those devices. Similarly, if the service wants to foresee 

the number of attendees of a particular event, it has to reason on what happened in the past 

editions of such event. Hence, both these examples require context data history facilities, 

and this introduces additional complexities and management overhead to the CDDI 

storage architecture. 

3.3.3. Context Data Aggregation 

Physical sensors usually provide raw data associated with physical phenomena, such 

as temperature, pressure, acceleration, localization, etc. Virtual sensors enable access to 

more high-level context data, such as place and user profiles, usually fetched by database. 

Finally, logical sensors aggregate context data, coming from different and heterogeneous 

sensors, to produce new context data out of raw sensor readings. 

Context data aggregation is a fundamental mechanism in real-world CDDI. Due to the 

huge amount of possible context directions, it is practically impossible to statically and 

manually define all the interesting context aspects that can be considered in a large-scale 

system. At the same time, many context data cannot be statically defined as they are 

consequence of particular runtime situations, such as people in physical proximity; such 

context data claim for continuous updates that must be carried on automatically by the 

system. Hence, context data aggregation phases are fundamental to capture additional 

knowledge about the system; Artificial Intelligence (AI) provides techniques, as well as 

standard logic-based representations and inference engines, that can simplify the usage of 

such techniques.  

Differently from filtering operators, whose main goal is to tailor context data 

distribution for the sake of scalability, aggregation operators do not selectively drop input 

context data, but instead produce and inject completely new data as output. Hence, by 

using a metaphor, filtering operators are mainly adapters useful to connect two pipes with 

different sizes (e.g., with different flow rates), while aggregation operators are put in 

parallel and combine flows from different pipes to generate a completely new flow. 

Since aggregation operators need access to multiple context data to properly work, 

one of the main CDDI issues is to ensure the availability of all the required data in the 

context data storage used by the aggregation operator. In addition, proper CDDI 



47 
 

mechanisms are required to evaluate both management and QoC attributes of new 

generated data. For instance, a very simple example regards the evaluation of the data 

lifetime attribute that, by adopting a pessimistic approach, can be set to the lowest value 

carried by initial context data instances; more complex approaches are instead required to 

evaluate QoC parameters, such as up-to-dateness, where the usage of simple merging 

functions (minimum/maximum, average, etc.) is more difficult to justify. 

Finally, let us remark that context aggregation operators usually require access to the 

history of input context data to better guide the aggregation process. In fact, historical 

values can be used to predict future values and highlight trends in input values. All this 

additional information is useful to avoid the injection of new context data that, by 

considering only the latest, perhaps erroneous, context data input, can present significant 

errors. 

3.3.4. Context Data Filtering 

Sensor sampling, and subsequent context data production, can happen extremely 

frequently, with periods in terms of seconds. At the same time, the provisioning of all 

these data to mobile devices is not always feasible since it can saturate available resources, 

both in terms of CPU and memory, and in terms of wireless bandwidth. The usefulness 

itself of delivering similar or slightly different context data is questionable too; context-

aware services usually trigger adaptation actions in response to sensible changes (for 

instance, in terms of localization and people in the current room) rather than in response to 

small context changes, perhaps not perceived by final end users. Hence, the CDDI has to 

introduce proper filtering operators, useful to tailor context data production according to 

service needs, while striking to reach a balance between context completeness and runtime 

overhead due to context data processing and transmission at the mobile node. 

In finer details, context data filtering operators are fundamental in real-world CDDIs 

for large-scale systems, but they must be carefully handled to reach and enforce negotiated 

QoC. In fact, such operators produce partial and imprecise context views at the context-

aware service that, in its turn, by reasoning according to the received context data can 

trigger incorrect adaptations. QoC contracts have a fundamental role in this direction as 

they enable the correct configuration of the involved filtering phases. Not all the context-

aware services will weigh the access to particular context data in the same way; for 

instance, a smart printer service for university campus is interested only in sensible 

location changes, such as entering and leaving a room, while a context-aware guide 



48 
 

requires extremely accurate localization information, as well as spatial orientation of the 

user; similarly, accident prevention services for VANETs require a very precise 

characterization of the current physical neighbourhood to detect potential dangerous 

situations, while buddy finder services can surely tolerate coarse-grained localization data 

and perhaps erroneous friend suggestions with no important consequences. 

Finally, similarly to what usually happen with video streaming services, the CDDI has 

to monitor the runtime behaviour of the system to assess whether negotiated QoC levels 

can be enforced. An initial negotiation phase lets producers and consumers agree about 

QoC objectives on context data, in order to setup filtering operators; then, at runtime, if 

the CDDI cannot ensure required QoC levels, for instance, due to the saturation of a link 

or intermediate node overloads, it has to notify running context-aware services in order to 

make them aware of the reduced QoC. 

3.3.5. Context Data Delivery 

The context data delivery phase takes care of automatically delivering injected context 

data to all those entities that have expressed any form of interest in them. Different forms 

of interaction between the CDDI and the mobile nodes, e.g., either push- or pull-based, are 

available, with different tradeoffs between management overhead and perceived QoC. 

During this phase, it is overwhelming important to consider both context data interests 

expressed by the mobile node and QoC objectives. The CDDI has to automatically drop 

context data that will not respect QoC objectives at the destination node, so to prevent 

useless overhead; out-of-QoC context data droppings should also happen as close as 

possible to the producer node, in order to prevent the triggering of intermediate filtering 

and aggregation operators that, in their turn, will lead to useless management overhead. 

Let us remark that solutions adopted to address this phase has a great impact on 

previous ones, that ground upon it to inject new data into the system (context data 

production), and to retrieve context data to aggregate and filter according to context-aware 

service needs (context data aggregation and filtering phases). Without delving into deeper 

details, which will be clarified in Chapter 4, the usage of distributed solutions to address 

this phase, an inescapable choice in large-scale settings, automatically calls for distributed 

ones also for previous phases: for instance, if context-aware services define complex 

context filtering operators, the CDDI can distribute single operators to different servers for 

the sake of load balancing; similarly, complex aggregation operators can exploit 

intermediate, already aggregated, context data to reduce final CDDI overhead. 
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Finally, this phase presents some significant differences from previous ones. First, 

solutions adopted here must be distributed: while production, aggregation, and filtering 

phases refer to more local computations, the distribution phase in large-scale systems must 

be distributed between different nodes, also spanning different and heterogeneous 

networks, such as fixed nodes in different local area networks, mobile devices reachable 

by wireless infrastructures, etc. Second, being closely related with underlying network 

deployments and topologies, it is widely affected by them: adopted coordination protocols, 

as well as data distribution mechanisms to perform the context delivery (e.g., pub/sub 

architectures, multicast primitives, etc.) [52, 62], cannot be easily ported to different 

deployment architectures. Finally, from the CDDI viewpoint, this is the very last phase 

where the CDDI has control over the context data; after it, context data have been 

transmitted to mobile devices, that autonomously process and use them according to their 

will. 

3.4. Context-Aware Systems Related Work 

After an in-depth presentation of the context data life cycle, in this section we present 

a selection of the most important CDDIs for mobile systems. For each solution, we supply 

a short introduction and we clarify the main peculiarities introduced by authors. For the 

sake of readability, the following presentation has no pretence of being exhaustive; 

interested readers can refer to the few survey works, including ours, existing in literature 

[5, 6, 48, 63, 64] for an in-depth analysis of existing context-aware systems. At the same 

time, we note that additional references will be provided in the following chapters, when 

we will analyze single case studies. Now, we present related works in increasing time 

order, from the oldest to the newest ones, to better remark the evolution of this research 

area by presenting the main directions still under investigation as the last ones. 

Starting from oldest works, they mainly focused on innovative frameworks and 

software mechanisms to provision context information to running services. Context 

Toolkit is one of the most significant works on context awareness [36]. It mainly considers 

the deployment of context-aware services from a local viewpoint, by introducing proper 

software mechanisms to locally handle context information. Context Toolkit is based on 

the concept of widget, i.e., a reusable component in charge of context data production and 

consumption. Apart from widgets that directly access sensors, it is possible to define meta-

widgets, namely widgets that aggregate different context data to produce higher level 

context information. Similarly, MobiPADS focuses on context provisioning and 
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notification to running services [28]. It introduces the concept of Mobilet, namely an entity 

that provides a service and that can be migrated at runtime between different 

environments. Each Mobilet is implemented as a traditional client/server application, and 

can be dynamically migrated to allow both computation offloading and code migration. 

Mobilets can be chained to implement more complex services. One of the most important 

peculiarities of this work is that services are associated with proper profiles that detail 

context-based reconfigurations; MobiPADS takes care of the provisioning of context data 

associated with the local mobile device, such as battery status, to enable Mobilets runtime 

adaptation. Finally, CARISMA also focuses on context-aware service adaptation and 

associated mechanisms [37]. Similarly to MobiPADS, in CARISMA context-aware 

services supply proper profiles that can be modified at runtime by means of reflection 

mechanisms. Since each service provides a local profile, perhaps by detailing actions to 

trigger as consequence of specific context situations, conflicts can arise: for instance, if the 

device is going out of battery, one service can require turning off the wireless interface, 

while another one tries to keep it on for the sake of service provisioning. To solve such 

problem, CARISMA adopts a micro-economic approach, where each service rates each 

possible alternative profile; the profile that maximizes the satisfaction of all the local 

services is finally selected. 

From aforementioned related works, we conclude that initial research efforts mainly 

focused on the usage of context information at runtime, as well as effective and efficient 

software mechanisms to locally handle and provision context data. They focused on rather 

small scale deployments, where both context data availability and distribution do not 

present particular issues. Differently, more recent works started recognizing the main 

issues associated with context data distribution when 1) it is not possible to assume direct 

interactions between mobile devices and sensor nodes; and 2) the system grows by 

including several mobile devices running multiple context-aware services. 

EgoSpaces focuses on the usage of tuple spaces to perform context data distribution 

between close mobile devices connected through ad-hoc links [31]. It exploits the notion 

of mobile agent, i.e., a mobile entity that contains a private tuple store and that can 

migrate. Each agent can operate over multiple views that include context data coming 

from agents in the physical proximity of the device. To limit the scope, each view is 

defined through metadata constraints defined on both data and resources. Although this 

work seems more related to software engineering in general, it also considers context data 

delivery mechanisms: it highlights the importance of asynchronous interaction between 
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context data producers and consumers, and uses tuple spaces to support such model. 

Pervaho, instead, distributes context data to mobile nodes by using a publish/subscribe-

oriented interface [32]. The authors exploit a Location-based Publish/Subscribe System 

(LPSS) to impose localization-based constraints: each publication and each subscription 

has a visibility scope, and a publication is delivered to an active subscription only if 

publisher and subscriber lie in the intersection of these two scopes. In this way, Pervaho 

implements location-based filtering, thus enforcing the physical locality principle in 

context delivery. From a rather implementation viewpoint, the LPSS is realized by means 

of a fixed server, reachable through a wireless fixed infrastructure, that executes a 

centralized JMS publish/subscribe server [65]. 

Moving to systems designed for larger scenarios, SOLAR exploits a peer-to-peer 

fixed infrastructure built by different physical servers, called Planets, to deliver context 

data to roaming mobile nodes [33]. This solution exploits the Context Fusion Network 

(CFN) that provides data processing facilities, both aggregation and filtering operators. 

Complex context data processing tasks are expressed through operator graphs, defined in 

terms of producers, consumers, and real operators. Context services can finely tailor 

received context data by supplying proper policies to the CFN: for instance, filtering 

techniques based on context data content are natively supported by the platform. In 

addition, authors introduce an adaptive mechanism that, by monitoring the queue of the 

context data to be delivered to a mobile device, automatically adapts context delivery rates 

to prevent overload conditions. Hence, we can safely argue that SOLAR exploits QoC 

requirements detailed by the service level to adapt context data delivery at runtime. By 

always considering large-scale settings, HiCon is a conceptual framework useful to 

manage large amounts of context data in extremely decentralized scenarios [30]. It 

exploits both physical and logical locality principles to reduce the amount of context data 

transmitted into the distributed system. In addition, HiCon adopts a three-level tree-like 

architecture where each node performs partial context data aggregation and filtering before 

transmitting context data to peers and/or to the level above. In brief, in HiCon authors 

focus on the implementation of complex context processing operations in a distributed 

manner, in order to reduce the runtime traffic and increase system scalability. 

While these last works clearly point out the increased research efforts on context 

delivery infrastructures for large mobile settings, we conclude this section by presenting 

two very recent works that highlight an increasing attention toward delivery infrastructures 

able to dynamically self-adapt. COSINE is a software framework aimed to provision 
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context data in completely decentralized ad-hoc networks [66]. It exploits an XML-based 

context data model, and consumers use XPath queries to subscribe to a particular 

producer; when different producers are available, COSINE ranks them according to QoC 

parameters, and sends the subscription to the best one with no need of service intervention. 

Also, the adopted approach has an interesting outcome when a context subscription needs 

data from multiple sources: if there exists an aggregator service that already collects all the 

required data, the subscription is directly routed to it; otherwise, the initial subscription is 

automatically split in a set of fine-grained subscriptions, one for each required context 

producer. Finally, MobEyes addresses data harvesting in urban monitoring scenarios by 

exploiting vehicular networks [17]. Context data are initially produced by sensors, either 

deployed on vehicles or on fixed infrastructures. Then, vehicles store collected data and 

distribute them into the system to ensure availability: every time two vehicles come into 

contact, they exchange data by flooding, meaning that each vehicle downloads all the 

unknown data from the other one. Data retrieval is based on mobile software agents that 

carry consumer requests and travel the network to harvest as much interesting data as 

possible. Also, MobEyes exploits bio-inspired algorithms able to mark already harvested 

regions, in order to ensure efficient and fast data harvesting by driving agents toward 

information-productive regions. 

To conclude, we can assess that local context data management issues, such as 

representation and notification to running services, have been already widely addressed in 

the past. At the current research stage, there is an increasing attention toward efficient 

mechanisms for context data delivery in large-scale settings. In addition, when the system 

scale is very large, such as a city, adaptive delivery mechanisms, mainly driven by QoC 

constraints, are extremely important as they permit to trade off context quality and runtime 

management overhead. Hence, also due to the novelty of these efforts, additional research 

is required toward comprehensive CDDIs for large-scale scenarios that, by transparently 

managing runtime resources and QoC constraints, are able to optimize the delivery 

process, so to support efficient context provisioning while granting system scalability. 

3.5. Chapter Conclusions 

In this chapter, we discussed the main issues introduced by the design of a CDDI for 

large-scale mobile settings. To ensure scalable and quality-based delivery, we decided to 

adopt few important design guidelines; some of them are strictly related with low level 

data transmission, e.g., joint usage of heterogeneous wireless standards and modes, while 
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others focus on the management of the context data into the distributed architecture, e.g., 

context data production/consumption decoupling and locality principles. We remark that 

one of our guidelines, namely QoC-based context data distribution, is also the means to 

enable runtime resource management and data distribution adaptation, with the main goal 

of increasing system scalability.  

Then, we considered the whole life cycle of the context data. The CDDI has to offer a 

complex software stack to effectively handle context production, storage, aggregation, 

filtering, and distribution. Such software stack is even more complex when we deal with 

large-scale mobile settings, where mobile devices can randomly join and leave the system, 

thus potentially triggering continuous reconfigurations of the CDDI. 

Finally, we introduced the state-of-the-art on modern context-aware systems. We 

presented several works, starting from oldest to the newest ones, to better highlight current 

research directions in this area. At the end of our analysis, we concluded that, although 

CDDIs for small deployments have been largely investigated in the past, additional work 

is required to fully adopt context-aware capabilities in large-scale systems. At the same 

time, to the best of our knowledge, an in-depth analysis of the possible design choices 

available at the CDDI level is still missing. In the next chapter, we will further analyze 

modern CDDIs and we will propose a new CDDI logical model useful to better understand 

all the main involved components, as well as associated responsibilities. 
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4. Context Data Distribution Infrastructures: Logical Model and 

Design Choices 

CDDIs for large-scale wireless systems have to deal with different and heterogeneous 

management duties, spanning from data storage to delivery to mobile nodes, under strict 

resource constraints and unpredictable mobility. At the same time, the adopted distributed 

architecture widely affects the context data distribution, by introducing peculiar aspects, 

e.g., intermittent connectivity and limited context access, that further complicate the 

design of such solutions. 

While previous chapters focused on background knowledge and related work, this 

chapter starts discussing the original contributions of this thesis. From our analysis, we 

derived a new logical CDDI model, with associated main layers and design choices. For 

each possible solution, we will discuss the main tradeoffs between feasibility and quality-

based context provisioning. Finally, after a brief presentation of possible network 

deployments, we will discuss principal similarities and differences with pre-existing data 

distribution approaches in literature; that will strengthen our guidelines and design choices 

by highlighting the peculiar needs of context data distribution in mobile systems. 

The chapter is organized as follows. Section 4.1 presents our CDDI logical 

architecture. Then, Section 4.2, Section 4.3, and Section 4.4 better analyze CDDI main 

layers, with the main goal of highlighting fundamental requirements, possible solutions, 

and inter-dependencies with adopted network deployment. In Section 4.5, we present main 

deployment solutions and we discuss what we believe are the main commonalities and 

differences between CDDI and pre-existing data distribution approaches. Finally, Section 

4.6 ends this chapter with intermediate conclusions. 

4.1. Context Data Distribution Infrastructure Main Layers 

Both the heterogeneity and the complexity of the design guidelines presented in 

Section 3.2 claim for complex context data distribution solutions that transparently 

distribute context data to all the interested entities, while monitoring currently available 

resources and ensuring QoC constraints [3]. Since the wider the system scale, the higher 

the overhead introduced by context distribution, novel decentralized solutions are required 

to implement the context distribution function in large-scale wireless systems. 

Above all, context data distribution systems are data-centric architectures that 



56 
 

encompass three main actors: context data producers (sources), context data consumers 

(sinks), and context data distribution function (see Figure 4.1). Context producers access 

back-end sensors and inject new context data into the system. Context consumers express 

their own context needs by using either context data queries (pull-based interaction) or 

subscriptions (push-based interaction); context data matching is the satisfaction of 

consumer requests, both query and subscription, to achieve a correct fulfillment of both 

types. Finally, the context data distribution function distributes context data by mediating 

the interactions between context data producers and consumers; for instance, it 

automatically notifies subscribed consumers upon context data matching. In the 

remainder, we use the expressions “context producers” and “context sources”, and 

“context consumers” and “context sinks”, interchangeably. 

With a closer view to the organization, the only main phases executed directly by the 

service level are expressing context data needs and producing context data, that involves 

both sensor access and subsequent context data injection into the system. Then, the context 

data distribution function takes care of the other main phases, namely storage, aggregation, 

filtering, and delivery. Given the central role of the distribution function, its own 

efficiency is fundamental to ensure scalability. Directly stemming from our main 

guidelines, we adopt the internal architecture detailed in Figure 4.1: it contains two 

horizontal layers – Context Data Management and Context Data Delivery, starting from 

the uppermost to the lowest one – and one vertical cross-layer – Runtime Adaptation 

Support – better clarified in the following sections. 

4.2. Context Data Management Layer 

The Context Data Management Layer takes care of local context data handling, by 

defining context data representation, by storing context data, and by expressing processing 
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needs and operations. Context data representation includes all different techniques, 

spanning from simple and flat name-value pairs to ontology, proposed to represent context 

data at the CDDI level [55, 67]. Context data storage includes all the techniques to both 

cache and replicate context data into the distributed CDDI architecture, by also taking care 

of past context history. Context data processing includes 1) complex aggregation 

techniques (such as simple data matching, first-order logic aggregation, semantic-based 

techniques, …) to produce new knowledge from pre-existing context data; 2) simple 

filtering techniques to adapt context data distribution to currently available resources and 

QoC requirements, so to foster system scalability [48]; and 3) all the primitives useful to 

ensure context data security during the distribution process. Let us note that local context-

aware services interact directly with this layer through their own sinks, which take proper 

management decisions according to expressed context needs. Local context needs are 

usually expressed by means of context data filters that also include data QoC constraints. 

QoC constraints, for instance based on data up-to-dateness, are 1) locally used to filter the 

context data supplied to the final services; and 2) remotely used to avoid the distribution of 

out-of-QoC data that will not be used by requesting node. 

In the remainder, we discuss the main facilities of the context data management layer, 

by also detailing the main possible approaches with associated pros and cons. For the sake 

of clarity, Figure 4.2 briefly highlights the different solutions that can be adopted at each 

facility of this layer. 

4.2.1. Context Data Representation 

Several models have been proposed to represent context information; they differ in 

expressiveness, processing overhead, and memorization cost. Focusing on expressiveness, 

we divide context data models in general and domain-specific. General models, concerned 

with the generic problem of knowledge representation, offer a wide design space to enable 

the representation of any known service domain. Domain-specific models, instead, 

represent only data belonging to a specific vertical domain, and do not enable the 

specification of generic data; thanks to the reduced scope, these models usually specify 

complex data manipulation operations. Hybrid solutions, based on the usage of two or 

even more models, either general or domain-specific, are also feasible, but may require 

additional mapping functions to convert data from different models. 

General models offer different degrees of formalism and expressiveness. Since model 

expressiveness relates to offered data operations, more complex models tend to supply 
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additional data operations, like aggregation operators to derive new context data and 

quality operators to specify and manage QoC constraints. With an increasing order of 

complexity, context data representation can adopt one of the following models [55, 68]: 

key-value models, markup scheme models, object oriented models, logic-based models, 

and ontology-based models. 

Key-value models represent the simplest structure for modeling context by exploiting 

pairs of two items: a key (attribute name) and its value. Simplicity is the main reason for 

this approach popularity. Unfortunately, these approaches lack capabilities for structuring 

context data, and do not provide mechanisms to check data validity. 

Markup scheme models use XML-based representations to model a hierarchical data 

structure consisting of markup tags, attributes, and contents. These approaches solve some 

of the limitations of key-value models; for instance, they support data validation by means 

of XML-schemas, and structured data definition via nested XML. 

Object oriented models take advantage of the benefits of object-oriented approaches, 

typically encapsulation and reusability: each class defines a new context data type with 

associated access functions. Type-checking and data validity can be ensured during both 

compilation and runtime execution, while QoC elements can be easily mapped as other 

objects. In addition, these models ease interactions between services and context data, 

since the usage of the same abstractions provided by object-oriented programming 

languages simplifies the deployment of context handling code. 

Logic-based models exploit the high expressiveness of logic formalism: context 
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contains facts, expressions, and rules, and new knowledge can be derived by inference. 

Traditionally, these models focus on inference mechanisms and provide also proper 

formalisms to specify inference rules. Unfortunately, they do not usually offer simple 

functionalities to deal with data validity; validation can be ensured, but associated rules 

are not straightforward and depend on the adopted type of logic. 

Ontology-based models use ontologies to represent context, and take advantage of the 

capability of expressing even complex relationships. Data validity is usually expressed by 

imposing ontology constraints. By focusing on relationships between entities, ontologies 

are very suitable for mapping everyday knowledge within a data structure easily usable 

and manageable. In addition, the wide adoption of ontologies enables the reuse of previous 

works through the creation of common and shared domain vocabularies. Although 

ontology approaches seem very competitive, mobile environments usually avoid them 

since required computing resources, in terms of CPU and memory, are not acceptable for 

resource-constrained mobile devices. 

As stated before, general models offer a great degree of freedom to represent everyday 

knowledge. Differently, domain-specific models are less flexible and, by focusing on a 

particular domain, introduce particular constraints on the data and on the relationships 

between them. On the bright side, this restricted flexibility enables the definition of more 

complex automatic aggregation operators. For instance, spatial data models are widely 

adopted by localization systems to represent both real-world objects location and 

relationships among them [69], such as containment and intersection; in the literature, 

there are also some standardization efforts that clearly define data and spatial query 

format, and such level of standardization has greatly simplified the definition and the 

implementation of automatic data management tools. In this case, data validity is easier to 

ensure, and automatic tools are usually available to specify validation rules. 

In conclusion, the adopted context data model mainly depends on the supported 

scenarios and on the aggregation operations to perform. Although almost all the above 

models offer means to represent QoC metadata, to the best of our knowledge, there are no 

mature tools to declare and enforce constraints on them at runtime. In fact, the huge design 

space associated with generic models, as well as the different semantics associated with 

represented data, do not simplify the definition of completely generic QoC frameworks. 

Hence, a CDDI usually has to introduce specific solutions to handle metadata for QoC 

treatment, thus implicitly narrowing the set of context data that can be really handled. 
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4.2.2. Context Data Storage 

Context Data Storage takes care of memorizing data into the distributed CDDI 

architecture, by also triggering proper coordination and caching/replication protocols if 

required. As clarified in Section 3.2, the CDDI storage architecture should exploit both 

physical and logical locality principles to drive context data memorization, so to store data 

as close as possible to the mobile nodes that will probably require them. From a general 

viewpoint, context data storage approaches can be categorized in centralized architectures 

and decentralized architectures. 

Centralized context data storage approaches come with limited scalability and 

reliability. However, on the bright side, they ease management issues since 1) multiple 

copies of the same context data cannot exist; and 2) all the context data produced into the 

system can be easily retrieved by querying the single storage node. Of course, such 

approaches also simplify the realization of aggregation operators that need access to 

different context data for the sake of reasoning. Unfortunately, considering the tight 

limitations on the system scale, very few solutions can adopt this kind of approach. 

Moving toward more realistic and decentralized approaches, they make use of 

different nodes to store context data into the system. In addition, they can adopt either 

caching or replication mechanisms that, by carefully storing context data copies into the 

distributed storage, can increase system scalability and context availability. Although 

these solutions offer higher scalability and reliability, they lead to increased management 

overhead; first and foremost, consistency management is an important problem that must 

be carefully addressed by the CDDI, so to avoid the usage of erroneous or extremely stale 

data [54]. In the following, we better analyze the introduction and the usage of locality 

principles to guide both caching and replication mechanisms; for the sake of clarity, we 

recall that caching mechanisms memorize context data only as consequence of node 

requests. 

Starting with the physical locality principle, it suggests storing context data as close as 

possible to the associated production point. Since we are dealing with mobile systems, a 

core CDDI goal is to avoid, if reasonable, mobile nodes spreading context data into the 

system. Unfortunately, the real-world implementation of such guideline grounds on the 

provisioning of localization data, either absolute (e.g., obtained by GPS sensors) or 

relative (e.g., based on fixed anchor points). Localization information must be used to tag 

context data at production; then, at runtime, context data should be kept as close as 
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possible to their initial production location, notwithstanding node mobility. This could turn 

into an extremely hard task according to the adopted network deployment. If the network 

deployment assumes a fixed infrastructure, and the CDDI can rely on fixed servers to 

perform context data storage, a simple mapping function between physical places and 

servers in charge of handling data produced in them completely meets our goal. In fact, the 

CDDI can automatically store data coming from particular physical places on a 

predetermined set of servers, and then it can route context requests only to them, thus 

exploiting the physical locality principle to reduce the runtime overhead. Instead, if the 

network deployment is a MANET, the potential lack of fixed nodes useful to store the 

context data greatly complicates the realization of storage architectures guided by the 

physical locality principle. In the worst-case scenario, namely nodes randomly roaming 

and proactive replication techniques, the CDDI should continuously migrate context data 

between mobile devices, thus introducing a high management overhead, also difficult to 

predict due to the strict dependence with mobility patterns. In all the aforementioned 

cases, if the CDDI exploits reactive caching techniques, it can only anticipate the removal 

of context data that are far away from their own production points since, by definition, 

data transfer only happens as consequence of node requests [57]. 

As regards the usage of the logical locality principle in context data storage, more 

challenging issues arise. In fact, the logical locality principle suggests storing the data as 

close as possible to physical places that exhibit, during particular time hours and days, a 

skewed interest toward a particular set of context data. Differently from the physical 

locality principle, here the CDDI has to profile and automatically detect, at runtime, such 

skewed context data interests, so to detail proper data memorization profiles used by 

caching/replication techniques. Although the manual definition of such profiles is feasible 

as well, it does not scale well with system size, and it can require continuous human 

intervention if context interests dynamically change. In addition, similarly to what we 

discussed before, storing context data close to a particular physical place is not always 

straightforward, and strictly depends on the adopted network deployment. In this case, an 

ad-hoc network deployment introduces also challenging issues for the automatic detection 

of skewed access patterns, step that usually needs access to the history of the context data 

requests emitted by multiple nodes. 

Finally, let us remark that context data storage is also in charge of handling context 

data history, namely the possibility of maintaining all relevant past events and retrieving 

the history of a particular context data. Of course, context data history imposes 
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requirements on memory resources; depending on data size and on production rates, it 

could be difficult to maintain the whole history, especially when no fixed servers are 

available. However, despite required resources, context data history could be fundamental 

for the correct provisioning of specific services; hence, several real-world CDDIs have to 

offer such function. 

4.2.3. Context Data Processing 

Context Data Processing offers all those operations needed to locally shape retrieved 

context data according to service needs. Usual context data processing covers three main 

context management aspects: aggregation, filtering, and security. By following this order, 

we now discuss the possible implementation choices, and we introduce more details about 

the processing function. 

The Context Data Aggregation function provides all the merging operations useful to 

derive new knowledge from pre-existing context data. Specific operations strictly depend 

on the adopted context data model and, since context data can be stale and affected by 

errors, they must be deeply concerned with QoC. The available aggregation techniques 

can be classified in logic and probabilistic reasoning depending on whether the context 

data are considered either correct or correct with a specified probability (typically smaller 

than 1); in addition, hybrid solutions, that combine those two techniques, are also possible. 

Probabilistic reasoning techniques can usually derive the correctness of composed context 

data from the correctness of single involved context data. At the current stage, AI provides 

techniques, and standard logic-based representations and inference engines, that can 

simplify the usage of aggregation operators; hence, since real-world CDDIs usually 

require dynamic data aggregation, they adopt either logic- or ontology-based models that 

are simpler to manage and integrate with those engines. 

The Context Data Filtering function strives to increase system scalability by carefully 

controlling the amount of transmitted context data. These techniques are fundamental 

since some context aspects change very often, and their associated sources can produce 

data with extremely high rates. At the same time, context provisioning to services has to 

be managed according to granted QoC; if services can accept reduced QoC, and that 

produces less management overhead, context data distribution can use these techniques for 

the sake of scalability. Filtering operators usually enforce either time-based (new data are 

not transmitted until a particular time limit is not reached) or change-based constraints 

(new data are not transmitted if they do not significantly differ from the last transmitted 
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one). Of course, context-aware services can also define complex filtering operations, made 

by multiple time-/change-based operators arranged either in parallel or in sequence: for 

instance, a context-aware service can subscribe for localization change notifications only 

if the current node position differs from the previous one for, at least, 10 meters (change-

based condition), and the last notification has been received more than 10 seconds ago 

(time-based condition). Notwithstanding the significance of these techniques, they 

introduce challenging implementation issues that must be properly addressed by the 

CDDI. In a large-scale network, filters should be not only used locally at the destination 

node, but also propagated into the distributed architecture to stop the propagation of 

useless data as soon as possible: the allocation of such filters under multiple criteria, such 

as minimization of the network traffic, maximization of the sharing of filter operators 

between different users, and so forth, can lead to very complex optimization problems. 

Finally, the Context Data Security function includes all mechanisms to grant privacy, 

integrity, and availability of data (e.g., to overcome Denial of Service attacks). Real 

deployment scenarios deeply ask for them because context data could contain sensible 

information. For instance, while temperature data exchanged in clear text may be not 

perceived by users as a privacy violation, other context data containing user localization 

may require appropriate mechanisms to ensure privacy. Although security issues have 

been already tackled and solved in literature, and efficient solutions to address security 

problems, e.g., by exploiting access control and encryption mechanisms, are available and 

usable, we remark that an important part of the privacy loss problem related to the usage 

of localization data is still open: in particular, indirect inferences of users identity/relations 

performed on those data represent a real problem that is currently mining the diffusion of 

these systems [70, 71]. 

4.3. Context Data Delivery Layer 

The Context Data Delivery Layer realizes all the required coordination and 

dissemination protocols to carry published context data to interested context-aware 

services. Several solutions are possible, with an important impact on final scalability and 

context availability. Among different duties, this layer organizes the nodes that take part to 

the context data distribution, called brokers, to build a particular overlay structure useful to 

drive both context data and subscriptions routing at runtime. Also, it exploits QoC 

constraints on the data distribution process to tailor context delivery. Finally, we remark 

that, of course, the specific context delivery solution must map onto the integrated wireless 
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communication platform available underneath, and this can limit feasible solutions. 

Hence, from a rather general viewpoint, this layer addresses both context data routing 

schema and overlay structure construction and maintenance. Following this order, now we 

discuss the main solutions that can be adopted at this layer, with associated pros and cons. 

For the sake of clarity, Figure 4.3 shows a brief overview of the possible design choices, 

better discussed in the following subsections. 

4.3.1. Context Data Dissemination 

Context Data Dissemination enables data flow between sources and sinks. Hence, it is 

a core function in enabling context access with great impact on context availability and 

system scalability. A borderline condition is when no dissemination support is needed at 

all, since sinks directly access sources; we name this category sensor direct access. Apart 

from this strategy, dissemination solutions belong to three different categories, namely 

flooding-based, selection-based, and gossip-based. The first two categories characterize 

deterministic approaches where, except during system reconfigurations, a sink always 

receives matching data produced by sources belonging to the same context data 

distribution system. Instead, the last category includes probabilistic approaches where a 

sink can miss some matching data. Systems adopting a hybrid approach that mixes these 

three main solutions are also possible. Given dissemination crucial role, here we present 

an in-depth discussion of the associated taxonomy (see Figure 4.3), and we better detail 

flooding-/selection-/gossip-based categories by introducing additional elements that can 

help in analyzing real systems. 

Sensor direct access approaches may induce low data availability and clash with 

time/space decoupling because sinks have to communicate directly with sources to access 
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data; however, as main benefit, they usually result in low complexity. Although seminal 

works on context-awareness completely relied on this approach, CDDIs for large-scale 

systems can adopt it only during the initial production phase; after, context data have to be 

stored and made available into the system according to context-aware service needs, by 

granting access with no additional constraints on source/sink interactions. 

Flooding-based algorithms realize context data dissemination via flooding operations, 

in other words operations that reach all the nodes contained in a particular scope (such as 

the entire network, the one-hop neighbourhood in an ad-hoc network, ...). They operate 

either by flooding context data (data flooding) or by flooding context data subscriptions 

(subscription flooding). In data flooding, each node broadcasts known context data to 

spread them inside the entire system, by letting receiver nodes locally select interesting 

data. Instead, in subscription flooding, each node broadcasts its context data subscriptions 

to all nodes to build dissemination structure. This schema propagates subscriptions to all 

network nodes and assumes that each node memorizes subscriptions from all other nodes 

to perform local matching on produced data. This can reduce bandwidth overhead by 

disseminating only needed data; however, this solution requires very large routing tables, 

and that limits scalability.  

Selection-based algorithms are typically organized in two phases. In the first one, they 

deterministically build dissemination backbones by using context data subscriptions; in the 

second one, data dissemination takes place only over the backbones, and is limited by 

granting that context data reach only interested nodes. To build backbones, nodes must 

exchange control information, thus introducing additional management traffic. Selection-

based approaches can offer two different visibility scopes to each subscription: system 

wide scope and limited scope. In the first case, the dissemination process ensures that each 

subscription is visible in the whole distributed system, so to grant that all the matching 

data will be retrieved. In the second case, the dissemination process limits subscription 

visibility to a subset of nodes, for instance the two-hop neighbourhood in an ad-hoc 

network, so to ensure locality principles and foster scalability; however, due to the limited 

visibility, it is possible that some matching data will not be found. 

Finally, gossip-based algorithms disseminate data in a probabilistic manner by letting 

each node resend the data to a randomly-selected set of neighbours. Since these 

approaches do not need complex routing infrastructures to be constructed and maintained, 

but rather simple local views of the network to choose the neighbours to which gossip data 

to, gossip-based protocols well fit fast-changing and instable networks, such as MANETs 
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[72]. It is worth noting that, if correctly tuned, these techniques can ensure high reliability 

and low latency despite their own simplicity; however, at the same time, they exhibit a 

runtime behaviour that strictly depends on node density and mobility, and this could lead 

to unstable performance. We classify gossip-based protocols in context-oblivious and 

context-aware approaches [73, 74].  

Context-oblivious protocols rely on random retransmission probabilities and do not 

consider any external context information to tailor their behaviour [75]. Between them, 

pure probabilistic gossip protocols simply resend each received data with a retransmission 

probability, that can be also different for each node [76, 77]. In counter-based gossip, 

instead, every time a node receives a new data, it waits a random delay to overhear 

possible retransmissions by neighbours: at the end of the delay, the node resends the data 

if and only if it has overheard a number of total retransmissions lower than a threshold [78, 

79]. An important finding about context-oblivious approaches is that probabilistic gossip 

with equal retransmission probability at every node has a threshold behavior: the 

percentage of nodes that will receive the data suddenly increases when approaching a 

specific threshold that depends on node density [75, 79]. Hence, main benefit of these 

approaches is that they involve neither heavy computation nor state on traversed nodes 

that simply select randomly in the neighbourhood; unfortunately, they can waste wireless 

bandwidth uselessly by gossiping unneeded data, and do not allow the introduction and the 

enforcement of quality guarantees due to extremely variable runtime performance. 

Context-aware protocols select neighbours by using some external context data 

potentially belonging to very different context dimensions. For instance, some approaches 

use physical context (e.g., distance between nodes, local node density, etc.) to position 

replicas far away [80]; other approaches use social similarity, such as membership to the 

same university class (user context), to select neighbours to gossip data to. In summary, 

context-aware approaches reduce the number of useless gossiped data, but they require 

heavier coordination to exchange and process context data used to make gossip decisions. 

At the same time, gossip decisions strictly depend on the context data to gossip, and this 

introduces additional complexities in the CDDI, that has to somehow know the important 

context aspects to be considered during gossip decisions. Finally, the increased dynamicity 

makes the runtime behaviour of such protocols not very predictable, thus mining the 

introduction of quality constraints into the context distribution process. 

For the sake of clarity, Table 4.1 briefly summarizes the main characteristics of the 

dissemination protocols presented before. As main performance indicators, we consider 
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1) coupling between sources and sinks; 2) state introduced on each mobile node; 

3) expected network load; and 4) guarantees on context data delivery. By classifying each 

dissemination protocol in respect of such indicators, we hope to offer an easy-to-digest 

overview of available design choices. 
 

4.3.2. Routing Overlay 

Routing Overlay takes care of organizing the broker nodes, namely the nodes in 

charge of real context data routing, into the mobile system. Different architectures can be 

classified as centralized and decentralized. The centralized approach includes any possible 

concentrated deployment (i.e., both single host and clustered), while we classify 

decentralized architectures into two main subcategories: flat distributed and hierarchical 

distributed. These latter two architectural choices can help in satisfying the physical 
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locality principle, for instance, by ensuring that each broker handles only close and easily 

reachable physical places, and can enhance scalability even if they introduce additional 

management overhead.  

Of course, similarly to what already happened for the dissemination function, the 

routing overlay approach depends on the adopted network deployment; at the same time, 

given a particular network deployment, some routing overlay approaches are more suitable 

according to the adopted dissemination approach. For instance, ad-hoc network 

deployments are extremely decentralized with possible network partitions and node 

departures, hence they clash with the realization of centralized overlays. Consequently, in 

the remainder we consider every single type of routing overlay and, for each one of them, 

we introduce additional considerations on the adopted network deployment. 

The usage of a routing overlay made by a single central broker is appealing due to the 

guarantees on context data distribution: in fact, due to its centralized nature, the matching 

process between context data and subscriptions can be efficiently and effectively carried 

out by contacting the single broker. Unfortunately, this approach comes with low 

scalability and low reliability, hence, it is suitable only for small-scale deployments, where 

the context data distribution function serves a small number of sources and sinks. In 

addition, the feasibility of this approach strictly depends on the adopted network 

deployment. When fixed wireless infrastructures are used at the network deployment, this 

approach can be easily supported with a single physical server. In addition, selection-

based dissemination protocols with system wide query visibility scope take great 

advantage from this overlay organization: obtaining system wide query visibility is as 

simple as routing the context subscription to the unique broker. Instead, when mobile ad-

hoc networks are adopted as network deployment, this approach is difficult to apply due to 

the lack of a static and always available node. 

Decentralized approaches, either flat or hierarchical, exploit multiple brokers for the 

sake of scalability and reliability. They have the advantage that the routing overlay itself 

can be exploited to enforce locality principles on the context data dissemination. 

Unfortunately, decentralized routing overlays trade off system scalability and reliability 

with context availability since the usage of multiple brokers can introduce partial context 

views; hence, additional management protocols are required to build and maintain a 

consistent view over available context data. In addition, hierarchical architectures can be 

preferred to flat ones since they better match the organization of context data with strict 

physical locality principles, and better drive context subscription routing into the 
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distributed architecture. Unfortunately, some hierarchical architectures, such as tree-based 

overlays, can lead to uneven load distribution. 

For the sake of clarity, Table 4.2 shows a brief comparison between the possible 

design choices at the routing overlay. To conclude, the final routing overlay strictly 

depends on both choices of network deployment and dissemination facility. On the one 

hand, ad-hoc networks claim for distributed routing overlays (both flat and hierarchical), 

while fixed wireless infrastructures can exploit all the routing overlay approaches. On the 

other hand, ad-hoc networks match flooding-/gossip-based approaches since they do not 

require the maintenance of heavy routing information, while fixed wireless infrastructures 

prefer selection-based approaches to avoid useless context data distribution and ensure 

context availability. 

4.4. Runtime Adaptation Support Layer 

Runtime Adaptation Support enables the dynamic management and tailoring of the 

other CDDI layers according to current runtime conditions (e.g., available resources, 

deployment environment, and QoC requirements) with a typical cross-layer perspective. It 

uses QoC constraints, both on the context data and on the distribution process, to assess 

the feasibility of possible runtime reconfigurations. For instance, a conflict may arise if the 

CDDI imposes tight filter operators to reduce exchanged data, and these filters lead to the 

violation of negotiated QoC. As inappropriate decisions could lead to both system 

performance and QoC degradation, thus possibly introducing noisy side-effects in context-

aware services provisioning, runtime adaptations have to be carefully validated by the 

CDDI before real enforcement into the system. Finally, although not many solutions have 

investigated the dynamic adaptation of context data distribution so far, we think this is a 
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core component in CDDIs for large-scale wireless systems: in fact, it allows the realization 

of interesting scenarios where the CDDI can adapt context data distribution according to 

node mobility, available computational resources, QoC objectives, and so forth [3]. 

Our taxonomy, shown in Figure 4.4, highlights a crucial aspect, namely service level 

can affect the adaptation process by influencing the decisions of the runtime adaptation 

support with different levels of control. In particular, we classify it as 1) unaware, 2) 

partially-aware, and 3) totally-aware. In unaware adaptation, the service level neither 

reaches nor influences runtime adaptation support strategies. In partially-aware adaptation, 

the service level supplies profiles describing the required kind of service, while the 

runtime adaptation support modifies CDDI facilities to meet those requests. Finally, in 

totally-aware adaptation, the runtime adaptation support does not perform any action on its 

own, while the service level completely drives reconfigurations. 

To better clarify how the runtime adaptation support works, Figure 4.5 summarizes 

the main inputs and reconfiguration policies. The support elaborates both context data 

inputs (computing, physical, time, and user context) and QoC parameters in order to 

produce specific reconfiguration commands for both context data management and 

delivery layers. To be more clear, adaptations can follow five main directions. First, 

computing context: the runtime adaptation support triggers and executes management 

functions aimed to overcome changes in the execution environment, such as wireless AP 

handoff and wireless technology modifications. Second, physical context: the runtime 

adaptation support modifies data distribution according to physical constraints, such as by 

exploiting localization information to avoid unneeded data forwarding. Third, time 

context: the runtime adaptation support modifies data distribution according to specific 

events or time-of-the-day, for instance, by suspending context data distribution functions 

during night. Fourth, user context: the runtime adaptation support tailors data distribution 

to user preferences, for instance, by choosing low-cost connections even if they offer 

lower bandwidth. Fifth, QoC parameters: the runtime adaptation support dynamically 

modifies context data dissemination, for instance, by applying proper filtering criteria and 

differentiated data priorities according to required QoC.  

Runtime Adaptation 
Support 

Unaware 

Partially-aware 

Totally-aware 

Figure 4.4. Taxonomy for the Classification of the Runtime Adaptation Support. 
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We remark that the runtime adaptation support should consider all these aspects since 

reconfigurations can depend from complex conditions, spanning different context aspects 

and QoC parameters. After the elaboration of these inputs, the runtime adaptation support 

can command suitable management actions at all different layers. In the following 

subsections, we highlight the main possible reconfiguration actions performed at each 

layer. 

4.4.1. Context Data Management Layer Adaptation 

As regards the context data management layer, common reconfigurations deal with 

the storage and the filter facility. 

Starting from storage reconfigurations, the CDDI can exploit the wealth of context 

information coming from mobile nodes, namely mobility patterns, current localization 

information and user profiles, to reconfigure the local storage facilities at each mobile 

node. In the cooperative context data distribution view, each mobile node shares a local 

repository of context data with peers; of course, a coordinated management of such 

repositories is fundamental to increase their own usefulness, by preventing both the 

memorization of useless data and an excessive number of replicas of the same context 

data. To be clearer, each mobile node can reconfigure local context data repositories to 

anticipate the removal of context data that are of scarce interests both for it and for current 

neighbours; for instance, while roaming, context data far away from their own production 

points should be removed first. Similarly, if the CDDI dynamically adapts to available 

resources, it could be the case that a mobile device has to remove many context data due 

to memory shortage; in this case, an eviction policy, also based on user interests, can be 

used to keep the elements considered more interesting by the owner of the device. 

As regards filtering reconfigurations, they are used to finely tune received context 

data. QoC notion encourages the introduction of mechanisms suited for data quality, in 
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particular, filtering operators to enforce quality attributes in suitable ranges. These filters 

can be adapted at runtime, according to available computational resources both at the 

mobile node and at the brokers involved into the context data routing. For instance, an 

interesting adaptation is the runtime merge and split of different routing paths that deliver 

context data coming from the same source, but with differentiated quality constraints: in 

this case, the merge of these flows in a unique one, respecting distribution with the tightest 

QoC constraints, can reduce the runtime traffic of the CDDI. Similarly, since very tight 

QoC constraints can lead to frequent data exchanges that, in their turn, introduce too much 

overhead on device resources, the runtime adaptation support could automatically enlarge 

such QoC constraints to better trade off quality with resource consumption [81]. 

4.4.2. Context Data Delivery Layer Adaptation  

As for context data delivery layer, common reconfigurations mainly adapt 

dissemination algorithms according to current runtime conditions. Such reconfiguration 

operations can be extremely varied, spanning from the fine tuning of dissemination 

protocol parameters, to the dynamic switch of different dissemination algorithms. 

Starting with the fine tuning of dissemination protocol parameters, the most 

interesting solutions are those that realize the context data distribution in a completely 

decentralized way, mainly flooding-/gossip-based supports for MANET, since those 

systems need to adapt and to optimize distribution to overcome resource-constrained 

mobile devices limitations. For instance, gossip-based protocols are usually characterized 

by two main parameters: 1) a fan-out parameter, describing the number of neighbours that 

will be hit by a gossip operation; and 2) a gossip period, representing the period of time 

between two consecutive gossip operations. Data spreading into the mobile network is 

greatly affected by these parameters, as well as by node mobility patterns. Hence, the 

runtime adaptation support can reduce the period between two different gossip operations 

to increase propagation speed for sensible data; instead, it can enlarge it due to bandwidth 

saturation. 

Moving to more complex reconfigurations, the runtime adaptation support can 

dynamically switch different dissemination algorithms to better fit the current execution 

environment. For instance, MANETs are usually characterized by mobility patters not 

easy to predict. Such mobility patterns have a great impact on the effectiveness of the 

different dissemination protocols, since they can implicitly hinder or favour data 

propagation into the network; for instance, in data flooding approaches, the more chaotic 
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the node mobility, the higher the number of different nodes encountered in a limited time 

span, hence, the higher the propagation speed [82]. Although random mobility patterns 

simplify data spreading with flooding-/gossip-based dissemination protocols, they make 

the usage of selection-based protocols almost impossible, due to the high number of 

routing path reconfigurations and related management overhead. Hence, the runtime 

adaptation support can dynamically switch different dissemination protocols according to 

node mobility: if nodes move by building almost stable groups, namely with a low relative 

mobility, selection-based approaches are feasible; instead, if the relative mobility is high, 

it could be appropriate to completely change the dissemination algorithm, by favouring the 

adoption of flooding-based techniques. 

4.5. Network Deployments & CDDI Peculiar Aspects 

In this dissertation, we focus on the realization of CDDI solutions for large-scale 

wireless mobile systems. As the adopted network deployment can either favour or hinder 

context data distribution, here we start by analyzing possible network deployments. Then, 

since past research works have already addressed the general problem of data distribution, 

by proposing different solutions to counteract scarce resources and unstable connectivity, 

we compare our CDDI view with pre-existing data distribution approaches. 

Broadly speaking, we consider three categories of network deployments: 1) fixed, that 

extends the traditional wired Internet by wireless Access Points (APs); 2) ad-hoc, where 

mobile devices communicate directly with no need of fixed infrastructures; and 3) hybrid, 

that combines the two previous approaches. In fixed network deployments, the context 

data distribution function exploits some service reachable through the wireless 

infrastructure: this grants high context data availability, but also imposes tight constraints 

on provisioning scenarios as the system is unable to work without infrastructure. In ad-hoc 

network deployments, the context data distribution function must be implemented in a 

decentralized way, while ad-hoc links support data transmissions between mobile nodes. 

These approaches well fit all those scenarios that cannot rely on a fixed wireless 

infrastructure, but make context availability difficult to ensure; also, all the data 

management mechanisms need more complex solutions due to possible network partitions. 

Finally, hybrid network deployment approaches strive to obtain the best from previous 

ones, with fixed infrastructures that ensure data availability for those nodes able to 

communicate through them, and ad-hoc communications that may reduce infrastructure 

overhead and permit to reach nodes unreachable otherwise. 
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Here we consider three emerging network models, namely Mobile Ad-hoc NETwork 

(MANET), Vehicular Ad-hoc Network (VANET), and Delay Tolerant Network (DTN), as 

typical ad-hoc-based network deployments. A MANET is a collection of mobile nodes 

that use wireless ad-hoc links to communicate; nodes are free to move randomly, thus 

possibly leading to frequently link breakage and topology changes [44, 45]. A VANET is 

a MANET whose mobile nodes are vehicles [45, 83, 84]. In these scenarios, nodes have 

higher speed, but the relative mobility between them is usually low due to limitations 

introduced by roads and traffic regulations. While MANETs/VANETs usually assume that 

the path between the source and the destination exists when a message needs to be routed, 

DTNs accept longer latency and do not assume that the whole source-destination path 

exists at the same time [38, 85]. A message is routed on a hop-by-hop basis and by 

following a store-and-forward paradigm, where each node forwards the message to the 

neighbour that has the highest probability to bring the message close to destination [86]. 

After this brief presentation of the possible network deployments, we present five 

main emerging areas very close to context data distribution, namely 1) data distribution 

facilities for distributed simulations; 2) mobile databases in MANET; 3) multicast and 

group communication protocols in MANET; 4) pub/sub solutions in mobile environments; 

and 5) content-centric networking in MANET. Then, we explain why we consider them 

not suitable to handle context data distribution in large-scale mobile systems.  

Starting with brief research area descriptions, distributed simulations need efficient 

data distribution mechanisms to signal important events between simulated entities that 

interact among themselves; traditional solutions exploit region-/grid-based approaches to 

efficiently disseminate events [87]. Mobile database solutions enhance data availability 

over MANET settings by overcoming possible node disconnections and network 

partitions. Existing solutions copy data at different mobile nodes by using either caching 

or replication techniques [56-61]. Multicast and group communication protocols in 

MANET well fit the context data delivery facility: they allow to create different groups 

and to distribute data to all the interested entities that have previously joined a group; this 

model is suitable for distributing context data produced by a context data source to a group 

of context data sinks. Also, the context data distribution model may seem close to a pure 

pub/sub model because it is based on sources, sinks, and distribution function [52]. Many 

solutions for pub/sub in mobile environments have been already proposed in literature, and 

there exist several context-aware systems that adopt pub/sub systems to perform context 

distribution [29, 32]. Finally, content-centric networking is emerging as a new 
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fundamental communication paradigm [88]. Here, contents are univocally identified by an 

URI used during lookup, and caching at different network stack layers is used to enhance 

network performance. Different works already proposed content-centric routing over pure 

P2P MANETs [89, 90], thus assessing the feasibility of this paradigm over such network 

deployment. 

Even if these areas are close to context data distribution, some important differences 

arise. This section aims to better explain the original need for context data distribution 

infrastructures for mobile systems; we use our design guidelines to better compare systems 

belonging to different categories. 

Starting with context data production/consumption decoupling, cooperative message 

(context data) distribution, and adaptation to mobile and heterogeneous environments, 

these three design guidelines relate to mobile systems in general, hence, they are common 

to context data distribution and to almost all the research areas presented above. In fact, 

mobile systems, where nodes freely join and leave the system, make strong coupling 

between communication entities absolutely unsuitable. Consequently, context data 

production/consumption decoupling is intrinsic due to the mobile nature of the system, and 

several solutions belonging to close research fields, such as pub/sub systems, can ensure 

this requirement [52]. Similarly, the usage of intermediate mobile nodes to cooperatively 

store messages has been used by several pub/sub implementations for MANETs; in fact, 

intermediate nodes temporarily store messages and periodically relay them to neighbours, 

so to cooperatively distribute them. At the same time, the capability of adapting to 

mobility and heterogeneity is associated with mobile systems in general, because these 

systems group several mobile devices, spanning from mobile phones and PDAs to full-

fledged laptops, with highly different resources; hence, adaptation to heterogeneity is 

essential and several solutions in the above research areas already support it. At the end, 

we remark that only data distribution facilities for distributed simulations do not account 

for adaptation to mobile and heterogeneous environments, as they are mainly used in static 

and fixed infrastructure environments where powerful servers, connected by high speed 

links, exchange data to synchronize simulation execution. 

If the aforementioned design guidelines are mainly connected with mobile systems in 

general, and do not allow to clearly differentiate context data distribution from other data 

distribution approaches, the remaining guidelines carefully suggest that context data 

distribution, despite some similarities, cannot be fully addressed by other approaches. 

Starting with context data life cycle management, all these approaches do not 
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explicitly handle data life cycle. Mobile databases and pub/sub systems offer seminal 

solutions to deal with data/message removal, and they do not offer more complex 

operations, such as data/message aggregation. Similarly, data distribution facilities for 

distributed simulations and content-centric networks are focused on simple event/content 

delivery, and do not explicitly consider processing functions. Of course, as long as the 

system merely delivers data driven by additional and external routing information, the 

final payload could also adopt complex representation techniques, e.g., first-order logic; 

however, if the system cannot inspect payloads, different management operations, for 

instance QoC-based filtering, cannot be implemented. Similarly to QoC-based data 

filtering, aggregation functions could be obtained by external services running on top the 

data delivery infrastructure; however, this limits possible operations and final system 

efficiency. 

As regards the enforcement of the context data visibility scopes, data distribution 

facilities for distributed simulations enforce physical locality into the simulation, e.g., they 

share events only between entities in the physical proximity, and exploit such principle to 

optimize the placement of the different simulation components. Mobile database 

approaches do not usually enforce locality principles, and try to spread data in the whole 

system to increase availability; this is against the locality principles of the context data 

distribution. Similarly, both multicast and group communication protocols in MANET and 

mobile pub/sub architectures strive to build system-wide communication primitives that 

do not usually enable the enforcement of context data visibility scopes. Of course, 

differentiated visibility scopes can be mimicked depending on the specific system, e.g., by 

using the partitioning capabilities usually offered by pub/sub systems to increase overlay 

scalability [91]; however, these solutions are system-dependent and can lead to increased 

management overhead. At the same time, it is worth stressing that some pub/sub systems, 

called location-aware in literature [32], can constrain the message/subscription matching 

depending on the current location, so to enforce limited visibility scopes associated with 

physical locality principles. Finally, as regards content-centric networks, such approaches 

dynamically cache and move contents according to the requests currently emitted in the 

network; hence, they well fit the logical locality principle. 

In consideration of QoC-based context data distribution, to the best of our knowledge, 

all the five research areas highlighted before miss this requirement. Events in distributed 

simulations do not have any notion of event quality; also, focusing on the delivery process, 

events are dispatched a soon as possible to prevent the slowdown of running simulation, 
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with no differentiation in routing delays. Mobile databases do not usually consider quality 

constraints, neither on the data nor on the distribution process. Even if QoC constraints on 

context data can be mimicked by local filtering operators, they do not tailor the distributed 

data delivery process, thus possibly introducing unneeded overhead for replicating out-of-

QoC data. In addition, since replication techniques aim to ensure system-wide data 

consistency, they work effectively only with low change rates, and this is against the fact 

that context data can rapidly change according to the represented physical phenomenon 

[56]. Similarly, multicast and group communication protocols tend to ensure consistency 

between produced and received data: this is against both production/consumption 

decoupling and QoC-based data filtering. In addition, they strive to deliver data as soon as 

possible, while leaving out the tailoring of the distributed data distribution process: hence, 

QoC constraints on the distribution process are usually not supported. Pub/sub solutions 

do not usually consider quality-based delivery [92]. On the one side, QoC constraints on 

data can be obtained via message filtering; however, the usage of these filters to tailor the 

distributed message routing depends on the specific implementation. In addition, context 

data distribution has to deal with both uncertain data and subscriptions, while the 

subscriptions made to pub/sub systems consider only perfect subscription/data matches. 

On the other side, QoC constraints on the distribution process have to be directly 

supported by the implementation itself as they affect the dispatching process. To the best 

of our knowledge, previous research on these systems mainly focused on reliable message 

delivery notwithstanding node mobility, by means of explicit sign-in/sign-off application-

level mechanisms and caching proxy servers on the fixed infrastructure [93-96]; these 

solutions do not consider other quality objectives, such as message delivery time. Finally, 

content-centric networks enable the distribution of the same content in multiple versions, 

but they do not usually have any notion of content quality (only content trustworthiness). 

At the same time, from the delivery process viewpoint, they do not have any means to 

enforce specific retrieval times and/or priority, thus making impossible the enforcement 

and the runtime usage of such QoC quality attributes. 

To conclude, although context data distribution exhibits some similarities with 

different research works in literature, none of these approaches fulfills all the context data 

distribution design guidelines, especially 1) context data life cycle management; 2) 

locality principles; and 3) QoC-based constraints both on context data and on distribution 

process. With these observations in mind, we claim that context data distribution for 

context-aware systems is different from all other traditional data distribution architectures. 
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4.6. Chapter Conclusions 

In this chapter, we presented a logical CDDI model and we investigated the main 

design choices at each layer. Although it is possible to imagine several in-between 

solutions, our classification is meant to capture the principal design opportunities. Of 

course, designers can use hybrid or multiple solutions at a particular CDDI facility to 

reach different goals, e.g., increasing system scalability or ease of development of local 

context-aware services. To the best of our knowledge, all the pre-existing context 

provisioning infrastructures for mobile systems present design choices that can be easily 

captured by our proposed taxonomies [5]. After, we considered the principal network 

deployments that can be found in traditional mobile systems. We recalled that general data 

distribution mechanisms have been already devised and designed in close research areas; 

although such efforts may seem close to CDDIs, we also explained why we think they do 

not well fit all the main CDDI requirements. In next chapter, we discuss the three case 

studies considered in this thesis, and we briefly detail the main contributions presented in 

the second part of the dissertation. 
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5. Case Studies 

Context data distribution infrastructures for mobile environments are greatly affected 

by both system size and adopted deployment architecture. On the one hand, as the system 

grows up to large-scale networks, innovative solutions are required to address both the 

storage and the distribution of huge amounts of context data. On the other hand, the 

adopted deployment architecture greatly affects context data availability, as well as 

context data storage and distribution mechanisms, thus requiring novel solutions for the 

sake of context provisioning. 

The aim of this chapter is twofold. First, in Section 5.1, we introduce three significant 

case studies of context-aware services for mobile environments, so as to better remark the 

wide range of different network deployments and quality requirements this thesis 

addresses. We anticipate that the remainder of the thesis will be organized along these 

three case studies, since they are good representatives of deployment architectures in real-

world scenarios. Then, Section 5.2 better stresses what it is still lacking in today state-of-

the-art scenarios, and supplies a brief overview over the main contributions presented in 

the remainder of this thesis. Let us recall that, although specific solutions are presented in 

particular scenarios, they can be also applied to other ones. 

5.1. Thesis Case Studies 

In this section, we detail three significant case studies of very different context-aware 

services in mobile environments (Table 5.1 offers a brief overview, by highlighting 

network deployments and main characteristics of each case study). We focus on these 

scenarios since they feature both extremely different network deployments, ranging from 

impromptu MANETs to hybrid networks with 3G/4G connectivity, and different quality 

requirements, spanning from reliable to best-effort context delivery. In addition, each 

scenario exemplifies a class of context-aware services with a similar network deployment, 

and represents a set of problems to be addressed and solved in real-world scenarios. By 

considering these different scenarios all together, one of the goals of this thesis is to reach 

a better and comprehensive understanding of context data distribution infrastructures for 

mobile systems. 

The first case study regards context-aware services for emergency response scenarios; 

these scenarios pose several challenging issues due to both unreliable network 
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deployments and safe critical services. The second case study considers context-aware 

services for smart university campuses; here, context data distribution can also rely on 

fixed wireless infrastructures, and context-aware services are usually not safe critical. 

Finally, the third case study considers extremely large systems by addressing context-

aware services for smart cities. This last scenario is also very challenging as it requires 

both extremely high computational resources, to process all involved context data, and 

high bandwidth connections, to transmit the context data between the mobile and the fixed 

infrastructure. In the following subsections, we better detail our case studies; for each one, 

first we introduce few compelling examples of context-aware services, then we clarify the 

adopted network deployment. 

5.1.1. Emergency Response Scenarios 

Disaster area scenarios are usually consequence of an unexpected and sudden disaster, 

such as earthquake, terroristic attack, etc. In such scenarios, we usually find different 

rescue teams (doctors, policemen, firemen, …) that coordinate among themselves to 

ensure a timely and organized reaction. These forces exploit a hierarchical organization in 

which some leaders tell everybody where, when, and how to work. 

The disaster area is usually divided in four principal areas [97]: an incident site, a 

casualties treatment area, a transport zone, and an hospital zone. The incident site is the 

area where the disaster actually happened; in this area, rescue teams randomly roam to 

find and carry injured people to a safe place. Once rescued from the incident site, people 

are usually brought to the casualties treatment area, a safe area where they receive the first 

extended medical aid. After this, and only when necessary, people are transported to 

hospitals. Since hospitals are usually not close to the disaster area, the transport zone 

contains all those transport units, such as ambulances and helicopters, used to transport 

injured people. 

Between above areas, the incident site is definitely the most challenging and unsafe 

one: rescue teams randomly walk inside it to find humans in almost unknown place, such 

Table 5.1. Thesis Case Studies. 

Case Study Network Deployment Scale Quality Requirements 

Emergency Response 
Scenario 

MANET Hundreds of nodes 
Tight time requirements due 

to safe-critical services 

Smart University 
Campus Scenario 

Wireless infrastructure & 
MANET 

Hundreds of nodes Best effort delivery 

Smart Cities Scenario 
Wireless infrastructure & 

MANET 
Thousands of nodes 

Different scenarios, from best 
effort to reliable 
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as a building on fire, and do not know the state and the position of injured people. Hence, 

we will specifically focus on the incident site area, also because here context-aware 

services can assist the different rescue teams by providing a correct and timely 

characterization of the current situation. In fact, rescue teams equipped with mobile 

devices can be assisted by many different context-aware services to 1) automatically 

obtain rescue operations state, such as the number of still missing people and their 

positions; 2) distribute involved rescue teams on different sites (floors, houses, etc.) to 

maximize the coverage area of the rescue operations; 3) prevent the usage of unsafe paths 

that can put rescue teams on risk; and 4) collect medical records from injured people to 

anticipate medical needs, such as a particular type of blood for transfusion [98]. 

Unfortunately, when we consider the real-world implementation of such services, 

several challenging issues need to be carefully addressed. Starting from the network 

deployment, these scenarios do not usually assume the existence of fixed wireless 

infrastructures, as they could have been damaged by the disaster itself. Hence, the final 

network deployment is usually a MANET, built by the mobile devices carried by rescue 

team members. Although physical sensors could be deployed either on the mobile devices 

themselves (e.g., PDAs with temperature sensors) or in pre-existing Wireless Sensor 

Networks (WSNs) in the incident area, the mobile devices contained into the MANET 

have to take over all the context distribution responsibilities, spanning from storage to 

delivery. However, due to the adopted network deployment, intermittent connectivity and 

network partitions are possible, and can greatly affect context availability. In addition, 

different quality constraints are fundamental to differentiate high priority from low priority 

tasks. For instance, consider different rescue teams, e.g., teams of doctors and firemen, 

trying to gain access to the medical records associated with injured people; while doctors 

require these data only to monitor people in the casualties treatment area, firemen require 

them to know if someone still alive is trapped under the rubble in the incident area. Hence, 

a CDDI for such scenarios has to introduce and enforce differentiated quality levels to 

favour the routing of data associated with high-priority tasks, such as the ones carried out 

by firemen. 

5.1.2. Smart University Campus Scenarios 

Modern university campuses are currently requiring novel context-aware services to 

enhance students’ and professors’ life and experience while in the campus. Such services 

have been already devised in the past, spanning different social aspects and context 
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dimensions [71, 99]; for the sake of completeness, we now briefly introduce two examples 

of such context-aware services, namely a context-aware printer and a context-aware event 

notification service. 

As presented in [1], the context-aware printer service is useful to ease interactions 

between the students and the physical surroundings. As students, especially freshmen, do 

not know well the main university buildings, this service suggests close printers by 

melting together context information coming from user location and place profiles 

describing available physical/logical resources. When a student needs to print a document, 

e.g., few slides associated with the next classroom, this context-aware service can discover 

and show all the available printers, ordered by increasing distance from the current user 

location, so to facilitate and support prompt user decision; after the user opted for one 

printer, the service automatically and proactively configures the print command to reach 

the selected printer. 

The context-aware event notification, instead, is useful to recommend interesting new 

events, such as workshops, conferences, seminars, etc., to interested students. The service 

exploits user mobility, as well as additional information coming from social networks, to 

refine a user-specific profile that selects interesting events for the user. At the same time, 

co-location information between users is fundamental to identify social groups, and can 

enrich user and place profiles to prevent wrong recommendations. When a new event is 

introduced, the service matches it with user profiles to trigger automatic recommendations. 

Main goal of this service is to easily promote new events into the university campus, thus 

fostering wide participation. In addition, this service can help students toward final course 

exams: it can be used to disseminate study group events, while the service automatically 

takes over the responsibility of finding interested students. 

Both these services can greatly enhance everyday life into the campus. Here, it is 

feasible to assume the presence of a fixed wireless infrastructure that helps in distributing 

important context data to final mobile devices. Even more, we can exploit direct ad-hoc 

links between mobile devices to distribute important context data, thus implementing 

hybrid network deployments for the sake of context availability and system scalability. 

Differently from emergency response scenarios, we can assume context data always 

available through the fixed infrastructure. However, scalability bottlenecks still stand: 

first, considering that wireless fixed infrastructures deployed in a university campus are 

usually exploited to provision traditional Internet connectivity, the context provisioning 

traffic has to be kept as low as possible; second, university campuses present very high 
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node densities, and this further complicates the context distribution process, that can also 

require a high amount of bandwidth. At the same time, it is worth noting that context-

aware services executed in such environments are not safe critical. Although QoC 

constraints are useful to manage the distribution process, the CDDI has additional degrees 

of freedom that can be exploited to finely trade off context quality and distribution 

overhead. Imperfect and incomplete context views will degrade user experience, but they 

can be temporarily introduced to deal with overload situations. Hence, by using 

information coming from both system monitoring and QoC constraints, the CDDI can 

introduce runtime adaptation mechanisms useful to better limit the introduced 

management overhead. 

5.1.3. Smart Cities Scenarios 

In the last years, a new set of city-wide context-aware services is vigorously 

emerging, thus producing the so-called smart city vision. These scenarios feature city-wide 

context data sensing and collection, with the main goal of introducing innovative context-

aware services meant to reduce city energy consumption, improve citizenship safety, 

enhance traffic scheduling, and so forth. In this area, we focus on context-aware services 

for the Bologna downtown: for the sake of clarity, let us briefly introduce few examples. 

For the sake of citizenship safety, a context-aware service deployed in Bologna 

downtown can collect context data coming from multiple sensors and merge them to 

identify potentially dangerous situations. Video streaming coming from surveillance 

camera, localization information, and electrocardiogram measurements from local body 

sensor area networks can be used to detect unsafe situations, such as a person having a 

sudden heart attack on the street. We expect the smart city to trigger warning messages 

useful to make persons walking nearby aware of the current dangerous situation: in this 

case, someone can efficiently intervene to do a first cardiac massage. At the same time, 

due to the sensitivity of involved tasks, it could be worth triggering ambulance 

intervention as soon as possible, and alert close paramedics to further increase the 

possibility of saving a human life.  

At the same time, Bologna suffers of traffic jams that can produce long travelling 

times and high fuel consumption/air pollution. A context-aware service for traffic 

scheduling regulation can automatically manage these large flows of cars to prevent the 

gathering of vehicles in the same physical area, so to proactively avoid situations that can 

lead to traffic jams. In this case, video streaming from cameras deployed on the highways, 
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as well as cars localization and speed data, can be processed to detect traffic jams 

formation. After that, the context-aware traffic scheduling service can force cars to follow 

different paths, by also adapting traffic lights timings to prevent the usage of few roads at 

all. 

Aforementioned examples clearly highlight the great potential of smart cities. 

However, the real-world implementation of such solutions is very challenging, not only 

for context data transmission issues, but also for context data processing ones. Although 

we assume the usage of hybrid network deployments, based on the joint usage of both 

infrastructure-based and ad-hoc communications, the scale of such system requires novel 

solutions to correctly handle context data processing and distribution. In fact, smart cities 

contain thousands of sensors that continuously produce new context data: the storage, the 

aggregation, and the filtering of such massive amounts of context data cannot be carried 

out by centralized solutions, hence extremely decentralized solutions are required to 

address these steps. At the same time, such scenarios present highly variable resource 

demands, mainly connected to time-of-the-day and location: as people have repeatable 

patterns during the week, the CDDI can actually predict such resource requirements to 

plan proper reactions. To effectively handle the last two points, namely large set of context 

data to be processed and time-varying resource demands, as also stated in Section 2.4.4, 

we claim the need of Cloud computing architectures [39, 47, 100]. Cloud solutions usually 

exploit large data centers to offer data crunching facilities, extremely useful to process 

context data produced by the smart city; at the same time, heavy computations can be 

carried out by requiring additional hardware/software resources if required. In addition, we 

have to consider that cellular networks ensure limited bandwidth and may introduce 

economical costs. This hinders data transfer between the mobile and the fixed 

infrastructure; hence, the usage of mobile devices to perform initial context data 

processing is fundamental to avoid the introduction of high traffic from/to fixed wireless 

infrastructures. Finally, focusing on QoC management, smart cities feature several 

services that can span from safe critical ones, such as accident prevention and citizenship 

safety monitoring, to completely best-effort ones, such as automatic recommendation of 

interesting events in the physical surroundings. Hence, a CDDI for such scenarios has to 

provide and enforce a wide set of QoC requirements, by also carefully handling the 

interactions with heterogeneous wireless networks that could be not under the direct 

control of the CDDI itself. 
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5.2. Intermediate Conclusions & Contribution Outline 

In view of the first chapters, we can now better remark the main goals of this thesis 

work. In Section 3.4, we introduced a selection of context-aware systems currently 

available in literature. These valid works addressed different and heterogeneous issues, 

spanning from local context provisioning mechanisms to principles and architectures for 

context management. However, to the best of our knowledge, they did not consider the 

real-world implementation of such scenarios in large-scale deployments as a first 

objective. Heterogeneous wireless networks, as well as wireless modes, introduce 

interesting opportunities and issues; above all, hybrid network deployments suggest 

cooperative context distribution schemas where part of the distribution process and load is 

offloaded to and operated by the mobile network through ad-hoc links. Apart from the 

effects induced by the network deployment on the CDDI, we also think that quality-based 

context provisioning has been widely neglected in the past. Although one of the oldest 

work on QoC was published in 2003 [3], since then only few works in literature, such as 

SOLAR [33], considered QoC constraints as fundamental drivers to manage the 

distribution process. Hence, we feel that additional research work is required to effectively 

consider QoC constraints at runtime, so to also self-adapt the CDDI according to available 

resources. 

We conclude this chapter by anticipating and highlighting the main contributions of 

this thesis along our three case studies. In a very synthetic overview, since emergency 

response scenarios stress the problem of context data availability and retrieval in 

completely decentralized networks, in Chapter 6, we present 1) a quality-based context 

data caching approach, which uses quality constraints to dynamically reconfigure caching 

facilities; and 2) an adaptive query flooding approach, that enforces maximum data 

retrieval time, while reducing the number of exchanged messages. Moving to smart 

university campus scenarios, in Chapter 7, we extend our context data routing protocols in 

hybrid deployments and we introduce 1) an adaptive context data caching approach, that 

strives to detect current access patterns to adapt the ranking function; 2) an adaptive 

data/query batching approach, which exploits delay tolerance to enable batching solutions; 

and 3) an adaptive query drop approach, that dynamically adapts the number of processed 

queries to limit the introduced CPU load. Finally, in Chapter 8, we focus on the integration 

of Cloud solutions to perform context data storage and processing: we present a new 

network-aware VM placement algorithm for Cloud systems, whose main goal is to 
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increase system stability under time-varying traffic demands, for instance, consequence of 

context data flows that dynamically change due to a sudden gathering of people in a 

particular physical area. For the sake of clarity, Table 5.2 briefly summarizes our main 

contributions for each case study. 

 

Finally, let us recall that this chapter ends the theoretical part of this thesis work. The 

following chapters focus on the practical contributions of our work, by presenting 

algorithms and protocols design, as well as extensive experimental results for the sake of 

performance evaluation. 

Table 5.2. Outline of Practical Thesis Contributions. 

Case Study Main Practical Contributions 

Emergency Response 
Scenario 

Quality-based Context Data Caching  
Adaptive Query Flooding 

Smart University 
Campus Scenario 

Adaptive Context Data Caching 
Adaptive Data/Query Batching 
Adaptive Query Drop Policy 

Smart Cities Scenario Network-aware VM Placement for Cloud Systems 



87 
 

6. Context Data Distribution in Emergency Response Scenarios 

This chapter focuses on the realization of context-aware services in disaster area 

scenarios. In Section 6.1, we present an in-depth discussion of the main issues, as well as 

of the design guidelines, adopted by our CDDI. After a brief introduction of the distributed 

architecture, given in Section 6.2, we follow the logical CDDI architecture presented in 

Section 4.1 and we introduce the main solutions adopted by RECOWER at each logical 

layer in Section 6.3, Section 6.4, and Section 6.5. Above all, we focus on the usage of 

differentiated QoC levels to reconfigure both context data storage and delivery. Finally, 

Section 6.6 presents implementation details of RECOWER, while Section 6.7 discusses 

experimental results, obtained through simulations, showing that self-adaptive 

mechanisms, guided and constrained by required QoC levels, can effectively and 

efficiently optimize the data distribution. 

6.1. RECOWER CDDI 

Context-aware services in disaster area scenarios are extremely significant [98]. 

However, the realization of real-world CDDIs for such scenarios presents still open and 

challenging issues, associated with both the delivery and the storage of context data. In 

fact, these systems need high bandwidth and reliable wireless links, all properties that 

clash with traditional bandwidth-constrained and unreliable ad-hoc wireless technologies; 

also, since all devices are usually located in the same physical area, they form a local 

wireless network where transmission collisions are usual rather than unexpected. In 

addition, these systems have to handle huge amounts of context data by using a distributed 

data repository based on available mobile devices. As MANETs are likely to lead to 

network partitions, the system has to explicitly deal with context data availability, by 

introducing proper caching/replication techniques. In conclusion, since emergency 

response scenarios usually exploit a MANET as network deployment, we claim the 

significance of the following main design guidelines. 

First, such a CDDI should integrate with and use any wireless technology available to 

injured people devices. Among different technologies, a CDDI for disaster area scenarios 

should support, at least, both WiFi and BT, as the most widespread ad-hoc wireless 

technologies. In this way, the CDDI can increase both the final available bandwidth, by 

improving system scalability, and the communication opportunities, by reducing the 
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probability of network partitions. Toward the integration of heterogeneous wireless 

technologies, the CDDI should adapt both context distribution and management protocols 

depending on available resources; for instance, it should automatically reduce context data 

delivery rates to avoid wireless channel saturation. 

Second, the CDDI should realize a distributed data repository. Since traditional 

mobile devices usually have limited storage capabilities, we cannot assume a centralized 

solution in which one node collects and supplies access to all the data available into the 

disaster area. Consequently, the context data must be spread over the whole system and, at 

the same time, data caching/replication techniques should take place to increase data 

availability and to reduce the average path length required to access context data [56]. 

Third, the CDDI should exploit both the physical and the logical locality principles to 

carefully store context data copies into the system. Both these principles are useful to 

optimize available resources, but they must be carefully applied since they reduce the 

number of data copies, thus potentially leading to reduced context availability. In addition, 

from an implementation viewpoint, the CDDI should exploit localization data to impose 

geographical distribution bounds. When a localization support is not available, e.g., when 

the mobile devices are in indoor disaster areas, the CDDI should be able to exploit other 

techniques, for instance based on hop count, to reduce distribution scopes. 

Finally, the CDDI should be both QoC-based and context-aware in itself. Since we 

have limited resources and an amount of context data that could saturate the whole 

bandwidth, the CDDI has to introduce, enforce, and use QoC constraints to differentiate 

context data storage and delivery. For instance, to ensure QoC data retrieval time, i.e., the 

time period between context request and real data delivery to the mobile node, the CDDI 

should dynamically adapt to distribute first the data closer to delivery deadline. Also, since 

these environments are densely populated, with several devices using the same wireless 

channel, the CDDI can exploit context-awareness to optimize the distribution process. For 

instance, as long as the QoC data retrieval time is ensured, each node can introduce 

routing delays to coordinate with neighbours and to understand which data have been 

already distributed; in such cases, the CDDI can prevent further distributions, thus 

avoiding the introduction of useless overhead. Additionally, data caching/replication 

techniques should be managed to increase data diversity between near nodes, so to keep 

local more data and to increase the probability of retrieving required data in near peers. 

This also results in reduced context data retrieval times since mobile nodes have higher 

chances of finding required context data on close neighbours. 
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Following these guidelines, we designed our CDDI for disaster area scenarios, namely 

Reliable and Efficient COntext-aware data dissemination middleWare for Emergency 

Response (RECOWER) [101]. In the remainder, after a brief introduction of the 

RECOWER distributed architecture, we detail the fundamental mechanisms and solutions 

adopted at the different CDDI layers to improve distribution scalability and reliability. 

6.2. A Proposed Distributed Architecture 

RECOWER adopts a simple distributed architecture due to the constraints imposed by 

the deployment. We remove any assumption about the existence of fixed wireless 

infrastructures; hence, the RECOWER distributed architecture is a MANET built by 

mobile devices carried by rescue team members. WSNs can be used during the context 

data production phase but, since they offer short communication ranges and limited 

battery, important context data (e.g., temperature readings and localization data associated 

with people trapped under the rubble) are always offloaded to mobile devices. In this way, 

RECOWER CDDI has full control over such data, and can either cache or replicate them 

for the sake of context availability. For the sake of clarity, Figure 6.1 shows an example of 

the traditional distributed architecture adopted by RECOWER. 

In our vision, each mobile node executes a local RECOWER instance, and hosts 

multiple and heterogeneous wireless interfaces. Hence, our CDDI uses a Peer-to-Peer 

(P2P) heterogeneous MANET that integrates both WiFi and BT. To enforce the physical 

locality principle, while avoiding the strong assumption of localization data provisioning, 

RECOWER does not exploit MANET multi-hop routing protocols at the network layer, 
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Figure 6.1. Example of a Traditional RECOWER Deployment. 
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and manages data routing at the application layer on a hop-by-hop basis between 

neighbours, in order to have a rough estimation of the distance. Finally, as most of the 

routing protocols for MANET do [102], RECOWER assumes a beaconing mechanism to 

handle node mobility: in other words, each mobile node periodically emits a broadcast 

beacon to signal its presence to its own one-hop neighbours. 

6.3. Context Data Management Layer 

RECOWER addresses context data distribution in completely decentralized 

MANETs. Of course, this introduces challenging issues for the realization of both context 

data storage and processing facilities, since node mobility can lead to remarkable changes 

in system settings. This makes the implementation of distributed algorithms and 

coordination protocols very hard, as each mobile node can experience high variation rates 

in its own one-hop neighbourhood. Due to the adopted network deployment, RECOWER 

context data management uses highly localized solutions to ensure context data 

provisioning to service level with timeliness constraints and high reliability. 

Starting with context data representation, RECOWER adopts an object-oriented 

approach, where each context data instance is an object that offers access to its own 

attribute values through proper methods. Apart from the attributes describing real context 

aspects, each context data instance is associated with additional management parameters. 

Source ID (SID) is the unique identifier associated with the context source that produced 

this data. Version Number (VN) is an increasing number, attached by the source, used by 

mobile nodes to distinguish older data instances from newer ones. Foreseen Lifetime (FL) 

is the maximum data lifetime estimated by the source at generation, while Remaining 

Lifetime (RL), initially equal to FL, is dynamically decremented to account for time 

elapsing; when RL is zero, the data is no longer valid, and it is removed by context data 

repositories. Finally, to enable QoC-based data management, RECOWER tags each 

context data with proper quality metadata. In the remainder, we assume that each data 

instance has a QoC up-to-dateness parameter equal to the ratio between RL and FL (hence, 

in [0; 1]), useful to express the probability that the associated data instance is the latest one 

produced by the source. 

As regards context data storage, RECOWER mobile devices memorize all the data 

produced by dynamically discovered WSNs (see Figure 6.1); at the same time, also on-

board sensors produce new context data to be shared into the system. The memorization 

overhead is not trivial to be addressed due to resource scarcity, and the realization of 
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history mechanisms, in charge of providing historical values of context data, introduces 

additional issues due to both storage requirement and clock synchronization. On the one 

hand, resource consumption is not a fundamental objective when human lives are at stake; 

hence, although context data storage is limited by device capabilities, RECOWER does 

not strive to optimize the usage of memorization resources. On the other hand, instead, 

context availability is fundamental since some data can contain safe critical information, 

e.g., localization and temperature information of the incident area. Hence, RECOWER 

adopts caching mechanisms to store multiple copies of the same data, in order to increase 

final context availability. In the remainder, each RECOWER node has a limited data 

repository, with maximum size DMAX, that stores context data instances, either locally 

produced or received by remote nodes in response to locally issued queries. When the 

repository is full, we evict the Least Recently Used (LRU) element.  

Moving to the context data processing facility, it is completely implemented by means 

of local solutions. RECOWER CDDI offers context data aggregation and filtering 

operators, but all the associated algorithms are executed in a local fashion by assuming to 

have needed context data available in the local storage. This introduces an increased 

overhead on the mobile device, but it is feasible for the following main reasons. First, as 

stated before, in emergency response scenarios both battery draining and CPU/memory 

usage are not important objectives to deal with. Second, distributed context processing 

solutions are unfeasible due to the fast changing network conditions: they will probably 

result in high network overhead and, at the same time, both the convergence and the 

reliability of such processing operators are difficult to ensure. Since RECOWER has to 

provide context data to the service level as soon as possible, it is better to locally elaborate 

them, rather than to wait the convergence of external routing protocols and distributed 

mechanisms. Due to the introduced overhead, that design choice limits the maximum 

number of processing operators executed, at the same time, on the mobile device; hence, it 

trades off scalability and reliability of executed context processing operators. 

Finally, let us remark that context data confidentiality, integrity, and availability are 

fundamental in such scenarios due to the safe-critical nature of executed context-aware 

services. We did not consider the security issues introduced by RECOWER CDDI since 

out-of-scope in respect of the main objectives of this thesis work. However, we remark 

that a real-world implementation of such CDDI definitely needs security mechanisms to 

avoid malicious users inject wrong context data that could lead to extremely dangerous 

situations, e.g., by hijacking rescue teams along unsafe paths. Interested readers are 
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referred to [103] for an in-depth investigation of trust management schemas in MANETs. 

6.4. Context Data Delivery Layer 

Similarly to what happened for the context data management layer, RECOWER 

context data delivery layer is also widely affected by the adopted network deployment. 

The fast changing nature of MANETs does not fit well the building and the maintenance 

of complex routing infrastructures that, although suitable for more static scenarios, can 

lead here to excessive management overhead and unstable runtime performance. 

In further details, at the dissemination facility, we adopted a subscription flooding 

approach to prevent the distribution of context data not explicitly required by mobile 

nodes. Hence, when a context-aware service requires particular context data, RECOWER 

builds a subscription, i.e., a query in the remainder, and distributes it to neighbours. At the 

routing overlay facility, we used a decentralized and flat solution to avoid the introduction 

of additional management overhead due to cluster formation and maintenance [104]. Since 

each mobile node memorizes and shares local context data with neighbours, the delivery 

layer distributes context queries to all the current nodes into the one-hop vicinity. 

RECOWER context routing is based on two main entities, namely context data and 

context queries. While the former ones represent the real context information, the latter 

ones are used to build temporary distribution paths that drive context data routing into the 

distributed architecture. We recall that each context data has always, at least, its up-to-date 

version memorized at the creator node to ensure availability; additional distributions 

happen only if matching queries exist, otherwise data will be not distributed. Each query 

carries a data filter used to select matching data depending on context requirements; in 

particular, the data filter is specified by the sink at the query creator node, and is made by 

a set of simple constraints on context data attributes (e.g., membership conditions, range 

conditions, etc.) arranged through AND/OR functions. In addition, RECOWER context 

data distribution follows two main management directions. First, it considers both data up-

to-dateness and retrieval time to adapt data/query distribution; while the former is used to 

tailor data/query matching, the latter is useful to modify routing delays, for instance, to 

favour the routing of important data close to retrieval time expiration. Second, it controls 

employed resources and runtime overhead; query replication increases reliability, but 

replication degree and number of transmissions have to be carefully managed to avoid the 

introduction of scalability bottlenecks. Now, we present main management parameters, as 

well as mapping processes, used by RECOWER to reach these high-level objectives. 
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Starting with query transmission, we remark that RECOWER adopts a one-hop 

broadcast-based approach to distribute context queries. In this way, each node can 

distribute a query to its own entire neighbourhood with the lowest possible transmission 

overhead. Data distribution, instead, adopts a unicast-based approach where each node 

sends data only to the node that had relayed the query for the following two main reasons. 

First, if a node broadcasts a context data instance, that could trigger caching mechanisms 

and replacement policies on all the reachable neighbours: as consequence, this can both 

reduce cache diversity and introduce trashing behaviour. Second, this transmission policy 

permits to better control the number of data transmissions: since context queries are 

distributed in broadcast, more nodes in the same physical area could store a particular 

context query, hence data broadcasting could trigger a very high number of 

retransmissions. 

For the sake of clarity, Figure 6.2 shows a context data distribution example. Two 

nodes linked by a continuous line can communicate directly since into the transmission 

range of each other. In Figure 6.2 (a), A starts distributing a query QA: the first 

transmission hits its neighbours, i.e., B, C, and D. By assuming that B, C, and D do not 

have a positive match for QA, all of them schedule a new query distribution after a random 

delay lower than a fixed Query Routing Delay (QRD). As clarified in the following, this 

random delay lets each node monitor query transmissions and self-adapt according to 

current network load conditions. After another query distribution round (Figure 6.2 (b)), 

all the nodes have a stored copy of query QA (Figure 6.2 (c)). Assuming that E has some 

data matching QA, it schedules a data distribution after a random delay less than a fixed 

Data Routing Delay (DRD). Differently from QRD, this delay strives to prevent wireless 

Figure 6.2. RECOWER Context Data Distribution Process. 
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collisions between queries and data, so as to avoid the well-know wireless storm problem 

[105]. Finally, E relays the data to the node from which it received QA the first time (i.e., 

B in Figure 6.2 (d)), that, in its turn, sends them to the previous node in the query 

distribution path (i.e., A in Figure 6.2 (e)) after another random delay lower than DRD. 

In RECOWER, each context-aware service supplies proper QoC constraints in order 

to drive context data distribution. Focusing on the context data delivery layer, QoC data 

retrieval time is fundamental to properly set the routing delays presented in Figure 6.2. 

Also, an automatic mapping function is required to obtain low-level query parameters 

from the high-level QoC data retrieval time. Before we detail the mapping process, let us 

recall that, to enforce QoC constraints and manage query aging, each RECOWER query 

has six main management parameters. Time To Live (TTL) is the maximum number of 

hops a query can traverse; it is decremented at each traversed node, and does not allow 

further distributions when zero. Maximum Query Response (MQR) is the maximum 

number of data instances collected by this query; it is used to prevent excessive data 

distributions, for instance, when we look for context data that could have been produced 

by several sources in the same physical area. QRD and DRD, as introduced above, are the 

two maximum delays each node can introduce respectively during query/data distribution. 

Already Collected Data (ACD) is the list of the keys associated with the already routed 

data, and is fundamental to prevent retransmissions of already collected data instances. 

Finally, Query LifeTime (QLT) expresses a deadline after which the query is expired and 

removed by the system. 

As regards the mapping between the high-level QoC data retrieval and the low-level 

query parameters, we consider the following process. Query TTL is a service-level 

parameter that depends on the required distribution scope. QLT is equal to the data 

retrieval time; since all the data routed with more delay than data retrieval time are out-of-

QoC, RECOWER removes associated queries to avoid unneeded overhead. Finally, once 

selected a proper TTL, we consider that each node in the distribution path introduces a 

maximum delay of DRD in data distribution, and a maximum delay of QRD in query 

distribution. Hence, the ratio between the data retrieval time and the query TTL is the 

maximum delay each node can introduce. This value is equally split between DRD and 

QRD, and the final random data (respectively, query) delay applied during distribution is 

selected by a uniform distribution in the range [α; β] × DRD (respectively, QRD), with 0 ≤ 

α < β ≤ 1. 

Finally, let us remind that RECOWER manages also memorization resources 
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employed by context queries. Even if each node can potentially store a large amount of 

context queries, RECOWER aims to limit them to avoid overload situations: in fact, the 

memorization of many context queries can trigger several data distributions that, in their 

turn, contribute to increase wireless network load. Consequently, each RECOWER 

instance has a limited query repository, with a maximum size of QMAX, to store queries 

received by neighbours. If necessary, a replacement policy is used to identify the query to 

evict; here, the query replacement policy evicts the query closest to its own QLT, since it 

is the one that has more chance of not respecting its associated deadline. 

6.5. Runtime Adaptation Support 

RECOWER exploits QoC constraints to optimize the main mechanisms introduced in 

Section 6.3 and Section 6.4. According to our classification presented in Section 4.4, we 

adopted a partially-aware approach: each context-aware service provides high-level QoC 

constraints, while RECOWER reconfigures associated distribution mechanisms to 

optimize runtime performance. In particular, to increase both context data availability and 

distribution reliability, RECOWER adapts 1) context data replacement at the context data 

management layer; and 2) queries distribution at the context data delivery layer. 

Nevertheless, to ease the development of context-aware services, RECOWER defines a 

standard set of differentiated quality classes. Each Quality Class (QC) introduces 1) 

quality constraints on received context data; and 2) maximum data retrieval time during 

routing. The QC of each service is statically defined at deployment time according to its 

safe criticality. 

In the remainder, we present the runtime adaptation support of RECOWER. Since this 

is a vertical module that crosscuts different aspects (see Figure 2.1), this section is 

organized in two main subsections: the first one, Section 6.5.1, introduces how 

RECOWER adapts context data caching according to QoC requirements; then, the second 

one, Section 6.5.2, introduces how it adapts context query distribution to reduce the 

number of distributed messages. 

6.5.1. Adaptive QoC-based Context Data Caching 

At deployment time, each context-aware service is associated with a QC that defines 

quality constraints on received context data; our CDDI uses them at runtime to tailor the 

context data/query matching process, so to route only data that will be used by receiving 

sinks. For the sake of management, quality classes are arranged in a hierarchy that defines 
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containment relations between higher and lower quality classes. If M(QCi) is the set of 

data accepted by a user belonging to QCi, and QCi is a quality class higher than QCj, the 

relation M(QCi) ك M(QCj) has to be always true. For instance, firemen and doctors have 

two different quality classes, respectively QC1 and QC2. Firemen need context data with a 

up-to-dateness parameter higher than 0.7, while doctors accept data with every possible 

up-to-dateness (M(QC1) ك M(QC2)). All the produced context data have an initial up-to-

dateness value of 1.0; decreasing values are assigned while time passes according to a 

particular function, for instance, a linear function. Hence, at the beginning, all context data 

match both firemen and doctors quality constraints; instead, when the up-to-dateness value 

decreases to less than 0.7 due to time elapsing, the context data will no longer match 

firemen quality constraints. 

As the usefulness of caching a context data instance degrades when its quality 

attributes tend to be out-of-QoC for all the nodes in physical proximity, RECOWER 

exploits quality classes to maintain only the data with probability of being reclaimed in the 

future. It considers that nodes belonging to low quality classes, namely quality classes 

with loose constraints, can cache context data with very poor quality. Those cached data 

are completely useless if the node caching them is surrounded by mobile nodes with 

higher quality classes; in fact, all the queries will not find positive match due to poor data 

quality. At the end, such situation wastes precious storage resources; hence, RECOWER 

strives to anticipate the removal of low quality data, in order to keep context data that, 

according to their own quality attributes, can be required in the future by close neighbours. 

To conclude, QoC-based context data caching has to consider quality classes of close 

physical neighbours. The data repositories hosted on mobile nodes with low quality 

classes have to be dynamically adjusted according to the current neighbourhood; in 

particular, if required, RECOWER will adapt data caches to store context data with high 

quality attributes. The specific mechanisms used by our CDDI to select the quality-based 

constraints on data, as well as implementation details, will be presented in Section 6.6.2. 

6.5.2. Adaptive Context Query Flooding 

Context query flooding is an expensive phase that, apart from requiring high network 

resources, deeply affects distribution process reliability; in fact, broadcast messages in 

WiFi networks are less reliable than unicast ones due to the absence of the RTS/CTS 

mechanism. Hence, the context query distribution phase adopted by RECOWER has been 

optimized following two main directions, so as to avoid useless query distributions and to 
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limit excessive routing overhead. Let us give some concrete examples. First, in Figure 

6.2 (b), two of the three distributions performed by node B, C, and D are useless; since E 

is the only one that had not already received the query, one of these distributions is enough 

to ensure query distribution coverage. Hence, RECOWER aims to avoid useless query 

distributions that will hit only nodes that had already received the associated query. 

Second, although broadcast-based context query distribution is appealing due to 

distribution paths replication and reliability, it wastes a lot of network resources and can 

easily saturate the memory available for query memorization on mobile devices (limited 

by the QMAX parameter). This, in its turn, will result in query replacement and consequent 

routing path breaks. To avoid such problems, RECOWER tailors the broadcast-based 

query distribution to hit only a subset of the current neighbours. 

With a finer degree of detail, to avoid useless query distributions, RECOWER tries to 

identify whether all the current neighbours had already received the query. Toward that 

goal, each query has an Already Disseminated Nodes List (ADNL) parameter that contains 

all the identifiers associated with the nodes that had already received the query (in the 

remainder, QADNL is the ADNL parameter of the query Q).  

For the sake of clarity, Figure 6.3 shows a context data distribution example to clarify 

how our solution can prevent useless query distributions. At runtime, each node 

periodically emits a beacon message to signal its presence to its own one-hop neighbours 

(Figure 6.3 (a)). Hence, each node has a local Routing Table (RT) containing all the 

communication end-points associated with current one-hop neighbours. Of course, 

depending on both beaconing periods and node mobility, some inconsistencies can arise: a 

node can have both incomplete view (e.g., a node that is just arrived and that had not 

emitted any beacon yet) and not up-to-date view (e.g., a node that is not into the 

transmission range anymore) of the current neighbourhood. 

When A wants to distribute the query Q (Figure 6.3 (b)) with a TTL of 2, it computes 

the difference between the current list of neighbours (contained in RTA) and the QADNL. 

QADNL is initially empty, hence, the difference is {B, C, D}, meaning that some neighbours 

had not already received the query. Node A adjusts the ADNL to contain {A, B, C, D}, 

and then broadcasts Q. After having received the query, B, C, and D try to match it with 

locally stored data. Assuming that none of them can supply a response, and since the 

associated query TTL is higher than 0, they schedule a next distribution after a random 

delay lower than the associated QRD. If C is the first node that distributes Q again (Figure 

6.3 (c)), it calculates the difference between RTC and QADNL (RTC / QADNL = {E}), updates 
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the ADNL by appending E (QADNL = {A, B, C, D, E}), and broadcasts the query. This 

query distribution will hit A, B, D, and E since into the transmission range of C. As nodes 

A, B, and D already have a local copy of Q, they simply update the local copy of the query 

ADNL by appending the ADNL carried into the received query (Figure 6.3 (d)); in this 

way, they try to reach a potentially up-to-date vision of the nodes that had already received 

the query. Instead, E receives the query for the first time, and tries to perform data 

matching. When B and D (Figure 6.3 (e)) try to distribute Q again, the difference between 

the associated RT and the query ADNL is empty; hence, all the current neighbours had 

already received the query, and the two query distributions are suppressed (see red arrows 

in Figure 6.3 (e)). 

Instead, to control query replication in the same physical neighbourhood, RECOWER 

reduces the query distribution scope by imposing that a single broadcast message is 

actually processed by only a subset of the current neighbours. In other words, by always 

using a single broadcast query distribution, our CDDI imposes which neighbours have to 

consider the received query Q. Toward this goal, RECOWER exploits the query ADNL 

parameter as well. When a query Q has to be distributed, the sender node selects the set of 

neighbours to which the query will be actually sent and, before the real transmission, 

inserts their identifiers into QADNL. When a node receives Q, it checks that its own 
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Figure 6.3. RECOWER Adaptive Query Flooding. 
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identifier is into the QADNL. If the test is positive, the receiving node considers the query; 

otherwise, it discharges the query since it is not into the set of neighbours selected by the 

sender node. At the same time, even if the query is not to be processed by the receiving 

node, we 1) update the local query ADNL (if available) to improve the efficiency of the 

query distribution suppression; and 2) match it with locally memorized data to spread 

them and to increase context availability. 

Figure 6.4 shows a simple example. Node A has to distribute Q with a TTL of 2. 

Using its local RTA, it detects three neighbours that had not already received the query, 

namely B, C, and D. Before distributing the query, it uses a selection process (detailed in 

Section 6.6.3), and decides to distribute the query only to B and C. It updates QADNL by 

inserting its own identifier and {B, C}, and then broadcasts Q (see Figure 6.4 (a)). Due to 

the broadcast nature of the wireless channel, B, C, and D receive Q (see gray circles in 

Figure 6.4 (b)), and try to match Q with locally memorized data. After this phase, each 

node tests if its own identifier is into the QADNL. Due to test results, only B and C (dotted 

circles in Figure 6.4 (b)) consider the query, and schedule further distributions due to the 

TTL higher than 0, while D silently drops the query and does not perform any distribution. 

To conclude, by using query ADNL parameter, each sender node can control which 

neighbours will actually consider a broadcast query. Of course, this solution introduces 

computational overhead on all the one-hop neighbours (due to data/query match and 

ADNL test), but lets us to select and distribute a query only to a subset of the physical 

neighbours by using a unique broadcast transmission. 

6.6. Implementation Details 

This section introduces the main implementation details of RECOWER. We anticipate 

that RECOWER has been fully implemented on a network simulator, namely NS2, to 

better study the effects of our policies in large-scale mobile systems. Section 6.6.1 

introduces the software architecture of our CDDI; then, from Section 6.6.2 to Section 

Figure 6.4. RECOWER Query Distribution Suppression. 
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6.6.4, we delve into details to present the main self-adaptive mechanisms introduced by 

RECOWER, namely QoC-based context data caching and adaptive selection of broadcast 

neighbours. 

6.6.1. RECOWER Software Architecture 

Figure 6.5 presents the local software architecture adopted by the RECOWER CDDI. 

Following the logical model presented in Section 4.1, we organize it in two main layers: a 

Context Data Management Layer and a Context Data Delivery Layer.  

The Context Data Management Layer implements all the high-level functionalities 

related to context data production and access. Every context aspect is mapped to a 

particular context type that describes the layout of its own data: since RECOWER exploits 

an object oriented context model [55], the type definition describes the fields involved in 

each data instance. All current context types are stored and available by means of a local 

Context Data Type Storage. Finally, each context data type is associated with a proper 

Context Data Module that contains 1) a Source to realize data injection; 2) a Sink to enable 

data retrieval; and 3) a Context Data Cache to store locally cached context data. 

The Context Data Delivery Layer implements all the low-level functionalities related 

to context data routing and wireless communications. The Communication Module offers 

technology-independent send/receive operations while proper adapters, i.e., the WiFi and 

the BT Adapter, map them to the real low-level technology-dependent ones. Each adapter 

implements a Neighbourhood Sampling module that supplies access to the current 

available one-hop neighbours. Finally, the Adaptive Routing Manager realizes context 

data routing. It receives context data requests both from local and remote context modules, 

and passes context queries to the proper module that, in its turn, handles the matching 

phase with locally stored data. 

Figure 6.5. RECOWER Software Architecture. 
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6.6.2. QoC-based Context Data Caching 

As presented in Section 6.5.1, RECOWER context data caching is adapted at runtime 

depending on data quality attributes and QoC constraints of close neighbours [106]. With 

this goal in mind, our CDDI exploits a three phase algorithm where each mobile node 1) 

monitors close neighbours to know their own quality classes; 2) merges collected quality 

classes to obtain a final quality class, namely a cache quality class; and 3) reconfigures all 

local caches to keep only data respecting the cache quality class constraints. In this 

section, we better present the main phases involved during cache reconfigurations at 

runtime. 

In the first phase, each mobile node collects the user quality classes associated with 

close neighbours. The neighbourhood considered during cache reconfigurations could also 

span multiple hops, but there are two strong contraindications against this solution. First, 

since query TTL assumes different values according to the desired service retrieval scope, 

an upper bound to the neighbourhood that can route queries to a particular node is 

impossible to find. Second, due to high node mobility and density, a consistent view over 

multi-hop neighbourhood is difficult to reach with a low overhead. Hence, we decided to 

limit the influencing neighbourhood to one-hop nodes, in order to better trade off 

management overhead with performance gain. Finally, to enable the collection of the 

quality classes associated with neighbours, RECOWER piggybacks them in the mobility 

beacons periodically emitted by each mobile device. 

In the second phase, RECOWER merges quality classes collected by neighbours to 

obtain the final cache quality class that, in its turn, will determine the quality constraints 

used to anticipate the removal of data with low quality. By exploiting the hierarchical 

organization of the different quality classes explained in Section 6.5.1, different merging 

policies, such as MIN and MAX, can be adopted. However, MIN can easily impose the 

lowest quality class, thus leading to frequent replacements and data with poor quality. 

Instead, MAX can easily impose the highest quality class, thus leading to empty caches 

and suboptimal resource usage. Hence, RECOWER adopts the subsequent approach. If 

QCSENDER is the class associated with the node that is currently reconfiguring its own local 

caches, RECOWER examines all the quality levels from the highest one to QCSENDER. For 

each quality class, a local accumulator is incremented with the number of neighbours that 

belong to that class. When the accumulator becomes higher than a threshold λ, obtained by 

scaling neighbourhood size, the associated class is used as final cache quality class. Let us 
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note that the final cache quality class could also be equal to QCSENDER if the accumulator 

never reaches the threshold λ. With this approach, RECOWER will never choose a cache 

quality class lower than QCSENDER, hence, a node will never cache data that do not respect 

its own quality level. 

Finally, in the third and last phase, each node reconfigures its local cache with the 

selected cache quality class. Associated quality constraints are used in a two-fold manner. 

First, they define the cache admission policy: hence, from now on, if the cache is full, data 

that do not respect them will never be cached. Second, they choose the element to evict 

when necessary. If we have to remove an element, we first select all the elements that do 

not respect current cache quality class, and then we choose the element to evict by a 

traditional LRU policy; if all the data respect current cache quality class, we then select 

the element with the lowest quality, by also scaling and weighting quality attributes in 

different ways, according to their relative significance. During reconfigurations, until there 

is free space, we temporary keep previous context data even if out-of-QoC, in order to 

further increase context data availability. 

To conclude, every time a mobile node finds itself in an area populated by nodes 

having higher quality classes, the adopted merge operation forces it to cache context data 

with higher quality. Hence, our QoC-based caching algorithm effectively tailors context 

caching at runtime, so to improve the overall quality of the data in the physical area. 

6.6.3. Adaptive Selection of Broadcast Neighbours 

The adaptive query flooding is based on a selection phase useful to identify the 

neighbours that will receive the query [107]. In the current implementation, neighbour 

selection is driven by query storage load factors (i.e., the memory available on neighbours) 

and data repositories diversity (i.e., the parameter that measures the diversity between the 

local data repositories and the ones deployed on one-hop neighbours). To avoid additional 

messages, the management information needed by the adaptive distribution process is 

piggybacked into mobility beacons. When a node sends its own beacon message, it 

piggybacks three parameters (see Figure 6.6 for the associated pseudo code): 1) a Local 

Query Load Factor (LQLF); 2) a Data Key List (DKL); and 3) a Data Repositories 

Diversity Factor (DRDF). The LQLF is the ratio between the number of locally stored 

queries and QMAX: hence, it is in the range [0; 1], and higher values indicate overloaded 

situations. The DKL is the list of the keys of locally memorized data, and it is used to 

evaluate diversity with close context data repositories. Finally, the DRDF is the average 
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diversity between the data repositories at the sender node and the repositories available in 

its own one-hop neighbours (see Figure 6.6); its value is in [0; 1], and higher values are 

better since associated with higher data repositories diversity. 

When a node has to broadcast a query, first it selects the cardinality of the set of 

neighbours that will receive it. As showed in the function selectLogicalNeighbors in 

Figure 6.6, it calculates an averageLQLF as the average of the LQLFs collected by the 

nodes that had not already received the query (the node that had already received the query 

are not considered since they will be not affected by the current distribution). If this value 

is lower than a particular threshold γ, all the current neighbours will receive and process 

the query. Otherwise, RECOWER finds the cardinality of the final neighbours set through 

a linear function (as showed in Figure 6.6), and selects involved nodes by exploiting 

collected DRDFs. As limited research scopes increase the probability of missing important 

data, RECOWER sends the query to the neighbours with the highest DRDF values, so to 

hit the ones that, by having high data repository diversity with their own neighbours, can 

Variables 
 localNodeID: logical id associated with the current node 
 N: the current set of physical neighbors 
 Q: the current set of stored queries 
 R: repository of local context data 
 R[i]: ith data in the local repository; i 0] א; DMAX) 
 MgmtInformation[n]: map of the management information 

<LQLF, DKL, DRDF> for node n 
 
Function 
 storeQuery(Query q): memorizes q into the local support and 

schedules further distributions if required 
 piggybackOnMobilityBeacon(Message m): piggybacks 

message m in the next mobility beacon sent to all one-hop 
neighbors 

 scheduleSendData(Data d, NodeID n): send data d to node n 
in a random delay less than DRD 

 lookupLocalQueryCopy(Query q): checks if q is already 
known. If yes, returns the local copy of the query  

 broadcastQuery(Query q): broadcast q to the current one-hop 
neighborhood  

 
Messages 
 STATUS<LQLF, DKL, DRDF>: message containing the 

management information required by the adaptive data 
distribution solution 

 
Invoked every beacon period 
void sendMgmtInformation () 
1: Build m = STATUS<|Q|/QMAX, buildLocalDKL(), 

calculateDRDF()>; 
2: piggybackOnMobilityBeacon(m); 
 
float calculateDRDF() 
1: float localDRDF ൌ 0.0; 
2: List<DataKey> localDKL = buildLocalDKL(); 
3: for all n א N; do 

4:     localDRDF൅ൌ ቀ1 െ
|୪୭ୡୟ୪DKL ת M୥୫୲I୬୤୭୰୫ୟ୲୧୭୬ሾ୬ሿ.DKL|

|୪୭ୡୟ୪DKL ׫ M୥୫୲I୬୤୭୰୫ୟ୲୧୭୬ሾ୬ሿ.DKL|
ቁ; 

5: return localDRDF/ |N|; 
 
List<DataKey> buildLocalDKL() 
1: List<DataKey> l; 
2: for all d א R; do 
3:     l.add(d.key); 
4: return l; 
 
List<NodeID> calculateUnreachedNeighbors(Query q) 
1: List<NodeID> unreachedNeighbors = {}; 
2: for all n א N; do 
3:   if (n  ב   qADNL); then 
4:     unreachedNeighbors = unreachedNeighbors ׫ n; 
5: return unreachedNeighbors; 

Distribute query q 
void distributeQuery(Query q) 
1: List<NodeID> feasibleNeighbors = 

calculateUnreachedNeighbors(q); 
2: if (feasibleNeighbors.isEmpty()); then 
3:     return; 
4: List<NodeID> logicalNeighbors = 
 selectLogicalNeighbors(feasibleNeighbors); 
5: if (logicalNeighbors.isEmpty()); then 
6:     return; 
7: qADNL =  qADNL ׫ logicalNeighbors; 
8: broadcastQuery(q); 
 
Received query q from node n 
void receiveQuery(NodeID n, Query q) 
1: for all d א R; do 
2:     if (q.match(d)); then 
3:         scheduleSendData(d, n); 
4: Query lqc = lookupLocalQueryCopy(q); 
5: if (lqc != NULL); then 
஺஽ே௅ܿݍ݈     :6 ൌ   ஺஽ே௅ܿݍ݈ ׫   ;஺஽ே௅ݍ 
7:     return; 
8: if (!qADNL.contains(localNodeID)); then 
9:     return; 
10: if (!q.isSatisfied ()); then 
11:     storeQuery(q); 
 
List<NodeID> selectLogicalNeighbors(List<NodeID> 

feasibleNeighbors) 
1: float averageLQLF ൌ 0.0; 
2: for all n א feasibleNeighbors; do 
3:     averageLQLF൅ൌ  MgmtInformationሾnሿ. LQLF; 
4: averageLQLF /= |feasibleNeighbors|; 
5: int logicalNeighborhoodCardinality; 
6: if (averageLQLF ൏  γሻ;  ܖ܍ܐܜ 
7:     logicalNeighborhoodCardinality = |feasibleNeighbors|; 
8: else 
9:     logicalNeighborhoodCardinality = 

  ቀ
ଵି|୤ୣୟୱ୧ୠ୪ୣNୣ୧୥୦ୠ୭୰ୱ|

ଵିఊ
ቁ ൈ  averageLQLF + ቀ

|୤ୣୟୱ୧ୠ୪ୣNୣ୧୥୦ୠ୭୰ୱ|ିఊ

ଵିఊ
ቁ; 

10: if (logicalNeighborhoodCardinality != |feasibleNeighbors|); then 
11:     List<NodeID> limitedFeasibleNeighbors; 
12:     Order feasibleNeighbors according to associated DRDFs; 
13:     limitedFeasibleNeighbors.copyHighestElements( 

feasibleNeighbors, logicalNeighborhoodCardinality); 
14:     return limitedFeasibleNeighbors; 
15: else 
16:     return feasibleNeighbors; 
 
Received msg STATUS<LQLF, DKL, DRDF>  from node n 
void receivedMgmtInformation (n, LQLF, DKL, DRDF) 
1: MgmtInformation[n] = <LQLF, DKL, DRDF>; 

Figure 6.6. Adaptive Query Flooding Pseudo-code. 
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reach a wider set of context data. 

6.6.4. Optimized Management Data Representation 

We optimize the representation of all those management data useful to implement 

aforementioned self-adaptive mechanisms, so to reduce the runtime management 

overhead. Toward this goal, we exploited Bloom filters [108, 109]; for the sake of 

completeness, we now briefly introduce the main properties of this data structure. 

A Bloom filter is a space-efficient probabilistic data structure that supports 

membership queries on a set A={a1, a2, …, an} of n keys. Each filter consists of a vector of 

m bits, initially all set to 0. Each key of the original set passes through k independent hash 

functions {h1,h2,….,hk} with output in [0; m-1]. The filter associated with the keyset is 

obtained by setting to 1 all bits at positions h1(a), h2(a), ..., hk(a) for each element aA. 

Given a generic key b, we check all the bits in h1(b), h2(b), ..., hk(b) and, if any of them is 

0, then certainly b is not in the original set. Otherwise, we assume that b is in the set, 

although it may not be the case because Bloom filters may present false positives. 

However, if we assume that adopted hash functions have a uniform distribution, the false 

positive ratio is roughly equal to 0.6185௠/௡: thus, given an upper bound to |A|, we can 

reduce false positives by increasing filter length. 

Due to the aforementioned good properties, RECOWER uses the probabilistic 

membership test of Bloom filters to optimize the representation of both query ADNL and 

DKL. First, since query ADNL is modified by only inserting elements, and it is used to 

only perform membership tests, it can be easily implemented with a Bloom filter. In 

addition, the append operation required when a node receives an already known query is 

equal to a simple bit-wise OR between the already known ADNL and the ADNL carried 

by the received query. This is one of the most appealing properties of a Bloom filter: the 

filter associated with the union of two different sets is equal to the bitwise OR of two 

different filters, each one associated with each set [109]. Second, the DKL is mainly used 

to evaluate repositories diversity. Unfortunately, since an inverse mapping from a Bloom 

filter to original keys is impossible, we need to estimate DRDF in a probabilistic manner. 

Even if the literature offers probabilistic bounds to address the problem of intersection 

estimation between two Bloom filters, they depend on employed hash functions and on 

properties of the original data keyset. To reduce the computational load, we adopted a 

coarse-grained solution in which the diversity between two repositories is approximated 

by the diversity of the two associated Bloom filters. Consequently, RECOWER calculates 
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the diversity between two different repositories by using the formula (6.2) instead of the 

formula (6.1) (see Figure 6.6).  

ቆ 1 െ
|localDKL  ת  MgmtInformationሾnሿ. DKL|
|localDKL  ׫  MgmtInformationሾnሿ. DKL|

ቇ ሺ6.1ሻ

ቆ 
∑   ሺlocalDKLሾiሿ ൅ MgmtInformationሾnሿ. DKLሾiሿሻ%2୧ୀ୫ିଵ
୧ୀ଴

m
ቇ ሺ6.2ሻ

 In other words, it compares bit-by-bit the two Bloom filters by considering a positive 

unitary increment when the compared bits differ. Finally, the obtained value is divided by 

the filter length to normalize it. If the filters are completely different, i.e., they do not share 

two equal bits at the same position, the final diversity is 1; otherwise, if two filters are 

exactly equal, the diversity is 0. Of course, this estimation is suboptimal since there is no 

direct one-to-one relation between two equal bits into the Bloom filters and the number of 

elements into the intersection. 

6.7. Simulation-based Results 

To assess the technical soundness of our proposals, we implemented RECOWER and 

all the aforementioned mechanisms in the network simulator NS-2.34. We considered an 

area of 350x350m with 50 nodes, wireless ad-hoc links based on IEEE 802.11g 

technology (bandwidth of 54 Mbps) with a transmission range of 100m, and Two Ray 

Ground as propagation model. Also, each node emits a mobility beacon every 10 seconds 

to signal its presence to one-hop neighbours. 

As regards mobility modeling, few works in literature proposed complex solutions for 

disaster area scenarios [97, 110]. However, they dealt with the whole disaster area: if we 

focus on the incident area, to the best of our knowledge all the research works in literature 

model node movement with a Random WayPoint (RWP) model. Hence, since RECOWER 

concerns context-aware services into the incident area, we adopted RWP with the 

following parameters: uniform speed in [1; 2] meters/second (pedestrian velocity) and a 

uniform distributed pause in [0; 10] seconds before selecting the next waypoint. Each node 

selects the next waypoint before reaching area borders (no node departures and arrivals); 

this border rule resembles real scenarios where the same fireman carries an injured person 

out of the incident area, and then comes back to find other humans. Finally, simulations 

last 900 seconds, and all reported results are average values over 33 test executions to 

obtain a good confidence; standard deviation is also showed to evaluate results dispersion. 

In the remainder, we present the experimental results obtained in such settings. For 
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the sake of clarity, we divided them in two main subsections: Section 6.7.1 is focused on 

local context data management, while Section 6.7.2 presents results concerning adaptive 

query distribution. 

6.7.1. Quality-based Context Data Caching Evaluation 

To test the quality-based context data caching approach, we need to model both 

context data and query production. As regards context data production, we fairly divided a 

set of 1000 context data sources between all the mobile nodes, hence, each node produces 

20 context data. If not stated differently, in the following we use a DMAX parameter of 30: 

20 elements are reserved to store the last version of locally produced data, while the other 

10 elements are occupied by data received by neighbours according to locally issued 

queries. Each context data instance has an application payload of 3KB, so as to simulate 

challenging scenarios where the context data may contain compressed images about the 

incident area or complex context data. In addition, each context data source periodically 

produces a new context data instance; if not stated otherwise, each instance has a FL 

parameter of 300 seconds, thus representing quite stable context aspects. Finally, as stated 

before, each data instance has an up-to-dateness quality attribute equal to the ratio between 

RL and FL parameters (hence, it is in [0; 1] and values closer to 1 are better). 

As regards query production, we divided mobile nodes in 2 different quality classes: 

the first one, QC1, contains 25 nodes, and accepts only data with up-to-dateness higher 

than 0.7; the second one, QC2, contains the remaining 25 nodes, and accepts all possible 

up-to-dateness values. Each mobile node emits a fixed number of queries for each second, 

by uniformly selecting one context data source over the 1000 available. This represents the 

worst case scenario since context data caching usefulness is largely reduced; at the same 

time, we believe that this models a large set of realistic workloads in such scenarios (for 

instance, access to the localization information of a single first responder, retrieval of 

health information associated with a single person, etc.). All the queries are flooded 

without any of the optimizations previously presented and with a data retrieval time of 2 

seconds. Finally, α and β parameters, used to calculate the final random routing delay 

applied at each mobile node, are respectively 0.7 and 0.9. 

Before discussing the results, we want to remark that we are evaluating a worst case 

scenario since: 1) each node emits requests with a uniform distribution, thus reducing the 

probability of finding data on near neighbours; 2) context data are stored in a decentralized 

MANET, and partitions can significantly reduce context data availability; and 3) since 
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context data are distributed only as consequence of matching queries, many queries have 

to reach the data creator node before obtaining a positive response. 

In the first set of experiments, we compare our QoC-based caching algorithm with a 

simple LRU under uniform access patterns. In the remainder, the threshold λ used to find 

the final cache quality class is equal to the number of neighbours divided by 3. By using a 

request rate of 0.5 reqs/s and a query TTL in {1, 2, 3}, Figure 6.7 (a), Figure 6.7 (b), and 

Figure 6.7 (c) respectively represent the average retrieval time, the percentage of satisfied 

queries, and the average up-to-dateness of retrieved data; for the sake of clarity, results are 

divided according to the different quality classes, since associated quality constraints 

greatly affect final experienced performance. To draw some conclusions, although the two 

approaches lead to very similar average retrieval times (see Figure 6.7 (a)), the quality-

based approach always ensures higher percentages of satisfied queries than simple LRU 

(see Figure 6.7 (b)). In fact, our quality-based approach tends to keep higher quality data, 

i.e., data matching both QC1 and QC2 constraints, thus finally leading to a higher number 

of satisfied queries for both classes. It is worth noting that this increased reliability is 

negligible when query TTL is 3, as that value is associated with a network-wide 

distribution scope: in fact, if each hop covers 100 meters, a query distributed with a TTL 

of 3 can potentially reach any point in the network, thus finding the mobile node that hosts 

the wanted context data source. Finally, focusing on Figure 6.7 (c), let us remark that, of 

course, QC1 clients find context data always with up-to-dateness higher than 0.7 due to 

associated constraints. At the same time, our quality-based approach improves average up-

to-dateness of the data found by QC2 clients. Surprisingly, it slightly reduces up-to-

dateness of the data found by QC1 clients, but this is mainly due to the increased number 

of satisfied queries from context data cached on close peers, that usually have reduced 

quality attributes. 

In the second set of experiments, we modify DMAX to test how this parameter affects 

algorithm performance. By using above parameters and a TTL of 2, Figure 6.8 (a), Figure 
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Figure 6.7. LRU vs. Quality-based Caching with Uniform Access Patterns and Different Query TTL.
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6.8 (b), and Figure 6.8 (c) show respectively the average retrieval time, the percentage of 

satisfied queries, and the average up-to-dateness for each quality class when DMAX is equal 

to {30, 50, 70}. From Figure 6.8 (a), we remark that, of course, higher DMAX values lead to 

reduced average retrieval times: in fact, bigger repositories lead to more copies of the 

same context data instance into the network, thus increasing the probability of finding 

matching data closer to the query sender node. Also, from Figure 6.8 (b), we note that 

higher DMAX values increase the percentage of satisfied queries, since each node can reach 

a wider set of data cached in the physical proximity. It is worth noting that aforementioned 

variations are more visible for QC2 clients since they also accept context data with very 

low quality; instead, QC1 clients require high quality data, hence, they are less sensible to 

DMAX values since not all the cached data will match their own quality constraints. Finally, 

in line with the results of Figure 6.7 (c), Figure 6.8 (c) shows that our quality-based 

approach leads to matching data with higher up-to-dateness values. 
 

In the last set of experiments, we evaluate the two caching algorithms with different 

data FL parameters, so to better assess their performance with more dynamic context data. 

Figure 6.9 (a), Figure 6.9 (b), and Figure 6.9 (c) show the same set of results used in 

previous experiments, with a data FL parameter in {900, 450, 300, 225, 180} seconds. As 

we noted in previous experiments, the quality-based approach performs better than simple 

LRU. Figure 6.9 (a) shows that short lived data tend to increase average data retrieval 

times; in fact, in that case, mobile nodes proactively delete context data due to RL 
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Figure 6.8. LRU vs. Quality-based Caching with Uniform Access Patterns and Different DMAX. 
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Figure 6.9. LRU vs. Quality-based Caching with Uniform Access Patterns and Different Data FL. 
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expiration (see Section 6.3), and end up with not exploiting all the maximum cache size. 

At the same time, from Figure 6.9 (b), we note that the percentage of satisfied queries 

reduces with short lived data. This is more visible for QC1 clients due to tighter quality 

constraints that, in their turns, lead to more frequent accesses to real context sources. 

Finally, Figure 6.9 (c) shows that short lived data lead to lower up-to-dateness values, 

especially for QC2 clients. In fact, short lived data have fast decreasing up-to-dateness 

values, hence, queries that match context data cached on close mobile nodes have higher 

chances of finding data with reduced quality. 

In conclusion, from above results we conclude that the quality-based approach usually 

performs better than simple LRU in terms of percentage of satisfied queries and average 

up-to-dateness. In addition, it only requires the dissemination of the quality class of each 

mobile node; that is easily accomplished by piggybacking node quality class in its own 

mobility beacon. Hence, considering the very low network overhead introduced by our 

approach, we think that it is a feasible and viable choice to increase the quality of the 

context data cached in a physical area, so as to better exploit precious storage resources. 

6.7.2. Adaptive Query Flooding Evaluation 

RECOWER context query distribution is fundamental to build context data 

distribution paths, and can greatly affect context data availability. In this section, we test 

our adaptive query flooding protocol [107], and we compare it with a traditional flooding 

approach. NS2 simulations have the same parameters adopted in previous section. In 

particular, the WiFi channel exploits IEEE 802.11g parameters with a total available 

bandwidth of 54 Mbps. Each mobile node has a DMAX of 30 and hosts 20 different context 

data sources, that produce a single context data instance at the beginning of the simulation 

with an FL parameter of 900 seconds and a payload of 3KB. As for quality-based 

distribution, we use a data retrieval time of 2 seconds and no constraints on data up-to-

dateness, and each mobile node periodically emits a new query by using a uniform 

distribution to select the source. Finally, if not stated differently, simulations use α and β 

parameters respectively equal to 0.7 and 0.9, and the threshold γ, used by our adaptive 

query flooding to reduce query replication, is set to 0.5. 

In the remainder, we compare our Adaptive Flooding (AF) algorithm with Naïve 

Flooding (NF) under different request rates and TTL values. In NF, each node simply 

broadcasts a query depending on the associated TTL, while always introducing proper 

random query/data routing delays. Of course, in both NF and AF, if the received query is 
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already known, the node does not broadcast it again to avoid the introduction of additional 

traffic; although infinite loops are not possible due to the limited TTL, if a node broadcasts 

again the same query, it will probably hit the same set of neighbours, thus introducing 

useless overhead. 

In the first set of experiments, we focus on an ideal situation where QMAX is infinite, 

namely each mobile node stores all the received queries with no replacement. As the ratio 

between the number of stored queries and QMAX is used by AF to reduce query replication, 

this test condition setups a worst-case scenario for AF since it will never explicitly reduce 

query distribution scope. Hence, differently from NF, AF will only prevent the distribution 

of a query when all the current physical neighbours had already received the query. Figure 

6.10 (a), Figure 6.10 (b), and Figure 6.10 (c) show respectively average retrieval times, 

percentage of satisfied requests, and percentage of dropped packets with request rate in 

{0.5, 1, 2} reqs/s and different flooding algorithms. To draw important conclusions, if the 

network load is low (for instance, when the TTL is 1), NF and AF performs very similarly. 

Instead, when the network load increases due to both higher TTL values and higher 

request rates, AF always performs better than NF: in fact, it ensures lower retrieval times, 

higher percentages of satisfied queries, and lower dropped packets. All these positive 

effects are mainly connected with the reduced number of distributed queries that, in its 

turn, reduces the probability of message collision and network congestion. Finally, with a 

request rate of 2 reqs/s, the usage of a query TTL equal to 3 surprisingly reduces satisfied 

queries; that is clearly in contrast with the bigger query distribution scopes ensured by 

such TTL parameter. Considering that we do not have memory limitations, this effect is 

due to the increased number of dropped packets: in fact, several queries are dropped due to 

message collisions (we recall that broadcast messages are more collision-prone than 

unicast ones as they do not exploit the RTS/CTS mechanism), thus preventing the building 

of distribution paths into the MANET. 

In the second set of experiments, we consider more realistic scenarios where the 
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Figure 6.10. Comparison between Naïve and Adaptive Flooding. 
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number of queries that can be stored on each mobile device is limited by a QMAX parameter 

equal to 50. By exploiting the same parameters of previous experiments, Figure 6.11 (a), 

Figure 6.11 (b), and Figure 6.11 (c) represent the same set of results for the new scenario 

with query storage limitation. Of course, similarly to Figure 6.10, when the final network 

load is limited due to low TTL and/or request rate values, NF and AF perform very 

similarly. Instead, when the network load increases, AF performs better than NF in all the 

considered test scenarios. As each node has a QMAX parameter of 50, differences between 

NF and AF start to become visible when the expected number of stored queries at each 

mobile node is higher than 25, i.e., when the averageLQLF is higher than the γ parameter 

of these experiments. Although Figure 6.11 (a) and Figure 6.11 (b) suggest that NF and 

AF significantly differ only with TTL equal to 3 and request rates in {1, 2} reqs/s, Figure 

6.11 (c) shows that AF always ensures reduced dropped packets starting with TTL equal to 

2. This does not have a direct impact on the percentage of satisfied queries due to high 

path replication.  

From above results, we conclude that AF always outperforms NF in all situations 

(also when there are no memory limitations). Hence, in the remainder, we focus on AF 

evaluation only, to better study the influence of data retrieval time and QMAX parameter 

over the performance indicators considered before. 

In the third set of experiments, we evaluate the effect of the QoC data retrieval time 

on AF query distribution protocol. In fact, higher data retrieval times result in higher 

maximum routing delays applied at each mobile node; that, in its turn, may increase the 

randomness of applied routing delays, thus favouring query distribution suppression. 

Figure 6.12 (a), Figure 6.12 (b), and Figure 6.12 (c) represent final performance results 

with data retrieval time in {2000, 3000, 4000} ms, obtained by using a request rate of 2 

reqs/s and a QMAX of 50. Let us remark that we considered such parameters since they lead 

to realistic scenarios, where the number of queries to be stored at each mobile node can be 

higher than QMAX. Starting from Figure 6.12 (a), of course, higher QoC data retrieval 
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Figure 6.11. Comparison between Naïve and Adaptive Flooding with Memory Limitations. 
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times lead to higher average retrieval times due to bigger routing delays applied at each 

mobile node. At the same time, from Figure 6.12 (b), we remark that, apart from the case 

of TTL equal to 1, higher retrieval times reduce the percentage of satisfied queries. In fact, 

higher data retrieval times increase the number of queries potentially stored on each 

mobile node, and that increases averageLQLF (as presented in Figure 6.6) and reduces 

context query replication into the MANET. From Figure 6.12 (c), we note that higher QoC 

data retrieval times lead to reduced packet droppings, but that is mainly due to reduced 

network traffic consequence of query storage limitations. Hence, we remark that, before a 

real production phase, it is important to correctly estimate the number of queries emitted 

by each mobile node, as well as node density and average query lifetime, to correctly 

choose the QMAX parameter; a wrong estimation of this value can significantly reduce the 

reliability of the context data distribution process. 
 

Finally, in the last set of experiments, we investigate the effects of the QMAX 

parameter on context query distribution reliability. By using a request rate of 2 reqs/s and 

a data retrieval time of 4000 ms, Figure 6.13 (a), Figure 6.13 (b), and Figure 6.13 (c) 

respectively show the average retrieval times, the percentage of failed requests, and the 

percentage of dropped packets for TTL in {1, 2, 3} and QMAX value in {50, 100, 150, No 

limit}. Focusing on Figure 6.13 (b), we remark that, if TTL is 2, higher QMAX values result 

in higher reliability. Instead, when TTL is 3, the scenario with no QMAX limitation results 

in the worst reliability; in fact, as also confirmed by Figure 6.13 (c), that scenario is 
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Figure 6.12. Effects of QoC Data Retrieval Time on Adaptive Flooding. 
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Figure 6.13. Effects of QMAX on Adaptive Flooding. 



113 
 

associated with the higher percentage of dropped packets. Hence, while reasonable QMAX 

values can increase distribution process reliability, excessive query replication can mine it 

due to the increased network congestion; in fact, from Figure 6.13 (c), we note that the 

percentage of dropped packets is proportional to the QMAX value. 

To conclude, the adaptive flooding solution always outperforms the naïve one. The 

reduced number of distributed queries saves network bandwidth, and positively affects 

both the scalability and the reliability of the context data distribution. Even if this solution 

can lead to reduced research scopes due to avoided query distributions, both the small 

number of collisions and the usage of routing paths with high data repositories diversity 

make our solution valid for supporting context data distribution. 
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7. Context Data Distribution in Smart University Campus Scenarios 

After the presentation of the RECOWER CDDI, mainly based on ad-hoc 

communications, this chapter considers the realization of context-aware services in hybrid 

network deployments, in which we have both infrastructure-based and ad-hoc wireless 

communications. In particular, here we focus on the design, the implementation, and the 

deployment of context-aware services for smart university campuses. In Section 7.1, we 

open this chapter by better stating both the main issues and the design guidelines 

considered by our CDDI, named SALES, for smart university campuses. Then, in Section 

7.2, we present the hierarchical distributed architecture, while Section 7.3, Section 7.4, and 

Section 7.5 detail the main solutions adopted at the different CDDI logical layers. Finally, 

Section 7.6 thoroughly presents the implementation details of our SALES real-world 

prototype, and Section 7.7 concludes the chapter by reporting extensive experimental 

results useful to better assess the technical soundness of our proposals in real-world 

deployments.  

7.1. SALES CDDI 

Context-aware services for smart university campuses are receiving a lot of attention 

in the last years. At the current stage, there are already different universities offering 

context-aware services to their own students: to mention few, both ActiveCampus and 

SmartCampus exploit context-aware capabilities to offer innovative services into the 

university campus [9, 10]. Such services can greatly enhance the social experience into the 

campus, for instance, by suggesting possible friendships and study groups. Although in 

these scenarios the CDDI can rely on fixed wireless infrastructures for the sake of context 

provisioning, challenging issues have to be addressed both at the context data delivery and 

at the context data management layer. 

Starting with the delivery layer, such systems can introduce high network traffic to 

deliver context data. Let us note that, differently from RECOWER, reliability is not a first 

concern as campus services do not present risks for human lives; of course, both service 

interruptions and packet droppings into the context distribution process can degrade the 

final user experience, but they can be tolerated and controlled to reach better tradeoffs 

between scalability and quality. Instead, similarly to what happened in RECOWER 

scenarios, here we can experience very high node densities: a university classroom, where 
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several students use their own devices to run context-aware services, is a clear and 

frequent deployment with high node density that we can find in smart university 

campuses. Extremely crowded areas are challenging from the scalability viewpoint, since 

wireless bandwidth is shared by all mobile nodes and consequent wireless collisions and 

congestions can easily degrade final service quality. In addition, fixed wireless 

infrastructures should be carefully used since they are usually exploited to provision other 

kinds of services, such as Internet connectivity, video streaming services, and so forth, to 

roaming users, and should be not overloaded by context data distribution. Moving to the 

context data management layer, these systems have to handle large amounts of context 

data: differently from disaster area scenarios, where context data are used to quickly detect 

dangerous situations, here context-aware services can require heavy context processing 

operators. Even if the storage of such data can be considered not a first concern due to the 

availability of powerful fixed servers, both context data aggregation and filtering operators 

can introduce high management overhead.  

Hence, to support context provisioning in such scenarios, the CDDI should exploit 

some fundamental guidelines. Although some of them are similar to the ones we already 

discussed in RECOWER (see Section 6.1), here the availability of both a fixed 

infrastructure and physical servers possibly changes how we actually apply them. 

First, considering the delivery layer, we mainly confirm the design guidelines 

presented in RECOWER. Such a CDDI should exploit heterogeneous wireless technology 

for the sake of scalability and system coverage. In addition, it should integrate 

heterogeneous wireless modes, i.e., infrastructure-based and ad-hoc communications, so to 

effectively reduce the management overhead on fixed infrastructures by favouring 

cooperative context distribution among close neighbours. 

Second, as regards the context data management layer, the CDDI should exploit a 

distributed data repository based on both mobile and fixed nodes. Context data should be 

cached and replicated into the distributed architecture with the main goal of reducing 

access times and network overhead. Even if the storage of all the context data is probably 

feasible by only exploiting fixed servers, the CDDI should memorize context data on 

mobile nodes, so that they can share them with close neighbours by ad-hoc links. 

Third, the CDDI should exploit physical and logical locality principles to tailor 

context data memorization and distribution. Differently from disaster area scenarios, in 

this case the CDDI can assume the availability of anchor nodes, e.g., WiFi APs deployed 

into the university campus, that can supply relative localization information useful to 
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enforce the physical locality principle. Also, the availability of full-fledged physical 

servers enables the realization of complex algorithms that, by monitoring context data 

requests, can identify logical localities between mobile nodes and, accordingly, 

reconfigure the distribution process at runtime. 

Finally, the CDDI should adapt to available resources and QoC constraints: mobile 

devices have limited resources in terms of CPU, memory, and network connectivity; 

hence, a CDDI should respect the minimum intrusion principle by guaranteeing the 

introduction of limited and controlled overhead [63]. We remark that, since offered 

context-aware services are not safe-critical, mobile users would probably tolerate 

inconsistencies in context view and slightly quality degradations, but not fast battery 

depletion and heavy computational load. In addition, similarly to what we discussed in 

RECOWER, also here the CDDI should introduce and enforce different quality 

constraints, for instance, to support different user roles (e.g., students and professors); at 

the same time, it should self-adapt and manage its internal behaviour according to 

available resources. For instance, a CDDI should automatically and dynamically 

reconfigure its internal facilities, such as differentiated context data routing and 

decentralized caching, by also finely tuning memory and computing resources (number of 

processes, communication data rate, …) depending on current working conditions 

(available bandwidth, number of context exchanges, …), number and class of clients, and 

agreed quality contracts [111]. 

Following above guidelines, we designed our CDDI for smart university campuses, 

called Scalable context-Aware middleware for mobiLe Environments (SALES) [112]. In 

the remainder, by following a presentation order similar to the one adopted in Chapter 6, 

we introduce additional details and design choices associated with SALES at the different 

layers. 

7.2. A Proposed Distributed Architecture 

To ease the enforcement of the physical locality principle, we decided to adopt the 

three-level tree-like distributed hierarchical architecture showed in Figure 7.1 (a grey line 

between two nodes means that they can exchange messages directly). SALES CDDI spans 

all the involved devices, both fixed and mobile, and exploits mobile devices as temporary 

data carriers to perform context data routing and caching. 

For the sake of infrastructure management, we distinguish four main types of nodes 

with different responsibilities. In particular, by considering the different hierarchical levels 
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from the uppermost to the lowest one, we consider: 

Central Node (CN) - The tree root is a logical centralized and fixed entity useful to 

ensure context data persistency and availability of system-wide visible data. Hence, this 

node enables the context data distribution with the widest possible distribution scope. 

Since the number of received requests could be high, the CN can be realized by means of 

clustered architectures to enhance scalability and reliability. Finally, it can be accessed 

only by the nodes belonging to the level below, that usually communicate with it through 

high-performance fixed network connections. 

Base Node (BN) - A BN is connected to and manages access network elements of 

heterogeneous wireless fixed infrastructures (e.g., WiFi APs, 3G/4G cellular base stations, 

…), and takes care of context data/query routing to/from the mobile nodes available at the 

level below. Each BN defines a reduced distribution scope, and can communicate only 

with the CN, its own neighbours, and served mobile nodes. Finally, since a BN is a full-

fledged physical server, we expect it to memorize context data in order to reduce the 

requests relayed to the CN. 

Coordinator User Node (CUN) - Mobile nodes are organized in clusters to build 

smaller distribution scopes. In each cluster, we dynamically elect a cluster-head, namely a 

CUN, useful to better control the context data distribution and to bridge together ad-hoc 

and infrastructure-based networks. CUNs exchange context data with close mobile devices 

through ad-hoc links, thus reducing the number of requests relayed to upper levels. 

Finally, each CUN executes proper mobility management protocols to associate with the 

BN in charge of the current physical place, so to connect to SALES fixed infrastructure. 

Simple User Node (SUN) - Each mobile node, that is not a CUN, plays the role of a 
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CUN21 CUN31 

CUN32 

SUN111 SUN112 
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Legend: 
CN – Central Node CUN – Coordinator User Node 
BN – Base Node SUN – Simple User Node 

Figure 7.1. SALES Distributed Architecture. 
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SUN. Similarly to CUNs, SUNs enact as context source/sink into the system by injecting 

and requiring context data. They communicate with close mobile devices, either SUNs or 

CUNs, through ad-hoc links. To access SALES CDDI, each SUN has to associate with a 

reachable CUN; hence, proper mobility management protocols are also executed to let 

SUNs discover and associate with one of the CUNs available in the physical proximity. 

In conclusion, the adopted distributed architecture connects and bridges together a 

fixed and a mobile infrastructure to increase system scalability. An extremely appealing 

and difficult to achieve goal is to handle most of the context distribution process through 

ad-hoc links; however, this clashes with both the limited network resources and the limited 

visibility scopes ensured by ad-hoc communications. Hence, the intervention of the fixed 

infrastructure is required to both ensure context data availability and perform context 

processing operations. 

7.3. Context Data Management Layer 

Our SALES CDDI addresses context data distribution in hybrid network deployments. 

As stated before, the availability of a fixed infrastructure simplifies the design and the 

realization of particular management facilities; in addition, it enables hybrid solutions 

where the mobile and the fixed infrastructures cooperate together toward the common goal 

of context data distribution. In the remainder, we discuss the main solutions adopted by 

SALES at each facility contained into the context data management layer (see Section 4.2 

for an in-depth presentation of this layer). 

Starting with context data representation, similarly to RECOWER, SALES adopts an 

object-oriented approach [55]. Leaving out the attributes used to describe type-specific 

context aspects, each context data instance has five management parameters. Source ID 

(SID), Version Number (VN), Foreseen Lifetime (FL), and Remaining Lifetime (RL) 

parameters are the same ones introduced in RECOWER CDDI (see Section 6.3); in 

addition, Hierarchical Level Tag (HLT) parameter is useful to limit instance visibility into 

the SALES distributed architecture, for instance, to keep context data only on the mobile 

infrastructure. Finally, as regards QoC-based data management, SALES can tag each 

context data instance with additional quality metadata, such as precision and resolution. 

Focusing on context data storage, SALES memorizes context data both on mobile 

devices and on fixed servers. Although the memorization overhead can be very high, the 

fixed infrastructure can be effectively used to offload context data; at the same time, 

context data caching on the mobile infrastructure is appealing since it can reduce context 
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retrieval times and improve system scalability. Similarly to RECOWER, SALES adopts 

distributed data caching solutions: each mobile node has a local repository of context data, 

with a maximum size DMAX, shared with close neighbours. However, here we aim to better 

inspect main requirements and solutions, and compare multiple different caching 

algorithms to find good tradeoffs for data caching at both infrastructure and mobile trunks. 

Mobile nodes can freely roam, and can experience different access patterns according to 

the current physical location; hence, they must be able to quickly adapt, so as to improve 

cache usefulness under time-varying access patterns. The main management operation that 

differentiates caching policies is the replacement algorithm, namely the function that, 

when the cache is full, selects the data instance to delete to make room for the incoming 

data. For the sake of completeness, in Section 7.3.1, we briefly discuss the most important 

caching approaches in literature, by also clarifying their main shortcomings; then, in 

Section 7.3.2, we present our solution, called Adaptive Context-aware Data Caching 

(ACDC), that exploits information coming from access patterns and data instance 

replication into the physical neighbourhood to select the element to evict. 

Finally, moving to the context data processing facility, SALES CDDI only offers very 

simple solutions to perform context data aggregation and filtering. We remark that the 

availability of a fixed infrastructure simplifies the introduction of aggregation and filtering 

operators: in fact, heavy computations can be dynamically offloaded to BNs that, by 

having full access to context data instances, can perform needed computations and send 

results back to mobile nodes. Also, SALES does not currently address context data 

confidentiality, integrity, and availability, although they are fundamental in real-world 

deployment scenarios. Let us remark that we did not consider such aspects since out-of-

scope in respect of this thesis work. 

7.3.1. Data Caching Algorithms 

Above all, First In-First Out (FIFO), Least Frequently Used (LFU), and Least 

Recently Used (LRU) are common caching algorithms based on very simple replacement 

policies, so to reduce cache management overhead. FIFO orders data according to their 

insertion: when a data instance has to be inserted and the cache is full, the oldest element 

is deleted. Since cache accesses do not result in data reordering, FIFO implementation is 

very fast, but it does not make any effort to keep most accessed data. LFU exploits data 

access frequencies: for any data, it stores a counter of performed accesses, and most 

accessed data are maintained into the cache; since cached data are ordered according to 
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frequency counter values, accesses lead to dynamic data reordering. The main LFU 

advantage is that it maintains a cumulative view of the history of accesses: if the access 

pattern is static and biased, LFU adapts itself to grant the maximum number of local hits. 

However, since it does not quickly adapt to time-varying accesses patterns due to history 

effects, it can end up by storing data not useful anymore, thus leading to reduced 

performance. Finally, LRU dynamically reorders cached data according to most recent 

access times; if the cache is full, the least recently used data is deleted. Data are 

dynamically reordered: if a data is accessed, it is moved to the head of the cache, while the 

tail points to the first data to remove. LRU is simple and adapts to data accesses: 

unfortunately, it can cache instances that are unlikely to be accessed again (e.g., instances 

accessed only once and never accessed again). 

FIFO, LFU, and LRU are very suitable for mobile scenarios as they introduce a 

limited overhead that, at the same time, allows good scalability when the cache size 

increases. However, in our main scenario, caching algorithms do not have strict execution 

deadlines, and can also introduce longer access and replacement times. We think it is more 

convenient to spend longer time during cache accesses and replacements than wasting 

network bandwidth for additional data distributions due to cache misuse. Consequently, 

we are interested in more complex cache replacement policies capable of increasing cache 

usefulness. 

Following that direction, different collaborative data caching approaches in MANETs 

have been proposed in literature. In [113], authors present a collaborative cluster-based 

data caching approach. Each mobile node divides its own cache in a private and a shared 

area to store data of interest to, respectively, the node itself and other cluster members; the 

cluster-head selects the data to be moved from the private to the shared area, while LRU is 

used as replacement policy in each area. A close work proposes a collaborative caching 

framework where each node can cache either data or paths towards the data [114]; the 

decision of caching either data or data paths is based on the hop distance from the data: for 

close data, data path caching is preferred to reduce the total number of replicas in physical 

proximity. In addition, [114] employs LFU to select the element to evict when either the 

data cache or the data path cache is full. Zone Cooperative (ZC) caching builds one-hop 

clusters in which cooperative data caching is used: ZC uses a replacement policy based on 

performed accesses, hop distance from source, data lifetime and size, to select the element 

to evict [115]. Hence, to increase cache diversity between close mobile nodes, it uses a 

replacement policy based on hop count. Finally, Group-based Cooperative Caching 
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(GroCoCa) is a data caching solution for wireless broadcast environments. GroCoCa aims 

to group nodes with similar context interests and mobility patters, and exploits those 

clusters to perform cooperative caching [58]. This approach is definitely an interesting 

one, but it requires the availability of GPS localization system to properly drive cluster 

formation. 

To conclude, although the aforementioned caching approaches are extremely valid 

solutions, none of them satisfies our three main requirements. First, since context data 

have a limited lifetime, caching approaches for CDDIs have to consider it to prevent the 

storage of soon-to-expire data. Second, since mobile nodes can experience time-varying 

access patterns consequence of physical/logical locality with close neighbours, caching 

approaches for CDDIs have to quickly adapt, so as to prevent the storage of data not useful 

anymore. Finally, traditional proposals do not usually exploit visibility of data cached on 

neighbours; for instance, they can inefficiently eliminate a data instance with only one 

copy to maintain another one with several replicas in the physical proximity. Hence, to 

address all those requirements, we designed our novel ACDC caching algorithm. 

7.3.2. Adaptive Context-aware Data Caching 

ACDC has both a local and a distributed nature, and we claim the need of both 

perspectives. About the local part (local ranking), ACDC strives to adaptively tailor data 

ranking  depending on current access pattern, so to better fit current situation and reduce 

relayed queries. ACDC maintains a limited history (H) of data access times, and combines 

1) the access frequency in the limited time-frame represented by H, and 2) data remaining 

lifetime, to quickly self-adapt cache when access patterns change. As regards the 

distributed part (remote ranking), ACDC aims at increasing the probability of retrieving 

needed data in a neighbour node. In particular, to increment the number of data cached in 

the same physical locality, ACDC controls the number of data replicas, and adopts 

reactive replication to store useful context data on underutilized neighbours. Finally, 

ACDC melts together local and remote rankings to associate each data with a final utility 

value used to select, when necessary, the element to remove. 

With finer details, and starting from local ranking, we foresee two borderline types of 

significant access patterns: uniform and preferential accesses. In uniform access patterns, 

each data has almost the same probability of being reclaimed in the future while, in 

preferential ones, some data are more requested than others. Both these access patterns 

strictly relate with locality principles: if there is strong locality, either physical or logical, 
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between nodes in the same area, queries will match similar data, thus resulting in 

preferential accesses; otherwise, nodes tend to emit queries with different set of matching 

data, thus resulting in uniform accesses. Different access patterns modify the utility of 

cached data, hence, it is important to estimate the current access distribution: since 

uniform accesses do not allow future accesses forecasting, it is advisable to maintain data 

with higher probability of being asked before their expiration, namely data with longer 

lifetime. On the opposite, as preferential accesses allow a more accurate forecasting of 

future accesses, it is advisable to preserve data with higher probability of being required, 

namely more frequently used data. 

Toward data access pattern estimation, ACDC calculates the linear correlation (named 

correlation index in the remainder) between 1) the time spent by the data into the cache 

according to H; and 2) the number of accesses registered in H. For uniform access 

patterns, the history of the accesses registered by H will be quite random and will not 

highlight any relationship between the two above indicators, thus leading to lower linear 

correlation values. Instead, for preferential access patterns, the two indicators will present 

a higher linear correlation, due to the fact that context data kept in cache for longer period 

will be also the ones with higher number of accesses. The correlation index is evaluated 

over H, and we have to consider that H length is useful to trade off accuracy with 

adaptation promptness. In fact, while roaming, a mobile node reaches different locations 

with different neighbours and potentially different interests. Since long histories tend to 

melt together access patterns belonging to different situations, they hinder the usefulness 

of forecasting and also slow down adaptation mechanisms; hence, ACDC uses a short 

history H to quickly adapt to the current situation. Once evaluated the correlation index, 

ACDC uses it as weighting factor for the local ranking: for uniform access patterns, it 

favours data with longer lifetime while, for preferential ones, it favours data more 

frequently accessed in H. 

Focusing on remote ranking, we remark the importance of controlling the number of 

data copies in the neighbourhood, so to increase the total number of different data 

available in the physical area. In ACDC, each node periodically disseminates to its one-

hop neighbourhood lightweight summaries of its cache; in particular, each neighbour 

cache summary contains the number of cached data, maximum cache size, and a compact 

representation of cached data. Thanks to those summaries, each node can locally estimate 

a remote rank based on the number of replicas stored in the neighbourhood: the higher the 

number of replicas of one data, the higher the probability that a copy will be removed. 
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To select the data to remove, ACDC melts together local and remote rank values and 

computes a utility value for each cached data. In addition, ACDC reactively replicates data 

with high utility value: in fact, it could be the case that the node has to remove an 

important data due to space constraints; hence, ACDC strives to replicate it on a neighbour 

node, to keep it available for future requests. However, greedy replication can introduce 

interferences with near nodes. If a node greedily replicates its data in one neighbour, 

neighbour cache will be no longer related to past queries, thus increasing the probability of 

not retrieving useful data into the cache. Hence, to select the neighbour to replicate the 

data on it, ACDC considers only neighbours with a small ratio between the current cached 

data and the maximum cache size, so to avoid excessive neighbour perturbation. 

7.4. Context Data Delivery Layer 

The context data delivery layer of SALES shares similarities with the one of 

RECOWER, but extends it to support hybrid scenarios with fixed wireless infrastructures. 

SALES adopts a subscription flooding approach that exploits an incremental search into 

the distributed hierarchical architecture, with the main goal of retrieving required context 

data as close as possible to the query sender node in order to reduce management 

overhead. Following our guidelines, SALES first tries to find data on lower hierarchy 

levels; then, in case of not positive response, it incrementally routes the query to the upper 

levels. 

SALES context data routing is also based on context queries. Context data are 

distributed only as consequence of matching context queries, that trigger distributions 

from remote data repositories toward the query creator node. Context queries build 

temporary routing paths into the distributed architecture that, if required, can also reach 

the fixed infrastructure. Since each node can communicate only with its father node, 

neighbours, and served nodes, SALES context data distribution can exploit different 

dissemination scopes of increasing sizes to enforce physical locality principle.  

For the sake of clarity, we now present a brief example of context data distribution in 

SALES. By default, both data and queries are distributed along the vertical path between 

the data/query creator node and the CN (SUN211 propagates the new produced data up to 

the CN, step 1 in Figure 7.2, solid red arrows). This vertical distribution is useful to both 

increase data/query visibility (up to the whole distributed system) and trigger the matching 

phase with data/queries available on intermediate nodes. However, to increase the 

probability of finding context data in lower hierarchical levels, so to reduce the traffic on 
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the fixed infrastructure, context queries are also horizontally distributed at the same 

hierarchical level. For instance, in Figure 7.2 (step 2, dashed arrows), SUN311 obtains the 

required data from SUN211; it emits a query that, through SUN212, reaches SUN211. This 

horizontal distribution is justified when the requesting node is looking for context data 

strictly related with the current physical place, such as place profiles, since they are likely 

to be available on neighbours in physical proximity. Then, SALES performs data routing 

on a hop-by-hop basis by always involving single steps into the distributed architecture. 

When a positive data/query match occurs on a node, SALES generates a context response 

and routes it back to the node that had relayed the query (in Figure 7.2 (step 3), this leads 

to a final data path SUN211-SUN212-SUN311). 

SALES exploits QoC parameters to adapt the routing process. In particular, as 

clarified in Section 7.4.1, it exploits QoC data retrieval time to reconfigure the maximum 

routing delays at each intermediate node. In addition, since resource management is 

fundamental as mobile users would not accept fast battery depletion and heavy 

management overhead, SALES automatically adapts query processing rates to limit CPU 

load; Section 7.4.2 presents how our CDDI automatically drops context queries that would 

lead to heavy CPU management load. 

7.4.1. Data Retrieval Time Enforcement 

Between different quality attributes, context-aware services can specify a QoC data 

retrieval time, namely the maximum time between context query emission and context 

data delivery to the mobile node. By exploiting this attribute, SALES can adapt at runtime 

to introduce appropriate routing delays depending on current available resources, while 
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Figure 7.2. Example of SALES Context Data Distribution. 



126 
 

always enforcing service QoC constraints. These routing delays are fundamental in 

relieving a congested network, so to prevent wireless storm issues [105]. In addition, as 

better detailed in Section 7.5.2, they enable the introduction of batching techniques, 

namely all those solutions that aim to reduce the number of physical transmissions by 

grouping many short messages in a big one. 

To implement the proposed quality-based context distribution process, each context 

query contains seven management parameters; here, for the sake of clarity, we also recall 

the query parameters presented in RECOWER, and we extend them to consider hybrid 

network deployments. Horizontal Time To Live (HTTL) is the maximum number of nodes 

traversed at the same hierarchy level, and is useful to limit query visibility on both the 

mobile and the fixed infrastructure. Maximum Query Response (MQR) is the maximum 

number of data instances collected by this query, and is mainly used to prevent excessive 

data retransmissions by anticipating query removal. Query Routing Delay (QRD) and Data 

Routing Delay (DRD) represent the delays each node can apply to query/data before 

routing them to the next hop; as presented in Section 7.5.2, they are fundamental to enable 

batching techniques in SALES. Already Collected Data (ACD) contains the list of the keys 

associated with already routed data, and is fundamental to prevent useless data 

retransmissions during collection. Query Level Mask (QLM) limits the vertical visibility of 

the context query, for instance, to keep it only on the mobile infrastructure and up to CUN 

nodes; that allows to better trade off introduced management overhead, especially when 

the fixed infrastructure is overloaded. Finally, Query LifeTime (QLT) is the maximum 

absolute lifetime of the query, and is used to mark query expiration and removal. 

If a mobile node, either CUN or SUN, seeks for specific context data, it builds and 

emits a proper context query matching them. The query contains the data filter used to 

select matching data; similarly to what we did in RECOWER, the data filter is represented 

by a set of constraints on data attributes, arranged by AND/OR functions. Before query 

distribution, proper management parameters have to be chosen to ensure agreed data 

retrieval time. To simplify context-aware services development, SALES automatically 

maps the required data retrieval time to the associated query parameters. In the following, 

we present the general mapping process between data retrieval time and query parameters. 

For now, we assume HTTL defined either by the service level or by the quality contract 

associated with the sender node. 

Above all, SALES has to compute both QRD and DRD, namely two parameters that, 

together with HTTL, deeply influence the whole routing process. The incremental context 
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data search does not distribute data/queries immediately, but introduces local routing 

delays to manage the distribution process and to avoid useless distributions when context 

data are supplied by neighbours belonging to the same hierarchical level. Since it is 

impossible to know which nodes cache matching context data, all the subsequent 

considerations are based on the worst-case scenario where the query has to reach the CN 

before finding matching data. 

In finer details, the evaluation of DRD and QRD is based on several considerations. 

First, each node involved into the routing process introduces a maximum delay of QRD in 

query distribution and a maximum delay of DRD in data distribution: hence, a maximum 

total delay of (QRD + DRD) for each additional hop in the routing process. Second, before 

relaying the query to the upper level, each node belonging to the vertical path between the 

query creator node and the CN waits a total time of (HTTL × (QRD + DRD)) to let close 

peers route possibly matching data. If query HTTL is zero, no horizontal distribution is 

performed; hence, the query is simply relayed to the upper level after a total delay of QRD 

(to consider these different contributions, H is a binary variable equal to 1 if query HTTL 

is bigger than zero, 0 otherwise). Third, to always ensure agreed data retrieval time, we 

have to consider that, in the worst-case scenario, SUNs experience longer routing times 

than CUNs since farther from the CN. Hence, both DRD and QRD evaluation must 

depend on the level in the hierarchy of the node that emits the query (S is a binary variable 

equal to 1 if the node is a SUN, 0 otherwise). Finally, all the delays obtained through a 

simple mathematical mapping do not consider unwanted, unforeseen and not measurable 

delays due to operating system multi-tasking, limited bandwidth, and so forth. Obtained 

delays are ideal and, in the following, we use the subscript M for DRD and QRD to 

suggest that they both represent maximum (M) nominal times. Putting all together, 

formula (7.1) represents the worst-case time needed to propagate the query up to the CN. 

After query distribution, matching context data have to be vertically routed to the query 

sender node. Formula (7.2) is the worst-case time required for data distribution from the 

CN to the query sender node; of course, it considers that SUNs experience longer delays 

than CUNs due to higher distance from tree root.  

To conclude, directly descending from SALES context data/query distribution (see 

Figure 7.2), the maximum data retrieval time and HTTL/QRD/DRD are related by the 

subsequent formulas (7.1)-(7.3): 
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Query distribution time ൌ  ሺBN Levelሻ H ൈ HTTL ൈ ሺQRDM ൅ DRDMሻ ൅ ሺ1 ‐ Hሻ ൈ QRDM ൅  

                            ሺCUN Levelሻ H ൈ HTTL ൈ ሺQRDM ൅ DRDMሻ ൅ ሺ1 ‐ Hሻ ൈ QRDM ൅  

                            ሺSUN Levelሻ S ൈ ሺH ൈ HTTL ൈ ሺQRDM ൅ DRDMሻ ൅ ሺ1 ‐ Hሻ ൈ QRDMሻ 

ሺ7.1ሻ

Data distribution time ൌ ሺ2 ൅ Sሻ ൈ DRDM ሺ7.2ሻ

Data Retrieval Time ൌ Query distribution time ൅ Data distribution time ሺ7.3ሻ

Hence, given a particular data retrieval time, SALES can apply above formulas to find 

DRDM and QRDM. However, formulas (7.1)-(7.3) form an undetermined system with 

infinite solutions. To find a feasible solution, we relate DRDM and QRDM with the 

additional constraint expressed in formula (7.4): 

DRDM ൌ γ ൈ QRDM ሺ7.4ሻ

where γ ≥ 1 to favourite data routing adaptation. In fact, data transmissions are usually 

more frequent than query ones, and higher γ values increase the possibility of adapting 

context data routing, for instance, to avoid retransmitting the same context data in a small 

time frame or delaying such transmission if the wireless channel is very busy. Finally, to 

have a time margin useful to recover unforeseen runtime delays, SALES introduces a 

weighting factor α (α < 1). Hence, the final DRD and QRD, carried by a query, are 

obtained from DRDM and QRDM by means of formulas (7.5)-(7.6): 

DRD ൌ α ൈ DRDM  ሺ7.5ሻ

QRD ൌ α ൈ QRDM  ሺ7.6ሻ

Formulas (7.1)-(7.6) let SALES automatically derive a suitable pair of DRD and QRD 

delays that ensure agreed data retrieval time. The weighting factor α can be either 

statically or dynamically defined, so to account for delays introduced by real-world 

systems. We note that the correct sizing of such parameter is not straightforward as it 

actually depends on runtime conditions, such as mobile node load status. Hence, since the 

dynamic evaluation of α is not easy to be addressed with low management overhead, we 

assume α statically set depending on system scale and predictions over the expected 

maximum system load. 

7.4.2. CPU-aware Context Query Processing 

SALES context routing relies upon context queries to efficiently route context data 

into the system. Considering that mobile devices have limited resources in terms of CPU, 

memory, and battery, SALES introduces additional mechanisms to control and keep the 

introduced management overhead as low as possible. Above all, context query processing 

is the first responsible of the CPU load introduced on mobile nodes: in fact, queries have 
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to be matched with locally stored data and, if permitted by associated parameters, 

distributed again to peers and/or father nodes. In addition, they can trigger data 

distributions, so further increasing local CPU load.  

Hence, to control the CPU overhead introduced by SALES, we need to limit the 

number of processed queries for time period. Unfortunately, by better analyzing SALES 

context distribution process, we remark that the number of queries processed by a mobile 

node depends on three main factors: 1) node density; 2) hierarchy level; and 3) data access 

patterns. In fact, if the mobile node is in a high density area, it will probably receive more 

queries than if it would have been in a low density one. In addition, if the mobile node is a 

CUN in charge of routing data/queries on behalf of served SUNs, it will probably 

experience increased CPU load due to additional management duties. Finally, if the 

mobile node already stores required data, it can answer right away, thus experiencing a 

reduced CPU load; otherwise, it has to distribute the query to neighbours, and, perhaps, to 

upper level, thus experiencing a higher CPU load. 

Consequently, the precise estimation of the CPU load introduced by SALES at 

runtime would require a complex model based on several time-varying and unpredictable 

aspects. Monitoring and processing all such aspects would probably introduce an 

unfeasible overhead on resource-constrained mobile devices. Hence, we adopted a more 

lightweight solution that, even if less precise, can run on traditional mobile devices with 

contained overhead. 

From a general viewpoint, a first solution, called “naïve query drop” in the remainder, 

exploits a sliding window over last processed queries and a rigid threshold to reduce the 

number of queries processed in a particular time period. Given a static threshold PQMAX, 

this policy ensures that a maximum of PQMAX queries are processed in each period, e.g., 

each second. Toward this goal, each node has a limited history of timestamps, called HTS, 

representing the times associated with the last received and processed queries (see formula 

(7.7)). 

HTS ൌ ሼTSሺ1ሻ, TSሺ2ሻ, …, TSሺiሻሽ, TSሺ1ሻ ൑ … ൑ TSሺiሻ, i ൑ PQMAX ሺ7.7ሻ

When a new query arrives, this policy first defines a new history HTS′ from HTS, as 

presented below in (7.8)-(7.11). 

z ൌ minሺi൅1, PQMAXሻ ሺ7.8ሻ

HTSԢ ൌ ሼTSԢሺ1ሻ, TSԢሺ2ሻ, …, TSԢ ሺzሻሽ  ሺ7.9ሻ

TSԢሺzሻ ൌ Now  ሺ7.10ሻ



130 
 

TSԢሺjሻ ൌ TSሺj൅1ሻ, 1 ൑ j ൑ z‐1  ሺ7.11ሻ

totalQueries ൌ ሺTS’ሺzሻ ‐ TS’ሺ1ሻሻ ൈ PQMAX ሺ7.12ሻ

Then, it checks if HTS′ respects PQMAX: it considers the time period between the first 

and the last element, computes the maximum number of queries that can be processed in 

this period respecting PQMAX (see formula (7.12)), and checks that this value is not lower 

than the number of elements contained in HTS′. In that case, the new query is accepted and 

the history HTS′ is assumed to be the new HTS; otherwise, the query is dropped and HTS is 

not updated. Hence, HTS is progressively shifted to keep TSs of the last PQMAX processed 

queries. 

Although this policy is effective in reducing the queries processed in a time period, it 

has few important shortcomings. First, since it does not consider any external feedback 

associated with the real CPU load, it can lead to CPU misuse. Second, PQMAX needs to be 

known a-priori, but this is a strong assumption in heterogeneous environments where 

devices can have different PQMAX values. Third, fixing a rigid threshold on processed 

queries makes sense only if we can correctly estimate the CPU load introduced by each 

processed query but, as explained before, that is not possible due to the many intertwined 

aspects that influence the distribution process. Finally, it assumes that PQMAX is static, but 

this could be not the case if data access patterns change over time. 

To overcome such limitations, SALES introduces an adaptive policy, called “adaptive 

query drop”, that dynamically adjusts PQMAX depending on feedbacks coming from both 

CPU load and context data distribution process. Since this policy introduces runtime 

adaptation features, it will be presented in Section 7.5, devoted to the Runtime Adaptation 

Support. 

7.5. Runtime Adaptation Support 

SALES adapts its own runtime behaviour according to working conditions. 

Adaptation mechanisms affect both the context data management and the delivery layer, 

with the main goal of reducing introduced overhead for the sake of system scalability. This 

section presents finer details associated with SALES adaptive mechanisms: in Section 

7.5.1, we discuss data caching adaptation; then, in Section 7.5.2, we introduce the different 

transmission policies offered by our CDDI, with a specific focus on the adaptive variant; 

finally, in Section 7.5.3, we introduce details on the adaptive query drop policy, useful to 

control CDDI CPU load. 
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7.5.1. Adaptive Context Data Caching 

As presented in Section 7.3.2, ACDC exploits a replacement algorithm made by both 

a local and a remote ranking component. Here, we focus first on local ranking by 

presenting how ACDC evaluates the correlation index and uses it to calculate local score; 

then, we present remote ranking by introducing details on the estimation of data instance 

replication; finally, we clarify how ACDC merges such indicators to find the utility values 

used by replacement. For the sake of clarity, Figure 7.3 shows ACDC pseudo-code. 

Let us focus on local ranking. Starting with the linear correlation index, ACDC 

exploits the Pearson product-moment correlation coefficient [116]. Each time a new query 

is received (function receiveQuery in Figure 7.3), all cached data are matched with query 

filter. For each positive data/query match, the function recordAccessDescriptor updates 

the limited history H with the new access descriptor; then, scheduleSendData generates 

and sends the new context data response. The evaluation of the Pearson coefficient is 

periodically triggered and is based on two vectors, namely X and Y, used to store the 

values to be correlated. In particular, when the correlation index needs to be updated, 

ACDC computes Xi and Yi (i א [0; CacheMaxSize-1]) for all the data in the cache as 

follows: Xi is the period between the newest and the oldest access descriptor in H 

Variables 
 C: local cache repository 
 C[i]:  ith data in the local cache 
 C_CurrentSize: local cache current size 
 C_MaxSize: local cache maximum size 
 N: set of node current neighbors 
 N_size: size of the node current neighbors 
 H: accesses history 
 H_CurrentSize: current history length 
 H_MaxSize: maximum history length 
 NeighCacheSummary: map of repository status for N 
 NeighCacheSummary[n]: repository status for the node n 
 correlationIndex: current correlation index value 
 
Functions 
 piggybackOnMobilityBeacon(m): piggyback message m in the 

next mobility beacon sent to all 1-hop neighbors 
 scheduleSendData(d,n): schedule to send data d to node n 
 storeQuery(q): store a query q in local repository 
 
Messages 
 REPOSITORY_STATUS<C_CurrentSize, C_MaxSize, f>: 

message contained repository status 
 QUERY <q>: message used to distribute query q 
 
Received msg QUERY<q> from node n. 
receiveQuery(n, q) 
1: for all d א C do 
2:    if (q.match(d)) then 
3:       recordAccessDescriptor(d); 
4:       scheduleSendData(d, n); 
5:    if (!q.isValid()) 
6:       break; 
7: if (q.isValid()) then 
8:     storeQuery(q); 
 
recordAccessDescriptor (d) 
1: if (H_CurrentSize >= H_MaxSize) then 
2:    H.removeOldestElement(); 
3:    H_CurrentSize--; 
4: H.add(Now, d); 
5: H_CurrentSize++; 

Invocked every beacon period 
sendNeighCacheSummary() 
1: Build an empty Bloom filter f 
2: Build m = REPOSITORY_STATUS< C_CurrentSize, C_MaxSize, f  > 
3: for all d א C do 
4:    f.add(d.key); 
5: piggybackOnMobilityBeacon(m) 
 
Received msg REPOSITORY_STATUS<C_CurrentSize, C_MaxSize, f> 

from node n 
receivedNeighCacheSummary (n, C_CurrentSize, C_MaxSize, f ) 
1: NeighCacheSummary[n] = < C_CurrentSize, C_MaxSize, f  > 
 
Reclaimed when a new data arrives with cache full. 
evictLessValuableData() 
2: for all d א C do 
3:    d.rank = 0.4 × localRank(d) + 0.6 × remoteRank(d) 
4: dataToEvict = the data with the minimum rank 
5: lessLoadedNode = null; 
6: if (dataToEvict.rank > 0.5 && remoteRank(d) >= 0.7) then 
7:    for all n א N do 
8:       cacheLoadFactor = n.C_CurrentSize/n.C_MaxSize; 
9:       if (cacheLoadFactor< 0.5 && cacheLoadFactor< 

        lessLoadedNode.cacheLoadFactor && 
            !NeighCacheSummary[n].f.contains(d.key)) then 

10:          lessLoadedNode = n; 
11: if (lessLoadedNode != null) then 
12:    scheduleSendData(dataToEvict, lessLoadedNode); 
  
localRank (d) 
1: lifetimeComponent = d.RL/d.FL; 
2: accessRatioComponent = d.accessInH/maxAccessesInH; 
3: return correlationIndex × accessRatioComponent + (1-

correlationIndex) × lifetimeComponent; 
 
remoteRank (d) 
4: count = 0; 
5: for all n א N do 
6:    if (NeighCacheSummary[n].f.contains(d.key)) then 
7:       count++; 
8: return 1 - count/N_size; 

Figure 7.3 Pseudo-code of the ACDC Replacement Policy. 
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associated with the current data instance, while Yi is the cumulative number of accesses to 

the data in H. ACDC uses these two vectors to obtain the Pearson coefficient by using the 

formula (7.13) (Xഥ and Yഥ respectively represent the average value of X and Y): 

ݔ݁݀݊ܫ݊݋ݏݎܽ݁ܲ ൌ  
∑ ሺ ௜ܺ െ തܺሻ  ൈ  ሺ ௜ܻ െ തܻሻ௡
௜ୀଵ

ට∑ ሺ ௜ܺ െ തܺሻ௡
௜ୀଵ

ଶ
 ൈ ට∑ ሺ ௜ܻ െ തܻሻ௡

௜ୀଵ
ଶ ሺ7.13ሻ

ݔ݁݀݊ܫ݊݋݅ݐ݈ܽ݁ݎݎ݋ܿ ൌ ሺܲ݁ܽݔ݁݀݊ܫ݊݋ݏݎ ൐ 0ሻ ? ݔ݁݀݊ܫ݊݋ݏݎܽ݁ܲ ׷ 0 ሺ7.14ሻ

By construction, the Pearson coefficient is in [-1; 1]: the more X and Y are linearly 

correlated, the closer to one (in absolute value) the coefficient becomes. The sign allows to 

distinguish whether the two variables are either positively or negatively correlated, namely 

whether an increment on one variable results either in an increment or in a decrement of 

the other one. During preferential access patterns, X and Y are positively correlated, 

hence, in that case the Pearson coefficient tends to 1. Instead, during uniform access 

patterns, X and Y are weakly correlated, and the Pearson coefficient tends to 0. In our 

case, only positive values of the Pearson coefficient are useful; negative ones are related to 

access patterns variation and data replacement, and do not allow efficient forecasting. In 

conclusion, the final correlation index considered by ACDC to compute the local rank, 

called correlationIndex in Figure 7.3 and obtained by formula (7.14), is equal to the 

Pearson coefficient if positive, or 0 otherwise. 

In particular, for each data, ACDC local rank merges together its lifetimeComponent, 

i.e., the ratio between data RL and FL, and its accessRatioComponent, i.e., the ratio 

between the accesses a specific data has in history H and the maximum data accesses 

value for all data, as expressed by formula (7.15):  

ሺ1‐ correlationIndexሻ ൈ lifetimeComponent ൅ correlationIndex ൈ accessRatioComponent  ሺ7.15ሻ

That combination permits to weight more data instances either with longer lifetime for 

equally distributed access periods, or more frequently accessed during preferential access 

periods. 

Considering remote ranking, ACDC disseminates neighbour cache summaries by 

piggybacking them in mobility beacons periodically sent by SALES to manage node 

mobility. The function receivedNeighCacheSummary (see Figure 7.3) is invoked when a 

new cache summary is received, and the NeighCacheSummary stores repository statuses 

for neighbours, indexed by node identifier. The function sendNeighCacheSummary creates 

the summary associated with the local repository and adds it to the mobility beacon sent to 

one-hop neighbours. Then, the remote rank is calculated as expressed in formula (7.16): 
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1 െ 
 Number of Neighbours already Storing the Data

Total Number Of Neighbours
ሺ7.16ሻ

Finally, ACDC combines the local and remote rank in a final utility value used to 

order cached data. As it is advisable to save less replicated data, the local rank (function 

localRank) and the remote rank (function remoteRank) are combined with different 

weights (respectively 0.4 and 0.6). That reduces local ranking effects; in case of similar 

local values, the remote rank allows to decide the data instance to save. 

After data removal, the function evictLessValuableData can decide to perform 

reactive replication. The replication process is triggered every time that a locally cached 

data with a utility value higher than 0.5 has to be removed. To prevent high replication 

degree, the process takes place only if the data instance is cached by less than 30% of 

neighbours. If this is the case, the node selects the less loaded neighbour that does not 

already store the data and with a ratio between current and maximum size lower than 0.5 

(see Figure 7.3), and replicates the data there. In this way, if that data instance is queried in 

the future, it will be likely found in the neighbourhood. 

7.5.2. Data and Query Transmission Policies 

As clarified in Section 7.4.1, SALES introduces proper data/query routing delays 

(DRD/QRD) to enable context distribution process adaptation; among several advantages, 

our CDDI exploits them to implement batching techniques. Broadly speaking, a batching 

technique aims to queue multiple data/query to send them in a unique message, so as to 

avoid multiple channel accesses and reduce management overhead consequence of packet 

headers. Although batching techniques are useful to increase system scalability, queuing 

delays have to be carefully controlled to avoid excessive QoC degradation, for instance, 

consequence of the delivery of context data not related anymore with the current situation. 

Hence, SALES introduces several batching techniques with different tradeoffs between 

delivery timeliness and management overhead. In particular, it implements an adaptive 

solution that dynamically adjusts the data retrieval time according to the current situation: 

if the wireless network is far away from congestion, it anticipates data/query distributions 

to offer better quality; instead, if the wireless network is close to congestion, it ensures 

only necessary quality requirements. Now, we better detail the different data/query 

transmission policies offered by our SALES CDDI, starting with the simpler one. 

During context data/query routing, each node exploits query parameters to schedule 

further distributions. Both DRD and QRD identify precise time instants in which the 



134 
 

associated data/query has to be distributed, in order to respect the overall QoC data 

retrieval time. Hence, a first simple distribution policy, named “no batching”, transmits 

data/queries as soon as their own distribution time (respectively imposed by DRD/QRD) is 

reached. However, this policy performs one transmission, hence one wireless channel 

access, for each data/query to be transmitted, thus potentially leading to a high number of 

conflicts in wireless channel accesses that, in their turn, trigger MAC backoff mechanisms. 

To reduce wireless channel contention, data/query distributions have to be scheduled 

in time periods; in particular, we define distribution period as the interval in which a 

data/query can be transmitted without compromising agreed data retrieval time. If 

data/queries have to be transmitted in periods, and not precise time instants, SALES can 

select the final transmission times to batch more data/queries in the same message. 

Following this direction, two additional policies, called “naïve batching” and “adaptive 

batching”, strive to reduce wireless channel accesses. Main difference between them is 

that adaptive batching adapts distribution periods depending on wireless channel 

congestion: during not congested situations, tighter distribution periods are used to ensure 

lower retrieval times; instead, during congested periods, larger distribution periods let 

SALES batch more data to reduce wireless network accesses. 

In finer details, considering the mapping introduced in Section 7.4.1, DRD and QRD 

are lower bounds that must be respected to avoid early distributions, while DRDM and 

QRDM are upper bounds that must be respected to ensure agreed data retrieval time in an 

ideal situation, namely no delays due to local processing and data transmission. Hence, in 

the naïve batching, SALES automatically selects data and query transmission time 

respectively within the [DRD; DRDM] and [QRD; QRDM] distribution periods. Naïve 

batching adopts DRDM/QRDM as distribution upper bounds to trigger the real data/query 

exchange. Any time a data/query distribution reaches its own transmission upper bound, 

SALES finds all the data/query distributions for the same destination, and whose 

distribution period contains the upper bound of the current processed distribution. Then, it 

batches and transmits them together in a unique message, thus reducing the total number 

of wireless channel accesses. 

Let us show now benefits and shortcomings of the naïve approach with a simple 

example (see Figure 7.4). For the sake of simplicity, we consider the distribution of two 

different queries only, namely Q1 and Q2, that present overlapping [QRD; QRDM] periods. 

Without batching (Figure 7.4 (a)), each query distribution requires one wireless channel 

access. With naïve batching active (Figure 7.4 (b)), when Q2 upper bound is reached, 
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SALES detects that also Q1 can be distributed; hence, it transmits a unique message with 

Q2 and Q1, thus saving one wireless access. 

Although the naïve batching can reduce the number of wireless accesses, it presents 

two main limitations. First, it uses distribution period upper bounds to trigger data/query 

distribution: this, in its turn, introduces delays longer than necessary, and makes it more 

difficult to enforce agreed data retrieval time. Second, naïve batching is static: it does not 

monitor the current wireless network congestion, and does not adapt to time-dependent 

load conditions. 

To solve these issues, adaptive batching introduces ADRD/AQRD (A stands for 

adaptive) as distribution time upper bounds (lower than DRDM/QRDM upper bounds), and 

automatically re-adjusts them by using θ, a time-dependent factor used to quantify 

network congestion status. θ is in [0; 1], and values closer to 1 point out a more congested 

network. Hence, the more the network is congested, the more the θ value is close to 1 and 

ADRD/AQRD are close to DRDM/QRDM (bigger batches and fewer wireless channel 

accesses), and vice versa for low θ values as shown in formulas (7.17)-(7.18). 

ADRD ൌ DRD ൅ ሺDRDM – DRDሻ ൈ θ  ሺ7.17ሻ

AQRD ൌ QRD ൅ ሺQRDM – QRDሻ ൈ θ  ሺ7.18ሻ

Figure 7.4 (c) shows an associated example. Due to the adaptive approach, Q2 has a 

distribution period upper bound equal to AQRD2 (lower than QRDM). When AQRD2 is 

reached, Q2 is distributed and Q1 is automatically included in the same batch; SALES 

performs one final distribution, but with a reduced distribution time. 

To estimate the current θ value, we exploit a distributed monitoring schema that 

contains two main phases: 1) local load information monitoring; and 2) load information 

distribution. 

Starting from local load information monitoring, each mobile node locally estimates 

its own average usage of wireless channels. Each node computes a local wireless network 
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Figure 7.4. Query Distribution Example with Different Distribution Policies. 
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load factor, whose value is in [0; 1], to quantify the local usage of the wireless channel. 

Value evaluation is based on 1) an estimation of the bandwidth available on the wireless 

channel and 2) the outbound traffic sent by the local wireless network interface. SALES 

periodically estimates the bandwidth available on a particular wireless interface by a 

traditional active probing technique [117]. To keep the monitoring overhead as low as 

possible, only CUNs perform active probing, and periodically distribute estimated values 

to served SUNs. Even if this estimation is suboptimal due to the spatial reuse of the 

wireless channel, i.e., a SUN could experience wireless channel conditions different from 

its own CUN, it gives us a good approximation and drastically reduces the runtime 

monitoring overhead. Then, each node periodically executes a function to update the local 

wireless network load factor. First, it sets the last load factor as the ratio between the 

number of bytes sent in the previous period and the maximum number of bytes available 

on the air, equal to the product between the wireless medium available bandwidth and the 

time period. Then, it evaluates the current local load factor as the average of the current 

and the previous load factor; the average is based on equal weights, so to be able to follow 

fast network dynamics. 

As regards load information distribution, SALES periodically distributes the 

estimated local load factors to let each mobile node estimate the channel usage in its own 

one-hop ad-hoc neighbourhood. Hence, each node periodically distributes its local 

network load factor in the neighbourhood, and collects load factors received from 

neighbours. Of course, each mobile node sends the local load factor only to the one-hop 

neighbours since, due to the spatial reuse of the wireless channel, it tends to interfere only 

with them. 

Finally, each node merges the collected load factors to find a θ value able to capture 

the wireless channel usage in its own one-hop ad-hoc neighbourhood. Due to the adopted 

load factor evaluation, the final θ is equal to the sum between the local and the received 

load factors. This is roughly equal to the ratio between the sum of all the transmitted bytes 

in the one-hop ad-hoc neighbourhood and the total number of bytes that could have been 

transmitted in the last monitoring period. Hence, the more loaded the wireless channel, the 

higher the θ value will be, thus favouring the batching of an increased number of 

data/queries in order to reduce the number of wireless channel accesses. 

7.5.3. Dynamic Adaptation of Query Processing Threshold 

SALES proactively drops context queries to control introduced CPU load. 
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Unfortunately, the naïve drop policy has two main limitations: 1) it does not consider 

feedbacks coming from the real CPU load; and 2) it does not adapt to time-varying access 

patterns. Hence, we propose an adaptive drop policy that, by exploiting two main inputs, 

namely CPU load and dropped query statistics, dynamically adapts the query drop 

threshold. In fact, current CPU load lets us to understand if the CDDI is respecting the 

given maximum CPU threshold. At the same time, monitoring the number of processed 

and dropped queries lets us to understand if query processing rate should be adapted to 

increase context availability. Our adaptive proposal combines these two main inputs to 

dynamically reconfigure the query processing rate, so to correctly trade off introduced 

CPU load with context data availability. 

Main goal of our adaptive drop policy is to ensure that the CDDI does not introduce a 

CPU load higher than a specified threshold, namely MaxCPULoad, while minimizing 

dropped queries. Since the adaptation process is triggered periodically, PQMAX value is 

stable between two subsequent adaptations; to remark that PQMAX varies, PQMAX(k) is the 

value of PQMAX between the k-th and (k+1)-th adaptations. 

The component that takes care of adapting PQMAX(k) includes three main stages for 

the sake of reusability. The first one supplies useful load indicators, the second one 

decides if PQMAX(k) has to be adapted or not, while the third one calculates and applies the 

adaptation step ΔPQMAX(k). If an adaptation is required, PQMAX(k+1) is computed from 

PQMAX(k) according to formula (7.19). 

PQMAXሺk൅1ሻ ൌ PQMAXሺkሻ ൅ ΔPQMAXሺkሻ ሺ7.19ሻ

Starting with the first stage, it works on a time discrete base by publishing new load 

indicators every monitoring period, i.e., every T seconds. It supplies three main indicators: 

1) average CPU load (ACPU(k)); 2) number of processed queries (PQ(k)); and 3) number 

of dropped queries (DQ(k)). ACPU(k) gives a feedback on the real CPU load introduced 

by the CDDI. Since CPU load readings are usually affected by noise, we introduce a low-

pass filter: we sample CPU load with a period TCPU < T, while the final ACPU(k) is the 

average of the CPU load readings sampled in the previous monitoring period. PQ(k) and 

DQ(k) keep track, respectively, of the total number of processed queries and of dropped 

ones in the last monitoring period. All these values are required to prevent unneeded 

adaptations if the CDDI is not receiving queries at all. 

Then, every monitoring period, new values of ACPU(k), PQ(k), and DQ(k) are made 

available to the second stage that decides if PQMAX(k) has to be adapted. This stage 

triggers PQMAX(k) adaptation in two cases: 1) if ACPU(k) is higher than MaxCPULoad, in 
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order to reduce PQMAX(k); and 2) if ACPU(k) is lower than MaxCPULoad and DQ(k) is 

higher than 0, in order to increase PQMAX(k) and reduce dropped queries. However, to 

prevent bouncing effects with PQMAX(k) going above and below a particular value without 

stabilizing, PQMAX(k) is adapted only if the current CPU load is not a transient event, such 

as a temporary CPU load spike. Toward this goal, we use a time series forecasting 

technique to predict next CPU load values. Due to its good price/performance ratio, we 

adopted a first-order Grey filter [118]: such a filter tries to extract signal trend from noisy 

values, and bases its prediction upon a limited history of sampled ACPU(k) values. 

History length trades off smoothness and promptness in following fast changing signals. 

The Grey filter gives us the predicted value of the average CPU load at the end of the next 

monitoring period. If this value is significantly different from MaxCPULoad, we trigger 

PQMAX(k) adaptation; otherwise, this is probably a transient load spike and no adaptation 

takes place. 

Finally, the third stage, if triggered, computes and applies ΔPQMAX(k). The evaluation 

of this adaptation step follows two main design rules. First, ΔPQMAX(k) has to be scaled in 

respect to PQMAX(k) to avoid overreactions. Second, ΔPQMAX(k) has to assume higher 

values if the CDDI is introducing a CPU load higher than MaxCPULoad (or lower than 

MaxCPULoad with dropped queries) for long time periods to speed up the response. 

Consequently, if CLM is the number of subsequent CPU load misuse periods, and 

LoadRatio(k) is a value in [0; 1] representing if ACPU(k) is close to MaxCPULoad, 

ΔPQMAX(k) is retrieved as in formula (7.20): 

ΔPQMAXሺkሻ  ൌ 
 PQMAXሺ୩ሻ

ଶ
 ൈ  LoadRatioሺkሻଵ/CLM ሺ7.20ሻ

CPULoadNumሺkሻ ൌ minሺACPUሺkሻ, MaxCPULoadሻ ሺ7.21ሻ

CPULoadDenሺkሻ ൌ maxሺACPUሺkሻ, MaxCPULoadሻ ሺ7.22ሻ

LoadRatioሺkሻ ൌ 1 െ
 CPUL୭ୟୢN୳୫ሺ୩ሻ

CPUL୭ୟୢDୣ୬ሺ୩ሻ
  ሺ7.23ሻ

LoadRatio(k) is close to 0 if the CDDI respects the MaxCPULoad constraint (see 

formulas (7.21)-(7.23)). Hence, the lower the difference between ACPU(k) and 

MaxCPULoad, the lower ΔPQMAX(k). Then, we raise LoadRatio(k) to the power of 

1/CLM to make ΔPQMAX(k) higher as CPU load misuse continues. Finally, since 

(LoadRatio(k))1/CLM is in [0; 1], we multiply it by PQMAX(k)/2 in order to scale the 

adaptation action in [0; PQMAX(k)/2], thus keeping it contained with respect to current 

PQMAX(k) value. 
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7.6. Implementation Details 

SALES has been implemented and deployed on a real testbed to test the impact of our 

solutions in real-world systems. In fact, although NS2-based simulations are very useful to 

study specific data distribution protocols in large-scale mobile networks, they neither 

model nor consider both CPU and memory overhead introduced on mobile devices. By 

pursuing our research both on simulations and on real deployments, we aim to reach a 

more complete view on distribution primitives for context delivery in mobile systems. 

With finer details, the real prototype of SALES is completely implemented in Java, 

and executes on a traditional Java Virtual Machine (JVM) compliant with the 1.6 

specifications. In the remainder of this section, we first detail the main components of 

SALES prototype. Then, we introduce important implementation details: we present the 

realization of the different transmission policies, and we clarify additional implementation 

peculiarities used by SALES to limit employed resources on mobile devices. Finally, we 

introduce the porting of our SALES CDDI on the Android platform, in order to better test 

the feasibility of our assumptions on real mobile solutions. 

7.6.1. SALES Software Architecture 

Each node involved into the distributed architecture presented in Figure 7.1 executes a 

local software instance of the SALES CDDI. Figure 7.5 highlights the main components 

involved into the CDDI architecture. For the sake of clarity and reusability, SALES 

exploits two different layers to clearly separate high level context data management issues, 

from low level data delivery ones. Starting with the upper layer, we now present the main 

software components included in SALES: 

Facility Layer - The facility layer includes all the high-level components useful to 

handle context data injection and retrieval. From a general viewpoint, it supports context 

type definition, context data storage, and context data local processing. The Context Data 
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Type Storage is a local registry useful to store the context data type definitions; each 

definition is an XML-like file that describes 1) the main attributes contained in each 

instance of this particular type; and 2) the caching parameters, mainly replacement policy 

and repository size, used by the different SALES nodes. Each context data type is 

associated with a Context Data Module that enables the real context data injection and 

retrieval. The general component is then specialized according to each context data type, 

by also implementing specific routing and caching behaviours as described in the type 

definition. It also consists of two main sub-modules: the Context Source sub-module 

enables context data generation and injection into the system, while the Context Sink 

allows context data retrieval through context queries. 

Mechanism Layer - The mechanism layer implements all the low-level mechanisms 

useful for inter-nodes communication and hierarchy formation. The adapters, one for each 

wireless technology, offer technology-independent APIs to the other software components. 

Currently, SALES includes both a Bluetooth Adapter and a WiFi Adapter to enable the 

real communication on the associated technology. On top of them, the Channel Status 

Estimator periodically ascertains the available bandwidth on the different wireless 

interfaces, while the Communication Primitives offers one-way and request/response 

primitives. The Adaptive System Communication wraps the Communication Primitives 

module to introduce a message-based communication API that, besides hiding wireless 

technology details, controls and enforces message sending rate; in addition, it offers 

mechanisms to query the state of the adapters (e.g., available bandwidth, pending 

messages to send, etc.). By using these APIs, System Coordination takes care of handling 

mobility and context routing. The Mobility Manager realizes mobility management 

protocols to maintain the SALES tree-like architecture; it includes all the main 

mechanisms to perform the discovery of available father nodes, as well as association 

procedures. In addition, the Localization Manager provides localization information useful 

to adapt both the mobility management protocols and the context distribution process. 

Finally, the Routing Manager is the main module involved in context data routing: it 

stores both local and remote context queries, triggers the matching between queries and 

data, and relays subsequent context responses when required. 

7.6.2. Transmission Policies Implementation 

In Section 7.5.2, we presented the three transmission policies offered by SALES, 

namely no batching, naïve batching, and adaptive batching. This section clarifies how the 
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main components of our CDDI interact at runtime depending on query parameters and 

adopted transmission techniques, in order to enforce maximum QoC data retrieval time. 

Starting from physical message transmission, the different communication adapters 

take care of sending/receiving messages on the associated wireless technology. To avoid 

additional overhead, SALES always exchanges messages asynchronously, with no explicit 

acknowledgment from destination. In addition, each adapter always enforces an outbound 

data rate below the available bandwidth, that is periodically probed by the Channel Status 

Estimator (step 1 in Figure 7.6). To avoid strong coupling between receive and local 

dispatch operations, the System Communication module has a queue, that contains 

received messages, and a group of dispatching threads (MD). When a new message is 

received by an adapter, it is appended into the System Communication queue (step 2), 

while MD threads realize the final dispatch to the local manager subscribed for the 

particular type of message. Here, we focus only on messages used to distribute data/query; 

they are always dispatched to the Routing Manager (step 3). 

Routing Manager receives data instances/queries from local sources and sinks, and 

queries/responses sent by a remote node from the Adaptive System Communication. 

Query and response dispatching is implemented by proper query (QD) and response (RD) 

dispatcher threads that take care of sending query/response messages (step 4-5 in Figure 

7.6). QD and RD threads execution is controlled through task descriptors, that are 

respectively queued in the Query Distribution Task Queue and in the Response 

Distribution Task Queue. When a new query is received, it is first matched with locally 

cached data to generate possible responses. If a context query matches a context data, a 

proper RD task is queued into the Response Distribution Task Queue (step 6). At the same 

time, if query parameters require an additional distribution, the query is stored in either the 

Local Context Queries Queue (if it belongs to a local sink) or the Remote Context Queries 
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Queue (if it belongs to a remote sink), and a proper QD task is scheduled (step 7). Finally, 

every time a context response is received, the Routing Manager matches contained context 

data instances with stored queries. If a data instance matches a local query, it is simply 

inserted into the local context data cache; instead, if a data instance matches a remote 

query, a new RD task is scheduled (step 6) to send the data toward the node that had 

relayed the query. Due to local processing delays, it could be the case that the context 

distribution task refers to an already expired query; in that case, the task descriptor is 

silently dropped. 

The aforementioned working schema is followed when the no batching transmission 

policy is adopted. RD and QD executions are automatically triggered by task descriptors 

expiration, scheduled after a delay equal to DRD/ QRD according to query parameters. 

When one of the two batching policies is enabled, RD and QD threads execute a 

different set of operations toward the goal of batching more data instances/queries in the 

same message. First of all, the Routing Manager has a local map, indexed by destination 

node and called InformationToDistribute in the remainder, on which data instances/queries 

to be sent are queued. Every time the Routing Manager schedules a data instance/query 

distribution, it actually creates two task descriptors in the appropriate queue: one is 

associated with the lower bound of the distribution period, while the other marks the upper 

bound. Hence, the first one, executed after a delay of DRD/QRD, signals the need of 

distributing a data instance/query to a particular destination; main goal of this task is to 

queue the associated data instance/query in the local InformationToDistribute map, in 

order to keep track of the data/queries that can be distributed. Instead, the second one, 

executed after a delay of either DRDM/QRDM (in case of naïve batching) or ADRD/AQRD 

(in case of adaptive batching), triggers the real transmission; every time a task descriptor 

of such kind expires, the associated thread collects all the data instances/queries for the 

same destination from the InformationToDistribute map, and batches them in a unique 

message. Of course, if a data instance/query is distributed before the expiration of its own 

second task descriptor due to batching, the Routing Manager automatically cancels that 

task descriptor since not useful anymore. 

Hence, when we enable batching techniques, we use the InformationToDistribute map 

as synchronization means to understand which data instances/queries have to be 

distributed. By using this solution, on the one side, SALES does not need to iterate over all 

the current descriptors, thus experiencing reduced CPU load. On the other side, this 

solution increases the memory overhead due to the additional InformationToDistribute 
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map. However, since current mobile devices usually have CPU limitations tighter than 

memory ones, we decided to adopt such solution. 

7.6.3. Resource-aware Components 

To limit employed resources, SALES provides a set of configuration parameters that 

specify both processing and memory resources available to components showed in Figure 

7.6. Processing resource configuration parameters mainly include the number of threads 

for each thread pool and the maximum number of requests processed per second. Instead, 

memory resource configuration parameters mainly concern maximum queue lengths. For 

the sake of clarity, since all the queues in Figure 7.6 can contain either thread task 

descriptors or messages, in the remainder we use the generic term “element” for queue 

management policies description. 

Starting with processing resources, as presented in Section 7.5.3, SALES adopts an 

adaptive threshold to limit the maximum CPU load associated with query processing. 

Toward this direction, the Routing Manager component proactively discharges query 

received by neighbours. However, the usage of such a dropping policy does not allow the 

fine control of the management overhead introduced by threads contained in both the 

Adaptive System Communication and in the single Communications Adapters. In fact, 

even if the query is locally discarded by the Routing Manager, the Adaptive System 

Communication always introduces an additional overhead consequence of message 

receive and decoding operations. Hence, SALES associates each thread pool with a 

maximum number of threads and a maximum execution rate for each one of them. When 

the number of received messages is higher than the total processing rate of the Adaptive 

System Communication (we remark that this component also handles messages related to 

mobility management), pending requests will experience queuing delays that, for instance, 

increase the probability of not respecting QoC data retrieval time. To maximize satisfied 

requests, SALES reactively recovers queuing delays by dynamically changing the 

DRD/QRD parameters carried by a context query: every time a QD thread processes a 

query whose initial message suffered of queuing delays in the Adaptive System 

Communication, it considers the number of hops contained in the worst-case distribution 

scenario, and reduces DRD/QRD by considering the ratio between the delay and the total 

number of hops, so to recover the time unnecessary spent in the queue. 

Moving to memory management, SALES limits the length of all the data structures 

involved in Figure 7.6. All the queues involved in both the Adaptive System 
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Communication and in the Communication Adapters have a maximum length, statically 

imposed by SALES configuration file; when a queue is full, different policies can be 

adopted to select the element to remove. At default, SALES applies a traditional First In-

First Out (FIFO) policy; apart from that, the queues containing the task descriptors into the 

Routing Manager can also apply priority-based policies, so as to favour the routing of 

context data associated with high priority clients. Similar limitations have to be imposed to 

the context query tables contained into the Routing Manager. In fact, the storage of 

context queries not only introduces increased memory overhead, but also leads to 

additional context data distributions, thus finally increasing CPU and bandwidth overhead. 

Finally, as also presented in Section 7.5.1, each Context Data Module has a local data 

repository useful to store important context data, whose maximum size DMAX is limited 

according to available memory. 

7.6.4. SALES on the Android platform 

To better assess the feasibility of our SALES CDDI in real-world systems, we decided 

to port it on Android since one of the most widespread platforms for mobile devices. In 

this section, for the sake of completeness, we first introduce a brief overview of the 

Android platform; then, we present how the main limitations introduced by this platform 

impact on the realization of SALES distribution primitives. 

Android is a software stack for mobile devices which includes an operating system, a 

middleware layer, and a set of support services. The Android Software Development Kit 

(SDK) is based on Java, and offers all the tools necessary to develop applications on such 

platform. The software stack is based on a Linux kernel and offers usual system services, 

such as process and memory management, networking support, etc. On top of the Linux 

kernel, we find both the Android runtime, that provides most of the functionalities 

available in Java, and a set of C/C++ utility libraries, that implement efficient media 

libraries for codecs, SQLite for relational databases, and so forth. Each Android 

application executes in its own process, with its own instance of the Dalvik Virtual 

Machine (DVM). 

In finer details, the Application Framework includes the main Android components: a 

set of Views to manage the user interface, Content Providers to store and share data 

between applications, a Resource Manager to provide access to non-code resources (e.g., 

strings, images, etc.), a Preference Manager to store configuration parameters of 

applications, and an Activity Manager to handle application lifecycle. Android introduces 
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an application model that clearly separates presentation logic from data storage and 

background services; in particular, it distinguishes four main component types [119]: 

 Activities - An activity represents a single screen user interface. Each application 

can be composed by several activities, independent from each other. Activity 

lifecycle is handled by the Activity Manager: an activity is started when it 

becomes visible, paused or stopped if another activity becomes visible, and 

destroyed if no longer used. 

 Services - A service is a background component that performs long-running 

operations. Differently from activities, services do not directly interact with users; 

instead, they receive commands from either activities or other services. While the 

lifecycle of an activity is strictly related with its own visibility on device screen, 

services are supposed to execute without interruption. In general, a service is 

killed by the Application Framework only in critical conditions, such as device 

running out of memory. 

 Content Providers - A content provider is in charge of managing a shared set of 

application data irrespective of their location. Data can be located on the local file 

system, on a SQLite database, or even on the web. Content providers can be 

queried by applications running on the local device through proper SQL-like 

commands; similarly, new data can be dynamically added and removed, while 

having a common storage available for all running applications. 

 Broadcast Receivers - A broadcast receiver is a component that responds to 

system-wide announcements, originated either from the system or from other 

applications. In Android, broadcast receivers are fundamental to implement 

asynchronous and anonymous communication mechanisms, where senders and 

receives do not have to know each other. Such mechanisms are usually used to 

dynamically start and stop services, in order to reduce mobile device overhead. 

Apart from those main components, the DVM includes all the main libraries and 

classes available on a traditional JVM. However, the two VMs are not completely aligned: 

on the one side, DVM does not realize some libraries available on standard JVM, such as 

advanced data structures for concurrent programming; on the other side, DVM adds new 

packages that do not adhere to some accepted standards in the Java world, such as for 

Bluetooth, where Android does not follow the JSR-82 proposal [120], but introduces its 

own new android.bluetooth.* package. 
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In view of the Android application model, we designed our SALES CDDI client, by 

clearly separating user interactions from background services and context data storage. In 

particular, we introduced three main components, namely CDDI Context Data Provider, 

CDDI Service, and CDDI Configuration Activity, better detailed in the following. For the 

sake of clarity, Figure 7.7 shows the logical architecture of the CDDI client, by also 

remarking how the main SALES components are mapped in the Android application 

model. 

CDDI Context Data Provider interacts with local context-aware applications to enable 

context data injection and retrieval, thus enacting as a bridge between CDDI and running 

applications. All the local context data type definitions are available to external 

applications through a standard URL. In addition, each Context Data Module is wrapped 

in a Content Provider that takes care of saving data instances in a local SQLite database, 

and relays not satisfied queries to the CDDI Service, so to point out local context needs 

that are currently not satisfied. 

CDDI Service contains all the low-level mechanisms involved in both maintenance of 

the system distributed architecture and in context data distribution process. Apart from the 

main components already presented in Section 7.6.1, here, we also introduce a Wireless 

Card Dynamic Configuration module in charge of dynamically reconfiguring available 

network interfaces according to the current execution context. In fact, in real-world 

scenarios, SALES has to explicitly deal with wireless network interfaces, by dynamically 

changing configuration parameters to reach high-level goals: for instance, since SUNs do 
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not need a connection to the wireless fixed infrastructure, it can dynamically switch off 

network interfaces to save battery lifetime. 

Finally, CDDI Configuration Activity allows users to modify configuration 

parameters. To store and modify such information, this component is built upon the 

default Android Preference Manager, that permits to define configuration views via simple 

XML documents. As specified in the previous section, SALES lets users to limit the 

amount of allocated resources, such as CPU, memory, and bandwidth, to avoid an 

intolerable overhead.  

Moving to finer implementation details, Android imposes important constraints in two 

main areas: wireless networks configuration and memory management. Before proceeding 

further, we remark that all the following considerations assume an unmodified Android 

version 2.2. We omitted complex workarounds to these problems since we are interested 

in evaluating the feasibility of CDDIs based on a standard Android distribution, rather 

than in introducing complex solutions difficult to be deployed, maintained and used by 

normal users. 

Starting from wireless networks configuration, Android does not allow the usage of 

WiFi cards in ad-hoc mode. Hence, an Android phone can only connect to WiFi 

infrastructure-based networks, thus hindering the context distribution process on SALES 

mobile infrastructure. A partial workaround is available if we use the Android WiFi 

tethering facility; in this mode, a mobile device enacts as an AP, while others connect to it 

as they would have done with a real AP. Unfortunately, this solution has an important 

shortcoming: since devices do not form an ad-hoc network, all the transmissions have to 

pass through the node acting as the AP that, in its turn, relays them to the real destination. 

Of course, that reduces network performance. 

Focusing on BT connections, Android uses the android.bluetooth.* package that 

exploits Broadcast Receivers to signal BT-related events, e.g., start and stop of the 

discovery process, new mobile devices discovered, and so forth. However, provided APIs 

are extremely limited, and do not enable fine and direct control of both discovery and 

connection process. Above all, Android requires direct user confirmation to set the device 

in discoverable mode, even if the discovery phase has been triggered by the CDDI 

Service. In addition, for the sake of battery lifetime, Android limits the length of discovery 

time to no longer than 300 seconds; after that, it is necessary to prompt again the user to 

make the device discoverable again. Moreover, during the first connection between two 

devices, Android requires a manual pairing process that also needs explicit user 
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intervention. Finally, Android APIs offer only connection-oriented Radio Frequency 

COMMunication (RFCOMM) links that, by construction, introduce higher management 

overhead in respect of simple Logical Link Control and Adaptation Protocol (L2CAP) 

links [121]. Hence, all these constraints, even if perfectly reasonable when battery 

preservation and user privacy are the main goals, widely limit opportunistic exploitation 

and transparent management of ad-hoc BT links. 

By considering all these limitations together, the Wireless Card Dynamic 

Configuration has very limited degrees of freedom on a traditional Android version 2.2 

installation. Android APIs do not allow dynamic configuration of the wireless network 

interfaces by Java code, and the user has to be explicitly involved into the wireless 

connection configuration and setup process for both WiFi and BT. These constraints really 

clash with the main requirements of dynamically and transparently reconfiguring the 

different wireless cards at the SALES CDDI client. We believe a limited control on 

wireless interfaces, for instance via a standard Android manager, would greatly ease the 

realization of real-world network middleware supports with minimal user intervention. 

Moving to memory management, there is a fundamental difference between Dalvik 

Garbage Collector (GC) and traditional Java GC mechanisms. Above all, to preserve 

battery lifetime and reduce computational overhead, Dalvik GC applies lazy collection 

policies and does not perform dynamic heap memory relocation. Hence, especially when 

Java objects have variable sizes, the Dalvik heap can suffer of high fragmentation, thus 

perhaps leading to high heap space waste. Apart from a careful reuse of Java objects, if the 

application uses large byte arrays, for instance due to data serialization, the programmer 

should introduce additional mechanisms in charge of splitting them in smaller and fixed-

sized chunks; in this way, subsequent memory allocations can be satisfied by using pre-

existing heap chunks freed in the meantime, thus not adding to heap fragmentation. 

To conclude, at the current stage, the deployment of real-world CDDIs for the 

Android platform introduces particular issues that have to be carefully handled. Similarly 

to SALES, many research works assume to dynamically reconfigure wireless network 

interfaces, by also using WiFi ad-hoc links to create MANETs for service delivery. All 

these assumptions do not fit well the Android mobile platform, which imposes tight 

constraints on wireless network cards reconfigurations from Java code. At the same time, 

CPU and memory limitations of traditional mobile devices can require a better tailoring of 

the main solutions introduced by SALES. In Section 7.7.4, we present experimental results 

about our real Android-based client, so as to better remark possible performance 
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limitations due to resource-constrained mobile devices. 

7.7. Experimental Results 

SALES has been implemented and deployed in 1) NS2 simulations, in order to 

validate our protocols in large-scale mobile systems; and 2) a real wireless testbed, in 

order to test the feasibility of the main mechanisms introduced in this chapter on real 

mobile devices. Although our work on SALES mainly focused on real-world deployments, 

in Section 7.7.1 we exploit simulations to test our ACDC caching protocol; we opted for 

this choice since NS2 simulations let us to better evaluate the technical soundness of our 

proposal in large-scale systems, where several mobile devices share context data among 

themselves while roaming. Instead, in Section 7.7.2, Section 7.7.3, and Section 7.7.4, we 

consider the real-world implementation of SALES, so to better highlight system 

management overhead and the real feasibility of our proposals on real mobile devices. Let 

us now anticipate important details about NS2 simulation parameters and real-world 

implementation. 

Starting with NS2 simulations, if not stated differently, we consider a simulation area 

of 350x350m with 50 nodes, randomly roaming according to RWP model (uniform speed 

in [1; 2] meters/second and a uniform distributed pause in [0; 10] seconds). Each node has 

two wireless interfaces, both based on IEEE 802.11g technology (bandwidth of 54 Mbps) 

and with a transmission range of 100m. Each node emits a mobility beacon with a period 

of 10 seconds to signal its presence, and dynamically discovers and associates with 

available BNs. The simulation area is covered by 5 APs, each one connected to a different 

BN, respectively placed in [175; 175], [100; 100], [250; 250], [250; 100], and [100; 250]; 

due to adopted transmission ranges, the area is almost entirely covered by fixed 

connectivity. Finally, all simulations last 15 minutes (900 seconds), and reported results 

are average values over 33 runs with different RWP instances. Additional details about 

context data production and retrieval will be clarified in Section 7.7.1. 

Moving to the real implementation (used in Section 7.7.2, Section 7.7.3, and Section 

7.7.4), SALES fixed infrastructure is composed by one CN and two BNs, all of them 

running on Linux-based boxes with 3GHz CPU and 2GB RAM. The BNs offer 

infrastructure-based connectivity to mobile devices by means of traditional IEEE 802.11g 

Cisco APs. Instead, as regards the mobile infrastructure, we have used a mix of laptops 

and mobile phones, arranged with different configurations clarified in each one of the 

following tests. Each laptop has an Intel Core Duo 2 T6500 and 4 GB RAM, while each 
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mobile phone is an LG-P500, based on Android version 2.2 and equipped with both a 

WiFi and a BT interface. Moving to the software architecture, SALES is fully 

implemented in Java. Hence, it needs either a traditional JVM 1.6 when executed on 

laptops, or a Dalvik VM when deployed on Android phones. As stated before, the two 

implementations present some significant differences due to the unavailability of standard 

Java 1.6 classes on Android 2.2 platform.  

In the remainder, we present experimental results about the main mechanisms 

introduced in this chapter. We start with NS2 simulations to validate ACDC data caching; 

then, we use the SALES real implementation to test both data/query transmission 

techniques and query dropping policies. Finally, we present novel results to compare key 

performance metrics according to whether we use SALES CUN/SUN J2SE-based 

implementation on full-fledged laptops or Android-based implementation on resource-

constrained mobile phones. 

7.7.1. ACDC Data Caching Evaluation 

In SALES, context data caching is fundamental to enable efficient and effective 

wireless infrastructure offloading. Mobile devices share cached data with neighbours by 

ad-hoc links, thus perhaps reducing the final traffic to/from the wireless fixed 

infrastructure. For the sake of technical evaluation, the NS2 implementation of SALES 

considers only BNs and CUNs; that allows us to better evaluate infrastructure offloading 

capabilities, while leaving out possible side-effects introduced by mobile nodes clustering. 

Focusing on context data production and retrieval, we consider 1000 sources, all 

deployed on the fixed infrastructure and equally divided among BNs. Each data instance 

has a payload of 3KB, so as to simulate worst-case scenarios where context data contain 

images or serialized user/place profiles. Each context source periodically produces a new 

data with a FL parameter (see Section 7.3) equal to the generation period; if not stated 

otherwise, both generation periods and data FLs are equal to 180 seconds, in order to test 

the more challenging case of short lived data. Each CUN can cache a maximum number of 

context data instances equal to 30. If needed, data replacement is carried out through one 

of the following policies: LRU, LFU, ACDC_OL, and ACDC. While LRU and LFU are 

the traditional replacement policies as clarified in Section 7.3.1, ACDC is our novel 

proposal presented in Section 7.3.2. In addition, for the sake of completeness, we also 

consider a simplified version of ACDC, which exploits “Only Local” (OL) rank, to better 

understand the effects of local and remote ranking in our full ACDC proposal. 
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As regards context query production, each CUN periodically emits a new context 

query directed to a specific source, that is selected by one of the following two policies. 

The first one follows a uniform distribution: the CUN randomly selects the source between 

[0; 999], hence, all sources have the same probability of being accessed. The second one is 

a localization-based preferential distribution: we superimpose a 10x10 virtual grid over the 

simulation area and, for each cell, called virtual cell in the remainder, we use a different 

Gaussian distribution to choose the final source to query; the average of the Gaussian 

distribution depends on the cell in which the node is currently in, and neighbouring cells 

have overlapping distributions to mimic localization-based accesses. We used these two 

distributions since the first one mimics a worst-case scenario where data caching on the 

mobile infrastructure is not effectively exploited, while the second one models a wide set 

of realistic scenarios where CUNs in physical proximity share common interests and 

access the same sources. 

Finally, let us clarify the main performance indicators we considered. First, we 

compare the average retrieval time experienced by a CUN to access the context data 

instance belonging to the requested source, namely the time between query emission and 

data delivery to sender node. Second, we consider the percentage of satisfied queries, so to 

better stress the impact on the reliability of the distribution process. Finally, to evaluate 

infrastructure offloading, we consider three traffic indicators, namely 1) the cumulative 

traffic sent from the fixed to the mobile infrastructure (TIF→MF); 2) the cumulative traffic 

sent from the mobile to the fixed infrastructure (TMF→IF); and 3) the cumulative traffic sent 

on ad-hoc links (TAD-HOC). 

In the first set of experiments, we start by comparing ACDC and the other caching 

policies with uniform access patterns and different HTTL values. Figure 7.8 (a) and Figure 

7.8 (b) show respectively the average retrieval time and the percentage of satisfied 

requests with caching policies in {LRU, LFU, ACDC_OL, ACDC} and HTTL in {1, 2, 
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Figure 7.8. Average Retrieval Time (a) and Percentage of Satisfied Queries (b)  
under Uniform Access Patterns. 
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3}. At the same time, for the sake of clarity, Figure 7.9 (a), Figure 7.9 (b), and Figure 7.9 

(c) show the cumulative TIF→MF, TMF→IF, and TAD-HOC for considered test configurations. 

We have to note that, in all experiments, our ACDC approach reduces the traffic to/from 

the fixed infrastructure due to the remote ranking that, in its turn, leads to increased data 

diversity between repositories in physical proximity. However, it is important to note that 

the reliability of the distribution process is only slightly improved (see Figure 7.8 (b)): that 

is due to the fact that, although routing fails on the mobile infrastructure, the CUN can 

retrieve needed data from the fixed infrastructure, thus increasing the total TIF→MF and 

TMF→IF. Finally, it is interesting to compare ACDC_OL and ACDC. The latter always 

outperforms the former due to higher repository diversity, thus leading to lower TIF→MF 

and TMF→IF; unfortunately, at the same time, ACDC leads to increased TAD-HOC since the 

higher data repository diversity also increases the probability that each query reaches a 

wider set of context data. 
 

In the second set of experiments, we considered more realistic localization-based 

preferential access patterns; the Gaussian distribution exploited in each cell has a Standard 

Deviation (S.D.) of 26, so as to prevent that most of the queries find a positive response 

directly from the local cache deployed at the sender node. Here, we expect better 

performance since CUNs in physical proximity require the same set of data, thus leading 
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Figure 7.9. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) according to Different Caching Algorithms and 
Query HTTL, under Uniform Access Patterns. 
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Figure 7.10. Average Retrieval Time (a) and Percentage of Satisfied Queries (b)  
under Localization-based Preferential Access Patterns. 
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to better infrastructure offloading. Similarly to previous experiments, Figure 7.10 

represents average retrieval times and percentage of satisfied requests, while Figure 7.11 

shows cumulative TIF→MF, TMF→IF, and TAD-HOC at the end of the simulation. In respect of 

uniform access patterns (see Figure 7.8 (a)), here we experience lower average retrieval 

times and higher reliability due to the higher similarity of emitted context queries. First of 

all, it is interesting to note that LFU leads to the worst performance since that caching 

approach tends to integrate the whole history of accesses, hence, it does not adapt well 

when access patterns change due to CUNs roaming between different virtual cells of the 

simulation area. Also, similarly to what we found in previous experiments, ACDC is the 

best caching solution between considered ones, while ACDC_OL is the second best one. 

Focusing on Figure 7.11, we remark that, in respect of Figure 7.9, both TIF→MF and TMF→IF 

are smaller, thus further increasing infrastructure offloading. Unfortunately, TAD-HOC 

increases as a higher number of close CUNs cache matching data, thus triggering a higher 

number of responses. 

From above results, we conclude that both ACDC_OL and ACDC outperform other 

caching approaches. In both uniform and localization-based preferential access patterns, 

they increase infrastructure offloading; in addition, ACDC usually performs better due to 

increased data repository diversity, but also leads to higher traffic on ad-hoc links due to 

the increased number of triggered responses. In all the previous experiments, we exploited 

a fixed data FL of 180 seconds and a query generator S.D. of 26; now, we want to evaluate 

the effects of such parameters on infrastructure offloading. Let us also remark that, for the 

sake of conciseness, in the remainder we only consider localization-based preferential 

access patterns as they are more realistic and allow real offloading through caching. 

In the third set of experiments, we considered data with longer FLs to test the 

performance of the different caching approaches with long lived context data. In fact, short 

lived data can either hinder or help context data caching: on the one side, since data are 
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Figure 7.11. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) according to Different Caching Algorithms and 
Query HTTL, under Localization-based Preferential Access Patterns. 
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automatically removed due to RL expiration, we periodically need to pull again the data 

from the BNs; on the other hand, especially for those approaches, e.g., LFU, that keep 

track of data accesses through history mechanisms, data removal due to RL expiration 

could be beneficial as it allows to flush context data and associated history, thus allowing 

faster context data cache adaptations. Figure 7.12 shows the average retrieval times and 

the percentage of satisfied queries with data RL in {900, 300, 180} seconds, while Figure 

7.13 shows the cumulative TIF→MF, TMF→IF, and TAD-HOC for the current test configuration. 

Starting with Figure 7.12, we note that LFU ensures the worst performance, especially for 

long lived data; again, this is due to the fact that LFU accumulates all the access history, 

thus hindering the fast adaption of caches. We remark that, if data FL is 900 seconds, 

context data never expire during the simulation, and are removed only for data 

replacement due to memory saturation. By analyzing Figure 7.13, we note that ACDC_OL 

and ACDC are always the ones that ensure lower TIF→MF and TMF→IF, thus further 

increasing infrastructure offloading. Of course, the higher the data FL value, the lower the 

traffic with the infrastructure will be, since context data will be probably kept alive on 

CUNs and fetched from them. Also here, we note that LFU history effects lead to higher 

traffic with the fixed infrastructure. 
 

In the fourth set of experiments, we consider S.D. values in {13, 26, 52, 104} for the 

Gaussian distribution used to select the interesting source in each virtual cell. Of course, 

0

100

200

300

400

500

600

700

900 300 180A
ve

ra
g

e
 R

e
tr

ie
va

l 
T

im
e

 (
m

s
)

Data FL

LRU LFU ACDC_OL ACDC

(a)

0,945

0,95

0,955

0,96

0,965

0,97

0,975

0,98

0,985

900 300 180

P
er

ce
n

ta
g

e 
o

f 
S

a
ti

s
fi

e
d

 Q
u

e
ri

e
s

 (
%

)

Data FL

LRU LFU ACDC_OL ACDC

(b)

Figure 7.12. Effect of Different Data RL Values on  
Average Retrieval Time (a) and Percentage of Satisfied Queries (b). 
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Figure 7.13. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) with Different Data RL. 
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higher S.D. values reduce caching usefulness since each cell will be associated with a 

wider set of interesting context data sources. Figure 7.14 and Figure 7.15 present the same 

performance indicators used in previous tests. Similarly to what happened before, LFU is 

the worst caching algorithm as it leads to higher retrieval times and lower percentage of 

satisfied requests. With higher S.D. values, average retrieval times tend to increase as 

context data will be probably cached in farther nodes (see Figure 7.14 (a)). With an S.D. 

value of 104, LRU and LFU perform very similarly since LFU suffers reduced history 

effects. However, in all the considered configuration tests, our proposals, namely both 

ACDC_OL and ACDC, are the better ones. From Figure 7.15, we confirm that our two 

proposals lead to reduced traffic to/from the infrastructure, thus improving the final 

offloading. Also, ACDC always performs better than ACDC_OL in terms of TIF→MF and 

TMF→IF, although it leads to slightly higher TAD-HOC traffic due to increased data repository 

diversity. Finally, in general, we remark that higher S.D. values lead to 1) increased 

TIF→MF and TMF→IF since more context data instances need to be fetched from the fixed 

infrastructure; and 2) reduced TAD-HOC since each query will trigger a reduced number of 

context responses due to the larger set of context data stored on CUNs in physical 

proximity. 
 

Hence, we conclude that, in all the considered test configurations, both ACDC_OL 

and ACDC continue to outperform LRU and LFU. In addition, ACDC usually performs 

better than ACDC_OL in terms of infrastructure offloading, since it is able to increase data 

repository diversity between close CUNs. Unfortunately, it also increases traffic on ad-hoc 

links since each query can trigger a higher number of responses. However, since our main 

objective is to improve infrastructure offloading for the sake of scalability, and 

considering that ad-hoc links do not usually introduce economical costs for the 

infrastructure provider, we claim that ACDC is a feasible solution to efficiently and 

effectively offload the wireless fixed infrastructure. 
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Figure 7.14. Effect of Different Query Generator S.D. Values on  
Average Retrieval Time (a) and Percentage of Satisfied Queries (b). 
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7.7.2. Data/query Transmission Policies Evaluation 

In this section, we present experimental results about the different transmission 

policies, e.g., no batching, naïve batching, and adaptive batching, offered by SALES 

CDDI. As stated before, from now on, we consider our real-world implementation of 

SALES to test the feasibility of such mechanisms and the introduced management 

overhead on real mobile devices. Considering that obtained results truly depend on 

adopted communication primitives, let us remark that SALES adopts UDP as transport 

protocol. Messages do not receive explicit acknowledgements from destination, hence, 

message droppings due to packet collision, socket buffer overflow, and so forth, are 

possible. 

In addition, we configured SALES system-level resources as follows (see Section 

7.6.3). To emulate SUNs/CUNs over cellular phones or PDAs, each CUN/SUN has 3 MD, 

1 RD, and 1 QD threads, each one executing (if not explicitly stated) at most 50 reqs/s. 

Instead, both the CN and the BNs have 10 MD, 3 RD, and 3 QD threads, each one executing 

at most 60 reqs/s. All the involved queues have a maximum size of 100 elements on 

CUNs/SUNs, and of 200 elements on CN/BNs. The mapping between the maximum QoC 

data retrieval time and the query parameters exploits an α parameter of 0.8 and a γ 

parameter of 2. An average bandwidth of 6 Mbps is available on ad-hoc links, while 

wireless network load factors are exchanged every 10 seconds. Finally, as we did before, 

all the showed experimental results are average over 33 test executions to obtain a good 

confidence; standard deviation is also presented. 

Focusing on context data production and consumption, similarly to previous 

experiments, we exploit a context data type with a payload size of about 3 KB. To 

simulate the worst-case scenario, namely the longest possible distribution path, we have 

deployed 1000 context sources on the CN, and each source continuously produces data 

instances with a FL parameter uniformly distributed in [150; 300] seconds. For the sake of 
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Figure 7.15. TIF→MF (a), TMF→IF (b), and TAD-HOC (c) with Different Query Generator S.D. 
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repeatability, and since we are now interested in evaluating only the effect of the different 

transmission policies on wireless links, BNs, CUNs, and SUNs do not cache any data: 

hence, all the queries have to reach the CN to find a positive response. Finally, in the 

following, each emitted query is directed to a particular context source, randomly selected 

at the query creator node with a uniform distribution. We remark that this choice has been 

made to avoid overlapping queries that, in their turns, could reduce the total number of 

data transmissions; by doing in this way, we can manually estimate the expected network 

traffic load. 

In the first set of experiments (see Figure 7.16), we have compared the three 

data/query transmission policies presented in Section 7.5.2. Toward this goal, and to 

neatly separate the effect of our policies, all the nodes involved in this set of experiments 

have 1) a local processing rate, namely MD, RD, and QD execution rate, equal to twice the 

request rate; 2) the query dropping policy disabled; and 3) the reactive routing delays 

adaptation disabled. To consider very challenging scenarios, we decided to adopt request 

rates in {50, 55, 60, 65, 70} reqs/s, and a data retrieval time of 2 seconds. Although such 

request rates could seem very high and unrealistic, we remark that they are reasonable if 

we consider that our SUN actually simulates a set of mobile nodes attached to the same 

CUN. In densely populated environments, such as a university classroom, we can find 

hundreds of mobile devices in the same physical place, whose wireless transmissions 

always interfere among them; hence, proposed workloads are feasible since, from the 

wireless network viewpoint, they actually mimic scenarios where each mobile device 

emits less than 1 reqs/s. Finally, we imposed 1) query HTTL equal to 0 (no query 

horizontal distribution is performed); and 2) access to the latest version of the context data 

(each query has to reach the context source on the CN). The SUN111 executes our test 

code, and requests a fixed number of reqs/s for a long test of 5 minutes. 

Depending on the adopted transmission technique, Figure 7.16 (a) and Figure 7.16 (b) 
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Figure 7.16. Average Retrieval Time (a) and Percentage of Failed Requests (b)  
with Different Transmission Policies. 
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show respectively the average retrieval time, namely the time interval between query 

generation and response arrival, and the percentage of failed requests for different request 

rates. Except for request rate of 70 reqs/s, as regards context retrieval times, we remark 

that 1) no batching policy outperforms both naïve and adaptive batching since they use 

larger delays to trigger real transmissions; and 2) adaptive batching outperforms naïve 

batching due to the inherently lower transmission delays, obtained by means of the θ 

parameter. Instead, with a request rate of 70 reqs/s, the adaptive batching performs very 

close to the no batching. In fact, the increased wireless congestion of the no batching 

policy frequently triggers MAC backoff mechanism that, in its turn, results in increased 

delays during wireless channel access, hence higher total retrieval times. Finally, while the 

adaptive batching features quite similar retrieval times with different request rates, the no 

batching is very sensible to this parameter due to the increased wireless congestion. 

Figure 7.16 (b) shows the percentage of failed requests. We consider a failure either a 

request without a response (hence, consequence of a message drop) or a request with a late 

response (hence, received after the data retrieval time). No batching is the best choice 

when request rate is in {50, 55} reqs/s: the lower transmission delays can balance 

unforeseen delays, thus leading to a lower number of late responses. Instead, from 60 

reqs/s, the adaptive batching outperforms no batching. In fact, no batching policy increases 

wireless channel congestion: this, in its turn, leads to increased late responses and message 

droppings. In addition, to better clarify obtained results, we used a background process to 

periodically ping the CUN from the SUN; we found out that, with a request rate of 70 

reqs/s, ping times reach more than 300 ms, and that explains the sharp increase of late 

responses. Finally, except for request rate of 70 reqs/s, the naïve batching is always the 

worst policy as higher routing delays can likely lead to failures due to late responses. 

From above results, we remark that 1) the no batching ensures the lowest retrieval 

times and the highest reliability for low request rates; 2) the naïve batching outperforms no 

batching in reliability only for very high request rates, but it usually leads to a high 

number of failures due to late responses; and 3) adaptive batching performs very close to 

the no batching for low request rates, and outperforms it with high request rates. In 

particular, adaptive batching has both self-optimization (it automatically finds a tradeoff 

between timeliness and reliability) and self-configuration (it automatically reconfigures all 

the required SALES components) capabilities in respect of wireless channel congestion. 

In the second set of experiments, we used the above configuration test to analyze the 

effect of the α parameter, used to evaluate distribution period lower bounds, on the three 
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transmission policies. By using an α in {0.7, 0.8, 0.9}, Figure 7.17 and Figure 7.18 show 

respectively the average retrieval times and the percentage of failed requests for different 

request rates. First, by comparing Figure 7.17 (a), Figure 7.17 (b), and Figure 7.17 (c), we 

note that the lower the α parameter, the lower the retrieval times; in fact, lower α values 

lead to lower DRD and QRD, thus possibly anticipating data/query transmissions. In 

addition, by comparing Figure 7.18 (a), Figure 7.18 (b), and Figure 7.18 (c), we remark 

that the lower the α parameter, the lower the percentage of failed requests; in fact, lower α 

values anticipate query/data transmission, thus giving more chances to recover unforeseen 

delays introduced by system congestion. When batching is enabled, lower α values 

increase also the probability of data/query batching, thus further reducing wireless channel 

accesses and network congestion. From these results, we conclude that α parameter is 

useful to trade off reliability and data retrieval time. On the one side, lower α values are 

appealing since able to reduce the percentage of failed responses. Unfortunately, on the 

other side, lower α values anticipate context data distribution, thus hindering the usage of 

routing delays at each single node to prevent system congestion. 
 

In the last set of experiments, we focused on the adaptive batching technique to test its 

behaviour under time-varying workloads. By limiting the processing rate of mobile nodes 

to 50 reqs/s, we execute a test of 35 minutes divided in 7 different timeslots: each timeslot 

is 5 minutes (300 seconds) long, and employs a static request rate to stress SALES. The 

adopted request rates are respectively (10, 30, 50, 70, 50, 30, 10) reqs/s. Figure 7.19 shows 
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Figure 7.18. Percentage of Failed Requests with α in {0.7 (a), 0.8 (b), 0.9 (c)}. 
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Figure 7.17. Average Retrieval Times with α in {0.7 (a), 0.8 (b), 0.9 (c)}. 
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both the percentage of failed requests and the θ values for each second; for the sake of 

readability, we applied a smoothing filter in which each point is averaged with the 

previous four ones. Starting from the percentage of failed requests, SALES ensures very 

few failures when the request rate is lower than the processing one (first, second, sixth, 

and seventh timeslot). If the request rate is equal to the processing rate (third and fifth 

timeslot), we experience a percentage of failed requests around 30%. Finally, when the 

request rate is remarkably higher than the processing one (fourth timeslot), the percentage 

of failed requests becomes high and close to 50%. Considering the processing rate of 50 

reqs/s, we would analytically expect an upper bound to the percentage of failed requests 

close to 30%: however, as also presented in the next section, the query drop policy 

discharges additional queries due to false positives, and the overall overload leads to 

increased late responses. In addition, let us note that the θ values carefully approximate 

and promptly follow real wireless network load. On the one hand, considering that each 

query and data is respectively around 1.5 and 4.5 KB long (the Java serialization 

introduces additional overhead to the real payload), and that ad-hoc links offer a 6 Mbps 

bandwidth, the estimated θ values are very close to the real ones: for instance, with 30 

reqs/s, θ is close to 0.28, while the real value is around 0.24. On the other hand, θ 

promptly approximates the load every time the request rate changes. Some seconds are 

required to θ to adapt to the current load: this inertia is due to the distributed monitoring 

schema adopted for network load computation. In addition, we remark that, in the fourth 

timeslot and in contrast with the higher request rate, θ assumes lower values since many 

failed requests do not result in context data routing. 

To conclude, by considering above results, we remark that the adaptive policy is able 

to effectively trade off average retrieval times with context distribution reliability. From 

the management viewpoint, the adaptive batching requires to distribute only lightweight 

wireless network load factors, periodically piggybacked on mobility beacons; 
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unfortunately, at the same time, it may lead to increased CPU overhead due to the higher 

number of scheduled task descriptors. By comparing the CPU load experienced when the 

adaptive batching policy is enabled with the one caused by no batching policy, we found 

that, in all the previous experiments, adaptive batching leads to an increased CPU 

overhead always smaller than 0.5%. Hence, considering the associated benefits, we think 

that the adaptive batching schema is always viable and feasible. 

7.7.3. Query Dropping Evaluation 

Query dropping is fundamental to control and limit the introduced CPU load, so as to 

better fit the current execution environment. Here, we present experimental results related 

with the different query dropping policies, namely naïve and adaptive query dropping, by 

also comparing them with the case when no query dropping is enabled. 

In the following experiments, we always deployed 1000 context data sources on the 

CN, and we enabled context data repositories of 120 elements on intermediate nodes. Each 

node stores context data passing through it and, when the repository is full, a traditional 

LFU policy is applied to select the element to remove. We used LFU as replacement 

policy since, during preferential access patterns, it better fits the Gaussian distribution 

adopted by the traffic generator, thus reducing the requests relayed to upper levels and 

better highlighting the different CPU loads associated with different access patterns. 

Finally, considering that we use the unique SUN to simulate multiple clients, it has the 

local context data repository disabled: hence, all the queries are distributed, at least, up to 

the CUN. 

All the experimental results presented in this section are obtained from a general test 

of 720 seconds, divided in 6 time slots of 120 seconds each, and with any slot with a 

different access pattern to simulate different scenarios. The SUN selects a target context 

data source, among the 1000 available on the CN, by using a uniform distribution in time 

slots {1, 3, 5} and a Gaussian distribution in time slots {2, 4, 6}. In addition, to simulate 

data access patterns with different degrees of preference, the Gaussian-based distributions 

of time slots {2, 4, 6} adopt respectively a standard deviation (S.D.) of {15, 30, 45}. We 

remark that Gaussian distributions simulate scenarios where mobile nodes in physical 

proximity require similar context data, such as localization-dependant access patterns; in 

this case, it is likely that context queries retrieve response from data repositories of close 

mobile nodes. Finally, all reported results are average values over 10 executions. 

In the first set of experiments, we executed the above test with query drop disabled to 
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show that different access patterns lead to different CPU loads. In particular, we have used 

the SUN to emit {5, 10, 15} reqs/s, and we monitored the CPU load introduced on the 

CUN each second. For the sake of readability, we report average values of CPU load 

values over the last samples. Figure 7.20 (a) shows the CPU load during the test for 

different request rates. Of course, the higher the request rate, the higher the CPU load 

experienced by the CUN. In addition, it is worth remarking that CPU load depends on 

access patterns. When accesses are uniformly distributed, the CUN experiences higher 

CPU loads because it has to relay most of the queries to the BN. Instead, when accesses 

are distributed according to a Gaussian distribution, many queries find response from the 

CUN data repository, thus avoiding further query distributions. The lowest CPU load is 

associated with the second time slot where almost all the data are found on the CUN 

(Gaussian distribution with a S.D. of 15). In this test, no query drops occur because, as 

anticipated, both CUN and SUN drop policies have been disabled. 

From Figure 7.20 (a), we remark that it is impossible to find a precise PQMAX value 

given a specific maximum CPU load. However, considering that the CDDI is a 

background service executed on mobile device, we can reasonably assume that it can 

introduce a maximum CPU load of 5%. Hence, from these initial tests, we conclude that a 

query processing rate of 10 reqs/s is appropriate to ensure a good number of satisfied 

queries, while keeping the final CPU load below 5%. 

In the second set of experiments, we have enabled the naïve drop policy on the CUN 

with a static PQMAX equal to 10 to possibly keep the CPU load close to 5%. Figure 7.20 

(b) and Figure 7.20 (c) represent respectively the average CPU load at the CUN and the 

percentage of satisfied queries for each second. Starting with Figure 7.20 (b), we note that 

all the main observations made for the experiments of Figure 7.20 (a) still apply. In 

addition, when query request rate is equal to 15 reqs/s, the CPU load does not remarkably 

increase since the CUN proactively drops queries in excess. Of course, it is possible to 
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highlight a slightly higher CPU load due to the overhead introduced by query receive and 

dispatching. At the same time, in Figure 7.20 (c), when the request rate is higher than 

PQMAX, we obtain a percentage of satisfied queries that approximates the difference 

between the number of queries emitted by the SUN and the number of queries processed 

by the CUN. In fact, all the queries emitted by the SUN pass through the CUN that 

proactively discards them according to its own PQMAX. In addition, the naïve drop policy 

also leads to false positives when approaching PQMAX: when query request rate is equal to 

10 reqs/s, the adopted drop condition leads to a percentage of satisfied requests close to 

80%. Finally, from Figure 7.20 (b) and Figure 7.20 (c), we conclude that the naïve drop 

policy leads to unjustified query drops since unable to adapt to data access patterns. In 

fact, although the average CPU load is below 5% during Gaussian-based accesses (see 

Figure 7.20 (b)), the CUN keeps dropping a high number of queries (see Fig. Figure 7.20 

(c)). Hence, the CDDI should automatically increment PQMAX during these periods to 

reduce dropped queries. 

In the third set of experiments, we enabled our adaptive drop policy with a maximum 

CPU load of 5% and a monitoring period of 10 seconds. We recall that, due to the adopted 

monitoring period, PQMAX(k) is adapted only every 10 seconds; this, of course, reduces the 

reactivity of the system in following fast changing CPU loads, but increases the stability of 

PQMAX(k). By using the same traffic patterns introduced above and a request rates in {5, 

10, 15} reqs/s, Figure 7.21 (a), Figure 7.21 (b), and Figure 7.21 (c) show respectively the 

CPU load, the percentage of satisfied queries for each second, and the values assumed by 

PQMAX(k) during the whole test. Let us briefly note that, when query request rate is 5 

reqs/s, the CPU load is always below 5% (see Figure 7.21 (a)). Hence, no queries are 

dropped (see Figure 7.21 (b)), while PQMAX(k) is almost stable and close to 8 reqs/s (see 

Figure 7.21 (c)). 

Instead, when query request rate is 10 reqs/s, our adaptive drop policy starts to adjust 
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PQMAX(k). Starting from Figure 7.21 (a), we can note that, at the beginning of the test, the 

CPU load is higher than 5%. Hence, our adaptive drop policy reacts by reducing PQMAX(k) 

(see Figure 7.21 (c)). This, in its turn, leads to a lower percentage of satisfied requests in 

Figure 7.21 (b). In the second time period, the data access pattern becomes Gaussian-

based: hence, our adaptive drop policy increases PQMAX(k) to reduce the failed requests. 

The same trend repeats every time the data access pattern changes. The main effect is that, 

differently from Figure 7.20 (c), the percentage of satisfied queries in Figure 7.21 (b) is 

time-dependent. It increases during Gaussian-based access patterns due to the reduced 

CPU load introduced by each query; of course, the highest value is reached at the end of 

the second time slot as it employs the lower standard deviation. In addition, in this test, 

during uniform access patterns, PQMAX(k) is about 4 reqs/s. This could seem in contrast 

with the results presented in Figure 7.20 (a), where a CPU load of 5% is associated to a 

hypothetic request rate of 7.5 reqs/s. However, this is an unfair comparison since, in this 

case, the CUN exhibits a higher load due to additional query decoding and dispatching. 

Finally, when the SUN emits queries with a request rate of 15 reqs/s, our adaptive 

policy reacts similarly. However, in Figure 7.21 (c), PQMAX(k) tends to assume very low 

values for both uniform- and Gaussian-based access patterns. This is consequence of the 

fact that the CPU load introduced by the CDDI tends to be always higher than 5%. In 

other words, even if our adaptive drop policy reduces the processed queries, the CDDI 

keeps introducing a steady CPU load associated with message decoding and dispatching. 

However, as showed in Figure 7.21 (a), the adaptive drop policy enforces the final CPU 

load of 5%, hence, it achieves our main goal. 

7.7.4. Evaluation of SALES on Android Devices 

To better assess the feasibility of SALES CDDI on real-world resource-constrained 

mobile devices, as mentioned before, we ported our solution on the Android platform. In 

this section, we present experimental results from our real deployment, and we better 

highlight the management overhead introduced on mobile phones due to context data 

distribution. 

In the following tests, we disabled intermediate repositories on all the mobile nodes, 

so to simulate the worst case scenario, namely all the queries have to be distributed up to 

the CN before retrieving context data. At the same time, as we have thoroughly evaluated 

SALES batching techniques in Section 7.7.2, here we consider data/queries distributed 

according to the no batching policy, in order to avoid additional failed requests due to 
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higher routing delays. Finally, all the experimental results report average values obtained 

over 10 executions. 

We focused our following tests on three different distributed architectures, good 

representatives of the configurations that can be found in real deployments. The first one, 

“Laptop/WiFi”, is a limited deployment CN-BN-CUN where the CUN is a laptop and 

connects to the BN through WiFi; it represents the best case scenario due to 1) shorter 

distance between the client and the CN; and 2) usage of a full-fledged laptop. The second 

one, “MobilePhone/WiFi”, is similar to the previous one, but the CUN is an Android 

mobile phone: due to tighter resource constraints, we expect lower performance with 

respect to the first configuration. Finally, the third one, “MobilePhone/WiFi - 

MobilePhone/BT”, extends the previous one to reach a full CN-BN-CUN-SUN 

configuration: both the CUN and the SUN are mobile phones that connect in ad-hoc 

through a BT link. We remark that we did not test WiFi ad-hoc links between mobile 

phones due to Android limitations. 

The first set of experiments compares two key performance metrics: the average 

retrieval time and the percentage of failed requests (see Figure 7.22 (a) and Figure 7.22 

(b)). We have considered request rates in {2, 4, 6, 8} reqs/s and, for each case, we show 

the average value and the standard deviation over a 5-minutes long test. The queries are 

always emitted by the CUN in the first two configurations, and by the SUN in the last one; 

in addition, the emitting node imposes a data retrieval time of 2 seconds. Since SALES 

estimates a worst-case distribution scenario made only by the nodes in the vertical path 

between the creator node and the CN, i.e., 2 hops when queries are emitted by the CUN 

and 3 hops when they are emitted by the SUN, it will impose DRDM = QRDM = 500 ms in 

the first case, and 333 ms in the second case. Then, since SALES applies an α factor equal 

to 0.7 to consider unforeseen delays introduced by local processing, the final DRD/QRD 

will be respectively equal to 350 and 233 ms: in conclusion, the routing process will try to 
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deliver data in 1400 ms, thus having 600 ms to cope with unexpected delays due to 

wireless channel congestion or local resources overload. 

From obtained experimental results, the “Laptop/WiFi” case is the best one: it ensures 

the lowest average retrieval times and exhibits no failed requests; in fact, the usage of a 

full-fledged laptop with a standard JVM 1.6 makes the request rates of these tests 

negligible. Instead, the other two configurations experience increased average retrieval 

times and some failed responses since mobile phones introduce higher routing delays due 

to computational resource scarcity. In addition, the scarce memory reserved for an 

Android application, limited to a maximum of 24MB on the LG-P500, results in frequent 

GC collections, thus introducing additional delays (as also better detailed in our third 

experiment). Finally, the “MobilePhone/WiFi - MobilePhone/BT” scenario has the worst 

performance due to the higher number of transmissions and hops involved in the routing 

process; the surge of failed responses is also due to the fact that the CUN, by acting as 

router, suffers an increased memory pressure due to data/queries serialization. 

In our second set of experiments, we aimed to clarify main causes of failed queries. 

By using the “MobilePhone/WiFi” test scenario and a fixed request rate of 8 reqs/s, Figure 

7.22 (c) shows both the average retrieval times and the number of failed queries when the 

mobile phone requires data with a data retrieval time in {2000, 3000, 4000} ms. We 

remark that the percentage of failed queries decreases with higher data retrieval time 

values. Such behaviour is related with SALES routing delay mechanism: in fact, if data 

retrieval time is equal to 2000 ms, SALES has 600 ms to cope with unforeseen delays; 

instead, with a data retrieval time of 4000 ms, it has 1200 ms of remaining time. Hence, 

the CDDI can better recover unpredictable delays introduced by Dalvik GC and scarce 

computational resources, thus reducing the number of failed queries. 

Finally, we have better observed the CDDI heap size via Android “adb shell dumpsys 

meminfo” command. We remark that the current implementation does not employ any 

particular optimization to address the heap fragmentation problem (see Section 7.6.4), so 

as to produce a worst case scenario where programmers do not consider Android 

peculiarities. In the “MobilePhone/WiFi” test scenario, we have monitored the Dalvik 

heap for a 20 minutes long test by using request rates in {2, 4, 6, 8} reqs/s. Figure 7.23 

shows the heap size sampled once every second. Of course, the higher the request rate, the 

higher the heap size because of more frequent object allocations and increased heap 

fragmentation. We remark that the heap size of Figure 7.23 is the total heap size perceived 

by Android; this differs from the allocated heap (smaller and not shown in figure) that is 
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the fraction of the heap used to store referenced objects that cannot be released. For a 

particular request rate, the allocated heap size is almost constant during the whole test due 

to automatic GC mechanisms. Instead, although the request rate is constant, the memory 

dedicated to our CDDI client goes up over time. That represents a usual accumulation 

effect of many GC implementations: in our case, these effects are worsened by the heap 

fragmentation problem. Hence, that core issue must be taken into account before a 

production phase, also because, if the application reaches 24 MB, the Android runtime 

will automatically kill it to avoid slowing other external applications. 
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8. Context Data Distribution in Smart Cities Scenarios 

Our SALES CDDI strives to effectively address the deployment of context-aware 

services in large-scale scenarios. It employs novel solutions, mainly based on the joint 

usage of heterogeneous wireless modes, cooperative context data repositories, and quality-

based constraints, to improve system scalability and reliability. However, when we have to 

scale to very large deployments, such as the ones that we can find in smart cities scenarios, 

the design of suitable CDDIs introduces additional challenging issues that have to be 

properly addressed; amongst others, huge amounts of context data produced into the 

system have to be processed according to context-aware service needs. 

This chapter focuses on the realization of large-scale context-aware systems, and 

introduces both fundamental issues and main directions in this research area. We extend 

our distributed architecture to include Cloud computing solutions, in charge of storing and 

processing the context data produced into the mobile system. We remark that this chapter 

does not share the common structure of the previous two ones; in particular, here we leave 

out the already discussed and well detailed issues related to context data distribution and 

management in mobile environments, in order to have more space for an in-depth 

discussion about Cloud computing and the advantages associated to their usage in smart 

cities scenarios. 

The rest of this chapter is organized as follows. In Section 8.1, we detail the usage of 

Cloud computing solutions for CDDIs. In Section 8.2, we present the main challenges and 

management issues introduced by Cloud computing architectures. Then, since Cloud 

architectures need complex management infrastructures to efficiently deal with modern 

data center, in Section 8.3 we detail our Cloud management infrastructure, by presenting 

the core Virtual Machine (VM) placement problem. Finally, Section 8.4 presents an in-

depth discussion about our original contributions, concerning network-aware VM 

placement, by introducing a new optimization problem, as well as heuristics to solve it. 

8.1. Cloud Computing in CDDI 

Large-scale city-wide scenarios feature thousands of sensors that continuously push 

new context data into the mobile system. State-of-the-art mobile devices are equipped with 

several onboard sensors, such as camera, GPS, and accelerometers, that continuously 

produce new data useful to characterize the current situation. In the smart city vision, 
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physical environments will be also equipped with sensors, e.g., temperature/humidity 

sensors and cameras, feeding new information directly into the fixed infrastructure. 

Consequently, to efficiently manage the storage and the processing of such large amounts 

of context data, we decided to adopt Cloud computing solutions [39, 47, 100]. 

Cloud solutions allow the rapid provisioning of scalable and reliable services, by 

means of distributed and virtualized hardware/software resources. The intrinsic scalability 

of such architectures, coupled with the possibility of provisioning computing resources 

only when required, makes them very suitable to store and process data coming from 

large-scale mobile systems. Modern Cloud solutions also exploit multiple data centers 

spread all over the world, thus enabling the dynamic provisioning of computing resources 

close to particular physical locations. Hence, they offer the computing power useful to 

realize new compelling context-aware scenarios in large-scale mobile settings, with the 

possibility of provisioning such resources closer to the point-of-attachments of the 

wireless infrastructures. 

In our vision, the CDDI dynamically asks for computing resources to the Cloud, 

releasing them when no longer needed. The dynamic scaling of resources lets the CDDI 

require new computing resources when the context data to be processed increase; in fact, 

several conditions, such as time of the day and scheduled events (e.g., workshops and 

conferences), result in large fluctuations of the amount of context data pushed into the 

system. At the same time, the CDDI can dynamically reallocate computing resources 

between different services, for instance, to favour the processing of time critical data, and 

can automatically control the Cloud deployment to both release resources and possibly 

turn off not required physical servers, so as to eventually reduce the power consumption 

and the operational costs of the data center. All these interesting properties enable the 

rapid and efficient provisioning of context-aware services. 

Although such vision is appealing as the CDDI can exploit the Cloud to effectively 

address context data storage and processing, Cloud solutions require complex management 

infrastructures to enable the dynamic and rapid provisioning of computing resources. The 

CDDI has to be aware of the increased complexities introduced by Cloud management, by 

carefully driving the reconfigurations associated with resource provisioning. Hence, in this 

chapter, we will focus on Cloud management aspects, with the main goal of highlighting 

how the CDDI should constraint and drive runtime Cloud reconfigurations. 
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8.2. Main Issues & Challenges 

Cloud management is still a challenging task due to the novelty of models, 

technologies, and tools [122]. Currently, many industrial efforts have realized specific 

implementations capable of providing primitive Service Level Agreements (SLAs), such 

as number of CPUs, memory, and disk space allocated to each VM. Unfortunately, more 

advanced management operations, such as dynamic and automatic service scaling and 

reconfiguration facilities, useful to match the highly variable resource demands of large-

scale context-aware services are still quite missing. 

In general, Cloud solutions exploit virtualization techniques for the sake of VM 

consolidation, namely the provisioning of multiple VMs on the same physical host. A 

Cloud management infrastructure with the goal of VM consolidation must implement a 

proper placement function to detail final VM-to-host mappings. Since VMs will host real 

services used to process context data, VM placement is fundamental and can greatly affect 

the performance of executed services. Similarly, the dynamic scaling of such services is 

not straightforward, and can require tight interactions between the service and the Cloud 

management levels. Finally, it must be noted that, similarly to what happened in the 

SALES scenario, the transfer of important context data from the mobile to the fixed 

infrastructure, and vice versa, is an important issue due to tight bandwidth limitations of 

traditional fixed wireless infrastructures. Accordingly, in Section 8.2.1 and Section 8.2.2, 

we will detail the fundamental issues that have to be addressed in applying Cloud 

computing solutions to CDDIs. 

8.2.1. Management Issues of the Cloud 

A first and foremost Cloud management issue is to decide the placement of each VM 

in the data center, including decisions about co-locating more VMs on the same physical 

host. More formally, given a set of physical hosts equipped with finite resources and a set 

of VMs with resource requirements, the Cloud placement function has to find proper VM-

to-host mappings that optimize a particular cost function. VM placement usually deals 

with conflicting goals, combined through different weighting factors according to how the 

Cloud provider ranks them; for instance, common cost functions minimize the number of 

turned on physical hosts, so as to reduce the operational costs of the data center, while 

keeping spare capacities to prevent frequent resource shortages. The Cloud placement 

function has to also consider multiple resource constraints, coming from limitations of 

physical hosts, to avoid placement solutions that would violate user SLAs. Hence, a 
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placement function must address two main directions: 1) an objective function, to rate how 

good a VM placement solution is; and 2) resource constraints, to avoid unfeasible VM 

consolidation solutions. 

Starting with the objective function, Cloud providers usually tend to consolidate VMs 

on as few physical hosts as possible to reduce the power consumption of the data center, 

so to finally increase their economical revenue. Other different and heterogeneous goals 

can be defined. Load balancing between physical hosts is important to prevent that 

overload situations can easily lead to resource shortage; in addition, for the sake of 

reliability, a Cloud provider can introduce anti co-location goals, detailing sets of VMs 

that should not be placed on the same physical host, to prevent that a single host failure 

affects the availability of whole running services. With a slightly different perspective, 

when Cloud solutions are used to support CDDIs in mobile scenarios, we need VM 

placement solutions that allow the easy provisioning of additional computational 

resources, with no need of VM relocations, namely VM migrations useful to free resources 

in order to accommodate incoming requests. 

Then, the Cloud placement function has to model and enforce resource constraints to 

reach meaningful solutions. Physical hosts have limited CPU, memory, and I/O capacities 

that have to be carefully considered to avoid low performance and resource saturation. In 

general, resource constraints are expressed with a host-level granularity; however, 

additional and more complex constraints can be associated with the whole data center. For 

instance, from a networking viewpoint, both the network topology of the data center and 

the adopted routing schema greatly affect the real bandwidth available between physical 

hosts [123]; that complicates the placement problem since a particular solution, even if 

feasible from a host-level perspective, can result in link saturations. In addition, network 

traffic between co-located VMs is carried out locally, by means of in-memory message 

passing mechanisms; on the one side, this saves precious network resources but, on the 

other one, it increases CPU and memory overhead, with final runtime effects difficult to 

estimate and dependent on both hypervisors and device drivers. Since context data 

processing services usually introduce high network traffic, the Cloud placement function 

has to carefully consider such increased CPU/memory overhead to prevent physical host 

saturation. 

Finally, placement optimization is based on the assumption that VMs present 

repeatable patterns on particular time scales, e.g., time of the day, period of the year, and 

so on. Hence, a pre-filtering phase is usually introduced to select an important, though 
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reduced, subset of VMs that present repeatable patterns along resource requirements. By 

exploiting such property and historical data, the Cloud placement function can better 

decide the VMs to consolidate, thus reducing the possibility of reaching unfeasible 

placements due to time-varying resource requirements. We remark that, if we consider the 

usage of Cloud architectures for context processing, such characteristic of predictability is 

often valid: produced context data usually depend on the people gathered in a particular 

physical place, and this is intrinsically associated with both the specific hour and the day 

of the week. 

Hence, although the adoption of Cloud computing architectures for CDDIs 

complicates both the design and the deployment of such systems, we claim the feasibility 

of such solutions to increase system scalability, while ensuring an effective and efficient 

usage of the Cloud physical resources. 

8.2.2. Bridging together the Mobile and the Fixed Infrastructure 

Although the adoption of Cloud computing solutions presents clear advantages, the 

real-world realization of such solutions has a fundamental issue, mainly related to the 

transfer of the context data between the mobile and the fixed infrastructure. Context-aware 

services need to exchange huge amounts of data, coming from sensors either deployed on 

mobile nodes or on fixed infrastructures. All these data have to be transferred through 

bandwidth-constrained wireless infrastructures, thus introducing a high traffic due to the 

system scale.  

Apart from our SALES CDDI [124], several academic works considered the 

opportunistic usage of mobile devices as data carriers, so to distribute data to close devices 

through ad-hoc links. Few works investigated cooperative content sharing services based 

on the joint usage of infrastructure-based and ad-hoc communications [46, 125]; similarly, 

hybrid architectures, such as the one adopted by HiCon [30], have been recently proposed 

for cooperative context data distribution in large-scale mobile systems. Even if these 

relevant efforts are now producing interesting results, we claim the need of more 

sophisticated techniques capable of orchestrating the context data distribution into the 

whole system. 

Above all, it is worth remarking that, in city-wide scenarios, the usage of cellular 

infrastructures for the continuous upload and download of context data would probably 

lead to prohibitive network traffic and economical costs [41]. The context data distribution 

has to be carried out principally by ad-hoc links between mobile devices. In addition, 
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differently from SALES scenario, here we need routing protocols that, in a delay tolerant 

fashion [38, 126, 127], progressively transfer the context data close to specific collection 

points, such as WiFi hotspots that allow not expensive data offloading. In other words, 

while SALES focuses more on synchronous data retrieval operations, where context 

queries are distributed to collect interesting context data as soon as possible, in this case 

context distribution operations can present less tight deadlines, and we can exploit these 

relaxed time constraints to better coordinate mobile nodes in the whole system. 

Hence, an interesting research direction is the usage of Cloud architectures to process 

important data associated with mobile nodes, e.g., mobility traces, context data associated 

with device owner, and so forth, to effectively reconfigure the context distribution process 

at runtime. Collected data about mobile devices can be processed into the Cloud, by 

exploiting similar mechanisms to the ones adopted for context data processing. Then, 

suitable reconfiguration commands can be sent to mobile devices to properly reconfigure 

the context data distribution mechanisms. 

8.3. Cloud Management Infrastructures 

A Cloud management infrastructure is a complex software stack solution that requires 

a deep understanding of several and heterogeneous aspects, spanning from monitoring 

schema to virtualization technologies and networking architectures. Currently, several 

commercial products already offer comprehensive management infrastructures, and some 

of them, such as Amazon EC2 [128], offer primitive mechanisms to perform dynamic 

resource provisioning and automatic service scaling into the Cloud data center. For the 

sake of readability, we leave out detailed descriptions about general management 

infrastructure for Cloud computing, and we focus only on the main phases useful to 

understand the remainder of this chapter (see Figure 8.1). 

First, the Cloud management infrastructure has to gather a wide set of indicators, 

including VM load metrics, power consumption of physical hosts and network elements, 

and so forth. Since data centers usually include physical elements belonging to different 

vendors, it is important to integrate with and use different monitoring protocols. Second, 

the Cloud management infrastructure has to decide the optimal VM placement solution. 

This decision is very complex from a computational viewpoint, since it usually includes 

the resolution of multi-criteria optimization problems with a large solution space, that can 

be limited by user SLAs, host computational resources, power consumption, etc. Finally, if 

a better VM placement is found, the Cloud management infrastructure has to dynamically 
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reconfigure the data center, by also detailing a suitable plan of VM relocation operations, 

and by taking over hypervisor and network path reconfigurations. 

To deal with such complexity, a Cloud management infrastructure usually adopts a 

three-stage architecture: the first stage collects monitoring data from the Cloud; the second 

one exploits collected data to calculate a new and more suitable VM placement, if 

available; finally, if this is the case, the third stage calculates the VM relocation plan and 

applies suggested changes to the Cloud data center. Hence, a Cloud management 

infrastructure (see Figure 8.1) consists of a Monitoring Component, a Placement 

Computation Manager, and a Placement Actuator, arranged in a pipeline where each stage 

uses, as input, the output of the previous one. The Monitoring Component gathers both 

system and service level information about used resources, and makes them available to 

the next stage. The Placement Computation Manager exploits both monitoring information 

and user SLAs to check whether a better VM placement exists; as showed in Figure 8.1, it 

contains additional sub-modules to consider specific resource dimensions, such as 

networking and power. Finally, if a better placement exists, the Placement Actuator takes 

care of executing the VM migration plan and reconfiguration operations. 

Between aforementioned components, our work primarily focused on the Placement 

Computation Manager, namely the component in charge of detailing the single VM-to-

host associations. Between different aspects, we considered the introduction of network-

aware constraints and optimization goals into the VM placement problem; Section 8.4 

presents our work in this research area. 

8.4. Network-aware Placement 

All the VMs hosted in the same Cloud data center intrinsically share network 

Monitoring Component 

Placement 
Actuator 

Placement Computation Manager 

   Power Consumption 

   Data Center Network 

Cloud  
Data Center 

Figure 8.1. Logical Architecture of a Cloud Management Infrastructure. 
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resources. Even if Virtual LANs (VLANs) are usually adopted to create and separate 

logical networks, mainly for security reasons, both network links and switching elements 

are shared between all VMs. Hence, traffic demands of different Cloud customers interfere 

among themselves, and this can lead to reduced service performance. In addition, both the 

modeling and the introduction of network constraints are complex tasks to be addressed. 

In the past years, different works considered network-aware VM placement for Cloud 

data center. Network resource constraints are usually considered with a host-level 

granularity, by enforcing that the aggregate traffic from/to a physical host is lower than the 

maximum capacity of the network interface. However, this is a very simplistic assumption 

since Cloud data center usually adopts complex hierarchical topologies where pairs of 

hosts experience different time-varying bandwidth, depending on routing schema and 

conflicting traffic. In [123], authors considered the problem of VM placement with the 

goal of reducing the aggregate traffic into the data center. Since the proposed placement 

problem is NP-hard, authors propose a new heuristic, based on clustering algorithms, to 

solve real-world instances in reasonable time. While this work assumes that inter-VMs 

traffic demands are static and well-defined, another important work consolidates together 

VMs with uncorrelated traffic demands [129]: it introduces network constraints with a 

host-level granularity, and places together VMs by ensuring that local network capacity is 

violated with a probability lower than a specific threshold. Since traffic demands are 

expressed through stochastic variables, the proposed VM placement problem is a 

stochastic bin packing problem. Then, in [130], authors consider the placement of 

applications made by a computation and a storage part, with the main goal of reducing 

aggregated network traffic. However, similarly to [123], authors do not consider 

constraints on single links, thus potentially leading to unfeasible placement solutions; in 

addition, since traffic demands are only between the computation and the storage part of 

each application, the resulting problem is not as hard as the one in [123]. Finally, in [131], 

authors consider Cloud data centers with server and storage virtualization facilities, and 

strive to increase load balancing at multiple layers, including servers, switches, and 

storage. They propose a new placement algorithm that considers multiple resource 

dimensions from these layers; since the proposed algorithm is a multi-dimensional 

knapsack problem, it is largely inspired by the famous Toyoda method [132]. 

Although these are extremely valid works, we think that additional research has to be 

done in this area. First, Cloud data centers feature non-trivial network topologies that 

connect physical hosts through multiple paths for the sake of scalability and reliability 
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[133-135]. Second, since dynamic multi-path routing protocols are usually introduced to 

exploit the full available bandwidth between hosts, traffic demands routed along particular 

network paths change at runtime. Finally, Cloud data centers host heterogeneous services 

that can lead to extremely different runtime traffic patterns, with a high variability due to 

either unpredicted request spikes or service-dependant operations, e.g., database 

replication. 

Consequently, to address these issues, we propose a new network-aware VM 

placement problem, namely Min Cut Ratio-aware VM Placement (MCRVMP). MCRVMP 

targets virtualized data centers and takes into account constraints on both local physical 

resources (CPU and memory) and network related ones. As regards the latter, it considers 

both complex network topologies and dynamic routing protocols, and exploits the notion 

of network graph cuts to express associated constraints. Most important, starting from the 

realistic assumption that inter-VMs traffic demands are time-varying, MCRVMP strives to 

minimize the maximum load ratio over all the network cuts, so as to find VM placement 

solutions that, by having spare capacity on each network cut, have higher probability of 

absorbing unpredicted traffic variations. 

In the following subsections, we present additional details about our network-aware 

placement component. In Section 8.4.1, for the sake of clarity, we introduce common data 

center network topologies. Then, in Section 8.4.2, we present our new network-aware VM 

placement problem while, in Section 8.4.3, we detail our heuristics to solve it. Finally, in 

Section 8.4.4, we introduce experimental results to support the technical soundness of our 

MCRVMP proposal. 

8.4.1. Data Center Network Topologies 

Modern Cloud data centers feature heterogeneous services that can lead to very 

different communication patters, from one-to-one to all-to-all traffic matrices. In addition, 

network topology greatly affects the maximum achievable bandwidth with specific traffic 

patterns. To accommodate this wide range of service requirements, a plethora of solutions 

has been presented in the research literature for specific classes of services [133-136]. 

Broadly speaking, most of the network topologies for data centers share a three-tier 

architecture [136]. The lowest access tier contains the real physical hosts that directly 

connect to access switches. The intermediate aggregation tier contains aggregation 

switches that connect together access switches, so to allow more localized network 

communications among hosts. Finally, the highest core tier contains core switches that 
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connect aggregation switches; this tier also includes the gateways for the traffic with the 

outside of the Cloud data center. Despite the multitude of proposals, we remark that three 

main topologies are emerging as standard-de-facto solutions: Tree, Fat-tree, and VL2 (see 

Figure 8.2).  

Tree-based networks are appealing due to their simplicity of wiring and reduced costs 

[136]. Unfortunately, such topologies suffer of very low reliability and scalability 

bottlenecks. In fact, a single link failure completely disconnects the network in two sub-

trees. In addition, moving toward the tree root, such topologies are usually oversubscribed, 

meaning that, in the worst case scenario, the aggregate traffic coming from one side of the 

tree cannot be transferred to the other one due to limited link bandwidth. We also recall 

that tree-based topologies are usually the result of adopted routing protocols; in fact, even 

if the physical network topology is a graph, the usage of both VLANs and spanning tree 

routing algorithms leads to tree-like logical networks. 

Fat-tree is a three-tier topology extensively based on bipartite graphs. Basic building 

block of this topology is the so-called pod (see dotted areas in Figure 8.2), namely a 

collection of access and aggregation switches connected in a complete bipartite graph. 

Each pod is connected to all the core switches, but links are evenly spread between the 

aggregation switches contained into the same pod; hence, this leads to a new (not 

complete) bipartite graph between aggregation and core switches. Fat-tree topology 

assumes that all the switches have the same number of ports, and this greatly limits 

topology scaling. If N is the number of port per switch (Figure 8.2 shows an example 

topology for N equal to 4), the resulting Fat-tree has N pods, each one containing N
ଶ
 

aggregation switches and N
ଶ
 access switches. Each pod connects to N

మ

ସ
 servers and to N

మ

ସ
 core 

switches. The main advantage of this topology is the availability of multiple paths between 

each pair of hosts: in fact, N
మ

ସ
 disjoint paths can be used to route the traffic between two 

physical hosts; unfortunately, Fat-trees are extremely expensive due to the very high 

Tree Fat-tree VL2 

Figure 8.2. Common Data Center Network Topologies. 
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number of switching elements and links. 

Finally, VL2 is also a three-tier architecture sharing important similarities with Fat-

tree [133]. Main difference is that VL2 adopts a complete bipartite graph between core and 

aggregation switches, and not between aggregation and access switches. VL2 exploits a 

new routing schema, called Valiant Load Balancing, that forces packets received at the 

access switches to be forwarded up to the core layer. Hence, even if two hosts are 

connected to different access switches that, in their turn, connect to the same aggregation 

switch, packets between them are always forwarded first to a randomly selected core 

switch, and then back to the real destination. This routing schema is based on the fact that, 

if traffic patterns are unpredictable, the best load balancing between available links is 

obtained by randomly selecting a core switch as intermediate destination [133]. 

Our MCRVMP strives to minimize the maximum cut load ratio, in order to potentially 

support time-varying traffic demands with reduced packet droppings and no additional 

VM relocations. General network graphs can present an exponential number of cuts, but 

several of them are not useful in MCRVMP problem formulation. Above all, we are 

interested in network cuts that partition the set of hosts in two non-empty and connected 

subsets, as they are bottlenecks for the traffic demands between VMs placed on different 

sides of the cut. In the remainder, we call them critical cuts; a critical cut with a load ratio 

close to 1 implies that all the traffic demands carried through it have a little degree of 

variability before leading to dropped packets. 

Starting from simple tree-based networks, we have a critical cut for each network link. 

The removal of one link partitions the network and leads to two different and connected 

subsets of hosts. Hence, associated MCRVMP constraints can be easily expressed. Instead, 

both Fat-tree and VL2 topologies present several bipartite graphs that lead to a higher 

number of network cuts, thus making the cuts analysis more complex. However, as better 

explained in the following, in the case of MCRVMP, we can reduce Fat-tree and VL2 

topologies into equivalent tree networks. Now, we give the main guidelines behind our 

topology transformations; we decided to omit additional algorithm details as they can be 

easily derived. 

Let us focus on the Fat-tree topology in Figure 8.3 (a). The Fat-tree contains 

homogeneous links with equal capacity C. For each pod, under the assumption of dynamic 

routing, we can study only a limited number of cuts: in particular, for each access switch, 

we can define a network cut (see NC1 and NC2) containing all the uplinks toward the 

aggregation tier; then, we can define an additional cut (see NC3) by removing all the 

2
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uplinks going out of the pod. By iterating these rules on all the pods, we can find the 

important network cuts for a Fat-tree topology (see Figure 8.3 (a)). In other words, we can 

transform all the switches in the boxes highlighted in Figure 8.3 (b) with virtual switches, 

one for each box; then, all the links crossed by a network cut can be represented by a 

virtual link with equivalent capacity. Hence, the Fat-tree topology of Figure 8.3 (a) can be 

transformed into the equivalent tree of Figure 8.3 (c). Similarly, for a VL2 topology, we 

introduce a cut for each access switch by removing all the uplinks. Then, depending on the 

actual wiring, we identify bipartite graphs of access and aggregation switches: for each 

one of them, we introduce an additional cut containing all the links between it and the core 

tier. Of course, for both Fat-tree and VL2 topologies, we consider the network cuts 

associated with the links between physical hosts and access switches (not showed in 

Figure 8.3 for the sake of readability). 

Once the critical network cuts have been identified, each one of them can be replaced, 

for the sake of MCRVMP, by a single link with equivalent capacity. Applying this 

transformation to the highlighted network cuts in Figure 8.3 exemplifies how Fat-tree and 

VL2 topologies can be reduced to an equivalent tree. After, MCRVMP is solved on the 

equivalent tree: focusing on the critical cuts, both the obtained placement solution and the 

network cut values apply for the initial network topology. Thanks to this property, in the 

remainder we consider only tree-based networks, and all the presented heuristics apply 

also to Fat-tree and VL2 topologies. 

8.4.2. MCRVMP Problem Formulation 

MCRVMP considers that traffic demands are usually time-varying since several 

factors, i.e., specific time-of-the-day, periodic tasks, etc., can deeply affect real network 

traffic demands. Hence, it tries to find placement solutions resilient to traffic variations in 

Figure 8.3. Fat-tree and VL2 Transformation in Equivalent Tree. 
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deployed services, by minimizing the maximum load ratio over all the network cuts. In a 

more formal way, MCRVMP finds a VM-to-host placement that, while respecting resource 

constraints on host CPU, host memory, and network cuts, minimizes the maximum network 

cut load. 

In finer details, MCRVMP regards the placement of VMs on physical hosts belonging 

to a virtualized data center. We consider a set of n host H={hi}i=1,…,n and a set of m VMs 

={vmj}j=1,…,m. Each host hi is described by resource capacities ۃCPUCAP,MEMCAPۄ, while 

each VM vmj has resource requirements ۃCPUREQ,MEMREQۄ. We use a traffic matrix T to 

represent the average traffic rate between each pair of VMs; the element tij is the traffic 

rate from vmi to vmj. Finally, X is an m×n matrix of binary variables used to represent 

placement information; hence, the element xij is 1 if vmi is placed on host hj, 0 otherwise. 

The data center network topology is a tree (in case of Fat-tree or VL2, graph 

transformations presented in Section 8.4.1 are applied first). Hence, any critical network 

cut contains only one link, and has a total capacity equal to the capacity of the single 

contained link. Moreover, each network cut partitions the set of hosts H in two disjoint 

subsets, H1 and H2; for the sake of clarity, H1 always contains the hosts of the sub-tree 

originating from the link endpoint farther from the original tree root. In a valid placement 

solution, the aggregate traffic flowing from VMs placed in H1 to VMs placed in H2 must 

be lower than the cut capacity (the same applies to the traffic from H2 to H1). Finally, a 

Cut Load Ratio (CLR) vector contains all the cut load ratio values. For each cut, CLR has 

two elements: the first one is the ratio between the traffic flowing from H1 to H2 divided 

by the cut capacity; the second one is similar, but considers the traffic flowing from H2 to 

H1. Hence, CLR size is two times the total number of cuts: the entries for H1 to H2-traffic 

are stored in the first half of the vector and all the others in the second part. 

To express critical network cuts, we introduce a cut matrix C where each row 

represents a network cut and each column a host; the element cdi is 1 if hi belongs to H1 

when the dth cut is considered. Hence, C matrix represents topology information, and has 

to be generated off-line by computing all the critical network cuts. This step is simple for a 

tree topology: it only requires to remove one link each time and to express the C row 

associated with the two host partitions H1 and H2. For instance, Figure 8.4 shows the cut 

matrix C associated with a simple binary tree (the cuts associated with host-to-access 

switch links are not shown for the sake of readability); the label of each row represents the 

link contained into the network cut, namely the link removed to generate the associated 
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cut. By using the cut matrix C, the total traffic rate from H1 to H2 (respectively, from H2 to 

H1) over the dth cut is the dth-element of the diagonal of the matrix [C × XT × T × X × (1-

C)T] (respectively, [(1-C) × XT × T × X × CT]). This accounts only for the traffic between 

VMs; the traffic from/to the gateway, situated at the tree root, is also added according to 

the VMs placed in H1 (not shown in the following model for the sake of readability). 

Hence, MCRVMP is formally expressed through the following integer quadratic 

programming model: 

min ൬ max
ୡ אଵ…ଶ ൈ Nౙ౫౪

CLRୡ൰  ሺ8.1ሻ

෍vm୧. CPUREQ  ൈ x୧୨ ൑ h୨. CPUCAP     ׊j
୧

  ሺ8.2ሻ

෍vm୧.MEMREQ  ൈ x୧୨ ൑ h୨.MEMCAP     ׊j
୧

ሺ8.3ሻ
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ە
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۔

ۖ
ۓ
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CAPୡ
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෍x୧୨ ൌ i׊     1
୨

  ሺ8.6ሻ

x୧୨ א ሼ0, 1ሽ     ׊i,  j׊ ሺ8.7ሻ

Formulas (8.2) and (8.3) enforce CPU and memory capacities at each single host. 

Formulas (8.4) express the aggregate traffic flowing on each network cut. Formulas (8.5) 

enforce feasible solutions from the network point-of-view. Formulas (8.6) avoid the same 

VM to be placed on different hosts, while formulas (8.7) define xij as binary variables. 

Formula (8.1) expresses MCRVMP goal, namely to minimize the maximum cut load ratio. 

Finally, we remark that the MCRVMP problem formulation presented here is not 

meant to be applied on-line, namely to serve new VM requests in a data center that already 
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Figure 8.4. Cut Matrix C for a Simple Binary Tree. 
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contains placed VMs. In fact, here we focus on finding the optimal MCRVMP solution, 

while leaving out VM relocation costs; those have to be considered in on-line formulations 

of our optimization problem, in order to prevent frequent and expensive VM migration 

operations. 

8.4.3. Solving MCRVMP 

MCRVMP is an NP-hard problem that can be optimally solved only for very small 

and unrealistic problem instances. Hence, to make it suitable for real-world Cloud 

scenarios, we designed two placement algorithms, called 2-Phase Connected Component-

based Recursive Split (2PCCRS) and Greedy Heuristic (GH), with different tradeoffs 

between solution quality and execution time. 

Both our placement algorithms take advantage of the fact that Cloud scenarios feature 

Connected Components (CCs) of VMs that exchange data only between themselves or 

with the external gateway, such as the case where multiple VMs of the same customer run 

a three-tier web application. Hence, it is reasonable to cluster VMs in CCs so that, by 

considering a CC as a single VM to be placed, we can reduce problem complexity. In 

addition, as tree networks suggest the use of recursive algorithms where intermediate 

placement sub-problems partially fix VM-to-host assignments, 2PCCRS uses this property 

to further reduce the solution space; this leads to a reduced applicability since 2PCCRS 

can be applied only if the network topology is (or can be transformed into) a tree. In the 

following subsections, we clearly detail our two placement algorithms. 

8.4.3.1. 2PCCRS Placement Algorithm 
Our first placement algorithm, 2PCCRS, uses mathematical programming techniques 

to solve the MCRVMP problem, and has two main properties. First, it adopts a two-phase 

approach: the first phase places CCs to sub-trees, while the second phase expands them to 

place actual VMs on physical hosts. Second, it is recursive: in both phases, it exploits the 

tree network structure to define and solve smaller problem instances on one-level trees. 

That allows 2PCCRS to deal with MCRVMP complexity, by reducing the number of 

VMs, hosts, and network cuts at each placement step. 

With a closer view to algorithm details, the first phase places CCs to force associated 

VMs to be mapped in specific sub-trees. 2PCCRS processes the matrix T to cluster VMs 

in CCs, stored into the set CC={ccd}d=1,…,t. Each ccd is associated with a resource 

requirement vector ۃCPUTOT, MEMTOT, INTOT, OUTTOTۄ that expresses aggregated CPU 

and memory requirements, and total download/upload traffic from/to the gateway. Since 
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CCs do not exchange traffic among them, during this phase we have to only model traffic 

demands between each CC and the gateway. According to the recursive approach, 

2PCCRS starts from the tree root, and solves an initial placement problem on a one-level 

tree by considering a set of virtual hosts VH={vhz}z=1,…,q, one for each child node the real 

tree root has. Each virtual host represents the total capacity available in the sub-tree rooted 

at the real node, hence, associated resource capacities are equal to the sum of all child 

nodes capacities. Every time a one-level placement problem is solved, the set of CCs is 

partitioned among available virtual hosts. Then, 2PCCRS recursively solves sub-problems 

associated with the one-level trees where {vhz}z=1,…,q are roots, and this process repeats 

until we solve all the placement sub-problems associated with real access switches. At the 

end of this phase, we have CCs placed on particular node of the initial topology; in the 

second phase, VMs of such CCs have to be placed in the sub-tree rooted at the specific 

intermediate node. 

For the sake of clarity, let us consider the simple example of Figure 8.5. We have a 

full binary tree made by 8 hosts and a total of 16 VMs to place. From T processing, 

2PCCRS identifies CC={cc0, cc1, cc2}, respectively containing 9, 5, and 2 VMs. 2PCCRS 

starts by considering the sub-problem P1 (step a), and tries to place the CCs on the VHs. 

Due to resource constraints, only cc1 and cc2 are placed; in addition, they are placed on 

different virtual hosts to reduce the cut load ratio. Then, 2PCCRS solves both sub-problem 

P2 and sub-problem P3, associated with the aggregation switches of the real topology. 

However, cc1 is bigger than the capacity of considered VHs, hence, it is not moved from 

the tree root of P2 (step b). Instead, cc2 can be placed in one VH, hence, it is pushed 

toward one of the real access switches (step c). At this point, the first phase terminates by 

supplying CC-to-network switch relationships; for instance, due to obtained results, all the 
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Figure 8.5. 2PCCRS Placement Computation Example – First Phase. 
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VMs belonging to cc2 will be placed between h6 and h7. 

Once clarified this general process, we note that the placement problems solved by 

2PCCRS during the first phase differ from MCRVMP as detailed in Section 8.4.2. In fact, 

due to resource constraints, it could be impossible to place all the involved CCs at each 

step: hence, ∑ xୢ୸ ൌ d୸׊     1  has to be relaxed in ∑ xୢ୸ ൑ d୸׊     1  to have feasible results. 

However, such relaxation is not useful since the solution with all the CCs not placed is 

feasible and ensures the minimum worst case cut load ratio, namely 0. Hence, we associate 

each ccd with a penalty traffic equal to the average inter-VM traffic demand between 

contained ones. If a ccd is not placed, we add its penalty traffic, as well as its traffic 

to/from the gateway, to all network cuts; in this way, if possible, a ccd will be always 

placed to reduce the maximum cut load ratio. More formally, the placement sub-problem 

solved at each step is represented by the following integer linear mathematical model 

(formula (8.8)-(8.17)): 

min ൬ max
ୡ אଵ…ଶ ൈ Nౙ౫౪

CLRୡ൰  ሺ8.8ሻ

෍ccୢ. CPUTOT  ൈ xୢ୸ ൑ vh୸. CPUCAP ׊z
ୢ

  ሺ8.9ሻ

෍ccୢ.MEMTOT  ൈ xୢ୸ ൑ vh୸.MEMCAP ׊z
ୢ

ሺ8.10ሻ

isCCPlacedୢ ൌ෍xୢ୸     d׊
୸׊

  ሺ8.11ሻ

penaltyT  ൌ  ෍ሺ1 െ isCCPlacedୢሻ
ୢ׊

 ൈ  ccୢ. penaltyTraffic ሺ8.12ሻ

isBelowCutୢୡ ൌ෍  xୢ୸
୸ ୧୬ Hభሺୡሻ׊

,d׊  c ሺ8.13ሻ׊

CLRୡ

ൌ

ە
ۖۖ
۔

ۖۖ
ۓ
∑ ሾccୢ. INTOT ൈ ሺ1 െ isCCPlacedୢ ൅ isBelowCutୢୡሻሿୢ׊ ൅ penaltyT

CAPୡ
 

c׊   , א ሼ1, … , NCUTሽ                          

∑ ሾccୢ. OUTTOT ൈ ሺ1 െ isCCPlacedୢ ൅ isBelowCutୢୡሻሿୢ׊ ൅ penaltyT  
CAPୡ

c׊   , א ሼNCUT ൅ 1,… , 2 ൈ NCUTሽ
 
ሺ8.14ሻ 

CLRୡ ൑ c׊ 1 א ሼ1, … , 2  ൈ NCUTሽ  ሺ8.15ሻ

෍xୢ୸ ൑ d׊     1
୸

  ሺ8.16ሻ

xୢ୸ א ሼ0, 1ሽ     ׊d,  z׊ ሺ8.17ሻ

In the second phase, 2PCCRS splits CCs to place real VMs. This phase adopts a 

recursive approach similar to the one of the previous phase, but it solves real MCRVMP 
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problem instances. At each step, it considers all the VMs associated with CCs that have 

been placed during the first phase in the considered tree root. VH capacities are adjusted 

according to the CCs placed in the sub-tree rooted at the current vhz; this means 1) 

subtracting the aggregate CPU and memory requirements associated with placed CCs; and 

2) adding traffic demands to/from the gateway to consider the aggregate traffic demands 

coming from placed CCs. In all the subsequent steps, each sub-problem considers a set of 

VMs made by both VMs inherited from the father node and VMs belonging to CCs placed 

at the current vhz during the first 2PCCRS phase. By following a recursive approach, 

2PCCRS keeps solving intermediate sub-problems up to the leaves, where we finally have 

VM-to-host associations. 

For the sake of clarity, Figure 8.6 presents an example of the second 2PCCRS phase, 

consequence of the initial placement performed in Figure 8.5. At the first placement sub-

problem P1 (step a), 2PCCRS has to place all the VMs associated with cc0, previously 

associated with the tree root. It considers that cc1 and cc2 are placed in sub-trees, 

respectively rooted at the first and at the second aggregation switch, by 1) subtracting their 

aggregate resource consumptions from VH capacities; and 2) by adding traffic demands 

to/from the gateway, so to mimic the real traffic introduced by cc1 and cc2. Due to resource 

constraints, 3 VMs, namely vm0, vm1, and vm2, are placed on vh1, while the remaining 

ones on vh2. At the second sub-problem P2 (step (b)), 2PCCRS has to place a set of VMs 

equal to the union of VMs coming from P1, namely {vm0, vm1, vm2}, and associated with 

cc1, placed during the first step; hence, P2 will place {vm0, vm1, vm2, vm9, vm10, vm11, 

vm12, vm13}. A similar reasoning is applied to solve all the sub-problems rooted at the 

other network switches; at the end, the placement sub-problems associated with the access 

switches will give the VM-to-host associations. 

Focusing on 2PCCRS complexity, there are few important things to highlight. First, 

(a) 

h0       h1      h2      h3     h4      h5      h6      h7 

  P1 vm0, vm1, vm2, vm3, vm4, 
vm5, vm6, vm7, vm8 

cc1 

cc2 

h0       h1      h2      h3     h4      h5      h6      h7 

 P2vm0, vm1, vm2, vm9, vm10, 
vm11, vm12, vm13 

cc2 

(b) 

Figure 8.6. 2PCCRS Placement Computation Example – Second Phase. 
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since CCs do not have traffic demands between themselves, the placement sub-problems 

of the first phase are integer linear (not quadratic) programming problems; also, the 

number of CCs is usually much smaller than the one of VMs. Second, thanks to the first 

phase, the second phase of 2PCCRS usually has to solve small problem instances. For 

instance, if we consider the placement sub-problem associated with the tree root, 2PCCRS 

does not initially consider all the VMs associated with CCs that, during the first phase, 

have been placed in VHs rooted at aggregation and access switches. 

8.4.3.2. GH Placement Algorithm 
Our second placement algorithm, GH, completely leaves out mathematical 

programming techniques and greedily places VMs on available hosts. Differently from 

2PCCRS, where intermediate sub-problems fix VMs to be placed in sub-trees, GH places 

each VM individually, thus having more freedom during placement computation. In brief, 

GH consists of two main phases: the first one ranks all the traffic demands, while the 

second one exploits them to place VMs on available hosts. 

Let us anticipate some notations that we use in the remainder. Since VMs are 

iteratively placed, it is possible that a placed VM has traffic demands from/to VMs not 

placed yet. A traffic demand of such kind is called floating in respect of all network cuts, 

since we cannot establish a-priori which cuts it will influence. If a traffic demand has both 

end-points placed, we define it committed because it is possible to clearly understand 

which cuts it affects. Finally, during placement computation, a traffic demand is 

committed by a VM-to-host placement if its status changes from floating to committed due 

to current placement operation. 

In the first phase, GH extracts the CCs out of the traffic matrix T. After, it ranks them 

to find the ones more difficult to split from the point of view of MCRVMP objective 

function. Toward this goal, it orders all the traffic demands by decreasing values, and 

associates each ccd with an accumulator whose value is the sum of the relative positions 

occupied by the traffic demands belonging to ccd in the ranked list. Intuitively, the higher 

the accumulator value, the higher the number of big flows contained into ccd, hence, the 

bigger the variations of the cut load values during ccd splitting will be. Finally, GH orders 

CCs by decreasing accumulator values, and then, following this order, extracts the traffic 

demands; for each CC, demands are considered in decreasing order. 

In the second phase, GH iteratively processes the ranked traffic demands. For each 

traffic demand, it initially selects the VM to place. If both the VMs involved in the traffic 

demand have been already placed, it skips to the next demand; if only one of them has 
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been placed, it considers the remaining one; finally, if both VMs are not placed yet, it 

considers the one that, after the current placement operation, would commit the higher 

number of demands. Then, GH filters all the hosts to consider only the ones having 

enough resource capacities to accommodate the current VM. It iteratively tries to place the 

VM on each feasible host, while evaluating all the network cut values. At the end, the VM 

is placed on the host that will lead to the minimum value of the maximum cut load value. 

GH iterates above steps until all the VMs are placed. 

However, the evaluation of network cut load values is possible only after a full VM 

placement has been determined, and not while the placement is ongoing; in fact, once 

committed, floating demands can greatly affect network cut load values. To approximate 

final cut load values in an ongoing manner, we merge floating and committed traffic 

demands. Let us focus on a particular network cut within a partial placement: in the best 

case, all the floating traffic demands will be routed to hosts belonging to the same 

partition, thus leading to a final total traffic over the cut equal to the already committed 

demands; instead, in the worst case, all the floating traffic demands will be routed to hosts 

belonging to the other partition, thus leading to a final traffic equal to the sum of 

committed and floating demands. The latter situation is likely to happen when the floating 

traffic demands originate from a partition with residual capacities close to zero; in fact, in 

that case, subsequent VMs would be likely placed on the opposite partition, thus routing 

floating traffic demands over the cut. 

Hence, during ongoing VM placement, we estimate the final traffic over the network 

cut as a weighted sum of committed and floating demands. We differentiate traffic 

demands flowing from one partition to the other, and vice versa. For each direction, the 

aggregate traffic routed in the partial placement contains committed flows, with weighting 

factor 1 since they will surely appear in the final solution, and floating ones, with a 

weighting factor proportional to the worst case ratio of residual capacities. Finally, the 

obtained value, divided by the cut capacity, is the final cut load value considered by GH. 

8.4.4. MCRVMP Experimental Results 

We evaluated our placement algorithms along two main directions. First, in Section 

8.4.4.1, we focus on MCRVMP-based placement computation by comparing random, 

optimal, 2PCCRS, and GH solutions. Then, in Section 8.4.4.2, we validate the technical 

soundness of proposed placement algorithms by NS2-based simulations: we generate 

synthetic traffic demands and we show that obtained placement solutions are indeed able 
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to tolerate time-varying traffic demands. 

8.4.4.1. Comparisons between Placement Algorithms 
Here, we compare our two heuristics, 2PCCRS and GH, by focusing on placement 

quality and solving time. To better assess our proposals, we consider two additional 

algorithms. The first one, called Random (RND), randomly generates VM-to-host 

assignments; it is useful to compare MCRVMP-based placements with a network-

oblivious one. The second one, called Optimal (OPT), uses a mixed integer programming 

solver to solve the entire MCRVMP problem; hence, it finds the optimal solution, i.e., the 

VM placement that minimizes the maximum cut load ratio. Due to the associated 

complexity, experimental results for the OPT algorithm are available only for extremely 

small problem instances. 

All the following experimental results are associated with a data center made by a 

pool of homogeneous hosts having the same capacity for CPU and memory resources. In 

addition, all VMs have equal CPU and memory requirements; hence, due to capacity 

constraints, each host in the pool can accommodate the same number of VMs. The data 

center network is always a fully balanced tree with link capacity of 1 Gbps. We execute 

our heuristics on a physical server with CPU Intel Core 2 Duo E7600 @ 3.06GHz and 4 

GB RAM, and we exploit IBM ILOG CPLEX as mixed integer mathematical solver to 

compute OPT solutions and solve the intermediate steps of 2PCCRS. ILOG is always 

configured with pre-solve and parallel mode enabled; due to hardware limitations, it 

exploits a maximum of 2 threads during solving. Finally, all the reported experimental 

results are average values of 10 different executions; in addition, we report standard 

deviation values to better assess the confidence of our results. 

One crucial aspect is the modeling of the traffic matrix T. We have to produce CCs 

but, at the same time, we need to test our heuristics with different T as the total number of 

considered traffic demands greatly affects problem complexity. Hence, we generate T 

taking into account three main parameters: 1) CCs size; 2) traffic patterns between VMs of 

the same CC; and 3) rate of the traffic demand, in terms of Mbps. For the sake of 

readability, we focused our evaluation on one challenging and realistic case study. For 

CCs size, we consider them distributed according to a uniform distribution. Then, traffic 

demands between VMs in the same CC are randomly generated with a probability lower 

than 1, and with rate following a Gaussian distribution (mean = 5 Mbps, standard 

deviation = 0.5 Mbps). Also, each CC has a VM with both upload and download traffic 

demands to the gateway, with rates generated according to another Gaussian distribution 
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(mean = 2 Mbps, standard deviation = 0.2 Mbps). 

In the first set of experiments, we focused on small problem instances in order to be 

able to compare our heuristics with the OPT algorithm. The adopted network topology is a 

three-level binary tree; 24 VMs have to be placed on 8 physical hosts, under different 

traffic matrices. Here, we consider CC sizes according to a uniform distribution in [1; 8]; 

inter-VMs traffic demands are randomly generated with a probability in {0.5, 0.75}. 

Figure 8.7 (a), Figure 8.7 (b), and Figure 8.7 (c) respectively show the maximum cut load 

value, the average cut load, and the placement computation time. Focusing on the first 

graph (see Figure 8.7 (a)), both 2PCRRS and GH reach maximum cut load values very 

close to the OPT algorithm, while RND is the worst one as it does not consider traffic 

demands. In Figure 8.7 (b), we note that, to minimize the maximum cut load ratio, OPT 

produces an average link load higher than the ones produced by 2PCCRS or GH. Hence, at 

the end, our heuristics usually carry less traffic into the data center than OPT, but they lead 

to higher maximum cut load ratios. Finally, we evaluated placement computation time: 

RND, 2PCCRS and GH have execution times close to zero for these little problem 

instances; OPT, instead, as it can be seen in Figure 8.7 (c), presents extremely high 

computation times. We also note that computation time increases as the number of 

communicating pairs increases. Those times confirm that OPT is not feasible for real-

world Cloud scenarios; in addition, OPT exhibits placement computation times with very 

high standard deviation values. Hence, for specific problem instances, namely the ones 

with several small CCs, the solver is able to reach the optimal solution quickly, while 

instances with dense traffic matrix T are extremely complex to solve. In brief, OPT 

computation time is not only very long, but also difficult to predict. 

In the second set of experiments, we focused on a wider network deployment by using 

a fully balanced quaternary tree with 64 hosts. In this case, we increment the number of 

VMs (from 2x to 20x the number of hosts), to compare heuristics scalability; as regards 

traffic matrix, CC sizes follow a uniform distribution in [1; 16], while associated traffic 
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Figure 8.7. Placement Algorithms Results for a Small Data Center of 8 Hosts. 
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pairs are generated with a probability of 0.75. Figure 8.8 (a), Figure 8.8 (b), and Figure 

8.8 (c) respectively show the same set of results used in the previous case for this new 

scenario. RND algorithm is not showed since it was able to reach feasible placements 

(with maximum cut load ratios higher than 0.9) only for the simpler case of 128 VMs; 

apart from that, it always reached unfeasible placements due to cut values higher than 1, 

hence, we decided neither to consider nor to show these results. Focusing on Figure 8.8 (a) 

and Figure 8.8 (b), we remark that 2PCCRS and GH reach similar results for smaller 

number of VMs; then, starting from 640 VMs, 2PCCRS always performs significantly 

better than GH. From Figure 8.8 (b), we note that 2PCCRS also favours lower average 

link loads. Although 2PCCRS leads to better VM placement solutions, it has high 

computation times. In Figure 8.8 (c), GH presents placement computation times that 

increase almost linearly with the number of VMs (in the worst case, it computes the 

placement in about 50 seconds). Instead, 2PCCRS computation time is higher due to the 

usage of mathematical programming techniques With aforementioned numbers of VMs, 

solving time increases remarkably, as each 2PCCRS placement step actually tries to find 

the optimal solution; at the same time, the solver typically finds very good results in the 

very first optimization steps, and then it only obtains limited improvements when run for 

longer time spans. In our experiments, we limit maximum placement computation time to 

1800 seconds because we found that this total solving time ensures a good tradeoff 

between solution quality and placement computation time. Similarly to the previous 

scenario, the execution times of the solver are not predictable and depend on the specific 

problem instance; the case with 384 VMs was actually the one with longest solving time. 

In the last set of experiments, we tried to evaluate the scalability of our heuristics as 

the data center grows. We fixed a number of VMs per host equal to 10, and we scaled the 

data center topology from 64 to 343 hosts by considering fully balanced trees; hence, we 

considered from 640 to 3430 VMs. As regards traffic matrices, we used the same 
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parameters of the previous experiments. Figure 8.9 (a) shows the maximum cut load 

values achieved by our heuristics: we can see that 2PCCRS performs better than GH. In 

addition, Figure 8.9 (b) shows the total placement computation times of the two heuristics. 

While GH is faster than 2PCCRS for small data center sizes, it is much more sensible to 

topology scaling; this is mainly due to the fact that, at each placement step, GH considers 

all the hosts and all the network cuts. For instance, in the worst case, GH considers 343 

hosts and 56 cuts at each VM to place; instead, at each one-level tree to solve, 2PCCRS 

considers only 7 network cuts and 7 virtual hosts. Even if we limit the solving time to 

1800 seconds, 2PCCRS can reach very good solutions. 

 We conclude that both 2PCCRS and GH can reasonably solve MCRVMP with 

different tradeoffs between solution quality and placement computation time. 2PCCRS 

always reaches lower maximum cut load ratios, and scales better with topology size, while 

GH is significantly faster for small data center topologies. 

8.4.4.2. Placement Validation with NS2 Simulations 
We used NS2 to better assess the resilience of MCRVMP-based placement solutions 

under time-varying traffic demands. Due to space constraints, we focus on the case of 64 

hosts and 128 VMs (see Figure 8.8). We selected that specific case since 2PCCRS and GH 

have different maximum cut load ratios (see Figure 8.8 (a)), but similar average cut load 

ratios (see Figure 8.8 (b)); in this way, we aim to find performance indicators that mainly 

depend on the maximum cut load ratios. Then, for each placement solution, we remove 

traffic demands between VMs co-located on the same host; each remaining demand is 

mapped in NS2 through an UDP source/sink pair. For each placement solution, we run 10 

simulations with different seeds, thus having a total of 100 runs for each case study; in the 

remainder, we show average values and standard deviations of all the considered 

simulations. Finally, each NS2 simulation lasts 3600 seconds. 

Each source produces a constant traffic rate according to the demand contained in the 
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traffic matrix, by emitting UDP packets of 60KB each. Then, after DLOW seconds, the 

source increases the traffic rate to R times the nominal value, and this increased demand 

lasts for DHIGH seconds. This process repeats for the whole simulation, thus having normal 

and high traffic rates interleaved by DLOW and DHIGH times. DLOW (respectively, DHIGH) 

values are produced by a Gaussian distribution with mean of 200 seconds and standard 

deviation of 20 seconds (respectively, 100 seconds and 10 seconds for DHIGH). 

Figure 8.10 (a) and Figure 8.10 (b) respectively show the percentage of dropped 

packets and the average packet delivery delay for R in {1, 3, 5, 7}. Both 2PCCRS- and 

GH-based placements can absorb traffic demands up to three times the nominal values 

with no dropped packets. When R is 5, GH-based placements start experiencing dropped 

packets. In fact, from Figure 8.8 (a), we note that such solutions have a maximum cut load 

ratio close to 0.3; hence, when R is 5, the worst case cut (and the ones with similar load 

values) will be likely to be congested. Similarly, 2PCCRS-based placements experience 

dropped packets when R is 7. Finally, Figure 8.10 (b) shows that 2PCCRS-based 

placements have average packet delivery delays lower than GH-based ones, due to the less 

loaded network cuts. 

To conclude, statistically speaking and considering that average cut load ratios are 

similar between 2PCCRS- and GH-based VM placements, performance improvements of 

2PCCRS over GH are mainly consequence of the reduced maximum cut load ratio; hence, 

MCRVMP-based placements increase the capability of absorbing time-varying traffic 

demands.
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9. Essential Contributions 

In the previous chapters, we presented our work on CDDIs for large-scale mobile 

systems. Our case studies showed the applicability of our logical model in three different 

and significant deployment scenarios; also, we thoroughly evaluated our proposed 

solutions by means of both real deployments and network simulations. Let us anticipate, as 

a first general conclusion, that CDDIs for mobile systems present a great deal of 

complexity when both scalability and quality-based constraints need to be achieved, but 

quality-based constraints can enable runtime system management to dynamically adapt 

involved data distribution functions. 

In this chapter, we remark and detail all main technical achievements and the future 

research directions highlighted by this thesis. In Section 9.1, by exploiting the 

experimental results showed in the previous chapters, we present a short summary of our 

main findings. Then, in Section 9.2, we draw our current research work and we present 

future research directions to the work presented in this dissertation.  

9.1. Main Thesis Findings 

CDDIs for mobile systems have to seamlessly integrate and interoperate with 

heterogeneous networks and mobile devices, toward the correct delivery of the context 

data into the mobile system. CDDIs complexity depends on both adopted network 

deployment and quality levels to guarantee. Although context-aware services are 

interesting from the industrial viewpoint, since they can attract more mobile users through 

extended service offerings, at the current stage we can find only a rather limited diffusion 

and we think this lack stems from the fact that clear models and definitions of CDDIs for 

large-scale mobile systems are still missing. Hence, our main contributions can be of use 

toward a better understanding of the area along the following directions. 

Above all, we have analyzed the main mechanisms involved in CDDIs for mobile 

systems, by detailing and presenting a comprehensive logical model with associated 

design guidelines and choices. To better assess the technical soundness of our CDDI 

logical model, we have considered a large set of pre-existing context provisioning 

infrastructures in mobile systems; our survey work, to be published in the ACM 

Computing Surveys journal [5], supports the validity of our logical model and draws 

important tradeoffs between network deployments, context data distribution functions, and 
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quality constraints. We remark that, for the sake of readability, in this dissertation we have 

omitted our in-depth categorization of pre-existing infrastructures for context distribution; 

interested readers can refer to our survey work [5]. 

Then, we have focused on the real-world usage of our design guidelines by means of 

three significant case studies (presented in Chapter 6, Chapter 7, and Chapter 8). We have 

shown that the adaptation of the context data distribution function, properly guided and 

constrained by quality contracts, is fundamental to foster system scalability. The first 

RECOWER project focuses on important quality-based constraints and how to exploit 

them toward the main goal of increasing the number of successfully routed data. Our work 

has followed two principal research directions. In the first one (see Section 6.5.1), we have 

investigated the usage of quality constraints to dynamically reconfigure context data 

caching on mobile devices. Our approach, based on the introduction of differentiated 

quality classes, can increase context data availability and average data up-to-dateness; at 

the same time, it introduces an extremely contained management overhead, required to 

exchange quality classes between mobile nodes in physical proximity. In the second one 

(see Section 6.5.2), by using query/data routing delays, we have proposed an adaptive 

query flooding protocol with the main goal of reducing context query replication into the 

MANET. Our protocol, based on the exchange of lightweight management data, can 

effectively reduce the number of distributed queries and message collisions, thus 

increasing final context distribution reliability. 

Instead, SALES considers the enforcement of our quality constraints in hybrid 

network deployments, where a fixed infrastructure can be used to store and supply access 

to context data. This second project exemplifies how the physical locality principle is 

useful to partition the context data into the distributed architecture, toward the main goal 

of keeping context data as close as possible to potentially interested consumers. In this 

case, our work followed three main directions. In the first one (see Section 7.5.1), we have 

considered the caching of relevant context data, in order to reduce the number of requests 

relayed to the fixed infrastructure. We have proposed an adaptive caching approach that, 

by considering access patterns and context data cached in physical surroundings, can 

effectively reduce the total number of requests sent to the fixed infrastructure. In the 

second one (see Section 7.5.2), we have extended the use of the routing delays to 

introduce batching techniques, so as to reduce the total number of wireless channel 

accesses. Our adaptive batching approach effectively reduces wireless contention, by only 

requiring the exchange of small load indicators of wireless network interfaces, 
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piggybacked in node beacons. Finally, in our third direction (see Section 7.5.3), we have 

considered that mobile devices present tight CPU limitations, and we have proposed an 

adaptive query drop policy that dynamically enforces maximum CPU usage limitations. 

The proposed adaptive query drop approach can quickly adapt to time-varying access 

patterns, thus increasing final context data availability. We recall that SALES evaluations 

have been also conducted through a real wireless testbed; at the same time, we have also 

realized an Android-based implementation of our solutions, to account for routing delays 

and management overhead introduced by real-world mobile devices. 

Finally, we moved to large-scale settings where we adopted Cloud-based solutions to 

handle the huge amounts of context data produced by mobile infrastructures.  As the 

CDDI can dynamically ask for additional computational resources, while releasing them 

when no longer needed, we focused mainly on the management aspects of the Cloud 

infrastructure. We have introduced a new network-aware VM placement problem (see 

Section 8.4.2), as well as heuristics to solve real-world problem instances in reasonable 

times. Our simulation results show that our placement solutions can effectively absorb 

time-varying traffic demands, thus increasing the stability of the VM placement solution. 

Finally, we remark that, although we focused more on Cloud management, as highlighted 

also in the next section, we are pursuing new research directions that will include Cloud-

driven runtime adaptations of the distribution function. 

With our real case studies, we have also tested the validity of our CDDI logical model 

and design choices. Obtained experimental results have confirmed that our solutions and 

design guidelines, such as joint exploitation of heterogeneous wireless standards and 

modes at the network deployment, distributed data caching, and so forth, can effectively 

increase system scalability under quality-based constraints. From the context data 

management viewpoint, both data caching and replication mechanisms are useful to 

exploit and enforce locality principles, with the main goal of avoiding heavy context data 

exchange from/to the fixed infrastructure. All these mechanisms should use local (e.g., 

access frequencies) and distributed (e.g., number of copies in the physical area) attributes 

to trade off context data availability with introduced overhead. Moreover, as showed 

through our Android-based implementation, all such mechanisms have to be resource-

aware to prevent excessive overhead on resource-constrained mobile devices. 

To conclude, in this thesis work we strived to reach a balance between CDDI 

models/architectures/design choices and their own applicability in real-world settings. By 

pursuing these directions together, we aimed to better support the validity of our 
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theoretical work, and to foster the widespread adoption of such data distribution 

mechanisms in the research community. Let us remark that our CDDIs have been 

downloaded by several research groups around the world; we hope that the availability of 

such prototypes, coupled with the possibility of easily modifying our data distribution 

protocols, can push toward more complete and systemic research works in this research 

area. We feel that this dissertation can become a seed to nourish a fruitful development in 

quality of context-aware system diffusion. 

9.2. Future Research Directions 

Although this work has focused on a selection of few and important research 

directions, several other directions still deserve further investigation. Focusing on the 

specific context distribution function, we think that several mechanisms needed in 

distributed, scalable, and QoC-based CDDIs are still widely unexplored. Here, some 

current principal research directions we intend to pursue are: 

QoC Frameworks Definition - Although several research works already considered 

QoC [3, 4, 7, 23-25, 124], the intrinsic ambiguity of this concept has not promoted a 

general and widely accepted definition. To the best of our knowledge, general QoC 

frameworks, capable of helping service designers to understand QoC representation, 

sensing, and runtime usage, are still missing. Although some QoC parameters, e.g., data 

up-to-dateness, can be easily applied to all context data, different context aspects may 

require more complex efforts. Data-specific parameters are difficult to standardize, since 

strictly related with represented context aspects; on the bright side, they can enable finer 

and more useful adaptations. For instance, considering localization as part of physical 

context, many solutions in literature, such as MiddleWhere [69], use a quality attribute 

called resolution. Such attribute captures the expected maximum difference between real 

and sensed localization data; as localization errors strictly depend on the adopted 

localization technique, many solutions agree upon the usage of the maximum possible 

error, ensured from the localization technology, to quantify resolution. However, for other 

context aspects (computing, physical, time, and user), such a general agreement on data-

specific parameters is difficult to achieve. For instance, if we consider co-located users as 

part of the user context, there is no widely accepted quality attribute useful to characterize 

possible differences between real and sensed values. In addition, since different systems 

can adopt different sensing strategies (e.g., based on APs associations, on received 

beacons between devices, …) and different aggregation techniques (e.g., history-based, 
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probabilistic, ...) to estimate co-localized people, it is almost impossible to agree on a 

single quality attribute, similarly to what happened for localization. Hence, while general 

QoC parameters are available in literature, additional research is required to define data-

specific QoC parameters. 

Context Data Aggregation and Filtering Operators - At the context data management 

layer, two functions, namely aggregation and filtering, deserve also additional research 

work. In our opinion, aggregation techniques currently lack of efficient methods to handle 

QoC data attributes. Such attributes are fundamental to prevent the injection of erroneous 

aggregated context data; at the same time, the design of aggregation algorithms, useful to 

quantify QoC parameters of derived context data, is also challenging and, to the best of 

our knowledge, not well investigated into the research literature. Hence, further studies 

should aim at defining proper aggregation algorithms able to combine context data and 

QoC parameters. Moving to filtering techniques, they are used to foster system scalability 

by suppressing not important data transmissions. Of course, they affect perceived QoC 

since, by limiting exchanged data, context-aware services have more chances to use stale 

and invalid context information. Change-based techniques, namely those ones that 

suppress data transmissions until the latest transmitted value bears some similarity 

constraints with the current data value, are appealing as they ensure an upper bound to the 

maximum error between current and received context data values. Also, when context data 

assume predictable values, we can use filtering operators and history-based integration 

techniques to let mobile devices locally estimate current context data values, thus avoiding 

expensive context data transmissions. Although few research works have already tried to 

address the problem of context data forecasting with the main goal of reducing network 

data traffic, for instance, by exploiting Kalman filters forecasting [111], we think that 

additional research is required to make such approaches able to scale to thousands of 

sensors and mobile nodes. In fact, forecasting techniques usually introduce increased CPU 

and memory overhead on resource-constrained mobile devices; hence, although valid 

works already exist in literature, additional research should study the relationships 

between QoC degradation and the cost of filtering techniques. 

Adaptive Context Data Dissemination - As presented in both Section 4.4.2 and our 

survey work [5], at the current stage several CDDI solutions exploit a context data 

distribution schema that only relies on one specific approach, i.e., flooding-/selection-

/gossip-based. At the expense of more complex implementations, hybrid solutions, based 

on the joint usage of different dissemination algorithms, can lead to increased runtime 
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performance. For instance, if we consider a network deployment that can rely on a fixed 

wireless infrastructure, the CDDI can exploit 1) a selection-based approach to ensure 

context access; and 2) a flooding-/gossip-based approach to replicate data, so as to reduce 

context access time and distribution reliability. Instead, if the network deployment is a 

MANET, the CDDI can use 1) a selection-based approach with tight physical constraints 

(for instance, in the two-hops neighborhood) to disseminate only required data; and 2) a 

gossip-based approach to enable context data visibility in far away areas. Above all, 

flooding- and gossip-based dissemination algorithms are very promising. Even if flooding-

based schemas present scalability issues, they are suitable if flooding is constrained by 

locality principles; in small-scale distribution, data flooding algorithms can address 

distribution with high availability, null state on mobile nodes, and reduced response times. 

Gossip-based approaches trade off scalability with delivery guarantees; the control of the 

probabilistic nature of gossip-based protocols is an interesting research direction. As 

regards this specific point, we remark that valid results have been obtained in the close 

DTN research area. For instance, both HiBOp and Habit show that user social state and 

relationships are good hints to drive gossip decisions [127, 137]; similarly, CAR 

demonstrates that low-level time context information, namely inter-contact times and 

frequencies of contacts, leads to good solutions as well [126]. Although these protocols are 

extremely valid when applied to DTNs, we think that additional research is required to 

apply them at the context data distribution function, where 1) communications are usually 

from one producer to multiple consumers; and 2) the interests of the context data 

consumers can present a high degree of variability due to mobility. Finally, toward the 

main goal of adopting and adapting different dissemination algorithms at runtime, 

additional research works should be directed toward the definition of meaningful attributes 

useful to 1) drive the selection of the proper dissemination algorithms; and 2) adapt their 

runtime behaviour to maximize system scalability. 

Since above adaptive solutions can introduce heavy management overhead, to 

elaborate mobility traces and context requests gathered from thousands of mobile nodes, 

here we remark the significance of Cloud architectures as real enablers of such scenarios. 

In fact, as detailed in Chapter 8, the CDDI can temporarily offload monitoring data from 

mobile devices to a Cloud, while paying such computational resources on a pay-per-use 

basis. The high computational power ensured by a Cloud will enable the processing of 

such data in a reasonable time, thus allowing subsequent adaptations of context data 

distribution protocols in order to improve systems scalability under quality constraints. 
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10. Conclusions 

The widespread adoption of mobile devices and wireless communications is pushing 

toward the realization of novel context-aware services characterized by the capability of 

adapting at runtime according to current conditions. Several services require context-

aware capabilities to ensure correct service provisioning; such context information can 

also span multiple aspects, ranging from local computational capabilities to social context 

information. 

Although we know that the research in electronic devices and wireless communication 

is making giant steps, by proposing ever increasing powerful mobile devices and high-

bandwidth wireless networks, we think that the real-world realization of context-aware 

services in large-scale settings is still an extremely complex task. Several factors, 

including low-level wireless transmissions and bandwidth management, efficient context 

data storage and processing, and so forth, have to be considered to support quality-based 

context provisioning in large-scale settings. In addition, the heterogeneity of both mobile 

devices and involved wireless communications, that exhibit largely different 

computational power and bandwidth, further complicates the realization of portable 

CDDIs. All these complexities must be faced by introducing quality-based and resource-

aware CDDI, namely CDDIs capable of granting agreed quality levels while avoid 

excessive resource consumptions. 

In this thesis, we have thoroughly investigated the design and the realization of 

CDDIs for large-scale mobile systems. We have highlighted different design choices, by 

considering associated advantages and shortcomings. One of our main claims is that the 

CDDI has to be able to dynamically adapt to system scalability, while introducing and 

enforcing quality constraints to enable correct context provisioning on mobile devices. 

Finally, obtained experimental results have supported the technical soundness of our main 

claims, while also highlighting further research directions to be investigated. 

Considering the main outcomes of this thesis, all the software components of our 

CDDIs have been implemented in both network simulations and real prototypes. The 

usage of both these two implementation strategies has allowed to achieve a more complete 

understanding of context data distribution primitives, since it enables to investigate both 

the scalability in large-scale mobile systems and the overhead introduced on real-world 

mobile devices. We recall that all the software components and prototypes developed 
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during this thesis work can be freely downloaded by the research community; this is a way 

to foster the building of a research community spanning different research groups all 

around the world, so as to promote additional and systemic research in this area. 

In addition, this thesis work has been realized by mixing together both academic and 

industrial research. On the one side, the design and the implementation of the RECOWER 

CDDI has been largely carried out at the PARADISE Research Lab, SITE, University of 

Ottawa, Canada, under the supervision of Prof. Azzedine Boukerche; on the other one, the 

design and the implementation of Cloud-based solutions have been investigated during an 

internship at the IBM Haifa Research Lab, Haifa, Israel, under the supervision of Dr. Ofer 

Biran and Prof. Danny Raz. Due to those international collaborations, we have established 

new important connections with external research groups, in order to foster joint 

collaborations in this research area. In addition, by mixing together academic and 

industrial research, we have better investigated the possibility of applying our academic 

and more theoretical research in industrial applications. 

The future research directions highlighted by this thesis are manifold. Apart from the 

more theoretical ones, strictly related with the context data distribution function and 

discussed in Section 9.2, additional work needs to be done toward the standardization of 

proper APIs and communication protocols between mobile devices and CDDIs. In fact, 

the introduction of a common set of communication APIs between CDDI and mobile 

devices will let service developers focus only on high-level context data requests and 

usage, while leaving out all the technicalities involved in context data storage, processing, 

and distribution. At the end, that will build a common ground useful to ease the 

development of context-aware services, thus fostering their widespread adoption in our 

society. 

In addition, we remark that several industrial efforts and EU funded initiatives, such 

as IBM Smarter Cities initiative and EU FuturICT project, are currently investigating 

efficient mechanisms and solutions to build context-aware services in large-scale mobile 

systems. Such research efforts span the whole software stack of a context-aware system, 

and present compelling context-aware services that not only sense and reason about the 

current context situation, but also modify it through proper distributed actuation actions. 

We think the results of this thesis work can be of extreme interest for all the industries 

currently entering the area of middleware supports for smart environments, such as the 

IBM Smarter Cities initiative, since this dissertation largely treated the specific context 

data distribution function, by introducing main design guidelines and choices. In addition, 
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from an industrial viewpoint, additional research should be led along proper incentive 

mechanisms to foster and support the collaborative context data sharing view of proposed 

CDDIs. Although both ad-hoc wireless communications and context data storage on 

mobile devices can effectively reduce the data traffic pressure on limited fixed wireless 

infrastructures, they also result in both higher device overhead and fast battery depletion. 

Those side-effects can be accepted by mobile users only if counterbalanced by proper 

incentives, such as discounts for voice calls, free data traffic, extended service offerings, 

and so on. The design and the realization of such incentive mechanisms are fundamental to 

prevent and counteract selfish behaviours, with mobile users only care about their own 

device batteries, thus hindering the collaborative context sharing perspective. 

To conclude, we think that the work presented in this dissertation has a general and 

large applicability to all main classes of context-aware services in future mobile systems. 

Due to the several outcomes mentioned before, and supported by the publication record 

obtained from this thesis work, we are very convinced that this thesis can foster future 

standardization activities in this area and can have an impact and an influence on the 

design and the realization of CDDIs for next generation mobile systems. 
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