Zanuccoli, Mauro
(2012)
Advanced Numerical Simulation of Silicon-Based Solar Cells, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Tecnologie dell'informazione, 24 Ciclo. DOI 10.6092/unibo/amsdottorato/4566.
Documenti full-text disponibili:
Abstract
La conversione fotovoltaica è la produzione diretta di energia elettrica dal sole che non comporta l'emissione di sostanze inquinanti. Al fine di competere con altre fonti di energia, la tecnologia fotovoltaica deve subire una riduzione del costo garantendo contemporaneamente adeguate efficienze di conversione. Questi obiettivi hanno motivato l'interesse dei ricercatori al progetto ed all'analisi di celle solari avanzate in silicio cristallino. Poiché la riduzione del costo dei dispositivi fotovoltaici comporta tipicamente la riduzione del volume di semiconduttore, è necessaria una strategia efficace di intrappolamento della luce per aumentare l'assorbimento dei fotoni. Gli approcci orientati alla simulazione ottica comunemente adottati per la celle solari in silicio cristallino possono condurre a risultati non accurati in caso di celle a film sottile e nanostrutturate. D'altra parte, i risolutori rigorosi delle equazioni di Maxwell sono altamente onerosi in termini computazionali. Recentemente, nella simulazione ottica di celle solari, il metodo RCWA ha acquisito una forte popolarità, fornendo un buon compromesso tra accuratezza e fabbisogno di risorse computazionali. Questa tesi rappresenta un contributo alla simulazione numerica -sia ottica che elettrica- di celle solari avanzate al silicio. Un simulatore numerico di dispositivi a semiconduttore 2-D/3-D allo stato dell'arte è stato applicato con successo alla simulazione di celle a doppia diffusione di emettitore a di celle con superficie posteriore passivata e contatto locale, per le quali è richiesta la multi-dimensionalità del modello di trasporto al fine di descrivere correttamente tutti i meccanismi fisici. Nella seconda parte della tesi, vengono discussi gli aspetti relativi alla simulazione ottica. Due innovative e computazionalmente efficienti implementazioni del metodo RCWA per domini di simulazione 2-D nonché un terzo simulatore RCWA per strutture 3-D basato sul calcolo di autovalori sono stati presentati in questa tesi. I simulatori proposti sono stati validati in termini di accuratezza, convergenza numerica, tempo di calcolo e correttezza dei risultati.
Abstract
La conversione fotovoltaica è la produzione diretta di energia elettrica dal sole che non comporta l'emissione di sostanze inquinanti. Al fine di competere con altre fonti di energia, la tecnologia fotovoltaica deve subire una riduzione del costo garantendo contemporaneamente adeguate efficienze di conversione. Questi obiettivi hanno motivato l'interesse dei ricercatori al progetto ed all'analisi di celle solari avanzate in silicio cristallino. Poiché la riduzione del costo dei dispositivi fotovoltaici comporta tipicamente la riduzione del volume di semiconduttore, è necessaria una strategia efficace di intrappolamento della luce per aumentare l'assorbimento dei fotoni. Gli approcci orientati alla simulazione ottica comunemente adottati per la celle solari in silicio cristallino possono condurre a risultati non accurati in caso di celle a film sottile e nanostrutturate. D'altra parte, i risolutori rigorosi delle equazioni di Maxwell sono altamente onerosi in termini computazionali. Recentemente, nella simulazione ottica di celle solari, il metodo RCWA ha acquisito una forte popolarità, fornendo un buon compromesso tra accuratezza e fabbisogno di risorse computazionali. Questa tesi rappresenta un contributo alla simulazione numerica -sia ottica che elettrica- di celle solari avanzate al silicio. Un simulatore numerico di dispositivi a semiconduttore 2-D/3-D allo stato dell'arte è stato applicato con successo alla simulazione di celle a doppia diffusione di emettitore a di celle con superficie posteriore passivata e contatto locale, per le quali è richiesta la multi-dimensionalità del modello di trasporto al fine di descrivere correttamente tutti i meccanismi fisici. Nella seconda parte della tesi, vengono discussi gli aspetti relativi alla simulazione ottica. Due innovative e computazionalmente efficienti implementazioni del metodo RCWA per domini di simulazione 2-D nonché un terzo simulatore RCWA per strutture 3-D basato sul calcolo di autovalori sono stati presentati in questa tesi. I simulatori proposti sono stati validati in termini di accuratezza, convergenza numerica, tempo di calcolo e correttezza dei risultati.
Tipologia del documento
Tesi di dottorato
Autore
Zanuccoli, Mauro
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
24
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Numerical Simulation Solar Cell
URN:NBN
DOI
10.6092/unibo/amsdottorato/4566
Data di discussione
30 Aprile 2012
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Zanuccoli, Mauro
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
24
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Numerical Simulation Solar Cell
URN:NBN
DOI
10.6092/unibo/amsdottorato/4566
Data di discussione
30 Aprile 2012
URI
Statistica sui download
Gestione del documento: