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Abstract 

 

It has been proved that naphthalene diimide (NDI) derivatives display anticancer 

properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, 

senescence and down-regulation of oncogene expression. 

This thesis deals with the design and synthesis of disubstituted and tetrasubstituted 

NDI derivatives endowed with anticancer activity, interacting with DNA together with other 

targets implicated in cancer development. 

Disubstituted NDI compounds have been designed with the aim to provide potential 

multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously 

interact with some of the different targets involved in this pathology. The most active 

compound, displayed antiproliferative activity in submicromolar range, especially against 

colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to 

inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative 

mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without 

acting directly on microtubules and tubuline. 

Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding 

ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead 

compound, the N-methylpiperazine moiety have been replaced with different aromatic 

systems and methoxypropyl groups. The most interesting compound was 1d, which was 

able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region,  and 

it  has been co-crystallized with the human telomeric G-quadruplex, to directly verify its 

ability to bind this kind of structure, and also to investigate its binding mode. All the 

morpholino substituted compounds show antiproliferative activity in submicromolar values 

mainly in pancreatic and lung cancer cell lines, and they show an improved biological 

profile in comparison with that of the lead compound.  

In conclusion, both these studies, may represent a promising starting point for the 

development of new interesting molecules useful for the treatment of cancer, underlining the 

versatility of the NDI scaffold. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 CANCER 

Cancer is a term used for diseases in which abnormal cells divide without control and 

are able to invade other tissues. Cancer cells can spread to other parts of the body through 

the blood and lymph systems. 

Cancer should be considered just not one disease but a pathology comprising many 

different diseases, in fact there are more than 100 different types of cancer. The name of 

most cancers derives directly from the organ or type of cell in which they grow. For 

example, cancer that begins in the colon is called colon cancer; cancer that begins in basal 

cells of the skin is called basal cell carcinoma. 

Cancer types can be grouped into broader categories. The main categories of cancer 

include: 

- Carcinoma: cancer that begins in the skin or in tissues that line or cover internal 

organs. 

- Sarcoma: cancer that begins in bone, cartilage, fat, muscle, blood vessels, or other 

connective or supportive tissue. 

- Leukemia: cancer that starts in blood-forming tissue such as the bone marrow and 

causes large numbers of abnormal blood cells to be produced and enter the blood. 

- Lymphoma and myeloma: cancers that begin in the cells of the immune system. 

- Central nervous system cancers: cancers that begin in the tissues of the brain and 

spinal cord. 

All cancers begin in cells, the body's basic unit of life. The body is composed by 

many types of cells. These cells grow and divide in a controlled way to produce other cells 

as they are needed to keep the body healthy. When cells become old or damaged, they die 

and they are replaced by new cells. However, sometimes this orderly process goes wrong. 

The genetic material (DNA) of a cell can become damaged or changed, producing mutations 

which affect normal cell growth and division. These abnormal extra cells may form a mass 

of tissue called tumor (Figure 1.1). 
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Not all tumors are cancerous; tumors can be benign or malignant. 

- Benign tumors are not cancerous. They can often be removed, and, in most cases, 

they do not come back. Cells in benign tumors do not spread to other parts of the 

body. 

- Malignant tumors are cancerous. Cells in these tumors can invade nearby tissues and 

spread to other parts of the body. The spread of cancer from one part of the body to 

another is called metastasis. 

Some cancers do not form tumors. For example, leukemia is a cancer of the bone 

marrow and blood.
1
 

Cancer is predicted to be an increasingly important cause of morbidity and mortality 

in all regions of the world. The forecasted changes in population demographics in the next 

two decades mean that even if current global cancer rates remain unchanged, the estimated 

incidence of 12.7 million new cancer cases in 2008 will rise to 21.4 million by 2030, with 

nearly two thirds of all cancer diagnoses occurring in low- and middle-income countries. In 

Italy, in 2008 cancer killed approximately 248,000 people and it represents the second most 

common cause of death after cardiovascular diseases (Figure 1.2).
2
 

Figure 1.1: Cancer progression2 
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1.1.1 Cancer therapy 

Cancer therapy generally includes psychosocial support, surgery, radiotherapy, 

chemotherapy that is aimed at curing the disease or considerably prolonging life while 

improving the patient's quality of life. 

 

1.1.2 Chemotherapy 

Chemotherapeutic drugs should eradicate malignant tumor cells by inhibiting some 

of the mechanism involved in cellular division. Accordingly, the antitumor compounds 

developed through this approach are cytostatic or cytotoxic. These kind of drugs are 

characterized by severe therapeutic problems. One of them is related to their low selectivity, 

so they are not able to eliminate all cancer cells in the body and they can hit healthy cells. 

Furthermore, they are endowed with non-specific toxicity due to their biodistribution 

Figure 1.2: Proportional mortality in Italy in 2008 (% of total deaths, all ages)2 
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throughout the body, which requires the administration of a large total dose to achieve high 

local concentrations in a tumor.
3
 Another problem related to chemotherapy is the drug 

resistance. Cancer cells are able to become simultaneously resistant to different drugs 

(multidrug resistance) by several mechanisms. This may represent a significant impediment 

to a successful chemotherapy.
4
 

 

1.1.3 Molecular targeted therapy 

The discovery of specific molecular characteristics of malignant cells prompted the 

development of a new class of drugs known as targeted therapeutics.
5
 These compounds act 

on particular tumorigenic molecules and directly inhibit cellular growth and survival 

machinery to eradicate tumor cells.
6
 Molecular targeted therapeutic agents can be small 

molecular substances of defined molecular weight and structure, or macromolecules such as 

antibodies. They have greater selectivity and produce 

fewer side effects.
7
 One of the first molecular targets to be 

discovered was the estrogen receptor, which stimulates 

proliferation of mammary cells when activated by 

estrogen. Tamoxifen is an estrogen inhibitor now used for 

the treatment of estrogen receptor positive tumors. 
8
 

Another example of targeted therapy is the monoclonal antibody Trastuzumab, that targets 

gene amplified HER2 in select breast cancers to produce disease control not previously 

thought possible.
9
 

 

MOLECULAR TARGETS 

Some cancers depend on one or a few genes for the maintenance of the malignant 

phenotype. This concept is known as “oncogene addiction”. Cancer cells contain multiple 

genetic and epigenetic abnormalities, and the reversal of only one or few of these 

abnormalities can inhibit the growth of these cells.
10

 

Examples of possible targets are: 

- k-ras: the oncogene shares a potent ability to transform cells.
11

 The mutated form 

promotes DNA transformation
12

 and it is found at high frequency in a variety of 

human tumors.
11
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- c-myc: this proto-oncogene encodes a multifunctional transcription factor that plays a 

critical role in a broad range of cellular processes, including cell growth, 

differentiation and transformation. Elevated expression of c-myc promote 

tumorigenesis, whereas reduction of its expression has been associated with the 

induction of apoptosis.
13

 

- kit: it is a proto-oncogene encodes a receptor tyrosine kinase. The activation of this 

receptor is associated with cell proliferation and survival.
14

 

- Hsp90: it regulates the conformation, activation, function and stability of so-called 

“client proteins”. In particular has been shown to support malignant transformation 

and it is overexpressed in cancer cells.
15

 

 

1.1.4 Multi-Target-Directed Ligand approach 

Multi-Target-Directed Ligand approach is particularly relevant to multifactorial 

diseases, and it has been reported for pathologies like schizophrenia and neurodegenerative 

conditions such as Alzheimer‟s disease.
16,17,18

 Multi-Target-Directed Ligands (MTDLs) 

have multiple biological profile and they are able to hit or modulate different targets thought 

to be responsible for the disease pathogenesis. This strategy may not be easy, because the 

drug could also bind targets that are not involved with the disease and could be responsible 

for side effects (Figure 1.3)
18

 

 

 

 

 

 

 

 

 

Cancer is a highly complex disease involving multiple biochemical pathways and, 

therefore, it is interesting design new MTDLs to increase the success of cancer therapeutics. 

There are several examples about anticancer agents designed using this approach. 
16 

Among 

them, there are compounds I and Lapatinib. I was discovered from a screening of 160,000 

Figure 1.3: MTDLs approach to drug discovery16 
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commercialy available compounds and it is a Hsp90/tubulin inhibitor.
20

 Lapatinib was 

rationally designed as ligand for the epidermal growth factor receptor (EGFR) and ErbB2 

kinases
21

 and showed a good selectively for these two kinases from a panel of 317 kinases.
22

 

Lapatinib has been approved for patient use in more than 90 countries worldwide for 

treatment of ErbB2 positive breast cancer.
23
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CHAPTER 2 

DNA AS ANTICANCER DRUGS TARGET 

 

DNA is involved in cell proliferation and cancerogenetic processes and, for this 

reason, it is the molecular target for many drugs used in cancer therapeutics.
24

  

Based on their possible interaction with DNA, such molecules have been classified in 

four wide groups: 

- Alkylating agents, which are able to covalently bound DNA; 

- Agents able to truncate DNA double helix; 

- Agents that reversibly interact with double helix of DNA; 

- Agents that intercalate between the DNA bases. 

Among these, the intercalating agents are the most important and many anticancer drugs in 

clinical use interact with DNA through intercalation.
3
 

Drugs can interact with DNA also through stabilization of particular four-stranded 

DNA structures termed G-quadruplexes.
25

 For better understanding, a detailed explanation 

of this argument will be covered in chapter 3. 

 

2.1 DNA INTERCALATION 

Intercalating agents are usually molecules with aromatic or heteroaromatic ring 

systems. They are inserted between adjacent base pairs perpendicularly to the axis of the 

DNA helix. The created complex is stabilized by non-covalent interactions like Van der 

Waals, hydrophobic and hydrogen bonding. This insertion cause conformational changes in 

the DNA, like separation between the base pairs and, as result of the intercalation process, 

DNA results unwound (Figure 2.1). 
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Figure 2.1: Deformation of DNA by an intercalating agent26 

 

These structural changes can interfere with the ability of the DNA to recognize its 

associated proteins like polymerases, transcription factors and topoisomerases, leading to 

problems in replication processes and cellular death.
3
 

In particular, the poison of the topoisomerase is the most important interaction of a 

DNA-intercalator. An intercalating agent is able to stabilize the ternary complex DNA-

intercalator-topoisomerase and the enzymatic process cannot continue. This complex is 

detected by the cell as a damaged portion, so it starts a series of events, such as activation of 

p53 protein, which induces cell apoptosis (Figure 2.2).
27
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2.2 INTERCALATING AGENTS 

Intercalators represent a wide group of compounds that could be classified in two 

main groups: classical and non-classical intercalators. 

Classical intercalators (Figure 2.3) display their cytotoxicity by inhibiting 

Topoisomerase II. They can be further divided in subfamily, based on the nature of their 

chromophore unit:  

- Naphtalimide and related compounds, such as Mitonafide, Amonafide, Azonafide 

and Elinafide; 

- Intercalators based on the pyridocarbazole system, such as Ellipticine and 9-

methoxyellipticine; 

- Anthracycline, such as Doxorubicine, Daunomicine and Mitoxantrone; 

- Antibiotics of the Echinomycin family, such as Echinominine and Triostina; 

- Acridine and related compounds, such as Amsacrine; 

- Actinomycin; 

- Analogues of Benzimidazo-[1,2,c]quinazoline. 

 

Figure 2.2: Schematic representation of the mechanism of cytotoxicity of a DNA-itercalator.21 



14 
 

 

 

 

These compounds present different chemical structures and they exert their 

anticancer activity also using other mechanisms of action. For instance, Anthracyclin has 

oxidoreductive properties and, for this reason, it is able to induce DNA-damage through 

ROS-formation.  

Non-classical intercalators (Figure 2.4) are characterized by the presence of a huge 

aromatic planar system. They are able to stabilize triple-helix DNA structures more strongly 

than duplex-helix. They can be classified in two groups:  

- Threading Intercalators; 

- Tris-intercalators.
28

 

 

 
Figure 2.4: Structures of non classical intercalators 

Figure 2.3: Structures of classical intercalators 
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Among all the intercalators developed, Braña et al. in 1970s published a series of 

Naphthalimides as anticancer agents.
29

 Structure Activity Relationships (SAR) analysis in 

this series showed that: 

- a basic terminal group in the side chain is important for the cytotoxic activity;  

- when the nitrogen atom in the basic side chain is separated from the ring nitrogen by 

two methylene units, the growth inhibition is maximal;  

- the best substitution at the basic side chain is constituted by a dimethylamine or a 

pyrrolidine residue;  

- substitution at position 5 in the naphthalic ring gives optimal results.  

The most active compounds in this series were Amonafide and Mitonafide (Figure 

2.5). 

 

 

 

 

 

 

 

 

 

Both Amonafide and Mitonafide have been tested in clinical trials. They are able to 

intercalate the double-stranded DNA, confirmed by NMR techniques.
30

 Amonafide is active 

against P388 and L1210 leukemia models. Mitonafide has in vivo activity against KB and 

HeLa cells, as well as in vivo activity against murine and human tumor cell lines.
31,32

 Both 

the compounds induce a topoisomerase II-mediated DNA cleavage at nucleotide N. 1830 on 

Pbr322 DNA. This cleavage is not observed in related naphthalimides, lacking the basic 

side chain.
33

 

Amonafide can be metabolized in two different pathways (Figure 2.6):  

- the first one by cytochrome CYP1A2 leading to an oxidized product; 

- the second one by N-acetyltransferase 2 (NAT2) leading to a N-acetyl-amonafide 

metabolite still metabolically active. NAT2 enzymes catalyze the acetylation of a 

Figure 2.5: Naphthalimides developed by Braña et al. 
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wide variety of amines, include arylamine and heterlocyclic aromatic amines, 

Amonafide, hydralazine, isoniazid, procainamide, and sulfonamides.  

 

Recently, it has been demonstrated that the most important side effects of Amonafide 

arise from its acetylated metabolites.
34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amonafide and Mitonafide present similar chemical structures. They differ just for 

the substituent on the aromatic ring: Mitonafide has an electron-donating amino group, 

while Amonafide presents an electron-withdrawing nitro group. It has been suggested that 

the nitro group promotes the formation of a charge transfer complex with DNA bases, while 

the amino group allow the stabilization of DNA-drug complex through hydrogen bonds with 

the phosphate group of the DNA backbone.  

Several studies have been carried out on Amonafide and Mitonafide, and an initial 

assessment of the SAR of these molecules led to the synthesis of compounds having a 5-

amino-8-nitronaphthalimide nucleus. This new series of compounds was more active than 

Amonafide and Mitonafide on human colon carcinoma cell line CX-1 and human hepatic 

stellate cell line LX-1.
35

 Following this study, Zee-Cheng and Cheng published a series of 

bis-nitro and bis-amino derivatives. The most active compounds were II and III having, 

both in vitro and in vivo, prominent antileukemia and antimelanoma activity.
36

  

Figure 2.6: Metabolism of amonafide 
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The activity of mononaphthalimides has been improved by the insertion of the 

anthracene rather than the naphthalene nucleus. The most interesting compound was 

Azonafide. It is more active than Amonafide against  UACC375 (human melanoma), 

OVCAR3 (ovarian cancer) and L1210 (leukemia) cell lines.
37

  

In order to study the relevance of the nucleus linearity, phenanthrene and 

azaphenanthrene analogues  were synthesized. These agents are less able than Azonafide to 

inhibit tumor cells growth, indicating the importance of the anthracene chromophore.
38

 

 

 

 

 

Other mononaphthalimides analogues were obtained by replacing the imidazolic ring 

with a π-deficient pyrazine ring. This new series of compounds, known as 

pyrazinonaphthalimides, showed a stronger intercalating activity. These compounds have 

been tested against HT-29 (human colon carcinoma), HeLa (human cervical carcinoma) and 

PC-3 (human prostate carcinoma) cell lines showing IC50 values in micromolar range. 

Compounds containing a trifluoromethyl group presented a lower activity. This result could 

be the explained by the steric hindrance of the trifluoromethyl group, that could prevent  its 

intercalation 
39
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The introduction of a pyrazine ring gave promising results. The next step was the 

synthesis of compounds bearing π-deficient rings, like furane or thiophene, conjugated with 

the aromatic system of Amonafide. The heterocycles have been introduced in two possible 

orientation and all the compounds synthesized have been screened against HT-29, HeLa and 

PC-3 cell lines. All the assayed compounds  were more potent than Amonafide. In 

particular, among the different molecules, the compound bearing a furan ring oriented 

toward the outside of the molecule IX was the most active.   

 

 

 

 

 

 

 

 

IX was 10-fold more active against HT-29, 20-fold against HeLa, and 40-fold against 

PC-3 than the lead compound Amonafide. In order to explain the activity of IX, Braña et al. 

carried out molecular modeling investigations. They constructed four different model 

complexes depending on four different orientations of IX into DNA (Figure 2.7). 

- orientation with the side chain in the major groove and the furan ring stacking 

between the bases T and G; 
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 - orientation with the side chain in the major groove and the furan ring stacking 

between A and C: 

 - orientation with the side chain in the minor groove and the furan stacking between T 

and G; 

 - orientation with the side chain in the minor groove and the furan ring stacking 

between A and C.  

 

  

  

 

 

 

 

 

 

 

 

 

The more stable orientation was that where the side chain remained  in the major 

groove of the DNA dinucleotide and the furan ring was  stacked between A and C.
40

 

A series of novel thiazonaphthalimides inspired by the interesting antitumor activity 

showed by this scaffold characterized by a fused aromatic ring with  the naphthalimide 

skeleton, was synthesized by Li et al.  

 

 

 

 

Figure 2.7: Possible interaction model of IX DNA; the black square represents the orientation of the 
furan ring, and the sphere represents the protonated dimethylamino group of the side chain.40 
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These derivatives showed a strong DNA intercalation. Also in this series, the 

aminoalkyl side chain is important to the DNA binding, especially in placing the protonated 

side-chain nitrogen atom in a way suitable for hydrogen bonding formation with the DNA 

double helix. In this case the intercalating abilities of thiazonaphthalimides is enhanced by a 

three methylene units spacer between the two nitrogen atoms. The affinity for the DNA led 

to greater cytotoxic potency, so all these compounds were  more active than Amonafide 

against A549 (human lung cancer) and P388 (murine leukemia) cell lines. In particular, XIV 

was  more active against P388 and XV  more active against A549 cell lines.
41

 

In order to improve the activity of naphthalimides by increasing the binding capacity 

to DNA, a series of bis-naphthalimides agents was designed. These new molecules had 

structural features of Amonafide and Mitonafide. They were characterized by two 

naphthalimide units linked by a chain bearing at least one nitrogen atom. They are also 

characterized by different substituents on the aromatic rings.
28

 These compounds were more 

potent than Amonafide and Mitonafide  against  HT-29 cell lines and the antiproliferative 

activity was sensibly influenced by the nature of the substituent on the aromatic rings. 

However, the most active compound was the unsubstituted one on the aromatic rings. This 

compound, called Elinafide, showed an excellent antiproliferative activity against HT-29 

cell line. Moreover, in vivo studies showed that Elinafide not only inhibited  tumor growth, 

but also induced tumor regression. Furthermore, the absence of the nitro group on the 

aromatic ring seemed to reduce the neurotoxicity associate with Mitonafide.
42,43
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Structural studies showed that Elinafide form a sequence-specific complex with an 

exanucleotide d(ATGCAT)2 portion where two naphthalimide units bisintercalate at TpG 

and CpA steps of the DNA, stacking with G and A. The N,N-bis(ethylene)-1,3-

propylenediamine chain lies in the major groove and one of the protonated amino groups 

interacts via hydrogen bond with O6 of guanine in the major groove, while the other one 

could form and hydrogen bond to guanine O6 of the opposite strand or establishes a weaker 

hydrogen bond with N7 of the same base (Figure 2.8)
44

 

 

 

 
 

Figure 2.8: Stereoview of the complex elinafide-d(ATGCAT)2; Elinafide is in blue, guanine is 
in yellow and the oxygen atom is in red39 
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Later, a series of symmetric and non-symmetric analogues of Elinafide has been 

reported. In these molecules the naphthalene scaffold was replaced by an acenaphthene 

system. Among the derivatives, the non-symmetric compounds are less cytotoxic than the 

symmetric ones.
45,43

  

 

 

In order to improve the activity of Elinafide, compound DMP-840 has been 

developed. It is a bisnitro-bisnaphthalimide that binds DNA with high affinity and it was 

active against many tumor cell lines. Its mechanism of action has been studied by Nitiss et 

al.in particularthe molecule forms a stable ternary complex with DNA and TOPOII but did 

not poison TOPOII.
46

 

  
 

 

 

 

 

 

 

A further development was represented by the replacement of the naphtalenediimide 

structure with the 1,4,5,8-tetracarboxylic-naphthalendiimide (NDI) moiety to obtain more 

active intercalator agents. Both these features have a big aromatic system and two co-planar 

carbonyl groups. The new intercalators designed (N-BDMPrNDI, DMe-NDI, Phen-NDI) 

were able to intercalate into DNA and, in addition they could stabilize the triple helix DNA. 

Instability of triple-helix DNA was due to the repulsion between the nucleotides of these 

triple helix. Such structures are strictly implicated in the genes regulation. Several studies 

pointed out that an increase in the stability of these structure could be useful in anti-genes 

and antisense therapy.
47
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CHAPTER 3 

G-QUADRUPLEX STRUCTURES 

 

3.1 TELOMERES AND TELOMERASE  

The natural ends of chromosomes resemble DNA breaks and should be protected 

from the DNA damage response machinery, avoiding chromosome fusions. 

Telomeres are special heterochromatic structures, that protect the ends of eukaryotic 

chromosomes from degradation and, for this reason, they are essential for ensuring 

chromosome stability. Mammalian telomeres are formed by tracts of double-stranded 

TTAGGG repeats, which extend for 2-100 kb in humans (Figure 3.1). In particular, the end 

of the telomere is characterized by the presence of a 50-500-nucleotide protrusion of single-

stranded repeats from the 3‟ end (this part is called G-tail or G-overhang).
48

 Chromosome 

ends display high stability and are, in contrast to chromosome fragments, protected from 

end-to-end fusions and rearrangements.
49,50

 This is possible because telomeres are 

associated by a specialized six-protein complex, known as Shelterin complex (also known 

as telosome), which  binds to the telomere in a T-loop configuration.
51

 These specific 

configuration provides a protective cap that defines the natural end of the chromosome and 

masks the telomere from the DNA damage response machinery.
52

 

Proteins that compose Shelterin complex are: 

- TRF1 also known as TERF1 (telomeric repeat-binding factor 1) 

- TRF2 also known as TERF2 

- RAP1 also known as TERF2IP (repressor and activator protein 1) 

- TIN2 also known as TINF2 (TRF1-interacting nuclear protein 2) 

- TPP1 also known as ACD (POT1-and TIN2-interacting protein) 

- POT1 (protection of telomeres 1) 

 

TRF1, TRF2 are directly bound to the double-stranded telomeric repeats, whereas 

POT1 attaches to the single-stranded G-overhang. These three proteins are interconnected 

by TIN2 and TPP1, forming a complex that allows cells to distinguish telomeres from sites 

of DNA damage. About RAP1, it does not bind TTAGGG repeats and its telomeric 

localization depend on interaction with TRF2. All these proteins have a complex role in 
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telomere length regulation, protection from enzymatic attack, and in the control of signaling 

cascades from the natural chromosome ends.
52,53

 

  

 

Figure 3.1: Mammalian telomeres.54 

 

During each cell division cycle, telomeres shorten as a result of the incomplete 

replication of linear DNA molecules by conventional DNA polymerases, which is known as 

“end-replication problem”. DNA polymerase cannot fully replicate DNA molecules which 

contain 3‟-overhangs and the consequence is the continuous loss of telomeric sequences.
55

 

When telomeres become critically short, they lose their protective properties and send cells 

into a terminal arrest (terminative senescence) or cause cell death.
52

 This implies that there 

is a limited number of divisions of a cell, known as the Hayflick limit.
56

 

To overcome this problem, an enzyme, called telomerase, is capable of de novo 

synthesis of telomeric DNA.
55

 Telomerase is an RNA-dependent DNA polymerase that adds 

multiple copies of the TTAGGG motif to the 3‟ ends of linear chromosomes. Telomerase is 

a large enzymatic complex of over 30 proteins,
57

 but the active complex consists of (Figure 

3.2): 

- a telomerase RNA component (TERC or hTR), which provides the template for the 

synthesis of telomeric DNA; 

- a reverse transcriptase catalytic subunit (TERT of hTERT); 

- a pseudouridine synthase called dyskerin (DKC1).
57
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This complex is assembled in Cajal bodies in the nucleus and is shuttled to telomeres 

by the telomerase Cajal body protein 1 (TCAB1).
58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ATPases pontin (also known as RUVBL1) and reptin (also known as RUVBL2) 

sequester this immature complex into an active conformation, that associates with the 

terminal exposed 3‟ hydroxyl group and initiates nucleotide addition at the chromosome 

ends.
59

 The activity of telomerase is negatively regulated by the Shelterin proteins TRF1 

and POT1 to maintain telomeres at a constant length.
60

 

This process is essential for highly proliferative cells like embryonic and adult stem 

cells. However, although telomerase is expressed in these compartments, this is not 

sufficient to maintain the telomeres length that is associated with cell division. So, 

telomeres became shorter with age in most tissues,
61

 and this progressive telomeres 

shortening has been proposed to be one of the molecular mechanisms underlying ageing.
51,62

 

Telomeres length generally decreases to 50% from newborn to middle aged individuals.
63

 

Human tumors (more than 85%) regain the ability to activate telomerase, and 

telomeres shortening is counterbalanced by the synthesis of telomeric sequences. As result 

cancer cells became immortal.
64

 

Almost 15% of tumors do not express telomerase. This finding led to the discovery 

that there are alternative lengthening of telomeres pathways (ALT).
65

 This process involved 

Figure 3.2: The telomerase complex52 
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the helicases (BLM and WRN), which are also implicated in DNA replication, 

recombination, and repair.
66,67

 BLM and WRN are bound to and stimulated by TRF2, but 

their specific function in telomere maintenance is not known.
68

 Recently has been shown 

that topoisomerase IIIα is essential in the ALT pathway.
69

 

 

 

3.2 G-QUADRUPLEX 

G-rich oligonucleotide sequences, can associate together in physiological ionic 

conditions to form four-stranded structures termed G-quadruplexes.
70

 The fundamental unit 

of G-quadruplex is called G-quartet (also known as G-tetrad). G-quartets are planar 

alignments composed by four guanine bases interacting via Hoogsteen hydrogen bonds (an 

alternative to the classic Watson and Crick base pairing) to form a cyclic hydrogen-bonded 

square arrangement.
71

 The resulting structure presents an aromatic surface with the 

negatively charged phosphate groups in the peripheral region of the square. The center of 

the tetrad is characterized by the presence of four carbonyl groups that are always 

coordinated by mono- or divalent cations, most commonly K
+72

 and Na
+
,
73

 but also NH
4+

,
74

 

Pb
2+

,
75

 or Sr
2+

.
76

  

Several G-quartets are held together by π-π interactions to form a G-quadruplex.
72,77

 

The presence of the coordinating cation is essential for G-quadruplex stability. In the 

absence of it, the negative electrostatic potential generated by the carbonyl groups would 

destabilize the structure.
78

 

 G-tetrads (Figure 3.3) were first discovered in 1962, and G-quadruplex structures 

were fully characterised in 1989.
79,80

 

 

 

 

 

 

 

 

 
Figure 3.3: G-tetrad 
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G-quadruplexes are made up of one, two, or four DNA strands, which can run 

parallel or antiparallel, and the DNA sections which are involved in the quadruplex, but not 

part of the G-tetrads, form loops.
71

 Due to steric constraints, the quartets cannot stack 

directly on top of each other, but are slightly twisted, with the result that the G-quadruplex 

exists as a quadruple helix. This helix is characterized by a central hydrophobic core and 

four lateral negatively charged grooves, which are the cavities formed by the phosphodiester 

backbone. The center of the hydrophobic core constitutes a tunnel of positively charged 

ions, which coordinate the four carbonyl groups of each G-quartet.
81

 

G-quadruplexes have different topologies, depending on different features. They can 

be formed by guanines from the same strand (intramolecular G-quadruplex) or by 

interactions among guanines from different strands (intermolecular G-quadruplex) (Figure 

3.4).   

 

 

 

 

 

 

 

Depending on the strand polarity and on the sequence, two strands can be 

interconnected in different ways (Figure 3.5): lateral loops generally connect two 

antiparallel adjacent strands, diagonal loops connect two antiparallel opposite strands, and 

propeller or double chain reversal loops bond two adjacent parallel strands.
82

 

 

  

 

 

 

 
 

 

Figure 3.4: Schematic structure of human telomeric G-quadruplexes. A: intramolecular G-
quadruplex B: intermolecular G-quadruplex71 
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Figure 3.5: Possible loop types. (a) lateral edgewise loop (b) diagonal loop (c) propeller 
loop (d) V-shaped loop.83 

 
 

 
The glycosidic conformations of guanines (syn or anti) within a G-tetrad are 

geometrically associated with the relative strand orientations. For example, in parallel strand 

structures only the anti conformation has been observed, while in antiparallel G-

quadruplexes exists both syn and anti conformations.
81

 

 

 
 

 
 
 

 
 

 
 

The type of cation involved in the coordination of G-quadruplex is also important. 

The same sequence can assume different G-quadruplex topologies, depending on the cation. 

For example, telomeric DNA is parallel in K
+
 containing crystals,

72
 and mostly antiparallel 

in Na
+
 solution

84
 and NH4

+
.
85

 

 

 

3.3 G-QUADRUPLEX IN CANCER DISEASE 

Biological interest in G-quadruplex structures was little until the early 1990s, when it 

was discovered that the end of chromosomes were G-rich sequences that could fold into G-

quadruplex structures in vitro, under conditions very similar to the physiological 

environment.
86

 Telomerase plays an important role in cancer, maintaining cellular 
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immortalization by catalyzing telomere extention, consequently it can be considered a 

valuable target for cancer research. Moreover, G-rich telomeric single-stranded overhang 

are able to form G-quadruplex structure. Thus, molecules able to stabilize telomeric G-

quadruplexes, could inhibit telomerase and be useful in anticancer therapy. 

In 2000, Hanahan and Weinberg proposed six hallmarks involved in cancer process. 

They were: self-sufficiency in growth signals, insensivity to anti-growth signals, evasion of 

apoptosis, sustained angiogenesis, limitless replicative potential, and tissue invasion and 

metastasis.
87

 G-quadruplex were found in the promoter regions of oncogenes implicated in 

all these six events, particularly in transcription factors like c-myc, or in the small GTPase 

k-ras and in the receptor tyrosine kinase kit. This latter is a clinically validated drug target 

for treating gastrointestinal stromal tumors.
88

 Telomeric G-quadruplexes are available from 

single-stranded DNA template, while G-quadruplexes in gene promoters are formed from 

duplex DNA, and consequently are more difficult to obtain. However, during DNA 

replication, transcription and recombination process, these double-stranded regions become 

transiently single-stranded, and at this point it is possible to obtain G-quadruplex.
89

 

As a consequence of the above studies the G-quadruplexes of these proto-oncogenes 

become potential targets to take into account as a novel anticancer strategy.
25

 

 

3.3.1 Telomeric G-quadruplex 

The human single-stranded telomeric overhang, can fold up into a number of G-

quadruplex structures. All these structures have different features depending on the 

coordinating cation used and its concentration.
72,84,90

 The first crystal structure of the 

sequence d[AGGG(TTAGGG)3] with K
+
 ions was obtained from Parkinson et al. in 2002. 

The crystal structure showed a monomeric G-quadruplex with all four strand in a parallel 

arrangement. The linking trinucleotide loops located on the exterior of the quadruplex core, 

were in a propeller-like rearrangement and all the guanine glycosidic bonds had an anti 

conformation (Figure 3.6).  
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A 

 

 
 

 
 

 

 

 

 
 

The loops were composed of TTA bases, and the adenine was intercalated between 

the two thymines (Figure 3.7). Also, since they were formed by three bases, the loops were 

quite extended and, for this reason, they conferred  to the grooves a characteristic v-shape 

form. The potassium ions were located between two tetrads, coordinating the carbonyl 

groups from both.
72

 

 

 

 

 

Several studies have been done to investigate the telomeric sequence in K
+
 solutions, 

using circular dicroism (CD)
91

 and NMR techniques.
73

 These studies showed that the 

sequence was able to form a number of different structure at equilibrium. Anyway, further 

studies that imitated cell environment conditions, demonstrated that the preferred 

conformation is the parallel one.
91,92

 For this reason, the structure of biological relevance 

could be represented by the one obtained by crystallographic methods.
72

 

Figure 3.6: Schematic representation of the telomeric G-quadruplex72 

Figure 3.7: A: Side view of the telomeric quadruplex. It is possible to see the intercalation of the 
adenine (red) between the two thymines (light blue) in the propeller loops. B: Top view of the 
structure. The potassium ion is indicated by an arrow. Guanines are coloured in green.72 
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The presence of G-quadruplex structures in vivo has been demonstrated in 

ciliates,
93,94,89

 but the exact biological role of these induced G-quadruplexes is still under 

investigation. Studies with G-quadruplex specific antibodies, demonstrated that G-

quadruplex structures were cleaved during replication process,
93

 and further investigation 

indicated an implication of G-quadruplexes in telomerase recruitment.
94

 

 

3.3.2 G-quadruplex formed from c-kit sequence 

The human proto-oncogene c-kit encodes for a family of growth factor receptors with 

tyrosine-kinase activity, so it is responsible for cellular proliferation, differentiation and 

survival.
95

 c-kit mutations are associated with uncontrolled cell proliferation in tumors like 

prostate, gastrointestinal and adenocarcinoma lung cancers.
96

 Since there are only a small 

number of tumors correlated with c-kit overexpression, this proto-oncogene could be 

considered a target for these specific types of cancer. C-kit promoter region presents two G-

rich sequences: 

- ckit87up (Ckit-1) at -87 to -109 bp 

- Ckit-2 at -140 to -160 bp 

It has been demonstrated that these two sequences could form G-quadruplex 

structures in vitro.
96,97

 

The G-quadruplex structure of Ckit-1 has been characterized by NMR in K
+
 solution 

and it is shown in Figure 3.8.  

 

 
 

 
 

 
 

 

 
 

 
This structure showed an unusual topology. It was an intramolecular parallel G-

quadruplex, formed by three G-tetrads with all the glycosidic bonds arranged in anti 

conformation but, a guanine not belonging to a G-tract (G10 in Figure 3.8) was involved in 

Figure 3.8: Schematic representation of Ckit-1 structure.98 
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the formation of the G-quartet and, for this reason, there were four loops in the structure. 

Moreover, it has been observed an additional Watson-Crick base pairing between A1 and 

T12. This bond was very important for the stability of the structure.
98

 

Recently, the first crystal structure of ckit-1 has been published.
99

 The X-ray structure 

is in accord with the earlier NMR topology assignment. However, it revealed a highly 

significant difference in the dimension of the large cleft in the structure. 

The first NMR indications about the structure of ckit-2 has been obtained in 2009.
100

 

The paper reported that ckit-2 presented at least two different topologies in equilibrium. 

However, after long exposure (weeks) of the sample at temperature between 25°C and 28°C 

the conformation showed in Figure 3.9 A, (with a parallel arrangement, glycosidic bonds in 

anti conformation and three propeller loops) was the predominant. 

 

 

 
Few months later, Patel et al. also proposed the NMR structure of ckit-2.

101
 Their 

studies showed the presence of two forms in equilibrium: the one indicated by the precedent 

study (Figure 3.9 A) obtained at 20 mM KCl concentration, and the second one 

characterized by a dimeric parallel topology (Figure 3.9 B) obtained at 100 mM KCl 

concentration. The authors indicated the dimeric structure as the thermodynamically stable 

conformation, since the monomeric form was converted into the dimeric after a few months. 

Figure 3.9: Schematic representation of the two conformation of ckit-2 G-quadruplex. A: 
monomeric G-quadruplex. B: the dimeric G-quadruplex topology.101 
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The dimeric conformation was composed of six G-tetrads, which form a 5‟ monomer and a 

3‟ monomer, with parallel strands and all the glycosilic bonds in anti conformation.
101

 

 
 

3.4 G-QUADRUPLEX-BINDING LIGANDS 

G-quadruplex structures can be stabilized by small molecule ligands. The ligands can 

interact with G-quadruplex trough different binding mode: external stacking, intercalation, 

or groove binding. (Figure 3.10) However, intercalator binding between G-tetrads inside the 

quadruplex is very difficult, since the G-quadruplex is an extremely stable and rigid 

structure, so the distortion of quadruplex integrity requires a very high energy cost. 

Consequently, the most probably binding mode for ligands is the stacking on the outer 

planes.
102

 

 

 

 

 

 

 

 

G-quadruplex ligands are usually characterized by an aromatic system, which is able 

to perform π-π stacking interactions with the terminal G-tetrads of the G-quadruplex. Some 

compounds showed terminal amino groups in the side chains, which can be protonated in 

situ and are assumed to interact with negatively charged phosphates in the grooves at the 

sides of the G-quadruplex. Positive charge generally increases the affinity for negatively 

charged nucleic acids, and confer more hydrophilic property to the molecule.
103

 

There are several classes of G-quadruplex binding ligands. Here it will be reported 

only those related to the most important ligands . 

 

 

 

 

Figure 3.10: Representations of ligand-G-quadruplex complex.102 
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Antraquinones and related compounds 

The first quadruplex-interactive ligand as a telomerase inhibitor was discovered in 

1997. It was a symmetric molecule, the 2-6-disubstituted aminoalkylamido anthraquinone 

BSU-1051.
104

 

 
 

 
 

 
 

 
 

The compound showed a telomerase inhibitory value (
tel

IC50) of 23 µM and it bound 

the G-quadruplex formed by the telomeric 7-mer d(TTAGGGT). Subsequently, many 

derivatives have been synthesized to investigate different substitution patterns and side 

chains. In particular, 1,4-, 1,5-, 1,8-, 2,6-, and 2,7-regioisomers with various substituent on 

the chromophore have been investigated.
105,106

 

 

 
 

All these compounds showed high levels of cytotoxicity, possibly due to redox 

cycling.
107

 

Consequently, a series of 2,7-fluorenone analogues have been synthesized to 

decrease cytotoxicity by prevention of redox cycling through removal of one of the quinone 

carbonyl moieties.
108
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This series showed a decrease of about 10 fold in cytoxicity against a panel of 

human-tumor-derived cell lines. However they were less active against telomerase, probably 

caused by a decrease in electron deficiency of the 2,7-fluorenone chromophore. This fact, 

disfavoured π-stacking interactions with the G-quadruplex binding site. 

 

Acridine derivatives 

To improve the affinity and binding for G-quadruplex structures, a series of acridine 

based ligands was designed. The acridine core was chosen because it was similar with the 

anthraquinone in terms of interaction with G-quadruplex DNA, but it also presented a single 

nitrogen in the core, which is protonated at physiological pH. This feature represented an 

extra source of interaction with the G-quadruplex, since the positively charged ring is likely 

to be complementary to the channel of negative electrostatic potential of G-quadruplexes. 

Based on these studies, a library of 3,6-disubstituted acridines was synthesized.
109

 

 

 

 
 

 
 

 
 

These molecules showed improved telomerase inhibitor activity and lower 

cytotoxicity. This result encouraged the development of other classes of acridine based 

compounds. Two of them were the more interesting and reported below. 

The first class of acridine derivatives was published by Stevens and co-workers, and 

presented an extension of the acridine aromatic core. The pentacyclic acridine RHPS4 was 

able to inhibit telomerase activity in vitro (
tel

IC50 = 0.33 µM)
110

 and in vivo.
111,112,113
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Moreover, the compound formed 2:1 complexes with the telomeric sequence 

d(TTAGGGT)4.
114

 RHPS4 inhibited melanoma cell growth in a dose dependent manner, 

generating cell cycle alteration and apoptosis. This drug caused a telomere damage resulting 

in telomeres uncapping,
111

 which is correlated with the loss of POT1,
113

 while TRF2 

remains localized at the telomeres. Also, the ligand caused the formation of telomere 

dysfunction-induced focus (TIF), where phosphorylated γ-H2AX and other damage 

response factors are recruited to the telomeres, along with the immediate loss of POT1.
113

 

Moreover, other studied revealed a decrease of telomerase expression, probably due to a c-

myc down-regulation.
111

 Recently, it has been shown that in combination with taxol, RHSP4 

caused tumor regression in uterine carcinoma UXF1138L xenograft.
115

 

The second important class of acridine derivatives, designed by Neidle and co-

workers, is represented by a series of 3, 6, 9-trisubstituted acridines.
116

 The lead compound 

was BRACO-19 and to date, is one of the most investigated G-quadruplex binding ligands. 

 

 

 
 

 
 

 
 

 
 

BRACO-19 showed significant telomerase inhibitory activity, with a 
tel

IC50 value of 

6.3 µM.
117

 In vitro it was able to inhibit cell growth at sub-cytotoxic concentrations in a 

number of cancer cell lines, to induce senescence,
118

 telomere shortening,
119

 telomere end-

to-end fusion,
120

 and displacement of the protein POT1
121

 from telomeres of treated cells. In 

vivo, BRACO-19 has been evaluated in xenograft models of the vulval carcinoma cell line 

A431 in combination with paclitaxel, showing a major antitumor effect than paclitaxel 

alone.
118

 As single agent, BRACO-19 was tested in uterine carcinoma xenograft 

UXF1138L, showing high activity against early-stage tumors.
119

 The compound was found 

to enter the nuclei, and cancer cells exposed to the ligand in vitro and in vivo, showed 

complete loss of hTERT expression and very rapid telomere shortening. The antitumor 

effects were apparent within a very few days after the start of treatment and this fact 
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suggested that BRACO-19 does not act as a simple telomerase inhibitor, but the more rapid 

damage response could be consequence of G-quadruplex stabilization at the telomere ends. 

A complex between BRACO-19 and the bimolecular telomeric quadruplex 

d(TAGGGTTAGGGT) has been crystallized by Campbell et al.
122

 The core of the molecule 

is packed in a sandwich-type manner between two monomers; the positively charged side 

chains in position 3 and 6 each extend into a wide groove, while the side chain in position 9 

inserts into a narrow hydrophobic pocket (Figure 3.11) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
Telomestatin 

Telomestatin is a macrocyclic natural product consisting of seven oxazole rings and 

one thiazoline ring. It was isolated from the actinomycete Streptomyces anulatus. It is 

currently the most efficient in vitro telomerase inhibitor, with a 
tel

IC50 value of 5 nM.
123,124

 

 

 
 

 
 

 
 

 
 

 

Figure 3.11: Crystal structure of a BRACO-19 complex. The ligand (mauve) is 
shown at the interface of the two quadruplexes122 
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Telomestatin is able to induce the formation of intramolecular G-quadruplexes with 

telomeric sequences in vitro.
124

 The compound caused growth inhibition in a wide range of 

cancer cells, with the development of senescence, as well POT1 displacement from 

telomeres.
125,126,127

 Telomestatin caused telomere end-to-end fusion in a series of leukemic 

cells, which led to apoptosis.
128

 An analogue effect was observed after U937 xenograft 

treatment with increased doses of the drug,
129

 where histological examination of treated 

tumor showed a large number of apoptotic cells. Recently, it was demonstrated that 

initiation of G-quadruplexes by telomestatin leads to the dissociation of topoisomerase IIIα, 

which is essential for the ALT pathway, from telomeres in ALT cells.
69,130

 The main 

problem with this ligand is that its synthesis is very challenging
123,124,131

 and the analogues 

designed to date do not reproduce the same efficacy.
132

 

 

Perylene derivatives 

The first perylene derivative, named PIPER, was designed as specific quadruplex 

ligand.
133

 The compound displayed G-quadruplex stabilization and telomerase inhibition in 

the micromolar range. Furthermore, PIPER was able to form G-quadruplex structure in the 

c-myc promoter sequence when in duplex conformation, and it showed the same property 

towards ciliate telomeric sequence, but not for the human one.
134

 

 

 
 
 

 
 

Based on this scaffold, a series of analogues has been synthesized. The modifications 

to the original structure were focused mainly on the type of terminal amine,
135

 the nature of 

the side chain,
136

 the number of the side chains,
137

 and the extention of the aromatic core.
138

 

In particular, the disubstituted perylene derivatives with polyamine side chain showed good 

G-quadruplex  binding efficacy in FRET assay. Also, in electrophoresis and CD 

experiments they showed particular affinity for the parallel G-quadruplex conformation.
139

 

Among all the derivatives synthesized, compounds POL-3 and POL-8 showed improved 

telomerase inhibitor activity with respect to PIPER. 
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Naphthalene diimide (NDI) derivatives 

Tetrasubstituted NDIs are excellent motifs for the molecular recognition of G-

quadruplexes, since they present a π-acidic core that is ideal for performing π-π stacking 

interactions with G-tetrads. Also, the four side chains bearing amino group at the end could 

interact with the grooves at the sides of the G-quadruplex.
140-142

 

 

 

 
 

 
 

 
 

 
 
 

 
A series of NDI compounds with different terminal amine functions and side chain 

length have been reported by Cuenca et al. These compounds showed exceptional affinity 

for telomeric G-quadruplex DNA in FRET assays with ΔTm values between 14 and 35 °C at 

0.5 µM. Molecules with very high affinity for G-quadruplex displayed very high toxicity 

against MCF7 and A549 cancer cell lines, with IC50 values of 10-200 nM, and up to 10-fold 

selectivity over a normal fibroblast cell line. However, competition FRET experiments, 

demonstrated that the most potent G-quadruplex binding agents, did not displayed a high 

selectivity for G-quadruplex DNA over duplex DNA.  
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In the same publication,
140

 trisubstituted NDIs were also reported. These derivatives, 

generally had lower affinity for G-quadruplex than tetrasubstituted, maybe because the lack 

of a side chain reduced the interactions with the grooves at the sides of the G-quadruplex. 

To better understand the binding mode of NDIs, a tetrasubstituted derivative of this 

series (XVI) has been co-crystallized with a an intramolecular human telomeric 23-mer G-

quadruplex DNA (Figure 3.12).
141

 

 

 
 

 
 

 
 

 
  

 
 

 

 

As shown in Figure 3.12, the terminal G-tetrads are coordinated by one NDI core 

each. Four NDI molecules coordinate the G-tetrads of two G-quadruplexes, and two NDI 

molecules display external interactions with bases in the loops at the sides of the G-

quadruplexes. 

Among the derivatives synthesized by Cuenca et al. compound XVII resulted 

particularly interesting.  

 

 

 

 

 

 

 

 

 

Figure 3.12: The 23-mer crystal structure of the intramolecular quadruplex of the sequence 
d[TAGGG(TTAGGG)3] complexed with ligand XVI 141 
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It showed high affinity for the G-quadruplex in the promoter region of the oncogene 

c-kit, and it was evaluated for the treatment of gastrointestinal stromal tumors (GIST),
142

 

since over 80% of GIST cells present a mutation in the c-kit gene. Treatment of GIST882 

cells with XVII resulted in suppression of c-kit mRNA and c-kit protein expression, 

together with a decrease in telomerase activity. These results suggested a dual mechanism of 

action of this compound, as it stabilized both a c-kit promoter G-quadruplex and the 

telomeric G-quadruplex. However, this compound showed toxicity against normal fibroblast 

cell line WI38 (IC50 = 0.06 µM)
140

 26 times higher than towards GIST882 (IC50 = 1.6 

µM).
142

 Unfortunately, this fact was not a promising starting point for in vivo evaluation. 

To improve the interaction with the grooves at the sides of the G-quadruplex and also 

to obtain a better selectivity for cancer cell lines, computer modeling studies led to a series 

of NDIs derivatives synthesized by Hampel et al.
143

 All the compounds in this series 

presented an N-methylpiperazine as end group and different length of the side chains, to 

determine how deeply end groups could reach into the grooves.  

 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

The molecules showed high affinity for the telomeric G-quadruplex sequence F21T 

in FRET experiments with ΔTm values between 24 and 28 °C, stabilizing quadruplex with a 

parallel-type topology. The affinity for the ckit-2 was moderate, and for ckit-1 and T-loop 

DNA was really low (ΔTm  1-5 °C). Moreover, it was able to stabilize the G-quadruplex in 

the HSP90 promoter region. Also they were selective for G-quadruplex DNA in competition 

FRET assay: the 10:1 duplex:quadruplex ratio did not interfere with the stabilization of G-
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quadruplex. In vitro, BMSG-SH-3 and BMSG-SH-5 inhibit the binding of hPOT1 and Topo 

IIIα to telomeric G-quadruplex. All the compounds were tested in a panel of tumor cell 

lines, including pancreatic cancer cell lines Mia-Pa-Ca-2, PANC-1 and HPAC, where they 

showed IC50 values of 0.1-0.2 µM and they were less toxic in the normal human fibroblast 

cell line WI38, which does not express telomerase. In vivo studies on BMSG-SH-3 using 

Mia-Paca-2 xenograft models, confirmed the activity against pancreatic cancer and the 

compound was found to be selectively localized in the treated tumor. Furthermore, BMSG-

SH-3 was able to reduce telomerase activity and the expression of the chaperone protein 

HSP90, a regulator of telomerase. 

Recently, the crystal structures of the complexes between BMSG-SH-3 and BMSG-

SH-4 and the 22-mer d(AGGG[TTAGGG]3) human telomeric intramolecular quadruplex 

have been published (Figure 3.13).
144

 Both the compounds promoted parallel-stranded 

quadruplex topology, binding exclusively to the 3‟ surface of each quadruplex with 

extensive π-π contacts. 
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Figure 3.13: (a) Schematic showing quadruplex associations with 5′−5′ packing interactions and 
3′ ligand binding. (b, c) Cartoon representations of the BMSG-SH-3/Gtel22 and BMSG-SH-
4/Gtel22 complex structures. (d, e) Representations, projected onto the plane of the terminal G-
quartets, of the Gtel22 quadruplex solvent-accessible binding surfaces with the bound ligands 
BMSG-SH-3 and BMSG-SH-4 shown colored by crystallographic temperature factors (or B-
factors). Temperature factors  provide a measure of atomic mobility in the crystal lattice.144 
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In both structures, the side chains are positioned within the G-quadruplex groove 

regions, interacting through hydrogen bonds, water bridges, and electrostatic contacts with 

the negatively charged phosphate groups. Atomic mobility has been measured by the 

crystallographic temperature factors (B factors), and they showed that the four N-

methylpiperazine end groups of BMSG-SH-3 are significantly less mobile that those of 

BMSG-SH-4 (Figure 3.13 d and e). Consequently, BMSG-SH-4 binding to the G-

quadruplex is slightly destabilized. This result is in accord with FRET data. 
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CHAPTER 4 

POLYAMINES AND CANCER 

 

Natural polyamines are ubiquitous, characterized by a low molecular weight, and 

play multifunctional roles in cell growth, differentiation, and survival. The only polyamines 

synthesized in mammalian cells are Putrescine (Put), Spermidine (Spd) and Spermine 

(Spm). They are protonated at physiological pH, and this polycationic nature allows them to 

bind electrostatically negatively charged molecules like nucleic acids, proteins and 

membranes.
145

 

 

 

 

 

 

 

 

 

Polyamines can also be obtained from the diet (cheese and meat)
146

 and from other 

sources, such as intestinal bacteria 
147,

 
148

 

Studies on patients with leukemias, melanomas, adenocarcinomas and lymphomas 

showed high amounts of polyamines in serum and urine. Consequently polyamines were 

proposed as biochemical markers of neoplasia. In addition, high levels of polyamines can be 

found in other conditions like cystic fibrosis, psoriasis and pregnancy. This fact can 

underline that polyamines are implicated in many physiological or pathological situation 

related to cell growth or cell death.
149

 

The link between polyamines and cancer was elucidated. Genetic alterations, 

expression levels and activities of polyamine-metabolizing enzymes changes rapidly during 

tumorigenesis resulting in high levels of polyamines in many type of tumors.
145

Furthermore, 

polyamines participate in the apoptotic pathway and are able to interact with DNA 

modulating DNA-protein interaction.
150

 All these features and the pathways correlated with 
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them can be considered potential targets for anticancer therapy. Further explanation will be 

provided in the following sections. 

 

 

4.1 POLYAMINES SYNTHESIS, DEGRADATION AND ROLE IN 

CELL CYCLE 

Polyamines are formed in the cytoplasm by enzymatic decarboxylation of ornithine, 

an amino acid produced as part of the urea cycle, which involves both cytosolic and 

mitochondrial enzymes (Figure 4.1).
151

 In the first stage of the polyamines synthesis, 

ornithine is converted in Putrescine (Put) by the action of ornithine decarboxylase (ODC). 

Decarboxylation of S-adenosylmethionine (SAM), by S-adenosylmethionine decarboxylase 

(AMD) yields decarboxylated SAM (dcSAM), which donates its propyl amine moiety for 

the formation of Sperimidine (Spd) and Spermine (Spm) by spermidine synthase (SRM) and 

spermine synthase (SMS), respectively. 

Polyamines are degradated by spermidine/spermine N
1
-acetyltransferase (SSAT), a 

propylamine acetyltransferase. SSAT monoacetylates Spd and can either mono- or di-

acetylate Spm. Diamines and acetylated polyamines are substrates for the diamine 

transporter (DAX), and they are eliminated in urine. Acetylated Spd and Spm are also 

substrates for a flavin-dependent polyamine oxidase (PAO) which catalyses their back 

conversion to Put. Also, a spermine oxidase (SMO), which can oxidize non-acetylated 

spermine, has been characterized.
152
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ODC is an essential metabolic effector required for normal development in 

mammals.
153

 It is frequently described as the rate-limiting step in polyamine synthesis but 

this is inaccurate: the supply of the aminopropyl donor dcSAM, by the action of AMD also 

influences the conversion of Put into the higher polyamines.
154

 

ODC is an homodimer with two active sites formed at the dimer interface between 

the N-terminal domain of one subunit and the C-terminal domain of the other.
155

 It has very 

short half-life (10-30 minutes in mammalian systems), and it is destroyed by the 26S 

proteosome.
156

 

ODC protein levels in cells are regulated by two proteins termed antizyme (AZ) and 

antizyme inhibitor (AZIN).
154

 AZ binds to the ODC monomer thus inactivating the protein 

and targeting it for degradation by the 26S proteosome. AZIN binds to AZ more tightly than 

ODC and can displace it, preventing the degradation. Induction of AZ also blocks 

polyamine transporter (Figure 4.2).
157

 

Figure 4.1: Polyamine metabolism in mammals151 
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ODC plays an important role in neoplastic transformation. The Odc gene promoter 

region contains sequences that allow response to hormones, growth factors and tumor 

promoters. In particular, ODC mRNA synthesis is increased by the c-Myc oncogene
158

, a 

transcription factor required for the proliferation of normal cells. Its over-expression can 

lead to uncontrolled growth and cancer.
159

 ODC is also target of the Ras oncogene: mutant 

k-Ras oncogene increases cellular polyamine levels by increasing ODC enzyme activity.
160

 

ODC can react quickly with nitric oxide resulting in inactivation of the enzyme. 

Therefore nitric oxide is considered an inhibitor of polyamine synthesis.
161

 

An important enzyme of polyamine catabolism is SSAT, an highly inducible enzyme 

whose primary function is to maintain polyamine homeostasis. A rise in polyamines content 

causes induction of SSAT resulting in acetylation of Spd and Spm (by the transfer of the 

acetyl group from acetyl-coenzyme A to the N
1
 position of both Spd and Spm), and 

consequent degradation via the SSAT/PAO pathway.
162

 Cancer can develop mechanisms to 

prevent the induction of SSAT in order to maintain high polyamine levels. It has been 

shown that activated K-Ras suppressed SSAT expression by a mechanism involving the 

Figure 4.2: Role of antizyme and ODC in polyamine metabolism157 
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PPARγ, a member of the nuclear hormone receptor family and an important regulator of cell 

proliferation and differentiation.
163,164

 

Mammalian cells are endowed with a Polyamines Transporter System (PAT) which 

has yet to be molecularly defined. This system contributes to the intracellular polyamines 

amount and it could be a valid strategy to introduce drugs with polyamine scaffold into the 

cell.
156

 

Polyamines are important mediators in the cell regulation process. Depending on 

environmental signals, they can promote cell growth or cell death. 

Normal cell growth is regulated by proteins known as cyclins and cyclin-dependent 

kinases (cdks). Increasing and decreasing of cyclins A, B,  D and E and their respective cdk, 

are key steps for the cell cycle progression.
165

 In particular, in the G1 phase, cyclins D1, D2 

and D3, and cyclin E can activate the appropriate cdks. Once activated, cdks can 

phosphorylate specific substrates leading to cell cycle progression.
166

 Cdks are inhibited by 

molecules called cdk inhibitors (cdkIs). They block the activity of cyclin-cdk complexes, 

resulting in break of cell cycle progression.
167,166

 How polyamines affect the cyclin/cdk 

system is still not clear. It seems that polyamines are able to regulate cyclins degradation but 

the exact mechanism is not yet defined.
168

 

It has been shown that polyamine and ODC levels change during the cell cycle. They 

display two peaks: one in conjunction with the G1/S transition and the second in the G2 

phase (Figure 4.3).
169
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There are several examples showing the implication of polyamines in cell cycle. 

Thomas et al. founded that in MCF-7 breast cancer cells, estradiol, which stimulates 

proliferation of these cells, increased intracellular polyamine levels in G1 phase.
170

 Other 

studies showed the implication of cyclin D1 as major mediator of cell cycle progression in 

MCF-7 cells in G1 phase.
166,171,172

 It has been suggested that Put and Spd could regulate 

cyclin D1 and E, respectively.
150

 

 

 

4.2 POLYAMINES AND APOPTOSIS 

Beside the activity of polyamine in cell growth, they are also implicated in cell death 

process, in particular in the programmed cell death (apoptosis).
173,174

 

Apoptosis is a physiological cell death regulated by genetic mechanisms, and 

morphological and biochemical changes in cell nuclei, including chromatin condensation 

and internucleosomal DNA fragmentation 
175

 

Mitochondria plays an important role during the apoptotic process: membrane 

permeabilization and the resulted cell death, depend on the balance between pro-apoptotic 

and pro-survival molecules acting at mitochondria level (Figure 4.4). 

 

Figure 4.3: Polyamines metabolism and cell-cycle-regulatory proteins165 
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Figure 4.4: Mithocondria in apoptosis process176 

 

 
Mitochondrial and post-mitochondrial phases of apoptosis, terminate with a 

proteolytic cascade which involves proteins known as caspases. They have a key role in the 

cell death program.
177

 Caspases are aspartate-specific cysteinyl proteases whose act as 

initiators and executioners of apoptosis.
178

 They are produced in cells as inactive 

proenzymes containing three domains: an NH2-terminal domain, a large subunit (~20 KDa) 

and a small subunit (~10 KDa). Caspases can be divided in two groups. In the group I there 

are caspases-1, -4 and -5 which are involved in the immune response. In the group II, there 

are caspases involved in the apoptosis and they can be also divided in two classes: 

- Initiator caspases (apical): caspase-2, -8, -9, -10 

- Effector caspases (executioner): caspase-3, -6, -7 

Initiator caspases can be stimulated by different apoptotic signals like the death-

inducing signaling complex (DISC), the apoptosome, and the p53-induced protein with a 

death domain PIDDosome. When recruited, initiator caspases activate the executioner. Once 

effector caspases are activated, they interact with a broad spectrum of proteins, leading to 

cell death.
179

 Effector caspases, could also be activated by catepsin and calpains, two non-

caspases proteases.
180

 The activity of caspase-9 and -3 can be inhibited by inhibitor of 

apoptosis proteins (IAPs).
181
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Apoptosis could be triggered by two pathways (Figure 4.5): 

- Extrinsic pathway: is receptor-depending. Extracellular ligands (like TNFα) stimulate 

DISC assembly leading to activation of procaspase-8. The active caspase-8 can 

activate caspase-3 triggering the  apoptosis pathway. 

- Intrinsic pathway: it is mediated by mitochondria. Release of cytochrome C from 

mitochondria leads to apoptosome formation which mediates activation of caspase-9. 

This pathway is controlled by proteins from Bcl-2 family. 

Intrinsic and extrinsic pathways can crosstalk: caspase 8 can cleave Bid forming the 

active, truncated t-Bid, which can bind Bcl-2 and inactivate it, resulting in apoptosis. 

Anyway, both pathways converge at level of caspase-3.
182,181

 

Polyamines are strictly involved in the apoptosis process, although the wide number 

of investigations have not yet completely elucidate their roles and revealed contradictory 

results.
150

 Thomas et al. showed that Spm can prevent apoptosis induced by ionomycin, a 

Ca
2+

 mobilitation agent. This effect could be correlated with the role of polyamines in 

Figure 4.5: Overview of caspase cascades and their inhibitors181 
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calcium mobilitation in T cells.
183

 Apoptosis protective effects due to the action of 

polyamines, have been published also by Desiderio et al. They showed that addition of 

polyamines can inhibit dexamethasone-induced apoptosis in thymocytes.
184

 

On the other hand, there are evidences about a protective role of polyamines in 

apoptosis. Packham et al. showed that Odc gene is involved in apoptosis induced by 

overexpression of c-myc, an oncogene correlated either in cell proliferation and apoptosis. 

In this context ODC expression induced cell death c-myc mediated in a dose-dependent 

manner.
185,186

 

The presence of acetylpolyamines in cancer cells is an important link between 

polyamines and carcinogenesis.
187,188

 Usually, they are not found into the cell, because they 

are the main product exported from the cell.
165

 The oxidation of acetylated polyamines by 

PAO and serum amine oxidase produce H2O2 andaldehydes , strong inducers of 

apoptosis.
189,190

 Moreover, H2O2 produced during the oxidation induce SSAT activity and 

cause oxidative stress (Figure 4.6).
191

 

 

 

 

 

Anyway, further studies, some using MDL 72527, a specific PAO inihibitor,
192,193

 

and other using transgenic mouse that over-express SSAT,
194

 indicated that apoptosis is not 

directly correlated with polyamine oxidation. In some cell types, they do not need to be 

oxidized to induce cell death. The excessive accumulation or depletion of polyamines can 

interfere with DNA-protein interaction,
195

 protein-protein interaction,
196

 and mitochondrial 

integrity
197

 leading to apoptosis.  

Figure 4.6: polyamine metabolism and the potential for cell death165 
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Polyamines can interact with caspases. Stefanelli et al. carried on several studies to 

understand their cellular roles. Results showed that polyamines (especially Spm) could 

directly induce the release of cytochrome C from mithocondria leading to programmed cell 

death. In particular, Spm could activate caspase-3 more efficiently than Spd, while Put is 

inactive.
198,199,197

 

Apoptosis is also correlated with p53 tumor suppressor. p53 is a transcription factor 

that targets many genes and microRNAs in response to cellular stress. As tumor suppressor 

it blocks cell cycle progression and/or induce apoptosis, in response to DNA damage.
200

 

Studies showed that wild-type p53 could regulate transcription of bax gene, a member of 

Bcl-2 family, strictly connected with apoptosis.
201,202

 The interaction between polyamines 

and p53 has been investigated by Li et al. They founded that in intestinal mucosal epithelial 

cells, polyamines negatively regulated post-transcription of p53. Moreover, accumulation of 

p53 activated the transcription of cell cycle arrest genes, leading to growth-inhibition 

(Figure 4.7).
82

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

Figure 4.7: regulation of expression of the p53 gene by cellular polyamines182 
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Another factor implicated in apoptosis and cell growth is the nuclear transcription 

factor NF-κB.
203,204

 This factor has both apoptotic and antiapoptotic functions, depending on 

cell type and death stimulus.
205,206

 Once activated, NF-κB can interact with genes implicated 

in apoptosis, like Fas ligand, p53 and c-myc.
207

 Li et al. investigated about the implication 

of polyamines in NF-κB regulation and they showed that in normal intestinal epithelial 

cells, polyamines negatively regulate the NF-κB activation.
208

 Consequently, depletion of 

polyamine from these cells, resulted in increased activity of NF-κB, due to degradation of 

the inhibitor protein-κB, necessary for NF-κB inactivation.
209

 On the other hand, Shah et al. 

indicated that polyamines, in particular Spm, up-regulated genes involved in cancer cell 

proliferation in MCF-7 breast cancer cells.
195,210

 

 

 

4.3 POLYAMINES AND DNA 

Polyamines can interact with duplex and triplex B-DNA (the main DNA 

conformation in functional organisms) structures.
211

 DNA is a polyelectrolyte with negative 

charges on the phosphate groups, so the driving force in polyamine-DNA interaction is 

electrostatic
212

 and a minor contribution is due to hydrophobic interactions.
150

 Several 

crystallographic studies have been carried out on different DNA conformation (including A- 

and Z-DNA) to understand the binding between polyamines and DNA. Polyamines have 

been found in a variety of locations, but more frequently near the phosphate backbone.
213,214

 

Other methods placed spermine either in the major groove
215,216

 or the minor groove of the 

DNA.
217

 

There is abundant evidence that Spm can alter the structure of DNA, for example 

micromolar concentrations of Spm can convert some B-DNA sequences to the A- or Z-

conformation.
215

 Z- and B-DNA have different features (for example in the Z-DNA the 

phosphate groups are more exposed) and, Z-DNA seems to be implicated in transcriptional 

control.
218

 The binding mode between Spm and Z-DNA has been proved by X-ray 

crystallographic studies.
219

 

The interaction between polyamines and DNA promotes DNA bending (Figure 4.8). 

Polyamines neutralize the negative charges on DNA phosphate resulting in reduction of the 

energy required for bending and, consequently, attraction between two DNA segments.
220,221
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However, Maruyama et al. proposed that this kind of interaction could screen the 

electrostatic repulsion among phosphate anions in DNA molecules and improve the stability 

of the second structures of DNA.
222

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Figure 4.8: Schematic representation of the dynamical bending mechanism by 
polyamine. a A free polyamine ion diffuses along the DNA chain. b Starting of small 
bending which then allows the polyamine localization in the major groove. c The 
bending angle is increased and stabilized by the polyamine ion223 

 

 
 

DNA conformational changes induced by polyamines and DNA bending, can 

modulate the interaction of transition factors with DNA and thus control the expression of a 

network of genes, and maybe cancerogenesis.
150

 

Another important interaction with nucleic acid is represented by polyamines and G-

quadruplex structures. NMR studies carried out by Keniry et al. showed for the first time 

that Spm can bind DNA quadruplexes. Spm also discriminated between folded antiparallel 

quadruplexes and linear parallel quadruplexes.
224

 A more recent study showed stabilizing 

and denaturating effects of polyamines on G-quadruplex. Concentrations of polyamines 

lower than 1 mM cause stabilization of G-quadruplex due to electrostatic and hydrophobic 

interactions and, maybe contribute also to the DNA condensing effect. On the other hand, 

concentration higher than 1 mM denaturated G-quadruplex, presumably by hydrogen-

bonding interactions between guanines and the amino or imino groups of polyamines.
225
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4.4 POLYAMINES IN MEDICINAL CHEMISTRY 

Polyamine have been widely investigated in medicinal chemistry. They may be 

considered a “universal template” able to recognize different receptor systems, since both 

affinity and selectivity may be fine-tuned by inserting different substituents or by modifying 

the chain length between the nitrogen atoms of a polyamine scaffold.  Its flexibility allows it 

to assume a suitable conformation for the interaction between protonated amine functions 

and receptor anionic sites.
226,227,228,229

 

Polyamines have numerous cellular effectors sites that are frequently dysregulated in 

cancer and, for this reason, several studies have been carried out to find molecules able to 

interfere with the biochemical pathway of polyamines and, of course, became potential 

anticancer agents. 

 

 

 

 

 
 

 
 

Figure 4.9: Targets in the polyamine metabolic pathway156 
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As shown in Figure 4.9, several steps of the polyamines biosynthesis pathway have 

been targeted.  

One of the most important molecule designed was 2-difluoromethylornithine 

(DFMO), that was the prototypical inhibitor of ODC. DMFO was designed in early 1980s 

and it is an enzyme-activated irreversible inhibitor. Initially it competes with ornithine for 

binding to the active site of ODC, thus it is decarboxylated by ODC to create a highly 

reactive intermediate that inactivates ODC by covalent bond with Cys360 or Lys69. DMFO 

has been evaluated in phase I and II trials
230,231,232,233

, but these trials had no success. The 

poor results were probably related to pharmacokinetic and pharmacodynamic factors, like 

reduced transport in the cells and activation of compensatory mechanisms to replace 

polyamines depletion.
156

 Recently, it has been shown a possible role of DMFO as cancer 

chemopreventive in combination with nonsteroidal anti-inflammatory agents.
234,235

 

In addition to ODC, AMD is another important enzyme in the polyamine 

biosynthesis and, one of the first AMD inhibitors discovered was 

methylglyoxalbis(guanylhydrazone) (MGBG). This molecule was in study as antileukaemic 

agent when it was discovered its role as competitive inhibitor of AMD.
236,237

 The 

antiproliferative activity of MGBG could be a consequence of two factors: inhibition of 

AMD and interference in mitochondrial structure and functions. However, studies on L1210 

cells showed that its antineoplastic properties are related to the antimitochondrial effects, 

which happens before the destabilization on polyamines system.
238

 Since MGBG showed 

systematic toxicity, it has not been subjected to clinical development, but it could be 

considered a lead structure.
239

 Among MGBG analogues developed, SAM486A was a 

potent competitive AMD inhibitor with low mitochondrial activity.
240

 SAM486A has been 

tested in phase I and II trials, as single agent or in combination with 5-fluorouracil and 

leucovorin for the treatment of metastatic colon cancer. Its therapeutical activity is still 

under investigation.
241,242,243

 

Furthermore, specific inhibitor of aminopropyl transferases SRM and SMS have been 

developed. Among all the inhibitor designed, the “transition-state analogues” were the most 

interesting. In particular, compound AdoDATO was a specific inhibitor of SRM.
244

 

Treatment of different types of mammalian cells with AdoDATO showed reduction of Spd 

levels, but increment of Put and Spm levels, resulting in not interesting growing inhibitory 
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effects.
245

 Also, since AdoDATO is endowed with primary amine functions in its structure, 

it could be a possible substrate of SSAT and various amine oxidase, limiting its therapeutic 

utility.
156

 

 

 

 

Another approach to design molecules able to inhibit the activity of polyamines, was 

to create compounds structurally similar to the natural polyamines, but with different chain 

lenght.
246

 Compounds XVIII-XX and MDL 27695 showed interesting antitumor activity. 

XVIII and MDL 27695 were tested on HeLa cell lines exhibiting IC50 values of 5 and 50 

µM, respectively, but they did not show any correlation between DNA binding properties 

and antitumor activity.
247,248

 

 

 

Another series of symmetrically substituted polyamines (XXI-XVI ) have been 

synthesized to improve the antitumor activity. These compounds, called 

bis(ethyl)polyamines, were active on polyamine system down-regulating ODC and ADM. 

Moreover, they have been transported into the cells by PAT.
249,250,251
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Among these derivatives, the most interesting compounds were XXI, which has a 3-

3-3 backbone, XXIII (4-4-4) and XXIV (4-4-4-4). Compound XXIV has been tested in 

human brain tumor cell lines U-251 MG and SF-767. In these cell lines it showed several 

effects: inhibition of cell growth, cytotoxic activity, induction of variable G1/S block, and 

intracellular polyamines depletion.
252

 Phase I and II clinical trials of compound XXI, 

showed that the drug is safe but did not show any interesting clinical effects in patients with 

breast or lung cancer,
253,254,255

 so a treatment of XXI in combination with other 

chemotherapeutic agents has been proposed.
256

 Phase I studies of XXIII, revealed neuro- 

and hepatotoxicity issues. However, this side effects could be reduced by the introduction of 

hydroxyl groups into the intermediate chain (compound XXVI). This fact is probably due to 

a more rapidly phase 2 metabolism.
257,258

 

In order to study the correlation between the polyamines mobile chain and antitumor 

activity, the so called “second generation” of bis(ethyl)polyamines has been synthesized. 

These compounds presented a spatial constraint in the central region of the polyamine chain 

in XXIII. The n-butane fragment has been replaced with less mobile chains, like cis- and 
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trans-cyclopropyl (XXVII), triple bond (XXVIII) or 1,2-disubstituted aromatic ring 

(XXIX). These compounds showed interesting antitumor activities in different cell lines.
259

 

 

 

 

The most interesting compounds were CGC-11093 and CGC-11047. The first one, 

characterized by a trans-cyclopropyl moiety in its central part, was active as antitumor agent 

in vitro and in vivo against DU-145 nude mouse xenografts.
260

 Moreover, CGC-11093 

increases the in vitro and in vivo anti-myeloma activity of the proteasome inhibitor 

bortezomib. The combination of these two agents compromised multiple myeloma viability 

and clonogenic survival, and increased drug-induced apoptosis over that achieved by either 

single agent.
261

 The second one, characterized by a cis double bond, was able to inhibit the 

growth of both small cell and non-small cell lung cancer cells in vitro. In non-small cells it 

down-regulated ODC activity, increased polyamines catabolism leading to a greater 

polyamines depletion and accumulation of CGC-11047. It also delayed the progression of 

the tumor in an in vivo model of human non-small cell lung cancer.
262

 

Also, compounds with a 4-4-4 or 4-4-4-4 backbone with trans-cyclopropyl or trans-

cyclobutyl moieties in noncentral regions (XXX) were active in vitro against prostate tumor 

cell lines like DU-145, LnCap and PC-3. The improved activity could be attributed to an 

enhanced DNA binding.
263,264

 This latter property is very important, because the interaction 

of polyamines with DNA could enhance their antitumor activity. For this reason, several 

efforts have been  made to find polyamines analogues able to interact with DNA.  

Compounds XXXI and XXXII are oligoamines that were active against a panel of a 

prostate tumor cells in vitro (LnCap, DU-145 and PC-3) showing IC50 values an order of 

magnitude lower than that of analogues previously studied. Their cytotoxicities were 
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correlated with their ability to alter DNA/chromatin condensation during cell division, 

causing DNA aggregation.
265

 In particular, compound XXXI was active against human 

breast cancer cells in vitro and in vivo, and its cytotoxic effects were associated with 

multiple apoptotic mechanisms in specific breast cancer cell lines.
266

 In addition, compound 

XXXI was able to specifically suppress the expression of estrogen receptor α and estrogen 

receptor target genes in the estrogen-receptor-positive MCF-7 and T47D human breast 

cancer cell lines.
267

 

 

 

 
 

 
Other approaches to the design of polyamines analogues, were to synthesized 

compounds similar to a series of compounds called budmunchiamines, which are 

macrocyclic polyamines displaying a potent antitumor activity and able to deplete ATP.
268

 

In particular XXXIII showed the best anticancer profile. It was readily imported by cells 

and caused a huge depletion of cellular polyamines, and its cytotoxicity is strictly correlated 

to its ability to deplete ATP.
269

 

Further studies to better understand the role of the terminal substituents on the 

polyamine chain, and to explore the chemical space surrounding the terminal alkyl groups, 

led to the synthesis of a series of monoalkilated polyamines, like compounds  XXXIV- 

XXXVI.
270

 These molecules produced cytotoxicity in NCI H157 non-small-cell lung 

carcinoma cells, and in prostate cell lines DU145, PC-3 and LnCap with different 

mechanisms, all of them leading to apoptosis.
190,271,272

 They also presented different effects 

on the cell cycle. XXXVI produced a significant G2/M block and a concurrent decrease in 

the G1 fraction, while XXXIV had no effects on the cell cycle.
273
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With the aim to develop a SAR model for alkylpolyamine analogues, several 

molecules have been synthesized. These derivatives incorporated chemical diversity into the 

terminal alkyl substituent and they had different polyamine backbone structure (like 3-4, 3-

3-3, 3-3-3-3). They showed similar biological profiles to the polyamines described above: 

cytotoxicity, apoptosis, induction of SSAT and SMO and alteration of cellular polyamine 

levels. Also, most of them were taken up into tumor cells by the PAT. 

Among all the alkylpolyamine analogues synthesized, compounds XXXVII, 

XXXVIII and XXXIX were selected for further trials.
246

 

 

 

 

 

 

 

 

 

 

 

Despite similar structures, XXXVII, XXXVIII and XXXIX showed different 

behavior against H157, H82, H69 and A549 lung tumor cell lines. In particular, XXXVII 

did not produce significant SSAT induction, but initiated a 30-fold induction of SMO 3-6 

times more effective than XXXVIII and XXXIX. These three compounds had also been 

evaluated in in vivo studies using an A549 human lung tumor xenograft model in athymic 

nu/nu Fox Chase mice. Compounds XXXVII and XXXIX were most potent in inhibiting 

tumor growth, although XXXVII was more toxic. The reduced toxicity showed by XXXIX 
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could be due to the presence of the hydroxyl group in agreement with the observations 

reported for XXVI.
31

 

It is well known the affinity of polyamines for DNA as well as the importance of 

DNA intercalation for antitumor activity. To improve the anticancer properties of 

polyamines and in order to target DNA and/or Topoisomerase II (TOPO II) activity, 

Phanstiel et al. synthesized a series of polyamine-DNA intercalator conjugates.
274

 They 

were composed of a Spm of Spd fragment covalently bonded to an aromatic nucleus 

(acridine or anthracene) via an aliphatic chain (examples could be represented by 

compounds XL-XLIII) 

 

 

 

The bis ligands XL and XLI inhibited human DNA TOPO II activity at 5 µM, and 

they were more potent than their monosubstituted Spd counterparts XLII and XLIII. This 

was consistent with the observation that bis-intercating agents could bind DNA more 

efficiently than monointercalators. Also, bis-intercalators behaved as cytostatic agents, 

while monosubstituted were cytotoxic and, in vitro test in L1210 murine leukemia cells 

showed that anthracene conjugates were generally more toxic than the acridine ones. 

It has been demonstrated that telomerase is an essential factor in tumorigenesis,
275,276

 

and it could be considered a potential target for the development of anticancer agents. 

Telomerase could be inhibited by different approaches,
277,278,279

 included disturbance of the 
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telomere/telomerase interaction with molecules able to interact with four-stranded DNA 

structure like G-quadruplexes. Polyamines are able to interact with these kind of structure 

and recently it has been demonstrated that a small linear molecule, triethylene tetramine 

(TETA), could stabilize both inter- and intra-molecular G-quadruplex structures, leading to 

telomerase inhibition and acute cytotoxicity. 

 

 

 
 

 
 

The exact binding mechanism of TETA to the quadruplex remains to be clarified, 

however TETA can interact with G-quadruplex both in presence or in absence of K
+
 and the 

effect was more notable to intermolecular G-quadruplex.
280

 Further studies showed the 

ability of TETA to inhibit the expression of c-myc by enhancing the stability of G-

quadruplex formed by the nuclease-hypersensitivity element III1 (NHE) in the c-myc 

promoter, which controls 80-90% of c-myc transcription.
281

 More recently it has been 

reported that a long-term treatment with TETA, at 50 or 100 µM, induced marked 

senescence in MCF-7 cells. Also, the growth arrest was accompanied by the up-regulation 

of the expression of p53 and p21, which indicates their implication in senescence 

pathway.
282

 Anyway, at low concentrations the ability of inhibit cell growth by TETA was 

limited, but it was able to potentiate antitumor activity of some traditional drugs like taxol, 

adriamycin, carboplatin and cyclophosphamide in vitro and in vivo. This fact suggested a 

potential role of TETA as chemosensitizer.
283
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CHAPTER 5 

MAO-A AND PROSTATE CANCER 

 

5.1 PROSTATE CANCER 

Prostate canceris a form of cancer that develops in tissues of the prostate, a gland in 

the male reproductive system. Normally, most prostate cancers grow slowly; however, there 

are cases of aggressive forms. Prostate cancer is classified as an adenocarcinoma, or 

glandular cancer, that begins when normal semen-secreting prostate gland cells mutate into 

cancer cells.  

In Italy, data referring to the year 2006, showed 46.000 new prostate cancer cases 

diagnosed. It is the second cause of cancer death after lung tumor
284

 and it is the most 

common cancer affecting men in the United States. The first risk factor is the age: the 

majority of prostate cancers are diagnosed in older men (it is rarely seen in men younger 

than age 40). Race is the second most common risk factor: African-American men are at 

greatest risk for developing prostate cancer, while Asian/Pacific Islanders and American 

Indian/Native Alaskan men are at low risk of disease. Other risk factors include family 

history of prostate cancer, lifestyle, dietary factors and consumption of drugs.
285

 

 

5.1.1 The Gleason Greading 

The Gleason Greading was introduced  in 1960s and 1970s by Dr. Donald F. Gleason 

and members of the Veterans Administration Cooperative Urological Research Group, and 

it is a prognostic indicator for the adenocarcinoma of the prostate together with other 

parameters like clinical stage and prostate-specific antigen (PSA).
286,287,288

 This system is 

based on the histologic arrangement pattern of carcinoma cells, that is correlated with the 

degree of differenziation of the neoplastic cells.  

 

http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Male
http://en.wikipedia.org/wiki/Reproductive_system
http://en.wikipedia.org/wiki/Adenocarcinoma
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                   Figure 5.1: Gleason grades: standard drawing.286 

 

Nine growth patterns were described into five grades, that are illustrated in Figure 

5.1. Grade 1 cells are very well differentiated. The following grades are characterized by a 

minor differentiation until Grade 5, where cells are very poorly differentiated. The five 

grade patterns are used to generate a histologic score (Gleason Score), which can range from 

2 to 10, by adding the primary grade pattern and the secondary grade pattern. The primary 

pattern is the one that is predominant in the tissue sample obtained by needle biopsy, and 

the secondary pattern is the second most common pattern. If only one pattern is present, that 

grade is multiplied by two to give the score.
286,289

 In current practice, the vast majority of 

prostate cancers have a Gleason score of ≥ 6. Hence, tumors composed of patterns 3, 4, and  

5 are considered clinically significant.
290

 

The Gleason grade is also correlated with clinical end points of the pathology, like 

clinical stage, progression of metastatic disease, and survival. It is also important to predict 

response to a specific therapy, such as radiotherapy or surgery. Tumors with Gleason grade 

3 patterns, have >95% chance of being surgically treated, while the progression from grade 
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3 to 4/5 marks a critical change from curable to lethal cancer.
286

 There are 86 genes that 

distinguish grade 3 from grade 4/5 carcinomas, while grade 4 and 5 present high degree of 

similarity, thus they are grouped together.  

Recently, a correlation between high levels of monoamine oxidase A (MAO-A) 

expression and poorly differentiated prostate cancer has been demonstrated. In this study 

MAO-A expression was elevated in Gleason 4 or 5 samples compared to Gleason 3 

samples.
290

 

 

 

5.2 MONOAMINE OXIDASE (MAO) 

MAO are enzymes that catalyses the oxidative deamination of a range of 

monoamines, like 5-hydroxytryptamine (5-HT or serotonin), histamine, dopamine and 

adrenaline.
291

They exist in two isoenzymatic forms: MAO-A and MAO-B. They are 

associated with the mitochondrial outer membrane, and their presence vary from tissue to 

tissue.
292

 Immunohistochemical studies have shown that serotonergic neurons and astrocytes 

contain mainly MAO-B, whereas catecholaminergic neurons contain mostly MAO-A.
293

 

MAO can be found in peripheral tissues, like intestine, liver, and placenta, and in 

central and peripheral nervous system. Their physiological function seems to be correlated 

with the protection of the body by oxidizing amines from the blood.
294

 

MAO-A and MAO-B have about 70% identity and they are covalently bound to a 

flavin adenine dinucleotide (FAD), in particular the 8α-S-cysteinyl FAD, by a thioether 

linkage. FAD is the redox cofactor, and is necessary for the redox activity of the enzyme.
295

 

MAO-B has been the most studied isoform and its crystal structure has been obtained 

in 2001 (Figure 5.2).
296

 The enzyme is composed of 520 amino acids and it is dimeric. The 

protein region responsible for membrane attachment is formed by the C-terminal amino 

acids 461-520. The C-terminal residues create an extended polypeptide chain that is 

followed by an α-helix forming the transmembrane helical segment. The substrate binding 

site is formed by a flat cavity of 420 Å
3 

and includes a number of aromatic and aliphatic 

amino acids, providing  an high hydrophobic environment. Close to the substrate cavity 

there is a smaller hydrophobic cavity, shielded by a loop (amino acids 99-112). The two 

cavities are separated by four residues. These observations suggest a mechanism that 
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initially involves the movement of loop 99-112 to open access of the substrate to the smaller 

cavity (termed the „entrance cavity‟). When substrate is in the „entrance cavity‟, a 

movement of the four residues separating the two cavities allows its diffusion into the active 

site. In this context, loop 99-112 may function as a „gating switch‟ to the entrance cavity. 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
The major part of the cavity is hydrophobic, which allows for the  binding of apolar 

substrates and inhibitors. The only hydrophilic section is near the flavin and is required for 

recognition and directionality of the substrate amine functionality. This hydrophilic region 

is located between Tyr-398 and Tyr-435, which, together with the flavin, form an aromatic 

cage for amine recognition.
297

 

 

5.2.1 The oxidative mechanism of MAO 

Monoamine oxidases A and B catalyze the oxidation of primary, secondary, and 

some tertiary amines to their corresponding protonated imines with concomitant reduction 

of O2 to hydrogen peroxide (Figure 5.3) wchich can be responsible of oxidative stress.  

 

 

 

 
 

Figure 5.2: Overall three-dimensional structure of human MAO-B monomeric unit in complex with an inhibitor. 
The FAD-binding domain is in blue, the substrate-binding domain is in red, and the C-terminal membrane-binding 
region is in green. The FAD cofactor and the inhibitor are shown as yellow and black ball-and-stick models, 
respectively. The inhibitor binds in a cavity (shown as a cyan surface) that results from the fusion of the entrance 
and substrate cavities297 

Figure 5.3: Oxidation of benzylamine, a primary amine 
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The detailed mechanism by which they catalyze amine oxidation is not well-defined, 

however several mechanisms have been proposed. The most widely quoted mechanisms for 

MAO catalysis are two: the Single Electron Transfer (SET) mechanism (Figure 5.4) 

proposed by Silverman et al.,
298

 and the Polar Nucleophilic mechanism (Figure 5.5) 

proposed by Hamilton et al.
299

 Both mechanisms produce a protonated imine (oxidation of 

amine) and a flavin semiquinone (reduction of FAD).
300

 

 

 
 

 

 

Figure 5.4: Proposed SET mechanism 

Figure 5.5: Proposed Polar Nucleophilic Mecanism 
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5.3 MAO INHIBITORS 

MAO inhibitors are used mostly to treat major depressive disorders and central 

nervous system pathologies, like Parkinson disease.  

The first MAO inhibitor endowed with antidepressant activity, was Iproniazid. This 

compound was initially developed as antitubercolosis agent. It was 

ineffective in this context (because developed resistance quickly), 

anyway it was observed to have „psychoenergizing‟ effects in 

patients and was also shown to inhibit MAO. Consequently, 

several hydrazine derivative MAO inhibitors have been 

developed as antidepressants. Unfortunately, liver toxicity, 

hypertensive crises, haemorrhage  and, in some cases, death 

resulted in withdrawal of many MAO inhibitors from the 

clinic.
294

 Since liver toxicity was associated with the hydrazine ring, non-hydrazine 

inhibitors were developed, such as tranylcypromine and pargyline. However, these drugs 

induced hypertensive crises after the patient ate tyramine-rich foods such as aged cheese 

(hence, the „cheese reaction‟). In patients treated with these drugs, tyramine enter the 

circulation and potentiate sympathetic cardiovascular activity by releasing noradrenaline. 

Since 80% of intestinal MAO is MAO-A, this isoenzyme is primarily responsible for 

degradation of tyramine, and thus inhibition of MAO-A is associated with the „cheese 

reaction‟.
301

 

Nowadays there is a wide range of MAO inhibitors, included selective MAO-A and 

MAO-B inhibitors. Selective MAO-A inhibitors are effective in the treatment of depression, 

while selective MAO-B inhibitors together with L-DOPA are used in the treatment of 

Parkinson‟s disease.
294

 

 

5.3.1 Selective MAO-A inhibitors 

The prototype of MAO-A irreversible inhibitors is Clorgyline. This molecule 

presents an acetylenic group that is essential for the enzyme 

inhibition. Propargylamine derivatives are oxidized by MAO to 

the corresponding eyniminium species (Figure 5.6). They are 
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highly electrophilic Michael acceptors, able to bind the flavin group with covalent bond and 

inactivate the enzyme at micromolar concentrations.
302

 

 

Further investigations were aimed to find reversible, selective and more safe MAO-A 

inhibitors. The result was the discovery of Toloxatone, the first reversible competitive and 

selective MAO-A inhibitor introduced as an antidepressant in clinical practice.
303

 

Subsequently other inhibitors were developed, like Moclobemide
304

 and Tetrindol.
305

  

 

 

 

 

 
 

 
 

 
 

 
These inhibitors do not cause „cheese reaction‟, because reversible inhibitors can 

block sufficient MAO-A in the central nervous system to obtain an antidepressant effect, 

while dietary tyramine is able to displace the inhibitor from peripheral MAO-A, allowing its 

metabolism.
306

 

 

 

5.4 MAO-A ACTIVITY IN PROSTATE CANCER 

The normal prostate tissue shows a high degree of cellular organization. It includes 

two morphologically distinct cell types: basal cells, luminal cells, and a number of 

intermediate states, differing in appearance, but also in biological properties. Luminal cells 

Figure 5.6: Proposed mechanism of covalent inactivation of MAO by propargylamine inhibitors 302 
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are differentiated, androgen dependent and they have low proliferative capacity. On the 

other hand, basal cells are generally undifferentiated, androgen independent, and they 

present a high proliferative ability, attributes characteristic of stem cells.
307

 It has been 

proposed that basal cells give rise to mature secretory luminal cells to maintain tissue 

homeostasis and, in normal prostatic epithelium cell exists at many stages in a continuum of 

differentiation progressing from stem cells to definitive basal and luminal cells.
308

 

Neoplastic transformation in prostate cancer arise from intermediate stem cells, as 

shown in studies by Schalken and Van Leenders analyzing immunophenotypic keratin 

expression. Basal cell showed strong expression of keratin 5 and 14 in the presence of low 

keratin 8 and 18 levels, while luminal cells strongly expressed keratin 8 and 18. Other 

marker are p63 for basal cells and androgen receptors for secretory cells.
307,309

 

Studies by True et al. demonstrated a very significant correlation between high levels 

of MAO-A expression and prostate cancer. They demonstrated that in laser captured 

prostate cancer (PCa) cells, MAO-A was one of the most highly over-expressed genes in 

high-grade PCa. Its expression was 2.4-fold higher in Gleason grade 4/5 compared with 

grade 3. MAO-A are also expressed in prostate normal basal cells. All these kind of cells are 

poorly differentiated.
290

 This find points out that MAO-A could be a key factor in the 

increased lethality of high-grade prostate cancer,
310

 and for this reason it is an interesting 

target for anticancer molecules.  

The pattern of expression and the function of MAO-A in the human prostate cancer is 

not clearly understood. However, two hypothesis have been suggested. The first theory 

suggested MAO-A as protecting agents of prostatic epithelial cells from mitogenic activity 

of neurotransmitters of catecholamines. Limited evidence showed that noradrenaline and 

serotonin might stimulate prostate epithelial cell growth.
311,312

 In this contest, MAO-A could 

inactivate these factors by oxidative degradation. The second hypothesis stated that MAO-A 

in prostatic basal epithelial cells prevent differentiation into secretory cells.  The first 

hypothesis have been rejected, since relevant evidences demonstrated the implication of 

MAO-A in inhibiting cells differentiation.The study have been carried out by Zhao et al., 

using normal human prostatic cells from basal (E-PZ cells) and stromal (F-PZ cells) 

hepithelium.  
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To test the first hypothesis, the effects of Clorgyline on the growth of noradrenaline- 

and serotonin-treated E-PZ cells were evaluated and, in presence of 1 μM Clorgyline, 

noradrenaline and serotonin were not able to induce growth-promoting effects on E-PZ 

cells. To confirm this action, another experiment have been done, excluding hydrocortisone, 

that up-regulate MAO-A, and bovine pituitary extract from the culture medium, that contain 

monoamines that mask the effects of noradrenaline and serotonin. Even in these conditions 

no effects on the growth of basal epithelial cells were observed, indicating that inhibition of 

MAO-A did not affect the growth of basal epithelial cells or their response to noradrenaline 

or serotonin. 

To verify the second theory, the effects of MAO-A inhibitions on the expression of 

androgen receptors (AR), a hallmark of secretory cells, have been examined using PCR, 

western blotting and immunofluorescence. Cells treated with 1 μM Clorgyline, showed 

increment of AR protein. Moreover, the use of Pargyline, a selective MAO-B inhibitor, did 

not induce AR expression, suggesting that induction of AR protein expression in E-PZ cells 

is Clorgyline-specific. Finally, in Clorgyline-treated E-PZ cells, MAO-A activity was 

reduced by 73% compared with cells grown in the control medium.  

All these findings demonstrated that MAO-A inhibition induce differentiation of 

basal epithelial cells in secretory cells. This study also demonstrated that MAO-A is 

selectively expressed by basal epithelial cells in normal prostatic tissues, signifying a cell-

specific function. Furthermore, inhibition of MAO-A activity induced AR expression at 

both mRNA and protein levels. Finally, inhibition of MAO-A repressed the expression of 

the basal epithelial cell marker, cytokeratin 14, and induced morphological changes 

resembling secretory differentiation.
309

 

Further studies were carried out to evaluate the effect of Clorgyline on MAO-A in 

high grade prostate cancer cells (E-CA).
313

 In particular, two type of E-CA were used: E-

CA-88, derived from cancer composed of 80% Gleason grade 4 and 20% Gleason grade 3, 

and E-CA-90, from cancer of 100% Gleason grade 4. All the cells derived from patients 

without prior chemical, hormonal, or radiation therapy. Significance Analysis of 

Microarrays (SAM), identified 156 genes whose expression was significantly up-regulated 

by Clorgyline at 1 μM concentration. More than half of these genes, are usually suppressed 

by oncogenes like Erb2, Ras, Myc, etc. For instance, SAMD9, the gene most significantly 
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up-regulated by Clorgyline, is repressed in various neoplastic diseases.
314

 Also, Clorgyline 

up-regulated AR as well as classic AR targets genes, like PSA, promoting differentiation of 

PCa cells.
315

 In addition, Clorgyline was able to induce other genes associated with 

secretory differentiation, and repress genes associated with a basal cell phenothype. It has 

been suggested that this ability is mediated trough the down-regulation of EZH2, a critical 

component of the Polycomb Group (PcG) complex, that represses the expression of 

differentiation-related genes. The expression of PcG is associated with poor prognosis in 

PCa; EZH2 is over-expressed in metastatic prostate cancer and is a marker of aggressive 

diseases in clinically localized solid tumors.
316

 This fact suggested that Clorgyline could 

improve patient outcome through up-regulation of PcG repressed genes.
313

 

All these results support the possibility that antidepressant drugs that target MAO-A 

might find a new application in treating high-grade prostate cancer. However, further 

studies are needed to better understand all the mechanisms involved in differentiation 

patterns and correlation between MAO-A  and prostate cancer. 
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CHAPTER 6 

DISUBSTITUTED NDIs AS MULTITARGET DIRECTED 

LIGANDS  

 

6.1 DRUG DESIGN 

The design and synthesis of novel anticancer agents in one of the most active 

research field in medicinal chemistry. However,  despite several effort have been done to 

find new potential molecules, drugs used in therapy actually present a number of side effects 

due to lack of selectivity.  

Molecules able to reversibly interact with DNA represent the principal class of 

anticancer agents, since DNA is involved in cell proliferation and cancerogenetic process. In 

particular, a class of compounds termed intercalator can stabilize the double helix creating a 

non covalent bond with adjacent base pairs. Consequently, DNA cannot recognize 

associated proteins like transcription factors or polymerase, leading to replication problems 

and cell death. In this context, molecules bearing naphatalene diimide (NDI) scaffold are 

able to interact with DNA showing intercalating properties, stabilization of DNA triplexes 

and interaction with particular DNA structures termed G-quadruplex.
317,318,319

 

Furthermore, it is well known that polyamines, protonated at physiological pH, are 

able to interact with the phosphate residues of DNA. Also, they are involved in cell cycle 

regulation and apoptotic processes. Polyamines can be considered as an universal template, 

since they can bind different targets and their affinity and selectivity can be modified by 

inserting appropriate substituents and varying the length of the polyamines backbone.
229

 

Recently, a correlation between monoamine oxidase A (MAO-A) and prostate cancer 

have been demonstrated.
310

 MAO-A is a mitochondrial enzyme that degrades monoamines, 

and its inhibitors are currently in use for the treatment of depression. Current experimental 

evidences show that MAO-A are highly expressed in basal cells of the prostatic epithelium 

where they inhibit differentiation in secretory cells, promoting abnormal cell growth. In 

particular, it has been suggested that over-expression of MAO-A is a key factor in 

progression from curable to lethal pancreatic cancer. Clorgyline, a MAO-A irreversible 

inhibitor, induce secretory differentiation of prostate cancer cells and it is able to down-

regulate proteins that repress the expression of differentiation genes.
319

 Therefore, MAO-A 
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inhibitors could find potential application in high grade prostate cancer, by promoting 

differentiation and inhibiting oncogenic pathways. 

The aim of this work was to design and synthesize new molecular entities Multi-

Target-Directed-Ligands (MTDLs) able to interact with different pathway involved in 

cancer pathogenesis. Cancer is a multifactorial disease, consequently molecules able to hit 

most of the therapeutics targets could be useful in treating this complex pathology.  

Recently Tumiatti et al. published a series of  NDI derivatives with antiproliferative 

activity and probably able to act as MTDLs, since they showed different biological 

properties.
19

 These compounds were characterized by NDI scaffold (endowed with 

intercalation ability), properly functionalized with two basic side chains, to allow the 

interaction with the DNA phosphate groups. To improve the basicity of the two terminal 

nitrogen atoms, a 2-methoxy substituent was introduced on the two aromatic rings. The 

synthesized compounds presented side chains with different length, to explore their 

influence on the antiproliferative activity. Among all the derivatives, two lead compounds 

have been identified (1 and 2, Figure 6.1). They showed antiproliferative activity in the 

micromolar range on SKBR-3 CEM and HL60 cell lines. Also, they efficiently bound DNA, 

triggered caspase activation, caused p53 protein accumulation, down-regulated AKT, and 

finally caused ERK1/2 decrease and ERKs phosphorylation inhibition.  

In this thesis, the study of structure-activity relationships of compounds 1 and 2 has 

been extended, synthesizing two series of compounds, correlated to compound 1 (odd 

numbers 3, 5, 7, 9, 11, 13, 15 and 17) and 2 (even numbers 4, 6, 8, 10, 12, 14, 16 and 18). 

The 2-methoxy groups on the phenyl ring have been shifted in position 3 or 4. Also, they 

were substituted with different chemical groups, characterized by different effects on the 

aromatic ring, in order to investigate their influence on the biological activities. The 

substituents inserted on the aromatic ring are chlorine, fluorine, nitro, trifluoromethyl, and 

methyl groups.  
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In addition, compounds bearing the trimethoxybenzyl moiety have been synthesized 

(19-22 Figure 6.2), with the aim to investigate a possible interaction with additional targets. 

This group is a common pharmacophore in well-known anticancer compounds, such as 

Combretastatin A4, Colchicine and Podophyllotoxin, all acting on tubulin skeleton. 

 

Figure 6.1: Drug design of compounds 3-18 



80 
 

 

 

 

Finally, to explore the activity of these MTDLs specifically on prostate cancer, 

compounds bearing acetylene (23, 24 Figure 6.3) groups on the side chain have been 

synthesized. Acetylene group has been demonstrated to be essential for the inhibition of 

MAO-A. Moreover, to confirm the importance of the acetylene groups in MAO inhibition, 

derivatives characterized by two vinyl groups (25, 26 Figure 6.3) have beensynthesized.  

  

 

 

Figure 6.2: Drug design of compounds 19-22 
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Figure 6.3: Drug design of compounds 23-26 
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6.2 METHODS 

 

6.2.1 Synthesis 

Compounds 3-22 have been synthesized following the procedure reported in Scheme 

6.1. The appropriate benzaldehydes were treated with 1,2-diaminoethane or 1,3-

diaminopropane to afford the corresponding Schiff bases, reduced in situ with sodium 

borohydride to give compounds 27-46. Condensation of such derivatives with 

naphthalenetetracarboxylic dianhydride led to the corresponding diamine-diimides 3-22.  

Compounds 23-26 have been synthesized following the procedure reported in 

Scheme 6.2. Propargyl bromide or allyl bromide were treated with 1,2-diaminoethane or 

1,3-diaminopropane and potassium carbonate, to obtain the amines 47-50. Condensation of 

such derivatives with naphthalenetetracarboxylic dianhydride led to the corresponding 

diamine-diimides 23-26.  

Di-p-toluensulfonates salts of the final compounds were prepared to obtain 

derivatives easier to handle. 
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Scheme 6.1 

 
 

 

 
 

Scheme 6.2 
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6.2.2 Biology 

Derivatives 1-3, 5, 7, 8, 10, 12, 19-22 were submitted for in vitro antiproliferative 

activity to the Developmental Therapeutics Program (DTP) at National Cancer Institute 

(NCI) for evaluation of their anticancer activity against 60 human cancer cell lines derived 

from nine human cancer cell types, that have been grouped in disease sub-panels including 

leukemia, non-small-cell lung, colon, central nervous system, melanoma, ovarian, renal, 

prostate, and breast tumor cell lines. Lead compounds 1 and 2 were used as reference. 

Compounds 14, 16 and 18, not selected by the NCI, have been tested for growth 

inhibition on additional panel of tumor cell lines, including neuroblastoma (HTLA-230), 

ovarian carcinoma (OVCAR-3), melanoma (MZ2-Mel 3.0) and colon adenocarcinoma 

(SW620), by the MTT [3-(4,5-dimethylthiazolyil-2)-2,5-diphenyltetrazolium bromide] 

assay. 

The DNA-binding activity of the strongly cytotoxic compounds 8, 12, 20, 22 was 

determined using a fluorometric intercalator displacement method,
320

 and it is expressed as 

the drug concentration reducing by 50% the fluorescence of DNA-bound Ethidium bromide 

(EC50). This EC50 value allows to estimate the affinity ranking order of the ligands for calf 

thymus DNA.
321

 

 All the experimental part of the biology assays have been reported in other PhD 

thesis. However, as soon as possible it will be published a paper describing all the methods. 

 

6.2.3 Computational studies 

With the aim to investigate the binding mode of 20 for duplex and G-quadruplex 

DNA, docking simulation were performed using the available crystallographic structures 

from the Protein Data Bank (PDB).
322,323
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6.3 RESULTS AND DISCUSSION 

As preliminary screening compounds 1-3, 5, 7, 8, 10, 12, 19-22 were submitted to the 

Developmental Therapeutics Program (DTP) at National Cancer Institute (NCI) for 

evaluation of their anticancer activity against different human cell lines, that have been 

grouped in disease sub-panels including leukemia, non-small-cell lung, colon, central 

nervous system, melanoma, ovarian, renal, prostate, and breast tumor cell lines. The 

compounds have been dissolved in dimethyl sulfoxide and evaluated at five concentrations 

at 10-fold dilution the highest being 10
-4

M in comparison to our lead compounds 1 and 2. 

The results are showed in Table 6.1 and they are expressed as the negative log of the molar 

concentration at three assay end points: the 50% growth inhibitory power (pGI50), the 

cytostatic effect (pTGI = total growth inhibition), and the cytotoxic effect (pLC50). For 

several compounds this five concentration assay was repeated twice and no significative 

differences were found. Also, compounds 14, 16 and 18, not selected by NCI, have been 

tested for growth inhibition on additional panel of tumor cell lines, including neuroblastoma 

(HTLA-230), ovarian carcinoma (OVCAR-3), melanoma (MZ2-Mel 3.0) and colon 

adenocarcinoma (SW620), by the MTT [3-(4,5-dimethylthiazolyil-2)-2,5-

diphenyltetrazolium bromide] assay. Results are shown in Table 6.2. 
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Table 6.1. Growth Inhibition, Cytostatic and Cytotoxic Activity of 1-3, 5, 7, 8, 10, 12, and 19-22 in the 60-Cell Panel in 

comparison to Vincristine. 

 

 

 

            

MG-

MID[b]. Compd[a] modes Leukemia NSCLC colon CNS melanoma ovarian renal prostate breast 

1 pGI50 6.60 6.44 6.7 6.29 6.34 6.53 6.34 6.52 6.34 6.46 

 pTGI 6.17 6.07 6.35 5.89 5.95 6.05 5.92 6.02 5.88 6.03 

 pLC50 5.36 5.72 6.14 5.54 5.58 5.37 5.47 5.47 5.35 5.55 

2 pGI50 6.75 6.69 6.94 6.67 6.72 6.68 6.67 6.73 6.64 6.72 

 pTGI 6.10 6.26 6.51 6.23 6.41 6.12 6.27 6.36 6.19 6.27 

 pLC50 6.01 5.74 6.03 5.80 6.09 5.42 5.73 5.82 5.79 5.82 

3 pGI50 5.57 5.24 5.66 5.50 5.72 5.39 5.46 5.41 5.52 5.50 

 pTGI 5.05 4.98 5.30 5.04 5.42 5.01 5.04 4.76 5.13 5.08 

 pLC50  4.52 4.77 4.73 5.09 4.70 4.51 4.20 4.84 4.67 

5 pGI50 6.54 6.40 6.75 6.46 6.61 6.57 6.44 6.39 6.49 6.52 

 pTGI 5.83 5.84 6.28 5.96 6.22 6.06 5.91 5.78 5.98 5.98 

 pLC50 4.72 5.17 5.75 5.44 5.83 5.54 5.48 5.38 5.36 5.41 

7 pGI50 5.90 5.64 5.90 5.63 5.79 5.62 5.60 5.57 5.72 5.71 

 pTGI 5.30 5.20 5.57 5.04 5.44 5.24 5.21 4.94 5.33 5.25 

 pLC50  4.99 5.23 4.63 5.22 4.78 4.67  4.79 4.90 

8 pGI50 6.85 6.68 7.03 6.81 6.76 6.79 6.75 6.74 6.65 6.78 

 pTGI 6.05 6.23 6.53 6.42 6.44 6.30 6.29 6.37 6.16 6.31 

 pLC50 5.18 5.71 5.90 5.95 6.12 5.36 5.67 5.69 5.66 5.69 

10 pGI50 6.58 6.48 6.86 6.35 6.56 6.65 6.63 6.58 6.49 6.57 

 pTGI 5.79 5.96 6.38 5.86 6.13 6.15 6.15 5.88 6.03 6.03 

 pLC50 5.36 5.49 5.76 5.50 5.68 6.59 5.77 5.68 5.63 5.72 

12 pGI50 6.77 6.75 7.03 6.79 6.77 6.79 6.80 6,74 6.66 6.79 

 pTGI 5.88 6.36 6.56 6.42 6.47 6.31 6.37 6.35 6.20 6.32 

 pLC50 4.70 6.01 6.14 5.96 6.17 5.82 5.56 6.28 5.93 5.84 

19 pGI50 6.42 6.32 6.77 6.20 6.52 6.48 6.50 6.19 6.45 6.43 

 pTGI 5.93 5.85 6.33 5.74 6.09 6.49 6.26 5.91 5.94 6.06 

 pLC50  5.49 5.96 5.05 5.73 6.53 6.34  5.62 5.82 

20 pGI50 6.89 6.90 7.06 6.96 6.98 6.85 6.74 6.99 6.82 6.91 

 pTGI 6.22 6.48 6.64 6.57 6.68 6.43 6.36 6.63 6.38 6.49 

 pLC50 4.66 5.91 6.10 6.07 6.39 5.64 5.90 6.13 5.96 5.86 

21 pGI50 6.65 6.28 6.60 6.41 6.28 6.39 6.36 6.66 6.58 6.47 

 pTGI 6.29 5.92 6.22 5.94 6.01 6.04 6.09 6.13 6.20 6.09 

 pLC50  5.56 5.60 5.43 5.67 5.71 5.79 5.66 5.70 5.64 

22 pGI50 6.48 6.33 6.60 6.34 6.38 6.32 6.18 6.38 6.40 6.38 

 pTGI 5.71 5.86 6.08 5.85 5.98 5.95 5.73 5.87 5.89 5.88 

 pLC50 5.38 5.70 5.41 5.37 5.58 5.26 5.27 5.33 5.31 5.40 

Vin[c] pGI50 7.00 6.60 7.00 6.90 6.80 6.50 6.50 6.90 6.50 6.74 

 pTGI 4.80 4.80 5.40 5.20 5.10 4.70 4.70 5.20 5.10 5.00 

 pLC50 3.20 3.60 4.10 3.70 3.60 3.50 3.60 3.50 3.50 3.59 

            

[a]1-3, 5, 7, 8, 10, 12, and 19-22, bis(p-toluensulfonate) salt; highest concentration = 10-4 M unless otherwise reported; only modes showing a value greater than 4.00 are 

reported. [b]Mean graph midpoint, i.e., the mean concentration for all cell lines. [c]Vincristine sulfate, highest concentration = 10-3 M. Data are expressed as the negative log of 

the molar concentration at three assay end points: the 50% growth inhibitory power (pGI50), the cytostatic effect (pTGI = total growth inhibition) and the cytotoxic effect 
(pLC50). 
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Table 6.2. Cytotoxic Activity of 2, 14, 16, and 18 against 

HTLA-230, OVCAR-3, MZ2-Mel 3.0, and SV620 Cells. 

 

 

The analysis of the results showed in Table 6.1, showed that in compounds related to 

1, the removal of the methoxy group (7) or its shift to position 3, providing 3, cause a 

decrease of cytotoxic activity of more than 10-folds. At the same time, its introduction in 

position 4 (5), restored completely the activity, which is comparable with that of the lead 

compound 1. The introduction of two additional methoxy groups in position 3 and 4 (19) or 

in 4 and 5 (21), caused decrease of the cytotoxic activity in comparison with 1. 

On the other hand, the series of 2-related compounds, showed different results. The 

substitution of the methoxy group with a hydrogen (8) or a fluorine (12) atom, did not cause 

any decrease in activity, but the presence of different substituents such as chlorine (10), 

nitro (14), trifluoromethyl (16) and methyl (18) groups in 2-position on the two aromatic 

rings determined a marked decrease of inhibitory activity on different cell lines in 

comparison with 2. In particular, it is to note that 16 did not show any significant activity up 

to 10 μM (Table 6.2). Moreover, the pattern of the multisubstitution with three methoxy 

groups was different from that observed for 1-series. Compounds 20 and 22, characterized 

by 2,3,4- and 3,4,5-trimethoxy substitution, respectively, showed a different biological 

profile. In particular, the inhibitory activity of 22 is decreased in comparison with 2, while 

20 showed the highest levels of GI50, emerging as the most potent among all the NDI 

derivatives towards the different tested cell lines. Notably, this compound displayed the 

highest values of cytotoxic activity against colon and prostate cells. These data were similar 

to those reported for Vincristine, a well-known anticancer agent (see Table 6.1).  

 

compd[a] 

 

HTLA 

 

OVCAR 

pIC50
[b] 

MZ2_Mel3.0 

 

SV620 

 

MG/MID[d] 

2 7.0 ± 0.3 6.7 ± 0.2 6.1 ± 0.1 6.4 ± 0.2 6.5 

14 6.0 ± 0.1 6.1 ± 0.2 5.8 ± 0.1 6.2 ± 0.2 6.0 

16 na[c] na[c] na[c] na[c] na[c] 

18 6.0 ± 0.1 5.7 ± 0.3 5.7 ± 0.1 6.0 ± 0.1 5.88 

 

[a]bis(p-toluensulfonate) salt. [b]pIC50 values are the negative log of the molar 

concentration causing 50% growth inhibition, after 48 h of compounds exposure, 

evaluated by MTT method. [c]Not active at 10 µM. [d]Mean graph midpoint, i.e., the 

mean concentration for all cell lines. Results, derived from three different experiments 

in quadruplicate wells as compared to that of control cells, are expressed as mean ± 

S.E.M. 
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As a result of this study, compound 20 resulted the most interesting derivative of the 

two series, so it was used as model compound for further investigations to elucidate its 

mechanism of action at cellular level. 

With the aim to investigate if 20 could induce apoptosis, the activity of caspase 

proteases have been monitored on a proper substrate (Asp-Glu-Val-Asp (EVD), i.e. mainly 

effector caspases -3 and -7), which represents a marker of apoptotic cell death.
324 

Treatment 

of HeLa cells with 20 for 24 h, increased caspase activity in a dose-dependent manner 

(Figure 6.4 A), in association to the increased number of cells committed to death.  

The apoptotic process was also studied observing the cells nuclear morphology, 

which is another reliable indicator of apoptotic cell death. By DAPI staining in cells treated 

for 24 h with 2 μM of 20 (Figure 6.4 B) it was possible to detect several cells with 

characteristic hallmarks of apoptosis, i.e. chromatin condensation, nuclear fragmentation 

and/or condensation.
325

 

 

 

  

 

 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 6.4: A. Effects of 20 on caspases activity. The cells 
were treated for 24 h with the indicated dose of 20, 
afterward, cells were collected for caspase activity 
determination. Data are mean ± S.E.M. of three replicates. B. 
Morphological evaluation of nuclei stained with DAPI from 
control HeLa cells and cells treated with 2 µM of 20 for 24 h. 
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To confirm the ability of 20 to induce apoptosis, OVCAR 3.0 cells were treated with 

20 by staining cells with Annexin V-FITC and PI. FACS was used to distinguish and 

quantitatively determine the percentage of dead, viable, apoptotic and necrotic cells. As 

shown in Figure 6.5 panel A, OVCAR 3.0 control and treated cells were gated into LR 

(Lower Right), UP (Upper Right), LL (Lower Left) and UL (Upper Left) quadrants. Cells in 

LR and UR were considered as early apoptotic (annexin+/PI-) and late apoptotic 

(annexin+/PI+) respectively. Cells in LL and UL were considered live (annexin-/PI-) and 

necrotic (annexin+/PI+), respectively. In particular, the percentage of apoptosis shown in 

the dot plot of flow cytometric analysis, increased gradually after 72 h according to the 20 

concentration: 41% at 1.5 µM, 47% at 2.0 µM and 57% at 2.5 µM. These data, taken 

together with the above experiments, confirmed the apoptotic mode of cell death. The 

experiment was repeated three times with similar results. These results can also be 

visualized in Figure 6.5 panel B, where the extent of apoptosis was expressed as the sum of 

the percentages in LR and UR quadrants. Compound 20 was effective in inducing apoptosis 

in a dose and time dependent manner between the concentration of 1.5 µM and 2.5 µM. 

Compared to 24 h treatment with 20 at 2.5 µM, apoptosis gradually increased to about 3-

fold after 72 h treatment, while at 2.0 µM and 1.5 µM the increase was about 5-fold and 6-

fold after 72 h, respectively. The mean values and standard deviations calculated for 

untreated and treated cells at different concentrations in combination with the statistical 

analysis determined by Mann Whitney test demonstrated that the differences between 

control and treated cells are statistically significative at any time of treatment (P = 0.0286 vs 

control). 
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The involvement of some putative signal transduction pathways implicated in 

apoptosis induction by 20 also has been investigated. HeLa cells were treated with 20 for 20 

hours, then ERK1/2 mitogen-activated protein kinases, that are generally associated with 

cell growth, were examined. As shown in Figure 6.6, 20 was able to down-regulate the p44 

ERK2 protein, and to significantly inhibit the phosphorylation of both p42 and p44 ERKs, 

which are known to influence the survival of cancer cells.
326 
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Figure 6.6: Effect of 20 on signal transduction pathway 
correlated to cell survival. HeLa cells were incubated for 20 h 
in the presence of the indicated concentration of 20. The 
content and phosphorylation status of ERK 1/2 in cell extracts 
was determined by Western blotting (50 µg of protein/lane). 
 

Figure 6.5: (A) Flow cytometry analysis of apoptosis induced by 20 at 
different concentrations in OVCAR 3.0 ovarian carcinoma cell line after 72 
h of drug exposure, using Annexin V-FITC/PI double staining method. (B) 
Quantitative detection of 20-induced apoptosis by Annexin V-FITC/PI 
staining on OVCAR 3.0 cell line at different times and concentrations. 
White columns: control; light grey columns: 20 at 1.5 µM; grey columns: 
20 at 2.0 µM; black columns: 20 at 2.5 µM. Bars represent the mean 
number of triplicates wells from three independent experiments;   
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In order to detect whether oxidative stress would play a role in the cytotoxic 

mechanism of the novel derivative, the effect of the antioxidant N-acetylcysteine (NAC) on 

the survival of cells treated with 20 have been studied. Figure 6.7 shows that addition of 5 

mM NAC to the culture medium completely inhibited HeLa cells death induced by 20, 

suggesting the involvement of oxidative mechanisms in the cytotoxic action of 20.  

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

As reported in the introduction, antiproliferative effects are often related to inhibition 

of cell cycle progression. For this reason, compound 20 was submitted to the 

bromodeoxyuridine (BrdU) assay. HTLA-230 neuroblastoma cells were treated with 1.5 µM 

of 20 for 24-48 hours. Then, the cells were pulsed labelled with BrdU and the DNA 

synthesis were examined. As shown in Figure 6.8, a time-dependent increase of the 

percentage of cells in G2/M phases (R4) has been observed. This evidence is accompanied 

by a nearly complete depletion of cells in S phase (R3). In particular, the percentage of cells 

in S phase decreases from 33% to 9.6%, while the percentage of cells accumulated in G2/M 

phases was of 30% after 48 h of treatment. Moreover, the percentage of cells in the sub-G1 

fraction (R1), which contains apoptotic cells, increased at longer times of 20 exposure (from 

0.9% to 15.2% after 48 h). Therefore, the cell cycle analysis showed a concomitant rise of 

Figure 6.7: Effect on NAC on the survival of cells 
treated with 20. Cell viability was measured in cells 
treated for 24 h with the indicated concentration of 20 
in the absence or presence of 5 mM NAC. Results are 
mean ± S.E.M. of triplicate determinations. 
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treated cells in G2/M fraction and a depletion of S fraction. These findings suggest delay in 

exit of daughter cells from the mitotic cycle leading to reduction of tumor cell number. 

 

 

 

 
 

 

As reported above, derivatives 19-22 were designed by introducing the 

trimethoxyphenyl pharmacophore, peculiar of some anticancer agents such as Colchicine, 

Podophyllotoxin and Combretastatin A4, which affects the microtubules structure, with the 

aim to hit this specific and important biological target. To verify this biological activity, 19-

22 and the reference compound 2 were tested both in cells and in vitro assays. Concerning 

the first series of assays, A549 cells were incubated for 20 hours with 100 times the GI50 of 

19-22 and 2. This assay did not show depolymerisation of the cytoplasmic microtubules 

(Figure 6.9). In particular, when the cells were treated with 21 and 2 (Figure 6.9, D, F), they 

became rounded and the microtubule cytoskeleton looked disorganized but no microtubule 

depolymerisation was observed. As control 2.5 µM Podophillotoxin was employed and the 

cellular microtubules completely depolymerised (results not shown). 

 

Figure 6.8: Effect of 20 on cell cycle progression in HTLA-230 neuroblastoma cells. BrdU 
uptake (fluorescein isothiocynate, y-axis) versus total cellular DNA content (propidium 
iodide, x-axis) was evaluated by densitometric fluorescence-activated cell sorter analysis. 
(R1 = sub-G1-phase cells; R2 = G1-phase cells; R3 = S-phase cells; R4 = G2/M-phase cells). 
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Moreover, in in vitro assay the assembly of 25 μM tubulin in the presence of 30 μM 

of 2, 19-21 has been tested. In the absence of compounds the critical concentration of 

tubulin required for assembly was 3.40 ± 0.83 µM. In the presence of a stabilizer 

(Docetaxel) the concentration was of course lower 1.24 ± 0.31 µM. In the presence of a 

destabilizer (Podophyllotoxin) the concentration required was lower 7.40 ± 0.79 μM. In the 

presence of the compounds 2, 19-21 the required concentration was equal to those 

determined in the absence of drug (3.67 ± 0.90 µM, 3.65 ± 0.97 µM, 3.23 ± 0.86 µM, 3.50 ± 

1.09 µM, respectively) and no effect on tubulin assembly was observed. These results 

demonstrated that 2, 19-21 did not affect directly microtubules and tubulin. In particular, in 

A549 cells they were cytotoxic but they did not impair microtubules functions.   

Since several NDI compounds are DNA intercalator, the ability of the most 

interesting compounds 8, 12, 20 and 22 to interact with double stranded DNA have been 

tested applying a fluorometric intercalator displacement method.
320 

DNA-binding activity 

was expressed as the drug concentration able to reduce by 50% the fluorescence of DNA-

bound ethidium bromide (EtBr). This EC50 value allows to estimate the affinity ranking 

order of the ligands for calf thymus DNA.
321 

Table 6.3 shows that tested compounds were 

strong DNA-interacting molecules with modest modulation of the EC50 values.   

 

 

 

Figure 6.9: Effect of 19-22 and reference compound 2 on the 
cytoplasmic microtubule network of A549 lung carcinoma cells. A549 
cells were incubated for 20 hours with either A, DMSO, B, 10 µM 20, C, 
50 µM 19, D, 50 µM 21, E, 20 µM 22, or F, 20 µM 2. Microtubules were 
stained with anti-tubulin monoclonal antibodies (DM1A). The bar is 10 
µm. 
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Table 6.3. DNA interaction of 1, 2, 8, 12, 20 and 22 evaluated 

by EtBr displacement, fluorescence quenching melting on 

dsDNA and G4, and TAQ polymerase inhibition. 

 

 

G-quadruplex and duplex DNA recognition of the most active compound was also 

evaluated by fluorescence quenching melting assay using a G-quadruplex folded sequence 

based on the human telomeric sequence (G4) and a 18-bp random double stranded DNA 

(dsDNA). As shown in Table 6.3, all derivatives were able to significantly increase the 

tested DNAs melting temperatures in a concentration dependent manner (Figure 6.10). It 

emerged that the increment in the melting temperature was generally more intense for the 

G-quadruplex folded sequence than for the dsDNA template. However, on both substrates, 

the process appeared to reach saturation in the low micromolar range, which suggests a 

strong interaction with both DNA arrangements. 

 
 

 
 

 

 

 

Compound 

EtBr 

displacement 

EC50 (nM)[a] 

ctDNA 

Fluorecence melting 

ΔTm (°C)[b] 

 

G4                  dsDNA 

TAQ 

inhibition 

IC50 (µM)[c] 

1 93 ± 4[d] 16.1 6.2 > 40 

2 122 ± 6 15.5 7.7 10 ±2 

8 118 ± 8 18.5 11.3 3.5 ± 8 

12 130 ± 8 16.4 8.1 > 40 

20 166 ± 8 20.5 8.4 8 ± 1 

22 159 ± 8 16.1 5.2 5 ± 1 

[a]EC50 values are defined as the drug concentrations which reduce the fluorescence of 

the DNA-bound ethidium by 50%. [b]ΔTm corresponds to the increment in the DNA 

melting temperature induced by 2.5 µM drug concentration. Errors were ± 0.4 °C. 
[c]IC50 values are defined as the drug concentrations which reduce by 50% the 

amplification of a fragment of pBR322 mediated by TAQ polymerase. [d]Data reported 

in ref. [12] 
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In particular, Table 6.3 shows that 20 appears to be the most efficient G-quadruplex 

binder whereas 8, in agreement with EtBr displacement data, induced the most relevant 

stabilization on double stranded DNA. The difference between the recognition of the two 

DNA foldings slightly increments accordingly with the number of methoxy groups whereas, 

their substitution with a fluorine atom (12) does not significantly alter the DNA stabilization 

properties which, actually, parallels the cytotoxic activity.  

Table 6.3 also show the inhibitor activity of derivatives 1, 2, 8, 12, 20, and 22 on Taq 

Polymerase. The most potent derivative was 22, with 2 and 20 slightly less potent, but in the 

same order. Interestingly, 1 and 12, characterized by shorter side chains and by a fluorine 

atom on the aromatic rings, respectively, were the less potent of the all series, showing no 

activity up to 40 µM. 

The interaction of all derivatives with both DNA duplex and quadruplex, was further 

confirmed by circular dichroism spectroscopy (CD), using NDI derivatives 2, 8, 12, 20, and 

22. A representative example is reported in Figure 6.11 for 20. The addition of the NDI 

derivatives to a double stranded DNA, caused an increment of the intensities of the two 

major bands located at 275 and 245 nm (Figure 6.11, Panel B). This result confirmed an 

intercalation binding mode for NDI into the double helix. Using the human telomeric G-

quadruplex as substrate, the binding of all the test ligands induced an increase of intensity of 

the DNA dichroic signal, in particular of the 295 band which is generally attributed to the 

antiparallel components of the nucleic acid structure (Figure 6.11, Panel A). 

Figure 6.10: Variation of DNA (0.25 μM) thermal stability (ΔTm °C) produced by tested ligands in 
50 mM potassium buffer, pH 7.4, evaluated by fluorescence quenching melting experiments. 
Heating rate 1 °C/min. PANEL A: increasing concentration of 20 on G-quadruplex folded 
telomeric sequence (G4) or double stranded (dsDNA) DNA; PANEL B: 2, 8, 12, 20, and 22 (2.5 
µM) on G-quadruplex (black bars) and dsDNA (grey bars). 
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Quantitative analysis of the binding process towards the two substrates using 20 as 

model compound have been performed to obtain further information about DNA-binding. 

These data were obtained by UV-VIS titrations since addition of dsDNA or G-quadruplex 

DNA induced a significant reduction of the drug absorbance (Figure 6.12). The results are 

summarized in Table 6.4 and confirmed a relevant affinity of 20 toward both DNA 

substrates. In particular, the difference in Ka is likely not sufficient to preclude the 

recognition of one target in physiological conditions.  

 

 

 
 

 
 

 
 

Figure 6.11: Modification of DNA CD spectra upon addition of 20(0-20 µM) in 10 mM Tris, 50 mM KCl, 
pH 7.5. Arrows indicate spectrals changes upon ligand addition. Panel A: 4 µM G-quadruplex folded 
human telomeric sequence Tel22. Panel B: 45 µM ctDNA. 

Figure 6.12: Titrations of 20 (10-20 μM) with DNA in 10 mM Tris, 50 mM KCl, pH 7.5. 
Panel A: human telomeric sequence folded in G-quadruplex; Panel B: ctDNA. Arrows 
indicate absorption spectra change upon DNA addition. 
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Table 6.4. Thermodynamic parameters for the DNA binding 

by 20 determined in 10 mM Tris, 20 mM KCl, pH 7.5, 37°C. n 

refears to the number of G-quadruplex or base pairs involved in 

the binding of one NDI molecule 

 

 
 

 
 

 
 

 
 

These data proved that stacking interactions are relevant for the DNA binding 

process. Indeed, dsDNA binding data analysis indicated a complex stoichiometry (n) of two 

base pairs for each bound drug molecule, which is in line with an intercalation binding 

mode. In the presence of G-quadruplex, two NDI molecules bound to one DNA structure. 

This likely corresponds to the stacking of the ligands one at each terminal tetrad.  

Since test derivatives showed to be able to recognize telomeric G-quadruplex 

sequences, the telomerase activity in HeLa cells treated with 20, the best G-quadruplex 

binder, has been evaluated. The results confirmed that 20 is able to reduce the activity of 

this enzyme thus confirming a cytotoxic mechanism which can result from the potential 

impairment of several biological pathways (Figure 6.13). 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 Ka · 10
-6

 (M
-1

) n 

G-quadruplex 6.94 ± 2.05 0.49 

dsDNA 0.85 ± 0.07 2.62 ± 0.03 

Figure 6.13: Reduction of telomerase activity 
in HeLa cell after treatment for 24 h with 20. 
For each line, a cellular extract corresponding 
to 2 ng of total proteins was used. 
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With the aim to characterize the conformational profile and binding mode for duplex 

and G-quadruplex DNA, compound 20 have been submitted to molecular modeling studies. 

Analysis of the ionization state, showed that at pH 7.5 the bis cationic form, with both 

secondary amines protonated, was the most prevalent among all ionizable states. 

Consequently, the conformational study has been carried out with this ionization form, by 

the Monte Carlo search. The docking simulations were performed using the available 

crystallographic structures from the Protein Data Bank (PDB).
322,323

 Docking models have 

been obtained with Autodock.  

Figure 6.14 A shows the lowest energy pose of 20 within the DNA duplex. There is a 

synergy of attractive interactions due to the NDI core stacking (two contributions) within 

the guanine-citosine intercalation site, one hydrophobic contact and hydrogen bond within 

the minor groove and two hydrogen bonds within the major groove.  
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a) 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: a) 3D representation of the best intercalative pose of compound 20 within the DNA 
duplex. The ligand and the DNA are respectively displayed as polytube and wireframe models. The 
gray surface represents target binding pocket. The hydrophobic features of the ligand are pointed 
as yellow spheres. The exclusion volume coats onto the target are shown as gray spheres. 
Intermolecular hydrogen bonds are displayed as red and green arrows, pointing respectively 
ligand acceptor and donor atoms. Positive ionizable target nitrogens are shown as blue features. 
The ligand aromatic rings detected to interact via π-π interactions are highlighted with blue circles 
with top/bottom triangles. b) 2D ligand representation with the main interaction features with the 
DNA duplex model. Three intermolecular hydrogen bonds are represented by dotted vectors. 
Electrostatic interacting nitrogens are shown as blue features. Hydrophobic interacting rings are 
highlighted in yellow. NDI core π-π stacked rings are depicted with blue circles and black arrows. 
The top ruler indicates the corresponding DNA duplex interaction area.  
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The molecular recognition obtained in the docking simulations of the ligand 20 with 

the DNA G-quadruplex model is shown in Figure 6.15a, where the 2:1 stoichiometry results 

in a sort of “sandwich-type interaction”. In this ternary complex the first bound ligand 

assumed a semi-folded conformation, fitting the NDI core onto the DNA G-tetrads in top 

position by efficient end stacking interaction. Both the ionized nitrogen atoms were able to 

donate hydrogen bonds, respectively to the phosphate groups of dG14 and dG20 (Figure 

6.15b). The second ligand recognized the G-tetrad in the bottom position by stacking of the 

NDI core, not properly detected as a pharmacophore feature (Figure 6.15c). The reason can 

be addressed to the misalignment among the aromatic cores of guanines and NDI (data not 

shown). The side chains of this second ligand assumed a more extended conformation each 

one realizing different DNA interactions. One appeared to be more involved than the other 

in stabilizing the interaction with the G-quadruplex bottom side. Actually, the ionized 

nitrogen atom and the trimethoxy aromatic ring of one side chain established one hydrogen 

bond with dG22 N3 and hydrophobic contacts with the DNA, respectively. Conversely, the 

second side chain engaged interaction only with the dG10 residue. Globally, the “sandwich-

type” model seemed to be able to protect the unwinding process thus explaining the 

consistent stabilizing effect of 20 on the G-quadruplex.  
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         a) 
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Figure 6.15: a) 3D representation of compound 20 top/bottom best poses obtained with the DNA G-quadruplex 
model.  The gray surface represents target binding pocket. The exclusion volume coats onto the target are shown 
as gray spheres. The intermolecular donating hydrogen bonds are displayed as green arrows. Positive ionizable 
target nitrogens are shown as blue features. The ligand aromatic ring detected to interact via π-π interactions is 
highlighted with a blue circles with triangles. b) 2D ligand representation with the main interaction features with 
the DNA G-quadruplex model in top side. Two intermolecular hydrogen bonds are represented by dotted vectors. 
Electrostatic interacting nitrogen atoms are shown as blue features. The π-π stacked ring is depicted with blue 
circles and a black arrow.c) 2D ligand representation with the main interaction features with the DNA G-
quadruplex model in bottom side. One intermolecular hydrogen bond is represented by a dotted vector. 
Electrostatic interacting nitrogen atoms are shown as blue features. Hydrophobic interacting rings are 
highlighted in yellow.  
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Compounds 23-26 were submitted to the Developmental Therapeutics Program 

(DTP) at National Cancer Institute (NCI) for evaluation of their anticancer activity against 

different human cell lines (Table 6.5), with the same procedure described above. 

 

Table 6.5. Growth Inhibition, Cytostatic and Cytotoxic Activity of 23-26 in the 60-

Cell Panel in comparison to lead compounds 1 and 2. 

 

 

 

 

From the analysis of the results, derivatives with 3 methylene units emerged as the 

most potent compounds, as it was observed within lead compounds 1 and 2. Also, the 

substitution of the methoxy group with a acetylene or vinyl group, resulted in reduction of 

cytotoxic activity. However, compounds bearing the acetylene group were more potent than 

those with vinyl. Consequently, compound 24 was the most active derivative of the series. 

Since compounds 23-26 were designed by introducing functions able to irreversibly 

interact with MAO-A enzymes, their activity against this target compared with MAO-B 

have been evaluated at 50 μM concentration. (Table 6.6). 

           

MG-

MID[b] 
Cmpd[a] leukemia NSCLC colon CNS melanoma ovarian renal prostate breast 

 

 

23 

 

 

5.23 

 

5.45 

 

5.65 

 

5.43 

 

5.56 

 

5.50 

 

5.40 

 

5.21 

 

5.35 

 

5.42 

24 6.46 6.49 6.54 6.37 6.55 6.39 6.41 6.50 6.13 6.43 

25 6.12 6.15 6.25 6.14 6.10 6.12 6.13 6.12 6.14 6.14 

26 

 

6.43 

 

6.38 

 

6.49 

 

6.31 

 

6.14 

 

6.33 

 

6.34 

 

6.37 

 

6.44 

 

6.36 

 

1 

 

6.60 

 

6.44 

 

6.70 

 

6.29 

 

6.34 

 

6.53 

 

6.34 

 

6.52 

 

6.34 

 

6.46 

 

2 

 

6.75 6.69 

 

6.94 6.67 6.72 6.68 6.67 6.73 6.64 6.72 

 

[a]23-26, bis-hydrocloride salt; highest concentration = 10-4 M unless otherwise reported; only modes showing a value 

greater than 4.00 are reported. [b]Mean graph midpoint, i.e., the mean concentration for all cell lines. Data are 

expressed as the negative log of the molar concentration at three assay end points: the 50% growth inhibitory power 

(pGI50) 
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Table 6.6. Kinetic parameters of human MAO A and B in presence of compounds 24-26 

 

 

The preliminary data show that compound 24 was the more effective compound in 

MAO-A inhibition. In addition it is endowed with a good selectivity between MAO-A and 

MAO-B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  MAO A   MAO B  

Cmpd Vmax 

residue 

Km (µM) Vmax/Km 

residue 

Vmax 

residue 

Km (µM) Vmax/Km 

residue 

Control 1 523± 71 1    

24 0.55±0.17 1710± 750 0.23±0.03 0.77 369± 25 1.16 

25 0.65±0.07 512± 102 0.60±0.06 0.93 374± 45 1.37 

26 0.61±0.14 413± 146 0.73±0.07 0.86 449± 37 1.06 
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6.4 CONCLUSION 

In this work it has been demonstrated that the cytostatic and cytotoxic activities of 1 

and 2 were affected by the insertion of different substituents on the two aromatic rings 

confirming their possible influence on the biological effects. In particular, compound 20, 

characterized by a chain length of three methylene units and by 2,3,4-trimethoxy groups on 

the two aromatic rings, was the most potent of the two series and showed an interesting 

biological profile. In fact, it displayed pGI50 values around 7, demonstrating an 

improvement of the cytotoxic activity towards multiple cancer lines, in comparison with 

lead compounds 1 and 2 and comparable with those of Vincristine. Nevertheless, the 

mechanism of action of 20 is distinct from vincristine. Indeed, 20 showed the ability to 

tightly bind DNA irrespectively to its structural arrangement, to inhibit Taq polymerase and 

telomerase, to trigger caspase activation by a possible oxidative mechanism, to 

downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly 

on microtubules and tubuline. 

All together these data point out that 20 interact with several targets involved in 

cancer development, therefore this study may represent a promising starting point for the 

development of new MTDLs hopefully useful for the cancer treatment. 
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6.5 EXPERIMENTAL SECTION 

 

6.5.1 Chemistry 

Melting point were taken in glass capillary tubes on a Buchi SMP-20 apparatus and 

are uncorrected. ESI-MS spectra were recorded on Perkin-Elmer 297 and WatersZQ 4000. 

1
H NMR and 

13
C NMR were recorded on Varian VRX 200 and 400 instruments. Chemical 

shift are reported in parts per millions (ppm) relative to peak of tetramethylsilane (TMS) 

and spin multiplicities are given as s (singlet), brs (broad singlet), d (doublet), t (triplet), q 

(quartet) or m (multiplet). The elemental analysis was performed with Perkin Elmer 

elemental analyzer 2400 CHN. From all new compounds satisfactory elemental analyses 

were obtained, confirming >95%purity. Chromatographic separations were performed on 

silica gel columns by flash (Kieselgel 40, 0.040-0.063 mm, Merck) column 

chromatography. Reactions were followed by thin layer chromatography (TLC) on Merck 

(0.25 mm) glass-packed precoated silica gel plates (60 F254) and then visualized in an 

iodine chamber or with a UV lamp. The term “dried” refers to the use of anhydrous sodium 

sulphate. Compounds were named following IUPAC rules as applied by Beilstein-Institute 

AutoNom (version 2.1), a PC integrated software package for systematic names in organic 

chemistry. 

 

General Procedure for the Synthesis of 3-26: A mixture of the appropriate amine 

27-50 and 1,4,5,8-Naphthalene-tetracarbocylic dianhydride in a 1:5 molar ratio in iso-

propanol were refluxed for 2 hours. After cooling down, removal of the solvent gave residue 

that was purified by flash chromatography using as eluent a mixture of 

dichloromethane/methanol/33% acqueous ammonia (9:1:0.03) providing the desired 

products 3-26 that were converted into the corresponding bis-p-toluenesulfonates salt. 

2,7-Bis-[2-(3-methoxy-benzylamino)-ethyl]benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (3): yellow oil (70 mg, 28%); mp (bis-p-toluensulfonate salt): 152-155 °C; 

1
H NMR (CDCl3, 200 MHz, free base) δ = 1.58 (brs, 2H exchangeable with D2O), 3.06 (t, J 

= 6.2 Hz, 4H), 3.76 (s, 6H), 3.84 (s, 4H), 4.41 (t, J = 6.2 Hz, 4H), 6.85-6.89 (m, 4H), 7.18-

7.29 (m, 4H), 8.78 ppm (s, 4H); 
13

C NMR (CDCl3, 50MHz): δ = 39.3, 46.1, 54.2, 55.8, 

112.0, 113.2, 119.9, 125.6, 128.5, 129.1, 129.6, 158.5, 164.1 ppm; ESI-MS (m/z): 593 [M 
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+H]
+
; Anal. calcd for C48H48N4O12S2 • 2H2O: C 59.25, H 5.39, N 5.76, found: C 58.97, H 

5.23, N 5.88. 

2,7-Bis-[3-(3-methoxy-benzylamino)-propyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (4): yellow oil (55 mg, 16%); mp (bis-p-toluensulfonate salt): 102-104 

°C;
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.99-2.10 (m, 4H + 2H exchangeable with 

D2O), 2,77 (t, J = 6.6 Hz, 4H), 3.81 (s, 10H), 4.34 (t, J = 7.7 Hz, 4H), 6.75-6.80 (m, 2H), 

6.88-6.92 (m, 4H), 7.17-7.25 (m, 2H), 8.76 ppm (s, 4H); 
13

C NMR (CDCl3,50MHz): δ = 

28.2, 39.0, 46.5, 53.8, 55.3, 112.4, 113.7, 120.5, 126.6, 128.0, 129.4, 131.1, 158.7, 163.8 

ppm; ESI-MS (m/z): 621 [M +H]
+
; Anal. calcd for C50H52N4O12S2 • 2H2O: C 59.99, H 5.64, 

N 5.60, found: C 59.79, H 5.56, N 5.73. 

2,7-Bis-[2-(4-methoxy-benzylamino)-ethyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (5): yellow oil (82 mg, 15.0 %); mp (bis-p-toluensulfonate salt): 124-126 

°C; 
1
H NMR (CDCl3, 400 MHz, free base): δ = 1.54 (brs, 2H exchangeable with D2O), 3.02 

(t, J = 6.4 Hz, 4H), 3.74 (s, 6H); 3.76 (s, 4H); 4.37 (t, J = 6.4 Hz, 4H); 6.74-6.76 (m, 4H); 

7.16-7.18 (m, 4H); 8.75 ppm (s, 4H); 
13

C NMR (CDCl3, 50MHz): δ = 38.1, 47.5, 52.6, 56.5, 

112.3, 115.6, 121.3, 126.9, 127.5, 130.0, 159.9, 162.8 ppm; ESI-MS (m/z): 593 [M+H]
+
; 

Anal. calcd for C48H48N4O12S2 • 2H2O: C 59.25, H 5.39, N 5.76, found: C 59.42, H 5.11, N 

5.59. 

2,7-Bis-[3-(4-methoxy-benzylamino)-propyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (6): yellow oil (67 mg, 21%); mp (bis-p-toluensulfonate salt): 134-136°C; 

1
H NMR (CDCl3, 200 MHz, free base): δ = 1.59 (brs, 2H exchangeable with D2O), 2.00-

2.35 (m, 4H), 2.75 (t, J = 6.4 Hz, 4H), 3.75 (s, 4H), 3.79 (s, 6H), 4.32 (t, J = 7.0 Hz, 4H), 

6.80-6.84 (m, 4H), 7.20-7.28 (m, 4H), 8.77 ppm (s, 4H); 
13

C NMR (CDCl3, 50MHz): δ = 

25.7, 37.4, 47.6, 51.9, 56.9, 111.6, 115.3, 121.8, 127.4, 128.9, 131.1, 159.1, 163.6 ppm; 

ESI-MS (m/z): 621 [M+H]
+
; Anal. calcd for C50H52N4O12S2 • 2H2O: C 59.99, H 5.64, N 

5.60, found: C 59.75, H 5.47, N 5.67. 

2,7-Bis-(2-benzylamino-ethyl)-benzo[lmn][3,8]phenanthroline-1,3,6,8-tetraone 

(7): yellow oil (82 mg, 30%); mp (bis-p-toluensulfonate salt): 163-165 °C; 
1
H NMR 

(CDCl3, 200 MHz, free base): δ = 1.58 (brs, 2H exchangeable with D2O), 3.07 (t, J = 6.2 

Hz, 4H), 3.88 (s, 4H), 4.42 (t, J = 6.6 Hz, 4H), 7.23-7.29 (m, 10H), 8.79 ppm (s, 4H); 
13

C 

NMR (CDCl3, 50 MHz): δ = 40.6, 46.9, 53.6, 126.7, 127.0, 128.2, 128.5, 131.1, 151.1, 
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152.0, 163.2 ppm; ESI-MS (m/z): 533 [M +H]
+
; Anal. calcd for C46H44N4O10S2 • 2H2O: C 

60.51, H 5.30, N 6.14, found: C 60.79, H 5.63, N 6.44. 

2,7-Bis-(3-benzylamino-propyl)-benzo[lmn][3,8]phenanthroline-1,3,6,8-tetraone 

(8): yellow oil (107 mg, 34%); mp (bis-p-toluensulfonate salt): 163-165 °C; 
1
H NMR 

(CDCl3, 200 MHz, free base): δ = 1.45-1.45 (m, 2H + 4H exchangeable with D2O), 3.15 (t, 

J = 6.2 Hz, 4H), 3.76 (s, 4H), 4.32 (t, J = 6.6 Hz, 4H), 7.17-7.25 (m, 10H), 8.72 ppm (s, 

4H); 
13

C NMR (CDCl3, 50 MHz): δ = 28.7, 41.7, 46.6, 54.1, 126.0, 127.6, 128.6, 129.5, 

131.5, 150.8, 152.5, 163.6 ppm; ESI-MS (m/z): 561 [M +H]
+
; Anal. calcd for 

C48H48N4O10S2 • 2H2O: C 61.21, H 5.57, N 5.95, found: C 61.47, H 5.79, N 6.13. 

2,7-Bis-[2-(2-chloro-benzylamino)-ethyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (9): yellow oil (93 mg, 35%); mp (bis-p-toluensulfonate salt): 174 °C; 
1
H 

NMR (CDCl3, 200 MHz, free base): δ = 1.61 (brs, 2H exchangeable with D2O), 3.06 (t, J = 

6.6 Hz, 4H), 3.97 (s, 4H), 4.42 (t, J = 6.6 Hz, 4H), 7.17-7.19 (m, 4H), 7.28-7.35 (m, 4H), 

8.78 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 37.1, 45.5, 53.2, 125.3, 126.9, 128.0, 

129.4, 131.1, 131.9, 134.2, 137.9, 152.1, 162.1 ppm; ESI-MS (m/z): 601 [M +H]
+
; Anal. 

calcd for C46H42Cl2N4O10S2 • 2H2O: C 56.27, H 4.72, N 5.71, found: C 56.44, H 4.91, N 

5.91. 

2,7-Bis-[3-(2-chloro-benzylamino)-propyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (10): yellow oil (83 mg, 21%); mp (bis-p-toluensulfonate salt): 115 °C; 
1
H 

NMR (CDCl3, 200 MHz, free base): δ = 1.69 (brs, 2H exchangeable with D2O), 1.95-2.08 

(m, 4H), 2.78 (t, J = 7.0 Hz, 4H), 3.90 (s, 4H), 4.34 (t, J = 7.0 Hz, 4H), 7.16-7.24 (m, 4H), 

7.28-7.40 (m, 4H), 8.76 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 28.4, 39.1, 46.6, 

51.2, 126.7, 126.8, 128.3, 129.5, 130.1, 131.0, 133.8, 137.7, 151.2, 163.0 ppm; ESI-MS 

(m/z): 629 [M +H]
+
; Anal. calcd for C48H46Cl2N4O10S2 • 2H2O: C 57.08, H 4.99, N 5.55, 

found: C 57.41, H 5.24, N 5.81. 

2,7-Bis-[2-(2-fluoro-benzylamino)-ethyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (11): yellow oil (62 mg, 27%); mp (bis-p-toluensulfonate salt): 174 °C dec;  

1
H NMR (CDCl3, 200 MHz, free base): δ = 1.62 (brs, 2H exchangeable with D2O), 3.06 (t, J 

= 6.2 Hz, 4H), 3.85 (s, 4H), 4.41 (t, J = 6.2 Hz, 4H), 6.95-7.05 (m, 8H), 8.78 ppm (s, 4H); 

13
C NMR (CDCl3, 50 MHz): δ = 36.3, 45.1, 48.0, 114.9, 124.7, 126.1, 127.8, 128.0, 129.1, 



108 
 

130.1, 132.6, 151.7, 162.4 ppm; ESI-MS (m/z): 569 [M +H]
+
; Anal. calcd for 

C46H42F2N4O10S2 • 2H2O: C 58.2, H 4.89, N 5.90, found: C 58.45, H 5.01, N 5.99. 

2,7-Bis-[3-(2-fluoro-benzylamino)-propyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (12): yellow oil (77 mg, 22%); mp (bis-p-toluensulfonate salt): 104-107 

°C; 
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.73 (brs, 2H exchangeable with D2O), 

1.90-2.08 (m, 4H), 2.77 (t, J = 7.0 Hz, 4H), 3.87 (s, 4H), 4.33 (t, J = 7.4 Hz, 4H), 6.97-7.21 

(m, 4H), 7.23-7.37 (m, 4H), 8.76 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 28.3, 39.0, 

46.5, 47.3, 115.5, 124.1, 126.7, 128.6, 128.8, 130.4, 130.5, 131.01, 151.1, 163.0 ppm; ESI-

MS (m/z): 597 [M+H]
+
; Anal. calcd for C48H46F2N4O10S2 • 2H2O: C 59.01, H 5.16, N 5.73, 

found: C 59.37, H 5.31, N 5.86.  

2,7-Bis-[2-(2-nitro-benzylamino)-ethyl]-benzo[lmn][3,8] phenanthroline-1,3,6,8-

tetraone (13): yellow oil (53 mg, 26%); mp (bis-p-toluensulfonate salt): > 250 °C; 
1
H NMR 

(CDCl3, 200 MHz, free base): δ = 1.62 (brs, 2H exchangeable with D2O), 3.08 (t, J = 6.2 

Hz, 4H), 4.11 (s, 4H), 4.41 (t, J = 6.2 Hz, 4H), 7.28-7.54 (m, 6H), 7.80-7.85 (m, 2H), 8.78 

ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 40.3, 47.1, 50.6, 124.7, 126.7, 128.1, 131.0, 

131.3, 133.0, 135.4, 149.3, 151.3, 163.2 ppm; ESI-MS (m/z): 623 [M +H]
+
; Anal. calcd for 

C46H42N6O14S2 • 2H2O: C 55.08, H 4.62, N 8.38, found: C 54.94, H 4.72, N 8.11. 

2,7-Bis-[3-(2-nitro-benzylamino)-propyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (14): yellow oil (71 mg, 24%); mp (bis-p-toluensulfonate salt): 90-95 °C; 

1
H NMR (CDCl3, 200 MHz, free base): δ = 1.83 (brs, 2H exchangeable with D2O), 1.85-

1.97 (m, 4H), 2.77 (t, J = 6.6 Hz, 4H), 4.06 (s, 4H), 4.32 (t, J = 7.0 Hz, 4H), 7.36-7.44 (m, 

2H), 7.53-7.66 (m, 4H), 7.92-7.96 (m, 2H), 8.74 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): 

δ = 28.4, 39.0, 46.9, 50.8, 124.8, 126.6, 128.0, 131.1, 131.3, 133.2, 135.7, 149.2, 163.0 

ppm; ESI-MS (m/z): 651 [M +H]
+
; Anal. calcd for C48H46N6O14S2 • 2H2O: C 55.91, H 4.89, 

N 8.15, found: C 55.81, H 4.67, N 8.23. 

2,7-Bis-[2-(2-trifluoromethyl-benzylamino)-ethyl]-benzo[lmn] 

[3,8]phenanthroline-1,3,6,8-tetraone (15): yellow oil (102 mg, 25%); mp (bis-p-

toluensulfonate salt): 122-126 °C; 
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.59 (brs, 2H 

exchangeable with D2O), 3.08 (t, J = 6.2 Hz, 4H), 4.03 (s, 4H), 4.43 (t, J = 6.2 Hz, 4H), 

7.21-7.63 (m, 8H), 8.79 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 40.4, 47.1, 49.6, 

103.2, 125.9, 126.0, 126.7, 127.0, 128.3, 130.2, 131.1, 131.9, 138.8, 163.1 ppm; ESI-MS 
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(m/z): 669 [M+H]
+
; Anal. calcd for C48H42F6N4O10S2 • 2H2O: C 54.96, H 4.42, N 5.34, 

found: C 55.12, H 4.41, N 5.50. 

2,7-Bis-[3-(2-trifluoromethyl-benzylamino)-propyl]-benzo[lmn] 

[3,8]phenanthroline-1,3,6,8-tetraone (16): yellow oil (91 mg, 27% ); mp (bis-p-

toluensulfonate salt): 119-121 °C; 
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.58 (brs, 2H 

exchangeable with D2O), 2.02-2.07 (m, 4H), 2.81 (t, J = 7.0 Hz, 4H), 3.98 (s, 4H), 4.35 (t, J 

= 6.2 Hz, 4H), 7.29-7.38 (m, 2H), 7.47-7.55 (m, 2H), 7.62-7.65 (m, 4H), 8.78 ppm (s, 4H); 

13
C NMR (CDCl3, 50 MHz): δ = 24.3, 41.4, 46.6, 49.1, 101.7, 123.7, 125.1, 126.1, 127.2, 

128.7, 129.9, 131.4, 132.2, 139.9, 162.0 ppm; ESI-MS (m/z): 697 [M +H]
+
; Anal. calcd for 

C50H46F6N4O10S2  • 2H2O: C 55.76, H 4.68, N 5.20, found: C 55.40, H 4.72, N 5.55. 

2,7-Bis-[2-(2-methyl-benzylamino)-ethyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (17): yellow oil (53 mg, 28%); mp (bis-p-toluensulfonate salt): 149-151 

°C; 
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.53 (brs, 2H exchangeable with D2O), 2.27 

(s, 6H), 3.08 (t, J = 6.4 Hz, 4H), 3.82 (s, 4H), 4.39 (t, J = 6.4 Hz, 4H,), 7.05-7.08 (m, 5H), 

7.21-7.26 (m, 3H), 8.74 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 19.2, 40.7, 47.3, 

51.5, 126.0, 126.8, 126.0, 127.1, 128.6, 130.4, 131.2, 136.5, 138.3, 163.3 ppm; ESI-MS 

(m/z): 561 [M +H]
+
; Anal. calcd for C48H48N4O10S2 • 2H2O: C 61.21, H 5.57, N 5.95, found: 

C 60.98, H 5.47, N 6.02. 

2,7-Bis-[3-(2-methyl-benzylamino)-propyl]-benzo[lmn][3,8] phenanthroline-

1,3,6,8-tetraone (18): yellow oil (44 mg, 37%); mp (bis-p-toluensulfonate salt): 137-140 

°C; 
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.64 (brs, 2H exchangeable with D2O), 2.03 

(m, 4H), 2.37 (s, 6H), 2.83 (t, J = 7.0 Hz, 4H), 3.80 (s, 4H), 4.34 (t, J = 7.0 Hz, 4H), 7.14-

7.15 (m, 5H), 7.25-7.28 (m, 3H), 8.76 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz) δ = 18.9, 

28.2, 39.0, 46.9, 51.4, 125.7, 126.4, 126.5, 126.8, 128.2, 130.1, 130.8, 136.2, 138.1, 162.8 

ppm; ESI-MS (m/z): 589 [M+H]
+
; Anal. calcd for C50H52N4O10S2 • 2H2O: C 61.97, H 5.82, 

N 5.78, found: C 61.74, H 5.59, N 5.71. 

2,7-Bis-[2-(2,3,4-trimethoxy-benzylamino)-ethyl]-benzo[lmn][3,8] 

phenanthroline-1,3,6,8-tetraone (19): yellow oil (96 mg, 27%); mp (bis-p-toluensulfonate 

salt): 221-224 °C dec; 
1
H NMR (CDCl3, 400 MHz, free base): δ = 1.90 (brs, 2H 

exchangeable with D2O), 3.01 (t, J = 12.8 Hz, 4H), 3.49-3.90 (m, 22H), 4.38 (t, J = 8.7 Hz, 

4H), 6.56-6.58 (d, J = 8.4 Hz, 2H), 6.92-6.94 (d, J = 8.4 Hz, 2H), 8.75 ppm (s, 4H); 
13

C 
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NMR (CDCl3, 100 MHz): δ = 40.1, 46.4, 48.4, 50.2, 55.8, 60.6, 106.8, 124.1, 125.2, 126.5, 

126.6, 130.7, 141.9, 151.9, 153.0, 163.2 ppm; ESI-MS (m/z): 735 [M+Na]
+
; Anal. calcd for 

C52H56N4O16S2 • 2H2O: C 57.13, H 5.53, N 5.13, found: C 56.81, H 5.32, N 5.42. 

2,7-Bis-[3-(2,3,4-trimethoxy-benzylamino)-propyl]-benzo[lmn] 

[3,8]phenanthroline-1,3,6,8-tetraone (20): yellow oil (69 mg, 46%); mp (bis-p-

toluensulfonate salt): 237 °C dec; 
1
H NMR (CDCl3, 400 MHz, free base): δ = 1.96-2.0 (m, 

4H + 2H exchangeable with D2O), 2.74 (t, J = 8.0Hz, 4H), 3.73 (s, 4H), 3.82 (s, 6H), 3.84 

(s, 6H), 3.90 (s, 6H), 4.29 (t, J = 8.0 Hz, 4H), 6.56-6.58 (d, J = 8.0 Hz, 2H), 6.92-6.94 (d, J 

= 8.0 Hz, 2H), 8.73 ppm (s, 4H); 
13

C NMR (CDCl3, 100 MHz): δ = 28.1, 38.9, 46.4, 48.4, 

55.8, 60.6, 60.9, 106.8, 123.9, 125.7, 126.3, 126.4, 130.7, 141.9, 151.9, 152.8, 162.6 ppm; 

ESI-MS (m/z): 741 [M +H]
+
; Anal. calcd for C54H60N4O16S2 • 2H2O: C 57.85, H 5.53, N 

5.13, found: C 58.06, H 5.65, N 5.17.  

2,7-Bis-[2-(3,4,5-trimethoxy-benzylamino)-ethyl]-benzo[lmn] 

[3,8]phenanthroline-1,3,6,8-tetraone (21): yellow oil (121 mg, 39% yield); mp (bis-p-

toluensulfonate salt): 199-201 °C; 
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.52 (brs, 2H 

exchangeable with D2O), 3.04 (t, J = 6.4 Hz, 4H), 3.74-3.80 (m, 22H), 4.38 (t, J = 6.3 Hz, 

4H), 6.52 (s, 4H), 8.74 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 40.2, 46.7, 53.6, 55.9, 

60.7, 104.7, 126.5, 126.6, 129.7, 130.8, 135.8, 136.6, 150.9, 153.0, 162.9 ppm; ESI-MS 

(m/z): 735 [M +Na]
+
; Anal. calcd for C52H56N4O16S2 • 2H2O: C 57.13, H 5.53, N 5.13, 

found: C 56.95, H 5.41, N 5.31. 

2,7-Bis-[3-(3,4,5-trimethoxy-benzylamino)-propyl]-benzo[lmn] 

[3,8]phenanthroline-1,3,6,8-tetraone (22): yellow oil (130 mg, 85%); mp (bis-p-

toluensulfonate salt): 199-201 °C; 
1
H NMR (CDCl3, 200 MHz, free base): δ = 1.99-2.06 (m, 

4H + 2H exchangeable with D2O), 2.78 (t, J = 6.8 Hz, 4H), 3.77 (s, 4H), 3.82 (s, 6H), 3.87 

(12H), 4.32 (t, J = 6.9 Hz, 4H), 6.59 (s, 4H), 8.74 ppm (s, 4H); 
13

C NMR (CDCl3, 50 MHz): 

δ = 27.6, 38.4, 45.9, 49.7, 53.5, 55.6, 60.3, 104.5, 125.9, 126.0, 130.3, 135.2, 136.2, 150.6, 

152.6, 162.3 ppm; ESI-MS (m/z): 741 [M +H]
+
; Anal. calcd for C54H60N4O16S2 • 2H2O: C 

57.85, H 5.75, N 5.00, found: C 57.64, H 5.89, N 5.19. 

2,7-bis(2-(prop-2-yn-1-ylamino)ethyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (23): yellow solid (27%); m.p. (bis-p-toluensulfonate salt): 152 
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°C; 
1
H NMR (200MHz, CDCl3) δ 1.57 (brs, 2H exchangeable with D2O), 2.19-2.21 (m, 

2H), 3.16 (t, 4H), 3.45 (s, 4H), 4.41 (t, 4H), 8.78 (s, 4H); ESI-MS (m/z): 429 (M+H)
+
. 

2,7-bis(3-(prop-2-yn-1-ylamino)propyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (24): white solid, (35%); m.p. (bis-p-toluensulfonate salt): 187 °C; 

1
H NMR (200MHz, CDCl3) δ 1.53 (brs, 2H exchangeable with D2O), 1.93-2.00 (m, 4H), 

2.15-2.17 (m, 2H), 2.82 (t, 4H), 3.45 (s, 4H), 4.31 (t, 4H), 8.77 (s, 4H); ESI-MS (m/z): 457 

(M+H)
+
. 

2,7-bis(2-(allylamino)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-

tetraone (25): white solid, (44%); m.p. (bis-p-toluensulfonate salt): 182 °C; 
1
H NMR 

(200MHz, CDCl3) δ 1.53 (brs, 2H exchangeable with D2O), 3.04 (t, 4H), 3,31-3,34 (m, 4H), 

4.39 (t, 4H),5.07-5.23 (m, 4H), 5.82-5.95 (m, 2H), 8.76 (s, 4H); ESI-MS (m/z): 433 

(M+H)
+
. 

2,7-bis(3-(allylamino)propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-

tetraone (26): white solid, (41%); m.p. (bis-p-toluensulfonate salt): 152 °C; 
1
H NMR 

(200MHz, CDCl3) δ 1.56 (brs, 2H exchangeable with D2O), 8.79 (s, 4H); ESI-MS (m/z): 

461 (M+H)
+
. 

General Procedure for the Synthesis of 27-46: A mixture of the appropriate 

diamine and aldehyde (in a 5:1 molar ratio) in toluene was refluxed in a Dean-Stark 

apparatus for 5 h. Following solvent removal, the residue was taken up in EtOH, NaBH4 

(1:2.5 molar ratio) was added at 0 °C, and the stirring was continued at room temperature 

for 4 h. The solvent was then removed and the residue was dissolved in dichloromethane 

and washed with brine. Removal of the dried solvent gave a residue that was purified by 

flash chromatography using as eluent a mixture of dichloromethane/methanol/33% 

acqueous ammonia (9:1:0.1), providing the desired products 27-46. 

N
1
-(3-Methoxy-benzyl)-ethane-1,2-diamine (27): yellow oil; (560 mg, 22%); 

1
H 

NMR (CDCl3, 400 MHz): δ = 1.74 (brs, 3H exchangeable with D2O), 2.69 (t, J = 6 Hz, 2H), 

2.81 (t, J = 5.6 Hz, 2H), 3.77 (s, 2H), 3.80 (s, 3H), 6.77-6.80 (m, 1H), 6.88-6.90 (m, 2H), 

7.21-7.26 ppm (m, 1H); 
13

C NMR (CDCl3, 100 MHz): δ = 41.3, 51.3, 53.5, 54.9, 112.1, 

113.4, 120.2, 129.1, 141.8, 159.5. 

N
1
-(3-Methoxy-benzyl)-propane-1,3-diamine (28): yellow oil (430 mg, 60%); 

1
H 

NMR (CDCl3, 400 MHz): δ = 1.42 (brs, 3H exchangeable with D2O), 1.61-1.75 (m, 2H), 
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2.68-2.84 (m, 4H), 3.79 (s, 2H), 3.83 (s, 3H), 6.78-6.83 (m, 1H), 6.90-6.93 (m, 2H), 7.22-

7.30 ppm (m, 1H); 
13

C NMR (CDCl3, 100 MHz): δ = 33.6, 40.5, 47.2, 54.0, 55.0, 113.4, 

120.3, 129.3, 142.2, 151.1, 159.7 ppm. 

N
1
-(4-Methoxy-benzyl)-ethane-1,2-diamine (29): yellow oil (512 mg, 21%); 

1
H 

NMR (CDCl3, 200 MHz): δ = 1.53 (brs, 3H exchangeable with D2O), 2.68-2.74 (m, 2H), 

2.82-2.88 (m, 2H), 3.77 (s, 2H), 3.82 (s, 3H), 6.86-6.91 (m, 2H), 7.26-7.30 ppm (m, 2H); 

13
C NMR (CDCl3, 50 MHz): δ = 41.7, 51.8, 53.3, 55.3, 113.8, 129.3, 132.7, 158.6 ppm. 

N
1
-(4-Methoxy-benzyl)-propane-1,3-diamine (30): yellow oil (670 mg, 51%); 

1
H 

NMR (CDCl3, 200 MHz): δ = 1.64-1.71 (m, 2H); 1.74 (brs, 3H exchangeable with D2O), 

2.67-2.82 (m, 4H), 3.74 (s, 2H), 3.81 (s, 3H), 6.85-6.90 (m, 2H), 7.23-7.27 ppm (m, 2H); 

13
C NMR (CDCl3, 50 MHz): δ = 33.2, 40.3, 46.9, 53.3, 55.0, 113.6, 129.2, 132.3, 158.5 

ppm. 

N
1
-Benzyl-ethane-1,2-diamine (31): yellow oil (597 mg, 22%); 

1
H NMR (CDCl3, 

200 MHz): δ = 1.70 (brs, 3H exchangeable with D2O), 2.69-2.74 (m, 2H), 2.81-2.86 (m, 

2H), 3.82 (s, 2H), 7.30-7.36 ppm (m, 4H); 
13

C NMR (CDCl3, 50 MHz): δ = 41.5, 51.6, 53.8, 

127.0, 128.2, 128.4, 140.3 ppm. 

N
1
-Benzyl-propane-1,3-diamine (32): yellow oil (770 mg, 30%); 

1
H NMR (CDCl3, 

200 MHz): δ = 1.55-1.63 (m, 2H + 3H exchangeable with D2O), 2.65-2.73 (m, 2H), 2.84-

2.89 (m, 2H), 3.9 (s, 2H), 7.28-7.36 ppm (m, 5H); 
13

C NMR (CDCl3, 50 MHz): δ = 27.7, 

41.1, 50.9, 53.3, 126.5, 128.8, 129.2, 140.5 ppm. 

N
1
-(2-Chloro-benzyl)-ethane-1,2-diamine (33): yellow oil (620 mg, 25%); 

1
H 

NMR (CDCl3, 200 MHz): δ = 1.64 (brs, 3H exchangeable with D2O), 2.80 (t, J = 5.4 Hz, 

2H), 2.91 (t, J = 5.2 Hz, 2H), 3.99 (s, 2H), 7.30-7.48 ppm (m, 4H); 
13

C NMR (CDCl3, 50 

MHz): δ = 41.8, 51.4, 52.0, 127.1, 128.5, 129.7, 130.4, 138.0, 151.1 ppm. 

N
1
-(2-Chloro-benzyl)-propane-1,3-diamine (34): yellow oil (790 mg, 35%); 

1
H 

NMR (CDCl3, 200 MHz): δ = 1.32-144 (m, 2H + 3H exchangeable with D2O), 2.36-2.51 

(m, 4H), 3.57 (s, 2H), 6.87-6.94 (m, 2H), 7.02-7.13 ppm (m, 2H); 
13

C NMR (CDCl3, 50 

MHz): δ = 33.3, 40.3, 47.0, 51.1, 126.6, 128.0, 129.2, 129.8, 133.4, 137.7 ppm. 

N
1
-(2-Fluoro-benzyl)-ethane-1,2-diamine (35): yellow oil (530 mg, 29%); 

1
H NMR 

(CDCl3, 400 MHz): δ = 1.45 (brs, 3H exchangeable with D2O), 2.68 (t, J = 6 Hz, 2H,), 2.81 

(t, J = 6 Hz, 2H), 3.85 (s, 2H), 7.00-7.05 (m, 1H), 7.08-7.12 (m, 1H), 7.20-7.26 (m, 1H), 
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7.32-7.36 ppm (m, 1H); 
13

C NMR (CDCl3, 100 MHz): δ = 41.4, 46.8, 51.4, 115.1, 123.8, 

127.1, 128.4, 130.1, 162.15 ppm. 

N
1
-(2-Fluoro-benzyl)-propane-1,3-diamine (36): yellow oil (560 mg, 55%); 

1
H 

NMR (CDCl3, 400 MHz): δ = 1.63-1.70 (m, 2H), 2.09 (brs, 3H exchangeable with D2O), 

2.70 (t, J = 6.4 Hz, 2H), 2.80 (t, J = 6.8 Hz, 2H), 3.83 (s, 2H), 6.99-7.04 (m, 1H), 7.07-7.11 

(m, 1H), 7.19-7.26 (m, 1H), 7.29-7.34 ppm (m, 1H); 
13

C NMR (CDCl3, 100 MHz): δ = 32.9, 

40.5, 47.3, 47.4, 115.3, 124.2, 127.2, 128.8, 130.5, 160.1 ppm. 

N
1
-(2-Nitro-benzyl)-ethane-1,2-diamine (37): yellow oil (850 mg, 59%); 

1
H NMR 

(CDCl3, 400 MHz): δ = 1.71 (brs, 3H exchangeable with D2O), 2.71 (t, J = 5.2 Hz, 2H), 

2.83 (t, J = 5.8 Hz, 2H), 4.06 (s, 2H), 7.39-7.46 (m, 1H), 7.54-7.62 (m, 2H), 7.92-7.96 ppm 

(m, 1H); 
13

C NMR (CDCl3, 100 MHz): δ = 41.8, 50.7, 52.0, 124.8, 128.0, 131.2, 133.1, 

135.7, 147.8 ppm. 

N
1
-(2-Nitro-benzyl)-propane-1,3-diamine (38): yellow oil (440 mg, 35%); 

1
H 

NMR (CDCl3, 400 MHz): δ = 1.55-1.60 (m, 2H), 1.84 (brs, 3H exchangeable with D2O), 

2.59-2.74 (m, 4H), 3.94 (s, 2H), 7.28-7.36 (m, 1H), 7.49-7.52 (m, 2H), 7.81-7.85 ppm (m, 

1H); 
13

C NMR (CDCl3, 100 MHz): δ = 33.2, 40.4, 47.5, 50.9, 124.7, 127.9, 131.2, 133.1, 

135.7, 149.2 ppm. 

N
1
-(2-Trifluoromethyl-benzyl)-ethane-1,2-diamine (39): yellow oil (620 mg, 

67%); 
1
H NMR (CDCl3, 400 MHz): δ = 1.77 (brs, 3H exchangeable with D2O), 2.73 (t, J = 

6.2 Hz, 2H), 2.81 (t, J = 6.4 Hz, 2H), 3.96 (s, 2H), 7.28-7.65 ppm (m, 4H); 
13

C NMR 

(CDCl3, 100 MHz): δ = 41.4, 49.7, 51.7, 125.7, 126.8, 127.3, 127.8, 128.4, 130.2, 131.8 

ppm. 

N
1
-(2-Trifluoromethyl-benzyl)-propane-1,3-diamine (40): yellow oil(560 mg, 

47%); 
1
H NMR (CDCl3, 200 MHz): δ = 1.54 (brs, 3H exchangeable with D2O), 1.63-1.76 

(m, 2H), 2.72-2.85 (m, 4H), 3.97 (s, 2H), 7.29-7.67 ppm (m, 4H); 
13

C NMR (CDCl3, 100 

MHz): δ = 31.3, 39.9, 47.4, 49.8, 125.7, 125.8, 126.9, 130.2, 131.9, 138.7 ppm. 

N
1
-(2-Methyl-benzyl)-ethane-1,2-diamine (41): yellow oil (420 mg, 23%); 

1
H 

NMR CDCl3, 400 MHz); δ = 1.57 (brs, 3H exchangeable with D2O), 2.72 (s, 3H), 2.72-2.75 

(m, 2H), 2.81-2.84 (m, 2H), 3.77 (s, 2H), 7.14-7.17 (m, 3H), 7.26-7.30 ppm (m, 1H); 
13

C 

NMR (CDCl3, 100 MHz): δ = 18.6, 41.2, 51.1 51.7 125.5 126.5, 127.9 129.8, 135.8, 137.9 

ppm. 
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N
1
-(2-Methyl-benzyl)-propane-1,3-diamine (42): yellow oil (510 mg, 42%); 

1
H 

NMR (CDCl3, 200 MHz): δ = 1.58-1.64 (m 2H), 2.01 (brs, 3H exchangeable with D2O), 

2.29 (s, 3H), 2.64-2.75 (m, 4H), 3.69 (s, 2H), 7.09-7.14 (m, 3H), 7.21-7.24 ppm (m, 1H); 

13
C NMR (CDCl3, 100 MHz): δ = 17.6, 31.8, 38.9, 46.4, 50.4, 124.5, 125.5, 126.9, 128.8, 

134.8, 137.2 ppm.  

N
1
-(2,3,4-Trimethoxy-benzyl)-ethane-1,2-diamine (43): yellow oil (760 mg, 88%); 

1
H NMR (CDCl3, 200 MHz): δ 2.1 (brs, 3H exchangeable with D2O), 2.66-2.75 (m, 2H), 

2.84 (t, J = 5.3 Hz, 2H), 3.74 (s, 2H), 3.85-3.92 (m, 9H), 6.61-6.65 (d, J = 8.4 Hz, 1H,), 

6.94-6.98 ppm (d, J = 8.4 Hz, 1H); 
13

C NMR (CDCl3, 100 MHz): δ = 44.3, 45.7, 53.2, 56.1, 

56.8, 57.1, 108.2, 116.8, 119.5, 131.6, 147.3, 149.5 ppm. 

N
1
-(2,3,4-Trimethoxy-benzyl)-propane-1,3-diamine (44): yellow oil (505 mg, 

51%); 
1
H NMR (CDCl3, 200 MHz): δ = 1.61-1.71 (m, 2H), 2.09 (brs, 3H exchangeable with 

D2O), 2.64 (t, J = 7.0 Hz, 2H), 2.75 (t, J = 6.6 Hz, 2H,), 3.71 (s, 2H), 3.83-3.91 (m, 9H), 

6.59-6.63 (d, J = 8.4 Hz, 1H), 6.9-6.94 ppm (d, J = 8.8, 1H); 
13

C NMR (CDCl3, 100 MHz): 

δ = 22.7, 41.0, 43.3, 51.1, 54.0, 57.2, 57.5, 107.1, 116.3, 121.1, 130.2, 145.4, 148.5 ppm. 

N
1
-(3,4,5-Trimethoxy-benzyl)-ethane-1,2-diamine (45): yellow oil (720 mg, 82%); 

1
H NMR (CDCl3, 200 MHz): δ = 2.3 (brs, 3H exchangeable with D2O), 2.68 (t, J = 5.4 Hz, 

2H), 2.78 (t, J = 5.2 Hz, 2H), 3.67-3.80 (m, 11H), 6.52 ppm (s, 2H); 
13

C NMR (CDCl3, 50 

MHz): δ = 40.8, 50.9, 53.5, 55.5, 60.2, 104.4, 135.6, 136.2, 152.6 ppm. 

N
1
-(3,4,5-Trimethoxy-benzyl)-propane-1,3-diamine (46): yellow oil (810 mg, 

91%); 
1
H NMR (CDCl3, 400 MHz): δ = 1.64 (brs, 3H exchangeable with D2O), 1.2-1.76 (m, 

2H), 2.69 (t, J = 6.6 Hz,  2H), 2.81 (t, J = 7.0 Hz, 2H), 3.64 (s, 3H), 3.70 (s, 2H), 3.79 (s, 

3H), 3.83 (s, 3H), 6.55 ppm (s, 2H); 
13

C NMR (CDCl3, 100 MHz): δ = 31.0, 39.4, 46.4, 

53.5, 55.7, 60.3, 104.7, 135.2, 136.3, 152.7 ppm. 

General Procedure for the Synthesis of 47-50: To a solution of diamine (3 eq) in 

CH3CN (15 mL) were added K2CO3 (1 eq)  and propargyl or vinyl bromide (1 eq). The 

mixture was stirred for 24 h at room temperature under nitrogen atmosphere. The insoluble 

salts were removed by filtration and the solvent removed in vacuo. The crude material was 

purified by flash column chromatography using as eluent a mixture of 

dichloromethane/methanol/33% acqueous ammonia (7:3:0.3), providing the desired 

products 47-50. 
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N
1
-(prop-2-yn-1-yl)ethane-1,2-diamine (47): yellow oil, (42%); 

1
H NMR 

(200MHz, CDCl3) δ 1.79 (brs, 3H exchangeable with D2O), 2.24 (s, 1H), 2.78-2.89 (m, 4H), 

3.47-3.48 (m, 2H). 

N
1
-(prop-2-yn-1-yl)propane-1,3-diamine (48): yellow oil, (49%); 

1
H NMR 

(200MHz, CDCl3)δ 1.55-1.62 (m, 2H+3H exchangeable with D2O), 2.17-2.19 (m, 1H), 

2.67-2.76 (m, 4H), 3.37 (s, 2H). 

N
1
-allylethane-1,2-diamine (49): yellow oil, (37%); 

1
H NMR (200MHz, CDCl3)δ 

2.72 (brs, 3H exchangeable with D2O), 2.59-2.77 (m, 2H), 2.65-2.77 (m, 4H), 3.24-3.27 (m, 

2H), 5.08 (m, 2H), 5.82-5.99 (m, 1H). 

N
1
-allylpropane-1,3-diamine (50): yellow oil, (31%); 

1
H NMR (200MHz, CDCl3)δ 

1.27 (brs, 3H exchangeable with D2O), 1.69-1.79 (m, 2H), 2.74-2.87 (m, 4H), 3.28-3.31 (m, 

2H), 5.10-5.25 (m, 2H), 5.84-5.95 (m, 1H). 
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CHAPTER 7 

TETRASUBSTITUTED NDIs AS G-QUADRUPLEX-BINDING 

LIGANDS 

 

7.1 DRUG DESIGN 

Telomeres are complex structures located at the end of chromosome, and their 

maintenance is fundamental for cell viability. During cell replication, the enzyme 

telomerase is able to replicate them. However, in physiological conditions, telomere became 

shorter with age, resulting in cell death. On the other hand, cancer cells over-express 

telomerase, leading to a prolonged cell life. Since telomeres comprise repeated short G-rich 

tracts, they are able to fold into particular DNA structures called G-quadruplex. 

Stabilization of G-quadruplex by small molecules, could indirectly inhibit telomerase and 

telomere maintenance in cancer cells, and also displace the protein hPOT1 from the 

telomere, leading to end-to-end fusion of chromosomes, cell cycle arrest, and apoptosis. G-

quadruplexes can be formed also in promoter regions of oncogenes such as c-myc and c-kit, 

and their stabilization can down-regulate the oncogene expression.  

NDIs are very potent G-quadruplex ligands with high cellular toxicity. They possess 

a π-acidic core, ideal for performing π-π stacking interactions with G-tetrads, and when they 

are functionalized with four side chains bearing amine end groups, they have the potential to 

interact with the grooves at the sides of the G-quadruplex, as demonstrated by X-ray 

crystallography.
141,

 
327

  

Neidle and coworkers described a series of NDIs with high affinity for human 

telomeric quadruplex DNA.
328,143

 These compounds also showed high potency for growth 

inhibition in a panel of cancer cell lines, concomitant with telomerase inhibition. In 

particular, derivative with N-methyl-piperazine end-groups, showed exceptional potency in 

a panel of pancreatic cancer cell lines,
143

 with a lead compound (BMSG-SH-3) having IC50 

values in nanomolar range. BMSG-SH-3 has been evaluated in a pancreatic cancer xenograf 

model, revealing significant anti-tumor activity, with a 50% reduction in tumor volume, 

together with telomerase inhibition.
329
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The aim of this work was to find new potent G-quadruplex binding ligands with 

improved antiproliferative activity. In this study the SAR of NDIs have been expanded. 

Analogues of the lead compound BMSG-SH-3, in which the N-methyl-piperazine groups on 

two side-arms of the NDI core have been changed with other substituents, have been 

synthesized. 

Since a reduction in highly cationic nature of these compounds could improve 

cellular uptake and tumor distribution properties, the principal substituent inserted on the 

side-arms was the morpholine group (compounds 1d, 1f-h), because it is less basic than the 

protonated N-methyl-piperazine ring, with a pK of 8.5 compared to that for the latter, of 9.2. 

Also, it is endowed with approximately equivalent size and so it could be bind in the same 

region of groove space. Only two side-chain have been changed, since the complete removal 

of cationic groups result in loss of quadruplex affinity. The series was further extended with 

NDI compounds each having two methoxy, furan, tetrahydrofuran, and tetrahydropyran 

end-groups (compounds 1a-c, 1e).   
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Figure 7.1: Drug Design of compounds 1a-h 
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7.2 METHODS 

 

7.2.1 Synthesis  

Compounds 1a-h were synthesized according to Scheme 7.1.  

The 2,6-dibromonaphthalene-1,4,5,8-tetracarboxylic dianhydride (3) was obtained by 

reacting Naphthalenetetracarbocylic dianhydride with dibromoisocyanuric acid in sulphuric 

acid as reported in literature.
330

  

The appropriate commercially available amine was condensed with 3 in acetic acid to 

obtain the disubstituted naphthalene diimide compounds 2a-f. 

Finally, such compounds were treated with 1-(3-Aminopropyl)-4-methylpiperazine 

or 1-(2-aminoethyl)-4-methylpiperazine in N-Methylpyrrolidone (NMP) to obtain the final 

products 1a-h. 

 

 

  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 

 

 

 

http://www.google.it/url?sa=t&rct=j&q=nmp%20solvent&source=web&cd=3&ved=0CD0QFjAC&url=http%3A%2F%2Fwww2.basf.us%2Fdiols%2Fbcdiolsnmp.html&ei=ssFET_CvFYr0-gaqxNmCAg&usg=AFQjCNG-gBq-QkTdYU8ILZvaGHg-KpgmCQ
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Scheme 7.1 
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7.2.2 Biophysical Evaluation 

The G-quadruplex binding ability of compounds 1a-h was assessed by Fluorescence 

Resonance Energy Transfer (FRET) melting technique. Values are expressed as  the melting 

temperature difference between the nucleotide with drug and the negative control (ΔTm).  

To obtain information about the mode of binding of NDI compounds to G-

quadruplex, the crystal structure of 1d with the human telomeric 22-mer quadruplex 

sequence d[AGGG(TTAGGG)3] has been carried out. The crystal structure was solved by 

molecular replacement using the PHASER program, with the native 22-mer telomeric 

quadruplex crystal structure 1KF1 as a search model.
 

Programs CHIMERA23 and 

PYMOL24 were used for structure drawing.
 

 

7.2.3 Biology 

Derivatives were tested for in vitro antiproliferative activity in a panel of cancer cell 

lines. The antiproliferative activity has been evaluated by the Sulforhodamine B short-term 

cytotoxicity assay (SRB). Values are showed as  the concentration required to inhibit cell 

growth by 50% (IC50). 
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7.3 RESULTS AND DISCUSSION 

Compounds 1a-h were firstly evaluated for their ability to stabilize G-quadruplex 

DNA with the high-throughput FRET melting technique. The sequences used for the 

screening are F21T (telomeric), and promoter region of HSP90A and HSP90B. Tloop is a 

DNA-duplex sequence used as control. The results in Table 7.1 shows that only compounds 

with morpholino rings were able to perform a significant telomeric quadruplex stabilization. 

All of them, produced high Tm changes, comparable to that noted for the lead compound 

BMSG-SH-3. In particular, compounds 1f and 1g composed by two methylene unit and 

characterized by a morpholino ring, were the most selective for quadruplex over duplex 

DNA. 

None of the other etherocycles or acyclic ether compounds had any effect on 

quadruplex or duplex stability except compound 1a and 1e, which did not interact with 

F21T sequence, but they showed a large stabilizing effect on HSP90 promoter quadruplex 

sequences.  

 

 

Table 7.1. G-quadruplex stabilization of compounds 1a-

h in the FRET melting temperature assay. Values are 

snown as ΔTm in °C 

 
 
 

 

 
Preliminary biological evaluation has been obtained by the SRB assay (Table 7.2). 

The cell growth inhibition ability of compounds 1a-h has been assayed in a panel of cancer 

cell lines comprising: A549 (lung), RCC4 (renal), MIA-Paca-2 (pancreatic), 786-0 (renal) 

Compd T-loop htel HSP90A HSP90B 

1a 0.2 0.2 27.1 21.0 

1b 0.3 0.2 0.9 1.1 

1c 0.2 0.1 0.7 0.8 

1d 4.9 26.6 33.1 28.6 

1e 0.0 0.5 29.0 23.8 

1f 0.8 27.0 33.9 29.1 

1g 1.7 24.7 30.6 27.6 

1h 8.1 27.8 31.9 31.1 

BMSG-SH-3 1.3 28.3 36.3 32.0 
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and MCF-7 (breast). Among all the tested compounds, 1a was devoid of activity. However, 

all the other derivatives without morpholino groups, showed some activity in micromolar 

range. In particular, compound 1e showed up to 10-fold selectivity for the renal cancer cell 

line 786-0. 

All the morpholino compounds displayed sub-micromolar activity in at least some of 

the cancer cell lines used, and the two compounds 1d and 1h, with a linker composed by 

three methylene unit showed an interesting activity against MIA-Paca-2 pancreatic 

carcinoma and A549 lung adenocarcinoma cell lines at the 10-20 nM level. Indeed, 

compared with BMSG-SH-3, the selectivity of these compounds vs the normal line WI-38 

was modest. However, MTD (maximum tolerated dose) and xenograf experiments will be 

performed to verify whether this low selectivity could be related to the therapeutic window. 

 

 

 

Table 7.2. Short term cytotoxicity of compounds 1a-h in a panel of cancer cell lines (WI-38 is a normal 

fibroblast line), determined by 96 h SRB assay. Values are shown as IC50 in μM. 
 

 

 
 

 
 

To investigate the binding mode of 1d at G-quadruplex, crystallographic studies have 

been performed. The co-crystal structure of compound 1d with the human telomeric 

sequence d[AGGG(TTAGGG)3] has been obtained (Figure 7.2 A): it is a 2:2 complex in 

Cell 

line 
1a 1b 1c 1d 1e 1f 1g 1h 

BMSG-

SH-3 

A549 inactive 2.41±0.01 2.92±0.01 <0.01±0.005 2.54±0.01 1.55±0.02 4.93±0.05 <0.01±0.006 0.11±0.02 

RCC4 inactive 3.11±0.06 8.38±0.50 0.56±0.05 10.51±0.14 1.75±0.18 5.10±0.70 0.28±0.06 n/a 

MIA- 

PaCa2 inactive 2.83±0.01 2.50±0.01 0.01±0.01 2.79±0.09 0.04±0.01 n/a 0.01±0.01 0.11±0.02 

786-0 inactive 1.10±0.03 1.20±0.03 0.32±0.01 7.17±0.41 0.63±0.06 1.48±0.17 n/a n/a 

MCF-7 inactive 2.61±0.06 3.12±0.13 0.07±0.007 5.62±0.15 0.17±0.01 0.18±0.03 0.03±0.01 0.17±0.03 

WI-38 inactive 6.84±0.05 12.65±0.11 0.23±0.01 3.32±0.50 0.61±0.02 1.17±0.11 2.46±0.02 9.0±3.2 
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which the ligand molecule bound at each end of the 5‟-5‟ quadruplex dimer, stacked over 

the terminal G-quartets. The two aniline substituents are both oriented such they formed 

intramolecular hydrogen bonds with adjacent carbonyl oxygen atoms, effectively extending 

the π-π overlap with the G-quartet. 

 

                                 A                                                             B 

 

 

 

 

 

Figure 7.2 B shows that the chromophore and side-chains of compound 1d are almost 

superimposed over the position observed for the lead compound BMSG-SH-3 in its co-

crystal structure. This correspondence even extends to the orientation of the end-groups. 

One nitrogen atom ring of the N-methyl-piperazine group (presumably the one that is 

protonated), is directly hydrogen-bounded to a phosphate oxygen atom (Figure 7.3 A), 

whereas the morpholino ring close to the adjacent groove did not show direct hydrogen 

bonds to the quadruplex backbone. For this group, it is evident the hydrogen-bond from the 

ring to a network of two water molecules and then to a neighboring phosphate group (Figure 

7.3 B). Presumably this fact contributes to the stabilization of the side-chain. 

 

A B 

Figure 7.2: Crystal structure of the 2:2 complex between compound 1d and the telomeric quadruplex. 
A. The 2:2 stoichiometry and the end-stacking of the bound compound (colored mauve). Potassium ions 
are shown as small spheres. B. A view projected onto the G-quartet, with compound 1d superimposed 
on the previously-determined position of compound BMSG-SH-3.  
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                                          A                                                                      B 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

B   

Figure 7.3: A. View of the hydrogen bonding between a N-methyl-piperazine ring nitrogen atom and a 
phosphate group in a groove.  B. View of one morpholino group of compound  1d bound in the groove, 
showing hydrogen bonding to two water molecules, which then contact a phosphate group and N2 of a  
guanine base. 
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7.4 CONCLUSION 

In this work the structure-activity relationships of BMSG-SH-3 have been expanded. 

In particular, it has been demonstrated that the substitution of two N-methyl-piperazine 

moiety with two morpholino groups led to compounds endowed with high cytotoxic 

activity, correlated with G-quadruplex stabilization properties. Compounds 1d and 1h, 

bearing morpholino end-groups, were the most potent, showing growth inhibition ability in 

a panel of cancer cell line, superior to that of the lead compound BMSG-SH-3. In particular, 

they were the most potent inhibitors of cell growth in Mia-Paca-2 (pancreatic) and A549 

(lung) cell lines, where they showed IC50 values at the 10-20 nM range. Furthermore, 

compound 1e displayed an interesting biological profile characterized by a 10-fold 

selectivity for 786-0 (renal) cell lines.  

Moreover, the morpholino compounds 1d and 1h, were able to interact with the G-

quadruplex formed in telomeres and HSP90 promoter regions at 1 μM concentration with 

high ΔTm values. The ability of 1d to bind telomeric G-quadruplex has been confirmed by 

the co-crystal structure of this compound with the human telomeric G-quadruplex. The 

structure also allowed to elucidate the binding mode of the molecule to this important target.  

The lack of quadruplex binding activity shown by the other compounds, strongly 

suggests that a suitable hydrogen-bonding ability is a minimal requirement for all four end-

groups contained in these NDI derivatives. 

Compounds 1d and 1h will be further investigated to better clarify their activity 

towards telomerase, and their mechanism(s) of action. Compound 1d is currently being 

evaluated in a xenograft model of pancreatic cancer, which is very difficult to combat. 
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7.5 EXPERIMENTAL SECTION 

 

7.5.1 Chemistry 

All chemicals, reagents and solvents were purchased from Sigma-Aldrich, Alfa 

Aesar, Lancaster Synthesis and Fluorochem (UK) and used without further purification. 

Solvents were supplied by VWR and Fisher scientific. Column chromatography was 

performed using BDH silica gel (BDH 153325P). HPLC analysis was carried out with a 

Gilson apparatus combining a 322 PUMP and an Agilent 1100 SERIES detector, using a 

C18 5μ (100 x 4.6 mm) column (41622271 (W), YMC, Japan), at a flow of 1 mL/min. 

Preparative HPLC was carried out with a Gilson apparatus combining a 322 PUMP and a 

UV/VIS-155 detector with detection at 280 nm, using a C18 5μ (100 x 20 mm) column 

(201022272) (W), YMC, Japan, at a flow of 20 mL/min. Water and methanol with 0.1 % 

formic acid were used as solvents for HPLC. For the purification of compounds 1d, 1f-h, 

the following method was used: 100 % aqueous for 5 min after injection, gradually 

decreased to 60 % aqueous over 25 min. For compounds 1a-c and 1e, the following method 

was used: 100% aqueous for 2 min after injection, gradually decreased to 20% aqueous over 

17 minutes. For the HPLC purity analysis of compounds 1a-h, the method used was: 100 % 

aqueous for 5 min after injection, to 60 % aqueous over 18 min as well as 100 % aqueous 

for 5 min after injection, to 60 % aqueous over 43 min. Purity for final compounds was 

greater than 95% (HPLC, 280 nm). NMR spectra were recorded at 400 MHz (
1
H NMR) or 

500 MHz (
13

C NMR) on a Bruker spectrometer. NMR spectra were analyzed with MestReC 

4.5.6.0 with chemical shifts using TMS as a standard (δ = 0 ppm). NMR multiplicity 

abbreviations are s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), 5q 

(quintet), and m (multiplet). Coupling constants J are reported as observed in Hertz (Hz). 

High Resolution Mass spectra (HRMS) were measured on a Micromass Q-TTOF Ultima 

Global tandem mass spectrometer run under electrospray ionisation (ESI), and processed 

using the MassLab 3.2 software. For compounds 2a-f no 
13

C NMRs were obtained due to 

solubility issues. 

Compound 3 was prepared according to literature procedures.
330

 Analytical data and 

1
H and 

13
C NMR spectra matched literature values. 
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General Procedure for the Synthesis of compounds 2a-f. 2,6-dibromonaphthalene-

1,4,5,8-tetracarboxylic dianhydride (3) (0.47 mmol) and the suitable amine (1.9 mmol) were 

suspended in acetic acid (14 ml) and refluxed for 5 h. After having been cooled to room 

temperature the precipitate was filtered and washed with water (50 mL) to give the title 

compound. 

4,9-dibromo-2,7-bis((tetrahydrofuran-2-

yl)methyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (2a): from 

tetrahydrofurfurylamine as starting material; orange semi-solid (0.077 g, 28% yield). 
1
H 

NMR (400 MHz, CDCl3, TMS): δ 8.76 (s, 2H), 4.51-4.39 (m, 4H), 4.13-4.09 (m, 2H), 3.99-

3.93 (m, 2H), 3.79-3.73 (m, 2H), 2.15-2.03 (m, 4H), 1.99-1.88 (m, 2H), 1.80-1.71 (m, 2H).  

4,9-dibromo-2,7-bis(furan-2-ylmethyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (2b): from furfurylamine as starting material; orange semi-solid 

(0.160 g, 39% yield). 
1
H NMR (400 MHz, DMSO, TMS): δ 8.80-8.73 (m, 2H), 7.58-7.57 

(m, 2H), 6.46-6.40 (m, 4H), 5.28-5.26 (m, 4H). 

4,9-dibromo-2,7-bis((tetrahydro-2H-pyran-4-

yl)methyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (2c): from 4-

(aminomethyl)tetrahydropyran (0.2 g, 2.1 mmol) as starting material; orange semi-solid (0.1 

g, 23% yield). The compound was used without further purification. No analytical data 

provided for this compound due to solubility issues.  

4,9-dibromo-2,7-bis(3-morpholinopropyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (2d): from 3-morpholinopropylamine as starting material;  orange 

semi-solid (0.15 g, 32% yield). 
1
H NMR (400 MHz, CDCl3, TMS): δ 8.99-8.76 (m, 2H), 

4.33-4.28 (m, 4H), 3.54-3.52 (m, 8H), 2.53-2.50 (m, 4H), 2.45-2.37 (m, 8H), 2.00-1.92 (m, 

4H). 

4,9-dibromo-2,7-bis(3-methoxypropyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (2e): from 3-methoxypropylamine as starting material; orange 

semi-solid (0.1 g, 25% yield). 
1
H NMR (400 MHz, CDCl3, TMS): δ 8.99 (s, 2H), 4.36-4.30 

(m, 4H), 3.55-3.51 (m, 4H), 3.31-3.28 (m, 6H), 2.06-2.00 (m, 4H). 

4,9-dibromo-2,7-bis(2-morpholinoethyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (2f): from 4-(2-aminoethyl)morpholine as starting material;  

orange semi-solid (0.2 g, 14% yield). 
1
H NMR (400 MHz, CDCl3, TMS): δ 8.99 (s,1H), 
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8.76 (s, 1H), 4.37 (t, 4H, J=6.4 Hz), 3.66-3.64 (m, 8H), 2.74-2.70 (m, 4H), 2.58-2.53 (m, 

8H). 

General Procedure for the Synthesis of compounds 1a-h. The appropriate 

disubstituted naphthalene diimied ( 2a-h)  (0.067 mmol), 1-(3-Aminopropyl)-4-

methylpiperazine or 1-(2-aminoethyl)-4-methylpiperazine  (0.3 mmol), and NMP (0.5 mL) 

were  suspended in a microwave reaction vessel. The tube was flushed with argon, sealed 

and heated overnight (120 °C). After having been cooled to room temperature, the solvent 

was concentrated in vacuo and the crude mixture was purified by preparative HPLC to 

obtain the title compound. 

4,9-bis((3-(4-methylpiperazin-1-yl)propyl)amino)-2,7-bis((tetrahydrofuran-2-

yl)methyl) benzo[lmn] [3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (1a): from 2a as 

starting material; blue semi-solid (0.02 g, 40% yield). 
1
H NMR (400 MHz, CDCl3, TMS): δ 

9.49-9.43 (m, 2H), 8.18 (s, 2H), 4.46-4.41 (m, 2H), 4.37-4.33 (m, 2H), 4.16-4.07 (m, 2H),  

3.98-3.93 (m, 2H), 3.77-3.71 (m, 2H), 3.59-3.57 (m, 4H), 2.96-2.82 (m, 8H), 2.78-2.65 (m, 

8H), 2.60-2.56 (m, 10H), 2.11-2.00 (m, 4H), 1.98-1.88 (m, 8H). 
13

C NMR (100 MHz, 

CDCl3, TMS): δ 166.2, 163.3, 149.2, 125.8, 121.3, 118.6, 101.9, 76.4, 67.9, 55.4, 54.3, 51.7, 

44.8, 43.7, 41.4, 29.6, 26.4, 25.3. HRMS (ES
+
) calculated for (M+2H)

2+
 C40H56N8O6 

746.4480, found 746.4450. 

2,7-bis(furan-2-ylmethyl)-4,9-bis((3-(4-methylpiperazin-1-

yl)propyl)amino)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (1b): from 

2b as starting material; blue semi-solid (0.03 g, 16% yield).  
1
H NMR (400 MHz, CDCl3, 

TMS): δ 9.45 (t, 2H, J=5.4 Hz), 8.19 (s, 2H), 7.32-7.31 (m, 2H), 6.39-6.38 (m, 2H), 6.32-

6.31 (m, 2H), 5.36 (s, 4H), 3.59 (q, 4H, J=6 Hz), 3.04 (bs, 8H), 2.73 (bs, 8H), 2.59-2.56 (m, 

10H), 1.93 (5q, 4H, J=6.4 Hz, 6 Hz). 
13

C NMR (100 MHz, CDCl3, TMS): δ 165.5, 162.7, 

150.2, 149.2, 142.0, 125.7, 121.2, 118.7, 110.6, 109.0, 101.8, 55.2, 53.3, 50.9, 43.8, 41.4, 

36.3, 26.2. HRMS (ES
+
) calculated for (M+H)

+
 C40H48N8O6 737.3775, found 737.3742.  

4,9-bis((3-(4-methylpiperazin-1-yl)propyl)amino)-2,7-bis((tetrahydro-2H-pyran-

4-yl)methyl)benzo [lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (1c): from 2c as 

starting material; blue semi-solid (0.025 g, 20% yield). 
1
H NMR (400 MHz, CDCl3, TMS): 

δ 9.41 (t, 2H, J=5.4 Hz), 8.18 (s, 2H), 4.14 (d, 4H, J=7.2 Hz), 3.99-3.96 (m, 4H), 3.59 (q, 

4H, J=6.4 Hz, 6 Hz),  3.38-3.32 (m, 4H), 2.54-2.50 (m, 16H), 2.30 (s, 6H), 2.20-2.10 (m, 
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2H), 1.97 (5q, 4H, J=6.8 Hz, 7.2 Hz), 1.66-1.48 (m, 12H). 
13

C NMR (100 MHz, CDCl3, 

TMS): δ 166.4, 163.4, 149.3, 125.7, 121.2, 118.6, 101.8, 67.7, 55.8, 55.1, 53.3, 46.1, 45.4, 

41.4, 34.4, 30.9, 26.7. HRMS (ES
+
) calculated for (M+2H)

2+
 C42H60N8O6 774.4792, found 

774.4806.  

4,9-bis((3-(4-methylpiperazin-1-yl)propyl)amino)-2,7-bis(3-morpholinopropyl) 

benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (1d): from 2d as starting 

material; blue semi-solid (0.015 g, 12% yield). 
1
H NMR (400 MHz, CDCl3, TMS): δ 9.38 (t, 

2H, J=5.4 Hz), 8.12 (s, 2H), 4.24 (t, 4H, J=6.8 Hz), 3.61 (t, 8H, J=4.4 Hz), 3.57 (q, 4H, 

J=6.8 Hz, 6.4 Hz), 2.53-2.44 (m, 30H), 2.30 (s, 6H), 1.99-1.88 (m, 8H). 
13

C NMR (100 

MHz, CDCl3, TMS): δ 166.1, 163.1, 149.1, 125.7, 121.1, 118.3, 101.9, 67.0, 56.5, 55.8, 

55.0, 53.6, 53.2, 46.0, 41.3, 38.8, 26.7, 24.7. HRMS (ES
+
) calculated for (M+H)

+
 

C44H66N10O6 831.5245, found 831.5242.  

2,7-bis(3-methoxypropyl)-4,9-bis((3-(4-methylpiperazin-1-

yl)propyl)amino)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (1e): from 2e 

as starting material; blue semi-solid (0.018 g, 27% yield). 
1
H NMR (500 MHz, CDCl3, 

TMS): δ 9.37 (t, 2H, J=5.4 Hz), 8.06 (s, 2H), 4.24 (t, 4H, J=7 Hz), 3.55-3.49 (m, 8H), 3.33 

(s, 6H), 2.77-2.51 (m, 20H), 2.34 (s, 6H), 2.00-1.92 (m, 8H). 
13

C NMR (125 MHz, CDCl3, 

TMS): δ 165.9, 162.9, 149.0, 125.5, 121.0, 118.2, 101.7, 70.6, 58.6, 55.7, 54.6, 52.7, 45.5, 

41.4, 37.9, 28.2, 26.6. HRMS (ES
+
) calculated for (M+H)

+
 C38H56N8O6 721.4401, found 

721.4437.  

4,9-bis((3-(4-methylpiperazin-1-yl)propyl)amino)-2,7-bis(2-morpholinoethyl) 

benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (1f): from 2f as starting 

material; blue semi-solid (0.018 g, 15% yield). 
1
H NMR (400 MHz, CDCl3, TMS): δ 9.36 (t, 

2H, J=5.4 Hz), 8.14 (s, 2H), 4.45 (t, 4H, J=6.8 Hz), 3.84-3.82 (m, 8H), 3.64 (q, 4H, J=6.4 

Hz, 5.6 Hz), 3.24 (bs, 8H), 3.03-2.84 (m, 20H), 2.75 (s, 6H), 2.73-2.69 (m, 4H), 2.00 (5q, 

4H, J=6.8 Hz, 6.4 Hz). 
13

C NMR (100 MHz, CDCl3, TMS): δ 166.0, 163.1, 149.2, 125.7, 

121.2, 118.4, 101.9, 65.4, 55.4, 54.6, 52.9 (x2C), 50.0, 43.3, 40.9, 35.7, 25.9. HRMS (ES
+
) 

calculated for (M+H)
+
 C42H62N10O6 803.4932, found 803.4963.  

4,9-bis((2-(4-methylpiperazin-1-yl)ethyl)amino)-2,7-bis(2-

morpholinoethyl)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (1g): from 2f 

as starting material; blue semi-solid (0.020 g, 17% yield). 
1
H NMR (400 MHz, CDCl3, 
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TMS): δ 9.59-9.56 (m, 2H), 8.19 (s, 2H), 4.41 (t, 4H, J=6.4 Hz), 3.77-3.62 (m, 12H), 3.13 

(bs, 8H), 2.91-2.66 (m, 30H). 
13

C NMR (100 MHz, CDCl3, TMS): δ 165.9, 163.0, 148.9, 

125.8, 121.4, 118.7, 102.3, 66.6, 55.9, 55.9, 53.7, 53.6, 50.2, 43.7, 40.2, 36.8. HRMS (ES
+
) 

calculated for (M+2H)
2+

 C40H58N10O6 776.4698, found 776.4660.  

4,9-bis((2-(4-methylpiperazin-1-yl)ethyl)amino)-2,7-bis(3-morpholinopropyl) 

benzo [lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (1h): from 2d as starting 

material; blue semi-solid (0.025 g, 7% yield). 
1
H NMR (500 MHz, CDCl3, TMS): δ 9.49-

9.47 (m, 2H), 8.09 (s, 2H), 4.17-4.20 (m, 10H), 3.66 (t, 6H, J=4 Hz), 3.55 (q, 4H, J=5.5 Hz, 

5.5 Hz), 3.02 (bs, 6H), 2.81-2.78 (m, 10H), 2.62-2.59 (m, 16H), 1.98-1.92 (m, 4H). 
13

C 

NMR (125 MHz, CDCl3, TMS): δ 166.0, 163.1, 148.9, 125.8, 121.3, 118.7, 102.3, 66.1, 

56.0, 55.9, 53.6, 53.0, 50.3, 43.6, 40.1, 38.44, 24.1. HRMS (ES
+
) calculated for (M+H)

+
 

C42H62N10O6 803.4932, found 803.4952.  

 

7.5.2 Biophysical Evaluation 

 

7.5.2.1 Fluorescence Resonance Energy Transfer (FRET) 

The following oligonucleotide sequences, all purchased from Eurogentec, were used: 

F21T: (5‟-FAM-GGG TTA GGG TTA GGG TTA GGG-TAMRA-3‟), HSP90a: (5‟-FAM-

GGG-CCA AAG GGA AGG GGT GGG-TAMRA-3‟), HSP90b: (5‟-FAM-GGGCGG GCC 

AAA GGG AAG GGG-TAMRA-3‟), T-Loop: (5‟-FAM-TAT AGC TATA TTT TTT 

TATA GCT ATA-TAMRA-3‟). TAMRA (6-carboxytetramethylrhodamine) is the acceptor 

fluorophore, and FAM (6-carboxyfluorescein) is the donor fluorophore. From 50 μM stock 

solutions, 400 nM solutions in FRET buffer (60 mM potassium cacodylate pH 7.4) were 

prepared. The nucleotides were annealed by heating the samples to 90 °C for 10 min and 

allowing them to cool down to RT within 4 h. 10 mM solutions of the compounds in 

deionised water were prepared and diluted to double of the required concentrations with 

FRET buffer. In RT-PCR 96 well plates (MJ Research, Waltham, MA), each well was 

loaded with 50 μL of nucleotide solution and 50 μL of drug solution. Drug concentrations of 

0.1, 0.2, 0.5, 1, 2, 5 and 10 μM were used, and every drug concentration was repeated 3 

times. Measurements were made on a DNA Engine Opticon (MJ Research) with excitation 

at 450 – 495 nm and detection at 515 – 545 nm. The flourescence was read at intervals of 
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0.5 °C over the range 30 – 100 °C. Before each reading the temperature was held constant 

for 30 s. The raw data were processed using Origin (Version 7.0, OriginLab Corp.). The 

graphs were smoothed using a 10-point running average and normalized. The melting 

temperatures were obtained by determining the maxima of the first derivative of the smooth 

melting curves. The value ΔT is the melting temperature difference between the nucleotide 

with drug and the negative control.   

 

7.5.2.2 Crystallography 

The DNA G-quadruplex forming sequence d(AGGG[TTAGGG]3) was initially 

dissolved in water to a final concentration of 2.5 mM single-stranded DNA (ssDNA). Buffer 

and salts were then added to the DNA to final concentrations of 2 mM ssDNA, 50 mM 

potassium chloride and 20 mM potassium cacodylate (pH 6.5). The buffered DNA was then 

annealed, which involved heating the sample to 85
o
C in a heat block for 5 minutes followed 

by slow cooling to room temperature overnight. A stock solution of compound  in water was 

mixed separately with the DNA 22-mer at equimolar ratios, and crystals grown in standard 

hanging drops. Crystals of the 1d-DNA complex were grown at 12
o
C in a drop containing 

20 % PEG400, 100 mM lithium sulfate and 50 mM sodium cacodylate (pH 6.5).  Crystals 

were flash-frozen in liquid nitrogen and data collected at the Diamond Light Source 

synchrotron. All datasets were processed and scaled using the XDS, SCALA and XIA2 

programs.
331

 The crystal structure was solved by molecular replacement using the PHASER 

program. .Model building and refinement were performed using the COOT and 

REFMAC5
332

 programs. Initial 2Fo-Fc maps showed clear electron density for the core G-

quartets and potassium ions, as well as residual density for the loops and other regions 

omitted from the initial search model. A large region of electron density was visible in both 

Fo-Fc and 2Fo-Fc maps above the 3‟ G-quartet, into which the naphthalene compound could 

be readily fitted. The structure was refined to a resolution of 2.3 Å, with final Rwork and Rfree 

values of 25.8 % and 28.8 % respectively. Programs CHIMERA
333

 and PYMOL
334

 were 

used for structure drawing. 
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7.5.3 Biology 

 

7.5.3.1 Cell Culture 

The cell lines MCF7, A549, MIA-Paca-2  (European Collection of Cell Cultures), 

WI38 (American Type Culture Collection), and RCC4 (HPA Culture Collection, UK) were 

maintained in monolayer culture in 75 cm
2
 flasks (TPP, Switzerland) under a humidified 5 

% CO2 atmosphere at 37°C.   For the cell lines MCF7 and A549, the medium Dulbecco„s 

MEM (GIBCO 21969, Invitrogen, UK) supplemented with L-glutamine (2 mM, GIBCO 

25030, Invitrogen, UK), essential amino acids (1 %, GIBCO 11140, Invitrogen, UK), and 

foetal calf serum (10 %, S1810, Biosera, UK) was used. For MIA-Pa-Ca-2 and RCC4, 

Dulbecco„s MEM, supplemented with L-glutamine (2 mM) and foetal calf serum (10 %) 

was used. The medium MEM (M2279, Sigma, UK) with added L-glutamine (2 mM), 

essential amino acids (1 %) and foetal calf serum (10 %) was used for the cell line WI38. 

The medium RPMI 1640 (GIBCO 31870, Invitrogen, UK) with L-glutamine (2 mM) and 15 

% foetal calf serum was used for the cell line 786-0.  To passage the cells, they were washed 

with PBS (GIBCO 14040, Invitrogen, UK), treated with trypsine (GIBCO 25300, 

Invitrogen, UK), and re-seeded into fresh medium, resulting in an initial cell density of 

approximately 1x104 cells/mL medium. Cells were counted using a Neubauer 

haemocytometer (Assistant, Germany) by microscopy or a MacsQuant flow cytometer 

(Miltenyi Biotech, Germany) on a suspension of cells obtained by washing with PBS, 

trypsinisation, centrifugation at 8 °C at 8000 rpm for 3 minutes, and re-suspension in fresh 

medium. 

 

7.5.3.2 Sulforhodamine B (SRB) short-term cytotoxicity assay 

The cells were counted and diluted to the required concentration in 20 mL medium. 

For the cell lines A549, and MIA-Pa-Ca-2, 2000 cells with 160 μL media were seeded into 

each well of a 96 well plate (Nunc, Denmark). For WI38, 6000 cells per well, and for 

RCC4, MCF7 and 786-0, 4000 cells per well were used due to their higher doubling time. 

After incubation for 24 hours, the compounds to be tested, dissolved in 40 μL of medium, 

were added at different concentrations, and the cells incubated for 96 hours. The medium 

was then removed and the cells fixed by incubation with TCA (10 %, Sigma-Aldrich, UK) 
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in water for 30 min. After removal of the TCA, the cells were washed with deionised water 

5 times and dried at 60 °C for 1 h. Cells were then incubated with SRB (80 μL, 0.4 % in 1 % 

acetic acid, Acros Organics, UK) for 15 min at RT. The SRB was removed, the wells 

washed with 1 % acetic acid (200 μL), and dried at 60 °C for 1 h. Tris-base (100 μL, 10 

mM, Acros Organics, UK) solution was added to each well, and the plates were gently 

shaken for 5 min. The absorbance at 540 nm was measured with a plate reader (Spectrostar 

Omega, BMG Labtech, Germany). The data were normalised to the value of 100 for the 

control experiment (untreated cells), and the IC50 values were obtained by interpolation 

from a plot done with Origin (Version 7.0, OriginLab Corp.), as the concentration leading to 

an absorbance intensity of 50 %. 
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