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I. INTRODUCTION 

The interest in the genesis, the meaning and the function of the cerebral rhythms and, more 
generally, in the neural dynamics, has grown rapidly in the last years due to the essential role that 
such dynamics seems to play in many processes of elaboration in the cortex, including 
phenomena such as perception, attention, learning, memory, motion, maybe consciousness. This 
issue will likely become increasingly prominent in the proximate future involving different but 
correlated disciplines such as neurosciences, cognitive sciences, psychology, neurology. 

The rhythmic activity is an essential property of neural groups and it is known since the first 
electroencephalographic recordings made by Berger in the twenties [Berger, 1929]. It is organized 
in complex patterns not yet completely known, that depend on the brain state (e.g. sleep/waking, 
relaxation/excitation), on the task (cognitive or motor) and on the subject who performs it during 
the measurement. Due to the limited temporal resolution of metabolic neuroimaging techniques 
(such as functional magnetic resonance (fMRI) and positron emitting tomography (PET)), human 
neural dynamics are studied in a non-invasive way through techniques based on the recording of 
electromagnetic fields on the scalp: electroencephalography (EEG) and magnetoencphalography 
(MEG). For this reason, this thesis is focused almost exclusively on data recorded through EEG. 

The study of the neural rhythms consists of two main aspects: the spatial location and the 
frequency band. However, these aspects do not fully cover the quantity of information carried by 
the EEG signal. Recent studies concentrated on connectivity indices between signals, in order to 
highlight the correlation between the signals themselves, their synchronization or, more generally, 
the presence of connections between the cerebral areas involved. 

The variety of mechanisms that drive the cortical dynamics, the complexity of their mutual 
interactions and the lack of analysis techniques universally accepted, have boosted the interest in 
computational, biologically inspired models. As is stressed in recent works [Kiebel et al., 2008] 
currently there’s not only uncertainty on which is the most convenient way for analyzing EEG 
data, but also on the mechanisms that generate the cortical rhythms, on their role in the cerebral 
elaboration and on the information that they carry. 

In the scientific literature there are essentially two main typologies of mathematical models 
inspired by biology, that can be used to study the cortical dynamics and the behavior of neural 
populations. The first uses networks consisting of a huge number of neurons, in which each unit is 
represented in a realistic manner and, when excited, is able to generate a train of spikes. Such 
models can greatly differ from one another depending on the way the single neuron Is modeled. 

The most complex models describe each neuron by means of compartments, distinguishing 
between soma, axon, dendrites, and explicitly consider the ionic channels dynamics responsible 
for the generation of the action potential [Traub et al., 2005]. In less complex models, the single 
neuron can be modeled with the “integrate and fire” formalism, in which the action potential is 
represented by a stereotyped waveform [Dayan & Abbott, 2001]. Though these models play a 
relevant role for the analysis of the genesis of cortical rhythms and of the biophysical mechanisms 
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that induce neural populations’ synchronism, they are not suitable for studying superior cognitive 
functions, such as sensorial elaboration, memory, learning, language, because of the extraordinary 
high number or parameters and variables involved. This intrinsic complexity makes very difficult 
to synthesize the results and to develop new high level theories [Wilson & Cowan, 1972]. 

Nowadays, it is universally accepted that the brain performs its tasks through the interaction of 
connected regions that can share information. The number of neurons involved is excessively high 
to try and analyze them individually and it is very unlikely that an approach based on the local 
properties of each neuron could catch the essential aspects of the emergent properties of the whole 
system. Finally, it is worth noting that neurons tend to have random dynamics, so in this context 
the statistical behavior of many neurons is more meaningful than the single realization. 

An alternative approach is based on the use of neural mass models (NMM). In these models the 
dynamics of whole cortical columns, or even brain areas, is modeled through a limited number of 
state variables, and thus by a limited number of differential equations and parameters. This is 
achieved by collapsing the variables of a great number of neurons, that belong to the same 
population, and by substituting them with their mean values. Despite their simplicity, these 
models can catch the most relevant phenomena emerging from the interaction of brain regions 
with thousands of neurons, and thus have become very useful tools for the study of the rhythmic 
activity recorded with the EEG or the MEG. Recently, they have also been employed to try and 
connect the information coming from different recording techniques (e.g. EEG and fMRI). 

Last but not least, the EEG signal is the result of the current flows produced by populations of 
pyramidal neurons, whose post-synaptic potentials are synchronized in such a way to sum their 
activity. This characteristic makes the NMM particularly suitable to simulate the EEG signal since 
it is intrinsically insensible to the dynamics of single neurons, and to catch the most prominent 
collective behaviors. 

This thesis is mainly devoted to show how EEG data and related phenomena can be reproduced 
using mathematical models of neural masses. The aim is to describe some of these phenomena, to 
show in which ways the design of the models architecture is influenced by such phenomena, point 
out the difficulties of tuning the dozens of parameters of the models in order to reproduce the 
activity recorded with EEG systems during different kinds of experiments, and suggest some 
strategies to cope with these problems. In particular the chapters are organized as follows: in 
chapter II the main characteristics of the cortical column, of the EEG signal and of the neural 
mass models will be presented, in order to show the relationships that hold between these entities; 
chapter III describes a study in which a NMM from the literature has been used to assess brain 
connectivity changes in tetraplegic patients; in chapter IV a modified version of the NMM is 
presented, which has been developed to overcomes some of the previous version’s intrinsic 
limitations; chapter V describes a study in which the new NMM has been used to reproduce the 
electrical activity evoked in the cortex by the transcranial magnetic stimulation (TMS); chapter VI 
presents some preliminary results obtained in the simulation of the neural rhythms associated with 
memory recall; finally, some general conclusions are drawn in chapter VII. 
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II. PRELIMINARY CONCEPTS 

1. THE CORTICAL COLUMN 

The cerebral cortex is organized in elementary units of elaboration, known as cortical columns. 
Such structures were firstly described by Vernon Mountcastle, more than half a century ago 
[Horton & Adams, 2005]. Mountcastle, while examining the cortex, hypothesized the existence of 
an unit of elaboration, consisting of a vertical group of neurons, that crosses all the six layers of 
the cortex. These cortical blocks, which are no more than 500 µm wide, contains neurons that 
process together the same piece of information (e.g., in the case of the somatosensory cortex, they 
may respond to the same skin receptor). Later, different examples of cortical columns have been 
discovered in different regions of the cortex, e.g. the cortical columns of the primary visual 
cortex, that process the light stimuli coming from a specific area of the retina, and the original 
concept has been extended to cover different structures and functions. 

The role and the real importance of these elementary units is a topic of debate and is not in the 
scope of this chapter to examine this issue (the interested reader can refer to [Horton & Adams, 
2005]). Here we are interested in what the structure of the cortical columns can tell us about the 
neural populations the are present in the cortex and how they interact. In other words, I will use 
the concept cortical column to identify which neural populations are essential to develop NMMs 
and to describe the synaptic contacts that exists inside a cortical area or between different cortical 
areas. 

As said before the cortex is constituted of up to six horizontal layers, each of which has a different 
composition in terms of neurons and connectivity. The number and the architecture of these layers 
can vary from region to region. The most typical structure is made of six layers, progressively 
numbered from the outer layer to the inner one. Pyramidal excitatory neurons are found in layer 
III and V and project their axons vertically with respect to the cortex surface and are responsible 
for the long range connections between different cortical areas (for this reason they are also 
known as projection neurons). Other neural cells do not project their axons toward far areas of the 
brain, but their connections are rather limited to local neurons (for this reason they are also known 
as interneurons). In particular stellate excitatory cells are mainly found in layer IV, while 
inhibitory cells that employ the GABA neurotransmitter (e.g., chandelier and basket cells) are 
mainly found in the other layers. 

It is believed that the cortex is organized in a laminar structure because it is an efficient way to 
manage the input-output relationships between neurons and between cortical areas. Thus, 
knowing this structure can greatly help in developing NMMs that try to identify dynamic 
properties the emerge from links between neural populations and between cortical regions. In 
particular, it is very important to distinguish between bottom-up, top down and lateral connections 
[Felleman & Van Essen, 1991]. Bottom-up connections typically go from the pyramidal cells in 
layer III towards excitatory interneurons in layer IV. Instead, top-down and lateral connections 
generally originates from pyramidal cells in deeper layers (V and VI) and target a great variety of 
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neurons in layers I, II and VI. It is very important to keep these conditions in mind when 
developing a NMM, since the model has to be as physiologically plausible as possible. 

In what follows the terms cortical column, cortical area and cortical region, will be used 
interchangeably.  
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2. THE EEG SIGNAL 

Electroencephalography is the recording of electrical activity along the scalp. EEG measures 
voltage fluctuations resulting from ionic current flows within the neurons of the brain. In clinical 
contexts, EEG refers to the recording of the brain’s spontaneous electrical activity, as recorded 
from multiple electrodes placed on the scalp. In neurology, the main diagnostic application of 
EEG is in the case of epilepsy, as epileptic activity can create clear abnormalities on a standard 
EEG study. A secondary clinical use of EEG is in the diagnosis of coma, encephalopathies, and 
brain death. Moreover the EEG signal is used to distinguish between the states of consciousness, 
such as wakefulness, rapid eyes movement (REM) sleep and different stages of deep sleep. 

Derivatives of the EEG technique include evoked potentials (EP), which involves averaging the 
EEG activity time-locked to the presentation of a stimulus of some sort (visual, somatosensory, or 
auditory). Event-related potentials (ERPs) refer to averaged EEG responses that are time-locked 
to more complex processing of stimuli; this technique is used in cognitive science, cognitive 
psychology, and psychophysiological research. 

2.1. Source of EEG activity 

The brain’s electrical charge is maintained by billions of neurons. Neurons are electrically 
charged (or “polarized”) by membrane transport proteins that pump ions across their membranes. 
Neurons are constantly exchanging ions with the extracellular milieu, for example to maintain 
resting potential and to propagate action potentials. Ions of like charge repel each other, and when 
many ions are pushed out of many neurons at the same time, they can push their neighbors, who 
push their neighbors, and so on, in a wave. This process is known as volume conduction. When 
the wave of ions reaches the electrodes on the scalp, they can push or pull electrons on the metal 
on the electrodes. Since metal conducts the push and pull of electrons easily, the difference in 
push or voltage between any two electrodes can be measured by a voltmeter. Recording these 
voltages over time gives us the EEG. 

The electric potentials generated by single neurons are far too small to be picked by EEG. EEG 
activity therefore always reflects the summation of the synchronous activity of thousands or 
millions of neurons that have similar spatial orientation. If the cells do not have similar spatial 
orientation, their ions do not line up and create waves to be detected. Pyramidal neurons of the 
cortex are thought to produce the most EEG signal because they are well-aligned and fire 
together. Because voltage fields fall off with the square of distance, activity from deep sources is 
more difficult to detect than currents near the skull. 

2.2. EEG activity in the frequency domain 

Scalp EEG activity shows oscillations at a variety of frequencies. Several of these oscillations 
have characteristic frequency ranges and spatial distributions, and are associated with different 
states of brain functioning (e.g., waking and the various sleep stages). They represent 
synchronized activity over a network of neurons. The neuronal networks underlying some of these 
oscillations are understood (e.g., the thalamocortical resonance underlying sleep spindles), while 
many others are not (e.g., the system that generates the posterior basic rhythm). 

The rhythmic activity is divided into bands by frequency. To some degree, these frequency bands 
are a matter of nomenclature (i.e., any rhythmic activity between 6–12Hz can be described as 
“alpha”), but these designations arose because rhythmic activity within a certain frequency range 
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was noted to have a certain distribution over the scalp or a certain biological significance. These 
bands are commonly subdivided as follows: 

1. Delta is the frequency range up to 4Hz. It tends to be the highest in amplitude and the 
slowest wave. It is seen normally in adults in slow wave sleep. It is also seen normally in 
babies. 

2. Theta is the frequency range from 4Hz to 8Hz. Theta is seen normally in young children. 
It may be seen in drowsiness or arousal in older children and adults; it can also be seen in 
meditation. 

3. Alpha is the frequency range from 8Hz to 12Hz. Hans Berger named the first rhythmic 
EEG activity he saw as the “alpha wave”. This was the “posterior basic rhythm”, seen in 
the posterior regions of the head on both sides, higher in amplitude on the dominant side. 
It emerges with closing of the eyes and with relaxation, and attenuates with eye opening 
or mental exertion. In addition to the posterior basic rhythm, there are other normal alpha 
rhythms such as the mu rhythm (alpha activity in the contralateral sensory and motor 
cortical areas that emerges when the hands and arms are idle) and the “third rhythm” 
(alpha activity in the temporal or frontal lobes). Alpha can be abnormal; for example, an 
EEG that has diffuse alpha occurring in coma and is not responsive to external stimuli is 
referred to as “alpha coma”. 

4. Beta is the frequency range from 12Hz to about 25Hz (sometimes the upper frequency 
limit is set to 30Hz since there is not a globally accepted value yet). It is seen usually on 
both sides in symmetrical distribution and is most evident frontally. Beta activity is 
closely linked to motor behavior and is generally attenuated during active movements. 
Low amplitude beta with multiple and varying frequencies is often associated with active, 
busy or anxious thinking and active concentration. It is the dominant rhythm in subjects 
who have their eyes open. 

5. Gamma is the frequency range approximately 25-100Hz. Gamma rhythms are thought to 
represent binding of different populations of neurons together into a network for the 
purpose of carrying out a certain cognitive or motor function. 

6. Mu ranges 8-13Hz, and partly overlaps with other frequencies. It reflects the synchronous 
firing of motor neurons in rest state. Mu suppression is thought to reflect motor mirror 
neuron systems, because when an action is observed, the pattern extinguishes, possibly 
because of the normal neuronal system and the mirror neuron system “go out of sync”, 
and interfere with each other.  
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3. INTRODUCTION TO NEURAL MASS MODELS 

The first NMMs were developed in the mid seventies by Freeman [Freeman, 1978, 1987] and 
Lopes da Silva [Lopes da Silva et al., 1974] and were later modified by Jansen and Rit [Jansen & 
Rit, 1995]. As was shown in section 1. the EEG signal is generated mainly by the activity of 
pyramidal neurons, which communicate with several other types of neural groups inside a cortical 
column. So, in these models the dynamics of a cortical column is described through the 
interaction of different neural populations. Generally there is a population of pyramidal cells that 
generates the output of the model, and that is interconnected through a feedback loop with 
populations of excitatory and inhibitory interneurons. 

3.1. Model of a single neural population 

Each neural population is modeled through two blocks. The first block is a non-linear static 
activation function, that transforms the membrane potential of the neural population into the 

average spike density. This function is typically sigmoidal of the type z�v� = ���	
�����, where z 

is the spike density, which depends on the membrane potential v, A is the maximum firing rate, v0 
is the threshold between inactivation and activation, and s is the slope in the linear range. The 
second block represents the synapse kinetics and is usually a dynamic linear function that 
transforms the firing rate into the postsynaptic potential (PSP) variation. It is typically a second 

order differential equation with impulse response h�t� = �� te���, where G determines the 

maximum amplitude of the PSP, and τ is the time constant. 

Each of these neural populations simulates a group of neurons described in the previous section 
(pyramidal cells, excitatory stellate cells, GABAergic inhibitory interneurons). Their interaction 
gives rise to the dynamics of the whole cortical column, as discussed in sub-section 3.2. . 

3.2. Model of a cortical column 

Each cortical column typically consists of at least two neural populations, one excitatory and one 
inhibitory in order to generate an oscillatory activity. For example, Jansen and Rit’s model has 
three populations, one representing the pyramidal cells, whose membrane potential is taken as the 
simulated EEG, one representing excitatory interneurons employing glutamate mediated 
synapses, and one representing inhibitory interneurons employing GABAA mediated synapses. 
However, in what follows, I will always refer to a more complex model developed by Wendling 
[Wendling et al., 2002], in which there’s additional population of inhibitory interneurons. The 
latter population was added to account for neurons with GABAA mediated synapses that have a 
particularly fast dynamics [White et al., 2000], thus, the two populations will be referred to as 
GABAA,slow and GABAA,fast interneurons. As will be widely discussed in the following chapters, 
the GABAA,fast interneurons are essential to generate fast oscillatory activity in the gamma band, 
which is involved in many higher cognitive tasks. 

Each neural population communicates with other populations in the same cortical column by 
sending them its average firing rate, thus generating excitatory or inhibitory PSPs in the target 
populations. The connections have a gain that is proportional to the mean number of synaptic 
contacts on the dendritic tree of the target population. 

This kind of model is able to generate a wide variety of rhythmic activity that are observed in 
experimental EEG signals. Different behaviors are obtained by modifying internal parameters of 
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the populations, such as the gain or the time constant of the synapses or the number of synaptic 
contacts between different populations. As will be showed later, one of the major difficulties 
encountered using these models, is to tune the relatively high number of parameters (usually some 
dozens) so that the model can reproduce experimental EEG signals, both in the time and in the 
frequency domain. 

3.3. Connectivity between cortical columns 

One of the most important issues that can be analyzed using NMMs, is the interaction between 
different cortical areas. Actually, the key feature that makes NMMs so competitive in the field of 
neural computing is their ability to reproduce the activity of several cortical regions and to study 
the emergent properties of large neural networks, using a parsimonious description not 
excessively demanding from a computational point of view. 

The implementation of the interaction between different cortical columns is pretty 
straightforward. The interaction is similar to that of neural populations within the same cortical 
column, with a few changes: 

1. Only pyramidal populations are allowed to send connections to populations in other 
cortical regions. 

2. The connection may employ a finite delay to account for the transmission time between 
areas which are far away from one another. 

The target population of these connections, also known as “long range connections”, depends on 
the architecture of the network. Bottom-up connections (i.e., from lower to upper hierarchical 
levels) typically target the population of excitatory interneurons, top-down connections (i.e., from 
upper to lower levels) target pyramidal neurons, while lateral (i.e., within the same hierarchical 
level) can target all of the neural populations. However it is not simple to follows these rules, for 
at least two reasons: sometimes we do not know the hierarchical relationships between cortical 
areas, with the exception of the easiest perceptive and motor phenomena; not all of the possible 
connections play a crucial role and it is thus convenient to reduce the number of connections for 
the sake of parsimony and simplicity. 
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III. SPECTRAL CHANGES IN TETRAPLEGIC 

PATIENTS
1
 

1. INTRODUCTION 

It is well known that the execution of even simple motor and/or cognitive tasks by the brain 
requires the participation of multiple cortical regions, which are mutually interconnected and 
exchange their information via plastic long-range synapses. Consequently, knowledge of brain 
connectivity is becoming an essential aspect of modern neuroscience, especially useful to 
understand how the brain realizes its basic functions and what the role of the different regions is. 
Connectivity, however, is an elusive concept, which can have different definitions depending on 
the emphasis of the investigators [Horwitz, 2003]. In particular, the definition of connectivity is 
strictly related to the mathematical method used to extract connectivity parameters from data, i.e. 
it is “model dependent” and should always be used together with the particular method adopted. 
For instance, most methods presently used to derive connectivity graphs (such as the Direct 
Transfer Function or the Partial Directed Coherence [Astolfi et al., 2004; Baccalá & Sameshima, 
2001; Kaminski & Blinowska, 1991; Kamiński et al., 1995, 1997; Kaminski et al., 2001; 
Korzeniewska et al., 2003]) are based on the assumption of linearity, whereas neurons are 
intrinsically non-linear. Moreover, these methods use empirical equations (i.e. they are based on 
black box models), which do not provide a description of the underpinning physiological 
mechanisms (for instance, they do not explicitly consider the time constant and strength of 
synapses, the role of inhibitory interneurons, etc...). On the other hand, the main advantage of 
these methods is that they provide analytical solutions to the problem, which are not “modeler 
driven”. 

As an alternative method to study effective connectivity, a few authors in recent years have 
employed the so-called “neural mass models”. These models were originally proposed in the mid-
seventies [Freeman, 1978; Lopes da Silva et al., 1976] and subsequently improved in the late 
nineties [Jansen & Rit, 1995; Wendling et al., 2002]. They mimic the activity of entire neural 
populations via the feedback arrangement of excitatory and inhibitory groups, which are assumed 
to share a similar membrane potential and work in synchronism. The interaction between 
excitatory and inhibitory groups can produce oscillatory rhythms, either via an intrinsic instability 
of the model (like a limit cycle) or by a resonance amplification of an external noise. In particular, 
similar models have been used to simulate alpha rhythms [Jansen & Rit, 1995], dynamics in the 
olfactory cortex [Freeman, 1987], or paradoxical epileptic discharges [Wendling et al., 2000, 
2002]. A few recent studies used these models to study effective connectivity among different 
regions of interest (ROIs), to analyze the dependence of cortical EEG on connectivity patterns 
[David & Friston, 2003; Sotero et al., 2007] and to evaluate the EEG power spectral density 
[Moran et al., 2008]. Recently, we also used neural mass models, including fast inhibitory 
dynamics, to simulate the power spectral density of cortical EEG [Ursino et al., 2006; Zavaglia et 

                                                   
1 The contents of this chapter are published in Computational Intelligence and Neuroscience (Cona et al., 
2009). 
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al., 2006, 2008a] during simple motor tasks. The main indication of these studies is that neural 
populations with a different dynamics (for instance, different time constants of excitatory and 
inhibitory synapses) suitably interconnected, can produce EEG rhythms similar to those measured 
in human subjects via high-resolution EEG methods. 

Application of neural mass models to estimate effective connectivity is, however, a very hard 
task, due to the elevated number of parameters involved and the presence of non-linear terms, 
which preclude the use of analytical solutions. For instance, in a recent paper [Zavaglia et al., 
2008b] we derived some connectivity patterns between three cortical regions (the cyngulate, and 
the primary and supplementary motor cortices) during a simple foot-movement task, by 
minimizing a least-square criterion function of the difference between model and data spectral 
densities. However, just a few exemplary cases could be analyzed, since the minimization 
algorithm often converges to a sub-optimal solution (i.e., a local minimum) which may exhibit 
just a poor fitting and, moreover, may be characterized by unphysiological parameter values. 
Furthermore, also the metrics used to compare model and patient spectral densities may be 
questionable and affect the final minimization results. 

For this reason, in the present work we designed a new method, based on a genetic algorithm, to 
provide an automatic fitting between model and real data. The method tries to find absolute 
minima of alternative cost functions within the same procedure. Genetic algorithms have already 
been used to estimate the parameters of a neural mass model in order to fit real data (see for 
example [Wendling et al., 2005]). The algorithm has been applied to high-resolution scalp EEG 
data measured during a simple foot-movement task; scalp EEG was preliminarily propagated to 
the cortex via a propagation model, to infer cortical electrical activity in three Regions of Interest 
(ROIs). The model [Zavaglia et al., 2008a] assumes that each ROI is characterized by an intrinsic 
rhythm (established by the time constants of synapses) and can receive additional rhythms from 
other connected ROIs. Results have been applied to a group of normal subjects and a group of 
tetraplegic patients to establish simple patterns of connectivity between the cyngulate, motor and 
pre-motor cortices, and to look for possible differences in the two populations.  
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2. METHOD 

2.1. Model of a single population 

The model of a single population was obtained by modifying equations proposed by Wendling et 
al. [Wendling et al., 2002]. It consists of four neural groups which communicate via excitatory 
and inhibitory synapses: pyramidal cells, excitatory interneurons, inhibitory interneurons with 
slow synaptic kinetics, and inhibitory interneurons with faster synaptic kinetics. Each neural 
group simulates a pool of neurons which are lumped together and which are assumed to receive 
similar input and to behave in a similar manner. One lumped circuit communicates with another 
through the average firing rate corresponding to what that given population of cells is firing on 
average. 

Each neural group receives an average postsynaptic membrane potential from the other groups, 
and converts the average membrane potential into an average density of spikes fired by the 
neurons. This conversion is simulated via a static sigmoidal relationship. The effect of the 
synapses is described via second order linear transfer functions, which convert the presynaptic 
spike density into the postsynaptic membrane potential. Three different kinds of synapses, with 
impulse response he, hi and hg, are used to describe the synaptic effect of excitatory neurons (both 
pyramidal cells and excitatory interneurons), of slow inhibitory interneurons and of fast inhibitory 
interneurons, respectively. Model equations can be written as follows: 

Pyramidal neurons 

 dy��t�dt = x��t� III.1 

 dx��t�dt = G	ω	z��t� − 2ω	x��t� − ω	�y��t� III.2 

 z��t� = 2e�1 + e"#$��%&' III.3 

 v��t� = C�	y	�t� − C�$y$�t� − C�)y)�t� III.4 

Excitatory interneurons 

 dy	�t�dt = x	�t� III.5 

 dx	�t�dt = G	ω	 *z	�t� + u��t�C�	 , − 2ω	x	�t� − ω	�y	�t� 
III.6 

 z	�t� = 2e�1 + e"�$��%-� III.7 

 v	�t� = C	�y��t� III.8 
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Slow inhibitory interneurons 

 dy$�t�dt = x$�t� III.9 

 dx$�t�dt = G$ω$z$�t� − 2ω$x$�t� − ω$�y$�t� III.10 

 z$�t� = 2e�1 + e"�$��%
� III.11 

 v$�t� = C$�y��t� III.12 

Fast inhibitory interneurons 

 dy)�t�dt = x)�t� III.13 

 dx)�t�dt = G)ω)z)�t� − 2ω)x)�t� − ω)�y)�t� III.14 

 z)�t� = 2e�1+ e"�$��%.� III.15 

 v)�t� = C)�y��t� − C)$y$�t� III.16 

In these equations, the symbols vi represent the average membrane potentials (i = p, e, s, f for the 
four groups). These are the input for the sigmoid function which converts them into the average 
density of spikes (zi, i = p, e, s, f) fired by the neurons. Then, these outputs enter into the synapses 
(excitatory, slow inhibitory or fast inhibitory), represented via the second order linear functions. 
Each synapse is described by an average gain (Ge, Gs, Gf for the excitatory, slow inhibitory and 
fast inhibitory synapses, respectively) and a time constant (the reciprocal of ωe, ωs and ωf, 
respectively). The state variables of these equations represent the postsynaptic membrane 
potentials (yi, i = p, e, s, f) and their derivatives (xi, i = p, e, s, f). Interactions among neurons are 
represented via seven connectivity constants (Cij, where i = p, e, s, f represents the postsynaptic 
population and j = p, e, s, f represents the presynaptic population). Finally, up(t) represents all 
exogenous contributions, both excitation coming from external sources and the density of action 
potentials coming from other connected regions. 

2.2. Model of connectivity among ROIs 

The previous model was used to simulate a single ROI, the dynamic of which ensues from the 
interactions among the four neural subgroups. In order to study how the ROIs interact, we 
consider N ROIs which are interconnected through long-range excitatory connections. To 
simulate this connectivity we assumed that the average spike density of pyramidal neurons (zp) 
affects the input up(t) in Eq. III.6 via a weight factor, W, and a time delay, T. Hence, the input 
up,i(t) in the i-th ROI can be computed as follows 

 u�,0�t� = n0�t� +2W04z�,44
�t − T� 

III.17 
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where Wij is the weight of the synaptic link from the j-th (pre-synaptic) ROI to i-th (post-synaptic) 
ROI, T is the time delay (assumed equal for all synapses), ni(t) represents a gaussian white noise 
with mean value mi and standard deviation σi, and the sum in the right hand member of Eq. V.20 
is extended to all ROIs, j, which target into the ROI i. 

2.3. Acquisition and processing of EEG data 

The experiment took place in the laboratories of the Santa Lucia Foundation, Rome, after the 
informed consent was obtained. The subject was comfortably seated in an armchair with both 
arms relaxed, in an electrically shielded, dimly lit room. He was asked to perform a brisk 
protrusion of the lips (lip pursing) while he was performing a right foot movement. A 58-channel 
EEG system (BrainAmp, Brainproducts GmbH, Germany) was used to record electrical potentials 
by means of an electrode cap, accordingly to an extension of the 10-20 international system. A/D 
sampling rate was 200 Hz. During motor task, subject was instructed to avoid eye blinks, 
swallowing or any movement other than the required foot movements. Bipolar EMG was 
recorded from control and spinal cord injury (SCI) subjects, with surface electrodes from the right 
tibialis anterior muscle and orbicularis oris muscle to detect the onset of foot and lip movements, 
respectively. The electro-oculograms (EOGs) were recorded to avoid trials with artifacts due to 
eye-blink movements. The EMG was monitored throughout recordings from electrodes placed as 
described above to avoid poor quality of the recordings due to muscular artifacts. Artifact 
rejection was performed on a wide segmentation of the trials (from -4.0 s to +4.0 s) while a 
narrow segmentation (from -2.5 s to +0.5 s) was used as analysis period. 

A 3-shell Boundary Element Model (BEM) of the head was used to estimate the cortical current 
density (CCD) distribution in some regions of interest (ROI) of the cortex (the cingulate cortex 
(CMA_L), the primary motor area (M1F_L), and the supplementary motor area (SMAp_L)) 
starting from activity measured on the scalp. The procedure used is described in previous works 
[Babiloni et al., 2005; Ursino et al., 2006; Zavaglia et al., 2006]. From the CCD, the average 
estimated cortical activity in the region has then been evaluated. The latter has been successively 
subjected to spectral analysis in order to produce the spectra used for the estimation of the model 
parameters. 

Power spectra have been computed by using the Welch’s average modified periodogram method 
[Welch, 1967]. In particular, the model PSD was computed using simulated signal with duration 
100 s, and averaging 50% overlapping sections each with duration 1 s. The use of a 100 s 
simulated signal is justified by the necessity to reduce the variance of the estimated spectrum to 
an acceptable level. We verified, using a random repetition of the same simulation by changing 
the input noise, that these spectra are only scarcely affected by the single noise realization. All 
power spectra have been preliminary normalized to have unitary area in the same frequency range 
(6-50 Hz). Since the signal beyond 40 Hz may be corrupted, the limit of our investigated gamma 
range was 30-40 Hz. In particular, we did not investigate the so-called high-gamma range (above 
50 Hz). 

We examined 5 subjects with spinal cord injury (SCI; 4 males, 1 female, mean age 26.4±2.8 
years) and 5 healthy subjects (4 males, 1 female, mean age 25.1± 1.5 years). Informed consent 
was obtained from all the subjects. The study was approved by the local ethics committee. The 
SCIs were all of traumatic aetiology and were located at the cervical level (C6 in 3 SCI subjects; 
C5 and C7 in the remaining 2 subjects); at the time of the study, all the patients had a stabilized 
lesion (mean time since trauma 19.4 ± 7.2 months). Neurological status was assessed according to 
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the American Spinal Injury Association (ASIA) standards on the basis of the patients’ motor and 
sensory scores, neurological level and neurological impairment. The completeness of the lesion 
was defined according to the concept of sacral sparing: sensory preservation of the peri-anal zone 
and/or motor function of the external anal sphincter (preservation of the lower sacral segments). 
The lesion was complete in all 5 patients (ASIA-A: complete motor and sensory loss below the 
lesion level). None of the SCI patients had suffered a head or brain lesion in concomitance with 
the spinal injury. Neither uncontrollable spasticity-induced body movements nor dysaesthetic pain 
syndrome were reported by any of the patients. All subjects were right-handed as assessed by the 
Edinburgh inventory [Salenius & Hari, 2003]. 

In order to perform a subsequent fitting, we chose only those EEG tracings for which alpha and 
gamma rhythms were located at approximately the same frequencies in the three ROIs. This 
corresponds to model hypothesis (see below) that each of these rhythms is generated by a single 
external source (limitations of this choice will be discussed at the end). 102 tracings satisfied this 
criterion. The algorithm was able to fit 59 of these trials: 36 trials on healthy subjects and 23 trials 
on tetraplegic ones. 

2.4. The model of the motor task 

Analysis of real EEGs [Zavaglia et al., 2008a, 2008b] demonstrates that power spectral density 
during the task may exhibit three simultaneous rhythms, in the alpha, beta and gamma ranges, 
respectively. In order to simulate this behaviour, we assumed that the cortical ROIs involved in 

 

Figure III.1: Model of interconnected ROIs used in this chapter to simulate power spectral densities in pre-frontal 
regions during a foot-movement task. Wij are connectivity weights, estimated from real data using the genetic algorithm 
described in the text. The regions CMA_L, M1F_L and SMAP_L oscillate in the beta range when stimulated with white 
noise. The LF region oscillates in the alpha range, whereas the HF region generates a rhythm in the gamma band (see 
Table III.1 for parameter numerical values within the regions). 
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the movement (i.e., the M1F_L, the CMA_L and the SMAp_L), when activated, oscillate with an 
intrinsic rhythm in the beta range. This hypothesis reflects the frequent idea that, during 
behavioral activation, beta rhythms are generated locally, perhaps by a recurrent feedback loop 
involving pyramidal cells and inhibitory interneurons [Salenius & Hari, 2003]. These waves 
represent excitement of the cortex to a higher state of alertness or tension. Moreover, we assumed 
that the alpha rhythm is sent to the cortex by an external area (probably located in the thalamus 
and reticular nucleus). This hypothesis corresponds to the idea [Buzsaki, 2006] that alpha rhythms 
arise from the endogenous rhythmicity of thalamic populations, which are then transmitted to 
other thalamocortical populations even in the absence of an external stimulus. Finally, an 
important problem is how to produce gamma rhythms in the model. A first possibility is that all 
ROIs can generate not only their intrinsic beta rhythm, but also a gamma oscillation, via a second 
group of populations with faster kinetics, and that these gamma rhythms are then synchronized 
via long range synapses. The idea of multiple rhythms in the same ROI was proposed by David 
and Friston [David & Friston, 2003], and was used by us in a previous model for connectivity 
estimation [Moran et al., 2008]. A second possibility, which allows PSD to be mimicked with a 
smaller number of parameters, is that gamma oscillation is generated by a single far region of the 
cortex, and then transmitted to the other ROIs via long-range synapses. 

In the present study we adopted the second hypothesis. First, we assumed that the thalamus 
receives an external input (simulated as a significant white noise term) and drives the other 
populations but does not receive any connectivity from them (i.e., any possible feedback from the 
cortex to the thalamus is neglected). Hence, the motor command originates from the low-
frequency region (LF), and spreads toward the cortex. Moreover, the three ROIs in the cortex 
(CMA_L, M1F_L, and SMAp_L) can recruit a gamma or high-frequency rhythm from another 
region (named HF), which may be located in the pre-frontal cortex. This rhythm should reflect the 
cognitive or conscious aspects of the task. Finally, the cingulate cortex can also modulate the HF 
region and drives the other two ROIs (i.e. the primary and supplementary motor areas). The latter 
are linked via a feedback loop. A sketch of the overall model is illustrated in Figure III.1. 

It is worth noting that we used the NMM of cortical area to simulate the activity of LF, even if the 
NMM of a thalamic module would be more appropriate. Thalamic NMMs are much more 
complicated than cortical ones since they need to account for the dynamics of calcium ions to 
simulate both the tonic and the burst firing [Pirini & Ursino, 2010]. In this case such a complexity 
is not necessary, since we just need an alpha wave generator and not to simulate physiological 
phenomena associated to burst firing (slow waves in sleep). So the use of a thalamic module is not 
only pointless, but even undesirable for a matter of computational performance. 

2.5. The model parameters 

The model has a relative large number of parameters, but only a few of them were used as 
variables for the fitting procedure. It appears that letting the fitting algorithm modulate all of the 
model parameters leads to incoherent solutions: the same simulated power spectra can be obtained 
with different sets of parameters. So the parameters estimated by the fitting algorithm were only 
the reciprocal of time constants of fast inhibitory synapses (to tune power peaks frequencies) and 
connectivity strengths (to adjust power peaks relative amplitudes). The other parameters have 
constant values, given in Table III.1. Most of these values are biologically plausible [Jansen & 
Rit, 1995] and let the model oscillate in the alpha (8-12Hz), beta (12-30Hz), and gamma band 
(>30Hz) [Ursino et al., 2006; Zavaglia et al., 2006]. Still the input mean m and variance σ2 have 
been estimated via the fitting procedure, since no plausible values for these parameters have been 
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found yet. In fact, as usual in neural mass models [David & Friston, 2003; Wendling et al., 2002; 
Zavaglia et al., 2008a], this noise simulates all random contributions coming from external 
sources not included in the model and also accounts for internal neural variability. To do this we 
run a preliminary set of fittings in which m and σ2 were used as fitting variables in order to find 
their optimum values for each trial. The values found were averaged and used as constants (Table 
III.1) in the following fitting procedures. 

2.6. Genetic algorithm and fitting procedure 

A Genetic Algorithm (GA) is a search technique that solves optimization problems by simulating 
the Darwinian natural selection [Holland, 1975]. We used the GA to find the set of model 
parameters for which the model output fits a given real EEG signal. Parameters used for the 
fitting procedures are the reciprocal of time constants of fast inhibitory synapses (ωe), and 
connectivity strengths. 

The GA is divided into generations. Each generation consists of a lot of individuals that are 
candidate solutions (sets of model parameters) for the fitting. The first generation is typically 
random. Parameters are represented as bit arrays (chromosomes). Each individual is ranked with a 
fitting coefficient (FC) in the range [0,1] by calculating the model output and comparing it to the 
real EEG signal: the better the fitting between the simulated signal and the real one, the higher the 
FC of the individual. Best ranked individuals (higher FC) have higher probability to reproduce. 
During reproduction couples of parents are randomly selected according to their FCs. Each couple 
generates two new individuals whose chromosomes are obtained from applying genetic operators 
to the parents’ ones. Typical genetic operators are crossover and mutation (Figure III.2). 
Crossover is the exchange of genetic material between parents to generate the sons’ 
chromosomes. Mutation simply switches the values of a low percentage of bits (mutation rate). 
The worst individuals of the previous generation are replaced with the best newborn individuals. 

Table III.1: Model parameters 

Parameters LF CMA_L, M1F_L, 
SMAp_L 

HF 

Ge (mV) 2.67 5.17 5.55 
Gs (mV) 3.15 4.45 3.8 
Gf (mV) 22.3 57.1 173 
ωs (s-1) 20 30 40 
ωf (s-1) 300 350 790 
m (s-1) -103.3 -130.5 -16.1 
σ2 (s-2) 27807 10028 23642 
 All regions 
Cep 135 
Cpe 108 
Csp 33.75 
Cps 33.75 
Cfp 40.5 
Cfs 13.5 
Cpf 108 
r (mV-1) 0.56 
s0 (mV) 6 
e0 (s-1) 2.5 
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In this way, each generation tends to preserve the best genetic material. The algorithm converges 
to a population composed of sets of parameters that fit the real EEG signal well. 

The major challenge in implementing a GA is to find an efficient fitting function for determining 
the FCs and rank the individuals, so that the algorithm is able to converge in reasonable time. To 
compare the simulated signal to the real one, we used their Power Spectral Densities (PSD). 

Actually, analysis of the peak frequencies and amplitudes in the PSD allows evaluations of the 
rhythms characterizing the signal, their frequencies, and the relative power associated to each 
frequency band. 

We introduced some changes to the original GA to improve its speed of convergence. 

1. The global population was divided in 4 tribes. Each tribe has its own fitting function. The 
algorithm allows migration between tribes, so that each individual may choose the tribe 

 

Figure III.2: An example of the mechanism for son generation implemented in the genetic algorithm. 
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that consent its offspring to converge to the solution in the fastest way. In order to 
compute the FCs of each tribe, we first calculated three alternative cost functions. The 
first is the classic mean square error. The second aims at quantifying the similarity in the 
ratios between the local maxima and the local minima (i. e. it gives more emphasis to the 
maxima and minima of the PSD than to other values of the PSD). The third focuses the 
attention especially to the position of the peaks (i.e., the frequencies of the three rhythms). 
These three functions were then combined with different weights, in order to obtained 
four alternative FCs to be used in the four tribes. The fourth tribe (also named melting 
pot) is the one characterized by the strictest requirements. 

2. The algorithm uses a dynamic mutation rate. The probability of a bit to switch is related 
to the similarity between the parents’ chromosomes: the more similar the chromosomes, 
the higher the mutation rate. A high similarity between parents means that the population 
converged to a local maximum; in this condition, an increase in the mutation rate would 
favor the escape from the maximum attraction field. 

3. An aging factor was introduced. This means that members of the previous generation can 
still generate sons and daughters, but starting with a decreased FC. Otherwise, the 
creation of new populations would erase all good old individuals, and if they had poor 
sons and daughters their legacy would be lost. On the other hand, if old individuals are 
not weakened, evolution may be too slow. 

4. The order of bits inside chromosomes can be shuffled. Commonly each parameter is 
encoded in a single chromosome, but such a coding system is inefficient when combined 
with the dynamic mutation rate described above. When one of the parameters approaches 
its best value, it tends to be inherited by all the members of the population. This means 
that all the individuals have an almost identical chromosome, thus the mutation rate for 
the bits encoding this parameter grows rapidly and the partial information reached may be 
wasted in the successive generation. This problem can be avoided by spreading the 
information of each parameter among all the chromosomes. Figure III.2 illustrates a more 
standard coding system. 

The algorithm stops either when individuals finish improving their FCs, or after 400 generations. 
At the end of the simulation the best individual belonging to the melting pot is taken as the best 
solution. 

We noticed that the most beneficial changes are those which best resemble the natural selection. 
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3. RESULTS 

Exempla of model fitting in four exemplary cases are shown in Figure III.3. The left panels refer 
to two healthy subjects, while the right panels refer to two tetraplegic patients. It is worth noting 
that the model is able to simulate the position and the relative amplitude of the three peaks in all 
three ROIs quite well. The other fitted PSDs are similar to those presented here, both for what 
concerns the shape and the quality of fitting. 

The average values of estimated synaptic weights in the healthy population and in the tetraplegic 
patients are shown in the histogram of Figure III.4. Two main aspects of this figure deserve 
attention. 

First, by considering the overall fitting parameters, without distinguishing between healthy and 
tetraplegic subjects, one can observe that some weights are predominant compared with others. In 
particular, the stronger connections are those from the cyngulate cortex to the primary motor 
cortex, and from the cyngulate cortex to the supplementary motor cortex. A visual summary of 
the synaptic strengths, computed by using the average parameters in both populations, is shown in 
the bottom panel of Figure III.4. 

 

Figure III.3: Comparison between real (dashed line) and simulated (solid line) power spectral densities in the three 
regions M1F_L (primary motor cortex), SMAP_L (supplementary motor cortex) and CMA_L (cingulate cortex) of the 
left hemisphere during execution of the foot imagery motor task. The left panels refer to two healthy subjects, while the 
right panels refer to two tetraplegic patients. All spectra are normalized to have unitary area in the range 6-50 Hz. The 
value of the fitting coefficient (ranging between 0 and 1) is shown above each panel. 
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Second, from a separate parameter estimates, one can detect statistically significant differences in 
the synaptic strength between healthy and tetraplegic subjects. In particular, connectivity in 
tetraplegic patients is about 12% higher (on average) compared with that of healthy volunteers. 
Differences in connection weights between the two classes are very significant (p < 0.01 

 

Figure III.4: Connectivity weights (mean value + SD) estimated on 5 healthy subjects and on 5 tetraplegic patients with 
the genetic algorithm described in the text. A qualitative example of the resulting connectivity, based on the average 
values on the entire population, is depicted in the bottom panel, where line thickness is proportional to the connectivity 
weight. It is worth noting in the upper panel the presence of very significant statistical differences (p < 0.01, columns 
with **) between healthy subjects and tetraplegic patients for what concerns the connections from the LF region to the 
primary motor and supplementary motor areas. Significant statistical differences (p < 0.05, columns with *) are also 
evident in the connections which link the HF region to the primary motor and supplementary motor areas. 
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evaluated with an untailed t-test) from the thalamus to the primary motor cortex and from the 
thalamus to the supplementary motor cortex. The differences in the connection weights are also 
significant (p < 0.05) from the high frequency region to some cortical ROIs. 

Finally, we used the average values of the synaptic strengths in the two populations to compute 
paradigmatic PSDs (one for a typical healthy subject using the average parameters of that class, 
and the other for a typical tetraplegic subject). The results are illustrated in Figure III.5. As it is 
evident from this figure, the paradigmatic tetraplegic subject exhibits a stronger peak in the 
gamma band compared with that evident in the paradigmatic healthy volunteer and a smaller peak 
in the beta range. This difference is a consequence of the higher connectivity weights from the HF 
region and from the LF region.  

 

Figure III.5: Examples of paradigmatic power spectral densities simulated with the model using the average connection 
weights estimated on healthy volunteers (left panel) and on tetraplegic patients (right panel). All spectra are normalized 
to have unitary area in the range 6-50 Hz. It is worth noting the higher peak in the gamma range, and the lower peak in 
the beta range in tetraplegic patients compared with the healthy subjects. 
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4. DISCUSSION 

The aim of this chapter was to derive patterns of connectivity among the main regions of interest 
(the cingulate cortex and the primary and supplementary motor areas) involved in simple motor 
tasks. To this end, we used neural mass models and electrophysiological data obtained with scalp 
EEG, propagated to the cortex. Moreover, we analyzed differences between normal and 
tetraplegic subjects. Although various attempts to derive connectivity from EEG, and to 
characterize EEG in pathological conditions are present in the literature, most works make use of 
empirical model (for instance based on coherence and correlation among time series). Just a few 
attempts to elucidate existing data via interpretative models can be found in the literature [David 
& Friston, 2003; Moran et al., 2008; Sotero et al., 2007]. 

In an interpretative model, parameters have a clear biophysical significance, and the model allows 
the formulation of hypotheses on the physiological mechanisms, the neural architecture and the 
parameter changes responsible for data generation. Promising models assume the presence of 
interacting neural masses, which are reciprocally connected and generate the neural signals 
responsible for the measured electrical activity. Similar models integrated with Bayesian 
inference (a framework named “Dynamic causal models” by the authors) were used by Friston 
and coauthors to estimate effective connectivity from neuroimaging data [David & Friston, 2003; 
Stephan et al., 2007], to analyze event related potentials [David et al., 2006] or to predict the 
spectral profile of local field potentials in the rat [Moran et al., 2008]. Neural mass models were 
used to study the transition to seizures and to model epileptic activity [Liley & Bojak, 2005; 
Wendling et al., 2002], to analyze the effect of drugs on EEG spectra [Rowe et al., 2005], or to 
simulate the effect of the overall brain connectivity on individual EEG rhythms measured on the 
scalp [Sotero et al., 2007]. 

This work goes in the same direction as previous papers from our group [Ursino et al., 2006; 
Zavaglia et al., 2006, 2008a, 2008b]. However, three main innovative methodological aspects 
deserve a critical discussion: the kind of information used to validate the model, the structure 
adopted for the model, and the fitting procedure for parameter estimation. 

The first important issue concerns what kind of data the model is intended to reproduce, and so, 
which measurement is compared to model output. This is a crucial point, since the type and 
structure of a model is strictly dependent on the problem under study. In this work, we focused 
attention on the frequency content of cortical EEG, in particular on the peaks of power spectral 
density. Indeed, spectral measures are commonly used to summarize cortical dynamics and to 
assess changes in cortical activity during cognitive and/or motor tasks. It is generally believed that 
the alpha rhythm originates from the thalamus and is distinctive of a relaxed state. The beta 
rhythm is associated with normal waking activity, as it occurs during natural human motor 
behavior or after proprioceptive stimulation. A shift from alpha to beta rhythms is considered a 
marker of alerting. Gamma rhythms appear to be involved in higher mental activity, including 
perception and consciousness. Although these rhythms are currently described and analyzed in the 
neurophysiological literature [Buzsaki, 2006; Ward, 2003], the problem of how to link their 
changes to the underlying neural processes, the neural architecture and connectivity strength is 
still largely unsolved. 

An important aspect is that we focused attention just on three ROIs, and we never tried a fitting to 
other ones. The ROIs were selected according to widely accepted considerations on their 
involvement in the preparation and execution of simple self-generated movements. In fact, there is 
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a general consensus that the M1F and the medial aspect of the SMAp are amongst the main 
generator sources of the early and late components of the motor-related cortical potentials 
[Shibasaki & Hallett, 2006] which, in turn, reflect the physiological excitation of the cortical areas 
involved in preparing and producing movements. Anatomical and physiological studies on non-
human primates have demonstrated that among the distinct cingulate motor areas buried in the 
cingulate sulcus, those roughly located at the same rostro-caudal level as the SMAp proper (caudal 
CMA, dorsal and ventral parts) are primarily implicated in movement execution itself rather than 
in higher cognitive control of voluntary movements [Paus, 2001; Picard & Strick, 1996]. 

In order to simulate EEG spectral patterns in these areas, including both alpha and beta as well as 
gamma rhythms, we adopted a simple model structure based on a few a-priori assumptions. First 
we assumed that the cingulate cortex drives the primary motor area and the supplementary motor 
area during execution of the task, but it receives only negligible feedback from them. This 
assumption seemed justified by the attention that the cingulate cortex has received in the 
neuroscientific literature recently [Posner et al., 2007]. In these contributions the cingulate cortex 
is seen as a part of the cortex that is mainly involved in the promotion of action and movements of 
decisions. By contrast, the two motor areas may be connected by a reciprocal feedback. These 
areas are important in our model since the primary motor area is responsible for the execution of 
all voluntary movements, while the supplementary motor area implements internally generated or 
well-learned actions, i.e. actions which do not require monitoring the external environment. 

A further assumption is that the three ROIs under analysis, if stimulated, can oscillate with an 
intrinsic beta rhythm. This assumption agrees with present knowledge. Indeed, as traditionally 
described in the literature, a motor related activity in the beta range is frequently located close to 
the sensory motor area following finger movements [Stancák Jr. & Pfurtscheller, 1996] and is 
reflected to the premotor area [Gómez et al., 2006]. As suggested by [Neuper & Pfurtscheller, 
2001] beta oscillations may be “indicative of a resonant behavior of the connected networks in the 
sensorimotor areas”. This reflects our basic model assumption. 

Beyond this fundamental aspect, the model incorporates two other important assumptions, which 
are used to generate alpha and gamma rhythms, but have a less evident physiological and neural 
counterpart. 

First, model assumes that a low-frequency α rhythm originates from an external area (that we 
named “thalamic area”) and then propagates to the other regions of interest. Indeed, a classic idea 
on the genesis of alpha rhythms [Buzsaki, 2006] is that this rhythm arises from the endogenous 
activity of thalamic neurons, or from thalamo-cortical connections, especially involving the 
occipital region. Recent works on the cat, support the critical role of the thalamus for the 
generation of occipital oscillations [Lopes da Silva et al., 1980]. A recent study on the location of 
EEG rhythms in humans confirms that alpha rhythms are especially evident in the occipital or 
occipito-temporal regions, i.e., they mainly arise from posterior neural sources [Gómez et al., 
2006]. Hence, although we cannot exclude that a source of alpha rhythms may also be present in 
the examined fronto-parietal regions, the most likely hypothesis is that this rhythm originates in 
thalamic and/or occipital regions, and is then transmitted toward the other regions of interest. 

An important simplification, which deserves a brief comment, is that we neglected any feedback 
synapse from cortical regions to the “thalamic area”. Of course, cortico-thalamic feedbacks exist 
in the brain and may have a role in the modulation of the alpha spectral content. Our choice has 
been adopted just to reduce the number of parameters in the fitting procedure, in order to avoid 
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the problem of “overfitting”. In fact, increasing the number of unknown parameters improves the 
quality of fitting, but worsens the reliability of parameter estimates. 

A further important assumption is that also the gamma rhythm originates from an external area, 
that we supposed to be located in the frontal cortex. This hypothesis is corroborated by the 
observation that neurons in the frontal cortex shows the intrinsic capacity to oscillate at 40 Hz 
[Gutfreund et al., 1995; Llinás et al., 1991]. However, alternative hypotheses on the origin of 
gamma rhythms can be found in the literature [Jefferys et al., 1996] and we cannot exclude that 
this rhythm originates internally in the considered ROIs due to recurrent excitation and inhibition 
mechanisms (especially involving fast inhibitory interneurons). Hence, the gamma region in the 
model should be considered as a “latent source”, that has not necessarily a physiological 
counterpart. This problem requires further theoretical and experimental work. 

Once this model structure has been designed, a fundamental point concerns what aspects of the 
spectra should be used to perform a best fitting between model predictions and real data. In 
previous works we used a least-square criterion function of the difference between model and 
measured spectra [Ursino et al., 2006; Zavaglia et al., 2006, 2008a, 2008b]. Assuming a Gaussian 
distribution of the measurement error, a least square criterion corresponds to a maximal likelihood 
estimation, i.e., maximization of the a priori conditioned probability. A more complex Bayesian 
procedure has been adopted by Moran et al. recently [Moran et al., 2008] under the framework of 
dynamic causal models [Friston et al., 2003; Stephan et al., 2007]. A Bayesian procedure involves 
also the inclusion of some a priori knowledge on the probability distribution of the estimated 
parameters. 

In the present work we tried an innovative strategy, based on the idea that not all aspects of the 
PSD are of equal interest. In particular, we focused attention especially on the position and 
relative amplitude of the main peaks in the power spectra, thinking that these summarize the 
underlying mechanisms generating EEG rhythms. Moreover we tried different complementary 
“cost functions” in the implementation of the genetic algorithm (GA). Although GA are time 
consuming compared with other minimization techniques, they offer the possibility to try 
different alternative solutions for the problem (implementing different tribes) and to overcome the 
problem of local minima (which often makes the result of fitting procedures untenable) by 
generating different sons through mutations in the parameter space. 

Two main objectives have been pursued with this technique: to discover possible simple circuits, 
connecting the three aforementioned ROIs, able to explain the observed PSDs; and to detect 
possible differences in connectivity circuits between healthy subjects and tetraplegic patients. 
Results point out the existence of significant differences between the two classes, especially for 
what concerns the weights which link the LF (thalamic) and HF regions to the primary and the 
supplementary motor cortices. In particular, these weights are stronger in tetraplegic patients 
compared with healthy individuals and these differences are statistically significant. Differences 
in connectivity weights might reflect a higher awareness (related with the gamma component) and 
a greater attention (related with thalamic inputs) in the tetraplegic patient than in the normal 
individuals, i.e., greater concentration toward the task. The existence of larger and stronger 
connectivity weights in the cortical connectivity networks estimated in tetraplegic patients 
compared with those estimated in healthy volunteers has been previously observed by several 
authors [Mattia et al., 2009; De Vico Fallani et al., 2008]. 
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A further interesting result of our work is that the greatest weights in the neural circuit are those 
which link the cingulate cortex to motor areas. This result underlines the importance of a 
feedforward signals from the frontal cortex in the initiation and planning of the voluntary 
movement. 

In the present work we performed 12 statistical tests, hence a possible objection is that the 
significance level should be corrected to account for multiple hypotheses. The problem of whether 
correction is appropriate or not is quite complex and depends on the objective of the work. As 
clearly stated in recent publications [Roback & Askins, 2005] if the main goal is generation 
hypothesis or initial screening for potential solutions, it may be appropriate to use the standard 
significance level without corrections to avoid Type II errors (not detecting real differences or 
trends). Conversely, if the main goal is rigorous testing of a hypothesis, then an adjustment for 
multiple tests (like Bonferroni or Holm’s methods) is needed. The objective of the present work is 
certainly “hypothesis generation”, hence we preferred to use classical t test to avoid type II error. 
Of course, in order to “test the hypotheses” generated with our procedure, one needs to repeat the 
experiment with new “fresh” data, considering only the individual hypotheses to be verified, and 
using a correction. This may be the subject of future works. 

Finally, it is important to discuss the main limitations of the present preliminary work, and 
possible lines for future changes. 

A first aspect concerns the variability of parameter estimates within the same subject. Although 
this variability is less accentuate compared with that between the two classes, and between 
different subjects in the same class, it is still quite elevated. Analysis of how the connectivity 
pattern may vary in the same subject from one trial to the next still requires a deeper future 
analysis. 

In the present model we assumed that connectivity originates from pyramidal neurons, and 
reaches the input of excitatory interneurons, i.e., we did not consider possible lateral connections 
from pyramidal neurons to inhibitory interneurons. Inhibitory inter-area connections, however, 
may be important to reduce neural activity, to avoid instability and to improve synchronization 
among rhythms. Lateral inhibitory synapses were considered by David et al. [David et al., 2006] 
and Stephan et al. [Stephan et al., 2007] in their DCM schema of neural populations for the 
analysis of event related responses. In particular, these authors assumed that lateral connections 
originating from pyramidal neurons target to all other populations (both excitatory and inhibitory) 
in the lateral ROIs, although they did not consider the presence of inhibitory interneurons with 
fast kinetics. Inclusion of lateral connections toward inhibitory interneurons may be of value in 
future works, to improve two aspects of results. First, it may help to maintain the activity of the 
motor and premotor ROIs far from saturation. Indeed, with the present values of parameters, these 
two populations are strongly activated and often work close to the upper saturation region of their 
sigmoid. Second, activation of fast inhibitory interneurons might help to explain the presence of 
gamma rhythms, even without introducing an ad hoc rhythm from an external population. The 
idea that gamma rhythms may originate from stimulation of fast inhibitory interneurons (or 
alternatively from gap junctions) has been proposed by various authors recently [Buzsaki, 2006; 
Traub et al., 2000]. Of course, a flaw of introducing lateral synapses to inhibitory interneurons is 
the increase in the number of free parameters, which may further complicate the convergence of 
the fitting procedure and the interpretation of results. 
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Another important limitation of the work presented in this chapter is that the model is able to 
simulate PSD spectra only if the rhythms in the three ROIs (in the alpha and gamma bands), have 
almost the same frequency. In view of that, we excluded all trials which present different 
frequencies in the spectra from the best fitting procedure. The reason for this limitation is that the 
three ROIs receive the alpha and gamma oscillations from the same external ROIs (i.e., the alpha 
rhythm from the LF region or thalamus; the gamma rhythms from the HF ROI, prefrontal, see 
Figure III.1). In order to generate rhythms with different frequencies in the alpha and gamma 
bands, one should hypothesize the presence of more LF and HF regions. However, this aspect 
would further complicate parameter estimation and would make the model less parsimonious. It is 
possible that introduction of lateral inter-region synapses directed to inhibitory interneurons may 
allow a more flexible positioning of rhythms in individual ROIs. 

Finally, we are aware that use of the genetic algorithm, although very flexible in finding a good 
solution avoiding local minima, is time consuming. Alternative more efficient fitting methods 
(maybe introducing some prior probability for the estimate, according to a Bayesian approach 
[Friston et al., 2002]) may be attempted in future studies. 

In conclusion, this work represents a first attempt to explain the presence of multiple rhythms in 
three ROIs involved in motor tasks, and their variability, using a simple model of interconnected 
populations. Encouraging results concern the capacity to obtain reliable PSD spectra, by acting on 
a few parameters representing the connection weights, and to detect significant differences 
between the two classes. However, important limitations are still evident: they are especially 
concerned with a lack of inhibitory interactions among ROIs, with the dispersion of individual 
parameter estimates, and with the difficulty to generate more flexible peaks in the spectra. 
Overcoming these limitations deserve much future work. 

Nevertheless, despite their present limitations, we claim models of interacting neural mass may be 
of great value to gain a deeper insight into the mechanisms of rhythms generation in EEG, and to 
start the formulation of more quantitative hypotheses on the neural architecture and connectivity 
changes underlying motor/cognitive tasks. 

 



27 
 

IV. NEW NMM WITH FAST INHIBITORY 

SELF-LOOP
2
 

1. INTRODUCTION 

Analysis of brain activity at a mesoscopic scale (from a millimeter to several centimeters of the 
cortex) reveals the presence of synchronous oscillations, which cover a large spectrum of 
frequencies and can be detected using EEG, MEG or ECoG [Buzsaki, 2006]. It is generally 
assumed that these oscillations are not merely an epiphenomenon, but play a crucial role in many 
important processes of the cortex, especially involving association among different functions 
[Başar et al., 2000, 2001; Ward, 2003]. The study of brain rhythms, in turn, of their etiology and 
functional role is strictly connected with the estimation of effective connectivity among brain 
regions. Rhythms originating in one region, in fact, may be transmitted to other regions via long 
range excitatory connections, and this “system of rhythms” may serve important functions to 
associate information from one region to another, to detect the phase of events, or to drive 
synaptic plasticity, thus playing a pivotal role in learning and memory [Başar et al., 2000, 2001; 
Engel & Singer, 2001; Ward, 2003]. 

One way to improve our knowledge of this “system of rhythms”, and to investigate the correlated 
problem of effective cortical connectivity, is through the use of dynamical mathematical models. 
In particular, a discipline named neurodynamics aims at analyzing the operations of the brain by 
investigating (via mathematical models and signal processing techniques) the dynamical aspects 
of electric or magnetic brain activity [Freeman, 1975; Nunez, 1995]. 

Mathematical models used to study brain dynamics can be roughly subdivided into two main 
classes, each with its virtues and drawbacks. In a first class of models, the activity of individual 
neurons is described in detail (generally using spiking neurons) and the properties of ionic 
channels, axons and dendrites often incorporated explicitly [Maex & De Schutter, 2007; Traub et 
al., 2005; Wang & Buzsáki, 1996]. Although these models are of the greatest value to understand 
the basic mechanisms of neural dynamics at a microscopic scale (for instance, to investigate 
mechanisms causing oscillations in a network of neurons) they are too cumbersome and 
computationally onerous to analyze the behavior of entire cortical regions at a mesoscopic level. 

Much attention in recent years has been devoted to the so-called “neural mass models” (NMMs), 
first introduced by Wilson and Cowan [Wilson & Cowan, 1972], Freeman [Freeman, 1978], and 
Lopes da Silva et al. [Lopes da Silva et al., 1974] in the mid-seventies. In these models, the 
dynamics of entire neural populations and of their synapses are described using just a few state 
variables (i.e., a few differential equations) under the assumption that neurons in the same 
population share similar inputs and synchronize their activity. Besides a smaller computational 
complexity, these models offer a more parsimonious description of neural dynamics in terms of 
parameters and mechanisms involved, generally ascribing rhythm generation to feedback loops 

                                                   
2 The contents of this chapter are published in Neuroimage (Ursino et al., 2010). 
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between excitatory and inhibitory neural populations. One of the first models of this type is the 
Wilson-Cowan oscillator, which is still largely used today to study synchronization among neural 
oscillations [Wilson & Cowan, 1972]. Lopes da Silva et al. [Lopes da Silva et al., 1974], proposed 
a simple model of two populations in feedback (one excitatory and the other inhibitory) to 

simulate the generation of the α rhythm in the thalamus. Freeman proposed a similar model to 
study dynamics in the olfactory cortex [Freeman, 1978]. These models have been subsequently 
improved by Jansen et al. [Jansen & Rit, 1995; Jansen et al., 1993]: their model encompasses the 
interaction between three neural populations with different synaptic kinetics (pyramidal neurons, 
excitatory interneurons, inhibitory interneurons), as it occurs in a single cortical column. The 
Jansen equations are frequently used today to build models of interconnected cortical areas 
devoted to the analysis of EEG dynamics in large regions of the brain [David & Friston, 2003], to 
study effective connectivity from EEG or fMRI data [Babajani & Soltanian-Zadeh, 2006] or to 
investigate how event related potentials (ERPs) depend on intrinsic connectivity [David et al., 
2005]. Friston et al. [Friston, 2005; Kiebel et al., 2008] developed a mathematical formalism, 
named Dynamic Causal Modeling (DCM), to provide a theoretical framework for the study of 
brain dynamics: it uses some variations of the Jansen model to characterize dynamics in cortical 
regions, together with a Bayesian approach for parameter estimation from data. Others [Babajani 
& Soltanian-Zadeh, 2006] used neural mass models to link data obtained from metabolic imaging 
(PET or fMRI) and electromagnetic signals (EEG or MEG). Sotero et al. [Sotero et al., 2007] 
developed a model of the overall cortical dynamics (still based on a variation of the Jansen model) 
to investigate how the distribution of brain rhythms on the cortex may depend on effective 
connectivity among the ROIs (regions of interest). Their model includes 71 brain areas with 
anatomical connectivity matrices among these areas. Models for the analysis of EEG at a 
mesoscopic scale were formulated by Wright, Robinson, Rowe et al. in a series of papers from the 
mid-nineties [Rennie et al., 2002; Robinson et al., 2001; Wright et al., 2003]. Although these 
models use a continuum in space instead of discrete neural populations, they share many aspects 
with neural mass models; in particular they exploit a few equations to summarize neural 
dynamics.  

An important advancement in the use of neural mass models was provided by Wendling et al. 
[Wendling et al., 2002]. Studying hippocampal dynamics during epilepsy, they proposed the 
addition of a fourth population to the Jansen model to account for the presence of GABAA 
interneurons with fast synaptic kinetics [White et al., 2000]. With this model they were able to 
simulate the dynamics of real EEG signals measured with intracerebral electrodes in the 
hippocampus during the transition from interictal to fast ictal activity. Recently, the Wendling 
model was used by Ursino, Zavaglia et al. to simulate the multimodal power spectral density in 
cortical regions [Zavaglia et al., 2006, 2008a] and to assess cortical connectivity via parameter 
estimation techniques [Cona et al., 2009; Ursino et al., 2006] during simple motor tasks. In 
particular, these studies stress the importance of fast inhibitory interneurons in the genesis of 

power in the γ band. 

Neural mass models were used by Moran et al. in a series of recent papers to simulate spectral 
densities of EEG and MEG recordings [Moran et al., 2007, 2009]. In these last models, the 
authors introduced recurrent connections among inhibitory interneurons and spike rate adaptation. 
Using linearity and stationarity assumptions, they investigated how the model's biophysical 
parameters (e.g., post-synaptic receptor density and time constants) influence the cross-spectral 
density of responses measured directly. 
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This short summary underlines the rising importance that neural mass models are acquiring for 
the study of brain dynamics. Analysis of the literature, however, and previous simulations of our 
group [Ursino et al., 2006; Zavaglia et al., 2006] also reveal some important limitations of these 
models. First, a single neural mass model (consisting of three (Jansen) or four (Wendling) neural 
populations connected via multiple feedbacks) when stimulated with input white noise produces 
just a single rhythm, with a narrow band, or, in some cases, a wide band spectrum. This “intrinsic 
rhythm” may originate either from instability of the feedback loops or, more frequently, from 
noise amplification caused by a resonance in a given frequency band [Grimbert & Faugeras, 
2006]. Moreover, to produce rhythms in different bands, these models necessitate a change in the 

synaptic time constants. In particular, simulating γ rhythms in these models requires the use of 
very small values for the time constant of fast interneurons (i.e. a few ms) [Wendling et al., 2002; 
Zavaglia et al., 2008a]. Conversely, real spectra measured during motor or cognitive tasks often 
reveal the presence of multiple rhythms in the same ROI [Rowe et al., 2004; Ursino et al., 2006; 
Zavaglia et al., 2006]. The simultaneous coexistence of several rhythms appears as an important 
characteristic of brain dynamics, which may have important computational functions. 

Hence, the following problems are “on the table”. How can we simulate different rhythms in a 

single ROI within the framework of NMMs? Are these models adequate to simulate γ oscillations, 
which play an essential role in many high-level cognitive tasks? 

David and Friston [David & Friston, 2003] suggested that a multi-modal spectrum can be 
obtained via NMMs by assuming the presence of different sub-populations in the same cortical 
region with different synaptic kinetics (i.e., different sub-populations of pyramidal neurons, 
excitatory interneurons, etc…). A similar approach was followed by Zavaglia et al. [Ursino et al., 

2006; Zavaglia et al., 2006] to simulate α, β and γ rhythms in some ROIs during simple motor 
tasks. It is worth noting that the same idea was implicitly followed also by Sotero et al. [Sotero et 

al., 2007]; in fact, these authors simulated the distribution of δ, α, β and γ rhythms separately, 
which is the same as to consider four separate systems of rhythms with distinct sub-populations of 
neurons. Although this approach may be consistent with the physiological reality, it appears not 
parsimonious: you need one specific population of neurons for each rhythm you want to generate. 
A more parsimonious approach was proposed by our group recently: we hypothesized that each 
region can produce just one intrinsic rhythm due to its internal dynamics, but it can receive 
additional rhythms from other regions via long-range excitatory connections [Cona et al., 2009; 
Zavaglia et al., 2008a]. With this model one does not need to replicate too many populations of 
neurons, but still needs to modify synaptic kinetics from one region to another. However, with 
this model it is still difficult to obtain more than two simultaneous rhythms in the same ROI. 

In the present work, we suggest a variation in NMMs which can help to overcome the previous 
limitations, and can be of value to build a system of interconnected rhythms among ROIs. Our 

variation is based on some recent experimental and modeling results, suggesting that γ rhythms 
can be generated by a network of fast inhibitory interneurons without the participation of the other 
populations. 

Whittington, Traub and Jefferys [Jefferys et al., 1996; Whittington et al., 1995] numerically 
simulated a network of isolated inhibitory neurons tonically excited by an external input, and 
showed that the neurons tend to entrain their activity into rhythmic firing at about 40 Hz thanks to 
reciprocal inhibition. Subsequent studies which investigated the oscillatory behavior of large 
inhibitory interneuron networks assuming slow and weak synapses [Tiesinga & José, 2000; Wang 
& Buzsáki, 1996; White et al., 1998], confirmed that these networks can produce coherent 
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oscillations when subject to external excitation. Oscillations, however, appeared scarcely robust to 
variations in the excitatory drive. To improve robustness one needs to incorporate fast and strong 
inhibitory synapses into the network, but in this case a stronger external excitatory drive is 
required to overcome inhibition [Neltner et al., 2000]. These results suggest that fast-spiking 

inhibitory interneurons play a pivotal role in the generation of γ-band oscillations [Bartos et al., 
2007]. 

The previous modeling results are supported by experimental data. First, oscillations of inhibitory 

post-synaptic potentials at frequencies in the γ-band occur in the hippocampal and neocortical 
slices even after blockade of glutamate receptors [Jefferys et al., 1996; Whittington et al., 1995]. 
Basket cells are highly interconnected in the hippocampus and in the neocortex [Bartos et al., 
2007] where they can form an extensive mutually interconnected interneuron network [Kisvárday 
et al., 1993; Sik et al., 1995] with a large divergent synaptic output to other neurons [Cobb et al., 
1995]. 

Despite the large number of theoretical and experimental data that stress the role of a fast 
inhibitory network in the genesis of γ-rhythms, we are not aware that this mechanism is solidly 
incorporated into neural mass models. Moran et al. incorporated recurrent self-connections 
between inhibitory interneurons in their recent model [Moran et al., 2007, 2008] motivating this 

choice with the necessity to generate high-frequency oscillations in the γ band. However, they 
used only one populations of inhibitory interneurons, without a distinction between GABAA,fast 
and GABAA,slow synaptic kinetics. 

According to the previous discussion, three main objectives have been pursued in this chapter: i) 
to enrich the NMM of a single region by adding a new feedback loop, through which fast 
inhibitory interneurons can produce a γ rhythm per se (i.e., without the participation of the other 
neural populations); ii) to demonstrate that the modified model can easily produce EEG PSD of a 
single region characterized by two peaks (i.e., two activities in different bands), using a very 
parsimonious description of connectivity weights and without altering model time constants. iii) 
to demonstrate that a model of interconnected ROIs can produce complex multimodal spectra and 
that a long-range connection between two ROIs is much more efficient to transmit rhythms if it 
targets fast inhibitory interneurons, rather than pyramidal neurons. 

The model is first presented in a synthetic form and the mechanism of γ-rhythm generation 
analyzed (“reduced model”). Then, the role of connectivity between populations of excitatory and 
inhibitory interneurons internal to the cortical region is studied, laying particular attention to the 
role of GABAA,fast interneurons (“complete model”). Subsequently, the effect of connectivity 
between two or three cortical regions is shown (“coupled complete model”). The discussion 
underlines the main innovative aspects of the proposed model.  
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2. METHOD 

2.1. A single region model: a brief summary 

As described in the previous chapter, the model of a cortical region consists of four neural 
populations, which represent pyramidal neurons, excitatory interneurons, and inhibitory 
interneurons with slow and fast synaptic kinetics, respectively. Each population represents a 
group of neurons of the same type, which approximately share the same membrane potential and 
so can be lumped together. All populations are described with a similar mathematical formalism, 
as in Figure IV.1. 

Briefly, each population receives an average postsynaptic membrane potential (v) from other 
neural populations, and converts this membrane potential into an average density of spikes fired 
by the neurons. In order to account for the presence of inhibition (when potential is below a given 
threshold) and saturation (when potential is high) this conversion is simulated with a static 
sigmoidal relationship. Moreover, each population sends synapses to other populations (or, in 
case of pyramidal neurons, to other regions too). Each synaptic kinetics is described with a second 
order system, but with different parameter values. 

However, differently from chapter III, throughout the present chapter we will assume a variational 
model, i.e., all quantities are considered as variations with respect to a hypothetical basal value. 
Moreover, this basal value is taken at the central point of the sigmoidal relationship. As a 
consequence, all quantities have zero mean value and are centered at the basal value, assumed 
equal to zero. A similar assumption has been done also by others when developing recent neural 
mass models [David et al., 2005]. 

Of course, the use of a variational model also exhibits some important limitations: in particular, 
neither the position of the working point nor the slope of the sigmoid at the equilibrium value 
vary with the connectivity parameters. This simplification has been adopted to maintain the model 
in the linear region: this choice helps the analysis of rhythm transmission, avoiding that the 
equilibrium point in some population shifts to the sub-threshold or to the saturation region due to 
an excessive connectivity [Ursino et al., 2006]. This limitation can be overcome in future works, 
for instance by using a non-zero mean value for model inputs (thus making the equilibrium values 
to depend on connectivity parameters too). 

In the following, a quantity which belongs to a neural population will be denoted with the 
subscript p (pyramidal), e (excitatory interneuron), s (slow inhibitory interneuron) and f (fast 
inhibitory interneuron).  

 

Figure IV.1: Layout of the general model of a single population. 
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Hence, the previous concepts are summarized by the following equations 

 v0 = 2C04y44  
IV.1 

 z0 = S�v0� = 2e�1+ e�"%7 − e� 
IV.2 

 d�y0dt� = G0ω0z0 − 2ω0 dy0dt − ω0�y0 IV.3 

where the subscript j refers to a presynaptic neural population, yj is the post-synaptic potential 
change induced by a unitary synapse, Cij represent the connectivity constant from the j-th 
population to the i-th one, and the sum in the right hand member of Eq. IV.1 extends to all 
populations which make synapses to the i-th population. Parameters e0 and r in Eq. IV.2, assumed 
equal for all populations, set the maximal saturation and the slope of the sigmoidal relationship, 

while Gi and ωi in Eq. V.20 represent the strength and the reciprocal of the time constant of the 

individual synapses. It is worth noting that, by giving different values to Gi and ωi (i = p, e, s, f) 
one can mimic the impulse responses of the different synapses (excitatory, GABAA,slow and 
GABAA,fast). In the following, these impulse responses will be denoted with symbols he(t), hs(t) 
and hf(t), assuming that excitatory interneurons have the same kinetics as pyramidal cells (i.e., 
hp(t) = he(t)). 

2.2. A network of fast inhibitory interneurons: the “reduced model” 

Previous versions of neural mass models [Freeman, 1975; Jansen & Rit, 1995; Wendling et al., 
2002] assumed that each neural population (p, e, s, f) receives its synaptic inputs from other 
populations in the same region or from pyramidal neurons in other regions. As a consequence, a 
neural population isolated from the others and stimulated by white noise cannot exhibit an 
intrinsic rhythm. Only connections with other populations can induce the presence of rhythms, 
due to a balance between excitation and inhibition. 

Conversely, experimental and computational results (summarized in the Introduction) underscore 

that a network composed of fast inhibitory interneurons can induce γ rhythms, even without the 
presence of other neural populations. Since this mechanism may play a significant role in the 
brain, providing a clock for pyramidal cells [Jefferys et al., 1996], we modified the description of 
the fast inhibitory interneurons taking into account the possible effect of their re-entrant 
connections. Indeed, basket cells (GABAergic interneurons) are highly interconnected and there is 
a high probability to find a chemical synapse between two closely placed fast-spiking basket cells 
[Bartos et al., 2007]. 

It is worth noting that the Jansen model was already modified in previous works with the 
introduction of a recurrent self-loop: for instance, Sotero et al. [Sotero et al., 2007] introduced a 
self-excitatory loop for the pyramidal population to account for the majority of intracortical fibers 
within a voxel; Moran et al. [Moran et al., 2007] introduced a self-loop among inhibitory 

interneurons to generate γ rhythms. However, none of these models used GABAA,fast synapses.  
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The simple model of isolated fast inhibitory interneurons (named the “reduced model”) is 
described in Figure IV.2. Here, to have realistic dynamics, we assumed that these interneurons 
synapse with themselves (hence, we included a self-loop with impulse response hf(t)) and that are 
tonically excited by an external input (which may come from populations in the same area or from 
other cortical areas). The excitation is simulated with white noise (say uf(t)) with zero mean value 
and variance σ2 = 5s-2, which acts through excitatory synapses (impulse response he(t)). The mean 
value of the input noise is taken as zero, since we are working with a variational model. 

A deeper comprehension of the mechanisms through which this fast interneuron model generates 

a γ rhythm can be achieved via an analytical approach, by studying the linearized model around 
its critical points. The critical points are those for which the derivative of the state vector Y) =�y), y)9 � are zero, at the mean value of the input (uf = 0). We can write: 

 

:;;
<
;;=

v) = −C))y)z) = S�v)� = 2e�1 + e�"%. − e�dy)dt = 0
d�y)dt� = G)ω)z) − 2ω) dy)dt −ω)�y) = 0

 

IV.4 

where Cff represents the strength of connections among inhibitory interneurons. 

The only solution is the origin of the phase space Y) = �0,0�, so v) = 0. The sigmoid is the only 
block that has to be linearized. By replacing its expression with the first order Taylor expansion in 
the critical point: 

 z) = ∂S�v)�∂v) @%.A� v) =
e�r2 v) 

IV.5 

one can obtain the transfer function of the linearized model in the frequency domain: 

 H�jω� = G	ω	�ω	 + jω���ω	 + jω��Eω)�K +ω)� + 2ω)jω + �jω��G IV.6 

where K = 	�"� C))G) is the loop gain. It can be easily verified that if the parameters are all positive 

the model is asymptotically stable. H can be seen as the product of two transfer functions H1 and 
H2 such that 

 

Figure IV.2: Layout of the model of GABAA,fast inhibitory interneurons. 
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 H��jω� = G	ω	 �ω) + jω���ω	 + jω�� 
IV.7 

 H��jω� = 1ω)�K + ω)� + 2ω)jω + �jω�� 
IV.8 

Since ω	 <	ω) , H1 represents a low-pass filter which attenuates high-frequencies compared with 

the low frequencies (the attenuation ratio is ω	/ω)) and so it cannot be responsible for γ 
frequency amplification. H2 is a second order low-pass filter, so its behaviour is totally described 
by its natural frequency ωn and its damping factor δ. 

 ωK = Lω)�K + ω)� IV.9 

 δ = N ω)K +ω) IV.10 

If the parameters are chosen to have physiologically plausible values (see section 3. ) then δ < �√�. 

In this case, a resonance occurs at ωpeak, where 

 ω�	PQ = Lω)�K − ω)� IV.11 

ωpeak is typically located in the γ band. The latter point will be examined in section 3. via a 
parameters sensitivity analysis on K and ωf. 

2.3. Model of a single cortical area: the “complete model” 

In sub-section 2.2. we considered only a single population, and so Eq. IV.11 holds only for the 
“reduced model”. Of course, the activity of this gamma rhythm (and thus its frequency) changes 
when interneurons are connected to other populations. To model a whole cortical area (the 
“complete model”, either an overall ROI as in Zavaglia et al. [Zavaglia et al., 2008a], or a voxel 
as in Sotero et al. [Sotero et al., 2007]) we need to connect the four populations via excitatory and 
inhibitory synapses, with impulse response he(t), hs(t) or hf(t). The average numbers of synaptic 
contacts among neural populations are represented by eight parameters, Cij (see Figure IV.3), 
where the first subscript represents the target (post-synaptic) population and the second subscript 
is the pre-synaptic population. These connections agree with those proposed by Wendling et al. 
[Wendling et al., 2002] but with the addition of the new self-loop Cff. 

An important aspect of the model is the external inputs. Since inputs originate from pyramidal 
neurons in other cortical areas, in the following we will assume that they always act via excitatory 
synapses (hence, with impulse response he(t)). In previous works [Ursino et al., 2006; Zavaglia et 
al., 2008a], we assumed that inputs target pyramidal cells. However, lateral connections in the 
cortex target all layers [Felleman & Van Essen, 1991], hence inputs can actually reach both 
pyramidal cells and excitatory interneurons as well as inhibitory interneurons [David et al., 2005]. 
For brevity, in the following, we will consider only inputs to pyramidal neurons and to fast 
inhibitory interneurons. A parameters sensitivity analysis has been performed also on inputs to 
slow inhibitory and excitatory interneurons, but is not reported since it did not produce 
appreciable changes in model dynamics. This aspect will be further analyzed in section 4. . 
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In conclusion, compared with the model described in our previous work [Zavaglia et al., 2008a], 
the new “complete model” has two changes: i) fast inhibitory interneurons may receive an 
external input (say uf(t)) from pyramidal neurons of other populations. ii) Fast inhibitory 
interneurons exhibit a negative self-loop, i.e., they not only inhibit pyramidal neurons (as in 
Wendling model), but also inhibit themselves. The final model is displayed in Figure IV.3. It 
corresponds to the following set of differential equations: 

 

Figure IV.3: Layout of the model of a single region: four neural populations (pyramidal cells, excitatory interneurons, 
GABAA,slow inhibitory interneurons and GABAA,fast inhibitory interneurons) which communicate via excitatory and 
inhibitory synapses. Worth noting is the presence of a new feedback loop with gain Cff. 
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Pyramidal neurons 

 dy��t�dt = x��t� IV.12 

 dx��t�dt = G	ω	z��t� − 2ω	x��t� − ω	�y��t� IV.13 

 z��t� = 2e�1 + e�"%& − e� 
IV.14 

 v��t� = C�	y	�t� − C�$y$�t� − C�)y)�t� IV.15 

Excitatory interneurons 

 dy	�t�dt = x	�t� IV.16 

 dx	�t�dt = G	ω	 *z	�t� + u��t�C�	 , − 2ω	x	�t� − ω	�y	�t� 
IV.17 

 z	�t� = 2e�1 + e�"%- − e� 
IV.18 

 v	�t� = C	�y��t� IV.19 

Slow inhibitory interneurons 

 dy$�t�dt = x$�t� IV.20 

 dx$�t�dt = G$ω$z$�t� − 2ω$x$�t� − ω$�y$�t� IV.21 

 z$�t� = 2e�1 + e�"%
 − e� 
IV.22 

 v$�t� = C$�y��t� IV.23 

Fast inhibitory interneurons 

 dy)�t�dt = x)�t� IV.24 

 dx)�t�dt = G)ω)z)�t� − 2ω)x)�t� − ω)�y)�t� IV.25 

 dyR�t�dt = xR�t� IV.26 

 dxR�t�dt = G	ω	u)�t� − 2ω	xR�t� − ω	�yR�t� IV.27 
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 z)�t� = 2e�1 + e�"%. − e� 
IV.28 

 v)�t� = C)�y��t� − C)$y$�t� − C))y)�t� + yR�t� IV.29 

It is worth noting that we used a sigmoidal function centered at zero, which corresponds to the use 
of a variational model. 

2.4. Model of connectivity among areas: the “coupled complete model” 

In order to study long-range connectivity let us consider two cortical areas (each described via 
Eqs. IV.12-V.20), which are interconnected through long-range excitatory connections with a 
time delay. The presynaptic and postsynaptic regions will be denoted with the superscript k and h, 
respectively. The generalization to more than two regions is trivial. To simulate connectivity, we 

assumed that the average spike density of pyramidal neurons of the presynaptic area (z�Q) affects 

the target region via a weight factor, W4SQ (where j = p or f, depending on whether the synapse 

target to pyramidal neurons or fast inhibitory interneurons) and a time delay of 10 ms, T. This is 

achieved by modifying the input quantities u�Q and/or u)S of the target region. 

Hence, we can write 

 u4S�t� = n4S�t� + W4SQz�Q�t − T� IV.30 

nj(t) represents Gaussian white noise (mean value mj = 0 and variance σj
2 = 5s-2) which account 

for all other external inputs not included in the model.  
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3. RESULTS 

3.1. Parameters sensitivity analysis on the population of GABAA,fast interneurons: the 

“reduced model” 

Figure IV.4 shows the results of a parameters sensitivity analysis performed on Cff and ωf in Eq. 
IV.8. The analysis has been performed both with the linearized model described in sub-section 
2.1. (linearized solution) and the nonlinear model (Eq. IV.4, numerical solution). The left panels 
(a, c and e) show the square amplitude of the transfer function of the linearized model; the right 
panels (b, d and f) show a comparison between the linearized model (dashed line) and the output 
of the nonlinear model (solid line); the latter has been computed, after numerical integration of the 
differential equations, as the PSD of the output divided by the PSD of the input uf. The curves 
have been computed using three different values of parameters ωf and Cff (see Eq. IV.10). 

As suggested by the theoretical study on the linearized model, the parameters sensitivity analysis 
confirms that the system has a resonance peak whose position can be changed within the 

frequency range of the γ-band (30-50 Hz) by acting on the two parameters. As a consequence, the 
input noise is amplified in correspondence of this peak and GABAA,fast interneurons exhibit an 

oscillatory activity in the γ band. Hence, GABAA,fast neurons can generate γ activity even if 
isolated from the other populations, thanks to the self-loop included in the model. 

3.2. Parameters sensitivity analysis on a cortical area: the “complete model” 

Simulations performed in a previous paper [Zavaglia et al., 2006] demonstrate that the model of 
Wendling et al. [Wendling et al., 2002], stimulated with input white noise to pyramidal cells (up 
(t)), produces just a unimodal spectrum (i.e., a spectrum with a single well defined peak) whose 
position primarily depends on the synaptic kinetics (i.e., ωe, ωs, ωf) parameters. Conversely, the 
model presented here (Figure IV.3), including a self-loop between fast inhibitory interneurons, 
can generate more than one oscillatory rhythm within a single ROI. 

Table IV.1: Model basal parameters 

Parameter Symbol Value 
Average gains (mV) Ge 5.17 

Gs 4.45 
Gf 57.1 

Poles (s-1) ωe 75 
ωs 30 
ωf 75 

Number of synaptic contacts Cep 54 
Cpe 54 
Csp 54 
Cps 67.5 
Cfp 54 
Cfs 27 
Cpf 540 
Cff 27 

Sigmoid saturation (s-1) e0 2.5 
Sigmoid steepness (mV-1) r 0.56 
Time delay (ms) T 10 
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An example is shown in Figure IV.5 (panel a). Two rhythms are evident in the PSD, one in the β 

range and the other in the γ range. The parameters values used in the simulations are reported in 
Table IV.1 [Jansen & Rit, 1995]. We used a value for the time constants of GABAA,fast 
interneurons of 13 ms, which is in accordance with in-vivo studies [White et al., 2000]. 

 

Figure IV.4: Comparison between the analytical and numerical solutions obtained with the model of a single loop of 
GABAA,fast interneurons. For each row, different values of ωf (respectively 40 s-1, 70 s-1 and 100 s-1, upper panels) and 
Cff (respectively 27, 54 and 81, lower panels) have been used. 
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3.2.1. Generation of γγγγ-band power 

In order to identify the loops that are essential to obtain a rhythm in the γ band, we performed a 
parameters sensitivity analysis on the six gains which describe the strength of the connections 
among the four neural populations. In particular, the PSD was computed by assigning a value zero 
to each gain, while the other five gains are maintained at the basal value. The results show that, 

when connections from pyramidal cells toward excitatory interneurons (Cep) or from GABAA,slow 
interneurons toward pyramidal cells (Cps) are set to 0 (Figure IV.5 b and c) the two rhythms 
persist. When the connection from pyramidal cells toward GABAA,fast interneurons (Cfp) is set to 
0, the two rhythms are not clearly distinguishable, but the power band is still fairly broad (0-40 
Hz) (Figure IV.5 d). Conversely, when the connection from GABAA,slow interneurons toward 
GABAA,fast interneurons (Cfs) is cut (Figure IV.5 e), the two rhythms collapse in a single one 

oscillating in the γ band. Instead, when the connections from GABAA,fast interneurons to 
pyramidal cells (Cpf) or from GABAA,fast interneurons toward themselves (Cff) are cut (Figure IV.5 
f and g), the two rhythms collapse in a single one located at low frequencies, suggesting a crucial 

role for these connections in the generation of γ rhythm. 

The previous simulations show that the presence of fast inhibitory interneurons with a self-loop is 

essential to generate a γ rhythm within a single region. However, these simulations were just 
performed according to an ON/OFF criterion, i.e. by individually eliminating the contribution of 
single connectivity weights. 

 

Figure IV.5: PSD of a single region setting off some connections among neural populations. The first panel represents 
the output of the whole model with parameters as in Table IV.1. The other six panels represent the power spectra 
respectively when Cep = 0, Cps = 0, Cfp = 0, Cfs = 0, Cpf = 0, Cff = 0. 
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Hence, we performed a more exhaustive analysis on the whole connectivity parameter space. 
Here, simulations have been performed by systematically varying the seven parameters which 
represent the internal connectivity (except Cff). For each parameter, we used six different values 
within a physiological range (0, 27, 54, 81, 108, 135), while the other parameters (ωe, ωs, ωf, Ge, 

Gs, Gf) were maintained at the values reported in Table IV.1. Hence, the total number of points 
probed in the parameter space (D) was 67 = 279936. 

 

Figure IV.6: Panel a shows a histogram of the power distribution obtained with the model by Wendling (dashed line), 
with the new model (solid line) and with the control model (marked line). For each frequency f, the figure indicates the 
percentage of simulations in the parameters space D for which 95% of the power is below f. Similarly, panel b indicates 
the percentage of simulations in the parameters space D for which 50% of the power is below f. See text for details. 
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For each parameter set, three simulations have been performed: one for the Wendling model, 
another for the new model, and the last for a control model, that is, a model equal to Wendling 
model plus the white noise input for the GABAA,fast interneurons. The control model has been 
analyzed to verify that the differences between the model by Wendling and the new one are 
actually due to the GABAA,fast loop. For each model and for each parameter set, we computed the 
PSDs. 

The first analysis was devoted to ascertain the possibility to generate a significant power in the γ 
band by each model. To this end, for each parameter value, and for each model, we computed: i) 
an upper frequency for the spectrum, defined as the frequency below which 95% of power is 
contained; ii) an average frequency for the spectrum, defined as the frequency below which the 
spectrum contains 50% of its power. Results are presented in Figure IV.6, in the form of an 
histogram showing the percentage of results for each frequency range. Results show that 95% of 
the power for Wendling’s model and for the control model is always located between 0 and 25 
Hz, whereas for a high percentage of simulations the new model shows significant power 

activation also in the γ band (Figure IV.6 panel a). Moreover for about 1/4 of the simulations the 
new model generates half of the power at frequencies higher than 25 Hz (panel b). This means 

that the new model not only can generate γ activity, but it is also suitable for the generation of 

power spectral peaks in the γ band. 

 

Figure IV.7: Example of a bimodal spectrum generated with the new model. Panel a shows the squared modulus of the 
transfer function (solid line) of the associated linearized system around a stable equilibrium point. Panel b shows the 
squared modulus of the transfer function computed as the PSD of the numerical solution of the model divided by the 
PSD of the input noise (dashed line). In panel b the solid line represents the same plot as in panel a. 
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These results clearly demonstrate that only if Cff ≠ 0, we can produce an evident γ rhythm using 
physiological values for time constants, further supporting the importance of the new loop. 

A further set of simulations has been performed by systematically varying parameter Cff (i.e., 
strength of the inhibitory interneurons fast loop) from 0 to 236.25, while all other parameters are 
set at the same value as in Table IV.1. Results, not shown for briefness, demonstrate that the 
frequency of the second peak in the spectrum progressively increases from 30-40 Hz to 100-120 

Hz by increasing Cff, although at high values of this parameter the amplitude of the γ peak 
significantly decreases. 

3.2.2. Bimodal spectra 

A subsequent analysis was devoted to ascertain the possibility of generating two distinct peaks in 
PSD. This point has been handled by studying the transfer function of the linearized system (LS) 
around its equilibrium points. For each set of parameters the equilibrium points have been 
calculated and the stability evaluated (Hartman-Grobman theorem) looking at the real part of 
eigenvalues. About 25% of the parameter sets gives at least one stable LS for the model by 
Wendling, while this percentage rises to about 54% for the new model. Among the stable LSs we 
looked for those that could generate at least two distinct resonance peaks. To this end, the 8th 

 

Figure IV.8: Power spectra of the model by Wendling (dashed line), of the new model (solid line) and of the control 
model (marked line), when the time constant of GABAA,fast interneurons is changing. The values of the other parameters 
are from Table IV.1. 
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degree polynomial at the denominator of the transfer function has been factorized in four 2nd 
degree polynomials DENi(s) = (s-pi,1)(s-pi,2). Every DENi(s) block can generate a resonance if it 

has two complex conjugate poles that verify the following constraints: Re(pi) < 0, Re(pi) > -

|Im(pi)| (damping factor less than 1/√2). Results show that these constraints are verified in about 
12% of the simulations in the new model, but just in 0.04% (118 sets of parameters) in the model 
by Wendling. Hence, the new model is much more suitable to produce two distinct resonance 
peaks than the former one. Finally, we further looked for those resonance peaks which are at least 

10 Hz apart from one another, and which exhibit a damping factor δ < 0.1: these last stricter 
constraints ensure the presence of two well evident peaks in the spectra. An example for the new 
model when the latter constraints are satisfied is shown in Figure IV.7. However, these conditions 
are limited (less than 1% of the simulations) even in the new model. Most conditions 
characterized by two well defined peaks in the spectra are associated with unstable equilibrium 
points, i.e., the development of limit cycle dynamics. The latter analysis may be the subject of 
future work. 

 

Figure IV.9: PSD of two regions (first region in the first column (panels a, d, g, j, m) and second region in the second 
column (panels b, e, h, k, n)) communicating by different connectivity patterns. The coherence between the two regions 
is represented in the third column (panels c, f, i, l, o); the connectivity patterns are represented in the fourth column. The 
arrow indicates connectivity toward pyramidal cells, the square indicates connectivity toward GABAA,fast interneurons. 
See the text for other parameters values. 

0 20 40
0

5

10
PSD of region 1

0 20 40
0

10

20
PSD of region 2

0 20 40
0

0.5

1
Coherence

0 20 40
0

5

10

0 20 40
0

5

10

0 20 40
0

0.5

1

0 20 40
0

20

40

m
V

2 /H
z

0 20 40
0

5

10

0 20 40
0

0.5

1

0 20 40
0

10

20

0 20 40
0

5

10

0 20 40
0

0.5

1

0 20 40
0

5

10

0 20 40
0

5

10

F (Hz)
0 20 40

0

0.5

1

a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)

Connectivity

15

15

10

5

5

10



45 
 

3.2.3. Role of time constants 

A last set of simulations has been performed to show the role of the time constant of fast synaptic 
kinetics. To this end, PSD has been computed in the three models using the values of connectivity 

strength reported in Table IV.1, and progressively reducing the time constant τf from 13 ms to 1 
ms. Results, shown in Figure IV.8, confirm that the present model can produce a significant 

power in the γ band for all values of τf. If τf  is reduced down to 1 ms, a broadband spectrum can 
be observed. Conversely, Wendling model and the control model can produce significant power 

in the γ band only if the time constant used for fast synaptic kinetics is as low as 1-2 ms. 

3.3. Connectivity between two cortical areas: the “coupled complete model” 

Further simulations were performed to study the transmission of rhythms from one region to 
another as a consequence of connectivity with time delay between the two regions. In these 
simulations, parameters were given so that populations exhibit limit-cycle behaviour (i.e., 
oscillations arise as the consequence of internal instability), to emphasize rhythm generation and 
transmission (see also the analysis in sub-section 3.2. ). 

Figure IV.9 shows the behaviour of a model composed of two interconnected regions. In each 
panel the first two columns represent the PSD of the two regions; the third is the coherence 

 

Figure IV.10: PSD of two regions communicating by different connectivity patterns. In this simulation the values of the 
parameters are the same as in Figure IV.9 except for the parameter Cpf of the second region, which has been changed 
(Cpf = 0) in order to obtain a rhythm around 5 Hz. All the panels represent the same quantities as in Figure IV.9. 
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function while the fourth column represents the connectivity diagram. In all simulations 
parameter Cpf is set to 540 in the first region, whereas it is set to 108 in the second one. All other 
parameters have the same values as in Table IV.1. As a consequence of these choice, the first 

region exhibits two rhythms (the first in the β and the second in the high γ range) while the second 

region exhibits only one narrow rhythm in the low γ range. The results of different simulations are 
shown, with the connectivity strength from the second to the first region progressively increased. 
Moreover, the connectivity was directed either to fast inhibitory interneurons, to pyramidal 
neurons, or to both. The most interesting result is that if the connectivity is sent towards 
pyramidal cells the rhythm is not induced in the target region and also the coherence function is 
low (panels d-f and m-o), whereas if the connectivity is sent to GABAA,fast interneurons, the 
presence of a new induced peak is evident (panels g-l) and the first region exhibits three 
simultaneous rhythms. 

Figure IV.10 shows another example of connection between two regions. In these simulations the 
parameter Cpf of the second region has been set to 0 in order to obtain a rhythm around 5 Hz. This 
region could simulate an area which oscillates at low frequency, for example the thalamus. It is 
worth noting that, if the connections are sent to GABAA,fast interneurons, the first region exhibits 

three rhythms, with one in the θ band (5 Hz) induced by the second region. This behaviour is 
reflected in the coherence function. 

 

Figure IV.11: PSD of three regions communicating by different connectivity patterns. The first region (panels a, d, g, l) 
is simulated with a value of Cpf = 0, the second region (panels b, e, h, k) with a value of Cpf = 540 and the third region 
(panels c, f, i, l) with a value of Cpf = 108. The other panels represent the connectivity patterns and the coherences 
between the regions. 
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Figure IV.11 shows the effect of connectivity among three regions. All the regions are simulated 
with the parameters reported in Table IV.1, but the first region has Cpf = 0 to reproduce the 

activity of an area with a rhythm in the θ band and the third region has Cpf = 108 to reproduce the 

activity of an area which oscillates in the γ range. It is worth noting that in this case the PSD of 
the second region exhibits a multiple spectrum (with intrinsic and induced rhythms), 
comprehensive of the contributions from all the regions. The coherence is high in correspondence 
of the induced rhythms. 

Of course, real connections in the cortex often exhibit feedback loops. A comprehensive study of 
all the possible combinations of connectivity patterns among two, three or even more regions, 
would require a combinatorial explosion of possibilities. For the sake of brevity we just 
investigated an example of two regions with feedback connections to show that this kind of 

 

Figure IV.12: PSD of two regions communicating by different connectivity patterns. In the first 4 rows (panels a-l) the 
first region is simulated with a value of Cpf = 108 while the second region with a value of Cpf = 27. In the last two rows 
(panels m-r) the first region is simulated with a value of ωf = 55 s-1 and with a value of Cpf = 108 while the second 
region with a value of ωf = 75 s-1 and a value of Cpf = 108 All the panels represent the same quantities as in Figure IV.9. 
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connectivity does not change the results dramatically in comparison to unidirectional 
connectivity, while an extensive study could be addressed in future works.  

In Figure IV.12 the upper panels (panels a-l) analyze the case in which one region oscillates in the 

θ band and the other in the γ band. The bottom panels (panels m-r) analyze a case in which one 

region oscillates in the low γ band and the other in the high γ band. In both cases, multimodal 
spectra can be produced in both regions if connections have a sufficient strength. In this case too, 
connections to fast inhibitory interneurons are more efficient to cause rhythm propagation. Worth 
noting is that feedback connections may also induce a shift in one peak (by way of example, let us 

see the third row, where a peak in the β band appears, which was not originally present in either 
of the two regions). 

Finally, Figure IV.13 shows a comparison between a real PSD obtained on an healthy volunteer 
during a simple movement task [Zavaglia et al., 2008a] and a spectrum simulated with a model of 
two interconnected regions. In this case we did not try a best fitting, but we simply looked for a 
manual adjustment of connectivity parameters to show the similarity between real spectra and 
simulated ones. This result emphasizes that spectra similar to those found in vivo can be obtained 
with a parsimonious model, and just adjusting a few connectivity weights.  

 

Figure IV.13: Panel a shows the power spectrum of a real cortical signal. Panel b shows the spectrum of a signal 

simulated with a model of two interconnected regions: the first region has an intrinsic α rhythm, while the second one 

oscillates in β and γ ranges. The parameters which have different values from those reported in Table IV.1 are: for the 
first region ωe = 120 s-1, ωf = 55 s-1, Cfp = 121.5, Cfs = 40.5, Cpf = 27, Cff = 135 ; for the second region ωf = 55 s-1. The 
weight factors are: Wp

21 = 200, Wp
12 = 90, Wf

21 = 0, Wf
12 = 0. When the two regions are connected to each other the 

second one shows a power spectrum similar to the real one. 
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4. DISCUSSION 

The work presented in this chapter extends the possibilities offered by neural mass models to 
simulate real power density spectra, and to investigate effective connectivity patterns. The main 
new issues are concerned with: The possibility to generate γ-rhythms using just a chain of fast-
inhibitory interneurons, without the presence of the other neural populations; of course, in real 
physiological conditions the frequency of this rhythm is not fixed, but is modulated by the other 
populations (sub-section 4.1. ); The possibility to engender multiple rhythms in the same model, 
without the need to include multiple synaptic kinetics (sub-section 4.2. ); The role played by 
inputs converging into fast inhibitory interneurons to propagate rhythms from one region to 
another (sub-section 4.3. ). 

In the following, each of these items is discussed separately. 

4.1. γγγγ-rhythm generation 

Our theoretical analysis stresses the possibility to generate a peak in PSD within the γ-band in a 
simple way, by just introducing an inhibitory loop among fast interneurons. This loop is 
physiologically motivated by the presence of significant interconnections between fast basket 
cells, as observed in the hippocampus [Cobb et al., 1997] and in the neo-cortex [Kisvárday et al., 
1993]. The idea that a self-loop of one population to itself (frequently used in competitive neural 
networks) can enrich the dynamics of neural mass models was already exploited by Sotero et al. 
in their recent model of overall brain dynamics [Sotero et al., 2007]. However, these authors 
included a loop between pyramidal cells only, assuming that, at a large scale, “pyramidal-to-
pyramidal connections become increasingly important, accounting for the majority of intracortical 
fibers”. A similar loop among inhibitory interneurons has been used by Moran et al. [Moran et al., 

2007] to simulate γ rhythms: however, these authors did not use two distinct populations of 
interneurons; in particular, they did not simulate interneurons with GABAA,fast kinetics. A large 
amount of modeling and experimental work suggest that fast inhibitory networks play a 

significant role in the genesis of γ rhythms [Bartos et al., 2007; Jefferys et al., 1996; White et al., 
1998; Whittington et al., 1995]. 

Our analysis underscores that γ oscillations can be obtained using physiological values for the 
time constant of fast inhibitory synapses (range 10-20 ms), contrarily to previous works 
[Wendling et al., 2002; Zavaglia et al., 2006, 2008a] where one needed to use very small values (a 
few ms) for the time constant of GABAA,fast interneurons. Furthermore, the lower the time 
constant, the higher the oscillation frequency. This result agrees with data reported by 
Whittington et al. [Whittington et al., 1995] (see also Figure 4 in Jefferys et al. [Jefferys et al., 
1996]). These authors, both via computer simulations in integrate and fire neural networks and in 

experimental trials during pentobarbital infusion, observed that the frequency of γ rhythms is 
inversely related with the time constant of the inhibitory post-synaptic current. Moreover, the 
value of the time constants in their work is close to that used in our model. 

A further interesting result of our analysis is that the frequency of γ-rhythms is directly related 
with the connectivity strength among fast interneurons (i.e., parameter Cff in Figure IV.2). If this 
parameter is increased by twofold or threefold with respect to its basal value, model predicts 

oscillations in the ultra γ range (about 70 Hz). For even greater values of parameter Cff, oscillation 
frequency may increase up to 80-100 Hz, although the amplitude of the PSD peak significantly 
decreases. This dependence of frequency on connectivity requires further experimental validation. 
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It is worth noting that Rennie et al. [Rennie et al., 2000], using a continuum model of electrical 

activity in the cortex, also ascribed the emergence of γ rhythm to a resonance near 40 Hz. 
However, in their model the resonance depends on a modulation of synaptic strength, hence to a 
different mechanism compared with that exploited in the present work. 

In conclusion, the model ascribes the occurrence of a γ rhythm to the presence of a resonance 
occurring within the network of fast inhibitory interneurons, here described by means of a simple 
feedback loop. In the linearized model, the frequency and amplitude of the resonance peak depend 
on the time constant of the GABAA,fast synapses and on the strength on reentrant connections 
between these interneurons. In the non-linear model, these quantities can also be modulated by the 
excitatory input to the fast interneurons: the latter may affect the working point in the sigmoidal 
characteristic, thus altering the loop gain. 

Of course, the mechanism exploited in the present model to generate γ rhythms may not be the 

unique one; alternative mechanisms may be effective to generate γ rhythms in different 
conditions, as reviewed by Jefferys et al. [Jefferys et al., 1996]. These may include a recurrent 
inhibition between an excitatory and an inhibitory population, or the presence of intrinsic 
pacemaker cells. The first mechanism is widely exploited in classic models of neural oscillators 
(such as the Wilson-Cowan oscillator [Wilson & Cowan, 1972]) and is commonly adopted in 
more traditional neural mass models [Freeman, 1978; Lopes da Silva et al., 1974]. However, to 

produce γ rhythms, this mechanism must assume the presence of very small time constants for the 

synapses. Particularly, results in Figure IV.8 show that γ rhythms in power spectral density can be 
generated using the Wendling model [Wendling et al., 2002], but one needs a time constant for 
fast inhibitory interneurons as low as 1-2 ms. For what concerns the second mechanism, examples 
of intrinsic pacemaker cells in the cortex are well documented [Gutfreund et al., 1995; Llinás et 
al., 1991], although we are not aware of their use within neural mass models. 

Finally, it is remarkable that not only fast interneurons, but also gap junctions can be important 

for some forms of γ oscillations [Wang & Buzsáki, 1996]. Probably gap junctions increase the 
oscillation power, although are not necessary for their generation [Bartos et al., 2007]. Their 
effect may be that of increasing coupling between interneurons populations, i.e., an increase in the 
coupling terms Cij of our model. 

4.2. Multiple rhythms in the same ROI 

If the four populations (pyramidal neurons, excitatory interneurons, slow and fast interneurons) 
which constitute a cortical column are connected with realistic connectivity loops (Figure IV.3) 

the model can produce two simultaneous rhythms: the first, in the γ band, can be ascribed to a 

resonance of fast inhibitory interneurons; a second, at lower frequencies (in the α band or β band) 
emerges from the other feedback loops (i.e., loops engaging pyramidal neurons, excitatory 
interneurons and slow inhibitory interneurons). It is worth noting that this “intrinsic rhythm” is 
that obtainable from the traditional Jansen and Rit model [Jansen & Rit, 1995] and represents the 
core of most recent studies using neural mass models [Babajani & Soltanian-Zadeh, 2006; David 
& Friston, 2003; David et al., 2005; Sotero et al., 2007; Zavaglia et al., 2006]. 

Jefferys et al., in their review paper on mechanisms generating γ rhythms [Jefferys et al., 1996], 

suggested that “the fact that inhibitory networks can sustain a rhythm in the γ frequency range… 
separates the synchronizing control or clock from the specific neural processing of information”. 
This idea substantially agrees with the results emerging from our model: a higher frequency 
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rhythm originating in the fast-inhibitory loop modulates (and is modulated by) a slower rhythm 
within the same region, originating from slower synapse time constant. 

The parameter sensitivity analysis shown in Figure IV.5 and Figure IV.6 supports this viewpoint. 

If parameter Cff is set at zero, the model cannot generate a significant power in the γ-band (using 
physiological values of time constants) but all power is concentrated below 25 Hz. Conversely, a 
significant power above 30 Hz can be obtained with many combinations of parameters if Cff is 
significantly different from zero. In the latter condition, if connectivity between pyramidal, 
excitatory and slow-inhibitory interneurons are changed, one can observe evident changes in PSD 

within the α and β bands, whereas the PSD still exhibits a significant contribution in the γ band 
(panels b and c in Figure IV.5). 

Analysis of the poles in the linearized model also supports a pivotal role for parameter Cff. Only 
the present model (with Cff ≠ 0) can frequently produce two resonant peaks if linearized around a 
stable equilibrium point (Figure IV.7) whereas with Cff = 0 the presence of distinct resonant peaks 
in the transfer function becomes very rare. Nevertheless, our analysis also suggests that, in most 
conditions, the present model (as well as the Wendling model) does not exhibit stable equilibrium 
points, but its behavior arises from limit-cycle oscillations. We did not explored these aspects in 
this work, but they might be the subject of future more refined theoretical analyses. 

Definitely, the previous analysis suggests that the model can generate a variety of PSDs, with two 

simultaneous rhythms (α + γ, or β + γ) or even a wide-band spectrum, by simply altering internal 
connectivity parameters, without the need of any ad hoc changes in the synaptic time constants. 
These bimodal oscillations may arise from the presence of two resonant peaks in the linearized 
model or from a more complex non-linear limit cycle dynamics. 

4.3. The role of fast interneurons on rhythm transmission between ROIs 

A remarkable result of our simulations is the pivotal role played by long-range excitatory 
connections which terminate into fast inhibitory interneurons. Indeed, the present work introduces 
a new testable hypothesis that we cannot find in previous studies: i.e., that excitatory input to fast 
inhibitory interneurons plays a fundamental role to transmit rhythms from one region to another. 
Our results clearly show that a moderate synapse from pyramidal neurons in the pre-synaptic ROI 
to fast inhibitory interneurons in the post-synaptic ROI is able to transmit rhythms very 
efficaciously, as observable in the spectrum of the target region and in the coherence between 
EEGs in the two regions. Conversely, excitatory synapses from pyramidal to pyramidal neurons 
are less effective in rhythms transmission, as revealed by the low value of coherence between the 
two ROIs. Only if the strength of synapses is increased by one order of magnitude, pyramidal to 
pyramidal connections become really efficacious and one can observe a high coherence (above 
0.5) in the frequency band interested by the rhythm. 

According to the literature [Felleman & Van Essen, 1991], long-range connectivity originates 
exclusively from pyramidal neurons, but may target to different populations of neurons depending 
on the type of connection. In the present study we focused attention just on two of these 
connections (from pyramidal to pyramidal and from pyramidal to fast inhibitory) to study two 
target populations with different time constants. Time constants, in fact, are the main determinants 
of population dynamics. However, we repeated the simulations in Figure IV.9, Figure IV.10, 
Figure IV.11 and Figure IV.12 assuming that connectivity reaches also the slow inhibitory and the 
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excitatory interneurons (these are not presented for briefness). The presence of these further 
inputs does not appreciably modify the previous results. 

We claim that the reason why a population of fast interneurons may be so efficacious to receive 
an external rhythm, and transmit it to other populations in the same area (especially to pyramidal 
cells), can be found in its fast dynamics, which allow the preservation of the overall spectral 
content of the external rhythms. Moreover, the inhibitory loop of GABAA,fast interneurons with 
themselves is faster compared to the loop composed of GABAA,fast interneurons and pyramidal 
cells; for this reason the perturbations that reach fast inhibitory interneurons have a stronger effect 
on the entire dynamics of the system. 

It is worth noting that the term “efficient connection” has been used here just to denote the 
capacity to propagate a rhythm from one population to another. Of course, it is does not 
necessarily implies efficiency in a wider computational meaning, i.e. the capacity to maximize 
information transmission with a reduced wiring cost (such as evaluated in “small world network”, 
see [Achard & Bullmore, 2007]). 

The observation that rhythm transmission is particularly efficient when connections target fast 
inhibitory interneurons may have a cognitive significance. In fact, according to the classic 
distinction developed by Felleman and van Essen [Felleman & Van Essen, 1991],connectivity 
may vary depending on the hierarchical level along the processing stream. In particular, in the 
visual cortex lateral connections target all layers, while top-down (backward) connections target 
supra-granular and infra-granular layers. In both cases, inhibitory interneurons can be among the 
target cells. Conversely, bottom-up (forward) connections terminate in layer 4, making synapses 
only to excitatory interneurons. Hence, according to Felleman and van Essen schema, model 
predicts a stronger capacity to transmit rhythm via lateral and top-down connections, but poorer 
capacity via forward connections. This distinction may have a cognitive role, suggesting that 
rhythm transmission (especially in the beta and gamma ranges) may be especially important in 
high level cognitive processes, which involve lateral connections among regions at the same 
hierarchical levels, and top-down influences from higher hierarchical centers. 

An important aspect, which deserves attention, is whether multi-modal spectra, as those obtained 
in the present study, are actually found during real measurements in vivo. Indeed, several recent 
studies show real spectra in cortical regions similar to those reported in Figure IV.9, Figure IV.10, 
Figure IV.11 and Figure IV.12. Spectra with two distinct peaks are presented in Rowe et al. 
[Rowe et al., 2004] (see Figure 4 in that work). In previous papers of our group we tried to fit real 
spectra obtained after localization of the cortical sources, starting from high-density scalp EEG 
during simple movement tasks [Ursino et al., 2006; Zavaglia et al., 2008a]. Frequently these 

spectra exhibited multiple peaks, in the α, β and γ bands (the reader can look at Figure 4 in 
[Zavaglia et al., 2008a], for various exempla). An exemplum of a real spectrum (taken from 
[Zavaglia et al., 2008a]) is shown in Figure IV.13 and compared with a PSD obtained with a 
model of two interconnected regions. In this figure we did not try an automatic best fitting, but we 
simply adjusted connectivity parameters manually to arrive at an acceptable qualitative 
agreement. Best fitting of the present model to real spectra will be the subject of future model 
applications, maybe through the use of Bayesian estimation techniques [Moran et al., 2008]. 

A recent work by Rosanova et al. [Rosanova et al., 2009], using TMS stimulation in human 

volunteers, further supports the existence of different rhythms (α, β and γ) in different cortical 
regions, and the possibility that rhythms are propagated from one region to another via effective 
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connectivity pathways. In particular, TMS evoked an α-band oscillation in the occipital cortex, a 

β-band oscillation in the parietal cortex and a β/γ-band oscillation in the frontal cortex, but each 
region could also receive a different rhythm (thus showing multimodal spectra) from other 
regions via brain connections. 

In the present work we studied both uni-directional (Figure IV.10 and Figure IV.11) and bi-
directional (Figure IV.12) connections. In the first case, the target population may receive a 
further rhythm (besides its intrinsic rhythm) from the other population, with the appearance of a 
more complex spectrum. This should be easily observable in vivo [Rosanova et al., 2009]. The 
case of bi-directional connection is more complex, since the spectra of both populations are 
simultaneously affected (let us consider, for instance, the exemplum in the bottom panel in Figure 
IV.12). In this condition, it may be difficult to assess the mechanisms leading to multimodal 
spectra from in vivo data, without the use of mathematical models and algorithms for effective 
connectivity estimation. This work wishes to represent a new step in that direction. 

4.4. Limitations and possible improvements 

Finally, at the end of this discussion we wish to point out some limitations of our work and lines 
for future improvements. 

The present model is basically derived from the model by Wendling et al. [Wendling et al., 2002], 
and differs from the recent model by Moran et al. [Moran et al., 2007, 2008, 2009] due to the 
presence of inhibitory interneurons with GABAA,fast synaptic kinetics. We are aware that the 
model by Wendling et al. was originally proposed with reference to the hippocampus, and that 
some differences may exist between the hippocampus and the cortex. Nevertheless, there are 
several reasons which justify the use of the Wendling model for the cortex too, and the extension 
and improvement we propose in the present work. 

First, fast inhibitory interneurons not only represent a significant portion of GABAergic 
interneurons in the hippocampus [Freund & Buzsáki, 1996] but they are also present in the 
cerebral cortex [González-Burgos et al., 2005; Thomson et al., 1996]. Second, several 
experimental studies used receptor antagonists to analyze individual mechanisms involved in 
neural oscillations; their results suggest that similar cellular and network mechanisms, as those 

seen in the hippocampus, generate γ oscillations in the cortex too [Bartos et al., 2007; 
Cunningham et al., 2003; Whittington et al., 1995]. The previous two points support the idea that 
fast GABAA mechanisms operate in the cortex (as in Wendling model of the hippocampus) and 

that they have a role in generating γ rhythms both in the hippocampus and in the cortex via similar 
mechanisms. 

Of course, other types of neurons exist in the cortex and in the hippocampus, besides the four 
populations included in the Wendling model. At the present stage of our knowledge, a four 
population model may represent a good compromise between simplicity and completeness, since 
it encompasses all main dynamical aspects (i.e., the main types of time constants). However, 
inclusion of a larger number of neuron populations, each with its own synaptic dynamics, might 
improve the physiological reliability of neural mass models in future years and might represent a 
subject of interesting future activity. 

Finally, it is remarkable that other authors in the past decades developed significant models to 
describe EEG spectra based on a “neural field approximation”. The basic idea of these models is 
that the number of neurons in the cortex is large and the density of synaptic connections is high. 
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Hence, these models consider the cortex as a continuum and use a set of nonlinear partial 
differential equations in space and time to describe the spatiotemporal evolution of neural activity. 

These models, with inclusion of fast inhibitory kinetics to simulate γ-band oscillations, might 
allow a further more complete analysis of brain rhythms, illustrating conditions in which rhythms 
may propagate, amalgamate or dissipate in a continuum space. This aspect may also represent an 
important subject of future work. 

In conclusion, the present study proposes a new and simple method to generate γ rhythms within 
neural mass models, without the need to modify synaptic kinetics. In particular, three different 
conditions have been analyzed with the model: in the first (named “reduced model”) we just 
considered connectivity among fast interneurons taken alone, and demonstrated that this model 
can produce a gamma rhythm per se. In a second condition (named the “complete model”) we 
simulated the behavior of a single ROI (mimicked through the interaction among four 
populations) and showed that this model can produce a spectrum with two distinct peaks (in the 

beta and gamma ranges, or in the alpha and gamma ranges). In particular, a γ rhythm emerging 
from a fast interneuron loop modulates (and is modulated by) the internal slower rhythm 
emerging from the other loops. Finally, the last model (named the “coupled complete model”) 
was obtained by considering the interaction between two or three interconnected ROIs; it can 
simulate more complex multimodal spectra, with a variety of rhythms (some intrinsic and some 
received from other ROIs) similar to those observed in vivo. In particular, the results stress that 
long-range excitatory synapses with time delay, directed to fast interneurons are particularly 
effective in transmitting rhythms from one region to another. These results, which may be tested 
by ad hoc experiments, can help the construction of more adequate models to fit in vivo data, and 
can be exploited to attain a deeper comprehension of the effect of connectivity patterns among 
ROIs. 
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V. ANALYSIS OF THE RHYTHMIC ACTIVITY 

EVOKED BY TMS
3
 

1. INTRODUCTION 

The study of brain rhythms represents an important aspect of modern neuroscience. The electrical 
activity of the brain is very complex, including different oscillatory patterns at different 
frequencies, which may change depending on a particular task. It is generally assumed that these 
rhythms are not merely epiphenomena, but play a relevant role in many perceptive, motor and 
cognitive functions. 

Different hypotheses on the role of brain rhythms have been proposed in the recent literature. 
Oscillatory fluctuations in the theta and gamma bands are assumed to play a pivotal role in several 
aspects of memory, including storage and retrieval of individual events or sequences of events, 
short-term plasticity, novelty detection [Düzel et al., 2010]. According to a popular hypothesis 
[Singer & Gray, 1995] a role of gamma-band oscillations may be that of binding attributes of the 
same events to form a coherent percept, still maintaining these attributes separate from those of 
other events simultaneously present. Beta oscillations are assumed to play a role in motor tasks, 
since induced oscillations in the beta-band have been observed in sensory motor areas after 
voluntary body movements (or even after a movement imagination) or after sensory stimulation 
[Neuper et al., 2006]. A further hypothesis is that beta activity is related to increased alertness in 
thalamo-cortical systems [Steriade et al., 1993]. Alpha oscillations changes are also observed 
during motor tasks [Neuper et al., 2006]; moreover, they have been interpreted (together with 
other low-frequency oscillations) as processes which coordinate top-down control both in 
working memory and in long-term semantic memory [Klimesch et al., 2010]. In any case, the 
main function of rhythm propagation seems to be that of realizing an “assembly code”, in which 
information participating to a given task is distributed over different regions; rhythms would 
allow “long distance” communication among ROIs, still maintaining this communication 
selective, i.e., engendering parallel processing. A stimulating hypothesis is that different rhythms 
constitute separate networks for parallel processing in the brain, which emerge transiently during 
certain stages of information processing mediated by synchrony over multiple frequency bands 
[Varela et al., 2001]. Of course, validation of these hypotheses on a more careful quantitative 
basis may benefit from the use of computational models, which are sophisticate enough to 
encompass the main aspects of rhythm generation and transmission, but simple enough to allow 
easy simulation on a computer. 

An estimation of the intrinsic rhythms of brain regions, and of how these rhythms can be 
transmitted and modified as a consequence of brain connectivity, can be achieved using the TMS 
combined with the EEG. TMS/EEG, indeed, allows to perturb regions of the human cortex 
directly with an impulsive disturb, and measure the dominant frequencies generated by the 
underlying cortical areas [Van Der Werf et al., 2006; Paus et al., 2001; Rosanova et al., 2009]. In 

                                                   
3 The contents of this chapter are published in Neuroimage (Cona et al., 2011). 
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particular, Rosanova et al. [Rosanova et al., 2009] observed the dominant oscillation rate (natural 
frequency) in three brain regions (BA 19 in the occipital lobe, BA 7 in the parietal lobe, and BA 6 
in the frontal lobe) following TMS stimulation of different intensities in a group of healthy 
volunteers. Results show that the natural frequency can be directly measured in virtually any area 
of the cerebral cortex. Moreover, the authors hypothesized that these natural rhythms can be 
transmitted from one region to another (or that the intrinsic rhythms can be modified) as a 
consequence of connectivity among them. 

The previous results are suitable to be analyzed using neurologically inspired computational 
models. Actually, the impulse response is a classical instrument in modeling literature to estimate 
parameters and validate model structure in a straightforward way. Computational models, in turn, 
are essential to reach a deeper understanding of the neural mechanisms involved in rhythms 
generation and in their propagation. 

In the last decade Esser et al. [Esser et al., 2005, 2009] developed a cortico-thalamic model to 
simulate the effect of a TMS impulse. The authors modeled the single neural cells as spiking 
neurons in different layers of the cortex and successfully reproduced some experimental aspects 
such as frequency, timing, dose response, and pharmacological modulation of epidurally recorded 
responses to TMS. 

This kind of model allows brain dynamics to be analyzed at a microscopic level (ion channels 
currents and action potentials), but it is computationally very expensive and time demanding. A 
complementary approach is given by neural mass models, which simulate large ensembles of 
neurons just considering their average state variables (voltages and spiking rates), thus reducing 
greatly the time and the variables required. Despite their reduced degree of detail, neural mass 
models can reproduce many phenomena observed in experimental EEG recordings (rhythms 
generation and propagation, epileptic seizures, etc.) and have been widely exploited to infer the 
neural dynamics underlying these phenomena [Cona et al., 2009; Wendling et al., 2002]. 

As stated in the previous chapter, we developed a neural mass model to study rhythm generation 
and rhythm transmission among connected cortical regions. The model was built starting from 
equations proposed by Jansen and Rit [Jansen & Rit, 1995] and Wendling et al. [Wendling et al., 
2002], with inclusion of a new loop to simulate the role of fast GABA-ergic interneurons in the 
genesis of gamma oscillations [Ursino et al., 2010]. The model is able to simulate multiple 
rhythms within the same ROI and the transmission of rhythms from one region to another, by 
simply modulating a few parameters which represent short-range connections within a region and 
inter-area long-range connectivity. 

Our model is particularly suitable to analyze the experimental results by Rosanova et al. 
[Rosanova et al., 2009]. In particular, some model predictions (the presence of intrinsic rhythms 
in individual ROIs and the possibility to transmit rhythms via a few effective connections among 
ROIs) agree at least qualitatively with these experimental data. 

Hence, the present study was designed with the following two main purposes: 

1. to analyze whether the response of individual ROIs to direct TMS stimulation can be 
simulated with sufficient accuracy with the model by modifying just a few internal 
parameters of that region. This aspect is the same as to fit the natural rhythm of a ROI 
with a biologically inspired model; 
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2. to analyze whether a model of interconnected ROIs can at least approximately explain 
how natural rhythms can be transmitted or modified as a consequence of inter-region 
connections. 

In this work, we simulated the behavior of BA 19, BA 7 and BA 6 with a network of three 
interconnected regions. Parameters are given to reproduce the effect of TMS stimulation with 
three different intensities in five subjects.  
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2. METHOD 

2.1. Experimental data recording: EEG and TMS 

Five right-handed subjects (SUBJ1, SUBJ2, SUBJ3, SUBJ4, SUBJ5) participated in this study. 
During the experiment, subjects were lying on an ergonomic chair, relaxed, and with eyes open 
looking at a fixation point on a screen. A focal bipulse, figure-of-eight coil with 60mm wing 
diameter driven by a biphasic stimulator (eXimia TMS Stimulator; Nexstim) was used to 
stimulate the subjects’ cortex. Three cortical sites (middle or superior occipital gyrus, superior 
parietal gyrus, and middle or caudal portion of the superior frontal gyrus) were selected based on 
an atlas of brain regional anatomy [Tamraz & Comair, 2005], anatomically identified on a T1-
weighted individual MRI (resolution 1 mm) acquired with a 1 T Philips scanner and were targeted 
by means of a Navigated Brain Stimulation (NBS) system (Nexstim). We recorded high-density 
EEG using a TMS-compatible 60-channel amplifier (Nexstim) which gates the TMS artifact and 
prevents saturation by means of a proprietary sample-and-hold circuit [Virtanen et al., 1999]. The 
EEG signals, referenced to an additional electrode on the forehead, were filtered (0.1–500 Hz) and 
sampled at 1450 Hz with 16-bit resolution. Two extra sensors were used to record the 
electrooculogram. In most cases, no TMS-induced magnetic artefacts were detected, and in all 
cases, the EEG signals were artefact-free after the stimulus. TMS trials containing noise, muscle 
activity, or eye movements were automatically detected and rejected. The event related potentials 
were obtained by averaging across all the trials of each session (100-200 per session). More 
technical details on the procedure can be found in Rosanova et al. [Rosanova et al., 2009]. For 
each subject, we stimulated each cortical area at eight different TMS intensities (range, 20–160 
V/m). Firstly we defined the EEG-threshold for each subject, then we used the three intensities 
above this threshold (medium, medium/strong and strong) for the analysis with the model. The 
TEPs under the threshold were not significant with respect to the baseline activity and so they 

could not be used to attempt a reliable parameter fitting. 

2.2. Cortical sources reconstruction 

In order to reconstruct the cortical sources of EEG responses to TMS, we first created, for each 
subject, an individual cortical mesh (7204 vertices) by adapting an average Montreal Neurological 
Institute (MNI) cortex to the subject’s MRI data (this step was performed by employing the free 

license package SPM at http://www.fil.ion.bpmf.ac.uk/spm). Then, we co-registered the 
meshes of the cortex, the skull (2000 vertices) and scalp (2000 vertices) together with the EEG 
sensors positions into the subject’s MRI space. The cortex, skull and scalp meshes were aligned 
with a 3-spheres head model (conductive head volume) that was used to compute the forward 
solution according to the Berg method [Berg & Scherg, 1994] as implemented in the Brainstorm 

software package (freely available at http://neuroimage.usc.edu/brainstorm). Finally, the 
inverse solution was computed on a single trial basis by applying an empirical Bayesian approach 
with estimation of covariance components using Restricted Maximum Likelihood [Friston et al., 
2006]. In order to compute the overall current evoked by TMS in different cortical areas, cortical 
sources were attributed to different Brodmann areas using an automatic tool of anatomical 

classification (http://www.ansir.wfubmc.edu). Currents recorded within each area were 
cumulated in order to produce a new time series. 
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2.3. Model of a single cortical area 

First, a brief model justification is provided on the basis of the neurophysiological literature. 
Then, the model is qualitatively described. Finally all model equations and details are given. 

2.3.1. Justification for the model structure 

The neocortex is a 6-layer structure, which contains several types of neurons, excitatory and 
inhibitory [DeFelipe et al., 2002]. Neurons characterized by excitatory (glutamatergic) synapses 
include pyramidal neurons, which represent the majority of cells and are especially present in 
layers 2 and 6, and spiny stellate cells, mainly located in the middle cortical layer (i.e., the 
granular layer or layer 4). Most inhibitory interneurons form GABAergic synapses (although 
different types of neurons are also present) and are distributed in all layers. 

The complete microstructure of the cortical column is certainly complex, and its simulation may 
require inclusion of a large number of neural populations, depending on the objectives of the 
model (for instance, Sotero et al. [Sotero et al., 2010], used up to eight populations in a recent 
work, see Discussion). Usually, however, authors tried to use a “minimal” model, which 
incorporates the smallest number of populations and of intrinsic synapses necessary to reach their 
objectives. 

As suggested by DeFelipe et al. [DeFelipe et al., 2002], the basic microcircuit of the cortical 
column is formed by the pyramidal cells and by its input-output connections. Indeed, pyramidal 
cells are the only ones which send long-range (extrinsic) synapses; moreover, they represent the 
main source of the EEG signal (hence, this population represents the “output” of any neural mass 
model). According to this point of view, traditional “minimal” neural mass models embody three 
neural populations, which account for excitatory interneurons in the granular layer (layer 4) and 
for pyramidal neurons and inhibitory interneurons in the agranular layers. This minimal circuit 
considers just two feedback loops: pyramidal cells send their excitation to the two other 
populations via intrinsic connections, and receive inputs (respectively excitatory and inhibitory) 
from them. 

It is worth noting that this model represents the simpler structure able to generate realistic EEG 
patterns. In fact, the negative feedback loop between pyramidal and inhibitory populations is 
mostly responsible for the rhythm generation (a simpler model for rhythm generation, the Wilson 
Cowan oscillator [Wilson & Cowan, 1972], includes two populations only, without excitatory 
interneurons, but provides quite schematic oscillatory waveforms). The positive loop between 
pyramidal neurons and excitatory interneurons has two basic functions: it amplifies the activity 
and modulates the rhythms to ensure a richer variety of behaviors [Jansen & Rit, 1995]. 

The previous “minimal” three-population model has been used by several authors in recent years 
to simulate various aspects of the EEG, such as power spectral density and ERP [David et al., 
2005; Moran et al., 2007], and to study the role of intrinsic and extrinsic connectivity among 
ROIs [David et al., 2004; Sotero et al., 2010]. 
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A significant extension of the previous model was suggested by Wendling et al. [Wendling et al., 
2002]; these authors proposed addition of a fourth population of inhibitory GABAergic 
interneurons with faster synaptic kinetics. This modification was based on a series of studies in 
the hippocampus [Miles et al., 1996], which demonstrate that there are two types of GABAA 
synaptic responses in CA1 pyramidal neurons: a faster near the soma and a slower in the 
dendrites. The presence of fast kinetics is essential to generate rapid neural phenomena (evident 

not only in the hippocampus but in other ROIs too), such as gamma and ultra-gamma oscillations 
and epileptic spikes. A further aspect that should be taken into account is that GABAergic 
interneurons are richly interconnected [DeFelipe et al., 2002]. Banks et al. [Banks et al., 2000] 
showed that the two populations of interneurons interact, i.e., slow GABA interneurons do not 
only inhibit pyramidal neurons, but also send their inhibition to the fast GABAergic interneurons. 
Furthermore, experimental works in vitro [Bartos et al., 2007; Kisvárday et al., 1993; Sik et al., 
1995], and theoretical computational studies [Tiesinga & José, 2000; Wang & Buzsáki, 1996; 

 

Figure V.1: Model of a cortical area. 
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White et al., 1998] suggest that a population of strongly interconnected fast GABAergic 
interneurons can produce a gamma rhythm per se, i.e., without the participation of the other 
populations. Accordingly, in recent works we suggested to incorporate a negative self-loop of the 
fast inhibitory population to itself [Ursino et al., 2010]; with this loop, the cortical column can 
generate robust gamma oscillations which coexist with a slower oscillation produced by the other 
internal loops [Moran et al., 2007, 2009]. 

2.3.2. Qualitative model description 

Following the previous considerations, the general schema of the model used in this chapter to 
simulate a single ROI is shown in Figure V.1. Alternative, more complex models and possible 
changes will be critically commented in section 4. . 

The model of a cortical region consists of four neural populations (Figure V.1), which represent 
pyramidal neurons (subscript p), excitatory interneurons (subscript e), and inhibitory interneurons 
with slow and fast synaptic kinetics (GABAA,slow and GABAA,fast, subscripts s and f, respectively). 
Each population represents a group of neurons of the same type, which approximately share the 
same membrane potential and so can be lumped together. All populations are described with a 
similar mathematical formalism. Briefly, each population receives an average postsynaptic 
membrane potential, v, from other neural populations, and converts this membrane potential into 
an average density of spikes fired by the neurons. In order to account for the presence of 
inhibition (when potential is below a given threshold) and saturation (when potential is high) this 
conversion is simulated with a static sigmoidal relationship. Moreover, each population sends 
synapses to other populations (or, in case of pyramidal neurons, to other regions too). Each 
synaptic kinetics is described with a second order system, but with different parameter values. 

To model a whole cortical region, the four populations are connected via excitatory and inhibitory 
synapses, with impulse response he(t), hs(t) or hf(t), assuming that pyramidal neurons and 
excitatory interneurons synapses have similar dynamics. The average numbers of synaptic 
contacts among neural populations are represented by eight parameters, Cij (see Table V.1), where 

Table V.1: Description of model parameters and variables 

Symbol Description Subscript/Superscript 
hi(t) Impulse response of synapse of type i i = e for excitatory 

 s for GABAA,slow inhibitory 
 f for GABAA,fast inhibitory 

Gi Gain of synapse of type i 
ωi Pole of synapse of type i 
vi Membrane potential of neural population i i,j = p for pyramidal cells 

 e for excitatory interneurons 
 s for GABAA,slow interneurons 
 f for GABAA,fast interneurons 
 l for state variables of the 

external input to GABAA,fast 
interneurons 

zi Spiking rate of neural population i 
xi, yi State variables of neural population i 
ui External input to neural population i 
Cij Number of synaptic contacts from neural 

population j to neural population i 

e0 Maximum neural activation rate 
- 

r Steepness of neural activation rate 
Wi

hk Connection strength from region k to neural 
population i of region h 

i = p for pyramidal cells 
 f for GABAA,fast interneurons 
h, k = 6, 7, 19 for BA 6, 7, 19 

respectively 
Dhk Connection delay between region k and 

region h 
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the first subscript represents the target (post-synaptic) population and the second subscript refers 
to the pre-synaptic population. These connections agree with those proposed by Wendling et al. 
[Wendling et al., 2002] but with the addition of the new self-loop Cff. Table V.1 shows a list of 
model parameters with their meaning. 

2.3.3. Model equations 

Pyramidal neurons 

 dy��t�dt = x��t� V.1 

 dx��t�dt = G	ω	z��t� − 2ω	x��t� − ω	�y��t� V.2 

 z��t� = 2e�1 + e�"%& − e� 
V.3 

 v��t� = C�	y	�t� − C�$y$�t� − C�)y)�t� V.4 

Excitatory interneurons 

 dy	�t�dt = x	�t� V.5 

 dx	�t�dt = G	ω	 *z	�t� + u��t�C�	 , − 2ω	x	�t� − ω	�y	�t� 
V.6 

 z	�t� = 2e�1 + e�"%- − e� 
V.7 

 v	�t� = C	�y��t� V.8 

Slow inhibitory interneurons 

 dy$�t�dt = x$�t� V.9 

 dx$�t�dt = G$ω$z$�t� − 2ω$x$�t� − ω$�y$�t� V.10 

 z$�t� = 2e�1 + e�"%
 − e� 
V.11 

 v$�t� = C$�y��t� V.12 

Fast inhibitory interneurons 

 dy)�t�dt = x)�t� V.13 

 dx)�t�dt = G)ω)z)�t� − 2ω)x)�t� − ω)�y)�t� V.14 
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 dyR�t�dt = xR�t� V.15 

 dxR�t�dt = G	ω	u)�t� − 2ω	xR�t� − ω	�yR�t� V.16 

 z)�t� = 2e�1 + e�"%. − e� 
V.17 

 v)�t� = C)�y��t� − C)$y$�t� − C))y)�t� + yR�t� V.18 

Numerical values of parameters that are not found by the algorithm are reported in Table V.2. 

2.4. Model of connectivity among areas 

Neurophysiological and neuroanatomical studies [Felleman & Van Essen, 1991] show that long 
range connections from pyramidal neurons to distal cortical regions can reach all populations, 
depending on the type of connection. In particular, bottom-up connections especially reach 
excitatory interneurons in the granular layer; top-down connections reach both pyramidal cells 
and inhibitory interneurons; lateral connections reach all types of neurons [Felleman & Van 
Essen, 1991]. In the work described in the previous chapter [Ursino et al., 2010], we performed a 
sensitivity analysis on the role of these connections for rhythm propagation and found that the 
most influential connections are “from pyramidal to pyramidal” and “from pyramidal to fast 
inhibitory”. The other two connections play a less important role for rhythm transmission. Hence, 
thinking to the necessity of a limitation in the number of estimated parameters, long-range 
synapses which target slow inhibitory interneurons or excitatory interneurons have not been 
considered. 

Accordingly, to simulate cortical connectivity between two regions (the pre-synaptic and post-
synaptic regions will be denoted with the superscript k and h, respectively), we assumed that the 
average spike density of pyramidal neurons of the pre-synaptic area (zk) affects the target region 
via a weight factor, Wj

hk (with j = p or f, depending on whether the synapse targets pyramidal 
neurons or GABAA,fast interneurons) and a time delay Dhk. This is achieved by modifying the 
membrane potential vp

h and/or vf
h of the target region, with the time dynamics of an excitatory 

synapse. 

Table V.2: Numerical values of constant parameters 

Parameter Value 
ωe (rad/s) 75 
ωs (rad/s) 30 
ωf (rad/s) 75 
Ge (mV) 5.17 
Gs (mV) 4.45 
Gf (mV) 57.1 
Cep 5 
Cpe 25 
Csp 60 
e0 (Hz) 2.5 
r (mV-1) 0.56 
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2.5. Simulation of TMS experiments and fitting procedure 

In order to simulate the TMS experiment described above, we implemented a model of 
connectivity among three cortical regions, simulating BA 19, BA 7 and BA 6 (Figure V.2). 

An automatic fitting between simulated EEG and real data has been achieved in the time domain. 
In particular, we focused attention on the 200 ms following the TMS impulse. Experimental time 
series were compared with membrane potentials of pyramidal neurons simulated with the model. 
Since the two quantities have a different scale, all experimental time series were multiplied by a 
constant gain to have the same scale as the simulated signals. It is worth noting that, in the present 
model, we used the sum of postsynaptic potentials of pyramidal neurons to calculate the source of 
the EEG signal. Although this assumption is usually adopted in neural mass models [Jansen & 
Rit, 1995; Wendling et al., 2002] recent studies suggest that EEG waves are generated by synaptic 
currents [Avitan et al., 2009; Nunez & Srinivasan, 2006]. We think that the use of potentials 
instead of currents may be acceptable in the present study, since we are especially interested in the 
frequency content of activity evoked by the TMS pulse. Moreover, the model works in the linear 
region of the sigmoidal function, where current and potential are almost proportional. 

In the present work fitting has been attempted only in a frequency range above 8 Hz (i.e., theta 
and delta rhythms have been excluded, since they probably require a more complex model 
including thalamic regions, see section 4. ). As a consequence, the real TMS-evoked potentials 
(TEPs) were preprocessed with a high-pass filter (Chebyshev 2nd type with cutoff frequency ft = 

 

Figure V.2: Connectivity pattern. Arrows indicate connections toward pyramidal cells, circles indicate connections 
toward GABAA,fast interneurons. 
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8Hz). Furthermore, oscillations in the experimental signals occurring in the first 10 ms after the 
perturbation were also neglected, because they are mostly artefactual [Rosanova et al., 2009]. 
After fitting, model and real signals were also compared in the time frequency domain. To this 
end, time frequency maps were obtained using the continuous wavelet transform with Morlet 
wavelets [Tallon-Baudry et al., 1996]. 

The aim of the fitting procedure was to find for each subject and each stimulation intensity a set 
of model parameters able to reproduce the experimental data (5 subjects x 3 intensities = 15 
fittings). Considering one subject, for each stimulation intensity we have 9 experimental signals to 
be fitted, representing the responses of the 3 BA to the stimulation of each of them. 

First, we applied the whole fitting procedure described below to subject SUBJ5 with medium 
TMS intensity. The fitting procedure has been subdivided into two steps. 

In the first step, we fitted the impulse response of a single region when the same region receives 
the TMS stimulus (this step was repeated three times, once for each BA). The effect of the TMS 
stimulus in the single cortical area was simulated as a step change, ∆yp, in the membrane potential 
of pyramidal cells, in accordance with other TMS implementations in neural models [Esser et al., 
2005]. The estimated parameters were the synaptic contacts among the neural populations (Cij) 
and the intensity of the stimulus ∆yp. To reduce the number of variables for the fitting, we used as 
free variables only those internal connection strengths (Cps, Cfp, Cpf, Cff, Cfs, see also Table V.1 for 
the meaning of symbols) that most influenced the frequency content of the model output, 
according to our previous study [Ursino et al., 2010], for a total of 6 parameters per ROI. The 
complete list of parameters is shown in Table V.1. The optimization procedure was a combination 
of a Genetic Algorithm (GA) (for a similar application of GA to neural mass models see Cona et 
al. [Cona et al., 2009]) and the simplex method (Matlab’s fminsearch). We used a GA in order to 
arrive at an optimal solution, independently of the initial guess [Holland, 1975]. To facilitate the 
convergence of the GA we used Dynamic Time Warping (DTW) [Sakoe & Chiba, 1978] to 
compare the simulated TEPs with the experimental ones. DTW has been used as a generalization 
of the Mean Square Error (MSE) because it is less influenced by time shifts and by limited 
deformations when comparing waveforms. The simplex method was applied once every 50 
generations of the GA, in order to explore various local minima of the variable space, and as the 
final step of the fitting procedure. A more detailed description of the GA is given in sub-section 
2.6. . 

In the second step we used the same fitting algorithm (GA and simplex method) to find a unique 
cortical connectivity pattern that could describe the experimental TEPs of all regions both directly 
and indirectly stimulated by TMS (i.e., all 9 signals simultaneously). This time, the algorithm 
acted not only on the number of synaptic contacts within each region, but also on the inter-
regional connectivity strengths (directed to pyramidal cells, Wp, and to GABAA,fast interneurons, 
Wf, for a total of 12 free parameters) and on their time delays, D. The delays between any pair of 
regions were forced to be equal, thus reducing their number from 6 to 3, resulting in 15 more free 
parameters (33 parameters in total). The results from the first step were used here as the starting 
points for the internal parameters in order to boost the convergence. In this second step we used 
MSE as the error function instead of DTW, which is more computationally expensive, since the 
initial guess was sufficiently accurate. To handle the multi-objective optimization with the GA 
(we had to find a unique set of parameters for 9 different signals) we followed a particular 
strategy that makes use of more than a cost function. More precisely, we calculated 9 MSEs, one 
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for each signal, and evaluated the individuals of the GA with 10 different cost functions that 
depends on these MSEs: 

1. The first cost function (mixing function, MF) is given by a weighted sum of the 9 MSEs, 
where we gave more importance to the fitting of the directly stimulated regions: 

 MF = 162E0,00 + 1122E0,40X4  
V.19 

where Es,r represents the MSE between the real and the simulated TMS evoked potential 
on the Brodmann area BA r when BA s is stimulated with TMS; 

2. The other cost functions (specific functions) are also weighted sums of the 9 MSEs, but 
each one gives the most importance to a single different MSE: 

 SF$," = 12E$," + 116 2 E0,4�0,4�X�$,"�  
V.20 

In this way we obtained 10 votes for each individual, where the first (mixing function) rewards 
the individuals that best fit the 9 signals altogether (with particular attention to the 3 TEPs of the 
directly stimulated regions), while the other 9 (specific functions) reward the individuals that best 
fit one single signal. The probabilities for each individual to enter the mating pool (individuals 
who will produce children) are equally distributed between the 10 votes, so an individual that fits 
one of the 9 signals very well has nearly the same probability to reproduce itself as an individual 
that fits all signals quite well. In this way the 9 signals are fitted in parallel with the goal of 
reaching a global minimization. The output of the GA is the set of parameters given by the 
individual with the lowest value for the first cost function. For the simplex method we used a 
single cost function which is the mixing function of the GA. 

Since activities evoked by TMS in all the subjects and with all the stimulation intensities were 
quite repeatable in the frequency domain (i.e., TMS evoked similar natural rhythms), we used the 
same architecture for the three regions and varied only the inter-region connectivity. Hence, we 
set the internal parameters within each region (parameters Cij in Table V.1) to the same values 
estimated above, and we re-estimate only the inter-region connection strengths (Wi

hk) and the 
TMS intensities (∆yp) for all the other trials (i.e., to simulate subject SUBJ5 with medium-strong 
and strong intensity, and subjects SUBJ1, SUBJ2, SUBJ3, SUBJ4 with all intensities). In this 
way, each fitting differs from the others for 15 parameters (12 inter-regional connections and 3 
TMS intensities). 

We assumed that inter-region connectivity is less stable than connectivity within the regions, 
since it reflects the integrative behavior of the brain, which may be highly plastic. Conversely, our 
idea is that internal connectivity within a cortical column is less variable among subjects, 
reflecting the particular specialization of that region. Indeed, we observed that the natural rhythms 
of the three ROIs exhibit just moderate changes from one subject to another, which further 
justifies our idea to maintain the same ROIs for all subjects. 

We are aware that this is a simplification of the reality, which corresponds to a “parsimony 
principle”: it is probable that differences among internal parameters of the ROIs exist between 
individuals, but these are less important for the study of rhythms transmission, which is the main 
goal of the present work. 
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2.6. The genetic algorithm 

For the GA we used a population of 500 chromosomes (individuals) which evolves for 1000 
generations. Each chromosome Chi (i = 1,…,500) consists of Ng genes Gi,j (j = 1,…,Ng) encoded 
with real numbers that represent the values of the parameters to be estimated. Each gene Gi,j can 

vary in a limited range Ym4 ,M4[ that depends on the parameter it represents. The offspring is 

generated as follows: 

1. 200 individuals are generated through crossover: iteratively, two individuals Chm and Chf 
(parents) are selected with a probability inversely proportional to their cost function, and 
the genes of the new individual Chs (son) are randomly selected from the ones of the 
parents and modified with an additive noise 

 G$,4 ∈ ]X + R`aX ∈ ]Gb,4, G),4c, R`~N#0, σ4'c, ∀j = 1,… , Ni	K	 V.21 

where R~N�μ, σ� means that R is a value extracted from a normal distribution with mean 
µ and standard deviation σ, and σj depends on the parameter represented by the j-th gene 
of each chromosome; 

2. 250 individuals are generated through mutation: iteratively, one individual Chp (parent) is 
selected with a probability inversely proportional to its cost function, and the genes of the 
new individual Chs (son) are copied from the ones of the parent with an additive noise and 
a small probability pmut to be mutated 

 G$,4 = k Rl~U#m4,M4' if	Rbpq�s, j� < pbpqG�,4 +R`, R`~N#0, σ4' otherwise ,	
∀j = 1,… , Ni	K	 V.22 

where R~U�m,M� means that R is a value extracted from a uniform distribution between m and M, and Rbpq�s, j�~U�0,1�;  
3. 50 individuals are randomly generated in order to continuously add new genetic material. 

The new individuals are compared with the old ones (for a total of 1000 individuals) and only the 
best 500 are chosen to form the new generation. The cost functions of old individuals are 
increased each generation by a 10% factor (aging) to avoid stagnation. 

The parameters σj and pmut vary as a sinusoidal function of the current generation. In this way the 
algorithm goes through alternating epochs in which the new individuals are generated in more or 

less deterministic ways: when σj and pmut have small values (0.001 ∙ #M4 −m4' for σj and 0.01 for 

pmut), the new generations are scarcely affected by random mutations and the population tends to 

converge to a local minimum, while when σj and pmut have high values (0.01 ∙ #M4 − m4' for σj 

and 0.1 for pmut), the new generations are heavily influenced by random mutations and the 
population tends to spread in the variable space in order to explore it.  
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3. RESULTS 

3.1. Preliminary parameter fitting on a single subject 

As described in section 2. , the first fitting procedure was performed on a single subject (SUBJ5) 
using a stimulus of medium intensity (120 V/m). The impulse intensity and 33 parameters 
(describing internal and extrinsic connectivity patterns) were fitted. Parameter values are shown in 
Table V.3. Results are summarized in Figure V.3, Figure V.4, Figure V.5 and Figure V.6. 

 

Figure V.3: Stimulation of BA 19. Simulated (solid line) and experimental time responses (dashed line) are shown in 
the first column. The second and third columns show the simulated and the experimental time-frequency maps, 
respectively. 

Table V.3: Parameters found by the fitting algorithm on SUBJ5 with TMS of medium intensity 

Parameters BA 19 BA 7 BA 6 
∆yp -0.05 -0.035 -0.0065 
Cps 54.5 57 31 
Cfp 81 97.5 136.5 
Cfs 0.1 39 21 
Cpf 4.7 10.5 11.5 
Cff 16 16 18 
Wp to BA 19 - 0 16.5 
Wp to BA 7 94.5 - 0 
Wp to BA 6 0.57 25.5 - 
Wf to BA 19 - 81 24.5 
Wf to BA 7 75.5 - 11.5 
Wf to BA 6 0 0 - 
D to BA 19 (ms) - 1 8.3 
D to BA 7 (ms) 1 - 16.6 
D to BA 6 (ms) 8.3 16.6 - 
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Figure V.3, Figure V.4 and Figure V.5 display the time patterns and the time-frequency maps of 
the simulated and real signals in response to TMS stimulation on BA19 (Figure V.3), on BA7 
(Figure V.4) and on BA 6 (Figure V.5), compared both in time and frequency domains. Results 
show that the model can reproduce the main experimental patterns of cortical activity quite 
satisfactorily. The main result is that each region displays a different intrinsic rhythm when 
directly stimulated, and this rhythm exhibits evident changes as a consequence of the stimulation 
of another region. The model can explain both aspects, ascribing the first to the internal 
parameters of the region, and the second to the mutual long-range connections among regions. 
Focusing on BA 19, one can observe that this region exhibits an activity mainly in the alpha range 

 

Figure V.4: Stimulation of BA 7. The panels represent the same quantities as in Figure V.3. 

 

Figure V.5: Stimulation of BA 6. The panels represent the same quantities as in Figure V.3. 
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when it is directly stimulated by TMS, although with components also in the beta and gamma 
ranges (Figure V.3), while it oscillates in the beta and gamma range respectively when BA 7 
(Figure V.4) and BA 6 (Figure V.5) are stimulated. BA 7 exhibits an activity in beta range when 
directed stimulated (Figure V.4), while it oscillates mostly in alpha and gamma range respectively 
when the BA 19 (Figure V.3) and BA 6 (Figure V.5) are stimulated. BA 6 oscillates mostly in 
gamma range when it is stimulated by the TMS (Figure V.5), and it oscillates in beta and in alpha 
range respectively when BA 7 (Figure V.4) and BA 19 (Figure V.3) are stimulated. 

When estimating the intrinsic connectivity, we focused on those internal parameters involving 
GABAA,fast interneurons (Cfp, Cpf, Cff, Cfs), since this neural group plays a crucial role in the 
generation of different rhythms [Ursino et al., 2010]. In particular, the loop gain between 
pyramidal cells and GABAA,fast interneurons (Cfp and Cpf in Table V.3) for BA 19 has a small 
value (81×4.7) compared to BA 7 (97.5×10.5). As discussed in Ursino et al. [Ursino et al., 2010; 
Zavaglia et al., 2010] when these two parameters are small the model oscillates at low 
frequencies. This explains why BA 19 natural frequency is located in alpha range. As discussed 
before BA 7 oscillates in beta range and BA 6 in gamma range. This could be ascribed to a further 
increase in the loop gain between pyramidal cells and GABAA,fast interneurons from 97.5×10.5 for 
BA 7 to 136.5×11.5 for BA 6 and to parameter Cff which is greater for BA 6 than for BA 7. Even 
if the difference for Cff is small (16 for BA 7 and 18 for BA 6), this parameter has a great impact 
on the dynamic of the region [Ursino et al., 2010; Zavaglia et al., 2010]. 

Figure V.6 summarizes the changes in PSD within each region, simulated by changing the 
position of TMS stimulation (bottom panels) compared with real spectra (upper panels). It is well 
evident that the frequency content of each ROI changes depending on the stimulation site. In 

 

Figure V.6: Power spectral densities evoked in each region by different TMS stimulations. Panels show how the 
frequency content of a ROI changes depending on the position of the TMS stimulus (solid lines: stimulus on BA 19; 
dashed lines: stimulus on BA7; dotted lines: stimulus on BA 6). The upper panels show experimental spectra, while the 
lower panels show the spectra of the signals simulated with the model. 
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detail, BA 19 and BA 7 have a similar behavior in the model. They exhibit a peak in the alpha 
band with a residual activity in the beta band when BA 19 is stimulated, a peak in beta band with 
a smaller alpha activity when BA 7 is stimulated, and a peak in gamma band with some alpha 
activity when BA 6 is stimulated. BA 6 exhibits a wide spectrum, with a peak mainly focused on 
alpha band when BA 19 is stimulated, two peaks in beta and gamma bands when BA 7 is 

stimulated, and finally, a peak in gamma band when it is stimulated. 

It is worth noting that similar peaks are evident in the real spectra: the main difference is the 
presence of additional peaks in real spectra not present in the simulated ones (in particular, a 
gamma peak evident in BA19 after stimulation of BA7, and some alpha peaks evident in BA6 
when the other two regions are stimulated). These differences, already evident in Figure V.3, 
Figure V.4 and Figure V.5, are related to the difficulty to simulate some slow oscillation patterns, 
or some gamma oscillations in the initial period after stimulation. 

3.2. Generalization of model results 

The previous results suggest that each single region exhibits a different natural frequency when 
stimulated with TMS. This intrinsic rhythm can be ascribed to the internal parameters of the 
region. Moreover, these rhythms can be propagated from one region to another thanks to the 
extrinsic connectivity. 

In order to generalize these results, we repeated the estimation procedure on all available trials 
(i.e., using medium-strong and strong intensities on subject SUBJ5, and all the three intensities in 
the other four subjects). During these fittings, the intrinsic connectivity parameters within each 

 

Figure V.7: Comparison of TMS intensities estimated with the fitting algorithm in the 15 trials. Each panel refers to a 
different subject and shows the step inputs ∆yp used at input to the model, to simulate the TMS impulse in BA 19, BA 7 
and BA 6. Different values have been estimated for each intensity of the TMS (strong, medium/strong and medium). It 
is worth noting that the estimated intensities actually decrease as the real TMS intensities are reduced. 
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region were set to the same values estimated before (see Table V.3), assuming that they exhibit 
smaller inter-subject variability. Hence, parameter estimation was performed only on the impulse 

intensity, and on 12 parameters describing extrinsic inter-region connectivity. 

Table V.4 summarizes the correlation coefficients between model and empirical waves for all 
trials, as an index of fitting accuracy. Results are in general satisfactory. Just in a few cases, a 
poor correlation coefficient is obtained. Results can be summarized as follows: 

1. in most cases, a good fitting (i.e., a high correlation) is obtained for what concerns the 
ROI directly stimulated; 

 

Figure V.8: Comparison of inter-region connection strengths estimated with the fitting algorithm. Each panel refers to a 
different subject and shows how the inter-regional connection strengths among BA 19, 7 and 6, change as the real TMS 
intensities decrease (for the meaning of parameters see Table V.1). 

Table V.4: Correlation coefficients between model and empirical TEPs 

 Strong intensity Medium/strong intensity Medium intensity 
SUBJ1 0.95 0.89 0.93 

0.62 0.98 0.89 
0.86 0.86 0.96 

0.93 0.97 0.59 
0.95 0.96 0.63 
0.84 0.72 0.94 
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0.69 0.96 0.79 
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SUBJ2 0.99 0.73 0.87 
0.49 0.88 0.88 
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0.97 0.83 0.40 
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2. in most cases, the waveforms in the other two ROIs (not directly stimulated) can be 
simulated pretty well. This aspect of fitting reflects the inter-region connectivity among 
ROIs; 

3. just in a few cases, a single waveform is poorly reproduced. However, these poor fitting 
results are often associated with waves having a poor statistical significance (i.e., the 
impulse response exhibit a weak difference compared with the basal pre-impulse activity) 
or unpredictable alpha or gamma waves. 

Results on estimated parameters are summarized in Figure V.7 and Figure V.8. 

Figure V.7 shows that the estimated impulse intensity actually increases with the strength of the 
TMS stimulation, although with a large variability among subjects. Figure V.8 shows that inter-
region connectivity remains quite stable within the same subject, i.e., it is not easy to detect a 
clear dependence of connectivity on the impulse strength. However, connectivity exhibits a 
greater variability from one-subject to another. 

Figure V.9 summarizes the main connectivity patterns in the five subjects, mediated over the three 
different trials. Briefly, all subjects exhibit a strong connectivity between BA 7 and BA 19, and 
this especially occurs by targeting fast interneurons. Subjects SUBJ3 and SUBJ5 also exhibit a 
strong connectivity towards pyramidal neurons from BA 19 to BA 7, whereas SUBJ1, SUBJ2 and 
SUBJ4 exhibit medium-strong connectivity towards pyramidal neurons from BA 7 to BA 19. 
Hence, the occipital and parietal regions are strongly interconnected, but generally in a non-
symmetrical way. Furthermore, all subjects exhibit a strong or medium-strong connection from 
BA 7 to BA 6, some with a prevalent target to fast interneurons (SUBJ1, SUBJ2, SUBJ4) other 
with a prevalent target to pyramidal neurons (SUBJ3, SUBJ5). On this general pattern, some 

 

Figure V.9: Schematic summary of the inter-region connectivity patterns estimated in 5 subjects with the fitting 
algorithm. Each weight has been first mediated over three trials (with strong, medium/strong and medium intensity). 
Weights have then been subdivided into four classes: W > 50: continuous thick line; 40 < W ≤ 50: dashed thick line; 13 
< W ≤ 40: dotted thin line; W ≤ 13: no connection shown. Synapses directed to pyramidal neurons are indicated with 
arrows, while synapses directed to GABAA,fast interneurons are indicated with closed circles. 
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variants are evident among subjects, especially concerning feedback connections from BA 6 to 
the other ROIs. All subjects exhibit a clear although small feedback connection from BA 6 to BA 
19 targeting fast interneurons and, in some cases, a feedforward connection from BA 19 to BA 6. 
In a single case, a feedback connection from BA 6 to BA 7 is also evident. Other connections of 
weaker strength (not reported in Figure V.9 for simplicity) sometimes connect regions 6-19 and 6-
6 (see Figure V.8 for a more complete presentation). 

 

Figure V.10: Power spectral densities computed in all ROIs (BA 19, BA 7 and BA 6) from model simulation tracings, 
when all ROIs are independently stimulated with white Gaussian noise (mean value 0; variance 1Hz2; duration 100s). 
The upper row considers the case of no connectivity among ROIs. The other rows represent results obtained using the 
connectivity patterns estimated on each subject (SUBJ1-SUBJ5) mediated over three trials. 
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The interregional connectivity estimated above determines the propagation of rhythms from one 
region to another, which may cause the emergence of multimodal rhythms. In order to further 
investigate this aspect, we simulated the behavior of the ROIs when they are stimulated with 
Gaussian white noise (indeed, Gaussian white noise is commonly used to simulate a complex 
input coming from many independent sources [David & Friston, 2003; Jansen & Rit, 1995; 
Wendling et al., 2002]). 

Results show that all ROIs exhibit power in the frequency band evoked by TMS when they are 
directly stimulated by white noise, and are not interconnected (Figure V.10, first row). In 
particular, in these conditions BA19 exhibits power density in the alpha range, BA7 in beta range, 
and BA6 in gamma range. 

The other rows in Figure V.10 illustrate the cases in which the three ROIs are interconnected and 
are all stimulated with independent white noise. Here, we used the same connectivity patterns 
estimated in the five subjects mediated over three trials (with medium, medium-strong and strong 
stimulation). The figure shows that multimodal spectra can be obtained in the different regions, 
but they can vary significantly among subjects, depending on the estimated connectivity. Even 
small changes in connectivity can evoke evident changes in the spectral morphology. These 
relationships between connectivity estimated by TMS, and spectral patterns in presence of 
enduring activity may represent possible testable predictions for future studies.  
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4. DISCUSSION 

4.1. Objective of the study 

The study of brain rhythms is assuming an increasing importance in modern cognitive 
neuroscience. Many works, appeared in the last decade, provide increasing evidence that brain 
activity in different frequency bands plays a peculiar role in perception, motion and cognition 
[Başar et al., 2000, 2001; Jensen et al., 2007]. Furthermore, a correlation between different 
cortical rhythms and brain topography has also been explored by means of source localization 
algorithms and combined EEG-fMRI: these studies underline a correlation between alpha rhythms 
and occipital cortical activity [Gómez et al., 2006; Gómez-Herrero et al., 2008; Laufs et al., 2003; 
Michel et al., 1992; Tinguely et al., 2006], beta rhythms and parietal activity [Feige et al., 2005; 
Gómez et al., 2006; Laufs et al., 2003; Mantini et al., 2007; Michel et al., 1992; Tinguely et al., 
2006] and between frontal cortex activity and gamma rhythms [Mantini et al., 2007], although 
large variations in this topography can be found depending on the particular task. Up to our 
knowledge, despite this large amount of data, simple models able to simulate rhythm generation, 
their propagation between different regions, and their dependence on brain connectivity 
parameters are still at the pioneering stage. Of course, brain activity is too much complex, 
contains many non-linear effects, and depends on too many parameters, to try a unique modeling 
synthesis. Hence, individual ad hoc experiments are needed, able to reveal specific aspects of 
brain dynamics, for their subsequent synthesis within neurophysiologically inspired models which 
focus on limited goals. 

TMS-EEG, joined with mathematical modeling techniques, may constitute an innovative 
engineering approach to the study of brain dynamics. Mathematical models, in fact, require an 
input signal with wide-spectrum (such as white noise or an impulsive perturbation) for inner 
parameter identification and subsequent validation. TMS-EEG may provide an adequate non-
invasive input perturbation for model testing. On the other hand, a model allows data obtained 
through TMS-EEG to be summarized into a coherent theoretical structure and hypotheses to be 
tested in rigorous quantitative terms. Hence, there is a potential symbiosis between neural 
dynamical models and the TMS-EEG technique. Stressing this aspect is one of the main 
objectives of the present work. 

Recent data obtained with single-pulse TMS [Van Der Werf & Paus, 2006; Van Der Werf et al., 
2006; Paus et al., 2001; Rosanova et al., 2009] show that different brain regions may exhibit 
different natural frequencies, that can propagate among regions, and can be at least in part 
detected looking at the transient (200 ms) response induced by a TMS pulse. 

The concept of natural frequency is extremely important in systems engineering, in that it can 
help the identification of the internal structure of complex dynamical systems. The natural 
frequency signifies that a system, receiving a wide-band input (i.e., an input whose power is 
distributed over a large band) exhibits the tendency to amplify only the power contained within a 
specific frequency band. This kind of behavior can be evoked by a single impulse with short-
duration. Furthermore, if a non-linear system becomes unstable, self-sustained oscillations may 
arise with a frequency close to the natural one. 

The recent finding that different natural frequencies in BA 19, BA 7 and BA 6 can be evoked by 
single-impulse TMS, and that these frequencies show a typical propagation behavior, together 
with the lack of simple neurocomputational models of brain rhythms, motivated the present study 
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with two main purposes: to analyze whether the impulse response evoked in a ROI can be at least 
partly simulated using a simple neural mass model; to study whether the system of rhythms 
observed in multiple ROIs can be reproduced using simple connectivity patterns. In the present 
work, we assumed that rhythms are generated as a consequence of feedback loops within the 
cortical columns. A different possibility, not considered here but which cannot be excluded, is 
that rhythms can be produced by neurons with intrinsic-oscillatory properties, which impose their 
own oscillation on the network in which they are embedded [Jefferys et al., 1996; Steriade et al., 
1993]. 

We claim that both objectives have been achieved, although several critical points needing 
discussion and further work are also evident. 

4.2. Comments on results 

A first important result is that most time-frequency properties of the impulse response, evoked 
within 200 ms by a short TMS stimulus, can be simulated fairly well acting only on a few internal 
parameters of the ROI, representing the number and the strength of the connections between 
neural populations. Moreover, these internal parameters may be maintained at the same values in 
different subjects, still achieving rather accurate simulation of brain rhythms. This result suggests 
that it may be possible to characterize the dynamic properties of occipital, parietal and frontal 
regions separately, ascribing them to the internal loops between populations, especially involving 
fast inhibitory interneurons. Differences in the internal parameters may represent testable 
predictions, which may be the subject of further experimental work. 

The second important aspect of this work consists in the possibility to simulate how natural 
rhythms can propagate from one region to another, as a consequence of reciprocal connectivity. 
Results by Rosanova et al. [Rosanova et al., 2009] have clearly shown that a TMS short pulse not 
only affects activity in the underlying cerebral region, but can also induce statistically significant 
changes in other regions. Rosanova and colleagues suggested that these changes can be ascribed 
to connectivity among regions, but this hypothesis can be hardly tested in vivo. Hence, we tested 
the hypothesis “in silico” using a neural mass model developed previously [Ursino et al., 2010]. 
Our results suggest that changes in brain rhythms observed by varying the position of the TMS 
stimulus over the scalp can actually be explained by simple connectivity patterns among ROIs and 
that a rhythm, generated in one region, can propagate toward other regions inducing a complex 
wide-band spectrum. Furthermore, results show that these connectivity patterns are quite constant 
within the same subject, although they exhibit evident inter-subject variations. In particular, our 
results suggest the presence of strong (although asymmetric) feedback connections between BA 
19 and BA 7, of a strong feedforward connection from BA 7 to BA 6, and of some weaker and 
variable feedback connection between BA 6 and BA 19 (or, less frequently, between BA 6 and 
BA 7). 

Using these connectivity patterns, we have been able to simulate rhythm propagation fairly well 
in all trials, as documented by the good correlation coefficients achieved, although some 
significant discrepancies are also evident from time to time. These discrepancies are especially 
imputable to a lack of some rhythms in the simulated patterns, such as a lack of a few slow 
oscillations in the alpha band or of some gamma or ultra gamma bursts immediately after the 
impulse. However, it is worth noting that the quality of fitting might be significantly improved by 
assuming small changes in the internal parameters of each region from one subject to another 
(results not reported here for brevity). In fact, the frequency of the individual rhythms exhibits 
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small variations among subjects, and these may be better reproduced assuming a moderate 
internal variability. We decided to maintain internal parameters at the same value for all subjects, 
to generalize the model and reducing the number of estimated parameters. 

In the present work, all 9 trials have been used to estimate model parameters, and generalization is 
simply based on the observation that inter-region connectivity remains quite stable for different 
TMS strengths and, moreover, exhibits moderate inter-subject variations. A more powerful 
generalization procedure (named “leave-one-out”) would consists in using N-1 signals to estimate 
parameters (training set) and leave the remaining signal out to test the model (test set). In our 
case, this would mean to use 8 signals to estimate parameters and use the remaining signal to 
generalize. We did not use this procedure since “leave one out” implicitly assumes that all N 
signals carry a similar information content, hence estimation on N-1 of them allows prediction on 
the remaining one. Conversely, in our data each of the 9 signals carries a different piece of 
information, which may not be entirely deducible from the others. For instance, the activity 
measured on BA6 when BA19 is stimulated may provide information on the connection from 
BA19 to BA6, which cannot be entirely derived from the other signals (or can be derived only 
indirectly in a much less accurate way). 

Our results, generalized on five subjects, suggest that TMS-EEG technique joined with neural 
mass models may represent a promising, non-invasive method in the field of engineering applied 
to the brain, in particular to assess inter-regional connectivity. This is a very important point for 
clinics, since connectivity can exhibit significant changes in pathological conditions such as 
multiple sclerosis, schizophrenia, etc. [Guye et al., 2010]. 

Furthermore, simulation of the overall model, with the assigned connectivity pattern, provides 
interesting indications on how cortical activity signals with a large frequency-band can be 
generated and modulated. Let us consider, for instance, the results displayed in Figure V.10, when 
different regions are assumed to receive independent white noise. The kind of spectra which are 
obtained exhibit complex changes in frequency, which cannot easily be predicted via a qualitative 
reasoning, but arise as a consequence of multiple information included in the model (connectivity, 
time constants, time delays, etc.). This is a good example of how a complex model may provide 
interesting scenarios which cannot be understood in simple qualitative terms. In perspective, this 
model capacity may have important implications for neuroscience, since the way a natural rhythm 
is transmitted from one region to another may play an important role in many perceptive, motor or 
cognitive brain functions [Fries et al., 2007; Kaiser & Lutzenberger, 2005; Steriade, 2006]. 

Results of Figure V.10 may become the subject of further ad hoc testable predictions. In 
particular, a connectivity pattern among ROIs can be estimated from TMS stimulation (perhaps 
including additional anatomical and physiological a priori constraints to improve the solution); 
then, the patterns of multimodal spectra predicted by the model when all (or some) regions are 
activated with white noise, can be compared with real EEG spectra obtained during ad hoc motor 
or cognitive tasks. 

4.3. Comparison with other models 

The model utilized in this work represents a good compromise between simplicity and 
completeness. As discussed in section 2. , and shown in the previous chapter, it contains the 
fundamental elements necessary to generate multiple alpha, beta and gamma rhythms and to 
transmit them robustly among regions. 
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Alternative models, of course, have been proposed in recent years, which should be taken in mind 
as possible candidates for future studies. These comprehend different neural mass models, mean 
field variational approaches, and models with spiking neurons. 

While most neural mass models include three populations [David & Friston, 2003; Jansen & Rit, 
1995; Moran et al., 2007], some of them include elements not present here. For instance, Sotero et 
al. [Sotero et al., 2007] incorporated a positive self-loop among pyramidal neurons, to take into 
account the fact that, at a large spatial scale, pyramidal-to-pyramidal connections become 
increasingly important. Moreover, they incorporated connections with thalamic relay nuclei, the 
latter described by means of two population models. Inclusion of thalamic connections may 
represent a fundamental further step for our model too. In a more recent work, Sotero et al. 
[Sotero et al., 2010] extended the complexity of the cortical column model, raising the number of 
populations to eight: four excitatory and four inhibitory populations in layers 2/3, 4, 5 and 6. 
Intrinsic connectivity were assigned on the basis of anatomical constraints and fitting to local field 
potentials recorded in rat area S1. Although this model carefully incorporate most aspects of a 
cortical column, it is certainly too complex to attempt parameter fitting from TMS-evoked EEG 
responses. 

Of course, neural mass models, despite evident advantages in terms of synthesis and 
computational load, also represent a drastic simplification of the reality. Hence, comparison with 
more realistic model may be advantageous. In particular, NMMs consider only the average 
activity within a population, i.e., they neglect the second order statistics. A more rigorous mean-
field approach is presented in [Deco et al., 2008; Hasegawa, 2003], where implications for 
analysis of brain connectivity are also discussed. At a greater complexity level, the overall 
characteristics of neuron dynamics is captured by models which make use of spiking neurons. 
Among the others, Esser et al. [Esser et al., 2005] developed a detailed model of a portion of the 
thalamo-cortical system to simulate the effect of a TMS pulse. The model has been recently 
extended to include three cortical areas and to study connectivity changes during sleep [Esser et 
al., 2009]. Indeed, these two types of model are complementary, and exhibit different advantages, 
objectives and limitations. While neural mass models are more oriented to the study of 
macroscopic quantities, and can implement complex connectivity patterns without excessive 
computational cost, detailed models are more oriented toward microscopic phenomena, such as 
the investigation of synaptic currents and the role of different neuromodulators. 

4.4. Optimization technique 

The present study makes use of a sophisticate genetic algorithm for parameter estimation. The 
reason why we used this rather complex optimization procedure instead of a traditional one, is 
that the problem tends to generate a huge amount of local minima associated to unacceptable 
solutions. Different global optimization methodologies (traditional Genetic Algorithm, Simulated 
Annealing and intensive Monte Carlo methods) have been implemented and tested, but they get 
caught in poor local minima, or at least require a lot of iterations (and time) to find a good 
solution. The procedure proposed in this chapter tries to cope with the problem of local minima 
by creating “ways of escape”: a method based on a single cost function would stop when it 
reaches a local minimum, unless it explores a portion of the parameters space large enough to 
contain a better solution: conversely, a method based on multiple cost functions uses a local 
minimum of one of those functions as a starting point rather than as a dead end. This procedure 
has proven to work well also in the study described in chapter III [Cona et al., 2009]. 
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4.5. Limitations and future steps 

Finally, it is worthwhile to point out limitations of the work presented in this chapter and lines for 
future investigation. 

A first limitation consists in the possible existence of multiple set of parameters able to fit the 
same data. Although the GA exhibits an excellent capacity to discover a good solution, which can 
simulate all 9 signals simultaneously, it does not warrant the uniqueness of this solution. Hence, at 
the present stage, the connectivity pattern discovered by the algorithm represents just one possible 
scenario, i.e., we discovered just one possible connectivity pattern, able to explain the observed 
responses fairly well. Additional “a priori” information (such as anatomical and physiological 
knowledge, or connectivity values obtained from other tests) is required to drive the algorithm 
toward a unique solution, and this should represent the most important challenge for future 
studies. 

The focus of the present study was on the response to a single TMS pulse, as a direct way to 
discover natural frequencies and identify model dynamics. Many recent studies, however, used 
repetitive TMS stimulation, to modulate cortical activity and to cause a transient frequency 
“entrainment” [Hamidi et al., 2009; Thut & Miniussi, 2009]. A further method to validate the 
model in future works, to test the possible effect of non-linearities, and generate new testable 
predictions may be the use of multiple TMS stimuli. A first stimulus, in fact, may lead the system 
into a different working point, on which a second stimulus may operate. This procedure may be 
the subject of further ad hoc empirical tests. 

Moreover it is worth noting that while Rosanova et al. [Rosanova et al., 2009] showed that each 
region exhibits an endogenous, predominant rhythm with respect to the rhythms transmitted from 
the other regions, our model focuses on rhythm changes: as shown in our results, each region 
exhibits its endogenous rhythm when stimulated by TMS, but it significantly changes its 
frequency content when it receives the rhythms from another stimulated region. 

Finally, in the present model we did not consider the crucial role played by the thalamus. 
Actually, the model does not include an explicit description of the thalamic nuclei nor includes 
connections between cortical and subcortical regions. Conversely, cortico-thalamic connections 
are known to play a pivotal role in generating brain oscillations [Steriade, 2006] as well as in the 
transmission of information among cortical regions. For instance, Van Der Werf and colleagues 
[Van Der Werf & Paus, 2006; Van Der Werf et al., 2006] observed that single pulses of TMS 
applied over the motor cortex elicit a brief beta oscillation and that the amplitude of these 
oscillations is strongly decreased in patients with Parkinson disease who underwent a surgical 
lesion of motor thalamic nuclei. The authors concluded that feedback loops between cortical and 
subcortical structures are involved in this process. The choice of not including subcortical 
(thalamic) regions in the model was motivated by a parsimony rationale: we wished to model a 
TMS stimulation experiment, with a reduced number of regions and of connectivity parameters. 
For this reason, in evaluating the fitting between model and real curves we filtered low-frequency 
rhythms, which are crucially dependent on the thalamus. Inclusion of an explicit description of the 
thalamus or of other subcortical regions may represent a possible model extension. However, this 
enlarged model will include additional parameters, and thus will require more data to fit all 
parameters in both cortical and thalamic regions altogether. 
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VI. BINDING AND SEGMENTATION IN 

MEMORY RELATED TASKS
4
 

1. INTRODUCTION 

The execution of complex cognitive tasks requires that the brain integrates a mosaic of scattered 
information, distributed across different cortical areas. A concept largely used for understanding 
the large-scale integration capacity of the brain is that of neural assembly; this is defined as a 
distributed network of neurons, whose activities participate to the realization of the same 
cognitive act, and which are reciprocally linked by dynamical connections [Damasio, 1990; 
Varela et al., 2001]. 

In order to understand the principles of brain functioning, much effort in modern neuroscience is 
devoted to explain how neural assemblies are formed, dissolved and how they exchange 
information reciprocally. Recent hypotheses emphasize the role of brain dynamics in the 
formation of neural assemblies, laying special emphasis on theta, beta and gamma rhythms 
[Buzsáki & Draguhn, 2004; Fries, 2009; Varela et al., 2001]. 

Oscillatory activity is a common property of neural populations. Data collected in past decades 
demonstrate that theta, beta and gamma rhythms are ubiquitous phenomena which occur 
throughout the neocortex in vivo [Buzsaki, 2006]; many studies suggest that these rhythms are not 
merely epiphenomena, resulting fortuitously from neural dynamics, but rather they play an 
important role in many cognitive tasks, such as in visual and auditory perception [Pulvermüller et 
al., 1997], associative learning [Düzel et al., 2010; Miltner et al., 1999], recognition of semantic 
features in words [Pulvermüller et al., 1996], face recognition [Rodriguez et al., 1999], 
representation of sequences [Siegel et al., 2009] and consciousness [Crick & Koch, 1990]. 

A popular hypothesis, named “binding by synchronization” [Singer & Gray, 1995; Singer, 1999; 
Varela et al., 2001], assumes that the formation of neural assemblies is realized by means of phase 
synchronization among neural groups oscillating in the high beta or in the gamma range. Binding 
by synchronization was originally proposed with reference to visual problems [Singer, 1999] but 
is now extended to several other higher cognitive tasks [Fries et al., 2007; Varela et al., 2001]. 
According to this hypothesis, neural assemblies can be formed rapidly in a highly dynamical way 
via synchronization of a gamma oscillation and can rapidly be disrupted under the influence of 
external or internal events, to make way for alternative assemblies. Furthermore, the recent 
observation that gamma rhythms are modulated by slower theta rhythms (4-7 Hz) suggested the 
idea that the construction and degradation of gamma rhythms is under the control of theta 
oscillations [Canolty et al., 2006; Doesburg et al., 2009; Schack et al., 2002]: according to this 
hypothesis, synchronization in the low-gamma frequency range allows the transient functional 
integration of neural populations involved in the same task or in the same perception; the theta 
rhythms governs the temporal aspects through which the individual gamma-oscillatory assemblies 

                                                   
4 The contents of this chapter are accepted for publication in International Journal of Neural Systems. 
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are created or dissolved, i.e., they provide the slower temporal scaffold for the appearance of 
successive cognitive moments. 

Within this theoretical framework, a lot of important questions are still on the table. A first 
problem concerns how these intrinsic rhythms are generated in the neocortex, and which 
mechanisms are used to synchronize oscillations among different neural groups to form 
assemblies. Of course, synchronization requires the existence of synaptic links among neurons 
involved in the same task: in case of perceptual problems these synapses may reflect basic Gestalt 
rules of perception organization (like proximity or smoothness), whereas in case of higher 
cognitive tasks (such as object recognition, semantic memory and associative learning) they may 
be the result of previous experience via Hebbian modifications. A problem is what kind of 
synapses may effectively favor a rapid synchronization of neural groups, as required by the 
binding hypothesis: these synapses should be the target of learning [Bartos et al., 2007; Jefferys et 
al., 1996]. Experimental and computational studies suggest that not only excitatory synapses from 
pyramidal neurons, but also synapses from interneurons (most inhibitory) are essential to achieve 
fast and robust synchronization [Bartos et al., 2007; Jefferys et al., 1996; Whittington & Traub, 
2003]. Furthermore, electrical synapses (i.e., gap junctions) also contribute to rapid 
synchronization and desynchronization in networks of neurons [Traub et al., 2004]. 

A further essential issue, related with the binding through synchronization hypothesis, is 
segmentation. In many cognitive tasks the brain must deal with different neural assemblies 
simultaneously active (let us consider, for instance, the problem of segmentation of a visual scene, 
or the problem of multiple objects recognition in semantic memory, where each object is 
characterized by a different set of features). How can the brain assign a neural group to the correct 
assembly, while maintaining it separately from different neural groups which belong to other 
assemblies? To solve the segmentation problem, a common idea is that neural groups involved in 
different assemblies must desynchronize their phase, i.e. oscillate in time division. Experimental 
evidence exists that phase synchronization among some neural populations is accompanied by 
phase scattering vs. other neural groups [Varela et al., 2001]. 

The previous questions may represent important challenges not only for cognitive neuroscience 
but also for computational mathematical models. In particular, neural network models inspired by 
neurobiology are universally accepted nowadays as crucial tools to clarify how neural 
mechanisms operate in the brain, to check current hypotheses in rigorous quantitative terms and to 
suggest new ideas and make testable predictions [Rolls & Treves, 1998]. 

Several models inspired by neurobiology have been presented in the past decades to investigate 
the mechanisms of binding and segmentation of neural populations. Basically, these models can 
be subdivided into two major classes: models of individual neurons (such as those using Hodgkin-
Huxley neurons or integrate-and-fire neurons) and models based on neural masses [Abbott & 
Nelson, 2000]. The first kind of model is essential to reach a deeper understanding of the 
mechanisms involved in synchronization at the cellular and subcellular level. Nevertheless, as 
explicitly stated in Varela et al. [Varela et al., 2001], the relevant variables to describe the 
dynamics of neural assemblies are not the individual neuron activities, but rather “the coordinated 
behavior of local neural groups through synaptic interactions”. Thus, an important insight into 
large-scale integration, which complements the study at the level of individual neurons, can be 
achieved through an analysis at the mesoscale level. 
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Models at a mesoscale level usually make use of state variables which represent activity of groups 
of neurons (or neural masses), and exhibit similar dynamics. Several works have appeared in 
recent years to analyze binding and segmentation with groups of oscillating neural populations 
linked via excitatory and inhibitory synapses. These make use of Wilson-Cowan oscillators 
[Campbell & Wang, 1996; von der Malsburg & Buhmann, 1992; Tagamets & Horwitz, 2000; 
Ursino & La Cara, 2004; Ursino et al., 2003, 2009; Wang, 1995; Wilson & Cowan, 1972], 
relaxation oscillators [Cesmeli & Wang, 2000; Wang & Terman, 1997], more complex spiking 
neurons [Knoblauch & Palm, 2002a, 2002b], or pulse-coupled oscillators [Wu & Chen, 2009] to 
investigate the formation of neural assemblies during different perceptual and cognitive problems. 
Synchronization between chaotic neural networks [Chakravarthy et al., 2008] and synchronization 
in small-world networks with synaptic plasticity [Han et al., 2011] have also been investigated 
recently. 

These models, however, have several limitations: they produce waveforms, which are different 
from those observed through scalp EEG or via intracortical electroencephalography; do not 
consider the complexity of neural populations mixed up within a cortical column and their 
reciprocal links; and do not consider a realistic dynamics for the synapses. In particular, Wilson-
Cowan and relaxation oscillators consider the feedback interaction of two populations only (one 
inhibitory and one excitatory) each described via a first-order non-linear differential equation, 
which is too simplistic to describe the neural dynamics. 

A more realistic neural mass model (NMM), which simulates the population organization within a 
cortical column, was proposed by Jansen and Rit in the mid-nineties [Jansen & Rit, 1995], and 
then extended by Wendling et al. [Wendling et al., 2002]. The latter model includes four neural 
populations (pyramidal neurons, excitatory interneurons, inhibitory GABA-ergic interneurons 
with either slow or fast synaptic kinetics). These populations are reciprocally interconnected 
according to anatomical/physiological considerations, while the dynamics of each synapse is 
described via a second-order impulse response. Recently, we proposed a new version of the model 
as described in chapter IV, which incorporates a self-loop among fast inhibitory interneurons 
[Ursino et al., 2010]. Reciprocal connections among fast interneurons, in fact, have been 
documented in the neurophysiological literature [Kisvárday et al., 1993; Sik et al., 1995] and play 
a pivotal role in the generation of gamma rhythms [Moran et al., 2008]. The latter model is able to 
simulate realistic EEG time patterns and power spectra (with multiple peaks in the theta, alpha, 
beta and gamma ranges) whose shape vary depending on model parameters and on long-range 
connections among columns. 

We are not aware that realistic models of cortical columns have been used so far to analyze the 
binding through segmentation hypothesis and to study the formation of neural assemblies. We 
deem that such an analysis can provide valuable new insights into the problem. In particular, such 
models may help to fill the gap between EEG/MEG measurements, detection of cortical rhythms, 
and their functional role in higher cognitive tasks. 

The aim of this work is to simulate the formation of neural assemblies according to the binding 
and segmentation hypothesis using the cortical column model described in Ursino et al. [Ursino et 
al., 2010]. The simulations reproduce an associative learning task (i.e., a task in which elements 
of the assembly are learned from past experience using an Hebbian paradigm and then recovered 
from partial information). The following questions are investigated with the model: how can 
oscillatory activity in different bands (especially theta and low-gamma) be generated with the 
model? Which mechanisms are able to warrant rapid synchronization and desynchronization 
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among cortical columns and what kind of neural populations and synapses may be especially 
involved? How can these assemblies be learned from past experience to realize an autoassociative 
network? What is the role of different synaptic kinetics (for instance fast AMPA receptors)? 
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2. METHOD 

The model is a neural network which consists of two layers. The two layers have the same 
structure: they are composed of N×M units, each described as a single cortical column. Layer 1 
(L1) receives inputs from the external environment and sends outputs to layer 2 (L2). The network 
can learn patterns of features: each feature corresponds to a position ij (i=1,…,N;  j=1,…,M) and 
is therefore associated to two columns, one in L1 and one in L2. Before learning, columns in each 
layer oscillate in the alpha range, if stimulated by white noise or by a constant external input. 
After learning, L1 realizes an autoassociative network in the theta range, restoring previously 
memorized objects from lacking information. L2 segments these objects in the gamma band, 
exploiting fast inhibitory interneurons. An overall activity in the theta + gamma band then 
originates from the interaction of the two layers. 

In the following, an overview of the general model structure, and of the main hypotheses, is first 
presented. Then equations of a single cortical column (i.e., a single column in the model) are 
described. Later, the two layer model is built from these equations and learning mechanisms are 
put forward. 

2.1. General aspects of the model 

The network is based on the following general ideas: 

1. L1 receives the inputs and sends them to L2. Columns in the same position in L1 and L2 
communicate via one-by-one connections. Each column is described by means of a NMM 
of a single cortical column, developed recently [Ursino et al., 2010]. Parameters are given 
so that, if stimulated with white noise, columns in L1 and L2 oscillate in the low alpha 
range. 

2. The overall output of the model is calculated as the firing rate of pyramidal neurons in L2. 
A pattern (or a neural assembly) is represented by a set of columns which are firing in 
synchronism, but are out of phase (desynchronized) with respect to other columns in 
different patterns. An EEG signal is computed as the sum of post-synaptic membrane 
potentials of all pyramidal populations in L2. 

3. L1 works as an autoassociative network, where previous experience is stored in the lateral 
excitatory synapses among columns (from pyramidal to pyramidal). Thanks to these 
synapses, a pattern can be restored in L1 even in the presence of incomplete information. 

4. A slower theta rhythm originates from the excitatory synapses within L1, causing periods 
in which the networks are silent, alternated with periods of strong excitation. 

5. Synapses in L2 realize synchronization in the beta/gamma range. As suggested in previous 
work using Wilson-Cowan oscillators [Ursino et al., 2003], or spiking neurons [Bartos et 
al., 2002], in order to warrant good synchronization these synapses are directed toward 
inhibitory populations within the same pattern. 

6. In order to segment different patterns simultaneously, L2 must include a 
desynchronization mechanism. This is realized assuming that columns within a pattern 
send fast excitation to GABA-ergic populations in other patterns. Since this mechanism 
must be very rapid, we consider the possibility that this is realized via AMPA receptors 
with excitatory neurotransmission of the order of ms or less. 

7. All synapses in the autoassociative network (both realizing restoration of incomplete 
information in L1, and synchronization and desynchronization in L2) are learned via 
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Hebbian (or anti-Hebbian) mechanisms, during a training phase in which complete 
patterns are individually presented to L1. 

2.2. Model of a single cortical column 

The model of a single cortical column consists of four neural populations (Figure VI.1), which 
represent pyramidal neurons (subscript p), excitatory interneurons (subscript e), and inhibitory 
interneurons with slow and fast synaptic kinetics (GABAA,slow and GABAA,fast, subscripts s and f, 

respectively). All populations are described with a similar mathematical formalism. Briefly, each 
population receives an average postsynaptic membrane potential (v, in Eqs. VI.3, VI.7, VI.11 and 
VI.15) from other neural populations, and converts this membrane potential into an average 

 

Figure VI.1: Network layout. Panel a shows the architecture of the two layers: arrows indicate connections toward 
pyramidal cells, while circles indicate connections toward GABAA,fast interneurons. Panel b shows the architecture of 
every column: boxes with bold contour represent (in descending order) excitatory interneurons, pyramidal cells, 
GABAA,slow and GABAA,fast interneurons. 
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density of spikes fired by the neurons (z, in Eqs. VI.4, VI.8, VI.12 and VI.16). In order to account 
for the presence of inhibition (when potential is below a given threshold) and saturation (when 
potential is high) this conversion is simulated with a static sigmoidal relationship. 

To model a whole cortical column, the four populations are connected via excitatory and 
inhibitory synapses, with impulse response he(t), hs(t) or hf(t), (Figure VI.2) assuming that 
synapses from pyramidal neurons and excitatory interneurons have similar dynamics. The kinetics 
of each synapse are described with a second order system, but with different parameter values. By 
denoting with z the input to a synapse, and with y the synapse output, its dynamics can be 
described through the following second order differential equation 

 d�y�t�dt� = Gτ z�t� − 2τ dy�t�dt − y�t�τ�  
VI.1 

where the G and τ have different values depending on the type of synaptic block (excitatory, slow 
inhibitory or fast inhibitory). It is worth noting that Eq. VI.1 corresponds to the following impulse 
response 

 h�t� = Gτ t ∙ e�q� 
VI.2 

In the following, Eq. VI.1 will be implemented with two first order differential equations (in Eqs. 
VI.5, VI.6, VI.9, VI.10, VI.13, VI.14, VI.17, VI.18, VI.19, VI.20). Differently from previous 
chapters (III, IV and V), here I use τ instead of 1/ω, even if they have exactly the same meaning, 
just because it is more convenient to refer to the time constants in this context. 

The average numbers of synaptic contacts among neural populations are represented by eight 
parameters, Cij (Figure VI.1), where the first subscript represents the target (post-synaptic) 
population and the second subscript refers to the pre-synaptic population. These connections agree 
with those proposed by Wendling et al. [Wendling et al., 2002] but with the addition of the new 
self-loop Cff. As demonstrated in chapter IV this new loop ensures the occurrence of a strong 
gamma-rhythm which may coexist with other slower rhythms within the same column. The 
existence of significant synaptic contacts among fast inhibitory interneurons is well documented 

 

Figure VI.2: Impulse responses of the three kinds of synapses. The solid line indicates he(t), the dotted line indicates 
hs(t), while the dotted/dashed line indicates hf(t). 
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in the literature [Kisvárday et al., 1993; Sik et al., 1995], and their role in the genesis of gamma 
rhythms has been demonstrated both via computational models [Ursino et al., 2010] and 
experimental studies [White et al., 2000]. 

Cortical columns can receive inputs from other columns in the model or from external sources. 
Anatomical and neurophysiological considerations suggest that all populations can receive inputs, 
whereas only pyramidal neurons can send outputs toward other columns. In the work described in 
chapter IV [Ursino et al., 2010], we performed a sensitivity analysis on the role of these 
connections for rhythm propagation (i.e., how much a given connection is able to transmit 
rhythms) and found that the most influential connections are “from pyramidal to pyramidal” and 
“from pyramidal to fast inhibitory”. The other two connections play a less important role. For this 
reason, in this work we decided to neglect the other two connection types and assumed that 
external inputs (coming from other columns) reach only pyramidal and fast-inhibitory 
populations. 

The model of a column is displayed in Figure VI.1. The equations of a single column (both in L1 
or L2) are written below, while the meaning of all symbols is reported in Table VI.1: 

Pyramidal neurons 

 v��t� = C�	y	�t� − C�$y$�t� − C�)y)�t� + E�t� VI.3 

 z��t� = 2e�1 + e"#$��%&' VI.4 

 dy��t�dt = x��t� VI.5 

 dx��t�dt = G	τ	 z��t� − 2τ	 x��t� − 1τ	� y��t� VI.6 

Excitatory interneurons 

 v	�t� = C	�y��t� VI.7 

Table VI.1: Description of parameters and variables of the model of a cortical column 

Symbol Description Subscripts/Superscripts 
hi(t) Impulse response of synapse of type i i = e for excitatory 

 s for GABAA,slow inhibitory 
 f for GABAA,fast inhibitory 

Gi Gain of synapse of type i 
τi Time constant of synapse of type i 
vi Membrane potential of neural population i i, j = p for pyramidal cells 

 e for excitatory interneurons 
 s for GABAA,slow interneurons 
 f for GABAA,fast interneurons 
 l for state variables of the 

external input to GABAA,fast 
interneurons 

zi Spiking rate of neural population i 
xi, yi State variables of neural population i 
ui External input to neural population i 
Cij Number of synaptic contacts from neural 

population j to population i 

e0 Maximum neural activation rate 
- r Steepness of neural activation rate 

s0 Average activation threshold 
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 z	�t� = 2e�1 + e"�$��%-� VI.8 

 dy	�t�dt = x	�t� VI.9 

 dx	�t�dt = G	τ	 *z	�t� + u��t�C�	 , − 2τ	 x	�t� − 1τ	� y	�t� VI.10 

Slow inhibitory interneurons 

 v$�t� = C$�y$�t� VI.11 

 z$�t� = 2e�1 + e"�$��%
� VI.12 

 dy$�t�dt = x$�t� VI.13 

 dx$�t�dt = G$τ$ z$�t� − 2τ$ x$�t� − 1τ$� y$�t� VI.14 

Fast inhibitory interneurons 

 v)�t� = C)�y��t� − C)$y$�t� − C))y)�t� + yR�t� + I�t� VI.15 

 z)�t� = 2e�1 + e"�$��%.� VI.16 

 dy)�t�dt = x)�t� VI.17 

 dx)�t�dt = G)τ) z)�t� − 2τ) x)�t� − 1τ)� y)�t� VI.18 

Finally, two additional equations are needed to describe the external input to fast inhibitory 
interneurons, as commented below: 

 dyR�t�dt = xR�t� VI.19 

 dxR�t�dt = G	τ	 u)�t� − 2τ	 xR�t� − 1τ	� yR�t� VI.20 

The inputs to the model, up(t) and uf(t) (in Eqs. VI.10 and VI.20) represent all exogenous 
contributions coming from external sources (i.e., input patterns from the environment) in terms of 
spikes per second; in particular, up(t) is the input to pyramidal cells and uf(t) the input to 
GABAA,fast interneurons, respectively. These quantities are modeled as Gaussian white noise with 
mean value mp, mf and variance σp

2, σf
2 [Ursino et al., 2010]. The quantities E(t) and I(t) represent 

the excitation and inhibition coming from the other columns in the model. These terms will be 
described below. Eqs. VI.3, VI.7, VI.11 and VI.15 can be commented as follows: excitatory 
interneurons (Eq. VI.7) and slow inhibitory interneurons (Eq. VI.11) receive only an excitatory 
input from pyramidal neurons. Pyramidal neurons (Eq. VI.3) receive excitation from excitatory 
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interneurons, inhibition from both slow and fast inhibitory interneurons, and further external 
excitatory inputs. Fast interneurons (Eq. VI.15) receive excitation from pyramidal neurons, 
inhibition from themselves and from slow inhibitory interneurons, and further external excitatory 
inputs. 

Eqs. VI.10, VI.19 and VI.20, which describe the effect of external noise, require a further 
comment. The external noise must affect the target neurons with the dynamics of excitatory 
synapses, since long-range connection in the brain are glutamatergic. As a consequence, noise 
must be filtered via the impulse response of excitatory synapses. For what concerns the noise to 
pyramidal neurons (i.e., up), this is realized by exploiting the same impulse response from 
excitatory interneurons to pyramidal neurons (i.e., Eqs. VI.9 and VI.10) to reduce the number of 
differential equations. Conversely, two additional differential equations have been introduced, 
(Eqs. VI.19 and VI.20), to describe the effect of noise (i.e., uf). on fast inhibitory interneurons. 

2.3. Model of two interconnected layers 

L1 represents is stimulated by external inputs (up(t) and uf(t) as described above). The inputs 
excite a group of columns in L1, thus generating a pattern of activity; the excitation is then sent to 
L2, by means of a feed-forward connectivity. 

In the following, we will use the subscripts ij to denote a quantity belonging to a column at 
position ij in a given layer, and the superscripts L1 or L2 to denote the individual layer. Hence, by 
way of example, the symbol vL1

p,ij denotes the membrane potential of a pyramidal population at 
position ij in L1; z

L2
p,hk denotes the average spike density of the pyramidal population at position 

hk in L2. 

The connectivity between L1 and L2 is one by one: this means that each column ij in L1 is 
connected only with the corresponding ij column in L2. With this organization, when a group of 
columns in L1 is stimulated by an external input, it becomes active, and its excitation is sent to the 
corresponding columns in L2. Moreover, columns within a layer may also be reciprocally 
interconnected; these connections are created on the basis of past experience. 

We assumed that long-range connections (i.e., connections directed outside the cortical column) 
originate only from pyramidal neurons. Three groups of synapses are considered: Hebbian 
excitatory synapses from pyramidal to pyramidal (symbol W); Hebbian excitatory synapses from 
pyramidal to fast-inhibitory interneurons (symbol K); anti-Hebbian fast synapses (possibly 
mediated by AMPA receptors only) from pyramidal to fast inhibitory interneurons (symbol A). 
For each synapse, the following notation is used: the first superscript denotes the post-synaptic 
layer, and the second superscript the pre-synaptic layer. Moreover, the first two subscripts denote 
the position of the postsynaptic column, the last two subscripts denote the position of the 
presynaptic column. By way of example, the symbol WL1

ij
L1

hk denotes an excitatory pyramidal to 
pyramidal synapse linking the presynaptic column at position hk to the post-synaptic column at 
position ij, both in layer L1. 

In the following, connections to L1 and L2 will be separately described. 
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2.3.1. Layer 1 

As specified above, the pyramidal population in L1 receives the connectivity from other pyramidal 
populations in the same layer. Hence, the synaptic terms Eij (Eq. VI.3) to a column at position ij in 
layer L1 can be written as follows 

 E04z��t� =22W04,SQz�z� ∙ y�,SQz� �t�QS  
VI.21 

where the sums are extended to all neurons hk in L1. 

Conversely, inhibitory interneurons in L1 do not receive connections, hence the term I(t) in Eq. 
VI.15 is 

 I04z��t� = 0 VI.22 

It is worth noting that, in Eq. VI.21 we used quantities yL1
p,hk which represents the post-synaptic 

membrane potential induced by a pyramidal population at position hk in L1 (Eqs. VI.5 and VI.6). 
This quantity originates from the spikes of the pyramidal population (zL1

p,ij) passed through the 
second-order dynamics of a glutamatergic synapse. 

2.3.2. Layer 2 

The pyramidal populations in L2 receive synapses from the pyramidal populations in L1 at the 
same positions. Moreover, fast inhibitory interneurons in L2 receive plastic synapses (learned via 
Hebbian mechanisms) from pyramidal neurons in the same layer. Furthermore, a third group of 
synapses, targeting fast-inhibitory interneurons, is necessary to desynchronize patterns. 

Consequently, terms Eij and Iij (Eqs. VI.3 and VI.15) to a column at position ij in L2 assume the 
following expressions 

 E04z��t� = W04,04z�z� ∙ y�,04z� �t� VI.23 

 I04z��t� = K04,04z�z� ∙ y�,04z� +22K04,SQz�z� ∙ y�,SQz� �t�QS + D04z��t� 
VI.24 

where Eq. VI.23 and the first term in the right-hand member of Eq. VI.24 describe connections 
from L1 to L2. The second term in the right-hand member of Eq. VI.24 represents connections 
among columns at different positions within L2 (where ij is the post-synaptic column and hk the 
pre-synaptic one) and the sums are extended to all neurons hk in L2. Finally, the last term in the 
right-hand member of Eq. VI.24 represents a “desynchronization” term, necessary to segment 
different patterns simultaneously present in memory. This will be described in sub-sub-section 
2.3.3. . 

It is worth noting that WL1
ij

L1
hk and KL2

ij
L2

hk (i.e., synapses within a layer) are autoassociative 
matrices, which, after training, will contain information on stored patterns. 

2.3.3. Desynchronization 

As it will be shown in section 3. , the previous equations allow synchronization of columns 
belonging to the same pattern, by using learned expressions for the autoassociative arrays (i.e., a 
correct choice of the autoassociative arrays allows the solution of the “binding problem”). 
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However, a fundamental advantage of gamma-band oscillations is the possibility to maintain 
different patterns simultaneously active (“segmentation problem”) by using a temporal coding 
division [Canolty et al., 2006; von der Malsburg & Buhmann, 1992; Singer, 1999]. To this end, an 
additional inhibitory mechanism must be included in L2, in order to avoid that two patterns are 
simultaneously active. Previous models which tried to segment multiple objects using gamma-
band oscillators [Campbell & Wang, 1996; Ursino et al., 2003; Wang, 1995] used a sort of 

“global inhibition” (not present in traditional autoassociative nets): as soon as a pattern of 
oscillators becomes active it momentarily inhibits all alternative patterns, to avoid that different 
patterns simultaneously pop out. 

In the present work, this further inhibition is realized assuming that pyramidal populations which 
code for a given object can inhibit all columns in L2 coding for different objects. Simulations (see 
section 3. ) show that, in order to realize a correct desynchronization of different objects (i.e., to 
solve the segmentation problem) this inhibition must be very fast. Hence, we assumed that it 

 

Figure VI.3: Patterns and connectivity in the two layers. Panel a shows the 7 patterns. In panels b to g, columns that 
send synapses of a specific type (indicated by the corresponding title) to the column marked with a dot, are colored in 
gray. All connections are within one layer, L1 in panels b and e, L2 in panels c, d, f and g. 
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occurs via very fast AMPA receptors. Indeed, some authors observed that fast AMPA receptors 
especially reside on inhibitory GABA-ergic interneurons [Itazawa et al., 1997; Yin et al., 1999]. 
Since the rise time of these excitatory post-synaptic currents can be as small as 0.2-0.3 ms [Geiger 
et al., 1997; Kleppe & Robinson, 1999; Zhou & Hablitz, 1998] (i.e., of the same order of 
magnitude as the integration step used in these simulations, 0.1 ms), they are considered as 
instantaneous compared with the dynamics of the other synapses in the model. We have: 

 D04z��t� =22A04,SQz�z� ∙ z�,SQz� �t�QS  
VI.25 

where Eq. VI.25 provides the desynchronization input to be used in Eq. VI.24. Parameters 
AL2

ij
L2

hk represent the strength of the synapse from the pre-synaptic column hk to the post-synaptic 
column ij in L2. Accordingly, Eq. VI.25 computes the sum of the global inhibition which reaches 
column ij in L2, as a consequence of activity in other objects which are in memory. 

It is worth noting that the effect of a fast AMPA receptor is simulated using the spiking activity of 
pyramidal neurons, zp

L2
hk, directly in Eq. VI.25, instead of using their post-synaptic potential, 

yp
L2

hk. Hence, this activity acts instantaneously on the post-synaptic membrane potential. 

2.4. Training the network 

Training has been performed by providing individual patterns to L1 (one pattern at a time) 
described as a subset of active columns. At the beginning of training, the synapses within L1 and 
L2 are set at zero; then, Hebbian and anti-Hebbian learning rules are used to train them. The input 
patterns used for the training are simulated by stimulating a group of columns in L1 with Gaussian 
white noise with mean value m and variance σ (mp = 600, mf = 0, σp

2 = σf
2 = 5) whereas all the 

other columns in L1 as well as columns in L2 are stimulated with a zero mean Gaussian noise (mp 

=mf = 0, σp
2= σf

2 =5). Seven different patterns have been used, as illustrated in Figure VI.3. After 
training, the network is able to restore a pattern, even starting from a partial information, and to 
segment it from other objects simultaneously given as inputs. 

It is worth noting that, in this work, we used connected patterns only. This choice has been done 
just to facilitate the visualization of results; however, since there is no spatial rule in our model 
(i.e., columns are connected only on the basis of past experience, independently of their position), 
objects can be composed of disconnected parts equally well, without any prejudice on model 
results. 

Different training rules are used for slower connections directed to pyramidal neurons (W) and 
GABA-fast neurons (K) and for faster AMPA connections (A). 

2.4.1. Training the excitatory connections to pyramidal populations within layer 1 

Training is performed on the basis of a simple time-dependent Hebbian rule based on the activity 
of the pre-synaptic and post-synaptic columns. Recent experimental data suggest that synaptic 
potentiation occurs if the pre-synaptic inputs precede post-synaptic activity by 20 ms or less 
[Abbott & Nelson, 2000; Markram et al., 1997]. Hence, in our learning phase we assumed that the 
Hebbian rule depends on the present value of post-synaptic activity, zp

L1
ij(t) (where ij is the 

position of the post-synaptic column), and on the moving average of the pre-synaptic activity 
(mp

L1
hk(t), position hk) computed during the previous 20 ms. We define a moving average signal, 

reflecting the average activity during the previous 20 ms, as follows 
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 m�,SQz� �t� = ∑ z�,SQz� �t − l ∙ Ts�`$��RA� Ns  
VI.26 

where Ts is the sampling time (in milliseconds), and Ns is the number of samples contained 
within 20 ms (i.e., Ns = 20/Ts). The synapses linking two columns (ij and hk) are then modified 
as follows during the learning phase (it is worth noting that we do not consider self-connections, 
thus the following rules are used with ij ≠ hk) 

 W04,SQz�z��t + Ts� = W04,SQz�z��t� + γ� ∙ Yz�,04z� �t� − ϑz[�∙ Ym�,SQz� �t� − ϑz[� ∙ �WbP� −W04,SQz�z��t�� , ij ≠ hk VI.27 

where γW is a learning rate, and the symbol []+ denotes the positive part. Eq. VI.27 signifies that 
both the instantaneous activity of the post-synaptic column, and the moving average activity of 
the pre-synaptic column are compared with a lower threshold, ϑL, and the synapse is reinforced 
only when both columns overcome this threshold. Moreover, we assume that synapses cannot 
increase above a given saturation level, Wmax; hence the learning rate is progressively reduced to 
zero when the synapse approaches this value. 

2.4.2. Training the glutamatergic connections to fast inhibitory interneurons within layer 2 

The glutamatergic connections to GABAA,fast inhibitory connections are trained with a rule very 
similar to Eq. VI.27: the only difference is that the post-synaptic activity of fast-GABA-ergic 
columns is used in the Hebb rule. Hence, we have 

 K04,SQz�z��t + Ts� = K04,SQz�z��t� + γ� ∙ Yz),04z��t� − ϑz[�∙ Ym�,SQz� �t� − ϑz[� ∙ �KbP� − K04,SQz�z��t�� , ij ≠ hk VI.28 

where a different learning rate, γK, is used. In this case too, the learning rate is reduced to zero 
when the individual synapse reaches a saturation level, Kmax. 

2.4.3. Training fast AMPA synapses within layer 2 

Fast AMPA synapses were trained thinking that columns active in one pattern must inhibit all 
columns in different patterns. Since, during the training phase, patterns have been presented 
individually, we used an anti-Hebbian rule: the synapse reinforces if activity of the pre-synaptic 
column is above ϑL, while activity in the post-synaptic column is below an upper threshold, ϑU. 
However, in order to avoid that a column inhibits another column in the same pattern, we used a 
moving average not only for the pre-synaptic activity but also for the post-synaptic one. We have 

 A04,SQz�z��t + Ts� = A04,SQz�z��t� + γ� ∙ Yϑl −m),04z��t�[�
∙ Ym�,SQz� �t� − ϑz[� ∙ �AbP� − A04,SQz�z��t�� , ij ≠ hk VI.29 

where a moving average activity for GABAA,fast populations, mf
L2

ij, is computed with an equation 
analogous to Eq. VI.26. Finally, these synapses saturate to a maximum level, Amax. 
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2.4.4. Parameters’ assignment 

All the parameters have been assigned values within physiological ranges as stated by literature 
on NMMs [Jansen & Rit, 1995; Wendling et al., 2002]. τe, τs, τf, have been set to fit rise and decay 
times of impulse responses experimentally observed [Wu et al., 2004]. The values used for Ge, Gs, 
Gf are the same used in works described in previous chapter [Cona et al., 2011; Ursino et al., 
2010]. The intrinsic connectivity (Cij) has been tuned to make the columns oscillate in specific 

frequency ranges depending on which neural loop prevails over the other ones due to the lateral 
connections. In particular, before training the columns oscillate in the alpha range and all the 
populations work in the linear region of their sigmoidal functions. After training, the columns 
oscillate in the theta range when the pyramidal-GABAA,slow loop prevails (L1) and in the gamma 
range when the pyramidal-GABAA,fast loop prevails (L2). The input noise (mp) has been given a 
value sufficient to excite the columns in L1. For what concerns the extrinsic connectivity, Wmax 
has been tuned to warrant the recovery of missing information in L1, Kmax has been tuned to 
warrant good gamma synchronization in L2, and Amax has been tuned to warrant 
desynchronization among different patterns in L2. The parameters γW, γK, γA, ϑL, ϑU have been 

Table VI.2: Parameter’ values and units 

Parameter Value 
τe (ms) 7.7 
τs (ms) 34 
τf (ms) 6.8 
Ge (mV) 5.17 
Gs (mV) 4.45 
Gf (mV) 57.1 
Cep 31.7 
Cpe 17.3 
Csp 51.9 
Cps 100 
Cfp 66.9 
Cfs 100 
Cpf 12.3 
Cff 18 
e0 (Hz) 2.5 
r (mV-1) 0.7 
s0 (mV) 10 
N, M 20 
mp (s-1) See text 
mf (s-1) 0 
σp

2 (s-2) 5 
σf

2 (s-2) 5 
γW (s) 0.005 
γK (s) 0.1 
γA (s) 0.1 
ϑL (s-1) 0.6 
ϑU (s-1) 0.3 
WL2L1

ij 196 
KL2L1

ij 186 
Wmax 10 
Kmax 20.8 
Amax 6 
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assigned values so that, during training, the extrinsic connections reach their saturation values in 
less than 2 s. Actually the γ parameters can be seen as the ratio between the integration step and 
the time constant of the first order dynamics used to train the synapses, so those parameter have 
values that are consistent with synapse’s plasticity dynamics. 

2.4.5. Examples of trained synapses 

Figure VI.3 shows exempla of synapses obtained after training the network with the Hebbian and 
anti-Hebbian rules described above, using seven patterns. In particular, each panel represents the 
array of synapses entering a given column in L1 (pyramidal-pyramidal, array W) and entering a 
given column in L2 (pyramidal-fast inhibitory, arrays K and A) from other columns in the same 
layer. The upper panels consider a target column which belongs to pattern 1, hence receives 
excitatory (in L1) and inhibitory (in L2) synchronization synapses from other columns in the same 
pattern, and receives desynchronization synapses (in L2) from columns located in the other six 
patterns. Conversely, the bottom panels consider a column which do not belong to either object, 
hence it receives negligible synchronization synapses from all other columns, and 
desynchronization synapses (in L2) from columns belonging to all seven objects. A complete list 
of model parameters and their values is given in Table VI.2.  
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3. RESULTS 

This section presents the performance of the network under different conditions. First, model 
behavior is presented before training, i.e., when all columns exhibit their intrinsic rhythm and do 
not receive lateral synapses from other columns in the same layer. Results of a sensitivity analysis 
on the main parameters are also discussed. Then, network behavior is shown after training, first in 
the absence of any desynchronization mechanism, then assuming trained desynchronization 
synapses targeting fast inhibitory interneurons. Finally, the problem of robustness (influence of 
noise and recovery of lacking information) and segmentation capacity (number of objects 
simultaneously segmented in L2) is analyzed. 

3.1. Simulation before training 

The response of a typical column in L1, stimulated with white noise (mp=800, mf=0, σp
2=10, 

σf
2=5) before training is presented in Figure VI.4. As can be observed, with the assigned 

parameter values, the column exhibits a significant rhythm in the lower alpha range (about 7-8 
Hz), which is typical of a relaxed state, and some smaller activity also in the beta-gamma range 
(20-30 Hz). This behavior is quite robust, and can be observed even if the characteristic of noise 
are changed within a large range (the main oscillatory activity is in the 5-12 Hz range for almost 

 

Figure VI.4: Output of a single cortical column when it is fed with non-zero mean white noise. Panel a shows the 
temporal course. Panel b shows the Power spectral density. 
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any combination of 0<mp<1000 and 0<σp
2<2500). Moreover, a similar behavior occurs in L2, 

whose columns receive excitation from columns in L1. 

3.2. Simulation with a single partial pattern as input 

Then, network behavior was simulated after training using a single pattern as input. In this 
condition, the role of the desynchronization mechanism is irrelevant. In particular, Figure VI.5 
considers a case in which 70% of columns of pattern 1 in L1 are stimulated by a non-zero mean 
external input (mp=600, mf=0, σp

2=σf
2=5) whereas the other columns in L1 as well as columns in 

L2 are stimulated with zero-mean external input (mp=mf=0, σp
2=σf

2=5). Results show that the 

 

Figure VI.5: Reconstruction of a pattern. Panel a shows which features are stimulated (gray pixels). Panels b and c show 
the firing rates of two columns (marked in panel a with dots) in L1 and of the corresponding columns in L2; the solid 
lines represent the activities of the columns corresponding to the stimulated feature, while the dotted lines represent the 
activities of the columns corresponding to the unstimulated feature. 
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entire pattern is first recovered in L1 (also the unstimulated 30%, see dashed line in the mid panel) 
and the overall object oscillates in the theta range. Moreover, all columns oscillate synchronously 
in L2, with a frequency in the gamma band (bottom panel). It is worth noting that the theta rhythm 

originates from the excitatory connections in L1, which lead pyramidal populations to saturation, 
followed by a slower inhibition induced by slow inhibitory interneurons. Conversely, the gamma 
rhythm in L2 is caused by connection to fast inhibitory interneurons which, as shown in chapter 
IV, amplify the response in the gamma range. 

 

Figure VI.6: Reconstruction of two patterns without the desynchronization mechanism. Panel a shows the stimulated 
features (as in Figure VI.5). The other panels show the activity of 4 columns in L2. Panel b shows the firing rate of two 
columns (one in pattern 1 and one in pattern 2) whose features are directly stimulated by the external input. Panel c 
shows a zoom of panel b, while panel d shows a wavelet map of the simulated EEG. Panel e shows the firing rate of two 
columns (one in pattern 1 and one in pattern 2) that are recovered by lateral synapses. The solid lines represent columns 
in pattern 1, the dotted lines represent columns in pattern 2. 
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3.3. Simulation with two partial patterns as input, without desynchronization mechanism 

Figure VI.6 shows the behavior of four columns, when the network receives two partial patterns 
as input (each pattern is stimulated as in the previous simulation), but without any 
desynchronization mechanism. As in Figure VI.5, the average spike densities of the unstimulated 
columns become rapidly synchronized with the activity of columns stimulated by external inputs. 
Both patterns are well restored, however they are not segmented (i.e., they appear 
simultaneously). These results emphasize the need for a desynchronization mechanism to handle 
more than a single pattern at the same time. The time-frequency content shows that the EEG of L2 

 

Figure VI.7: Reconstruction of three patterns with the desynchronization mechanism. Panel a shows the stimulated 
features (as in Figure VI.5). The other panels show the activity of 6 columns in L2. Panel b shows the firing rate of three 
columns (one for each pattern) whose features are directly stimulated by the external input. Panel c shows a zoom of 
panel b, while panel d shows a wavelet map of the simulated EEG. Panel e shows the firing rate of three columns (one 
for each pattern) that are recovered by lateral synapses. The solid, dotted and dotted/dashed lines represent columns in 
pattern 1, 2 and 3 respectively. 
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exhibits a very strong activity in theta band (coming from L1) and activity in the gamma band. 

3.4. Simulation with two partial patterns as input, with desynchronization mechanism 

A subsequent set of simulations were performed assuming the presence of desynchronizing 
synapses (trained with Eq. V.20) targeting GABAA,fast interneurons, with instantaneous dynamics 
(i.e., using the spike density, zp

L2
hk in Eq. VI.23), that simulate fast AMPA receptors with sub-

millisecond rise time [Geiger et al., 1997]. 

Figure VI.7 shows the behavior of the network with three partial patterns as input and assuming 
fast trained synapses. Results show that the columns not stimulated by the external inputs are 
synchronized with the columns in the same pattern stimulated by external inputs. All patterns are 
well restored and segmented. As a consequence of the strong segmentation between patterns, the 
time-frequency content of the EEG in L2 exhibits a significant rhythm in the beta-gamma band 
(>20 Hz) spaced out by a strong theta rhythm. However, it is worth noting that the frequency of 
oscillations in L2 decreases, compared with the case of a single object (let us compare Figure VI.7 
with Figure VI.6). The reason is that the three objects compete during a pause between one 
activation and the other, and this competition slows down the oscillatory rhythm (note the small 
activations between higher peaks in panels c and e of Figure VI.7). 

3.5. Robustness of the object recovery 

The network is able to completely recover the missing information when just 25% of object 
columns are stimulated. More particularly, if this percentage is higher than 60%, the lacking 
columns are fully excited by the stimulated ones; otherwise, the lacking columns are just partly 
excited by the others, and fully recover later thanks to their own reentrant activation. In the latter 
case, the theta rhythm is dilated (~3Hz, due to the dynamics with which the unstimulated columns 
slowly excite themselves). 

We have also analyzed the robustness of the network to noise. We have stimulated the network 
with noise with different variances (σp

2 and σf
2 in the range 0-2500s-2) and found that the network 

fails in recovering lacking information, and especially in segmenting patterns, when σp
2 and σf

2 
are both 625s-2 or more. It is worth noting that this value is independent of the percentage of 
columns stimulated for each pattern. 

 

Figure VI.8: Stimulation of seven patterns. The figure shows the activity of seven columns which belongs to seven 
different patterns (different line styles represent different patterns) in L2 when columns in L1 are forced to fire 
continuously (thus neglecting the theta rhythm). 
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3.6. Segmentation capacity 

To test the capacity of pattern recovery and segmentation we stimulated the network with all of 
the 7 patterns used during training. All the patterns are recovered successfully in L1 if they are 
partially stimulated. However, they cannot all pop out in L2, because half theta cycle cannot 
accommodate more than three beta-gamma cycles. 

Indeed the only limitation is provided by the ratio between the theta period and the gamma period; 
i.e., if L1 does not oscillate in the theta range, L2 can segment a greater number of patterns. To 
show this, we forced the columns in L1 to fire continuously toward columns in L2 (i.e., we set 
zL1

p,ij ≡ 5 s-1, for each column ij that belongs to one of the patterns), and verified that all the 
patterns were activated and correctly segmented in L2. In this condition, however, the beta-gamma 
rhythm becomes even slower (~15 Hz), due to the harder competition of each pattern vs. all the 
other ones (Figure VI.8). Likely the network should work properly also with greater numbers of 
trained patterns.  
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4. DISCUSSION 

The idea that synchronization of neural activity in the high beta and gamma bands plays a central 
role in many higher cognitive processes, as a putative mechanism for feature binding, has a long 
tradition in neuroscience [Pulvermüller et al., 1996; Singer, 1999] and has been exploited in 
several computational models in recent years [Cesmeli & Wang, 2000; von der Malsburg & 
Buhmann, 1992; Tagamets & Horwitz, 2000; Ursino & La Cara, 2004; Ursino et al., 2003, 2009; 
Wang & Terman, 1997; Wang, 1995]. However, despite these valuable studies on the subject, we 
are not aware that the problem has been modeled computationally using realistic neural mass 
models of a cortical column. This is a significant lack, since neural mass models are particularly 
suitable to simulate rhythm generation and rhythm propagation at a mesoscale level, and to 
provide reliable simulations of EEG whose spectra have multiple peaks [Moran et al., 2008; 
Zavaglia et al., 2006]. 

The present work was designed with the following main purposes: 

1. to study the binding and segmentation problem using a recent improved version of a 
NMM, able to generate a variety of rhythms and to propagate them among interconnected 
cortical columns; 

2. to investigate the possible synaptic mechanisms which allow fast synchronization and fast 
segmentation of objects; 

3. to incorporate Hebbian rules within the model, to simulate high-level cognitive tasks 
involving previous experience and autoassociation; 

4. to investigate the possibility to have two distinct rhythms within the model (one in the 
theta and the other in the beta-gamma range) and study the parameters which may affect 
the coexistence of these rhythms. 

It is worth noting that the present model makes use only of previous knowledge to segment 
patterns, hence, it intends to simulate the recognition of complex objects, represented as a 
collection of features. Primary perception (such as segmentation of a visual scene) exploits 
different spatial rules (proximity, smoothness, common fate, etc…), and is not within the aim of 
the present model. 

From the simulation results, some general conclusions can be drawn. 

4.1. Synchronization 

A NMM which reproduces the basic architecture of a cortical column can achieve a satisfactory 
synchronization of neural activity in the gamma band, using model glutamatergic synapses 
originating from pyramidal neurons and targeting other cortical columns coding for attributes of 
the same object. Moreover, in order to achieve robust synchronization, both excitation and 
inhibition among cortical columns should be used. In our model, this is realized via long-range 
synapses emerging from pyramidal neurons, which target pyramidal neurons in the first layer and 
fast-inhibitory interneurons in the second layer. The idea of using both excitation and inhibition to 
have strong synchronization is not new, and was exploited in previous models based on 
oscillating units [Ursino et al., 2009]. The observation that fast inhibitory interneurons play a 
relevant role in synchronization is also stressed in computational studies based on spiking neurons 
[Bartos et al., 2002]. 
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4.2. Two rhythms in the model 

A further aspect investigated with the model is the possible coexistence of the gamma rhythm 
with a slower theta rhythm. This is an interesting point, since the theta rhythm has been 
hypothesized to drive the formation and dissolution of patterns in autoassociative networks 
[Canolty et al., 2006; Doesburg et al., 2009; Schack et al., 2002], and to contribute to other 
important phenomena such as the precession of information in temporal sequences [Lisman & 
Idiart, 1995; Ward, 2003]. In particular, the presence of silent periods, in which the network does 
not show appreciable activity, alternated with periods of synchronized high frequency 
oscillations, can have a function to distinguish among moments in which information is recovered 
from the network and moments in which information is provided to the network [Ward, 2003]. 

The present model introduces an original element to improve synchronization and to generate 
robust coupled rhythms, i.e. a different role played by L1 and L2. Synapses to pyramidal columns 
in L1 contribute to the recovery of lacking information. Thanks to these synapses, L1 works as an 
autoassociative memory, which entirely recovers a previously stored information starting from a 
partial cue. In our model, with the present value of synaptic strengths, stimulating just 25% of the 
object features allows restoration of the remaining 75% of features. Moreover, the presence of 
autoassociative synapses in L1 induces the theta rhythm. This rhythm originates from the feedback 
interaction between pyramidal populations and slow inhibitory interneurons within a column, and 
by trained excitation among pyramidal populations in different columns. Thanks to the strong 
reciprocal connections among pyramidal neurons, an initial excitation rapidly spreads among all 
columns in the same pattern, leading them to maximal excitation (i.e., to the upper saturation of 
the sigmoidal relationship). This strong excitation, in turn, causes the excitation of inhibitory 
interneurons with slow synaptic kinetics within the same column, which strongly inhibit the 
pyramidal neurons. The presence of a sigmoidal relationship (with upper saturation and sub-
threshold silence) explains the long plateaus of the theta waves. 

Conversely, synapses to fast inhibitory interneurons in the L2 induce a gamma-rhythm, which is 
superimposed on the previous theta rhythm. Excitation in L2 rapidly spreads to fast inhibitory 
interneurons within the same pattern. Since these interneurons exhibit a strong inhibitory self-
loop, they tend to inhibit themselves inducing a fast oscillation, which is rapidly synchronized 
with oscillations in other columns in the same pattern. 

In the present work we do not provide any indication of the possible neurophysiological or 
anatomical dispositions of these layers; the model wishes to have a general validity, i.e., it 
represents a proof of principle. By way of example, L1 may represent a sub-cortical structure 
(such as the thalamus or the hippocampus) connected with a cortical layer; alternatively, the two 
layers may represent a first stage and a second stage of the same local circuitry (such as layers 
CA1 and CA3 in the hippocampus). 

4.3. Learning mechanism for autoassociation 

The previous mechanism for synchronization and autoassociation can be learned from past 
experience using realistic Hebbian rules. In particular, we used a time-dependent version of the 
Hebb rule, based on correlation between the instantaneous post-synaptic activity and the pre-
synaptic activity in a previous 20 ms time window [Abbott & Nelson, 2000; Markram et al., 
1997]. In this way, previous knowledge on objects can be stored in the network and subsequently 
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exploited to synchronize the properties of the object in the gamma band and to recover lacking 
information from incomplete cues. 

4.4. Segmentation 

A difficult problem, faced with the model, concerns the segmentation of multiple objects. This 
implies the possibility to have different objects simultaneously present, exploiting a time division 
(i.e., phase shift) of their oscillation activity. Previous models which used simpler oscillating units 
(such as Wilson Cowan oscillators [Ursino et al., 2003, 2009; Wang, 1995], or relaxation 
oscillators [Cesmeli & Wang, 2000; Ursino & La Cara, 2004]) solved the segmentation problem 
with the use of a “global inhibitor”, i.e., a unit which calculates the overall activity in the network 
and sends back an inhibitory signal. 

In the present work we did not use a global inhibitor, owing to its scarce physiological reliability, 
rather we assumed the presence of a further inhibitory mechanism within L2, which works to 
ensure desynchronization among different objects. We argued that the time course of excitatory 
synapses (10-20 ms) was too slow to allow fast desynchronization among different objects. 
Hence, we adopted an alternative hypothesis: connections that provide fast and efficient 
desynchronization originate from pyramidal neurons and target fast inhibitory interneurons in 
other columns through faster synapses with a sub-millisecond rise time [Geiger et al., 1997]. 
Indeed, fast AMPA receptors are especially encountered at a pyramidal neuron-inhibitory 
interneuron synapse [Geiger et al., 1997; Itazawa et al., 1997; Yin et al., 1999; Zhou & Hablitz, 
1998]; some authors hypothesized that their fast kinetics enables interneurons to detect 
synchronous activity of principal neurons [Geiger et al., 1997]. In our model, these synapses have 
been simulated assuming that their time constant is negligible (at least compared with that of 
other synapses in the model). Simulations demonstrate that these connections between pyramidal 
and fast inhibitory interneurons have the dynamical properties to favor pattern desynchronization, 
as required to solve the segmentation problem. 

A strong assumption of this work is that these synapses are trained with an anti-Hebbian 
mechanism, i.e., they reinforce when the pre-synaptic activity is high but the post-synaptic 
activity is low (both mediated over a time window, to account for the presence of oscillatory 
activity). According to this assumption, inhibition is directed selectively only to cortical columns 
in different objects, i.e., an object cannot inhibit itself. This mechanism allows a stronger 
separation among oscillating patterns, as illustrated in Figure VI.7 and Figure VI.8. The 
possibility to reinforce a fast AMPA synapse to detect the anticorrelation among cortical columns, 
and the emphasis on their role in segmentation, represents a new hypothesis of the model, 
requiring ad hoc validation, and constitutes testable predictions for future studies. 

4.5. Model limitations and future lines 

It is difficult with the present model to segment more than three patterns simultaneously within a 
theta cycle. The fundamental reason is that the frequency of the gamma rhythm decreases with the 
number of objects simultaneously present, as a consequence of their competition realized by fast 
AMPA inhibitory synapses. This is evident by comparing Figure VI.5 with Figure VI.7 and 
Figure VI.8. The competition among three objects in Figure VI.7 causes some silent periods 
which slow down the frequency. The phenomenon is even more evident when seven patterns are 
simultaneously present (Figure VI.8). Of course, this model limitation is evident only if the theta 
rhythm is present. In the case of a constant input activity, the model can segment seven patterns 
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without problem, although with slower oscillation frequency. Hence, the model may segment 
many patterns if the theta rhythm is artificially slowed down. 

Two improvements can be introduced in the model to overcome this problem 

1. The use of neural populations with a higher oscillation rate may favor the presence of a 
greater number of patterns segmented during the theta cycle. This may be realized using a 
smaller time constant for synapse kinetics within the column. However, in these 
conditions synchronization and recovery of lacking features may become more difficult; 

2. Segmentation in this model is achieved using only a “previous knowledge” rule, stored 
within trained synapses. This is a high-level Gestalt rule. It is expected that, at an earlier 
processing stage, before reaching the present network, part of the input information is 
already segmented using low-level Gestalt rules (such as proximity, smoothness, common 
fate, etc…). This is true if previous information derives, for instance, from visual, tactile 
or auditory processing. Conversely, in our model all inputs are given simultaneously 
without any pre-segmentation procedure. 

A further limitation is that the present model cannot segment patterns with common features. To 
segment superimposed objects, we should introduce further learning rules which allow long term 
depression of some previously created synapses. For instance, if two objects (A and B) have a 
common feature f, when object A is used in the learning phase, AMPA synapses are created from 
f to desynchronize all features in B. These synapses must be withdrawn when B is used in the 
learning phase, to allow synchronization of f with the features of B. Some preliminary simulations 
(not presented here) indicate that segmentation of superimposed objects may be possible with 
additional rules. This may represent the target of future model improvements. 

In the cortex pyramidal neurons are self-connected. Indeed, some authors in recent years [Sotero 
et al., 2010] included a self-loop of pyramidal neurons in their model. However, many other 
studies do not consider this loop explicitly [Jansen & Rit, 1995; Wendling et al., 2002]. We did 
not include this loop to limit the number of parameters in the model. Actually, the self-excitation 
among pyramidal populations can be introduced in L1 by maintaining the main diagonal of the 
lateral synapses matrix WL1

ij
L1

hk (ij = hk in Eq. VI.27); if we do so the overall behavior of the 
network does not change in an appreciable way. However, the issue of how the inclusion of a self-
loop in pyramidal populations can affect the behavior of the network should be addressed with a 
sensitivity analysis in future studies. It is possible that the inclusion of a self-loop among 
pyramidal neurons makes the presence of excitatory interneurons unnecessary, thus leading to a 
simplification of the model. 

Finally, the mechanism for the generation of the theta rhythm is quite simple. More sophisticate 
mechanisms exist in the brain and may be included in future work: they might comprehend a 
more detailed description of thalamic dynamics, including a loop between thalamic nuclei and the 
reticular formation, and a description of thalamic neural populations which incorporates the burst 
firing modality: both mechanisms are known to participate to the genesis of low-frequency 
rhythms, as those occurring during sleep [Huguenard & McCormick, 2007; Steriade, 2006]. 
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VII. CONCLUSIONS 

The study of cortical rhythms and connectivity, of their mutual interaction and of their role in the 
realization of motor and cognitive tasks is a huge issue that cannot be (and is not intended to be) 
fully covered in a Ph.D. thesis. The aim of this work has rather been to explore the capabilities of 
a neural model to help the research in the field of quantitative neuroscience. In these years we 
used different versions of a NMM to simulate experimental data and to reproduce physiological 
phenomena in order to fathom the ability of the model to describe the spectrum of expressions of 
the cortical activity, look at which conclusions can be drawn and estimate how reliable they are on 
the basis of scientific literature and previous knowledge on the subject. 

In particular at the beginning of my Ph.D. our NMM could be used to reproduce the spectra of 
experimental EEGs in order to infer the connectivity patterns between different cortical areas, 
however it had some intrinsic limitations that narrowed down its possible applications. The model 
has been modified on the basis of experimental evidence to overcome these limitations and its 
new characteristics have been analyzed in detail. The new model has been successfully employed 
to reproduce the time courses of data recorded with the TMS-EEG technique, allowing to quantify 
the extrinsic connectivity of the areas involved in the task. Finally, the model has been used to 
reproduce some qualitative characteristics of the cortical electrical activity related to the memory 
recovery, suggesting how the brain can realize such a function. 

At the end of this dissertation we can conclude that NMMs can greatly help the interpretation of 
experimental data from a physiological and functional point of view. Indeed, this augmented 
insight is not given for free since a model inversion is not a trivial operation. As has been shown 
in the previous chapters, the fitting of features of experimental data (time courses, spectra, etc.) 
with models that are neither linear nor low-dimensional in the parameters space, requires the use 
of advanced optimization tools and strategies. Some ways to obtain automatic fittings have been 
presented, but they require a great load of work to be developed, are usually to be preceded by 
some mandatory preprocessing steps and are often suitable only for ad hoc applications. However, 
if these fittings can be achieved after a bit of struggling, the model provides a kind of information 
that is almost immediately interpretable, parameters and variables have a clear physiological 
meaning and thus conclusions can be drawn quite straightforwardly. 

Actually the analysis of physiological phenomena with mathematical models can not only provide 
information on the specific topic that is being studied, but can also suggest new paths of 
investigation, by pointing out issues that simply were not taken into consideration in the first 
place. For example, the network described in chapter VI used to recover pieces of information 
from memory, suggests that much more neural assemblies can be recalled if they are related to 
one another, as in a chain of events, rather than completely uncorrelated. Indeed, our future 
research is devoted also to the development of that network, in order to accommodate for the 
learning of patterns that are linked together in an ordered sequence. 

It is clear that many efforts have to be done yet. In my opinion, a very important goal would be 
the development of optimization methods that could fit neural models to experimental data 
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automatically, without the need to adapt the procedure for new experiments and new data. 
Important results have already been achieved in this direction (let’s consider for example the 
Statistical Parametric Mapping framework developed at the Wellcome Trust Center for 
Neuroimaging of London), but I think that an automatic fitting procedure, or at least a set of 
algorithms, that gives satisfying results when models are non-linear, have very high or very low 
sensitivity on some parameters, and high-dimensional research spaces, is still lacking. 

Future lines of research will surely include the development of models that employ both cortical 
and thalamic modules, in order to study phenomena that are strictly correlated with the activity of 
the thalamus and its interaction with the cortex (sleep, processing of sensory information). Such 
networks would be priceless in clinics to help the diagnosis of different states of unconsciousness 
and to estimate the effectiveness of treatments by inferring the connectivity between different 
areas in the cortex and the thalamus, and following the changes in these parameters. 
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