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"There are two ways of constructing a
software design: one way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are no
obvious deficiencies.

The first method is far more difficult."

C.A.R. Hoare





Abstract

Cost, performance and availability considerations are forcing even the most conservative
high-integrity embedded real-time systems industry to migrate from relatively simple hard-
ware single-core processors to ones equipped with caches and other acceleration features.
This irresistible migration threatens to disrupt the approach, practices and solutions that
industry had developed and consolidated over the years to address the challenge of timing
analysis. Industry that are confident with the efficiency and effectiveness of their verifi-
cation and validation processes for old-generation hardware processors, do not have suffi-
ciently solid insight on the effects that may be incurred by the migration to cache-equipped
processors. Caches are perceived as an additional source of complexity, which has poten-
tial for shattering the guarantees of cost- and schedule-constrained qualification of their
systems. The current industrial approach to timing analysis is ill-equipped to cope with
the potentially large jitters incurred by the use of caches. Conversely, the application of
advanced WCET analysis techniques on real-world (hence large and massively complex)
industrial software, developed without analysability in mind, is often irremediably infeasi-
ble.

Building on those considerations we propose the adoption of a structured “cache-
aware” development approach aimed at minimising the extent and source of cache jitters,
as well as at enabling the application of advanced WCET analysis techniques to large com-
plex systems. We defined our approach as a combination of three main constituents: (i)
identification of those software constructs that may impede or exceedingly complicate tim-
ing analysis in large and complex systems; (ii) elaboration of practical means, under the
model-driven engineering (MDE) paradigm, to enforce the automated generation of soft-
ware that is time predictable by construction; and (iii) implementation of an incremental
layout optimisation method to remove cache jitters that stem from the software layout in
memory, with the intent of actively facilitating incremental software development, which
is of high strategic interest to industry. The integration of those constituents in a coherent
structured approach to timing analysis achieves two interesting properties: the resulting
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software product is at one time usefully analysable from the earliest releases onwards -
as opposed to only becoming so when the system is final - and more easily amenable
to advanced timing analysis by construction, which may consequently scale to large and
complex real-world systems.

Disclaimer The work that conducted to this thesis has been supported by Thales Alenia
Space - France (TAS-F), a large established industry in the space domain, under grant
agreement number 1520007750 and benefited from valuable discussions within the TAS-F
Platform and Satellite Research Department in Cannes. However, the ideas and results
hereby presented reflects only the author’s opinions and do not necessarily engage those
of Thales Alenia Space - France, unless explicitly stated.
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Chapter 1

Introduction

1.1 Problem definition

The provision of highly dependable guarantees on the timing behaviour is an ineludible
concern in the qualification process of safety and mission critical embedded systems. The
ongoing migration from relatively simple hardware platforms to cache-equipped proces-
sors in high integrity real-time systems is likely to disrupt the consolidated industrial
approach to timing analysis. This thesis responds to the specific industrial need for the
definition of a set of countermeasure and techniques to enable timing analysis of cache-
equipped processors in industrial-level software development process. In the following,
we introduce and elaborate on the problem we address in our investigation and provide an
overview of our objectives and contributions.

1.1.1 Characterisation of High Integrity Real-time Systems

High integrity real-time systems (HIRTS) are gaining importance in several aspects of
our lives: from relatively simple anti-lock braking system (ABS) devices embedded in
modern cars, to extremely complex flight-control applications, to unmanned spacecraft
manoeuvring systems, to accurate medical monitoring equipments.

The inherent criticality of such systems, whether exposed to physical, financial or envi-
ronmental hazards, asks for strong guarantees on both dependability and timeliness of the
services they are expected to provide. Besides functional correctness, HIRTS must be able
to react to specific events within predefined deadlines: the time at which a functionality
provided by the system is actually delivered can make the difference between success and
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failure.

The strong emphasis placed on the multifaceted dimensions of dependability [13] and
correctness poses additional challenges in the development of HIRTS. The provision of
highly dependable guarantees on the functional and non-functional behaviour of those sys-
tems comes at the cost of stringent qualification requirements, which in turn ask for ever
more intensive verification and validation (V&V) activities.

From the software development perspective, a score of certification standards have
been defined either at industrial or international level to prescribe formal design, devel-
opment, verification and validation processes and methods for predictable and dependable
software systems. Specific certification standards accommodate the peculiarities of each
application domain, such as aerospace, automotive, healthcare, public transportation or
nuclear power plants. Example of domain-specific standards are the DO-178B [138] for
Avionics, the EN 50128 [32] for European Railways, the IEC 880 [64] for Nuclear Power
Plants, and the ECSS-E-ST-40C [44] for European space missions.

Although each standard naturally captures the peculiarities and specific requirements
of each application domain, they share as a common prescription the procurement of de-
pendable guarantees on the timing behaviour of the system. HIRTS must be predictable, in
the sense that all system activities must be known to complete their execution within a least
upper bound (and sometimes a greatest lower bound). Schedulability analysis techniques
are explicitly mentioned as a means to prove the correctness of a system in the timing
dimension: all jobs of each task in the system must be warranted to meet their deadline
under all operational conditions.

The safety of schedulability analysis techniques in turn relies on the knowledge of the
so-called worst-case execution time (WCET) of the tasks that are to perform the system
activities at run time. Therefore an estimate or upper bound of the WCET of each task
should be provided either by static analysis or measurements. The WCET values provided
in input to schedulability analysis should be necessarily safe (i.e., greater than the actual
WCET) and as tight as possible, to avoid over-dimensioning of systems, which incurs
costly underutilisation.

From the hardware perspective, HIRTS often operates in an unconventional environ-
ment that requires the adoption of specialised hardware technologies. Hardware com-
ponents in the aerospace domain, for example, are required to operate in particularly
challenging conditions where limited power consumption and resilience to radiations are
mandatory requirements. Both development and qualification of such specialised hardware
are inherently more complex and costly when compared with their mainstream counter-
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parts. It is not rare for hardware components in use in HIRTS to be significantly behind
the current technological trends. However, as a positive effect of this technological gap,
relatively simple hardware platforms allow timing analysis to stay reasonably simple. It is
in fact widely acknowledged that the quality of timing analysis results strongly depend on
the complexity of the underlying hardware [19]: the simpler the hardware, the easier the
determination of reliable WCET bounds.

Under those conditions, part of the HIRTS industry naturally exhibits a conservative
approach against any relevant change in both hardware and software design choices. Any
such change in fact is likely to break the consolidated balance between compliance to
strict qualification standards and pressing economical concerns. The adoption of new spe-
cialised technologies often asks for large investments with comparatively modest or long-
term return on investment. On top of that, the introduction of new technologies or methods
inevitably impacts on already onerous V&V activities, which are know to account for (if
not exceed) the 60% of the total costs associated with a HIRTS development project.

1.1.2 Towards increasingly complex systems

Even the most conservative part of HIRTS industry is moving towards the adoption of more
complex hardware platforms. The main driver of change behind this trend is the need for
HIRTS to meet the user demands for increasingly complex functionality. The need for
ever more computational power to manage and support those functionality drives HIRTS
industries toward the adoption of more complex processors equipped with a number of
acceleration features which have been gingerly avoided so far.

This trend towards more advanced processors representatively applies to the space do-
main, perhaps one of the most conservative HIRTS domain. Figure 1.1 shows the historical
evolution of processor designs for use in on-board satellite systems. In the last decades,
the low-paced but relentless transition from extremely simple 8-bit and 16-bit processors,
adopted in the early space missions, to improved 32-bit models is now accelerating towards
the introduction of increasingly complex features. The recent design of a fault-tolerant ver-
sion of the LEON4 processor hints at the possible introduction of cache hierarchies and
branch predictors even in high-integrity critical embedded systems.

It is worth noting that there is still a gap between the time at which a processor is
designed and its actual adoption in a concrete space mission. The 32-bit radiation-hardened
ERC 32 SPARC V7 processor [11], with a simple 4-stages pipeline and with no caches,
has long been acknowledged as the reference processor model for European Space Agency
(ESA) missions. The ERC 32 is still the processor of choice for specific missions and

Cache-aware Development of High Integrity Real-time Systems
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Figure 1.1: Evolution of on-board processors for European Space missions.

functionality that require small computational resources: it will be adopted for example
for the data handling sub-system in the GAIA [45] astrometry mission, which will be
launched in 2013.

The LEON2 [3, 12] is currently taking over the low-performance ERC 32 processor
model in spacecraft on-board computer systems. The LEON2 32-bit processor model,
based on the SPARC V8 architecture, provides the computational resources to meet the
increased functional and performance requirements in modern space applications. It is
stated to provide a 86 million instructions per second (MIPS) computing capability, thus
superseding in performance its immediate predecessor (limited to 20 MIPS). The LEON2
processor will be adopted in the new Iridium NEXT [65] communication satellites mission,
which involves a constellation of 66 satellites, with the launching date set to 2015.

The most perceptible innovation brought about by the LEON2 processor, over the ERC
32, is the introduction of cache memories for both data and instructions. The industrial
stakeholders consequently became afraid that the transition to a cache-equipped processor
is likely to affect their long-term consolidated V&V process, in particular with respect to
the qualification of the system timing behaviour.

This is because although caches typically improve performance in the average case,
they may introduce considerable variability in the execution time of a program. Each
instruction or data fetch may incur a substantially variable timing behaviour depending on
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whether an instruction or data is found in the cache or not. At every point in the program,
the execution time of the next memory access depends on the cache contents, which in
turn is determined by both the address of the memory reference and what addresses the
program recently referenced in its execution path.

For that reason, HIRTS industry fears that the introduction of caches may complicate
the effort required in analysing the timing behaviour of a system to the extent of breaking
the already unsteady balance between the costs incurred by timing analysis and the quality
of its outcomes.

1.1.3 Caches: friend or foe?

Industry that are confident with the efficiency and effectiveness of their verification and
validation processes for old-generation hardware processors, do not have sufficiently solid
insight on the effects that may be incurred by the migration to cache-equipped proces-
sors. Caches are perceived as an additional source of complexity, which has potential for
shattering the guarantees of cost- and schedule-constrained qualification of their systems.

The same reasoning would also apply to other accelerating hardware features such as
complex out-of-order pipelines, dynamic branch predictors, Memory Management Units
(MMU), Translation Look-aside Buffers (TLB), etc. For these reasons, in fact, complex
hardware features have been historically dispensed with in HIRTS.

We should first understand whether this state of uncertainty and disorientation per-
ceived by HIRTS industry is somehow justified or not. We contend the answer to this
question to be strongly affirmative, for at least three distinct reasons, on which we elabo-
rate in the following.

Difficulties in accounting for cache-related timing variability

The first motivation comes from the observation that, compared to cache-less processors,
the introduction of caches induces a variable timing behaviour that do complicates both
schedulability and timing analysis [100]. The considerable variability in the execution
time of a program caused by the use of caches may hamper, perhaps to a different extent,
both WCET static analysis and measurements, which are expected to provide essential
inputs to schedulability analysis. In the presence of caches, the execution time of the next
instruction depends on the current contents of the cache (i.e., its state) as determined by
a set of interacting factors: program size, memory layout, execution paths, and pattern of
interrupts or preemptions.

Cache-aware Development of High Integrity Real-time Systems
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As an immediate effect of this variability, the predictive value of execution-time mea-
surements obtained by test is extremely degraded, as tests themselves are unlikely to in-
cur the worst combination of all the above factors together (which, in addition, may even
change from test to operation). Cache effects may also reduce the precision of static WCET
analysis because analysis can only approximate the state of the caches at various points in
the program.

Those complications indirectly affect the quality of schedulability analysis. In addition,
the introduction of caches also has a more direct repercussions on schedulability analysis:
in contrast with cache-less processors, the actual overhead of an interrupt or context switch
is no longer constant but it also affects the WCET of the preempted or interrupted task in
that it will find its cache state changed when it resumes it execution [75, 6].

The recent interest of European Space Agency (ESA) on the problematic introduction
of caches in on-board processor for space applications confirms the industrial perception:
several ESA-funded projects have been conducted in the last years to understand and pos-
sibly cope with cache unpredictability. During our PhD activities, we were involved in two
collaborative projects: the (continuation of the) Prototype Execution-time Analysis for the
LEON processor (PEAL2) project [22] and the Cache Optimisations for LEON Analyses
(COLA) project [102].

Resistance of industrial practice to state-of-the-art timing analysis

Our second motivation does not directly stem from the cache predictability problem but
rather addresses the conservative attitude towards timing analysis of part of the HIRTS
industries. However, although not specifically related, the introduction of caches possibly
exacerbates this attitude and unveils a misalignment between the state-of-the-art and the
industrial state of practice.

Timing analysis of HIRTS software is typically constrained by a strict development
process that is at the same time (globally) incremental and (locally) iterative. In most
cases the WCET bounds are determined on the basis of past experience. A safety mar-
gin is then added to these WCET figures before they are given in input to schedulability
analysis. Along the development process, WCET bounds are then periodically consoli-
dated by testing, where a program (or part thereof) is executed and dynamically analysed
(measured) a number of times with a variety of inputs that represent selected configura-
tions and/or operation modes. Safeness of timing and schedulability analysis thus relies
on adequate test coverage and safety margins. Provided that obtaining 100% coverage for
complex systems is almost impossible in practice, the only option for safeness is to add
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over-dimensioned and unscientific safety margins.
In spite of the clear drawbacks of this approach, its application is still reasonable for

systems running on top of relatively simple hardware that do not exhibit a highly vari-
able timing behaviour. On the contrary, in the presence of hardware acceleration features
like caches, the predictive value of scenario-based measurements is drastically reduced.
Typical test cases are not likely to trigger the worst-case execution scenario [159] unless
explicit countermeasures to timing variability are adopted.

Provided that no simple and exhaustive solution has been devised yet to cope with
the inherent unpredictability of caches [100], several approaches have been proposed in
the literature to derive safe and tight bounds of the WCET of tasks running on cache-
equipped processors [163]. Some of these techniques have been successfully integrated
into commercial tools, such as RapiTime [133] and aiT [1], and have been successfully
applied in industrial case-studies [137, 30, 146, 54, 84].

This notwithstanding, software simulation and testing continue to be the common prac-
tice for obtaining WCET values. Particularly in those application domains whose standard
directives do not explicitly prescribe a specific timing analysis qualification criteria, the
penetration of WCET tools and techniques in the industrial practice is limited by the per-
ceived complexity and cost of their factual application.

Doubts on the industrial fitness of timing analysis approaches

The third and final motivation generates from practical considerations we collected dur-
ing a long-term experimental activity on the timing analysis of an industrial-scale HIRTS.
Thanks to our cooperation with TAS/F we were able to experiment on a significant com-
ponent of the software application embedded onboard a commercial satellite system. The
lessons we learnt from our experiments unfortunately seems to confirm the industrial con-
cerns on the factual application of state-of-the-art timing analysis approaches in industrial
setting [103].

Despite their undeniable theoretical soundness and the evident progress made in the
last decades, state-of-the-art timing analysis approaches do have limitations that become
particularly evident when applied to industrial level complex systems. The difficulties with
applying state-of-the-art WCET analysis in HIRTS can be ascribed to two main facts: (i)
the application of timing analysis is not fully automated (and probably will never be), hence
it requires onerous and error prone human intervention in the form of flow-fact annotations
to guide the analysis process; and (ii) industrial systems have been historically developed
with performance in mind and do not conform to the predictability assumptions made by
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timing analysis.
Even if HIRTS industry were to move to state-of-the-art WCET analysis approaches,

which is the most natural solution to cope with the cache-induced variability, it would
still have to cope with the complexity and costs incurred by its application to large-scale
complex systems. Moreover, this methodological shift to more rigorous timing analysis
approaches may also ask for an onerous and long term adaptation of the consolidated
industrial development process. These factors altogether do not seem to turn in favour of
an economically viable V&V process.

1.2 Thesis objectives and contribution

This thesis builds on the above observations to contend that HIRTS development cannot
rely on an uninformed use of caches, for their uncontrolled effects on the timing behaviour
may invalidate or, at least, degrade the results of timing analysis and, in turn, dissipate the
trustworthiness of schedulability analysis.

In particular, we believe that the disruptive effect of caches in the qualification of
industrial-level HIRTS can be effectively and efficiently governed only by imposing an in-
formed use of caches and a proactive approach towards timing analysis. As we have shown
in [103], software predictability problem cannot be ignored during the whole HIRTS devel-
opment process and abruptly reappear while V&V activities are conducted: an extremely
variable and unpredictable system will stay unpredictable, whatever technique or tool one
could apply.

In our view, the development process should become “cache-aware” (and timing-
analysis oriented) in the sense that all development activities, from high-level design to
software development, should be performed with timing analysability in mind. In actual
fact, this would result in the systematic adoption of a set of practices, methods and tools
which should guide the whole development process. The development process should be
aware of the cache impact and try to minimise any potential source of unpredictability so
that to ease the overall system analysability.

Our thesis therefore aims at identifying a set of countermeasures to improve cache
predictability and, in a broader sense, to facilitate the application of timing analysis in
industrial setting. As fundamental requirement, the identified techniques and methods
shall allow an efficient integration and application in the HIRTS industrial development
process.

The strategy we devised for the accomplishment of our objectives follows three major
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steps:

1. As a preliminary step, we will focus on the identification of the sources of timing
unpredictability that manifest themselves at source-code level and, possibly, the pro-
posal of analysable alternatives. We aim at identifying code constructs, patterns and
design choices that hinder the application of timing analysis in general. In our rea-
soning, we do not limit ourselves to cache analysability issues alone as we consider
the cache predictability problem as a (relevant) part of the broader problem of timing
predictability.

2. Our study will then proceed with an investigation on the Model-Driven Engineering
(MDE) [141] paradigm as a means to enforce predictability by construction. We aim
at exploiting the results from the previous activity to both enforce the generation of
analysable code patterns and to automatically convey timing information from the
model to the synthesised code.

3. In a third complementary approach, we will attack the memory layout as the most
impacting source of cache variability and devise a layout optimisation technique that
addresses incrementality as a main industrial requirement.

The first two investigations will spread over two main conceptual spaces of interven-
tion: a task-level dimension, where the main focus is set on the timing behaviour of each
single task that contributes to the system functionality; and a system-level dimension,
where we accommodate the effects of task interleaving and interactions, as well as the
overall structure of the system and its software architecture specifications. This second
dimension extends the scope of the notion of system-level timing analysis (classically lim-
ited to inter-task interference on the timing behaviour [75, 6]) to include high-level and
low-level design choices.

The partial results obtained along those three directions are finally combined in a struc-
tured approach to timing analysis that exhibits, as characterising features:

• an improved degree of analysability by construction, which facilitates and enables
the application of state-of-the-art timing analysis technique to complex industrial
systems; and

• the early applicability of WCET analysis on subsequent incremental releases, as
opposed to the complete system.
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Contribution

In defining a comprehensive approach towards timing analysis in the industrial develop-
ment, this thesis provides the following key contributions:

1. The identification and categorisation of code constructs and design choices that
may hamper the analysability of a program, and the proposal of analysable alterna-
tives for either code constructs or design choices.

2. As part of the previous contribution, we formalise and bound a new source of inter-
task interference on cache behaviour, which stems from mutually exclusive access
to shared resource.

3. An approach to the automated generation of predictable systems. Exploiting ex-
isting modelling tools [143, 51, 116] we enforce the generation of predictable task-
level code constructs as well as predictable design choices at the level of software
architectures. We further exploit functional and architectural models to collect any
valuable information which can be expressed at model level and automatically gen-
erate flow-fact annotations for an effective application of timing analysis.

4. An incremental cache-aware memory layout optimisation technique which aims
at the reduction of the cache-induced variability. In particular, we emphasise the
incremental applicability of our technique, which meets a key requirement in the
industrial development process.

1.3 Thesis organisation

This dissertation is structured as follows. In Chapter 1 we introduced the motivation of our
PhD study and sketched the proposed approach and key contributions. We first provided
a characterisation of the HIRTS domain and briefly introduced the cache predictability
problem, as it is perceived by the industrial stakeholders. We then introduced the objectives
and main contributions of our dissertation.

Chapter 2 introduces the general notions on cache operation, provides a critical review
of the state of the art in cache and timing analysis, and states our research assumptions.

Chapter 3 is devoted to the presentation of our core contributions. In Sections 3.2
and 3.3 we provide a characterisation of the HIRTS development process and discuss the
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industrial perception of timing analysis, particularly focusing on those issues that hin-
der the penetration of state-of-the-art WCET analysis in HIRTS industries. Section 3.4
elaborates our objectives and presents an industrial development approach that builds on
model-driven engineering and memory layout optimisation to enable a cost-effective ap-
plication of state-of-the-art WCET analysis to complex systems. In Section 3.5 we discuss
code analysability issues in timing analysis of industrial level systems, and provides a tax-
onomy of unpredictable code constructs at task and system level. Section 3.6 details on
the role of automated code generation in enforcing timing analysability by construction at
task and system level. Section 3.7 introduces our incremental cache-aware memory layout
optimisation technique as a means to cope with the variability incurred by caches and facil-
itate an early application of WCET analysis. Section 3.8 provides a qualitative evaluation
of our approach.

Chapter 4, finally, concludes by recalling this thesis objectives and contributions, and
by providing a brief outlook on our future activities.
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Chapter 2

Background and Assumptions

2.1 Schedulability and timing analysis

In our definition of HIRTS we highlighted the fundamental role of the timing dimension in
determining the correctness of such systems. Reasoning about the temporal requirements
of a system is therefore an inevitable concern in HIRTS development process. Schedula-
bility analysis techniques consist in performing a schedulability test to provide dependable
guarantees that all system tasks can be actually scheduled on a processor without missing
their deadlines [86]. Each schedulability test applies a specific scheduling policy.

Response Time Analysis (RTA) [68] is a classical example of schedulability test for
fixed priority preemptive systems (FPPS) where the worst-case response time (WCRT)
of each system task is computed and compared with the respective deadline. Assuming
the classical periodic task model [86] where each task τi is characterised by an activation
period Ti, a maximum computation time Ci and a deadline Di, the worst-case response
time for a task τi is computed by solving the following fixed-point equation that iterates
over a time window wi:

wn+1
i = Ci +Bi +

∑
j∈hp(i)

⌈
wni
Tj

⌉
Cj (2.1)

where wki refers to the time window under analysis, Ci and Bi are respectively the max-
imum computation time and blocking time for the analysed task, and the remaining term
represents the interference from higher priority tasks. If the worst-case response time is
not greater than the deadline for each task in a task set then the latter is said to be feasible
under the specific scheduling policy.
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The role of timing analysis in the context of response time analysis is clearly funda-
mental. The Ci term in Equation 2.1 is exactly the WCET bound for task τi, which is the
expected outcome of timing analysis. The worst-case response time models the maximum
time spent for the execution of any single activation of a task and includes interference
from other task in the task set. The WCET, instead, represents a least upper bound on the
computation time of each task in isolation.

The expectations on safeness and tightness of WCET bounds are also evident: un-
safe bounds simply invalidate the above equation, whereas loose bounds may reduce the
processor utilisation and thus cause undue over-dimensioning of the system.

2.2 Caches

One solution for bridging the widening performance gap between CPU and memories, is
to exploit small but fast cache memories, often located on chip, to store the most recently
accessed data and instructions [60]. The hierarchical relation between caches and the main
memory implies that whenever the CPU issues a memory access, the memory location is
first searched in the cache: if the required data are found in there (hit), they are immediately
sent to the CPU providing a relative lower latency than that incurred by accessing the
slower main memory. Otherwise (miss) the request is forwarded to the main memory: the
retrieved data is first copied into the cache and then delivered to the CPU. Figure 2.1 below
provides an high-level representation of the cache operation.

Figure 2.1: High level cache operation.

Most modern processors define separate caches for data (D-cache) and instructions (I-
cache) as opposed to unified caches, which instead are typically defined in more complex
architectures to provide additional cache levels.
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Caches build their usefulness on the observation that memory references in a program
typically follow a principle of locality [145, 60]. This concept is further decomposed into:

- temporal locality: memory addresses being accessed recently are likely to be ac-
cessed again in the near future; and,

- spatial locality: memory addresses near to a referenced address are likely to be
accessed in the near future.

The former principle is clearly exploited by caches operation as they store the most
recently accessed instructions and data. Caches also exploit spatial locality in a program
as, in order to make use of the available bus bandwidth, they typically fetch from the main
memory (and store) more data than required. Memory data in fact are logically organised
as fixed-size memory blocks (typically ranging from 8 to 64 bytes); thus, in case of cache
miss, a memory block containing the required memory address is retrieved from main
memory and placed into an equally sized cache frame (cache line).

Cache placement and look-up

Where a memory block is actually placed, and then searched for, in the cache depends
on the placement policy (or associativity) in use. With this respect, three main design
alternatives are defined:

- direct-mapped caches: where a memory block can be placed into exactly one cache
line. In this case the cache mapping is extremely simple to implement as it is deter-
mined by (block address) mod (number of cache lines).

- set-associative caches: where a memory block can be placed into a subset of the total
cache lines, referred to as cache set. The number of cache lines in a set is referred
to as way; hence, in a 4-way set-associative cache, the same memory block can be
placed into any of 4 different cache lines. Therefore, in set-associative caches the
mapping function is (block address) mod (number of cache sets).

- fully-associative caches: where a memory block can be placed in any cache line. The
implementation cost of this placement policy makes it suitable only for extremely
small caches.

It is worth noting that those three alternatives can also be considered as the instantiation
of different degrees of associativity, ranging from one single way (direct mapped) to the
extreme of the total number of cache lines (fully associative).
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Figure 2.2 shows the cache look-up process for a 4-way set-associative cache. The
cache look-up is typically performed by decomposing the referenced address A in three
parts [60]: [tagA][setA][offsetA]. The look-up process consists in comparing the tagA part
with the tags of the cache lines in the cache set setA. The offsetA part finally selects the
required data within the block. Fully associative caches have no index field.

Figure 2.2: Cache look-up process.

Cache replacement

Typically, on a cache miss, a cache line is evicted from the cache to make room for the
block retrieved from main memory. The selection of the cache line to be evicted is straight-
forward in direct mapped caches as there is a unique location for each memory block. For
set-associative caches, instead, the evicted cache line is selected according to a specific
replacement policy. Common cache replacement policies are Least Recently Used (LRU),
FIFO, Random, or some pseudo (i.e., approximate) variant of them.

LRU exploits the notion of ageing to induce an ordering between cache lines in a
set. The line selected for replacement at any specific time is the line with maximal age.
LRU is typically implemented in hardware for caches with associativity up to four. The
relaxed form, termed Pseudo LRU, is used instead for larger associativity as the (hardware)
implementation cost of maintaining precise ageing information becomes too high.
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Cache writes and allocation

Another relevant design choice addresses specifically the behaviour of data cache writes
(write and allocation policies). Upon a write request, the referenced data could be in the
cache or not. In case they were, changes applied to data can be written to the main memory
at once (write-through) or else deferred until when the same cache line is evicted from the
cache (write-back). Moreover, in case of write miss, data can be loaded in a cache line
(allocate-on-write) or can be directly modified in the low memory (no-allocate-on-write).
Any combination of those policies is allowed, except for "write-back" and "no-allocate-
on-write" since in case of cache miss the new data cannot be held in the cache and later
written back to main memory without allocating a cache line.

Cache miss categorisation

Three types of cache misses are distinguished [60]: (i) compulsory misses (or cold misses),
when an address is first referenced; (ii) capacity misses, when the current working set ex-
ceeds the cache capacity; and (iii) conflict misses, when, depending on the actual replace-
ment policy, multiple references map to (and compete for) the same cache line.

2.3 Approaches to cache analysis

The cache predictability problem is well acknowledged by the academic community and
several approaches have been proposed in the literature on both instruction and data caches
predictability [163]. In the following we survey the state-of-the-art approaches to cope
with cache unpredictability. These approaches build on either accounting for cache be-
haviour in both timing and schedulability analysis, or making caches more predictable, to
the extreme of replacing them altogether with more predictable fast memories (i.e., scratch-
pads). Besides, even software and hardware issues will not be disregarded since they play
a main role in determining the cache behaviour and thus its analysability.

2.3.1 Cache-aware Timing Analysis

The timing behaviour of a task depends on the task code, the execution context and the
hardware on which it executes. The execution context is determined by both the task inputs
and the hardware state, which includes the state of caches. The difficulties introduced by
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caches in timing analysis of a program are classified in to two main kinds of interferences:
intrinsic and extrinsic.

Intrinsic (intra-task) interference is related to the possibility of incurring non-compulsory
cache misses as a consequence of the fact that multiple program blocks may compete for
a cache set and collide with one another. Extrinsic (inter-task) interference occurs in mul-
titasking environments and is related to possible non-compulsory cache misses due to sus-
pension or preemption, as when a suspended or preempted task starts again to execute it
may find its cache state changed. Both intrinsic and extrinsic interferences depend on the
number of references that can potentially compete for the same cache set and on the actual
number of collisions, which is dynamically determined by the execution path. Extrinsic
interference also depends on possible interactions between tasks. Both kinds of interfer-
ence should be taken into account for a comprehensive analysis of the timing behaviour of
a program.

WCET analysis techniques, either static or hybrid measurement-based, account just for
intrinsic task interference as they typically focus on single tasks in isolation and assume
no interference from other tasks or any other scheduling issue (e.g.: task communica-
tion, synchronisation, etc.). The extrinsic cache interference is then handled by advanced
schedulability analysis techniques which are extended to account for the cache impact in
the response time of individual tasks.

2.3.1.1 Static WCET analysis

Dynamic analysis techniques can only provide a maximum (minimum) observed execution
time which is likely to harmfully under-estimate the actual WCET. Provided that comput-
ing the exact WCET of a given application in presence of caches is not generally feasible
in practice, WCET static analysis methods aim at obtaining a safe and tight upper bound on
the WCET. Several approaches in the literature extend the static timing analysis techniques
to account for the cache behaviour.

Static WCET analysis techniques try to compute a WCET bound for a given program
from an abstract model of a processor and an executable. Most of these approaches, how-
ever, greatly benefit from the availability of the application source code.

All these approaches share three fundamental steps for the WCET analysis of a pro-
gram:

1. High-level analysis step, which aims at determining the control-flow graph of a pro-
gram. The nodes of such graph, termed basic blocks, are small linear sequences of
code characterised by single entry and exit point and that contain no branches;
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2. Low-level analysis step, where hardware-level timing is taken into account and the
timing behaviour of each instruction is modeled. Different techniques can be ex-
ploited to perform this step; and

3. WCET calculation step, which allows to compute an upper bound to the WCET, typ-
ically exploiting an Integer Linear Programming (ILP) formulation of the problem
optimised through the Implicit Path Enumeration Technique (IPET).

Whereas the timing behaviour of caches is explicitly addressed in step (2), the results
from step (1) may positively or negatively influence the results of cache analysis. For ex-
ample, the accuracy of loop bounds and a precise detection of indirect calls would improve
the precision of the analysis results. In the following, we will focus on state-of-the-art
cache analysis techniques without addressing more general WCET analysis issues, unless
of major relevance with respect to caches.

Cache analysis by Abstract Interpretation Ferdinand and Wilhelm [48] propose an
approach which builds on abstract interpretation [37] to obtain tight bounds of instruction
and data cache behaviour. In order to classify memory accesses, they define an abstract
domain to represent an over-approximation of all possible cache states, called abstract
cache state (ACS). Building on the results of path and address analysis, ACS accumulate
the information on cache accesses using two operators defined in the abstract domain:

- Update: the ACS is updated according to the memory accesses performed in each
basic block along the program execution path; or

- Join: since ACS can be split on a branch instruction, different ACS are conserva-
tively combined together when distinct control flow paths merge together.

This approach allows to collect Must and May information, which are respectively up-
per and lower approximations of the concrete cache state at every program point. Must
analysis is used to determine safe information on the cache content (cache hits) whereas
the complement of the May information is used to determine cache misses. Based on the
analysis results, each memory access can be classified as Hit, Miss or unknown. In [154],
Persistence analysis has been introduced to avoid the pessimism entailed by the original
approach in determining the cache behaviour within loops. A block is persistent when its
first execution may result in a cache hit or miss, but all consecutive references are known
to be in the cache. The results of Persistence analysis has been recently refined in [15].
Defined in [48] for LRU fully-associative caches, Ferdinand’s technique has been extended
to different replacement policies and set-associative caches in [59].
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Cache analysis by Static Cache Simulation Mueller et al. in [106] introduce static
cache simulation for direct-mapped instruction caches. This approach, based on data-flow
information, classifies each instruction fetch as Always-Hit, Always-Miss, First-Miss or
Conflict, which intuitively corresponds to the classification obtained by the Ferdinand’s
approach extended with Persistence information. The same approach has been extended
in [162] to analyse data caches and apply to set-associative caches.

Cache analysis by ILP formulation Li et al in [82] manage the problem of finding
the WCET by modeling an ILP problem with feasible paths and architectural features
as constraints. Cache, pipeline and path analysis are combined together in a single ILP
formulation. An obvious drawback of this approach is that gathering all the relevant timing
information may easily get intractable when the system becomes complex.

Data Cache analysis by Cache Miss Equations Gosh et al. in [52] present a framework
for providing global bounds on the data cache behaviour of loop nests. This approach
builds on a complex analytical method using the so-called Cache Miss Equations (CME),
a sort of Diophantine equations where each solution corresponds to a possible cache miss,
to gather as much information as possible on data cache access patterns, which are known
to be more irregular and difficult to predict than those of instruction cache. The frame-
work, which applies to set-associative LRU caches, is more oriented to find proper code
optimisations to improve cache performance rather than obtaining precise WCET figures.
Ramaprasad and Mueller in [131] refine the CME-based approach by focusing more on
WCET analysis of data caches. This more precise approach still applies to set-associative
LRU caches.

Hierarchy of caches The increase of hardware complexity in real-time systems has lead
to processors equipped with hierarchical multi-level caches, which further complicate the
cache-aware WCET analysis. Mueller in [108] extends the static cache simulation ap-
proach [106] to hierarchies of instruction caches. This method has been proved to be
unsafe by Hardy and Puaut in [57] where the multi-level cache classification is comple-
mented by a cache access classification (CAC) which can be used to determine if a cache
access would entail an access to the next hierarchy level or not. The same techniques is
extended in [79] to multi-level data caches.
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Discussion The main strength point of static analysis approaches is that they are sup-
posed to always provide safe WCET bounds. Actually, the safeness of those techniques is
threatened by at least two issue. First, all static analysis techniques build on an abstract
model of the target hardware: the more complex the actual hardware, the less accurate and
cumbersome may be to model it. Safe WCET bounds can be guaranteed if and only if the
abstract model they build upon is actually correct. Providing a precise and sound timing
model may prove to be a tough challenge when the target hardware features exceeding
complexity or when we lack complete knowledge of it (i.e. not everything is disclosed).

Another safeness issue for static analysis techniques is related to timing anomalies
[92, 135]: within a sequence of instructions, the variation in the execution time of a single
instruction may incur a greater or counter-intuitive variation over the whole sequence. In
terms of WCET computation, for example, a cache miss may result in a shorter global ex-
ecution time than a cache hit (scheduling anomaly) or a cache access may result in a cache
miss just because a branch misprediction has unnecessarily evicted the referenced instruc-
tion (branching anomaly). Further counter-intuitive cache behaviour may be incurred by
unpredictable replacement policies, like PLRU (cache anomalies). Timing anomalies can
occur whenever there is a source of non-determinism in the analysed model. Although tim-
ing anomalies mainly occur in out-of-order processors, speculation and cache anomalies
can also happen on in-order processors [135].

However, although in most circumstances static analysis techniques can produce a safe
bound on the WCET of a given program, the computed WCET estimate is not only ex-
pected be safe, but should also be tight, with as little overestimation as possible in compar-
ison to the actual WCET incurred at run time. Cache-aware static analysis in general may
suffer from, at least, two main sources of overestimation:

- the join operation between abstract states: several approaches gather information on
cache accesses by computing abstract cache states explicitly (e.g. [48]) or implicitly
(e.g. [106]). Whenever a control-flow join occurs, a new abstract cache state is
conservatively computed, which introduces overestimation;

- the infeasible path problem: flow analysis may derive from the program control-
flow graph (CFG) some execution paths that may not be feasible in any program
execution.

A possible way to overcome the precision loss problem is to adhere to appropriate cod-
ing styles; reducing the sections of code reachable trough different execution paths will
reduce abstract state joins which are the principal reason of precision loss. For example
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the idea behind single-path coding and WCET oriented programming [128], although they
intuitively incur serious performance drawbacks, can be interpreted in that light. Appro-
priate coding style may also reduce the complexity of the infeasible path problem since
reducing the number of paths in the program also reduces the search space for infeasi-
ble paths. This strategy could reduce the complexity of determining infeasible paths in a
program and hence result in tighter WCET.

In order to facilitate and improve the precision of WCET analysis flow-facts annota-
tions are required to explicitly exclude some infeasible paths, define branch and indirect
call targets, refine loop bounds and refine path-analysis in general. A classification of
flow-facts annotations can be found in [74]. However, the annotation process requires a
deep knowledge and understanding of the program behaviour. Since manual intervention
is both laborious and error-prone, it is preferable to gather as much knowledge as possible
by automated methods (e.g.: [62, 16, 29]).

2.3.1.2 Hybrid Measurement-based Approaches

Despite the progress with static analysis in the last two decades, interest in measurement-
based approaches to estimate the WCET has grown, mainly due to the increasing com-
plexity of modeling modern processors. Hybrid measurement-based analysis, conversely
to classical dynamic analysis, aims to avoid optimism in the WCET estimation by measur-
ing the WCETs of small program fragments (typically basic blocks or groups of them) and
then combining them using static analysis techniques [20, 125, 85] to compute a WCET
estimate. Therefore, loop bounds can be added a posteriori (through annotations) to the
measurement stage and the WCETs of program fragments can be triggered in different
test runs. In particular the approach by Bernat et al. [20] defines a probabilistic approach
where measurements are combined according to some probability distributions.

Classification of hybrid measurement-based approaches Measurement-based meth-
ods differ in several ways. First, measurements can be performed at different levels of
granularity. Measurements are usually performed over the execution of program frag-
ments characterised by having a single execution path. Such fragments can be single basic
blocks, which contain no branches, or a small group of them, which may contain branches
but whose execution is input-data independent.

Also the initial state of the processor (including the cache content) is a source of sig-
nificant variability on the execution times of program fragments. Measurement methods
can either try to set the processor into a worst-case state [118] before each measurement
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or simply use the state contextually reached by the processor. The former approach would
potentially ensure a safe WCET estimate for each measured execution path; however it
may be quite difficult to find a worst-case initial state. Conversely, the latter approach does
not provide safe WCET estimate by construction, since the initial states are just a sample
of all possible states.

Finally, timing data need to be collected whilst the program executes. Two differing
approaches can be adopted involving either code or hardware instrumentation. Code in-
strumentation builds on the insertion of instrumentation points in the program in order to
accumulate timing data during its execution. However the instrumentation points them-
selves affect the temporal behaviour of the measured code introducing the so-called probe
effect. The probe effect also impacts cache usage, as instructions or data normally placed
in cache are disturbed by the instrumentation code. The overhead of the probe effect can
be prevented with the assistance of on-chip debug interfaces, such as Nexus [112] or the
ARM Embedded Trace Macrocell [10]. In these cases, the trace data are either written to
an on-chip trace buffer for subsequent download, or exported directly in real-time through
an external port. In order to limit the size of traces, only program flow discontinuities (i.e.,
conditional and unconditional jumps) should be monitored.

Discussion Measurement-based methods provide real measurements of the execution
time of a given task or parts of it, on the hardware of interest (or on a representative
simulator of it) for a given set of inputs and initial states. As an advantage over static anal-
ysis, measurement-based methods do not need to model the processor behaviour exactly
and does not require additional effort to adapt to different target processors.

However, the major limit of this approach is in that measurements of a subset of all
possible executions will produce estimates or distributions, which despite of possibly being
accurate, cannot define bounds for the execution times. We cannot tell for sure whether
the worst-case execution path has in fact been traversed or not.

Furthermore, similarly to static analysis techniques, the inclusion of infeasible paths
in combining basic blocks measurements and possible overestimation of loop bounds may
lead to loose WCET estimates. For example, combining timing information of different
program fragments may include infeasible paths. As discussed in the previous section,
some approaches aim at improving flow analysis techniques to cope with the infeasible
path problem [62, 16, 29].

Since only a subset of the possible initial processor states (including cache states) are
considered for each measured code segment, trustworthiness of measurements themselves
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relies on a high degree of test coverage, which is likely to be too expensive under normal
circumstances. Furthermore, coverage metrics that are typically adopted in industrial soft-
ware testing are inherently focused on the functional properties of a program and are thus
inadequate with respect to assessing the coverage of timing properties, like the WCET. An
attempt to define some WCET-oriented coverage metrics for processors with pipelines is
introduced in [21].

With respect to the probabilistic approach in [20], it is not fit for hard real-time system
requirements as it gives probability distribution of the WCET of tasks rather than safe
bounds. However, since real-time applications typically consist of multiple components
within distinct criticality levels, it could be effectively applied to the less critical (i.e. soft
real-time) parts of an application.

2.3.2 Cache-aware Scheduling Analysis

In general, static analysis and measurement-based approaches focus on intrinsic cache
behaviour and do not account for extrinsic interference. Schedulability analysis techniques
are therefore extended to account for safe and possibly tight estimates of the cache impact
on extrinsic interference.

Cached Rate Monotonic Analysis Basumallick and Nilsen in [18] define the Cached
Rate Monotonic Analysis (CRMA) which includes the so-called cache related preemption
delay (CRPD) into the classical Liu-Layland’s Rate Monotonic Analysis. The execution
time of each preempting task incorporates the context switch delay and a CRPD term that
accounts for the time required to restore the cache state of the preempted task. The CRPD
is estimated as the cost to completely refill the cache. This approach is rather pessimistic
since the estimate of the CRPD fails to take into account that some cache lines may not
be evicted, either because they are not affected by the preempting task or because they are
shared by the preempting task with the preempted task. Furthermore it is indeed possible
that not every cache line will be referenced again by the preempted task.

Cached Response Time Schedulability Analysis Busquets-Mataix and Wellings [28]
propose to incorporate the CRPD in the Response Time Schedulability Analysis (RTA)
thus defining a Cached Response Time Analysis (CRTA). The worst-case response time
for a task is affected by the execution of higher-priority tasks in two ways: it may suffer a
delay because of the CRPD paid upon its resumption or even because of the CRPD paid by
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higher-priority tasks. Thus CRTA accounts for direct and indirect extrinsic interference:
indirect interference is suffered by task τi when a higher-priority task τj is released, as
a consequence of the direct interferences suffered by intermediate priority tasks τk. The
refill penalty is computed as the time required to restore the cache lines evicted by the
preempting task. Therefore this approach is less pessimistic than the Basumallick and
Nilsen’s one but it is nevertheless prone to overestimation: as we noted earlier, not every
cache line will necessarily be referenced again by the preempted task.

Useful Cache Blocks In order to reduce the pessimism incurred by the CRPD estimates,
Lee et al. in [77] were the first to introduce the concept of useful cache blocks (UCB)
to compute the CRPD. A UCB is defined as a cache block that will be referenced again
before it could be evicted by another memory block, according to the cache replacement
policy. The approach has been further refined in [75, 147] where the analysis has been
modified to take into account that only useful blocks which intersect with cache blocks of
the preempting tasks are to be refilled. All the above approaches apply to direct-mapped
or LRU set-associative caches: Burguiére et al. in [26] show that the previous techniques
based on UCB and evicting cache blocks (ECB) (also referred to as used cache blocks) are
not safely applicable to FIFO and PLRU replacement policies. More recently, with respect
to LRU set-associative caches, the idea of resilience has been introduced [8] to exclude
from the CRPD computation those UCB that can be guaranteed to persist in the cache,
thanks to the specific replacement policy.

Other approaches Other approaches try to cope with the inherent pessimism of CRPD
estimates by limiting or minimizing the possible interferences. Nemer et al. in [111]
present a task timing analysis for statically scheduled multi-tasking systems that accounts
for the interleaving of non-preemptable tasks in computing the abstract cache states at each
task activation after a suspension.

Zamorano and de la Puente in [166] aim at reducing the pessimistic estimate of the refill
penalty by actually limiting the number of cache refills. The authors suggest discarding
cache refills due to interrupt handlers which do not imply actual preemption of the active
task; this is obtained by inhibiting caching for interrupt handlers. This should not overly
degrade the overall performance as execution of interrupt handlers are supposed not to
largely benefit from caches: interrupts typically consist in sequential code which exploits
only cache boosts from spatial locality.

A different approach is proposed by Altmeyer and Gebhard in [7], where the authors
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focus exclusively on computing the WCET for single tasks apart from schedulability anal-
ysis. After forcing a quasi-optimal memory layout that minimises cache conflicts between
tasks, they apply static analysis to classify persistent and endangered cache lines and then
compute WCET bounds for each task.

Discussion Cache-aware schedulability analysis aims at including cache effects in the
schedulability analysis; this inclusion is generally accomplished by accounting for CRPD
overheads in the response time of individual tasks. The refill penalty associated with CRPD
may be estimated in several ways: it may be measured on the entire cache size or on
different estimates of the actual lines to be refilled (i.e., useful blocks, line intersection,
etc.). To any rate, the computed WCET estimate is a safe upper bound to the actual WCET
but it is not a tight one.

2.4 Restraining the cache behaviour

Alternate approaches to increasing the level of cache predictability aim at either bounding
or tailoring the cache behaviour so as to make caches more suited for WCET and schedu-
lability analysis. The increase in predictability would not only reduce the overestimation
of static analysis, but may also improve the safety of measurement-based WCET methods.

2.4.1 Cache Partitioning

Cache partitioning techniques aim at increasing cache predictability by partitioning the
cache in a way that a cache segment can be reserved for a specific task or group thereof.
Cache partitioning techniques can be implemented in hardware or in software.

Hardware Cache Partitioning Kirk in [70] suggests a hardware-implemented partition-
ing scheme named SMART (Strategic Memory Allocation for Real-Time). In SMART, the
cache is divided into several segments private to individual tasks; and a shared partition.
Each task is assigned one or more private partitions. Assigning private segments to tasks
reduces extrinsic cache interferences; since we also have a shared segment, however, there
would be a (possibly small) CRPD at context switches. The implementation of SMART
requires a hardware flag to tell private versus shared cache partitions and hence a custom
cache controller. The author also supplies an algorithm to choose the size and the assign-
ment of partitions [71].
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Muller et al. in [109] introduce a similar cache partitioning technique, hardware im-
plemented as well, but more D-cache oriented. Unlike Kirk’s approach, the cache is split
into several partitions, which operate like small direct-mapping caches. No shared seg-
ment is required. Load and Store instructions include a partition operand which selects the
appropriate partition; the compiler must be aware of the cache architecture and should pro-
vide an appropriate allocation of the cache partitions. This approach aims at also reducing
the intrinsic cache interferences by mapping data structures into cache partitions (and into
lines within partitions) according to a compiler analysis of data accesses.

Software Cache Partitioning Since hardware partitioning is not usually supported in
commercial processors, other approaches aim at implementing cache partitioning tech-
niques by software. Software partitioning builds on optimising memory mapping of code
through specific compiler and linker support: instructions are placed in the address space
so as to reduce or eliminate inter-task interference.

Wolfe in [164] suggests dividing the cache space into partitions, each of which is only
used by certain tasks. A direct-mapping cache is partitioned by altering the address trans-
lation process at each cache access, also requiring some hardware tweaks. Bounding the
memory references issued by tasks to a selected range of addresses effectively permits to
define logical (as opposed to physical) partitions in the cache.

Mueller in [107] takes Wolfe’s approach and focuses on the compiler and linker support
required for cache partitioning. Mueller aims at defining how to assign tasks to addresses
and thus assembling the code in a manner that permits to eliminate extrinsic interferences.
Cache lines are grouped into partitions, each assigned to a specific (real-time) task; a sin-
gle partition is reserved for a shared access. In order to map task memory accesses to a
specific cache partition some code transformations are applied. Instructions and data are
transformed to fit a certain range of memory addresses, producing a scattered memory
mapping for each task. The scattered memory mapping is performed through the compila-
tion and linking processes to ensure that every task will only access its own cache partition,
except in case of synchronisation, when the shared partition is accessed.

The compiler must restrict the code of a task to only those memory addresses that
map into the cache partition. Mueller also suggests breaking the tight one-to-one mapping
between tasks and partitions: in order to avoid extremely small partitions it suffices to
define one partition for each priority level, letting the tasks at one and the same priority
level share the same partition (if FIFO scheduling is adopted for tasks at the same priority
level). Assigning multiple tasks to a single partition permits to define bigger partitions and
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consequently reduce intrinsic interferences. On the other hand, sharing partitions within
priorities will introduce some extrinsic interference: since when a suspended task will
execute again, it may find its cache state modified by some task sharing the same partition.

Discussion Cache partitioning is likely to reduce extrinsic cache interferences by as-
signing separate cache segments to given tasks. Residual intrinsic interference may still
be incurred owing to access to shared partitions (if any). The most important drawback
of both hardware and software partitioning approaches is the reduction of cache space per
task: since each task is granted a smaller amount of addressable cache, the number of
capacity (and conflict) misses will inevitably increase.

Furthermore, this kind of techniques leaves one central problem unattended: they do
not advise on how we are supposed to define both size and assignment of partitions. This
issue is critical as it will have a major impact over cache performance. In fact, the per-
formance of cache partitioning is strictly related to number, size and actual assignment of
cache partitions. In particular, assigning partitions to tasks can prove quite a complex job:
naively assigning partitions in accordance with task priority (i.e., by urgency) or to task
rates is unlikely to be the best choice.

Some studies noticed those open problems and tried to find an automated (i.e., algorith-
mic) way to solve them. Sasinowsky and Strosnider in [140] define a dynamic program-
ming algorithm for allocating cache segments to a set of periodic tasks. Their algorithm,
which runs in a polynomial time, is claimed to be optimal where optimality consists in
finding the allocation which produces the minimum processor utilisation for the given task
set. As a single task utilisation depends on how large its partition is, the algorithm tries to
find a global partitioning and assignment to get a minimum utilisation for the entire task
set. The determination of single task utilisation in each possible partition size is obtained
through simulations or experiments.

Tan and Mooney in [153] propose a different allocation scheme strictly related to task
priorities; for this reason, that approach is often referred to as prioritised cache. A set-
associative cache is partitioned at the granularity of sets and each partition can assume
a priority in the same range as task priorities. Each task is then allowed to only access
cache partitions with equal or lower priority. The priorities of the cache sets are originally
set to the lowest priority level; when a task uses a cache set, the set priority is raised
to the task priority and is then downgraded to the lowest priority level after the task has
completed its execution. The main drawback of this approach is that it guarantees high
cache performance to higher-priority task at the cost of degrading lower-priority tasks,
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which will not necessarily yield an optimal overall performance.

2.4.2 Cache Locking

Cache locking techniques consist in exploiting hardware support to explicitly control the
cache contents. Special instructions may be used to explicitly load information in the cache
and to disable the cache replacement policy, thereby locking cache contents. However,
cache locking does not inhibit cache accesses.

Since all or some of the cache contents are actually locked in the cache, the cache be-
haviour and accesses would become fairly predictable, at least with respect to instruction
cache. Furthermore, locking techniques only require a set of cache management operations
to explicitly load instructions in the cache and to inhibit the cache replacement policy. For-
tunately most commercial processors provide those special operations. Locking techniques
can be classified as static or dynamic.

Static Cache Locking In static locking, cache contents are loaded at system start-up
and remain unchanged until the system completes execution: all tasks can compete for the
cache space to be locked. Hence the cache may store code from different tasks (to the
extreme of all tasks).

Puaut in [122] tries to exploit the advantages of static locking techniques over static
analysis. Static cache locking implies predictable memory access times, which in turns
caters for simpler WCET analysis. Cache locking addresses both extrinsic and intrinsic
cache interferences: cache-related preemption delay is indeed suppressed and intra-task
block eviction is inhibited. Experimental results show that in most cases the worst-case
performance obtained by static cache locking outperforms the one obtained by classical
static analysis techniques exploiting static cache simulation. Of course, this would also
depend on the size of the analysed application.

Other more recent studies focus on static cache locking, at least with respect to I-cache.
Falck et al. in [55] and Liu et al. in [83] present content selection algorithms for I-cache
static locking which can compute an optimal I-cache content with respect to minimising
the WCET behaviour.

Dynamic Cache Locking Conversely to the static technique, in dynamic locking, cache
contents are changed at specific reload points during execution. Dynamic locking tech-
niques may be applied at different level, depending on how these points are defined:
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- at system level, as statically-defined cache contents may be associated to individual
tasks; or

- at task level, as specific cache contents may be associated to designated code regions
of (each) single tasks.

In the former case, reload points are placed at context switches, whereas in the latter case
they are placed within the task body.

Dynamic locking, however, requires reload points and respective cache states to be
defined off-line before execution. Defining appropriate reload points and cache contents
within a task is indeed a critical point. Since leaving this complex decision to the hu-
man operator is inconvenient, several studies [123, 124, 31] try to explore algorithmic
approaches.

Puaut in [123, 124] suggests a genetic algorithm to appropriately define task regions
and cache contents for dynamic cache locking. Puaut’s approach introduces multiple
reload points, each one associated with a statically selected cache state, with a view to min-
imising the WCET estimation of the program. Reload points are placed at function entry
points and loops to enhance code locality and thus improve WCET performance. Cache
contents are defined so as to minimise the worst-case execution path (WCEP), which is
dynamically computed along the control flow graph. Experimental results show that the
worst-case WCET estimates obtained by locking the instruction caches is very close to the
WCET estimates obtained by uncontrolled caches (it depends on the actual extent of code
locality).

A similar approach is suggested by Jain et al. in [67]: they provide a software-assisted
replacement mechanism for cache blocks, which augments a basic LRU policy. Spe-
cial instructions are defined for unconditionally/conditionally "keeping" (i.e., locking) or
"killing" (i.e., marking as LRU) cache blocks. The issue of where to insert keep and kill
instructions to a program is left to a compiler-based static analysis strategy. Experimental
results show that performance (in terms of hit rate) is never worse than that obtained by
applying the LRU policy. Unfortunately this approach requires specific hardware as well
as software modifications.

A comprehensive approach exploiting both cache partitioning and dynamic locking
has been proposed by Vera et al. in [160]. The positive effects of cache partitioning in
eliminating inter-task cache interference are combined with the use of dynamic locking as
a means to limit the precision loss stemming from unpredictable memory accesses. A set
of lock/unlock instructions are automatically inserted in the CFG of a program to define
lock regions where the cache content is statically determined and thus fully analysable.
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Discussion From the instruction cache standpoint, the use of lockable, and software-
managed caches in general, could in principle be quite effective since we are exactly aware
of whether a statically-addressed instruction is stored in the cache or not. The same in not
trivially true for data caches because of dynamic references.

Dynamic locking techniques may be applied to a subset of the system tasks to the
extreme of the whole task set. If the cache locking technique is applied just to a subset
of tasks then cache variability still affects residual tasks. On the other hand, if the cache
contents were statically selected for whole task sets then it would be more suitable to use
a scratchpad memory instead of cache locking.

As Campoy et al. point out in [31], static and dynamic locking techniques are not
equivalent, as static locking ensures easier analysability while dynamic locking usually
ensures better performance. Nevertheless, the (predictable) overhead imposed by dynami-
cally reloading cache contents may not be paid back by actual performance improvements.
At task level, the delay caused by reloading the cache between task regions may become as
large as the delay potentially caused by cache misses: depending on the actual execution
path taken after the reload points, some cache contents may even not be used at all. Even
at system level, cache reload at context switches may incur considerable overhead.

Consequently, choosing between static and dynamic locking involves some consid-
erations on the actual program code. In particular, when the cache size is close to the
cache-worthy code size, static cache locking should be preferred; otherwise implement-
ing dynamic locking at system level may be prove more convenient. Furthermore, if the
task code exploits clearly different "working sets" for different code regions then dynamic
locking at task level may be worthwhile too.

At any rate, since we are also interested in obtaining a performance similar to that pro-
vided by a conventional cache, the parts of code to be locked must be carefully selected.
Whenever the application is not a simple and small one, it could prove really difficult to
select the code parts to be locked unless some kind of advanced support is provided at com-
pile time. This is particularly evident with regard to industrial-scale systems. Freezing the
cache content, as a result of static cache locking, may help reducing the negative effects
of unpredictable data access on cache analysis. On some hardware platforms, however,
freezing the cache also inhibits any burst load mechanism, and yields to overly degraded
performance. Although the combination of cache partitioning and locking could in princi-
ple improve the overall system analysability (as suggested in [160]), the industrial appli-
cation of this kind of approach is still conditional on the effects on performance. Besides
the already discussed limitations of the partitioning approach, dynamic locking relies on
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specific hardware support to be able to load cache content at the required granularity level
and, more importantly, without unacceptable performance loss. Such hardware support
may not be available in simpler processors such as those in use in the HIRTS domain.

2.4.3 Scratchpad Memories

Scratchpad memories are small on-chip memories mapped to the hardware address space,
which can provide fast memory accesses without affecting the overall system predictabil-
ity. In fact, the contents of scratchpad memories are statically allocated in a separate ad-
dress space, which makes one always aware of its contents. The considerations we made
on the cache locking approach still hold for scratchpad memories, as the way contents is
loaded into the scratchpad is quite similar to that used in cache locking techniques.

Memory allocation in scratchpad memories is completely software managed, whether
on control by the user or by the compiler. Several studies [127, 94] focus on efficient
scratchpad allocation techniques, either static or dynamic. Static allocation techniques are
discouraged as they imply a plain performance loss if the code size is much bigger than
the scratchpad size.

Puaut and Pais in [127] propose a generalisation of the allocation algorithm introduced
in [123] for cache locking. As we mentioned above, this algorithm uses multiple reload
points, each one associated with a statically defined memory state. Memory contents are
selected depending on the execution frequencies of basic blocks of code along the worst-
case execution path, obtained through an external WCET estimation tool. In the same
work, the scratchpad memory approach is compared with the dynamic cache locking tech-
nique. The difference between scratchpad memories and dynamic cache locking caches
is described as twofold. The addressing scheme in scratchpad memories is completely
software-controlled whereas in locked caches it is transparent to the software. From the
granularity standpoint, in locked caches the smallest lockable unit usually consists of a
cache line whereas in scratchpad memories the smallest memory unit is not bounded to the
cache block size but corresponds to task basic blocks. This may lead to scratchpad frag-
mentation since some space may be wasted when the basic blocks to be allocated are too
large compared to the residual free space in the scratchpad. It is worth to note that on-chip
memory may also be split into cache and scratchpad memories: a suitable algorithm for
those architectures is proposed in [94].

Discussion Replacing the cache with a scratchpad memory leads to a fully predictable
timing behaviour for fast memory accesses; however the actual scratchpad size limits the

Cache-aware Development of High Integrity Real-time Systems



2.5 Hardware Predictability Issues 33

amount of potential fast accesses, thus leading to poorer overall performance than that
obtainable with caches. Splitting the on-chip memory into a scratchpad and a cache may
improve the overall performance at the cost of an even more variable system behaviour.

However, a general methodology should be devised to properly determine which parts
of code should be mapped to the scratchpad. The surveyed approaches focus on effi-
cient (static or dynamic) scratchpad allocation techniques, aiming at reduced energy con-
sumption or better WCET performance rather than improved system predictability. More-
over, the WCET-driven allocation algorithms presented in the above studies exploit a
greedy approach since each time a different allocation scheme is considered, a complete
re-evaluation of the WCET is required.

2.5 Hardware Predictability Issues

Improved cache predictability can also be obtained by avoiding hardware features or de-
sign choice that may incur more unpredictable behaviour, such as dynamic branch predic-
tors, out-of-order execution, unpredictable cache replacement policies, etc. [19, 136, 100].
Also appropriate coding styles and code patterns may help improve WCET analysis by
removing unnecessary sources of overestimation due to specific code constructs.

Hardware Design Choices Several studies [19, 59] suggest cache-specific design choices
whose combination is expected to considerably improve the overall cache predictability.
With respect to predictability of cache replacement policies, LRU is widely recognised as
the most analysable replacement policy [59, 136]. Reineke and Grund in [134] introduce
the concept of relative competitiveness of cache replacement policies. Using competitive
analysis, they compute a bound on the additional cache misses that different replacement
policies incur with respect to those obtained by applying LRU.

Data and instruction caches should be kept separate to eliminate inter-dependencies:
unified caches are vastly more difficult to analyse [19]. The same line of reasoning sug-
gests implementing separate memory interfaces for code and data (Harvard style memory
architecture).

Two possible sources of overestimation in cache-aware static analysis stem from out-
of-order execution and dynamic branch prediction which thus should be avoided. Both
features overly increase the complexity of WCET analysis. Out-of-order execution could
also increase the frequency at which timing anomalies occur whereas dynamic branch
prediction may entail the so-called speculation anomalies [135]. Complex pipelines, for
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example, performing superscalar or out-of-order execution, allowing hazards, etc., force
static analysis to keep track of the whole pipeline states and of the interactions between in-
structions at different stages. From the analysis standpoint it means that complex abstract
pipeline states have to be computed that accurately model the pipeline behaviour. The
more complex the pipeline, the larger the number of possible pipeline states to be consid-
ered (with increasing loss in precision) and the more likely it may incur unbounded timing
effects. Some approaches in the literature aim at analysing processors equipped with com-
plex pipelines. For example, Li et al. [81] have modeled a pipeline with out-of-order
execution. However, although the authors claim that the execution context of surround-
ing basic blocks are taken into account, they have not proved the absence of long-timing
effects in their model.

Dynamic branch prediction schemes build on buffers or tables that store control flow
information to predict the outcome of any branch instruction. Therefore, they expose a dy-
namic behaviour which inherently depends on the execution history (similarly to caches).
Conversely, static branch prediction can be used instead to improve performance (though
with a relatively higher misprediction rate than dynamic predictors), while still preserving
predictability, as each branch outcome is statically predicted at compile time as taken or
not-taken.

Timing analysis is also hampered by the use of virtual memory as the WCET analysis
of virtual memory accesses have to account for the time required by the Memory Man-
agement Unit (MMU) to translate a virtual address to a physical address on every memory
access. With respect to timing analysis, MMU poses the problem to statically predict both
the Translation Look-aside Buffer (TLB) behaviour and the possible occurrence of page
faults. However, it should be noted that, in high-integrity domain, virtual addressing and
pagination via MMU are typically regarded as a mean to achieve spatial isolation (i.e.
memory protection) among different processes and not as a mechanism for augmenting
the address space.

Puaut and Hardy in [126] focus on the paging issue and state that the complexity of the
memory paging system cannot be analysed just exploiting classical cache analysis tech-
niques because of the inherent complexity of page replacement policies (typically some
sort of PLRU). They therefore resort to a compile-time approach based on graph coloring
to statically determine the program points at which a page in or page out may occur. The
cited authors present an ILP algorithm variation of the same approach in [56].
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Multicore processors The approaches surveyed so far address single-core architectures
which has represented the main-stream architecture in the last decades. Obtaining de-
pendable figures of the WCET can became even more difficult on multi-core platforms.
Analysing the latter currently represents the current frontier in academic research and much
work has still to be done in this direction.

Analysis issues related to thread interferences in multitasking environments are some-
how exacerbated by possible interferences in shared physical resources, such as the mem-
ory hierarchy, buses, etc. Several recent studies have focused on real-time scheduling in
multi-core systems [9] but they do not discuss how to obtain the WCET values required by
schedulability analysis.

A partitioning approach for multicore systems is presented by Chang and Sohi in [33,
34] which exploits cooperative caching and cache partitioning allocation scheme in multi-
core systems. Local private caches also cooperate as an aggregate shared cache to keep in
cache globally active data. However that approach is average-performance-driven and thus
does not address timing predictability. Suhendra and Mitra in [148] propose a predictable
combination of cache locking and cache partitioning in multi-core systems. They evaluate
possible combination of static/dynamic locking and thread- and core-based partitioning
with respect to WCET performance.

With respect to instruction scratchpads, a scratchpad-based approach is presented by
Metzlaff et al. in [99], which consists of a fully predictable dynamic allocation scheme for
instruction scratchpads in multi-threaded processors. Scratchpad allocation is automati-
cally done at the granularity level of complete functions (assuming they can completely fit
in the scratchpad); therefore the scratchpad contents are always and exactly determined by
flow analysis.

2.6 Predictable Software

Several efforts to cope with cache predictability aim at devising a sound and computation-
ally feasible analysis approach or try to avoid those hardware features or design choices
that may incur less predictable behaviour. Over and above the adoption of sound analysis
approaches and hardware countermeasures, however, we must note that cache behaviour
is also highly affected by the actual program code, both in term of performance and pre-
dictability.

It is worth noting that both cache-aware code patterns and coding styles would be
more easily enforced through automatic code-generation approaches (as well as compiler
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transformations), thus to guarantee analysability by construction.

Predictable Code Constructs Appropriate code structures may contribute to improving
WCET analysis by removing those unnecessary sources of overestimation that hamper
both static analysis and hybrid measurement-based approaches to cache analysis. More
generally, coding constructs and styles may also affect, both negatively and positively, the
tightness of WCET analysis caches.

Some code constructs are known to be more difficult to analyse. For example, indirect
calls pose a threat to static analysis, which may not be always able to automatically detect
call targets. The same holds for the switch/case construct, when implemented through
indexes in a dynamic table. When it comes to data caches, static analysis is unable to
cope with dynamic allocation and is penalised by any load/store instructions that reference
multiple memory locations (e.g.: arrays indirection, pointers, etc.). When static analysis
fails or incur too much overestimation the user is required to provide additional information
(typically through annotations) to refine and guide the analysis. As observed in 2.3.1.1 user
intervention in the analysis process is both laborious and error-prone.

However, the set of code constructs that should be avoided to facilitate WCET analysis
is commonly known but, to the best of our knowledge, no classification of "bad constructs"
is proposed in the literature. We will further detail on this topic in Chapter 3.

Analysis of Software Structure Besides the previous influence factors, the timing be-
haviour of a program is affected by structure of the software itself. Increasing complex
software may hamper the viability of WCET analysis. The adoption of state-of-the-art
development approach for complex systems, as Component-Based Design (CBD) have
gained enormous attention in recent years. CBD allows to facilitate the economic devel-
opment of complex software by reuse of pre-built components. However, it poses a threat
to timing analysis, due to complex control flow inside (possibly black-box) components
as well as dependencies between components. Szulman in [149] focuses on data-flow and
control-flow dependencies between complex components.

Fredriksson et al. in [49] observe that due to the generality of reusable components,
the analysis of Component-based software may lead to a severe overestimation of each
component WCET. They suggest a method that allows to associate different parametric
WCET bounds to the one and the same component, thus resembling to the actual compo-
nent behaviour. However, to limit the complexity of the problem, they assume no hardware
influence in the component WCET determination. For example, they do not consider ef-

Cache-aware Development of High Integrity Real-time Systems



2.7 WCET Tools in Industrial Experiences 37

fects from different memory layouts.

Code Optimisations It is worth noting that the final application code is obtained through
a set of compiler transformations which could be transparent to the programmer. Some
studies [88, 46] aim at devising WCET-aware compiler optimisations to be automatically
applied at compile time. In particular, Lokuciejewski and Falk in [89] take into account
the effect of memory layout on the cache behaviour and aim at computing a WCET-aware
memory layout for a program, that minimises the number of possible conflict misses.

2.7 WCET Tools in Industrial Experiences

Although several approaches have been proposed in the literature to derive safe and tight
bounds of the WCET of tasks running on cache-equipped processors [163], those tech-
niques and tools are yet to be fully embraced by HIRTS industry, most of all by its most
conservative members.

Several prototype tools are currently maintained by the most active WCET research
groups: for example the SWEET tool [93] from Mälaradalen University, the Eptane tool
from University of Rennes I, the Chronos tool [80] from the National University of Singa-
pore (NUS) and the several prototypes from the Vienna University of Technology (TUW).

Some cache analysis techniques, however, have been successfully integrated into com-
mercial tools and progressively forced their way into industry: RapiTime [133] and aiT [1]
represent the current main-stream industrial level tools. RapiTime is based on the hybrid
measurement-based approach introduced in [20] whereas aiT builds on the static analysis
approach based on abstract interpretation defined in [48]. Those tools have been success-
fully applied in industrial case-studies [146, 54] especially related to the automotive and
avionic domains. Other industrial-level commercial tools, such as Bound-T [155], do not
support the analysis of cache equipped processors.

Automated code-generation facilities, which follow the Model-Driven Engineering
(MDE) paradigm, are increasingly adopted in the HIRTS industrial domain (e.g. SCADE
[42], Matlab/Simulink [96], etc.). As a matter of fact, industrial-quality HIRTS routinely
integrate generated code from different modeling tools together with manual code. To
the best of our knowledge, however, no industrial-quality code generation engines exists
that is expressly focused on generating predictable cache-aware code. This notwithstand-
ing, this topic has recently gained some interest in the WCET academic community (e.g.,
[72, 151]). Some advanced software development suites do address the integration of
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WCET analysis tools in the development process. The integration of the aiT WCET anal-
ysis tool with SCADE and Simulink has been addressed in [47, 151].

2.8 Research assumptions

As discussed in section 2.5, the more complex is the processor, the more difficult the anal-
ysis, whether by static analysis or hybrid measurement-based methods. In our study we
will mainly address relatively simple single-core hardware architectures, thus excluding
all those hardware features that overly complicate WCET analysis (e.g., out-of-order pipe-
lines, dynamic branch predictors, unpredictable cache replacement policies). Although we
are aware that the mainstream research is currently moving towards more advance pro-
cessor and multi-cores in particular, in Section 1.1.2 we already observed that the current
processor baseline in HIRTS is still a relatively simple single processor system.

In order to reduce time and cost of the development of HIRTS, component-based and
model-driven engineering approaches are increasingly adopted to facilitate an early V&V
of a system and to inject good practice in the automated generation of part of the system
itself. Our study will leverage on the increasing penetration of the MDE paradigm in the
HIRTS domain.

We also assume non-partitioned preemptive systems and avoid any consideration on
other models, though aware of their adoption in some HIRTS application domain (e.g.,
IMA in avionics). Moreover, when considering predictability of code constructs and pat-
terns we may need to define the target programming language and compiler as the exe-
cutable code highly depends on both of them. In remainder of this work, we try to be as
independent as possible from a specific language or compiler; however, on specific issues,
we address the Ada programming language and the GNU GCC compiler.
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Chapter 3

Cache-aware Development Process

3.1 Introduction

HIRTS industry fears that the adoption of cache-equipped processors may threaten their al-
ready onerous and complex verification and validation process. The High Integrity domain
asks for guarantees that the timing behaviour of a program would meet the expectations
made at design time, even in presence of caches. This can be hardly accomplished without
a proactive attitude towards caches and timing analysis in general already as of the early
stages of the development process. In order to facilitate a conscious adoption of caches
in HIRTS, a systematic approach is needed which should involve and influence the whole
development process.

In this chapter we reason on the current role of timing information in the development
process and elaborate on a systematic approach that enables timing analysis and inoculates
cache-awareness into the industrial-level development process of HIRTS.

3.2 Characterisation of industrial development process

In the high-integrity domain, the software development process must meet the require-
ments set by the applicable qualification/certification standard, which determines the de-
sign, development, verification and validation criteria for a fully predictable and depend-
able application. The more critical the application, the stronger the requirements to be met
and the larger the amount of formal activities and documentation prescribed.

Although domain-specific standards do not explicitly impose a particular life-cycle
model, their set of rules and directives, as well as consolidated practices, may bring about
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the adoption of specific process models in each application domain. By and large, the soft-
ware development process typically follows the classical "V model" in Figure 3.1. This
widespread model is characterised by the specular placement of two set of activities pre-
ceding and following the implementation phase. The descending part on the left comprises
requirement definition, high-level and detailed design; whereas the ascending part on the
right includes test, integration and verification phases. A strict relationship (represented
by dashed arrows in the picture) holds between activities on the left branch and the corre-
sponding verification and validation steps.

Figure 3.1: The V model development cycle.

The small branches protruding from the left arm of the V represent incrementality,
which is a distinguishing feature of HIRTS development process. The development in fact
proceed through incremental software releases, which individually follow the life-cycle
model. Incrementality is required both to better master the overall complexity of the soft-
ware and to enable the cooperation of different contractors on the same project. Iterations,
instead, may be locally required to reassess aspects of the development; in HIRTS develop-
ment, however, they are feared (and possibly avoided) because of the potential destructive
effects of regressions on the project economy.

3.2.1 Role of timing information

As we already sketched in Chapter 1, in spite of the considerable progresses in timing anal-
ysis, a combination of software simulation and testing with safety margins still continues
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to be the current industrial baseline. Rough initial WCET estimates obtained from past
experience are augmented with safety margins and fed to schedulability analysis. These
estimates are then refined against available prototypes and legacy code. It is however from
the implementation and unit testing phases on that several measurement instruments (e.g.,
cycle-accurate simulator, oscilloscope, logic analyser, etc.) are used to dynamically anal-
yse various pieces of software under a selection of inputs, in attempt to exercise realistic
conditions.

As a matter of fact, timing analysis is pushed and compressed near the end of the
development process with a massive amount of measurement-based analysis performed
by testing. Although early measurements can be performed along with the implementation
phase to consolidate the WCET bounds, their safeness still relies on a poorly representative
test coverage, backed by safety margins. Although the prominent role of timing informa-
tion is well perceived by industry, the way this information is collected and exploited is
not commensurate with the required level of confidence. Moreover, the predictive value of
scenario-based measurements is drastically reduced by the impact of caches in the timing
behaviour of a program. Measurements are thus not necessarily safe and it is difficult to
use them with confidence in schedulability analysis.

High-integrity industry cannot simply accept that the level of uncertainty incurred by
the unrestricted use of caches can only be remedied a-posteriori on costly feedback cycles
triggered by analysis results. As timeliness of the system is a major concern in HIRTS,
timing information should instead pervasively contribute to every single step in the de-
velopment process, from early considerations on timing requirements, to schedulability
concerns in architectural and design phases, to predictable code implementation, to tim-
ing assessment in the final V&V activities. Ideally the system timing behaviour should
be determined as early as possible in the development process, to allow an early detection
and correction of timing problems and faults. In this setting, the dynamic testing cam-
paign typically performed near the end of the development process should only confirm
the expectation made on the system timing.

3.3 Timing analysis: the industrial perception

HIRTS industry currently stands in an awkward position with respect to timing analysis.
On the one hand, they perceive that the current development approach is jeopardised by
the migration to more complex cache-equipped processors that expose to potentially large
jitters: they actually agree on the point that a more structured approach to timing analysis

Cache-aware Development of High Integrity Real-time Systems



42 Chapter 3. Cache-aware Development Process

would bring an added value to their process. On the other hand, however, they fear the
costs that a factual application of state-of-the-art timing analysis would add to an already
onerous development process. Their perception of advanced WCET analysis is that the
quality of its results may not match the costs it incurs for large complex systems

As often happens, the truth lies in the middle. The current industrial approach to timing
analysis is poorly equipped to cope with the variability incurred by caches. The strong
requirements on timing predictability can hardly be fulfilled if timing concerns are only
addressed in the final steps of the development process. It holds equally true, however, that
the introduction of (cache-aware) timing analysis techniques and tools in a consolidated
process may incur costly and demanding efforts of integration in so far as they may require
the introduction of new design-time decisions or the allocation of new process activities
and tasks. From the industrial perspective, any amendment to industrial practice must be
carefully evaluated with respect to attainable benefits and induced costs.

In the scope of the COLA project [102], the author has been involved in an evaluation
of a score of approaches to cope with cache unpredictability, enriched with relevant indus-
trial feedback on their industrial fitness. What clearly emerged from that evaluation is that,
in order to be embraced by industry, any countermeasure or techniques should not have
disruptive effects in the software life cycle, but should be easily integrated in the consol-
idated industrial practice. Without casting any doubt on their correctness, each proposed
approach and technique should be in fact be evaluated against the prospective benefits, in
particular with respect to their effectiveness, efficiency, scalability and required knowledge
and skills.

With respect to WCET analysis, building on a sound and precise model of the target
processor (which is increasingly less obvious), static analysis techniques allow to compute
a safe WCET bound for a program. Industry, however, is often discouraged from adopt-
ing static analysis tools and techniques by the added complexity that their use is expected
to inject in the final verification and validation process. Since static analysis approaches
and tools may suffer from exceeding overestimation, complex low-level annotations (e.g.,
on loop bounds or addresses of memory accesses) may be required to improve the preci-
sion of the analysis results. The provision of effective manual annotations, besides being
an onerous and error-prone task, requires sharp skills as well as a deep knowledge of the
program itself. Knowledge about the program behaviour, which is naturally kept by the
system designer and by the software developer, may be unavailable at the end of develop-
ment and difficult to retrieve. This is the case, for example, when the program analysis is
not performed by the same person that designed or developed it, or even when the program
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includes black-box outsourced components or external libraries. As we observed in a long
term investigation on a large piece of real industrial-scale software [103], the limitations
(in terms of scalability and costs) of WCET analysis may abruptly emerge when facing
complex industrial software, developed without analysability in mind. Under that condi-
tion, in fact, the analysis process reveals itself to be overly complex and costly and the
quality of its results rapidly degrades.

In contrast with static analysis, hybrid measurement-based techniques produce WCET
estimates or distribution that may be realistic but are not necessarily safe. Since hybrid
analysis builds on measurements performed on the actual hardware, the latter should be
available to the user. This prerequisite rules out all cases when the hardware is developed
in parallel with the software. However, this circumstance is not that frequent in the HIRTS
domain where at least a cycle-accurate simulator is typically available. Hybrid analysis
is intrinsically a less demanding approach compared to static analysis as it typically does
not require deep knowledge about the analysed program. Therefore, analysis can even
be performed on black-box components, simply triggering their execution by the test har-
ness. On the other hand, and for a similar reason, the results of hybrid analysis are less
trustworthy: if some extreme or unexpected timing behaviour is observed during measure-
ments, the analysis results cannot help us determine the exact reason of such behaviour.
As compared to static analysis approaches, hybrid analysis requires that all program code
must be available, since measurements does not allow to declare execution-time bounds
for unimplemented parts of a program. Finally, from an industrial perspective, the fact that
the hybrid analysis process does not diverge too much from dynamic analysis may prevent
industry from appreciating its benefits.

3.3.1 Approaches to predictable caches

Besides timing analysis techniques, several approaches have been proposed to specifically
cope with cache-induced variability and unpredictability. These approaches, which have
been extensively introduced in Chapter 2, should be evaluated against their fitness to the
industrial development process: in the following we briefly review their pro and cons from
the industrial perspective.

Restricting the cache behaviour. In contrast to canonical analysis approaches, which
tend to be applied near the and of the development process, restricting the cache behaviour
for the sake of a reduced variability and unpredictability is typically regarded as a design-
time activity that will be effective just at the end of the development process. However,
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cache partitioning and locking, as well as the adoption of a more predictable scratchpad
instead of caches, also affect how the system is actually developed and permit to make
assumptions on the results of the unit test campaign.

The main perceived drawback entailed by the decision of partitioning the cache to min-
imise the interference between tasks is the reduction of the usable cache size for each task.
The performance of cache partitioning is thus strictly related to number, size and assign-
ment of cache partitions. Due to the intrinsically tiny size of caches with respect to the size
of a program, the overall system performance can be greatly penalised. Especially for large
systems, assigning cache partitions to tasks can prove to be quite a complex job, as naively
assigning partitions in accordance with task priority (i.e., by urgency) or to task rates is
unlikely to be the best choice. Moreover, from the concrete implementation standpoint,
the software partitioning approach may prove cumbersome for complex systems, whereas
hardware partitioning requires explicit hardware support, which is not always available in
the HIRTS processors baseline.

When it comes to cache locking, both static and dynamic approaches rely on the ex-
plicit selection of the parts of the application code or data that shall be explicitly loaded
in the cache. Unless the application is simple and small, making that selection could be
very difficult. Performance issues should also be accounted for in making that decision, as
static locking incurs poor cache performance while dynamic locking incurs overhead when
reloading the cache content. It is worth noting that the provision of predictable cache ac-
cesses is relatively simple for the I-cache while is not an easy matter at all for the D-cache,
primarily because of dynamic references. A combination of cache partitioning and lock-
ing, while potentially improving the overall system predictability and analysability, may
still expose to unsought performance loss.

Similarly to cache locking, the use of scratchpads requires the user to explicitly single
out application code or data to store in them. A general methodology, which does not
exist yet, should be devised to properly determine which parts of an application should be
mapped to the scratchpad separate address space. With respect to I-caches, the reduced
dimension of a scratchpad is likely to produce inadequate performance for large systems.
The scratchpad approach could be more efficiently applied to data rather than to code,
assuming a sound method to content selection.

Predictable coding patterns and styles. Cache-aware coding is straightforwardly appli-
cable at the implementation stage of the development process as it explicitly addresses soft-
ware implementation issues. However, code predictability should inform both task-level
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code constructs and software architectural-level design choices. Therefore, when it comes
to software architecture issues, cache-awareness should also address architectural-level
decisions taken in the high-level and low-level design phases. Appropriate code patterns
and coding styles may certainly help improve WCET analysis by bounding the sources of
overestimation. However, this would require a major change in the predominant way of
programming, which is typically geared to optimising the average case, obliviously of its
effects on the worst case.

Layout optimisations. Layout optimisations have been proved to be quite effective, at
least with respect to I-caches. As proposed in the literature, the application of layout
optimisations needs to account for the structure of the whole system as local improvements
for a software module or task may penalise other modules. The natural allocation in the
development process is then in the integration phase when the final system is available.
Provided that automated support exists, the enforcement of a controlled layout does not
require special skills.

The computation of a cache-aware layout is most effective when performed on the
final executable at the end of the development process. However, the desired cache be-
haviour may not be preserved when the system is modified or other modules are added
to the system. This observation clashes with the incremental nature of the typical HIRTS
development process.

Selective caching. The explicit run-time control of the cache utilisation may help im-
prove both the performance and the predictability of cache-worthy tasks and code. Simi-
larly to the approaches for a controlled cache behaviour (partitioning, locking and scratch-
pads) the run-time management of the cache operation builds on design-time decisions and
affects both the development and unit testing phases.

Again, however, the criteria to follow in the selection of the parts of the application that
may be allowed to use the cache are not easy to determine and automate. This is in fact
a critical choice which should be taken early in the design process, where the most inter-
esting information on loop- and data-intensiveness, as well as criticality of tasks, may not
be available. Cache inhibition should also be guaranteed not to overly degrade the mem-
ory latency, as it happens for the LEON2 processor [3] where the resulting time penalty
discourages its adoption.
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Cache-aware compiler support. Compilers play a crucial role in the determination of
the timing behaviour of a program as they generate the object code that will be actually
executed at run time. Compiler cache-aware optimisations/transformations and support for
cache analysis make it possible to enforce and preserve predictable source code constructs
in the source-to-object mapping. Those activities can be naturally mapped to the software
implementation phase.

Although the effectiveness of compiler transformations and optimisations has been
proved, it is worth noting that their introduction touches the innermost workings of the
compiler. Its deployment therefore brings about the use of non standard compilers or at
least important modifications to them. This in practice is a cumbersome and challenging
endeavour from an industrial standpoint.

Although the surveyed approaches may help improve the predictability and analysability
of the cache behaviour, none of them lends itself to a straightforward integration or ap-
plication in the industrial development. All those approaches in fact share as a common
drawback the lack of either a methodological approach or an adequate tool support, which
cannot be dispensed with for an extensive industrial application. Table 3.1 summarises pro
and cons of the considered approaches from the industrial perspective.

Approach Perception Pro/Cons
Cache Doubts on performance 7

partitioning Lack of methodologies for partition size and allocation 7

Cache locking Doubts on performance 7

and scratchpads Lack of methodologies for code/data selection 7

Predictable coding Ease the application of timing analysis D

patterns and style Difficult to enforce 7

Layout Almost straightforward when automated D

optimisations Wrecks incrementality 7

Selective Difficult to select cache-worthy tasks 7

caching Potential performance loss 7

Cache-aware Effortless application D

compilers Implies use of non-standard compilers 7

Table 3.1: Industrial perception of common approaches to improve cache predictability.
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3.3.2 Industrial requirements on timing analysis

The perceived gap between state-of-the-art timing analysis techniques and their industrial
adoption can be formulated as a set of high-level applicability issues. Those issues, in turn,
should be intended as a set of preconditions on the full industrial applicability of timing
analysis approaches.

Issue #1 - Scalability. The computational complexity in both the time and space dimen-
sions of the technique cannot be disregarded when considering its industrial fitness. The
applicability of state-of-the-art timing analysis may be in fact hindered by the dimension of
the problem at hand. In respect to static timing analysis, tractability problems are known to
arise in the presence of complex hardware features (e.g.: caches, out-of-order pipelines),
which cause the state space of the abstract processor model to explode in the attempt to
fully and accurately account for the inner state of all the hardware features with bearing on
the WCET. However, computational issues may even occur for relative simple processors,
such as those adopted in HIRTS (e.g., the LEON2 [3] processor). Industrial-scale software
artifacts are large complex systems, composed of a mixture of automatically generated and
manual code. It is not rare for such systems to exhibit a massive call graph: in a recent
experiment on a relevant part of a real OBSW [103] we stepped into a huge graph of more
than 1,300 procedures for a single task entry point (see Figure 3.2).

In this context, since most procedures are executed within several execution contexts,
inter-procedural analysis shall be applied for the sake of reducing the pessimism that would
otherwise be incurred by considering always the worst-case context. The clear drawback
of a massive application of inter-procedural analysis to a complex call graph, such that
reported in Figure 3.2, is a state space explosion similar to that experimented with more
complex hardware.

Even hybrid analysis, although at a different degree, is not exempt from tractability
issues. In the presence of a complex system, as that in Figure 3.2, the size of the program
traces, which are collected to derive timing information of single program segments, may
easily and swiftly become unmanageable.

Beside complexity in space, also the computation time required by the analysis steps
may dramatically increase along with the complexity of the analysed software.

Issue #2 - Required skills and knowledge. Industry is also sensitive to the costs that may
be incurred by a more rigorous application of timing analysis, both in terms of underlying
skills and capabilities of the personnel involved, and time spent in the analysis process.
Although current best-of-breed analysis tools pull for an increasing level of automation in

Cache-aware Development of High Integrity Real-time Systems



48 Chapter 3. Cache-aware Development Process

Figure 3.2: Complexity of an industrial-scale call graph (from aiT).

the analysis process, a magical one-button solution does not exist yet. Regardless of the
analysis approach (either static or hybrid timing analysis), a tool user is expected to supply
information on loop bounds, dynamic jumps, etc., that could not be automatically extracted
from the program. This is not a negligible issue in those industrial settings where WCET
analysis is not a consolidated practise. Besides the unavoidable training on a specific
analysis tool, the collection and provision of trustworthy timing information to guide the
analysis process ask for specific skills and knowledge of the program under analysis.

The assumption that the user can be a trusted source of flow facts is extremely fragile
for large, complex and long-lived industrial programs. It is worth considering that the
engineers that should analyse the timing properties of the program are seldom those who
designed or produced it. This is even more true for the large amount of legacy code, which
is a most valuable industrial asset.

Moreover, the sought-after information is often not available at source-code level as
it depends on the code generation engine of compiler back ends, which for example de-
termine how the program control flow is reorganised, introduce loops and branches not
traceable to the source code. The information may also be scattered over large slabs of the
code base; or may not even be available at all in the program at hand as it may depend on
higher level design choices, far removed from it. Especially in the latter case, it may even
be impossible to accurately and precisely reconstruct the sought information.

In consideration of its critical role in determining both safeness and tightness of the
analysis results, collecting timing information in the form of flow facts to be fed to the
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analysis tool may prove to be a challenging and onerous task.

Issue #3 - Relationship with schedulability analysis. Timing analysis is typically kept
separate from system level issues as the focus in WCET analysis is set on the timing
behaviour of individual tasks, under the simplifying assumptions that they run in isolation.
It is up to feasibility analysis to account for the costs of context switching and external
interference suffered by the task owing to the effects of preemptive concurrency on history-
dependent shared physical resources, caches above all.

The apportionment of inter-task interferences in advance schedulability analysis tech-
niques, as proposed by increasingly advanced approaches (cf. Chapter 2), may not be
straightforward in complex and task-intensive preemptive systems. The separation of
intra- or inter-task analysis gets blurred as a consequence of the common occurrence of
self-suspending tasks, timer alarms and watchdogs in industrial software. This unclear
separation manifestly clashes with the consolidated industrial approach to timing analysis,
which is historically based on response time testing.

Issue #4 - Perceived quality of the results. HIRTS industry expects timing analysis to
produce both safe and tight WCET bounds. This makes static timing analysis the most
natural candidate for use in critical systems. Probably the plainer hindrance to the indus-
trial application of static timing analysis originates from the observed difference between
the longest measured execution times and the computed (safe) WCET bounds. To some
extent, such difference is justified by the unavoidable conservative attitude of WCET anal-
ysis. However, the necessary conservative approach of timing analysis in combination with
the industrial-scale of the analysis problem and poorly analysable code constructs often re-
sults in extremely large differences, which are hardly justifiable. The perception of such a
significant gap is likely to shed some scepticism on the accuracy of the computed WCET,
which, at its extreme, may lead to ignoring those WCET bounds altogether.

In contrast, the results of hybrid analysis, do not generally suffer from exceeding over-
estimation, though some pessimism may still be incurred by the inclusion of infeasible
paths when combining measurements on program segments. However, hybrid analysis
cannot guarantee to produce safe bounds (but only realistic estimates) unless a fully ex-
haustive test coverage is achieved.

Issue #5 - Cost-efficiency. The application of timing analysis to complex industrial sys-
tems, developed without any particular attention to the timing analysability dimension,
typically poses strong requirements on the user’s capabilities and efforts. As observed in
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Issue #2, regardless of the specific analysis tool, the user is in fact required to peruse an
impressive amount of source and object-level code to get an adequate knowledge of the
program flow facts. The more time is spent in collecting such information, the less overes-
timation will be incurred in the analysis results. Economical considerations may ask for a
compromise between analysis costs and results.

The costs incurred by the provision of precise manual annotations in a scenario with
more than 1,300 procedures (just for a single task entry point), inclusive of poorly analysable
code constructs and software architectures, easily exceed those typically required by the
current industrial practice. In particular, the user is often forced into an extremely time-
consuming and trial-and-error process of uncovering and fine-tuning the annotations re-
quired by the analysis. This observation, in addition to the considerations on the quality
of the analysis results, may make timing analysis scarcely cost-effective and difficult to
defend against the more familiar maximum-observed execution times.

Issue #6 - Extensive tool support. A timing analysis techniques is hardly ever taken
into serious consideration for industrial application if it lacks an adequate tool support.
Industrial-level advanced tools are currently available for static timing analysis [1, 155]
and hybrid analysis [133]. The same does not hold, however, for the reviewed techniques
for an improved cache predictability. The industrial applicability of those techniques is
heavily conditioned by the provision of comprehensive - and as automated as possible -
tool support, to guide the user in the correct application of the proposed method. For
example, tool support is hardly needed to devise proper scratchpad and cache locking
allocation schemes, or to optimise the memory layout. The costs that industries may be
willing to afford for such tools varies on a subjective basis. Those tools as well as their
outcomes should also be easy to integrate each other and with the consolidated tool-chain
(cf. following issue).

Issue #7 - Integration in the software life cycle. Finally, the adoption of a new approach
to timing analysis is likely to ask for additional development activities and tasks. The in-
troduction of new approaches and tools should not break the industrial practice but should
rather fit in the preexisting development process. This consideration also holds with re-
spect to the consolidated industrial tool-chain: specific timing analysis approaches or tools
should conform to the development methods, hardware components, compilers, tools, etc.
in use. It is worth noting that static analysis sets comparatively more rigid requirements in
this respect than hybrid analysis.

The timing analysis method should also be able to accommodate the peculiarities of
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the industrial development process, among which incrementality is the main characterising
trait in the HIRTS domain. The HIRTS development process, in fact, proceeds incremen-
tally in the implementation, integration and qualification of the system. Incrementality is
prerequisite to return on investment from the reuse of architectural building blocks. Cur-
rent timing analysis approaches are inherently not incremental, especially in the presence
of caches, as they critically relies on the availability of information that can only be safely
determined on the final executable, near the end of the development process (e.g.: actual
code and data layout).

The above issues on the industrial applicability of timing analysis tools and techniques
(summarised in Table 3.2), are inevitably interrelated with each other. Scalability, required
skills and knowledge, as well as the available tool support, all participate in determining
the quality of the results and the costs incurred by the analysis process. A comprehensive
approach that simultaneously addresses several requirements (rather than a single one) is
more likely to effectively contribute to narrowing the gap between state-of-the-art timing
analysis and HIRTS practice.

Id Issue
I 1 Scalability
I 2 Required skills and knowledge
I 3 Relationship with schedulability analysis
I 4 Perceived quality of the results
I 5 Cost-efficiency
I 6 Extensive tool support
I 7 Integration in the SW life cycle

Table 3.2: Issues on the industrial applicability of timing analysis.

3.4 Enabling a structured approach to timing analysis

Inherent limitations in combination with the intrinsic complexity of real-world systems
still hinder the extensive industrial application of state-of-the-art cache-aware WCET anal-
ysis. Apparently a methodological gap still exists between state-of-the-art approaches and
industrial state of practice: most of the industrial requirements on timing analysis still
remain unfulfilled. This gap can be hardly filled by extemporaneous approaches aiming
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exclusively at reducing the cache-induced variability. Despite all the proposed approaches
may positively affect cache predictability and analysability, none of them seems to lend
itself to a straightforward integration or application in the industrial development process.

We contend that the only viable solution for industry to account for the variability
introduced by caches is the adoption of a structured "cache-aware" approach aimed at a
twofold objective:

(i) allowing a cost-effective application of state-of-the-art WCET analysis to complex
systems; and

(ii) minimising the variability and unpredictability incurred by the cache behaviour.

We maintain, in fact, that objective (ii) can be hardly fulfilled other than by way of a
novel and more rigorous attitude of industries towards timing analysis, that should recon-
cile the current industrial approach to timing analysis with the industrial expectations on
timing predictability. We contend that this objective can be achieved only through (i).

The first step towards this direction consists in breaking the unbalanced accommo-
dation of timing concerns which are typically addressed as an afterthought to software
implementation. Timing concerns are currently addressed near the end of the development
process where timing analysis is typically applied, regardless of the employed technique.
We contend, instead, that all development activities, from high-level design to software
implementation, should account for timing concerns. Earlier considerations of timing con-
cerns (Figure 3.3) allows to steer the whole development process towards the implementa-
tion of analysable and predictable systems. Only under those premises we can expect the
final timing analysis step to confirm the information collected during the preceding phases.

Figure 3.3: Early addressing of timing concerns.
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Timing information, as well as an early application of timing analysis tools and tech-
niques, is relevant even in the early stages of development when architectural choices and
later detailed design decisions are taken. At these stages, early figures on the timing be-
haviour, from prototypical implementations and even reused software components, may
guide the system designer in taking decisions on the overall system configuration, like
task allocation, execution-time budgeting, scheduling policy, etc. The timing dimension
is obviously critical in the software implementation step and in the successive unit testing
phase, where (partial) WCET estimates can be computed for the available system compo-
nents considered in isolation.

All these development activities should instead be performed with timing analysability
in mind. The software development mantra should be that of minimising any potential
source of unpredictability so that to ease the overall system analysability.

Provided the effectiveness of a more comprehensive approach to timing analysis, how-
ever, we still need a practical approach to enable this sought change of attitude in the
industrial practice. In this respect we identify two practical means for promoting a cache-
aware and timing analysis oriented development process:

- the identification and enforcement of predictable design choices and code constructs,
as we deem software analysability to be the key enabler for a cost-effective applica-
tion of timing analysis in industrial setting; and

- the identification of an incremental cache-aware layout optimisation that better fits
the industrial development process, as we consider the memory layout to be the main
source of cache variability.

Both those techniques have been already assessed in Section 3.3.1 as the most promis-
ing approaches to improve cache predictability and, in a broader sense, to enable the appli-
cation of timing analysis in industrial setting. In our investigation we focus on removing
their identified drawbacks so that to make them effectively applicable in the industrial de-
velopment process. In the following we briefly elaborate the motivations that support the
main constituents of our approach.

Identification and enforcement of analysable software. The application of state-of-
the-art timing analysis approaches to complex industrial system is hampered by the pres-
ence of adverse code constructs and the implementation of timing-unaware design choices
that may overly complicate the analysis process and gravely impair its results. As a prelim-
inary step, we thus identify and provide a taxonomy of those code constructs and design
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choices that may negatively affect the software analysability. In a consolidated devel-
opment industrial practice, however, switching to a timing-aware attitude in both design
choices and implementation requires an onerous and long-term effort. We propose to over-
come this practical issues by leveraging on the model-driven engineering approach and its
code generation facility to enforce an improved degree of analysability by construction,
where those code constructs and design choices that actually hinder the analysability of
a system are automatically avoided. We intend our approach to ease the application of
WCET analysis by improving the overall system analysability and by supporting the anal-
ysis process with automatically generated annotations. This would enable a cost-effective
application of WCET analysis techniques even to complex large-scale systems.

Incremental cache-aware layout optimisation. The memory layout of a program deter-
mines the pattern of hits and misses that will be incurred at run time. In particular conflict
misses, arising when multiple references map to the same cache line, are known to be
the main source of variable cache behaviour. Layout optimisation techniques, which are
quite effective in coping with this source of variability, are typically applied at the end of
the development process, on the final executable. This late applicability crashes with the
incremental nature of the industrial development process model, where early guarantees
on the timing behaviour of incomplete releases of the system are required to facilitate a
prompt detection and reaction to potential timing hazards. We propose a novel layout opti-
misation techniques that allows an incremental application to successive software releases
with guarantees on the already analysed software modules. In our intention, an incremental
layout optimisation would allow at the same time to control the cache variability stemming
from the memory layout, and to enable the application of state-of-the-art WCET analysis
techniques already in the early stages of the development process without the need to rerun
all analyses upon each increment.

3.4.1 A cache-aware development process

Our idea of cache-aware development process consists in a development process that is
extensively oriented to timing analysability and predictability. The combination of the
proposed approaches fosters the adoption of a proactive attitude towards WCET analysis
and cache variability, where timing and analysability concerns are addressed along the
whole software development.

The timing-analysis oriented MDE framework we propose as part of our approach
straightforwardly addresses timing concerns from software design to implementation. The
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preliminary identification of inattentive design choices and code constructs is used to re-
strict the design space of the software designer so as to allow only those software de-
sign that will result in the automated generation of analysable code by construction. This
makes both software design and implementation almost transparently informed to timing
analysability concerns.

A general improvement in software analysability also straightforwardly affects the
analysability of the cache behaviour, as part of WCET analysis. Our approach, however,
also specifically addresses the reduction of cache variability as a means to further improve
its analysability and predictability. Our layout optimisation technique allows to govern
the cache variability originating from the memory layout of the program. Moreover, the
incremental applicability of our approach better fits the characteristics of the HIRTS de-
velopment process and facilitates an early application of timing analysis.

Figure 3.4: The amended V model.

The devised approaches can be seamlessly accommodated in the classical V model
to configure a cache-aware and timing-oriented development process, as summarised in
Figure 3.4. The comprehensive MDE framework we propose, in fact, guides the design
process of both task-level and system-level concerns and, as its final outcome, enforces
the generation of highly predictable code and relieves the user from defining most of the
flow-fact annotations required by WCET analysis. The incremental application of our
layout optimisation technique allows to collect early guarantees on the cache behaviour of
each incremental release of the system. The combination of improved code analysability,
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supported by the automatically generated flow facts, with the guarantees that the cache
behaviour will not change on subsequent software releases is expected to enable an early
application of WCET analysis.

As a fundamental industrial requirement the proposed set of countermeasure or tech-
niques should not have disruptive effects in the software life cycle, but should be easily
integrated in the consolidated industrial practice. In this respect, both the proposed ap-
proaches are characterised by a high degree of automation. By leveraging on the MDE
code generation framework, the production of analysable code comes at virtually no cost
for the system and software designer. Similarly, the application of our incremental layout
optimisation approach is enabled by a fully automated support tool that allows a straight-
forward enforcement of an optimised layout.

The following sections will be devoted to the elaboration of the main constituents of
our proposed approach.

3.5 Predictable Software Systems

The quality of the results of timing analysis critically depends on the complexity of the
underlying hardware, regardless of the adopted analysis approach. Several studies moved
from this observation either to devise hardware countermeasures to unpredictability or to
identify those hardware features that should be avoided to improve the analysability of
a system. This is particularly true for caches as several cache design choices directly
affect its predictability: studies on replacement policies [136], cache locking and partition-
ing, and alternative scratchpads all seek improved cache analysability (e.g., [124, 94, 70]).
However, just focusing on hardware predictability does not guarantee the analysability of
a system: the role played by the software dimension itself in analysing a system should not
be disregarded.

The detrimental effects on timing analysis of some code constructs and patterns are
widely acknowledged in the literature. This notwithstanding, it is not rare for these con-
structs to be assumed to not be present in the program under analysis. Unfortunately, the
assumption that software developers are somehow educated to produce only predictable
code is poorly justified in practice, even in HIRTS.

In a recent study [103], we reported on an attempt to statically analyse the WCET
behaviour of a large scale piece of software, part of a real on-board satellite system. We
provided evidence that timing analysis of complex industrial software as-is, developed
without any particular attention to code analysability, is hardly feasible in practice. The
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reasons of the issues we encountered were twofold: they were in part ascribable to the
presence of unpredictable code constructs, and, in the remaining part, derived from domain
specific design choices and the overall complexity of the software itself.

Several software development standards have been proposed for the sake of improved
safety in HIRTS software. Some of them come in the form of coding guidelines, as
MISRA-C [105] in the Automotive domain. Others, instead, consist in the explicit def-
inition of programming language subsets, as the SPARK Ada approach [17], which also
supports semantic annotations. Although the set of guidelines defined by most approaches
may also facilitate timing analysis, their main focus is set on functional correctness of
programs and they very seldom explicitly aim at improving timing analysability or pre-
dictability. As an exception, the Ravenscar profile [27] for high integrity systems is a stan-
dard subset of the Ada language that focuses on the definition of systems that are amenable
to schedulability analysis.

We deem the software analysabililty dimension to be of utmost importance in the
HIRTS domain as it is evident that poorly analysable code will lead to as much poor WCET
bounds, if not prevent analysis altogether. Interestingly, a taxonomy of unpredictable code
constructs has not been defined in the literature yet. Such a categorisation would make
developer aware of the effects of coding constructs on timing predictability, suggest their
avoidance or identify valuable alternatives. Furthermore, we contend that, besides code
constructs and patterns, also system-level design choices do influence the system analy-
isability in that they may complicate the analysis process or ask for more intrusive user
intervention, regardless of the analysis approach.

We therefore focus on the role of good coding patterns and design in determining more
analysable applications. In doing so, we differentiate between task-level and system-level
code, where the former addresses the functional part of a system (i.e., the task code that
is subject to timing analysis) and the latter, instead, identifies the non-functional part of
a system, that defines the actual organisation of the functional one. In this respect, we
particularly focus on code patterns and design choices that may positively or negatively
affect task interleaving and interactions. In the following we first provide a brief overview
on the related work in this topic; then we propose a taxonomy of adverse constructs based
on the effects they may incur on the development of predictable systems. Finally we
identify some software design choices and coding patterns either at task or system level that
may complicate timing analysis and propose, when possible, alternative implementations.
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3.5.1 Positioning of our work

The stringent constraints set on the industrial development process pose strong expecta-
tions on the overall quality of the software product. Accordingly, several coding rule,
best practice and guidelines have been defined either local to single industrial concerns or
agreed between stakeholders in a specific domain (e.g., MISRA-C [105] in the automotive
domain). The idea of quality, however, lends itself to different interpretations when ap-
plied to software. The fact that the most natural interpretation of software quality overlaps
with its functional correctness justifies the fact that those coding standard typically aim at
defining coding rules that may reduce the probability of introducing errors in the code or
ease their detection. The use of semantic pre-condition and post-condition annotations in
the SPARK [17] approach are representative in this respect.

The role of software constructs in affecting both positively and negatively the tim-
ing analysability of a program as long been acknowledged. Information on unpredictable
code constructs is sparsely present in the literature. The single-path approach [128] and
cache-aware compiler optimisations [46] can be seen as attempts to make software more
predictable instead of trying to analyse it as-is.

Nonetheless, the idea of timing analysability as a quality aspect has only recently
emerged. Few attempts to formalise coding guidelines for timing analysability have been
produced as partial result of several european projects. Examples of such outcomes are the
identification of Cache risk patterns in the PEAL and COLA projects [159, 102], and the
definition of coding guidelines in the MERASA project [110]. The guidelines produced by
the latter study, however, are quite specific to the analysis tool adopted in the course of the
project itself and include some code patterns that are typically (and transparently) removed
by compiler transformations. Other studies [161, 50] instead highlight the positive effects
that the adoption of standard coding guidelines may have even on timing analysis.

Our work differentiates from the previous approaches in two respects. First, we distin-
guish between code unpredictability that stems from task-level code patterns and system-
level design choices, where the latter dimension has not been addressed by former studies.
Second, we try to collect a representative set of unpredictable constructs and propose a
taxonomy based on their effects on timing analysability.

3.5.2 Taxonomy of Source-level WCET Analysis Issues

WCET analysis has undergone important theoretical and technical achievements in the
last decades. The maturity level achieved by both analysis approaches and support tools is
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the driving force behind a growing industrial interest on structured approaches to timing
analysis [137, 30, 146, 54, 84]. However, in spite of those significant theory advances
and the availability of powerful tools [1, 133], analysing the WCET behaviour of real
industrial-scale programs remains an extremely onerous and challenging task, even for
comparatively simple hardware architectures, regardless of the used method and technique.

On the one hand, static analysis in general suffers from inherent sources of overes-
timation, which impair the tightness of the computed bounds. The principal difficulties
come from the need to conservatively abstract the execution contexts the analysis has to
consider, and the inclusion of infeasible execution paths in program flow analysis. On the
other hand, measurement-based WCET computation shares a common problem with static
analysis approaches: as measurements are usually first performed on basic blocks and
subsequently combined, they run the risk of including infeasible paths. Moreover, since
triggering all relevant hardware and input states of a program is not generally feasible,
measurement-based methods cannot guarantee safe estimates.

These limitations, which seldom become apparent in laboratory experiments, are ex-
acerbated by the complexity of industrial-scale systems. Complex industrial systems in
fact are typically developed without timing predictability in mind and often include those
code constructs and patterns that are known to dramatically hit on the quality of the re-
sults of timing analysis. This observation has been largely confirmed by the difficulties
we encountered in our experience in trying to analyse the WCET behaviour of a satellite
on-board software system [103].

Those adverse code constructs can be categorised with respect to a twofold criterion,
namely the origin and the effects of their inclusion. We identify two different sources of
inclusion of those adverse code constructs. In fact, software systems are typically organ-
ised into two distinct dimensions: a task-level dimension, that comprises the functional
specification of each task, and a system-level one, that governs the task functionality and
organises them in the time, space and communication dimensions. This conceptual sepa-
ration is clearly perceptible in the partitioning between the task code and the architectural
part of a system. Accordingly we observe that unpredictable code may originate either
at task level, stemming from the adoption of specific code patterns, or at system level,
stemming from definite design choices.

With respect to their effects, instead, WCET analysis issues at software level are mainly
related to the reconstruction and analysis of the control flow of a program but may hamper
the analysability of a systems under the following aspects:

1. Feasibility: some code constructs may impede the computation of safe WCET bounds
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or estimates. This category includes those code constructs (e.g., irreducible loops)
that cannot be generally handled by the analysis steps involved in both static and
hybrid analysis approaches;

2. Precision: some constructs may degrade the quality of the results of timing anal-
ysis. Constructs that yield imprecise memory accesses or inclusion of infeasible
paths will inevitably incur additional overestimation in static analysis and hinder the
application of hybrid measurement-based approaches;

3. Computational complexity: some constructs may lead to an increase in the analy-
sis complexity, in both space and time dimensions. Complex loop bounds, data-
dependencies and unstructured code may ask for computationally intensive advanced
analysis techniques such as virtual loop unrolling and interprocedural (context-depen-
dent) analysis;

4. Labour-intensiveness: some constructs may ask the user for additional efforts in
conducting the analysis. Beside plain avoidance, the common approach to cope with
unpredictable code constructs typically consists in providing additional information,
in the form of manual annotations (a.k.a. flow-facts). Providing trustworthy manual
annotations, however, requires very profound knowledge and understanding of the
program behaviour, which are both fragile (owing to incorrect beliefs) and volatile
(owing to personnel mobility) assets even in high-integrity industry;

5. Interference: some constructs may expose to possible interference in history-depen-
dent hardware features like caches. These constructs, which are typically introduced
by system level design choices, may hamper the soundness of the analysis results
(e.g., cache interference in case of blocking).

It is worth noting that this categorisations do not configure disjoint sets of constructs:
the same construct may in fact affect analysability under multiple aspects. For example,
constructs that yield precision loss are typically labour-intensive as they ask for more user
intervention.

In the following we discuss the most relevant constructs that adverse software analysa-
bility, without any assumption on the adoption of specific tools or techniques: although
some of the following code-level issues may be better handled by a specific tool and/or
technique, the important point is that they may actually complicate or hinder WCET anal-
ysis. We separately address problematic program features that are introduced by task-level
code patterns and system-level design choices.
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3.5.2.1 Adverse code patterns

Several industrial coding guidelines [105, 17] agree on the identification of a set of or-
dinary code patterns that hinder the analysability of a program in general. Those pat-
terns evidently affects also timing analysis as the latter also relies upon common analy-
sis techniques. However, systematically avoiding those constructs, while improving the
system analysability, may reduce the expressiveness of modern high level programming
languages. Thus deciding whether to use such constructs often calls for a compromise
between functionally complex features and the onerous user annotations required to cope
with them.

In the following we review a set of code patterns with respect to timing analysability.
We categorise each construct with respect to the proposed taxonomy. As a preliminary
remark, we observe that the role of compilers cannot be disregarded as analysis is typically
performed at object level and the mapping from source code to object code may introduce
(as well as remove) unpredictable code constructs. Therefore, for the sake of simplicity
and in line with industrial practice, we assume that no aggressive compiler optimisation is
performed, except for some optimisation steps that are known to have positive effects on
code analysability such as loop unswitching, splitting, peeling, etc.

P 1 - Recursion

Recursion (either direct or indirect) is considered to be a harmful construct in high integrity
system as the maximum depth of the recursion chain and thus the incurred time and mem-
ory consumption are hardly predictable. This is even more critical in embedded HIRTS,
where the maximum stack consumption is a critical aspect that is thoroughly addressed in
system verification. Besides the fact that recursive calls are generally difficult to bound by
simple code inspection, they may also be translated by the compiler into irreducible loops
(cf. pattern P 2).

Whenever possible, the best way to handle recursion is simply to avoid it at all. Some
simple form of recursion (so-called tail recursion) can be rewritten into a simpler loop
structure [104]. Figure 3.5 below suggests a how this transformation can be applied to
a simple example function that uses tail recursion to compute the nth integer in the Fi-
bonacci’s series.

In presence of more complex recursion schemes, limited support to recursive functions
may be provided through manual annotations or bothersome workarounds. The first so-
lution consists in asserting the maximum recursion depth, at the risk of defining a wrong
bound or, at least, an overly conservative one. This feature is supported, for example, by
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1 function f i b ( n : i n t e g e r )
2 return I n t ege r is
3 begin
4 i f n < 2 then
5 return n ;
6 else
7 return f i b ( n−1) + f i b ( n−2);
8 end i f ;
9 end f i b ;

1 function f i b ( n : i n t e g e r )
2 return I n t ege r is
3 f i r s t : I n tege r := 0 ;
4 second : I n tege r := 1 ;
5 tmp : I n tege r ;
6 begin
7 for i in 1 . . n loop
8 tmp := f i r s t + second ;
9 f i r s t := second ;

10 second := tmp ;
11 end loop ;
12 return f i r s t ;
13 end f i b ;

Figure 3.5: Tail recursion transformation.

the aiT static analysis tool [1]. A possible workaround, instead, applies to indirect recur-
sion (e.g., where function A calls B which in turn calls A) consists in slicing the recursion
and analysing separately the involved functions. This approach, however, assumes that the
recursion chain WCET is given by somehow summing up the WCETs of each function,
which does not hold true, for example, in the presence of caches.

P 2 - Irreducible loops

Some programs may exhibit non structured loops with multiple entry points. These par-
ticular constructs, often referred to as irreducible loops [4], impede the reconstruction of
the program control flow. Figure 3.6 reports a canonical example of irreducible flow-graph
where the loop involving BB3 and BB4 is either entered from BB3 or BB4. These kind of
constructs are more easily found in binary code, as a result of aggressive compiler optimi-
sations. However, they can be more or less intentionally introduced by low-level assembly
code or weird use of the goto statement.

The consequences of having unstructured loops in a program are at least twofold. First,
in the presence of reducible loops the CFG reconstruction process cannot exploit domina-
tor analysis to detect loops. Second, irreducible loops complicates data-flow analysis as
they prevent the application of interval-based analysis and cause the use of much more
complex iterative approaches.

Interestingly, the aiT tool allows to define specific annotations on flow relations be-
tween basic block to attenuate the problem of irreducible loops. Since defining this kind of
annotation is extremely complex, the first countermeasure still consists in preventing them.
The first root cause of the introduction on irreducible loops is the activation of complex
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Figure 3.6: Example of irreducible loop.

compiler optimisations: in principle, these should be already avoided in HIRTS as they
largely break the correspondence between source code and object code, thus complicating
software verification in general. Improper use of the goto statement are typically inter-
cepted by syntax and semantic checks performed by the compiler. However a semantic
transformation from a goto formulation to a canonical branch structure is recommended.
At the same time, the low-level assembly code typically used for low-level hardware sup-
port, such as board support packages (BSP), or other low-level libraries (e.g., divide
procedure) should be carefully inspected to verify that they do not contain unstructured
loop regions.

P 3 - Dynamic allocation

Dynamic memory allocation of data structures is commonly discouraged in HIRTS. The ef-
fects of memory allocation on cache analysis are simply devastating for both static analysis
and measurement-based methods. From the static analysis perspective, dynamic allocation
actually hides information on the affected memory locations and thus causes massive loss
of information. Recalling the classification of memory accesses in cache static analysis
(i.e., always hit, always miss, first miss, unknown), every access to memory allocated data
are forcibly classified as unknown. When it comes to measurements, the cache behaviour
may incur a variable amount of cache conflicts, depending on the cache lines the allocated
memory area is mapped to.

The precision loss entailed by dynamically allocated data is hardly remedied by user
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annotations. Recent studies [61] propose the adoption of cache-aware memory allocators
as a work-around to static analysis. The modified allocator enforces allocated data to stat-
ically predefined addresses, thus avoiding unpredictability. In HIRTS, however, dynamic
memory allocation has been historically discouraged for the sake of deterministic memory
usage.

P 4 - Data dynamic references

Besides dynamic memory allocation issues, static analysis is hampered by the use of dy-
namic references (i.e., pointers) as the actual referenced address cannot be always stati-
cally resolved. the fact that the same instruction may access different memory addresses,
depending on the actual state of the data structure, eventually leads to the computation of
imprecise memory accesses, if any at all.

From the cache perspective, since the dynamic reference determines which cache sets
the referenced data will be loaded or written to, imprecise memory accesses lead to a loss
of information on the cache state. This information may be difficultly reconstructed by
user annotations stating the affected range of memory addresses.

WCET analysis in the presence of pointers is further complicated by pointer aliasing
and complex pointer-based data structures. Classical examples of these data structures
are linked lists or complex tree-like aggregates used to navigate large and dynamic data
structures with the aggravating circumstance of exploiting dynamic allocation (cf. pattern
P 3).

P 5 - Function pointers

Similarly to data pointers, dynamic referenced functions are hard to tackle by static anal-
ysis. Indirect calls need to be resolved in order to reconstruct the program control flow.
Although some simple occurrences can be automatically resolved by state-of-the-art static
analysis tools by a pattern-oriented analysis approach (e.g., when function pointers are
defined in a static array), user annotations are generally required.

However, multiple indirect call targets, though defined by user annotations, are still a
source of overestimation as a conservative timing analysis is forced to always select the
function (from a set of candidate targets) that leads to a supposed worst-case path, which
may also be actually infeasible in a specific calling context. Besides the precision loss,
considering multiple alternative call chains also introduces additional context-dependent
information that negatively affects the analysis complexity in both time and space.

The use of dynamic calls in a program may be necessary, for example, to handle data-
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dependent contingencies. Interestingly, however, some indirect calls are introduced to sat-
isfy architectural constraints rather than pure algorithmic requirements. This is the case,
for example, of function that are declared as pointers in the functional interface of a module
while they are statically defined in the module implementation. The simple example in Fig-
ure 3.7 resembles an architectural false dynamic call. The function pointer My_Handler
actually targets the statically defined procedure implementation My_Handler_Impl. This
kind of indirect call, once identified, can be precisely resolved with a relatively simple
flow-fact annotation.

1 −− Type d e f i n i t i o n
2 type Handler_Ptr is access
3 procedure ( x : A_Type ) ;
4
5 −− I n t e r f a c e d e f i n i t i o n
6 My_Handler : Handler_Ptr := nul l ;
7
8 procedure I n i t i a l i z e ;

1 −− Implementat ion
2 procedure My_Handler_Impl ( x : A_Type ) is
3 begin
4 −− do something
5 end My_Hanlder_Impl ;
6
7 procedure I n i t i a l i z e is
8 begin
9 My_Handler := My_Handler_Impl ’ access ;

10 end I n i t i a l i z e ;

Figure 3.7: False dynamic call.

P 6 - Multi-way branches

The multi-way branch construct (i.e., the switch and case statements in C and Ada
respectively) is typically used to control the execution flow when several alternate actions
should be executed depending on the value of a relatively simple variable or expression.
This is a recurrent construct in embedded control systems where the performed action
highly depends on the input stimuli. Besides the source-level complexity that may arise
from non exclusive branches, the analysability of this construct may be further complicated
by compiler intervention.

The multi-way construct is mapped by the GCC compiler (and GNAT) into three differ-
ent object-code constructs: (i) a heuristically balanced branch tree; (ii) a statically defined
external jump table; or even (iii) a set of bitwise-computed offsets internal to the procedure
body. The compiler decision on which object-code pattern has to be applied is transparent
to the developer as it is based on both the number of branch alternatives and the distribu-
tions of the possible values in the case variable (or expression) range. Figure 3.8 shows the
bitwise implementation of a multi-way branch.
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1 procedure Multi_Cond_5
2 ( c : in X_Type ;
3 res : in out Natura l ) is
4 begin
5 case c is
6 when CASE_0 => res := 0 ;
7 when CASE_1 => res := 1 ;
8 when CASE_2 => res := 2 ;
9 when CASE_3 => res := 3 ;

10 when CASE_4 => res := 4 ;
11 when others => res := 100;
12 end case ;
13 end Multi_Cond_5 ;

1 <mult i_cond_5> :
2 and %o0 , 0 x f f , %g1
3 cmp %g1 , 4
4 bgu < r e t u r n >
5 mov 0x64 , %o0
6 s l l %g1 , 2 , %g1
7 sethi %h i ( base_addr ) , %g2
8 or %g2 , 0x68 , %g2
9 ld [ %g2 + %g1 ] , %g1

10 jmp %g1 ! ! dynamic jump
11 nop
12 . . .
13 < l o c a l jump tab le >
14 . . .
15 r e t l < r e t u r n >
16 nop

Figure 3.8: A mutli-way branch implemented with bitwise offsets (SPARC).

The expand_case procedure in stmt.c (GCC internals) is responsible for the object
code generation for a switch/case statement. The compiler first tries to implement the
case statement as a short sequence of bit-wise comparisons: this is feasible only when the
set of case alternatives can be selected using a bit-wise comparison. Whenever the bit-
wise implementation is not feasible, the compiler may decide to generate either a balanced
branch tree or a table jump, based on a predefined value threshold (currently 5 in GCC 4.5)
and the ratio between allowed range and actual number of distinct values of the conditional
variable or expression. In fact, a jump table implementation implies the definition of a
branch target for each possible value in the variable range: if the variable can assume just
few values in its range then a jump table would waste a huge amount of memory space.

This construct, especially in its nested and unstructured forms, should be moderately
used as it increases the number of paths in the program to be accounted for in flow-analysis
and may introduce infeasible paths that are hard to detect. Moreover, in case of bit-wise
offsets and external jump tables, the effects on code analysability are comparable to those
of indirect calls (cf. pattern P 5). The user is forced to manually inspect the code and pro-
vide flow-fact annotations for each branch target. Leveraging on compiler-specific patterns
may allow the automatic detection of branch targets: aiT, for example, seems to be able
to automatically analyse patterns (i) and partially (ii). However, additional information on
conditional execution should be provided to prevent the inclusion of infeasible paths in the
analysis.
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P 7 - Data-dependent loop bounds

Input-data dependency is the major obstacle to automatic WCET analysis as it generally
complicates path analysis. In particular, analysing those loops whose number of iterations
is correlated to an input parameter is generally infeasible. Even in case analysis is able to
precisely account for the input parameter, the obtained bound is valid solely for the specific
combination of the input data and calling context. Therefore, every possible such combi-
nation should be accounted for each time the loop is executed, which seriously affects the
complexity of the analysis process (e.g., in case of multiple nested loops).

Avoiding input-data dependent loops altogether may not be a reasonable option in
practice. In some simple cases it may be worth removing the input-data dependency by
transforming a data-dependent loop into a (constant) counter-based one, with limited con-
sequences on the average-case performance. Whenever loop transformations cannot be
applied, the only solution is to manually define sound and precise flow facts, which is not
always a trivial task.

P 8 - Template and generic

Some high level programming languages provide a generic mechanism that allows to de-
fine software modules that are parametric on some discriminating feature, typically data
types. That mechanism is realised for example by the generic package construct in Ada
and function or class templates in C++. The use of that constructs may incur additional
data-dependency in the program since, depending on the specific compiler in use, distinct
instantiations of the same package/template may partially share object code. An example
is the implementation of distinct lists whose size depends on the type of the elements they
should contain.

The use of generic package instantiation does not only compromise the tightness of
analysis results but may seriously affect its complexity, as it increases the number of execu-
tion contexts that have to be accounted for. Their use is thus conditioned upon verification
that the compiler does not allow code to be shared between different instantiations.

P 9 - Shared data structures

It is not rare for statically defined shared structures, like lists or buffers, to be shared
between different procedures or even different tasks in a system. The size of such data
structure is statically determined to accommodate a certain maximal amount of data and is
perfectly accountable by static analysis.
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However, whenever such structure is traversed in a loop (to access the contained data),
the number of iterations performed at run-time may actually depend on the number of
elements in the structure which may be considerably less than then the size of the structure
itself. Reducing the incurred overestimation by providing useful manual annotations has
to cope with the fact that this kind of information originates from system-wide properties
that are not detectable through simple code inspection.

P 10 - User-defined data types

Programming languages typically allow the user to extend the type system by creating
user-defined types. The use of user-defined data types and ranges as loop iterators allows to
perform run-time checks (e.g., in Ada) but, at the same time, may complicate the automatic
detection of loop bounds. This is because the information on the data type is not generally
exposed by the compiler, unless range checks are enabled.

The left side of Figure 3.9 below reports the definition of a simple 8 bits unsigned
integer and its usage as arithmetic range for a loop. The type definition can be reformulated
so that it is more explicitly related to the basic Integer type, which allows for the automatic
detection of the loop bound (e.g., in aiT).

1 type UINT8 is mod 2* *8 ;
2 for I in UNIT8 loop
3 −− do something
4 end loop ;

1 type UINT8 is range 0 . . 2 5 5 ;
2 for I in UNIT8 loop
3 −− do something
4 end loop ;

Figure 3.9: Loop over user defined-data range.

P 11 - Array copy

Some object code generation strategies implemented by the compiler may lead to overly
complex object code constructs. This is the case, for example, when the compiler reorgan-
ises the control flow of a program, or introduces loops and branches that were not defined
in the source code, thus breaking the traceability of object code back to the originating
source code.

Array slice assignment is a clear example of this kind of code generation pattern. For
array slice assignment we refer to an assignment that involves two parts of different arrays.
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In Ada, this corresponds to an assignment in the form A(X..X+n):=B(Y..Y+n) which
is mapped by GCC into different object code constructs: either a simple call to memcpy or
a loop over the source and target arrays. In the latter case, when the compiler cannot know
for sure if the source and target memory addresses overlap, two loops are implemented.
In fact, to ensure a semantically correct array copy the source array slice must be copied
from its starting address to the end or the other way around, depending on the address
overlapping.

Those code generation patterns can complicate static analysis in that, when not auto-
matically detected, they ask for a deeper understanding of the program at object code level
as a prerequisite to providing flow-fact annotations.

P 12 - Variable-size data structures

The only concession to dynamicity in HIRTS is perhaps the declaration of dynamic-sized
data structures, which are typically allowed inside functions. An example of such structure
is the declaration of an array, whose size is dynamically determined and correlated to a
function parameter. These data structure are allocated on the function stack. Typically,
the dynamically-initialised data structure will be later involved in a data dependent loop,
whose dependence on data is subtly different from that observed for pattern P 7.

1 type Foo_Array is array ( P o s i t i v e range <>) of Foo_Type ;
2
3 procedure Foo ( s t r u c t : ComplexStructure ; i tem : Item ) is
4 temp_arr : Foo_Array ( 1 . . s t r u c t . s i ze ) ;
5 begin
6 for I in temp_arr ’ Range loop
7 −− do something
8 end loop ;
9 end Foo ;

Figure 3.10: Dynamically initialised array.

Procedure Foo in Figure 3.10 contains a loop that iterates over the size of a dynamically
initialised array. In this case the loop bounds is directly related to a size attribute of the
allocated data structure, but in general it may depend on many other factors. The effects
of this code pattern are similar to that of construct P 7, as analysis may fail to account for
the actual size and thus yield degraded bounds.
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P 13 - Logically-controlled vs counter-based loops

Simple counter-based loops are generally easier to bound than logically-controlled loop,
where the exit condition does not depend on a constantly incremented iteration variable
but depends on a more or less complex condition [63, 41]. The introduction of additional
exit conditions in a loop (e.g., for the sake of program optimisation) makes it even more
difficult to analyse the exact loop behaviour.

The analysability of a loop, however, essentially depends on the analysis technique in
use: a loop that cannot be automatically bounded by a tool could be analysable by another.
Earlier syntactic-based approaches were certainly much less powerful than more recent
techniques, which are typically based on a combination of pattern-matching, data-flow,
invariants and semantic-based analysis (e.g., interval-based abstract interpretation).

However, in principle, a method capable of automatically analyse all kind of loops
cannot exist. Moreover, it is worth noting that the actual implementation of a loop is
determined by the compiler and it is not rare for the compiler to transparently generate
such additional exit conditions. Similar effects can be determined by the use of additional,
deeply nested return statements in a function.

P 14 - Cache-risk patterns

These code patterns, which were originally defined in the scope of the PEAL project
[159, 100], specifically address the I-cache behaviour. The main focus is set on the avoid-
ance of potential source of uncontrolled cache jitters, in particular related to the combined
effects of code size end conditional execution. An example of such patterns consists in
the definition of a loop that under certain conditions may invoke a number of procedures
(greater than the I-cache associativity) that overlap in cache, as shown in Figure 3.11.
Therefore under LRU replacement policy, such loop may generally exhibit good cache
performance except for those rare cases when the condition is satisfied and the execution
incurs overly poor cache performance. In this case, in fact, procedures A,B,C,D and E will
evict one another repeatedly, thus incurring an extremely large amount of conflict misses.

These patterns do not address any specific unpredictable construct but rather high-
light some cases of extreme cache variability. They may complicate the application of
measurement-based approaches as the rare condition may never be observed during mea-
surements. However, even with respect to static analysis, if the actual value of the rare
condition is difficult to analyse then analysis may conservatively assume that it is always
satisfied, thus incurring a large overestimation. In Section 3.7 we will introduce in a mem-
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1 for I in 1 . .N loop
2 c a l l to A ;
3 c a l l to B ;
4 c a l l to C;
5 −− Rarely t r i g g e r e d c o n d i t i o n
6 i f rareCond then
7 c a l l to D;
8 end i f ;
9 c a l l to E ;

10 end loop ;

Figure 3.11: Cache-risk pattern under LRU.

ory layout optimisation technique aimed at removing this source of variability.

P 15 - Unstructured patterns

Control flow and data accesses that follow complex unstructured patterns largely compli-
cate timing analysis in many respects. With respect control flow, every twisted combination
of loops and branches (either simple or multi-way) is detrimental to timing analysis as it is
likely to introduce hardly detectable infeasible paths and yield an increase in complexity.

Similarly, when it comes to data accesses, non-trivial access patterns are hard to anal-
yse with sufficient precision and reasonable complexity. A classification of data structures
and access patterns from the standpoint of D-cache predictability is provided in [91]. The
effect of non-contiguous and variable-stride data accesses combined with data-dependency
leads to the computation of largely imprecise memory accesses. Bounding these detrimen-
tal effects thorough manual annotations is extremely onerous and complex. It is worth
noting, however, that most modern compiler optimisations address these adverse patterns
in common average-case optimisation.

Summary of task-level constructs

The following Table 3.3 summarises the effects of the addressed code constructs and pat-
terns on timing analysis. Each pattern is categorised against our proposed taxonomy by
placing a × or - symbol to respectively express whether a specific pattern falls or not into
the identified categories: Feasibility, Precision, Complexity, Labour-intensiveness and In-
terference. It is worth to note that the no task-level pattern actually belongs to the latter
category as inter-task interferences naturally generate from system-level design choices.
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ID Pattern F P C L I
P1 Recursion × × - × -
P2 Irreducible loops × - × × -
P3 Dynamic allocation × × - - -
P4 Data dynamic references - × × × -
P5 Function pointers - × × × -
P6 Multi-way branches - × × × -
P7 Data-dependent loop bounds - × × × -
P8 Template and generic - × × × -
P 9 Shared data structures - × - - -
P10 User-defined data types - × - × -
P11 Array copy - × - × -
P12 Variable-size data structures - × - × -
P13 Logically-controlled vs counter-based loops - × - × -
P14 Cache-risk patterns - × - - -
P15 Unstructured patterns - × × × -

F = Feasibility; P = Precision; C = Complexity;
L = Labour-intensiveness; I = Interference.

Table 3.3: Categorisation of task-level patterns.

3.5.2.2 Adverse system-level design choices

Focusing exclusively on the analysability of task-level code patterns does not suffice to
guarantee the system predictability. System-level design choices, and their realisation in a
specific software architecture, actually governs task interleaving, interactions and commu-
nication in a system. These choices are relevant not only from the schedulability analysis
standpoint but also from the WCET analysis one, as long as execution-history dependent
hardware features, like caches, are adopted.

Hence, system-level design choices may be even more critical than the task-level code
patterns reviewed in Section 3.5.2.1. This is because the code constructs induced by sys-
tem design choices may also invalidate any effort made to guarantee software predictabil-
ity at task level. For similar reasons, the compliance to coding guidelines or standards
that specifically address system-level concerns may also ease timing analysis. The set of
rules defined by Ravenscar profile [27], for example, although explicitly devised to enable
schedulability analysis, have positive effects also on timing analysis. All the following
design choices fall into the Interference category, as defined in Section 3.5.2.

Cache-aware Development of High Integrity Real-time Systems



3.5 Predictable Software Systems 73

D 1 - Impact of RTOS

System level considerations are typically kept separated from WCET analysis as a major
assumption of the latter is that tasks execute in isolation. Residual inter-task interference,
for example on caches, are delegated to advanced schedulability analysis techniques (e.g.,
[76, 147, 8].

As foreseen in [142], however, the WCET of a task may not be completely unrelated to
the underlying real-time operating system (RTOS). The influence of the RTOS on the task
timing behaviour is not generally limited to scheduling primitives. Despite the progresses
made in calculating the context-switch cost, complex real-life scenario are actually difficult
to handle. The effects of common constructs, like self-suspension as well as the firing of
timer alarms and watchdogs on history-sensitive hardware (e.g., caches) are difficult to
apportion to intra- or inter-task analysis, either of which must be very sophisticated to
handle them all satisfactorily.

In this setting there is no clear separation between the task code and the kernel code,
which is also typically much more difficult to analyse. Kernel primitives are often imple-
mented in small chunks of assembly code for which flow facts annotations may result to
be overly complex. More importantly, this undermines the assumption on tasks running in
isolation.

The principle of separation of concerns [39], which predicates on the separation of a
program into distinct cohesive features that should not overlap, may help. Separation of
concern in this context means that the functional behaviour of a system (and thus of its
tasks) to be kept logically and physically separate from the implementation of the non-
functional specification. We conducted some preliminary experiments on the positive ef-
fects of separation on both the cache variability and the degree of overestimation incurred
by mingling RTOS code to application code [101]. The obtained results confirmed that
an increase in both cache variability and overestimation is incurred when no separation is
enforced.

D 2 - Task communication and synchronisation

The way tasks are allowed to communicate and synchronise with each other has important
effects on the inter-task interferences in a system. The implementation of strict synchro-
nisation between tasks, for example, forces tasks to wait one another thus making it more
complicate to account for inter-task interferences.

Consider, for example, a task that needs to acquire some data from the environment.
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It may send data requests to a serialised communication channel, set a time-out timer
and then self-suspend, waiting for the required data arriving over the same channel. In a
preemptive system, since the task suspends itself, some other task with either higher or
lower priority may execute and this incurs a serious form of inter-task interference on the
cache. A safer design choice would then consist in implementing the same functionality
with two separate tasks, where the second one is triggered once data are available or the
time-out timer has expired.

With respect to the Ada language, powerful synchronisation constructs such as task
entry are explicitly forbidden by the Ravenscar profile [27] to preserve time-deterministic
execution. Task synchronisation and communication is allowed exclusively via protected
object, whose effects will be considered in the next point.

D 3 - Effects of resource sharing

As observed in point D 1, with the adoption of caches the context-switch cost is no longer
constant as it must account for the interferences between tasks: interrupt handling and
preemption may influence the execution time of a preempted task. On resumption, in fact,
the preempted task may incur a number of additional cache misses as some useful cache
content may have been evicted by the preempting task. The inclusion of those effects are
accounted for separately in advanced schedulability analysis by accounting for an upper
bound on the so-called Cache-Related Preemption Delay (CRPD) in the response time of
individual tasks [76, 28, 6].

However, interference caused by task interleaving and interactions is not limited to
task preemptions. As observed in D 2, the assumption of task independence rarely holds in
practice and real systems often include shared resources that can be accessed by multiple
tasks in mutual exclusion. When a high priority task needs to access a resource that is
already locked by a lower priority task, it cannot proceed until the lower priority task
completes execution inside the resource and relinquishes its lock.

Therefore, from the standpoint of caches, task blocking may cause effects similar in
kind to task preemption, in that some useful code or data blocks already loaded in the
cache may be evicted while the task is being blocked. Very few works [132] consider
the additional time spent in reloading the evicted cache contents, which is referred to as
Cache-Related Blocking Delay (CRBD).

Whenever a lower priority task prevents the execution of a higher priority task, the
system experiences potentially unbounded priority inversion. This phenomenon can be
bounded with the use of a resource access protocol [144]. In a fixed-priority preemptive
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system with shared resources equipped with a synchronisation protocol, three different
kinds of blocking may arise [87]:

- Direct blocking occurs when a higher priority task requests a shared resource held by
a lower priority task; another form of direct blocking, transitive or chain blocking,
occurs when nested resources access is permitted, and a blocked task transitively
suffers from the blocking incurred by the blocking task itself.

- Inheritance or push-through blocking occurs for a task τm that does not need any
shared resource, when a lower priority task τj blocks a task τi with priority π(τi) >

π(τm) and executes at a priority higher than π(τm) due to some priority inheritance
rule.

- Avoidance blocking occurs when a task τi is denied access to an available resource
to prevent deadlock.

Figure 3.12: Different kinds of blocking.

The scenario depicted in Figure 3.12 illustrates the different types of blocking under
the Priority Inheritance Protocol [144] and shows how lower priority tasks may affect the
cache content of higher priority tasks. In particular, task τ1 and τ3 suffer direct blocking,
while task τ2 suffers inheritance blocking. Assume that τ1 has loaded four cache blocks
that would be shortly reused (i.e., the shaded memory addresses in Figure 3.12) in a small
direct mapped instruction cache. Unfortunately, task τ1 is blocked when trying to access
shared resource R currently held by τ3, which in turns is blocked by τ4 on the shared
resource S. While τ3 has no effect on the useful cache content of τ1, the code executed by
τ4 in its critical section accessing S maps exactly to the same cache sets and evicts all the
four useful blocks of τ1. When τ1 resumes, it will incur four additional cache misses.
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A subtler penalty is experienced by task τ2 due to the execution of τ3: whereas it does
not share any resource with other tasks, τ2 is blocked due to priority inheritance. In the
example, the useful cache content of τ2 is evicted during the execution of τ3 inside its
critical region. It is worth noting that τ2 would not have suffered any interference (CRPD)
due to the higher priority task τ1.

We observe that different patterns and durations of blocking and thus the amplitude
of the CRBD can be induced by the specific resource access policy in use. It is therefore
important to understand which resource access policy may introduce less interference and
thus facilitate the system analysability.

Exploiting the similarity between CRPD and CRBD, we build on the same concepts
of Useful Cache Blocks (UCB) and Used Cache Blocks (UCB) (cf. Section 2.3.2), for
blocked and blocking task respectively, and sound theoretical bounds [144] on the number
of blocking events to compute a safe bound on the CRBD suffered from each task under
three well-known protocols: the Priority Inheritance Protocol [144], the Priority Ceiling
Protocol [144], and the Immediate Ceiling Priority Protocol, a derivative of Baker’s stack
resource policy [14].

In our approach we assume that no timing anomalies (cf. Section 2.3.1) can ever occur
in the analysed system. In fact a separate analysis of the number of additional misses due to
preemption and/or blocking cannot yield safe results in the presence of timing anomalies.
In addition, it has been observed that the notions of useful and used cache blocks cannot
be safely used in the computation of the CRPD (and thus the CRBD) under FIFO and LRU
cache replacement policies [26].

Under those premises, the obtained bound βi is a safe bound and can be straightfor-
wardly included in the iterative equation of response time analysis:

wn+1
i = Ci +Bi + βi +

∑
j∈hp(i)

⌈
wni
Tj

⌉
× (Cj + γj) (3.1)

where both Bi and CRBDi depend on the resource access protocol of choice, and γj
represent the cache interference from preemption (CRPD).

We omit to detail here the computation of those bound as it would need a fair amount
of notation. However, a detailed explanation on how to compute CRBD bounds is reported
in Appendix A.

The important conclusion we draw from analysing the CRBD under those protocols is
that the Immediate Ceiling Priority Protocol does not incur any CRBD interference and,
thus, represents the most natural choice when variability in the cache behaviour is the main

Cache-aware Development of High Integrity Real-time Systems



3.6 Code Generation for Timing Analysis 77

concern.

3.5.3 Summary

Whereas the adoption of predictable hardware platforms is a prerequisite for the defini-
tion of predictable HIRTS, it does not generally guarantee the timing analysability of a
program running on top of it. The application of timing analysis approaches is known to
be hampered by the presence of adverse code constructs and patterns that can degrade the
quality of the analysis results to the extent of possibly impeding its application. As a matter
of fact, complex industrial systems, even in the HIRTS domain, often include those code
constructs and patterns, as systems are typically developed without timing predictability in
mind.

In this section we singled out a number of code patterns that hinder the overall analysabil-
ity of a system. We proposed a twofold classification of adverse code constructs based on
the design space they originate from (either task-level or system-level) and the effects of
their inclusion on the application and the results of timing analysis. Based on that cate-
gorisation, we surveyed the most common constructs and design choices that complicates
the analysability of a system. In our mind, a categorisation of poorly analysable constructs
would make developer aware of the effects of coding constructs on timing predictability,
suggest their avoidance or identify valuable alternatives. Moreover, that same information
enables the use automated code generation as a means to enforce predictable code patterns
and coding styles that guarantee code analysability by construction, as we will discuss in
the next chapter.

3.6 Code Generation for Timing Analysis

As discusses in Section 3.5, the application of state-of-the-art timing analysis approaches
to real complex system is hampered by the presence of adverse code constructs and the
implementation of inattentive design choices. Hence the user is often required to provide
manual annotations to assert infeasible paths, define branch and indirect call targets, refine
loop bounds and support path analysis in general. Providing such annotations, is not a triv-
ial issue for they require a deep understanding of program behaviour and are both onerous
and error prone.

The identification of proper coding styles and constructs may facilitate the timing anal-
ysis of industrial systems, in the wake of what has been historically done with respect to
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their functional correctness, readability and maintainability. Despite the undeniable value
of such guidelines, however, the timing predictability dimension is far apart from the com-
mon average-case oriented programming practice. The transition to a WCET-aware coding
in a consolidated development infrastructure requires an onerous and long-term effort for
educating developers to commit to a completely new approach.

The increasing penetration of the Model-Driven Engineering (MDE) [141] approach
even in HIRTS opens some interesting avenue to develop software products that are amenable
to timing analysis. The MDE paradigm builds on the definition of domain specific abstrac-
tions (or models) which can automatically undergo a series of model-to-model transforma-
tions [98], up to the generation of the application code. Both the model definition and the
code generation steps of the MDE approach offer an ideal ground for promising solutions
to guarantee code analysability by construction.

In fact, the transformation from model to application code intuitively offers an ideal
ground for promoting programming constructs that are amenable to timing analysis as
these can be transparently injected into the transformation process itself. Even more in-
teresting solutions can be devised at model level, which is not only the natural place for
the enforcement of specific design choices, but also allows to collect valuable flow infor-
mation (e.g.: on dynamic calls and loop bounds) that can be automatically translated into
flow fact annotations.

The benefits that can be drawn from the application of the MDE approach encompass,
tough at different degree, the design and production of both the functional (algorithmic)
specification or that of the overall system (architectural) specification. The open-source
GeneAuto/Ada framework [51] and the Space Component Model Editor [116] were se-
lected a the practical evaluation of our approach in both contexts.

In this section we first introduce the main concepts on the MDE approach and its
application to HIRTS. We then outline a threefold approach that leverages on the MDE
paradigm to enforce software analysability by construction. Finally we provide an exam-
ple application of our proposed approaches as part of the selected tool-chains.

3.6.1 Positioning of our work

As a matter of fact, industrial-quality HIRTS routinely integrate code generated from dif-
ferent modeling tools together with manual code. Automated code-generation facilities,
which follow the model-driven paradigm, are increasingly adopted in the industrial do-
main as a means to reduce costs and complexity in software design and implementation.
Such adoption has been favoured by the extensive availability of high-quality tool sup-
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port for system design and simulation, as well as actual code generation. SCADE [42],
from Esterel technologies, ASCET [43] from ETAS, and Mathworks Simulink and State-
Flow [96, 97] are representative examples of industrial-level modelling tools. Accordingly,
model-driven approaches also arose the interest of the WCET community in the possible
interaction and interoperability between such tools and state-of-the-art WCET analysis
tools. The integration of the aiT WCET analysis tool with SCADE, Simulink and Statflow
has been addressed in [47, 151]. The Simulink environment has been extended in [72] to
accommodate WCET annotations on the model. An interesting approach to enable auto-
matic detection of infeasible paths for WCET analysis of Esterel specifications has been
introduced in [69]. The proposed techniques, however, exploit the highly favourable pe-
culiarities of synchronous specification languages and Esterel programs in particular (e.g.,
basic blocks executed at most once) and cannot be straightforwardly applied to other mod-
eling and code generation frameworks.

Our approach is similar to those presented in [151] and (partially) [72] as we collect
flow fact information from the abstract model. However, we differ from previous ap-
proaches in several respects: first, we separately address modelling and code generation
for both algorithmic and system-level code, whereas other approaches address mainly the
functional part of a systems; and, second, we directly operate on the model-to-code trans-
formations to enforce predictable constructs. The latter aspect is much more similar in
intent to the set of modelling style guidelines defined by the Mathworks Automotive Ad-
visory Board (MAAB) [95], which restrain the expressiveness of Simulink and Stateflow
models to abide by the safety standard requirements. Since we wanted full control over all
model transformations we selected two open source tools (GeneAuto/Ada and the Space
Component Model Editor) for a practical demonstration of our approach.

3.6.2 Model-driven engineering in HIRTS

Model-Driven Engineering [141] is a development approach that promotes the systematic
use of models as the primary artifact through the development cycle. When applied to
software, MDE fosters the adoption of software models to express domain specific con-
cepts while abstracting away from implementation details. Product development is seen
as a series of model-to-model transformations that proceed from a platform independent
model (PIM), which specifies the system behaviour in terms of both its functional and
non-functional properties but still independent of any implementation technology (pro-
gramming language, execution platform, middleware, etc.), to possibly multiple platform
specific models (PSM), which instead provide the necessary implementation details. The
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implementation details of the PSM allow for the early application of advanced simulation
and analysis techniques on an abstract representation of the software, and thus ahead of
production. Code synthesis in this setting can be obtained through automatic transforma-
tion from a validated PSM to a the specific programming language (Figure 3.13).

Figure 3.13: PIM, PSM and model transformations.

The application of the MDE paradigm requires the characterisation of a domain-specific
modelling languages through metamodel definitions, which describe the entities allowed
in a model, as well as their syntactic and semantic specification. Multiple intermediate
models and transformations can occur along the development process,

The use of abstract descriptive models is a consolidated approach to cope with the com-
plexity of software systems. A score of Computer-Aided Software Engineering (CASE)
tools have been developed starting from the late 80ies to support software modeling and
code synthesis. These tools incarnate the same principle as those of MDE with the only
limitation that models and transformations are proprietary to the tool vendor and poorly
extendable and customisable.

Several modeling tools are increasingly adopted in HIRTS to model, simulate and syn-
thesise complex algorithms [96, 42, 97]. The industrial penetration of these tools is far
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consolidated. Relatively more recent, instead, is the application of the same approach in
combination with the Component-based Software Engineering (CBSE) approach [150] to
model the overall system organisation through a domain-specific component model. This
model addresses the organisation and cooperation of functional (algorithmic) components
for the realisation of the overall system functionality. The CORBA Component Model
[113] is a consolidated standard maintained by OMG. The definition of a component model
for specific use in HIRTS is the main expected outcome of the ARTEMIS CHESS project
[36].

Although algorithm specification and component model address different dimensions,
they are equally interesting from our perspective as they both offer promising means to
ease the application of timing analysis and improve its results.

3.6.2.1 Leverage points to favour timing analysis

Our main goal consists in improving the analysability of the code, which is automatically
generated as final outcome of MDE approaches. We maintain that an improved software
analysability can be effectively achieved along two complimentary directions: by focusing
on the code that can be actually generated within the modeling framework, and by col-
lecting valuable timing information along the various model transformations. The role of
timing information is in fact as critical as the actual code constructs from the standpoint of
timing analysis. WCET analysis often asks for the user to stipulate flow facts, in the form
of manual annotations, to assist the analysis process (e.g., on control flow analysis, loop
bounds, indirect calls, etc.) or just to shed pessimism off analysis results. Unfortunately,
the assumption that the user can be a trusted source of flow facts is extremely fragile for
large, complex and long-lived industrial programs.

Both code characteristics and relevant timing information are addressed in what we
identified as the main leverage points for the enforcement of more analysable code: re-
strictions to the metamodel, definition and automated extraction of timing information,
and exploitation of model transformations.

These aspects point out all the distinctive features of the MDE approach:

- metamodel: as the easiest way to enforce predictable code is to inhibit or restrain
the use of those model elements that, according to transformation rules, yield unpre-
dictable constructs;

- model: since some kind of timing information may be more easily defined at model
level rather than on the source and object code, the model should be augmented so
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that to accommodate user defined flow facts;

- transformation: as model transformations and in particular the final model-to-code
transformation, are the most promising MDE steps where timing information can be
automatically extracted and alternative code constructs can be enforced.

The identified approaches can be more or less effective whether applied to functional or
architectural code due to the characteristics of the two dimensions. For example, we expect
algorithmic code to be much more loop-intensive and the architectural code to exhibit more
indirect calls. In the following we separately detail on each of the leverage points. In the
next sections, instead, we provide, as a proof of concept, the application of our approach
to both algorithmic and architectural model-driven engineering.

Restrictions to the metamodel. A model always conforms to a unique set of rules that
defines the legal entities that can populate the model itself, their syntactic and semantic
specification as well as the way these entities are allowed to interact. This set of rules
are formalised into a so-called metamodel. The modeling tool is typically responsible for
enforcing the syntactic and semantic rules defined by the metamodel, so that a software
designer is allowed to describe only models that do not violate them.

Once the complete chain of model transformations has been understood, it is possible
to devise a mapping between specific metamodel elements (or aggregation thereof) and
code patterns. Therefore, according to such mapping, those entities or aggregation rules
that lead to adverse code patterns (see Chapter 3.5) may be categorised as harmful and ex-
plicitly forbidden in the metamodel. The identification of harmful entities and aggregation
rules are specific to the application domain and the model transformations.

Definition and extraction of flow-fact information. The definition of flow facts in the
form of manual annotation is onerous and error prone. Gathering accurate and exhaustive
timing information retrospectively may be complicated by the fact that the sought infor-
mation may not even be available at all in the program at hand as it may depend on higher
level design choices that are not reflected in the final implementation code.

Representative examples has been addressed in Chapter 3.5 where we discussed the
effects of user-defined data types (pattern P 10) and the occurrence of some indirect calls
that are barely introduced to satisfy some architectural concerns (pattern P 5). In these
cases the information on data-types or call targets can be easily collected (or asserted)
by perusing the model, whereas they may be hardly resolved by code inspection. Part
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of this information, in fact, is likely get lost along multiple legs of model transformations.
Similarly, information that depends on the characteristics of underlying kernel or operating
system (e.g., loops iterating on the number of tasks in the systems) are clearly not easily
re-constructable from the code.

In order to accommodate this kind of information, an abstract model can be extended
to accommodate user annotations. Depending on whether the information can be mapped
to a specific model element or not, it can be conveyed directly into the code (in the form
of source code annotation) or into an external annotation file respectively.

Exploitation of model transformations. The synthesis process of code generation typ-
ically consists in a sequence of intermediate model-to-model transformation that moves
from the abstract model to the concrete implementation. Whereas some system-level con-
cerns are exclusively expressed at model level, a large part of the information relevant to
timing analysis is progressively built along this transformation chain.

The final transformation in particular is responsible for the realisation of the model into
a set of predefined code patterns. Having code predictability and analysability in mind,
model transformations can be exploited to adjust either the mapping from model elements
to code patterns or the generative code patterns themselves. In the former case, one may
want, for example, to switch from a while-loop to a more predictable counter-based for-
loop. This can be easily done, if the loop semantic allows, by setting a counter variable
and changing the mapping function to point to the for-loop generative pattern. Another
example would consist in normalising the condition variable that is fed to a multi-way
switch so as to guarantee that the final code will be compiled into a bitwise-offset geared
jump, instead of a complex nest of conditional branches (cf. pattern P 6 in Chapter 3.5).

Besides analysis-oriented customisations, model transformations straightforwardly al-
lows the extraction of timing information. Code generation patterns, in fact, are necessarily
parametric so that they can be used to instantiate different scenarios. This is the case, for
example, of a matrix multiplication pattern which includes a loop over the matrix elements:
we may be interested in extracting information on the maximal loop iterations. By inter-
cepting this parametrisation, we are able to make it explicit, re-formalise it according to a
specific annotation syntax (e.g., the AIS specification for the aiT tool), and finally generate
it as a comment in the proper place in the code. Figure 3.14 depicts the extraction of timing
information from within the model-to-code transformation process.
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Figure 3.14: Information extraction and code annotation.

3.6.3 Proof of concept

Model-based development and tools are increasingly adopted in HIRTS industries, seeking
for a reduction in both time and costs of industrial software development. This trend
acknowledges that the increasing complexity in the design and verification of industrial-
scale systems can more efficiently governed by the adoption of abstract models for both
the algorithmic and architectural specifications of a system.

In respect to the former, in fact, model-based development provides a modular ap-
proach to design complex dynamic systems, including control systems, signal processing,
and communications systems. Modeling proceeds through the definition of different kinds
of diagrams whose main entities model either algorithmic or structural, and dynamic be-
haviour. State-of-the-art modeling tools, such as Matworks Simulink [96] and Stateflow
[97] or Scade [42], differ in the description language they use, which may include block
diagrams, state-transition diagrams and other proprietary constructs. Modeling function-
alities are extended with advanced simulation engines for early verification of the func-
tional behaviour of the modeled system. Consolidated models can then undergo automated
code generation process that eventually yields a semantically equivalent software product,
which is thus correct-by-construction, with respect to the model they derive from, and
ready to be deployed.

From the architectural specification standpoint, when the MDE paradigm meets the
reuse-oriented Component-Based Software Engineering (CBSE) approach, the abstract
model of a system consists in the definition of a set of interacting software components.
An interesting definition of component in given in [150]:
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A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third-parties.

According to that definition, CBSE sets its main focus on the (hierarchical) organisation
and composition of components, intended as highly reusable building blocks. Compo-
nents are standardised software entities that are characterised by a set of services that are
provided to other components (Provided Interface) and a set of services that must be pro-
vided for the component to execute (Required Interface). Figure 3.15 provides a graphical
representation of a component with its set of provided and required interfaces.

Figure 3.15: Classical (UML) graphical representation of a component.

Provided and required interfaces do not only define the functional behaviour of a com-
ponent but they are typically extended to address non-functional system properties that
determine how the components services will be executed at run-time. From the CBSE
standpoint a system is modeled according to a component model - typically comprising
different views - that define the implementation, documentation and deployment of the
set of components that realise the overall architectural specification of the system. The
conformance of the component model to a proper computational model allows to perform
different forms of analysis at the model level (in its PSM representation) instead of the
actual implementation. For example, a model-based schedulability analysis approach has
been presented in [23]. Finally, the definition of a proper programming model, consistent
with the computational model, informs the final model-to-code transformation that auto-
matically yields to the code implementation of the software architecture. In this setting,
the concrete functional behaviour of a component is not the main concern as long as all
functional and non-functional interface contracts are fulfilled. The algorithmic behaviour
of the generated run-time entities is typically not included in the code generation process,
where a simple skeleton is generated instead.
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The separation of functional and non-functional concerns [39] favoured by the CBSE
approach straightforwardly enables the separate application of the MDE approach to both
algorithmic and architectural dimensions, and the later combination of the synthesised
code. Assuming that the algorithmic specification does not address any non-functional
concern, the automatically generated functional code will in fact replace the functional
placeholders in the architectural implementation so that to obtain the complete system
implementation.

While addressing the timing analysability of the automatically generated code, we can-
not disregard that the algorithmic and architectural specifications, though both defined
within a MDE framework, may intrinsically raise different analysability issues and thus
need different solutions. In the following, we therefore consider two distinct representa-
tive modeling frameworks and detail possible means to improve the analysability of the
generated code.

The automatic extraction of flow facts and the automated generation of timing anno-
tations (either in the source code or in an external file), which is part of our approach,
requires the selection of a specific annotation format. In our investigation we selected the
ais [1] file annotation format, for use with the aiT tool. We are also aware of the role of
compilers in mapping the source code to object code, which is the actual target of timing
analysis. Thus the preservation of code analysability and correctness of flow facts is not
guaranteed and depends on the compiler of choice as well as the applied compiler opti-
misations. In the following, we assume that the generated code will be compiled with the
GCC-based GNAT Pro for LEON compiler from AdaCore [2], with no optimisation. The
selected simplifying configuration allows the preservation of the source-level control flow
on the generated object code (besides some know exceptions) and does not require any
complex remapping of flow facts into object code [73].

3.6.3.1 Algorithmic specification

Several MDE industrial-level tools are available for the design of the functional behaviour
of (parts of) a system. We already mentioned a score of commercial tools that provide
both modeling and code generation functionality [96, 97]. With respect to our objective,
however, the main issue with those tools is that their internals are more or less transparent
to the user and they do not easily allow modifications to either the metamodel or the model
transformations (included the model-to-code one).

We partially overcame these limitations by selecting GeneAuto [139]. GeneAuto is
an open-source framework for model-to-code transformation, that allows to generate code

Cache-aware Development of High Integrity Real-time Systems



3.6 Code Generation for Timing Analysis 87

from different modeling artifacts based on data-flow or state models, such as Simulink
and Scicos [143] (an open-source alternative to Simulink) block diagrams and Stateflow
diagrams. The set of transformation that proceeds from the input model to the implemen-
tation code is organised into several elementary tools, each one performing a model trans-
formation or refinement. GeneAuto exploits two intermediate modeling formalisms: the
GASystemModel, which is the internal pivotal formalism the supported input models are
initially transformed to, and the GACodeModel, which is an intermediate representation,
much close to the implementation code but still generic enough to allow a final transfor-
mation step to generate the implementation code in different programming languages (C
and Ada are currently supported). Figure 3.16 shows the GeneAuto framework and hints
at the main entities that inhabit the intermediate languages metamodels.

Figure 3.16: Core model transformations in the GeneAuto tool set.

Although GeneAuto is not a complete modeling framework, the availability of its
source code allowed us to inspect and modify its internal model transformations. We
restricted our investigation to the generation of Ada source code, which was not included
in the original release of GeneAuto and is part of a side project effort led by AdaCore
under the Open-DO initiative [51]. We focused on the application of our approach to data-
flow block diagrams designed in Scicos [143], a modeling, simulation and code generation
toolbox for Scicoslab (formerly Scilab) an open-source alternative to Matlab, developed at
INRIA and ENPC.

Functional diagrams in Scicos are similar to their Simulink counterparts, with just a
slightly different notation. The main entities in the Scicos data-flow diagram metamodel
consist in a set of basic building blocks, corresponding to combinatorial or sequential
functions, ports, and signals. Blocks are thus interconnected through input and output
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ports and can be hierarchically organised in subsystems. Scicos data-flow block diagrams
allow to model complex data-intensive algorithms that fit the CBSE concept of algorithmic
specification.

As discussed in Section 3.6.2.1, the metamodel definition is the first leverage point to
enforce code analysability. Accordingly, a set of restrictions should be applied directly
to the Scicos metamodel so that only analysable models can be constructed. We did not
need to apply any further restriction to the Scicos metamodel as a set of restrictions is
implicitly set by GeneAuto in its model import step. GeneAuto has in fact been especially
tailored to the development of high integrity systems and deliberately supports only a safe
subset of the Scicos metamodel, excluding those constructs in the input model that may
complicate the analysis of the final code. As a matter of fact, the GeneAuto native code
generation engines enforces MISRA C [105] compliant code. In particular, although the
data-flow diagram formalism in Scicos supports the definition of hybrid systems that can
include at the same time continuous-time and discrete-time components, only the latter are
supported in GeneAuto. Although these limitations are meant to improve software quality
and analysability in general, they naturally entail an improved timing analysability.

The restriction to Scicos data-flow diagrams, combined with those metamodel-level
constraints, enforces the corresponding GASystemModel to not include harmful model
elements such as recursion, dynamic allocation, function pointers or any form of unstruc-
tured code pattern. This favourable condition, however, also narrows our space of interven-
tion to the GACodeModel to Ada code transformation. Automated code generation from
other formalisms is likely to imply the generation of more complex constructs (e.g., state
junctions in GeneAuto may result in the generation of goto statements). At the same time,
other formalisms may also allow the application of other approaches: as suggested in [151]
information on state transitions in Stateflow models can be exploited to automatically de-
tect infeasible paths and different operation modes. We were also unable to experiment
with the preservation of model-level annotations up to the generated code as the Scicos to
GeneAuto bridge does not currently preserve model annotations.

As a proof of concept of our approach, we focused on the GACodeModel to Ada code
transformation to ease timing analysis of the final code. The GACodeModel already holds
all the information on variables, functions, expressions and statements, which are gener-
ated along with the transformation from GASystemModel. The final model-to-code trans-
formation in GeneAuto is implemented through a specialisation of a generic Printer

module that simply translates the implementation-level entities into programming lan-
guage specific constructs.
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In the GACodeModel a loop statement can be represented either as a ForStatement
or a RangeIteratorStatement. The C code Printer translates both elements to a
straight counter-based for loop. The Ada Printer implementation instead provides two
different generative patterns where a RangeIteratorStatement is translated into a for-
loop ranging over a user-defined Ada Range type, and a ForStatement is translated into
a while-loop (Figure 3.17).

1 while ( c o n d i t i o n ) loop
2 −− do something
3 −− update c o n d i t i o n
4 end loop ;

1 type My_Range is range . . . ;
2 for I in My_Range loop
3 −− do something
4 end loop ;

Figure 3.17: Generative patterns for loop statements.

In contrast with model-to-model transformations, model-to-code transformations do
not typically rely on a stringent formal specification of the adopted transformation rules
[38]. The GeneAuto framework is a representative example of a pragmatic (and rather
informal) approach to model-to-code transformation. In fact, automated code generation
is performed according to the so-called visitor-based approach [38], where the source code
is generated along a simple traversal of the the internal representation of a model.

The GACodeModel ForStatement is modelled as a set of sub-entities: a loop vari-
able, a termination condition (over the loop expression), a loop body and loop pre- and
post-statement (i.e., the increment step). Figure 3.18 below shows how the AdaPrinter
module (written in Java) actually implements the model-to-code transformation for the
ForStatemnt as an Ada while-loop (Ada keywords are highlighted).

However, we noticed that within the GeneAuto framework the condition variable in the
while-loop pattern is often bounded by construction to an implicit counter variable (with no
additional exit condition). Under these premises, the loop condition can be reformulated
as a triple (or binary expression) <x,op,y>, where x is an explicit counter variable, y
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1 / / P r i n t s ForStatement as a While−loop :
2 public S t r i n g p r i n t ( ) {
3 S t r i n g r e s u l t = "" + Formatter . newLine ( ) ;
4 r e s u l t += preStatement . p r i n t ( ) + Formatter . newLine ( ) ; / / I n i t c o n d i t i o n
5 r e s u l t += Formatter . i nden tL ine ( )
6 + " while ( "+ conditionExpression . p r i n t ( ) +" ) loop"
7 + Formatter . newLine ( ) ;
8 Formatter . i nc Inden tLeve l ( ) ;
9 r e s u l t += bodyStatement . p r i n t ( ) + Formatter . newLine ( ) ; / / Loop body

10 r e s u l t += postStatement . p r i n t ( ) + Formatter . newLine ( ) ; / / Update c o nd i t i on
11 r e s u l t += Formatter . i nden tL ine ( ) +"end loop ; " + Formatter . newLine ( ) ;
12 return r e s u l t ;
13 }

Figure 3.18: Visitor-based model-to-code transformation for the ForStatement.

is the maximal value for x and op is the binary operator ≤. Therefore, the model-to-
code transformation rule for the ForStatement can be modified to ease loop analysis (cf.
pattern P 13 in Section 3.5.2.1) by generating explicit counter-based for-loops, as reported
in Figure 3.19.

1 / / P r i n t s ForStatement as a For−loop :
2 public S t r i n g pr in tAsFor ( ) {
3 S t r i n g r e s u l t = "" ;
4 BinaryExpression bExp = ( BinaryExpression ) th is . conditionExpression ;
5 / / Do not need the preStatement ( loop var i n i t i a l i s e d to 0)
6 / / −−> f o r Var i n 0 . . MaxValue loop
7 r e s u l t += Formatter . newLine ( ) + Formatter . i nden tL ine ( )
8 + " for "+ bExp . getLeftArgument ( ) . p r i n t ( ) / / Loop v a r i a b l e
9 + " in 0 . . "+ bExp . getRightArgument ( ) . p r i n t ( ) +" loop" / / Max value

10 + Formatter . newLine ( ) ;
11 Formatter . i nc Inden tLeve l ( ) ;
12 r e s u l t += bodyStatement . p r i n t ( ) + Formatter . newLine ( ) ;
13 / / Do not need the postStatement ( loop var a u t o m a t i c a l l y incremented )
14 r e s u l t += Formatter . i nden tL ine ( ) +"end loop ; " + Formatter . newLine ( ) ;
15 return r e s u l t ;
16 }

Figure 3.19: Alternative model-to-code transformation for the ForStatement.

The outcomes of the two alternative code generation strategies for the ForStatement
are reported in Figure 3.20.

Computational intensiveness is the main characteristic of data-flow diagrams. At the
source code level, those computations often result in loops iterating over n-dimensional
data that are typically exchanged (via signals) between blocks. From the timing analysis
standpoint, the user is often required to manually define flow facts on the maximum number
of iterations, which is an annoying and error prone task. Building on the information in
the GACodeModel we are able to automatically extract flow facts on the upper bound for

Cache-aware Development of High Integrity Real-time Systems



3.6 Code Generation for Timing Analysis 91

1 vars := . . . ; −− Setup i n i t i a l cond i t i ons
2 while ( cond ( vars ) ) loop
3 −− loop body
4 vars := . . . ; −− Update cond i t i ons
5 end loop ;

1 −− No need to i n i t x
2 for x in 0 . . max loop
3 −− loop body
4 −− No need to increment x
5 end loop ;

Figure 3.20: Alternative Ada code production for the ForStatement.

each loop. As shown in Figure 3.21, the maximum number of iterations of each loop that
implements a computational block is determined by the actual size of the block input ports.

Figure 3.21: Relationship between ports size and loop bound for a summation block.

Depending on the analysis tool, flow facts should be generated in place (i.e., interleaved
with the code) or in a separated file. We implemented both solutions and generated the loop
bound annotations in the ais format, for the aiT static analysis tool.

The automated production of source code annotations straightforwardly fits in whit the
model traversal that yields to the implementation code. The information on block port
size is represented at GACodeModel level as a set of ranges that determines the maximum
iteration for all loops in the block computations. Each Range can be exploited to generate
a loop bound annotation that is seamlessly included in the generator output. Lines 1-5 in
Figure 3.22 shows how a loop bound annotation in the ais format can be inserted into a
code generation template. The generated ais annotation consists in a code macro like:

/ * ai : loop here max N; * /

where N is the extracted loop bound.
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When defining the annotations in an external file, instead, we had to account for the
naming convention of the compiler in use to identify the annotation target. According to
the naming convention in the adopted compiler, in absence of overloading a procedure
named Bar, declared in the package Foo, will have Foo__Bar as full link name. Accord-
ing to the ais annotation format, a loop in Bar is unequivocally identified by the enveloping
procedure full link name and a loop index. For example, loop "Foo__Bar" + 2 iden-
tifies the second loop in procedure Bar, declared in package Foo. To keep consistent
information on the annotation scope we implemented a simple state machine whose exe-
cution follows the AdaPrinter module. This new module, named FlowFactPrinter,
allows to record the exact scope along the code generation process. Thus an external loop
annotation can be defined just by providing the loop bound (lines 6-9 in Figure 3.22): the
FlowFactPrinter is responsible for generating the correct scope for the flow fact (i.e.
Ada package, procedure and loop index). The external flow fact is generated according to
the following syntax:

loop " Foo__Bar " + k loops max N begin by defaul t ;

where N is the extracted loop bound, begin (or end) identifies the shape of the assem-
bly representation of the loop and by default just tells the analysis tool to check the
correctness of the annotation itself.

1 / / I n s e r t an aiT code annota t ion s t a t i n g the loop bound
2 r e s u l t += Formatter . i nden tL ine ( )
3 + "−− / * a i : loop here max "
4 + ( ( ( RangeExpression ) range ) . getEnd ( )− ( ( RangeExpression ) range ) . getStart ( ) )
5 + " ; * / " ;
6 / / Produce a loop bound annota t ion i n an ex te rna l . a i s f i l e
7 / / E . g . loop " Foo__Bar " + 1 loops max N [ begin | end ] by d e f a u l t ;
8 F lowFac tPr in te r . ge t Ins tance ( ) . Pr intLoopFlowFact (
9 ( ( ( RangeExpression ) range ) . getEnd ( )− ( ( RangeExpression ) range ) . getStart ( ) ) ,

10 true ) ;

Figure 3.22: In place generation of loop bounds.

As observed in Section 3.5.2.1 (P 10), the use of user-defined data types may compli-
cate timing analysis as the information on the data type is typically not exposed by the
compiler. Collecting the same information by code inspection may be complicated by
the fact that user-defined data types are typically organised in complex data-type hierar-
chies whose definition is spread over a large amount of code. For example, the GeneAuto
model-to-code transformation exploits user-defined (Ada) Range types for those loops
that are generated following the (already mentioned) RangeIterator pattern. Since the
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data-type information is clearly available at model level, we are able to resolve any com-
plex data-type hierarchy and to generate precise loop bounds annotations, again within the
code or in an external annotation file. For the sake of a better code readability, we always
generate the same information also in the simple form of comment in the code.

3.6.3.2 Architectural specification

Correctness and overall quality of a system are also determined by its architectural descrip-
tion. MDE and CBSE approaches are increasingly adopted for the design and implementa-
tion of the architectural specification of industrial applications. The combination of those
approaches is currently attracting the interest of the HIRTS industrial sector. Similarly to
what we have suggested for the algorithmic design, we aim at exploiting the MDE ap-
proach to improve timing analysability of the automatically-generated architectural code.

The stringent requirements on both functional and non-functional concerns in high
integrity systems prevents from applying a generic modeling framework and asks for
domain-specific solutions. In our investigation we selected the Space Component Model
(SCM) Editor [116], a prototype tool currently under development at University of Padua,
which is especially oriented to the development of on-board space applications. The SCM
Editor is grounded on a comprehensive methodology [115] aiming at the design and im-
plementation of software systems that abide by the principles of composability and com-
positionality, and guarantees the preservation of non-functional system properties from
design to implementation and execution (principle of composition with guarantees [158]).
The main constituents of this approach are a component model (SCM), that accommodates
functional and non-functional domain-relevant attributes; a computational model, that al-
lows to relate the component model to specific analysis techniques (e.g., schedulability
analysis); a programming model, consistent with the computational model; and an execu-
tion platform that permits the preservation of the system and component properties at run
time.

SCM is designed on top of a domain-specific metamodel spreading over several de-
sign views, each one addressing specific concerns. At design level, the main model entity
is the classical CBSE concept of component. In SCM, however, components are pure
functional units that provide an algorithmic specification and do not directly address any
non-functional concern. The latter, in fact, are exclusively expressed as declarative at-
tributes on components instances or their provided and required interfaces. We will not
detail here the allowable extra-functional attributes in the model, which are discussed in
detail in [115]. Although SCM differentiates between different refinements of a compo-
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nent (type, implementation and a instance), component bindings (through interfaces) can
be designed only between component instances. Figure 3.23 shows how bindings can be
defined between component instances through a decorated interface.

Figure 3.23: Binding between component instances.

A hardware/deployment view allows to describe the assumed execution platform and
to allocate design-level components to specific processing unit. The deployment infor-
mation, in conjunction with a proper computational model, allows to undergo a model-
to-model transformation that yields the definition of an implementation-level platform-
specific model (view) that accounts for the non-functional attributes in the model. SCM
adopts the Ravenscar Computational Model (RMC) [24], originating from the Ravenscar
profile [27]. The constraints imposed by RCM on system design and implementation en-
force the definition of systems that are amenable to static analysis by construction.

The RCM-compliant implementation model builds on the main concepts of contain-
ers and connectors to realise the non-functional system properties. Containers realise the
deployment of a component by encapsulating it on top of the execution platform of the pro-
cessing unit and by implementing a predetermined run-time entity (i.e., cyclic or sporadic
tasks and protected objects) depending on the timing and synchronisation properties of the
components. Connectors, instead, implement the bindings between different components
and between components and the underlying execution platform (middleware services,
communication channels, etc.), which typically consist in function/procedure calls, remote
message passing or data accesses.

A final code generation step may then stem from the implementation view and yield
C++ or Ada source code conforming to a set of predefined code archetypes. Those code
archetypes, in turn, abide by the programming model subsumed by RCM. The automated
code generation step is typically performed on a consolidated model that has undergone
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some form of analysis: as part of the SCM framework, the implementation-level view can
also be automatically transformed, for example, in a schedulability analysis model (SAM)
that can be statically analysed with mainstream schedulability analysis techniques.

In our investigation we focused on the code archetypes, aiming at identifying possible
means to improve the timing analysability of the generated code. The SCM framework
relies on a set of reference implementations of the Meta-Object Facility (MOF) meta-
modeling and model management standard [66, 114], provided by the Eclipse Modeling
Project [40]. In particular, according to the MOF Model To Text (M2T) transformation
specification, the SMC model-to-code transformation step is formalised as a set of textual
templates, characterised by fixed parts and placeholders that are intended to accommodate
data extracted from the source model. Within the SCM framework, those templates adhere
to and implement a set of RCM code archetypes.

1 [template public generateInterface(model: Model, aInterface : Interface)]
2 [file ((aInterface.name).concat(’.ads’).toLower(), false)]
3 with Datatype ; use Datatype ;
4 package [aInterface.name/] is
5 type [aInterface.name/] is In ter face ;
6 [for (op : Operation | aInterface.ownedOperation)]
7 [if (op.ownedParameter->size() = 0)]
8 procedure [op.name /] ( Se l f : in out [aInterface.name/] ) is abstract ;
9 [else]

10 procedure [op.name /] ( Se l f : in out [aInterface.name/]
11 [for(par:Parameter|op.ownedParameter)] ;[par.name/] :[par.direction/][par.type.name/]
12 [/for] ) is abstract ;
13 [/if]
14 [/for]
15 type [aInterface.name/]_p t r is access a l l[aInterface.name/] ’ c lass ;
16 end [aInterface.name/] ;
17 [/file]
18 [/template]

Figure 3.24: Simple M2T template for an interface specification. Credits to SCM [116].

The simple textual template in Figure 3.24 allows to generate the source code for the
Ada package specification (thus with the .ads file extension) of a given interface. Simi-
lar textual templates are defined for each code archetypes in the SCM framework [116].
The final source code is determined as the combination of transformation directives, itera-
tors, conditionals, manipulations and queries on the model (reported in italic within square
brackets) with recurrent code parts. It is worth noting that the representation of model-to-
code transformation rules by MOF textual templates is just slightly more structured than
that provided by the visitor-based approach in the GeneAuto framework (Section 3.6.3.1)
and it does not lend itself to a stringent formal representation. However, textual templates
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generally provide a cleaner separation between model dependent and independent code
parts.

With respect to timing analysis, the SCM framework assumes full composability of
the WCET of each component: the WCET of a task is computed as the summation of the
WCET of the functional specification of each component involved in the task body call
chain, augmented with a known overhead stemming from the execution of non-functional
code ascribed to the container/connector mechanism. However, the WCET values of each
components, which can be fed to schedulability analysis at this early design stage, are
mainly estimates from previous experience or development prototypes and need to be even-
tually replaced with dependable WCET bounds. The same holds even for non-functional
code: although the execution time incurred by containers and connectors is assumed to be
known and fixed, we still need to confirm their WCET behaviour.

We first acknowledge that the separation of functional and non-functional concerns
enforced by SCM and the adoption of the Ravenscar profile as programming model does
not only make a system amenable to schedulability analysis, but also positively affects
its timing analysability. As already observed in Section 3.5.2.2, allowing task synchro-
nisation and communication exclusively via protected object excludes complex synchro-
nisation patterns that are possible source of non-determinism in schedulability analysis.
At the same time, the adoption of the immediate ceiling priority protocol [14] to provide
mutually-exclusive access to protected resources allows to exclude any interference from
task blocking on the cache behaviour (see Section 3.5.2.2, point D 3).

Probably the most relevant effect of the SCM implementation model on the final gener-
ated code is the implementation of the interface promotion mechanism between containers
and components. The component provided and required interfaces, in fact, are respectively
delegated and subsumed by the container envelop, as shown in Figure 3.25 below.

Figure 3.25: The container-component delegation mechanism.
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In this respect, the generated code exactly mirrors the implementation model as the del-
egation mechanism is implemented through interface implementations. According to the
code archetypes, however, the set of required interfaces of a component are implemented
as procedure pointers, to guarantee the necessary degree of genericity and reuse among
different instances of the same component type.

The positive point with this approach is that it does not exploit the instantiation of
generic types (or templates in C++) to express genericity (cf. pattern P 8 in Section 3.5).
The other side of the coin is that also function pointers complicate timing analysis, as
explained in Section 3.5.2.1 (P 5). Those procedure pointers are actually initialised at
system start up when each binding between components is implemented by exchanging
procedure pointers from the container that provides a service to the container that re-
quires it. Returning to Figure 3.25, a pointer to the procedure implementing the interface
B_interface in component B instance is retrieved from Container B and given to
Container A, which in turn initialises the respective pointer in Component A. From the
timing analysability point of view, those procedure references cannot be statically resolved
and a flow fact annotation is required to reconstruct the control flow of the analysed pro-
gram. Clearly this is a non-standard use of indirect calls as the use of a pointer is not
justified by any dynamic algorithmic behaviour and is instead tied to architectural con-
cerns. In fact, since the SCM model also holds information on the relationship between
the component provided procedure and the required ones, we are able to automatically
generate a proper annotation (currently in the ais format) in a separate file that statically
resolve this form of dynamic calls.

The textual template reported in Figure 3.26 generates an external ais file (unique for
the model) that includes the flow facts required to resolve all the dynamic calls in the model
between a component and the containers implementing its required interfaces. The adopted
syntax is exactly the same M2T-compliant specification language used to define the set of
SCM code archetypes. For each component implementation instance (as each component
in SCM can be instantiated multiple times) we iterate over all component operations and
identify the respective required interfaces (lines 11-22). We then use the full link name of
both the component instance and the container that, according to the component-container
bindings (connector), provides the required interface implementation. This information
are used to generate a flow fact annotation in the form:

instruct ion " component_RI_operat ion_fu l l_ l ink_name " + 1 computed
ca l ls " connected_conta iner_prov ided_opera t ion_fu l l_ l ink_name " ;

which states that the first dynamic call in "component_RI_operation_full_link_name" shall
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be resolved by the analysis tool to a call to the specified procedure "connected_container_
provided_operation_full_link_name". It is worth noting that a component operation may
invoke more than one operations from its set of required operations. In this case, the tem-
plate will generate a separate flow fact annotation addressing, for example, the second dy-
namic call in "component_RI_operation_full_link_name" by exploiting the [/i] counter
(line 24 in Figure 3.26).

1 [template public ComponentContainerCall(model : Model,
2 compInstInputList : Sequence(OclAny),
3 connectorInstInputList: Sequence(OclAny)) {
4 compImplList : Sequence(Component) = getComponentImplList();
5 compInstList : Sequence(InstanceSpecification) =
6 compInstInputList->filter(InstanceSpecification);
7 connectorInstList : Sequence(InstanceSpecification) =
8 connectorInstInputList->filter(InstanceSpecification);
9 }]

10 [file ((model.name.concat(’_dynCalls.ais’)).toLower(), false)]
11 [for (cImpl : Component | compImplList)]
12 [let cImplInstList : Sequence(InstanceSpecification) =
13 getComponentInstanceList(cImpl, compInstList)]
14 [for (opImpl : Operation | cImpl.ownedOperation)]
15 [if (getICB(opImpl) <> null)]
16 [let RIOpName : String = ((cImpl.clientDependency->filter("Realization")->
17 any(true).supplier->any(true).name).concat(’s__’)
18 .concat(cImpl.name).concat(’s__’).concat(opImpl.name))
19 .toLower()]
20 t ry {
21 # Dynamic c a l l s f low f a c t f o r r o u t i n e . "[RIOpName/]"
22 [for (cOp : CallOperationAction | getCalledOperationList(getICB(opImpl))
23 ->filter("CallOperationAction"))]
24 instruct ion "[RIOpName/]" + [i/] computed ca l ls
25 [for (cImplInst: InstanceSpecification | cImplInstList)]
26 [for (riSl : Slot | cImplInst.slot->select(definingFeature = cOp.onPort))]
27 [let boundSlot : Slot = getBoundPIslot(riSl, connectorInstList)]
28 "[’CT_’.concat((boundSlot.value->first().oclAsType(InstanceValue))
29 .instance.name).concat(’s’).toLower()/]__
30 [getLinkName(cOp.operation.name).toLower()/]" ;
31 [/let]
32 [/for]
33 [/for]
34 [/for]
35 }
36 [/let]
37 [/if]
38 [/for]
39 [/let]
40 [/for]
41 [/file]
42 [/template]

Figure 3.26: Textual template for the generation of flow facts.
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The only issue in generating this kind of flow facts comes from the need to unequiv-
ocally identify the link names of the involved procedure: this is because, both interface
definitions and delegation pattern induce an overloading of those procedures. Naming
rules are specific to the compiler in use: in our case the GNAT Pro LEON compiler simply
append a numerical suffix (e.g., __2) to the normal procedure link name, following a set
of specific rules. The impact of the automatic generation of this kind of annotation is not
negligible in the analysis of industrial-scale systems: in a recent experiment on part of
a real on-board satellite system [103] we were forced to manually define more than one
hundred annotations to resolve this architectural pattern.

We observed a similar naming resolution problem for procedures in protected objects
(shared resources with an access protocol) as the compiler expansion introduces a wrapper
to manage a mutual exclusion mechanism (lock) on the procedure itself. In this case, again
according to the specific compiler, wrapper and original procedures are suffixed with a
P and a N respectively. In order to support the generation of correct flow-fact scopes we
implemented an external procedure (termed query in the MOF M2T specification) that can
be invoked from within the code generation process to compute the exact link names, ac-
cording to the compiler internal rules (see getLinkName(cOp.operation.name) in Figure
3.26). Exploiting the automated generation of these simple flow facts we were able to pro-
vide all the architectural-level annotations for a simple producer-consumer toy example.

Another interesting means to improve the system analysability could consist in exploit-
ing the architectural description to allow a separated timing analysis of different operation
modes. In fact, following the principle of separation of concerns, discriminant factors on
the different operation modes is kept separated from the functional specification of the
system and is handled from within the container implementation. Unfortunately, we were
prevented from extensively investigate this approach as well other promising solutions due
to the current incomplete and prototyping state of the modeling tool. However, the SCM
Editor is currently under completion and we expect that we will soon be able to extend our
investigation.

3.6.4 Summary

The timing analysability of a program is inherently influenced by the characteristics of
the software in that poorly analysable code prevents the determination of safe and tight
WCET bounds. To counter the effects of those constructs, the user is forced to undergo
the onerous and error prone process of manually defining a score of flow fact annotations
to support the analysis process. The model-driven engineering approach, with its auto-
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mated code generation facility, could in principle provide an effective way of imposing
predictable code patterns and coding styles that guarantee code analysability by construc-
tion. Current MDE modeling frameworks, however, are rarely informed to system timing
predictability and, more importantly, their final code generation steps does not account for
timing analysability concerns.

In this chapter we reasoned on how MDE approach can be effectively exploited to im-
prove the system analysability. We focused on model definition and transformations as the
most promising spaces of intervention for improving software analysability, either by en-
forcing predictable construct or by automatically generating valuable timing annotations.
We then provided interesting, though still incomplete, evidence of potential benefits of
our proposed approach within two modeling frameworks, addressing the functional and
architectural dimensions of a system. The obtained system is expected to be more easily
analysable by construction without relying on overly intrusive and onerous user interven-
tion.
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3.7 Cache-aware Incremental Layout Optimisation

In addition to making WCET analysis harder, the context-dependent timing behaviour of
caches also acutely clashes with the incremental nature of the software development prac-
tices sought by HIRTS industry. In that industrial setting in fact, the hardware and software
development and their integration and qualification proceed in incremental steps to better
master the complexity of the process and thus contain schedule and cost hazards. As a key
part of that process, trustworthy information on the timing behaviour of the software must
be had from as early in its development as possible. The later that information emerges the
more hazard may impend on system integration. The later that information changes for the
worse the more costly the fixes.

Cache-aware timing analysis, whether based on static techniques [48] or hybrid measu-
rement-based methods [20] does not lend itself to incremental development. Furthermore,
it also critically relies on the availability of information that can only be consistently deter-
mined on the final executable, and thus near the end of the development process. The way
the code and the data of the program are laid out in memory is a crucial information item
for cache-aware timing analysis. The memory layout of the program in fact determines
the pattern of hits and misses incurred by individual executions at run time [25], while it
also contributes to inter-task interference [75, 6]. Both phenomena manifest themselves as
cache jitters.

More specifically, the memory layout determines the amount of conflict misses [60]
that occur when memory blocks in the working set of a program compete for cache space.
Incrementally adding a module to a software system may thus affect the cache behaviour
of the preexisting modules as a consequence of changes in their memory layout. Even
small changes may cause significant jitter in the observed timing behaviour [25, 100]. As
the memory layout may naturally change upon subsequent software releases, no timing
guarantees can be actually obtained from a system subject to incremental development.
The bound obtained on a previous release for a given module is in fact likely to become
invalid in the subsequent release.

Avoiding unnecessary conflict misses by means of cache-aware memory layout place-
ment directives is a comparatively straightforward countermeasure that may improve both
cache performance and predictability. Several approaches have been proposed in the lit-
erature to compute an optimised memory layout that guarantees better cache performance
in the average case [156, 58, 53, 119] or in the worst case [89, 35]. However, while being
provably effective in reducing the number of conflict misses, those approaches may prove
unfit for industrial application.
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The fact that classic layout optimisation techniques are meant to be applied at the tail
end of development, on the final system, intrinsically contradicts the incremental slant of
the industrial development process and fails to understand the role played in it by timing in-
formation. Besides being dauntingly intractable for large systems, the application of layout
optimisation techniques as part of final verification would occur just too late: guarantees on
the timing behaviour must instead be acquired incrementally. Applying those techniques
on each incremental release would also be no use unless measures were taken to ensure
that the memory layout of the previous release was preserved onto the new increment.

In our activities we focused on the instruction cache to start with. We contend that the
same approach could also be applied to reducing cache conflicts between data structures.
At the same time, we are aware that data cache optimisations are more effective when
applied at intra-procedural level to address spatial locality in data access patterns, instead
of temporal locality alone.

We revisited the use of procedure positioning, a well-known layout optimisation tech-
nique, to control the variability in the memory layout and thus limit its negative effects on
the cache behaviour. Our ultimate goal is to enable an incremental approach to cache-aware
WCET analysis, which arguably fits the industrial process well. We exploit information
on the program structure to first compute and then enforce a memory layout that both min-
imises the number of potential conflict misses and also preserves the cache behaviour of
software module across incremental releases.

In the following we introduce a novel cache-aware layout optimisation technique that
differs from previous approaches in both the program representation and layout compu-
tation. We then present a prototype tool that enables an incremental application of our
technique. The prototype is finally used to provide quantitative evidence of the effec-
tiveness of our approach at improving cache behaviour and avoiding cache jitters across
development increments.

3.7.1 Positioning of our work

The code layout optimisation problem has been extensively studied as a means to im-
prove cache performance or to limit power consumption. Several studies aim to reduce the
number of cache (conflict) misses by exploiting profile-based information to rearrange the
program code.

Code reordering approaches can be applied at different levels of granularity: from
basic blocks [156], to whole procedures [58, 53], or both [119]. Basic blocks allow fine-
grained control over the number of cache misses as the latter depend on which basic blocks
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are actually executed. Procedures, although strongly correlated to cache conflicts, are
straightforwardly rearrangeable in memory by mainstream compilers whereas basic block
reordering requires special support.

Classic procedure positioning approaches use profiling information to build a more or
less complex graph structure, e.g.: a Weighted Call Graph (WCG) [119, 58] or a Temporal
Relationship Graph (TRG) [53], to represent call relations and call frequencies between
procedures. The WCG data structure (Figure 3.27) can be formally defined as follows:

Definition 1 (WCG). Given a program P, the weighted call graph WCGP is an (undirected)
weighted graph consisting of a set of nodes V = {p | p is a procedure in P} and a set of
edges E ∈ V ×V ={(p, p′) | p calls p′∨ p′ calls p}. A label Wp,p′ is associated to each edge
(p, p′) ∈ E to indicate the call frequency between p and p′ in P.

The placement algorithm is guided by a simple heuristic based on call frequency, which
exploits the WCG to select the procedures that more frequently call one another. Placing
those procedures as near as possible in memory would reduce the likelihood of cache
conflicts. As memory blocks are placed in the cache according to a (block address) mod N
mapping function, where N is the number of cache lines or cache sets in a direct-mapped or
set-associative cache respectively, nearby memory addresses do not compete for the same
cache lines.

In practice, procedure nodes are pairwise merged according to the greatest edge weight
(maxWpi,pj ) until a single chain of procedures is obtained. With reference to the ex-
ample WCG in Figure 3.27, the merging process would first produce two macro-nodes
[AC] (WA,C=20) and [DE] (WD,E=12), and eventually end up with the procedure chain
[BACDE]. The relative addresses of each procedure within that chain are translated into

Figure 3.27: A Weighted Call Graph.
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absolute addresses, thereby defining the memory layout.
The main defect of these approaches is that they base on profiling information; hence

they can only seek average-case execution time (ACET) improvement. For HIRTS in-
stead, focus is on the WCET behaviour. In this respect, an interesting approach has been
presented in [89], which extends the techniques introduced in [119] with worst-case path
information to assign edge weights in a WCET-centric WCG. That work describes an it-
erative and a heuristic approaches which use WCGs to compute a memory layout that
optimises the cache behaviour along the worst-case path.

Our approach, much like the WCET-oriented one, uses information on the program
structure as well as statically pre-computed loop bounds to derive call frequencies between
procedures. We further use an improved program structure representation and implement
an original procedure selection algorithm. All in all, our approach differs from all the
surveyed techniques in that it lends itself to incremental application, as it stores the current
optimised layout as a set of constraints which is preserved in determining the placement of
new software modules.

As regards the modular application of cache analysis, several studies focus on analysing
software components or modules in place of the full executable, e.g.: [117, 130, 15]. Par-
tial cache behaviour is separately computed for each software module, whether a compo-
nent or an object file, and later composed to account for the way modules are aggregated in
the final executable. The main concern of those approaches is to reduce the computational
complexity of cache analysis; our key motivation instead is to attain early guarantees on
the timing behaviour and to use later analysis to confirm the previous stipulations (as op-
posed to determine them). Our main focus is thus set on attaining composability [129] of
cache behaviour during software construction.

3.7.2 Incremental procedure positioning

We consider a software increment to contribute a new software module to an existing,
incomplete system. Depending on the software engineering approach in use, the term
software module may take a different meaning: from a software package up to a software
component downright. For the purpose of this discussion we just regard it as a cohesive set
of procedures accessed by an entry point. Moreover we initially assume that the additional
functionality offered by a software increment is associated to the entry point of individual
tasks, and that tasks are only allowed to interact via shared resources.

The principle of composability that holds for functional modularity implies that the
system functionalities can be considered in relative isolation when assessing functional
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correctness. Hence, the functional correctness ascertained for earlier software releases
is preserved across increments unless regressions occur, which are painful development
hazards. The same does not hold however for correctness in the timing domain: each
software increment may in fact invalidate the analysis result of previous releases.

As observed in Section 3.7, the memory layout may change every time a software
module is added to a system, which in turn may cause preexisting modules to incur a
different timing behaviour. This phenomenon becomes pathological when individual basic
blocks or procedures evict one another from the cache with devastating effects on cache
performance [100]. Such a pathological layout change may happen as the new module
gets somehow interspersed with the previous code perhaps because one shares text with
the other or the linking order has changed for some reason.

Figure 3.28: Critical layout change.

As a motivating example, consider a software module A whose code fits completely
in a direct mapped cache without incurring any conflict miss, as shown in the left side of
Figure 3.28. White cache lines in the figure do not suffer any conflict between memory
blocks. Assume now that a new software module B is added to the system as a result of a
development increment. As depicted on the right side of Figure 3.28, the memory layout
of module A can be disrupted in a way that code belonging to it does compete for some
cache lines (darker area). As a result, if the conflicting code is repeatedly executed (e.g.:
inside a loop) the execution of A will incur potentially many additional conflict misses.
Hence, any previous timing bound for A becomes unsafe and its WCET behaviour must be
re-analysed, adding unwelcome costs to an already taxing development.

Classic layout optimisation techniques, aimed at avoiding or at least reducing the
amount of conflict misses are typically applied at the end of the development process and
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cannot guarantee that a specific memory layout is preserved across subsequent incremental
releases. Our approach, which is explicitly incremental, exploits layout optimisations to
preserve the WCET behaviour of software modules by avoiding any disturbing change in
the memory layout. A locally optimised cache-aware procedure ordering is computed for
each software module to enforce a global controlled memory layout which accounts for
previously released modules and is preserved on successive releases.

Let us now discuss the specifics of our approach with respect to both layout optimisa-
tions and preservation. For the sake of simplicity, we will assume a direct mapped cache
although our approach can be straightforwardly extended (as we show in our experiments)
to set-associative caches too.

3.7.2.1 Layout Optimisation

Finding the optimal procedure placement would involve the computation of all possible
permutations, which is exponential in the number of procedures. Procedure positioning
techniques guide the placement algorithm by a simple heuristic which builds on the ob-
servation that two procedures that frequently call each other and map to the same cache
set are a potential source of conflict misses. As a consequence, those procedures should
be laid out as near as possible in memory, to avoid that the caller and callee procedures
could overlap in the cache. As anticipated in Section 3.7.1, a WCG is typically used to
understand the call relations between procedures and to compute a memory layout that
minimizes the number of potential conflict misses in either the average [58, 53, 119] or the
worst case [89]. Our view however is that the assumptions behind the procedure selection
heuristic used in previous approaches should be revised. We argue in fact that the most
critical source of conflict miss should be found in loops that envelope call relations, rather
than in call frequencies alone. Not only loops determine the call frequencies but they also
define the structural relations between calls, which WCGs do not capture.

Let us define p, p′ as elements of Proc(P), the set of procedures involved in a program
P, and lpi as the i-th loop in p. We discriminate whether the invocation of a procedure p′

from within p happens inside a loop (i.e., lpi → p′) or outside any loop (i.e., p → p′).
Accordingly, we recognize three types of structure for a call chain, with regard to the
amount of potential cache conflicts that it may incur. The first type of structure is the
simple direct call p → p′ outside of any loop nest; no conflict miss can occur in this case,
except for cache blocks possibly preloaded in p. When the call relation between p and p′

involves a loop structure, instead, the number of potential conflict misses depends on the
structural relation between p and p′. In fact, the second type of call relation occurs when
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lpi → p′: the maximum number of conflict misses is then determined by the instructions in
the lpi body. The third type of relation happens when p and p′ are repeatedly called from
within the same loop structure: ∃ lp∗i | l

p∗
i → p ∧ (lp∗i → p′ ∨ p → p′). This is the most

critical relation with respect to conflict misses, as the effect of p and p′ overlapping in the
cache may cause a larger number of misses to be incurred at each lp∗i iteration.

Since the size of a program normally far exceeds the cache size, a placement algorithm
is not likely to find an optimal placement that is able to avert all conflicts. Some decisions
should be taken instead to address the most critical sources of potential cache conflicts
first. In our approach when we select the procedures to be ordered we pay more attention
to those our classification ranks as highly related.

Loop-Call Tree structure

Our procedure placement algorithm uses a Loop-Call Tree (LCT) to capture the structural
relationship between calls, representing the program structure as a set of procedure nodes
and loop nodes.

Definition 2 (LCT). Given a program P, the loop-call tree LCTP is an ordered directed
tree consisting of a set of nodes V = {p | p ∈ Proc(P)} ∪ { lpi | l

p
i is the ith loop in p} and

a set of edges E ∈ V × V = {(p, p′) | p→ p′} ∪ {(p, lpi )} ∪ {(lpi , p′) | lpi → p′} ∪ {(lpi , l
p
j )

| loop lpj is nested inside lpi }. The LCT is rooted in a special entry node that stands for the
program root procedure, for example a task entry point. A label Blpi

is defined for each
loop node lpi , representing its statically computed loop bound, which makes it possible to
derive procedure call frequencies.

This richer representation enables a more informed procedure selection for layout op-
timisation than achieved with classical structures. The benefits of a LCT compared to a
WCG can be inferred from the simple example shown in Figure 3.29. The call relation
information represented by the WCG, (a) on the left of the figure, is partial and ambiguous
since it may correspond to at least two different LCTs, (b) and (c) in the figure. The key
point here is that the two LCTs show structurally different call relations: the most critical
overlap, which should guide the placement algorithm, would involve procedures X and Z
in (b), and procedures X and Y in (c).

Unless the program fits completely in the cache, which is unlikely in the general case,
a misinterpretation of the program structure may accidentally lead to the computation of
bad layouts. Similar limitations can be observed for the TRG-based representation. In fact,
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while it refines the WCG representation to capture the importance of procedure interleav-
ing and phasing, it still fails to explicitly account for the loop-induced call structure.

Figure 3.29: WCG vs. LCT expressiveness.

For example, returning to Figure 3.29, canonical approaches that just rely on call fre-
quencies, as in (a), may position the procedures in memory as [MXYZ]. However, assuming
the structure depicted in (b), this ordering misses out that the invocation of procedure Y
is structurally unrelated with the invocation of procedure X. Although X and Y show ex-
actly the same call frequency, the call chain [MY] is somewhat independent of the relation
[MXZ]. Procedure Y can overlap in the cache with either X or Z without incurring any con-
flict miss, as it does not share any common loop nest with them, as shown in Figure3.29
(b). Conversely, the invocation of procedure X is structurally related with the call of Z, as
they share the loop node L1 as common ancestor.

Based on the LCT structure, the selection phase of our placement algorithm is guided
by a new heuristic which involves both call frequencies and loop nest relations. Our strat-
egy strives to avoid that procedures belonging to the same loop nest overlap in the cache.
In fact, this is a potential source of conflict misses, far more critical than a mere, though
frequent, call relation. Procedures that are executed more frequently and share an ancestor
loop node will be placed as near as possible in memory to reduce the likelihood of overlap-
ping in the cache. In the example above it would result in placing the procedure in memory
in the order [XZYM].

Figure 3.30 displays the effects of applying the two different methods to the referenced
example. The fact that in both cases the procedures overlap in the cache does not nec-
essarily imply that they will incur any conflict miss. As shown on the leftmost side, the
memory layout obtained only relying on frequency information does not prevent the poten-
tial conflicts between X and Z (darker area), while the structure-based layout on the right
does.
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Figure 3.30: WCG vs LCT-based positioning.

The LCT of a program is built starting from the control flow graph (CFG) of the pro-
gram root procedure (i.e., entry point) as well as that of each invoked subprocedures. The
classic dominator analysis [78, 5] is applied to each CFG in isolation to identify loop head-
ers and loop nests. It is worth noting that dominator analysis is only able to detect natural
loops; our approach can therefore not be applied if the analysed program contains irre-
ducible loops. However, is worth noting that irreducible loops are typically introduced by
aggressive compiler optimisations, which are disabled in the high-integrity domain. Dom-
inance and call-graph information are then used to construct a LCT for each procedure;
finally all LCTs are merged according to the program call graph producing a single LCT.

Profile-based approaches (e.g.: [119]) augment the program representation with call
frequencies that capture the average case, but do not form a reliable information base for
determining the WCET. In this respect, our approach is closer to the WCET-oriented ap-
proach in [89] as each loop node in the LCT is assigned a statically computed loop bound.
The authors of [89] actually use their WCET-oriented call graph to hold the frequency
information just along the worst-case path. Notably instead, we focus on neither average
execution nor the worst-case path, since we always account for every possible execution
path in the program. As a result of that, while our procedure selection step does not di-
rectly aim at WCET reduction, it is in fact quite likely to achieve it all the same as a natural
effect of its global conflict miss avoidance effort.

Devising a good layout

The LCT provides a hierarchical view of a program or task where the root node represents
the main procedure or entry point and procedure nodes are positioned as far from the root
as their invocation is nested inside loop structures. This structure is particularly suited for
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a structure-based procedure selection since it naturally exhibits the loop-induced relation
between procedures.

As a preliminary step, to enforce structural priorities in the procedure selection phase,
we recursively order the LCT subtrees according to both depth and execution frequency. In
this respect, several heuristics can be defined that privilege the structure of the call chain or
the frequency induced by the involved loops. In this study we adopted a combined measure
that assigns more weight to deeper loop nests and use execution frequency as an auxiliary
criterium to prize nests with higher loop bounds.

Once the LCT has been ordered according to a specific heuristic, we approach the
ordering problem by a divide-and-conquer strategy where each LCT subtree recursively
configures smaller ordering subproblems. Figure 3.31 shows a pseudo-code representation
of the core algorithm in the procedure selection process.

The Process_Sub_LCT procedure operates on a LCT node and a pool of proce-
dures, where the latter is simply an ordering of procedures with relative addresses: we use
the term pool as the amount of conflicts inside it is independent of the absolute memory
address it would be placed at, as long as the subtree is self-contained (includes all involved
subprocedures) and its ordering (i.e., all the inter-procedure offsets) is preserved. In fact
the cache conflicts within a pool remain unchanged because the (address) mod N mapping
changes uniformly for all memory blocks.

Building on the LCT structure and ordering we are able to populate pools by executing
a simple depth-first recursion (Lines 6-12). Collecting procedures in a bottom-up traversal
of the LCT guarantees that procedures that are descendants of a common loop node (most
critical source of cache conflicts) are placed as near as possible in memory.

A local pool P ′, given as a parameter in the recursive call on the children nodes (Line
10), is used to collect the set of procedures involved in every sub-LCT. Once all the sub-
trees of the input node have been visited, P ′ is merged with the input pool P that holds
the set of procedures that have been gathered so far (Line 21). The algorithm terminates
after all nodes have been visited and the recursion chain returns to the LCT root node. The
memory layout of the program is then computed by a simple translation of the ordering of
procedures P into absolute memory addresses.

Handling multiple invocations

Multiple invocations of the same procedure along different execution paths are quite com-
mon in practice. Figure 3.32 shows an ordered LCT where the two leftmost subtrees share
X as a common procedure node (which is collapsed into a single node for the sake of bet-
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Inputs: n : Node of an ordered LCT (initially the root node);
P : Pool of procedures, initially ∅;

1 procedure PROCESS_SUB_LCT (n, P) is
2 P ′ := ∅
3 sharing := False;
4 disp := null;
5 if Children(n) 6= ∅ then
6 for each c ∈ Children(n) loop
7 if c is ProcedureNode and c ∈ P then
8 sharing := True;
9 else /* either LoopNode or unconstrained procedure */

10 PROCESS_SUB_LCT (c,P ′);
11 end if;
12 end loop;
13 end if;
14 if n is ProcedureNode then
15 P ′:=P ′

⋃
n;

16 end if;
17 if sharing then
18 disp := COMPUTE_DISPLACEMENT (P,P ′);
19 P := P

⋃
disp P ′;

20 else
21 P := P

⋃
P ′;

22 end if;
23 end procedure;

Figure 3.31: Core algorithm pseudocode.

ter viewing). Multiple invocations make the positioning more complex, independently of
how the program structure is represented (whether call-graph or LCT). In WCG-based ap-
proaches, multiple invocations are represented with more than one incoming or outgoing
edge on the same node.

Disregarding the fact that those multiple invocations may be involved in distinct call
chains is likely to induce non-optimal choices in positioning procedures. In [119] proce-
dures are ordered following a greedy merging process guided by the call frequency alone.
At a certain point of that process, a multiple invocation of a procedure will result in two
macro-nodes being connected by a weighted edge. These nodes are then merged together
simply trying to reduce the distance between the procedures involved in call relations.
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Figure 3.32: LCT with shared procedures.

This may result in an unsuccessful conflict avoidance when each possible merging does
not succeed in placing those procedures sufficiently near. The same problem is implic-
itly handled by the WCET-oriented approach in [89] within the iterative evaluation of the
partially computed positioning. The same authors also suggest cloning shared procedures,
which however increases the program footprint.

Similarly to [58] we explicitly account for multiple invocations and try to reduce the
potential cache conflicts by introducing an ad-hoc offset in the memory layout. If a proce-
dure has already been mapped we stop the recursion along the respective subtree and set a
flag (Lines 7-8 of Figure 3.31). Then, at the merging step, an attempt is made to compute a
displacement that can avoid cache conflicts between the involved procedures: this compu-
tation involves shared procedures in P and P ′ (Line 18 of Figure 3.31). Since the number
of intrinsic conflicts inside a pool is independent of its absolute address, we evaluate the
number of potential extrinsic conflicts for each cache line displacement d ∈ 0 . . . N − 1 of
P ′. The displacement that incurs less extrinsic conflicts will be translated into an offset for
the current pool of procedures P ′.

The introduction of such displacements may of course cause memory fragmentation
and increase the memory footprint of the program. In order to circumvent this problem, the
profile-based approach in [58] captures the procedures not frequently invoked according
to the profiling information (and calls them unpopular). Those procedures are used to
fill the gaps resulting from positioning displacements. That idea is not applicable to our
structural approach since every procedure in the LCT is assumed to execute according to
its worst-case frequency.
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We can identify a similar concept by reasoning on the structural properties of the LCT.
For example, according to our taxonomy of call relations, if a procedure is invoked by
the root procedure outside of any loop, then that invocation can only incur a negligible
amount of cache conflicts, regardless of the actual memory layout and cache associativity.
We refer to these calls as relatively-independent and use the involved subprocedure to
fill the gaps possibly left by previously arranged displacements. Note that this step is
not reported in Figure 3.31 for the sake of simplicity. Other call relations may fall into the
relatively-independent category, depending on the I-cache associativity. Information on the
relatively-independent calls is detected without any additional effort during the reordering
pass of the LCT.

Furthermore, discontinuities in the memory space can also be filled with procedures
that are not invoked during the nominal execution of a program (e.g.: exception handlers),
which are typically ignored in the analysis. In fact, the vast majority of multiple invoca-
tions involves calls to low-level libraries and a careful adoption of procedure inlining may
help us reduce the magnitude of that problem.

3.7.2.2 Incremental Optimisation

This far we have introduced a structure-based procedure positioning algorithm and shown
how it may yield a memory layout that reduces the conflict misses resulting from proce-
dures that overlap in the cache. We now illustrate how this approach can also guarantee
that the computed layout is preserved across incremental releases where software modules
or tasks are added to a system.

We assume that at every incremental step of development, the software modules that
form the system at that time are committed. We acknowledge that modifications to previ-
ously committed modules might in real life still be required to rectify functional or timing
errors, thus incurring a development hazard. In the presence of inter-module dependencies
due to shared procedures, the effects of any such modifications may degrade the benefits
of our procedure placement, thus failing to mitigate the hazard.

In this setting, in order to enforce a controlled memory layout and to provide guaran-
tees on the timing behaviour upon subsequent software releases, we need to inhibit layout
changes on the preexistent code and at the same time account for the layout constraints
stemming from procedures shared between incrementally added software units. In this
respect, our LCT-based approach is intrinsically incremental as the procedure ordering is
computed locally for each subtree of the LCT representation (i.e., P ′) and is incrementally
merged into a global pool P . The merging step P ∪P ′ preserves the ordering of both local
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and global pools, regardless of any intentionally introduced displacement.
In order to preserve the timing behaviour of the system modules across distinct incre-

ments we simply account for the global ordering computed up to that point as a set of
constraints over all the relevant procedures. These constraints are represented as an initial
preexisting pool P and fed to the very first invocation of our core algorithm. They will
therefore be considered when computing the optimised layout for a new software module.

In case a new module includes procedures that have already been positioned in mem-
ory to accommodate preexisting modules, the problem is not to preserve the previously
computed layout, but rather to account for it while computing a procedure ordering for the
new element. By construction, this is not an issue in our approach as the pool P will also
hold the procedures from previous releases. As in the non-incremental case, when a pool
P ′ exhibits some dependencies with the procedures in P , a displacement of P ′ that would
minimize potential cache conflicts is computed.

Again, the gap introduced in the memory layout can be filled by those procedures that
have been explicitly excluded or are involved in relatively-independent call relations. The
same also holds for those gaps that can be traced back to procedure positioning of previous
releases.

3.7.3 Experimental Evaluation

To evaluate the effectiveness of our approach we developed a prototype tool. With the
prototype we assessed the extent to which our structural procedure positioning improves
cache performance and studied how effectively it suits incremental development. In the
following we introduce our tool and discuss an experimental evaluation of our approach
on a representative application case.

3.7.3.1 Prototype tool

Our prototype tool is as independent as possible of any specific target platform or com-
pilation tool-chain. It just relies on a GCC-based compiler which can enforce a specific
memory layout by controlling the linking process.

Our tool computes an optimised procedure placement from a description of a program
structure (typically one or more CFGs) and a statically computed bound for each loop in
the program. We do not deal with the provision of such inputs as we assume they can
be generally obtained using available static analysis tools, for several target platforms and
compilers. In our experiments, we obtained that information from Bound-T [155], a static
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analysis tool that can export an XML representation of the program structure and compute
the maximum iterations for each loop.

The overall structure of our tool is shown in Figure 3.33.

Figure 3.33: Architecture of our prototype tool.

The information on the program structure is used to build a CFG for each procedure
in the program. Dominator analysis is performed on the obtained CFGs to find all natural
loop headers, to compute their dominance relations, and to construct a dominator tree. An
overall LCT structure is built from the dominator tree by merging the information on loop
headers with call relations between procedures. This LCT is augmented with the loop
bounds and used to compute a procedure ordering that minimizes the number of conflict
misses, as described in Section 3.7.2.

Information on the I-cache size and line size is also exploited in the computation of a
concrete layout, including those displacements required to avoid potential cache conflicts.
As a fundamental input, a set of constraints caters for both procedure placements from pre-
vious releases as well as other requirements (e.g.: memory areas reserved for interrupts).
Based on actual cache configuration and constraints, the procedure ordering is translated
into an absolute placement which specifies the memory layout of the program. The even-
tual memory layout is then reflected in a linker script and an updated set of constraints. The
linker script can be fed to a GNU linker to enforce the computed memory layout in the new
executable. The new set of constraints, instead, serves as the baseline for the application
of the algorithm to the next incremental release.

Our tool is extremely flexible as it works under different cache configurations and does
not need to be tailored to a specific target processor. At present, the only limitations to
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our prototype descend from the structural features of the program to be optimised as our
approach treats neither irreducible loops nor recursion. Those limitations, however, are
commonly suffered by many WCET analysis approaches.

3.7.3.2 Experiments

Our experiments had a twofold goal. First we wanted to assess our procedure positioning
technique against conflict miss avoidance. As our strategy is structure-based, we expected
it to be effective for every possible execution of the program rather than solely in the worst
case. We therefore simulated a random execution of a test application and compared the
cache miss ratio obtained with either the default layout produced by the compiler or ours.

We further wanted to prove that the improved cache performance from procedure po-
sitioning extends to the worst-case execution and, more importantly, is preserved across
incremental releases. In this respect a statically computed WCET behaviour is a far bet-
ter metric than simulated execution. Hence we focused on WCET bounds and evaluated
the variability of the WCET behaviour, due to layout changes across incremental software
releases. The experiments show that our approach preserves the WCET bounds.

For the sake of completeness, we also evaluated our approach with respect to a WCG-
based optimisation. Building on the greater expressiveness of LCTs over WCGs, our pro-
totype is also capable of switching to a WCG representation of the program to perform
a basic non-incremental WCG optimisation (also introduced in [89]). It is worth noting,
however, that the results obtained with our approach are not directly comparable with ei-
ther trace-based (ACET) techniques [58, 53, 119] or the WCET-oriented approach in [89].
Our optimisation builds on a data structure that represents all possible program executions
rather than the average execution or a single worst-case path alone.

We wanted our experiments to be as representative as possible of an industrial devel-
opment process in our target domain in terms of both hardware and software. We there-
fore chose the LEON2 [3] model as reference platform, since it is highly representative
of our reference domain of interest and is currently adopted in several European Space
Agency (ESA) projects. In our experiments we configured the I-cache to 32 KB, 4-way
set-associative, with 32 B lines and Least Recently Used replacement policy.

The assessment of layout optimisation approaches is extremely sensitive to both the
analysed code and the cache size as the evaluation may be biased by large caches and
relatively small benchmarks. To avoid misleading results, we conducted our experiments
with a large-scale piece of Ada software representative of part of the Attitude and Orbit
Control System (AOCS) component of a typical satellite system, which is responsible for
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managing the communication between the ground segment (Earth communication station)
and the satellite itself.

The AOCS functionalities are provided by a set of modules, among which: the Guid-
ance and Navigation Control module (GNC), the Propulsion module (PRO), the Telemetry
and Telecommand module (TMTC). Whereas all modules have a footprint much larger
than the I-cache size, we chose the GNC for our experiments, which we rated the most
interesting from the layout optimisation standpoint. The GNC module in fact involves a
considerable amount of loop nests and subprocedures. The PRO and TMTC modules in-
stead were later added to the system to mimic successive incremental releases.

For our experiments we used the GCC-based GNATforLEON compilation tool-chain,
developed by the Technical University of Madrid, which includes ORK+ [157], an open-
source real-time kernel of small size and complexity, especially suited for mission-critical
space applications.

3.7.3.3 Evaluation

We now discuss the results obtained in our experiments. In doing so we observe that when
caches are involved the evaluation tends to be very specific to the memory architecture
of the target processor. For example, in the LEON2 processor, on an I-cache miss, the
referenced instruction block is loaded from main memory in a so-called burst-fetch mode
(starting from the missing address till the end of the cache line) and is simultaneously
forwarded to the processor. This provision considerably reduces the latency on memory
accesses and, more importantly, influences the actual miss rate [120].

Cache performance

We tried our procedure positioning technique on the GNC module measuring the cache
performance in terms of the hit/miss ratio observed on the same random execution under
different layout configurations. We developed a highly configurable cache simulator to
collect the I-cache statistics from a full execution trace of the program, obtained with the
TSIM Pro cycle-accurate simulator developed by the LEON2 processor vendor [3].

Table 3.4 relates the cache behaviour observed when the application is executed with
the default layout produced by GNATforLEON (tagged uncontrolled) to the results ob-
tained with the layout computed by our tool (tagged LCT opt). For the sake of comparison,
we also provide cache statistics for a WCG-optimised layout (tagged WCG opt) and an ar-
tificially constructed bad layout (tagged overlapping) where all subprocedures overlap in
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the cache. The latter was obtained by aligning procedures at a cache set boundary, which
is 8 KB in the target I-cache configuration.

Test case Hits Misses Miss ratio
GNC uncontrolled 92,926 3,524 3.65 %
GNC LCT opt 95,666 484 0.50 %
GNC WCG opt 95,204 946 1.01 %
Overlapping 86,660 9,490 9,86 %

Table 3.4: Comparison of cache performance.

The GNC version compiled with our layout optimisation achieves good cache per-
formances as it incurs only 484 misses (less than 1%) over the 96,150 memory accesses
captured in the execution trace (slightly better than the WCG-based optimisation). This
compares to 3,524 and 9,490 misses in the default and bad layout versions respectively.
Since the number of compulsory and capacity misses is almost the same for all versions
(i.e., modulo code alignment), the different cache behaviour may be ascribed to a vari-
able amount of cache conflicts. The relative improvement depends on the goodness of the
default layout.

WCET behaviour preservation

Preserving the timing behaviour of a software module throughout different incremental
releases is the main goal of our proposed approach. We used aiT for LEON2 by AbsInt [1],
an industrial-quality static analysis tool, to analyse the binary executable of our application
under different layout configurations. To simulate an incremental development process,
we first considered the GNC module as part of an intermediate software release and then
observed the variation in its statically computed WCET behaviour when the PRO and
TMTC modules were added to the system.

The WCET bounds computed for the GNC module alone confirm the effectiveness
of our approach even in the worst case (Figure 3.34a). The GNC compiled with our
LCT-based optimisation, with a 478,431 cycles bound, outperforms by a 10.5% factor the
WCET behaviour observed when no layout optimisation is applied (526,459 cycles). Our
approach also slightly improves (1.97%) the WCET observed with the WCG-optimised
layout (487,849 cycles). The 603,627 cycles bound observed with intentional overlaps
hints at the potentially devastating effect of an uncontrolled layout.
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When it comes to WCET behaviour preservation, our incremental layout optimisation
enforced the constant WCET bound (478,431 cycles) for the GNC module across all the
software releases. This is explained by the fact that, as long as the GNC code is fixed and
unmodified, the computed bound only depends on the memory layout. Conversely, when
we left the memory layout uncontrolled the WCET increased and varied per release. The
WCET bound changed from the original 526,459 cycles with the GNC alone, to 524,768
cycles when the PRO module was joined to it, to 531,581 cycles when the TMTC module
was added too. Interestingly, the WCET variation was not monotonically increasing across
successive releases as the effects of layout changes are obviously unpredictable.

Figure 3.34: WCET performance and variation.

Figure 3.34b contrasts the constant behaviour we obtained with our approach with
the relative increase and variation in the WCET bound of the GNC module on different
releases when no layout optimisation is applied. Although the observed degradation in
the WCET bound across subsequent software increments was limited in between 9.69%
and 11.11%, it may inadvertently get worse, as suggested by the 26.17% variation in case
of intentionally overlapping procedures. It is worth noting that overlaps occurring at the
level of basic blocks could easily cause many more cache conflicts. An even more variable
WCET behaviour (up to a 55.5% variation) was reported for individual subprocedures
within the module.

Our incremental procedure placement makes it possible to avoid the risk of incurring
such extreme variability while at same time improving the WCET performance of all sys-
tem modules. The results of applying the task-level WCET analysis to the GNC module

Cache-aware Development of High Integrity Real-time Systems



120 Chapter 3. Cache-aware Development Process

are thus preserved when other modules are incrementally added to the system.

Memory fragmentation

The merging step of our optimisation algorithm may introduce corrective memory dis-
placements to avoid cache conflicts between pools of procedures. Although the potentially
incurred memory fragmentation is partially remedied by filling those memory offsets with
relatively-independent procedures, an increase in the overall program footprint is unavoid-
able. An assessment of our approach with respect to the increase in the program size would
require a deeper and more intensive statistical evaluation. However, the variation we ob-
served in our experiments was limited to a 4% increase in the overall executable size with
our optimised layout. We deem such footprint variation to be reasonably acceptable.

3.7.4 Summary

Industrial practice favours the adoption of modular and incremental development process
models. This in turn requires that guarantees on the timing behaviour of incomplete re-
leases of the system should be collected as early as possible so as to facilitate prompt
detection and reaction to potential timing hazards. In the presence of caches, however, the
timing figures obtained for earlier software releases, regardless of the means, are disrupted
by the innate sensitivity of the cache behaviour to the memory layout of the executable.

In this Section we presented and evaluated an approach intended to govern the I-cache
variability resulting from changes in the memory layout incurred across incremental soft-
ware releases. We built on a novel structure-based procedure placement technique to en-
force an optimised memory layout which is preserved across incremental releases of the
system. This provision enables the application of state-of-the-art WCET analysis tech-
niques, like cache-aware static analysis or hybrid measurement-based methods, to collect
trustworthy timing information already in the early stages of the development process, and
dispenses with the need to rerun all analyses upon each increment.
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3.8 Qualitative Evaluation

Among the main constituents of the proposed approach, only our incremental layout opti-
misation technique has been evaluated on a representative application. A practical assess-
ment of the combination of our contributions against a significant case study would have
been desirable to confirm their effectiveness. In this respect, an ideal evaluation would
have consisted in reengineering a representative part of a real industrial application fol-
lowing our development approach, and then compare the resulting application against the
original system with respect to both analysis cost and quality of the results. Unfortunately,
the prototyping state of the tools we selected to support our investigation prevented us from
realising a sufficiently complex software system. We are confident that we will soon be
able to use a more mature release of the SCM modeling tool, which should allow us to
carry on an extensive evaluation of our approach.

This notwithstanding, it is still possible to evaluate our contribution against its indus-
trial applicability. When defining our approach, in fact, we claimed that it lends itself
to an effective application to the industrial development process. More importantly, we
also contended that the proposed techniques facilitate the application of timing analysis
techniques in the industrial development. To evaluate our approach from a qualitative (as
opposed to quantitative) standpoint, we leverage on the high-level industrial issues on the
applicability of timing analysis, that have been introduced in Section 3.3.2, as evaluation
criteria to assess whether our approach contributes to narrowing the gap between state-of-
the-art timing analysis and HIRTS practice. Table 3.5 evaluates our approach with respect
to the identified industrial issues.

Scalability. Although our approach does not explicitly address the scalability problem,
the MDE framework we propose may help in cutting the complexity incurred by inter-
procedural analysis and context-dependency, which are the root causes of the (software-
related) state space explosion. Both the architectural and functional specifications con-
tribute to the overall complexity of the software and can be tuned to disallow ill-formed
software structures (e.g., huge call-graphs) or adverse constructs (e.g., unstructured multi-
way branches).

Required skills and knowledge. As we observed in Section 3.3.2, the provision of trust-
worthy and precise annotations to guide the analysis process typically ask for specific skills
and deep knowledge of the program under analysis. The generation of better analysable
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Id Issue Contribution
I 1 Scalability Indirectly reduced as a side effect of the

proposed MDE framework
I 2 Required skills and knowledge Mitigated by the enforcement of better

analysable software
I 3 Relationship with schedulability analysis Addressed in the functional specifica-

tion of a system
I 4 Perceived quality of the results Reduced pessimism by construction

and by the extraction of precise flow-
fact information directly from the soft-
ware model

I 5 Cost-efficiency Reduced impact of the time-consuming
definition of flow facts

I 6 Extensive tool support Addressed with respect to the proposed
layout optimisation technique

I 7 Integration in the SW life cycle Improved support to incremental devel-
opment

Table 3.5: Evaluation of our approach against the industrial requirements.

software and the automatic extraction of flow facts both contribute to reducing the amount
of user intervention and relieve the user from reconstructing the information on the pro-
gram. No particular skills are required, besides those generally assumed for a software
designer.

Relationship with schedulability analysis. Inattentive system-level design choices may
complicate the separation of intra- and inter-task timing analysis. The factorisation of
timing-aware design choices, as those identified in Section 3.5.2, in the architectural spec-
ification of a system facilitates a clear separation between system-level and task-level con-
cerns.

Perceived quality of the results. The application of our approach may help improve
the quality of the results of timing analysis in two respects. Firstly, the avoidance of
poorly predictable code constructs is expected to reduce the level of pessimism incurred
by timing analysis. Secondly, the automatic extraction of flow-fact information from the
model guarantees a high level of precision in the applied annotations.
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Cost-efficiency. Again, the impact of the time-consuming task of collecting and defining
flow-fact annotations in the overall costs incurred by timing analysis is explicitly addressed
and mitigated by our approach through the enforcement of more analysable code and the
automatic generation of a large part of the required annotations.

Extensive tool support. The quality of the support provided by current timing analysis
tools is out of question. Our approach instead explicitly addresses the need of automated
support for memory layout optimisations. In Section 3.7 we provide a fully automated
prototype tool for the computation and enforcement of our incremental layout optimisation
approach.

Integration in the SW life cycle. On the one hand, our contribution relies on the real-
isation and adoption of a non-standard MDE framework. Although the MDE paradigm
is increasingly adopted in HIRTS, the strong orientation of our approach towards timing
analysis concerns does not allow an effortless integration in a consolidated industrial tool-
chain. However, evaluating the distance of our approach from a generic MDE framework
against the benefits that can be obtained may justify an investment that would be applied
once for all.

On the other hand, our layout optimisation approach, besides reducing the cache-
induced variability, explicitly accounts for incrementality as a main characterising trait
of the industrial development and facilitates an earlier application of WCET analysis on
incremental releases, instead of the final system.
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Conclusions and Future Work

4.1 Recapitulation of study objectives

The need for more computational power to meet increasingly complex user demands is
driving even the most conservative high integrity real-time systems industry towards the
adoption of more complex processor equipped with caches and other acceleration features.
The introduction of caches, in particular, induces a highly variable timing behaviour that
do complicates both schedulability and timing analysis.

The industrial stakeholders understand the fact that the migration to cache-equipped
processors is likely to hike the effort required in analysing the timing behaviour of a sys-
tem, to the extent of breaking an already delicate balance between time and cost of timing
analysis and the quality of its results. On the one hand, in fact, the current industrial ap-
proach to timing analysis, often still based on simulation and testing, is definitely poorly
equipped to cope with the variability incurred by caches. On the other hand, the application
of advanced WCET analysis techniques on large-scale complex industrial software devel-
oped without analysability in mind, hits on the inherent limitations of those approaches.

In our thesis, we contend that the disruptive effect of caches in the qualification of
industrial-level HIRTS can be effectively and efficiently governed only by imposing a
paradigm shift in the industrial practice towards an informed use of caches and a proactive
approach towards timing analysis. In particular, we propose the adoption of a structured
"cache-aware" approach aimed at (i) allowing a cost-effective application of state-of-the-
art WCET analysis to complex systems; and (ii) minimising the variability and unpre-
dictability incurred by caches. We maintain, in fact, that any countermeasure to the cache-
induced variability is unavoidably tied to a more rigorous attitude towards timing analysis,
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more commensurate with the industrial requirements on timing predictability.
We intend such cache-aware approach as the structured combination of a set of coun-

termeasures to improve cache predictability and, in a broader sense, to facilitate the appli-
cation of timing analysis in industrial setting. As fundamental requirement, the identified
techniques and methods shall allow an efficient integration and application in the HIRTS
industrial development process.

4.2 Summary of contributions

The main motivation that guided our investigation was the evident disproportion between
the strong requirements set on the timing behaviour of industrial HIRTS systems and the
relatively inadequate attention on timing concerns along the development process. This
disproportion, which is clearly unveiled by the introduction of caches, is partially justi-
fied by a non negligible gap that still exists between state-of-the-art approaches to timing
analysis and their concrete applicability to industrial-scale complex systems.

The main contribution of our thesis is the definition of a structured approach that aims
at effectively narrowing that gap and enables a more pervasive role of timing analysis in
the industrial development process. Timing analysis concerns should inform all develop-
ment activities, from high-level design to software development. Our approach makes the
following contributions.

Identification of adverse design choices and code constructs. In Chapter 3.5 we iden-
tified a set of code constructs that may hamper the application of state-of-the-art timing
analysis approaches. We differentiated between unpredictable code constructs that origi-
nate either at task level, stemming from the adoption of specific code patterns, or at system
level, resulting from inattentive design choices. The latter in fact may have as much dis-
ruptive effects on timing analysability.

We proposed a classification of poorly analysable code constructs based on the issues
they bring to timing analysis: Feasibility, Precision, Complexity, Labour-intensiveness and
Interference. In most cases, we also suggested more analysable alternatives.

Formalisation of the CRBD. Still in Chapter 3.5, as part of the investigated design
choices, we formalised and provided a bound for a new source of inter-task interference on
cache behaviour, namely the Cache-Reated Blocking Delay, which stems from mutually
exclusive access to shared resource. From the standpoint of caches, the CRBD may cause
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effects similar in kind to task preemption (i.e., CRPD), in that some useful code or data
blocks already loaded in the cache may be evicted while the task is being blocked. In
contrast to the preemption case, a task may suffer from a CRBD due to lower priority
tasks.

We computed a safe bound on the CRBD under three well-known resource access pro-
tocols: the Priority Inheritance Protocol, the Priority Ceiling Protocol, and the Immediate
Ceiling Priority Protocol. In particular, we showed that the latter does not incur any CRBD
interference.

Automated generation of timing-analysis aware code. We leveraged on the MDE ap-
proach to enforce the design and automated generation of timing predictable and analysable
systems. In Chapter 3.6 we proposed a comprehensive approach that accounts for the mod-
eling of both the algorithmic and architectural specifications. Aiming at the generation of
code that is more easily analysable by construction, we deepened our investigation on two
MDE modelling frameworks: a combination of Scicos and GeneAuto to automatically
generate analysable functional code; and SCM to generate predictable architectural code.

We further exploited the MDE paradigm to collect any valuable model-level timing in-
formation and to automatically generate flow-fact annotations, for an effective application
of timing analysis.

Incremental cache-aware memory layout optimisation. We investigated on the mem-
ory layout as the most impacting source of cache variability. In Chapter 3.7 we pre-
sented and evaluated an approach intended to govern the I-cache variability stemming from
changes in the memory layout incurred across incremental software releases. We focused
on industrial applicability of layout optimisations and proposed a novel structure-based
procedure placement technique to enforce an optimised memory layout which is preserved
across incremental releases of the system.

We introduced a prototype tool that allows a fully automated application of our tech-
nique. By providing early guarantees on the cache behaviour, our approach enables the
application of state-of-the-art WCET analysis techniques to collect trustworthy timing in-
formation already in the early stages of the development process.

The combination of the above contributions allowed us to define a structured approach
that fulfils our initial objectives. The enforcement of analysable code patterns and design
choices and the provision of automatically defined flow-fact annotations allows a cost-
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effective application of state-of-the-art WCET analysis. More analysable code, in fact, is
expected to both improve the quality of the results of timing analysis and reduce the oner-
ous and error-prone user intervention in the analysis process. The application of our incre-
mental layout optimisation, offers a means to reduce the variability and unpredictability
incurred by caches and, at the same time, enables an earlier application of WCET anal-
ysis on incremental releases, instead of the final system. Our approach lends itself to a
relatively easy integration within the consolidated industrial development, thus fulfilling a
fundamental industrial requirement: both timing-aware code generation and layout opti-
misation, in fact, rely on automated tool support that do not require particular skills, that
are not already employed in the industrial development process.

4.3 Future work

During our investigations we stepped into a number of open problems that hinder a cost-
effective application of timing analysis within the industrial software life-cycle. Although
we were able to propose some promising approaches we are still aware that a lot of research
directions need to be investigated.

The most natural continuation of our approach would consist in its evaluation on the
development cycle of a realistic part of an industrial software. The main difficulties that
prevented us to conduct this experimental evaluation, besides the actual time and effort
that it would have required, were related to the limitations entailed by the use of specific
modeling tools. However, the SCM Editor is currently under completion and we expect
that we will soon be able to extend our investigation.

In respect to the idea of a timing-aware MDE approach, it could be also interesting to
extend our investigation to different tools and formalisms. During our investigation, we
had to face some limitations that were ascribable to the tool architecture and implementa-
tion. For example, the bridge between Scicos and GeneAuto prevented us from exploiting
model-level user annotations. A challenging but interesting direction would consist in im-
plementing a fully customisable modeling tool so as to fully exploit the MDE paradigm.
When it comes to the modeling formalism, we already observed that each formalism may
offer new spaces of intervention and new solutions. In particular, we expect that the use of
a state-based formalism (e.g., Stateflow or state-machines) may allow to collect valuable
flow facts for the exclusion of infeasible paths, which are a known source of overestimation
in flow analysis.

Our investigation has been mainly focused on source-level software analysability, un-
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der simplifying assumptions on the role of compilers: in particular, we assumed the avoid-
ance of complex compiler transformations so that the program control-flow would be basi-
cally preserved in the final object code. This notwithstanding, we are aware of the role of
compilers in determining both analysability and predictability of a program. We consider
the new plug-in infrastructure exploited by standard GCC-based compilers to be worth
studying in the view of timing analysability, in a similar way to what has been done in
[90]. The same plug-in infrastructure could be also exploited to further develop our layout
optimisation approach as an inner compiler optimisation.

We will also continue our cooperation within the FP7 EU founded Probabilistically
Analysable Real-Time Systems (PROARTIS) project [121], in which we have been re-
cently involved. PROARTIS is proposing an innovative approach based on probabilistic
hardware and analysis techniques to promotes a paradigm shift that aims to eradicate the
dependencies of timing behaviour on the execution history, while at the same time benefit-
ing from complex hardware acceleration features. Our investigation within this project is
mainly focused on removing the sources of timing dependencies affecting and stemming
from kernel-level services.
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Appendix A

Bounds on CRBD

A.1 CRBD computation

In the following we first provide a formal characterisation of the CRBD potentially in-
curred by a task; and then we exploit well-known bounds on the number of blocking events
suffered by a task, under different resource access protocols

Assumptions. In the following we assume total ordering between tasks such that i < j

if π(τi) > π(τj): hence τ0 is the highest priority task. A task τi self-suspends only at the
end of every execution of its jobs, and may access a shared resource R ∈ SRi, where SRi

identifies the subset of the system resources (SR) that get accessed by τi.
Since a task τi may access a shared resource R through different critical sections, we

define csRi to be the set of critical sections in τi accessing the resourceR ∈ SRi. Similarly,
csRi,k identifies the kth critical section in τi accessing the resource R ∈ SRi. In any case,
we assume critical sections to be properly nested so that they can never overlap. For every
pair of critical sections csi,k, csi,z in τi either csi,k ⊂ csi,z, csi,k ⊃ csi,z or csi,k ∩ csi,z = ∅.

CRBD computation. The determination of the CRBD incurred by a task exploits similar
concepts as when computing the CRPD, involving the computation of UCB and UCB for
blocked and blocking task respectively. Useful and used blocks are defined as follows:

- Useful Cache Blocks (UCB): cache blocks that may be referenced again before
they could be evicted by other memory blocks, according to the cache replacement
policy;
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- Used Cache Blocks (UCB): cache blocks that may be accessed during the execution
of the preempting task.

We recall that the set of UCB and UCB for a task τi are dependent on each specific node
n in the Control-Flow Graph (CFG) of τi, where each node represents a basic block. In
fact, UCB and UCB can be safely computed at basic block level, as proved in [75].

According to [76, 152, 147] the UCBn
i for a task τi at node n can be computed as

the intersection between the sets of ReachingBlocks (RB) and LiveBlocks (LB) at node n
whereRB is the set of cache blocks potentially cached at nodeN , whereas LB is the set of
blocks that could potentially be reused in the successors of n. Intuitively, instead, UCBn

i

can be computed as RBi(n). Thus, UCBn
i = RBi(n)

⋂
LBi(n) and UCBn

i = RBi(n).
In case of blocking, we are interested in determining UCB and UCB for a task τi

blocked on a critical section csRi,k. For example, let us consider a simple case of direct
blocking between two tasks. Task τi is blocked when trying to access critical section csRi,k
because a lower-priority task τj is executing inside a critical section cs ∈ csRj accessing
the same shared resource R. In this case, the set of UCB for the blocked task τi is to be
computed with respect to the node nR trying to enter csRi,k.

UCBR
i,k = RBi(nR) ∩ LBi(nR), where nR is the entry node of csRi,k

The set of UCB for the blocking task τj must be computed with respect to the critical
section csRj,h it is executing within, as only the RBs in csRj,h can affect the cache state of
τi. For this reason, we extend the notion of RB to address intervals of nodes in the CFG
instead of single nodes.

Given an interval [n1, n2] = I ∈ CFG(τi), we define RBi(I) as the contribution to
RB(n2) of all possible paths in CGF (τi) from node n1 to n2. Accordingly,

UCBj(cs
R
j,h) = RBj(cs

R
j,h) = RBj([first_node, last_node]csR

j,h
)

In the example, the execution of τj inside csRj,h may evict some useful cache blocks that τi
may have loaded in the cache before its attempt to enter csRi,k. The incurred CRBD can be
computed as a function of the UCBR

i,k and UCBR

j,h terms just defined:

CRBD = ⊗σ
(
UCBR

i,k, UCBj(cs
R
j,h)
)
×miss penalty (A.1)

where the ⊗σ operator accounts for the actual cache associativity and replacement policy
in combining the information on useful and used cache blocks, cf. [152, 6]. For example,
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for direct-mapped caches, ⊗DM(UCB,UCB) will include those cache sets which at least
one cache block in both UCB and UCB is mapped to (set intersection). For LRU n-
way set-associative caches, instead, the ⊗LRU operator must account for the number of
additional cache misses for each cache set. In case of a non-empty UCB set, those misses
are bounded by the minimum between the cache associativity (n) and the number of UCB
mapping to that cache set [26].

In case τi and τj share more than one resource, we can generalize Equation A.1 to
determine an upper bound on the delay suffered by τi, due to a single direct blocking by τj
for any critical section accessing any shared resource as follows:

CRBDi,j ≤ max
R∈SRi,k∈[1,|csRi |]

cs∈csRj

{
⊗σ

(
UCBR

i,k, UCBj(cs)
)}
×miss penalty (A.2)

However, Equation A.2 just holds in this simple case where neither transitive direct block-
ing nor other types of blocking are taken into account. In terms of CRBD, determining
the effects of inheritance blocking is much more complex, as the computation of UCB for
the blocked task cannot make any simplifying assumption on when the task actually gets
blocked.

A more comprehensive bound on the CRBD incurred by a task can be computed by
leveraging on the bounds that a specific resource access protocol places on blocking. An
upper bound on the worst-case number of blocking events incurred by a task is given in
[144, 14] for each protocol. That bound is then combined with the worst-case duration
of each critical section to derive a bound on the blocking time potentially suffered by a
task. Those bounds typically rely on the notion of potentially blocking critical sections to
account for any type of blocking that may occur under the protocol itself. To this end, βi,j
is defined in [144] as the set of critical sections of a lower-priority task τj which can block
τi in any way. The bounds on the number of blocking events and blocking time exploit the
β∗i,j set which identifies the set of outermost critical sections of τj that can block τi. More
formally:

β∗i,j = {(csj,k|csj,k ∈ βi,j) ∧ (¬∃csj,m ∈ βi,j, csj,k ⊂ csj,m)}

We will exploit the same concepts, with the only difference that we are not interested in the
critical section that may incur the maximum blocking time since we focus on the CRBD,
which is independent of the duration of the critical section. Instead, we are interested in
the critical section csj,k ∈ β∗i,j which causes the eviction of the greatest number of useful
blocks for the blocked task, for all lower-priority tasks τj .
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In the following, we will combine given bounds on the number of blocking events with
the same concepts as used in CRPD analysis to provide a safe upper bound on the CRBD
under different protocols.

A.2 CRBD under the Priority Inheritance Protocol

When access to shared resources is managed with PIP [144], whenever a task that holds
the lock of a resource blocks a higher-priority task, it inherits the priority of the highest-
priority task it is blocking. When a task releases the lock of a resource, its priority is
lowered to the highest inherited priority value [165].

PIP is interesting as it does bound priority inversion and also does not require any
knowledge on the system’s tasks and their priorities, since the priority value to inherit is
determined dynamically. Unfortunately, PIP does not prevent deadlock (which may occur
in case of nested critical sections) and a task can be blocked multiple times during a single
activation. In fact, a task τi can be blocked for the duration of at most min(n,m) outermost
critical sections, where n is the number of lower-priority tasks that may block τi and m is
the number of semaphores that can be used to block τi. In the following we re-elaborate
both bounds from the standpoint of the CRBD.

Bound on lower priority tasks. Under PIP, a high priority task τH can be blocked by a
lower priority task τL for at most the duration of one critical section of β∗H,L. Therefore,
given a task τi for which there are n lower priority tasks {τi+1, . . . , τi+n}, τi can be blocked
for at most the duration of one critical section in each β∗i,k, i+ 1 ≤ k ≤ i+ n [144].

If we assume that all shared resources and critical sections are statically known, we can
define a resource access graph and table, similar to that shown in Figure A.1.

P Q R

τ0 csP0,1 csR0,1

τ1 csP1,1 csQ1,1

τ2 csQ2,1 csR2,1

csQ2,2

Figure A.1: Resource graph and corresponding resource access table.
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Note that the critical section cs1,1 of resource P performs a nested access to critical
section cs1,1 of resource Q. In this case, the βi,j sets derived from Table A.1 are as follows:
β0,1 = {csP1,1, cs

Q
1,1} due to resource nesting, β1,2 = {csQ2,1, cs

Q
2,2, cs

R
2,1} (by inheritance

blocking), and β0,2 = {csR2,1, cs
Q
2,1, cs

Q
2,2} as τ2 could transitively block τ0 by blocking τ1.

The β∗i,j sets, instead, removes redundant innermost critical sections; thus, for example,
β∗0,1 = {csP1,1}.

We recall that computing the UCB of the blocked task τi in case of inheritance block-
ing needs to consider any possible node inCFG(τi), similarly to task preemption. To avoid
the overestimation in considering all possible nodes, we will threat inheritance blocking
separately.

An upper bound on the CRBD in case of direct blocking of τi due to τj is the maximum
⊗σ applied to UCB and UCB for any resource accessed by τi, every critical section in τi
accessing that resource and every outermost critical section of τj potentially blocking τi.
Hence, it can be formalized as:

CRBDbase
i,j ≤ max

R∈SRi,k∈[1,|csRi |]
cs∈β∗i,j

{
⊗σ

(
UCBR

i,k, UCBj(cs)
)}
×miss penalty (A.3)

With regard to inheritance blocking, we need to account for the most penalizing blocking
point for τi (i.e., node in the CFG). To this end we define β̂i,j , a subset of β∗i,j including all
critical sections in τj which can block τi due to inheritance blocking. Thus, β̂i,j = {cs|cs ∈
β∗i,j ∧ cs can block τi due to inheritance blocking}. We can now compute the maximum
CRBD incurred by τi due to inheritance blocking by τj as follows:

CRBDinherit
i,j ≤ max

cs∈β̂i,j
n∈CFG(τi)

{
⊗σ

(
UCBn

i , UCBj(cs)
)}
×miss penalty (A.4)

However, since a lower priority task τj can block τi because it is executing inside at most
one cs ∈ β∗i,j , each τj can induce solely one of either inheritance or "non-inheritance"
blocking on τi. Hence, we can safely account for the worst-case blocking (inheritance or
not), that is:

CRBDi ≤
∑
j>i

max
(
CRBDbase

i,j , CRBDinherit
i,j

)
(A.5)

Bound on semaphores. A second upper bound on blocking, based on the number of
semaphores potentially blocking a task under PIP is given in [144]. Under PIP, if there are
m semaphores which can block task τi, then τi can be blocked at most m times, as it can
be blocked at most by one critical section for each potentially blocking semaphore. Since
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we assume that each semaphore corresponds exactly to a shared resource, then τi can be
blocked at most by one critical section for each potentially blocking resource.

Similarly to the previous case, [144] defines ξi,j,k as the set of critical sections of a
lower-priority task τj guarded by a semaphore Sk and which can block τi (due to any type
of blocking). Subsequently, ξ∗i,j,k identifies the set of all potentially blocking outermost
critical sections guarded by Sk, that is ξ∗i,j,k = {csSkj,m|cs

Sk
j,m ∈ β∗i,j}.

For example, recalling Table A.1, ξ∗0,1,P = {csP1,1}, ξ∗0,1,Q = {csQ1,1}, ξ∗0,2,R = {csR2,1}
and ξ∗1,·,R = {csR2,1} (inheritance). Similarly to the first bound, we define ξ̂i,j,k, a subset
of ξ∗i,j,k including all critical sections in ξ∗i,j,k guarded by the semaphore Sk which can
block τi through inheritance blocking. Thus, ξ̂i,j,k = {cs|cs ∈ ξ∗i,j,k ∧ cs can block τi due
to inheritance blocking} can be used to separately account for the direct and inheritance
cases. First we provide a means to compute the maximum CRBD for each resource that
accounts for any lower priority task and any cs in those tasks that may incur both forms of
blocking.

CRBDbase
i,R ≤ max

j>i,k∈[1,|csR
i
|]

cs∈ξ∗i,j,R

{
⊗σ

(
UCBR

i,k, UCBj(cs)
)}
×miss penalty (A.6)

CRBDinherit
i,R ≤ max

n∈CGF (τi)

j>i

cs∈ξ̂i,j,R

{
⊗σ

(
UCBn

i , UCBj(cs)
)}
×miss penalty (A.7)

Again, since task τi can be blocked at most once for each semaphore (resource), we can
compute a safe upper bound on the blocking delay by summing the |S|worst-case penalties
over the S ⊂ SR semaphores (resources) potentially blocking τi:

CRBDi ≤
∑
R∈S

max
(
CRBDbase

i,R , CRBDinherit
i,R

)
(A.8)

The actual bound on the CRBD under PIP is then determined by the minimum between
the bounds on lower priority tasks and semaphores (i.e., Equations A.5 and A.8).

A.3 CRBD under the Priority Ceiling Protocol

With PCP [144], each resource is assigned a ceiling priority which is set to at least the
priority value of the highest-priority task that uses that resource. Since ceiling priorities are
assigned statically, all the tasks of the system and their priority must be known statically.
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For a task τi to be able to access the critical section of a resource, its current priority
must be higher than the ceiling priority of any currently locked resource (i.e. semaphore).
Otherwise, the task that blocks τi inherits the ceiling priority of the resource it is locking.

PCP introduces avoidance blocking: a task, when trying to access a resource that is
currently available, is blocked if its current priority is not higher than the highest ceiling
of all semaphores currently locked by other tasks. This protocol rule is used to warrant
the absence of deadlock. Furthermore, transitive blocking is not possible, a task τi can be
blocked at most once per activation, and the duration of the priority inversion is minimized.

Similarly to PIP, a bound on the delay incurred by the effects of blocking on the cache
state must account for inheritance blocking separately from direct and avoidance blocking
as only the latter ones are triggered when a task attempts to access a resource. Provided
that the computation of the β∗i,j set includes all critical sections of τj that may block τi
due to direct, inheritance or avoidance blocking, an upper bound for the CRPD can be
computed in a similar way to the first bound on PIP. The CRBD suffered by a task τi can
be bounded by the following equation:

CRBDi ≤ max
j>i

{
max

(
CRBDbase

i,j , CRBDinherit
i,j

)}
(A.9)

where CRBDbase
i,j and CRBDinherit

i,j are exactly as defined in the PIP case (Eq. A.3 and
A.4 respectively). As opposed to the PIP case, we are interested just in the most penalizing
critical section among all critical sections and all lower-priority tasks, due to Theorem 12
in [144].

A.4 CRBD under the Immediate Ceiling Priority

The Immediate Ceiling Priority Protocol (ICPP) (direct derivative of Baker’s stack resource
policy [14]) is similar to PCP, as ceiling priorities are assigned to resources with the same
rules. Under ICPP however, a task that enters in a critical section always inherits the
ceiling priority, while under PCP only when it is blocking a higher-priority task; therefore
all tasks with a priority lower than or equal to the ceiling priority cannot be scheduled until
the resource has been released. ICPP retains the advantages of PCP: absence of deadlock,
tasks can block at most once during each activation and the blocking duration is minimized.

The maximum blocking time for a task τi is bounded by the longest outermost critical
section executed by a lower-priority task τj using a resource with a ceiling priority greater
than or equal to the priority of τi.
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More importantly from the CRBD standpoint, the rules of ICPP prevent any disturbing
effects on the cache state of the blocked task. In fact, if blocking occurs, it is always before
the affected job begins execution; this implies that cache analysis does not need to account
for any effect and can continue to assume the worst-case initial cache state (empty or chaos
state, depending on the analysis approach). More formally: CRBDi = 0, ∀τi.
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