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I 

Preface 

 

 

 
The consumer demand for natural, minimally processed, fresh like and functional food has 

lead to an increasing interest in emerging technologies. Novel processing techniques are 

attracting the attention of academic as well as industrial research, becoming commercially 

very important. 

The aim of this PhD project was to study three innovative food processing 

technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum 

impregnation and pulsed electric field have been investigated. Furthermore, analytical and 

sensory techniques have been developed in order to evaluate the quality of food and vegetable 

matrix obtained by traditional and emerging processes. 

This thesis has a compilation structure, and the research articles produced during the 

PhD project have been enclosed and discussed. Owing to the extent of the topics investigated, 

technological and sensory aspects have been split in different chapters. 

The first two chapters contains the list of publications produced and the abbreviations 

used in the text. 

Chapter 3 describes the innovative technologies studied: ultrasound assisted freezing 

of potatoes, aroma enrichment of apple sticks through vacuum, ultrasound and atmospheric 

impregnation technologies and pulsed electric field treatment of melon juice. The papers 

produced are attached at the end of each paragraph. 

Chapter 4 details the chromatographic analysis developed: phenolic composition of 

vegetable matrix as olive mill waste water and chestnut bark extracts have been described. 

Finally, in chapter 5, sensory techniques are discussed. In particular the development 

of quantitative-descriptive methods for the evaluation of sensory profile of boiled potatoes 

and the investigation of the volatile fraction of raw and processed potatoes are reported. 
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2. ABBREVIATIONS USED 

US Ultrasound 

PB Blake threshold 

Pv Vapour pressure 

Σ Surface tension 

R0 Initial nanobubble radius 

P0 System pressure 

VI Vacuum impregnation 

AI Atmospheric impregnation 

HDM Hydrodynamic mechanism 

Χ Volume fraction of the sample impregnated 

r Compression ratio 

ϵe Effective porosity 

ρ1 Initial gas pressure in the pores 

ρ2 External system and capillary pressure 

DRP Deformation-relaxation phenomenon 

γ Sample volume deformation at the end of the 

impregnation process 

γ1 Sample volume deformation at the end of the 

vacuum application 

USI Impregnation assisted by ultrasound 

VUSI Impregnation assisted by vacuum and ultrasound  

PEF Pulsed electric field 

PME Pectin methylesterase 

PPO Polyphenoloxidase 

LOX Lipoxygenase 

PG Polygalacturonase 

POD Peroxidase 

TP Total phenol 

aw Water activity 

E Electric field 

F Pulse frequency 

T Treatment time 
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RA Relative residual enzyme activity 

At Enzyme activity units after treatment 

A0 Enzyme activity units before treatment 

PC Phenolic compounds 

OMWW Olive mill waste water 

MF Microfiltration 

UF Ultrafiltration 

NF Nanofiltration 

RO Reverse osmosis 

HHDP Hexahydroxydiphenic acid 

HPLC High performance liquid chromatography 

DAD Diode array detector 

ESI-MS Electrospray ionization-mass spectrometry 

SDE Simultaneous distillation and extraction 

SPME Solid-phase microextraction 

GC-MS Gas chromatography-mass spectrometry 

GC/O Gas chromatography/olfactometry 

GC-FID/O Gas chromatography-flame ionization 

detector/olfactometry 

GC-MS/O Gas chromatography-mass 

spectrometry/olfactometry 

QDA® Quantitative descriptive analysis 
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3. EMERGING TECHNOLOGIES  
IN FOOD PROCESSING 

 

 

3.1 ULTRASOUND-ASSISTED FREEZING 

3.1.1 Overview of ultrasound applications in food industry 

The use of ultrasound within the food industry has been a subject of research and 

development for many years and the sound ranges used can be basically divided into 

diagnostic (5 MHz – 10 MHz) and power ultrasound (20-100 kHz) (Mason, 1998). 

In table 3.1.1 are listed some uses of power ultrasound in food technology which have 

been widely described in several reviews (McClements, 1995, 1997; Mason et al., 1996; 

Povey and Mason, 1998; Li and Sun, 2002; Knorr et al., 2004; Zheng and Sun, 2006; 

Dolatowski et al., 2007; Ulusoy et al., 2007; Feng et al., 2008; Patist and Bates, 2008; 

Chemat et al., 2011). 

 

Table 3.1.1 Some uses of power ultrasound in food processing (Mason, 1998). 

 

 

 

Mechanical effects 
Crystallization of fats, sugars, etc. 

Degassing 
Destruction of foams 

Extraction 
Filtration and drying 

Freezing 
Mixing, homogenization and emulsification 

Precipitation of airborne powders 
Tenderization of meats 

Brining, pickling and marinating 
Chemical and biochemical effects 

Bactericidal action 
Effluent treatment 

Modification of growth of living cells 
(stimulation/destruction) 

Alteration of enzyme activity 
Oxidation processes 

Sterilization of equipment 
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The energy amount of the sound field is an important criterion for the classification of 

ultrasound applications. High-intensity ultrasound parameters include sound power (W), 

sound intensity (W/m2), sound energy density (Ws/m3), treatment temperature, and treatment 

time (Knorr et al., 2004; Bermúdez-Aguirre et al., 2011). 

Low energy ultrasound applications frequently range at intensities lower than 1 W/cm2 

and at frequencies higher than 100 kHz. They are used for non-invasive detection (process 

control) and for characterizing physicochemical properties of food material (product 

assessment or control) (Mason and Luche, 1996; Villamiel and De Jong, 2000). 

High energy ultrasound applications are usually found at intensities higher than 1 

W/cm2 and at frequencies between 18 and 100 kHz (McClements, 1995; Povey and Mason, 

1998; Villamiel and De Jong, 2000) however, the majority are restricted to the range 20-40 

kHz, i.e. the traditional ranges employed for cleaning, cell disruption and plastic welding 

(Mason, 1998). 

 

3.1.2 Ultrasonic cavitation  

The application of power ultrasound in food processing takes advantage of the chemical and 

the mechanical effects of cavitation. 

As the ultrasonic pressure wave passes through the medium, regions of high and low 

pressure are created. The size of these pressure variations are referred to as the amplitude of 

the pressure wave or the acoustic pressure, and they are directly proportional to the amount of 

energy applied to the system. In compressible fluids (such as air) or at low intensity ultrasonic 

waves this pressure will induce motion and mixing within the fluid (acoustic streaming) and 

this movement is sufficient to accommodate these pressure variations (Kentish and 

Ashokkumar, 2011). 

However, most liquids are inelastic and incompressible and thus cannot respond as 

easily in this manner. If the changes in pressure are great enough, the local pressure in the 

expansion phase of the cycle falls below the vapour pressure of the fluid, causing 

microbubbles of gas and vapour or cavities to grow; they relieve the tensile stresses created by 

the pressure wave. Scientific theory would suggest that the acoustic pressure variation 

required for this to occur is very large, up to 3,000 MPa. However, in practice, these 

microbubbles form at relatively mild acoustic pressures. It is generally believed that this is 

because any liquid already contains cavities of gas or nanobubbles, and that these nuclei assist 

in the formation of microbubbles (Suslick, 1991; Kentish and Ashokkumar, 2011). The 

bubble formation process is known as cavitation: in the rarefaction phase of the pressure 

wave, a bubble is created by the local fluid tension, or is expanded due to the decrease in 
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pressure. During compression, the increase in pressure either contracts the void or bubble to a 

smaller size, or eliminates it by implosion (figure 3.1.1). Generally, these processes are 

nonlinear because the changes in the radius of the void are not proportional to the variation in 

acoustic pressure (Young, 1989). 

 

 

Figure 3.1.1 Sound transmission through a medium and generation of a cavitation 

bubble. 

 

Cavitation is observed to occur above a definite threshold in ultrasonic intensity. 

Intensity, in this context, refers to the mechanical-power density supplied by the ultrasound 

device, and may vary spatially owing to the geometry of the container and the configuration 

of the point at which ultrasound is delivered. For example, if ultrasound is delivered by a 

probe the intensity is high near the tip, and falls off dramatically as the distance increases 

(McCausland et al., 2001). 

The lowest acoustic pressure at which cavitation is observed is called cavitation or 

Blake threshold (PB), and is a function of the solution vapour pressure (Pv), the surface 

tension (σ), the initial nanobubble radius (R0), and the system pressure (P0) (Leighton, 1994; 

Kentish and Ashokkumar, 2011): 
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The voids or cavities generated by ultrasound can be stable or transient. Stable cavities 

exist for a number o sonic pressure cycles and oscillate, usually nonlinearly, around some 

mean equilibrium size; usually their growth rate during rarefaction is equivalent to their rate 

of contraction during the compression phase (Thompson and Doraiswamy, 1999). Transient 

cavities exist for a single or a few acoustic cycles. They may enlarge several times, becoming 

larger than their original size during expansion, and collapsing violently during compression. 

This mechanism creates extreme temperatures and pressures (McCausland et al., 2001). The 

order of temperature and pressure variations can be, respectively, of 5500°C and 50 MPa 

(Leighton, 1998). In the small spatial regions where cavitation occurs, also called “hot spots” 

(Henglein, 1987), the temperature can change at a rate of about 109°C/s (Suslick, 1991). In 

any cavitation field, the majority of visible bubbles are in stable oscillation, causing acoustic 

micro-streaming. However, the relationships between stable and unstable cavitation are quite 

complex and time-dependent, and stable cavities may evolve into transient ones via a number 

of mechanism (Young, 1989). 

The cavitation has a variety of effects within the liquid medium depending upon the 

type of system in which it is generated. These systems can be broadly divided into 

homogeneous liquid, heterogeneous solid/liquid and heterogeneous liquid/liquid phase 

systems (Suslick, 1997). 

When cavitation occurs in an homogeneous liquid-phase system, the rapid collapse of the 

bubble generates shear forces, which can produce mechanical effects in the bulk liquid 

immediately surrounding the cavity. Instead, the extreme conditions of temperature and 

pressure inside the collapsing bubble can produce chemical effects, reacting with any species 

introduced inside. 

As regards heterogeneous solid-liquid systems, two main situations are considered: the 

presence of a solid surface in the liquid phase or the presence of dispersed powder. 

The collapse of a cavitation bubble near a surface is non-symmetric (figure 3.1.2) 

because the surface provides resistance to liquid flow from its side. The powerful jet targeted 

at the surface can dislodge dirt and bacteria, determining the decontamination also of crevices 

that are not easily to clean by conventional methods (Mason et al., 1996). This effect can also 

activate solid catalysts and increase mass and heat transfer to the surface by disruption of the 

interfacial boundary layers. 

 



Chapter 3 

11 

 

Figure 3.1.2 Cavitation bubble collapsing near a solid surface 

(www.sonochemistry.info). 

 

When acoustic cavitation occurs in liquids containing suspended powders, dramatic 

effects may occur. In fact the powders (as well as the trapped gas) can act as nuclei for 

cavitation bubble formation and the subsequent collapse can lead to shock waves which break 

the particle. Cavitation bubble collapse in the liquid phase near to a particle can force it into 

rapid motion. Under these circumstances the general dispersive effect is accompanied by 

interparticle collisions which can lead to erosion, surface cleaning and wetting of the particles 

and particle size reduction. 

In heterogeneous liquid-liquid systems, cavitational collapse at or near the interface cause its 

disruption and the liquid mixing, resulting in the formation of very fine emulsions. 

 

3.1.3 The role of cavitation on ice nucleation 

One of the first applications of ultrasound was sonocrystallization, that is the crystallization of 

ice due to ultrasonic irradiation. Sonocrystallization of supercooled water has been studied 

since 1965 and a significant body of literature is available (Hickling, 1965; Hunt and Jackson, 

1966; Ohsaka and Trinh 1998; Inada et al. 2001; Chow et al. 2005), however, the exact action 

mechanism that explains the ultrasound effect is not yet well known. Different theories have 

been formulated and the most important mechanism by which ultrasonic irradiation can 

influence crystallization is ultrasonic cavitation (Hickling, 1965; Hunt and Jackson, 1966). 

According to the model formulated by Hickling (1965), the positive pressures 

produced during the final stage of collapse of bubble cavitation (greater than 1 GPa) increase 

the equilibrium freezing temperature of water, and thus increase the supercooling degree, 

enhancing the rate of ice nucleation. Another model (Hunt and Jackson, 1966), instead, states 

Inrush of liquid from one side of the 
collapsing bubble produces powerful

jet of liquid targeted at surface.

Boundary layer

Solid
surface
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that nucleation is caused by the negative pressure that follows the collapse of the cavitation 

bubbles. 

According to these conventional theories, the collapse of bubble transient cavities 

triggers off the nucleation of ice during ultrasonic-induced crystallization. 

However, it has been demonstrated that ice nucleation can also be caused by an 

isolated, stable cavitation bubble in an ultrasonic field, without implosion phenomenon 

(Ohsaka and Trinh, 1998); in these cases nucleation could be triggered by micro-streaming, 

through an acceleration of heat and mass transfer processes. 

The ultrasonic-induced nucleation of ice in water containing different size 

distributions of air bubbles was also investigated (Zhang et al., 2003) and, owing to the 

different thermodynamic conditions involved, the effect of ultrasound could not be only 

explained by conventional models, but also secondary effects should be taken into account. 

Primary and secondary nucleation of ice were both possible during the 

sonocrystallization of ice in sucrose solutions (Chow et al., 2003). In particular a stimulation 

of the primary nucleation was caused by the increasing in the temperature at which the 

nucleation took place. Moreover the strong forces originated from the collapse of the 

cavitation bubbles also influenced the secondary nucleation mechanism, by fragmenting the 

pre-existing ice crystals, into smaller ones. The authors also noted that the secondary 

nucleation might be caused by the high shear flow in the vicinity of the cavitation (Chow et 

al., 2005). 

 

3.1.4 Application of power ultrasound during food freezing 

Power ultrasound has been recently studied in assisting and accelerating freezing processes of 

vegetable products, but, at the best of our knowledge, a little research is reported on literature 

(Sun and Li, 2002, 2003; Zheng and Sun, 2006). The immersion freezing of potatoes 

associated with the application of power ultrasound was investigated by Sun and Li (2002) 

who compared different power levels, exposure time and freezing phases, during which 

ultrasound was applied. The authors showed that the higher output powers and the longer 

exposure times enhanced greatly the freezing rate. Also the structural changes of potatoes 

frozen by ultrasound-assisted immersion freezing were evaluated and an improving of the 

structure of frozen-then-thawed potato tissue was observed (Sun and Li, 2003). 

The mentioned investigations on ultrasound-assisted immersion freezing (Li and Sun, 

2002; Sun and Li, 2003; Zheng and Sun, 2006) were carried out at a fast freezing rate, by 

using an immersion freezing solution at a very low temperature (of about -18°C). In these 

operative conditions, the formation of a large number of small crystals occurred both within 
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and outside the cells, ensuring the maintenance of tissue integrity and minimizing drip loss 

during thawing. However, the supercooling process, which is the sample cooling below the 

initial freezing point without ice formation (Rahman et al., 2002), was not observed. 

The aim of the investigation carried out (research article 1) was to delve into the study 

of ultrasound-assisted immersion freezing of potato cubes, with particular attention to the 

effects of the application of ultrasound during the supercooling phase. 

Moreover in several of the investigations published on ultrasound assisted freezing, 

the main ultrasound effect involved was the enhancement of heat transfer produced by 

sonication (Chemat et al., 2011; Li and Sun, 2002). A second aim we followed was to verify 

if the application of ultrasound on supercooled potatoes could trigger off the freezing through 

cavitation on the surface of the sample, causing an anticipation of the beginning of the 

freezing process.  

Ultrasound was applied in different times of the freezing process and the freezing 

parameters, as nucleation temperature and time, initial freezing temperature, transition phase 

and global freezing duration, were evaluated and discussed. 
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 16 

Running title: Ultrasound assisted freezing of potato 17 

 18 

Abstract 19 

Ultrasound has attracted great interest in recent years and its application in food freezing has 20 

shown promising advantages. In the present study the application of ultrasound during 21 

immersion freezing of potato cubes was studied and particular attention was given to the 22 

effects on supercooling process. Ultrasound, produced through a 35 kHz sonotrode, was 23 

applied when the temperature in the geometrical center of potato sample was in the range 24 

from -0.1 to -3.0°C. Several freezing parameters, as nucleation temperature and time, initial 25 

freezing temperature, transition phase and global freezing duration, were evaluated and 26 

discussed. 27 

A significant anticipation of the nucleation process was detected when the ultrasound 28 

application temperature was lower than -0.1°C, moreover a reduction in freezing time was 29 

recorded when ultrasound was applied at -2.0°C. 30 

 31 

1. Introduction 32 

                                                           
1  Present address: Departamento Biotecnología e Ingeniería de Alimentos, Instituto Tecnológico y de 
Estudios Superiores de Monterrey. Eugenio Garza Sada 2501. Monterrey, Nuevo León 64849, México 
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Ultrasound is a pressure wave oscillating at a frequency above the threshold of human 33 

hearing, in the range from 20 kHz to about 10 MHz (Denbow, 2001). Besides medicine and 34 

chemistry, ultrasound is used in several industrial sectors including food science and 35 

technology (Chemat et al., 2011). Ultrasound employed in the food industry can be mainly 36 

classified into two different fields: high frequency - low energy (diagnostic ultrasound) in the 37 

MHz range and low frequency - high energy (power ultrasound) in the kHz range (Mason et 38 

al., 1996; Zheng and Sun, 2006). The application of the first one is focused on non-destructive 39 

food inspection, assurance of product quality and process control. Power ultrasound is used to 40 

promote chemical and physical modification of processes and products. It has been applied to 41 

improve cleaning, microbial destruction and enzymatic inactivation, and to enhance 42 

extraction, drying and filtration (Mulet et al., 2002; Albu et al., 2004; Bermúdez-Aguirre and 43 

Barbosa-Cánovas, 2008). Power ultrasound is a promising technique also in freezing process 44 

thanks to its direct effect on heat transfer and on crystallization (Mason, 1998; Li and Sun, 45 

2002; Sigfusson et al., 2004).  46 

Sonocrystallization of supercooled water has been studied since 1965 and a significant body 47 

of literature is available (Hickling, 1965; Hunt and Jackson, 1966; Ohsaka and Trinh 1998; 48 

Inada et al. 2001; Chow et al. 2005), however, the exact action mechanism that explains the 49 

ultrasound effect is not yet well known. Different theories have been formulated and acoustic 50 

cavitation, which consists of the formation, growth and violent collapse of low-pressure 51 

bubbles in liquids, seems to be the most important effect involved in water sonocrystallization 52 

(Hickling, 1965; Hunt and Jackson, 1966). 53 

According to the model formulated by Hickling (1965), the positive pressures produced 54 

during the final stage of collapse of bubble cavitation increase the equilibrium freezing 55 

temperature of water, and thus increase the supercooling degree, enhancing the rate of ice 56 

nucleation. Another model (Hunt and Jackson, 1966), instead, states that nucleation is caused 57 

by the negative pressure that follows the collapse of the cavitation bubbles. 58 

According to these conventional theories, the collapse of bubble transient cavities triggers off 59 

the nucleation of ice during ultrasonic-induced crystallization. However, it has been 60 

demonstrated that ice nucleation can also be caused by an isolated, stable cavitation bubble in 61 

an ultrasonic field, without implosion phenomenon (Ohsaka and Trinh, 1998); in these cases 62 

nucleation could be triggered by micro-streaming.  63 

The ultrasonic-induced nucleation of ice in water containing different size distributions of air 64 

bubbles was also investigated (Zhang et al., 2003) and, owing to the different thermodynamic 65 

conditions involved, the effect of ultrasound could not be only explained by conventional 66 

models, but also secondary effects should be taken into account. 67 
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Primary and secondary nucleation of ice were both possible during the sonocrystallization of 68 

ice in sucrose solutions (Chow et al., 2003). In particular a stimulation of the primary 69 

nucleation was caused by the increasing in the temperature at which the nucleation took place. 70 

Moreover the strong forces originated from the collapse of the cavitation bubbles also 71 

influenced the secondary nucleation mechanism, by fragmenting the pre-existing ice crystals, 72 

into smaller ones. The authors also noted that the secondary nucleation might be caused by 73 

the high shear flow in the vicinity of the cavitation (Chow et al., 2005). 74 

Freezing is an important way to preserve food during the time, maintaining the characteristics 75 

of fresh products, as in the case of vegetables. Nucleation and crystal growth are the main 76 

steps of ice crystallization, which affect the quality, the stability and the sensory properties of 77 

frozen foods.  78 

It has been reported that a fast nucleation and a production of small and uniform crystals 79 

occur during sonocrystallization (Luque de Castro and Priego-Capote, 2007). 80 

Power ultrasound has been recently studied in assisting and/or accelerating freezing processes 81 

of vegetable products, but a little research is reported on literature (Sun and Li, 2002, 2003; 82 

Zheng and Sun, 2006). The immersion freezing of potatoes associated with the application of 83 

power ultrasound was investigated by Sun and Li (2002), who compared different power 84 

levels, exposure time and freezing phases during which ultrasound was applied. The authors 85 

showed that the higher output powers and longer exposure times enhanced greatly the 86 

freezing rate. Also the structural changes of potatoes frozen by ultrasound-assisted immersion 87 

freezing were evaluated and an improving of the structure of frozen-then-thawed potato tissue 88 

was observed (Sun and Li, 2003). 89 

The mentioned investigations on ultrasound-assisted immersion freezing (Li and Sun, 2002; 90 

Sun and Li, 2003; Zheng and Sun, 2006) were carried out at a fast freezing rate, by using an 91 

immersion freezing solution at a very low temperature (of about -18°C). In these operative 92 

conditions, the formation of a large number of small crystals occurred both within and outside 93 

the cells, ensuring the maintenance of tissue integrity and minimizing drip loss during 94 

thawing. However, the supercooling process, which is the sample cooling below the initial 95 

freezing point without ice formation (Rahman et al., 2002), was not observed. 96 

Supercooling process has an important role in freezing food, because its extent influences 97 

both the rate of ice nuclei formation and their dimensions (Crivelli, 1992) and consequently 98 

affects the properties of frozen products. 99 

The aim of this investigation was to delve into the study of ultrasound-assisted immersion 100 

freezing of potato cubes, with particular attention to the effects during the supercooling phase. 101 

In spite of the formation of a limited number of large ice crystals between cells, and the high 102 
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structural damage caused, a slow freezing rate was chosen, in order to obtain a clear 103 

visualization of the freezing curve and of the supercooling phenomenon in potato cubes 104 

(James et al., 2009).The capacity of ultrasound to promote the beginning of crystallization in 105 

supercooled potato cubes was investigated. Ultrasound was applied in different moments of 106 

the freezing process and the freezing parameters, as nucleation temperature and time, initial 107 

freezing temperature, transition phase and global freezing duration, were evaluated and 108 

discussed. 109 

 110 

2. Materials and methods 111 

2.1 Ultrasonic equipment 112 

An ultrasound processor (300 W), working at a frequency of 35 kHz and equipped with a 113 

cone titanium sonotrode (Startec S.r.l., Milano, Italy) was used. The generator allowed to 114 

adjust the vibration amplitude from 0 % to 100 %. Treatment time was of 8 sec, with pulses 115 

duration of 1 sec. 116 

Owing to the thermal effect, the absorption of ultrasonic power by the freezing solution 117 

caused a temperature increase, and a loss of nominal energy. Actual power transferred to 118 

freezing solution during sonication was measured calorimetrically by recording the 119 

temperature rise against the time of ultrasound application. Heat development was estimated 120 

from the slope of the straight portion of the line obtained. According to Raso et al. (1999) 121 

power output (P) was then calculated using the equation: 122 

Mc
dt

dT
P p=  123 

where dT/dt is the slope of the line representing the variation of temperature during the time 124 

(K s-1), cp is liquid medium heat capacity (kJ kg-1 K-1) and M is the amount of sample 125 

treated (kg). Power output was 21.1 W when the sonotrode operated at 100% of vibration 126 

amplitude. 127 

 128 

2.2 Sample preparation 129 

Potatoes (Solanum tuberosum L. cv. Safrane) were bought on local market in Cesena and 130 

stored at room temperature. Fresh potatoes were cut in cubes (1.5 cm3 size) of about 8 g each 131 

one and immediately refrigerated until a temperature of 9 ± 1°C. After sample refrigeration, 132 

two thermocouples were positioned in each cube, one in the geometric centre and one close to 133 

the surface of the sample. T-type thermocouples (mod. GG-30-KK; Tersid, Milano, Italy) 134 

connected to a data acquisition system (mod. 2700; Keithley, Cleveland, USA) were used. 135 

About 1.5 g of dough (made with commercial wheat flour and water) was used to seal the 136 
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thermocouples incoming points and prevent the freezing solution to soak inside the potato 137 

cube during the immersion freezing. 138 

 139 

2.3 Ultrasound assisted immersion freezing 140 

Two potato cubes, cut from the same tuber, were frozen with and without ultrasound 141 

application, respectively. A solution of glycerol and water (50/50, w/w) was used for 142 

immersion freezing at a temperature of -6°C. Experiments were carried out in two vessels 143 

containing 1 kg of cooling solution each one (Fig. 1): in vessel A the immersion freezing was 144 

carried out without ultrasound application (control sample) and in vessel B the ultrasound-145 

assisted immersion freezing was realized (US sample). In order to maintain the potato cubes 146 

in the same position inside the cooling solution, a retaining structure was used. Each sample 147 

was positioned in the centre of the vessel at a 2.5 cm depth in the freezing solution. The 148 

ultrasonic probe was lined up with the sample, and a distance of 1.5 cm, between the top of 149 

the ultrasonic probe and the sample, was maintained. 150 

Control and US samples were immersed at the same time in the cooling solutions and when 151 

the geometric centre of potato cube reached the planned temperature (Table 1), 8 ultrasonic 152 

pulses (1 sec each) were applied to the ultrasound treated sample. As reported in Table 1, 153 

ultrasound effects were tested in 6 different moments of the freezing process: near 0°C (US-154 

0.1), at temperatures higher (US-1.1, US-1.6, US-2.1) and lower (US-3.0) and near (US-2.6) 155 

to the initial freezing temperature of potato. 156 

Immediately after the application of ultrasound, control and US samples, inside their own 157 

vessels, were put at - 45°C to complete the freezing process. Each experiment was repeated 5 158 

times. 159 

 160 

2.4 Statistical analysis 161 

Data were analyzed using Statistica 8.0 (Statsoft Inc., Tulsa, OK); significant differences in 162 

the treatments were assessed by one-way analysis of variance (ANOVA, 95% significance 163 

level) and Fisher’s least significant differences test was applied (P < 0.05). 164 

 165 

3. Results and discussion 166 

3.1. Preliminary experiments on water sonocrystallization and supercooling of potato 167 

cubes 168 

Before ultrasound-assisted freezing of potato cubes, some preliminary studies were made in 169 

order to verify if the ultrasound equipment at our disposal was able to induce water 170 

sonocrystallization, and find the best operative conditions. Distilled and sparkling water were 171 
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undercooled until -1.5, -2.0 and -3.0°C and ultrasound was applied for 4 sec. The experiment 172 

was carried out for different volumes (50 and 500 mL) of water. 173 

Ultrasound application promoted crystallization of distilled and sparkling water when the 174 

sample was undercooled until -2.0°C. The ice crystals formation was more evident in 175 

sparkling water, thanks to the high concentration of dissolved gases. An undercooling 176 

temperature of -1.5°C was not sufficient to promote ice crystallization by the application of 177 

ultrasound. On the other hand, when water was supercooled, until -3.0°C, the sample became 178 

very unstable, and crystallization was caused by little movements of the sample, before 179 

ultrasound application. 180 

After observing the sonocrystallization of water, ultrasound was decided to be applied to 181 

supercooled potatoes, in order to evaluate the effects promoted on a solid matrix. 182 

Previous studies on ultrasound-assisted immersion freezing of vegetable products (Li and 183 

Sun, 2002; Sun and Li, 2003) highlighted the capacity of power ultrasound to improve the 184 

freezing process by reducing the characteristic freezing time. These effects were due to an 185 

enhancement of heat transfer induced by acoustic streaming and cavitation of the coolant 186 

liquid at the interface with the product treated. However, the heat produced by ultrasound 187 

transmission through the medium limited the power applied and the exposure time. For these 188 

reasons, an efficient cooling system, able to remove the heat developed by ultrasound was 189 

used (Li and Sun, 2002; Sun and Li, 2003). In a following investigation, concerning the 190 

application of power ultrasound on immersion freezing of apples, the improvement of heat 191 

transfer was found to be an important mechanism of ultrasonic action, but also some evidence 192 

of power ultrasound to induce primary nucleation was observed.  193 

Ultrasound has been used for a long time to initiate nucleation in supercooled aqueous 194 

solutions (Chalmers, 1964). For these reasons it was decided to operate in conditions that 195 

permitted to supercool potato cubes during the freezing process. In order to reach the highest 196 

supercool degree, a slow freezing rate was selected (Reid, 1998). Potato cubes were firstly 197 

refrigerated at about 8°C and then were frozen in a cooling solution having a temperature of -198 

6.0°C. Different from previous experiments, where the coolant temperature was set at -18 or -199 

20°C (Li and Su 2002; Sun and Li, 2003), the freezing rate was reduced by the higher 200 

temperature of the cooling solution used (-6°C), but a high supercooling of about 5.6°C could 201 

have been reached. Ultrasound application was tested before and during supercooling, as 202 

previously described. 203 

Another important difference respect to previous investigations is related to the duration of 204 

ultrasound application, in fact owing to the absence of a cooling system able to remove the 205 

heat produced by ultrasound, it was decided to reduce as more as possible the duration of 206 
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ultrasonic exposure. Analyzing the results obtained during the preliminary experiments on 207 

water sonocrystallization, 8 seconds appeared to be the best choice. 208 

 209 

3.2. Freezing parameters evaluated  210 

The immersion freezing of control samples, without ultrasound application, was compared to 211 

ultrasound-assisted one. As summarized in Table 1, ultrasound was applied when the 212 

temperature of the geometrical centre of the potato cube was in the range from - 0.1°C to - 213 

3.0°C. Both temperatures at the surface and at the geometrical centre were recorded. 214 

However, the temperature on the potato cube surface was very variable, because of handling 215 

the samples during the introduction and the positioning of the thermocouples; for these 216 

reasons it was not taken into account. 217 

The freezing curve is one of the most accurate and widely adopted methods to determine the 218 

freezing point and other food freezing parameters (Rahman et al., 2002), thanks to its easy 219 

and cheap use. Freezing curves recorded in the geometrical centre of ultrasound immersion 220 

freezing and control samples were analyzed and the following characteristic factors of the 221 

freezing process were evaluated: nucleation temperature, initial freezing temperature (NTem 222 

and IFT respectively), nucleation time (Ntime), transition phase time (TPtime) and global 223 

freezing process time (Ftime). 224 

A typical freezing curve obtained by immersion freezing of a potato cube and illustrating the 225 

parameters evaluated, is reported in Fig. 2. The effects of ultrasound application on these 226 

factors, summarized in Table 2, are individually discussed. 227 

 228 

3.2.1 Nucleation temperature (NTem) and time (Ntime) 229 

The nucleation temperature (NTem) is the lowest temperature, reached by the sample during 230 

the cooling phase, without ice formation. When crystal nuclei dimensions exceed the critical 231 

radius for nucleation, the cooling process stops and nucleation begins by releasing latent heat 232 

in the system. This phenomenon is associated with a rapid increase of temperature from the 233 

NT to the initial freezing temperature (IFT) (Rahman et al., 2002), generating the nucleation 234 

peak in the freezing curve. The time of appearance of the nucleation peak is defined 235 

nucleation time (Ntime). The term supercooling is referred to the number of degrees below 236 

the freezing point reached during the cooling phase without freezing, thus a higher value of 237 

supercooling corresponds to a lower nucleation temperature.  238 

Although there is a significant body of literature concerning the sonocrystallization of ice, the 239 

mechanisms involved are still not completely clarified. In general sonocrystallization induces 240 

a faster primary nucleation (Sun and Li, 2003), accelerating the crystallization of a solution 241 
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free of nucleation seeds; it has been demonstrated that primary nucleation of ice in sucrose 242 

solution can be achieved at higher nucleation temperatures in the presence of ultrasound 243 

(Chow et al., 2003). Ultrasound application can also initiate the secondary nucleation, 244 

determining the production of smaller crystals with better size uniformity (Chow et al., 2005). 245 

In this investigation an early primary nucleation of potato cubes was noted when ultrasound 246 

was applied. The main effect of ultrasound application was the interruption of the 247 

supercooling process and the beginning of nucleation. When ultrasound was applied in the 248 

range -1.1 - -3.0°C, higher nucleation temperatures (and a lower supercooling) were recorded 249 

(Table 2). 250 

The consequence of the abort of supercooling process was the anticipation of the beginning of 251 

nucleation process, as revealed Ntime results. The nucleation peak in ultrasound samples 252 

appeared before than in the control and it was anticipated from 26.12 min (control sample) to 253 

about 9.23 min (US-3 samples). Also in this case, the US-0.1 sample was not significantly 254 

different from the control. 255 

In the experimental conditions used, ultrasound could cause a rapid nucleation of ice in the 256 

outer layers of the sample; this phenomenon was evident also thanks to the formation of a thin 257 

stratification of ice on the surface of the sample, during and immediately after the acoustic 258 

exposure. Next, ice propagation carried on toward the centre of the product by determining an 259 

early nucleation peak formation. If ultrasound application had had an immediate effect on the 260 

whole mass of the product, the comparison of the nucleation peak in the geometrical centre of 261 

potato cubes would have been recorded immediately after ultrasound exposure, but this event 262 

did not occurred. Maybe the transmission of ultrasound inside potato tissues was limited by 263 

the low intensity of the acoustic waves. 264 

When ultrasound was applied at -0.1°C, no significant differences were observed, in NTem 265 

and Ntime, respect to the control sample (Table 2), probably owing to the too high 266 

temperature of ultrasound application. 267 

 268 

3.2.2 Initial freezing temperature (IFT) 269 

As foodstuffs are a mixture of different constituents, they do not have a single freezing point, 270 

but a freezing range. The ‘freezing point’ of potato was considered as the initial freezing 271 

temperature (IFT), the temperature at which ice growing started following supercooling 272 

(Comini et al., 1974). In particular, as shown in Fig. 2, the IFT was considered as the initial 273 

temperature of the plateau formed after the end of supercooling process. Owing to the growth 274 

of ice crystals and the release of latent heat, the slowest rate of change of temperature is 275 

observed in this area of the freezing curve (James et al., 2009). 276 
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According to theoretical models concerning the cavitation-induced nucleation of ice, the high 277 

positive pressure at the end of the collapse or the negative pressure that follows the collapse 278 

of a cavitation bubble, increases the equilibrium freezing temperature of water, causing the 279 

nucleation of ice (Hickling, 1965; Hunt and Jackson, 1966). At the best of our knowledge no 280 

scientific information is reported on the variation of the freezing point of ultrasound-assisted 281 

frozen food. 282 

Some publications concerning the evaluation of physico-chemical properties of food 283 

components, as a-lactalbumin (Jambrak et al., 2010) and whey proteins (Krešić et al., 2008), 284 

have shown that acoustic waves caused a freezing point depression. 285 

The IFTs of ultrasound treated samples, in particular US-1.1, US-1.5, US-2.0, were 286 

significantly higher than the control (IFT -2.7°C), as reported in Table 2. A slight IFT 287 

variation was also recorded for US-2.6 , US-3.0 and US-0.1, in the last case ultrasound had 288 

not have a significant effect on NT and Ntime. Ultrasound was supposed to have caused a 289 

slight increase of cooling solution temperature (about 0.5°C), reducing the freezing rate of the 290 

potato cubes. This could have facilitated the freezing of extracellular water, which has a lower 291 

solute concentration, determining a higher initial freezing temperature of potato cubes. 292 

According to a different hypothesis the rise of IFT could be a consequence of physical, 293 

chemical or structural modifications caused by ultrasound on potato cubes, but a direct effect 294 

of ultrasound on freezing transition phase was excluded. 295 

 296 

3.2.3 Transition phase and global freezing duration 297 

The freezing time (Ftime) was expressed as the duration of the whole freezing process, 298 

starting from the beginning of the cooling phase until the end of freezing (Fig. 2). The end 299 

point of freezing was evaluated as the moment when the freezing curve reached the maximum 300 

slope after crystallization (Rahman et al., 2002). 301 

The duration of the temperature plateau after sample supercooling, on the plot time-302 

temperature and having a slope near zero, was identified as transition phase time (TPtime); it 303 

was calculated as the distance between Ntime and Ftime. 304 

Ftime and TPtime values were significantly affected by the heat produced by ultrasound, 305 

which could not be efficiently removed from the system. 306 

Although such preface, the total Ftime of control sample was statistically identical to the 307 

ultrasound-treated ones, unless US-2 sample that froze more quickly. The lowest freezing 308 

time of US-2 (53.39 min) was due to the fact that it had started before the nucleation process, 309 

as occurred for the samples US-1.1, -1.5, -2.6, -3.0, but unlike the other US treated samples, 310 

its transition phase time was slightly lower, determining the lowest FTime value. 311 
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The application of ultrasound caused an increase in TPtime, respect to control samples. This 312 

result could be explained by the lower supercooling reached by these samples.  313 

In this regard, further investigations are required to verify the effect of ultrasound on the 314 

quality parameters of frozen and thawed potatoes. In particular, it is necessary to evaluate if 315 

the anticipation of the nucleation is accompanied by the formation of smaller ice crystals, or if 316 

the effect of ultrasound is only a mechanical interruption of the supercooling process, without 317 

affecting the ice crystal structure and distribution inside vegetable tissue. Texture and sensory 318 

studies of the products obtained by ultrasound-assisted freezing should be evaluated. 319 

4. Conclusions 320 

The application of ultrasound during immersion freezing of potatoes modified important 321 

freezing parameters, as revealed by the analysis of the freezing curves. 322 

The acoustic waves exposure caused an anticipation of the nucleation beginning, when the 323 

temperature of ultrasound application in the centre of the sample was lower than -0.1°C.  324 

Despite an efficient removing of the heat developed by ultrasound was not possible, owing to 325 

instrumental limitations, when ultrasound was applied at -2.0°C the freezing time resulted 326 

significantly lowered respect with the control samples. 327 

The anticipation of nucleation beginning and the reduction of freezing time could have a great 328 

impact for food industry. However further investigations are necessary in order to better 329 

explain the effect of acoustic waves on food immersion freezing, and evaluate quality 330 

properties of the product treated. 331 

 332 
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Figure 1 Schematic representation of the experimental equipment for control (A) and 436 

ultrasound-assisted immersion freezing (B). 437 

 438 

 439 

Figure 2 Freezing curve of a potato sample and freezing parameters evaluated. 440 

 441 
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Table 1  445 

Immersion freezing treatments. 446 

Sample ID USA temperature (°C) 

Control US not applied 

US-0.1 -0.13 ± 0.11 

US-1.1 -1.12 ± 0.13 

US-1.6 -1.54 ± 0.09 

US-2.1 -2.08 ± 0.08 

US-2.6 -2.58 ± 0.12 

US-3.0 -3.00 ± 0.03 
All values are means ± standard deviation. 447 

A US: ultrasound. 448 

 449 

 450 

Table 2  451 

Freezing parameters of control and ultrasound-assisted samples. 452 

Treatments Freezing parameters 

NTA (°C) NtimeB (min) IFTC (°C) TPtimeD 
(min) 

FtimeE (min) 

Control -5.67 ± 1.03c 26.12 ± 6.08a -2.70 ± 0.37d 39.21 ± 3.33c 62.44 ± 10.15a 

US-0.1 -5.49 ± 
0.42bc 

24.95 ± 3.16a -2.33 ± 
0.28abcd 

41.55 ± 
5.29bc 

66.50 ± 4.58a 

US-1.1 -4.01 ± 
0.87ac 

17.37± 3.52b -2.26 ± 
0.25abc 

47.83 ± 6.67a 60.51 ± 5.83ab 

US-1.5 -3.74 ± 0.95a 9.63 ± 3.79c -2.17 ± 0.47a 46.60 ± 
6.73ab 

58.99 ± 7.66ab 

US-2.0 -3.62 ± 1.22a 8.64 ± 3.90c -2.11 ± 
0.48ab 

41.50 ± 6.59c 53.39 ± 5.19b 

US-2.6 -3.85 ± 0.98a 11.44 ± 3.82bc -2.53 ± 
0.21bcd 

51.27 ± 5.83a 64.32 ± 7.16a 

US-3.0 -3.73 ± 1.08a 9.23 ± 2.96c -2.47 ± 
0.48cd 

50.01 ± 4.18a 62.23 ± 8.82a 

All values are means ± standard deviation. Means within columns with different letters are 453 

significantly different (P < 0.05). 454 

A NT: nucleation temperature (°C). 455 

B Ntime: nucleation time (min). 456 

C IFT: initial freezing temperature (°C). 457 

D TPtime: transition phase time (min). 458 

E Ftime: freezing time (min). 459 
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3.2. IMPREGNATION TECHNOLOGIES 

3.2.1 Impregnation process: atmospheric pressure vs. vacuum application 

Impregnation technologies can be used to incorporate physiologically active compounds into 

fresh food, thus obtaining functional foods. In this way, the product composition, as well as 

its physical and chemical properties may be changed in order to improve its characteristics 

(Fito and Chiralt, 2000; Fito et al., 1996, 2000, 2001). Impregnation processes can be carried 

out at atmospheric pressure (atmospheric impregnation, AI), under vacuum conditions 

(vacuum impregnation, VI) or by a combination of vacuum impregnation followed by large 

periods at atmospheric pressure (Anino et al., 2005). 

The operating pressure is one of the factors affecting the composition and the 

structural characteristics of the final product. During AI, plant cellular structure acts as a 

semi-permeable membrane and water and solutes fluxes are usually considered as diffusion 

driven. When AI is applied, longer treatment times are required but a great solute final 

concentration can be achieved (Anino et al., 2005). 

In VI process, a porous product is immersed in an adequate liquid phase and is 

submitted to a two step pressure change. First, a vacuum pressure promotes the gas flow 

throughout the porous product until mechanical equilibrium is achieved. In this moment, 

capillary penetration will be higher than at atmospheric pressure. When atmospheric pressure 

is restored in a second step, residual gas compression leads to the external solution inflow 

while pressure gradients persist. This phenomenon, explained for the first time by Fito (1994), 

is called (hydrodynamic mechanism, HDM). 

From the HDM model it is possible to predict the amount of liquid that can be 

introduced into a porous food (Fito and Chiralt, 1995). The volume fraction of the initial 

sample (χ) impregnated by the external liquid, when mechanical equilibrium is achieved in 

the sample, has been modeled in a simplified way for stiff products, as a function of the 

compression ratio (r), sample effective porosity (ϵe), initial gas pressure in the pores (ρ1) and 

external system and capillary pressure (ρ2), as described in the following equations (Fito, 

1994): 

 








 −=
re

1
1εχ

 

Where 

1

2

ρ
ρ=r  
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These equations permit to evaluate the amount of sample volume that will be occupied 

by an external liquid of a determined composition at the mechanical equilibrium status, in 

terms of the product porosity and the and the compression ratio, when the porosity remains 

constant during compression, that is the relative deformation is unimportant (Fito and Chiralt, 

2000). 

 

 

Figure 3.2.1 HDM mechanism in a vegetable food immersed in a liquid system. 

 

The HDM was extended for viscoelastic porous products, where pressure changes 

cause not only gas or liquid flow but also solid matrix deformation-relaxation phenomena 

(DRP). In viscoelastic materials expansion-compression processes lead to changes in pore 

volume, which will be time-dependent. During the first VI step, product volume usually 

swells, associated with gas expansion, and, afterward, the solid matrix relaxes; capillary 

penetration or expelling of internal liquid also occurs in this period. In the second step, 

compression causes volume deformation and subsequent relaxation, coupled with the external 

liquid penetration in the pores. Mechanical properties of the solid matrix and flow properties 

of the penetrating liquid in the pores will define characteristic penetration and deformation-

relaxation times responsible for the final impregnation and deformation status of the sample at 

equilibrium. The following equation describes the relation between the compression ratio (r), 

the initial sample porosity (ϵe), the final sample volume fraction impregnated by the external 

solution (χ) and the sample volume deformations at the end of both the process (γ) and the 

vacuum step (γ1) (all of these are referred to the sample initial volume): 

(Fito et al., 1996; Zhao y Xie, 2004) 

The gas in the pores 
flows out.

External liquid enters the 
pore as an effect of 
capillary pressure. 
Remaining gas  
compresses until 
equilibrium is reached. 

Differences between 
external and internal 
pressures produce both 
solid matrix deformations 
and hydrodynamic 
mechanism.

1. Vacuum is applied 2. Equilibrium pressure 
is reached

3. Atmospheric pressure 
is restored
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The substitution of internal gases by a liquid phase allows direct formulation of a food, 

without exposing the food structure to the stress due to the long exposure to gradient solute 

concentration as in atmospheric process (Chiralt et al., 1999).  

HDM can allow in some cases a great mass transfer velocity and a better quality 

product, although the effectiveness of VI for the incorporation of a specific component is 

limited by its solubility and/or by the vegetable matrix porosity (Anino et al., 2005). 

VI efficiency has been reported to depend on: 

-process parameters, including vacuum level and time, holding time in the 

impregnation solution after pressure release (Hoover and Miller, 1975);  

-food matrix, including effective porosity (Mujica-Paz et al., 2003a) and tortuosity; 

-impregnation solution properties, such as osmolarity (Mujica- Paz et al., 2003b) and 

viscosity (Barat et al., 2001; Guillemin et al., 2008). 

Impregnation technologies have been used to fortify fruit and vegetable matrices with 

probiotics and minerals (Alzamora et al., 2005), such as calcium (Mujica-Paz et al., 2002; 

Gras et al., 2003) and zincum (Tapia et al., 2003; Zhao and Xie 2004). Some of these 

applications aimed to improve also the texture characteristics, through the incorporation of 

calcium salts and chitosan-based edible coatings (Anino et al., 2005; Vargas et al., 2009). 

 

3.2.2 Aroma enrichment of food through impregnation technology 

Vacuum impregnation technology can also be used to change the food matrix composition 

with the final aim of improving its sensory characteristics (Fito et al., 2001). Modifying the 

flavour of foods is a longstanding practice that has been developed in response to various 

factors, starting with an initial attempt to ensure survival of the human race and now to deliver 

the desired properties to the foods (Reineccius, 2006).  

Fruit preparations, which are important ingredients of several milk products, are often 

added of natural or artificial flavourings, but to the best of our knowledge, there are no 

methods for the production of food ingredients enriched with aromas; for these reasons it was 

decided to investigate the enrichment of apple sticks with green apple aroma, by comparing 

traditional techniques such as AI and VI, with more innovative technologies such as 

impregnation assisted by ultrasound (USI) and the combination of vacuum plus ultrasound 

technologies (VUSI). 
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Ultrasound is extremely effective in accelerating heat and mass transfer kinetics 

(Kentish and Ashokkumar, 2011); recently high power ultrasound has been used to improve 

osmotic dehydration (Fernandes et al. 2008), prickling and marinating processes (Kingsley 

and Farkas, 1990; Carcel et al., 2007; Hatloe, 1995; Sanchez et al., 1999). 

 

 



Research article 2 

34 

 

 



Research article 2 

35 

 



Research article 2 

36 

 



Research article 2 

37 

 



Research article 2 

38 

 

 



Research article 2 

39 

 



Chapter 3 

40 

3.3 PULSED ELECTRIC FIELDS 

3.3.1 Investigation of the effects of pulsed electric fields on total phenol 

content and on polyphenoloxidase and pectin methylesterase activity of 

melon (Cucumis melo L.) juice 

Introduction 

Thermal processing is the most common method to extend the shelf-life of fruit and vegetable 

juices, however, these treatments reduce the sensory and nutritional qualities of food products. 

Melon (Cucumis melo L.) is a commercially important crop in many countries. Owing to its 

high pH and low acidity, freshly cut melon or minimally-processed melon-based products 

have a short shelf-life. Moreover, the heat treatment of melon juice is a difficult issue because 

this fruit is thermosensitive, and a cooked off-odour is produced during thermal process.  

Other undesirable changes of fruit juices are related to color, viscosity and flavour 

alterations. Many of these reactions are catalyzed by enzymes such as polyphenoloxidase 

(PPO), peroxidase (POD), lipoxygenase (LOX), pectin methylesterase (PME) and 

polygalacturonase (PG). 

Non-thermal technologies, such as pulsed electric field (PEF) might be a valid 

alternative to heat treatment to obtain a cold pasteurization of melon juice. PEF treatment 

might reduce the quality losses of melon juice thanks to a small heat production. To date, only 

a little number of investigations have been carried out on the application of PEF on melon 

juice, and much of these researches have focused on microbial inactivation on inoculated 

products. 

The objectives of our study were to investigate the effects of PEF on the total phenol 

(TP) content of melon juice treated by PEF and to compare it with non-treated juice. 

Moreover PME and PPO relative activities of fresh melon juice were evaluated through 

potentiometric and spectrophotometric techniques and were compared to those of melon juice 

treated by PEF. 

 

Material and methods 

Sample preparation for PEF treatment 

Batches of melon (Cucumis melo L. - var. Chino) were bought on the local market in 

Monterrey. Fruits were washed with tap water, and with a disinfection solution of sodium 

hypochlorite, then they were rinsed with water and dried. In order to obtain melon juice they 

were peeled, cut and homogenized with a mixer. The obtained puree was filtered before PEF 

treatment. 
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Physico-chemical properties of fresh fruits 

Three fruits were randomly selected from the batch used to produce melon juice. They were 

treated in the same way described in the previous paragraph for melon juice production. 

Titrable acidity was determined according to AOAC (1984) and expressed as g citric acid on 

100 g of melon juice. Soluble solids (°Brix) were measured with an Atago Hand refractometer 

(ATAGO, Co. Osaka, Japan). Water activity was determined with a Decagon CX-1 

hygrometer (Decagon Devices Inc., Pullman, Washington); the pH was evaluated with a 

Beckman pH-meter. 

 

PEF equipment 

An ELCRACK HVP5 apparatus was used to process melon juice. Pulsed electric field 

strength, pulse frequency and treatment time were ranged by applying a central composite 

design (three numeric factors, n = 3). A total of 20 experiments, including 14 non-center and 

6 center points, were carried out in duplicate. Appropriate values of pulsed electric field 

strength (18.75-23.75 kV/cm), pulse frequency (100-900 Hz) and treatment time (4-8 µs) 

were selected in order to obtain the lowest heating effects; the highest temperature increase 

obtained in the product after treatment was 17°C. 

 

Experimental design and statistical analysis 

A central composite design was used to determine the effect of the voltage, frequency and 

treatment time on total phenol content, PME and PPO residual activity of melon juice treated 

by PEF. Experimental conditions are presented in table 3.3.1. 

 

Table 3.3.1 Coded and real values of the independent variables in a central composite design. 

Coded value -1 0 1 
E (kV/cm) 21.3 19.8 22.8 
Frequency (Hz) 262 500 738 
Time (µsec) 5 6 7 

 

A total of 20 experiments, including 14 non-center and 6 center points, were carried 

out in duplicate, as reported in table 3.3.2. The experimental design allowed to establish a 

second order polynomial by: 

y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b1x1
2 + b2x2

2 + b3x3
2 

The statistical analysis was performed using Design Expert V.5.0.3 (1996) to obtain 

the coefficients of the polynomial, the error probabilities (p), and the explained variability 
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percentage (R2), which allows the evaluation of the global fitting of the model to the 

experimental values of independent variables. 

 

Table 3.3.2 Central composite design followed to process Cucumis melo juice with different 

PEF treatments. 

Experiment E (kV/cm) F (Hz) t (µs) 
1 22.8 262 5 
2 19.8 262 7 
3 22.8 738 7 
4 21.3 500 6 
5 18.8 500 6 
6 21.3 900 6 
7 21.3 500 8 
8 19.8 738 5 
9 21.3 100 6 
10 19.8 262 5 
11 21.3 500 6 
12 19.8 738 7 
13 22.8 262 7 
14 22.8 738 5 
15 21.3 500 6 
16 21.3 500 6 
17 21.3 500 6 
18 23.8 500 6 
19 21.3 500 6 
20 21.3 500 4 

 

Colorimetric determination of total phenol (TP) content 

The total phenol (TP) content of melon juice was determined by the Folin–Ciocalteau method 

at 750 nm (Singleton & Rossi, 1965), using a multimode microplate reader (Biotek Sinergy 

HT, Biotek Instruments, Vermont, USA). TPs were calculated as gallic acid equivalent (GAE) 

from the calibration curve of gallic acid standard solutions (r2 = 0.9996) and expressed as mg 

GAE/L of melon juice. The analyses were done in triplicate; and the mean values and the 

standard deviations were calculated. 

 

PPO and PME measurements 

For the assay of PPO, 0.5 mL of the sample, previously centrifuged and filtered through 0.45 

µm nylon filters, was mixed with 2.0 mL 0.05 mol/L sodium phosphate buffer (pH=6.8). The 

sample was kept for 15 min at 30°C and then 1 mL of 0.2 mol/L catechol was added. PPO 

activity was determined by measuring absorbance of the mixture at 420 nm, using a 
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multimode microplate reader (Biotek Sinergy HT, Biotek Instruments, Vermont, USA) at 

32°C.  

The absorbance was acquired every 20 s for 30 min. The data obtained was plotted 

against time and the PPO activity was calculated from the slope of the initial linear part of the 

curves.  

One unit of PPO activity was defined as the change in absorbance at 420 nm/min and 

per millilitre of melon juice.  

PME activity was measured by adapting the method described by Elez-Martínez et al. 

(2007). A 10 mL aliquot of melon juice was added with 10 mL of NaCl 2 N, then the mixture 

was tempered at 30°C for 10 min. 10 mL of the diluted sample was mixed 40 mL of 1% 

pectin–salt substrate (also at 30°C) and incubated at 30°C. The solution was adjusted to pH 

7.0 with 2.0 N NaOH, and then the pH of the solution was readjusted to pH 7.7 with 0.05 N 

NaOH. After the pH reached 7.7, 0.05 mL of 0.125 N NaOH was added. The time required 

for the solution pH to return to 7.7 was measured. 

Both enzyme (PPO and PME) were expressed as activity units and the relative residual 

activity (RA%) of PPO and PME was calculated as the activity after treatment divided by the 

activity before the treatment. The residual activity was obtained with the following equation: 

100(%)
0

⋅=
A

A
RA t  

where:  

At: enzyme activity units of melon juice after PEF 

A0: enzyme activity units of untreated melon juice 

 

Results and discussion 

The physic-chemical properties of melon juice analyzed are presented in table 3.3.3. Each 

value is the mean of three measurements (n = 3). 

 

Table 3.3.3 Physico-chemical properties of melon juice treated (mean value ± standard 

deviation). 

Property Value 

aw 0.97 ± 0.02 

pH 7.20 ± 0.01 

Aciditya 0.98 ± 0.01 

Soluble solidsb 9.90 ± 0.02 
a g citric acid/100 g melon juice. b °Brix. 
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The analysis of variance of the results obtained showed that the second order models 

were well adjusted to the experimental data for both total phenols and enzyme activity (p ≤ 

0.05), as reported on table 3.3.4. The results obtained indicated that more than 95% of 

behavior variation of TPs could be explained by the quadratic fitted model; although lower R2 

were obtained for the residual enzymatic activities, the explained variation was respectively 

74.8 and 88.0 for PPO and PME. The bold characters indicate that the corresponding 

parameters have a significant effect on y (p < 0.05). 

 

Table 3.3.4 Analysis of variance for TPs, PME and PPO (y), using coded variables (x1: 
voltage; x2: frequency; x3: time). 

Source SS df MS F p(F) 
Model for TPs: y = 301.44 - 5.63x1 + 1.61x2 -1.63x3 - 2.54x1x2 + 7.20x1x3 - 3.05x2x3 - 
11.52x1

2 -15.86x2
2 - 13.19x3

2 (R2 = 0.9791) 
 

Model 7791.7 9 865.7 52.02 < 0.0001 
Residual 166.4 10 16.6   
      
Model for PME: y = 94.28 + 1.08x1 - 0.08x2 + 0.48x3 + 0.24x1x2 - 1.27x1x3 + 0.76x2x3 + 
1.45x1

2 + 3.11x2
2 + 1.82x3

2 (R2 = 0.8804) 
 

Model 224.38 9 24.9 8.18 0.0015 
Residual 30.49 10 3.05   
      
Model for PPO: y = 92.99 + 4.31x1 + 7.24x2 + 0.74x3 + 7.44x1x2 - 3.36x1x3 - 6.51x2x3 + 
1.39x1

2 - 2.81x2
2 + 2.37x3

2 (R2 = 0.7483) 
 

Model 2095.82 9 232.87 3.30  0.0382 
Residual 705.10 10 70.51   

 

The TPs content of melon juice treated with PEF was well fitted with a quadratic 

model, as illustrated in figure 3.3.3. 
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Figure 3.3.3 Surface response of the effect of pulse frequency and electric field strength on 

TP content of melon juice treated by PEF. Duration of electric pulse: 6 µs (R2 = 0.9791). 

 

PEF conditions corresponding to the central point of the experimental design (21.3 

kV/cm, 500 Hz, 6 µs) determined the highest TP concentration, respect to non-treated melon 

juice. 

As illustrated in figure 3.3.4, the TP content in fresh non-treated melon juice was 

initially 266.5 ppm, and it reduced to 231.4 and 222.5 ppm, after 3 and 6 days of storage, 

respectively. TP content of PEF treated juice resulted 13.2 %, 25.9% and 29.9% higher than 

non-treated sample, at 0, 3 and 6 days of storage, respectively. 

 

 

Figure 3.3.4 Comparison of TP content of melon juice non-treated and treated by PEF (21.3 

kV/cm, 500 Hz, 6 µs), at different storage times. 
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PME results fitted well with a surface quadratic model design (R2: 0.8804, p<0.05); a 

maximum reduction of the enzymatic activity was obtained in correspondence of the central 

point (21.3 kV, 500 Hz, 6 µs), as illustrated in figure 3.3.5. 

 

 

 

Figure 3.3.5 Surface response of the effect of pulse frequency and electric field strength on 

relative PME activity; pulse duration: 6 µs. 

 

Also PPO activity was fitted well by a quadratic model (R2: 0.7483, p<0.05). In 

several experimental conditions tested, the PPO relative activity was increased by PEF 

process, with respect to the correspondent non-treated melon juice. The highest PPO activity 

reduction was obtained with electric pulses of low frequency and high duration (5-6 µs), as 

reported in figure 3.3.6. 

 

Figure 3.3.6 Surface response of the effect of pulse frequency and electric field strength on 

relative PPO activity; pulse duration: 6 µs. 

 

18.75
20.00

21.25
22.50

23.75

100.00  
300.00  

500.00  
700.00  

900.00  

94.0  

98.0  

102.0  

106.0  

110.0  
R

el
at

iv
e 

P
M

E
 a

ct
iv

ity
(%

) 

Electric field
(kV/cm)

Pulse frequency
(Hz)

18.75
20.00

21.25
22.50

23.75

100.00  
300.00  

500.00  
700.00  

900.00  

63.0  

79.2 

95.5  

111.7  

128.0  

R
el

at
iv

e 
P

P
O

 a
ct

iv
ity

(%
) 

Electric field
(kV/cm)  

Pulse frequency
(Hz)  



Chapter 3 

47 

Conclusions 

A central composite design was used to compare the TP content, PME and PPO of melon 

juice treated by PEF to a non–treated product.  

TPs of melon juice treated with PEF were well fitted with quadratic surfaces; PEF condition 

corresponding to the central point of the experimental design determined the highest TP 

content in PEF melon juice at each storage time (0, 3 and 6 days). 

PME and PPO relative activities of melon juice treated by PEF were well fitted by 

quadratic surfaces. The maximum reduction of the PME activity was obtained in 

correspondence of the central point of the experimental design. The relative activity of PPO 

was increased or reduced respect to the un-treated melon juice, depending on the PEF 

conditions applied. Further studies are necessary in order to explain the variations detected. 
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4.INSTRUMENTAL ANALYSIS: 
POLYPHENOLS IN VEGETABLE MATRIX 

 

 

4.1 DEFINITION AND CLASSIFICATION 

Phenolic compounds (PCs) are chemically defined by the presence of at least one aromatic 

ring bearing one (phenols) or more (polyphenols) hydroxyl substituents, including their 

functional derivatives (e.g. esters and glycosides) (Hättenschwiler and Vitousek, 2000). 

PCs are the most widely distribute secondary metabolites of plants, in which they can 

act as natural antimicrobial agents, defensive compounds against herbivores, inhibitors of pre-

harvest seed germination, or also as attracting agent for pollulants or UV protective agents 

(Haslam and Lilley, 1988; Haslam, 1998; Bravo, 1998). 

Over 8000 phenolic compounds are currently known (Bravo, 1998) and they can be 

classified in a number of ways. Harbourne (1989) suggested a classification based on the 

number of carbons in the molecule (table 4.1.1). 

 

Table 4.1.1 Classification of phenolic compounds (Harbourne, 1989). 

 Structure Class Molecule 

 

C6 

 

Simple phenolics 

 

Benzoquinones 

 

 

 

 

C6-C1 

 

Phenolic acids and related 

compounds 

 

 

 

C6-C2 

 

Acetophenones  

 

 

 

Phenylacetic acids 
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Table 4.1.1 Continued 

Structure Class Molecule 

 

C6-C3 

 

Cinnamic acids, cinnamyl 

aldehydes, cinnamyl 

alcohols 

 

Phenylpropenes 

 

 

Coumarins, isocoumarins  

 

 

Chromones 

 

 

 

 

 

 

C6-C4 

 

Napthoquinones 

 

 

C6-C1-C6 

 

Xanthones 

 

 

 

C6-C2-C6 

 

Stilbenes 

 

 

 

 

Anthraquinones 
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Table 4.1.1 Continued. 

Structure Class Molecule 

 

C6-C3-C6 

 

Flavonoids 

 

 
 

 

(C6-C3)n 

 

(C6-C3)2               Lignan 

 

(C6-C3)2+n            Lignin 
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High molecular weight PCs include lignin (polymers of C6–C3 hydroxycinnamate-

type compounds), condensed tannins (polymers of flavanols formed by oxidative 

condensation between the C-4 of the heterocyclic ring and the C-6 and C-8 carbons of the 

adjacent rings) and hydrolysable tannins (gallic acid, 3-digallic acid or hexahydrohydiphenic 

acid esterified to a polyol such as glucose or quinic acid(O’Connell and Fox, 2001). 

An alternative classification has been used by Swain and Bate-Smith (1962), who 

grouped the phenols in “common” and “less common” categories. Ribéreau-Gayon (1972) 

grouped phenolic compounds into three families as follows: 

 

1. Widely distributed phenols – ubiquitous to all plants, or of importance for a specific 

plant. 

2. Phenols that are less widely distributed – limited number of compounds known. 

3. Phenolic constituents present as polymers. 

 

Polyphenols are important components of common foods, including tea, red wine, 

fruits, vegetables, beverages and various medicinal plants. The importance of polyphenols 

arises from their effects on sensory properties, including astringency and colour, and on the 

possible health effects that they may have (Vekiari et al., 2008). In fact these molecules 

posses anti-tumoral, anti-allergic, anti-platelet, anti-ischemic, and anti-inflammatory 

properties, and most of these effects are believed to be due to their antioxidant capacity 

(Moure et al., 2001). The antioxidant compounds from natural sources could be used for 

increasing the stability of foods by preventing lipid peroxidation and also for protecting 

oxidative damage in living systems by scavenging oxygen radicals. Natural antioxidants have 

been also proposed for use in topical pharmaceutical and cosmetic compositions (Moure et 

al., 2001). 

Increasing interest in the replacement of synthetic antioxidants has led to research into 

natural sources of antioxidants, especially in plant materials (Vázquez et al., 2008). 

Because purified phenolic compounds are difficult to obtain and because extracts 

sometimes have antioxidant activities higher than those of pure molecules, there is a growing 

interest for the use of plant extracts (Calliste et al., 2005). 

The vegetable matrix that have been analysed in the following investigations (research 

articles 3 and 4) are olive mill waste water (OMWW) and chestnut bark extracts. The first is 

rich in simple phenols, while in the latter the main components are represented by complex 

molecules belonging to the class of hydrolysable tannins. 
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4.2 MAIN PHENOL COMPOUNDS IN OLIVE MILL WASTE WATER  

(OMWW) 

OMWW is an important by-product of olive oil industry obtained in three-phase systems; it is 

the combination of the aqueous phase released by olives, and of the water used to process the 

fruits during extraction of oil (Bazoti et al., 2006). Their phenolic composition has attracted 

great attention recently, in fact the isolation of phenolic bioactive compounds and the 

employment in pharmaceutical, cosmetic, food and other industrial sectors, has been proposed 

as a viable alternative for valorising this by-product (Obied et al., 2005c; Russo, 2007). 

Moreover, the development of a low-cost processing method for these residues could lead to 

the generation of valuable co-products, reducing the overall extra virgin olive oil processing 

costs, and thus increasing the competitiveness and economic profits for mill companies. 

In addition to solvent extraction techniques used to fractionate and recover 

polyphenols in small scale experiments (Lesage-Meessen et al., 2001; De Marco et al., 2007; 

Galanakis et al., 2010), the development of membrane technology adopting different filtration 

techniques, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse 

osmosis (RO), has been proposed, as an alternative to traditional physical-chemical, 

biological and thermal treatments (Paraskeva and Diamadopoulos, 2006), with the objective 

of reducing environmental pollution while simultaneously recovering and concentrating 

OMWW useful by-products (Paraskeva et al., 2007; Russo, 2007; Bódalo et al., 2008; 

Akdemir and Ozer, 2009; Coskun et al., 2010; Garcia-Castello et al., 2010). 

Other recent studies concerned the treatment of olive mill waste water in vertical 

subsurface flow constructed wetlands (Yalcuk et al., 2010) and the investigation of the 

addition of OMWW concentrates to extra virgin olive oils (Zunin et al., 2011). 

The phenolic composition of OMWW has been widely studied in the last few years. 

Several aspects, ranging from extraction, analysis, identification and quantification 

procedures (Bazoti et al., 2006; Bianco et al., 2003; Della Greca et al., 2004; Mulinacci et al., 

2001; Obied et al. 2005a; Obied et al., 2005c; Zafra et al., 2006) to the evaluation of phenol 

antioxidant (Lesage-Meessen et al., 2001; Visioli et al, 1999), antimicrobial (Ramos-

Cormenzana et al., 1996) and molluscicidal activities (Obied et al., 2005b) have been taken 

into account. A list of the bioactivity of the major biophenols in OMWW could be found also 

in Obied et al. (2005c). Gómez-Caravaca et al. (2011) studied different hydrolysis processes 

of OMWW and found that hydrolysis with hydrochloric and citric acids had a good efficiency 

and proposed them as a pretreatment to recover antioxidant compounds from OMWW. 

Recently, the phenolic composition of solid and liquid wastes generated during the 

storage of extra virgin olive oil was studied (Lozano-Sanchez et al., 2011) and, as previously 
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reported for OMWW (Servili et al., 1999; De Marco et al., 2007; Obied et al., 2007) an high 

amount of hydroxytyrosol was found, together with other phenolic alcohols and acids, 

secoiridoids, lignans and flavones, whose origin was tentatively established based on 

proposed degradation pathways. 

In research article 3, the composition of OMWW treated with a semi-industrial 

membrane filtration system, including UF and RO modules, was investigated. The 

determination of phenol and antioxidant content of OMWW treated with different filtration 

systems was studied, with particular attention to the qualitative and quantitative phenol 

composition of UF and RO permeates and retentates. 
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ABSTRACT 16 

Olive mill wastewater (OMWW) is an important by-product obtained during the extraction of 17 

olive oil. In this investigation, the phenolic composition of OMWW treated with a semi-18 

industrial membrane filtration system, including ultrafiltration (UF) and reverse osmosis (RO) 19 

modules, was studied. In particular, the composition of untreated OMWW was compared to 20 

the permeate and to concentrate fractions obtained at each filtration step. 3,4-21 

(dihydroxyphenyl) ethanol and p-(hydroxyphenyl) ethanol were found as the main 22 

compounds of all OMWW analyzed. A total of 32 compounds detected at 240 or 280 nm by 23 

HPLC-DAD were considered for quantification of phenols. UF reduced phenol concentration 24 

by about 40% with respect to the initial level; in the permeate of RO, the phenol concentration 25 

ranged from 0 to 1% of the initial content. In contrast, the content of phenolic compounds was 26 

increased of about 2.6 fold in RO concentrate. The same phenolic profile, more or less 27 

intense, was obtained at all stages of filtration. 28 

 29 

Keywords: Olive mill waste water (OMWW); phenolic compounds; reverse osmosis; 30 

ultrafiltration 31 

32 
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INTRODUCTION 33 

Olive mill waste water (OMWW) is an important by-product of olive oil industry obtained 34 

in three-phase systems; it is the combination of the aqueous phase released by olives, and of 35 

the water used to process the fruits during extraction of oil (1). In addition to OMWW, other 36 

olive mill wastes (OMWs) include pomace (solid waste produced in the three-phase systems) 37 

and alperujo (semi-solid waste generated by two-phase systems). 38 

The composition of OMW has been widely investigated (2, 3) and the main components of 39 

the organic fraction comprise sugars, tannins, phenolic compounds, polyalcohols, pectins and 40 

lipids (4, 5). 41 

Several aspects of OMW composition have been investigated, ranging from extraction, 42 

analysis, identification and quantification of phenols (1, 6‒10), and evaluation of their 43 

antioxidant (11‒13), antimicrobial (14) and molluscicidal activities (15). Several analytical 44 

methods used to characterize the major biophenols in OMW, and their bioactivity has been 45 

reviewed by Obied et al. (16). 46 

Secoiridoid derivatives, namely, 3,4-(dihydroxyphenyl) ethanol (hydroxytyrosol, HYTY) 47 

and p-(hydroxyphenyl) ethanol (tyrosol, TY) are the main compounds of OMWW, whereas 48 

secoiridoid glycosides are present at high concentrations in pomace and olive fruit (17). 49 

However, the phenolic composition of OMW is characterized by a large complexity; in fact, 50 

Obied et al. (18), using reversed phase HPLC coupled with photodiode array detection 51 

(DAD), electrospray ionisation mass spectrometry (ESI-MS) and fluorimetric detection 52 

(FLD), confirmed the presence of 52 phenolic compounds in olive extracts and 44 in OMW, 53 

which belonged to the classes of simple phenols, benzoic and cinnamic acids, flavonoids and 54 

secoiridoids. 55 

Owing to the toxicity of OMWW (19) and its antimicrobial (20‒21) and degradation 56 

properties (22), initial studies on OMWW phenol fraction were aimed to remove these 57 

compounds through physico-chemical and biological treatments. More recently, the isolation 58 

of phenolic bioactive compounds and their employment in pharmaceutical, cosmetic, food and 59 

other industrial sectors, has been proposed as a viable alternative for valorizing this by-60 

product (16, 23). In addition to solvent extraction techniques used to fractionate and recover 61 

polyphenols in small scale experiments (11, 24‒25), the development of membrane 62 

technology adopting different filtration techniques, such as microfiltration (MF), 63 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), has been proposed for both 64 
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pre-treatment of OMWW, reducing their polluting load (26‒30), and for the recovery and 65 

fractionation of polyphenols (23, 31). 66 

In particular, De Marco et al. (24) were able to purify HYTY from all other biophenols of 67 

OMWW, yielding 1 g of pure HYTY from 1 liter of OMWW. Several methods for obtaining 68 

HYTY from OMWW and other by-products derived from olive trees have also been patented 69 

(32‒34). 70 

In this investigation, the composition of OMWW treated with a semi-industrial membrane 71 

filtration system, including UF and RO modules, was studied. The aim of this work was the 72 

determination of phenol and antioxidant content of OMWW treated with different filtration 73 

systems. In particular, the concentration of phenols in the retentate and permeate of UF and 74 

RO were evaluated and compared with the untreated sample. Qualitative and quantitative 75 

phenol composition of UF and RO permeates were compared to the initial sample (OMWW 76 

before filtration) to determine the selectivity of these membranes towards one or more 77 

phenolic classes. 78 

 79 

MATERIALS AND METHODS 80 

Reagents and standards. The standards and reagents used for the quantification of phenols 81 

by spectrophotometry (gallic acid (GA), Folin-Ciocalteau reagent, sodium molybdate 82 

dihydrate), HPLC (3-hydroxyphenylacetic acid (3-HPA), vanillin (VAN), vanillic acid (VA), 83 

hydroxytyrosol (HYTY), oleuropein (OLE), ferulic acid (FA), cinnamic acid (CIN), (-)-84 

epicatechin (EPI), (+)-catechin (CAT), caffeic acid (CAF), p-coumaric (p-COUM) and 85 

syringic acid (SYR)) and for the evaluation of the antioxidant capacity (6-hydroxy-2,5,7,8-86 

tetramethylchroman-2-carboxylic acid (Trolox), 2,2-azinobis(3-ethylbenzothiazoline)-6-87 

sulfonic acid diammonium salt (ABTS•+) and potassium persulfate) were obtained from 88 

Sigma-Aldrich (St. Louis, MO, USA). Other solvents used were: n-hexane, methanol, ethyl 89 

acetate (Sigma-Aldrich, St. Louis, MO, USA); acetonitrile, formic acid and ethanol (Merck, 90 

Darmstadt, Germany). Deionized water was obtained with a Barnstead deionizer (Sybron, 91 

Boston, MA). 92 

Samples. OMWW samples were collected during the 2009-2010 production years from a 93 

three-phase olive oil mill in Emilia-Romagna (Italy). After collection, OMWW samples were 94 

pretreated with a semi-industrial membrane filtration system, including UF and RO. The 95 

following abbreviations have been used: FEED, initial OMWW before filtration; UF Perm, 96 



Research article 3 

63 

OMWW permeate from ultrafiltration module; RO Perm, OMWW permeate from reverse 97 

osmosis module; RO RET, OMWW retentate from reverse osmosis. 98 

Dry matter pH measurements. Dry matter (DM) was determined by drying about 50 g of 99 

OMWW samples at 105°C until a constant weight was reached. pH was measured on 100 

OMWW samples previously centrifuged (3000 rpm, 5 min) and filtered (cellulose acetate 101 

filter 0.45 µm). The pH-meter was a Basic 20 model (Crison Instrument, Barcelona, Spain). 102 

Spectrophotometric determination of total phenol (TP) content. Before each 103 

photometric determination (TP, o-DPH content, ABTS•+ and COD evaluation), OMWW 104 

samples were centrifuged (3000 rpm, 5 min), filtered through cellulose filters (0.45 µm) and 105 

the oil residues were removed by washing the samples three times with n-hexane. The TP 106 

content of the extracts was determined by adapting a previously published method (35). After 107 

suitable dilution of the samples, TP content was determined using the Folin-Ciocalteau 108 

reagent and measuring the absorbance at 750 nm (Shimadzu Spectrophotometer UV-VIS 109 

1204, Kyoto, Japan). Total phenols were expressed as mg GA mL-1 sample (calibration curve 110 

with r2 = 0.9932). Spectrophotometric analyses were repeated three times for each OMWW 111 

sample. 112 

Spectrophotometric determination of o-diphenols (o-DPH). 4 mL of a solution prepared 113 

by mixing 0.5 mL of pretreated OMWW sample and 5 mL of methanol/water (1:1 v/v) were 114 

added to 1 mL of a 5% solution of sodium molybdate dihydrate in ethanol/water (1:1 v/v) and 115 

vigorously shaken. After 10 min at room temperature, the mixture was centrifuged for 5 min 116 

at 3000 rpm and the absorbance of the supernatant was measured at 370 nm. The calibration 117 

curve (r2 = 0.9954) was constructed with GA solutions. The results were expressed in mg GA 118 

mL-1 sample. The spectrophotometric analysis was repeated three times for each sample. 119 

ABTS•+ scavenging activity of OMWW. An aqueous solution of ABTS•+ (concentration 120 

of 7 mM) was prepared. The radical cation of ABTS was obtained by reaction with potassium 121 

persulphate until it reached a final concentration of 2.45 mM, while maintaining the stock 122 

solution in the dark at room temperature for at least 12 h. Before use, the ABTS•+ solution was 123 

diluted with ethanol to reach an absorbance of 0.70 ± 0.02 at 734 nm at 30°C. Next, 1 mL of 124 

the diluted ABTS•+ solution was added to 0.01 mL of pretreated OMWW sample and the 125 

decrease in absorbance was recorded for 10 min (36). Absorbance values were corrected for 126 

radical decay using a blank solution (0.01 mL of 50% aqueous methanol). Measurements 127 

were made in triplicate and the antioxidant activity was calculated as Trolox Equivalent 128 
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Antioxidant Capacity (TEAC, mmol Trolox L-1 sample), using a calibration curve with r2 = 129 

0.9811. 130 

Chemical oxygen demand (COD). COD of OMWW was determined using a 131 

multiparameter bench photometer dedicated for COD analysis (HI 839800, Hanna 132 

Instruments United States Inc., Woonsocket, RI, USA). OMWW samples, previously 133 

centrifuged and filtered, were appropriately diluted with distilled water and analyzed using 134 

reagents for measurement of high range COD (0 - 15 g O2 L
-1). Samples were added to the 135 

reagent vials, mixed and heated for 2 h at 150°C. At the end of the digestion, when room 136 

temperature was reached, the photometric measurement was made. Distilled water was used 137 

as blank. 138 

Extraction of phenolic compounds. According to Gómez-Caravaca et al. (37), about 10 g 139 

of OMWW were centrifuged (3000 rpm, 10 min), the supernatant was filtered through nylon 140 

filters (0.45 µm) and washed three times with n-hexane. 5 mL of OMWW were extracted 141 

three times with 7.5 mL of ethyl acetate. Next, the three extractions were combined and 142 

evaporated under nitrogen to complete dryness. The concentrated extract was dissolved in 1 143 

mL of aqueous methanol (50%), filtered through 0.20 µm nylon filters and injected in HPLC. 144 

Instrumentation and working conditions. A 1100 series liquid chromatograph provided 145 

with a quaternary pump and UV–Vis diode array detection (Agilent Technologies, 146 

Waldbronn, Germany), was used. Separation was carried out with a reverse phase C18 (2) 147 

100A Luna column (5 µm, 150 x 4.60 mm I.D., Phenomenex, Torrance, CA, USA). The 148 

mobile phase was composed of solvent A (0.5% v/v formic acid in HPLC-grade water) and 149 

solvent B (acetonitrile). Solutions were filtered through 0.20 µm cellulose acetate filter discs 150 

(Albet, Barcelona, Spain) and sonicated for 10 min before use. The following linear gradient 151 

elution was employed: from 0 to 27 min solvent B increased from 5 to 18%, at 50 min solvent 152 

B reached 25%, and finally at 72 min solvent B was 95%; at 77 min 5% solvent B was 153 

restored. A 5 min post-run equilibration was performed. An injection volume of 10 µL and a 154 

flow rate of 0.5 mL min-1 were used. Absorption spectra were recorded in the range of 200–155 

600 nm, while the detector wavelength was set at 240, 280 and 320 nm. Peak quantification 156 

was carried out at 240 and 280 nm. The main phenolic compounds were identified by 157 

comparison with the relative retention times of reference standards, when available, or by 158 

comparing the relative elution order and UV spectra with those reported in literature. The 159 

identity of each peak was also confirmed by HPLC-MS. In fact, the liquid chromatograph was 160 

also coupled (in series with the UV–vis detector) to the ESI source of an HP 1100 series ion 161 

trap mass spectrometer (ITMS) (Agilent). The ITMS working conditions were: nebulizer gas 162 
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pressure, 0.24 MPa (35 psi); drying gas flow, 7 L min−1 at 300°C; capillary voltage, 2.5 kV; 163 

voltages of skimmers 1 and 2, −41.0 and −6.0 V, respectively. Nitrogen was used as nebulizer 164 

and drying gas (Gaslab NG LCMS 20 generator, Equcien, Madrid, Spain). The mass 165 

spectrometer was scanned within the m/z 100–900 range in the negative and positive ion 166 

mode. Maximum loading of the ion trap was 3×104 counts, and maximum collection time was 167 

300 ms. To enhance the sensitivity of detection, a flow divisor of 1:10 ratio located after the 168 

UV–Vis detector and before the ESI source was used. Total ion chromatograms (TIC) and 169 

extracted ion chromatograms (EIC) were smoothed using a Gaussian filter set at 9 points. 170 

Quantification of phenolic compounds in HPLC was achieved by comparing the peak areas 171 

with those of HYTY as external standard, according to the procedure described by Tsimidou 172 

et al. (38). Data were expressed as mg HYTY kg-1 OMWW for both simple and hydrolysable 173 

phenolic compounds. 174 

Moreover, a cumulative quantification of phenols detected at 240 and 280 nm was made. 175 

The compounds detected at 240 nm were kept separate from those detected at 280 nm to 176 

monitor the behavior of the different classes of phenols to filtration. These results were 177 

expressed in percentages with respect to the feed sample, which was considered 100%. 178 

Statistical analysis. All experiments were performed in triplicate. Data were expressed as 179 

means ± standard deviation (SD) and analysed using Statistica 8.0 (Statsoft Inc.,Tulsa, OK). 180 

Analysis of variance (ANOVA) was used to determine if significant differences existed at a 181 

level of confidence of p < 0.05 (Honestly Significant Differences or HSD by Tukey). 182 

 183 

RESULTS AND DISCUSSION 184 

The composition of OMWW during the different stages of filtration is reported in Table 1. 185 

Filtration caused a reduction of the DM of samples from 3.02 % (FEED) to 0.08 % (RO 186 

PERM); DM of RO RET was almost doubled with respect to the initial sample (FEED), 187 

indicating the level of concentration reached in the retentate of RO during filtration. The 188 

treatments reduced the COD values of OMWW by about 80 %, from 38.89 g O2 L
-1 (FEED) 189 

to 7.86 g O2 L
-1 (RO PERM) at the end of the process. The COD of RO RET was almost 1.4 190 

times greater than in the FEED sample. The filtration treatments did not affect the pH of the 191 

samples. pH values were very close to the pH range (5.5-9.5) requested by Italian regulations 192 

(39) to discharge OMWW in sewer or surface water. 193 
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As shown in Figure 1, filtration caused a significant reduction of the phenolic content and 194 

antioxidant capacity of the permeates. In particular, a significant reduction of TP and a slight 195 

decrease of o-DPH in UF PERM respect to FEED was recorded; in the last fraction obtained 196 

at the end of membrane filtration system (RO PERM), both o-DPH and TP were nearly zero. 197 

Regarding RO RET, o-DPH and TP were two and three times higher than those of FEED 198 

sample, respectively. A similar trend was recorded for the antioxidant capacity (ABTS•+). 199 

The composition was also evaluated by HPLC analysis and the main simple and complex 200 

phenolic compounds were quantified using the external standard method. The quantification 201 

was aimed to compare the composition of the different fractions of OMWW collected during 202 

the sequential filtrations. 203 

Phenolic compounds were detected at 240, 280 and 330 nm, but quantification and 204 

identification were made at 240 or 280 nm at the highest absorption wavelength of each 205 

compound; none of the main phenolic components of OMWW showed appreciable 206 

absorbance at 330 nm. 207 

The chromatograms of an OMWW sample before filtration treatments, recorded at 240 and 208 

280 nm are shown in Figure 2A and 2B, respectively. 209 

The main 32 compounds detected at 240 and 280 nm were considered for the comparison 210 

of the phenolic amounts in the different OMWW permeates and retentates; 19 compounds 211 

were evaluated at 240 nm and 13 at 280 nm; their concentrations were expressed as mg kg-1 of 212 

HYTY, as reported in Table 2. The main phenols of Table 2 are also indicated in Figure 2. 213 

As can be seen in Table 2, RO PERM and RO RET showed, respectively, the lowest and 214 

the highest phenolic concentrations, for all compounds evaluated. Additionally, in UF PERM 215 

a significant reduction in phenol content in comparison to FEED was detected for the majority 216 

of phenols. The most abundant components, reported in bold italic (peaks 2 and 4), were 217 

identified as HYTY and TY, as discussed later. 218 

For each sample, the mean percentage content of phenolic compounds quantified in HPLC 219 

was compared with the initial content (FEED), which was fixed at 100%, as is shown in 220 

Figure 3. The UF PERM showed a phenol concentration that was significantly lower than the 221 

FEED sample (about 40% lower) at both 240 and 280 nm; in RO PERM, the phenol 222 

concentration was about 0.5% of the initial content of FEED at both wavelengths. In the RO 223 

RET, however, the concentration of phenolic compounds appeared to be increased by 2.55 224 

and 2.86 times, at 240 and 280 nm respectively, compared to the initial FEED sample. 225 
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Based on HPLC analyses at 240 and at 280 nm and on the quantization of the 32 selected 226 

phenols, the UF treatment employed did not have a selective behavior on the single and 227 

complex phenols considered (about 130 – 600 g mol-1). 228 

The trend of phenols detected by HPLC was similar to the TP and o-DHP determined by 229 

spectrophotometric analysis; moreover, it was strictly proportional to the antiradical capacity 230 

previously evaluated (Figure 1). A slight reduction in phenols by UV analysis and antiradical 231 

capacity in UF PERM, and their disappearance in RO PERM, were observed.  232 

Of the 32 compounds used for quantitative evaluation, 11 compounds were identified (Table 233 

3). The main compounds of OMWW were identified basing on reference standards, mass 234 

spectrometry, UV and bibliography data (6, 18). HYTY and TY were the main components 235 

with concentrations in FEED samples of 183.9 and 47.0 mg kg-1, respectively. Other 236 

compounds, such as EPI, CAT, and FER and OE, not reported in Table 3, were detected only 237 

at trace levels in RO RET samples. Some phenolic molecules, usually detected in OMWW, as 238 

CAF, p-COU, CIN and SYR (6, 13) were not found. Their absence was confirmed by the 239 

injection of reference standards. OMWW collected at the end of the oil season and during 240 

storage may have led hydrolytic processes and microbiological degradation, explaining the 241 

high concentration of simple phenols and the absence of the previously cited molecules (5). 242 

As reported in the Material and Methods section, OMWW were sampled from the storage 243 

tank where they were usually stored during seasonal oil production, as during normal 244 

handling before disposal. This choice was made to verify the qualitative and quantitative 245 

composition of OMWW produced on an industrial scale and the effect of different filtration 246 

treatments. The results obtained showed that, even in absence of optimal storage conditions of 247 

OMWW, filtration by RO gave a retentate fraction that was rich in phenols and a permeate 248 

with concentration of phenolic substances near the limits of detection. 249 

In particular, RO PERM could be recycled and reused in the oil mill, for washing or for 250 

other operations, contributing to reduce water consumption and disposal costs of OMWW. 251 

For this purpose, the draft guidelines proposed by the Codex Alimentarius Commission (40), 252 

concerning the hygienic reuse of processing water in food plants, should be followed. For 253 

evaluation of microbiological, chemical, physical and sensory properties, specific limits 254 

defined by each country should be respected, taking into account the specific category of 255 

reuse of OMWW. 256 

The RO RET, which is characterized by a high phenolic content, could be used in animal 257 

breeding through direct utilization as animal feed or following protein enrichment (41); 258 
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OMWW could also be processed and further employed in cosmetic formulations, or used as 259 

functional ingredient in pharmaceutical or food products. With reference to the last 260 

applications, further studies are necessary to fully characterize the composition of crude 261 

OMWW extracts and verify which treatments are necessary to convert raw OMWW to a food 262 

or pharmaceutical grade. In addition to the microbiological aspects and the concentration of 263 

phenolic substances, it will be necessary to eliminate compounds responsible for off-odor 264 

development and their precursors. 265 

In conclusion, TP content, o-DHP and antioxidant capacity showed a similar trend, with a 266 

progressive reduction of their values in the UF and RO permeates, and a significant increase 267 

in the retentate fraction of the RO. HPLC data confirmed these results: the concentration of 268 

phenolic compounds in the permeate of UF was about 40% lower compared to the untreated 269 

sample; in RO PERM, however, the phenol content approached zero. The RO RET had a 270 

phenol content that was 2.6 times higher than that in the untreated sample. 271 

The main components of OMWW were secoiridoid derivatives, namely, hydroxytyrosol, 272 

tyrosol and oxidized elenolic acid; however, further studies are necessary to determine the 273 

nature of several yet unidentified compounds in OMWW. 274 

All the compounds detected at 240 and 280 nm had a similar behaviour during filtration, 275 

showing that neither UF nor RO membranes had a selective effect on the retention of phenols 276 

present in OMWW. 277 

The filtration membranes used in this investigation showed a good capacity both to 278 

concentrate phenols in the osmotic retentate fraction and to produce a final water waste that 279 

was poor in phenolic substances, as indicated by spectrophotometric and chromatographic 280 

analyses. 281 

ABBREVIATIONS USED 282 

3-HPA, 3-Hydroxyphenyl acetic acid; CAF, caffeic acid; CAT, (+)-catechin; CIN, 283 

cinnamic acid; COD, chemical oxygen demand; DAOA, deacetoxy oleuropein aglycon; 284 

DHPG, 3,4-dihydroxyphenylglycol; Di-HBA, Di-hydroxybenzoic acid; EPI, (-)-epicatechin; 285 

ESI, electrospray ionization; FA, ferulic acid; GA, gallic acid; HYTY, hydroxytyrosol; LA, 2-286 

(5-ethylidene-2-oxo-tetrahydro-2H-pyran-4-yl) acetic acid; MW, molecular weight; p-287 

COUM, p-coumaric acid; o-DPH, orto-diphenol; OMWW, olive mill waste water; OLE, 288 

oleuropein; OxEA, oxidized elenolic acid; SYR, syringic acid; TP, total phenol; TY, tyrosol; 289 

VA, vanillic acid; VAN, vanillin. 290 
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TABLES 416 

 

Table 1. Composition of OMWW Processed by Different Membrane Systemsa 

Parameter FEED UF PERM RO PERM RO RET 

DMb (%) 3.02±0.06 b 2.39±0.17 c 0.08±0.04 d 5.61±0.09 a 

CODc (g O2 L
-1) 38.89±0.49 b 20.09±0.12 c 7.86±0.01 d 54.53±0.32 a 

pH 4.98±0.02 a 4.80±0.32 ab 4.39±0.01 b 5.14±0.02 a 
 

aMean values (n = 3). Different letters in the same row indicate statistically significant 

differences (p < 0.05). bDM Dry matter. cCOD Chemical oxygen demand. 
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Table 2. Content of Phenolic Compounds in OMWW Samplesa 

Peak tr (min) λ (nm) 

Concentration (mg HYTY kg-1) 

FEED UF PERM RO PERM RO RET 

1 5.58 280 6.7 ±0.23 b 5.4 ± 0.83 b 0.1 ± 0.02 c 23.7± 0.24 a 

2 15.11 280 183.9 ± 5.63 b 119.3 ± 0.35 c 2.0 ± 0.20 d 398.7 ± 1.25 a 

3 18.95 280 0.9 ± 0.02 b 0.8 ± 0.26 b 0.0 ± 0.00 c 2.8 ± 0.15 a 

4 21.90 280 47.0 ± 0,71 b 34.1 ± 0.05 c 0.5 ± 0.08 d 134.0 ± 1.96 a 

5 24.14 240 4.7 ± 0.04 b 3.4 ± 0.09 c 0.0 ± 0.00 d 13.5 ± 0.12 a 

6 25.42 280 3.0 ± 0.03 b 2.2 ± 0.16 c 0.0 ± 0.00 d 9.3 ± 0.04 a 

7 26.41 280 1.8 ± 0.06 b 1.4 ± 0.05 c 0.0 ± 0.00 d 5.2 ± 0.06 a 

8 27.43 280 8.0 ± 0.16 b 5.7 ± 0.03 c 0.0 ± 0.00 d 22.1 ± 0.16 a 

9 27.79 240 2.9 ± 0.21 b 1.9 ± 0.26 c 0.0 ± 0.00 d 5.6 ± 0.01 a 

10 29.97 280 1.3 ± 0.09 b 1.0 ± 0.03 c 0.0 ± 0.00 d 3.6 ± 0.07 a 

11 32.65 240 2.2 ± 0.02 b 1.9 ± 0.67 b 0.0 ± 0.00 c 4.8 ± 0.08 a 

12 33.72 280 6.2 ± 0.13 b 4.5 ± 0.17 c 0.0 ± 0.00 d 17.7 ± 0.02 a 

13 36.22 240 3.2 ± 0.12 b 2.2 ± 0.19 c 0.0 ± 0.00 d 8.5 ± 0.05 a 

14 38.06 240 10.5 ± 3.22 b 4.8 ± 1.97 bc 0.0 ± 0.00 c 34.0 ± 0.81 a 

15 38.41 280 21.2 ± 0.5 b 14.7 ± 0.13 c 0.0 ± 0.00 d 58.1 ± 0.22 a 

16 39.46 240 34.4 ± 0.3 b 21.9 ± 0.18 c 0.0 ± 0.00 d 74.9 ± 0.73 a 

17 42.86 240 1.6 ± 0.09 b 1.0 ± 0.03 c 0.0 ± 0.00 d 4.5 ± 0.01 a 

18 47.69 240 5.4 ± 0.26 b 4.2 ± 0.25 b 0.0 ± 0.00 d 14.3 ± 0.63 a 

19 48.28 280 3.1 ± 0.43 b 1.9 ± 0.06 c 0.0 ± 0.00 d 8.4 ± 0.08 a 

20 51.86 240 8.7 ± 2.25 b 3.6 ± 1.44 bc 0.0 ± 0.00 c 29.6 ± 0.95 a 

21 53.33 240 14.8 ± 1.83 ab 11.2 ± 4.27 b 0.0 ± 0.00 c 24.4 ± 1.60 a 

22 54.32 240 23.6 ± 0.18 b 14.4 ± 0.37 c 0.0 ± 0.00 d 57.5 ± 0.01 a 

23 55.74 240 2.6 ± 0.38 b 2.2 ± 0.25 b 0.0 ± 0.00 b 10.6 ± 1.40 a 

24 57.06 280 14.2 ± 0.04 b 10.4 ± 0.18 c 0.0 ± 0.00 d 39.3 ± 1.53 a 

25 57.73 240 1.2 ± 0.07 b 0.9 ± 0.10 c 0.0 ± 0.00 d 3.7 ± 0.01 a 

26 57.98 240 1.3 ± 0.03 b 0.9 ± 0.05 c 0.0 ± 0.00 d 3.7 ± 0.01 a 

27 58.10 240 3.8 ± 0.03 b 2.5 ± 0.02 c 0.0 ± 0.00 d 7.7 ± 0.01 a 

28 58.85 240 3.8 ± 0.09 ab 3.0 ± 0.43 b 0.0 ± 0.00 c 3.9 ± 0.11 a 

29 58.97 240 7.8 ± 1.15 b 6.2 ± 0.03 b 0.0 ± 0.00 c 16.7 ± 0.08 a 

30 59.10 240 3.4 ± 0.31 b 1.7 ± 2.40 b 0.0 ± 0.00 b 12.0 ± 1.54 a 

31 59.38 240 13.3 ± 1.84 b 10.7 ± 4.53 b 0.0 ± 0.00 c 23.9 ± 1.45 a 

32 59.85 280 0.7 ± 0.07 b 0.5 ± 0.21 bc 0.0 ± 0.00 c 2.1 ± 0.15 a 
 

a Mean values (n = 3). Different letters in the same row indicate statistically significant 

differences (p < 0.05). Values are expressed as mg kg-1 of HYTY. 
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Table 3. Retention Times, UV Absorbance Maxima, Molecular Weights (MW), and MS Fragmentation Patterns of the main Phenolic 
Compounds of OMWW 

 

 

 

     Major fragments ESI positive Major fragments ESI negative 

Peak Analyte tr (min) λmax (nm) MW [M + H]+ [M + Na]+ [M – H2O + H]+ Other fragments [M - H]- [2M - H]- Other fragments 

1 3,4-DHPG 5.6 232/280 170  193.1 (76.9) 153.1 (100) 275.1 (86.0) 169.1 (100) 339.1 (67.9) 205.0 (20) – 232.0 (36.6) 

2 HYTY 15.1 236/280 154   137.1 (100) 177.1 (24.2) - 251.1 (87.5) 153.0 (100) 307.0 (69.4)  

3 CATHECOL 18.9 230/276 110     109.1 (100) 219.1 (24.9) 155[M+HCOO-]- (10.2); 187.1 
(6.8); 459.5 (7.1) 

4 TY 21.9 234/278 138   121.1 (100) 193.1 (13.2)    

5 Di-HBA 24.1  220/256/295 154 155.1 (100)  137.1 (14.3)     

6 3-HPA 25.4 230/275 152 153.1 
(100.0) 

  107.1 (42.9)- 193.1 (57.5) - 251.1 
(38.8) -283.1 (41.2) 

151.1 (100)  107.1 (14.4) 

9 VA 27.4 230/261/292 168 169.1 (100)  151.1 (47.4)  167.1 (100)   

10 3,4,5 TMBA 36.2 233/274 212 213.1 (100) 235.1 (20.3) 195.1 (8.8) 447.1 (7.0) [2M+Na]+     

15 unknown 38.4 228/273 166  189.0 (7.8) 149.1 (100) 186.0 (30.3) - 251.1 (75.1) - 371.0 
(25.2) [2M+K]+ 

165.1 (33.0) 331.1 (100) 211.1 (83.6) [M+HCOO-]- 

16 unknown 39.5 240 244 245.1 (50.1) 267.0 (30.2) 227.1 (80.6) 213.1 (100)-386.1 (50.5) 243.1 (100)  197.1 (6.4) 

20 OxEA 51.9 242 258 259.1 (70.1) 281.1 (23.8)  213.1 (100) [M-COOH]+ 241.1 (68.9) 
[M-OH] + - 407.1 (38.3) -539.2 
(12.9)[2M+Na]+ - 555.2 (5.8) 
[2M+K] + 

257.1 (100)  381.0 (13.6) - 444.1 (19.5) 

21 unknown 53.3 240     195.1 (12.5) - 227.1 (100) /249.1 
(12.5) /359.1 (5.9) /475.1 (9.3) 

   

22 OxEA 54.3 240 258 259.1 (100) 281.1 (17.2)  213.1 (61.2) [M-COOH]+ - 241.1 
(36.2) [M-OH]+ - 407.0 (6.0) - 539.2 
(9.7) [2M+Na]+ 

257.1 (100)  113.0 (5.3) – 723.5 (11.5) – 740.5 
(30.2) 

24 4-HBA / 3,4-
hydroxybenzaldehyde 

57.1 230/282 138 139.1 (43.2)   227.1 (100) – 259.1(36.9) – 281.0 
(28.6) 

137.1 (100) 275.1 (12.7) 113.0 (5.5) - 183.1 (11.1) 
[M+HCOO-] - 

27 unknown 58.1 240/282 188 189.2 (20.3) 211.1 (15.5) 171.1 (100) 153.1 
(25.6) 

143.1 (42.1) [M-COOH]+- 208.1 
(26.4) – 227.1 (5.1) [M + K]+- 363.1 
(9.8) [2M + Na]+ - 415.2 (17.6) [M + 
K]+ 

187.1 (100)  269.1 (36.3) - 379.1 (15.4) - 442.0 
(25.4) 

29 DAOA 59.0 232/282 320 321.1 (54.3) 343.1 (81.1)  137.1 (100) [loss acidic group] - 200.6 
(21.7) - 221.0 (20.9) - 359.0 (10.4) 
[M+K] + - 500.1 (25.9) 

319.1 (100) 639.2 (24.5) 355.0 (10.4) - 382.1 (59.5)-433.0 
(8.4) 

31 unknown 59.4 240 240 241.1 (100) 263.1 (10.4)  503.1 (5.2) [2M + Na]+    
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FIGURES 

 

Figure 1. Content of phenolic compounds (o-DPH, TP) and corresponding antiradical activity 

(ABTS•+) of OMWW. TP and o-DPH, expressed as mg GA mL-1 OMWW are reported on the 

left; ABTS•+, expressed as mmol Trolox L-1 OMWW is reported on the right . 
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Figure 2. UV chromatograms of an OMWW (FEED) sample recorded at 240 nm (A) and 280 
nm (B). 
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Figure 3. HPLC quantification of phenols at 240 and 280 nm. Results are expressed in 
percentages; the phenol content of the FEED sample was considered 100%. 
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4.3 PHENOLIC COMPOSITION OF CHESTNUT BARK EXTRACT 

Vegetable tannins have been defined as water-soluble polyphenolic compounds having 

relative molecular mass between 500 and 3000 and besides giving the natural, usual phenol 

reactions, they have some special properties such as the ability to precipitate alkaloids, 

gelatine, and other proteins from solution (Tang et al., 1992). 

Basing on the behaviour with base or acid treatment, and on spectral and 

chromatographic data, tannins have been classified into three groups: condensed tannins 

(proanthocyanidins), which have the general polymeric flavan-3-ol structure, hydrolizable 

tannins which are generally glucose esters of gallic acid and hexahydroxydiphenic acid 

(HHDP) and complex tannins, which possess both condensed and hydrolysable characters 

(Tang et al., 1992). 

The composition of tannins obtained from chestnut wood (Pasch and Pizzi, 2002), 

bark (Garro-Gálvez et al., 1997) and flesh (Hwang et al., 2001) has been determined and its 

components mainly belong to the group of hydrolysable tannins (Vázquez et al., 2009). In 

particular, sweet chestnut contains high amounts of ellagitannins; these molecules produce 

ellagic acid after hydrolysis. 

Gallic acid is a tri-hydroxybenzoic acid and its molecule is characterized by the 

presence of a carboxyl group substituted on a phenol with 3 hydroxyl substituent (figure 

4.3.1). 

 

 

Figure 4.3.1 Gallic acid structure. 

 

Ellagic acid is a dimeric derivative of gallic acid and it mainly exists in higher plants, 

combined with its precursor, the HHDP (Amakura et al., 2000; Vekiari et al., 2008). Ellagic 

acid is formed spontaneously from HHDP which, in aqueous solution, undergo to 

lactonization reaction, as represented in figure 4.3.2. 
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Figure 4.3.2 Lactonization of HHDP to ellagic acid. 

 

In the past various chromatographic and spectral methods have been developed to 

analyse vegetable tannins in plant extracts (Tang et al., 1992; Vivas et al., 1993a, 1993b, 

1996), food and beverages, but nowadays, reversed-phase HPLC with UV and mass detection 

is one of the most frequently used (Zywicki et al., 2002). 

In research article 4 the composition of chestnut bark extracts was studied through 

HPLC-DAD/ESI-MS. A complete qualitative and quantitative analysis of the tannin 

compounds was carried out. A preliminary quantitative tannin estimation was obtained thanks 

to a Folin Ciocalteau test. 
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Abstract 21 

Numerous kind of commercial tannin extracts are available on the market and an important 22 

fraction is obtained from Castanea sativa Mill. 23 

Tannin extracts are used for animal feed and by many industries, such as the leather industry, 24 

the food industry, and especially in wine and spirit production. Owing to the numerous uses 25 

of tannin extracts, a rapid, reliable, and complete characterization of the phenolic and in 26 

particular of the tannin fraction of chestnut bark extracts is advisable. 27 

In this investigation an HPLC-DAD/ESI-MS method for the complete analysis of tannin 28 

composition of chestnut bark extracts was developed. Seven phenolic compounds (vescalin, 29 

castalin, gallic acid, vescalagin, 1-O-galloyl castalagin, castalagin and ellagic acid) were 30 

isolated from chestnut bark extracts. 1-O-galloyl castalagin was found for the first time in 31 

chestnut bark extracts. The phenolic components of four commercial chestnut bark extracts 32 

were quantified and compared.  33 
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1. Introduction 34 

Tannins are complex polyphenols synthesized by a wide range of plants and trees (Muller-35 

Harvey, 2001); thanks to their ability to precipitate gelatin and other proteins from solutions 36 

(Mehansho, Butler, & Carlson, 1987), they are proposed to play key roles in the chemical 37 

defences of the plant species against biological decay. This property influenced all the other 38 

characteristics such as taste and toxicity and some pharmacological effects (Vivas, Bourgeois, 39 

Vitry, & Glories, 1996). 40 

Based on their structure, tannins are conventionally divided into condensed and hydrolysable 41 

tannin molecules. Condensed tannins have a flavonoid core as a basic skeleton, and 42 

hydrolysable tannins are esters of a polyol (most often β-D-glucose) with either gallic acid 43 

(gallotannins) or hexahydroxydiphenic acid (HHDP, ellagitannins) (Salminen, Ossipov, 44 

Loponen, Haukioja, & Pihlaja, 1999; Mämmelä, Savolainen, Lindroos, Kangas, & Vartiainen, 45 

2000). Several species, such as Acacia, Acer, Quercus and Castanea sp. are well known for 46 

having both condensed and hydrolysable tannins (Muller-Harvey, 2001; Živković, Mujić, 47 

Zeković, Nikolić, Vidović, & Muji ć, 2009). 48 

Castanea genera belongs to the Fagaceae family and Castanea sativa Mill. is one of the most 49 

cultivated chestnut species (De Vasconcelos, Bennett, Rosa, & Ferreira Cardoso, 2007). 50 

The composition of tannins obtained from chestnut wood (Pasch & Pizzi, 2002), bark (Garro-51 

Gálvez, Riedl, & Conner, 1997) and flesh (Hwang, Hwang, & Park, 2001) has been 52 

determined and the components mainly belong to the group of hydrolysable tannins (Vázquez, 53 

González-Alvarez, Santos, Freire, & Antorrena, 2009). In particular, sweet chestnut contains 54 

high amounts of ellagitannins and the main structures found are castalin and vescalin (Peng, 55 

Scalbert, & Monties, 1991), castalagin and vescalagin (Viriot, Scalbert, Hervé du Penhoat, & 56 

Moutounet, 1994), kurigalin, 5-O-galloylhamamelose, (3’, 5’-dimethoxy-4’-hydroxyphenol)-57 

1-O-β-D-(6-O-galloyl)glucose, chestanin and acutissimin A (Lampire, Mila, Raminosoa, 58 

Michon, Du Penhoat, Faucheur, Laprevote, & Scalbert, 1998; Peng et al., 1991). 59 

Industry uses various plant materials (leaves, fruit, galls, bark and wood) to produce 60 

numerous kind of commercial tannin extracts. Several thousand tons of sweet chestnut tannins 61 

are produced every year in Europe (Vivas et al., 1996). These commercial tannin extracts are 62 

used for animal feed (Muller-Harvey, 2001) and by the leather (Scalbert, Monties, & Janin, 63 

1989) and the food industry, especially in wine and spirit production (Vivas et al., 1996; Sanz, 64 

Cadahia, Esteruelas, Munoz, De Simon, Hernández, & Estrella, 2010). 65 
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One of the first contributions to the analysis of commercial tannin extracts was provided by 66 

Tang, Hancock, & Covington (1992) who studied the composition and the structure of 67 

commercial chestnut tanning agents. In particular castalagin and vescalagin were isolated by 68 

thin layer and column chromatography; then their structure was established by means of 69 

nuclear magnetic resonance and fast atom bombardment mass spectroscopy. The authors also 70 

found some other compounds, but their structures were not defined. 71 

In 1993 Vivas and collaborators (Vivas, Chauvet, Glories, & Sudraud, 1993a; Vivas, Chauvet, 72 

Sudraud, & Glories, 1993b; Vivas et al., 1996) realized a study on the major commercial 73 

tannin extracts with the aim of determining their botanical origin by the analysis of specific 74 

species-markers (phenolic acids and coumarins) of the plant sources and the extraction 75 

solvents used. They also developed a method in liquid secondary ion mass spectrometry for 76 

the determination of the qualitative composition of commercial tannin extracts (Vivas et al., 77 

1996). In 2002 Zywicki, Reemtsma, & Jekel analysed hydrolysable and condensed tannins in 78 

commercial vegetable tanning agents and in tannery wastewaters by reversed-phase liquid 79 

chromatography-electrospray ionization-tandem mass spectrometry. 80 

Chestnut bark extracts are widely used by industry and at the best of our knowledge there are 81 

only limited information on the qualitative and quantitative characterization of the phenolic 82 

fraction. 83 

In this investigation a rapid HPLC-DAD/ESI-MS method for the complete analysis of tannin 84 

composition of chestnut bark extracts was developed. In order to have a preliminary 85 

quantitative tannin estimation, a colorimetric assay for the determination of the total phenol 86 

content was made. Folin-Ciocalteau test was chosen thanks to its ability to react with all kind 87 

of tannins, both condensed and hydrolizable. 88 

 89 

2. Experimental 90 

2.1. Chemicals and samples 91 

Methanol (p.a.), monohydrate gallic acid (assay 99.1 %) and ellagic acid (assay ≥ 96 %) were 92 

obtained from Sigma-Aldrich (St. Louis, MO, USA). Acetonitrile (gradient grade, for HPLC) 93 

was from VWR (Milano, Italy), formic acid (assay 98-100%) was from Merck (Darmstadt, 94 

Germany). Deionized water was obtained from an Elix 10 water purification system from 95 

Millipore (Bedford, MA, USA). Sodium molybdate dihydrate was from Carlo Erba (Rodano, 96 
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Milano, Italy). Na2CO3 was from BDH AnalaR (Poole, U.K.). Folin−Ciocalteu reagent was 97 

purchased from Merck. 98 

Four different chestnut bark extracts, reported as TAN1, TAN2, TAN3 and TAN4, have been 99 

analysed. All samples were bought from local markets in Emila-Romagna region (Italy). 100 

 101 

2.2. Sample preparation 102 

Several solvents have been compared in order to obtain the best tannin extraction. 103 

According to the method described by Vekiari, Gordon, García-Macías, and Labrinea (2008) 104 

and Bianco, Handaji, and Savolainen (1999), an amount of 350 mg of chestnut bark extract 105 

was weighted and dissolved in 20 mL of methanol. The mixture was vortexed for 1 min and 106 

kept at ambient temperature for 30 min and then it was sonicated for 30 min. The extract was 107 

filtered on cellulose acetate filters (0.45 µm) and diluted 1:2 with water. 108 

The same extraction procedure was repeated by using different solvents: water, a mixture of 109 

methanol/water (50/50, v/v) and a mixture of acetone/water (70/30, v/v) were compared. 110 

The extraction procedures were tested on sample TAN1 in order to choose the best method of 111 

dissolution. The samples were stored at -18°C until analysis. 112 

 113 

2.3. Colorimetric determination of total phenol (TP) content 114 

The total phenol (TP) content of the extracts was determined by the Folin–Ciocalteau method 115 

at 750 nm (Singleton & Rossi, 1965), using a Shimadzu Spectrophotometer UV-VIS 1204 116 

(Kyoto, Japan). TPs were calculated as gallic acid equivalent (GAE) from the calibration 117 

curve of gallic acid standard solutions (r2 = 0.9998) and expressed as g GAE/100 g of extract 118 

(on a dry basis). The analyses were done in triplicate; and the mean values and the standard 119 

deviations were calculated. 120 

 121 

2.4. HPLC–DAD-MS equipment 122 

HPLC analysis were carried out on an HP 1100 Series (Agilent Technologies, Palo Alto, CA, 123 

USA), equipped with a binary pump delivery system, a degasser, an autosampler, a HP diode-124 

array UV–Vis detector and a HP mass spectrometer. A C18 Luna column 5-µm particle size, 125 
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25 cm×3.00 mm I.D. (Phenomenex, Torrance, CA, USA) was used. All solvents were filtered 126 

through a 0.45-µm filter disk (Millipore). MS analyses were carried out using an electrospray 127 

(ESI) interface operating both in positive and in negative mode.  128 

 129 

2.4. HPLC–DAD-MS analysis 130 

Two elution gradients were compared: 131 

1. According to Vekiari et al. (2008) the first linear elution gradient tested was: from 0 to 132 

8 min 7% B; from 8 to 25 min, 7 to 32% B; from 25 to 30 min, 32 to 35% B; from 30 to 35 133 

min, 35 to 7% B, followed by a re-equilibration of the column for 5 min in the initial 134 

conditions. 135 

2. According to Sandhu & Gu (2010) the second linear elution gradient tested was: from 136 

0 to 2 min, 5% B; from 2 to 10 min, 5 to 20% B; from 10 to 15 min, 20 to 30% B; from 15 to 137 

20 min, 30 to 35% B; from 20 to 60 min, 35 to 80 %B; from 60 to 65 min, 80 to 85% B; from 138 

65 to 70 min, 85 to 5% B, followed by a re-equilibration of the column for 5 min in the initial 139 

conditions.  140 

In both cases the following solvent system was used: mobile phase A, water–formic acid 141 

(99.5:0.5, v/v); mobile phase B, acetonitrile. All solvent used were of HPLC grade. The flow-142 

rate was 0.5 mL/min. The injection volumes was 10 µL. All the analyses were carried out at 143 

room temperature. 144 

The following conditions of ESI interface were used: drying gas flow, 9.0 L/min; nebulizer 145 

pressure, 35 psig; gas drying temperature, 350 °C; capillary voltage, 3000 V; fragmentor 146 

voltage, 60 V. 147 

Phenolic and tannin compounds were identified comparing retention times, UV and MS 148 

spectra of the detected peaks with those of commercial standards (gallic and ellagic acid); if 149 

reference compounds were not available a tentative identification was made by analyzing and 150 

comparing elution order, spectroscopic and spectrometric information with literature data. 151 

The quantification of each compound was performed using eight-point regression curves 152 

obtained using gallic (r2 = 0.9993) or ellagic acid (r2 = 0.9992). Gallic acid amount was 153 

calculated at 280 nm with gallic acid as reference standard; ellagic acid and ellagitannins 154 

(vescalin, castalin, vescalagin, castalagin and 1-O-galloyl-vescalagin) amounts were 155 

quantified at 254 nm, using the ellagic acid calibration curve. For vescalin and castalin, a 156 

correction of molecular weight with a multiplication factor of 632/302 was applied; for 157 
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vescalagin and castalagin a multiplication factor of 934/302 was used; finally for 1-O-galloyl 158 

castalagin the correction of molecular weight with a multiplicative factor of 1086/302 was 159 

calculated. 160 

 161 

2.5. Statistical analysis 162 

The analytical results was evaluated by the software Statistica 8.0 (Statsoft Inc.,Tulsa, OK). 163 

Analysis of variance (ANOVA) was used to determine if significant differences existed at a 164 

level of confidence of p <0.05 (Honestly Significant Differences or Tukey’s HSD multiple 165 

comparison). 166 

 167 

3. Results and discussion 168 

3.1 Sample dissolution tests 169 

As reported in Section 2.2, different solvents have been compared, in order to obtain the best 170 

dissolution and the highest spectrophotometric response of samples. In particular the sample 171 

TAN 1 was dissolved with methanol, water, methanol/water (50/50), and acetone/water 172 

(70/30) mixtures. 173 

The methanolic sample had some precipitate at the bottom of the flask; with the others 174 

solvents the tannin extract was completely dissolved, but different clearness levels were 175 

obtained. When the tannin extract was dissolved in methanol and acetone/water mixture it 176 

was most cloudy, instead when water was used, the sample obtained was clear and well 177 

dissolved. 178 

A preliminary spectrophotometric evaluation of the different dissolution procedures was 179 

made. The unitary net absorbance of each solvent tested were calculated by using the 180 

following formula: 181 

Aun = (As-Ab)/Ws 182 

 183 

Where Aun: unitary net absorbance (AU/g) 184 

As: sample absorbance (AU) 185 
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Ab: blank absorbance (AU) 186 

Ws: sample weight (g) 187 

 188 

The blank was obtained by reading the absorbance of the pure solvent or of the mixture used 189 

for the dissolution. As reported in table 1, the unitary net absorbance obtained by using 190 

methanol was almost double respect to water, and it was, respectively, 75% and 45% higher 191 

than methanol/water and acetone/water mixtures.  192 

By considering the dissolution test and the spectrophotometric results, the following 193 

analytical determinations were made on chestnut bark samples dissolved with methanol. 194 

 195 

 196 

3.2 Spectrophotometric determination of the total phenol (TP) content 197 

A very large number of hydrolysable tannins exist in nature and many structural variations 198 

among them are caused by oxidative coupling reactions of acid units or by oxidation of 199 

aromatic rings. Numerous colorimetric tests have been proposed for the analysis of 200 

hydrolysable tannins, such as those based on the KIO3, rhodanine, NaNO2 reagents, but most 201 

of them can only detect the galloyl or the HHDP groups, without considering the more 202 

complex oxidation products. As a consequence many hydrolysable tannins might not be 203 

quantified through colorimetric test (Muller-Harvey, 2001). 204 

In this investigation it was decided to make a spectrophotometric test in order to have an 205 

evaluation of the content of total phenols of different chestnut bark extracts and to verify if a 206 

preliminary discrimination of the sample was possible. Table 2 reports the total phenol 207 

content of the chestnut bark tannin extracts analysed.  208 

TP content of chestnut bark extracts ranged from 23.9 and 56.1 g GAE/100 g dry extract. 209 

TAN 1 and TAN 4 resulted the samples with the highest TP content. The mean concentration 210 

of TPs in commercial samples was quite uniform, with the exception of TAN 3, whose 211 

content was about 47% of the other samples analysed. 212 

 213 

 214 
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3.3 Gradient development and HPLC-DAD-MS analysis 215 

Two elution gradients were tested and the HPLC chromatograms obtained are reported on 216 

Figure 1. In both cases it was possible to separate 7 main compounds, numerated in the 217 

Figure. The best separation was obtained with the gradient adapted by Sandhu & Gu (2010) 218 

(Figure 1 B), moreover this elution gradient enabled to reduce the separation time of about 7 219 

minutes, so it was adopted for the following analysis. 220 

In table 3 are reported the spectroscopic and spectrometric information on the compounds 221 

separated and their identification. The main peak in the mass spectra of chestnut bark extract 222 

tannins, obtained in the negative ion ESI-MS mode, was the deprotonated molecule [M-H]- 223 

and the ion [M-2H]2-, as previously reported for other hydrolysable tannins (Salminen et al., 224 

1999; Juang, Sheu, & Lin, 2004). 225 

Vescalin and castalin isomers (peaks 1 and 2) provided [M-H]- ions at m/z 631 and peaks of 226 

m/z 331 and 481 corresponding respectively to the monogalloyl-glucose ([Galloyl-glu-H]-) 227 

and HHDP-glucose ([HHDP-glu-H]-) produced during the hydrolysis of the molecules. 228 

Moreover a low intensity peak of m/z of 301, was obtained for both compounds, 229 

corresponding to the liberation of ellagic acid [EA-H]-. 230 

Peak 3 was assigned to gallic acid thanks to both molecular ion [M-H]- and the ion at m/z 231 

125.0 generated from the loss of a CO2 group from the carboxylic acid moiety [M-H-CO2]
-. 232 

The presence of gallic acid in chestnut bark tannin extracts might be quite questionable 233 

(Canas, Leandro, Spranger, & Belchior, 1999). In fact the occurrence of gallotannins in wood 234 

can not be excluded (Seikel, Hostettler, & Niemann, 1971; Vivas et al., 1993b), but it has 235 

never been confirmed. An acceptable hypothesis (Canas et al., 1999) suggests that gallic acid 236 

has derived from the hydrolysis of some galloyl esters associated with the parietal composites 237 

of the cells (Viriot et al., 1994). 238 

In the case of vescalagin and castalagin (peak 4 and 6), that differ only in the stereochemistry 239 

in position C6, the molecular ions at m/z 933 were detected, together with the fragments at 240 

m/z 466, associated to the pattern [M-2H]2-. 241 

Peak 5 was assimilated to an ellagitannin, based on the similarity to the UV-visible spectra, 242 

characterized by a maximum at about 245 nm and a shoulder at 280 nm, as showed in figure 243 

2. Analyzing the mass spectrum, it was deducted that this molecule could be originated from 244 

the esterification of castalagin or vescalagin with a gallic acid residue, giving a molecule with 245 

a galloyl-HHDP-glucose structure. In particular it was tentatively identified as 1-O-galloyl-246 
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castalagin, an hydrolysable tannin with molecular weight of 1086, previously identified in 247 

Eugenia grandis (Nonaka, Ishimaru, Watanabe, Nishioka, Yamauchi, & Wan, 1987). As for 248 

the other ellagitannins, the main fragments detected were the molecular ion, with m/z 1085 249 

and the residue with m/z 542.1 corresponding to the pattern [M-2H]-2. 250 

Peak 7, with retention time of 18.9 min, was ellagic acid as its mass spectrum had only one 251 

major peak with m/z 301; its UV spectrum, showed a maximum absorbance at 254 nm. 252 

The identification made were confirmed also by the analysis in ESI positive mode (data not 253 

shown). 254 

Gallic and ellagic acid gave [M+H]+ fragment. While castalin, vescalin, castalagin, 1-O-255 

galloyl-castalagin and vescalagin identifications were characterised by the presence of the 256 

fragments [M+H]+ and [M+H2O]+. 257 

Although chestnut bark extracts are classified as elagitannin extracts they may, nevertheless, 258 

contain gallotannins, because ellagitannins are biologically formed from pentagalloyl-glucose 259 

(gallotannin) (Zywicki et al., 2002). 260 

Besides the seven compounds previously identified, other mass spectra of minor compounds 261 

have been detected in the chestnut bark extracts. The m/z data obtained in ESI negative mode 262 

showed that all these components belonged to the gallotannin class, with the exception of 263 

roburine E/grandinin (table 4). These compounds were detected at a trace level, and were not 264 

always quantifiable in the chestnut extracts, for this reason the quantitative analysis was made 265 

on the seven compounds initially separated. 266 

In table 5 are reported the concentrations of each compound and the total concentration of 267 

tannins in each extract. 268 

In all samples analysed castalagin and vescalagin isomers, in free or hydrolysed form, were 269 

the main components. In particular, in TAN 1 and TAN 2 vescalagin and castalagin were the 270 

most abundant compounds, followed by 1-O-galloyl castalagin; in TAN 3 and TAN 4, 271 

instead, 1-O-galloyl castalagin was present with a concentration superior to the other 272 

compounds. 273 

The global amount of castalin and vescalin, was always lower than the sum of castalagin and 274 

vescalagin, however the proportion between castalin and vescalin isomers were different in 275 

the extracts analysed.  276 
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In each extract the concentration of gallic acid was higher than ellagic acid and resulted 277 

always the superior to castalin and vescalin amounts. 278 

Analysing the global amount of tannins in each sample it is possible to note that the 279 

concentration of tannins and phenolic compounds in the sweet chestnut bark extracts analysed 280 

was quite wide, ranging from 4.75 to 16.73 g/100 g dry extract. 281 

 282 

4. Conclusions 283 

A rapid HPLC-DAD/MS method for the analysis of tannin components of chestnut bark 284 

extracts was developed. Four commercial chestnut bark extracts were analysed and seven 285 

compounds (vescalin, castalin, gallic acid, vescalagin, 1-O-galloyl castalagin, castalagin and 286 

ellagic acid) were isolated and quantified. 1-O-galloyl castalagin was for the first time found 287 

in chestnut bark exctracts. 288 

  289 
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Figures 375 

 376 

Figure 1. Chromatograms obtained with gradient 1 (A) and 2 (B). See text for further details. 377 

The compounds separated are indicated on Table 3. 378 

 379 

 380 

 381 

Figure 2. UV and mass spectra of peak 5, identified as 1-O-galloyl castalagin. 382 

 383 

 384 

-100

400

900

1400

1900

2400

2900

3400

3900

0 5 10 15 20 25 30

A
bs

 (m
A

U
)

Time (min)

1

2
3

4
5

6

7

A

-100

400

900

1400

1900

2400

2900

3400

3900

0 5 10 15 20 25 30

A
bs

 (m
A

U
)

Time (min)

1

2

3

4

5

6
7

B

m/z0 200 400 600 800 1000 1200

0

20

40

60

80

100 10
85

.1

54
2.

1

10
86

.1

54
3.

2

nm250 300 350

240 nm

280 nm



Research article 4 

97 

Tables 385 

 386 

Table 1. Unitary net absorbance (AU/g) obtained with different solvents. Values are means ± 387 

standard deviations (n=3). Different letters in the same row indicate statistically significant 388 

differences (p < 0.05). 389 

 390 

Solvent tested Unitary net absorbance  
(AU/g) 

  

Methanol 5.94a ± 0.13 

Water 3.04d ± 0.03 

Methanol/water (50/50) 3.38c ± 0.05 

Acetone/water (70/30) 4.08b ± 0.06 

 391 

 392 

 393 

Table 2. TP content (g GAE/100 g dry extract) of the commercial tannin extracts analyzed. 394 

Values are means ± standard deviations (n=3). Different letters in the same row indicate 395 

statistically significant differences (p < 0.05). 396 

 397 

Sample TP content 
(g GAE/100 g dry extract) 

  

TAN 1 54.9a ± 3.2 

TAN 2 43.2b ± 1.4 

TAN 3 23.9c ± 0.9 

TAN 4 56.1a ± 2.9 
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Table 3. Retention times, spectral characteristics (maximum absorption wavelength), ESI negative mass fragmentation patterns and identification of 

the components of chestnut bark extracts separated by HPLC-DAD-MS. 

 

Peak 

No. 

tr 

(min) 

λmax (nm) MW Major fragments ESI negative Identification 

    [M - H] - Other fragments  
       

1 2.5 245/275sh 632 631.0 331.0 [Galloyl-glu-H]-/481.0 [HHDP-glu-H]- Vescalin 

2 3.6 246/280sh 632 631.1 331.0 [Galloyl-glu-H]-/481.0 [HHDP-glu-H]- Castalin 

3 6.6 232/272 170 169.0 125.0 [M-H-CO2]
- Gallic acid 

4 9.5 245/280sh 934 933.0 466.0 [M-2H]2- Vescalagin 

5 10.7 240/280sh 1086 1085.1 520.2/542.1 [M-2H]2- 1-O-Galloyl 
castalagin 

6 11.1 248/280sh 934 933.0 181.1/466.0[M-2H]2-/996.0 Castalagin 

7 18.9 254/302/368 302 301.0 - Ellagic acid 

sh, shoulder. 
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Table 4. m/z fragments of minor compounds detected in ESI negative mode. 

Analyte m/z 
  

Monogalloyl-glucose 331.0 

Roburine E/grandinin 1065.1 

Digalloyl-glucose 483.0 

Digalloyl-HHDP-glucose 785.2 

Digallic acid 321.0 

Trigalloyl-glucose/kurigalin 635.0 

Trigalloyl-HHDP-glucose 937.3 

Tetragalloyl-glucose 787.2 

 

Table 5. Concentration of tannins and phenolic compounds in sweet chestnut bark extracts, 

expressed as g/100 g dry extract. Values are means ± standard deviations (n=3). Different 

small letters in the same row indicate statistically significantly differences (Honestly 

Significant Differences or HSD by Tukey p<0.05). Different capital letters in the same 

column indicate statistically significantly differences (Honestly Significant Differences or 

HSD by Tukey p<0.05). 

 

 

 g/100 g dry extract 

TAN1 TAN2 TAN3 TAN4 
     

Vescalin 1.19 a E ± 0.06 1.05 b D ± 0.09 0.44 c D ± 0.01 1.22 a D ± 0.02 

Castalin 0.73 b F ± 0.05 0.67 b E ± 0.02 0.31 c E ± 0.01 1.00 a E ± 0.03 

Gallic acid 2.80 a D ± 0.09 1.56 c C ± 0.02 0.65 d C ± 0.01 1.80 b C ± 0.03 

Vescalgin 4.08 a A ± 0.03 3.46 b A ± 0.19 0.29 d E ± 0.01 0.56 c G ± 0.01 

1-O-Galloyl 
castalagin 

3.20 b C ± 0.12 2.46 c B ± 0.18 1.58 d A ± 0.03 5.39 a A ± 0.06 

Castalgin 3.80 a B ± 0.16 3.41 b A ± 0.06 1.05 d B ± 0.09 2.20 c B ± 0.11 

Ellagic acid 0.93 a F ± 0.02 0.61 c E ± 0.04 0.43 d D ± 0.01 0.80 b F ± 0.02 

Total 16.73 a ± 0.43 13.22 b ± 0.52 4.75 c ± 0.05 12.96 b ± 0.27 
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5. SENSORY ANALYSIS: 
STUDY OF VOLATILE  PROFILE OF POTATOES 

 

 

5.1 POTATO FLAVOUR: BACKGROUND AND UPDATES OF 

LITERATURE  

Potato flavour, which is defined as the combined perception of aroma, taste and mouthfeel 

sensations, has a great importance because it is one of the main qualitative criteria in 

assigning different potato varieties to a fresh or processed food market (Petersen et al., 1998). 

The volatile profile of potatoes has been widely investigated (Maga, 1994; Dresow 

and Böhm, 2009; Jansky, 2010). Recent studies gave emphasis on the role of agricultural 

environments on flavour compounds (Dresow and Böhm, 2009; Jansky, 2010) and on the 

occurrence, formation and control procedures of volatile and non-volatile flavour components 

of raw and processed potatoes (Maga, 1994). 

A mini-review concerning the sensory and instrumental analysis of the volatile 

fraction of raw and processed potatoes has been written (research article 5). This investigation 

aims to update the information on the volatile components of potato tubers, giving particular 

attention to the cooking or processing method. 

This study takes into account both the main extraction (simultaneous distillation and 

extraction (SDE), solvent and direct solvent extraction techniques, headspace analysis, 4. 

solid-phase microextraction (SPME)) and analytical techniques (gas chromatography - mass 

spectrometry (GC-MS), gas chromatography/olfactometry (GC/O) or gas chromatography-

FID/olfactometry (GC-FID/O) gas chromatography-MS/olfactometry (GC-MS/O)) used in 

potato flavour analysis and the sensory analysis of potatoes, with particular attention to the 

findings concerned with the volatile profile. 

As regards the sensory evaluation of a food, it can be made through discriminative, 

descriptive or affective tests. Discriminative tests investigate whether there is a sensory 

difference between samples (Stone and Sidel 1992), such as the triangle test, the duo-trio test 

and the paired comparison test. 

Descriptive tests involve the detection and description of both qualitative and 

quantitative sensory components of a product by trained panels. The main methods of 

descriptive analysis are the Flavour Profile and the Quantitative Descriptive Analysis 

(QDA®). 
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The affective tests have the primary goal to assess the personal response of users or 

potential users of a product (acceptance, preference, or consumer tests). A large number of 

individuals are required to take part in a sensory acceptance test (> 100). Preference can be 

measured directly by comparing two or more products with each other, or indirectly by 

determining which product is the most appreciated in a multiproduct test. The two most 

widely used methods to measure preference and acceptance are the paired comparison and the 

9-point hedonic scale tests. 

With reference to the evaluation of raw and processed potatoes, the sensory tests most 

frequently used are the Flavour Profile, the QDA® and the preference tests, as detailed in 

research article 5. 
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ABSTRACT 

Potatoes may be cooked by several methods such as boiling, baking and frying; they are also used as an ingredient for numerous home-
made and mass-produced foods like sticks, chips and other snacks. An important factor affecting consumer preferences of these products 
is their flavour, which is defined as the combined perception of aroma, taste and mouthfeel sensations. Flavour, and in particular the 
volatile profile of potatoes, has been widely investigated in the last few years, and complex patterns have been found. Although raw 
potatoes possess little aroma, more than 140 volatile compounds have been identified in boiled potatoes, whereas over 250 have been 
found in baked potatoes and more than 500 compounds have been isolated in French fries. Among these, many lipid oxidation and 
Maillard reaction products have been reported, together with smaller amounts of indigenous flavour compounds. Many extraction 
methods have been developed to characterize the aroma of potatoes, with the goal of reducing analytical detection limits, avoiding 
formation of artefacts during isolation and reducing analysis cost and time; among these are distillation techniques, solvent and direct 
solvent extraction techniques, static and dynamic headspace methods and solid-phase microextraction. As regard isolation and 
quantification of potato volatiles, gas chromatography-mass spectrometry and gas chromatography/olfactometry are frequently used. The 
analytical approach is often completed with the sensory evaluations. This review describes the flavour profile of the main forms of cooked 
potatoes, taking into account their mechanism of generation; extraction and analysis procedures are also considered, reporting both 
conventional and innovative methods. 

_____________________________________________________________________________________________________________ 

 
Keywords: analytical techniques, characterization, extraction, flavour, potatoes 
 
CONTENTS 
 
INTRODUCTION.......................................................................................................................................................................................... 1 
INSTRUMENTAL ANALYSIS ..................................................................................................................................................................... 2 

Extraction and concentration techniques ................................................................................................................................................... 2 
Separation and identification techniques ................................................................................................................................................... 3 
SENSORY ANALYSIS ............................................................................................................................................................................ 4 

VOLATILE COMPOUNDS IN RAW POTATOES ....................................................................................................................................... 5 
VOLATILE COMPOUNDS IN PROCESSED POTATOES.......................................................................................................................... 5 

Boiled potatoes .......................................................................................................................................................................................... 5 
Baked potatoes........................................................................................................................................................................................... 8 
Potato chips and French fries..................................................................................................................................................................... 9 
Potato crisps ............................................................................................................................................................................................ 11 
Dehydrated potato products..................................................................................................................................................................... 11 
Extruded potato products......................................................................................................................................................................... 12 
Other potato-based products .................................................................................................................................................................... 12 

REFERENCES............................................................................................................................................................................................. 12 
_____________________________________________________________________________________________________________ 

 

 

INTRODUCTION 
 

Potato (Solanum tuberosum L.) cultivation is widespread 
worldwide as a result of its appreciated sensory and nut-
ritional properties, in addition to its adaptability to different 
climatic conditions. Potatoes may be cooked in many dif-
ferent ways such as boiling, baking or frying; various 
potato-based products are also produced, including extruded, 
dehydrated and potato snacks. Recently, the ready-to-use 
and ready-to-eat market has extensively utilized potato 
preparations. 

One of the most important qualitative criteria in assign-
ing different potato varieties to a fresh or processed food 
market is the flavour profile. The volatile profile of raw 
potatoes is weak, but is quite different from that of cooked 

potatoes. Additionally, the volatiles produced from major 
cooking procedures differ significantly each other (Whit-
field and Last 1991). Therefore, when studying the volatile 
fraction of potato tubers a distinction must be made bet-
ween raw (Petersen et al. 1998), boiled (Nursten and Sheen 
1974; Josephson and Lindsay 1987; Petersen et al. 1998; 
Oruna-Concha et al. 2002b), baked (Buttery et al. 1973; 
Coleman and Ho 1980; Coleman et al. 1981; Duck-ham et 
al. 2001, 2002), microwaved (Oruna-Concha et al. 2002a, 
2002b), fried (Carlin et al. 1986; Wagner and Grosch 1997, 
1998) and manufactured products such as extruded (Maj-
cher and Jelén 2009) and dehydrated (Nissen et al. 2002; 
Laine et al. 2006) potatoes. 

Sugars, amino acids and lipids are the main precursors 
of potato volatile compounds (Whitfield and Last 1991); 
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their formation can be due to enzymatic or chemical reac-
tions that have been recently overviewed (Dresow and 
Böhm 2009). The flavour profile of potatoes depends both 
on the cooking procedure and numerous other factors like 
cultivar selection, agronomic and storage conditions. More-
over, the extraction technique used during the analysis may 
affect the nature and the quantity of volatiles isolated. 

Potato flavour has been widely investigated in recent 
reviews by Dresow and Böhm (2009) and by Jansky (2010), 
with emphasis on the role of agricultural environments on 
flavour compounds. In 1994, Maga described the occur-
rence, formation and control procedures of volatile and non-
volatile flavour components of raw and processed potatoes. 

The present review updates the information on the 
volatile components of potato tubers, and gives particular 
attention to the cooking or processing method. In the first 
part, a brief summary of the main extraction and analytical 
techniques used in potato flavour analysis is presented. As 
this study takes into account the sensory analysis of pota-
toes, and the findings concerned with the volatile profile are 
reported, a brief explanation of the definitions used should 
be made. “Flavour” is usually defined as the complex com-
bination of the olfactory (orthonasal and retronasal percep-
tions), gustatory and trigeminal sensations perceived during 
tasting. Volatile, non-volatile components and mouthfeel 
sensations interact to determine food flavour. The term 
“Odour” refers to the direct olfactory component of flavour 
(orthonasal perception), while “Aroma” describes the attrib-
utes perceptible by the olfactory organ via the back of the 
nose (International Standard ISO 5492, 2008-10-15). How-
ever, these terms are sometimes used with different mean-
ings, e.g. “Flavour” may refer to the volatile profile only or 
to the retronasal olfactory perception during tasting. For 
accuracy, in this review focusing on the sensory and ins-
trumental analysis of the volatile fraction of raw and pro-
cessed potatoes, the terms aroma and flavour are used syn-
onymously, limiting them to the olfactory stimuli, without 
taking into account taste and mouthfeel sensations. 
 
INSTRUMENTAL ANALYSIS 
 

To determine which compounds are responsible for the 
flavour of a food product, one crucial step is to select a 
suitable method for their isolation. This procedure should 
allow the extraction of all compounds that contribute to 
flavour of the food product, but not alter the profile of 
characteristic volatiles, and in particular it should not form 
artefacts. An additional difficulty in the isolation of volatile 
compounds is their presence in a wide range of concentra-
tions from ng/kg to mg/kg, and their odour thresholds, 
which are often below detection limits using conventional 
GC detectors. Therefore, GC-MS and gas chromatography–
olfactometry (GC–O) are usually used to characterize the 
aroma profile of a food product. Several extraction methods 
for isolating crucial compounds of potatoes have been used; 
among these are distillation techniques like simultaneous 
distillation and extraction (SDE) (Nickerson and Likens 
1966), solvent extraction techniques such as solvent-

assisted flavour evaporation (SAFE) (Engel et al. 1999), 
headspace methods such as static and dynamic headspace 
and solid-phase microextraction (SPME) (Pawliszyn 1997). 
 
Extraction and concentration techniques 
 
1. Simultaneous distillation and extraction (SDE) 
 
The SDE method, developed by Nickerson and Likens in 
1966, was essentially based on steam distillation of volatile 
compounds at high temperatures for extended times, but it 
has been performed with numerous variations from the 
original version (Buttery et al. 1970; Nursten and Sheen 
1974; Mutti and Grosch 1999; Ulrich et al. 2000). 

Due to the analytical conditions required, this process 
may lead to the creation of new aromatic substances, espe-
cially during extended treatments. This extraction is per-
formed with dedicated equipment and assures good detec-
tion limits. Table 1 reports recent SDE applications in 
potato analysis. 
 
2. Solvent and direct solvent extraction techniques 
 
Solvent extraction is a simple and efficient technique for 
aroma isolation. The major limitation of this method is that 
if the food contains lipids, they will also be extracted along 
with the aroma constituents, and consequently they must be 
removed prior to further analysis. The separation of aroma 
components from extracts containing lipids can be per-
formed via molecular distillation, steam distillation and 
dynamic headspace. Despite bias added by further distil-
lation procedures, this combination (solvent extraction fol-
lowed by distillation) has been widely applied due to its 
efficiency at isolating a broad range of volatiles. Engel et al. 
(1999) developed a much more rapid and yet highly effici-
ent Solvent Assisted Flavour Evaporation (SAFE) distil-
lation head, which is now widely used. 

The extraction procedure has been employed in several 
investigations by Petersen et al. (1998, 1999, 2003) to ex-
plore the volatile fraction of raw shredded and boiled pota-
toes. They developed a mild extraction procedure in which 
a large quantity of sample (from 150 to 280 g of food mat-
rix) was homogenized with variable amounts of tap water to 
ensure sufficiently low viscosity prior to extraction with 
diethyl ether/pentane (1: 1). The sample was stirred until an 
emulsion was created, frozen and non-frozen organic phases 
were discarded. After drying by adding Na2SO4, the sample 
was concentrated and finally analyzed by GC-MS and GC-
O. 

In order to reduce the interference of starch and oils and 
increase the concentration of the extract, Petersen (1999) 
also evaluated the vacuum distillation of volatiles. In this 
case, a large quantity of boiled potatoes (333 g) was mixed 
with water and the suspension was distilled at 36-39°C at a 
vacuum pressure of 20 mbar. The distillate was extracted 
with ether/pentane under magnetic stirring, the phases were 
separated using a funnel and the organic phase dried and 
concentrated by blowing nitrogen on the surface. A similar 

Table 1 Current SDE applications in potato volatiles analysis. 

Sample Distillation 

(t-T)a 

Extraction solvent Instrumental techniqueb Reference 

30 min - n.a. Diethyl ether/pentane (1:1) GC-MS (DB-WAX; 68.3 min) Jensen et al. 1999 

120 min - 100°C Dichloromethane GC-MS (INNO-Wax; 90 min) 

GC-PND (INNO-Wax; 90 min) 

GC-O (INNO-Wax; 43.3 min) 

Ulrich et al. 2000 

Boiled potatoes 

n.a. - 60°C Dichloromethane GC-MS (FFAP; 70 min) Blanch et al. 2009 

Baked potatoes 120 min - n.a. Pentane/diethyl ether (9:1) GC-MS (BPX-5; 66.75 min) Oruna-Concha et al. 2001 

Extruded potato snacks 120 min - 100°C Ethyl ether/pentane (1:1) GC-O and GC-MS (SBP-5; 30 min - 

Supelcowax 10; 40.5 min) 

Majcher and Jelén 2009 

Potato flakes 30 min - n.a. Diethyl ether GC-MS (n.a.) Nissen et al. 2002 
a Distillation time (min) and temperature (°C) 
b Separation and detection technique (column stationary phase; analysis time, min) 
n.a. Not available data 
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procedure was used by Majcher and Jelén (2009) who ap-
plied the SAFE technique to extruded and dried potato 
snacks by using a small amount of sample to extract volatile 
compounds (20 g). 

Direct solvent extraction is a very simple and conveni-
ent technique, and it is frequently carried out with a Soxhlet 
extractor. It has been applied to isolate potent odorant from 
both boiled potatoes (Mutti and Grosch 1999) and French 
fries (Wagner and Grosch 1997, 1998). 

Samples were dried, ground finely, placed in a Soxhlet 
thimble and extracted with dichloromethane (Wagner and 
Grosch 1998; Mutti and Grosch 1999) or diethyl ether 
(Wagner and Grosch 1997). The extract was concentrated 
by distilling off the solvent; the aromatic fraction and the 
solvent were purified by distillation under high vacuum, 
using the apparatus reported by Sen et al. (1991) and Jung 
et al. (1992). Next, volatiles were separated into neutral/ 
basic and acidic fractions before their identification on 
HRGC/MS and HRGC/O equipments. 
 
3. Headspace analysis 
 
The original headspace procedure, named Static Headspace 
(SH), involves static recovery in which the sample is equi-
librated in a sealed container at a controlled temperature; 
however, low sensitivities are usually obtained (Sides et al. 
2000). The Dynamic Headspace (DH) technique, in contrast, 
is based on the stripping of volatile components with a flow 
of inert gas (e.g. N2, He), their subsequent adsorption by 
polymers and desorption in GC. Quantitative extraction is 
granted by high temperatures, such as those employed by 
Salinas et al. (1994), who extracted the aromatic com-
pounds from cooked and reconstituted dehydrated potatoes 
at 100°C for 1 h, or by extended treatments such as those 
described by Josephson and Lindsay (1987) who performed 
extraction for 15 h at 21°C. Under these conditions, enzy-
matic reactions may take place and synthesize ex novo aro-
matic components that were not present before the extrac-
tion. The DH is extensively used in volatile extraction from 
potato samples and current applications are shown in Table 
2. In all applications, the carrier gas used is nitrogen, and 
the flask containing the sample was frequently held in a 
water bath at 37°C during extraction. 

Only three applications of SH have been recently 
reported in potato flavour analysis. Limbo and Piergiovanni 
(2007) used a static headspace analyser to extract volatiles 
from raw potatoes; Wagner and Grosch (1998), moreover, 
applied the SH analysis to isolate methylpropanal, 2,3-
butanedione and methanethiol from frozen French fries; a 
similar technique was applied to investigate perceivable 
odours in fresh and stored French fries (Wagner and Grosch 
1997). 
 
 

4. Solid-Phase Microextraction (SPME) 
 
In 1990, solid-phase microextraction (SPME) was deve-
loped by Arthur and Pawliszyn as a sample pre-concentra-
tion method, as an alternative to DH, before chromatogram-
phic analysis. In this technique, an inert fibre, coated with a 
stationary phase, is placed in the headspace of the sample 
(Headspace Solid-Phase Microextraction, HS-SPME) or in-
side the sample itself if the liquid (Direct Immersion Solid-
Phase Microextraction, DI-SPME) allows volatile adsorp-
tion. The loaded fibre is thermally desorbed into a GC car-
rier gas flow, and the volatiles released are analyzed (Rei-
neccius 2006). The optimization of solid-phase microex-
traction conditions includes, in addition to the selection of 
the operative mode (HS-SPME and DI-SPME) and the fibre 
coatings, the equilibration, adsorption and desorption condi-
tions (temperature and duration). With regards to the fibre 
coatings, different stationary phases are available, including 
polydimethylsiloxane (PDMS) carbowax/divinylbenzene 
(CW/DVB), divinylbenzene/carboxen/polydimethylosilox-
ane (DVB/CAR/PDMS), carboxen/polydimethylsiloxane 
(CAR/PDMS) and polydimethylsiloxane/divinylbenzene 
(PDMS/DVB). 

This technique has been applied to various food flavour 
and off-flavour analyses (vegetables and fruits, beverages, 
dairy products, oils and other food), pesticides, agrochemi-
cals and food contaminants (Kataoka et al. 2000). To the 
best of our knowledge, only the headspace operative mode 
(HS-SPME) has been used in volatile analysis of potatoes, 
as summarized in Table 3. 

 
Separation and identification techniques 
 
1. Gas Chromatography - Mass Spectrometry (GC-MS) 
 
Mass spectrometry is used to either determine the identity 
of an unknown volatile compound or can also act as a mass-
selective GC detector. It is advisable that MS identifications 
are supported by other data such as GC retention data, infra-
red spectroscopy or nuclear magnetic resonance. MS can be 
operated in selected ion detection mode (SIM), multiple-ion 
mode (MIM) or full scan mode. In the SIM or MIM mode, 
the MS measures only selected ions at very short time inter-
vals throughout a GC run, leading to greater sensitivity and 
a larger number of scans than full scan detection mode. 

The magnetic sector or quadrupole requires significant 
time to scan a typical mass range, while ion trap (GC-
ITMS) and time-of-flight (GC-TOFMS) MS detectors, in 
contrast, can collect spectra much faster (ion trap about 10–
15 spectra/sec and TOF up to 500 spectra/sec). The TOF 
instrument can take a large number of spectra across a GC 
peak and reduce noise, thereby improving both sensitivity 
and detection limits. Another advantage is the deconvolu-
tion of mixed spectra, i.e. the resolution of the MS data of 

Table 2 Current DH applications in potato volatiles analysis. 

Sample Ext. gasa Ext. 

timeb 

Adsorption 

polymer 

Trap dimensions Desorption 

conditions 

Instrumental techniquec Reference 

120 mL/min 20 min Tenax TA (85 mg) 105 mm - 3 mm 10 min - 260°C GC-MS (CP-SIL 8 CB 

low bleed; 70.5 min) 

Oruna-Concha et al. 

2002b 

Boiled potatoes

200 mL/min 60 min Tenax (100 mg) n.a. n.a. GC-MS (J&W DB-Wax; 

68.3 min) 

Thybo et al. 2006 

Baked potatoes 120 mL/min 20 min Tenax TA (85 mg) 105 mm - 3 mm 10 min - 260°C GC-MS (CP-SIL 8 CB 

low bleed; 70.5 min) 

Duckhman et al. 2001, 

2002; Oruna-Concha et 

al. 2002a, 2002b 

50 mL/min 30 min Tenax TA (100 mg) 100 mm - 3 mm 5 min - 245°C GC-FID, GC-MS, GC-O 

(MDN-5S; 66.5 min) 

Van Loon et al. 2005 Fried potatoes 

40 mL/min 60 min Tenax TA (85 mg) 155 mm - 3 mm 5 min - 280°C GC-MS (Cp-Sil8; 62 min) Martin and Ames 2001

Potato flour 40 mL/min 45 min Tenax TA (85 mg) 3.5 in. - 0.25 in. 10 min - 300°C GC-MS (DB-5; VF-

WAXms; 54.5 min) 

Elmore et al. 2010 

a Flow of the extraction gas (mL/min) 
b Extraction time (min) 
c Separation and detection technique (column stationary phase; analysis time, min) 
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one compound from a mixture of compounds that co-elute. 
The deconvolution process may also be implemented using 
two-dimensional GC, which involves collecting part of a 
GC run and re-chromatographing it on a different chromato-
graphic phase. These systems typically permit the collection 
of a selected part of several GC runs, improving sensitivity 
(Reineccius 2006). All these techniques have been used for 
analysis of raw and processed potato volatiles, as shown in 
Tables 1-3. 
 
2. Gas Chromatography/Olfactometry (GC/O), Gas 
Chromatography-FID/Olfactometry (GC-FID/O), Gas 
Chromatography-MS/Olfactometry (GC-MS/O) 
 
In GC/O, the human nose is used as a selective and sen-
sitive detector of volatile compounds, and the odour charac-
ter of GC peaks is shown in an aroma profile. The effluent 
from the GC column is mixed with air and water vapour 
and is perceived by human assessors who identify the 
odours of compounds eluting from the column. Several 
parameters have to be considered in the optimisation 
process, but usually the most significant error factors are 
those that affect the perception of aromas by sensory 
panellists (Reid 2003). The GC column effluent can be split 
in two portions, one going to a sniffing port and the re-
mainder going to a flame ionization (FID) or a mass (MS) 
detector. In alternative, the GC run may be made by passing 
all of the GC column effluent to the nose at one time: the 
column is then connected to the instrument detector, and a 
second run made (Reineccius 2006). 

Although a large number of volatile compounds are 
present in foods, not all contribute to aroma. Patton and 
Josephson (1957) proposed to estimate the importance of an 
aroma compound in defining the sensory character of a food 
by calculating the ratio of the concentration of the com-
pound to its sensory threshold in that food. This ratio is 

known as the odour activity value (OAV) (also referred to 
as odour value, odour unit, flavour unit, or aroma value). 
Only compounds present above their sensory threshold con-
centrations in a food are likely to be significant contributors 
to aroma. 

The major screening procedures for determining the key 
odorants in food are based on Aroma Extract Dilution Ana-
lysis (AEDA), developed by Ullrich and Grosch (1987), 
Aroma Extract Concentration Analysis (AECA), described 
by Kerscher and Grosch (1997), and CHARM Analysis 
developed by Acree and Barnard (1984). Diluted (or con-
centrated) samples, prepared by using one of the extraction 
techniques previously described, are evaluated by GC/O. 
The occurrence of an aroma (its retention time or Kovats 
index) is recorded in each dilution, and a greater number of 
dilutions in which an odorant is detected, is reflected in a 
higher CHARM or Dilution Value. AEDA has been used to 
identify the major odorants from boiled potatoes (Mutti and 
Grosch 1999) and French fries (Wagner and Grosch 1997, 
1998). 
 

SENSORY ANALYSIS 
 
The sensory evaluation of a food can be made through dis-
criminative, descriptive or affective tests. Discriminative 
tests investigate whether there is a sensory difference bet-
ween samples (Stone and Sidel 1992). The most common 
are the triangle test, duo-trio test and paired comparison test. 

Descriptive tests involve the detection and description 
of both qualitative and quantitative sensory components of 
a product by trained panels. Descriptive tests can establish 
relationships between descriptive sensory and instrumental 
or consumer preference measurements. There are several 
different methods of descriptive analysis, such as Flavour 
Profile and the Quantitative Descriptive Analysis (QDA). 

The affective tests have the primary objective to assess 

Table 3 Current HS-SPME applications in potato volatiles analysis. 

Sample Fiber Equilibration 

(t-T)a 

Extraction 

(t-T)b 

Desorption 

(t-T)c 

Instrumental techniqued Reference 

Raw potatoes DVB/CAR/PDMS 

(50/30 �m) 

5 min - 80°C 20 min - 60°C 5 min - 250°C GC-MS (Rtx-1; 86.7 

min) 

Longobardi et al. 2010

Boiled potatoes DVB/CAR/PDMS 

(50/30 �m) 

10 min - 37°C 30 min - 37°C 3 min - 250°C GC-MS (ZB-WAX; 63.3 

min) 

Blanda et al. 2010 

Steamed potatoes PDMS (85 �m) n.a. 20 min - 50°C 2 min - 280°C GC-MS (DB1701; 42 

min) 

Morris et al. 2010 

PDMS (100 �m) 

CW/DVB (65 �m) 

DVB/CAR/PDMS (30/50 �m) 

PDMS/DVB (65 �m) 

5 min - 30°C 60 min - 30°C 5 min - 250°C

 

2 min - 250°C

GC-ITMS (HP-VOC 

fused silica; 41 min) 

GC-TOFMS (HP-VOC 

fused silica; 38 min) 

GC x GC-TOFMS  

(HP-VOC fused silica 

and Supelcowax 10;    

38 min + 38 min) 

Lojzova et al. 2009 Potato chips 

DVB/CAR/PDSM (50/30 �m) 

PDMS/DVB (65 �m) 

n.a. 15 min - 60°C 3 min - 250°C GC-FID (SP2330 fused 

silica; 35 min) 

Pangloli et al. 2002 

DVB/CAR/PDSM (50/30 �m) 5 min - 70°C 20 min - 70°C 5 min - 250°C GC-MS (DB-5; 22 min) Sanches-Silva et al. 

2004 

Potato crisps 

CAR/PDMS (75 �m) 

PDMS/DVB (65 �m) 

DVB/CAR/PDMS (50/30 �m) 

5 min - 70°C 20 min - 70°C 3 min - 260°C GC-MS (DB-5; 22 min) Sanches-Silva et al. 

2005 

Extruded potato 

snacks 

PDMS 

CW/DVB  

DVB/CAR/PDMS 

PDMS/DVB 

CAR/PDMS 

10 min - 50°C 30 min - 50°C 5 min GC-O and GC-MS (SBP-

5; 30 min - Supelcowax 

10; 40.5 min) 

Majcher and Jelén 

2009 

Potato flakes PDMS 

CAR/PDMS/DVB 

PDMS/DVB 

CAR/PDMS 

10 min - 35°C 60 min - 35°C 270°C GC-MS (CP-WAX 52 

CB; 35.5 min) 

Laine et al. 2006 

a Equilibration conditions: time (min) and temperature (°C) 
b Extraction conditions: time (min) and temperature (°C) 
c Desorption conditions: time (min) and temperature (°C) 
d Separation and detection technique (column stationary phase; analysis time, min) 
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the personal response from users or potential users of a 
product (acceptance, preference, or consumer tests). A large 
number of individuals are required to take part in a sensory 
acceptance test (> 100). Preference can be measured 
directly by comparing two or more products with each other, 
or indirectly by determining which product is the most ap-
preciated in a multiproduct test. The two most widely used 
methods to measure preference and acceptance are the 
paired comparison and the 9-point hedonic scale tests. 

The sensory tests most frequently used for the evalua-
tion of raw and processed potatoes are the Flavour Profile, 
QDA and the preference tests, as detailed in the following 
paragraphs. 
 

VOLATILE COMPOUNDS IN RAW POTATOES 
 

About 159 volatile compounds have been identified in raw 
potatoes (Dresow and Böhm 2009), but their aromatic pro-
file has not been widely studied. Most investigations have 
focused on cut or sliced potatoes, and the main volatiles 
identified were those derived from oxidation and enzymatic 
activity. In particular, many compounds such as aldehydes, 
ketones and alcohols, derived from the lipoxygenase acti-
vity on unsaturated fatty acids were detected (Mazza and 
Pietrzak 1990; Maga 1994; Petersen et al. 1998). Signifi-
cant products of potato lipid oxidation are hexanal, octenal 
and isomeric forms of 2,4-decadienal (Maga 1994). Some 
alcohols, like 2-methyl and 3-methylbutanol derived from 
leucine and isoleucine metabolism (Drawert et al. 1975). 
Other compounds identified in raw potatoes, and responsi-
ble for vegetable-like odours are methoxypyrazines. Their 
mechanism of formation has been investigated, and the 
biosynthetic pathway in potato tubers, or production from 
microflora present in soil or on the potato surface, have 
been hypothesized (Maga 1994; Dresow and Böhm 2009). 

Longobardi et al. (2011) carried out HS-SPME/GC-MS 
on three potato cultivars (‘Arinda’, ‘Sieglinde’, and ‘Red 
Cetica’) produced in three different locations in Italy (Sicily, 
Apulia, Tuscany). 32 volatile compounds were identified 
and a discriminant function analysis (DFA) was applied on 
normalized data. The complete separation of potato samples 
of different geographical origin was achieved and the recog-
nition ability was 100% for each class. The prediction abil-
ity was 91.7% and among 36 samples analysed, only four 
samples were incorrectly classified. The same classification 
results were obtained applying these statistical methods on 
the complete data set, including also isotopic data. 

Recently, increasing attention has been given to ready-
to-eat and ready-to-use vegetables with the specific aim of 
increasing the shelf life of these products since manufac-
turing operations promote the development of enzymatic 
browning and microbial growth (Beltrán et al. 2005). Modi-
fied atmospheres, in particular high oxygen partial pres-
sures (10, 55 and 100 kPa O2) in combination with ascorbic 
and citric acid dipping, have been applied to potato slices; 
the accumulation of volatile compounds (ethanol, acetal-
dehyde and hexanal) has been studied after 3, 7 and 10 days 
of storage at 5°C (Limbo et al. 2007). The higher pressures 
applied (55 and 100 kPa) had an inhibitory effect on the 
production of anaerobic volatiles (acetaldehyde and etha-
nol). In contrast, the lowest hexanal accumulation was ob-
tained at 10 kPa O2, and a substantial increase was recorded 
in potatoes that were not submitted to the treatment solution 
and stored at 100 kPa. 

The sensory quality of fresh cut potatoes was inves-
tigated also by Beltrán et al. (2005) who evaluated the 
effect of traditional and non-traditional sanitizers on potato 
strips stored under modified atmosphere and vacuum pack-
aging. Sodium hypochlorite, sodium sulphite, peroxyacetic 
acid and ozone were used either alone or in combination. 
The aroma of the strips was evaluated by an expert panel 
after 5, 11 and 14 days of storage. The best sensory charac-
teristics, were obtained with vacuum packaging. When the 
modified atmosphere was used, the application of sodium 
sulphite prevented browning, but it conferred off-odours to 

potato strips. When the dipping process was carried out in 
ozonated water and in ozone plus peroxyacetic acid solu-
tions, potato strips stored under vacuum conditions main-
tained the typical full aroma even after storage for 14 days 
at 4°C; the authors concluded that the latter treatment was 
optimal as it could also preserve the microbial quality of the 
potato strips. 
 

VOLATILE COMPOUNDS IN PROCESSED 
POTATOES 
 
The sensory profile of processed potatoes is related to the 
way of cooking but also cultivar selection has an important 
role, as reported in the following investigations. Sensory 
properties of different potato varieties have been evaluated 
by Pardo et al. (2000) through the assessment of satisfac-
tion on a verbal hedonic scale. The authors compared 7 
varieties (‘Bartina’, ‘Caesar’, ‘Desirée’, ‘Agria’, ‘Edzina’, 
‘Monalisa’ and ‘Victoria’) and found that ‘Bartina’ was 
preferred for the flavour in fried products, while ‘Victoria’ 
and ‘Desirée’ were best in terms of flavour for boiled pota-
toes. These different scores, depending on frying or boiling, 
suggest a specific use for each potato variety. 

Seefeldt et al. (2011a) investigated visual, texture, taste 
and flavour attributes of 11 potato varieties (‘Asparges’, 
‘Ballerina’, ‘Bintje’, ‘Ditta’, ‘Folva’, ‘Hamlet’, ‘Liva’, 
‘Spunta’, ‘Sava’, ‘Saturna’ and ‘Vivi’) grown in loamy and 
sandy locations and used for three culinary preparations 
(mashed, oven-fried and boiled potatoes). They found that 
texture and appearance were the most important attributes 
for the sensory evaluation of the different culinary prepara-
tions, whereas flavour played a minor role for describing 
potato quality. Also the effect of soil type on flavour and 
taste was relatively low for all preparations. 

Relevant investigations carried out after 1995 and con-
cerning the volatile profile of boiled, baked, fried, dehyd-
rated and extruded potato products are presented. In Table 4 
are reported new volatile compounds detected in boiled 
potatoes respect those summarized by Dresow and Böhm 
(2009); advances in the aromatic profile of fried (chips, 
French fries and crisps), dehydrated and extruded potatoes 
are also shown, updating the results reported by Maga 
(1994). 
 
Boiled potatoes 
 
The aroma of boiled potatoes is weak, although it is distinct 
and very different from the aroma of raw potatoes. Several 
mechanisms are responsible for the thermal formation of 
aroma compounds in boiled potatoes, including lipoxy-
genase-initiated reactions of unsaturated fatty acids that 
take place after disruption of cells and create large amounts 
of 2,4-decadienal, (E)-2-octenal and hexanal; the autoxida-
tion reactions are responsible for pentanal generation and 
the Maillard and Strecker reactions lead to components like 
pyrazines, phenylacetaldehyde and methional (Maga 1994). 

Petersen et al. (1998) compared the aroma of raw and 
boiled potatoes of the ‘Bintje’ variety using a mild extrac-
tion technique to ensure major preservation of the more 
labile compounds of potato aroma. 29 and 25 compounds 
were identified in raw and boiled extracts, respectively, by 
GC-MS. The results were in agreement with those previ-
ously reported by Josephson and Lindsay (1987), who 
found that raw shredded potatoes contained relatively high 
amounts of 2,4-decadienal, (E)-2-octenal and hexanal. After 
boiling, the concentration of the first two compounds 
decreased, while hexanal increased to become the dominant 
volatile. Moreover, GC odour profiling of raw and boiled 
potatoes was performed by evaluating the odour quality and 
intensity of potato extracts after separation on GC column. 
33 odour impressions were detected in boiled potatoes: 8 of 
them were identified by GC-MS (2-ethyl furan, hexanal, 
heptanal, (E)-2-heptenal, acetic acid, methional, (E,Z)-2,6- 
nonadienal and phenylacetaldehyde) and 4 by the retention 
index and quality odour ((Z)-4-heptenal, 2-heptanol, 2- 
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Table 4 New volatile compounds identified in processed potatoes. 

 Boileda  Friedb Ext-Dec  Boileda  Friedb Ext-Dec

Hydrocarbons    Undecanal 9   

Propylcyclopentane  5  2-Undecenal 9   

Butylcyclopentane  5  4-Ethylbenzaldehyde 9   

Propylcyclohexane  5  2-Hydroxybenzaldehyde  5  

2,2,4,6,6-Pentamethyl heptane   3 4-Hydroxy-3-methoxybenzaldehyde  7  

Bicyclo-2,2,2-1-methyloctane  11  5-Ethyl-1-cyclopentene-1-carboxaldehyde  5  

Hexadecane 9   Ketones    

3-Ethyl-2-methyl-1,3-hexadiene 9   2,3-Butanedione   4 

1-Heptene  5  6-Methyl-5-penten-2-one 6   

6-Methyl-1-heptene  11  2-Methyl-3-hexanone  5  

1-Octene  5  1-Octen-3-one  7;8  

(E)-2-Octene  5  3-Octen-2-one 9  3 

(Z)-2-Octene  5  (E)-3-Octen-2-one  11  

Styrene  5  1,5-Octadien-3-one   4 

�-Ionone   3 (Z)-1,5-Octadien-3-one  7  

�-Curcumene   3 3,5-Octadien-2-one   3 

Alcohols    3-Nonen-2-one  11  

Ethanol   4 6-Undecanone 9   

2-Propanol  5  6-Dodecanone 9   

1-Undecanol  5  �-Damascenone   4 

Dodecanol 6   Esters    

1-Dodecen-3-ol 9   Pentyl methanoate  11  

Tetradecanol 6   Methyl acetate  5  

1,5-Heptadiene-3,4-diol  11  n-Hexyl acetate 9   

Acids    Methyl 2-propenoate  5  

2-Octenoic acid  11  Hexyl-propanoate 9   

Phenyletanoic acid  7  Methyl butanoate 9   

Aldehydes    (E)-Methyl 2-butenoate  5  

Acetaldehyde   1 Butyl butanoate 9   

Propanal   1 Methyl 3-methylbutanoate  5  

Methylpropanal  2  Methylbutyl butanoate 9   

2-Methyl propanal   3 Hexyl-butanoate 9   

Butanal   4 Butyl hexanoate 9   

2-Methyl butanal   3 Pentyl hexanoate  11  

3-Methyl butanal   3 Hexyl hexanoate 9   

(E)-2-Ethyl-2-butenal  5  Ethyl octanoate 9   

Pentanal 6  3 Lactones    

Hexanal   1;3;4 �-Octalactone  8  

(E)-2-Hexenal   4 �-Nonalactone  8  

Heptanal   4 �-Decalactone  8  

2-Heptenal   3 �-Decalactone  8  

(E,Z)-2,4-Heptadienal  5  4-Hydroxynonanoic acid lactone  7  

Octanal   4 4-Hydroxy-2-nonenoic acid lactone  7  

(E)-2-Octenal   4 Pyrrole compounds    

Nonanal   4 Pyrrole  5;10  

(Z)-3-Nonenal  7  2-Acetylpyrrole  10  

(E,E)-2,4-Nonadienal   1 3-Acetyl-1-methylpyrrole  10  

(E,Z)-2,6-Nonadienal  7  2-Methylpyrrole  5  

2,6-Nonadienal   4 2-Methyl-1(H)-pyrrole  10  

trans-4,5-Epoxy-(E)-2-nonenal  7  3-Methyl-1(H)-pyrrole  10  

(E)-2-Decenal  7  1-Ethylpyrrole  5  

(E)-4,5-Epoxy-(E)-2-decenal  7;8  1-Ethyl-1(H)-pyrrole  10  

(E,E)-2,4-Decadienal   1 2-Ethyl-1(H)-pyrrole  10  

1-Butyl-1-(H)-pyrrole  10  2-Acetylpyrazine  7 4 

1-Pentyl-1(H)-pyrrole  10  2-Acetyl-6-methylpyrazine  10  

2-Pyrrolidinone  10  2-Butyl-3-methylpyrazine  10  

1-Methyl-2-pyrrolidinone  5;10  2-Ethenyl-3-ethyl-5-methylpyrazine  7;8  

2-Acetyl-1-pyrroline   4 2-Ethenyl-5-methylpyrazine  10  

1-(H)-pyrrole-2-carboxaldehyde  10  2-Ethenyl-6-methylpyrazine  10  

1-Methyl-1(H)-pyrrole-2-carboxaldehyde  10  2-Isobutyl-3-methoxypyrazyne  7  

1-Pyrrolidinecarboxaldehyde  10  2-Methyl-3,5-diethylpyrazine   4 

Oxazoles    2-Methyl-5-(1-propenyl)-pyrazine  10  

4,5-Dimethyloxazole  5  2-Vinyl-6-methylpyrazine   2  

Indols    3,5-Diethyl-2-methyl-pyrazine   10  

2,3-Dihydroindole  5  3,5-Dimethyl-2-isobutyl-pyrazine  10  

Furan compounds    3-Isobutyl-2-methoxypyrazine  8  

2-Methylfuran  5  5-Ethyl-2,3-dimethylpyrazine  5  

2-Ethylfuran  5  5-Methyl-2,3-diethylpyrazine   4 

2-Ethyl-5-methylfuran  5  5-Methyl-5(H)-cyclopentan-pyrazine  10  

2-Vinylfuran  5  Dimethylisobutylpyrazine isomer  5  

2,5-Dihydro-3,4-dimethylfuran  5  Ethenylpyrazine  10  
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methoxy-3-isopropylpyrazyne and 2-methoxy-3-isobutyl-
pyrazine). The remaining odours were not found because 
they were present at concentrations below the detection 
limits of GC-MS. 

In 1999, Mutti and Grosch evaluated the potent odo-
rants of boiled potatoes (variety ‘Sieglinde’) by aroma ex-
tract dilution analysis, aroma extract concentration analysis 
and GCO of static headspace samples. The volatiles isolated 
from potato samples were separated into neutral/basic and 
acidic fractions. In the neutral/basic fraction, 29 odorants 
were detected and the most odour active compounds were 
found to be methional (boiled potato odour) and 4,5-epoxy-
(E)-2-decenal (metallic odour), evaluated on the basis of the 
flavour dilution (FD) factor. In the acidic fraction, the high-
est FD factor was shown by vanillin. 

Ulrich et al. (2000) used sensory techniques and instru-
mental analysis to illustrate the differences in aroma among 

3 German varieties (‘Adretta’, ‘Likaria’ and the breeding 
clone St 1,365) of potato after boiling. The off-flavours 
components contributed more than the positive ones to 
differentiate the aroma of the varieties tested, and the main 
compounds implicated in these differences included (E)-2-
pentenal, 2-methylbutanol, 2-pentylfuran, pyrrole and dif-
ferent dienals. Essential aroma compounds, similar between 
the three varieties, were methional, diacetyl and 5 substi-
tuted pyrazines, in agreement with former investigations 
(Salinas et al. 1994; Ulrich et al. 1997, 1998). 

A sensory profiling of several Danish potato varieties 
grown in different locations has recently been carried out 
(Kreutzmann et al. 2011). A tailor-made sensory profile was 
developed for different cooking procedures: boiled, mashed, 
oven-fried and oven-cooked potatoes. The study showed 
that flavour and taste attributes were significantly correlated 
and they had a great importance in describing the variations 
between potato cultivars. In particular, the flavour of boiled 
potatoes was correlated to the bitterness attribute, while in 
mashed potatoes potato the flavour was found to be in-
versely correlated to graininess. The relevance of using sen-
sory descriptors to define appropriateness of potato culti-
vars for different culinary preparations has been discussed 
also by Seefeldt et al. (2011b). 

Currently, several investigations have been carried out 
concerning off-flavour development in potatoes, and mostly 
related their development during storage of raw potatoes, 
and dehydrated potato products (Maga 1994). Moreover, it 
was noted that when boiled potatoes are stored they rapidly 
develop off-flavours, one of the most important of which is 
described as a cardboard-like note. Petersen et al. (1998) 
performed a sensory evaluation of freshly boiled and boiled 
stored potatoes, followed by GC-MS and GC-sniffing to 
identify and quantify the compounds responsible for potato 
off-flavours (POF). Eight compounds (pentanal, hexanal, 
nonanal, (E)-2-octenal, 2,4-heptadienal, (E)-2-nonenal, 
(E,E)-2,4-nonedienal and 2,4-decadienal) were identified as 
potential contributors to POF. 

The authors assumed that such potato off-flavours, 
mainly represented by aldehydes and some alcohols, were 
produced during 24 h storage from the breakdown of 
hydroperoxides, resulted from lipoxygenase initiated oxi-
dation of linoleic and linolenic acid during boiling. 

To better explain the mechanism of formation of off-
flavours in boiled potatoes, with particular emphasis to 
lipoxygenase activity, Petersen et al. (2003) monitored 
lipoxygenase activity and the content of volatile compounds 
mainly responsible for the formation of off-flavour (penta-
nal, hexanal, (E)-2-octenal, (E)-2-nonenal, (E,E)-2,4-nona-
dienal and (E,E)-2,4-decadienal) in potatoes during winter 
storage. Aroma compounds were determined at 3, 4 and 7 
months after harvest in raw, freshly boiled and in boiled 
potatoes refrigerated for 24 h. It was found that lipoxy-
genase activity increased during long-term storage of raw 
potatoes, starting from 4 months after harvest. However, the 
increasing lipoxygenase activity during winter storage was 
accompanied by a decrease in production of the off-flavour 
compounds when potatoes were stored after boiling. The 
production of off-flavours during storage of boiled potatoes 
could not be explained by changes in lipoxygenase activity, 
and the authors highlighted the needing for further inves-
tigations on the availability of substrates leading to produc-
tion of important aroma compounds in boiled potatoes. 

Conventionally, potatoes are stored for long periods 
after harvest in order to provide a yearlong supply for in-
dustry and final consumers. Storage conditions before 
cooking is an important factor in determining the composi-
tion of sensory characteristics of boiled potatoes. In fact, 
several modifications occur in tuber composition during 
storage: fatty acids, sugars and amino acids are particularly 
involved in these changes. 

Blanch et al. (2009) studied the effect of storage tem-
perature before cooking on boiled potato lipid and sugar-
derived volatile constituents by comparing 2 genotypes of S. 
phureja and one of S. tuberosum, stored at 4 and 8°C. It was 

Table 4 (Cont.) 

 Boileda Friedb Ext-Dec

Tetrahydrofuran  5  

Tetrahydro-2-methyl furan  11  

5-Ethyl-dihydro-2(3)-furanone  11  

5-Pentyl-2(5)-furanone   11  

5-Hexylhydro-2(3)-furanone  11  

3-Hydroxy-4,5-dimethyl-2(5H)-furanone  7;8 4 

4-Hydroxy-2,5-dimethyl-3(2H)-furanone  7;8 4 

2,5-Furandione  5  

2-Furfurylthiol   4 

2,5-Dimetyl-3-furanthiol   4 

Pyrane compounds    

trans-Tetrahydro-5,6-dimethyl-2(H)-2-

pyranone 

 11  

3-Hydroxy-2-methylpyran-4-one  7  

Pyridine compounds    

Pyridine  10  

2-Methyl pyridine  10  

3-Methyl pyridine  10  

2,6-Dimethyl pyridine  10  

3-Ethyl pyridine  10  

Acetyl pyridine  10  

n-Acetyl-4(H)-pyridine  10  

1-Acetyl-1,2,3,4-tetrahydro-pyridine  10  

1-(2-Pyridinyl)-1-propanone  10  

2-Pyridinecarboxaldehyde  10  

Pyrazines    

(1-Methylethenyl)-pyrazine  10  

2-(n-Propyl)-pyrazine  10  

2,3,5,6-Tetramethylpyrazine  10  

2,3-Diethylpyrazine  5;10  

Ethylpyrazine   2;5;10  

Isopropenylpyrazine  5  

Tetramethylpyrazine  10  

Vinylpyrazine  2  

5,6,7,8-Tetrahydroquinoxaline  10  

Sulphur compounds    

Methanethiol   3;4 

Phenyl methanethiol   4 

Dimethyl disulfide   3 

Dimethyl trisulfide   4 

2-Methylthiophene  5  

3-Methylthiophene  5  
a New volatiles in boiled potatoes respect Dresow and Böhm (2009) 
b New volatiles in chips, French fries and crisps respect Maga (1994) 
c New volatiles in extruded an dehydrated potato products respect to Maga (1994)

1 Nissen et al. 2002 
2 Martin and Ames 2001 

3 Laine et al. 2006 

4 Majcher and Jelén 2009 
5 Van Loon et al. 2005 

6 Blanch et al. 2009 

7 Wagner and Grosch 1997 
8 Wagner and Grosch 1998 

9 Blanda et al. 2010 

10 Lojzova et al. 2009 
11 Sanches-Silva et al. 2005 
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found that the storage temperature affected lipid-derived 
volatile components, on the basis of the variety studied, but 
in general the sugar-derived volatile constituents increased 
when lower temperatures were used, probably due to a slow 
metabolism. These conditions inhibited lipid oxidation and 
lowered the levels of lipid-derived compounds in the final 
product. The authors recommended to store potato tubers at 
8°C since the formation of Maillard products was mini-
mised and no signal of sprouts was observed. 

Several agronomic factors may influence the sensory 
quality of boiled potatoes in addition to variety, including 
the type of fertilizer and method of application, soil type 
and climatic factors. Thybo et al. (2002) investigated the ef-
fect of 6 different organic treatments (cattle slurry and cattle 
deep litter applied in three ways, corresponding to an equal 
supply of total nitrogen) on the chemical, rheological and 
sensory quality of cooled potatoes. Regarding sensory qual-
ity, minor differences were found among the organic treat-
ments investigated. Despite such small differences, statis-
tical analysis showed that compared with deep litter, slurry 
increased the off-odour perception and decreased the typical 
potato odour and flavour, probably due to the delay in matu-
ration retarding the production of the flavour components. 
Moreover, potatoes matured with slurry had slightly higher 
off-odour and off-flavour, but the differences were ex-
tremely small. 

Minimally-processed potatoes have been studied in 
recent years with regards to sensory quality and chemical 
components, some applications of which include raw pre-
peeled and precooked vacuum-packed potatoes. Thybo et al. 
(2006) compared 6 different cultivars (‘Berber’, ‘Arkula’, 
‘Marabel’, ‘Sava’, ‘Folva’ and ‘Agria’) and evaluated their 
suitability to be processed as pre-peeled potatoes, taking 
into account the effects of wound healing and storage time. 
Concerning the volatile profile, variations in several aroma 
components were found, such as methional, linalool, p-
cymene, nonanal and decanal, mainly caused by the effects 
of cultivar and storage. The highest concentrations of nona-
nal and decanal were found in the ‘Marabel’ and ‘Berber’ 
cultivars, which showed a high intensity of rancidness and a 
low intensity in potato flavour. Owing to the high moistness 
and the low firmness, the ‘Marabel’ variety seemed to be a 
less appropriate cultivar for this type of product. 

Jensen et al. (1999) used precooked vacuum-packed 
potatoes to evaluate the development of potato off-flavours 
(POF) in 4 varieties (‘Jutlandia’, ‘Bintje’, ‘Sava’ and ‘Dali’) 
grown in two different locations in Denmark. They found 
statistically significant differences in the content of POF 
compounds between the growing location (mainly for ‘Jut-
landia’ and ‘Sava’) among some of the varieties. The grow-
ing location effect can be explained by the environmental 
conditions throughout the period of growing, harvest and 
storage. The most potent POF compounds, evaluated on the 
basis of their aroma values (Rothe and Thomas 1963), were 
(E,E)-2,4-nonadienal and (E,E)-2,4-decadienal, followed by 
hexanal, (E)-2-octenal and (E)-2-nonenal. The results of 
this study showed that agronomic conditions can influence 
POF formation in precooked vacuum-packed potatoes. 

Off-flavour development in boiled potato slices has also 
been studied by Blanda et al. (2010). The authors per-
formed a sensory evaluation system, using a quantitative-
descriptive analysis (QDA) scheme, and defined the odour, 
flavour and texture features of boiled potato slices. A HS-
SPME-GC-MS method was developed to determine the 
volatile components in boiled potatoes, and investigation of 
the mechanism of generation of off-odours and off-flavours 
during storage showed that they did not increase linearly 
with time, but reached a maximum value after 6 h of sto-
rage, further decreasing after 8 and 10 h and finally increa-
sing again after 24 h of storage. This trend was explained by 
a kinetic mechanism involving the formation of hydro-
peroxides during the first hours of storage. POF formation 
was strongly correlated with a high content of aldehydes 
such as 2-penthylfuran, 2-pentenal, 2-hexenal, 2-heptenal 
and 2-decenal, and good agreement between the sensory 

evaluation and the HS-SPME/GC-MS analysis was found. 
Treatment of potato slices with several food additives (as-
corbic acid, citric acid, sodium acid pyrophosphate and 
meta-bisulphite) after cooking was also investigated. 
Interestingly, ascorbic acid and citric acid did not prevent 
the formation of POF, but actually enhanced it; although 
potassium meta-bisulphite prevented POF formation, it 
caused the formation of other off-flavours. The best additive 
was sodium pyrophosphate, which did not change the fla-
vour of potato slices during storage. 

The impact of volatile and non-volatile metabolites on 
potato flavour attributes was investigated by Morris et al. 
(2010). Tubers (S. tuberosum group Phureja and S. tubero-
sum group Tuberosum) were sampled at harvest and fol-
lowing 3 months’ storage. Quantitative descriptive analysis 
(QDA) was carried out on boiled potatoes by a trained 
panel and aroma related attributes were evaluated. More-
over the cooked tuber volatile profile was analysed by 
SPME/GC-MS. 

The authors found that hexanal and 2-methylbutanoic 
acid methyl ester were strongly negatively correlated with 
aroma intensity but positively correlated with flavour inten-
sity, creaminess and savouriness. Conversely, metabolites 
positively associated with aroma intensity such as 2-methyl-
butanal, 3-methylbutanal, and furan were strongly nega-
tively correlated with flavour intensity, savouriness and 
creaminess. Significant changes in flavour were related to 
storage: several aldehydes were found at higher levels after 
storage. 
 
Baked potatoes 
 
One of the most popular ways to cook fresh potatoes is by 
baking (Lin and Yen 2004). However, unlike boiled pota-
toes, which have been thoroughly investigated, baked 
potato flavour has been somewhat neglected, and up to 
1994, only 11 publications have been reported (Maga 1994). 

Volatiles from baked potatoes are usually classified 
based on the mechanism of formation. Fatty acids, sugars 
and amino acids are the main precursors of the compounds 
responsible for the flavour of baked potatoes (Whitfield and 
Last 1991). A high proportion of the compounds identified 
came from lipid oxidation, and many volatiles are formed 
from the Maillard reaction, with or without the involvement 
of sulphur-containing amino acids. Smaller amounts of indi-
genous flavour compounds such as terpenes and methoxy-
pyrazines have also been identified. 

Recent studies on baked potatoes have investigated the 
different flavour profile of skin and flesh potatoes, as well 
as the effect of storage, varietal and environmental factors 
on final aroma. Additionally, new cooking methods such as 
microwave baking have been studied and compared to trad-
itional ones. 

Oruna-Concha et al. (2001) reported the volatile flavour 
compounds of 4 different potato cultivars (‘Cara’, ‘Mar-
fona’, ‘Fianna’ and ‘Nadine’) after baking and separately 
studied the volatile composition of skin and flesh. It was 
reported that their composition varied quantitatively and 
qualitatively among cultivars grown at different sites. Sugar 
degradation and/or the Maillard reaction were the major 
sources of volatiles in skin, largely due to pyrazines, in 
‘Cara’, ‘Marfona’ and ‘Fianna’ cultivars. Solavetivone was 
the major volatile in ‘Nadine’ skins, suggesting that tubers 
of this cultivar were under stress during storage. Pyrazines, 
including 2,5- and/or 2,6-dimethylpyrazine, were the most 
abundant representatives in every cultivar. 

‘Fianna’ gave the weakest volatile profile in flesh (85 
ng/g), whereas ‘Cara’ gave the strongest (869 ng/g); lipid 
degradation was the predominant source of volatiles in 
‘Cara’ (93% of the total volatiles, corresponding to 810 
ng/g), and a major source in ‘Fianna’ (75% corresponding 
to 64 ng/g), but accounted only for 15% (14 ng/g) and 19% 
(21 ng/g), respectively, of the total volatiles in ‘Nadine’ and 
‘Marfona’. Levels of volatiles from sugar degradation 
and/or the Maillard reaction were similar (14-58 ng/g) in 
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the analysed cultivars. 
The odour unit values were taken into account to select 

the key aroma compounds of skin and flesh baked potatoes. 
For skin, 2-isopropyl-3-methoxypyrazine has the highest 
odour unit value and has an important contribution to aroma 
only in ‘Marfona’, clearly distinguishing this cultivar from 
others. In flesh, (E,E)-2,4-decadienal appeared to be the 
most important contributor to aroma in ‘Cara’ and ‘Fianna’. 
‘Marfona’ was distinguished from the other cultivars by the 
contribution of dimethyl disulphide. 

A varietal study was also carried out by Duckman et al. 
(2001) who examined the volatile flavour components in 
the flesh of 11 potato cultivars (‘Nadine’, ‘Golden Wonder’, 
‘Fianna’, ‘Estima’, ‘Cara’, ‘Saxon’, ‘Kerr's Pink’, ‘Maris 
Piper’, ‘Desiree’, ‘Marfona’ and ‘Pentland Squire’) grown 
in the same location in Spalding. 81 volatile compounds 
were identified in this study and semiquantitative results, 
represented by relative GC peak area units, were reported. 

Lipid oxidation and Maillard reaction were found to be 
the major sources of flavour compounds of baked potato 
flesh, even though other components (sulphur compounds, 
methoxypyrazines and terpenes) were also present at lower 
levels. Abundant representatives of lipid-derived products 
were hexanal, nonanal and decanal. The most abundant rep-
resentatives of the Maillard reaction and/or sugar degrada-
tion were the Strecker aldehydes of isoleucine and leucine, 
i.e., 2- and 3-methylbutanal, which were identified in every 
cultivar and contributed to 75-96% of the volatiles in this 
category. 3,5-dimethyl-2-(2-methylpropyl)pyrazine was 
first reported in this study. Methional, considered to be one 
of the most important contributors to the aroma of baked 
potatoes (Whitfield and Last 1991), has been identified in 
only 5 cultivars (‘Nadine’, ‘Desiree’, ‘Marfona’, ‘Maris 
Piper’ and ‘Pentland Squire’). In contrast, dimethyl disul-
phide (which can form from methional) was present in all 
cultivars and dimethyl trisulphide was reported in all except 
‘Golden Wonder’. 

14 terpenes were identified, and 11 (�-pinene, Z-oci-
mene, E-ocimene, linalool, isophorone, �-cyclocitral, �-
damascenone, �-copaene, geranyl acetone, �-aromaden-
drene and �-guaiene) had not previously reported to be 
components of baked potato aroma. 

2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxy-
pyrazine, �-damascenone, dimethyl trisulphide, decanal and 
3-methylbutanal were found to be major contributors to 
flavour in at least one cultivar. 

Few studies have examined the effect of storage on fla-
vour development after cooking. An extensive investigation 
was carried out by Duckham et al. (2002), who examined 
the effects of storage time (2, 3 and 8 months at 4°C) on the 
amounts of selected volatile flavour components in baked 
potatoes. Five potato cultivars (‘Estima’, ‘Saxon’, ‘Golden 
Wonder’, ‘Kerr’s pink’ and ‘Desiree’) grown in different 
sites were analysed, and several significant differences were 
found in the levels of individual compounds, compound 
classes and total monitored compounds in terms of the 
individual effects of cultivar and storage time and their two-
way interactions. A significant increase in the total amount 
of compounds between 2 and 3 months and between 3 and 8 
months storage was recorded. The compounds derived 
primarily from lipids increased with storage time, as well as 
the total levels of Maillard/sugar-derived compounds. Indi-
vidual terpenes (except 3-carene) and 2-isopropyl-3-
methoxypyrazine were significantly higher after 3 months 
compared to the other storage times. Methional was the 
only sulphur compound that showed a significant storage 
time effect, decreasing between 3 and 8 months. 

The authors suggested that cultivar, agronomic factors 
and tuber storage conditions affected the levels of flavour 
precursors and activities of enzymes that mediated the for-
mation of flavour compounds. 

Oruna Concha et al. (2002b) investigated the effects of 
3 cooking procedures, boiling, conventional baking and 
microwave baking, on the profiles of flavour compounds of 
2 cultivars of potato (‘Estima’ and ‘Maris Piper’) and iden-

tified 95 flavour compounds. The authors noted that micro-
wave-baked potatoes had the weakest isolates of volatiles 
compounds among tested procedures. In particular, the total 
amounts of compounds derived from sugar degradation and/ 
or the Maillard reaction, largely represented by 2- and 3-
methylbutanal, were highest for conventionally-baked pota-
toes. However, the lipid-derived compounds were 1.2-1.5-
fold higher with microwave baking. Sulphur compounds, 
such as terpenes and methoxypyrazine, showed no signi-
ficant differences between conventional and microwave 
baking. The quantitative and qualitative differences for the 
flavour compounds were explained by variations in heat 
and mass transfer processes. 

Oruna-Concha et al. (2002a) evaluated the effect of cul-
tivar on volatile flavour compounds in potato baked in a 
microwave oven. The flavour components of the flesh of 8 
cultivars (‘Marfona’, ‘Desiree’, ‘King Edward’, ‘Fianna’, 
‘Nadine’, ‘Pentland Squire’, ‘Saxon’ and ‘Cara’) were iso-
lated by headspace trapping onto Tenax and analysed by 
GC-MS. Each potato cultivar possessed a unique profile of 
volatile compounds. Cara had the lowest overall total 
amount of all categories of compounds, while King Edward 
had the highest. 80 compounds were identified in this study: 
60 were lipid-derived, in contrast to 33 reported by the 
same authors from conventionally-baked potatoes (Oruna-
Concha et al. 2001). Seven terpenes (one monoterpene and 
6 sesquiterpenes), which were tentatively identified, had not 
been previously reported as volatile components of potatoes. 
No alkylpyrazines were identified in the microwave-baked 
potatoes, since they were more favoured by the conditions 
encountered during conventional baking of potato tubers. 
The authors suggested that total levels of compounds and 
variations among their profiles could be attributed to dif-
ferences in the activities of lipid enzymes and levels of fla-
vour precursors considering the range of cultivars inves-
tigated. Moreover, they recommended sensory analysis to 
identify the best cultivar for microwave baking. 

Jansky (2008) evaluated the contributions of genotype 
and environment on the sensory properties of baked pota-
toes, including “potato-like” flavour and off-flavour inten-
sities. Moreover, the relationship between the individual 
flavour components and the overall quality perception was 
determined. A trained panel evaluated 16 potato cultivars 
(russets, whites, reds and specialty clones) grown in dif-
ferent locations and stored for 2 years. Several differences 
among cultivars and production environments were found. 
Stored potatoes received higher quality perception scores 
than fresh potatoes. Potato-like flavour intensity was posi-
tively associated with quality perception, and a strong nega-
tive association between off-flavour and quality perception 
was also detected. 

The sensory properties of organically farmed and con-
ventionally produced potatoes have been recently inves-
tigated by Gilsenan et al. (2010), Hajšlová et al. (2005) and 
Wszelaki et al. (2005). No significant differences between 
organic and conventional cooked potatoes for aroma attrib-
utes were found. 
 
Potato chips and French fries 
 
Deep-fat frying is one of the oldest processes of food pre-
paration, and consists in the immersion of food pieces in hot 
oil. The high temperature causes the evaporation of water, 
which moves away from the food into the surrounding oil 
that replaces some of the lost water. The aim of deep-fat 
frying is to seal the food by immersing it in hot oil so that 
all flavours and juices are retained by the crisp crust 
(Moreira et al. 1995). 

The flavour of potato chips is influenced not only by 
potato tuber cultivar, but also by frying oil composition, 
temperature and time of frying (Martin and Ames 2001). 
More than 500 compounds have been identified in the vola-
tile fraction of French fries and potato chips showing a 
similar aroma. 

Wagner and Grosch (1997) identified potent odorants in 
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French fries by application of both aroma extract dilution 
analysis (AEDA) and GC-O of headspace samples. Potato 
strips of the Agria variety were fried in palm oil, and a total 
of 48 odorants were revealed; 23 components were reported 
for the first time as components of fried potatoes, also due 
to a difference in the analytical strategy employed, which 
enabled them to identify odorants that were not visible as 
peaks in the gas chromatogram. Among the odorants show-
ing higher (FD) factors, methional, 2,3-diethyl-5-methyl-
pyrazine, (E,E)-2,4-decadienal, 4-hydroxy-2,5-dimethyl-3 
(2H)-furanone and 3-methylbutanal were used as reference 
stimuli for flavour profile analysis of French fries. The 
deep-fried note (caused by (E,E)-2,4-decadienal) predomi-
nated when French fries were nasally evaluated, whereas 
the deep-fried and boiled potato-like smells (caused by 
methional) were mainly perceived in the retronasal test. 

In 1998, the same authors (Wagner and Grosch) eval-
uated the main contributors to the flavour of French fries 
prepared in palm oil (PO) and coconut fat (CF). The coco-
nut-like note in the flavour profile of CF was mainly sti-
mulated by �-lactones with 8 and 10 carbon atoms, while 
the character impact odorants of PO were 2-ethyl-3,5-di-
methylpyrazine, 3-ethyl-2,5-dimethylpyrazine, 2,3-diethyl-
5-methylpyrazine and 3-isobutyl-2-methoxypyrazine (ear-
thy odour); (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal and 
(E)-4,5-epoxy-(E)-2-decenal (stimulating the deep fried 
impression); 4-hydroxy-2,5-dimethyl-3(2H)-furanone (cara-
mel-like note); methylpropanal, 2-methylbutanal and 3-
methylbutanal (malty notes); and methanethiol (sulphurous, 
cabbage-like odour). The odorants showing relatively high 
OAV were dissolved in sunflower oil to give two model 
systems, and a sensory study was undertaken. The flavour 
profile of the model obtained (MPO) was compared to that 
of the real PO for similarity. Furthermore, changes in the 
overall flavour of MPO were evaluated after omission of 
one or more odorants to determine their contributions to the 
flavour of PO. The absence of methional in MPO was not 
perceived by the sensory panel, supposing that this mole-
cule did not contribute to the flavour of French fries, while 
a greater impact on flavour was imparted by methanethiol, 
another degradation product of methionine. 

Martin and Ames (2001) evaluated the effect of frying 
oils (palmitolein and silicone fluid) on flavour compounds 
formed in chips. The flavour profile was examined in rela-
tion to the heat-transfer process and precursor formation 
from frying medium. Strecker aldehydes and sulphur com-
pounds did not differ significantly between the frying media. 
Potatoes were presumed to provide all the precursors re-
quired for the formation of these compounds. Although 
pyrazines were significantly lower when potato slices were 
fried in silicone fluid, comparing the percentage relative 
amount of pyrazines in chips fried in palm olein or silicone 
fluid it was observed that the amount of total pyrazine was 
similar in the two frying media. The authors suggested that 
the reaction pathways leading to pyrazine formation in palm 
olein and silicone fluid were the same, and palm olein did 
not provide a source of flavour precursors. However, the 
kinetics of pyrazine formation appeared to be different, 
probably due to differences in heat transfer in potato slices. 
With regard to lipid oxidation products, the amounts of 2,4-
decadienal were significantly higher in palm olein-fried 
chips, but there was no significant difference in hexanal 
levels between samples. 

Hawrysh et al. (1996) evaluated the quality and storage 
stability of potato chips deep fried in canola (CO), partially 
hydrogenated canola (PHCO), soybean (SBO), and cotton-
seed oils (CSO). Sensory evaluation was made after accele-
rated (0, 6, and 12 days at 60°C) and practical storage (18 
weeks at 23°C). The quality of potato chips was influenced 
by frying oil and storage conditions. Fresh CO and CSO 
chips had higher characteristic potato chip odour and lower 
off odour/flavour than SBO and PHCO chips. During ac-
celerated storage, chips developed off odour/flavour depen-
ding on frying oil. At practical storage conditions, CO chips 
had higher characteristic potato chip odour/flavour and 

lower off odour/flavour than other chips. The results of this 
study indicate considerable potential for CO and PHCO as 
suitable alternative frying oils for snack food manufacture. 

Pangloli et al. (2002) evaluated the flavour stability of 
potato chips fried in cottonseed, sunflower oils and palm 
olein/sunflower oil blends. All the potato chips contained 
abundant and similar amounts of hexanal and (E,E)-2,4-
decadienal, deriving from the oxidation of linoleic acid, 
which was the most abundant fatty acid found in the frying 
oils. Sensory evaluation showed that the intensity of potato 
chip flavour was similar among oils and blends and did not 
change during storage; however oxidative rancidity and off-
flavour increased in chips fried in cottonseed oil after 6 
weeks storage. This off-flavour was due to 1-decyne, iden-
tified by SPME analysis. The authors found that the ad-
dition of 20 or 40% of palm olein oil to sunflower oil pro-
duced chips more stable to oxidation during storage, with-
out losing the characteristic potato chip flavour. 

Warner et al. (1997) determined the effects of fatty acid 
composition of frying oils on intensities of fried-food fla-
vour and off-flavours in potato chips and french-fried 
potatoes. Cottonseed oil (CSO) and high-oleic sunflower oil 
(HOSUN) were blended to produce oils with 12 to 55% 
linoleic acid and 16 to 78% oleic acid. Hexanal, pentanal, 
2,4-decadienal, octanal, and nonanal were used to monitor 
oxidation of the oil during potato chip storage. Volatile 
compounds were monitored in fresh and aged (6 months at 
25°C) potato chips. Analytical sensory panels evaluated 
french-fried potatoes and pilot plant-processed potato chips; 
fried-food flavour intensity was the best indicator of overall 
flavour quality in fresh potato chips. The authors found that 
the fried-food flavour decreased with decreasing levels of 
linoleic acid and 2,4-decadienal, a breakdown product of 
linoleic acid oxidation. HOSUN (78% oleic acid) produced 
the lowest levels of hexanal and pentanal, indicating greater 
frying oil stability and oxidative stability of the food. How-
ever, fresh potato chips fried in HOSUN had the lowest 
intensities of fried-food flavour and lowest overall flavour 
quality. No oil analysis could predict flavour stability of 
aged potato chips. 

Brewer et al. (1999) assessed selected volatiles (penta-
nal, hexanal, (E)-2-hexenal, heptanal, (E)-2-heptenal, 2-
pentylfuran, (E)-2-octenal, nonal, (E, E)-2,4-decadienal) 
and sensory characteristics of frying fats (low linolenic acid 
soybean oil, creamy partially hydrogenated soybean oil, 
liquid low linolenic acid hydrogenated soybean oil, and 
liquid partially hydrogenated soybean oil) and of French 
fries fried in those fats. Odour characteristics of French 
fries reflected those of the oils in which they were fried. 
Hexanal in the French fries was an indicator of loss of 
“positive” odour attributes and development of rancid, 
grassy, painty and acrolein odours. Hexanal content in 
French fries was highest for those fried in low linolenic acid 
soybean oil and lowest for those cooked in low linolenic 
acid hydrogenated soybean oil. 

Van Loon et al. (2005) identified odour active com-
pounds in French fries (Agria variety) at mouth conditions, 
created to mimic release of volatile compounds from the 
food to the nose epithelia, where odour is sensed. The 
amount of product in relation to mouth volume, the tempe-
rature and the mixing of the product with artificial saliva 
were taken into account. 122 compounds were identified by 
GC-MS: 85% of them originated from sugar degradation 
and/or Maillard reaction. 2-Methylpropanal, 2-methylbuta-
nal, 3-methylbutanal were the main representatives. 26 
pyrazines were found of which 5 had not been previously 
reported from potato (Table 4). Fifteen percent of the vola-
tiles were lipid-derived and ethanol, 2-propanol, hexanal, 
and nonanal showed the highest relative areas of this group. 
About 50 odour active compounds were responsible for 41 
odours perceived by the panel. The compounds with the 
highest detection frequencies caused strong malty and fried 
potato notes, combined with caramel/buttery, green, spicy 
and deep-fried notes. Chemical and sweaty odours were 
also observed. 
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Several methods have been developed by Lojzova et al. 
(2009) for the analysis of substituted pyrazines and other 
aromatic compounds formed during the Maillard reaction in 
potato chips. The original aim of this study was to find 
possible volatile markers of acrylamide formation during 
potato chips preparation, and as previously reported, the 
release of alkylpyrazines was shown to correlate with acryl-
amide formation. After HS-SPME, the authors compared 3 
different separation/detection approaches: gas chromatog-
raphy–ion trap mass spectrometry (GC–ITMS), gas 
chromatography–time-of-flight mass spectrometry (GC–
TOFMS) and comprehensive two-dimensional gas chroma-
tography–time-of-flight mass spectrometry (GC×GC–
TOFMS). They identified 13 target alkylpyrazines (Table 4). 
The major problem encountered was the resolution of 3 iso-
meric pyrazine pairs (2,5/6-dimethylpyrazine, 2-ethyl-5/6-
methylpyrazine with 2,3,5-trimethylpyrazine and 2-ethyl-
3,5/6-dimethylpyrazine with 2,3-diethylpyrazine). Full 
chromatographic resolution of all isomeric pairs could not 
be achieved in any of the systems tested, but the use of 
GC×GC–TOFMS offered the best solution, mainly because 
of the lower limits of quantification (LOQs) and better sig-
nal-to noise ratio. 

In addition to the target pyrazines, another 46 nitrogen-
containing heterocyclic compounds (pyrazines, pyrrols, 
pyridines, pyrrolidinones, and tetrahydropyridines) were 
tentatively identified in potato chips by GC(x GC)-TOFMS, 
and only 13 had been previously reported in earlier studies. 

The effect of chemical and biological pre-treatments 
were tested by Anese et al. (2009) in order to reduce acryl-
amide formation and favour the development of the desired 
sensory properties of deep-fried potatoes. Lactic fermen-
tation in the presence or in the absence of glycine, as well 
as immersion in an aqueous solution of the amino acid 
alone, was considered as pre-treatments for potato cubes 
before deep-frying. The effects of each pre-treatment on 
deep-fried potatoes were also compared by evaluating 
sensory attributes and preference. All pre-treatments signifi-
cantly reduced acrylamide formation in deep-fried potatoes, 
but lactic acid fermentation in the presence of glycine was 
the most effective. The dipping treatments did not signifi-
cantly affect the flavour of deep-fried potatoes; the same 
result was obtained by a pair comparison preference test 
carried out on consumers, which showed no differences in 
preferences between water and chemical or biological dip-
ping. 

The sensory effects of different pre-treatments of potato 
slices (Panda and Desirée varieties) before vacuum and 
atmospheric frying were also evaluated by Troncoso et al. 
(2009). Control or unblanched slices without pre-drying 
were analysed; blanched slices in hot water at 85°C for 3.5 
min and air-dried at 60°C until a final moisture content of 
0.6 kg water/kg dry solid; control slices soaked in a sodium 
meta-bisulphite solution (pH 3) at 20°C for 3 min. Pre-
treated slices were then fried at 120 and 140°C under 
vacuum conditions (5.37 kPa, absolute pressure) and under 
atmospheric pressure until they reached a final moisture 
content of 1.8 kg water/100 kg. Concerning the sensory 
results, the best flavour was obtained for control potato 
chips, but no significant differences were found in terms of 
overall quality between control and chips pre-treated with 
meta-bisulphite. 
 
Potato crisps 
 
Few investigations have been published on the flavour pro-
file of potato crisps. As for chips, potato crisps also contain 
a significant amount of frying oil that provides substantial 
vulnerability to oxidative rancidity. Notable attention has 
been paid to the study of flavour profile generated by oxi-
dation processes. 

Sanches-Silva et al. (2005) developed a SPME samp-
ling method for the investigation of volatile compounds 
released during storage of potato crisps. Crisps were pack-
aged in a transparent film in order to evaluate the changes 

in the profile of volatiles under accelerated oxidation. After 
3 months, 31 compounds were identified. From a quantita-
tive point of view, carboxylic acids were the most important 
volatiles identified, mainly represented by hexanoic acid. 
The second most important class of compounds was alde-
hydes, followed by alcohols, ketones, furans and other com-
pounds that resulted from degradation/rearrangement of 
lipids and carbohydrates. Hexanal, formed during the oxi-
dation of linoleic acid via the 13-hydroperoxide, was also 
studied as an indicator of lipid oxidation in potato crisps, 
stored in darkness or with natural light at room temperature 
(Sanches-Silva et al. 2004). The authors noted that there 
was a relevant increase of hexanal, starting from 8 days 
only in samples stored under light conditions. 

Another problem arising during the frying of crisps is 
acrylamide formation. The sensory properties of potato 
crisps were evaluated when several additives, mitigating 
acrylamide formation, were added to blanching water 
(Mestdagh et al. 2008). The authors found that some sen-
sory defects occurred when some acrylamide-lowering 
additives were used, leading to rejection of product by the 
panel. In particular, citric acid and acetic acid plus L-lysine 
induced suppression of the regular taste of potato crisps and 
enhanced sourness and the perception of popcorn-like 
flavours, respectively, leading to unacceptable final product 
quality. 
 
Dehydrated potato products 
 
In the potato industry, potato flakes are a crucial by-product 
obtained with a raw material that can not be used by other 
means. Unfortunately, non-enzymatic browning reactions 
occur during processing, and oxidative reactions occurring 
during storage lead to off-flavour formation (Sapers 1975) 
with important economic losses. Although potato flakes 
have a low lipid content, oxidation is important for limiting 
the deterioration of quality (Löliger and Jent 1983). In fact, 
the lipid fraction is composed primarily of linoleic and lino-
lenic acids that are quite susceptible to oxidation in pre-
sence of air (Buttery et al. 1961). Few papers on volatile 
compound analysis in potato flakes are available, but up to 
now several aspects have been taken into consideration, 
such as the detection of non-enzymatic browning and oxi-
dative compounds, the improvement of flavour in dehyd-
rated potatoes, and the evolution of off-flavours during sto-
rage. 

Laine et al. (2006) evaluated the volatile profile of 
potato flakes (cultivar ‘Bintje’) by SPME-GC-MS, and in 
particular, studied off-flavour formation during 6 months of 
storage. Thirteen volatile compounds were identified at very 
low levels, and hexanal was the main compound that ap-
peared from the 12

th
 to the 24

th
 week of storage. The non-

enzymatic formation of hexanal, mainly derived from lino-
leic acid hydroperoxide, was demonstrated after the ana-
lysis of lipoxygenase activity in potato flakes. 

Nissen et al. (2002) also evaluated the oxidative status 
of potato flakes. In particular, they evaluated the potential 
use of electron spin resonance spectroscopy and investi-
gated the development of oxidation during storage, detec-
ting differences between products protected by different 
natural antioxidants (i.e. rosemary, green tea, coffee, and 
grape skin extracts). The oxidative deterioration of dried 
potato flakes during storage was also monitored by mea-
surement of volatile compounds, at the beginning of storage 
and after 12 weeks, using headspace GC. Sensory analysis 
was carried out as a quantitative sensory profiling to eval-
uate the intensities of a number of defined descriptors for 
the smell and taste characteristics. Longer chain compounds 
(e.g. decadienal) decreased during storage, while shorter 
chain compounds (such as hexanal) derived from break-
down of secondary lipid oxidation products, increased. Sen-
sory evaluation was found to be inconclusive as no signifi-
cant variations with storage time or treatment were detec-
ted; the authors supposed that these results could be due to 
the oxidative changes in unprotected potato flakes during 
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storage and to the protection of potato flakes by antioxi-
dants. 
 
Extruded potato products 
 
Much attention has been paid to the formation of flavour 
compounds via the Maillard reaction during the extrusion 
process and the potential loss of flavour volatiles during 
steam distillation after extrusion. The formation of alkyl-
pyrazines in potato flakes, due to the interaction of reducing 
sugars and free amino acids, was related to this manufacture 
step (Maga 1994). 

Majcher and Jelén (2009) compared the utility of three 
extraction methods: SPME (solid-phase microextraction), 
SAFE (solvent-assisted flavour evaporation) and SDE (sim-
ultaneous distillation and extraction) for characterization of 
flavour compounds from extruded potato snacks. Isolated 
compounds were analyzed using GC–O and GC/MS. The 
results showed that for GCO analysis the most suitable 
extraction method was SAFE, which led to identification of 
25 most potent odorants out of 30 (identified by mass spec-
trometry). Due to the low temperature of extraction applied 
(40° C), SAFE avoided formation of artefacts, in contrast to 
SDE. The SAFE method also proved to be adequate for 
identification of flavour components by GC/MS, showing 
high precision with adequate limits of detection. 

SPME was not able to reveal 7 important components at 
olfactometry port (1-octen-3-ol, 2-ethyl-3,5-dimethylpyra-
zine, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-hydroxy-
4,5-dimethyl-2(5H)-furanone, 5-methyl-2,3-diethylpyrazine, 
�-damascenone and an unknown with a flavour of fresh 
pepper), but it was suitable for the identification of the 
highest number of volatiles (13 in SPME, compared to 12 
and 11 in SAFE and SDE, respectively). In contrast to SDE 
and SAFE, SPME extraction identified low boiling com-
pounds that co-elute with solvents used in other methods. 
Additionally, SPME was able to attain very low detection 
limits (reaching values of 0.2 - 0.3 ppb for hexanal, hep-
tanal 2-ethyl-3,5-dimethyl pyrazines), which made it highly 
suitable for identification of flavour compounds present at 
trace levels. 

The authors confirmed that SDE should not be used for 
food products that are rich in carbohydrates, amines or un-
saturated fatty acids, which can serve as flavour precursors 
during long-term heat treatment used in SDE extraction; in 
this investigation, 2-furfurylthiol, 2,5-dimethyl-3-furanthiol, 
octanal, (E)-2-octenal and nonanal were recognized as arte-
facts. SPME and SAFE extraction methods were recom-
mended for full characterization of odour-active compounds 
in extruded potato snacks. 
 
Other potato-based products 
 
Ogunjobi et al. (2005) evaluated the sensory properties of 
Irish potato (Solanum tuberosum) slices after fermentation 
in 2.0% brine solution for 5 days at room temperature. A 
trained panel of 15 assessors evaluated several sensory 
traits, including the aroma and overall acceptability, of fer-
mented and fresh potato slices cooked by boiling, frying 
with palm oil or a different vegetable oil and roasting. 

The result of sensory evaluation revealed that the fla-
vour of roasted fermented potato was not different from the 
fresh control. The flavour and the general acceptability of 
both fried samples (palm and vegetable oil) were preferred 
by the panel over controls. Boiled fermented potatoes, in 
contrast, had the lowest scores. 

Elmore et al. (2010) studied the effect of sulphur dep-
rivation on the formation of acrylamide and volatile com-
pounds in cooked potato flour. Potato flour was heated at 
180°C for 20 min and volatile compounds of three varieties 
(‘King Edward’, ‘Prairie’ and ‘Maris Piper’), grown with 
and without sulphur fertilizer, were compared. 

49 compounds were present in at least one of the head-
space extracts of the heated flour. 41 compounds were 
affected by sulphur treatment and 42 compounds were 

affected by variety. For freshly-harvested potatoes, sulphur 
deprivation during cultivation resulted in reduced acryl-
amide formation in cooked tuber flour and an overall in-
crease in aroma volatiles. Many of such compounds were 
Strecker aldehydes and molecules formed from their con-
densation, whereas benzaldehyde was found at higher con-
centrations in the sulphur-sufficient flour, as acrylamide. 
 

PERSPECTIVES 
 

The aroma profile of food products is a key factor for the 
determination of consumer preference. The volatile profile 
of raw and processed potatoes has been widely investigated 
with several analytical techniques, but a detailed characteri-
zation of aroma components is difficult to obtain.  

The main biochemical components of processed potato 
flavour have been identified and classified according to 
their mechanism of formation. However many aromatic 
molecules are strictly related to a specific culinary prepa-
ration; moreover also agronomical measures (varieties, agri-
cultural systems, fertilization and storage conditions) have 
to be taken into account. 

These prefaces highlight the need of further investiga-
tion on the factors that can influence the volatile fraction 
formation, mainly in processed potatoes. The results ob-
tained could led to the use of certain potato cultivars for 
specific food preparations, owing to their aromatic profile. 
Investigations on volatile profiles should always be ac-
companied by sensory analysis in order to take into account 
the perception of the volatile molecules during tasting and 
their global effect on product acceptability. 
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5.2 INVESTIGATION OF OFF-ODOUR AND OFF-FLAVOUR 

DEVELOPMENT IN BOILED POTATOES: STUDY ON ITALIAN AN D 

MEXICAN VARIETIES 

The flavour of boiled potatoes is quite little and more than 140 volatile compounds have been 

identified. The typical aroma of boiled potatoes is mainly due to the presence of essential 

compounds such as methional and various pyrazines produced by the Maillard reaction and 

Strecker degradation (Ulrich et al., 2000). 

One of the main problems of ready-to-eat or ready-to-cook foodstuffs that contain 

boiled potatoes is the development of an off-flavour called cardboard-like. Petersen et al. 

(1999) found that the production of cardboard-like off-flavour occurs within a few hours from 

the preparation of boiled potatoes, and is probably due to lipid oxidation. In fact the 

production of this off-flavour is dependent upon the oxygen availability and it might be 

initiated by the lipoxygenase activity (Galliard, 1973; Petersen et al., 1999). 

The lipoxidase enzymes (lipoxygenase and lipoperoxidase), released from the 

disrupted cells during the peeling and the cutting process and during the first time of boiling, 

convert the unsaturated fatty acids, mainly from the cell membranes, to the corresponding 

hydroperoxides. These precursors of volatile compounds can slowly break down into volatile 

carbonyl compounds (for instance aldehydes), even after the heat inactivation of lipoxygenase 

enzyme. This problem is pronounced in pre-cooked potatoes, but can also arise when freshly 

boiled potatoes are allowed to stand for some time between cooking and serving (Petersen et 

al., 1998, 2003). 

Research article 6 focused on the development of a QDA® scheme to define the 

sensory attributes of boiled potato slices. Moreover the volatile components in boiled potatoes 

were investigated through a HS-SPME–GC–MS technique. Finally, the generation 

mechanism of off-odours and off-flavours in boiled potatoes and the effects of food additives 

(ascorbic acid, citric acid, sodium acid pyrophosphate and meta-bisulphite) after cooking were 

examined. 

In this first investigation the Marabel cultivar was used, owing to its marked tendency 

to develop the cardboard-like off-flavour and rancidity (Thybo et al., 2006). 

The development of off-flavours in boiled potatoes depend on various factors, as 

cultivar (Jensen et al. 1999; Thybo et al. 2006), agronomic techniques (Thybo et al. 2002) 

and storage conditions before cooking (Blanch et al. 2009). 

In research article 7 the sensory profiles of three Mexican potato cultivars (Alpha, 

Chica and Gallo) of boiled potatoes were investigated through a QDA® method; the 

development of off-odours was also studied during 57-hours refrigerated storage. A different 
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behaviour was observed with reference to the kind of off-odour developed and its time of 

appearance. 
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ABSTRACT 23 

The flavor of boiled potato is rather weak and changes rapidly during storage; one of the 24 

most important off-flavors, described as cardboard-like note, can be generated within a few 25 

hours from cooking. Its production depends on different factors and represent a big problem 26 

for the production of potato-based foodstuffs. The present study focused on the sensory 27 

profiling of boiled potato slices of three Mexican cultivars (Alpha, Chica and Gallo) by a 28 

quantitative-descriptive analysis (QDA) and on off-odors produced during their refrigerated 29 

storage. The formation of cardboard-like off-odor was detected only in cultivars Alpha and 30 

Chica. The appearance of cardboard-like off-odor in cultivar Chica was detected several 31 

hours after cooking (24 h) and its level was significantly lower than cultivar Alpha (about 30 32 

% lower after 24 and 33 h of storage). Cultivar Gallo presented different oxidation olfactory 33 

perceptions described by the assessors as “burnt” note, detected after 5 h of refrigerated 34 

storage. 35 

 36 

Key words: Boiling, Mexican cultivars, Potato, Off-odors, Sensory analysis 37 

38 
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INTRODUCTION 39 

An important qualitative criteria in assigning a certain potato cultivar to the fresh or 40 

processed food market is its aromatic profile. 41 

The flavor of boiled potatoes is rather weak, although more than 140 volatile compounds 42 

have been identified (Ulrich et al. 2000); they have been especially generated from chemical 43 

precursors typical of raw tubers (Petersen et al. 1998). 44 

Boiled potato flavor changes rapidly during storage owing to lipid oxidation; one of the 45 

most important off-flavors, described as cardboard-like note, is produced within a few hours 46 

from cooking (Blanda et al. 2010; Petersen et al. 1999). This phenomenon is particularly 47 

significant when pre-cooked vacuum-packed potatoes are produced, but also for freshly 48 

boiled potatoes, when there is some time of standing between cooking and serving (Petersen 49 

et al. 1999). 50 

Pentanal, hexanal, nonanal, (E)-2-octenal, 2,4-heptadienal, (E)-2-nonenal, (E,E)-2,4-51 

nonedienal and 2,4-decadienal have been identified as potential contributors to potato off-52 

flavors; they probably appeared during boiling as a result of lipoxygenase initiated oxidation 53 

reactions of linoleic and linolenic acids, and increased during storage (Petersen et al. 1998, 54 

1999).  55 

The formation of boiled potato off-flavors is influenced by several factors as cultivar 56 

(Jensen et al. 1999; Thybo et al. 2006), agronomic techniques (Thybo et al. 2002) and storage 57 

conditions before cooking (Blanch et al. 2009). 58 

In particular, the qualitative and quantitative lipid composition of potatoes, as well as the 59 

content of lipid-degrading enzymes (hydrolytic or oxidising) seem to be the major causes of 60 

off-flavors formation (Galliard, 1973; Galliard and Matthew 1973). However, up to now a 61 

direct correlation between the appearance of oxidation compounds, such as aldehydes and 62 

alcohols, during the storage of boiled potatoes and the lipoxygenase activity has not been 63 

found (Petersen et al. 2003). 64 

The aims of this investigation was to carry out a Quantitative Descriptive Analysis (QDA) 65 

of boiled potato slices of three Mexican cultivars (Alpha, Chica and Gallo) and to trace their 66 

sensory profiles. Cardboard-like off-odor and other olfactory defects, developed during their 67 

refrigerated storage were also investigated. 68 

 69 

 70 

 71 
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MATERIALS AND METHODS 72 

Samples 73 

Potatoes (Solanum tuberosum L.) of Alpha, Chica and Gallo cultivars were bought at a 74 

local market in Chihuahua (Mexico). Potatoes of cv. Marabel, used as reference for the 75 

formation of cardboard-like off-odor, where bought in Italy. The tubers had different weights, 76 

ranging from 300 to 400 g for cvs. Marabel and Alpha and from 200 to 250 g for cvs. Chica 77 

and Gallo. 78 

Potatoes were washed with tap water to remove soil residue before manual peeling. The 79 

central portion of each tuber was cut into 5–10 slices (5 mm thickness), depending on its 80 

dimensions, and the rest of the tuber was rejected in order to obtain slices of similar sizes. 81 

About 200 g of potato slices of each cultivar were boiled separately in 1.5 L of tap water for 82 

optimal cooking times (15 min for cvs. Alpha and Chica and 14 min for cv. Gallo cv.). 83 

After boiling, slices were cooled for 15 min at room temperature (24°C). Potato samples 84 

were analyzed immediately after equilibration with room temperature and after storing in 85 

refrigerated conditions (temperature of 4°C and air exposed) for different times, as detailed in 86 

the following paragraph. 87 

 88 

Sensory analysis 89 

Quantitative Descriptive Analysis (QDA, Stone and Sidel 1993; Stone et al. 1974) was 90 

carried out in the laboratory of sensory analysis at the University of Chihuahua (Mexico). A 91 

panel of ten judges was specifically trained to carry out QDA of boiled potatoes. 92 

The sensory procedure and the attributes developed by Blanda et al. (2010) were modified 93 

(Table 1) and used to describe Mexican boiled potatoes. Only significant attributes were used 94 

to trace the sensory profile of freshly boiled potatoes, as explained in the Results and 95 

discussion session. The descriptors were evaluated on a continuous scale from 1 (no 96 

detectable perception) to 9 (maximum perception) points. Four training sessions were held to 97 

enhance the ability of each panel member to recognize and quantify the descriptors previously 98 

stated.  99 

Potatoes of the cv. Marabel were boiled and stored for 6 hours in refrigerated conditions. 100 

These samples were used to calibrate cardboard-like off-odor and flavor, due to their marked 101 

tendency to develop cardboard-like note, within a few hours from cooking (Blanda et al. 102 

2010; Thybo et al. 2006). Typical fragrance of boiled potatoes was calibrated by tasting 103 

boiled potatoes freshly cooked (cv. Chica). Potato samples (cv. Chica) cooked for increasing 104 

times (from 5 to 18 min) were used to calibrate the panelists for hardness; moreover, 105 
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increasing concentrations of sucrose (0 – 3 % w/v) were added to the cooking water of 106 

potatoes (cv. Alpha) to calibrate the sweetness attribute. When reference standards were not 107 

available, descriptors, learning and alignment procedure were realized as reported by Sulmont 108 

et al. (1999). After attributes calibration, three complete training sessions were carried out in 109 

order to improve panel repeatability. 110 

Sensory evaluation of boiled potatoes was carried out following a specific and 111 

standardized test: each potato slice was cut into quarters, and each piece was served to the 112 

assessors in plastic dishes. Sensory analysis was made in individual booths. After tasting each 113 

sample, the judges rinsed their mouth with water. Each sample was analyzed three times. 114 

As reported in Table 2 a complete sensory analysis (all the significant attributes evaluated) 115 

was carried out on freshly boiled potato slices (not stored, 0 h samples) and on potato slices 116 

stored for 5 and 9 h, in refrigerated conditions (4°C). Particular attention was paid to the 117 

aromatic profile, and the olfactory analysis was carried out also at 24, 33, 48 and 57 h, to 118 

determine when aromatic alterations appeared, as detailed in Table 2; Typical odor, Other 119 

odors, Cardboard-like off-odor and Other off-odors attributes were evaluated during olfactory 120 

analysis. 121 

 122 

Statistical analysis 123 

Data were analyzed using PanelCheck software (ver. 1.4.0), following the workflow 124 

scheme proposed by Tomic et al. (2010) and including mixed model ANOVA, multivariate 125 

(Tucker-1 model) and univariate (F, p, and MSE values) analysis and a consensus approach 126 

based on principal component analysis (PCA) for the evaluation of Mexican potato cultivars. 127 

Statistica 7.0 (Statsoft Inc., Tulsa, OK, USA) statistical software was also used. 128 

 129 

RESULTS AND DISCUSSION 130 

The first part of this work aimed to trace the sensory profile of boiled potato slices from 131 

three Mexican cultivars (Alpha, Chica and Gallo). With this purpose the samples were tasted 132 

immediately after cooking. The second part of this investigation dealt with the study of the 133 

evolution of boiled potato aromatic profiles after a refrigerated storage. A specific goal was to 134 

find the time of appearance of aromatic alterations, with particular attention to the cardboard-135 

like note. 136 

The sensory analysis was performed by training 10 assessors, however only the results of 137 

the eight best performers have considered for data computation. The sensory data have been 138 



Research article 7 

136 

elaborated following the workflow proposed by Tomic et al. (2010), taking into account the 139 

panel performance and then the evaluation of the samples. 140 

 141 

Assessing the importance of the attributes 142 

A mixed model ANOVA was computed first to assess the importance of attributes. It was 143 

decided to use a 3-way ANOVA, modeling samples, assessors, replicates and their 144 

interactions, because each replicate was served to the assessors in different sessions. In this 145 

way the systematic variations, due to the replicate effect, have been taken into account.  146 

The results are shown in Fig. 1 and over the 12 attributes evaluated, 8 were significant at p 147 

< 0.05. The attributes: Cardboard-like off-odor, Other off-odors, Cardboard-like off-flavor 148 

and Other off-flavors were not detected in any of the samples tasted immediately after 149 

cooking. Such attributes were not significant for product effect and it was decided to exclude 150 

them from the analysis in the first part of the investigation. The following evaluations related 151 

to panel performance have been carried out only on the significant attributes (p < 0.05). 152 

By analyzing the replicate effect plot (not shown), it has not been detected any session based 153 

variation for all the attributes evaluated. 154 

 155 

Panel agreement and discriminative capacity 156 

The multivariate analysis (Tucker-1 test) has been applied in order to get an overview 157 

over assessors performances using multiple attributes. The common score and the loading 158 

plots have been examined. The sample tasted were well distributed in the multivariate space 159 

and the panel could distinguish between them (data not shown). 160 

The correlation loading plot generated by PCA on the unfolded matrix has been used to 161 

visualize the performance of individual assessors of the panel. The assessors showed a good 162 

agreement in the evaluation of the 8 attributes identified as significant in the samples tasted 163 

immediately after cooking (Fig. 1, p < 0.05); as shown in Fig. 2, all the judge scores were 164 

well clustered at the outer ellipses of the graphs. 165 

 166 

Repeatability and discrimination capacity of individual assessors 167 

After the panel agreement, the repeatability and the discrimination capacity were 168 

determined following a one-way ANOVA model, as proposed by Naes and Solheim (1991). 169 

Three statistical quantities were calculated, F, p and MSE (Mean Square Error) values, the 170 

first two providing information on the ability of assessors to discriminate between samples 171 

and the third on their reproducibility. 172 
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The F test showed that each assessors could discriminate the three cultivars, at least for 6 173 

attributes (p < 0.05), as reported in Fig. 3a. 174 

Each assessor MSE values were lower than 1.25, for all the attributes tested (Fig. 3b). This 175 

indicates a good reproducibility of the analysis. Moreover, for all the 8 attributes identified as 176 

significant in the samples tasted immediately after cooking (Fig. 1, p<0.05), the CVr% was 177 

considered acceptable being always lower than 20% (Giomo 2000). 178 

Analyzing the F, MSE and p*MSE graph (not shown), it was noted that the lowest 179 

discrimination power was obtained for the attribute Other odors; in fact only three assessors 180 

could discriminate between samples considering this attribute. The reason could be due to the 181 

low intensity of Other odors in all the cultivars tested; moreover, its perception was reduced 182 

by the higher impact of the Typical odor attribute. 183 

 184 

Evaluation of ranking capacity 185 

Profile plots (Fig. 4) showed a good agreement for several of the attributes evaluated. 186 

Some disagreement was found for Typical odors and Hardness attributes. The profiles of 187 

attributes Mealiness, Adeshiviness and Typical flavor were very alike for most of the 188 

assessors, with few exceptions. As an example, for the attribute Mealiness assessor A6 rated 189 

cv. Gallo higher than the other assessors. For the attribute Adhesiviness assessor A8 rated cv. 190 

Gallo higher than the rest of the panel; assessor A1, instead, for the same attribute rated lower 191 

cv. Alpha. Finally, the attribute Typical flavor was rated lower by assessor A8 only for cv. 192 

Gallo. 193 

Considering the lacking of previous experience on potato sensory analysis, the panel 194 

performance might be considered good and adequate for the following sensory evaluation of 195 

boiled Mexican potatoes. 196 

 197 

Sensory profiles of Alpha, Chica and Gallo cultivars 198 

After verifying that the panel was trained, a consensus procedure on the raw data was 199 

made through a plain PCA analysis. Scores, loadings and explained variances for the first two 200 

principal components were evaluated. 201 

Fig. 5 reports the results of PCA. The first axis discriminates between cv. Alpha (on the 202 

left side) and cvs. Chica and Gallo (on the right). With reference to PC1 cv. Alpha was 203 

characterized by the highest values for textural characteristics as Mealiness and Adhesiviness; 204 

however it had the lowest values of Typical flavor, Typical odors and Sweetness that were 205 
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higher in cvs. Chica and Gallo. As regard PC2, cv. Gallo was well distinguishable from the 206 

other samples thanks to the highest concentration of the attribute Other flavors. 207 

The first two principal components explained 100% of the variance of the data. 208 

A spiderplot illustrating the sensory profiles of the three Mexican potato cultivars is 209 

reported in Fig. 6. Cv. Gallo showed high Typical odor and flavor intensities. Besides these 210 

typical olfactory and retro-olfactory sensations, assessors detected other odors and flavors, 211 

described as hints of raw tuber, green beans and hay notes. In order to quantify these 212 

perceptions, the attributes Other odors and Other flavors were added to the sensory score 213 

sheet initially used. Cv. Gallo was the sweetest, as opposed to Alpha, which was the least 214 

sweet, but with the most defined textural properties (Hardness, Mealiness, Adhesiveness). Cv. 215 

Chica had mean values of olfactory and textural attributes. 216 

 217 

Study of off-odors development after boiling 218 

The development of the olfactory profile of boiled potato slices was studied during 219 

refrigerated storage and a particular attention was paid to the formation of off-odors. 220 

Olfactory tests, in particular the assessment of Cardboard-like off-odor and Other off-221 

odors attributes, were made up to 57 hours, or whenever off-odors were developed in each 222 

cultivar, as specified in Table 2. 223 

The performance of the panel in detecting the formation of off-odors in boiled potato 224 

slices was evaluated following the same procedure used above for the sensory profiles. 225 

Briefly, both attributes were significant at p < 0.001 as measured in three-way ANOVA 226 

model. F values were respectively 359.51 and 359.84 for Cardboard-like and Other off-odors 227 

attributes. The multivariate analysis through Tucker-1 model showed a good separation of the 228 

samples tested and a high agreement between the panel assessors in the evaluation of the two 229 

attributes. Finally, an univariate approach was carried out to evaluate repeatability, 230 

discriminant and ranking capacity. In Table 3 are reported the results of F, p and MSE values, 231 

calculated using a one-way ANOVA, highlighting discriminant and repeatability capacity of 232 

each assessors. 233 

The profile plots, visualizing sample intensity and rankings for each assessors, showed a 234 

good agreement between panel members, as illustrated in Fig. 7. 235 

The formation of Cardboard-like off-odor was detected only in cvs. Alpha and Chica 236 

(Table 4). Olfactory analysis of cv. Alpha was stopped at 33 h, when the formation of 237 

Cardboard-like off-odor had been clearly detected. The formation of Cardboard-like off-odor 238 

in cv. Chica started several hours after cooking (24 h) and its level was significantly lower 239 

than in cv. Alpha. These interesting olfactory differences should be investigated in terms of 240 
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volatile components produced during refrigerated storage; a low level of off-odors 241 

development during storage could be related with a different composition of lipid fraction or 242 

of enzymatic patterns. Anyway, considering its sensory profile, the use of cv. Chica as boiled 243 

ingredient of ready to eat products can be suggested. 244 

Cv. Gallo presented a different oxidation olfactory perception, described by the assessors 245 

as burnt and recorded as Other off-odors attribute. This alteration was significantly detected 246 

after 5 hours of refrigerated storage (Table 5) and attribute was not detected in cvs. Alpha and 247 

Chica.  248 

 249 

CONCLUSIONS 250 

A sensory panel, without previous experience in sensory analysis of boiled potatoes, has 251 

been trained and the sensory profiles of three Mexican potato cultivars (Alpha, Chica and 252 

Gallo) have been carried out.  253 

Different kinds and levels of off-odors were detected in the samples analyzed during 254 

refrigerated storage. The development of Cardboard-like off-odor in cv. Chica started later 255 

than in cv. Alpha (24 h vs. 9 h respectively). The development of Cardboard-like off-odor in 256 

cv. Alpha was more similar to the Italian cv. Marabel previously investigated, where this 257 

alteration was perceived after 6 h of refrigerated storage. 258 

Cv. Gallo developed an olfactory alteration, different from the cardboard-like note, 259 

identified as “burnt” note, after 5 h of storage. 260 

Further determinations, such as an analytical quantification of the molecules responsible 261 

for different odors and off-odors in the three Mexican boiled potato slices, can be useful to 262 

complete their characterization and to understand if such results might be related to different 263 

metabolic or enzymatic patterns.  264 

 265 
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Figures 323 

 324 

FIG. 1. PRODUCT EFFECT IN THE THREE-WAY ANOVA MODEL BASED ON 10 325 

ASSESSORS.  326 

Abbreviations: Typ. = Typical; Ot. = Other; Cl = Cardboard-like 327 

 328 

 329 
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FIG. 2. TUCKER-1 LOADING PLOTS BASED ON SAMPLES AVERAGES. EACH PLOT IS REFERRED TO ONE OF THE EIGHT 330 

ATTRIBUTES USED IN THE PROFILING 331 

 332 

 333 
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FIG. 3. F PLOTS VISUALIZING THE ASSESSORS’ ABILITY TO DISCRIMINATE 334 

BETWEEN THE TESTED SAMPLES FOR EACH ATTRIBUTE. 335 

The horizontal lines indicate f values at significance level 1 and 5% 336 

 337 

 338 

 339 
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FIG. 4. PROFILE PLOTS OF THE 8 SIGNIFICANT ATTRIBUTES EVALUATED, VISUALIZING SAMPLE INTENSITY AND 340 

RANKINGS FOR EACH ASSESSOR. ON THE VERTICAL AXES ARE REPORTED THE INTENSITY SCORES; ON THE HORIZONTAL 341 

AXES THE THREE SAMPLES TESTED, SORTED BY INTENSITY BASED ON CONSENSUS 342 

 343 

 344 

 



Research article 7 

146 

FIG. 5. PRINCIPAL COMPONENT ANALYSIS OF SENSORY ANALYSIS RESULTS OF 

BOILED POTATO SLICES. SCORES ARE REPORTED IN BOLD ITALIC FORMAT 

 

 

 

FIG. 6. SENSORY PROFILES OF BOILED POTATO SLICES (CVS. ALPHA, CHICA 

AND GALLO) 
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FIG. 7. PROFILE PLOTS OF CARDBOARD-LIKE AND OTHER OFF-ODORS. ON THE 

VERTICAL AXES ARE REPORTED THE INTENSITY SCORES; ON THE 

HORIZONTAL AXES ARE INDICATED THE THREE SAMPLES TESTED, SORTED BY 

INTENSITY BASED ON CONSENSUS 
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TABLES 

TABLE 1. 

MODIFIED ATTRIBUTES (BLANDA ET AL. 2010) USED FOR PANEL TRAINING AND DURING 

QUANTITATIVE DESCRIPTIVE ANALYSIS OF BOILED POTATO SLICES. IN ITALICS ARE 

REPORTED NEW ATTRIBUTES ADDED 

Attribute Definition 
Reference employed to train the 
panel 

Typical odor Typical fragrance or aroma of boiled potatoes 
perceived by sniffing the sample (Lawless and 
Heymann 1998) 

Fresh boiled potato slices (cv. 
Chica) 

Other odors Fragrances of boiled potatoes, different from 
typical aromas but not related to product 
deterioration 

Not employed 

Cardboard-like    
off-odor 

Defected odor, characteristic of oxidized milk, 
perceived by sniffing boiled potato slices 
(Amerine et al. 1965) 

Boiled potatoes (cv. Marabel) 
stored for different times in 
refrigerated conditions (4°C) 

Other off-odors Other atypical odors perceived by sniffing boiled 
potato samples (Blanda et al. 2010) 

Not employed 

Hardness  Force required dividing potato slices in two parts 
by the front teeth (Thygesen et al. 2001) 

Potatoes (cv. Chica) at different 
cooking degree 

Mealiness  How mealy/crumbly the potato is felt in mouth 
after chewing (Thygesen et al. 2001) 

Not employed 

Adhesiveness  Force required removing the potato sticking from 
teeth and palate after chewing (Thygesen et al. 
2001) 

Not employed 

Sweetness  Sweet taste perceived during chewing of boiled 
potatoes slices (Blanda et al. 2010) 

Potatoes (cv. Alpha) cooked in 
sucrose solutions at different 
concentrations 

Typical flavor Typical boiled potato retronasal smell originated 
in the mouth via transportation of the stimulus 
molecules up to the back of the nasopharynx and 
into the region of the olfactory receptors (Lawless 
and Heymann 1998)  

Fresh boiled potato slices (cvs 
Alpha, Chica and Gallo) 

Other flavors Other retronasal odor perceived after the 
deglutition of boiled potatoes, different from the 
typical ones but not related to product 
deterioration 

Not employed 

Cardboard-like    
off-flavor 

Atypical retronasal odor, similar to the 
characteristic off-odor of oxidized milk, perceived 
after deglutition of boiled potato slices (Amerine 
et al. 1965) 

Potatoes (cv. Marabel) at different 
ageing degree 

Other off-flavors Other atypical retronasal odors perceived after 
deglutition of boiled potato slices (Blanda et al. 
2010) 

Not employed 
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TABLE 2. 
SENSORY EVALUATION PLANNING OF BOILED POTATO SLICES, FROM THE 

THREE MEXICAN CULTIVARS 
Sensory test Storage time (h) 

 0 5 9 24 33 48 57 

Complete QDA A, C, G A, C, G A, C, G - - - - 

Olfactory analysis - - - A, C, G C, G C, G C, G 

Abbreviations: A = cv. Alpha; C = cv. Chica; G = cv. Gallo. 

 

TABLE 3. 

F, P AND MSE VALUES OF CARDBOARD-LIKE OFF-ODOR AND OTHER OFF-

ODORS ATTRIBUTES 

Assessors Cardboard-like off-odor Other off-odors 
F value p value MSE value F value p value MSE value 

A1 86.66 0.000 0.10 49.95 0.000 0.16 
A2 42.38 0.000 0.19 41.42 0.000 0.23 
A3 61.68 0.000 0.14 44.75 0.000 0.21 
A4 36.97 0.000 0.21 34.92 0.000 0.26 
A5 28.07 0.000 0.23 49.56 0.000 0.16 
A6 70.71 0.000 0.11 32.35 0.000 0.24 
A7 52.45 0.000 0.18 31.96 0.000 0.32 
A8 62.72 0.000 0.15 40.92 0.000 0.23 
The significant level of F values at 1% and 5% were respectively 2.45 and 1.89. 

 

TABLE 4. 

CARDBOARD-LIKE OFF-ODOR DEVELOPMENT DURING REFRIGERATED 

STORAGE OF BOILED POTATO SLICES 

 Storage time (h) 

 0 5 9 24 33 48 57 

Alpha 1.0 (0.0) d 1.2 (13.6) d 2.4 (19.8) c 5.3 (19.3) b 6.9 (12.6) a   

Chica 1.0 (0.0) d 1.1 (15.2) d 1.1 (14.9) d 1.5 (12.6) b 2.1 (17.2) c 2.2 (18.6) c 3.8 (18.0) a 

Gallo 1.0 (6.1) a 1.0 (5.2) a 1.1 (10.8) a 1.0 (8.0) a 1.1 (11.4) a 1.1 (12.9) a 1.1 (12.3) a 

 

Olfactory data reported are means of 24 values (8 judges and 3 replicates); in brackets CVr% 

are reported. Different letters in the same row indicate statistically significantly differences 

(Honestly Significant Differences or HSD by Tukey p < 0.01). 
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TABLE 5. 

OTHER OFF-ODORS DEVELOPMENT DURING REFRIGERATED STORAGE OF 

BOILED POTATO SLICES 

 Storage time (h) 

 0 5 9 24 33 48 57 

Alpha 1.1 (17.4) a 1.1 (10.1) a 1.2 (18.8) a 1.1 (21.6) a 1.1 (16.6) a   

Chica 1.1 (9.3) c 1.1 (14.3) c 1.1 (16.2) c 1.4 (19.7) b 1.4 (20.8) b 1.6 (20.0) b 1.9 (21.3) a 

Gallo 1.5 (19.4) e 2.1 (17.2) d 3.1 (15.2) c 5.7 (15.2) a 5.7 (15.1) a 5.1 (14.8) b 4.8 (15.7) b 

 

Olfactory analysis results reported are means of 24 values (8 judges and 3 replicates); in 

brackets CVr% are reported. Different letters in the same row indicate statistically 

significantly differences (Honestly Significant Differences or HSD by Tukey p < 0.01). 
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5.3 DEVELOPMENT OF A SENSORY LEXICON 

The topic of sensory analysis has been deepen with the participation to the European 

project Ecropolis. This project deals with sensory properties of organic food and its main aim 

is to collect data about sensory profiles from organic products all over Europe in an 

interactive multilingual online database, called OSIS (Organic Sensory Information System). 

OSIS serves as a marketing tool providing sensory information of organic food for 

consumers, retailers/wholesalers and producers in an easy and traceable way.  

The project started in 2009 and partners from France, Germany, Italy, Poland, 

Switzerland, and The Netherlands are involved in the research activity. To reach the overall 

goal and objectives of the project and to ensure an efficient and well-timed implementation, 

the ECROPOLIS project has been divided into six work packages (WP1-6) and one 

management cluster. 

In particular the WP1 produces the necessary information about previous research on 

sensory characteristics of organic food, the regulatory framework, operators' market needs 

regarding sensory characteristics, and consumer expectations, perceptions and attitudes about 

sensory characteristics of organic food. One of the activities of WP1 was the drafting of a 

sensory glossary including general definitions and specific terms related to organic products. 

The applicant participated to the sensory glossary writing, that will be published on the 

Ecropolis website (www.ecropolis.eu). The bibliographic sources used to write the sensory 

glossary have been published on Aigaion, a shared database of the literature about consumers' 

expectations, marketing and sensory issues (www.deiagra.unibo.it/ecropolis). 
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6. CONCLUSIONS 
 

In the first part of this research project innovative food process technologies have been 

studied, through laboratory scale systems (ultrasound and vacuum technologies) and semi-

industrial pilot plants (pulsed electric field).  

Ultrasound has been found to be a valuable technique to improve the freezing process 

of potatoes, anticipating the beginning of the nucleation process, mainly when applied during 

the supercooling phase. The shorter freezing time obtained thanks to sonication may cause an 

improving of sensory and texture properties during thawing and cooking. However, in order 

to obtain such results an efficient removal of heat developed by sonication is required. 

Another technique that can be applied to preserve fruit and vegetable liquid food, 

assuring microbiological safety and preserving their sensory properties is pulsed electric field. 

In this research project a study of the effects of pulsed electric fields on phenol and enzymatic 

profile of melon juice has been realized. The statistical treatment of data was carried out 

through a response surface method, and the experimental design chosen was the central 

composite design.  

Next, impregnation of apple sticks with aroma was investigated. Flavour enrichment 

has been realized applying different techniques, as atmospheric, vacuum, ultrasound 

technologies and their combinations. The use of the obtained enriched products as ingredient 

in industrial preparations or as ready-to-eat food has been proposed. 

The second section of the thesis deals with the development of analytical methods for 

the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut 

bark extracts and olive mill waste water. With reference to the second application, the 

management of waste disposal in mill sector has been approached with the aim of reducing 

the amount of waste generated, producing water to be re-used, and at the same time 

recovering valuable by-products, as phenol concentrates, to be used in different industrial 

sectors. In particular filtration systems, based on ultrafiltration and reverse osmosis modules 

have been proposed for the treatment of olive mill waste water. 

Finally, the sensory analysis of boiled potatoes has been carried out through the 

development of a quantitative descriptive procedure for the study and the comparison of 

Italian and Mexican potato varieties. 

An update on flavour development in fresh and cooked potatoes has been realized, 

through the revision of the scientific literature and the redaction of a mini-review. Last, a 
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sensory glossary including general and specific definitions related to organic products, used in 

the European project Ecropolis, has been drafted. 


