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ABSTRACT 
 
Graphene is a single layer of carbon atoms arranged in a honeycomb, all-aromatic 

structure obtained by exfoliation of graphite. Its discovery dates back to 2004 when 

its outstanding physical and electronic properties were revealed to the scientific 

community worldwide leading to the Nobel Prize in physics in 2010. In the last few 

years the number of papers and patents on graphene increases exponentially and 

graphene and graphenic derivatives have rapidly emerged as an extremely 

promising materials for electronic, optical, thermal, and mechanical applications.1-2 

 

 
 
Figure 1. Fields of interest in graphene research. 
 
Several approaches have been developed to produce these materials (i.e. scotch 

tape, CVD, chemical and solvent exfoliation). In our work we used a chemical 

approach to produce graphene by reducing graphene oxide (GO) via thermal or 

electrical/electrochemical methods. Graphene oxide, synthesized from oxidation of 

graphite by modified Hummer methods,2-3 is soluble in water due to the polar 

groups (i.e. hydroxyl and carboxyl) present on its surface and can be deposited as 

single sheets or continuous film on different substrates. 



  

 
8 

Graphene oxide is an intrinsically insulating material because composed of isolated 

aromatic carbon domains connected to oxidized carbon. The GO reduction, 

restoring the conducting network (increasing and connecting the previously 

isolated aromatic domains), is usually performed by chemical or thermal treatment.  

We have shown that it is possible to use the tip of a scanning probe microscope or 

the electric field between nano- and micro-electrodes to induce the electrochemical 

reduction of GO; the process can be used to pattern conductive patterns into an 

insulating, mono-atomic sheet of GO. In the future this kind of approach could be 

exploited to paint electric circuit on graphene oxide or realize mass production of 

graphene devices.5,7 

Moreover, we studied the interaction between graphene derivates and organic 

molecules focusing on the following aspects: 

- Improvement of optical contrast of graphene on different substrates for rapid 

monolayer identification. Graphene is atomically tick and is pretty hard to detect 

optically on different substrates; usually graphene and graphene derivatives could 

be optically localized and studied only on silicon oxide substrates 300 or 90 nm 

thick, thanks to a weak contrast due to light interference. We developed a new 

technique to visualize graphene on different substrates based on fluorescence 

quenching. We functionalized different substrates with a fluorescent self-assembled 

monolayer and we used the fluorescence of this layer to visualize single sheets of 

graphene oxide deposited on the substrates. In this way is possible to localize and 

study graphene and graphene derivate with better contrast and over a much wider 

range of surfaces than is currently possible.3  

- We use graphene oxide sheets as two dimensional platforms to covalently tether 

on their surface thousands of optically active quaterthiophene molecules, acting as 

optical antennas. This new material shows high interaction between 

quaterthiophene and graphene derivate, better solubility in apolar solvent than 

graphene oxide and can be interesting in the electronic and optoelectronic field.4   

- Graphene-based transistors show high charge mobility, but low ION/IOFF (ability 

to switch on or off the device), organic semiconductors show high ION/IOFF but 

low charge mobility. We realized hybrid systems based on blend of these two 
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classes of compounds to tune the property of devices. In our work6 we realized 

transistor devices with different amounts of reduced graphene oxide (RGO) and 

polythiophene (P3HT) polymer. The hybrid devices show better charge mobility of 

P3HT or RGO alone and the possibility to tune performance and characteristics 

changing the coverage of graphene derivative on the device. 

 

   
 

Figure 2. a) fluorescence image of GO single sheets on a fluorescent self-assembled monolayer,3 b) 

Sketch of one-step chemical functionalization of graphene,4 c) cartoon depicting local GO 

electrochemical reduction with a scanning probe tip.5  

 

Overall, we think that graphene chemistry can potentially allow seamless 

integration of graphene technology in organic electronics devices to improve 

device performance and develop new applications for graphene-based materials.8 
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CHAPTER 1 

 
INTRODUCTION 

 
1.1 ORGANIC ELECTRONICS 
 

In the next years organics electronics will play an important role in our lives, 

offering new solutions for different technological areas such as energy, 

environment, communication, mobility entertainment and health.  

Organic electronics is a branch of electronics dealing with carbon-based 

compounds; it includes not only organic semiconductors, but also organic 

dielectrics, conductors and light emitters. 

Flexible Displays, Solid State Lighting, Solar Cells, Integrated Smart Systems and 

Sensors are some of the most important application of this promising technology. 

Organic electronics is also a strategic market, public e private organization are 

investing significant amounts of  money, manpower, and resources in this field; the 

worldwide sales of organic and printed electronics is expected to grow to almost 60 

billion US$ by 2019. 

 

 
 

Figure 1.1 Market Forecast for Organic and Printed Electronics. The Market development of 

semiconductors and Flat Panel Displays are shown for comparison: (Data: WSTS, Display- Search, 

SIA von Custer, NanoMarkets, IDTechEx; Graph OE-A).1 
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This technology is based on the new class of materials, molecules and polymers 

whose chemical structure can be tailored for specific electronic or optical 

properties.  

 

 
Figure 1.2 Polymer-based photovoltaic cells can be manufactured using standard printing 

processes.2 

 

Moreover this technology can potentially avoid expensive vacuum or high 

temperature process steps, which are instead needed for conventional 

semiconductors such as silicon.   

It is cheap, sustainable, compatible with flexible or transparent substrates and 

suitable for large area processes i.e. roll-to-roll printing. 
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1.2 ORGANIC SEMICONDUCTORS SELF-ASSEMBLY AND 

SUPRAMOLECULAR CHEMESTRY 

 

Organic semiconductors are classified in function of nature of majority charge 

carriers: in p-type there are more holes than electrons and they are the main current 

carriers while for n-type it is the opposite. These molecules can also be divided in 

the main classes of polymers and small molecules in reason of the structure. 

In conjugated system, the extended π-orbitals’ network formed by conjugated pz 

orbitals (unhybridized sp2) confers semiconducting properties and drives through 

π-π interaction the self assembly in ordered superstructures, i.e. cristallites for 

polymer or columnar for disk-like molecular shape. 

Charge transport is fast along the π-π  stacking direction while is slower in the alkyl 

stacking direction in P3HT crystallites (see fig. 1.3); conductivity along the  

columns in the columnar mesophases is higher than in perpendicular direction, see 

fig. 1.3. 

   

 

a b 

 

Figure 1.3 Supramolecular assembly in a) poly(3-hexyl-thiophene) crystallite and b) discotic liquid 

crystal in columnar phase.3-4 

 

These materials show a large anisotropy in carrier transport properties therefore 

texture, relative orientation and interconnection of crystallites change dramatically 

the electrical property and the use in different device.  

In OFET (Organic Field-Effect Transistors) hole and electron move between 

source and drain at the interface of the dielectric substrate, therefore edge-on 

orientation of molecules facilitates the charge transport. 
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a b 

Figure 1.4 Schematic representation of Organic Field-Effect Transistors (OFET) and Organic light-

emitting diodes (OLED) with the desired orientation of discotics on substrates.4 

  

More in general, the performance of device improves when transport of current and 

π-π stacking of molecules have the same direction. 

As previously said, one main advantage in organic electronics as compared to 

silicon is the possibility to process materials in solution to produce low cost solar 

cells and other devices. 

The formation of ordered thin films from these systems appears easy: just dissolve 

your molecules in the right solvent and at the right concentration, then spray or spin 

coat the solution on a substrate (fig. 1.5).  

The molecules will self-assemble, interacting with one another through weak forces 

such as Van der Waals or electrostatic interactions. π-π and hydrogen bond 

interactions are also two important secondary interactions created supramolecular 

structure, because they are selective and directional. 

 

 

a 
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b 

 
Figure 1.5 a) Schematic illustration of different phase in organic materials process. b) Some 

different techniques for deposition organic molecules or polymers from solution. 

 

DNA and proteins are two example were hydrogen bond play primary role in 

supramolecular organization, while in π-conjugated materials, i.e. Polycyclic 

aromatic hydrocarbons or thiophene derivates, π-π interaction are most important. 

An example of system were both interaction play role is shown in fig. 1.6, taken 

from one of our works. In this work we self assembled an oligothiophene derivate 

with a modified nucleosides in large crystal (fig. 1.6). Here, π-π of the thiophene 

units and the hydrogen bondings of nucleosides cooperate to give extensive self-

assembly and growth of complex mesoscopic crystals. 
 

  
 
Figure 1.6 a-c) Snapshots of P2 crystal growth. White arrows show roughly the front of receding 

drop solution. The time span between first and last image is ≈40 s. d) Fluorescence microscopy 

image of crystals.5 

  

Although the deposition from solution from the practical (experimental) viewpoint 

is apparently extremely simple, intrinsically it is a very complex phenomenon to 

predict and model theoretically, as it involves different materials and phases (the 

solid substrate, the liquid solvent, the molecules dissolved in the solvent, and the 
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atmosphere in which the solvent evaporates) as well as their interfaces. This is a 

fundamental issue in the case of organic solar cells (as example in bulk-

heterojunction devices) where two complementary materials, an electron acceptor 

and an electron donor, are typically present forming two highly percolated 

structures (fig. 1.7). Upon absorption of solar light, the different nature of the two 

materials favours exciton splitting and generates free charges which are then 

collected by the two highly percolated structures, and transported towards the 

opposite poles of the cell. To maximize charge generation the two phases should 

have a high surface area and be in intercalated on the nanometer scale, while to 

favour charge transport each of them should be highly percolated, without having 

dead ends or bottlenecks. 

To obtain such a high control on nanoscale morphology, a subtle balance of all the 

interactions involved must be achieved, as shown in fig. 1.7 in which three major 

types of interactions are considered. Extreme cases, which are characterized by one  

 

                    

a b 

 
Figure 1.7 a) Cartoon representing a bulk-heterojunction solar cell, from www.spie.org. b) 

Schematic representation of the major types of interaction that play a role during processing from 

solution.6 
 

of the three interactions dominating over the others, can lead to the following three 

scenarios: 

1. If molecule–molecule interactions are too strong, the molecules will be poorly 

soluble in the chosen solvent, and thus difficult to process in solution. 
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2. If molecule–substrate interactions are dominant, the molecules will be 

kinetically trapped on the surface instead of interacting with each other and thus 

forming optimal nanostructures (fibers, crystals, network) for charge transport. 

3. If molecule–solvent interactions are too strong, the molecule–molecule 

interactions will be shielded and the molecules will tend to follow the solvent 

during the dewetting to ultimately give amorphous structures. 

Throughout our scientific works, we have used the competition between all these 

different forces to self-assemble organic molecules and polymers into different 

kinds of ordered materials, in the next section we can see some of this examples 

and how is possible to control the self-assembly also after deposition with post-

treatment.   
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1.3 NANO-GRAPHENES 

 

Polycyclic aromatic hydrocarbons (PAHs) also known as polyarenes can be 

considered as small pieces of graphene; on the other hand, graphene can also be 

considered as an indefinitely large PAHs “The suffix -ene is used for fused 

polycyclic aromatic hydrocarbons, even when the root of the name is of trivial 

origin, e.g. naphthalene, anthracene, coronene, etc. A single carbon layer of the 

graphitic structure can be considered as the final member of this series...”.13 

The most important sources of PAHs are crude oil, coal and oil shale7 and are one 

of the most prevalent organic pollutants. Polycyclic aromatic hydrocarbons and 

their heterocyclic analogs attracted huge interest for the potential application in 

organic electronics.   

To improve the molecules’ processability from solution, thereby their solubility 

in organic solvents, large PAHs i.e. Hexa-peri-hexabenzocoronenes (HBC) are 

usually functionalized with different alkyl side chains; while aromatic core drives 

the self-assembly in columnar structure and gives the electronic properties (fig. 

1.8), these materials are promising candidates in devices like OFETs, OLEDs and 

Organic Solar Cells.   

 

 
Figure 1.8 Chemical structure of HBC-C12, and charge transport along the columnar HBC-C12 

stack.8 

 

Hexa-peri-hexabenzocoronenes (HBCs) derivatives are prone to aggregate in 

organic solvents, forming i) highly crystalline structures, ii) rigid needles, and iii) 

fibers once they are deposited on a solid substrate.9,10 
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HBC functionalized with alternating hydrophilic and hydrophobic side chains (see 

fig. 1.9a HBC-PEO) films exhibit a variety of different morphologies on the 

micrometer scale when molecules are spin-coated on Si/SiOx substrate using 

solutions in a mixture of different solvent (fig. 1.9).  

 

a 

1µm1µm

  
1µm1µm

  
1µm1µm

 

 b  c  d 

 

Figure 1.9 a) Molecular structures of the HBC derivates. AFM image of HBC-PEO deposited on 

Si/SiOx by spin-coating from solution in different solvents: b) chloroform, c) chloroform/ 

methanol 2:1, d) dichloromethane/methanol 2:1.11   

 

Making use of chloroform as solvent (fig. 1.9b), a continuous amorphous film 

coating the substrate surface is covered by a discontinuous network. By mixing 

chloroform with methanol in a volume ratio of 2:1 (fig. 1.9c), needles, having a 

length of some 100 nm and a width of some 10 nm, and aggregates thereof, have 

been observed. By using dichloromethane blended with methanol (2:1 volume ratio 

fig. 1.9d), bundles of thinner fibers have been found.  

Using chloroform, a good solvent for our molecular system, solvent-molecule 

interactions govern the self-assembly and final morphology is mainly dictated by 

solvent evaporation dynamics, yielding a broken network of material, due to 

dewetting, which resembles a Marangoni pattern.12 By using a mixture of solvent 

with chloroform and methanol, the molecules are prone to aggregate due to local 
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phase separation and thus form short fiber-like structures. Using a different solvent 

mixture such as dichloromethane/ methanol the tendency of aggregation is reduced 

yet not fully hindered, leading to the formation of a very uniform, continuous 

network of smaller fibrillar-like structures.  

Also post-treatment procedures such as thermal annealing or solvent vapour 

annealing (SVA) are often required to increase the level of order within the self-

organized architectures and improve the performance of the associated devices. 

Temperature or solvent help materials to reorganize in more stable and ordinate 

system, they give at the system an activated energy to win a barrier between two 

different states (fig.1.10). 

 

 
Figure 1.10 Schematic representation of energy state of materials in annealing process. 

 

The modulation of the experimental conditions makes it possible to promote 

reorganization from the scale of a few nanometers up to several hundreds of 

micrometers, leading to the formation of crystalline functional architectures. 

figure 1.11 shows a film of HBC-PEO deposited on Si/SiOx  and subjected to SVA 

treatment in chloroform for 80 min (fig. 1.11b) or 18 h (fig. 1.11c) at room 

temperature.  
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After 80 min of SVA, the fibrillar network is partially destroyed and more isotropic 

islands are formed. On top of these islands spatially uncorrelated anisotropic 

features are observed. 

 

 

 a  b  c 

1µm1µm
 

 d  e 

 

Figure 1.11. AFM images of HBC-PEO deposited on Si/SiOx a) Original morphology after spin-

coating. b) After 80 min of SVA. c,d) After 18 h of SVA. e) Phase image of the area shown in d. 

The numbers 3 and 4 in the image indicate islands formed by three and four layers, respectively.11 

 

Upon prolonged SVA (fig. 1.11c), the isolated fibrils adsorbed on the neat substrate 

completely disappear and all the material assembles into micrometric islands, 

having a random orientation. Therefore, upon SVA treatment at room temperature 

a self-healing within the film is observed: the fibers obtained by spin-coating 

completely disappear, being substituted by islands showing uniform thickness and 

exposing tightly packed fibers aligned preferentially along the main axis of the 

islands (fig. 1.11c). The vast rearrangement observed in figure 1.11 is due to 

solvent that absorbs on the surface, triggering the molecules’ reorganization into 

islands. Initially small islands are formed, which eventually grow, removing 

material from the surrounding fibers. The islands show an anisotropic structure, 
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with a preferential director orientation running parallel to the substrate. When two 

growing islands touch each other they coalesce but retain their director orientation. 

Solvent Vapor Annealing represents a viable strategy featuring a controlled, 

versatile, and cost-effective self-assembly of ordered structures on surfaces. 

For more details see reference 11. 
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1.4 GRAPHENE 
 

Geim and Novoselov in the paper published on Nature Materials “The rise of 

graphene” give this definition of graphene: graphene is the name given to a flat 

monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb 

lattice, and is a basic building block for graphitic materials of all other 

dimensionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes 

or stacked into 3D graphite.14  

Graphene is not only a new material with incredible properties but is also a new 

approach of science to study and play with Materials in two dimensions. 

Dimensionality is a novel important tool for discover new 2D crystal materials or 

other form with different property from 3D precursor, graphene is only the first of a 

list of new, 2D materials (BN, MoS2, etc.). Nanotechnologies are actually pushing 

the research in a new world all to discover.   

  

1.4.1 Carbon allotropes 

Carbon is the basis of organic chemistry and therefore of life on Earth, the reason 

of this extraordinary role is probably related to the high number of carbon 

compounds, which have a great variety of physical and chemical properties.  

Atomic carbon exists in three bonding states with different geometry, shape and 

  

 

 a 
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 b 

Figure 1.12 a) Allotropes of the element carbon15 b) optical image of diamond and graphite crystals, 

two of most famous allotropes of carbon.16 

 

dimension, corresponding to sp3, sp2 and sp hybridization of the atomic orbitals, 

these different bonds lead to diverse carbon allotrope structures. In figure 1.12 we 

can see some overviews of this family. 

Diamond, graphite, carbyne, fullerenes, carbon onions, nanotubes, graphene, 

amorphous carbon are only some of allotrope forms of carbon. We think that 

carbon science, especially related to nanotechnologies, has great potential and in 

the next years can offer more interesting discoveries and new solution for industry 

and everyday life.   
 

1.4.2 Graphene, production and applications 

Emerging technologies, no matter how revolutionary they are, initially face 

significant cost barriers to compete with established technologies. Thus, cheap 

production of large amounts of graphene with controlled electrical, chemical and 

structural properties is fundamental for graphene to have a significant impact on 

society. While high-end electronic devices need highest quality material in terms of 

electronic and crystalline properties, applications like transparent electrodes 

demand cost efficient solutions. A major advantage of graphene is that, despite its 

young age, it can be already produced with many different techniques, which offer  
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Figure 1.13 Top down and bottom-up approaches in graphene production. 
 

a different mix of high quality and low cost, which will be suitable for different 

kinds of applications. 

Mainly there are two kind of approach in the graphene production, the fist is top 

down approach were the starting material is graphite and by mechanical, liquid or 

chemical exfoliation it is possible to isolate a graphic monolayer. The second is top 

down approach were it is possible to grow graphene layers from carbon precursors 

at high temperature and in inert atmosphere (fig. 1.13).  

 

Scotch tape method: this technique is based on the possibility to used adhesive 

tape to repeatedly divide graphite into increasingly thinner pieces, transfer few or 

single layers obtained in this way on silicon oxide, where they can be detected by 

optical microscope. Advantages: high quality of graphene produced, no special 

equipment needed. Disadvantages: inappropriate for large-scale production, uneven 
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films, difficult processability, low yield, single sheets difficult to localize. 

Applications: suitable for fundamental research. 

 

Chemical method: graphene is produced by reducing graphene oxide (GO) 

usually via thermal, chemical or electrical methods. Graphene oxide was synthesize 

from oxidation (i.e. Hummer method) of graphite and dissolved in water due to the 

presence of polar groups. Water solutions of graphene oxide can be used to prepare 

film or composite. Advantages: graphene oxide is suitable for large area and up-

scaling production, cheaper, easy processable (soluble in water) and can be 

chemically functionalized.  Disadvantages: poor quality of graphene produced, 

necessary reduction techniques for conducting materials. 

Applications: transparent conductors, biological and energy applications, sensors, 

composites, coating and gas barrier.  

 

Solution-based exfoliation: it is possible to produce graphene from sonication of 

graphite in special solvents (i.e. dimethylformamide) or with particular molecules 

(i.e. pyrene derivatives). These molecules, under sonication, have ability to interact 

strongly with graphite, infiltrating between the planes and making possible the 

exfoliate graphite in graphene. Advantages: suitable for large area and up-scaling 

production, easily processable. Disadvantages: use of poisonous or high boiling 

solvents, solvent or molecules tend to fix on graphene, not high quality of 

graphene, low yield. Applications: transparent conductors, sensors, composites, 

coating and gas barrier. 

 

Thermal decomposition of SiC: another approach to the production of graphene is 

thermal treatment of silicon carbide under vacuum or in inert ambient, this causes 

sublimation of the silicon atoms while carbon can reorganize, due to the high 

temperature, from graphenic domains to continuous film.  

Advantages: Insulating substrate, thus no transfer necessary, wafers scale available, 

good quality of graphene produced. Disadvantages: high temperature process, 
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difficult control of morphology. Applications: high frequency transistors, sensor, 

electronic.  

 

Chemical vapour deposition: in this method graphene is grown on metal catalyst 

from gaseous carbon source (i.e. methane, ethylene) at high temperature and inert 

ambient. Carbon precursor dissociates of at high temperature on the catalyst 

surface, carbon dissolves in the catalyst and then precipitates out during the cool 

down to room temperature. Advantages: Roll-to-roll production on plastic 

substrates demonstrated, good quality of graphene produced. Disadvantages: high 

temperature process, difficult control of morphology, requires transfer after 

synthesis. Applications: flexible display or transparent conductors, sensor, solar 

cells, OFETs.  

 

 
 

 

Figure 1.14 Some properties and applications of graphene.17-21 
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CHAPTER 2 

 
COVALENT AND SUPRAMOLECULAR INTERACTION 
BETWEEN GRAPHENE OXIDE AND ORGANIC MOLECULES   
 
2.1 GRAPHENE OXIDE    

  

Graphene oxide (GO) is a oxidized derivative of graphene, containing a mixture of  

sp2 and sp3 hybridized carbon atoms, it is obtained by treating graphite with strong 

oxidizers in acid environment. It is an electrically insulator due to the disrupted sp2 

bonding network, in the structure carbon aromatic clusters are isolated by a 

continue network of oxidized regions.   

There are different methods to produce graphene oxide, in table 2.1 we can see an 

overview of them.    

 
 Brodie Staudenmaier Hummers Modified Hummers 

Year 1859 1898 1958 1999 2004 

Oxidants KClO3, HNO3 KClO3 (or NaClO3) 
HNO3, H2SO4 

NaNO3, 

KMnO4, 

H2SO4 

 
pre-ox: K2S2O8, 

P2O5, H2SO4 

ox:KMnO4, H2SO4 

NaNO3, 

KMnO4, 

H2SO4 

Reaction 

times 
10 h / 4 days 1 / 10 days 2 / 10 h 6 h pre-ox + 2h ox ≈ 5 days 

 
Table 2.1. Methods for the oxidation of graphite to graphite oxide.1 

 

In this work graphene oxide is prepared using a modified Hummers method2-5 

starting from graphite flakes.  

 

Synthesis of Graphene oxide: 

Graphite (5g) and 3.8 g of NaNO3 is introduced in a 2L flask equipped with a 

mechanical stirring apparatus. Then, H2SO4 (375 ml) is added at 0°C (ice bath), 

and the solution is stirred until homogeneous. KMnO4 (25 g) is slowly added over 

1h, keeping the temperature below 10°C with an ice bath. The solution is removed 
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from the ice bath after 2 hours, and is further stirred for 5 days at room temperature 

(color change from dark green to brown).  

700 ml of H2SO4 5% aqueous solution are added to the brown suspension dropwise 

(temp. < 40°C) and the mixture is stirred for 2 h at room temperature. Then, 20 ml 

of H2O2 (30%) are added drop-wise to destroy the excess of permanganate, and 

stirred for 2 h. The solution is diluted to 2 L with 5% H2SO4 and, after one day of 

sedimentation, 1 L of supernatant is removed and replaced with water (1 L) and 

H2O2 (10 ml). After vigorous shaking, the suspension is allowed to sediment 

overnight. The supernatant solution is removed and the solid washed with an 

aqueous mixture of 5 wt% H2SO4 and 0,3% H2O2 (12 times), then HCl 4% (3 

times), milli Q water (10 times) and centrifuged after each step. Finally, the GO is 

dried at 60 °C under vacuum. 

 

 a 

 c  b 

Figure 2.1 a) Schematic representation of graphene oxide synthesis. Optical images of graphite b) 

and graphite oxide c).  
 

As-synthesized GO is suspended in water to give a brown dispersion, centrifuged 

to remove aggregates and deposited on the different substrates to obtain continues 

film or isolated flakes, fig. 2.2 a-b (The solutions are subjected to dialysis). 



CHAPTER 2   Covalent and supramolecular interaction between graphene oxide 
and organic molecules 

 

 

35

  

 a  b 

 

 c d e 

 

Figure 2.2 a,b) AFM images of graphene oxide a) flakes, b) thin film on silicon substrate. (size of 

images is 5 micron). c,d,e) AFM images of GO flakes obtained by spincoating of graphene oxide 

solution sonicated respectively 0h – 2h or 26 hours.  

 

XRD measurements performed on GO membranes gave a value of 0.82 nm (see 

fig.2.3a), in this material the distance of carbon planes is larger than graphite (0,34 

nm) due the presence of oxygen and reorganization of  carbon in sp3 arrangement. 

  a  b 

 
Figure 2.3 a) XRD patterns of GO membrane. b) GO thickness, as measured by XRD, AFM and 

modeling  from S.I. reference 10. 
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The measured thickness of the GO monolayer is ≈ 1 nm; similar values have 

previously been detected using AFM (fig.2.3b) and are always somewhat larger 

than the real GO thickness, depending upon the measurement conditions and the 

presence of adsorbed water.  

In nanotechnology use of graphene oxide can offer many advantages due the easy 

processability and huge variety of its derivatives and composites, in addition GO:  

 

• can be produced in large scale;  

• is soluble in water and in some organic solvents;  

• in solution is present as monoatomic single sheets;  

• sheet size can be tuned from submicron to 100 um by sonication time of 

solution (see fig 2.2);  

• can be chemically functionalized (see section 2.3);  

• and it is possible to tune the degree of reduction  i.e. by thermal treatment a 

different temperature see fig 3.1 This means that GO can be used as 

insulating or conductive material.6,7 
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2.2 VISUALIZING GRAPHENE SHEETS BY FLUORESCENCE 

QUENCHING  

 

One of the keys to the successful discovery of graphene in 2004 was the possibility 

of detecting single graphene sheets deposited on a silicon substrate covered by a 

300 nm thick oxide layer due to a weak interference-like contrast, which currently 

is the most practical way of identifying graphene sheets adsorbed on surfaces 

fig.3.3. Without this simple yet effective way to scan substrates for singleor 

multiple-layer sheets, graphene would have probably remained undiscovered.  

This principle has been studied systematically and improved using various 

illumination setups. Under optimal conditions, the highest observable contrast of 

graphene on SiOx is 0.12.8 

 

 
 

Figure 2.4 Optical reflection and transmission for layered thin film system: dielectric film on 

silicon substrate (left), thin sheet added on dielectric film (right).9 

 

Graphene oxide, although easier to produce and process than graphene, shares the 

same “visibility” problems. Since GO can be produced in large quantities and 

deposited as single layers on a wide variety of substrates, it is being intensively 

studied for applications in microelectronics, photovoltaics, and even biology. 

We demonstrate a novel approach for detecting and mapping GO sheets on 

surfaces derivatized with an organic dye whose fluorescence is quenched in the 

presence of GO. In this way, visualization of GO sheets with high optical contrast 
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(up to 0.78) can be easily accomplished on various substrates, including quartz and 

glass, without the need to use interference methods. 

In this approach, a triethoxysilane fluorescent thiophene-based dye, N-(3-

(triethoxysilyl)propyl 2,2′:5′,2′′:5′′,2′′′-quaterthiophene- 5-carboxamide (T4, Figure 

2.5), is covalently grafted onto the silicon dioxide, quartz, or glass surface through 

a microwave-prompted silanization reaction (i.e., reaction of Si-O-Et moieties with 

the OH groups of the SiOx substrate). 

 

 

 b 

 a 

 

Figure 2.5 a) Structure of the T4 molecule used for functionalization, b) Scheme of preparation of 

SAM T4-functionalized substrates. 

 

After T4 functionalization, intense green emission from the functionalized 

substrate is observed under UV excitation (Hg lamp, λexc) 330-380 nm), 

confirming the formation of a T4 layer.   

On the nanometric scale, the T4-SiOx surface appears flat and uniform, as revealed 

by atomic force microscopy (AFM); the root-mean square roughness (Rrms) is 

comparable to that of unfunctionalized SiOx (≈0.2 nm as measured on 2 × 2 µm2 

areas). GO is then spin-coated onto the surface from a water solution. Through the 

use of thorough stirring instead of prolonged GO sonication, a large number of 
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large, single GO sheets were formed on the surface, with lateral dimensions of up 

to 100 µm fig.2.2. 

After deposition on the functionalized substrates, GO multilayers or folded single 

sheets were visible on the surface by optical microscopy (fig. 2.6a), albeit with low 

contrast. Conversely, the fluorescence image of the same area (λexc = 330-380 nm, 

λem = 487 nm) displayed a green emission from the T4 layer. Remarkably, while 

the correspondence of many quenched areas of Figure 2.6b to the thicker GO 

deposits already visible in Figure 2.6a is straightforward, fluorescence imaging 

allows one to monitor smaller GO sheets that went undetected using normal light. 

 

 

 a  b 

 c d 

 

Figure 2.6 a) Optical microscopy (OM) image of GO sheets on T4-functionalized, 300 nm thick 

SiOx and b) Fluorescence image of the same area. c,d) Scheme of graphene oxide quenching on 

surface. 

 

The fluorescence quenching observed can be attributed to charge transfer from the 

T4 molecules to GO, as demonstrated by Raman spectroscopy and density 

functional theory calculations;11 comparison of fluorescence and AFM 
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measurements recorded over the same areas (Figure 2.7) confirmed that even a 

single GO sheet can completely quench the fluorescence. The measurements shown 

in Figures 2.6-2.7 were performed using a 300 nm thick SiOx layer (i.e., one 

possessing optimal conditions for graphene detection). The expected theoretical 

contrast8,9 for phase interference is either ≈0.02 (considering an excitation 

wavelength of 330-380 nm) or below 0.05 (considering the T4 emission 

wavelength, which peaks at 487 nm). The contrast C measured in fluorescence 

images, however, reached values of 0.78, which is about 6 times the theoretical 

limit expected for light interference on 300 nm SiOx. 

 

 
 

Figure 2.7 a) Fluorescence image of a GO monolayer deposited on T4-functionalized, 300 nm thick 

SiOx. b) AFM of the area indicated in a. c) Height profile taken across the black line in b.  

 

The contrast C is obtained in fluorescence images by comparing the intensity of 

light IGO (I0) emitted from areas with (without) GO sheets, using the formula:  

 

C = (I0 - IGO)/ I0 
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This gives a contrast >0 for objects darker than the surrounding substrate, and <0 

for lighter ones. To calculate the contrast we used the Weber formula, suitable for 

small objects located on a large background, in analogy with ref. 8 

GO is clearly visible even on quartz and glass, where no hidden SiOx-Si interface 

is present to give interference.    

 

 
 
Figure 2.8 Fluorescence images of GO sheets deposited on a) quartz and b) glass substrates which 

have been T4-functionalized.   

 

The only equipment required to obtain this result was a low-pass optical filter, 

which was needed to exclude the excitation wavelength emitted by the lamp. The 

main advantage of this strategy is not only higher contrast but also the possibility 

of obtaining this result even on substrates other than 300 nm SiOx without the need 

to change the illumination setup or optimize the substrate dielectric thickness. 

GO sheets deposited on 100 nm SiOx, quartz, and glass substrates gave contrast 

values of 0.52, 0.20, and 0.07 which, although lower than in the previous case, are 

still more than sufficient for a clear visualization.   

The contrast can be observed on so many different surfaces because it is due not to 

the mesoscopic structure of the substrate (which gives light interference) but rather 

to the “chemical” interaction between the GO and the T4 molecules on the 

molecular scale. T4-functionalized substrates possess high stability, and although 

slow quenching takes place under intense illumination, it is possible to visualize the 
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GO sheets even after storing the samples for several days under ambient 

illumination in air. 

The approach presented here represents a simple strategy to study the interactions 

between graphene and organic molecules with a good control, thanks to the layer 

structure, of the molecule’s position relative to the graphene sheet.   

 

 
 
Figure 2.9 Example of use of fluorescence quenching to find flakes of graphene derivatives, the red 

arrow indicates a flake between electrodes. 

 

Moreover, this kind of approach is not limited to GO and SiOx substrates and can 

in principle be applied to a wide variety of different systems from biology to 

sensing and for many molecules. 

The work present here led to the realization of the article “High-Contrast 

Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by 

Fluorescence Quenching; E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. 

Samori ̀, V. Palermo Journal of the American Chemical Society 2009, 131, 15576. 
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2.3 COVALENT FUNCTIONALIZATION OF GRAPHENE SHEETS WITH 

OPTICALLY ACTIVE OLIGOTHIOPHENES. 

 

Among carbon based materials, graphene represents the most thrilling discovery of 

the last decade. While a great effort has been addressed to the detailed investigation 

and optimization of its physical properties, the chemistry of graphene is still a 

rather unexplored field of research. Current challenges include the controlled 

chemical functionalization of graphene with functional units to achieve both a good 

processability in various media and a fine tuning of various physico-chemical 

properties of the 2D architecture, paving the way towards its technological 

application in chemical engineering. In this frame graphene oxide, because of its 

easier production and processability as well as simple chemical functionalization if 

compared to graphene, is emerging as a versatile material for applications in 

nanoscience and nanotechnology.  

GO can be obtained in high yield by controlled chemical oxidation of graphite; the 

resulting oxidized single sheets are characterized by the presence of epoxy and 

hydroxyl groups covalently linked to the C atoms of the graphene basal planes, as 

well as carbonyl and carboxyl groups placed at the edges. Such functional groups 

can be exploited for the selective intercalation or adsorption of ions and molecules 

as well as for covalent modifications. In particular, GO–organic hybrid materials 

hold great promise for filling, sensing, imaging and electronics applications.13 

For both fundamental science and technological applications in all these fields, it is 

crucial to lay the foundation for a new ‘‘chemistry’’ of graphene and graphene 

oxide, by devising synthetic methodologies able to add specific functionalities to 

these interesting materials, ultimately providing them with new and tunable 

electronic and optical properties. 

Common methodologies for the covalent functionalization of GO rely on two-step 

procedures, i.e. activation of carboxylic acids followed by nucleophilic substitution 

by amines or epoxides ring opening. Functionalization of hydroxyl groups, largely 

present on the sheets basal planes, has received only minor attention. 

Triethoxysilane as well as halosilanes are widely exploited components for the 
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functionalization of metal oxide surface spanning from two dimensional (2D) 

substrates to silica nanoparticles having interfacial hydroxyl groups. Concerning 

GO substrate, amino catalyzed silylation through alkylchlorosilanes or sol–gel 

methods has been exploited to tailor the solubility and mechanical properties of 

GO.3,14 In this context we report a new, facile and rapid synthetic approach based 

on microwave-assisted (MW) silanization protocol to tether functional p-

conjugated oligomers on GO sheets surface (Fig. 2.10). MW irradiation is currently 

employed in many sub-fields of organic synthesis to shorten reaction times, to 

enhance both reaction yields and product purity, and eventually to provide eco-

sustainable synthetic methodologies, by replacing or reducing the use of polluting 

reagents.  

 
 

Figure 2.10 Sketch of the one-step functionalization approach presented here. The oligothiophene 

molecules are tethered by Si–O bonds. Blue: carboxylic groups, green: carbonyl groups. 

 

Concerning graphene chemistry, MW activation has been employed so far for 

graphite pre-exfoliation, and more recently for the GO chemical reduction. Due to 

the chemical versatility and excellent photophysical and electrical properties of 

oligothiophene materials, quaterthiophene was selected as model system to be 

tethered to GO. GO was prepared by a modified Hummers method and exfoliated 

in dimethylformamide (DMF) by sonication for 24 h. The resulting black 
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suspension and T4-Si molecule 2 (Fig. 2.11) were introduced in a microwave oven 

reactor and irradiated at 80 °C (100 W) for 40 min.   

 
Figure 2.11 Synthetic route to T4-Si and GOT4. 
 

After 40 min of irradiation, the DMF was evaporated under vacuum and the 

resulting solid was washed several times with fresh DMF, CH2Cl2 and acetone 

until the supernatant solution was not fluorescent under UV irradiation at 364 nm. 

After drying, GOT4 self-consistent membranes of a dark-green color were 

obtained. The sheets showed deep-yellow fluorescence under UV illumination (Fig. 

2.12b).  
 

 
 
Figure 2.12 a) AFM image of exfoliated GOT4 sheets spin-coated on silicon. b) Fluorescence 

microscopy image of a GOT4 membrane illuminated by a mercury lamp. c) Suspensions of GOT4, 

pure GO and a mixture of free T4-Si with GO in polar (DMF–H2O, 1 : 5 in volume) and apolar 

(DMF–CH2Cl2, 1 : 5 in volume) either in normal light (top) and under UV lamp (bottom). 
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Simple, combined tests of solubility and fluorescence unambiguously proved the 

successful chemical functionalization, by comparing the new properties for GOT4 

with the ones of both its precursors (Fig. 2.12c, samples A1–A6). In these 

experiments, starting solvent was always DMF (polarity index p.i. = 6.4), where 

GO, T4-Si and GOT4 are all soluble. Then, selective GO or T4-Si precipitation 

was obtained by adding an excess of either water (p.i. = 10.2), in which T4-Si is 

not soluble, or dichloromethane (DCM, p.i. = 3.1), in which instead GO is not 

soluble. 

New solubility properties of GOT4 

 
Surprisingly, GOT4 did not precipitate in both polar and apolar media, i.e. upon 

addition of either H2O and DCM (Fig. 2.12c, samples A1, A2 respectively). 

Instead, GO precipitation was always observed in apolar media, either for GO 

alone (sample A4) or mixed with free T4-Si (A6). Moreover the new compound, 

under UV illumination, did not show the typical bluish fluorescence of free T4-Si 

in solution (sample A6), but always showed a yellow emission similar to the one of 

aggregated T4-Si in water (A5).  
 

 
Figure 2.13 SEM images of: a) thin, sheets and b) thick, micron-sized stacks of GOT4 drop-cast on 

silicon from a DMF solution. c) Zoom-in on the surface of one of the stacks, showing the layered 

structure. 
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GOT4 sheets were deposited on silicon substrates for Scanning Electron 

Microscopy (SEM) observations, Fig. 2.13 show SEM images of GOT4 drop cast 

on silicon. Both thin layers a) and large platelets, with sizes of tens of microns b), 

were observed. On the surface of the platelets, the layered structure of the GOT4 

sheets was clearly observed c). SEM analysis does not allow the determination of 

whether the thin sheets shown are single sheets or not. By spin coating a diluted 

solution on silicon it was also possible to obtain thinner layers of GOT4, down to 

deposition of even single sheets on the substrate, as unambiguously proved by 

Atomic Force Microscopy (AFM). Fig. 2.14 shows AFM  images of highly 

exfoliated GOT4 sheets deposited on silicon, where single, bi- and multi-layers are 

clearly resolved, having variable lateral size of ca. 1 µm.  

 

  

 a 

 b 

Figure 2.14 a) AFM image of exfoliated GOT4 sheets spin-coated on silicon, labels show the 

number of layers in different areas. b) Height histogram performed on a. The peak numbers 

correspond to the number of layers present in the area. 

 

By using spin coating, basically all the GOT4 was deposited as single, bi- or tri-

layer sheets, differently from what was obtained with drop casting, where only a 

small amount of thin sheets were found together with a majority of larger platelets. 

By performing statistical histogram analysis, an average height of 0.9 ± 0.2 nm was 

obtained. This value should be considered indicative, because even the thickness of 
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‘‘simple’’ GO sheets, as measured by AFM, has been shown to vary greatly, 

ranging from 0.9 to 1.3 nm (see fig 2.3), due to the presence of adsorbed water on 

the surface, and the different hydrophilicity of the sheets with respect to the Si 

substrate. Nonetheless, the measured height can be compared to the one of 

‘‘unfunctionalized’’ GO, thus suggesting a low density of T4 moieties on the 

surface, which, even if affecting significantly solubility and optical properties, does 

not change the apparent sheet thickness.   

The optical properties of GOT4 in DMF were compared to those of T4-Si in a 

diluted (10-5 M) solution, featuring a poor interaction between T4-Si fluorophores 

dispersed in the chosen solvent, and to a cast film of T4-Si, featuring instead strong 

interactions between the packed molecules. To gain a complete understanding on 

the optical properties, absorption (Fig. 2.15a) and emission spectra (Fig. 2.15b) 

have been recorded. 

In DMF solutions, T4-Si molecules show an unstructured absorption band located 

at 405 nm, and emission at 487 nm. The unstructured emission of T4-Si in solution 

suggests that the molecule adopts a distorted conformation. The absorption band of 

T4-Si in the solid state is strongly blue shifted instead, with a maximum placed at 

350 nm (Fig. 2.15a). Blue shift of the major absorption band in the solid state was 

already observed for αquarter-, αquinque-  and αsexi-thiophene  and ascribed to the 

formation of H-aggregates with cofacially aligned molecules in the solid state.15-17 

The red shift of the T4-Si emission in the solid state (peaks at 544 nm and 585 nm) 

also supports the occurrence of H-aggregation. 

Both absorption and emission spectra of GOT4 (Fig. 2.15a and 2.15b) are 

comparable to those of T4-Si in diluted solutions, suggesting poor T4-T4 

interactions. In particular, GOT4 exhibits a broad and structurless absorption band 

located at λmax ≈397 nm and a broad emission band located at λmax ≈482 nm. The 

emission is more similar to that of T4-Si in solution (λmax = 487 nm) rather than 

that of T4-Si solid film. This can be ascribed to the fact that in GOT4 the grafted 

T4-Si molecules are more distant from each other than T4-Si molecules in a 

conventional solid film. As a consequence, in GOT4 hybrid, strong T4-T4 
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interactions, yielding the red shifted PL spectrum of T4-Si solid films, are 

prevented. 
 

 
Figure 2.15 Normalized (a) absorption and (b) emission spectra of T4-Si monomers in DMF 

solution, T4-Si monomers in cast film, and of GOT4 in DMF (conc. 1 mg/ml). (c) and (d) 

Comparison of (c) absorption and (d) emission spectra of neat T4-Si, neat GO, a mixture of GO and 

T4-Si having the same T4-Si content of GOT4, and GOT4. 
 

Fig. 2.15c and 2.15d show the comparison of the optical properties of T4-Si, GO, 

GOT4 and of a mixture of GO and T4-Si. The amount of T4-Si present in the 

mixture was based on the one estimated to be in GOT4, as obtained by TGA results 

(see below), i.e. ≈ 2.6% in weight. The absolute molar concentration of T4-Si 

moiety in T4-Si sample and in the GO + T4-Si mixture was the same. The 

absorption spectrum of the mixture can be considered simply the sum of the 

absorption spectra of the two components (grey thin line in Fig. 2.15c); conversely, 

the GOT4 spectrum is qualitatively different both in the slope of the featureless GO 

absorption part and in the shape of the emission spectrum, indicating a strong 

perturbation of the T4 electronic structure. Fig. 2.15d shows the emission spectrum 
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for GOT4, having a different shape as compared to either T4-Si or a GO + T4-Si 

mixture. 

Even if GOT4 material was carefully washed with different solvents before use, to 

eliminate physisorbed frameworks, this cannot exclude the presence of traces of 

free dye molecules on the sheets; though, the different shape of the absorption and 

emission spectra observed for GOT4 compared to T4 and the GO + T4 mixture, 

and the solubility tests (Fig. 2.12) indicate that GOT4 is not a mere mixture of the 

two components. A simple physisorption of T4-Si on GO would eventually take 

place as well in the GO + T4-Si mixture, given that both GOT4 preparation is 

performed in the same solvent used for the mixture (DMF), and thus would give 

similar solubility and spectroscopic properties between GOT4 and the mixture. 

Fluorescent quenching of organic fluorophores by GO has been already observed. 

It can be ascribed both to either short-range charge transfer or long-range  energy 

transfer.  

Thermal characterization of T4-Si, GO and GOT4 Thermal behavior of the GOT4 

and of its basic components was investigated by TGA/MS under nitrogen 

atmosphere(FIG. 2.16). The T4-Si monomers show two distinct weight losses 

which have been unequivocally attributed to the thermal decomposition of the 

aliphatic triethoxysilane tail. 

From 150 to 375 °C a weight loss of 16.2% is ascribed to the partial thermal 

decomposition of the triethoxy groups (m/z 45; m/z 46), while the residual aliphatic 

moiety entirely decomposes with a marked weight loss between 421 °C (Tonset) and 

476 °C (Toffset) (m/z 113; m/z 112; m/z 97; m/z 84) (wt loss % between 150–500 

°C; 45.7%). Over 500 °C a gradual weight loss due to the partial oxidative 

decomposition of the T4 fragment (m/z 44, CO2 evolution) is observed. 

The initial weight loss of GO below 150 °C (10.6%) is ascribed to the elimination 

of adsorbed water while a 2.5 wt% loss for functionalized GOT4 sample, within the 

same temperature range, is reasonably due to the elimination of 

adsorbed solvents.  

A larger weight loss around 200 °C is observed for GO thermal profile and it is 

attributed to the oxydryl groups elimination from the graphene oxide layers.18,19  
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Accordingly, a lower weight loss is measured at this temperature for the GOT4 

sample compared to the pure GO, as a direct consequence of the T4 

functionalization (GO vs. GOT4 in the 150–230 °C range, 32.2% vs. 27.8%). In the 

temperature range from 400 to 500 °C, a weight loss of 0.6% in the GOT4 sample 

(calculated as weight difference between the TG profiles of GOT4 and GO in the 

selected range of temperatures) is attributed to the thermal decomposition of the 

aliphatic linker between the GO and the T4 moiety. The MS analysis of volatiles in 

the latter range of temperatures (m/z 113 M+; m/z 112 M+ -1; m/z 97; m/z 84), 

accounts for the aforementioned decomposition. On this basis, one may roughly 

conclude that a 2.6 wt% of T4-Si is ultimately grafted to the graphene GO. Both 

the T4 unit and the GO do not undergo significant decomposition at T < 500 °C, 

and no decomposition of T4 fragments was observed below 500 °C from the 

TGA/MS of the GOT4, neither from the TGA/MS of pure T4-Si. 

 

 
 

Figure 2.16 a) TGA-DTA of T4-Si, GO and GOT4 from 40 to 1000 °C. DTA of GO does not 

provide additional information and it has been omitted for clarity. Weight losses for GO and GOT4 

have been calculated as average value over three runs. (b) TGA-MS of GOT4 from 60 to 900 °C. 

Evolution of volatiles (m/z = 113, m/z 112, m/z 97 and m/z = 84) have been monitored throughout 

the temperature range. 

 

Elemental analysis conducted on the GOT4 sample has provided the following C, 

N and S contents: C, 49.47%, N, 0.3%, S, 2.69%. Accordingly, one may conclude 

that a 2.6 wt% T4-Si grafting roughly corresponds to 1 T4-Si group every 750 

carbon atoms. However, it should be pointed out that the presence of intercalated 
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molecules of solvent (DMF) does not ultimately allow for an accurate estimation of 

the grafted fluorophore. 

By assuming one T4 unit every 750 C atoms and the carbon atom surface density 

for a ‘‘perfect’’ graphene sheet (38.2 C atoms nm-2), an average T4-T4 distance of 

≈6.2 nm can be roughly estimated (much larger than the T4-Si long axis, which is 

≈2.5 nm including the flexible aliphatic tail), thus suggesting that the T4 molecules 

on average do not touch each other. The real T4-T4 distance is likely much larger, 

giving that GO has a much lower density of C atom, due to the presence of 

defective sites. According to this estimate, around ≈104 T4-Si molecules can be 

tethered on both sides of a single GO sheet having lateral size of 1 µm. 
 

 
 

The hybrid system consisting of T4-Si covalently linked to the GO sheets exhibits 

new chemical and optical properties with respect to the pristine components. 

Optical spectroscopy shows that GOT4 can be seen as a multifluorophoric array,20 

where a high number of fluorophores is fixed to a common mesoscopic, flexible 

scaffold. It can be solution-processed from both water and organic solvents, to give 

platforms of main interest for optoelectronics. Application of multifluorophoric 

arrays in optoelectronic devices such as transistors and solar cells has been already 

demonstrated by some of us by using perylenes and oligothiophenes as 

fluorophores and organic polymers as scaffolds (polyisocyanides or polyvinyls).  

The use of GO as scaffold instead of synthetic polymers gives major advantages: 

GO can be produced on large scale and at low cost by graphite oxidative 

exfoliation, and can form 2-dimensional sheets with sizes up to 100 µm, as 

compared to polymeric scaffolds which instead are 1-dimensional and have typical 

lengths <1 µm. 
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Alongside the peculiar characteristic of the GOT4 material itself, a major synthetic 

outcome is that the use of microwaves assisted silanization represents a ‘user 

friendly’ methodology to engineer GO properties. Indeed, readily available 

building blocks and mild conditions are required to perform this reaction. 

Conventional silanization of silicon and glass substrates, as well as GO 

functionalization by other methods, generally require reaction times of 1–7 days.  

Our procedure allows reduction of the functionalization time down to 40 min. It is 

well known that coupling microwaves (energy source) with graphite (support) is 

responsible for a high temperature gradient leading to increased reaction rates as 

compared to conventional procedures. 

 It is well known that graphene oxide does not have the same outstanding electrical 

properties of pristine graphene. Although GO can be considered an insulator, it is a 

peculiar one, where irregular aromatic patches of sp2-hybridized C atoms can exist, 

surrounded by insulating areas of sp3-hybridized C atoms.  In light of this, GO can 

be considered as an irregular (macro)- molecule bearing different kinds of 

polyaromatic moieties, whose electronic properties depend significantly on the size 

of the aromatic domains. The results obtained here show that, despite GO is not 

fully conjugated as graphene, it can exchange efficiently charges with adjacent T4 

fluorophores, which will interact preferentially with GO rather than with each 

other. 

We have reported an efficient synthetic approach to build GO-based 

multifluorophoric array, in which GO acts as a flexible planar template and p-

conjugated oligomers (in this case T4) as antennas.   

The above described functionalization methodology is not limited to T4-Si 

attachment, but can be useful for both fundamental science and technological 

applications to covalently tether different functional moieties to GO. 

The work present here led to the realization of the article “Facile covalent 

functionalization of  graphene oxide using microwaves: bottom-up development of 

functional graphitic materials” M. Melucci, E. Treossi, L. Ortolani, G. 

Giambastiani, V. Morandi, P. Klar, C. Casiraghi, P. Samori, V. Palermo. Journal of 

Materials Chemistry 20, 9052, 2010. 
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CHAPTER 3 

 
ELECTROCHEMICAL REDUCTION AND PATTERNING OF 

GRAPHENE OXIDE 
 

3.1 REDUCED GRAPHENE OXIDE 
 

To exfoliate graphene via chemical method we introduces in graphitic plane polar 

groups to improve the solubility in water and lead the interaction between different 

planes. 

Mattevi in the paper “Evolution of Electrical, Chemical, and Structural Properties 

of Transparent and Conducting Chemically Derived Graphene Thin Films” shows 

how after oxidation of graphite about 40% of compound was oxygen  

 

           

 a  b 

 
Figure 3.1 Percentages of different carbon as a function of annealing temperature. The aromatic 

carbon and oxygen concentration are reported as a function of the annealing in the inset.2 b) 

Category of thin-film particles.1 

 

and the carbon atoms in function of chemicals bonds can be divided into 4 different 

types:  

 

C=C/C-C bonds = aromatic carbon are ≈ 40% of carbon atoms 

C-O bonds = epoxy and hydroxyl groups are ≈ 40% of carbon atoms 

C=O bonds = carbonyl groups are ≈ 13% of carbon atoms 
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CO-OH bonds = carboxyl groups are ≈ 7% of carbon atoms 

 

Usually aromatic carbons are organized in domains surrounded by epoxy, hydroxyl 

and carbonyl groups while carboxyl groups are present in the edges of flakes. 

By thermal, chemical or electrochemical treatment is possible to restore the 

conducting network, increasing and connecting the previously isolated aromatic 

domains, the resulting compound is known as reduced graphene oxide (RGO). 

In figure 3.1 it is possible to see how 80% of sp2 carbon can be restored by thermal 

annealing at 1000 °C.   

The structure of graphene, graphene oxide and reduced graphene oxide obtained by 

transmission electron microscopy are shown below from Erickson’s paper 

“Determination of the Local Chemical Structure of Graphene Oxide and Reduced 

Graphene Oxide” 

 

 

 a  b  c 

 

Figure 3.2 Aberration corrected TEM images of a) suspended sheet of graphene. b) suspended sheet 

of GO and c) suspended sheet of RGO. Graphitic area indicated in yellow, disordered regions 

(indicating oxygen functionalities) in red and holes are indicated in blue.3 

 

In our work the GO was reduced to RGO by thermal annealing at ≈ 700 °C in 

vacuum. We used a low rate heating ramp, in order to ensure efficient removal of 

oxygen containing groups with minimum carbon losses.    

In the following figures we can see graphene oxide flakes or film before and after 

thermal treatment. The optical contrast increases after reduction we can see by 
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optical images of flakes on silicon oxide 300 nm thick or in the transmittance 

spectra of GO and RGO films on quartz. 

  

 a 

 d 

 

RGO 
RGO 

RGO  b 

 b  c 

 

Figure 3.3 a) Transmittance spectra of GO and RGO films on quartz b,c) optical images of GO and 

RGO flakes on silicon oxide 300 nm. e) optical images of GO and RGO films on quartz. 

 

While rapid progress in measuring electrical transport in multilayer films and 

single graphene sheets has been achieved, little is known about the local spatial 

dependence of the electrical properties. Here we show that conductive atomic force 

microscopy (C-AFM) is a powerful tool for obtaining direct measurements of the 

local variations in current-carrying capacity in graphene sheets and films over 

length scales ranging from tens of nanometers to tens of micrometers. These 
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measurements make it possible to correlate the detailed morphology of graphene 

(e.g., wrinkles, multilayer regions) to its electrical characteristics.  

In this approach, a metal-coated AFM tip is used as a movable electrode that can be 

positioned with nanometer-scale precision and a controlled nanonewton-range 

force. In contrast to scanning tunneling microscopy (STM), the use of force 

feedback decouples the regulation of the tip-sample separation from the current 

measurement, providing a better-defined tip-sample interaction and the capability 

of measuring samples with insulating regions. Previous applications of C-AFM 

include studies of self-assembled monolayers, organic semiconductors, and low-

dimensional nanostructures such as carbon nanotubes. We demonstrate here that C-

AFM is well-suited for mapping the local electronic properties of RGO. 

GO was produced by a modified Hummers method as previously described see 

chapter 2 and then spin-coated onto Si substrates with a 300 nm thick SiO2 layer. 

We first tested the applicability of C-AFM for current mapping on few-layer-thick 

thermally reduced RGO films. 
 

 
      
Figure 3.4 Topographic tapping mode AFM images showing a) the RGO film structure, and b) a 

scratched region, for measuring the film thickness c) The height of the film is measured from a 

histogram of the height distribution. 

 

The morphology of the reduced graphene-oxide films was measured by tapping 

mode atomic force microscopy (AFM), revealing a flat, smooth structure and some 

visible sheet edges. The thickness of the films was measured at several positions by 

gently scratching the surface with a sharp needle, and measuring the height 

difference between the film and substrate surfaces (fig. 3.4). 
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C-AFM imaging was performed by applying a voltage between a Pt/Ir-coated AFM 

tip and a vacuum-deposited Au top electrode and scanning the tip over the sample 

with a constant force in the contact mode. A schematic of the setup is shown in 

figure 3.5.  

 
Figure 3.5 a) Schematic of the setup employed for C-AFM current mapping and current-voltage 

acquisition. b) Contact-mode topographic AFM image of a few-layer reduced GO film and c) the 

simultaneously recorded current map obtained using a 100 mV sample voltage. d) Dependence of 

the electrical resistance on the separation between the tip and the counter electrode.   

 

The recorded current as a function of position provides a map of the local capacity 

of the sample to transport charge between the tip position and the Au counter 

electrode. As shown in figure 3.5b,c, the current measured on RGO film is highly 

uniform over a scale of tens of micrometers, highlighting the potential of RGO as a 

transparent electrode material.4  

Small line-to-line variations are visible, probably caused by microscopic structural 

changes in the tip-sample interface during scanning, particularly at the Au step 

edge.   
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The bright appearance of the Au edge in the current image is related to the large 

topographic height difference at the edge (100 nm in this instance), which causes 

the side of the tip rather than the sharp apex to electrically contact the sample; this 

results in a larger contact area and an increased current. In addition, over the Au, 

the current map has a speckled appearance due to the formation and loss of contact 

with individual nanometer-scale Au grains by the tip as it scans over the surface. A 

relatively constant electrical contact between tip and sample was formed over the 

RGO as a result of its smooth morphology. Interestingly, there were no abrupt 

changes in conductivity associated with the RGO sheet edges, indicating efficient 

transport between adjacent sheets. This is in contrast to the case of organic 

semiconductors, where grain boundaries represent a major transport bottleneck.5 

The resistance of the RGO film as a function of tip-electrode separation yielded a 

nearly linear relation (figure 3.5d). Some nonlinearity is to be expected given the 

measurement geometry: the current spreads as it flows through the sample from the 

sharp tip to the extended Au electrode. Nonlinearities may also originate from the 

conduction mechanism.  

Fitting the curve to a second-order polynomial yielded a contact resistance of 340 

kΩ, representing the sum of the resistances at the RGO-electrode and RGO-tip 

interfaces. The latter is expected to be the dominant contribution, given the 

relatively small contact area of about 7 nm2.  

Topography and current images of a region with incomplete RGO coverage on 

SiO2 (figure 3.6 a,b) show that defects in the RGO film are far more easily 

visualized in the current channel than in the topography. As displayed in figure 

3.6b, the electrical connectivity of the film and the local capacity to transport 

charge is immediately clear from the current image, while the topography (Figure 

3.6 a) provides little information with respect to these. The resolution of the current 

images was determined to be less than 20 nm on the basis of the minimum distance 

between distinct features. Current-voltage (I-V) measurements (90 in total) at 16 

positions on the surface revealed currents over single-layer regions that were 3.9 

±0.5 times smaller than the currents over multilayer regions at similar electrode 

distances.  
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 a  b 

 

 d  c 

 

Figure 3.6 Contact-mode image of a defect region of an RGO a) film  and b) the corresponding 

current image, the differences in the current over regions of different thickness . c) Contact-mode 

topographic image of a single-layer RGO sheet exhibiting some folds and multilayer regions d) 

Simultaneously recorded current map showing increased currents over the folded and multilayer 

regions as well as local variations over the single-layer areas.  

 

The film thickness of 3.7 ± 0.7 nm, which was measured over several areas of the 

sample, indicates that the film consisted of about three RGO layers, given the 

measured single-layer thickness of 1.2 ± 0.1 nm, the latter closely matching that of 

earlier studies. By considering as an approximation the stacked RGO layers as 

parallel conductors, we see that the current per layer in the multilayer is 1.3 times 
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larger than the current in the single layer. A similar effect was measured by Kern 

and co-workers,6 who suggested that decreased conduction in the first layer results 

from interactions with the substrate. An additional factor may be that in multilayer 

graphene, there is an increased number of percolation pathways around defects. 

Moreover, in few-layer RGO films, the band structure is expected to depend on the 

number of layers. In the case of pristine graphene, as the number of layers 

increases, the band structure becomes increasingly semimetallic (i.e., there is 

increased band overlap).7 

Further support for increased conductivity in multilayers was provided by C-AFM 

measurements on single RGO sheets. A topographic AFM image is shown in 

Figure 3.6 cd along with the corresponding current image. These measurements 

revealed a morphology of smooth single-layer with narrow folds and twolayer 

segments; moreover, the current image shows that folded and two-layer regions are 

more conductive than the single-layer RGO, provided that the regions are in direct 

contact with the surface electrode.  

In instances where folded and multilayer regions are surrounded by single-layer 

RGO, the current is limited by the intervening single layer. I-V measurements (44 

curves at 22 points) showed that the current over the directly contacted two-layer 

regions was 3.0 ±0.4 times larger than the current over the single layer.  

Assuming equal conduction in each layer, the current per layer in the bilayer was 

thus 1.5 times the current in the single layer.   

Upon close inspection of the current image (Figure 3.6d), some round features and 

small local variations in current are visible over the single-layer regions, which 

may be due to the thermal reduction process (e.g., outgassing of the oxygen-

containing defects).  

The resistance as a function of distance from the Au electrode was measured on a 

single-layer flake, and a nearly linear relation was obtained, similar to the 

multilayer case. The extracted contact resistance of 1.1 MΩ is slightly more than 3 

times higher than that in the multilayer. 
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3.2 TIP-INDUCED REDUCTION OF GRAPHENE OXIDE. 

 

There is great interest in patterning graphene for largescale integration into 

electronic devices and for prototyping labscale test systems. Large-scale patterned 

graphene films have been grown by chemical vapor deposition and transferred to 

flexible substrates. Stencil masks have been used in conjunction with 

electrochemical or camera-flash reduction to produce macroscopically patterned 

RGO. Moreover, quantum confinement and opening of an energy band gap have 

been observed in graphene nanoribbons patterned by standard lithography 

methods.8 However, it has been shown that lithography can leave residual 

photoresist on patterned graphene, potentially obscuring the intrinsic device 

characteristics. We demonstrate a resistless single-step C-AFM-based approach for 

patterning GO with conductive micrometer-scale regions under ambient conditions. 

As a proof of principle, we have employed this technique to fabricate 

micropatterned graphene field-effect transistors featuring high charge-carrier 

mobilities. 

Not surprisingly, GO multilayers (7 ± 1 nm thick) without reduction exhibited 

limited electrical transport. At 2 µm from the Au electrode, picoampere-range 

currents were measured at voltages above 2 V (figure 3.7a). 
 

 
Figure 3.7 AFM-tip-induced modification of GO leading to conductive regions. (a) Current-voltage 

measurement on a few-layer GO film. (b) As the current was swept to large negative voltages, 

beyond a threshold voltage Vth = -3.6 ± 0.3 V, the current suddenly increased to saturation levels of 

the current detection.  
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Interestingly, a change took place when the tip was in close proximity to the Au 

electrode (e.g., within 1 µm) at negative sample voltages beyond -3.6 ± 0.3 V: the 

current rapidly increased with voltage from current levels below the minimum 

detection limit (<1 pA) to beyond the maximum detection limit (>500 nA), 

spanning more than 5 orders of magnitude.  

This change was marked by hysteresis in the I-V traces (figure 3.7b). Subsequent 

C-AFM imaging revealed that the GO surface was rendered conducting over a 

small patch of the surface. Sweeping the sample voltage to a large negative voltage 

(below -3.6 ± 0.3 V) at evenly spaced intervals (e.g., 500 nm) starting from the 

electrode allowed conducting lines to be patterned on the GO. The width of the 

features depended linearly on the magnitude of the applied voltage within the 

measured rang, with lines as narrow as 1 µm at voltages of -3.6 V and features as 

wide as 6 µm at -6 V. No significant increase in conductivity was observed at 

positive sample biases. Similar results were obtained on multilayer and single-layer 

GO.  

To ensure that the observed conductivity was not related to damage to the 

underlying oxide, the tip-induced modification was reproduced on quartz 

substrates. There was no significant change in the GO surface topography 

following surface modification, as confirmed by AFM height measurements, 

demonstrating that the process is nondestructive.   

The surface modification experiments were performed at relative humidity (RH) 

levels between 40 and 60%. In order to test the possible role of an adsorbed water 

layer during the tipinduced modification of GO, the RH level in the AFM chamber 

was gradually reduced using flowing argon. As the RH decreased, the surface 

modification became less pronounced see fig. 3.8, and the widths of the features 

were reduced to submicrometer dimensions. Below about 25% RH, surface 

modification was no longer observed. This suggests that water has a significant role 

in the surface modification process. 
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Figure 3.8 Current images of a tip-modified GO film at RH levels of a) 36%, b) 30%, c) 26%, and 

d) 23%. The reduction was performed with a minimum sample bias of -5V. The Au surface 

electrode is at the left edge of the image. 

 

It is well-known that in air, a several-monolayer-thick water layer readily adsorbs 

on hydrophilic surfaces. Moreover, when the AFM tip is in contact with the 

sample, a water meniscus forms around the tip and acts as a localized 

electrochemical environment. Previous studies have shown that through the 

application of a positive voltage between the tip and sample, it is possible to locally 

oxidize various substrates, including silicon9 and graphene.10 In the case of our 

experiments, it is expected that the GO was electrochemically reduced by the 

negative tip-sample voltage. Previous work on macroscopic electrochemical GO 

reduction revealed that reduction is facilitated at low pH levels, indicating an 

essential role of hydrogen ions.11   

The suggested reaction scheme leading to GO reduction is hypothesized to comply 

with the following: 
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 Repeated tip-induced modification of the same GO region resulted in increased 

conductivity. After 10 modification cycles, the measured currents in the I-V traces 

were 10 times higher than after the first modification and within an order of 

magnitude of the results for thermally reduced GO. In the case of GO, it is 

expected that the decrease in reduction rate with time is related to the depleted 

supply of oxygen-containing defects available to under GO reduction over time. A 

contact resistance of 1.3 MΩ was extracted for a GO region that was modified 11 

times. With the assumption that the current was transported along the entire 

modified area, which had a width of 3.7 µm, a sheet resistance of 1 MΩ/square was 

determined; this is lower than the sheet resistance of 4 MΩ/ square for hydrazine-

reduced few-layer GO11 but more than an order of magnitude higher than that for 

thermally reduced fewlayer GO.7 

Further evidence that the tip-induced GO modification corresponds to a reduction 

process was provided by confocal Raman spectroscopy, which is a particularly 

effective tool for identifying the structure and degree of disorder in carbon-based 

materials. Large conductive GO features were patterned and subsequently 

measured by C-AFM, optical microscopy, and Raman spectroscopy (figure 3.9). In 

accordance with previous studies fig.3.3, the reduced region had a lower optical 

transmittance, resulting in a darker appearance under the optical microscope 

(Figure 3.9b). Raman spectra for the GO and modified GO exhibited two 

prominent peaks, at about 1350 and 1600 cm-1, corresponding to the D and G 

bands. The G band is due to the E2g phonon mode in the sp2 carbon network, while 

the D band is correlated to disorder in the lattice. In agreement with other 

studies,12,13 the intensity of the D band increased relative to the G band upon 

reduction. This has been interpreted as resulting from the creation of new graphitic 

domains that are smaller in size but greater in number than those present prior to 

reduction.12 
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Figure 3.9 a) C-AFM current map of a tip-modified rectangular region of a few-layer GO film and 

a top-contact gold electrode. b) Optical image of the same region showing contrast between the 

modified and unmodified GO. c) Raman spectra obtained on modified and unmodified GO  
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3.3 THIN-FILM TRANSISTORS BASED ELECTROCHMICHAL 

REDUCED GRAPHENE OXIDE. 

 

The tip-induced reduction of GO was used to successfully bridge prepatterned fig. 

top- (fig.3.10 c,d) or bottom-(fig. 3.10 a,b) contact electrode pairs. Current images 

of a source-drain electrode pair (left and right side) bridged by an electrically 

conducting tip-reduced GO region. As expected the currents were not registered 

over the electrodes in bottom configuration because the Au was covered by a film 

of unreduced GO unlike of top contact configuration.  

 
 a  c  

 

     

 b  d 

 

Figure 3.10 Thin-film transistors based on tip-reduced GO. a,c) Schematic representation of  the 

devices top or bottom contact before the reduction b,d) current image of a source-drain electrode 

pair after tip-reducion graphene oxide.     

 

Figure 3.10 a,b, show a bottom-gate bottom-contact RGO transistor with channel 

width of 6 µm was defined with the AFM tip and then characterized by C-AFM, 

which revealed an estimated sheet resistance of 1.6 MΩ/square. 

Transistor measurements on several GO and tip-reduced GO devices in a nitrogen 

environment showed a significant current increase, approaching a factor of 108, 

obtained by means of tip reduction (Figure 3.11a). The transport can be 

consistently considered ambipolar, as previously observed for reduced GO;14 a hole 



CHAPTER 3    Electrochemical reduction and patterning of graphene oxide 
 

71

mobility of 0.3 cm2 V-1 s-1 and an electron mobility of up to 0.1 cm2 V-1 s-1 were 

determined. These values are comparable to the ones measured by Chhowalla 

and co-workers,14 who found p- and n-type mobilities of 1 and 0.2 cm2 V-1 s-1, 

respectively, providing further evidence that the performance of the micropatterned 

AFM-tip-reduced GO is similar to that of GO reduced by combined hydrazine and 

thermal treatments.   

 

 a 

Figure 3.11 Drain current (ID) normalized to the effective channel width vs drain-source voltage 

(VDS) measured on graphite oxide films before (black ) and after (red ) tip reduction. 

 

We demonstrate that the voltage-induced reduction of GO under ambient 

conditions is not restricted to the C-AFM configuration. We show that the 

electrochemical conversion of GO under ambient conditions is broadly applicable 

and can be achieved by applying a voltage across nano- and micro-electrode pairs 

in close proximity on a surface. 

A topographic AFM image of the system is shown in figure 3.12a. C-AFM current 

mapping (figure 3.12b) provided further confirmation that the GO was rendered 

electrically conductive. The GO over the gold electrodes remains insulating, with 

only some nanoscopic pinholes in the film passing current. However, between the 

electrodes, the film is highly conducting.  

These measurements demonstrate a simple approach to for tuning the conductivity 

of graphene between electrodes. The voltage-induced reduction process works 

under ambient conditions and does not require specialized equipment, making it 

attractive for the large-scale, low-cost processing of graphene for electronics.   
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 a  b 

 c  d  e 

 Figure 3.12 a) AFM image and corresponding b) current image of voltage-reduced GO in an FET 

channel c) schematic rappresentation of device. Transfer curves measured on voltage-reduced GO 

transistors, in the d) p-type (Vsd = -2 V) e) n-type (Vsd = +2 V), transport regimes. Channel length 

= 1.6 µm. 

 

This kind of approach is interesting for sensing because the active area is only the 

material between the electrodes so we have less noise for the signal and less 

problem of current leakage to the gate.   

 

The work present here led to the realization of the articles: 

“Local Current Mapping and Patterning of Reduced Graphene Oxide” Jeffrey M. 

Mativetsky, Emanuele Treossi, Emanuele Orgiu, Manuela Melucci, Giulio Paolo 

Veronese, Paolo Samori  and Vincenzo Palermo Journal of the American Chemical 

Society  132, 14130, 2010; and  

“Graphene transistors via in-situ voltage-induced reduction of graphene-oxide 

under ambient conditions” Jeffrey M. Mativetsky,  Andrea Liscio, Emanuele 

Treossi, Emanuele Orgiu, Alberto Zanelli, Paolo Samorì , Vincenzo Palermo 

Journal of the American Chemical Society  133, 14320, 2011. 
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CHAPTER 4 
 
TUNING THE TRANSPORT PROPERTIES OF GRAPHENE BY 
NONCOVALENT FUNCTIONALIZATION 
 

In chapter three we have seen how is possible partially restore the sp2 carbon 

network in graphene oxide by thermal annealing, in this chapter we show the 

electronic behavior of this material when it is combine with organic 

semiconductors i.e. P3ht or Nanographene derivatives.  

 

4.1 TAKING THE BEST OF TWO MATERIALS 

 

Graphene has high conductivity and exhibiting large ambipolar electric field-effect, 

enabling both electrons or holes doping via electrostatic gating. Single graphene 

sheets, usually obtained by the ‘‘scotch tape’’ technique, were successfully used to 

realize high performance transistors and sensors. Graphene can also confer 

outstanding properties to various material types: when it was incorporated into 

polymeric or ceramic matrices, a remarkable improvement of the properties of the 

host materials was found. 

Given such an interest in using graphene for the fabrication of functional hybrid 

architectures, the development of new processing methods, potentially up-scalable, 

represents a challenging goal as they can pave the way towards large-scale 

applications of graphene-based composite in electronics. 

Organic semiconductors (OSs) are a wide class of small molecules and polymers 

used as active components for fabrication of (opto)electronic devices such as 

LEDs, solar cells and field-effect transistors. OSs can be processed from solution at 

low cost and on different substrates, making it possible to produce light-weight, 

low-cost, large-area flexible electronic devices.1 A major limitation of OSs is their 

poor charge mobility compared to silicon, thereby lowering the performance of OS 

based electronic devices. 
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Figure 4.1 Schematic representation of some vantages and limits of graphene and semiconductors 

for organic electronic. 
 

In order to exploit simultaneously the excellent electronic properties of graphene 

and the good processability as well as modulable optoelectronic characteristics of 

organic semiconductors, effort has been recently addressed to the use of blends of 

soluble graphene with OS in FETs and solar cells, similarly to what has been 

already reported for carbon nanotubes–OS blends. It is expected that the electrical 

properties of these blends, and in particular their charge transport characteristics, 

depend significantly on the graphene/OS ratio used, and on the relative 

arrangement of the graphene sheets into the OS matrix. Due to the co-deposition 

process, the blends can have a complex 3D structure. Graphene sheets can be well-

dispersed to create percolation pathways for the transport of charges through the 

less conductive OS matrix. Conversely, in the case of poor solubility and modest 

affinity with the OS, graphene sheets can stack and phase-segregate during 

deposition, forming aggregates. 
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4.2 INTERACTION BETWEEN GORED AND P3HT 

 

To gain a better understanding on the charge transport in graphene–OS blends, we 

have studied the electrical and morphological properties of a structurally well-

defined bicomponent system obtained by physisorption of a p-type organic 

semiconductor (poly(3-hexylthiophene), P3HT) over a discontinuous layer of 

atomically thin graphene sheets previously deposited on the electrically insulating 

silicon oxide substrate.  
 

 
 

Figure 4.2 Schematic representation of  the RGO–P3HT based device 
 

We demonstrate that by changing the density of the sheets it is possible to tune the 

charge transport from a regime featuring charges that are transported principally 

through the P3HT layer, having only a few graphene sheets acting as preferential 

paths for the charge transport, to another in which continuous percolation paths 

exist through the graphene layer, and P3HT influences only in an indirect way the 

current passing along the graphene sheets. In both cases, charge transport in the 

blend results improved with respect to what was observed in either graphene or 

P3HT alone. 

We chose to use reduced graphene oxide (RGO) since it combines good material 

properties and excellent processability. RGO is obtained from the reduction of 

chemically exfoliated graphene oxide (GO), which can be produced with high 

purity and in large quantities and, being water soluble, is well suited for industrial, 
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large scale applications. Despite the electrical performance of RGO cannot be 

compared to that of pristine graphene, RGO can be obtained in continuous layers 

on large areas by thermal and/or chemical reduction of GO. Continuous layers 

formed by microscopic RGO sheets showed room temperature mobilities 

amounting between 2 and 200 cm2/Vs for holes and 0.5 and 30 cm2 /V s for 

electrons (i.e. approximately 2 orders of magnitude lower than those observed in 

mechanically exfoliated graphene single sheets, but much higher than the ones of 

state-of-the-art organic semiconductors). 

The electrical macroscopic properties of the composite material and its potential 

utility for organic electronics have been studied by fabricating and testing FETs 

based on different ratios of P3HT and RGO. On microscopic scale, a thorough 

characterization of both RGO sheets and RGO–P3HT blends has been obtained by 

Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), optical 

reflection and fluorescence microscopy, and Kelvin Probe Force Microscopy 

(KPFM).  

 

 

 a  b 

 c  d e 

 
Figure 4.3 a,b) SEM images of GO sheets obtained by spincoating of solutions at two different 

concentrations, c,d,e) SEM images of GO sheets obtained at different magnifications. 
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In OFET is very important to have a good control of interface between dielectric 

and active layer so the uniformity and coverage of RGO sheets on surface is a very 

important aspect. 

Thanks to the high processability of the GO, not only the average sheet size could 

be controlled using different sonication times fig. 2.2; but changing the 

concentrations of graphene oxide solutions it is possible by spincoating to tune the 

density of flakes on substrate (fig. 4.3a and 4.3b) and it is also possible to yield 

uniform deposition on large areas, ad example in fig. 4.3c-4.3d-4.3e we can see 

some images of graphene sheets obtained at different magnifications in the same 

sample. 

Figure 4.4 shows AFM and KPFM images of single sheets of GO before (a and b) 

and after (c and d) thermal reduction at 700 °C. 

 

 
 

Figure 4.4 a, b) AFM and corresponding KPFM images of GO sheets deposited on SiOx substrate. 

c,d) AFM and corresponding KPFM images of the RGO sheets. 
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The sheet thickness was estimated by AFM before and after the reduction. Fig. 4.5 

shows the evolution of the thickness measured by AFM on GO and RGO samples 

with increasing number of layers.  
 

 
Figure 4.5 Thickness of the GO (□) and RGO (■) sheets of mono- and multi-layers measured by 

AFM. 
 

The GO monolayers show a thickness of 1.0 ± 0.1 nm, in good agreement with 

previous results (see fig.2.3). The thickness of RGO monolayer amounted to 0.5 ± 

0.2 nm, in line with the expected theoretical value (0.35 nm).2  

Electrical characterization of GO and RGO single sheets was also performed with 

KPFM, a technique which allows to ‘‘map’’ electric potential of nanometric 

structures with a lateral resolution of few nm, and a potential resolution of few mV. 

KPFM can be used routinely to measure the work function (WF) of bulk materials, 

and to characterize working devices such as FETs, light-emitting transistors and 

solar cells.3-5 While, when measuring bulk materials and macroscopic objects, the 

surface potential (SP) measured by KPFM corresponds to the WF of the material, 

care should be taken when interpreting the potential of nano-sized objects,6 

especially for very thin layers like graphene, where influence of the underlying 

substrate is significant. In this case, the measured SP is not simply the WF of the 

monoatomic layer (in a freestanding graphene layer the Fermi energy coincides 

with the conical points), since the contact with metallic (or insulating) substrates 

can alter its electronic properties (i.e. the measured WF) significantly.7 Hence, the 
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measured value should be considered as the result of a complex interplay between 

the electrical properties of graphene and of the underlying substrate, in addition to 

a variety of interfacial properties that can arise due to interface dipoles, band-

bending effects, etc. 

For this reason, the measured WF of graphene sheets mentioned in the following 

text should be considered as the work function of the sheet–substrate system, i.e. 

the difference between the potential measured for a sheet deposited on the substrate 

and the one of bulk graphite.  

Figure 4.6 compares the trends observed in the effective WF for different layer 

thicknesses of GO and RGO deposited on SiOx. The SP of GO mono- and bi-layers 

has been measured on a batch of 4 different samples, and shows a large variation of 

the measured values (blue bars in fig. 4.6) in the range between -50 and 80 meV, 

with respect to the reference value (i.e. the WF of a bulk substrate of highly 

oriented pyrolitic graphite). These large variations can be ascribed to (i) the 

electronic properties of GO which, being an insulator, does not possess a well-

defined work function; (ii) the varying percentage of oxygen present in GO 

influencing its electronic properties; and (iii) the high hydrophilic nature of GO 

promoting relevant adsorption of water on its surface. 

 

 
Figure 4.6WF of RGO mono- and multi-layers as measured by KPFM (■) and the reference value 

measured on bulk, highly oriented pyrolytic graphite (□). The range of values obtained for mono- 

and bi-layers of GO before reduction are also shown in shaded blue. 
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Conversely, the SP of RGO has been estimated with a high degree of precision, i.e. 

it does not exhibit a big discrepancy on different samples, and it features a distinct 

increase with the number of layers converging to the graphite value. The measured 

WF of RGO averaged out on 4 batches scatters within the range of 10 meV, a 

spread which is much smaller than the one observed for GO. 

By using relatively high concentrations of GO solutions, it was possible to obtain 

and characterize mono-, bi- and tri-layers. In particular the measured WF 

difference between the bi- and the mono-layers of RGO amounts to 120 ± 10 meV. 

This value is in good agreement with the WFs reported for epitaxial graphene 

sheets.8 Unfortunately, it was not possible to follow the evolution of WF for a 

higher numbers of layers because of the difficulty in quantifying the number of 

layers present in a certain area when the substrate is completely coated, and thus 

not visible. Overall, the measured WF of graphene can vary up to 250 meV going 

from one to infinite layers (bulk graphite).  

Raman spectroscopy of the GO and RGO has been also performed, and the results 

have been compared with the spectrum of conventional, ‘‘scotch tape’’ graphene. 

 

 
 
 

Figure. 4.7.The Raman spectra of GO, RGO and exfoliated graphene in the region of D- and G-

band. The spectra were normalized to the G-band intensity.   
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To better understand the fine structure of the graphene layer, we performed Raman 

spectra of the GO and RGO, together with the spectrum of “conventional” 

exfoliated graphene (fig. 4.7). The latter exhibits a sharp G-peak, while GO and 

RGO show wide D- and G-bands. We find that the Gband of both GO and RGO is 

shifted to higher frequencies with respect to the G-peak of exfoliated graphene, and 

this G-peak shift is usually related to doping by chemisorption or physisorption of 

molecules, ions, functional groups or metal particles, that can take place in the 

fabrication process of the GO.  

Moreover, we find that the overall Raman peak intensities are decreased after the 

thermal treatment, suggesting a partial loss of carbon during reduction (in fig. 4.7 

the spectrum of RGO has been multiplied by a factor ~ 2 in order to equal the G-

peak intensity of the spectrum of GO). After reduction we observe a small increase 

of the intensity ratio I(D)/I(G) (from 1.30 to1.35), finding a similar trend the area 

ratio A(D)/A(G). In fact during reduction GO undergoes structural changes due to 

the loss and rearrangement of oxygen and carbon atoms, which affect the Raman 

response. Given that the reported measurements were performed on large sheets of 

GO and RGO, with lateral dimensions larger than the laser spot. 

As expected, the GO presents wide D- and G-bands, indicative of large disorder. 

The same features are observed in RGO indicating that the reduction process 

creates a material truly different from both graphene and GO. This RGO material 

has the same irregular structure of GO, as indicated by Raman; though, differently 

from GO, it features a large number of highly conjugated, conductive paths, as 

confirmed by charge transport measurements. 

The RGO can act as a fluorescence quencher for organic materials,9 and this effect 

has been recently exploited, by us and other groups, to enhance the visualization of 

graphene sheets using thin layers, even monolayers, of organic molecules 

interacting with single or multiple graphene or graphene oxide sheets.9 fig. 4.7 

show the fluorescence images of a RGO–P3HT sample prepared using very large 

sheets on 300 nm thick SiO2 to allow direct optical visualization.   
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Figure. 4.8. Fluorescence images showing a RGO sheet on 300 nm thick SiO2, covered by a layer 

of P3HT. 

 

The fluorescence quenching of graphene and graphene oxide with conjugated 

polymers (included P3HT) is a well known process which has been studied in 

different works.10,11 The fluorescence quenching confirms visually the good 

interaction between the two materials. Please note that large, mesoscopic sheets are 

shown in fig. 4.8 only to give a visual evidence of RGO– P3HT interaction. 

Instead, much smaller RGO sheets, having a typical size of few hundreds of nm, 

have been used in the samples for both FET and KPFM measurements, in order to 

have a very uniform coverage with respect to the adopted FET channel lengths of 

10 and 60 mm.   

RGO–P3HT blends with different RGO sheet densities have been prepared by (i) 

spin-coating GO solutions having 4 different concentrations (0.25, 0.5, 1 and 2 g/L) 

on the SiO2 surfaces, (ii) reducing the GO to RGO, and (iii) coating with P3HT 
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Figure. 4.9. Schematic representation of the various phases present in a realization of RGO–P3HT 

based device.      
 

After coating, the RGO sheets could still be identified through the P3HT layer by 

both AFM and KPFM (fig. 4.10a and 4.10b), although with a lower resolution with 

respect to the bare RGO. 
 

 
 

Figure. 4.10 a) AFM and corresponding b) potential images of RGO sheets deposited on native 

SiOx substrate, and covered by a thin film of P3HT. 
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Figure 4.11 shows the statistical trend of the evolution of GO surface coverage as a 

function of the concentration of GO in solution, as measured by SEM and AFM, 

only the latter being able to detect the presence of single and multi-layers. In all the 

topographic images, bare substrate and GO sheets have been unambiguously 

distinguished using image processing, by applying a threshold filter to the data 

recorded on AFM and SEM images. This analysis revealed that, due to the high 

affinity of GO for the substrate, the area coverage increases linearly with GO 

concentration, allowing a good control of the RGO surface density. At 

concentrations up to 0.5 g/L, almost all the sheets result to be monolayer thick, 

with basically no presence of double layers. This is due to the chemical nature of 

GO sheets, which in solution do not interact significantly with each other, but 

interact easily both with water molecules and the highly hydrophilic silicon oxide 

substrate.  

 

 
Figure 4.11. Area coverage vs. solution concentration, as measured by SEM (total coverage, ▲) 

and AFM (mono-■ and bi-layers ●). 

 

Even at the highest concentrations tested (2 g/L), only a 20% of surface is covered 

by bilayers, and basically no tri- or multi-layers are observed. 
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The charge transport of the RGO–P3HT having different RGO contents has been 

tested in FET architectures with 225 nm SiO2 gate oxide, patterned with source–

drain Ni electrodes.  

Transistor Architectures: 

Silicon substrates (n-type, resistivity 0.01-0.02 Ohm�cm) have been used for the 

fabrication of the transistors. A 225 nm thick silicon dioxide (SiO2) has been 

thermally grown after standard RCA cleaning processes of the native wafers. 

Interdigitated transistor devices have been fabricated defining source-drain 

electrodes by means of standard lift-off processes Channel lengths of 10 and 60 µm 

have been used, with a constant width-to-length ratio (W/L) of 200. 

 

 
Figure 4.12. SEM image of the transistor architecture used for FET measurements (W/L = 200, 

channel length of 60 µm) 
 

Both bare silicon oxide substrates and RGO sheets covered substrate have been 

utilized for the FETs fabrication. Electrodes have been realized by e-beam 

evaporation of 25 nm thick Ni layer. Silicon substrates have been used as bottom 

gate electrode. The P3HT thin film, ~30 nm thick, has been then spin coated on the 

substrates.  
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The FET performance has then been compared with the one of devices 

incorporating only pure P3HT. 

 

       
Figure 4.13. Typical (a) output and (b) transfer characteristics for a RGO + P3HT FET device with 

a 23% coverage area. All measurements have been performed in vacuum. 

 

As a reference, in Fig. 4.13 a and b the output and transfer characteristics for a 

RGO–P3HT FET with an area coverage A = 23%  are reported. 

Fig. 7 shows the change in mobility observed by increasing the RGO content. For 

an area coverage A = 10% , the presence of sparse, isolated RGO sheets yields only 

a slight increase in mobility (as compared to pure P3HT FETs), but there is an 

improvement of ION/IOFF ratio from 3 103 to ≈ 1 105 due to the improvement of 

ION current (not shown). For A = 23%, the improvement in hole mobility is larger, 

and the sheets are still spaced apart, with no percolation. Noticeably, in this case 

the ION/IOFF ratio is slightly better than the one of pure P3HT. 

The most relevant changes take place at A = 42%, where the RGO network is close 

to its percolation limit. For this coverage, some of the devices show relevant charge 

transport even before P3HT deposition (red circles in fig. 4.14). By approximating 

the RGO sheets as randomly deposited disks, theory predicts the onset of 

percolation for a coverage A z ≈ 67%.12 The presence of percolation at A = 42% 

can be ascribed to (i) the above mentioned tendency of sheets to avoid overlapping 

and bilayer formation, while the theoretical model used is based on a completely 
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random deposition of the disks, and (ii) the irregular shape of the graphene sheets, 

whose form is usually more similar to a polygon than to a disk. 

 

 
Figure 4.14. Hole mobility vs. area coverage for RGO (●) and RGO + P3HT FETs (■). Continuous 

lines are shown as a visual guide.  

 

Even without including in the statistics the directly percolated RGO samples, the 

hole mobility of RGO–P3HT blends at A = 42% is anyhow significantly higher 

compared to the pure P3HT (A = 0%), while the ION/IOFF ratio (≈ 2 103) is 

comparable to the one of pure P3HT. 

For A = 81%, the RGO layer is completely percolated, and all devices show the 

charge transport even without P3HT. Nonetheless, the addition of P3HT improves 

greatly the charge transport, although the ION/IOFF ratio is very low (≈ 2, i.e. the 

transistor is always on). 

Overall, the addition of RGO layers to P3HT based FETs allows to tune the charge 

transport by increasing the ‘‘effective’’ mobility of the active layer; however, over 

a certain threshold, the conduction through the RGO is predominant, and the 

current cannot be significantly modulated by the gate, in line with previous 

observations in carbon nanotube–P3HT based FETs.13 
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Interestingly, at intermediate coverage of RGO it is possible to improve mobility 

without diminishing the ION/IOFF, thus making it possible to have a composite 

material performing better than the pure P3HT. In these cases, RGO sheets act as 

preferential paths through which charges can travel much better than in pure P3HT, 

reducing the effective channel length L of the transistor. 

The absence of continuous percolation paths connecting RGO sheets is essential in 

order to have charges passing through pure P3HT domains, thus maintaining a gate 

effect to the current through the junction. 

The cost of this reduction of effective channel length is that, in a bi-component 

system, charges will have to face several injection barriers, hopping continuously 

from P3HT to RGO and vice versa. Though, the WF values measured by KPFM on 

Ni source–drain electrodes, RGO monolayers on SiO2 and P3HT resulted to be 

5.07, 4.75 and 4.80 eV respectively. These values are measured on both grounded 

electrodes or by applying 2 V of potential difference between drain and source 

electrodes. These electrical polarization values are low enough to neglect the WF 

tuning of RGO due to the electric field-effect. 

It should be noted that the WF of organic semiconductors like P3HT depends 

significantly on molecular packing, which in turn depends on other parameters 

such as deposition conditions and molecular weight. The value obtained by KPFM 

measurements for the P3HT is in fair agreement with the HOMO of P3HT 

estimated by cyclic voltammetry measurements, i.e. 4.9 eV.  

 

 

 
 

Figure 4.15. Schematic representation of the energy diagram and charge transport in the device. 
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The WF of P3HT is close to the RGO value allowing us to neglect the contact 

resistance at their interface, strongly suggesting that the charge injection barrier at 

the RGO–P3HT interface is much smaller than the one present at the source–drain 

contacts, as shown in fig. 4.15, which is a schematic representation of the charge 

transport across the RGO–P3HT blend reporting the experimental WF values as 

measured by KPFM. The presence of possible charge injection barriers or 

resistance series has been tested by performing KPFM measurements along the 

channel of working FETs.   

Figure 4.16 shows the potential profiles recorded by KPFM along the channel of 

working FETs (VD = 2 V, VG = 0 V) based on RGO–P3HT, with increasing 

coverage of RGO. FETs having a channel length of only 10 µm have been tested to 

allow simultaneous measurements of the potential on the active layer and on 

source–drain electrodes with a single scan. 

 

 
 
Figure 4.16 Averaged KPFM profiles taken along the channel of FETs based on RGO–P3HT, 

obtained by GO solutions of increasing concentration. The curves have been shifted for clarity. 
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For A = 10%, the voltage decays faster at the source–drain interfaces, indicating a 

relevant contact resistance between Ni and the blend. It is possible to observe that 

with the increasing content of RGO the active blend material becomes more and 

more conductive, and the voltage drop becomes more localized at the source 

interface, with lack of significant voltage drops within the active layer.14 

Thus far we have focused our attention on the effect of discontinuous RGO layers 

on the charge transport in P3HT.  

We can also compare the effect of P3HT on highly interconnected RGO layers, 

where percolation paths already exist, and thus the current passing through the 

organic semiconductor layer will be minimal with respect to the one transported 

through the RGO layer. Figure 4.14 provides evidence that even for RGO coverage 

as high as 82%, the effect of a P3HT is beneficial, improving the hole charge 

mobility by a factor of 3. The obtained mobility is much higher than the value 

obtained by the percolation theory calculated as the harmonic average of the 

mobilities of pure P3HT and RGO weighted by the coverage,15 indicating a 

synergic effect of the two layers which favours the hole transport. 

Such an evidence is shown in the transfer curves graphed in fig. 4.17, measured for 

a continuous RGO layer (A = 82%) with (red line) and without (black line) a P3HT 

overlayer. RGO exhibits an excellent conductivity both for electrons and holes, and 

percolated RGO layers show significant drain current at both positive and negative 

gate voltages.  

With the addition of a P3HT overlayer we observe that the electron transport 

properties do not change significantly, while there is a substantial improvement of 

hole transport (VG < 0), which can be due to a beneficial effect of the organic 

polymer on the transport around defects and bottlenecks in RGO layer, e.g. sheet 

vacancies and defects. In the FET devices, holes or electrons are transported 

depending on the gate voltage used. P3HT is a hole transporter, and thus can 

improve the charge transport only for holes transport, at negative gate bias, as 

observed experimentally. 
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Figure 4.17 Transfer curve for a continuous RGO layer (A = 82%) reporting the drain current in the 

linear regime (VDS = -10 V) with (red line) and without (black line) a P3HT overlayer.   

 
In conclusion, chemical exfoliation, solution processing and successive reduction 

of graphene oxide allow for the easy preparation of conductive hybrid RGO–P3HT 

layers featuring a good control of the density of the graphene sheets and thus the 

presence or absence of percolating paths for charge transport. The preparation 

technique used yields good, tunable and uniform coverage of graphene sheets on 

large areas, with basically all sheets present as monolayers, and poor sheet–sheet 

interactions even for relatively high coverage.  

The effective WF of these RGO multi-layers depends significantly on the number 

of layers, and can be varied by values of up to 250 meV going from single sheets to 

thick layers, as measured by KPFM.  

These layers can be used as a substrate for the deposition of organic 

semiconductors, modulating different electrical properties of the semiconductor, 

and improving the overall charge carrier mobility within the layer.  
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FETs based on P3HT with different amounts of RGO show significant 

improvements in hole mobility, while electron transport remains unaffected. By 

comparing the charge transport for different RGO coverage, with or without P3HT, 

it is possible to observe that graphene sheets can improve the charge transport in 

continuous P3HT layers by acting as preferential paths for charges, reducing the 

effective channel length and increasing the overall hole mobility. 

Conversely, continuous, fully percolated RGO layers show a certain improvement 

upon deposition of P3HT overlayer, whose exact cause still needs to be elucidated. 

KPFM provided evidence for the absence of significant charge injection barrier 

between the graphene sheets and the P3HT, thus confirming the favourable 

interaction of the two to have good charge transport. 

The interaction of organic molecules with graphene is the subject of intense 

research both for fundamental science and technological applications.  

The approach described in this paper allows to study in a controlled manner the 

charge transport at multiple graphene–organic interfaces, where the interface 

graphene/organic contact area corresponds to the effective graphene surface, and 

the effective path that charges have to travel in graphene and in organic phase can 

be easily tuned. 

This approach can be directly applied to systems different from the P3HT–RGO 

blend described here, to perform a systematic study of charge transport across 

graphene–organic interfaces.    

From a technological standpoint, the results obtained show that the use of 

graphene–organic composites allows to have working FETs with variable 

geometries and channel lengths up to 60 mm, whose performance and 

characteristics (effective charge mobility, ION/IOFF ratio) can be tuned in a simple 

way by changing the concentration of the GO solution employed during the spin 

coating stage.  

Overall, these results indicate that the use of nano-sized graphene sheets as 

additives for organic electronic devices can allow a robust and versatile control of 

device properties. 
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The work present here led to the realization of the article “Charge transport in 

graphene–polythiophene blends as studied by Kelvin Probe Force Microscopy and 

transistor characterization” A. Liscio, G.P. Veronese, E. Treossi, F. Suriano, F. 

Rossella, V. Bellani, R. Rizzoli, P. Samorì, V. Palermo, Journal of Materials 

Chemistry 21, 2924, 2011. 
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4.3 INTERACTION BETWEEN GORED AND NANO-GRAPHENE 

DERIVATIVES 

 

Small synthetic polyaromatic molecules (nano-graphenes, or NGs),  are known to 

physisorb reversibly on graphitic substrates through π-π interactions forming 

ordered adlayers, featuring controlled molecular orientation and order on the 1-100 

nm scale.  

The use of supramolecular interactions, instead of direct covalent functionalization 

of graphene, has the advantage of keeping intact graphene’s sp2 aromatic network, 

without compromising its exceptional charge transport properties.  

Furthermore, the supramolecular and reversible interactions of NG with graphene 

will allow reaching at equilibrium a thermodynamically stable, periodic 

arrangement of NGs on the graphene sheets, with lateral order on a tens of nm 

scale.  

 

 

 
 

Figure 4.18 a) Cartoon of GOH complex formation. b) schematic representation of a graphene layer 

with an hexa-benzo-coronene molecule adsorbed on surface. 

 

We are exploring a “supramolecular” approach to develop a radically new class of 

graphene-based materials, which will combine the excellent electronic and 
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mechanical properties of graphene with the processability and tunability of organic 

semiconductors.  

Discotic materials see section 1.2 and 1.3 (and also some polymer like P3HT) when 

interacting with graphene could i) form well-defined graphene–organic hybrids 

(GOH), where optically/electrically active molecules are arranged in ordered and 

continuous layers on face of graphene sheets (fig. 4.18) and ii) tune the optical and 

electronic properties of graphene thanks to the interaction with these organic 

molecules. 

Preliminary results: we worked with different hybrid materials between RGO and 

Nanographene derivatives, an example is sodium pyrene-sulfonate PSANa   

 

 

 a  b  c 

 d 

 

Figure 4.19  a) AFM and corresponding  b) potential images of RGO - PSANa hybrid system, c) 

Molecular structures of the Pyrene derivates PSANa. d) Schematic representation of sample in a. 

 

Figure 4.19 show AFM and corresponding potential images of RGO sheets 

deposited on native SiOx substrate, and covered by a thin film of PSANa. Pyrene 

derivative was deposited on RGO flakes from methanol solution by spincoating. 

Different morphology was obtain after deposition of PSANa by drop casting of 

methanol solution on thin film of RGO, fig. 4.20 a show that pyrene derivatives 

form aggregates tens of nm thick, due to dewetting of solutions during deposition.     

The charge transport of the thin film of RGO after deposition of PSANa has been 

tested in FET architectures with 225 nm SiO2 gate oxide, patterned with source–

drain Gold electrodes.  
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Figure 4.20 c,d show transfer curve for a continuous film of RGO after deposition 

of pyrene derivative and the effect of light illumination on the drain-source current 

of a PSANa -doped RGO field-effect transistor. 

 

 

 a 

 b 

 d  c 

  

Figure 4.20 a) AFM image of PSANa aggregates formed on RGO thin film  b) Schematic 

representation of  the device. c)  Transfer curve (IDS, VGS) of the same Pyrene-doped RGO field-

effect transistor (VDS = - 100 mV), d) Effect of Light illumination on the Drain-Source current of a 

Pyrene-doped RGO field-effect transistor. 

 

This system is still under study, we are monitoring the effect of different 

nanographenes (pyrene perylene exbenzocoronene etc.) derivates on the charge 

transport of graphene. 
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