
AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

Informatica

Ciclo XXIII

Settore Concorsuale di afferenza: 01/B1

Settore Scientifico disciplinare: INF/01

Enabling a direct path from end-user specifications to
executable protocols in a biology laboratory environment

Presentata da: Alessandro Maccagnan

Coordinatore Dottorato Relatore

Prof. Maurizio Gabbrielli Prof. Tullio Vardanega

Se hai la febbre dentro falla crescere,

metti in crisi te stesso

e le persone che ti sono accanto

T.V.

iv

Abstract

Biomedical analyses are becoming increasingly complex, with respect to both

the type of the data to be produced and the procedures to be executed. This

trend is expected to continue in the future. The development of information

and protocol management systems that can sustain this challenge is there-

fore becoming an essential enabling factor for all actors in the field. The

use of custom-built solutions that require the biology domain expert to ac-

quire or procure software engineering expertise in the development of the

laboratory infrastructure is not fully satisfactory because it incurs undesir-

able mutual knowledge dependencies between the two camps. We propose

instead an infrastructure concept that enables the domain experts to express

laboratory protocols using proper domain knowledge, free from the incidence

and mediation of the software implementation artefacts. In the system that

we propose this is made possible by basing the modelling language on an

authoritative domain specific ontology and then using modern model-driven

architecture technology to transform the user models in software artefacts

ready for execution in a multi-agent based execution platform specialized for

biomedical laboratories.

vi

Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 The scenario of Biomedical laboratories 1

1.2 Biomedical protocols . 6

1.2.1 Real world protocols: an example 8

1.3 Vision and interpretation . 10

1.3.1 Long term vision . 11

1.3.2 Interpretation . 15

1.4 Summary . 18

2 Problem analysis 19

2.1 Laboratory Information Management Systems 20

2.1.1 LIMS in Academic . 21

2.1.2 Lessons learned from commercial LIMS 24

viii Contents

2.2 Ontology . 28

2.2.1 Ontology in modern times 28

2.2.2 Definitions . 30

2.2.3 Upper ontologies . 31

2.2.4 Ontologies in biology 33

2.3 Model-driven engineering . 41

2.3.1 Definitions . 41

2.3.2 Models and Ontologies 45

2.3.3 Workflows . 49

2.4 Multi-agent system . 55

2.4.1 Definitions . 55

2.4.2 Agent-based workflow management system 57

3 Proposed solution 61

3.1 Architecture . 61

3.1.1 Front-end and back-end of our proposed architecture . 64

3.2 Front-end: exploiting domain knowledge in a MDA style . . . 65

3.2.1 Ontology . 68

3.2.2 Metamodel . 69

3.2.3 BioCOW metamodel 70

3.2.4 Implementation . 78

3.3 Back-end: translating and executing protocols 81

3.3.1 Model-to-code transformation 81

3.3.2 Execution platform . 82

3.4 Results obtained for each element of the system 96

4 Evaluation 99

4.1 Specification language . 100

Contents ix

4.1.1 Evaluation . 102

4.2 Bioinformatic pipeline . 105

4.2.1 Pipeline: alignment of RNA sequences 105

4.2.2 Development . 106

4.3 Demo case: paternity test . 109

5 Discussion and conclusion 113

A List of scientific publications 119

B Example of drivers 121

B.1 Command line driver . 121

B.2 BiomexNX Driver . 124

C List of abbreviations 133

Bibliography 135

x Contents

List of Figures

1.1 Advances in the rate of DNA sequencing 2

1.2 Cost per per Human Genome 3

1.3 Example of a laboratory protocol 9

1.4 Representation of a protocol 11

1.5 The Robot Scientist Adam . 12

1.6 Entities in a biological laboratory 15

1.7 Modelling language, domain specific concepts, runtime sys-

tem, automatic transformation 16

2.1 OBI use case: neuroscience investigation on Macaca fuscata . . 39

2.2 Linguistic layers in MDE . 43

2.3 From PIM to PSM to Code 46

2.4 The ontology-aware meta-pyramid 48

2.5 Linguistic and ontological dimensions in the four meta-layers. 49

2.6 Core BPMN Elements . 52

2.7 XPDL Process metamodel . 54

2.8 Abstract representation of an artifact 57

2.9 Workflow metamodel of WADE 59

xii List of Figures

3.1 Architecture of our proposed solution 66

3.2 Relation between OWL, Ecore and XSD in BioCOW meta-model 71

3.3 Composition of the BioCOW metamodel 74

3.4 Portion of the class diagram of the BioCOW meta-model . . . 77

3.5 Principal constructs used in BioCOW 79

3.6 Layers in the Execution platform 83

3.7 XML schema for an Action . 85

3.8 The ExecuteActionW SubFlow that encapsulate the execution

of actions . 88

3.9 Layers of the Device Agent . 91

4.1 Protocol . 103

4.2 Bioinformatic pipelines . 108

4.3 The protocol formally describing the Paternity Test 109

4.4 The PCR subprotocol of the paternity protocol 111

List of Tables

2.1 Main needs of a modern LIMS. 26

2.2 Technical requirements. 27

3.1 Mapping between XPDL and BFO/OBI. The relevant con-

cepts of XPDL are mapped with concepts from BFO and OBI. 73

3.2 Different classes of agents in our runtime platform. 89

xiv List of Tables

Listings

3.1 XML document for a centrifugate action 86

3.2 Example of a method annotated with an @Action tag 92

B.1 Command line driver. 121

B.2 The resulting “Action” of the “execute” method. 123

B.3 Biomek NX Driver. 124

xvi Listings

Chapter 1
Introduction

1.1 The scenario of Biomedical laboratories

Biomedicine and life sciences in general have been revolutionized by the in-

troduction of high-throughput technologies. A new era, characterized by the

so called “-omics” disciplines, has begun more than a decade ago. Nowadays,

the “new” generations of high-throughput technologies succeed one another

at increasing pace, in particular in the field of biomolecular analysis. DNA

sequencers of the current second generation are able to produce frighteningly

large amounts of data, in the order of the terabyte, in a single experiment.

The coming next generation is expected to raise the bar by 1 or 2 orders of

magnitude [94]. In figure 1.1 we can see the exponential trend observed in

the volume of data produced by the sequencing methodologies.

High-throughput technology has contributed to the large-scale studies on

the characterization of populations of biological entities [71]. A variety of

“-omics” disciplines, such as genomics [122], transcriptomics [23], proteomics

[52] and metabolomics [57, 110], have begun to emerge, with their own sets of

instruments, techniques, reagents and software. The characterization of the

2 Introduction

Figure 1.1: Advances in the rate of DNA sequencing over the past 30 years and

into the future. Source: Stratton et al. [118]

“-ome” produces huge amount of data that would be impossible to process

without specialised support from Information Technology.

Such a scientific and technological revolution is having a large impact on

our society, life and health. Innovative tools for environmental, food and

animal analysis based on the said “-omics” technologies are increasingly put

into play. Medical analysis, diagnosis and therapy equally benefit from high-

throughput discoveries and techniques. The advent of personalized medicine

is already in sight and regenerative medicine is no longer a far dream. In

figure 1.2 we can see the drop in of the cost of sequencing per genome. The

diagram clearly shows the exponential decreases of the prices, especially in

the last five years.

The work of life scientists is also rapidly changing. At present a re-

searcher deals not only with laboratory equipment and in vitro experiments

1.1.1 The scenario of Biomedical laboratories 3

Figure 1.2: Cost per Human Genome. Source: http://www.genome.gov/

sequencingcosts/

but also with software and web resources, i.e. in silico experiments. Sci-

entific protocols include a very broad spectrum of activities (whether manual

or automated) to be executed at the work bench and/or on computer sys-

tems. Computers play a central role in data production, collection, storage,

hypothesis formation and experimentation [87]. Several sectors of science are

becoming largely automated [17] and this aspect has been highlighted by the

emergence of “e-Science” [42].

However, to reap the benefits of computer systems and consequently of

automation, it is essential that scientists change the way in which scientific

knowledge is described, reported and stored. In fact, two of the problems

http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/

4 Introduction

in contemporary life science research are the interpretation and the repro-

ducibility of published experimental results. Hence, there is urgent need for

a formal representation of scientific knowledge, including procedures (e.g.,

laboratory protocols, bioinformatic workflows).

Laboratory protocols and experimental methodologies are indeed an in-

tegral part of research in life sciences. The way in which protocols are de-

scribed is decisive in permitting the reproducibility and the successful replic-

ation of experiments. Normally, the detailed notes about the kind of exper-

imental procedures and their order, the type of materials and the variety of

methods used by a researcher are available only inside their research group

or department. The information is then disseminated through the research

community by scientific publications and as a consequence it becomes avail-

able for the use of scientists who may be new to that topic. Every individual

study rests on ad-hoc laboratory protocols, which are usually included in a

“Materials and Methods” section defined only in natural languages.

This way of describing laboratory processes has many limitations that

fatally impair their repeatability, distribution and more importantly auto-

mation. This can lead to ambiguous statements and to vastly arbitrary

interpretations. Textual representation is the best choice for readability but

it does not promote the re-use of parts of the protocol description and does

not give a global, structured vision of the whole process also without high-

lighting the possibly numerous resources necessary for the execution of the

experiment.

A researcher can spend weeks or months to learn, set up, and apply new

experimental techniques or protocols. Thus, a significant amount of time

in the laboratory is spent learning techniques and procedures published by

other research groups. This is a never ending process for experimental life

1.1.1 The scenario of Biomedical laboratories 5

scientists since methodologies and their respective protocols are evolving at

a dramatically fast pace.

At the same time, laboratory automation is becoming increasingly cru-

cial in many fields of experimental research. Many wet-lab activities are

becoming dependent on laboratory robots [74]. Bioinformatics encompasses

automation in all the aspects related to biological data, including data col-

lection, management and analysis. Two levels of formalization are required:

one for the entities and operations deployed in protocols, another for the pro-

tocols themselves that can combine both manually executed and automated

procedures.

For the first level of formalization we use the power of the Ontology [59].

Ontology is one of the strategies for the structured and formalized represent-

ation of a given domain knowledge in a formal way, thus aiding in removing

ambiguity and redundancy, detecting errors and facilitating automated reas-

oning. Ontologies describe the entities of the specific domain but do not

specify how these entities should be used and combined.

The second level, laboratory procedures, could be structured using the

workflow metaphor [101]. A workflow is a representation of a sequence of op-

erations, declared as the work of a person, a group of persons, or machines.

Workflows enable the description and the orchestration of complex processes

in a visual form, capturing human-to-machine interactions within those pro-

cesses. Several disciplines adopt workflow systems for the automation of data

processing through a series of processing stages.

Biomedical laboratories play a key role in such a scenario, as places where

scientific discoveries are enabled and routine analyses are carried out. Auto-

mation and modern technologies in laboratories, besides directly enabling

the “big sciences” are also indirectly catalysing new science, discoveries and

6 Introduction

innovation. In fact, they release domain experts from routine activities that

would otherwise keep them occupied, preventing them from attending to

more scientifically relevant work. Extremely specialized devices are able to

perform routine activities in a fast, precise and reliable way. We may for

example consider liquid handlers which can dispense nano-volumes of liquid,

or robotic devices capable of moving samples around different locations.

1.2 Biomedical protocols

Several on-line resources are available for retrieving information about life-

science protocols and experiments. A protocol could be defined as a pre-

defined written procedural method in the design and implementation of ex-

periments” 1. Since 1997, the Science Advisory Board (SAB) [14] has been

working to the goal of improving communications between biomedical scient-

ists and suppliers of laboratory products and services. SAB also maintains

an extensive database of categorized by techniques.

Protocol-Online [13] appeared in 1999 on the web as a database resource

for research protocols in a variety of life science fields such as cell biology,

molecular biology, developmental biology, and immunology.

In 2004, the Nature Publishing Group (NPG) launched Nature Methods

[9], a monthly research journal on novel methods and significant improve-

ments to laboratory techniques in the life sciences and related areas of chem-

istry. In addition, Nature Methods includes a Protocols section describing

established methods written using ’bench terms’.

In 2006, JoVE [4] started to publish on-line video-protocols. The user

is not required to read through a written protocol but can simply watch a

1http://purl.obolibrary.org/obo/OBI_0000272

http://purl.obolibrary.org/obo/OBI_0000272

1.1.2 Biomedical protocols 7

video. Each video article includes step-by-step instructions for an experi-

ment, a demonstration of equipment and reagents, and a brief discussion,

with experts describing possible technical problems and modifications [76].

In the same year, Nature Protocols [10], became available as a cutting-

edge on-line journal for biological and biomedical protocols. Protocols, writ-

ten in natural language, are organized into logical categories so as to be

easily accessible to researchers. They are presented in a ’recipe’ style provid-

ing step-by-step descriptions of procedures that users can take to the lab

bench and immediately apply to their own research.

As an example of a protocol for in silico experiments, Huang et al. [70]

describe how to use the DAVID bioinformatic resources for the analysis of

large gene lists derived from high-throughput genomic experiments, includ-

ing how DAVID modules can help users to extract biological meaning from

the given gene list and how individual modules should be used either inde-

pendently or jointly. In that way the reader can find the procedure easier to

follow to reproduce the study.

The approach used for describing a computation procedure is also adopted

for laboratory protocols. For instance, the protocol suggested by Fiegler

[51] is organized into several sections; first, a list of materials used in the

experiment including equipment, materials and their set up is provided. The

second section is a step-by-step description of the methodology used. Critical

steps that must be performed in a very precise manner and all toxic or

harmful chemicals are highlighted. These warnings are tagged by the heading

Critical step and Caution.

Unlike the articles in the previously cited journals, in Nature Protocols

the author of a manuscript is also asked to report the timing and possible

troubleshooting in order to give an idea of the duration of the procedure and

8 Introduction

on how to troubleshoot the most likely problems. Writing protocols using the

same pre-defined template will help understand the procedure, as well as the

critical steps and implementation of the technique reported in the published

study.

In laboratory protocols there are numerous examples of ambiguous sen-

tences. In fact, statements that can be interpreted in different ways can

introduce uncertainty as to how the procedure should be performed. For

example, the instruction “Remove the supernatant and dry the precipitated

DNA briefly before washing with 100 µl of 70% ethanol” introduces an ambi-

guity of the term ”briefly” [51], which may indicate different lengths of time.

It could mean 30 seconds, 5 minutes, 10 minutes or a longer time. The term

“gentle” in the instruction “Transfer slides into a solution of 0.1% sodium

dodecyl sulphate and incubate for 5 min with gentle shaking.” [51] can be

arbitrarily interpreted. This problem could be overcome by providing a single

value or a range of admissible values, depending on the activity performed,

which can help reduce the ambiguity in the meaning of the term.

Must be also noted that the writing style of Nature Protocols is not

intended to facilitate the automation of procedures. A computer machine will

not be able to read it, interpret it and then replicate the original experiment.

1.2.1 Real world protocols: an example

Figure 1.3 shows a real world protocol currently used at the Centro ricerche

interdipartimentale biotecnologie innovative (CRIBI) of Padua. It is written

in natural language (Scientific English) as a subsequent set of actions. The

protocol describes the extraction of plasmid DNA from bacteria cell colture

avoiding contamination by the E. coli genomics DNA [28]. It has been named

mini scale DNA preparation (“miniprep”). Each action is explained with

1.1.2.1 Real world protocols: an example 9

some degree of depth depending on the particular protocol.

Figure 1.3: Example of a laboratory protocol: extraction of plasmid DNA from

bacteria cell colture avoiding contamination by the E. coli genomics DNA (“mini-

prep”) [28].

The figure shows fragment of a protocol as reported in the reference

manual of one of the several kits available for miniprep. Besides the com-

mercial manual, each laboratory has its own methodology and thus its own

protocols.

In step 1 a range is given for g-force centrifugation, but at which point of

the range we could have optimality in the reaction? Further imprecise state-

ments are given, in the number of times of inverting (step 2) or the incubation

time period (also step 2). This could lead to different interpretations and

10 Introduction

consequently lead to the need for some training to determine which condi-

tions are most suitable for a given laboratory. This could introduce noise in

the process and an suboptimal use of resources.

The cited protocol is targeted to molecular biologists that work with

nucleic acids, therefore the protocol is addressed for an experimenter with a

specific domain knowledge. However, the circumstances does not always fit

this situation. A misinterpretation could be taken over by a researcher new

to the field.

Figure 1.4 shows another representation of the miniprep protocol. We

can see the steps from 1 to 8 of the protocol. The representation helps the

researcher in the execution of the protocol. The protocol is depicted as a list

of actions in which every step is an action on his own. This representation

is naturally near to the workflow metaphor.

1.3 Vision and interpretation

To satisfy the flexibility needs of experimental scientists and laboratory per-

sonnel, who are already faced with frequent next generations of technology, a

suitable Laboratory Information Management System (LIMS) should permit

a very easy and intuitive design and customization of laboratory workflows

by domain experts. To this end we want to develop a general purpose LIMS

that can be easily programmed by providing formal representation - the pro-

gramming language - of laboratory workflows. On the other shore we have

the laboratory domain expertise usually expressed in “recipe-like” protocols,

expressed in natural language, with all the drawbacks discussed in [80].

1.1.3.1 Long term vision 11

Figure 1.4: Representation of a protocol.

1.3.1 Long term vision

The long term result aim of this work is to improve the quality of work and

thus the quality of product achieved by the biologist. The envisioned picture

is one in which the biologist is able to concentrate on the research goal rather

than on side details. In our scenario we assume that a scientist should be able

to declare which results he/she wants to obtain starting from a certain set of

conditions (e.g which data he has already obtained, which samples to work

on and so forth). A software able to understand this set of conditions will

therefore be able to make some reasoning upon those conditions. Thereafter

12 Introduction

it will be able to produce an experiment that addresses the biologist needs.

Afterwards the same software will be able to run the desired experiment

employing and interacting directly with the instrumentation provided by the

laboratory.

Figure 1.5: The Robot Scientist Adam. Adam is able to independently design ex-

periments to test hypotheses. The hardware used to build Adam is: a) an automated

20C freezer; b) three liquid handlers; c) three automated +30C incubators; d) two

automated plate readers; e) three robot arms; f) two automated plate slides; g) an

automated plate centrifuge; h) an automated plate washer; i) two high efficiency

particulate air filters; j) a rigid transparent plastic enclosure. Source: [74]

Elements of this vision has already been pursued by the Adam robot

[74]. Figure 1.5 depicts the architecture of the Adam robot. Adam is able to

automatically design experiments that test hypotheses on the domain of the

1.1.3.1 Long term vision 13

yeast. The duty cycle of Adam includes the following step:

1. selection of specified yeast strains;

2. inoculation of strains into plate wells;

3. harvesting of defined quantity of cells.

. Thanks to these basic operations and to its specialised hardware and soft-

ware, Adam is capable of designing and performing more than a thousand

new yeast strains every day.

Our long term vision is the same as Adam. We would like to extend the

capabilities of the general case of Adam. In our vision we break the problem

down in some sub-problems that we aim to solve:

1. the ability to declare starting points;

2. the ability to declare goals;

3. the ability to formulate experiments as trajectories to move from a

starting point to a goal.

Problems of this kind are known in computer science fall in the realm of

automated planning [103]. Goals and starting points are similar objects. A

way to describe them is to declare a set of conditions [115].

An experiment is a set of actions. Every action takes in input a set of

conditions and transforms them into another set of conditions. An approach

that tries to formulate actions in that way is described by [114]. An ac-

tion could therefore be automatically selected by matching input and output

conditions.

In order to automatically create experiments, a repository of available

actions should be created. Actions could be described at various levels of

14 Introduction

granularity. An existing commercial kit could be regarded as coarse grained

action for a particular task. Typical commercial kit includes reagents and

detailed instruction for using it. The Plasmid DNA Purification is supplied

by MACHEREY-NAGEL2. If we break the kit down in finer grained parts

then, individuals actions became simpler, like for example a single step in

figure 1.3.

In summary, in order to automatically create a protocol we need: a start-

ing point; a goal; and a repository of predefined actions. The resulting

protocol will be a path of actions which connect the starting point to the

goal.

As seen in section 1.1, keeping track of the produced data is mandatory

irrespective whether the execution of the protocol is manual or automatic.

The system should be able to relate the environment with the procedure

so as to ensure that the application constraints are respected. In case of

malfunctioning recovery strategy must be carried out. As for example the

system could decide to stop the execution in advance and to put the samples

in a safe state.

In our domain of interest the environment is highly heterogeneous. The

system that is in charge of the execution must be able to cope with this. A

good strategy on this end is to develop a distributed system and to interact

directly with the involved resources. In the case that this is not possible

communication with the operator should be provided. The operator in this

way will be able to provide the correct action needed by the procedure.

Our work in this thesis aim at enabling the initial steps of the long term

vision. In particular we address one sub problem, to specify protocols and

to enable their automatic execution.

2http://www.mn-net.com/

1.1.3.2 Interpretation 15

Figure 1.6 shows the principal entities in our environment. In the upper

layer two kind of scientists are depicted. In a biological laboratory a wet-

lab scientist performs experimentation producing data. The data is then

analysed by bioinformatics. Both of them prepare experiments that are then

physically executed using machine on the bottom layer. The work of this

thesis aim to build an architecture that act as bridge of the upper and bottom

layer.

Figure 1.6: Entities in a biological laboratory.

1.3.2 Interpretation

Enacting the vision described above requires a system architecture in which

the biologist (end-user) should be able to express his needs using a language

16 Introduction

close to his own domain knowledge. The system should be able to understand

this language and to process it. The system should be able to execute the

resulting procedures in the laboratory environment.

Figure 1.7: Modelling language, domain specific concepts, runtime system, auto-

matic transformation.

The system we envision is organized in two layers:

1. Front-end

(a) a modelling language that includes conditions, actions, objects;

(b) domain specific concepts arising directly from the laboratory ex-

perience;

2. Back-end

(a) a runtime, heterogeneous, distributed system;

(b) a way to relate procedures with the runtime system.

The front-end in our vision is the layer of the system that interfaces

directly with the end-user. We want a language able to express the flow of

1.1.3.2 Interpretation 17

work of the laboratory procedures (1.a). Such a language should describe

the sequence of actions that constitute protocols as well the objects involved

in those actions. A graphical notation is also desirable as a way to ease the

use of the language.

To be as near as possible to the domain knowledge of the end-user we

want to bring in our language the concepts that directly arise from the labor-

atory experience (1.b). Such concepts could be effectively expressed in some

consolidated and authoritative knowledge base. For this reason we have

pointed our attention to the Ontology community. Ideally we want to use

ontology concepts directly in our language. Objects and actions could be

taken directly from a shared and acknowledged silos of terms. To this end

we want to combine a modelling language able to describe workflows (1.a) and

the domain-specific ontology together, thus shaping a new kind of domain-

specific language.

The back-end takes charge of the implementation and execution com-

plexity hiding them away from the front-end. Such complexity arises from

the laboratory environment. Biomedical laboratories, as we have seen, are

heterogeneous and distributed systems. The back-end (2.a) should take in

account, and resolve, the cited requirements. The rapid evolution of agent-

based systems confirms that the major advantages are significant: as for

examples decentralized ownership of tasks or high degree of potential concur-

rency. They allow the building of highly decentralized, distributed systems,

which correspond to real-world situations [27].

18 Introduction

1.4 Summary

The central point of our vision is the development of a domain specific mod-

elling language enriched with domain specific ontological concepts. Figure

1.7 shows that we want a way for relating the protocol expressed in the

modelling language (1.a and 1.b) in the runtime system (2.a) by means of

automatic transformations. Model-driven architecture (MDA) addresses the

model transformation end of the problem with solid methodologies and tools.

We therefore rely our vision upon MDA body of knowledge. We express

the modelling language using a metamodel directly enriched with a domain-

specific ontology. Then we want to use of automatic transformation (2.b) to

generate artefacts suitable for execution in the runtime system.

The remainder of this dissertation is organised as follows. The relevant

literature around our solution space is discussed in chapter 2. In chapter

3 we describe the architecture or our solution. In section 3.2 we present

the front-end ((1.a and 1.b). In section 3.3 we describe the back-end of our

solution (2.a and 2.b). Chapter 4 propose three use cases of our platform.

In section 4.1 we evaluated the specification language against an end-user.

In section 4.3 we used the platform in a real world environment producing a

real-case biological protocol drawn from an industrial setting. In section 4.2

we focused our effort around a common pipeline used in our laboratories to

analyse genomic data. Finally in chapter 5 we conclude our work recalling

the main result and outlining future work.

Chapter 2
Problem analysis

In this chapter we outline the relevant literature around the solution space

to which we have cast our problem. In section 2.1 we describe the experience

of both industrial and academic LIMS. In section 2.2 we summarize the

main concepts in the area of Ontology, with a view on the Ontologies in

the domain of biology. In section 2.3 we survey the main concepts of MDA;

we also described the relevant standard for business process notation and

interoperability; Finally, in section 2.4 we look at the Multi-agent system

(MAS) literature for the runtime system.

20 Problem analysis

2.1 Laboratory Information Management Sys-

tems

Effective management of information is essential to a laboratory environment

characterized by a wide variety of entities (e.g. biological samples, contain-

ers, locations, devices, experiments, protocols, laboratory personnel) and an

equal large spectrum of activities. Whereas some laboratory personnel staff

still annotate details of experiments into notepads, the trend is to use as

more electronic resources as possible in a paperless fashion [92]. Nowadays it

is fairly common to see tablet computers, PDAs and smartphones in use in

laboratory routine work. For decades now many laboratories have started to

use ad-hoc solutions to manage information. In the nineties the concept of

Laboratory Automation System grouped robots, conveyor systems, machine

vision, and computer hardware and software.

The acronyms ELN, LIS, LIMS are now commonly used in laboratory

environments, to indicate software systems - often commercial - that support

lab operations. An ELN, Electronic Laboratory Notebook, is a software tool

designed to be a replacement of a notepad [48]. LIS, Laboratory Inventory

Systems, refer to software systems assisting laboratories in keeping track of

their collection of biologically relevant materials [129].

A more comprehensive solutions is a LIMS, that ideally should also track

protocols and enable a smooth integration with automatic devices. The ma-

turity of the World Wide Web has provided a good infrastructure to allow

on-line access to the laboratory systems [67].

At present, automated devices combined with automated reasoning and

inference permit to carry out experimentation in a completely automated

fashion [74] enabling the vision of the Robot Scientist [116], able to devise

2.2.1.1 LIMS in Academic 21

new knowledge from the performed experiments and to autonomously plan

and execute the next experiments to be undertaken.

In the laboratory landscape, nevertheless, a general-purpose, easy to con-

figure LIMS is still missing, which could be effectively and efficiently custom-

ized by its end users. Laboratory experts usually do not and perhaps also

should not have computer programming skills. Moreover it would be unwise

and anti-economic to let them develop in-house sophisticated systems. In-

stead, they possess a deep knowledge of their own problem domain and a

clear intuition of the protocols that an information system should implement

and manage.

Actually, a long path stands between the natural language in which labor-

atory protocols can be expressed by domain experts and their implementa-

tion in an information system. This gap typically requires the intermediation

of IT professional (e.g. LIMS designer/developers, software specialists able

to configure LIMS and implement specific protocols). Usually, in-house de-

veloped solutions have rigid built-in protocols and therefore lack flexibility.

New or modified protocols must be directly coded in the programming lan-

guages of the software system. Commercial systems offer more flexibility, but

rely on proprietary standards and information representation. A standard

formalism has not yet emerged to share laboratory protocols among different

systems and in the laboratory community in general.

2.1.1 LIMS in Academic

Laboratories often adopt individually tailored protocols and in research labor-

atories novel strategies are typically explored. Due to the extreme level of

required customization, no suitable LIMS is readily available [60]. The com-

plexity of experiments and the amount of processed samples require more

22 Problem analysis

powerful tools than sophisticated electronic spreadsheets. The available com-

mercial systems are usually too costly and complex. The “one-size-fits-all”

philosophy can hardly be adopted in the laboratory world. Therefore, aca-

demic laboratories often develop their own custom LIMS. In any case im-

portant amounts of time and resources must be employed for the adaptation

when a new system for managing the information of a laboratory is adopted

[22]. Laboratory managers are often engaged in a difficult choice between the

purchase of a costly commercial solution to be customized or the long, and

perhaps eventually even more expensive, development of an in-house solu-

tion. Academic LIMS have been developed in a wide range of application

fields in the life sciences and biomedicine.

Voegele et al. [126] implemented a system based on a client (platform

independent web applications) - server (MySQL relational database) archi-

tecture. Their system has been tailored to a laboratory workflow aiming

at high-throughput candidate gene mutation scanning and resequencing. It

communicates with laboratory instruments and robots, tracking samples and

laboratory information.

PIMS is a LIMS acting as a support platform in the Membrane Protein

Structure Initiative [121]. It tracks essential information on the progress of

cloning, expression, purification and crystallization of membrane proteins.

The authors share the precious lessons learned during the challenging phases

of PIMS integration and adaptation with other initiatives interested in ad-

opting a LIMS as a data center for collaborative efforts.

RGMIMS is a modular, web-based LIMS designed in a rice functional

genomics laboratory [65], that according to its authors, could be easily adap-

ted to support general high-throughput plant research. Its web user interface

enables bar-code reading and rapid data capture and tracking of biological

2.2.1.1 LIMS in Academic 23

resources.

The Emergency Response Management System is a customizable LIMS

designed to support laboratory activities in chemical terrorism emergency

response [104]. It adopts standardized data formats for communicating

between different instrument types from different vendors.

Another example of emergency response infrastructure supported by a

LIMS is that dealing with outbreaks of highly infective bovine disease in

the UK [86]. That system is capable of scanning bar-codes and transferring

information across computer networks.

Screensaver is a free, open source, web based LIMS to manage the inform-

ation needs of a small molecule and RNAi screening facility [119]. Supporting

the storage and comparison of screenings data sets, the management of in-

formation about screens, screeners, libraries and laboratory work requests, it

overcomes the challenges arising when multiple independent research groups

conduct numerous and interleaved screening efforts.

SLIMS is a user friendly, open source web LIMS for genotyping laborator-

ies [125]. Studies searching for susceptibility genes for common complex dis-

eases usually collect thousands of samples generating millions of genotypes.

SLIMS aims to simplify common laboratory tasks and reducing laboratory

errors permitting users to easily generate reports, shareable lists and plate

design for genotyping.

iLAP, a freely available, open source, workflow driven information man-

agement system, aims at closing the gap between ELN and LIMS in the

genome biology community [117]. While LIMS are supposed to manage both

raw and processed data, ELN were developed to record and deal with sci-

entific data and to enable their sharing. iLAP combines experimental pro-

tocol development, wizard-based acquisition of data and high-throughput

24 Problem analysis

data analysis into a single integrated system.

A fundamental issue in the design of a LIMS, and in general in software

engineering, is the volatility of requirements [107]. This problem often ori-

ginates from the developer holding an incomplete knowledge of the domain of

interest and it is exacerbated by the extreme rate of innovation and change in

technology and scientific knowledge. In their ontology-driven LIMS solution

developed for web-based case reporting in medical mycology, Shaban-Nejad

et al. [107] propose an original approach based on software agents for the

analysis and the management of volatile and dynamic requirements.

As clearly highlighted in [107] it is difficult to combine the Information

Technology and computer programming skills necessary to implement and

directly customize a LIMS, with the domain knowledge and laboratory ex-

pertise needed to precisely describe laboratory workflows. Seedpod, a model

driven LIMS with a web-based graphical user interface [60] goes in this dir-

ection, allowing users to create an integrated model of a LIMS without pro-

gramming.

2.1.2 Lessons learned from commercial LIMS

As we have seen, a LIMS must be integrated in a concrete laboratory. In

[85] two different views to build a LIMS are described. One view is to build

a LIMS around a laboratory; the converse is to base the laboratory on the

LIMS. A modern laboratory is a constantly changing reality in which instru-

ments and procedures are changed every 1-2 years perhaps even less. Intro-

ducing new procedures and/or instruments could be expensive. Therefore an

opportune architecture should be adopted in the design a LIMS. McDowall

[85] points out two base consideration:

• The underlying processes must be streamlined and standardized as

2.2.1.2 Lessons learned from commercial LIMS 25

much as possible;

• The LIMS environment must be designed on the assumption that there

is no single application that will automate the whole laboratory.

VelQuest Corporporation [64], an industrial vendor, put forward a similar

distinction. They distinguish between thick LIMS and a thin LIMS. The

former is a LIMS developed from scratch around a laboratory need. The

latter uses Commercial-off-the-shelf (COTS) components to build the core

facilities combining them through data exchange facility. The main assump-

tion of this vendor, for which all the corporate strategy is built around, is

that more benefits are to be gained by using a thin LIMS approach. Tradi-

tional LIMS (thick LIMS) are a result of big efforts for custom coding and

to follow the requirements associated with any customization in the attempt

to bind an information management system to laboratory operational tasks.

GenoLogics Life Sciences Software Inc [56] is another player in the LIMS

scenario that adopts a similar vision. Furthermore, they single out some

other important requirements to be fulfilled by a LIMS:

• Sample traceability;

• Adaptability to changing technologies and methodologies;

• Workflow management tools.

Three simple criteria are then proposed for evaluating a LIMS:

• Does the LIMS enable labs to get up and running quickly?

• How easy is the LIMS to configure and customize by the user?

• Does the LIMS accommodate different users and workflows?

26 Problem analysis

ID Lesson learned

N-01 High level of customization required

N-02 Separation of concerns between IT and domain knowledge

N-03 Volatility of requirements

N-04 Integration with legacy application/Interfacing with instrumentation

N-05 Increase degree of automation

N-06 Reducing labor-intensive task

N-07 Long term support of technology

N-08 Tracking of samples and recording of data

N-09 Recording of protocols

Table 2.1: Main needs of a modern LIMS.

In our view we could combine the strategies proposed by the two vendors.

In Table 2.1 we summarize the needs resulting from our literature review

and from our own direct experience in the field. The development of a LIMS

requires different IT skills and domain specific (DS) knowledge to capture

the requirements fully and correctly.

Each aspects (IT, DS) is best tackled by an expert of the corresponding

field. The mixing of the skills is not commonly had and should be sought with

extreme attention. Having the experience of an IT expert is not required to

a biological expert and vice versa. In our interpretation, separating from the

start those two areas is a strategic choice which both worlds could benefit

from.

Generally, an information management system should operate in an en-

vironment in which legacy applications exist. Not considering the integration

with those applications could to suboptimal efficacy of the system. In partic-

ular, a LIMS has two objects: the laboratory and the organization managing

it [85]. A good implementation must consider both of them. Integration

2.2.1.2 Lessons learned from commercial LIMS 27

ID Technical requirement High-level need

R-01 A direct representation of the concept of protocol N-09, N-08

R-02 Capability to directly express protocols by the end-user N-01, N-03

R-03 Two layer architecture: one high-level layer able to interact

with the end-user

N-02

R-04 Two layer architecture: one low-level layer of the architecture

able to interact with the laboratory environment

N-02

R-05 Capability to automatic relate the high-level layer with the low-

level one

N-02

R-06 Capability to add new resources during the lifetime of the sys-

tem

N-03, N-01

R-07 Slim and general driver architecture able to integrate directly

with legacy application and instrumentation

N-04, N-06

R-08 Runtime environment able to perform automatic actions N-05, N-06

R-09 Long term support of technology N-07

R-10 Distributed system N-04, N-08

Table 2.2: Technical requirements

with legacy application is therefore a key asset for a LIMS. The same applies

for instrumentation interfacing. The opportunity of interfacing with existing

and feature, instrumentation should not missed in order to maximize the

efficacy of the system. An important objective for a LIMS is to reduce the

need for manual intensive tasks.

Technical requirements

From the review of the LIMS we can infer that deriving a general specification

it is not an easy matter. The difficulties include volatility of requirements,

incomplete knowledge, extreme rate of innovation [107]. From the literature,

nevertheless, we can single out some transversally desirable characteristics.

28 Problem analysis

A LIMS should not be too costly to purchase and maintain and complex

to operate [22]. It should have a modular architecture, because we cannot

believe in “one-size-fits-all” approach [22]. Ease of integration makes mul-

tiple, independent and interleaved efforts possible [119]. A further objective

should perhaps be the simplification of common laboratory tasks so as to

reduce protocol errors [125]. Experience shows that uniting software engin-

eering skills with domain knowledge in a single profile is doomed to fail [107].

It is rather opportune to enable each to deliver the best in a “separation of

concern” manner. When considering concrete protocols from the standpoint

of domain experts, we want to be able to deal directly with an explicit rep-

resentation of a protocol as a first-class entity. Table 2.2 shows the technical

requirements extracted from the industrial needs as well from the relevant

literature.

2.2 Ontology

2.2.1 Ontology in modern times

The exponential growth of experimental data, owing to rapid biotechnolo-

gical advances and to high-throughput technologies, as well as the advent

of the World Wide Web as a new means for data exchange, make it more

complicated and difficult to find the biological meaning hidden in the hetero-

geneous biological data available to the scientific community. Furthermore

the huge amount of information that are now produced on a daily basis, re-

quire more sophisticated management solution, while the availability of the

Internet as a modern infrastructure for scientific exchange has created new

demands with respect to data accessibility [95]. At the same time, in the era

of genome-scale biology, the accumulation of biological data is accompanied

2.2.2.1 Ontology in modern times 29

by the widespread proliferation of biology-oriented databases [62]. The need

to unambiguously classify the huge amount of data available as well as to

precisely define their semantic relationship has increased the need for formal

knowledge representation. In the 1980’s, the ontologies entered the computer

science field as a way to provide a simplified and well-defined description of

a specific domain or an area of interest.

More recently, we have seen an explosion of interest in ontologies as mod-

els to represent human knowledge. Ontologies are now extensively used in

applications related to areas such as knowledge management, natural lan-

guage processing, e-commerce [63], web services [66], intelligent information

integration, bioinformatics [1], education, life sciences [24] and medicine [31],

and in widely adopted technologies such as the Semantic Web [19].

There are several reasons for this large scenario of applications. Onto-

logies provide a common terminology, over a domain, necessary for com-

munication between people and organizations and also provide the basis for

interoperability between systems. They can be used for making the content

in information sources explicit and serve to index repositories of information

[77].

The growing interest in ontologies triggered the development of Onto-

logical Engineering, a novel field concerned with the ontology development

process, the ontology life cycle, the methods and methodologies for building

ontologies, and the tool suites and languages that support them [93, 41].

Despite the cited advantages, the choice of ontologies and formal repres-

entations incurs considerable costs for the retooling and upgrade of resources,

and for the training of ontology developers.

30 Problem analysis

2.2.2 Definitions

The word ‘ontology’ comes from the Greek ontos (being) and logos (word)

and its conceptual origin can be traced back to early philosophers who have

studied the theory of objects and their ties for centuries. In philosophy,

ontology is used to name the discipline that tries to describe reality. But the

term ‘ontology’ is still controversial because different people have different

ideas on the definition of an ontology. The first formal and explicit approach

to ontologies in the technical (not philosophical) sense dates back to 1900,

given by Husserl. Later in the 1980’s, the ontologies entered the computer

science field as a way to provide a simplified and well defined view of a specific

area of interest or domain. There is consensus in what an ontology is not: it is

not a taxonomy (is not just a class-subclass hierarchy), a dictionary (ontology

includes relationships between terms), nor a knowledge base that includes

individual objects. According to Gruber, an ontology, is “the specification

of conceptualizations, used to help programs and humans share knowledge”

[59].

An ontology defines “a set of representational primitives with which to

model a domain of knowledge or discourse” [79]. Ontologies provide a com-

mon shared vocabulary to model a domain, defining the types of objects and

concepts that exist with their properties and relationships. Ontology can be

classified according to the subject of conceptualization according to [84]:

1. general or common ontologies, defining concepts to represent common

sense knowledge, reusable across domains;

2. top-level ontologies, defining very general concepts independent of a

particular domain such as space, time, object, event, etc., and providing

general notions from which all root terms in existing ontologies should

2.2.2.3 Upper ontologies 31

be related;

3. domain ontologies, defining concepts within a specific domain and their

relationships; the concepts in this type of ontology are usually the

specialization of concepts already defined in a top-level ontology;

4. task ontologies, defining concepts related to the execution of a partic-

ular task or activity and providing a vocabulary of terms used to solve

problems associated with task that may or may not belong to the same

domain;

5. application ontologies, containing all the definitions needed to model

the knowledge required for a particular application.

2.2.3 Upper ontologies

At present the notion of Ontology has proved to be a useful tool to express

domain knowledge. In the biomedical domain an important number of dif-

ferent ontologies has been produced. One serious problem with that is that

differing ontologies may be developed and applied for the representation of

the same domain. However, the mere use of ontology obviously does not

warrant the elimination of heterogeneity; instead it can raise heterogeneity

problems to a higher level. The development of the upper ontologies began

to resolve these problems.

The function of an upper ontology is precisely ”supporting interoperab-

ility between domain ontologies in order to facilitate the share used of data

both within and across disciplinary boundaries” [105]. Many upper ontolo-

gies were proposed describing a high-level of abstract concepts of reality.

32 Problem analysis

BFO

In the context of bioscience a widely upper ontology used is the Basic Formal

Ontology (BFO) [112] created by the Institute for Formal Ontology and Med-

ical Information Science (IFOMIS). This ontology is based on the philosophy

of realism (also called in this context BFO-realism). It takes the basics from

Aristotle’s concept of reality [88].

A formal ontology is a theory at the highest and most domain-neutral

level and deals with the categories and relations which appear in all domains

and which are in principle to reality under any perspective [58]. Object,

relation, group, number, part-of are examples of categories. BFO, following

the interpretation given by Husserl, describes the basic structures of reality.

The two main branches are Continuant and Occurrent:

• The Continuant branch describes entities that have continuous exist-

ence and persist self-identically through time. Examples are a table,

the sun, a protein.

• Occurrents otherwise are processes and hence occur in time and they

unfold themselves through a period of time. Examples are the life of a

person, the run of an horse.

The authors of BFO recognize the difference of being continuants and oc-

currents and prepared the SNAP (for continuant) and SPAN (for occurrent).

BFO has been adopted by many projects1, some of which operating in

the biomedical domain. An example application of BFO can be seen in the

Ontology for Biomedical Investigations (OBI).

There are some limitations in the approach used by the authors of BFO,

the question about what features should have an upper ontology is still very

1http://www.ifomis.org/bfo/users

http://www.ifomis.org/bfo/users

2.2.2.4 Ontologies in biology 33

open. Some opponents criticize the rigidity of the concept of existence. In

[49], for example, the authors put forward the impossibility to describe the

concept of hypothesis as a fundamental blockage.

2.2.4 Ontologies in biology

In biology the heterogeneity of ontologies represents an emergent issue. The

use of the word ontology within biology is relatively recent. Several decades

ago, the main aim of the bioinformatics was to store, retrieve and analyse

the data produced by biologists; such as for example nucleotide sequences

and protein structures. At that time, the limited amount of data produced

by biological researchers, required simple systems for their management, or-

ganization and analysis.

However, the advent of the genome sequencing projects, high-throughput

experiments, and other techniques produced a huge amount of data that

needed analysis. The amount of accessible biological data started to grow

exponentially. Nowadays, bioinformatics systems have to deal with large

amounts of complex information, unmanageable for a scientist without soph-

isticated knowledge of management and information processing tools [83].

Data are now dispersed throughout several different databases and their in-

terpretation and analysis require sophisticated tools for data management

and information processing. Organized in this way, biological information is

encapsulated within database schemes and is not easily available to scientist.

The available data are growing at an exponential pace but the knowledge

contained in them is not growing equally fast. There are different reasons

for this lack of productive knowledge and the most important one is that

biological phenomena can be described in many different ways [61] and this

complexity has not been tackled at semantic level. That means that usually

34 Problem analysis

the biologists are left with a giant base of information that they cannot

access, analyse, or integrate in a pratical way [46]. The impossibility of

drawing on information from the available data, adds further pressure to

implement standardised and compatible nomenclature in molecular biology.

Computer scientists therefore recognized in biological data a domain in

which ontologies were needed in order to solve problems of heterogeneity. A

subsequent phase saw the adoption of bio-ontology by the biological com-

munity itself as a means to consistently annotate different features, from

genotype (e.g nucleotide sequences, proteins) to phenotype (e.g. diseases)

[29].

The fundamental problem with all that is that biomedical scientists collect

facts, often recording them in natural language, and then use that knowledge

to make inferences about yet uncharacterised observations. Because of this,

their knowledge domain is highly heterogeneous. While it is easy to compare,

for instance, nucleic acid or polypeptide sequences between bioinformatics re-

sources, the knowledge component of these resources is very difficult to com-

pare, both for humans and computers, because the knowledge is represented

in a wide variety of lexical forms [29].

Often in biology a word refers to two different concepts: for example, the

concept of ‘gametogenesis’ means different processes in mammals or in plants

and a user, querying a database for this concept, needs to deal with these ter-

minological and conceptual incompatibilities. This situation makes it more

complex for a computer system to process biological information because it

would not be able to reason over the data and capture the knowledge con-

tent. Thus, there is urgent need to find a strategy for the representation of

biological knowledge in a formal way that facilitate reasoning data processing

based.[39]. One way to do this is to represent the knowledge as ontologies:

2.2.2.4 Ontologies in biology 35

the resulting ‘bio-ontologies’, a relatively new area of bioinformatics [24].

In the last decade, several groups have been developing controlled vocab-

ularies and descriptors mainly for the annotation of this kind of data. For in-

stance, the Metabolomics Standards Initiative (MSI) ontology working group

is developing an ontology to facilitate the consistent annotation of metabolo-

mics experimental data [7]. Besides the well known Gene Ontology [1], there

are many other initiatives focused on standardization and ontology develop-

ment that may be cited, such as MIAME [6] and PRIDE [12].

Open Biomedical Ontologies

As stated above, an ontology has to be widely disseminated and accepted

among the users of the field that it aims to capture. In this respect, a

strong community involvement is crucial to ensure that each specific domain

is represented by a single ontology. This result is reached by the Open

Biomedical Ontologies standards.

The Open Biomedical Ontologies (OBO)2 is a collection of controlled

vocabularies developed in 2001 for the ontological representation of several

biological domains. The aim of this initiative, focused on object-level ques-

tions, is to represent in an exhaustive way the proteins, organisms, diseases

or drug interactions that are of primary interest in biomedical research [113].

The main role of the OBO umbrella is to be an ontology resource. It

is supported by the NIH Roadmap National Center for Biomedical Onto-

logy (NCBO) through its BioPortal and it is continually kept up-to-date by

ontology-based developers. There are currently over 60 live-science ontologies

lodged in OBO, covering domains such as anatomy, development and pheno-

type, genomic and proteomic information and taxonomic information. All of

2http://obofoundry.org

36 Problem analysis

them use a range of different attributes to describe the respective biological

domain.

To be included in OBO, an ontology has to be developed following a set of

principles that are used to give coherence to wider ontological efforts across

the community:

• openness: ontologies must be available to all, without any constraint

or license on their use and it is only asked that users acknowledge

the original source. This encourages usage and community buy-in and

effort;

• common representation: this is either the OBO format3 or the Web

Ontology Language (OWL)4. This provides common access via open

tools and offers common semantics for knowledge representation;

• independence: lack of redundancy across separate ontologies encour-

ages combinatorial re-use of ontologies and the interlinking of ontologies

via relationships;

• identifiers: each term should have a semantic-free identifier, the first

part of which refers to the originating ontology. This eases easy man-

agement;

• natural language definitions: terms themselves are often ambiguous,

even in the context of their ontology, and definition helps ensure ap-

propriate interpretation. Thus, the terms in each ontology must have

a proper textual definition explaining clearly the exact meaning of the

concept within the context of a particular ontology.

3http://www.geneontology.org/GO.format.shtml#oboflat
4http://www.w3.org/TR/owl-features/

2.2.2.4 Ontologies in biology 37

The principles described above are necessary to ensure that the OBO

ontologies remain a resource for the entire community. At the same time,

the developers of a small set of OBO ontologies have initiated the OBO

Foundry. The participants have established a set of additional principles over

the existing and well-defined original OBO rules. These further principles

require that ontologies:

1. are a result of a collaboration among the other OBO members;

2. use a set of relationships defined in the OBO Relation Ontology (RO)

[111];

3. provide procedure for identifying successive versions;

4. represent a clearly specified and delineated content to ensure additivity

of annotations and to bring the benefits of modular development.

5. members can propose new principles using the OBO wiki page5.

The long-term goal is that the Foundry offers a resource, where data

that are produced by biomedical researches and available to the scientific

community, are collected in a consistent and algorithmically traceable way.

In this way it will be possible to solve some problems associated, for instance,

with the differences between technical and biological language.

Ontology for Biomedical Investigation

In the available literature we to find a good amount of ontologies mainly

intended for biological data annotation. However, only a few projects have

been developed for the representation and formalization of the experimental

5http://obofoundry.org/wiki/index.php/OBO Foundry Principles

38 Problem analysis

protocols and the automatic operations producing such experimental data.

A formal definition of scientific experimental design, laboratory entities and

operations is undoubtedly important, also in the case of manually executed

experiments. The development of an ontology of experiments is a funda-

mental step in the formalization of science, since experimentation is one of

the most characteristic features of science.

In this regard, the EXPO ontology of scientific experiment has been de-

veloped to formalize generic knowledge about scientific experimental design,

methodology and representation of results [114]. Ontology represents the

design of an investigation, the protocols and instrumentation used, the ma-

terial used, the data generated and the type of analysis performed.

EXACT [115] is an ontology of experimental actions that can be used as

a formalism suitable for a structured representation of laboratory protocols.

The OBI ontology addresses the need for controlled vocabularies not only

for the experimental data annotation but also for the representation of invest-

igations in the Biological and Biomedical Sciences [40]. OBI is a controlled

vocabulary with additional logical constraints expressed in OWL. OBI sup-

ports the annotation of database records, in addition can be used to improve

the annotation process automatically checking the consistency. OBI contains

2,500 classes and is pubblicy available.

The authors of OBI presented some use cases in order to assess the com-

prehensiveness of OBI and to show how to use terms for annotation. They

have discussed some real-world experimental processes to demonstrate how

to model entities and relations between entities in biomedical investigations

using OBI. The three use cases discussed in [32] are: i) a neuroscience in-

vestigation about the role of the primate caudate nucleus in the expectation

of reward following action; ii) a vaccine protection investigation; iii) an auto-

2.2.2.4 Ontologies in biology 39

Figure 2.1: Boxes represent instances labelled with the related class. Relationship

are depicted as links labelled in italics. For example. the organism Macaca fuscata

has NCBI 9542 as term ID (from the NCBI taxonomy). Source: [32].

mated functional genomics investigation. Each of those use cases is repres-

ented by statements using terms defined in OBI. Figure 2.1, for example,

depicts a model of a single trial in the aforementioned neuroscience investig-

ation. The upper level consists of the BFO classes material entity, process,

role, function, information content entity.

40 Problem analysis

Material entity In BFO, object, object part and object aggregate are used

to describe physical things. However, usually biomedical investigations uses

entities with a large span of size (e.g. from cells to tissues to organs). In

order to avoid to operate at this low level of granularity the material entity

class has been created. The class material entity is an independent con-

tinuant. Material entities are spatially extended and their identity persist

through time, for example an organism and a centrifuge. They import sev-

eral subclasses from external ontologies like the molecular entity hierarchy

from ChEBI [45] or the organism from the National Center for Biotechnology

Information (NCBI) taxonomy [127].

Planned process The definition given for Planned process is: “A proces-

sual entity that realizes a plan which is the concretization of a plan specific-

ation.”6. A Planned process is intentionally initiated by an agent to achieve

some goals, specified as objective specification in OBI. An instance of a pro-

cess could have inputs and outputs specified by means of has specified input

and has specified output. Outputs are needed at the end of the process to

attain objective. Inputs are declared in plan specification and are not origin-

ated during the execution.

A plan specification is “a directive information entity that when concret-

ized it is realized in a process in which the bearer tries to achieve the ob-

jectives, in part by taking the actions specified. Plan specifications includes

parts such as objective specification, action specifications and conditional

specifications.”7.

6Full ID: http://purl.obolibrary.org/obo/OBI_0000011
7Full ID: http://purl.obolibrary.org/obo/IAO_0000104

http://purl.obolibrary.org/obo/OBI_0000011
http://purl.obolibrary.org/obo/IAO_0000104

2.2.3 Model-driven engineering 41

Information entities Since the domain of OBI is important to describe

information like data, results, reports. The Information Artifact Ontology

(IAO) was created as a separate effort with the aim to develop a general the-

ory of information entities. It is imported by OBI with Information content

entities as root class. Since they are a generically dependent they must be

borne by other entities. One of the subclasses of IAO is directive information

entity. Both Plan specification and Objective specification are subclasses of

it. Other classes include protocol, study design.

Roles and Functions As described in [20], a Role has two properties: an

entity which the Role is linked with, and a process that realizes the Role.

It is a Realizable entity and the realization is not typical of its bearer. The

Role is played by an instance under some circumstances, and it is optional.

A Role is used in OBI to define the study design of an investigation.

A Function is similar to the Role: it is a realizable entity and it has a

bearer. The main distinction is that the manifestation is a reflection of it

in-built physical structure, the given structure is designed to exercise the

structure. As example, the function of a computer program to compute

mathematical equations, conversely the Role of a person as a surgeon.

2.3 Model-driven engineering

2.3.1 Definitions

The IEEE Computer Society defines software engineering as “the applica-

tion of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software” [18]. The term “software engineer-

ing” has been coined in the 1968 NATO Software Engineering Conference.

42 Problem analysis

It can be divided into sub-disciplines the first of which is software require-

ment gathering consist as “a property which must be exhibited in order to

solve some problem in the real world” [18]. Software analysis is the process

of elaborating system requirements to derive software requirements. One of

the outputs of this process could be conceptual models, comprising “models

of entities from the problem domain configured to reflect their real-world

relationships and dependencies”.

Model-driven engineering (MDE) is a software engineering method which

focuses on creating such models [55]. One of the goals of MDE is to reduce the

gap between models and implementations. This gap exists when a concrete

realization is developed using lower abstractions that those used to express

the model [54]. MDE concentrates on designing models that are closer to

domain-specific concepts of some particular domain rather than to computing

(or algorithmic) ones. MDE’s basic concepts are models, meta-models and

transformations [50].

MDA is an instance of MDE. MDA is based on Meta-Object Facility

Meta-Object Facility (MOF) by Object Management Group (OMG). A

common chain of work under this methodology comprises the definition of a

metamodel under a specific domain. A model conforms with a metamodel is

built. Eventually, by means of specific transformation an executable repres-

entation is created. Tools supporting the above chain are vital to draw real

benefits from application of the methodology. Specific technology already

exist that support the whole chain (e.g. the ecosystem that revolves around

Eclipse).

MDE’s basic concepts are model, metamodel and transformation [50].

A classical representation of this concept is given under the form of a 4-

layers pyramid shown in figure 2.2 [47]. The real-world manifestation of a

2.2.3.1 Definitions 43

model is called M0 (bottom of the pyramid). Things that we try to represent

are at the M1 level. They conform to a reference model described by a

language from the M2 level, also called metamodel. The metamodel defines

the concepts that should be used in defining models at M1 level. The set

of concepts used to define a metamodel reside at the M3 layer and is called

metametamodel. A metamodel has a metametamodel as reference model.

Finally, a metametamodel is a model that is its own reference model (i.e. it

conforms to itself) [72]. These layers are called the linguistic layers [34].

Figure 2.2: A general modelling architecture. The M0 layer represents real world

things. At M1 level there are abstraction of real things. Those are defined, as thus

conform to, at the M2 level. Which is defined using a language at M3 level, that

is finally conform to itself. Source: [47].

A model-to-model transformation takes a model in input (with a refer-

44 Problem analysis

ence metamodel) and produces another model in output (with a reference

metamodel). It therefore enacts a bridge that transforms concepts from

one modelling space into corresponding concepts in another modelling space.

Conversely a model-to-code transformation produces as output the code for

some programming language.

Models

We not try here to answer the question: what a model is and which features

are relevant to define it.

In software engineering a model is a tool used to minimize errors in soft-

ware development. It is the designer’s representation of a particular as-

pect of a concrete reality. It is expressed by a precise language which is its

metamodel. Hence the model conforms to its metamodel and this conform-

ance enables deterministic processing of the model. By analogy a metamodel

is for a model what a grammar is for a programming language [30]. The main

assumption in MDE is to consider models as first class entities [34].

A more precise definition is given in [106]: “a model is a set of statements

about some system under study”. The important concept of interpretation is

given here as “a mapping of the model’s elements to elements of the system

under study”. In traditional scientific disciplines models are usually descript-

ive. However they are also used as specifications in engineering disciplines,

including software design. Therefore a model could be either descriptive or

prescriptive.

A distinctive aspect of models is undoubtedly their relationship with real-

ity: “A model is an external and explicit representation of a part of reality

as seen by the people who wish to use that model to understand, change,

manage, and control that part of reality”[96].

2.2.3.2 Models and Ontologies 45

Models can represent, describe, and specify things [21]. A descriptive

model is one that “describes reality, but reality is not constructed from it”.

A prescriptive model is one that “prescribes the structure or behaviour of

reality and reality is constructed according to the model; that is, the model

is a specification for reality”. Since in the realm of software engineering most

of the models are used to construct a “reality” from them, in the remainder

of this work we take a model to be prescriptive entity.

PIM and PSM MDA defines an approach that separates the specification

of the intended system functionality from the implementation of it on a spe-

cific technology platform. MDA allows us to use a single model, specifying

system functionality, to be realized and deployed on different platforms. Sys-

tem functionalities are described into a Platform Independent Models (PIM).

How such functionalities are realized is specified in a Platform Specific Model

(PSM). Figure 2.3 shows the typical path from PIM to PSM and code. As

result a PIM makes an abstraction and in doing so it hides technical details..

A PSM instead has implementation concepts specific of a given platform. In

order to relate a given PIM with a PSM of choice a transformation should be

written. A model-to-model transformation may be used to project a PIM,

associated with a description of the target platform, to the execution infra-

structure thus creating a PSM. With the same approach, source code for the

implementation could be automatically generated from a PSM. This trans-

formation step, PSM to code, is currently more mature than PIM to PSM.

2.3.2 Models and Ontologies

In the recent years, meta-modelling and ontologies have been considered

together to build a common framework. To better understand how ontology

46 Problem analysis

Figure 2.3: Traditionally in MDA, a specification independent from the

target platform (PIM) is first created. The PIM is converted by auto-

matic transformation (PIM to PSM) in a PSM . If needed, the PSM could

be refined (PSM to PSM). Finally executable code is generated (PSM to

Code). Source: http://www.sparxsystems.com/uml_tool_guide/mda_

transformations/mdastyletransforms.htm.

and MDE could relate to each other we now discuss some qualities of models

and ontologies.

The open-world assumption is a characterizing property of ontologies. It

states that anything not explicitly expressed by a knowledge base is unknown.

If a particular statement is not made we cannot infer a false value about that

it, but we only know that the information is not known [69]. Conversely, the

closed-world assumption expresses that any statement that is not known to

be true is false (this is usually the case in databases).

Another important issue is to discern whether models describe or control

reality. Hence whether they are descriptive or prescriptive [106]. A model is

descriptive if it describes reality thus makes statements about some system.

The reality is not however constructed from it. A model instead is prescript-

ive if it prescribes structure or behaviour of reality. In this case a model is

http://www.sparxsystems.com/uml_tool_guide/mda_transformations/mdastyletransforms.htm
http://www.sparxsystems.com/uml_tool_guide/mda_transformations/mdastyletransforms.htm

2.2.3.2 Models and Ontologies 47

a specification of reality. In general models could be equally descriptive or

prescriptive. However, since they specifies a set of statements from which

a system could be developed, in software development they usually have a

prescriptive nature [21]. Since the open-world assumption does not allow a

complete and final description, an ontology has always a descriptive nature.

Ontology-aware meta-pyramid

As seen in subsection 2.2.3, an upper ontology is built for better interoper-

ability. A domain ontology (see subsection 2.2.2) specializes concepts taken

from an upper ontology. Using the previous consideration, Assmann et al. [21]

propose the ontology-aware meta-pyramid. Figure 2.4 shows the correspond-

ing model: domain ontologies live at level M1 and correspond to models. An

upper ontology, providing a language for ontologies, should live at level M2.

Assmann et al. [21] argue that one meta-metamodel language could be used

to specify both ontology and meta-models. This is depicted in Figure 2.4

in which at level M3 there is one artifact. Both the ontology dimension and

the model-driven dimension instantiate from this meta-metamodel.

Linguistic and ontological dimensions in the MDE layers

Bézivin [34] use a different approach to relate ontology and MDE. The four

MDE levels are called in this contest linguistic layers. They point out that

concepts from the same linguistic layer can be at different ontological layers.

Figure 2.5 depicts the four meta-layers considering this important remark.

The linguistic instantiation runs on the vertical dimension; conversely the

ontological instantiation runs on the horizontal dimension.

48 Problem analysis

Figure 2.4: The ontology-aware meta-pyramid. Domain ontologies live at level

M1. Upper ontologies live at level M2. Ontology metalanguages live at level M3.

Source: [21].

Mapping from model and ontological technical spaces

Another formulation is given by [73]. The authors propose a mapping from

the model engineering to the ontology technical space. Their work is fo-

cused on a mapping between Ecore and the Ontology Definition Metamodel.

Some caveats following from the difference between those technical spaces

are discussed (e.g. differences from EClass to OWLClass) in the cited work.

Mapping between EMF objects OWL/RDF

Hillairet Guillaume and Yves [68] proposed another mapping between EMF

objects with OWL/RDF Resources. Also this mapping presents some diffi-

culties: class membership is an example. In object-oriented languages the

2.2.3.3 Workflows 49

Figure 2.5: The four meta-layers in terms of ontological engineering and its

orthogonal instance-of relations: linguistic and ontological. Source: [34].

membership of objects is fixed. In OWL instead an individuals can belong

to multiple classes. The authors propose a set of Eclipse plugins that are

able to make a round-trip transformation between OWL and Ecore. The

project (named EMF4SW8) is not yet mature enough to cope with large and

complex ontologies. However it is in very active development and it is able

to handle with relatively small ontologies.

2.3.3 Workflows

Definitions

In the workflow context, a process can be considered as the set of activities

performed by different entities, and their execution ordering through dif-

ferent constructors, which make it possible to control the flow of execution

8http://code.google.com/p/emftriple/

50 Problem analysis

(e.g. sequence, choice, parallelism and join synchronization). An elementary

activity is an atomic piece of work [101].

A workflow is a representation of a sequence of operations, declared as the

work of a person, a group of persons, or machines. Workflows make the de-

scription and the orchestration of complex processes possible in a visual form,

capturing human-to-machine interactions within those processes. Several

disciplines adopt workflows systems for the automation of data processing

through a series of processing stages.

A workflow is therefore the structured definition of a process used for

the automatic management of particular activities. The formalization of a

process (workflow schema) involves the definition of activities, the specifica-

tion of their order of execution (i.e. the routing or control flow) and of the

responsible actors. Other features should be taken into account too, e.g. the

data flow [101] or the various ways in which resources are represented and

utilized in workflows [102]. Many formalisms and notations exists, we con-

centrate our description on Business Process Modelling Notation (BPMN)

and XML Process Definition Language (XPDL).

In the last few years the interest for workflow development has seen a con-

siderable growth also in the scientific community [44]. Scientific workflows

can be considered as the executable description of scientific processes [109].

Similar in nature to business workflows, they have the distinct characteristic

of operating on large amounts of heterogeneous data. In particular, they are

generally data-flow oriented instead of being control flow and event-based.

They also are very versatile in composing flows of execution. In bioinform-

atics, in particular, workflows are extremely valuable for programming the

steps of in silico experiments in a visually intuitive manner. However, work-

flows are still not commonly adopted in the formalization of protocols for

2.2.3.3 Workflows 51

biological laboratory experiments.

There are several available tools for workflow design and enactment [100],

for instance JPEd [5], an open-source visual editor for general-purpose work-

flows. Taverna [89], developed by the myGrid project, is the workflow plat-

form most commonly used for the systematic analysis of vast amounts of

data, but it does not allow the description of laboratory experimental pro-

cedures. Taverna workflows can be shared among the scientific community

thanks to Web 2.0 initiatives like myExperiment [8]. This social web site en-

ables scientists to publish their workflows and in addition to execute, reuse

and share workflows of other groups. In this way myExperiment contributes

in reducing time-to-experiment, in sharing knowledge and expertise and in

avoiding reinvention [43].

BPMN

BPMN [3] is a graphical notation based on intuitive flowcharts for the defin-

ition of business processes. Originated from the Business Process Manage-

ment Initiative, in 2005 it was merged into OMG [11] and in 2009 1.2 became

a standard. A major revision process for BPMN 2.0 is in progress. BPMN

aims to support both technical and business users. The notation provided is

based on simple graphical elements, the main goal of which is to provide a

standard notation understandable by all the experts involved in the business

process.

The set of graphic elements is relatively small and comprises just four

main categories: flow objects ; connecting objects ; swimlanes ; artifacts. In Fig-

ure 2.6 we can see the main elements for each of those categories.

52 Problem analysis

Figure 2.6: Core set of BPMN elements. Source: http://www.bpmn.org/

Samples/Elements/Core_BPMN_Elements.htm

Flow object The Flow object categories consist of three core elements:

Events ; Activities ; Gateways. Event, rappresented as a circle, denotes some-

thing that happens. Many types of events are described by BPMN, the

principal are the Start and End event, respectively green and red. Activity,

describes some kind of work to be performed. Task and Sub-process, some

special cases are in which the former represents an atomic unit of work and

the latter is used to involve some self-described process. Gateways are used

finally, to describe splits and/or joins.

Connecting objects Connecting objects are used to make connections

between flow objects. A line with an arrow is used to describe an execution

order, namely Sequence flow. Message flow (open circle at the start, dashed

line and an open arrowhead) describes which messages flow across pools.

Association, represented with a dotted line, describes a relationship between

an artifact and a flow object.

http://www.bpmn.org/Samples/Elements/Core_BPMN_Elements.htm
http://www.bpmn.org/Samples/Elements/Core_BPMN_Elements.htm

2.2.3.3 Workflows 53

Swimlanes Swimlanes are used for categorising activities. Pool contains

one or more lanes. The former is used to differentiate between organisation,

instead the latter is used to organise activities accordingly with a performer

or a role.

Artifact The last category, artifact, permits to add some information to

make the diagram more clear. Data objects describe which data is produced

or is needed. Group is just a way to group different activities without affect-

ing the flow of the process. An Annotation is used to make comments about

the chart.

XPDL

XPDL [16] is a markup language created to ensure interoperability among

different workflow management tools in order to handle workflow processes.

It was designed to enable the exchange of process definitions, addressing both

the graphical and the semantic notations of the relevant workflow. Born as

a support for serialization of BPMN constructs, it also incorporates inform-

ation relating to the graphical representation (e.g. the position of blocks in

the workflow). XPDL was developed by the Workflow Management Coalition

(WfMC) [15], a consortium formed to define standards for the interoperabil-

ity of workflow management systems.

XPDL [108] is based on a XML syntax specified by an XML schema. They

main elements of the language are Package, Process, Activity, Transition,

Participant, DataField, Type Declaration.

The Package element is a container that holds all the other elements. It

could have some Processes performed by one or more Participant. A set of

Activities could be declared at Package level to be used by processes. It is

54 Problem analysis

possible to use standard types to define DataFields. In addition, it is possible

to declare new types using different mechanisms such as external references

or in-line type declaration.

Figure 2.7: XPDL Process metamodel. Source: [108]

Process metamodel In Figure 2.7 we see an in-depth representation of

Process used in the XPDL metamodel. A Process is a composition of different

elements. A set of elements of Activity type is declared inside a Process. An

Activity element is the main block of a workflow definition. It could be

of various types such as Task/Tool or SubFlow. Task/Tool defines a set of

Applications used to specify the interface that should be used to call specific

services. A SubFlow activity invokes an external self-contained Process. A

2.2.4 Multi-agent system 55

Route activity is a dummy Activity used for routing purposes. BlockActivities

are used to execute ActivitySet that are embedded sub-processes. Participant

elements are used to specify the entities that execute work.

Activities are connected by Transitions that are used to specify the se-

quence flow. Each of them connect a From-Activity with a To-Activity. In

order to make decisions about the sequence (i.e. which transitions needs

to be fired) workflow relevant data are used. They are specified using the

DataFields element, Datatypes defines new types. A Process, and therefore

also a SubFlow, could take parameters in input and specifies parameters as

output. A third mode of parameter passing is provided, INOUT, in which

parameters are modified during the execution.

2.4 Multi-agent system

2.4.1 Definitions

The Multi-agent system (MAS) is a natural and powerful metaphor for con-

ceptualizing, designing and implementing software systems with components,

possibly distributed that exhibit properties of autonomy and communication.

MAS provides a model more consistent with reality itself. It is commonly

used to describe complex systems in which autonomous entities are called

upon to solve common objectives through the only means of interaction

between them.

Agents are commonly classified by means of some exhibited properties.

Wooldridge and Jennings [128] propose four properties that an agent should

exhibits:

Autonomy: agents incorporate an internal state, not accessible by other

56 Problem analysis

agents, and makes decisions based on his actions to his condition,

without the direct intervention of humans or other agents;

Reactivity: the ability to react to environment changes around them, whenever

such changes affect their goal;

Pro-activity: the ability to generate events in the environment, start the in-

teraction with other staff, coordinating the activities of different agents

stimulating them to produce certain responses;

Social ability: the ability to communicate with other agents, cooperating in

pursuit of common objectives, exchanging information and knowledge.

In the last few years the relevant literature recognized the need to ex-

plicitly embody the notion of resource in a MAS [98], [90]. A well known

approach to address this need is to use the notion of “artifact”. Artifacts

can be considered as complementary abstractions to agents populating a

MAS. While agents are goal-oriented pro-active entities, artifacts are a gen-

eral abstraction to model function-oriented passive entities. MAS designers

employs artifacts to encapsulate some kind of functionality, by representing

(or wrapping) existing resources or instruments mediating agent activities

(see figure 2.8) [75]. The intent is to encapsulate functionalities and services

in suitable first-class abstractions at the agent level [98]. Artifacts could be

used for wrapping existing resources and therefore are a suitable model for

our purpose. Particularly fitting is the Agent and Artifact model [98], in

which an Artifact is structured as a set of operations.

Ricci et al. [99] is proposed simpA, a framework built to facilitate the

development of concurrent applications built on top of agents, artifacts and

workspaces. Workspaces are logical containers. They are used to structure

the environment where agents play. SimpA is developed using Java and

2.2.4.2 Agent-based workflow management system 57

Figure 2.8: Abstract representation of an artifact (left) and of an agent using an

artifact and observing the events generated. Source: [99].

using extensively the Java Annotation Framework. It is an interpreter of

a program specified by an agent. The program contains the descriptions

of the activities that the agent needs to execute. Activities could be of

two basic types: atomic and structured. Atomic activities are instructions

containing actions that could interact with the environment. Structured

activity are composition of sub-activities. Atomic activities are declared as

methods tagged with the @ACTIVITY annotation. Method’s body specifies

the computational behaviour of the activity.

2.4.2 Agent-based workflow management system

Business Process Management (BPM) is a well-know practice in IT. High

quality, mature tools are currently available to manage business processes.

However current BPM systems suffer from a number of weakness. The main

drawbacks include [27]:

• Limited flexibility

• Inability to cope with dynamic changes

• Inadequate handling of exceptional situations

58 Problem analysis

• Limited ability to predict changes

• Insufficient interoperability

A BPM system could draw great benefit from agent-based methodolo-

gies. Some of these advantages are based from the properties of MAS. For

example, the agent metaphor allows decentralized ownership and an high

degree of concurrency. Moreover agent-based technologies allow the build-

ing of distributed and decentralized systems that are closer to the real-world

environments.

The enactment of workflows using multi-agent systems has already been

proposed in the literature [33, 25]. Result, include the development [53] of

workflow management systems based on the popular open source MAS plat-

form JADE [26]. Researchers are currently exploiting agents to amend pro-

cess integration, interoperability, reusability and adaptability [120]. Societies

of software agents could be used to manage and coordinate workflow defined

by business processes. Exploiting these methodologies facilitates design pro-

cess and supports distributed dynamic process management. Agents need

to interact and communicate with other agents in the environment to co-

ordinate themselves and control distributed workflows tasks [120]. In order

to improve interoperability there is a need for standard semantic constructs.

Chen and Tu [38] proposes an agent-based system using ontology and

RFID technology to monitor and control dynamic production flows. The au-

thors describe a whole system composed of several types of agents designed

to perform collaborative supports for just-in-time and just-in-sequence pro-

duction strategies. In the cited architecture all the agents are deployed on

a centralized server. Only agents designated to interact with RFID tags are

deployed in ad-hoc local computers. The ontology in this case is used to de-

scribe RFID tags and thus to render able agents to exchange data coherently.

2.2.4.2 Agent-based workflow management system 59

Figure 2.9: The main elements in the WADE workflow metamodel. A Process

is composed of a set of Activities. Each Activity has one or more Transitions with

the possibility to add conditions. One ore more Formal parameters are used for

defining inputs and outputs. An Activity could be of different types: Tool, Subflow,

Code. Source: [36].

Workflow and Agent Development Environment (WADE) [36] is a soft-

ware platform proposed as an extension to JADE by the JADE development

group itself. JADE provides a middleware in which software agents are able

to act and interact by means of FIPA9 standard protocols. WADE has been

developed on top of it, with the implementation of new features for support-

ing the use of workflows in the deployment of multi-agent applications [36].

9http://www.fipa.org/

60 Problem analysis

WADE includes a micro-engine embedded in a set of dedicated agents

which are specifically developed for the execution of workflows defined in

an extended version of the XPDL metamodel. Doing this, the new engine

permits to directly execute the Java code associated to a specific workflow

activity. Moreover, this new tool allows to choose and assign secondary agents

for the execution of subflows. Additional components have also been defined

in WADE so as to manage administration and fault tolerance issues. The

main challenge in WADE consists in bringing the workflow approach from

the business process level to the level of system internal logics [97]. In other

words, the objective is not to support an orchestration of services provided

by different systems at high level, but to implement the internal behaviour

of single systems.

Figure 2.9 depict Wade workflows shown in a meta-model directly derived

from XPDL. The main difference from the standard XPDL meta-model relies

on the class Activity. Besides the classical activies (Tool, SubFlow, Route,

etc etc) a Code Activity has been added. The Code Activity is a peculiar

feature of WADE and as such it allows to define Java code to be executed

during an Activity.

Chapter 3
Proposed solution

3.1 Architecture

This PhD project tackled the problem presented in Chapter 1 by aiming

to close the gap between the biologist’s information management system

concept on one hand and the software engineering knowledge and techno-

logy involved in automating the execution of laboratory protocols on the

other hand. To this end, inspired on MDA, we developed a software frame-

work that enables the biologist to directly plan and express his/her protocols

without the need to draw from software engineering knowledge and tech-

nology, including programming languages, compilers, interpreters, and the

like.

The architecture of the solution we envision comprises the following four

main constituents:

1. A high-level language as close to the experience and the needs of the

biologist as possible, in MDE this is often referred to as “domain specific

language”;

62 Proposed solution

2. A graphical editor capable of enabling the user to graphically specify

the desired protocols with the provided high-level language;

3. A model-to-code compiler able to translate the user protocol in code

directly ready for execution on the target platform (the laboratory

environment);

4. A run-time environment that understands an executable version of the

protocol produced by the said compiler and is able to relate the con-

straints and needs expressed in the protocol to the actual capabilities

of the environment and to accordingly execute multiple protocols in

parallel.

The proposed language (1) describes the operational perspective of labor-

atory protocols using a workflow metaphor expressed in XPDL [108]. To

make it better fit our purpose we enriched the XPDL meta-model with con-

cepts drawn from an ontology specialized in biomedical investigations (OBI

[40]). We then used the Eclipse Modelling Framework (EMF) to integrate the

OBI ontology and the XPDL schema, from which we obtained a new meta-

model (nicknamed BioCow after Biology Combined Ontology [and] Work-

flow). BioCow makes it possible to model workflows in terms of objects and

actions specific of our target domain, which arguably meets Objective 1 as

specified in Chapter 1.

To meet Objective 2 we used the Obeo Designer1 to enable the user to

graphically specify protocols. This work had a more engineering than sci-

entific nature. However, its final result was important in that it enables the

user to produce models of the desired protocols in a manner that construct-

ively guarantees conformance to our meta-model. When the user draw a

1http://www.obeodesigner.com/

3.3.1 Architecture 63

protocol the editor is able to interpret the ontological constraints and to pre-

vent the violation of them. In fact the editor enable only the symbols that

are ontological valid.

Objective 3 was achieved by a classic model-to-text transformation ap-

proach for which we used Acceleo2. In designing our transformation engine

we regarded the execution platform as composed of two distinct parts: the

software infrastructure, which we require to be invariant and based on the

multi-agent system (MAS) paradigm; and the laboratory equipment, which

is the obviously variable part of our target setting. The former is bound to

the latter by means of a battery of software drivers. Such drivers are outside

of our direct concern and can be written in any programming language as

long as they can be wrapped in Java classes that conform to our specification.

For our purposes the services provided by those drivers describe the labor-

atory equipment to the level of detail needed by our model-to-code compiler

(this enacts a correct-by-construction approach instead of a construct-by-

correction development).

Our execution environment (cf. Objective 4) is built upon a MAS. This

choice was motivated by the intuition that a biological laboratory can be

regarded as a complex system comprised of a number of heterogeneous,

autonomous entities potentially competing for physical resources. The agent

metaphor was found to match our needs very well. A further dimension of

interest in the agent technology was the ability to exploit the autonomous

nature of agents to cope with contingencies, which will be needed to maxim-

ize the volume of correct and useful experimental data that can be obtained

by automated execution of laboratory experiments.

The remainder of this chapter is as follows. In section 3.1.1 we describe

2http://www.acceleo.org/pages/home/en

http://www.acceleo.org/pages/home/en

64 Proposed solution

the whole architecture. In section 3.2 we describe the front-end of our archi-

tecture. In section 3.3 we describe the back-end of our architecture.

3.1.1 Front-end and back-end of our proposed archi-

tecture

The system we propose offers a straight path from end-user specification to

directly executable protocols. The end-user is provided with an environment

in which she can describe her protocols using a language close to her domain

knowledge and experience. The user interface of the LIMS supports a do-

main specific modelling language. The language is built incorporating formal

domain knowledge directly into a workflow environment. The end-user deals

with the terms of the language and their assembling into protocols by using

a graphical editor. The LIMS is therefore composed by the following main

building blocks (see Figure 3.1)

1. Front-end

(a) BioCOW metamodel: it formalizes laboratory knowledge into a

graphical language that combines workflow notations and elements

of a biological ontology into a language specialised for the model-

ing of laboratory protocol

(b) Graphical editor: it supports the language defined by the BioCOW

metamodel.

2. Back-end

(a) Model-to-code transformation: starting from a protocol specified

in the BioCOW language it produces an executable program cap-

able of carring the protocol out in a given laboratory

3.3.2 Front-end: exploiting domain knowledge in a MDA style 65

(b) Execution platform: it reads, interprets, checks and enacts the ex-

ecutable version of protocols and deploys them on a MAS platform

that encapsulate the laboratory hardware system.

The architecture that we set out to built confirms with the Model Driven

Engineering paradigm [54]. The end user (see Figure 3.1) is able to describe

the experiment model in her own language. The corresponding formal spe-

cification (in the BioCOW meta-model) produced by the Visual Editor is

then automatically translated into an executable specification that will be

executed by a system of software agents. The product of the transforma-

tion is a set of Java classes that can be compiled and used directly in the

runtime system. The transformation preserves the requirements and the

constrainst specified by the end-users at design time. The transformation

generates a system in a meta-model that need not to be directly handled

- nor even known - by the end-user, but that preserves the requirements and

the constraints postulated at design time.

Our project aims at simplifying the work of laboratory operators. With

the drastic increment of formalization and automation that we achieve, the

room for man-made errors will be greatly reduced and all the bookkeeping

activities will not absorb any more the staff time.

3.2 Front-end: exploiting domain knowledge

in a MDA style

We use the MDA paradigm to describe from a high-level more abstract, IT-

neutral point of view the entities of a laboratory and their interactions. This

higher-level model should be used by a laboratory expert to formally describe

her experiment or routine protocol: the product of the user specification is a

66 Proposed solution

Figure 3.1: Architecture of our proposed solution.

3.3.2 Front-end: exploiting domain knowledge in a MDA style 67

model that rests on our metamodel. Subsequently, a fully automated trans-

formation of the model derives executable code for it, ready for execution on

a runtime platform that meets our MAS-base specification. The key benefit

here is the possibility for the laboratory operator to describe his/her needs

- the model of a protocol - using a language that draw from the relevant do-

main knowledge. Using our infrastructure there is no need for the end-user to

learn a programming language for coding an information system to manage

the execution steps of the intended protocol and treat the raw data produced

from it. Similarly there is no need for the end-user to have probably difficult

and expensive interactions with computer scientists for explaining them how

to design and customize the needed information system.

In laboratories, and consequently in LIMS, a protocol is a procedural

description of the steps necessary to perform an experiment. Protocols are

generally expressed in a natural language. Only recently we have seen a

trend to coagulate specific aspects of protocols into a more structured form

[80]. Writing protocols in a natural language incurs hazards like ambiguity,

interpretability, difficulty of automation, implicit knowledge and so forth.

We have therefore chosen to promote the notion of protocol to a first-class

entity and to adopt more formal denotations for representing and sharing

protocols.

In our published work [80] we described an attempt to address those prob-

lems by combining the EXACT ontology [115] for representing biomedical

protocols with the XPDL meta-model for workflow interchange. By means

of an ad-hoc solution, we enabled laboratory staff to intuitively design their

protocol by using a standard XPDL editor. Protocols are represented as

workflows in the de-facto standard interchange language, incorporating do-

main knowledge from the EXACT ontology. We subsequently refined our

68 Proposed solution

metamodel using the modern OBI ontology..

The front-end of our system is the component destined to interact with

the end users and in which the end-user formalizes his protocols. In our

system we embed the descriptive knowledge of laboratory ontology inside a

workflow prescriptive model, which describes a protocol from an operational

point of view. Beginning from the 1980’s, the field of computer science started

to adopt ontology notions as a way to provide a simplified and well defined

view of a specific domain. A workflow instead is a structured definition

of a process, used for the automatic management of particular activities. A

formalized process involves the definition of activities, their order of execution

and their responsible actors [124].

3.2.1 Ontology

As we have seen in Section 2.2.4, OBI is an ontology for the description of

biological and clinical investigations [40]. OBI relies on the Basic Formal On-

tology (BFO) upper ontology and describes the design of an investigation,

protocols and instrumentation, materials used, data generated and analysis

performed on it. The ontology is developed to model biomedical investiga-

tions, therefore it contains terms for aspects such as:

• biological material, e.g. DNA

• instruments, e.g. centrifuge or thermal cycler

• design and execution of an investigation, e.g. injecting mice with a

vaccine to test its efficacy.

An upper ontology is an artefact with the function of ”supporting in-

terpretability between domain ontologies to facilitate the share used of data

3.3.2.2 Metamodel 69

both within and across disciplinary boundaries” [105]. An upper ontology

describes concepts of the ”Reality” from a high-level of abstraction. BFO is

based on the philosophy of realism (also called in this context BFO-realism).

It takes on from Aristotle’s concept of reality [58, 88].

Since OBI is based on BFO we work with both ontologies. The rela-

tionship that we are going to build will be split in two layers. One against

BFO and one against OBI. We will use therefore use the whole BFO. This

approach prevent disruption in case of changes in the structure of OBI.

3.2.2 Metamodel

XPDL (see section 2.3.3) is a markup language created to ensure interop-

erability among different workflow management tools. Its main goal is to

exchange process definitions, addressing both the topographical and the se-

mantic notations of the relevant workflow. It also incorporates information

relating to the graphical representation (e.g. the position of blocks in the

workflow).

The meta-model of XPDL involves the definition of activities, the specific-

ation of their order of execution and the involved data. The flow of execution

is specified through such constructors as sequence, split, join. An elementary

activity is an atomic piece of work [101]. An Activity could modify relevant

data declared as DataField. In addition to standard types a user could add

external types (by means of an XSD declaration or an external reference). It

is also possible to declare new complex types directly inside the XPDL file.

In our domain not all the entities of the XPDL metamodel are relevant.

In the construction of our metamodel we use only the following elements:

• Process

70 Proposed solution

• Activity

– SubFlow

– Route

– Gateway

– Task/Tool

• Transition

• Data field

• Type Declaration

• Relevant Data

• Formal Parameter

• Actual Parameter

For brevity in this list we did not include container entities like Activities

and similar.

In our metamodel we replace the entity Application, linked with Activity

by Task/Tool with the new entity Action.

3.2.3 BioCOW metamodel

As we are to build a workflow model embedding the OBI ontology, we focused

our efforts in defining a precise relation between BFO/OBI and MDE. We did

this because an ontology aims at describing a domain of knowledge, therefore

it is descriptive in contrast with a model which is prescriptive [106].

Finding a method to relate MDE (and its various layers of abstraction) to

the ontology schema is key to enabling the systematic use of ontology inside

3.3.2.3 BioCOW metamodel 71

the prescriptive models. In order to formally include OBI as component of

the XPDL meta-model we built a relation between the classic layers of MDE,

BFO/OBI and XPDL.

MDE and XPDL

Figure 3.2 depicts the classic layers of MDE. The workflow components of

our formalism are fairly easy to place in this hierarchy. XSD, the XML

schema language used to describe XPDL can be positioned at the M3 level

(i.e. meta-meta-model). XPDL conforms to a XSD model and therefore lies

at the M2 level (i.e. meta-model). A valid XPDL workflow (i.e. a model for

the end user) is at level M1. A specific execution of a workflow resides at the

ground level M0 (not shown in the figure).

Figure 3.2: The BioCOW meta-model is built by combining XPDL with

BFO/OBI. Both are translated in Ecore by means of model-to-model transforma-

tion. A standard XSD to Ecore transformation is used for XPDL. For BFO/OBI

we used an existing tool developed by Hillairet Guillaume and Yves [68].

Let us for example analyse the Application construct of the XPDL meta-

model. In XPDL the concept of Activity represents the unit of work. An

Application is a particular kind of Activity that describes functionalities

offered by legacy systems. In XPDL an Application is invoked by means of

a Tool Activity. In terms of Object Oriented programming languages, an

72 Proposed solution

Application can be seen as an interface for a functionality with a name and

a list of parameters. We can think of an interface as a sort of “contract”

between a class and the outside world. Every parameter is described with a

name, a type, and a mode of passing (input, output, mixed). The Application

construct is in fact the junction point between the workflow world of XPDL

and the ontological world of BFO/OBI.

MDE and BFO/OBI

Before defining a mapping between BFO/OBI and XPDL we need to also

relate the former to MDE. BFO is written in OWL, hence, in our schema

of interpretation, OWL is at level M3 and BFO at M2. OBI is a specializa-

tion of BFO in the dimension of the description of the domain. It is not a

specialization in the linguistic dimension proper of the MDE [21]. For that

reason, OBI is at M2 in an orthogonal dimension (horizontal instead of ver-

tical in Figure 3.2). A distinct consequence of this choice is that instances

of BFO/OBI concepts (in OWL called individuals) are placed at M1. Using

this schema of interpretation, individuals are tags that have as referent the

real objects that we put at M1.

Mapping

At this point, we have laid out a sufficient basis to relate the parts of

BFO/OBI of our interest with the XPDL meta-model to produce a map-

ping between elements of the two worlds. Table 3.1 presents the resulting

mapping. In the first column we see the concepts that we choose to repres-

ent inside our metamodel. In our vision the list is exhaustive and general

enough to cope with all the needs of a laboratory. The mapping to XPDL is

not complete, as we have seen we left out the entities not relevant with our

3.3.2.3 BioCOW metamodel 73

needs. We mapped all the entities of a laboratory against BFO as well as

OBI. Figure 3.3 shows the composition of our metamodel. BioCOW is com-

posed using entities from XPDL and terms from BFO/OBI. It is composed

using the relevant parts of XPDL and a subset of BFO/OBI.

Laboratory XPDL BFO OBI

Protocol Process Generically depend-

ent continuant

Plan specification

Sub-protocol SubFlow Generically depend-

ent continuant

Plan specification

Unique single step of

a protocol

Task/Tool Generically depend-

ent continuant

Action specification

Real world (e.g. Illu-

mina sample) or the-

oretical (e.g. Pro-

ject) items

Data Type material entity material entity

generically depend-

ent continuant

information content

entity

Objects properties Data Field specifically depend-

ent continuant

quality

Table 3.1: Mapping between XPDL and BFO/OBI. The relevant concepts of

XPDL are mapped with concepts from BFO and OBI.

The main concept of Protocol is easily mapped to the workflow model by

the notion of Process. In the XPDL specification [108] a process is defined

as a “combination of various activity with a specified flow of execution”. An

internal process consists of one or more activities, each comprising a logical,

self-contained unit of work”.

74 Proposed solution

Figure 3.3: Composition of the BioCOW metamodel.

We connected this concept with the OBI concept of Plan specification,

defined as a “directive information entity” that is a “Generically dependent

continuant”. When concretized it is realized in a process in which the bearer

tries to achieve the objectives, in part by taking the specified actions. Plan

specifications includes parts such as objective specification, action specifica-

tions and conditional specifications. A SubFlow (sub-protocol) is a process

itself hence the mapping is the same as for process (i.e. Plan Specification).

The second main concept for our effort is the notion of unit of work. In

XPDL this is backed by the Activity class, which can be of different kinds.

One of those is the Task/Tool class, a service or an application required and

invoked by the process. In the XPDL metamodel every tool declares a set of

3.3.2.3 BioCOW metamodel 75

Applications. We mapped this XPDL concept with the Action specification

in OBI, a “directive information entity that describes an action the bearer

will take” that is as well subclass of “Generically dependent continuant” of

BFO..

Since an Activity is an atomic piece of work that could modify relevant

data (declared as DataFields) we mapped both the XPDL concept of Data-

Type and DataField. A Datatype in our model could be, in addition to any

standard type, a material entity or an information content entity. We chose

to map a DataField to the concept of quality.

Figure 3.4 shows a portion of the class diagram of the BioCOW meta-

model. We simplified the XPDL meta-model maintaining the concept relev-

ant for our purpose. Figure 3.4 omits technical details and shows only the

protocol relevant concepts. A Protocol is composed by a set of Activities and

Transitions between them. An Activity could modify some relevant data of

the Protocol declared as variable (Datafields). An Activity could be of three

kinds: Route, SubFlow, Action. Only the latter describes a unit of work.

Route Activity permits the explicit expression of split or join sequence flow.

A SubFlow activity is a node in a process which invokes another protocol.

In the first column of table 3.1 we can see all the main entities of our

metamodel. Those entities are general in interpretation and sufficient in

quantity enough to describe protocols in our environment. In order to build

our metamodel we mapped those concepts to the XPDL metamodel. Since

XPDL is richer than our needs not all the entities of our metamodel have a

corresponding match. For example the entities Pool and Lane are left out in

our metamodel.

We then matched the relevant concept of our metamodel against BFO and

OBI. We were able to match all of them against BFO. Working with OBI

76 Proposed solution

instead was more difficult. OBI is a rich ontology and potentially all the

terms in it are of our interest. We decided to map only a subset of OBI. We

restricted the choice on the higher term on the hierarchy of OBI. For example

we map “material entity” and “information content entity” to DataType.

“material entity” is a class of BFO that OBI inherits. The rationale behind

this choice is to preserve our metamodel against future changes in OBI. OBI

is in active development, however the main structure should not change, like

for example the main branches. Not all the relevant terms of OBI could be

included in the current version. We had to omit some useful terms because

the technology that we used to translate the OWL formulation of OBI into

Ecore is not mature enough to cope with large ontologies like OBI.

3.3.2.3 BioCOW metamodel 77

F
ig
u
re

3
.4
:

P
o
rt

io
n

o
f

th
e

cl
a
ss

d
ia

gr
a
m

o
f

th
e

B
io

C
O

W
m

et
a
-m

od
el

.

78 Proposed solution

3.2.4 Implementation

In order to actually build the described meta-model we used the technology

provided by the Eclipse Modeling Framework Project (EMF)3. EMF includes

a meta-meta-model language (named Ecore) used to describe models and

meta-models. It is used internally by the framework to provide runtime

support and XMI serialization. EMF provides tools to automatic convert

other formats in Ecore. Specifically there is a standard way to translate

an XML Schema Definition (XSD) file in the Ecore format. Since XPDL is

formulated in XSD we automatically imported it in the EMF.

We had to use a different approach for OBI. We used the approach pro-

posed by [68] described in section 2.3.2. In particular, we translated the

whole BFO ontology and the main classes of OBI from OWL into Ecore.

The authors of the cited workpropose a set of Eclipse plugins that are able

to make a round-trip transformation between OWL and Ecore. The pro-

ject (named EMF4SW4) is not yet mature enough to cope with large and

complex ontologies (as OBI). However it is in very active development and

it is able to deal with relative small ontologies (as BFO is). We used that

project to translate in Ecore some portion of the ontologies of our interest.

In particular, we translated the whole BFO ontology and the main classes of

OBI.

Our BioCOW meta-model is built based on the XPDL meta-model. In

order to actually concretize the mapping between XPDL and BFO/OBI

we created a new class for every mapped classes. The new class inherits

both the XPDL and BFO/OBI classes as specified in the mapping shown

in table 3.1. For example, the BioCOW:Action class has, as a superclass,

3http://www.eclipse.org/emf
4http://code.google.com/p/emftriple/

3.3.2.4 Implementation 79

the BFO:GenericallyDependentContinuant class. It is worth noting that we

have not specialized directly the XPDL meta-model since, as it is, is already

richer than we need for our purposes. We therefore only retained the main

concepts of XPDL and left out all the surplus details.

Using the resulting BioCOW (Bio-medicine Combined Ontology [and]

Workflow) meta-model we are now able to describe laboratory protocols in a

formal yet intuitive way. By means of the Obeo designer we are able to build a

Graphical User Interface which associates graphical symbols that continue to

conform with the workflow metaphor with constructs of the BioCOW meta-

model. Obeo designer5 is a tool that permits to define your own graphical

representations using your own meta-models. Figure 3.5 shows the graphical

notations used in BioCOW. A variable follows a standard schema of declar-

ation enforcing also the mode of passing (input, output, input-output). A

condition could be attached to a transition, paths with condition not satis-

fied are not followed. A transition specifies the route of the flow of execution

between actions. Finally an Action is declared specifying actual parameters.

Figure 3.5: Principal constructs used in BioCOW

. Principal constructs used in BioCOW.

5http://www.obeodesigner.com/

http://www.obeodesigner.com/

80 Proposed solution

The Protocol Visual Editor allows end-users, expert of biological labor-

atory domain, to design their experiments by using controlled, well-defined

domain terms to describe samples, equipments and experimental actions.

End users are not required to have programming skills and the specifications

they devise, which on the visual editor are rendered as intuitive workflows ele-

ments, are stored in the BioCOW format. The editor, built on the underlying

meta-model, is semantically ”cultured”, and therefore able to interpret the

constructs of the meta-model in a domain-specific manner that fit the user

intent. Hence, the protocols designed with the editor are syntactically and

semantically correct, as the editor prevents the introduction of statements

not conforming to the meta-model rules.

3.3.3 Back-end: translating and executing protocols 81

3.3 Back-end: translating and executing pro-

tocols

3.3.1 Model-to-code transformation

“Programs” (i.e. protocol models) visually designed with the graphical editor

in the BioCOW “programming language” (i.e. meta-model) can be used

to easily program (i.e. customize) our architecture. Using a model-to-text

transformation (i.e., as in MDA) we are able to translate the user protocol

in executable code ready for execution into the target platform.

In designing the transformation engine we regarded the execution plat-

form as composed of two distinct parts: the software infrastructure, which we

require to be invariant and based on the multi-agent system (MAS) paradigm;

and the laboratory equipment, which is the variable part of our target setting.

The former is bound to the latter by means of a battery of software drivers.

Such drivers are outside our direct concern and can be written in any pro-

gramming language as long as they can be wrapped in Java classes that con-

form to our BioCOW profile. For our purposes the services provided by those

drivers describe the laboratory equipment to the level of detail needed by our

model-to-code compiler. In our laboratory facilities we have set up specific

drivers for a centrifuge, a robotic arm, a liquid handling device, a sealer

and a thermo-cycler. Centrifuge Actions includes “Centrifuge”, “OpenLid”,

“GiveBucket”. We have also tested another set-up with different devices and

needs in the laboratory of a commercial organization. In the runtime ex-

ecution environment we therefore created a layer of abstraction to provide

a homogeneous view of the services provided by heterogeneous laboratory

machines or operators.

The model-to-text transformation takes as input the model to be imple-

82 Proposed solution

mented and a “description” of the available laboratory equipments in the

execution platform. The latter is needed to bind each action used in the

modelled protocol with the corresponding real action to be performed by

the equipment in the laboratory. The output of the transformation is a

Java package composed of a set of Classes describing a protocol ready to be

executed by a specific target platform that conform to the JADE/WADE

framework. Figure 3.6 shows the layer of our back-end.

The invariant part of our execution platform is based on a Multi-Agent

System. A MAS is a system composed of multiple agents assigned with

specific tasks. A software agent can be seen as an autonomous, reactive,

proactive and social entity [128]. The functionalities of the user system res-

ult from the interactions among agents. The adoption of this paradigm was

motivated by the consideration that a biological laboratory can be regarded

as a complex system comprised of a number of heterogeneous, autonomous

entities potentially competing for physical resources. We see the agent meta-

phor as perfectly matching our needs. A further dimension of interest in

the agent technology is the ability to apply autonomous capabilities to cope

with contingencies. This capability will be needed to maximize the volume

of correct and useful experimental data that can be obtained by automated

execution of laboratory experiments.

3.3.2 Execution platform

Moreover, from a technological perspective we needed to handle the physical

distribution of the system. Different devices located in different places need

to interact with one another. A multi-agent framework deals directly with

this issue giving us the freedom work at a higher level of abstraction. For the

3.3.3.2 Execution platform 83

Figure 3.6: A conceptual overview of the abstractions involved in the back-end

layer of our solution. Operations provided by heterogeneous devices are uniformly

exposed as Actions for use by the executable model.

implementation we utilized the well-known JADE framework6 in combina-

tion with the WADE [36] extension. JADE provides a middleware in which

software agents are able to act and interact by means of FIPA7 standard pro-

tocols. WADE allows agents to execute workflows using a slightly modified

version of XPDL.

In order to effectively exploit these MAS technologies we chose to build

our back-end system upon JADE/WADE. Input to this execution platform

is the output of our model-to-code compiler. In order to execute compiled

versions of the user protocol we had to define an execution model. The

execution model describes which construct are available and how the runtime

platform deals with them.

6http://jade.tilab.com/
7http://www.fipa.org/

84 Proposed solution

Executable Model of a protocol

In this subsection we describe the Executable model of a protocol, that we

have defined for coding executable protocols in our runtime platform. An

essential issue is the necessity of monitoring every protocol during every step

of its execution, saving both the information on input and output data and

on the executed procedures. It must be noted that the executable protocol

is not the one defined by the end-user by means of the Visual Editor and

stored in the COW format, but its translation generated by our compiler.

A laboratory protocol can be seen as the composition of precisely defined

activities [40]. The executors of the activities could be instruments (e.g. a

centrifuge) or laboratory personnel. As an example of the huge quantity

of data produced by an activity we could mention the mass of raw data

generated by a single DNA sequencing experiment, that is nowadays in the

order of the Terabytes. Besides the data, all the procedural steps must be

tracked. Returning to the DNA sequencing laboratory example, the protocol

would probably require to execute also ”virtual” operations, as opposed to

physical like converting the raw data into DNA sequences and subsequently

assemble them by means of alignment algorithms.

In the typical protocol we find three kind of activities, depending on their

performer:

• those performed by a physical device, like a liquid handler workstation

(e.g. Biomek FX);

• those performed by a virtual device, like an assembling software;

• those performed by a human operator, like shaking a plate or taking a

sample of DNA through a swab.

3.3.3.2 Execution platform 85

Starting from these considerations we defined a general notion of activity,

called Action. An Action is defined by a name and a list of parameters.

Each Action parameter is characterized by a name, a type and by the mode

in which it is passed (read-only, read/write, write-only) (Figure 3.7). An

Action is an atomic step in our execution model and could be seen as the

simplest instruction that our MAS is able to interpret and execute.

Figure 3.7: XML schema for an Action.

Referring again to the programming language metaphor we can assim-

ilate an Action in our Executable model of a protocol to a single machine

instruction in a machine code program. A single machine instruction can

be directly executed by the processor. Our definition of Action is general

enough to cover the three kind of activities above mentioned. Given the het-

erogeneity and the complexity of the laboratory environment, this solution

represents a good trade-off between the need of describing a protocol with

enough low granularity and the need of having a common interface for every

activity involved.

Listing 3.1 shows the XML document describing a ”centrifugate” Action.

A centrifugate Action is defined by three parameters. The parameter named

”performed”, is of Boolean type and its mode is OUT, so that it is actually

an output parameter of the action, representing whether the action has been

successfully performed. The second and the third parameters are inputs

86 Proposed solution

of integer type representing respectively the g-force to be applied in the

centrifugation and the centrifugation time.

Listing 3.1: XML document for a centrifugate action

1 <?xml version=\"1.0\" encoding=\"UTF-8\"?>

<Action>

<Name>centrifugate></Name>

<ontoTag>tagCentrifuge></ontoTag>

<parameterList>

6 <parameter>

<type>boolean></type>

<name>performed></name>

<mode>OUT</mode>

</parameter>

11 <parameter>

<type>int</type>

<name>forceApplied</name>

<mode>IN</mode>

</parameter>

16 <parameter>

<type>int</type>

<name>centrifugationTime</name>

<mode>IN</mode>

</parameter>

21 </parameterList>

</Action>

It must be recalled that an Executable Action has a semantic counterpart

in the Action concept, formally defined in the laboratory domain ontology of

the BioCOW meta-model[80].

In the Executable model, a Protocol is an articulated flow of Actions.

A Valid Protocol is a protocol that our runtime environment is able to in-

3.3.3.2 Execution platform 87

terpret and to execute. A Protocol in the model could be composed using

different Actions available in the runtime environment or loaded from ex-

ternal libraries. In XPDL a process is a structured composition of pieces of

works, individually called Activities, which could be of various types [108]. In

our system a Valid Protocol is an XPDL compliant model with some minor

limitations and differences.

In order to guarantee the correct interpretation of a BioCOW protocol

we require that every piece of work must be described by means of an Action

concept. In this manner the BioCOW meta-model is semantically enriched

to meet our needs. We also want to preserve at runtime the ontological

constraints defined at design time. In XPDL the notion of ”piece of work” is

described by the concept of Activity. Hence we impose that every Activity

is allowed to only invoke Actions. In order to satisfy this condition in the

Executable model, we placed two restrictions on the XPDL meta-model.

The first one is to limit the types of Activity only to Route and SubFlow.

The Route activity performs no work and simply supports routing decisions

among the incoming transitions and/or among the outgoing transitions. The

SubFlow activity enables the reuse of processes and could be usefully used

to encapsulate parts of protocols in self-contained modules.

Second, we provide a specific SubFlow (ExecuteActionW) around an in-

vocation of an Action. The ExecuteActionW SubFlow (Figure 3.8) simply

invokes the execution of the Action and checks whether it is performed with

or without errors. Actions can be executed only if they are encapsulated

within that construct.

Using only Route and SubFlow activities and using the ExecuteActionW

SubFlow we can therefore ensure that every piece of work is backed by an

Action concept. Below we describe how we have built a MAS runtime system

88 Proposed solution

Figure 3.8: The ExecuteActionW SubFlow that encapsulate the execution of ac-

tions.

able to execute a Valid Protocol.

MAS Runtime Environment

The architecture of the MAS Runtime Environment is designed to closely

resemble the laboratory environment, with the additional capability of being

able to interpret and execute Actions as described in section 3.3.2. The

Executable Model of a protocol involves one main kind of entity. These

entities are heterogeneous and distributed resources that actually expose and,

on request, perform Actions. We therefore dedicated one class of agent to

these entities, the Device Agent (DA). Another distinctive characteristic of

the Runtime Environment is an entity that does read an executable protocol

and handles its execution. A Protocol Manager agent (PM) is appointed to

control this aspect. A user interface agent (APE) is designed for loading new

3.3.3.2 Execution platform 89

Agent Description

Agent Protocol Environment (APE) allows the loading of new protocols

Protocol Manager (PM) executes a protocol in the MAS

Device Agent (DA) controls a resource, physical or virtual envir-

onment

Report Agent (RA) user interface for mobile devices

Table 3.2: Different classes of agents in our runtime platform.

protocols in the MAS. A Reporter Agent (RA) is built specifically as a User

Interface for mobile devices. Table 3.2 shows the different agents capabilities.

• DA: controls a resource (physical or virtual)

• PM: executes a protocol in the MAS

• APE: allows the loading of new protocols

• RA: user interface for mobile devices.

The RA agent is created at the boot of the system. For each resource in

the laboratory environment that should be automatically managed from the

LIMS, it is then created a DA Agent counterpart. One APE is also created

in the boot phase, however two (or more) instances can co-exist without any

problem. The same holds for the RA. A PM agent instead is created dynam-

ically on user demand, and it is responsible for the execution of a particular

protocol. On completion of the protocol, the PM agents automatically end

its life cycle and is removed from the system.

Device Agent (DA)

We use a combination of a Driver and an Agent to make available in the MAS

a service that can be executed by a physical or virtual resource. A Driver

90 Proposed solution

in our model actually handles the communication with a legacy resource

such as a centrifuge or a robotised station. Since our model is inspired on

the A&A model [90], our Driver is structured in terms of Actions. The

similarity with the model lies in the fact that a Driver represents a resource

in the MAS environment (Artifact in the A&A model). The main difference

is that we strictly bind an instance of a Driver with exactly one instance

of a DA. As a consequence, every request of Actions must be posted to a

specific DA that acts as a proxy to the driver and therefore to the resource.

A Resource exposes a set of Actions, one for every functionality. In the

Centrifuge example the Centrifuge is the resource itself, and it is described by

means of the functionalities it exposes and hence by a set of different Actions,

i.e. the actions it can actually perform (e.g. ”centrifugate” or ”open lid”).

A DA is responsible for executing the individual actions, therefore it needs

to know how to physically communicate with the resource it encapsulate.

The DA also needs to communicate with other agents so as to satisfy any

incoming requests for its functionalities. We therefore structured a DA in

two layers as depicted in Figure 3.9. The bottom layer is responsible for

the communication with the resource using a specific driver. The top layer

carries out the normal agent duties behaviour and social capabilities.

The scope of the bottom layer is to fetch and store metadata, using a

resource specific driver. In the development of such a complex and hetero-

geneous system like a biological laboratory, the design of a new driver can

become a hard bottleneck. Hence we spent some effort to simplify the process

of driver creation. In our approach, a driver could be any piece of Java code.

This choice enables the reuse of legacy code as well as direct interfacing with

the instrument. The only added requirement for a developer is to declare

which services the driver does expose. This is done via the Java annotation

3.3.3.2 Execution platform 91

Figure 3.9: Layers of the Device Agent.

mechanism, which allows to add metadata to the code. We provide a set

of annotations like @Action and @Par. Every method that is exposed as a

first class entity in the system (Action) must be annotated with the @Action

92 Proposed solution

tag. In case of parameters, the @Par tag should be used. As illustrated in

Listing 3.2 the method centrifugate is promoted to the level of an Action

entity in the MAS. Two parameters are declared plus an extra one for the

return value of the method. The XML document of Listing 3.1 is actually

created from the annotated centrifugate Java method of Listing 3.2.

Listing 3.2: Example of a method annotated with an @Action tag

@Action(ontoTag = "tagCentrifuge", returnName = "performed")

public boolean centrifugate(

@Par(name = "gforce", mode = Mode.IN) int rpm,

@Par(name = "sec", mode = Mode.IN)int sec

5){

//communication with the centrifuge

}

Using a driver manager the Device Agent is able to load and extract the

metadata for a driver that fulfills these requirements. During the initializa-

tion phase the agent loads the driver, analyzes the metadata and creates a set

of Action objects compliant to our model. The set of these objects provides

the descriptions of the capabilities of the Device agent. In the last step of

the initialization phase the DA register itself (with the exposed capabilities)

in the MAS.

The top-layer of the device agent is responsible for the interaction with

other agents in the MAS, responding to request for Actions. Its main cap-

ability is to execute the ExecuteActionW SubFlow (see Figure 3.8). If a PM

agent wants to execute an action available on the interfaced device he should

first retrieve the corresponding Action object querying the yellow pages. At

that point, the PM should request to the DA to perform the ExecuteActionW

SubFlow using as parameter the Action object and the actual parameters (if

3.3.3.2 Execution platform 93

any) of the action. The DA then tries to execute the action, communicating

with the resources by means of the driver. If any error occurs, the caller is

notified. In case of no errors, the resulting output parameters are filled in

the Action object and the caller is notified.

Protocol Manager agent (PM)

The Protocol Manager (PM) agent is responsible for the correct execution of

a protocol. It incorporates the capabilities to execute a restricted XPDL pro-

tocol (according to section 3.3.2). Since the restriction imposed on XPDL in

our Executable Model are minor, a normal WADE agent can be used without

problems. In order to develop a protocol directly in the MAS system it is

therefore possible to use the WOLF tool [35]. However, in the future, we in-

tend to translate a protocol, structured in the BioCOW meta-model, directly

in Java code fit for use in JADE/WADE. On the launch of a new protocol a

new PM is created. The first step performed by a PM is to check whether

the protocol can run on the current environment. The PM tries to verify the

avalaibility of every Action used in the protocol before actually starting ex-

ecution. Only if that control is successful then the execution of the protocol

can take place. When the PM agent encounters an Action invocation, it first

check, which DA is actually able to perform it. The answer depend on the

actual state of the resource (the resource could be already in use or could

be broke). The search is performed using the classic yellow pages system

of JADE. Then, the agent delegates the execution of the ExecuteActionW

SubFlow to the proper DA. The standard WADE mechanism used to en-

act distribuited workflow execution is applied. If multiple protocols require

the same action, the requests are queued and acted upon by the DA. The

requests are then served on a FIFO base. In the future, using a separate

94 Proposed solution

scheduler, more complex policies will be usable.

Agent Protocol Environment (APE)

The APE agent provides a user interface (UI) to laboratory operators in order

to load new protocols. A protocol is enclosed in a package that contains three

different categories of elements:

• main protocols as well as the sub-protocols used in them;

• local resources like images or spreadsheet files required by the activities

of the protocols;

• specific external libraries to provide utility function like PDF docu-

ments generation.

APE loads a package and does visualize its content to the operator. It then

extracts all the resources from the package and does deploy them into the

runtime system. It is also responsible for creating a new PM agent and to

charge it with the execution of the loaded protocol.

Reporter Agent (RA)

A Reporter Agent has been built specifically to handle requests from mobile

devices that provide GUIs to laboratory operators. We currently support

Android [2] based mobile devices using the peer-to-peer approach proposed

in [123]. The RA is able to query the system and to provide information

about the state of a sample processed in the laboratory. It interacts with

the other agents of the runtime system and queries the database in order to

determine detailed information like:

• the customer order that activates the laboratory analysis;

3.3.3.2 Execution platform 95

• the type of the biological analysis in which the sample is involved;

• the current phase of processing reached by the sample;

• the relationship with other samples produced in the laboratory for the

same customer order.

Finally, after collecting all pieces of information, the RA is able to produce

a report and to send it to the operator’s GUI on their mobile device.

96 Proposed solution

3.4 Results obtained for each element of the

system

Our system consists of four parts:

1. A high-level language that draws both from a domain-specific ontology

and a workflow metamodel;

2. A graphical editor built upon the above language;

3. A model-to-code compiler that translate the language written using the

graphical editor in code suitable for the runtime platform;

4. A runtime platform;

The high-level language, BioCOW, is currently at a prototype stage. The

mapping provided is sufficiently detailed to be used in a real-environment.

However with the technology we used we were not able to implement the

whole mapping in our technological stack. We therefore limited ourselves

to map just a fraction of the whole ontology. In particular we mapped all

the BFO ontology and only the main branches of the OBI ontology. That

limit does not impair the methodology as the development of the tools used

is currently active and there is a vivid interest in the community to explore

such possibilities.

The graphical editor built using the Obeo designer was developed for

demonstration purpose and not with a commercial intent. The current stage

of the implementation is suitable for build valid BioCOW models. All the

main concepts are mapped to graphical symbols. However it is not stable

enough for industrial use. The procedure used to draw relies on the expert-

ise of the developer. An end-user would not be able to effectively use the

3.3.4 Results obtained for each element of the system 97

system. Even more the editor has not been tested and critical bugs should

be expected.

The model-to-code compiler as well has been built for demonstration

purpose only. The current stage of the implementation covers the main

constructs and it is able to translate BioCOW models in valid packages for

the execution on the runtime system. However it has not yet been used

extensively and therefore some bugsmay still be encountered in actual use.

The runtime system has been validated and used in an industrial envir-

onment (BMR Genomics). It should be considered a beta release and the

majority of the features are already implemented. It is stable for real world

using and the development is currently active. It comprises API for building

protocols, API for develop drivers as well as a small set of built-in drivers. It

has been tested over the main operating system (Windows, Linux and Mac

OS X).

Chapter 4
Evaluation

In this chapter we provide some elements for an evaluation of the work de-

scribed in this dissertation. Since our system is divided in two layers (front-

end and back-end) we need two different kind of expertise. Therefore, in

collaboration with domain experts, we tried our prototype in two different

use cases.

The front-end of our architecture is the layer that deals with the end-user.

Hence, on the ground of the partnership with CRIBI1, we engaged research-

ers from the field of molecular biology in using our specification language.

Drawing from the researcher experience, and working directly with them,

we used our tools to develop a real-world protocol. We then compared the

produced protocol.

For the back-end part we worked in collaboration with BMR Genomics2

a company involved in the sequencing fields that offers sequencing services

for third parties. BMR services range from sequencing for researcher project

to paternity tests for private individuals. During the course of the project we

1http://www.cribi.unipd.it/
2http://www.bmr-genomics.it/

100 Evaluation

deployed our back-end system in their business processes. Thus we had to

directly relate our runtime system to their legacy protocols and environment.

Section 4.1 presents the front-end use case; Section 4.2 and 4.3 the back-

end one.

4.1 Specification language

The experiment has been structured in sequential four phases:

1. Introduction to the expert of the intent of the system and its way of

modeling

2. Choice of a sample protocol to implement in the system

3. Development of the model of the chosen protocol

4. Evaluation of the developed model against given criteria.

The outcomes expected of the experiment were of two categories.

• That our system is capable of facilitating the production of a well-

formed protocol formalized

• That our language and method achieve good marks in the dimensions

of expressivity, economicity and ambiguity.

In the first stage of the experiment we introduced the user to the ideas

behind the model. We described to the laboratory expert the high-level ar-

chitecture and the logic of the system, its advantages and its current limits.

In particular, we presented the new approach to protocol formalization based

on workflows, listing in a concise way all the constructs currently available

in the visual modelling language (see Figure 3.5). We explained that we

4.4.1 Specification language 101

wanted to maximize the expressivity of the user specification language. In

this “learning” phase we introduced three workflow patterns chosen among

those described in [124]: Parallel Split; Synchronization; Structured Loop.

These patterns do not contribute to the language expressivity but consid-

erably reduce the user effort. Attaching a graphic symbol to each of these

patterns adds to the economicity of the language (as does for example, the

single word “rainbow” in contrast with the dictionary description “An arc of

spectral colors, usually identified as red, orange, yellow, green, blue, indigo,

and violet”).

We asked the domain expert to write the protocol of interest using the

proposed language constructs, first coding “by hand” in the graphical lan-

guage of workflows. The design process was performed on paper without the

support of any graphical editor. Since the graphical editor is built over the

meta-model it does not add specific constructs and therefore expressivity.

Hence the choice of performing the experimentation on paper, instead that

directly on our graphical, does not have an impact on our experimentation.

We decided to use that approach for constraints of time and to avoid the

impediment caused by the technological non maturity of our editor.

Figure 4.1 depicts a representation of the protocol that had to be trans-

ferred into our platform. The figure shows that our meta-model is expressive

enough to describe the operational parts of laboratory protocols.

Every block in the protocol represents an Action. The Action “Add

Sample” for example adds a precise quantity (vSample) of the sample (ID-

Sample) in the specified micro-centrifuge Eppendorf tube (IDEppendorf).

Since a DataType could be backed also by an ontological term we used

deoxyribonucleic acids3 (DNA) for the sample (IDSample). An Action could

3Full id: http://purl.org/obo/owl/CHEBI#CHEBI 16991

102 Evaluation

have zero or more parameters, each of which could be backed by an appro-

priate ontological term.

In general-purpose workflow languages the end-user meaning is attached a

posteriori to symbols and association. Conversely, basing the workflow meta-

model on the domain specific ontology guarantees maximally consistent use

of the modelling language offered to the end user. This occurs because every

symbol of the workflow language now has an a priori attached meaning well

anchored to the domain ontology.

In the protocol we can also see one of the three proposed patterns: the

Structured Loop. The meaning here is to prepare numberOfSamples samples

as specified by the Prepare Eppendorf action. The two conditions attached

to the transitions specify when to either repeat or stop the action.

It is worth noting that in the first learning round the biologist produced

a very specialized protocol instance with ad-hoc parameters and patterns.

Obviously, the protocol in question was only capable of describing the con-

tingent needs of that particular protocol. Once the expert learned how to use

the language to its full potential, he became able to design a more general

version of his own original protocol, therefore earning larger reuse potential

This shows that we met the economicity goal because we can synthesize a

single artifact which can express a whole range of protocols.

4.1.1 Evaluation

The resulting protocol (Figure 4.1) has shown that the proposed BioCOW

meta-model enables the biologist to describe his protocols. In our experiment

a biologist without previous knowledge of our system has been able to express

a protocol routinely used in his experimentation. The learning curve proved

to be fairly low. In a couple of learning cycles we saw the domain expert

4.4.1.1 Evaluation 103

Figure 4.1: Protocol

become able to generalize a protocol producing a more general template for it.

Thus we can safely say that the proposed BioCOW meta-model is sufficiently

expressive for the envisioned needs.

The second dimension of evaluation, economicity, takes advantage of the

produced template. The first version of the protocol was comparatively sim-

ilar to a classic protocol description in terms of quantity of syntactic con-

structs used. The language proposed is quite simple and does not provides

104 Evaluation

complex constructs able to describe composite behaviours in a concise way.

However, constraining the domain expert to use just a small set of con-

structs has provided an unexpected result. The domain expert has naturally

recognized and developed a common pattern and produced a template for

a variety of protocol experiments. Hence the experiments also produced a

valuable feedback in the economicity dimension.

For the last dimension, ambiguity, the ontology for the reason described

above helps and drives the realization of a more precise protocols. However,

since the validation has been made without the use of a graphical tool, we

were not able to take full benefit from some technological enhancement such

as for example autocompletion. Writing protocols by hands has been made by

careful manual search of the correct ontologicals terms to use. This drawback

could be obviously overcome using a graphical editor able to adequately

interpret the BioCOW meta-model entities.

Another point of interest is the non-ambiguity of the interpretation of

the model. Since the model needs to be translated in an executable form, no

ambiguity is admissible in the interpretation of the constructs (e.g. how to

execute actions and how to evaluate conditions to fire transitions). As our

language is comparatively simple no ambiguous statements could be pro-

duced in the written model. To confirm its correctness has been checked

manually by experts of the execution platforms.

How complex constraints expressed at design time could be preserved

at runtime is currently under investigation. For example, a biologist could

express a condition in which a sample needs to be processed under a specific

temperature (e.g. a centrifugation at 4 degrees). An execution platform

needs to ensure that this specific constraint will be met during the execution.

A laboratory experiment presents itself to the execution environment with

4.4.2 Bioinformatic pipeline 105

a list of Actions that compose it. The execution of the experiment is then

enacted if and only if all those Actions can be supported. At present, we

accomplish this simply as a static acceptance check. In the future we want

to augment this with the dynamic capability of handling contingencies. To

this end, the autonomous nature of agents could be of great help.

4.2 Bioinformatic pipeline

In order to assess the validity of our platform we tested it against a set of

bioinformatics analysis. We developed a pipeline used in our laboratory to

analyse the raw data produced by the DNA sequencer. We describe here the

pipeline and the development of that pipeline inside our runtime platform.

4.2.1 Pipeline: alignment of RNA sequences

The aim of the pipeline is to align RNA sequences (reads) of grapes against a

reference genome and to produce an alignment, recorded in the SAM format.

A SAM (Sequence Alignment/Map) format is a generic format for storing

large nucleotide sequence alignments [78]. SAMTools is a suite of programs

able to manipulate that format. We also want to visualize the data in a

GBrowse 4 (a genome viewer). Input of a GBrowse is a BAM file that is a

binary version of a SAM.

In order to produce a BAM file we need to align our sequences against a

reference genome. In our pipeline we start using sequences produce by the

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) produced

by Applied Biosystems (ABI). Data produced by the SOLiD sequencer is

not directly saved in DNA sequences. Instead the color space is used [91].

4http://gmod.org/wiki/GBrowse

106 Evaluation

The color space sequences are usually saved in the csfasta (color space fasta)

format. A quality file qual is provided as well in order to assess the quality

of the sequence. Those two formats (csfasta and qual) are then combined

in the format fastq. The fastq format contains both the sequence and the

quality. In our pipeline we used a tool produced by our team (csfasta2fastq)

able to merge those two formats.

We could then align the sequence against a reference genome. We used

Pass as tool [37]. Pass is able to work directly in color space. Output of

Pass is a SAM file that is subsequently sorted and converted in a binary file

(BAM format).

4.2.2 Development

The following steps involved in the pipeline:

• csfasta2fasta

• Map reads

• sam2bam

• bam sorting

• indexing

Each step has as its counterpart a specific tool that could be launched by

command line. We therefore develop a simple driver able to launch a process

like a command line. A more interesting approach would be to developed

a specific driver for every program. That approach would be more time

consuming but it will enable the possibility to describe with more details the

parameters of the single programs.

4.4.2.2 Development 107

The resulting driver, CLIBioinfoDriver, has been developed in Java. The

only Action exposed is execute that takes as parameter the command line to

be executed and returns true in case of success or false otherwise.

We subsequently prepared an environment with the driver and developed

our pipeline. In figure 4.2 we can see the resulting pipeline. Every box of the

Pipeline is an actual invocation of the execute Action exposed by the driver.

csfasta2fasta This step merges a csfasta file with his quality file. It takes

as input a csfasta and a qual files. A fastq file is returned as output.

Map reads This step maps the reads against a given genome. It takes as

input a fastq file. Every reads is then aligned against the reference genome.

A SAM file is given as output. Pass, the alignment tool, is able to work

directly in color space. It must be noted that Pass is a resource consuming

program. In the example tested we worked with a small subset of data (only

two chromosomes instead of the whole genome). We tested using a laptop

with 4 gigabytes of RAM. The amount of RAM was barely enough and the

execution lasted around twelve hours. Usually, specific workstations are used

for this kind of works. However, our platform is general enough to cope with

this situation. We used a simple driver able to launch programs using the

command line. In the case of the workstation it would be necessary to write

just a different driver able to command the workstation. The remainder of

the Pipeline would not need to be changed in that case.

in that case it would not be changed.

sam2bam Conversion of the SAM file in a BAM file. Since a SAM file is

text using a binary conversion we are able to save around 30% of disk space.

The conversion is carried out by the SAMTools.

108 Evaluation

bam sorting It creates a new file with the data sorted by chromosome

position. The sorting is carried out by the SAMTools.

indexing It creates a index file with extension needed by the GBrowse.

Figure 4.2: Bioinformatic pipeline: RNA-seq.

4.4.3 Demo case: paternity test 109

4.3 Demo case: paternity test

The Paternity Test aims at establishing if a man is the biological father

of an individual. A customer, willing to perform the test, places an order

through a website. Afterward, DNA samples belonging to the individual and

to the supposed child are collected, usually by mean of buccal swabs, and

sent to the analysis laboratory. When the material reaches the laboratory,

some biological analysis can actually be executed, according to the protocol

described in Figure 4.3. Through several sub-protocols, the samples are

processed and, at every step, transformed into specific types of succeeding

samples. In the final steps of the protocol, by DNA sequencing techniques,

some data results are obtained. The DNA sequencing output is then used to

compute the profile of the individuals involved in the specific test and finally

a medical report that explain the results is produced by an expert.

Each action of the protocol is currently activated manually by a laborat-

ory operator, following the workflow. In different phases of the process the

operator is bounded to fill some digital resources and execute some bioin-

formatics analysis.

Figure 4.3: The protocol formally describing the Paternity Test

[The protocol formally describing the Paternity Test.]

110 Evaluation

In order to test the potential of our system the protocol described above

has been formalized in the BioCOW meta-model. Every depicted activity

block could represent either a normal SubFlow or an Action invocation by

means of the ExecuteActionW SubFlow.

Figure 4.4 shows a subprotocol that describes the steps involved in the

PCR SubFlow. In it we can see a use of the centrifugate action of Listing 3.1.

In the PCRCycle Action the DNA material is amplified by means of the

Polymerase Chain Reaction so that its quantity becomes sufficient for the

following steps of the analysis. It can be noticed that the protocols does

include not only the physical processing of samples but also the management

of the produced data and of the history of the sample (e.g. by mean of the

DBReg Action, that interacts with a database). Doing so make it possible

to support existing legacy systems without changing their structure.

It is worth underlining that since the PCR sub-protocol is self-contained

in the SubFlow is possible to reuse it in other contexts without writing a single

line of code. This drastically reduces the time needed for the implementation

of new protocols.

Using the proposed approach an explicit knowledge of the concepts in-

volved in the protocol exists in the system. The MAS is therefore able to

interpret this knowledge and to act correctly depending on the real envir-

onment. In the case study of the paternity test only the tracking activities

have been totally automated. The operator is therefore notified when he can

start the physical steps, to be executed from a device. Nevertheless, with

proper drivers and proper hardware, physical actions could be automated .

The system notifies the next steps to be performed. In the case study the

operator is notified to perform a PCR on some specific samples. After the

sequencing phase an automatically analysis is performed and the results are

4.4.3 Demo case: paternity test 111

delivered to the laboratory operator.

In our test case a total of 31 activities were included to define the patern-

ity protocol (included the sub-protocol SwabExtraction, PCR, Sequencing

and Analysis). Using our model we automated 12 of those activities. Once

automated these activities become transparent to the end user and they could

be also easily reused in other protocols with minimal effort.

With respect to the initial requirement of traceability, automation and

integration our test case shows promising results. The requirement of trace-

ability is easily guaranteed, and all the related - and heavy - duties are now

transparent to the end user.

The second requirement of automation is met. In our test case only some

activities have been automated. The bottleneck is the legacy environment

and the development of the drivers. However, also without producing drivers

for the specific hardware, we automated 12 of the 31 initial activities (38%).

The last requirement is met under the constraint to produce specific

drivers for the specific devices used in the laboratory.

Figure 4.4: The PCR subprotocol of the paternity protocol.

Chapter 5
Discussion and conclusion

In 1977, a team lead by Frederick Sanger sequenced the first DNA-based

genome (Phage F-X174). The sequence, only 5 thousand nucleotide bases,

opened a new era for natural sciences. In 2000, after ten years of effort,

two independent projects announced the sequencing of the human genome.

A big technical and methodological leap was needed to sequence all the 3

billions of bases, 6 orders of magnitude larger than the first sequence of 5.000

nucleotides. The last 10 years have also seen a surge of very solid interest

from both the scientific and the industrial communities in the new emerging

opportunities. The second generation of sequencing machine, 454, Solid,

Illumina, significantly dropped the cost for base pair (bp). A third generation

is expected in few a years from now. In the meanwhile, experiments have

been made to directly read the strand of DNA, the success of which will

constitute the forth generation solution.

However this increasing productivity inevitably entails a rise in complex-

ity. New challenges, both for the data produced and the laboratory protocols

(commonly referred to as procedures) used, arise from that progress. The

raw data produced by the laboratory equipment have to be refined so as to be

114 Discussion and conclusion

post-processed, which poses the so-called assembly problem. The procedures,

which change very rapidly to keep pace with the progress of the sequencing

techniques, must be understood by domain experts. In addition to producing

potentially huge volumes of data, the procedures themselves must be aware

of the progress of execution, for, general intelligence as well as contingency.

The economic value of their execution, in terms of both resource efficiency

and product efficacy obviously benefits from a controlled and stable quality

of execution. This goal is best achieved by automation. However the cur-

rent state of the art offers no standards to this effect. Moreover, since the

sequencing technology is moving fast a solution based on a monolithic infra-

structure (commonly referred to as information management system, IMS) is

the worst possible answer to those needs. In thinking of a fitting solution we

must also bear in mind that, at present, IMS are most often directly realized

by the biologists themselves.

Biomedical analyses are becoming increasingly complex, with respect to

both the type of the data to be produced and the procedures to be executed.

This trend is expected to continue in the future. The development of in-

formation and protocol management systems that can sustain this challenge

is therefore becoming an essential enabling factor for all actors in the field.

The use of custom-built solutions that require the biology domain expert to

acquire or procure software engineering expertise in the development of the

laboratory infrastructure is not fully satisfactory because it incurs undesir-

able mutual knowledge dependencies between the two camps. We propose

instead an infrastructure concept that enables the domain experts to express

laboratory protocols using proper domain knowledge, free from the incidence

and mediation of the software implementation artefacts. In the system that

we propose this is made possible by basing the modelling language on an

115

authoritative domain specific ontology and then using modern model-driven

architecture technology to transform the user models in software artefacts

ready for execution in a multi-agent based execution platform specialized for

biomedical laboratories.

In this thesis we proposed an architecture that aims to close the gap

between the biologist’s IMS concept and the software engineering knowledge

and technology involved in automating the execution of laboratory proto-

cols. To this end, inspired on the Model-Driven Architecture paradigm, we

developed a software framework that enables the biologist to directly plan

her protocols without the need to draw from software engineering knowledge

and technology, including programming languages, compilers, interpreters,

and the like.

The architecture of the solution we proposed comprises the two main

layers. A front-end layer with:

• A high-level language as close to the experience and the needs of the

biologist as possible;

• A graphical editor capable of enabling the user to graphically specify

the desired protocols with the provided high-level language;

A back-end layer with

• A model-to-code compiler able to translate the user protocol in code

fit for the target execution platform;

• A run-time environment that understands an executable version of the

protocol produced by the compiler and is able to relate the constraints

and needs expressed in the protocol to the actual capabilities of the

environment and to accordingly execute multiple protocols in parallel.

116 Discussion and conclusion

BioCOW, our high-level language, describes the operational perspective

of a laboratory protocol using a workflow metaphor expressed in XPDL, a

markup language created to ensure interoperability among different workflow

management tools in order to handle workflow processes. To make it better

fit our purpose we enriched the XPDL meta-model with concepts drawn from

an ontology specialized in biomedical investigations, OBI. OBI addresses the

need for controlled vocabularies not only for the experimental data annota-

tion but also for the representation of investigations in the Biological and

Biomedical Sciences. We then used the Eclipse Modeling Framework (EMF)

to integrate OBI ontology and the XPDL schema, from which we obtained

a new meta-model (nicknamed BioCOW after Biology Combined Ontology

[and] Workflow). BioCOW make it possible to model workflows in terms of

objects and actions specific of our target domain. The mapping provided is

detailed enough to be used in a real-environment. We tested it against three

real use cases drawn from academic and industrial scenarios. However, the

technological stack used is not mature enough to implement the whole map-

ping between OBI and our metamodel. Therefore we implemented a partial

view of the map. We mapped all BFO ontology but only the main branches

of the OBI ontology.

The graphical editor has been built for demonstration only. With it we

were able to build valid BioCOW models. The relevant domain-specific pro-

tocol concepts are mapped to graphical symbols. The model-to-code compiler

as well has been built for demonstration purpose. The current stage is able to

translate valid BioCOW models in executable code for the runtime system.

The runtime system has been validated and used in industrial (BMR Ge-

nomics) and academic (CRIBI) environments. The majority of the features

are implemented and tested. It comprises a set of API for building pro-

117

tocols and develop drivers. A growing set of drivers is currently being in

development.

To assess our platform we tested it in an incremental way. We worked

with three different use cases. With the the first use case we engaged a

researcher to write a protocol using our metamodel (see section 4.1). The

protocol used was a typical wet-lab protocol. The evidence collected suggests

that the language covers the needs of the researcher. The researcher was able

to express a protocol of choice with our language. This validation covers the

front-end part of our architecture.

We tested our platform also against a bioinformatic protocol (pipeline)

to analyse data, in contrast with the first use case in which the protocol pro-

duced data (see 4.2. In this test we implemented the pipeline directly on the

runtime platform, hence using only the workflow view of our metamodel. We

then executed the protocol describing the pipeline in our runtime platform.

With this test case we validated our interpretation of what is a protocol

inside a biological laboratory. Our architecture proved flexible and capable

to deal with a set of new operations (bioinformatics tools) requiring only

the development of a single extra driver. The tests were carried out in an

academic (CRIBI) environment using real data.

Finally we tested in an industrial environment the runtime platform (see

4.3). We developed a protocol used as paternity validation. The protocol

developed is a real protocol currently used at the BMR Genomics. We de-

veloped the drivers necessary to interface our system with the specific labor-

atory environment. Our approach proved to be flexible enough to cope with

a different set of use case in a robust way. Since our platform relies on a

simple definition of drivers we were able to easily incorporate legacy systems

in use at BMR. In this way is possible to develop a graceful transition from

118 Discussion and conclusion

the legacy system to our system. BMR Genomics is currently upgrading his

systems using our platform.

Our long term vision depicted a picture in which a biologist is able to

concentrate on the research goal rather than on side details. With the work

of this thesis we wanted to enable the first steps of this long term vision. We

developed a metamodel that draw directly from an domain ontology. Using

this metamodel a researcher is able to develop protocols and to execute them

in an automated way. However the work on this field is not completed yet.

We can see some directions of work that need to be pursued in the future.

The first is a technological one. Our work proved that a similar approach

is feasible but with some drawbacks. The major limitation is the initial

amount of work that must be done to provide a minimal working tool. An-

other drawback is the current state of the tools able to deal with ontology

and metamodels. This field is comparatively new and the tools are insuf-

ficient. Further work would be required to complete the mapping provided

from a technological point of view. The current maturity of the tools is not

mature enough to translate real world ontology (written in OWL) inside the

Eclipse EMF framework..

A second axis is about the reasoning that we want to enable. In order to

provide a system able to make automatic reasoning and inferences we need

the domain knowledge and the knowledge in a structured way. In our domain

the required knowledge is already expressed in a formalized way (OBI).

Appendix A
List of scientific publications

The author contributed to the following scientific publications during the

timeframe of his PhD:

1. A. Maccagnan, M. Riva, E. Feltrin, B. Simionati, Tullio Vardanega,

Giorgio Valle, Nicola Cannata: “Combining ontologies and workflows

to design formal protocols for biological laboratories”. Automated Ex-

perimentation, Volume 2, No. 3, April 2010 [80].

2. A. Maccagnan, T. Vardanega, E. Feltrin, G. Valle, M. Riva, and N.

Cannata: “A multi-agent system for the automated handling of ex-

perimental protocols in biological laboratories”. In Proc. of the 11th

WOA 2010 Workshop, Dagli Oggetti Agli Agenti, September 2010 [81].

3. A. Maccagnan, N. Cannata, G. Valle and T. Vardanega: “Mapping

OBI and XPDL to a MDE framework for laboratory information pro-

cessing”. To appear in proc. of the Fourth International Conference

on Information, Process, and Knowledge Management, February 2012

[82].

Appendix B
Example of drivers

B.1 Command line driver

Listing B.1 shows a simple driver to launch process using the command line.

The actual code that performs the action starts at line 27. We can see the

method “execute” that is annotate with Action. Using this strategy the

system is able to recognize the method and extract and XML describing it.

Listing B.2 shows the XML conform with the Action schema (see Figure 3.7)

for the only method annotated “execute”. Must be noted that only on the

methods annotated with Action are analysed. Such XML is subsequently

used to invoke the corresponding action during the protocol execution.

Listing B.1: Command line driver.

package org.farm.drivers.clibioinfo;

3 import java.io.BufferedReader;

import java.io.InputStreamReader;

import org.farm.driverutils.FarmDriver;

import org.farm.driverutils.annotations.Action;

122 Example of drivers

8 import org.farm.driverutils.annotations.Par;

import org.farm.driverutils.annotations.Par.Mode;

import org.farm.driverutils.exceptions.FarmDeInitException;

import org.farm.driverutils.exceptions.FarmInitException;

import org.farm.driverutils.exceptions.FarmTestException;

13

public class CLIBioinfoDriver extends FarmDriver {

@Override

public void init() throws FarmInitException {}

18

@Override

public void deInit() throws FarmDeInitException {}

@Override

23 public boolean test() throws FarmTestException {

return true;

}

@Action(ontoTag = "CLIBioinfo", returnName = "Success")

28 public static boolean execute(

@Par(name = "CLI", mode = Mode.IN) String cli) {

Runtime rt = Runtime.getRuntime();

Process pr;

33 try {

pr = rt.exec(cli);

BufferedReader input = new BufferedReader(new

InputStreamReader(pr.getInputStream()));

String line=null;

while((line=input.readLine()) != null) {

38 System.out.println(line);

}

B.B.1 Command line driver 123

int exitVal = pr.waitFor();

if (exitVal >= 0){

return true;

43 }

} catch (Exception e) {

return false;

}

return false;

48 }

}

Listing B.2: The resulting “Action” of the “execute” method.

<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<Action>

<Name>execute</Name>

<ontoTag>CLIBioinfo</ontoTag>

5 <parameterList>

<parameter>

<type>boolean</type>

<name>Success</name>

<mode>OUT</mode>

10 </parameter>

<parameter>

<type>class java.lang.String</type>

<name>CLI</name>

<value>DUMMY-VALUE</value>

15 <mode>IN</mode>

</parameter>

</parameterList>

</Action>

124 Example of drivers

B.2 BiomexNX Driver

Listing B.3 shows a more elaborated driver. A Biomek NX is a liquid dis-

penser able to handle nanoliters. Beckman Coulter Inc.1 is the industrial

vendor. A Biomek NX is controlled using the proprietary software provided

by Beckman developed in Visual Basic. We used a bridge library (Com4j2)

in order to use the proprietary software in Java. Due to limitation of such

library we developed a client-server driver in order to run the bridge in a

different Java Virtual Machine. The code listed shows the client side of our

driver.

Listing B.3: Biomek NX Driver.

package org.farm.drivers.robots.biomekNX;

2

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintStream;

7 import java.net.Socket;

import java.net.UnknownHostException;

import javax.swing.JOptionPane;

import org.farm.driverutils.FarmDriver;

12 import org.farm.driverutils.PropertiesManager;

import org.farm.driverutils.annotations.Action;

import org.farm.driverutils.annotations.Par;

import org.farm.driverutils.annotations.Par.Mode;

import org.farm.driverutils.exceptions.FarmDeInitException;

17 import org.farm.driverutils.exceptions.FarmInitException;

1https://www.beckmancoulter.com
2http://com4j.java.net/

B.B.2 BiomexNX Driver 125

import org.farm.driverutils.exceptions.FarmTestException;

import org.farm.driverutils.exceptions.LoadDriverException;

22 public class BiomekNXDriver extends FarmDriver {

private static final long serialVersionUID =

-4326807377835319383L;

private static final String SERVICE_ADDRESS = "localhost";

private static final int SERVICE_PORT = 14189;

27 private static final int SLEEP_TIME = 1500;

private static String configFile = "drivers/BiomekNXDriver/

BiomekNXDriver.conf";

private BufferedReader in = null;

private PrintStream out = null;

private Socket socket = null;

32 private boolean connectedToMachine;

@Override

public void init() throws FarmInitException {

System.out.println("initializing BiomekNX...");

37 PropertiesManager pManager;

try {

pManager = new PropertiesManager(configFile.toString());

String connectedValue = pManager.getProperty("connected

");

if (connectedValue.compareTo("false") == 0){

42 connectedToMachine = false;

} else {

connectedToMachine = true;

}

} catch (IOException e) {

47 throw new FarmInitException();

126 Example of drivers

}

}

@Override

52 public void deInit() throws FarmDeInitException {

System.out.println("deinitializing BiomekNX...");

}

57 private void startService() throws Exception {

try {

Runtime.getRuntime().exec("cmd /c start drivers\\

BiomekService\\startService.bat");

Thread.sleep(SLEEP_TIME);

} catch (InterruptedException e1) {

62 e1.printStackTrace();

throw new Exception(e1);

} catch (IOException e2) {

e2.printStackTrace();

throw new Exception(e2);

67 }

}

@Override

public boolean test() throws FarmTestException {

72 if (!connectedToMachine) {

return true;

}

boolean result = false;

try {

77 startService();

} catch (Exception e1) {

return false;

B.B.2 BiomexNX Driver 127

}

try {

82 socket = new Socket(SERVICE_ADDRESS, SERVICE_PORT);

in = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

out = new PrintStream(socket.getOutputStream(), true);

out.println("isDeviceUp");

87 String response = "";

while(response.compareTo("completed")!= 0) {

response = in.readLine();

if (response.compareTo("completed")!= 0) {

if (response.compareTo("deviceUp") == 0) {

92 result = true;

}

}

}

out.close();

97 in.close();

} catch (UnknownHostException e) {

e.printStackTrace();

result = false;

} catch (IOException e) {

102 e.printStackTrace();

result = false;

}

return result;

}

107

@Action(ontoTag = "executeOperationNX", returnName = "void")

public void executeOperationNX (

@Par(name = "operationName", mode = Mode.IN) String

operationName) throws Exception {

if (!connectedToMachine) {

128 Example of drivers

112 return;

}

JOptionPane.showConfirmDialog(null, "Vuoi procedere con l’

esecuzione?","",JOptionPane.INFORMATION_MESSAGE);

startService();

try {

117 socket = new Socket(SERVICE_ADDRESS, SERVICE_PORT);

in = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

out = new PrintStream(socket.getOutputStream(), true);

out.println(operationName);

122 String response = "";

while(response.compareTo("completed")!= 0) {

response = in.readLine();

if (response.compareTo("completed")!= 0) {

System.out.println(response);

127 }

}

out.close();

in.close();

} catch (UnknownHostException e) {

132 e.printStackTrace();

throw new Exception(e);

} catch (IOException e) {

e.printStackTrace();

throw new Exception(e);

137 }

}

@Action(ontoTag = "plateTransferNX", returnName = "void")

public void plateTransferNX() throws Exception {

142 if (!connectedToMachine) {

return;

B.B.2 BiomexNX Driver 129

}

JOptionPane.showConfirmDialog(null, "Vuoi procedere con l’

esecuzione?","",JOptionPane.INFORMATION_MESSAGE);

startService();

147 try {

socket = new Socket(SERVICE_ADDRESS, SERVICE_PORT);

in = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

out = new PrintStream(socket.getOutputStream(), true);

152 out.println("Rack_tubini96-384_demo_LIMS");

String response = "";

while(response.compareTo("completed")!= 0) {

response = in.readLine();

if (response.compareTo("completed")!= 0) {

157 System.out.println(response);

}

}

out.close();

in.close();

162 } catch (UnknownHostException e) {

e.printStackTrace();

throw new Exception(e);

} catch (IOException e) {

e.printStackTrace();

167 throw new Exception(e);

}

}

@Action(ontoTag = "ethanolBSDispensationNX", returnName = "

void")

172 public void ethanolBSDispensationNX() throws Exception {

if (!connectedToMachine) {

return;

130 Example of drivers

}

JOptionPane.showConfirmDialog(null, "Vuoi procedere con l’

esecuzione?","",JOptionPane.INFORMATION_MESSAGE);

177 startService();

try {

socket = new Socket(SERVICE_ADDRESS, SERVICE_PORT);

in = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

182 out = new PrintStream(socket.getOutputStream(), true);

out.println("etanolo_blu_sali_demo_LIMS");

String response = "";

while(response.compareTo("completed")!= 0) {

response = in.readLine();

187 if (response.compareTo("completed")!= 0) {

System.out.println(response);

}

}

out.close();

192 in.close();

} catch (UnknownHostException e) {

e.printStackTrace();

throw new Exception(e);

} catch (IOException e) {

197 e.printStackTrace();

throw new Exception(e);

}

}

202 @Action(ontoTag = "ethanol70DispensationNX", returnName = "

void")

public void ethanol70DispensationNX() throws Exception {

if (!connectedToMachine) {

return;

B.B.2 BiomexNX Driver 131

}

207 JOptionPane.showConfirmDialog(null, "Vuoi procedere con l’

esecuzione?","",JOptionPane.INFORMATION_MESSAGE);

startService();

try {

socket = new Socket(SERVICE_ADDRESS, SERVICE_PORT);

in = new BufferedReader(

212 new InputStreamReader(socket.getInputStream()));

out = new PrintStream(socket.getOutputStream(), true);

out.println("etanolo70_demo_LIMS");

String response = "";

while(response.compareTo("completed")!= 0) {

217 response = in.readLine();

if (response.compareTo("completed")!= 0) {

System.out.println(response);

}

}

222 out.close();

in.close();

} catch (UnknownHostException e) {

e.printStackTrace();

throw new Exception(e);

227 } catch (IOException e) {

e.printStackTrace();

throw new Exception(e);

}

}

232 }

132 Example of drivers

Appendix C
List of abbreviations

COTS Commercial-off-the-shelf

LIMS Laboratory Information Management System

BFO Basic Formal Ontology

IFOMIS Institute for Formal Ontology and Medical Information Science

OBO Open Biomedical Ontologies

NCBO National Center for Biomedical Ontology

OBI Ontology for Biomedical Investigations

OWL Web Ontology Language

RO Relation Ontology

NCBI National Center for Biotechnology Information

IAO Information Artifact Ontology

MDE Model-driven engineering

134 List of abbreviations

BPMN Business Process Modelling Notation

XPDL XML Process Definition Language

MAS Multi-agent system

MDA Model-driven architecture

MOF Meta-Object Facility

OMG Object Management Group

BPM Business Process Management

MAS Multi-agent system

WADE Workflow and Agent Development Environment

CRIBI Centro ricerche interdipartimentale biotecnologie innovative

Bibliography

[1] Gene ontology. URL http://www.geneontology.org/.

[2] Android platform. URL http://code.google.com/android.

[3] Bpmi. URL www.bpmi.org.

[4] Journal of visualized experiments. URL http://www.jove.com.

[5] Jawe based process editor. URL http://www.jped.org.

[6] Minimum information about a microarray experiment. URL http:

//www.mged.org/Workgroups/MIAME/miame.html.

[7] Metabolomics standards initiative. URL http://msi-ontology.

sourceforge.net/.

[8] myexperiment. URL http://www.myexperiment.org/.

[9] Nature methods, . URL http://www.nature.com/nmeth/index.

html.

[10] Nature procotols, . URL http://www.nature.com/nprot/index.

html.

http://www.geneontology.org/
http://code.google.com/android
www.bpmi.org
http://www.jove.com
http://www.jped.org
http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html
http://msi-ontology.sourceforge.net/
http://msi-ontology.sourceforge.net/
http://www.myexperiment.org/
http://www.nature.com/nmeth/index.html
http://www.nature.com/nmeth/index.html
http://www.nature.com/nprot/index.html
http://www.nature.com/nprot/index.html

136 Bibliography

[11] The object management group. URL www.omg.org.

[12] Proteomics identifications database. URL http://www.ebi.ac.uk/

pride/.

[13] Protocol-online. URL http://www.protocol-online.org.

[14] Science advisory board. URL http://www.scienceboard.net/.

[15] Workflow management coalition. URL http://www.wfmc.org/.

[16] Xml process definition language. URL http://www.wfmc.org/xpdl.

html.

[17] Steering the future of computing. Nature, 440(7083):383, March

2006. doi: 10.1038/440383a. URL http://dx.doi.org/10.1038/

440383a.

[18] Abran, Alain, Bourque, Pierre, Dupuis, Robert, Moore, James W., and

Tripp, Leonard L. Guide to the Software Engineering Body of Know-

ledge - SWEBOK. IEEE Press, Piscataway, NJ, USA, 2004 version

edition, 2004. ISBN 0769510000. URL http://www.swebok.org/

ironman/pdf/SWEBOK_Guide_2004.pdf.

[19] Richard Arndt, Raphaël Troncy, Steffen Staab, Lynda Hardman, and

Miroslav Vacura. Comm: Designing a well-founded multimedia on-

tology for the web. In ISWC/ASWC, pages 30–43, xx 2007. URL

http://10.1007/978-3-540-76298-0. 10.1007/978-3-540-76298-

0 3.

[20] Robert Arp and Barry Smith. Function, role, and disposition in basic

formal ontology. In Available from Nature Precedings, page xx, 2008.

URL http://hdl.handle.net/10101/npre.2008.1941.1.

www.omg.org
http://www.ebi.ac.uk/pride/
http://www.ebi.ac.uk/pride/
http://www.protocol-online.org
http://www.scienceboard.net/
http://www.wfmc.org/
http://www.wfmc.org/xpdl.html
http://www.wfmc.org/xpdl.html
http://dx.doi.org/10.1038/440383a
http://dx.doi.org/10.1038/440383a
http://www.swebok.org/ironman/pdf/SWEBOK_Guide_2004.pdf
http://www.swebok.org/ironman/pdf/SWEBOK_Guide_2004.pdf
http://10.1007/978-3-540-76298-0
http://hdl.handle.net/10101/npre.2008.1941.1

Bibliography 137

[21] Uwe Assmann, Steffen Zschaler, and Gerd Wagner. Ontologies, Meta-

models, and the Model-Driven Paradigm. Ontologies for Software

Engineering and Software Technology, pages 249–273, 2006. doi:

10.1007/3-540-34518-3 9.

[22] George Avery, Charles McGee, and Stan Falk. Product review: Imple-

menting lims: A how-to guide. Analytical Chemistry, 72(1):57 A–62 A,

2000. doi: 10.1021/ac0027082.

[23] Pierre Baldi, G. Wesley Hatfield, and Wesley G. Hatfield. DNA Mi-

croarrays and Gene Expression: From Experiments to Data Analysis

and Modeling. Cambridge University Press, 1 edition, September

2002. ISBN 0521800226. URL http://www.worldcat.org/isbn/

0521800226.

[24] Jonathan Bard and Seung Rhee. Ontologies in biology: design, ap-

plications and future challenges. Nature reviews. Genetics, 5:213–222,

Mar 2004. ISSN 1471-0056. URL http://www.nature.com/nrg/

journal/v5/n3/abs/nrg1295.html. 10.1038/nrg1295.

[25] Ezio Bartocci, Flavio Corradini, and Emanuela Merelli. Enacting pro-

active workflows engine in e-science. In International Conference on

Computational Science (3), pages 1012–1015, 2006.

[26] Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Devel-

oping Multi-Agent Systems with JADE (Wiley Series in Agent Tech-

nology). Wiley, April 2007. ISBN 0470057475.

[27] F. Bergenti, G. Caire, D. Gotta, D. Long, and G. Sacchi. Enacting bpm-

oriented workflows with wade. In Atti del 12 Workshop dagli Oggetti

http://www.worldcat.org/isbn/0521800226
http://www.worldcat.org/isbn/0521800226
http://www.nature.com/nrg/journal/v5/n3/abs/nrg1295.html
http://www.nature.com/nrg/journal/v5/n3/abs/nrg1295.html

138 Bibliography

agli Agenti (WOA) Progettazione ed analisi di sistemi complessi me-

diante modellazione e simulazione basate su agenti, Calabria (Italia),

2011.

[28] H.C Birnboim and J Doly. A rapid alkaline extraction procedure for

screening recombinant plasmid dna. Nucleic acids research, 7(6):1513,

1979.

[29] Olivier Bodenreider and Robert Stevens. Bio-ontologies: current

trends and future directions. Briefings in bioinformatics, 7:256–

274, Sep 2006. URL http://dx.doi.org/10.1093/bib/bbl027.

10.1093/bib/bbl027.

[30] Matteo Bordin and Tullio Vardanega. Correctness by construction for

high-integrity real-time systems: a metamodel-driven approach. In

Ada-Europe’07: Proceedings of the 12th international conference on

Reliable software technologies, pages 114–127, Berlin, Heidelberg, 2007.

Springer-Verlag. ISBN 978-3-540-73229-7.

[31] Christopher Brewster, Kieron O’Hara, Steve Fuller, Yorick Wilks, En-

rico Franconi, Mark Musen, Jeremy Ellman, and Simon Shum.

Knowledge representation with ontologies: The present and

future. IEEE Intelligent Systems, 19:72–81, Jan 2004. URL

http://www2.computer.org/portal/web/csdl/doi/10.1109/

MIS.2004.1265889. 10.1109/MIS.2004.1265889.

[32] Ryan Brinkman, Melanie Courtot, Dirk Derom, Jennifer Fostel,

Yongqun He, Phillip Lord, James Malone, Helen Parkinson, Bjo-

ern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta

Sansone, Larisa Soldatova, Christian Stoeckert, Jessica Turner, Jie

http://dx.doi.org/10.1093/bib/bbl027
http://www2.computer.org/portal/web/csdl/doi/10.1109/MIS.2004.1265889
http://www2.computer.org/portal/web/csdl/doi/10.1109/MIS.2004.1265889

Bibliography 139

Zheng, and the OBI consortium. Modeling biomedical experimental

processes with obi. Journal of Biomedical Semantics, 1(Suppl 1):

S7, 2010. ISSN 2041-1480. doi: 10.1186/2041-1480-1-S1-S7. URL

http://www.jbiomedsem.com/content/1/S1/S7.

[33] Paul A. Buhler and José M. Vidal. Towards adaptive workflow en-

actment using multiagent systems. Inf. Technol. and Management, 6

(1):61–87, 2005. ISSN 1385-951X. doi: http://dx.doi.org/10.1007/

s10799-004-7775-2.

[34] Jean Bzivin, Vladan Devedzic, Dragan Djuric, Jean-Marie Favreau,

Dragan Gasevic, and Frederic Jouault. An m3-neutral infrastructure

for bridging model engineering and ontology engineering. In Dimitri

Konstantas, Jean-Paul Bourrires, Michel Lonard, and Nacer Boudjlida,

editors, Interoperability of Enterprise Software and Applications, pages

159–171. Springer London, 2006. ISBN 978-1-84628-152-5. URL http:

//dx.doi.org/10.1007/1-84628-152-0_15. 10.1007/1-84628-152-

0 15.

[35] G. Caire, M. Porta, E. Quarantotto, and G. Sacchi. Wolf - an ec-

lipse plug-in for wade. In WETICE ’08: Proceedings of the 2008 IEEE

17th Workshop on Enabling Technologies: Infrastructure for Collab-

orative Enterprises, pages 26–32, Washington, DC, USA, 2008. IEEE

Computer Society. ISBN 978-0-7695-3315-5. doi: http://dx.doi.org/

10.1109/WETICE.2008.57.

[36] Giovanni Caire, Danilo Gotta, and Massimo Banzi. Wade: a soft-

ware platform to develop mission critical applications exploiting agents

and workflows. In AAMAS ’08: Proceedings of the 7th international

joint conference on Autonomous agents and multiagent systems, pages

http://www.jbiomedsem.com/content/1/S1/S7
http://dx.doi.org/10.1007/1-84628-152-0_15
http://dx.doi.org/10.1007/1-84628-152-0_15

140 Bibliography

29–36, Richland, SC, 2008. International Foundation for Autonomous

Agents and Multiagent Systems.

[37] Davide Campagna, Alessandro Albiero, Alessandra Bilardi, Elisa

Caniato, Claudio Forcato, Svetlin Manavski, Nicola Vitulo, and

Giorgio Valle. Pass: a program to align short sequences. Bioin-

formatics, 2009. doi: 10.1093/bioinformatics/btp087. URL

http://bioinformatics.oxfordjournals.org/content/

early/2009/02/13/bioinformatics.btp087.abstract.

[38] Ruey-Shun Chen and Mengru (Arthur) Tu. Development of an agent-

based system for manufacturing control and coordination with onto-

logy and rfid technology. Expert Systems with Applications, 36(4):

7581 – 7593, 2009. ISSN 0957-4174. doi: DOI:10.1016/j.eswa.2008.09.

068. URL http://www.sciencedirect.com/science/article/

B6V03-4TNWGV3-2/2/bb69503c218efc2e1f7969a62d208738.

[39] J. I. Clark, C. Brooksbank, and J. Lomax. It’s all GO for

plant scientists. Plant Physiol, 138(3):1268–79, 2005. URL

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.

fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16010001.

[40] Mélanie Courtot, William Bug, Frank Gibson, Allyson L. Lister, James

Malone, Daniel Schober, Ryan Brinkman, and Alan Ruttenberg. The

owl of biomedical investigations. In Catherine Dolbear, Alan Rut-

tenberg, and Ulrike Sattler, editors, OWLED, volume 432 of CEUR

Workshop Proceedings, page xx. CEUR-WS.org, 2008.

[41] Antonio de Nicola, Michele Missikoff, and Roberto Navigli. A software

engineering approach to ontology building. Information Systems, 34:

http://bioinformatics.oxfordjournals.org/content/early/2009/02/13/bioinformatics.btp087.abstract
http://bioinformatics.oxfordjournals.org/content/early/2009/02/13/bioinformatics.btp087.abstract
http://www.sciencedirect.com/science/article/B6V03-4TNWGV3-2/2/bb69503c218efc2e1f7969a62d208738
http://www.sciencedirect.com/science/article/B6V03-4TNWGV3-2/2/bb69503c218efc2e1f7969a62d208738
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16010001
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16010001

Bibliography 141

258, xx 2009. URL http://dx.doi.org/10.1016/j.is.2008.07.

002. 10.1016/j.is.2008.07.002.

[42] D. De Roure and J. A. Hendler. E-science: the grid and the semantic

web. Intelligent Systems, IEEE, 19(1):65–71, April 2005. doi: 10.1109/

MIS.2004.1265888. URL http://dx.doi.org/10.1109/MIS.2004.

1265888.

[43] David de Roure and Carole Goble. Software design for empowering

scientists. IEEE Software, 26:88–95, Jan 2009. URL http://www2.

computer.org/portal/web/csdl/doi/10.1109/MS.2009.22.

10.1109/MS.2009.22.

[44] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor.

Workflows and e-science: An overview of workflow system features

and capabilities. Future Generation Computer Systems, 25:528, xx

2009. URL http://dx.doi.org/10.1016/j.future.2008.06.

012. 10.1016/j.future.2008.06.012.

[45] K. Degtyarenko, P. D. Matos, M. Ennis, J. Hastings, M. Zbinden,

A. McNaught, R. Alcantara, M. Darsow, M. Guedj, and M. Ash-

burner. ChEBI: a database and ontology for chemical entit-

ies of biological interest. Nucleic Acids Res, 2007. URL

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.

fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=17932057.

[46] M. Deng, Z. Tu, F. Sun, and T. Chen. Mapping Gene

Ontology to proteins based on protein-protein interaction

data. Bioinformatics, 20(6):895–902, 2004. URL http:

http://dx.doi.org/10.1016/j.is.2008.07.002
http://dx.doi.org/10.1016/j.is.2008.07.002
http://dx.doi.org/10.1109/MIS.2004.1265888
http://dx.doi.org/10.1109/MIS.2004.1265888
http://www2.computer.org/portal/web/csdl/doi/10.1109/MS.2009.22
http://www2.computer.org/portal/web/csdl/doi/10.1109/MS.2009.22
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1016/j.future.2008.06.012
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=17932057
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=17932057
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14751964
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14751964

142 Bibliography

//eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?

cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14751964.

[47] Dragan Djuric. The tao of modeling spaces. Journal of Object Tech-

nology, 5:125–147, 2006.

[48] Ping Du and Joseph A. Kofman. Electronic laboratory notebooks in

pharmaceutical r&d: On the road to maturity. Journal of the Associ-

ation for Laboratory Automation, 12(3):157 – 165, 2007. ISSN 1535-

5535. doi: DOI:10.1016/j.jala.2007.01.001.

[49] M. Dumontier and R. Hoehndorf. Realism for scientific ontologies.

Front. Artif. Intell. Appl. Frontiers in Artificial Intelligence and Ap-

plications, 209:387–399, 2010. URL http://www.worldcat.org/

oclc/609654404.

[50] Jean-Marie Favre and Tam Nguyen. Towards a megamodel to model

software evolution through transformations. In SETRA Workshop, El-

sevier ENCTS, volume 127, pages 59–74, 2004.

[51] Heike Fiegler, Richard Redon, and Nigel Carter. Construction and

use of spotted large-insert clone dna microarrays for the detection of

genomic copy number changes. Nat. Protocols, 2:577–587, Mar 2007.

ISSN 1750-2799. URL http://www.nature.com/nprot/journal/

v2/n3/abs/nprot.2007.53.html. 10.1038/nprot.2007.53.

[52] Stanley Fields. Proteomics: Proteomics in genomeland. Science,

291:1221–1224, Feb 2001. URL http://www.sciencemag.org/cgi/

content/full/291/5507/1221. 10.1126/science.291.5507.1221.

[53] G. Fortino, A. Garro, and W. Russo. Distributed workflow enactment:

an agent-based framework. In Atti del 7 Workshop dagli Oggetti agli

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14751964
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14751964
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14751964
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14751964
http://www.worldcat.org/oclc/609654404
http://www.worldcat.org/oclc/609654404
http://www.nature.com/nprot/journal/v2/n3/abs/nprot.2007.53.html
http://www.nature.com/nprot/journal/v2/n3/abs/nprot.2007.53.html
http://www.sciencemag.org/cgi/content/full/291/5507/1221
http://www.sciencemag.org/cgi/content/full/291/5507/1221

Bibliography 143

Agenti (WOA) Sistemi GRID, Peer-to-peer e Self-*, Catania (Italia),

2006.

[54] R France and B Rumpe. Model-driven development of complex soft-

ware: A research roadmap. International Conference on Software

Engineering, Jan 2007. URL http://portal.acm.org/citation.

cfm?id=1254709.

[55] D. Gaševic, D. Djuric, and V. Devedžic. Model Driven Engineering,

page 125. 2009. doi: 10.1007/978-3-642-00282-3 4.

[56] GenoLogics. Selecting a lims for the next-generation genomics lab: Five

capabilities a preconfigured system should deliver (and why). Technical

report, GenoLogics Life Sciences Software Inc., 2011.

[57] Royston Goodacre, Seetharaman Vaidyanathan, Warwick B. Dunn,

George G. Harrigan, and Douglas B. Kell. Metabolomics

by numbers: acquiring and understanding global metabolite

data. Trends Biotechnol, 22:245–252, May 2004. ISSN 0167-

7799. URL http://dx.doi.org/10.1016/j.tibtech.2004.03.

007. 10.1016/j.tibtech.2004.03.007.

[58] Pierre Grenon and Barry Smith. Snap and span: Towards dynamic spa-

tial ontology. Spatial Cognition & Computation: An Interdisciplinary

Journal, 4(1):69–104, 2004. doi: 10.1207/s15427633scc0401\ 5.

[59] T. R. Gruber. Towards principles for the design of ontologies used

for knowledge sharing. In N. Guarino and R. Poli, editors, Formal

Ontology in Conceptual Analysis and Knowledge Representation, De-

venter, The Netherlands, 1993. Kluwer Academic Publishers. URL

citeseer.ist.psu.edu/gruber93toward.html.

http://portal.acm.org/citation.cfm?id=1254709
http://portal.acm.org/citation.cfm?id=1254709
http://dx.doi.org/10.1016/j.tibtech.2004.03.007
http://dx.doi.org/10.1016/j.tibtech.2004.03.007
citeseer.ist.psu.edu/gruber93toward.html

144 Bibliography

[60] John H. Gennari Hao Li and James F. Brinkley. Model driven labor-

atory information management systems. In AMIA Annual Symposium

Proceedings, pages 484–488, 2006.

[61] M. Harris and H Parkinson. Standards and Ontologies for Func-

tional Genomics: Towards Unified Ontologies for Biology and Bio-

medicine. Comparative and Functional Genomics, 4(1):116–120, 2003.

doi:10.1002/cfg.249.

[62] M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foul-

ger, K. Eilbeck, S. Lewis, B. Marshall, C. Mungall, J. Richter, G. M.

Rubin, J. A. Blake, C. Bult, M. Dolan, H. Drabkin, J. T. Eppig,

D. P. Hill, L. Ni, M. Ringwald, R. Balakrishnan, J. M. Cherry, K. R.

Christie, M. C. Costanzo, S. S. Dwight, S. Engel, D. G. Fisk, J. E.

Hirschman, E. L. Hong, R. S. Nash, A. Sethuraman, C. L. Theesfeld,

D. Botstein, K. Dolinski, B. Feierbach, T. Berardini, S. Mundodi,

S. Y. Rhee, R. Apweiler, D. Barrell, E. Camon, E. Dimmer, V. Lee,

R. Chisholm, P. Gaudet, W. Kibbe, R. Kishore, E. M. Schwarz,

P. Sternberg, M. Gwinn, L. Hannick, J. Wortman, M. Berriman,

V. Wood, N. de la Cruz, P. Tonellato, P. Jaiswal, T. Seigfried,

and R. White. The Gene Ontology (GO) database and informatics

resource. Nucleic Acids Res, 32(Database issue):D258–61, 2004. URL

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.

fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14681407.

[63] Michael Hecker, Tharam Dillon, and Elizabeth Chang. Privacy on-

tology support for e-commerce. IEEE Internet Computing, 12:54–61,

Mar 2008. URL http://www2.computer.org/portal/web/csdl/

doi/10.1109/MIC.2008.41. 10.1109/MIC.2008.41.

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14681407
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=14681407
http://www2.computer.org/portal/web/csdl/doi/10.1109/MIC.2008.41
http://www2.computer.org/portal/web/csdl/doi/10.1109/MIC.2008.41

Bibliography 145

[64] John P. Helfrich. Thin lims, thick lims — new it implementation

strategy for cgmp quality informatics. Technical report, VelQuest Cor-

poration, 2008.

[65] Leakha Henry, Kerrie Ramm, Qian-Hao Zhu, and Narayana Upad-

hyaya. Rgmims: a web-based laboratory information management sys-

tem for plant functional genomics research. Molecular Breeding, 22:

151–157, 2008. ISSN 1380-3743. 10.1007/s11032-008-9160-z.

[66] Martin Hepp, Pieter De Leenheer, and Aldo De Moor. Ontology Man-

agement: Semantic Web, Semantic Web Services, and Business Ap-

plications (Semantic Web and Beyond), volume 7. Springer, 1 edition,

November 2007. URL http://www.springerlink.com/content/

978-0-387-69899-1.

[67] Randy C Hice. Web-based lims: The indelible mark on the face of phar-

maceutical informatics. Innovations in Pharmaceutical Technology, 25:

32–34, 2009.

[68] Bertrand Frdric Hillairet Guillaume and Lafaye Jean Yves. Bridging

emf applications and rdf data sources. In Proceedings of the 4th in-

ternational workshop on Semantic Web Enabled Software Engineering

(SWESE) at ISWC’08, pages 26–40, 10 2008.

[69] Horrocks, I., Schneider, Patel P., and van Harmelen, F. From shiq

and RDF to OWL: The making of a web ontology language. Journal

of Web Semantics, 1(1):7–26, 2003. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.2.7039.

[70] Da Wei Huang, Brad T. Sherman, and Richard A. Lempicki. Sys-

tematic and integrative analysis of large gene lists using david bioin-

http://www.springerlink.com/content/978-0-387-69899-1
http://www.springerlink.com/content/978-0-387-69899-1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.7039
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.7039

146 Bibliography

formatics resources. Nature protocols, 4:44–57, Dec 2008. ISSN 1750-

2799. URL http://www.nature.com/nprot/journal/v4/n1/abs/

nprot.2008.211.html. 10.1038/nprot.2008.211.

[71] Lederberg Joshua and Mccray Alexa. ”ome sweet ”omics–a genealogical

treasury of words. — accessmylibrary - promoting library advocacy.

The Scientist, April 2001. URL http://www.accessmylibrary.

com/coms2/summary_0286-719248_ITM.

[72] F. Jouault and J. Bezivin. Km3: a dsl for metamodel specification.

Lecture Notes In Computer Science, 4037:171–185, 2006. URL http:

//atlanmod.emn.fr/www/papers/KM3-FMOODS06.pdf.

[73] Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter,

Werner Retschitzegger, and Manuel Wimmer. Lifting metamodels to

ontologies - a step to the semantic integration of modeling languages.

In In Proceedings of the ACM/IEEE 9th International Conference on

Model Driven Engineering Languages and Systems (MoDELS/UML

2006, pages 528–542. Springer, 2006.

[74] Ross D. King, Jem Rowland, Stephen G. Oliver, Michael Young, Wayne

Aubrey, Emma Byrne, Maria Liakata, Magdalena Markham, Pinar

Pir, Larisa N. Soldatova, Andrew Sparkes, Kenneth E. Whelan, and

Amanda Clare. The Automation of Science. Science, 324(5923):85–89,

2009. doi: 10.1126/science.1165620.

[75] Rosine Kitio, Olivier Boissier, Jomi Fred Hübner, and Alessandro Ricci.

Organisational artifacts and agents for open multi-agent organisations:

”giving the power back to the agents”. In Proceedings of the 2007 inter-

national conference on Coordination, organizations, institutions, and

http://www.nature.com/nprot/journal/v4/n1/abs/nprot.2008.211.html
http://www.nature.com/nprot/journal/v4/n1/abs/nprot.2008.211.html
http://www.accessmylibrary.com/coms2/summary_0286-719248_ITM
http://www.accessmylibrary.com/coms2/summary_0286-719248_ITM
http://atlanmod.emn.fr/www/papers/KM3-FMOODS06.pdf
http://atlanmod.emn.fr/www/papers/KM3-FMOODS06.pdf

Bibliography 147

norms in agent systems III, COIN’07, pages 171–186, Berlin, Heidel-

berg, 2008. Springer-Verlag. ISBN 3-540-79002-0, 978-3-540-79002-0.

URL http://dl.acm.org/citation.cfm?id=1791649.1791664.

[76] Ekat Kritikou. Watch and learn. Nat Rev Mol Cell Biol, 8:4, Jan 2007.

ISSN 1471-0072. URL http://www.nature.com/nrm/journal/v8/

n1/full/nrm2097.html. 10.1038/nrm2097.

[77] Patrick Lambrix, Manal Habbouche, and Marta Pérez. Evalu-

ation of ontology development tools for bioinformatics. Bioin-

formatics, 19:1564, xx 2003. URL http://dx.doi.org/10.1093/

bioinformatics/btg194. 10.1093/bioinformatics/btg194.

[78] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue

Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, Richard

Durbin, and 1000 Genome Project Data Processing Subgroup.

The sequence alignment/map format and samtools. Bioinform-

atics, 25(16):2078–2079, 2009. doi: 10.1093/bioinformatics/

btp352. URL http://bioinformatics.oxfordjournals.org/

content/25/16/2078.abstract.

[79] Ling Liu and M. Tamer Özsu. Encyclopedia of database systems, 2009.

URL http://www.worldcat.org/isbn/9780387496160.

[80] Alessandro Maccagnan, Mauro Riva, Erika Feltrin, Barbara Simionati,

Tullio Vardanega, Giorgio Valle, and Nicola Cannata. Combining onto-

logies and workflows to design formal protocols for biological laborat-

ories. Automated Experimentation, 2(1):3, 2010. ISSN 1759-4499. doi:

10.1186/1759-4499-2-3.

http://dl.acm.org/citation.cfm?id=1791649.1791664
http://www.nature.com/nrm/journal/v8/n1/full/nrm2097.html
http://www.nature.com/nrm/journal/v8/n1/full/nrm2097.html
http://dx.doi.org/10.1093/bioinformatics/btg194
http://dx.doi.org/10.1093/bioinformatics/btg194
http://bioinformatics.oxfordjournals.org/content/25/16/2078.abstract
http://bioinformatics.oxfordjournals.org/content/25/16/2078.abstract
http://www.worldcat.org/isbn/9780387496160

148 Bibliography

[81] Alessandro Maccagnan, Tullio Vardanega, Erika Feltrin, Giorgio Valle,

Mauro Riva, and Nicola Cannata. A multi-agent system for the

automated handling of experimental protocols in biological laborat-

ories. In Andrea Omicini and Mirko Viroli, editors, Proceedings of

the 11th WOA 2010 Workshop, Dagli Oggetti Agli Agenti, Rimini,

Italy, September 5-7, 2010, volume 621 of CEUR Workshop Proceed-

ings. CEUR-WS.org, 2010.

[82] Alessandro Maccagnan, Tullio Vardanega, Giorgio Valle, and Nicola

Cannata. Mapping obi and xpdl to a mde framework for laboratory

information processing. In The Fourth International Conference on

Information, Process, and Knowledge Management - eKNOW 2012,

2012.

[83] R. Mack and M. Hehenberger. Text-based knowledge discovery: search

and mining of life-sciences documents. Drug Discov Today, 7(11 Suppl):

S89–98, 2002. URL http://eutils.ncbi.nlm.nih.gov/entrez/

eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=

ref&id=12047886.

[84] Andreia Malucelli, Daniel Palzera, and Eugénio Oliveiraa. Ontology-

based services to help solving the heterogeneity problem in e-commerce

negotiations. Electronic Commerce Research and Applications, 5:29,

xx 2006. URL http://dx.doi.org/10.1016/j.elerap.2005.08.

002. 10.1016/j.elerap.2005.08.002.

[85] R.D. McDowall. Future trends in lims. American pharmaceutical re-

view, 8(6):10 – 15, 2005.

[86] John A. McGiven, Iain J. Thompson, Nicola J. Commander, and

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=12047886
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=12047886
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=12047886
http://dx.doi.org/10.1016/j.elerap.2005.08.002
http://dx.doi.org/10.1016/j.elerap.2005.08.002

Bibliography 149

Judy A. Stack. Time-Resolved Fluorescent Resonance Energy Transfer

Assay for Simple and Rapid Detection of Anti-Brucella Antibodies in

Ruminant Serum Samples. J. Clin. Microbiol., 47(10):3098–3107, 2009.

doi: 10.1128/JCM.00919-09.

[87] Stephen Muggleton. 2020 computing: Exceeding human limits.

Nature., 440:409–410, Mar 2006. ISSN 1476-4687. URL http://www.

nature.com/nature/journal/v440/n7083/full/440409a.html.

10.1038/440409a.

[88] Fabian Neuhaus, Pierre Grenon, and Barry Smith. A formal theory

of substances, qualities, and universals. In Achille C. Varzi and Laure

Vieu, editors, In Achille Varzi and Laure Vieu, editors, International

Conference on Formal Ontology in Information Systems (FOIS’04),

Frontiers in artificial intelligence and applications, v. 114, pages 49–59.

IOS Press, 2004. ISBN 9781586034689.

[89] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Sen-

ger, Mark Greenwood, Tim Carver, Kevin Glover, Matthew Pocock,

Anil Wipat, and Peter Li. Taverna: a tool for the composition and

enactment of bioinformatics workflows. Bioinformatics (Oxford, Eng-

land), 20:3045–3054, Nov 2004. URL http://dx.doi.org/10.1093/

bioinformatics/bth361. 10.1093/bioinformatics/bth361.

[90] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the

a&a meta-model for multi-agent systems. Autonomous Agents and

Multi-Agent Systems, 17(3):432–456, 2008. ISSN 1387-2532. doi: http:

//dx.doi.org/10.1007/s10458-008-9053-x.

[91] Brian D. Ondov, Anjana Varadarajan, Karla D. Passalacqua, and Nich-

http://www.nature.com/nature/journal/v440/n7083/full/440409a.html
http://www.nature.com/nature/journal/v440/n7083/full/440409a.html
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1093/bioinformatics/bth361

150 Bibliography

olas H. Bergman. Efficient mapping of Applied Biosystems SOLiD se-

quence data to a reference genome for functional genomic applications.

Bioinformatics, 24(23):2776–2777, December 2008. ISSN 1460-2059.

doi: 10.1093/bioinformatics/btn512. URL http://dx.doi.org/10.

1093/bioinformatics/btn512.

[92] R. Pavlis. The paperless laboratory: Realities and expectations. In-

novations in Pharmaceutical Technology, 29:35–37, 2009.

[93] Asuncion G. Perez, Oscar Corcho, and Mariano F. Lopez. Onto-

logical Engineering : with examples from the areas of Knowledge

Management, e-Commerce and the Semantic Web. First Edition (Ad-

vanced Information and Knowledge Processing). Springer, July 2004.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.124.3549&rep=rep1&type=pdf.

[94] Erik Pettersson, Joakim Lundeberg, and Afshin Ahmadian. Gener-

ations of sequencing technologies. Genomics, 93(2):105 – 111, 2009.

ISSN 0888-7543. doi: DOI:10.1016/j.ygeno.2008.10.003.

[95] S. Philippi and J. Kohler. Addressing the problems with life-

science databases for traditional uses and systems biology. Nat

Rev Genet, 7(6):482–8, 2006. URL http://eutils.ncbi.nlm.

nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=

pubmed&retmode=ref&id=16682980.

[96] Michael Pidd. Tools for Thinking: Modelling in Management Science.

Wiley, 3 edition, February 2009. ISBN 0470721421. URL http://

www.worldcat.org/isbn/0470721421.

http://dx.doi.org/10.1093/bioinformatics/btn512
http://dx.doi.org/10.1093/bioinformatics/btn512
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.3549&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.3549&rep=rep1&type=pdf
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16682980
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16682980
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16682980
http://www.worldcat.org/isbn/0470721421
http://www.worldcat.org/isbn/0470721421

Bibliography 151

[97] Agostino Poggi and Paola Turci. An agent-based bridge between busi-

ness process and business rules. In Decimo Workshop Nazionale Dagli

Oggetti agli Agenti, 2009.

[98] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. The a&a pro-

gramming model and technology for developing agent environments in

mas. In ProMAS’07: Proceedings of the 5th international conference on

Programming multi-agent systems, pages 89–106, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 3-540-79042-X, 978-3-540-79042-6.

[99] Alessandro Ricci, Mirko Viroli, and Giulio Piancastelli. simpa:

An agent-oriented approach for programming concurrent applica-

tions on top of java. Science of Computer Programming, 76(1):

37 – 62, 2010. ISSN 0167-6423. doi: DOI:10.1016/j.scico.2010.06.

012. URL http://www.sciencedirect.com/science/article/

B6V17-50G0631-1/2/abdeaa8467f0d325ad4968ddb5f8ae18. Se-

lected papers from the 6th International Workshop on the Foundations

of Coordination Languages and Software Architectures - FOCLASA’07.

[100] Paolo Romano. Automation of in-silico data analysis processes through

workflow management systems. Brief Bioinform, 9(1):57–68, January

2008. ISSN 1477-4054. doi: 10.1093/bib/bbm056. URL http://dx.

doi.org/10.1093/bib/bbm056.

[101] Nick Russell, Arthur H. Hofstede, David Edmond, and Wil M. der

Aalst. Workflow Data Patterns: Identification, Representation and

Tool Support, volume 3716, chapter Chapter 23, pages 353–368.

Springer-Verlag, Berlin/Heidelberg, 2005. ISBN 3-540-29389-2. doi:

10.1007/11568322\ 23.

http://www.sciencedirect.com/science/article/B6V17-50G0631-1/2/abdeaa8467f0d325ad4968ddb5f8ae18
http://www.sciencedirect.com/science/article/B6V17-50G0631-1/2/abdeaa8467f0d325ad4968ddb5f8ae18
http://dx.doi.org/10.1093/bib/bbm056
http://dx.doi.org/10.1093/bib/bbm056

152 Bibliography

[102] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede,

and David Edmond. Workflow Resource Patterns: Identification, Rep-

resentation and Tool Support, pages 216–232. Springer Berlin, Heidel-

berg, 2005. ISBN 978-3-540-26095-0. doi: 10.1007/11431855\ 16. URL

http://dx.doi.org/10.1007/11431855_16.

[103] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall series in artificial intelligence. Prentice Hall,

second edition, December 2002. ISBN 0137903952. URL http://www.

worldcat.org/isbn/0137903952.

[104] Christopher S. Sandlin, Rudolph C. Johnson, Leigh Swaim, and

David L. Ashley. Laboratory information management system for emer-

gency response: Validation and quality assurance of analytical method-

ologies. Journal of the Association for Laboratory Automation, 14(3):

126 – 132, 2009. ISSN 1535-5535. doi: DOI:10.1016/j.jala.2009.02.001.

[105] Stefan Schulz, M. Boeker, and H. Stenzhorn. How granularity issues

concern biomedical ontology integration. Studies in health technology

and informatics, 136:863–8, 2008.

[106] E. Seidewitz. What models mean. Software, IEEE, 20(5):26 – 32, sep.

2003. ISSN 0740-7459. doi: 10.1109/MS.2003.1231147.

[107] Arash Shaban-Nejad, Olga Ormandjieva, Mohamad Kassab, and

Volker Haarslev. Managing requirement volatility in an ontology-driven

clinical lims using category theory. Int. J. Telemedicine Appl., 2009:1–

14, 2009. ISSN 1687-6415. doi: \url{http://dx.doi.org/10.1155/2009/

917826}.

http://dx.doi.org/10.1007/11431855_16
http://www.worldcat.org/isbn/0137903952
http://www.worldcat.org/isbn/0137903952

Bibliography 153

[108] Robert Shapiro and Mike Marin. Workflow Management Coalition

Workflow StandardProcess Definition Interface– XML Process Defini-

tion Language. The Workflow Management Coalition, 99 Derby Street,

Suite 200 Hingham, MA 02043 USA, October 2008.

[109] Chad B. Shawn, Shawn Bowers, Matthew B. Jones, Bertram

Ludäscher, Mark Schildhauer, and Jing Tao. Incorporating semantics

in scientific workflow authoring. In In Proceedings of the 17th In-

ternational Conference on Scientific and Statistical Database Manage-

ment (SSDBM’05), 2005. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.60.7517.

[110] Vladimir Shulaev. Metabolomics technology and bioinformatics.

Briefings in Bioinformatics, 7:128, xx 2006. URL http://bib.

oxfordjournals.org/cgi/content/full/7/2/128. 10.1093/bib-

/bbl012.

[111] B. Smith, W. Ceusters, B. Klagges, J. Kohler, A. Kumar, J. Lomax,

C. Mungall, F. Neuhaus, A. L. Rector, and C. Rosse. Relations

in biomedical ontologies. Genome Biol, 6(5):R46, 2005. URL

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.

fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=15892874.

[112] Barry Smith. Beyond concepts: Ontology as reality representation.

In In Achille Varzi and Laure Vieu, editors, International Conference

on Formal Ontology in Information Systems (FOIS’04), Frontiers in

artificial intelligence and applications, v. 114, pages 73–84. IOS Press,

2004.

[113] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.7517
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.7517
http://bib.oxfordjournals.org/cgi/content/full/7/2/128
http://bib.oxfordjournals.org/cgi/content/full/7/2/128
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=15892874
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=15892874

154 Bibliography

William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck,

Amelia Ireland, Christopher J. Mungall, OBI Consortium, Neocles

Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta A.

Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whet-

zel, and Suzanna Lewis. The obo foundry: coordinated evolution

of ontologies to support biomedical data integration. Nature bio-

technology, 25(11):1251–1255, November 2007. ISSN 1087-0156. doi:

10.1038/nbt1346. URL http://dx.doi.org/10.1038/nbt1346.

[114] Larisa Soldatova and Ross King. An ontology of scientific experiments.

Journal of The Royal Society Interface, 3:795, xx 2006. URL http:

//dx.doi.org/10.1098/rsif.2006.0134. 10.1098/rsif.2006.0134.

[115] Larisa Soldatova, Wayne Aubrey, Ross King, and Amanda Clare. The

exact description of biomedical protocols. Bioinformatics (Oxford,

England), 24:i295–303, Jul 2008. URL http://bioinformatics.

oxfordjournals.org/cgi/content/short/24/13/i295.

10.1093/bioinformatics/btn156.

[116] Andrew Sparkes, Wayne Aubrey, Emma Byrne, Amanda Clare,

Muhammed Khan, Maria Liakata, Magdalena Markham, Jem Row-

land, Larisa Soldatova, Kenneth Whelan, Michael Young, and Ross

King. Towards robot scientists for autonomous scientific discovery.

Automated Experimentation, 2(1):1, 2010. ISSN 1759-4499. doi:

10.1186/1759-4499-2-1.

[117] Gernot Stocker, Maria Fischer, Dietmar Rieder, Gabriela Bindea, Si-

mon Kainz, Michael Oberstolz, James McNally, and Zlatko Trajanoski.

ilap: a workflow-driven software for experimental protocol develop-

http://dx.doi.org/10.1038/nbt1346
http://dx.doi.org/10.1098/rsif.2006.0134
http://dx.doi.org/10.1098/rsif.2006.0134
http://bioinformatics.oxfordjournals.org/cgi/content/short/24/13/i295
http://bioinformatics.oxfordjournals.org/cgi/content/short/24/13/i295

Bibliography 155

ment, data acquisition and analysis. BMC Bioinformatics, 10(1):390,

2009. ISSN 1471-2105. doi: 10.1186/1471-2105-10-390.

[118] Michael R. Stratton, Peter J. Campbell, and P. Andrew Futreal. The

cancer genome. Nature, 458(7239):719–724, April 2009. ISSN 0028-

0836. doi: 10.1038/nature07943. URL http://dx.doi.org/10.

1038/nature07943.

[119] Andrew Tolopko, John Sullivan, Sean Erickson, David Wrobel, Su Chi-

ang, Katrina Rudnicki, Stewart Rudnicki, Jennifer Nale, Laura Selfors,

Dara Greenhouse, Jeremy Muhlich, and Caroline Shamu. Screensaver:

an open source lab information management system (lims) for high

throughput screening facilities. BMC Bioinformatics, 11(1):260, 2010.

ISSN 1471-2105. doi: 10.1186/1471-2105-11-260.

[120] Charles V. Trappey, Amy J.C. Trappey, Ching-Jen Huang, and

C.C. Ku. The design of a jade-based autonomous work-

flow management system for collaborative soc design. Ex-

pert Systems with Applications, 36(2, Part 2):2659 – 2669,

2009. ISSN 0957-4174. doi: DOI:10.1016/j.eswa.2008.01.

064. URL http://www.sciencedirect.com/science/article/

B6V03-4RV7Y9W-2/2/f933cced0e8af5448692818153bb1648.

[121] Petr V. Troshin, Chris Morris, Stephen M. Prince, and Miroslav Z.

Papiz. Laboratory information management system for membrane pro-

tein structure initiative from gene to crystal. Molecular Membrane

Biology, 25(8):639–652, 2008. doi: 10.1080/09687680802511766.

[122] Mike Tyers and Matthias Mann. From genomics to proteomics. Nature,

http://dx.doi.org/10.1038/nature07943
http://dx.doi.org/10.1038/nature07943
http://www.sciencedirect.com/science/article/B6V03-4RV7Y9W-2/2/f933cced0e8af5448692818153bb1648
http://www.sciencedirect.com/science/article/B6V03-4RV7Y9W-2/2/f933cced0e8af5448692818153bb1648

156 Bibliography

422:193–197, Mar 2003. ISSN 0028-0836. URL http://dx.doi.org/

10.1038/nature01510. 10.1038/nature01510.

[123] Marco Ughetti, Tiziana Trucco, and Danilo Gotta. Development

of agent-based, peer-to-peer mobile applications on android with

jade. Mobile Ubiquitous Computing, Systems, Services and Tech-

nologies, International Conference on, 0:287–294, 2008. doi: http:

//doi.ieeecomputersociety.org/10.1109/UBICOMM.2008.72.

[124] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,

and A. P. Barros. Workflow patterns. Distributed and Paral-

lel Databases, 14(1):5–51–51, July 2003. ISSN 09268782. doi:

10.1023/A:1022883727209. URL http://www.workflowpatterns.

com/documentation/documents/wfs-pat-2002.pdf.

[125] Thea Van Rossum, Ben Tripp, and Denise Daley. SLIMSa user-

friendly sample operations and inventory management system for gen-

otyping labs. Bioinformatics, 26(14):1808–1810, 2010. doi: 10.1093/

bioinformatics/btq271.

[126] C. Voegele, S.V. Tavtigian, D. de Silva, S. Cuber, A. Thomas, and

F. Le Calvez-Kelm. A Laboratory Information Management System

(LIMS) for a high throughput genetic platform aimed at candidate

gene mutation screening. Bioinformatics, 23(18):2504–2506, 2007. doi:

10.1093/bioinformatics/btm365.

[127] David L. Wheeler, Tanya Barrett, Dennis A. Benson, Stephen H. Bry-

ant, Kathi Canese, Deanna M. Church, Michael DiCuccio, Ron Edgar,

Scott Federhen, Wolfgang Helmberg, David L. Kenton, Oleg Khovayko,

David J. Lipman, Thomas L. Madden, Donna R. Maglott, James Os-

http://dx.doi.org/10.1038/nature01510
http://dx.doi.org/10.1038/nature01510
http://www.workflowpatterns.com/documentation/documents/wfs-pat-2002.pdf
http://www.workflowpatterns.com/documentation/documents/wfs-pat-2002.pdf

Bibliography 157

tell, Joan U. Pontius, Kim D. Pruitt, Gregory D. Schuler, Lynn M.

Schriml, Edwin Sequeira, Steven T. Sherry, Karl Sirotkin, Grigory

Starchenko, Tugba O. Suzek, Roman Tatusov, Tatiana A. Tatusova,

Lukas Wagner, and Eugene Yaschenko. Database resources of the Na-

tional Center for Biotechnology Information. Nucleic Acids Research,

33(suppl 1):D39–D45, 2005. doi: 10.1093/nar/gki062. URL http://

nar.oxfordjournals.org/content/33/suppl_1/D39.abstract.

[128] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents:

Theory and Practice. Knowledge Engineering Review, 10:115–152,

1995. URL http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.55.2702.

[129] A. F. Yousef, I. M. Baggili, G. Bartlett, M. D. Kane, and J. S. Mymryk.

Lina: A laboratory inventory system for oligonucleotides, microbial

strains, and cell lines. Journal of the Association for Laboratory Auto-

mation, Mar 2010. ISSN 1535-5535.

http://nar.oxfordjournals.org/content/33/suppl_1/D39.abstract
http://nar.oxfordjournals.org/content/33/suppl_1/D39.abstract
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2702
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2702

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The scenario of Biomedical laboratories
	1.2 Biomedical protocols
	1.2.1 Real world protocols: an example

	1.3 Vision and interpretation
	1.3.1 Long term vision
	1.3.2 Interpretation

	1.4 Summary

	2 Problem analysis
	2.1 Laboratory Information Management Systems
	2.1.1 LIMS in Academic
	2.1.2 Lessons learned from commercial LIMS

	2.2 Ontology
	2.2.1 Ontology in modern times
	2.2.2 Definitions
	2.2.3 Upper ontologies
	2.2.4 Ontologies in biology

	2.3 Model-driven engineering
	2.3.1 Definitions
	2.3.2 Models and Ontologies
	2.3.3 Workflows

	2.4 Multi-agent system
	2.4.1 Definitions
	2.4.2 Agent-based workflow management system

	3 Proposed solution
	3.1 Architecture
	3.1.1 Front-end and back-end of our proposed architecture

	3.2 Front-end: exploiting domain knowledge in a MDA style
	3.2.1 Ontology
	3.2.2 Metamodel
	3.2.3 BioCOW metamodel
	3.2.4 Implementation

	3.3 Back-end: translating and executing protocols
	3.3.1 Model-to-code transformation
	3.3.2 Execution platform

	3.4 Results obtained for each element of the system

	4 Evaluation
	4.1 Specification language
	4.1.1 Evaluation

	4.2 Bioinformatic pipeline
	4.2.1 Pipeline: alignment of RNA sequences
	4.2.2 Development

	4.3 Demo case: paternity test

	5 Discussion and conclusion
	A List of scientific publications
	B Example of drivers
	B.1 Command line driver
	B.2 BiomexNX Driver

	C List of abbreviations
	Bibliography

