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ABSTRACT 

The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. 

influenzae and N. meningitidis have been of great importance in preventing potentially fatal 

infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce 

specific antibody response characterized by IgM immunoglobulins, with a very low IgG class 

switched response and lack of capability of inducing a booster response. The inability of pure 

polysaccharides to induce sustained immune responses has required the development of 

vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T 

cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on 

different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the 

target population, adjuvant used. The present study analyzes the memory B cell (MBC) 

response to the polysaccharide and to the carrier protein following vaccination with a 

glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much 

is known about the role of adjuvants in the development of immunological memory raised 

against GBS polysaccharides, as well as about the influence of having a pre-existing immunity 

against the carrier protein on the B cell response raised against the polysaccharide component 

of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody 

and memory B cell response to the carrier protein and to the conjugated polysaccharide. We 

also demonstrate that a pre-existing immunity to the carrier protein favors the development of 

the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, 

even in absence of adjuvants. These data provide a useful insight for a better understanding of 

the mechanism of action of this class of vaccines and for designing the best vaccine that could 

result in a productive and long lasting memory response. 
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INTRODUCTION 

1.1 Characteristics of glycoconjugate vaccines 

Pathogenic extracellular bacteria often express in their surface large molecular-weight 

polysaccharides, usually in the form of a capsule. The development of vaccines directed 

against polysaccharide capsules of Streptococcus pneumoniae, Haemophilus Influenzae type 

b (Hib) and Neisseria meningitidis have been of great importance in preventing potentially fatal 

infections. 

Bacterial capsular polysaccharides are T-cell-independent antigens. They generally 

stimulate only short-lived B-cell responses by cross-linking the B-cell receptor, which drives the 

differentiation of B cells to plasma cells producing specific antibodies characterized by IgM 

immunoglobulins, with a very low IgG class switched response (Fig 1a).  Memory B cells are 

not produced in response to most polysaccharide vaccines, lacking therefore the ability of 

inducing a booster response (Kelly, DF. 2006). Instead, the terminal differentiation of memory 

B cells to plasma cells depletes the memory B-cell pool, resulting in hyporesponsiveness to 

future vaccine doses (MacLennan, J. 2001; Granoff, DM. 2007). Furthermore, plain 

polysaccharide vaccines are not generally immunogenic in infants (Smith, DH. 1973), not 

allowing their use as vaccines to prevent disease in children caused by polysaccharide-

encapsulated bacteria, that have their highest incidence in the first year of life.   

The inability of pure polysaccharides to induce sustained immune responses has required the 

development of vaccines containing these important components conjugated to a carrier 

protein. Chemical conjugation of the polysaccharides to highly immunogenic modified bacterial 

proteins used as carriers, such as tetanus toxoid (TT), diphtheria toxoid (DT), crossreactive 
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material 197 (CRM197) has been applied to develop several conjugate vaccines already in the 

market or in ongoing clinical studies.  

The first explanation for the mechanism of induction of polysaccharide specific 

antibodies by glycoconjugate vaccines is that they are able to generate T cell help through 

different steps. Polysaccharide-protein conjugates bind to the B cell receptor (BCR) of 

polysaccharide-specific B cells and are internalized into the endosome. Once inside the cell, 

the protein carrier portion is digested by proteases and the resulting peptides are presented to 

carrier-specific T cells in association with MHC class II molecules. Carrier peptide/MHCII 

activated T cells release cytokines that play a role in stimulating B cell maturation and 

induction of immunoglobulin class switching from IgM to polysaccharide specific IgG (Fig.1b).  

Some aspects of the precise molecular mechanisms underlying glycoconjugate processing 

and presentation in the MHCII pathway have not been yet fully dissected and understood. For 

example, it is not well known what happens to the carbohydrate once inside the endosome and 

if the covalent linking to the carrier protein is broken during the enzymatic digestion. Recent 

studies  suggests that the carbohydrate portion of the glycoconjugate remains linked to the 

carrier peptide and is presented on the surface of APCs in the context of MHCII molecules 

(Avci, FY. 2011). It is clear that the immunogenicity of glycoconjugate vaccines can vary 

depending on different factors, such as the chemical nature of the linked polysaccharide, the 

carrier protein used, the age of the target population and the adjuvant used for the formulation. 

Therefore, the definition of the immunogenicity of a glycoconjugate vaccine is extremely 

important for a better understanding of the mechanism of action of this class of vaccines and 

for designing the best glycoconjugate-adjuvant formulation that could result in a productive and 

long lasting memory response.  
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In this PhD project I focalize my attention on the study of the immunogenicity of a 

glycoconjugate vaccine against Streptococcus agalatiae, also named Group B Streptococcus 

(GBS). GBS is a leading cause of morbidity and mortality in neonates in US and globally; its 

infection gives bacteremia and sepsis in the first week of life as well as meningitis beyond the 

first week of life (between 8-90 days of life). Until now, no vaccine exists to prevent this 

disease; since 1996, Centers for Diseases Control (CDC) recommended intrapartum 

antimicrobials for women identified with GBS colonization before delivery, but the development 

of a preventive vaccine would be highly recommended. 

 

Figure 1: The immune response to polysaccharide and protein–polysaccharide 

conjugate vaccines. a) Polysaccharides from the encapsulated bacteria that cause disease in 

early childhood stimulate B cells by cross‑linking the B‑cell receptor (BCR) and drive the 

production of immunoglobulins. This process results in a lack of production of new memory B 

cells and a depletion of the memory B‑cell pool, such that subsequent immune responses are 

decreased. b) The carrier protein from protein–polysaccharide conjugate vaccines is 

processed by the polysaccharide‑specific B cell, and peptides are presented to 

carrier‑peptide‑specific T cells, resulting in T‑cell help for the production of both plasma cells 

and memory B cells.  
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1.2 The importance of the glycoconjugate vaccines 

The polysaccharide-encapsulated bacteria Streptococcus pneumoniae, Haemophilus 

influenzae type b (Hib) and Neisseria meningitidis (meningococcus) are the leading causes of 

serious bacterial infections in young children, accounting for most of the cases of bacterial 

pneumonia and meningitis worldwide. Between 800.000 and 1 million children under 5 years of 

age die from pneumococcal disease annually (Scott, JA. 2007), and Hib and meningococcus 

are thought to account for approximately 400.000 and 50.000 deaths, respectively, each year 

(WHO 2006; Tikhomirov, E. 1997). These bacteria have a polysaccharide capsule that sur-

rounds the organism and is thought to be important in reducing desiccation and phagocytosis. 

They are common commensals of the human nasopharynx that rarely invade through the 

mucosa to cause invasive disease. Despite the availability of effective antibiotics and intensive 

care management, case–fatality rates and morbidity among survivors remain high (Watt, JP. 

2009; O‘Brien, KL.  2009). The huge global burden of disease and death caused by these 

bacteria comes despite the availability of highly effective vaccines. In the United Kingdom, the 

Hib vaccine was introduced into the infant immunization schedule in 1992, the serogroup C 

meningococcal (MenC) vaccine in 1999 and the pneumococcal vaccine in 2006. However, only 

26% of children worldwide received a course of Hib vaccine in 2006 and less than 10% 

received other conjugate vaccines. An all-party parliamentary group report on pneumococcal 

disease was launched in the House of Lords in the UK Parliament on 15 October 2008, 

highlighting the importance that the UK Government has placed on the global disease burden 

that is caused by S. pneumoniae. In addition, the World Health Organization (WHO) has 

recommended the widespread introduction of Hib and pneumococcal vaccines, as well as the 

use of serogroup A meningococcal (MenA) vaccines in the meningitis belt of Africa (a vast 
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area across sub-saharan Africa that suffers cycles of epidemic meningococcal disease) 

(LaForce, FM. 2007). In the next decade, these initiatives could change the picture of global 

child health. 

The polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis are 

virulence determinants that are composed of repeating saccharide units, the chemical nature 

of which defines the capsular type of the organism. For example, there are 91 different 

polysaccharides (serotypes) associated with pneumococci and 13 polysaccharides associated 

with meningococci (although only five serogroups of meningococcal polysaccharide — A, B, C, 

Y and W135 — commonly cause disease). Four pneumococcal polysaccharides were first 

used for the development of a vaccine in 1945 (MacLeod, C. 1945), and a vaccine containing 

23 pneumococcal polysaccharides was developed in 1983 and is now in widespread use for 

the elderly population in many developed countries, including the United Kingdom. Natural 

immunity against encapsulated bacteria is principally mediated through the binding of antibody 

to specific bacterial antigens, including the polysaccharide capsule, followed by complement 

deposition and complement-mediated lysis or opsonophagocytosis (Pollard, AJ. 2001). The 

highest incidence of invasive bacterial disease is in young children, reflecting the low levels of 

specific antibody in early childhood (Goldschneider, I. 1969). Through childhood exposure to 

non virulent strains of these bacteria and other organisms bearing cross-reacting surface struc-

tures, the level of antibodies directed against these organisms increases to eventually provide 

adult levels of protection (Troncoso, G. 2000). The aim of immunization with protein–

polysaccharide conjugate vaccines in early infancy is to provide protection during the period of 

susceptibility in early childhood. 
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The limitations of the B-cell response in infants is true for most of the polysaccharides 

encapsulating the bacteria that cause severe infections in humans, including Hib, MenC and 

most pneumococcal polysaccharides, but there are some exceptions. For example, unlike 

MenC polysaccharides, and for unknown reasons, MenA polysaccharides are immunogenic 

from early infancy. In addition, in some studies (Jokhdar, H. 2004), but not in others (Borrow, 

R. 2000), MenA polysaccharides did not induce antibody hyporesponsiveness. Another 

exception are some zwitterionic polysaccharides (that is, having both a positive and negative 

charge), such as the Bacteroides fragilis capsule (Kalka-Moll, WM. 2002) and serotype 1 

pneumococcal polysaccharide (Velez, CD. 2008), which can be presented in an MHC class II-

dependent manner. Based on mouse studies (Vinuesa, CG. 2003), it has been suggested that 

marginal-zone B cells are involved in polysaccharide-induced immune responses (Weller, S. 

2005). The maturation of the splenic marginal zone and its ability to respond to 

polysaccharides in humans both occur at about 18 months to 2 years of age (Weller, S. 2004). 

However, direct evidence of this has not been obtained from human studies. Chemical 

conjugation of the polysaccharide to a protein carrier — such as tetanus toxoid, diphtheria 

toxoid or CRM197— directs processing of the protein carrier by polysaccharide-specific B cells 

and presentation of the resulting peptides to carrier-peptide-specific T cells in association with 

MHC class II molecules. So, a conjugate polysaccharide vaccine induces a T-cell-dependent 

response from early infancy and induces an anamnestic (memory) response to a booster dose 

of the vaccine (Kelly, DF. 2006). The main B-cell subset that is involved in the immune 

response to conjugate vaccines in humans is unknown; however, the characteristics of the 

immune response that is induced by conjugate vaccines (such as the induction of 

immunological memory and avidity maturation) strongly indicate that follicular B cells are 
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probably activated and form germinal centers. Unlike the response to plain polysaccharide 

vaccines, these responses to conjugate vaccines might provide long-term immunity through 

the production of new memory B cells. The immunogenicity of different conjugate vaccines 

varies as a result of differences in the chemical nature of the polysaccharide (such as the 

length of the saccharide chain) (Pichichero, ME. 1998), the amount of unconjugated 

polysaccharide in the vaccine and the nature of the carrier protein (Decker, MD. 1992). For 

example, the Hib–outer membrane protein (Hib–OMP) conjugate vaccine is markedly more 

immunogenic than Hib–CRM197 (Bulkow, LR. 1993). 

 

 

 

1.3 The use of CRM197 as carrier protein 

 

CRM197 is a mutated form of diphteria toxoid that differs in one amino acid residue in 

the ‗fragment A‘ region (Giannini, G. 1984). Alteration of fragment A removes its enzymatic 

activity, making CRM197 non-toxic. It is thought that the conformation of CRM197 differs from 

Diphteria Toxoid (DT), leading to lower B cell responses. Since CRM197 is not treated with 

formaldehyde as it is DT, the T-helper epitopes appear to be better preserved, explaining the 

better carrier effect of CRM197 versus DT.  

In the last years CRM197 has been used in some glycoconjugate vaccines that are in 

the market such as: the multivalent pneumococcal vaccine (13-valent 4, 6B, 9V, 14, 18C, 19F, 

23F,1,3,5,6A, 7F, & 19A) (Kieninger, DM. 2008; Klinger, CL. 2008; Grimprel, E. 2008), the 

monovalent meningococcal serogroup C vaccine (Richmond, P. 2001) and the multivalent 

meningococcal vaccine including ACWY serogroups (Snape, M.D. 2008). 
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1.4 The immune response to the polysaccharide capsule 

 

The polysaccharide capsule of the encapsulated bacteria is a T-cell-independent 

antigen; it cannot be processed and bound to the MHC class II molecules for presentation to T-

helper cells. The polysaccharide capsule is composed of multiple identical antigenic epitopes 

in close proximity to each other that cross-link multiple membrane immunoglobulins on a B cell 

to allow activation without the help of T cells (Lesinski, GB.  2001). Because of the lack of T-

cell help, there is no germinal center reaction or the associated isotype switching and avidity 

maturation of the B-cell receptors, or the production of memory B cells. Although naive 

follicular B cells can recognize T-cell-independent antigens, the most important subset of B 

cells recognizing T-cell-independent antigens are B1 cells and marginal zone (MZ) B cells (Fig 

2).  

B1 cells produce low-affinity polyreactive IgM (IgA, IgG3), also called natural antibodies 

because they are a component of innate immunity and their production does not require 

exposure to an antigen (Martin, F. 2001). These antibodies recognize autoantigens and many 

bacterial antigens, including polysaccharide and lipopolysaccharide (Boes, M.  2000). B1 cells 

constitute a major proportion of the B cells in children but only a minor proportion in adults 

(Baumgarth, N. 2005) and develop earlier than the other B cells so that they are already 

present during fetal and neonatal life. They are responsible for producing short-term low-

affinity antibody responses that provide a first line of defense against pathogen invasion.  

Marginal zone B cells respond mainly to T-cell-independent antigens, such as the 

polysaccharide capsule of the encapsulated bacteria, and produce IgM. These cells have a 

mutated immunoglobulin receptor and high expression of CD21, which facilitates attachment to 
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complement-coated polysaccharides. They are principally localized in the MZ of the spleen, 

which is a peripheral region of splenic lymphoid follicles that contains macrophages that are 

particularly efficient at trapping polysaccharide antigens. The location of the MZ B cells 

presumably permits them to respond rapidly to blood-borne pathogens filtered through the 

spleen (Pillai, S. 2005).  

 

 

 

 

 Fig 2: The B-cell responses to a plain polysaccharide capsule of an encapsulated 

bacteria. This vaccine induces MZ B cells and B1 B cells to differentiate into short-lived PCs, 

which secrete low-avidity IgM Abs. Additionally, polysaccharide-specific memory B cells are 

activated to differentiate into PCs, which can secrete high-avidity, class-switched Ab.  
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1.5 The role of B cells in the persistence of anticapsular antibody  

 

Immunization with a protein–polysaccharide conjugate vaccine induces naive B cells, 

B1 cells and MZ B cells to differentiate within extrafollicular foci into plasma cells that produce 

polysaccharide-specific antibody of low avidity and of IgM isotype (Jacob, J. 1991). These cells 

seem to be short-lived with a half-life of between 1 and 10 days (Nossal, GJ.  1962). However, 

the naive B cells that recognize the polysaccharide antigen of the protein–polysaccharide 

conjugate vaccine take up and process both the polysaccharide and protein carrier and 

present the derived peptides alone or together with the polysaccharide in MHC class II 

molecules on their surface, allowing activation of T-helper cells. The MHC class II-restricted 

cognate interaction between B cells and T cells provides the necessary costimulatory signals 

to the B cells to begin the process of germinal center reaction with the generation of 

somatically mutated class-switched B cells that will secrete high-avidity IgG antibody against 

the polysaccharide antigen (Lai, Z. 2009; Klein, U. 1998; Smith, KG.  1997). 

It is not clear how antibody production is sustained in humans after priming with 

protein–polysaccharide conjugate vaccines. Antibody might simply depend on the half-life of 

antibody, 3 weeks, (Vieira, P. 1988) and, therefore, would mostly be determined by the level of 

antibody reached after primary immunization with protein–polysaccharide conjugate vaccines. 

However, it is likely that long-lived plasma cells and turnover of memory B cells generated in 

the germinal center during primary immunization with protein–polysaccharide conjugate 

vaccine also contribute to antibody persistence. 

Plasma cells are terminally differentiated non dividing cells that are conventionally 

considered to be short-lived and continuously generated de novo from the memory B cells 
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produced in germinal center reactions following immunization with protein–polysaccharide 

conjugate vaccines (Crotty, S. 2004). Studies in mice have demonstrated, however, that a 

fraction of plasma cells generated in the germinal center reaction are long-lived and can 

secrete antibody for extended periods of time in the absence of memory B cells with a lifespan 

from 3 months to more than a year (Manz, RA. 2005; Slifka, MK.  1998). Their survival appears 

to depend on signals provided by stromal cells in a limited number of niches situated in the 

bone marrow, and it is believed that these signals protect plasma cells from apoptosis (DiLillo, 

DJ. 2008; Fairfax, KA.  2008). The existence of long-lived plasma cells in humans is supported 

by a study of patients with rheumatoid arthritis and treated with rituximab, which causes a 

selective depletion of the circulating plasma cells. In these patients the concentration of 

immunoglobulins remained in the normal range during treatment (Edwards, JC.  2004).  

Memory B cells can persist for more than 50 years following immunization with smallpox 

vaccine (Crotty, S.  2003). They may continuously recirculate between secondary lymphoid 

organs through the blood and may also persist in secondary lymphoid organs, such as the 

lymph nodes and spleen (Maruyama, M. 2000) where the antigen may be kept in follicular 

dendritic cells. They are thought to continuously differentiate into plasma cells in response to 

antigen-dependent stimuli (cross-reactive antigen or persisting antigen) (Ochsenbein, AF.  

2000) or antigen-independent stimuli (polyclonal stimulation of B cells by microbial products 

which stimulate B cells via TLRs or through bystander T-cell help) (Bernasconi, NL. 2002).  

The continuous activation of memory B cells, the survival of long-lived plasma cells in 

bone marrow and the antibody half-life are likely to contribute to the long-term maintenance of 

specific antibody after priming.  
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1.6 The importance of memory in the glycoconjugate vaccines 

 

Following an immune response two types of differentiated B cells persist in the memory 

pool: plasma cells, which confer immediate protection by the secretion of specific antibodies; 

and memory B cells, which confer rapid and enhanced response to secondary challenge. 

Recent advances in understanding the heterogeneity, dynamics, and persistence of human 

memory B cells and plasma cells as well as new methods to isolate human monoclonal 

antibodies have offered new insights into the human B cell response, which are relevant for 

vaccination and therapeutic intervention. 

It is well established that in the course of a T cell dependent B cell response, naive B 

cells proliferate and differentiate to memory B cells and long-lived plasma cells (Rajewsky, K. 

1996; Radbruch, A. 2006; McHeyzer-Williams, LJ. 2005). Using highly purified human naive B 

cells it was shown that optimal expansion, differentiation, and class switch requires, in addition 

to BCR triggering and T cell help, a third signal that can be delivered by TLR agonists or by 

cytokines produced by activated dendritic cells (Ruprecht, CR. 2006). These findings are 

consistent with mouse experiments that addressed the requirements for TLR expression on B 

cells in certain types of T-dependent responses (Pasare, C. 2005; Gavin, AL. 2006). 

Polysaccharides behave as T cell-independent antigens and activate B cells by crosslinking 

the BCR. Polysaccharide vaccines have been available for decades, but have shown to 

provide only short-term protection and to be unable to generate B cell memory. By contrast 

protein–polysaccharide conjugate vaccines elicit T-dependent responses and long lasting 

memory, at least in adults (Pollard, AJ. 2009). Longevity remains the key aspect of 

immunological memory and applies to both plasma cells and memory B cells. In humans all 
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memory B cells recirculate through the blood, but their main reservoir is represented by 

lymphoid tissues, such as the bone marrow and the spleen (Paramithiotis, E. 1997;  Mamani-

Matsuda, M. 2008). 

Subsets of memory B cells and plasma cells can be defined on the basis of the 

expression of surface markers. Although CD27 has been widely used as a marker for memory 

B cells (Klein, U. 1998) there is a substantial fraction of bona fide memory B cells that lack 

CD27 expression (Wirths, S. 2005). These CD27- memory B cells have been mistakenly taken 

as naive cells, a fact that has generated some confusion in the field. 

The immunological memory is generally defined as an anamnestic response to a 

booster dose of a vaccine. B-cell memory responses have been observed even among those 

who did not make a detectable primary response to the vaccine (McVernon, J. 2003). In 

addition, B-cell memory theoretically could provide long-term protection in those individuals for 

whom antibody levels have waned below the protective threshold. Unfortunately, in susceptible 

individuals the encapsulated bacteria are known to invade rapidly after acquisition, often within 

a few days. In this case, the memory B-cell response, which takes 4 or more days to become 

established after re-encounter with antigen, is too slow (Kelly, D F. 2005; Snape, MD. 2006), 

except in those cases where there is a prolonged incubation period.  For example, in children 

who suffer from Hib disease despite prior vaccination (vaccine failures), the immune response 

to Hib infection is greater than the response in an unvaccinated individual who suffers from the 

disease. These children mount a memory immune response to infection but still suffer from Hib 

disease, which supports the concept view that the presence of immunological memory does 

not guarantee protection (McVernon, J. 2003). These observations strongly suggest that B-cell 
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memory might not be as important as long lasting antibodies for long-term protection against a 

rapidly invasive pathogen. 

 

 

 

1.7 Glycoconjugate vaccines: immune interference and immune 

enhancement 

 

The majoriry of the glycoconjugate vaccines that are in the market, contain three most 

used carrier proteins: TT, DT and CRM197. Several studies have reported controversial 

hypothesis on the effect that the response to the carrier protein might have in interferring with 

the response to the polysaccharide. Two are the common interference mechanisms that we 

can observe following vaccination with conjugate vaccines: carrier-induced epitopic 

suppression (CIES), whereby pre-existing immunity to a carrier (conjugate protein) suppresses 

subsequent responses to a hapten/ saccharide linked to the same carrier; and bystander 

interference, whereby coadministration and/or combinations of vaccines containing a given 

conjugate protein induce interference that extends to unrelated antigens that are part of the 

combinations in use (Dagan, R.  2010).  

CIES may arise from one or more immune mechanisms (Dagan, R. 2010): pre-existing 

antibodies to the carrier protein may interfere with B-cell responses to polysaccharide either by 

preventing binding of polysaccharide-specific B cells, or by promoting anti-carrier B-cell 

responses over anti-polysaccharide B-cell responses. Carrier-specific B cells may consume 

local sources of immune help (T cells and associated cytokines) to the detriment of 
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polysaccharide B cells. Finally, responses to polysaccharide may be impaired by the presence 

of carrier regulatory T cells. 

Bystander interference may occur when there is local competition between antigens for 

immune help, or when there are changes in the T-cell milieu including induction of T-cell 

regulatory mechanisms. Conjugate vaccines using diphtheria toxoid variant (CRM197) as a 

carrier, although less likely to reduce responses to polysaccharides through CIES, are more 

likely to induce bystander interference, as observed in the UK via diphtheria toxoid (DT) 

present in diphtheria-tetanus-acellular pertussis and Haemophilus influenzae type b vaccine 

(DTPa/Hib) (Dagan, R. 2010). Hib responses appear particularly vulnerable to bystander 

effects (Dagan, R. 2008, 64). Hepatitis B responses also seem to be susceptible to bystander 

interference, although more data are needed to substantiate the observation (Dagan, R.  

2010). Bystander effects are probably mediated via T-cell mechanisms shared between DT 

and CRM197 and spreading to other coadministered antigens. 

Immune enhancement occurs when specific T-helper cells to one vaccine antigen 

increase the response to the same antigen in another vaccine. The best recognized form of 

immune enhancement occurs when vaccines using tetanus toxoid (TT) as the conjugate 

protein are coadministered with Hib-TT. Anti-PRP (polyribosyl-ribitol-phosphate) antibody 

concentrations increase when Hib-TT is coadministered with meningococcal serogroup C-TT 

conjugate (MenC-TT), or 10-valent pneumococcal nontypeable Haemophilus influenzae 

protein D conjugate vaccine (PHiD-CV) that includes 18C-TT (Kitchin, NRE. 2007; Southern, J. 

2006; Tejedor, JC. 2006; Schmitt, H. 2007; Knuf, M. 2009). On the other hand, immune 

responses to TT-conjugated pneumococcal polysaccharides and MenC-TT decrease in the 
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presence of large amounts of coadministered TT through CIES (Dagan, R. 1998; Dagan, R.  

2004; Peeters, CC. 1991).  

Immune enhancement mechanisms also contribute to optimal responses to vaccines 

that use DT and CRM197 as conjugate proteins. Unlike TT, DT/CRM197 conjugates need T-

cell enhancement via DT/CRM197 priming or co administration to maximize immune 

responses (Granoff, DM. 1994; Shelly, MA. 2001; Granoff, DM. 1993). In general, CRM197 

and TT when engaged as carrier lead to higher anti-polysaccharide responses than DT, as 

exemplified by Hib-TT/CRM197 versus Hib-DT (Bulkow, LR. 1993), and meningococcal 

ACWY-TT/CRM197 versus ACWY-DT (Rennels, M. 2004; Snape, MD. 2008; Ostergaard, L. 

2009). Whole cell pertussis (Pw) antigen has an adjuvant effect on TT, but not DT, resulting in 

enhanced responses to conjugate vaccines using TT as carrier. The effect of DTPw vaccines 

on the immunogenicity of coadministered protein conjugate vaccines in clinical trials was 

recently reviewed by Dagan et al (Dagan, R.  2010). 
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1.8 Group B Streptococcus (GBS) 

 

Fig 3: Image of Streptococcus agalactiae 

Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), (Fig.3) is 

one of the most common causes of life-threatening bacterial infections in infants. GBS is a 

Gram-positive pathogen that colonizes the urogenital and the gastrointestinal tracts of more 

than 30% of the healthy population and, in particular, it colonizes the vagina of 25–40% of 

healthy women (Dillon, HC. 1982; Schurcat, A. 1998; Hansen, SM. 2004). GBS, first 

recognized as a pathogen in bovine mastitis, is distinguished from other pathogenic 

streptococci by the cell wall-associated group B carbohydrate. The microorganism also 

expresses a capsular polysaccharide (CPS) that allows GBS isolates to be classified in 9 

different serotypes based on the distinct structure and antigenicity of the capsule (Kong, F. 

2002). There are currently nine GBS serotypes identified by reactivity of specific antibodies 

with the surface capsular polysaccharides (CPSs). Serotypes Ia, Ib, II, III and V are 

responsible for most GBS disease in North America and Europe. Serotypes VI and VIII have 

thus far been prevalent mainly in Japan; and type IV, although rarely reported worldwide, was 

the predominant serotype among colonised pregnant women in United Arab Emirates. To date, 
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only a few cases of GBS type VII have been reported. Neonatal GBS infections can result in 

pneumonia, sepsis, meningitis and in some cases, death (McCracken, GH. 1973; Schrag, SJ. 

2000). Moreover, GBS infections are increasing also among adults, especially in the elderly, 

immunocompromised and diabetic adults (Schrag, SJ. 2000;  Blancas, D. 2004; Skoff, TH.  

2009).   

However, around 8–14% of the clinical isolates in Europe and in the USA are non-

typeable strains because they cannot be distinguished on the basis of CPS antigenicity 

(Bisharat, N. 2005; Skoff, TH.  2009). Despite this low rate of progression to disease, GBS 

remains the leading cause of bacterial infections in the newborn, with an incidence rate in 

1995/1996 of 1.4 cases per 1000 births, compared with 0.6 cases per 1000 births for 

Escherichia coli. Neonatal GBS disease was the original impetus for the GBS vaccine effort, 

and despite declining incidence rates (0.6 cases per 1000 births in 1998) due to the 

implementation of intrapartum antibiotic prophylaxis, it remains a strong motivating force 

behind the GBS vaccine effort. GBS disease in newborns has been divided in early-onset 

disease (EOD) and late-onset disease (LOD) depending on the infants‘ age and disease 

manifestation. Early-onset disease manifests in the first week of life and the neonate is usually 

infected by exposure to GBS during birth. The transmission from mothers to newborns usually 

occurs when the neonate aspirates contaminated amniotic and vaginal fluids. Early-onset 

disease can progress as pneumonia and the bacteria can spread into the bloodstream 

resulting in septicaemia, meningitis and osteomyelitis (Rubens, CE. 1991; Puopolo, KM. 2005). 

Infants who present with late-onset disease do not show signs of infection in the first 6 days of 

life. LOD (7–90 days) is less frequent than EOD and the mortality rate is lower but morbidity is 

high, as around 50% of neonates that survive to GBS infection suffer complications, including 
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mental retardation, hearing loss and speech and language delay (Schurcat, A. 1998; Schrag, 

SJ. 2000; Edwards, MS. 2005). The introduction in the US of national guidelines for GBS 

disease prevention, first issued in 1996 and updated in 2002, recommending universal 

screening of pregnant women for rectovaginal GBS colonization at 35–37 weeks‘ gestation 

and administering intrapartum antimicrobial prophylaxis to carriers, was associated with a 

decline in the incidence of EOD in the United States (Boyer, KM. 1983; Baker, CJ. 1997; CDC 

2002). But EOD still occurred with an incidence of 0.34 per 1000 live births in 2003–2005 in 

the USA. Not surprisingly, late-onset GBS infections did not decline despite the implementation 

of prophylactic measures and occurred in 1999–2005 with an incidence averaging 0.34 per 

1000 live births in USA (Phares, CR. 2008).  

 

1.8.1 Polysaccharide based vaccines against GBS 

GBS is still a public health concern for human infants and adults and the introduction of 

additional prevention and therapeutic strategies against GBS infection is highly desirable. 

Vaccination represents the most attractive strategy for GBS disease prevention. An April 1999 

NIAID commissioned study from the Institute of Medicine cited GBS as one of the four most 

favourable infectious disease vaccine targets. Effective vaccines would stimulate the 

production of functionally active antibodies that could cross the placenta and provide protection 

against neonatal GBS infection. 

During the last two decades, polysaccharide based vaccines against GBS have been 

extensively studied but also several promising protein antigens have been identified leading to 

the development of universal protein-based vaccines (Martin, D. 2002; Maione, D. 2005; 

Margarit, I. 2009, 96,97,98).   
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Glycoconjugate vaccines against all nine GBS serotypes have been made and all have 

been shown to be immunogenic and efficacious in a mouse maternal immunization-neonatal 

challenge model of GBS disease. Without exception, all GBS conjugate vaccines prepared 

with TT are significantly more immunogenic than uncoupled CPS in mice and rabbits 

(McDonald, HM. 2000; Wessels, MR. 1995; Paoletti, LC. 1992). The conjugate vaccines 

elicited type-specific antibodies, primarily IgG, that were active in opsonising homologous GBS 

for killing ―in vitro” by human peripheral blood monocytes in the presence of complement. 

Baboons mounted a strong immune response to GBS conjugate vaccines in presence of alum 

as adjuvant compared with that measured with uncoupled CPS (Paoletti, LC. 1996), and they, 

like mice, readily transferred antibody transplacentally to their offspring (Paoletti, LC. 2000). 

Vaccination of female mice with a mixture of four monovalent GBS conjugate vaccines (Ia, Ib, 

II and III) provided simultaneous protection against neonatal pup challenge with the serotypes 

of GBS covered by vaccination. The first proof that vaccination with uncoupled GBS CPSs was 

well tolerated came from early clinical trials that clearly indicated its safety (Fisher, G. 1983; 

Baker, CJ. 1985). Because early efforts were focused on developing a maternal vaccine to 

prevent neonatal GBS disease, healthy non pregnant women (18-45 years) were recruited to 

participate in the first clinical trials with GBS CPS conjugate vaccines (Baker, CJ. 2000; 

Kasper, DL. 1996). GBS type Ia linked to tetanus toxoid (Ia-TT), Ib-TT, II-TT and III-TT were 

the first four conjugate vaccines individually prepared for evaluation in four separate Phase I 

clinical trials. The main purpose of a Phase I clinical trial, is to asses the safety of a vaccine in 

a small number of healthy adults and these vaccines have shown to be well-tolerated with 

minimal reactogenicity (Mattheis, MJ. 1999). A secondary goal of Phase I clinical trials is the 

evaluation of an immune response, which for protection against neonatal GBS disease is the 
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amount, specificity and functional activity of CPS –specific IgG. Induction of IgG is important in 

the development of a maternal vaccine, as it is the only antibody class that crosses the 

mammalian placenta. Consistent with the preclinical studies in mice, rabbits and baboons, 

significant increases in the serum levels of CPS-specific IgG were elicited in adult women who 

received the conjugated CPS, as opposed to those that received the uncoupled CPS. All 

conjugates elicited significantly higher levels of CPS-specific IgG than uncoupled CPS 

administered at equivalent dose (Baker, CJ. 2000; Kasper, DL. 1996). The improved antibody 

response elicited by the conjugate vaccines clearly reflected the transformation of the CPSs 

from T cell-independent to T-cell dependent antigens. 

Phase II clinical trials evaluated safety and immunogenicity of GBS conjugate vaccines 

administered at different doses. GBS conjugate vaccines Ia-TT, Ib-TT, II-TT and III-TT (initially 

administered at doses of 57-63 µg as CPS in Phase I trials) were administered at two fourfold 

dilutions to determine optimal responses in Phase II clinical trials. A dose-dependent, CPS –

specific IgG response was measured for all GBS conjugate vaccines. Except for the II-TT, 

which was still highly immunogenic when administered at the 3,6 µg CPS dose (Baker, CJ. 

2000), the intermediate dose 14-15 µg of CPS was the lowest dose administered that elicited 

type-specific IgG at levels significantly exceeding those obtained with uncoupled CPS. 

Other advanced clinical trials were undertaken to prove the observation made in animal 

models that administration of the GBS conjugate CPS with adjuvant would improve the 

immunogenicity of the vaccine, but this was not the case. Infact, in healthy humans GBS III-TT 

adsorbed to aluminium hydroxide was not more immunogenic than the same vaccine 

administered without alum (Paoletti, LC. 2001). Another aspect of the immunogenicity of the 

GBS vaccine that has been investigated was the need for a second dose to achieve optimal 
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and lasting immunity, as it is needed for many vaccines currently in use. In the case of 

subjects vaccinated with two doses of GBS III-TT it has been shown that some recipients, 

naive with respect to GBS type III CPS have a response that represented a classical ―prime 

and boost‖ IgG response.  In another group of subjects, already primed by previous exposure 

to type III GBS, a second dose of vaccine does not induce an increase in the specific IgG 

levels. 

 

1.8.2 Protein-based vaccine 

Efforts to develop a GBS vaccine capable of protecting against all serotypes have 

focused on identification of universally recognized protein antigens. Proteins should induce 

protective T-cell-dependent antibody responses and long-lasting immunity. Conserved surface 

proteins are considered promising candidates for vaccines against GBS because antibodies 

directed against surface antigens can interfere with bacterial virulence factors and can promote 

complement dependent opsonophagocytosis.  

 

1.8.3 Reverse vaccinology 

For more than a century, vaccines were developed by isolating, inactivating and 

injecting the cause of the infection. This traditional approach is time-consuming and expensive. 

Moreover, it usually identifies only abundant antigens that are expressed under in vitro culture 

conditions (Andre, F. E. 2003). When the first complete microbial genome sequences became 

available in 1995, a new era, ‗the genomic era‘, began and it changed completely the approach 

to vaccine development (Rappuoli, R. 2001; De Groot, AS. 2004). This new approach, named 
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reverse vaccinology (Pizza, M. 2000; Mora, M. 2003) has provided a new impulse to the vac-

cinology field because the vaccine research starts from the genome and not from the pathogen 

itself (Capecchi, B. 2004). In reverse vaccinology, antigen discovery is achieved by using the 

integration of several techniques such as genomics, bioinformatics, and molecular biology. 

Reverse vaccinology shows several advantages respect to the conventional approach. In fact, 

it permits the identification also of less common, low expressed and/or not expressed in vitro 

antigens. Moreover, the reverse vaccinology approach can also be applied to non-cultivable 

microorganisms. One of the major disadvantages is that the reverse vaccinology can be 

applied only for the discovery of proteins antigens and not for other antigens like 

lipopolysaccharides and glycolipids (Serruto, D. 2006). The reverse vaccinology approach was 

applied to the development of a vaccine against GBS starting from the sequencing of the 

complete genome of a virulent GBS strain (2603v/r, serotype V). But a comparative genome 

hybridization (CGH) analysis showed that the genetic variability within the GBS isolates was 

too high, suggesting that more genome sequences were necessary for the identification of 

vaccine candidates (Tettelin, H. 2005). From this analysis it was clear the need to include 

genome sequences of more serotypes for the selection of protein antigens. In order to study 

the genome variability in GBS, Tettelin and coworkers sequenced the genome of six GBS 

strains that represent the most frequent disease-causing serotypes (serotype Ia strains A909 

and 515, type Ib strain H36B, type II strain 18RS21, type III strain COH1 and type V strain 

CJB111). By a comparative analysis of all available genomes, it was possible to identify two 

subgenomes: the ‗core genome‘ and the ‗variable genome‘, together defined as ‗pan-genome‘ 

(Maione, D. 2005; Medini, D. 2005). The ‗core genome‘ includes genes present in all the 

strains and constitutes around 80% of each genome. It contains all genes necessary for the 
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basic biology of the bacteria. The ‗variable genome‘ is responsible for strain diversity and 

comprises genes that are dispensable and unique to each strain. The introduction of the 

concept of the ‗pan-genome‘ represented a huge potential for the application of reverse 

vaccinology to the identification of novel vaccine candidates. The availability of the antigens on 

the bacterial surface for antibody recognition is a prerequisite for a protective immune 

response. Maione and coworkers, by using modern computer algorithms and bioinformatic 

software, selected within the GBS pan-genome the genes coding for putative surface-

associated and secreted proteins. Different bioinformatic tools were used in order to identify 

the presence of signal peptides (Signal IP, PSORT), transmembrane domains (TMPRED), 

lipoproteins and cell-wall anchored proteins (motifs), and homology to other bacterial surface 

proteins (FastA). Around 589 putative surface proteins were selected, 396 belonged to the 

core genome and 193 were variable genes (Maione, D. 2005). The proteins predicted to 

contain more than three transmembrane domains were excluded from the selection because 

they are difficult to produce in E. coli. By using an high-throughput cloning and expression 

approach, 312 of the selected GBS genes were successfully produced in E. coli. Each of the 

genes was cloned with either an N-terminal 6XHis Tag or a C-terminal GST tag, and the 

expressed proteins were purified by affinity chromatography (Maione, D. 2005; Medini, D. 

2005; Telford, JL. 2008). All the 312 purified recombinant GBS antigens were tested by an 

active maternal immunization/neonatal pup challenge mouse model of GBS infection. Briefly, 

the antigens were used to immunize intraperitoneally groups of 6–8 CD-1 female mice (6–8 

weeks of age) with a three-dose immunization schedule. After the last immunization, mice 

were mated and their pups were challenged, within 48 h after birth, with a lethal dose of GBS. 

The survival of the neonates was monitored for 3 days. Immune sera were also collected from 
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immunized mice for in vitro analysis. Immunoblot assays were used for the identification of the 

protein in GBS total protein extracts, while flow cytometry assays were carried out to confirm 

the surface exposure of the antigens. 

From this first systematic screening, four antigens were identified as capable of 

significantly increasing the survival rate of challenged infant mice. When the four antigens 

were mixed and administered simultaneously, an almost universal protection was achieved 

against challenge model using a panel of strains comprehensive of the most pathogenic GBS 

serotypes. In particular, the levels of protection reached were similar to those achieved using 

the polysaccharides-based vaccines. Only one (SAG0032) of these four antigens was part of 

the ‗core genome‘, and this protein was the already described Sip protein. The other three 

antigens – GBS67 (SAG1408), GBS80 (SAG0645), and GBS104 (SAG0649) – were present in 

the variable portion of the subgenome. 
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AIM OF THE THESIS 

 

Aim of my PhD project is the assessment of the memory B cell (MBC) and antibody 

responses to the polysaccharide and to the carrier protein of a glycoconjugate vaccine against 

Streptococcus agalactiae, also referred as, Group B streptococcus (GBS). GBS is a leading 

cause of morbidity and mortality in the neonate in US and globally; its infection gives 

bacteremia and sepsis in the first week of life as well as meningitis beyond the first week of life 

(between 8-90 days of life). Until now, no vaccine exists to prevent this disease; since 1996, 

Centers of Diseases Control (CDC) recommended intrapartum antimicrobials for women 

identified with GBS colonization, but the development of a preventive vaccine would be highly 

recommended. Immunological memory characterized by MBC and the persistence of 

antibodies are important characteristics required to a vaccine. In particular memory B cells are 

the key players to provide a faster antibody response upon antigen-re-exposure; they are 

useful to induce the generation of class-switched plasma cells secreting high-avidity antibodies 

and to maintain protective antibodies levels over time. The first part of the work has been 

dedicated to the setting up of the most appropriate assays to measure MBC frequencies 

against the carrier and the polysaccharide component of the vaccine. I have then focused my 

attention to the understanding of how immunological memory can be better induced by 

vaccination with a glycoconjugate and maintained. We can act on two fields; the presence of 

adjuvants and the possible influence of a pre-existing immunity to the carrier protein on the B 

cell response to the GBS –Ps.  
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RESULTS 

 

2.1 ELISA-based Serial Limiting Dilution Assay (sLDA)  

 

The most widely used assays to measure the frequency of antigen specific memory B 

cells are ELISpot (Slifka, MK. 1996) and more recently serial Limiting Dilution Assay (sLDA) 

(Bernasconi, NL. 2002).  

In order to evaluate the performance of the two assays for assessing frequencies of 

polysaccharide specific memory B cells induced by vaccination, we have immunized mice and 

applied the two assays in parallel to evaluate the B cell response 20-30 days after the last 

vaccine dose.   

To perform sLDA, splenocytes collected from mice vaccinated with CRM-GBS PsIII 

were plated starting from 8-4x105 cells/well in serial two-fold dilutions, 6 replicates per dilution, 

with or w/o polyclonal B cell activators (CpG 5µg/ml and IL2 1000U/ml). After 10 days of 

culture, supernatants from each single well were collected and analyzed by ELISA for the 

presence of total and antigen-specific (CRM and PsIII) IgG. Using the Optical Density (OD) 

values obtained from the ELISA results, the number of wells that were positive and negative 

for the presence of Ag-specific antibodies was determined for each cell dilution of the sLDA 

plate. The definition of positive and negative culture wells for Ag-specific antibodies has been 

based on the OD cut-off value of the assay obtained from the non-stimulated culture wells . In 

particular, the cut-off value for selecting positive culture wells was calculated as the mean OD 

value of all supernatants collected from non-stimulated culture wells plus three standard 

deviations. On the basis of the non-stimulated control OD values obtained in three different 
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experiments, the cut-off values for positivity have been fixed at OD=0.20 for the measurement 

of total IgG, OD=0.47 for CRM specific IgG and OD=0.32 for GBS- PsIII specific IgG.  

Fig.4 shows an example of layout of an ELISA plate coming from a typical sLDA assay, 

where positive and negative wells are represented with a different color code. Frequencies of 

circulating Ps and CRM specific B cells are calculated as percentage of antigen-specific MBC 

on total IgG MBC. One of the advantages of the sLDA assay is that it allows the simultaneous 

analysis in the B cell culture supernatants of carrier and Ps specific antibodies produced by 

MBC. 

 

Fig 4: Layout of an ELISA plate coming from a typical sLDA assay.  Splenocytes from 

immunized mice were plated in complete medium with 5% FBS in serial 2-fold dilutions starting 

from 8x105 cells/well, 6 replicates per dilution in 96-well U-bottom plates containing 5 µg/ml of 

CpG and 1000 units/mL of IL2. After 10 days of culture, supernatants from each single well 

were collected and analyzed by ELISA for the presence of total and antigen-specific (CRM and 

PsIII) IgG.  

 Derive the plated 
splenocytes dilution giving  
50% of total or Ag-specific  
positive wells (i.e. 
containing 1 plasma cell 
precursor/well) 

 

 Calculate frequency of 
circulating Ag.specific B 
cells  
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2.2 ELISpot (Direct and Reverse) for the MBC detection  

 

ELISpot assay is an alternative method to sLDA that has the advantage of allowing not 

only the assessment of the frequency of antigen specific memory B cells, but also of 

plasmablasts. Two different ELISpot methods have been set up and compared, the first one 

named ―Direct‖ and the second one named ―Reverse‖. 

The ―Direct‖ ELISpot allows to capture the antibodies secreted by each antigen-specific 

B cell through their direct binding to the antigen coated on the membrane of the plates. To 

perform this assay, spleen cells collected from vaccinated mice 20-30 days after the last 

vaccine dose were stimulated in bulk with 5 µg/ml CpG and 1000U/ml IL2 for 5 days. After 

stimulation, viable cells were plated on ELISpot plates coated with the antigens GBS-Ps, CRM 

and HSA as negative control or with anti-mouse Ig. After incubation O.N. at +37°C, 5% CO2, 

cells were washed away and antibodies secreted by single B cells and bound to the plate were 

revealed with a biotin-conjugated anti-mouse Ig antibody and Streptavidin-HRP. AEC substrate 

was used to stain the spots. By performing several experiments we observed that the ―Direct‖ 

ELISpot often shows a high background on HSA, used as negative control (Fig.5, Panel A). 

Furthermore the shape of the spots detected in the wells coated with CRM is not very well 

defined, making them often uncountable (Fig.5, Panel B). Instead, the spots detected in the 

wells coated with the Ps have a well defined shape and are countable easily and precisely 

(Fig.5, Panel C). 
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Fig 5: Picture of wells from a “Direct” ELISpot plate to detect IgG specific for HSA, CRM 

and GBS Ps. Splenocytes collected from vaccinated mice 20-30 days after the last vaccine 

dose were stimulated in bulk with 5 µg/ml CpG and 1000U/ml IL2 for 5 days. After stimulation, 

viable cells were plated on ELISpot plates coated with the antigens, HSA (Panel A), CRM 

(Panel B) and GBS-Ps (Panel C). After incubation O.N. at +37°C, cells were washed away and 

antibodies secreted by single B cells and bound to the plate were detected with a biotin-

conjugated anti-mouse Ig antibody. Spots were then revealed by Streptavidin-HRP followed by 

AEC substrate. 

On the other hand, the ―Reverse‖ ELISpot allows to immobilize on the membrane of the 

wells all the immunoglobulins secreted by the B cells, as the wells are coated with anti-mouse 

Ig polyclonal antibodies. Specific antibodies produced by B cells and interacting with the 

antigen are then detected by using a biotin-labeled antigen. Spots are revealed with 

Streptavidin-HRP and AEC substrate. To set up this method, CRM and plain GBS 

polysaccharide III have been biotinylated and used to detect antibodies specifically reacting 
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with them. As shown in Fig.6 by Reverse ELISpot: (Panel A) biotinylated-HSA does not show 

any background signal on negative controls; (Panel B) CRM-specific B cells are visualized with 

cleaner results than with the Direct method when detected with CRM-biotinylated antigen, as 

this technique allows to visualize spots clearly defined in their size and shape; (Panel C) clear 

spots are also obtained when biotinylated GBS-polysaccharide is used to detect antigen 

specific antibodies produced by B cells. 
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Fig 6: Picture of wells from a “Reverse” ELISpot plate to detect IgG specific for HSA, 

CRM and GBS Ps. Splenocytes collected from vaccinated mice 20-30 days after the last 

vaccine dose were stimulated in bulk with 5 µg/ml CpG and 1000U/ml IL2 for 5 days. The 

―Reverse‖ ELISpot allows to immobilize on the membrane of the wells all the immunoglobulins 

secreted by the B cells, as the wells are coated with anti-mouse Ig polyclonal antibodies. 

Specific antibodies produced by B cells and interacting with the antigen are then detected by 

using a biotin-labeled antigen, HSA (Panel A), CRM (Panel B) and GBS-Ps (Panel C). Spots 

are revealed with Streptavidin-HRP and AEC substrate. 
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The comparison between the Direct and the Reverse ELISpot to assess CRM and GBS-

Ps specific MBC shows that (Fig.7) CRM-specific MBC can be clearly measured by using the 

Reverse method, while there is no difference between the two methods in terms of measured 

frequency of polysaccharide specific MBC, but also in this case the spots are better defined 

when using the Reverse method. We have therefore demonstrated that, by performing the 

―Reverse‖ ELISpot, it is possible to increase the quality of the assay since the background on 

negative antigen (HSA) is lower, spots are more clearly defined in size and shape for all the 

antigens used and in some cases it allows the detection of higher frequencies of antigen-

specific B cells (as for CRM). 
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Fig 7: Comparison between Direct and Reverse ELISpot assays to assess CRM and 

GBS-Ps specific MBC. Frequencies of antigen-specific MBC (N°IgG MBC x106 plated cells) 

have been assessed by using Direct ELISpot (dark gray bars) and Reverse ELISpot (light gray 

bars). Bars represent the mean value and error bars represent the Standard Deviation (SD). 

CRM-specific MBC can be clearly measured by using the Reverse method, while there is no 

difference between the two methods in terms of measured frequency of polysaccharide 

specific MBC, but also in this case the spots are better defined when using the Reverse 

method. 
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Evaluating the strenghts and the limitations of the tested assays it is clear that although 

Reverse ELISpot can provide clear results, it does not allow a simultaneous analysis in the 

same well of anti-Ps, anti-CRM and total IgG antibodies, therefore requiring a labor intensive 

work to detect all these parameters simultaneously. On the other hand, B cell culture 

supernatants coming from sLDA plates, although requiring 10 days of cell culture and two days 

of ELISA assay, allow the simultaneous detection of both Ps and CRM specific antibodies. 

These considerations brought us to choose sLDA for the analysis of MBC response in mice 

vaccinated with CRM-GBS Ps glycoconjugate. 

 

 

2.3 MBC responses to the carrier (CRM) and the polysaccharide (PsIII) 

increase in presence of adjuvant  

 

In order to evaluate the effect of different adjuvants in increasing the memory B cell 

response to the conjugated polysaccharide, we have performed experiments in mice 

vaccinated with CRM-conjugated GBS polysaccharide III (CRM-GBS PsIII) with or without 

adjuvant. BALB/c mice have been immunized with three doses of CRM-GBS PsIII vaccine with 

or w/o adjuvants (Alum/MF59). Twenty-one days after the last dose, spleens have been taken 

and splenocytes isolated and put in culture with polyclonal stimuli (CpG and IL2) for 10 days. 

At day 10, supernatants have been recovered and the quantity of CRM and GBS PsIII antigen 

specific memory B cells has been evaluated by ELISA as percentage of antigen specific MBC 

on total IgG.  

On the basis of the results (Fig 8), we can demonstrate that both adjuvants 

(Alum/MF59) significantly increase the IgG MBC response to CRM (P=0.0005 and P=0.0008 
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respectively) in respect to the group of mice receiving the vaccine without adjuvant. The MBC 

response to PsIII is significantly increased by the presence of MF59 as adjuvant in respect to 

mice receiving the vaccine without adjuvant (P=0.0011). Also mice receiving the vaccine with 

Alum show an increased frequency of PsIII specific MBC, although not statistically significant. 

The P value is calculated with T Test in respect to the group immunized with the plain vaccine. 
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Fig 8: Adjuvants significantly increase the IgG MBC response to CRM and to PsIII.  Alum 

and MF59 significantly increase the IgG MBC response to CRM in respect to the group of mice 

receiving the vaccine without adjuvant (P=0.0005 and P=0.0008 respectively, Panel A). The 

MBC response to PsIII is significantly increased only in mice immunized with the MF59-

adjuvanted vaccine (P=0.0011, Panel B). The P value is calculated with T Test in respect to 

the group immunized with the plain vaccine. 
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2.4 Serum Antibody responses to the carrier (CRM) and the polysaccharide 

(PsIII) significantly increase in presence of adjuvant 

 

 

To confirm the observation that usually adjuvants have a positive effect on antibody 

responses, we investigated whether they improve the immunological responses also in the 

case of mice vaccinated with CRM-conjugated GBS polysaccharide III (CRM-GBS PsIII) with 

or without adjuvant.  BALB/c mice have been immunized with three doses of CRM-GBS PsIII 

vaccine with or w/o adjuvants (Alum/MF59). 21 days after the third dose sera have been 

collected to determine IgG and IgM antibody titers by ELISA. As shown in fig 9 the presence of 

both adjuvants, Alum and MF59, significantly increases titers of circulating IgG specific for 

CRM (P=0.0008 and 0.00009 respectively, panel A) and also for PsIII (P=0.0011 and 0.0006 

respectively, panel B).  

The comparison of the PsIII specific IgG antibodies induced by the two adjuvants shows 

that mice vaccinated with MF59 develop significantly higher titer as compare to Alum 

vaccinated mice (P= 0.0026). 
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Fig 9: Adjuvants significantly increase titers of circulating IgG specific for CRM and 

GBS-PsIII. Alum and MF59 significantly increase the IgG serum titer to CRM (P=0.0008 and 

0.00009 respectively, Panel A) and the IgG serum titer to PsIII (P=0.0011 and 0.0006 

respectively, Panel B).  The P value is calculated with T Test in respect to the group 

immunized with the plain vaccine. The anti-PsIII IgG titers induced by vaccine + MF59 are 

significantly higher than that induced by vaccine + Alum (P=0.0026, Panel B). In this case the 

P value is calculated with T Test comparing the two groups receiving vaccine + adjuvants. 
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We also assessed the presence of circulating IgM, but only anti-GBS-PsIII antibodies 

were detectable with a statistically significant increase in mice receiving the vaccine with 

adjuvants as compared to mice receiving the plain vaccine (P=0.01 and 0.003 for Alum and 

MF59 respectively) (Fig 10). No detectable anti-CRM IgM circulating antibodies were induced 

when mice were immunized both in presence or absence of adjuvants (data not shown). 
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Fig 10: Adjuvants significantly increase titers of circulating anti-PsIII specific IgM. 

Administration of the glycoconjugate vaccine with Alum and MF59 significantly increase 

the IgM serum titer against PsIII (P=0.01 and 0.003 respectively). The P value is 

calculated with the T Test in respect to the group immunized with the plain vaccine. 
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2.5 Priming with CRM promotes the generation of a pool of MBC specific 

for the PsIII either in presence or absence of adjuvant 

 

Beyond the presence of an adjuvant, also a pre-existing immunity to the carrier protein 

can influence the MBC response to the polysaccharide component.  To evaluate the effect of a 

priming with the carrier CRM on the GBS-PsIII response in terms of MBC, BALB/c mice of 6 

weeks have been primed with CRM+Alum/MF59 or Alum/MF59 and than immunized i.p. 2 

times with CRM-GBS PsIII conjugated vaccine with or without adjuvants (Alum or MF59). As 

previously described, to measure antigen specific MBC, spleens have been taken 21 days 

after the last dose and splenocytes isolated and put in culture with polyclonal stimuli (CpG and 

IL2) for 10 days. At day 10, supernatants have been recovered and the quantity of CRM and 

GBS PsIII antigen specific memory B cells have been evaluated by ELISA as % of antigen 

specific MBC on total IgG. By comparing naïve to primed mice, on the basis of the 

glycoconjugate vaccine they received, primed mice show a MBC response to the 

polysaccharide significantly increased when the glycoconjugate vaccine is administered w/o 

adjuvant (P=0.02) or with Alum (P=0.07) (Fig.11, Panel A and B). When the glycoconjugate 

vaccine is administered with MF59, it induces comparable MBC response in naïve and primed 

mice. Since we confirm the previous observation that immunization of naïve mice with MF59 

induces already a significant increase in the frequency of anti-Ps specific MBC (Fig.8, Panel B) 

and (Fig.11, Panel A) priming with the carrier does not induce any further increase of MBC 

frequency in primed mice (Fig.11, Panel B).   
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Fig 11: Priming with the carrier CRM has a positive effect on the subsequent MBC 

response to a glycoconjugate vaccine administered in presence or absence of 

adjuvants. (Panel B) Primed mice receiving a glycoconjugate vaccine administered with Alum 

or w/o adjuvant show a statistically significant increase in the frequency of polysaccharide 

specific MBC  as compared to naïve mice (Panel A). Since MF59 significantly increases the 

IgG MBC response to PsIII already in naïve mice (Panel A), no further increase is observed in 

terms of MBC frequency in primed mice (Panel B). The P value is calculated with T Test in 

respect to the group of naïve mice immunized with the corresponding glycoconjugate vaccine. 
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The frequency of carrier specific (CRM) MBC has been also evaluated in all groups of 

mice (Fig.12) after the glycoconjugate vaccination. On the basis of the results, primed mice, as 

compared to naïve mice, show an increase of the CRM specific MBC response independently 

from the received vaccine (P=0.05 for Alum, 0.01 for MF59 and 0.0004 for plain vaccine).  
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Fig 12: Priming with the carrier affects the subsequent MBC response to CRM after 

immunization with the glycoconjugate-vaccine administered in presence or absence of 

adjuvants. (Panel B) Primed mice receiving the glycoconjugate vaccine with or w/o adjuvants 

show an increase of the CRM specific MBC frequencies (P=0.05 for Alum, 0.01 for MF59 and 

0.0004 for plain vaccine) as compared to naïve mice receiving the corresponding vaccine 

(Panel A). The P value is calculated with T Test in respect to the group of naïve mice 

immunized with the same glycoconjugate vaccine. 
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2.6 Priming with CRM promotes enhanced antibody response to PsIII also 

in absence of adjuvant 

 

To evaluate the effect of a priming with the carrier CRM on the GBS-PsIII response in 

terms of circulating serum IgG titers, BALB/c mice of 6 weeks have been primed with one 

injection of CRM+Alum/MF59 or Alum/MF59 as control and than vaccinated i.p. 2 times with 

CRM-GBS PsIII conjugated vaccine with or without adjuvants (Alum or MF59). Sera have been 

collected at different time points after immunization: 21 days after priming and 21 days after 

the first and the second dose of glycoconjugate vaccine and an ELISA assay on CRM and 

PsIII has been performed to determine circulating antibody titers. In order to analyze if priming 

with one dose of CRM with adjuvant is able to induce detectable anti-CRM antibody titers and 

how they increase after glycoconjugate-vaccination, we have assessed the serum IgG 

antibody titers to the carrier CRM developed after priming and after vaccination (Fig.13). We 

have observed that priming with CRM allows to reach a mean antibody titer of 367 GMT. After 

two doses of glycoconjugate vaccination, primed mice (Panel B) develop a higher IgG antibody 

response to the carrier as compared to the naïve mice (Panel A) in presence of Alum 

(P=0.0002), or MF59 (P=0.002) or in absence of adjuvant (P=0.0001). It is remarkable to note 

that, in primed mice the anti-CRM IgG antibody titers reached already after one dose of 

glycoconjugate vaccine are comparable both in presence or absence of adjuvant. No further 

significant increase in the CRM antibody titers is observed after a second dose of vaccine with 

or without adjuvant.   
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In naïve mice, it is necessary to administer two doses of vaccine with adjuvant in order 

to reach an anti-CRM antibody response comparable to that obtained in primed mice already 

after one single dose. Furthermore, if in naïve mice the vaccine is administered without 

adjuvant, the antibody response reached after the second dose is significantly lower (about 1 

Log) than in mice receiving the vaccine with both adjuvants. 
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Fig 13: Priming with one dose of CRM with adjuvant is able to induce detectable anti-

CRM antibody titers. Detectable anti-CRM IgG titers are measurable 21 days after priming 

with the carrier CRM administered with adjuvant (GMT=367). After  two doses of 

glycoconjugate vaccination primed mice (Panel B) develop a higher IgG antibody response to 

the carrier as compared to the naïve mice (Panel A) in presence of Alum (P=0.0002) or MF59 

(P=0.002) or in absence of adjuvants (P=0.0001). The P value is calculated with T Test in 

respect to the group of naive mice immunized with the same glycoconjugate vaccine. 
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In figure 14 the anti-polysaccharide circulating IgG measured in naïve (Panel A) and 

primed mice (Panel B) are represented. By comparing primed to naïve mice, on the basis of 

the glycoconjugate vaccine they received, the IgG antibody response to the polysaccharide is 

significantly increased in primed mice when the glycoconjugate vaccine is administered w/o 

(P=0.002) or with Alum (P=0.0005), as compared to naive mice receiving the same vaccination 

(Fig.14, Panel A and B). When the glycoconjugate vaccine is administered with MF59, since it 

already increases the IgG serum response to PsIII in naïve mice as compared to the other 

groups (Panel A), no further significant increase is observed in terms of serum IgG titers in 

primed mice (Panel B). It is interesting to observe that primed mice, that have a mean anti-

CRM IgG titer of 367 GMT at the day of the glycoconjugate vaccination (21 days post priming), 

respond equally well to the polysaccharide showing comparable anti-Ps IgG antibody titers 

when receiving the vaccine with both adjuvants or w/o (Fig 14, Panel B).  
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Fig 14: Priming with the carrier CRM has a positive effect on the subsequent anti-

polysaccharide IgG response to a glycoconjugate-vaccine.  Primed mice show a 

statistically significant increase in the frequency of anti-Ps IgG titers (Panel B) as compared to 

naïve mice (Panel A) when receiving the glycoconjugate vaccine with Alum or w/o adjuvant. 

Since MF59 already increases the IgG serum response to PsIII in naïve mice (Panel A), no 

further significant increase is observed in terms of serum IgG titers in primed mice (Panel B). 

The P value is calculated with T Test in respect to the group of naive mice immunized with the 

same glycoconjugate vaccine. 

 

 

 

 

A B 

Groups of mice:

1) Vaccine+Alum

2) Vaccine+MF59

3) Vaccine



49 

 

DISCUSSION 

Glycoconjugate vaccines have dramatically reduced the rate of invasive infections due 

to S. pneumoniae, H. influenzae and N. meningitidis in children. The inability of pure 

polysaccharides to induce sustained immune responses has required the development of 

vaccines containing these potent vaccine candidates conjugated to a carrier protein. Chemical 

conjugation of the polysaccharides to highly immunogenic modified bacterial proteins used as 

carriers (such as tetanus toxoid, diphtheria toxoid, crossreactive material 197, CRM197) has 

been applied to several conjugate vaccines already in the market or in ongoing clinical studies; 

some examples are reported in the Box 1: 

Box1: Polysaccharide and protein–polysaccharide conjugate 
vaccines 
 

Haemophilus influenzae type b vaccines 
 
Polysaccharide vaccines for Haemophilus influenzae type b (Hib) were first used in 1985 but 

were rapidly replaced in 1989 by protein–polysaccharide conjugate vaccines containing the 

Hib polysaccharide polyribosyl ribitol phosphate chemically conjugated to a protein carrier, 

such as diphtheria toxoid, tetanus toxoid or meningococcal outer membrane protein. These 

vaccines continue to be widely used either alone or in combination with other vaccine antigens 

for the prevention of Hib-mediated disease, mainly among preschool children. 

 

Pneumococcal vaccines 
 
A vaccine containing 14 different polysaccharides from Streptococcus pneumoniae was 

licensed in the United States in 1977 and was replaced by a 23-valent vaccine in 1983 for the 

prevention of pneumococcal disease in the elderly. This vaccine was first introduced in the 

United Kingdom in 2003 for universal immunization of adults aged over 65 years. A protein–

polysaccharide conjugate pneumococcal vaccine containing seven serotypes was first used in 

the United States in 2000 (and in the United Kingdom in 2006). In this vaccine, the carrier 
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protein is crossreacting material 197 (CRM197; which contains a glycine to glutamic acid point 

mutation at position 52 in the A subunit of diphtheria toxoid). Two new conjugate vaccines are 

in development, one containing 10 polysaccharides (conjugated to protein D from H. 

influenzae) and another with 13 serotypes (conjugated to CRM197). 

 
 

Meningococcal vaccines 
 
A quadrivalent meningococcal vaccine containing serogroup A, C, Y and W135 

polysaccharides of Neisseria meningitidis was first licensed in the United States in 1981, and a 

bivalent A plus C vaccine is also available in some countries. The polysaccharide of serogroup 

A is N-acetyl mannosamine-1-phosphate, that of serogroup C is α2-9 N-acetyl neuraminic acid 

(NANA), that of serogroup Y is a co-polymer of NANA with glucose and that of serogroup 

W135 is a co-polymer of NANA with galactose. Serogroup C (MenC) conjugate vaccines were 

first used in the United Kingdom in 1999 (conjugated to either tetanus toxoid or CRM197), and 

a quadrivalent A, C, Y and W135–diphtheria toxoid conjugate vaccine has been available in 

North America since 2005. Several new combination conjugate vaccines are in development, 

including A, C, Y and W135–CRM197 and A, C, Y and W135–tetanus toxoid. 

 

This thesis focuses on the development of a glycoconjugate vaccine against Group B 

streptococcus (GBS). GBS is a leading cause of morbidity and mortality in the neonate in US 

and globally; its infection gives bacteremia and sepsis in the first week of life as well as 

meningitis beyond the first week of life. Until now, no vaccine exists to prevent this disease; 

since 1996, CDC recommended intrapartum antimicrobials for women identified with GBS 

colonization, but the development of a preventive vaccine would be highly recommended. 

The most cost-effective and potentially lasting method of preventing invasive group B 

streptococcal infections in all age groups is active immunization (Mohle-Boetani, JC. 1993). 

The decline in the incidence of early-onset GBS disease in neonates that has been associated 
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with the widespread use of maternal intrapartum antibiotic prophylaxis could also be 

associated with the emergence of antibiotic-resistant organisms (Pearlman, MD. 1998; Schrag, 

SJ. 2000). 

Phase 1 and phase 2 trials in healthy adults have tested conjugate vaccines for the five 

serotypes of GBS that account for an estimated 98% of invasive disease cases in the United 

States. Further, successful preclinical studies of GBS types VI and VIII conjugate vaccines 

(serotypes prevalent thus far only in Japan) suggest the ability, if necessary, to extend vaccine 

coverage (Paoletti, LC. 1999) 

 Vaccines against invasive GBS disease must be safe and sufficiently immunogenic to 

evoke protective and durable concentrations of GBS-specific antibodies. 

A good vaccine has to be characterized by immunological memory and persistence of 

antibodies. In this thesis we have focused our attention mainly on the characterization of 

immunological memory to a glycoconjugate vaccine, since only few studies have analyzed it so 

far. Memory B cells (MBC) are key players to provide a faster antibody response upon antigen-

re-exposure, to induce generation of class-switched plasma cells secreting high-avidity 

antibodies and to maintain protective antibody levels over time. 

In this work two assays, serial limiting dilution (sLDA) and ELISpot, have been 

compared to measure frequencies of MBC against the carrier and the polysaccharide 

component of the vaccine, in order to define the best tool to measure immunological memory. 

Our results suggest that both methods can be used to assess low frequencies of memory B 

cells, such as the polysaccharide specific-memory B cells. 
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sLDA is more laborious, but offers the advantage of measuring simultaneously in the B 

cell culture supernatants the frequency of carrier (CRM) and polysaccharide (PsIII) memory B 

cells.  

 On the other hand, ELISpot is the most widely used method to assess frequencies of 

MBC or plasmacells. The enzyme-linked immunospot (ELISpot) assay was originally 

developed for the detection of individual antibody secreting B-cells (Slifka, MK. 1996). When 

the ELISpot method is used, the created spots on the membrane show an imprint of those 

cells originating them, therefore giving the advantage of providing an image of the single 

antibody secreting cells producing antibodies specifically binding to the antigen coated on the 

membrane of the well. The other advantage of this method is the fact that the spots are long 

lasting, and they can be evaluated visually as well as by means of image analysis. 

Unfortunately, the procedure might present low sensitivity and reproducibility due to variable 

background intensity problems and difficulties in separating true from false spots. We have 

therefore attempt to improve the standard method, named in this thesis as ―Direct‖, by 

reverting the principle of the assay and setting up the so called ―Reverse ELISpot‖.   

We have set up and compared the two different of ELISpot methods: the ―Direct‖ and 

the ―Reverse‖. The principle at the basis of the ―Direct‖ ELISpot is that it allows to capture the 

antibodies secreted by each antigen-specific B cell through their direct binding to the antigen 

coated on the membrane of the plates. Otherwise, the principle at the basis of the ―Reverse‖ 

ELISpot is that all the immunoglobulins secreted by the B cells are captured on the membrane 

of the well on the ELISpot plate by interacting with anti-mouse Ig polyclonal antibodies coating 

the wells of the plate. Antigen specific antibodies are then revealed by binding to a tagged 

antigen. As shown in the results, for the detection of the carrier protein CRM specific MBC, the 



53 

 

―Reverse‖ assay is the only one that allows to see spots clearly defined in size and shape; 

while when measuring GBS-Ps MBC comparable results are obtained in both ELISpot assays. 

Unfortunately ELISpot has some limitations, since, differently by sLDA, it does not allow 

simultaneous analysis in the same well of carrier and Ps specific antibodies produced by MBC. 

We have therefore choosen sLDA for the analysis of MBC response in mice vaccinated with 

CRM-GBS Ps glycoconjugate.  

The development of immunological memory can be positively influenced by the 

presence of adjuvants during the vaccination protocol. Adjuvants represent an important 

component of many modern vaccines, as they increase the immunogenicity of co-administered 

antigens such as purified, soluble recombinant proteins, which are ―per se‖ less immunogenic 

than whole or split, killed or attenuated pathogens used in the past. There is still a debate 

ongoing on the role of adjuvants in increasing the response to Ps. Although a number of 

glycoconjugate vaccines induce high antibody titers without adjuvants, in many cases 

adjuvants are used to induce a protective immune response.  

As far as GBS is concerned, the majority of published studies on human clinical trials 

have described the use of conjugate vaccines without an adjuvant. In one study however, 

subjects received a TT-GBS Ps III glycoconjugate vaccine in which the vaccine was adsorbed 

with aluminum hydroxide. This did not enhance the immune response to either the 

polysaccharide or the tetanus component of the vaccine (Paoletti, LC, 2001). 

We have here demonstrated that in naive mice MF59 induces a significant increase of 

the IgG memory B cell response to both components of the glycoconjugate vaccine CRM and 

GBS-PsIII as compared to mice receiving the vaccine with Alum or plain. The response to the 

vaccination has been analyzed also in terms of circulating IgG and IgM specific antibodies 
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present in sera. On the basis of the antibody titers measured, is relevant that MF59 and Alum 

significantly increase the IgG serum antibody response to CRM and PsIII as compared to mice 

receiving the plain vaccine. Titers of circulating antigen-specific IgM are also influenced by the 

presence of adjuvant in the vaccine, but IgM are induced only in response to the  

polysaccharide component of the glycoconjugate vaccine. No detectable IgM antibodies have 

been measured against the carrier protein CRM. 

Since, as reported by Paoletti et al., there is no clear-cut effect of Alum in enhancing the 

immune response to the polysaccharide in adults, based on the results we obtained in animals 

we can speculate two possible explanations. On one hand, MF59 instead of Alum plays a 

major role in increasing the memory B cell response and the circulating antibody levels to the 

polysaccharide component of the vaccine. On the other hand, the results obtained in clinical 

trials reflect the non-immunological naivety of human adults, in particular to the protein 

component of the glycoconjugate vaccine. This, as a consequence, may favor in humans the 

response to the vaccine, also in absence of adjuvant. 

In case of neonatal immunization, the perspective is completely different. It is well 

known that vaccination in early infancy is not ideal, as the immune response at this age is 

generally of low magnitude and memory is more difficult to establish, leading to low 

persistence of protective antibody levels. One clear example comes from studies performed to 

analyse the memory and antibody response to MenC vaccination in different age groups. 

Antibody titers induced by infant immunization, even after three doses of MenC glycoconjugate 

vaccine, do not persist well; antibody levels fall below the protective threshold in 50% of infants 

by 1 year of age, and only as few as 12% of vaccinated infants have persistent seroprotection 

by 4 years of age (Snape, MD. 2005). Vaccination induces sustained levels of protective 
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antibody in a high proportion of vaccinees only much later in childhood or in adolescence 

(Snape, MD. 2008).  

These observations can bring up adjuvants as a tool to increase the immunogenicity of 

glycoconjugate vaccines in infants, leading also to a better persistence of protective antibody 

levels and therefore to a better vaccine effectiveness.   

Since, as we mentioned above, the non-immunological naivety of the adult human 

population might have an effect in the response to the glycoconjugate vaccine, we next 

evaluated the influence of a pre-exisiting immunity to the carrier protein CRM, in the 

development of the memory B cell and the IgG antibodies response to subsequent 

vaccinations with the glycoconjugate vaccine. 

By our results, priming with CRM has such an effect on the subsequent vaccination with 

the glycoconjugate vaccine, that the presence or absence of the adjuvant in the vaccine 

formulation becomes less relevant in affecting the immune response to both components of 

the vaccine. Therefore, in primed mice MBC and antibody IgG responses to the GBS 

polysaccharide III are similar when the glycoconjugate vaccine is administered with or w/o 

adjuvants. Overall, the frequencies of MBC and the level of circulating polysaccharide specific 

antibodies are significantly increased as compared to naive mice receiving the same 

formulation of vaccine. This remarkable advantage of being primed to the carrier protein is less 

evident when the vaccine is administered with MF59 as adjuvant. In this case naive and 

primed mice develop an immune response to the glycoconjugate vaccine of similar magnitude. 

This result can be explained with the strong adjuvant effect that MF59 has already in naive 

mice, in significantly increasing their capacity to respond to both Ps and CRM components of 
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the vaccine. Therefore, MF59 does not provide any further advantage to mice receiving 

priming with CRM as compared to naive mice receiving the same vaccine.  

Priming with CRM brings also other advantages in response to the polysaccharide. We 

have observed that good anti-polysaccharide antibody titers are reached already after two 

doses of vaccine, either in presence or absence of adjuvant. Naive mice, instead, require 

adjuvant and three doses of the vaccine in order to develop anti-Ps antibody titers comparable 

to those observed in primed mice. To our knowledge this study is the first evidence of the 

positive effect of being primed to the carrier protein in the development of a MBC response to 

the polysaccharide after GBS-glycoconjugate vaccination, also in absence of adjuvants. It also 

highlights that being primed to the carrier protein requires less vaccine doses to develop higher 

frequencies of MBC and good levels of anti-polysaccharide circulating antibodies. 

Other studies have described the impact of coadministration of glycoconjugate-vaccines 

with different carriers on the enhancement of the antibody response to the polysaccharide. The 

literature reports that the best recognized form of immune enhancement occurs when vaccines 

using tetanus toxoid (TT) as the conjugate protein are coadministered with Hib-TT. Anti-PRP 

(polyribosyl-ribitol-phosphate) antibody concentrations increase when Hib-TT is 

coadministered with meningococcal serogroup C-TT conjugate (MenC-TT), or 10-valent 

pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) 

that includes 18C-TT (Kitchin, NRE. 2007; Southern, J. 2006; Tejedor, JC. 2006; Schmitt, H. 

2007; Knuf, M. 2009). Immune enhancement mechanisms also contribute to optimal 

responses to vaccines that use DT and CRM197 as conjugate proteins. In general, CRM197 

and TT when engaged as carrier lead to higher anti-polysaccharide responses than DT, as 

exemplified by Hib-TT/CRM197 versus Hib-DT (Bulkow, LR. 1993), and meningococcal 
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ACWY-TT/CRM197 versus ACWY-DT (Rennels, M. 2004; Snape, MD. 2008; Ostergaard, L. 

2009). It has also been demonstrated that DT/CRM197 glycoconjugates maximize their 

antibody immune response in presence of a DT/CRM197 priming, that probably contributes to 

a more efficient T-cell help (Granoff, DM. 1994; Shelly, MA. 2001; Granoff, DM. 1993). 

Unlike TT, whole cell pertussis (Pw) antigen has an adjuvant effect on TT, but not DT, 

resulting in enhanced responses to conjugate vaccines using TT as carrier. The effect of 

DTPw vaccines on the immunogenicity of coadministered protein conjugate vaccines in clinical 

trials was recently reviewed by Dagan et al (Dagan, R.  2010). 

    Clearly, more studies are needed to address the effect of adjuvants, in particular in 

immunologically naive backgrounds, at increasing the development of a persistent immune 

response to polysaccharides. Adjuvants could be useful in the development of a GBS vaccine 

targeting infants or children in their first years of life, where is important to increase the 

persisting antibodies to the polysaccharide that are generally low due to the immaturity of their 

immune system.   

Furthermore, since new and different carriers are now under evaluation for the 

development of novel glycoconjugate vaccines, a better understanding of the effect of being 

primed to the carrier protein becomes fundamental in the analysis of the immune response to 

the vaccine. This might direct the choice of the best carrier protein to be used for the 

glycoconjugate vaccine. Beyond Tetanus toxoid and CRM 197, other candidate proteins have 

been used already in animal studies but until now, none of them have yet progressed to 

human trials. Therefore, the effect of being primed to the target carrier protein should be 

extensively evaluated, in particular considering that until now the ideal timing of administration 
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of a GBS vaccine is considered to be early in the third trimester of pregnancy or during 

adolescence. 

In the last five years, many human trials with GBS conjugate vaccines have been 

completed. These include trials in pregnant women, trials with trivalent conjugate vaccines and 

trials of persistence of antibody to 2 years post vaccination. This activity is grounds for 

considerable optimism and suggests that a suitable vaccine might be developed and trialed 

over the next 5 years. Coupled with this, recent recommendations for routine immunization 

during pregnancy with H1N1 and other influenza vaccines in many countries suggest that this 

approach might be now more acceptable. In the next 5 years is likely to see further Phase II 

human studies with capsular conjugate vaccines, monovalent and polyvalent, with carrier 

proteins other than tetanus, studies of their immunogenicity and reactogenicity in pregnant 

women and increased efforts to educate the general public (including pregnant women) 

regarding GBS and the potential for its prevention through vaccination. There is a real 

possibility that such efforts might now lead to a Phase III clinical trial to assess the safety and 

efficacy of a GBS conjugate vaccine in pregnant women. 
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MATERIALS AND METHODS 

 

4.1 Mice 

 

Female BALB/c mice of 6 weeks were purchased from Charles River Laboratories and 

maintained in the Novartis Animal Facility (Siena, Italy). Animal studies were conducted in 

accordance with Italian laws regarding animal protection and with European Community 

Council Directive 86/609/EEC for the protection of animals used for experimental purposes. All 

experiments were approved by the local Institutional Animal Care and Research Advisory 

Committee and authorized by the local government. 

 

 

4.2 BALB/c mouse immunizations 

 

In order to evaluate the effect of different adjuvants in increasing the memory B cell 

response in a glycoconjugate vaccine against GBS; BALB/c mice were immunized 

intraperitoneally (i.p.) with three doses of CRM-GBS –PsIII conjugated vaccine (Vaccine) with 

or without adjuvants (Alum/MF59); negative control mice received three doses of Alum or 

MF59 or PBS alone. Sera was obtained 14 days after the second dose and 21 days following 

the final immunization to evaluated the IgG and IgM antibodies response versus the carrier 

CRM e the GBS- PsIII by ELISA assay. Then to evaluate the MBC response, spleens have 

been taken from 20 to 30 days after the last dose (Fig 15).  
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D55D0 D21 D35

+  spleen to

measure

MBC
 

Fig 15: Example of a schedule of vaccination where BALB/c mice have been immunized three 

times with CRM-GBS PsIII conjugated vaccine with or without adjuvants (Alum or MF59). 

 

To investigate the influence of a pre-existing immunity to the carrier protein CRM on the GBS-

PsIII response in terms of MBC; BALB/c mice were primed with CRM+Alum/MF59 or 

Alum/MF59 and then immunized 2 times with the CRM-GBS PsIII conjugated vaccine with or 

without adjuvant (Alum or MF59). Sera were obtained 21 days after priming and 21 days after 

the first and the second dose to measured the antibody response against the carrier CRM and 

the GBS PsIII by ELISA assay. To evaluate the MBC response, spleens have been taken from 

20 to 30 days after the last dose (Fig 16). All animals were treated in accordance with 

institutional guidelines.  

 

D63D0 D21 D42

+  spleen to

measure

MBC(CRM +Alum/MF59)-PRIMING
 

 

Fig 16: Example of a schedule of vaccination where BALB/c mice have been primed with CRM 

+ Alum/MF59 or PBS as control and then immunized two times with CRM-GBS PsIII 

conjugated vaccine with or without adjuvant (Alum or MF59).  
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4.3 Splenocytes preparation  

 

Spleen are taken from donor BALB/c mice from 20 to 30 days after the last 

immunization and splenocytes were prepared by homogenization than washed and diluted in 

complete medium (RPMI with 100 units/mL of penicillin,100 µg/mL of streptomycin, 2 mM of L-

glutamine, nonessential amino acids, sodium pyruvate and 0.5 mM of β-mercaptethanol) with 

5% Fetal Bovine Serum (FBS) (Hyclone). 

 

 

4.4 Enumeration of CRM and GBS-PsIII-Specific Memory B Cells (MBC) by 

Serial limiting dilution assay (sLDA) 

 

  Frequencies of MBC were determined by the ELISA-coupled serial-limiting dilution 

assay. Splenocytes  were plated in 0.2 ml of RPMI with 5% FBS in serial 2-fold dilutions, 6 

replicates per dilution, starting from 8X105 cells/well, in 96-well U-bottom plates containing 5 

µg/ml of a phosphorothioate CpG oligonucleotide (ODN 1826) and 1000 units/mL of rhIL-2 

(Proleukin, Novartis). Parallel control cultures of splenocytes were run in medium alone. On 

day 10, individual supernatants were collected and kept at -20 °C until tested by ELISA assay 

for their content in CRM and GBS PsIII-specific and total IgG. ELISA assays were run on 

Maxisorp plates (Nunc) pre-coated with either CRM 197 and GBS- PsIII (1µg/ml in PBS, pH 

7.5), or a polyclonal anti-mouse IgG (Sigma) (5 µg/mL in PBS, pH 7.5) ON at +4°C. Then 

plates are saturated with 1% BSA for 1 h at +37°C. Supernatants are added at 1:2 dilution and 

incubated for 2 hours at +37°C. Antibodies are revealed with an alkaline-phosphatase-

conjugated anti-mouse IgG (1:4000 in PBS, 0.05% Tween, 3% BSA), followed by incubation 
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with the substrate p-nitrophenylphosphate (pNPP) (Sigma). Using the OD values obtained 

from ELISA results, the number of wells that were positive and negative for the presence of 

antigen-specific antibodies was determined for each cell dilution of the sLDA plate. The OD 

obtained from the non-stimulated cultures served as a cut-off in order to define the positive and 

negative culture wells for antigen-specific antibodies. Without polyclonal stimuli, memory B 

cells are not expected to differentiate into plasma cells and, therefore, the antibodies detected 

in non-stimulated culture wells correspond to pre-existing antigen-specific plasma cells. To 

eliminate the ―background‖ antibodies from pre-existing antigen-specific plasma cells, the cut-

off for selecting positive culture wells was calculated as the mean OD value of all supernatants 

collected from non-stimulated culture wells plus three standard deviations. On the basis of the 

non-stimulated control OD values obtained in three different experiments, the cut-off values for 

positivity have been fixed at OD=0.20 for the measurement of total IgG, OD=0.47 for CRM 

specific IgG and OD=0.32 for GBS- PsIII specific IgG.  

The splenocytes dilution containing one antibody-secreting cell precursor was derived 

by applying the Reed and Muench algorithm (Reed, LJ. 1938, 123) to the distribution of 

antibody positive and -negative wells among replicates. Frequencies of CRM and GBS PsIII-

IgG secreting cell precursors (CRM-IgG MBC and PsIII-IgG MBC) were expressed as 

percentage of the total IgG MBC precursors measured.  
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4.5 “Direct” ELISpot assay to detect memory B cell responses 

 

In the ―Direct‖ ELISpot, 96 wells ELISpot plates (Millipore MultiScreen HTS-HA Billerica, 

MA, US) were coated with 100 μl/well of PBS containing human serum albumin (HSA), CRM 

(at 5 μg/ml), GBS PsIII-HSA (at 10 μg/ml) and 5 μg/ml of goat Anti-mouse Ig (SBA cat 1010-

01), for 16-20 hrs at +4°C. Unspecific binding sites were blocked with 200 μl of PBS containing 

10% FBS for 2 hrs at room temperature. 

To enumerate antigen specific memory B cells, splenocytes were cultured for 5.5 days 

at +37°C, 5% CO2 in complete medium containing 5 μg/ml of phosphorothioate CpG 

oligonucleotide (ODN 1826) and 1000 units/mL rhIL-2 (Proleukin, Novartis).  

Suspensions of 4-8 x 106 splenocytes in complete medium were seeded in triplicate 

wells and serially diluted 2-fold up to the 7th dilution, in a final volume of 100 μL/well. 

Plates were incubated at +37°C, 5% CO2 for 20 hours before stopping the assay by 

extensive washing with PBS 0.05% Tween 20 (Sigma). Spots of antibody secreting cells were 

revealed by adding 100 μl/well of PBS containing Biotinylated Anti-mouse Ig antibody (BD 

Pharmingen cat.553999) and 1% of bovine serum albumin (Sigma Aldrich). After 2 hours, 

plates were washed and further incubated for  30 min with 100 μL/well of PBS containing 1.25 

μg/ml of horse radish peroxidase (HRP)-conjugated streptavidin (Endogen, Cambridge, MA, 

US).  

Plates were then stained in the dark with the HRP substrate AEC kit (Sigma) for 40 

minutes and then extensive washings with de-ionized water. Antigen-specific and total Ig 

antibody-secreting cells were enumerated using the CTL Immunospot S5 UV Analyzer (CTL 

Europe, Bonn, Germany).  
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4.6 “Reverse” ELISpot assay to detect memory B cell responses 

 

In the ―Reverse‖ ELISpot, 96 wells ELISpot plates (Millipore MultiScreen HTS-HA 

Billerica, MA, US) were coated with 100 μl/well of PBS containing 5 μg/ml of goat Anti-mouse 

Ig (SBA cat 1010-01) for 16-20 hrs at 4°C. Unspecific binding sites were blocked with 200 μl of 

PBS containing 10% FBS for 2 hrs at room temperature. 

To enumerate antigen specific memory B cells, splenocytes were cultured for 5.5 days 

at +37°C, 5% CO2 in complete medium containing 5 μg/ml of phosphorothioate CpG 

oligonucleotide (ODN 1826) and 1000 units/mL rhIL-2 (Proleukin, Novartis).  

Suspensions of 4-8 x 106 splenocytes in complete medium were seeded in triplicate 

wells and serially diluted 2-fold up to the 7th dilution, in a final volume of 100 μL/well. 

Plates were incubated at 37°C, 5% CO2 for 20 hours before stopping the assay by 

extensive washing with PBS 0.05% Tween 20. Spots of antibody secreting cells were revealed 

by adding 100 μl/well of PBS containing biotynilated antigens like GBS PsIII (5µg/ml), CRM 

and HSA (0.5µg/ml both) and 1% of bovine serum albumin. After 2 hours plates were washed 

and further incubated for 30 min with 100 μL/well of PBS containing 1.25 μg/ml of horse radish 

peroxidase (HRP)-conjugated streptavidin.  

Plates were then stained in the dark with the HRP substrate AEC kit for 40 minutes and 

then extensive washings with de-ionized water. Antigen-specific and total Ig antibody-secreting 

cells were enumerated using the CTL Immunospot S5 UV Analyzer (CTL Europe, Bonn, 

Germany). 

 



65 

 

4.7 ELISA assay for the detection of CRM and PsIII specific mouse IgG and 

IgM antibodies 

 

ELISA assay was performed using sera from single mice in each group. Flat bottom, 

Maxisorp 96 well plates (Nunc, Thermo Scientific) were coated with CRM and GBS-PsIII-HSA 

(1 µg/ml both) and incubated at 4°C overnight (ON). Plates were washed with PBS containing 

0.05% Tween-20, and blocked with 1% bovine serum albumin (BSA) (Sigma). Following 

washing as described, plates were incubated for 2 hr at +37 °C, with 8-fold serially diluted sera 

in 0.1% BSA in PBS with 0.05% Tween-20. Plates were washed and incubated for 2 hr at 37 

°C with anti-mouse IgG or anti-mouse IgM, both alkaline phosphatase conjugate (SBA) 

followed by development with pNPP liquid substrate (Sigma) for 40 min. OD values were 

determined at 405/540 nm by spectrophotometry. 
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