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Revellin from the Centre de Thermique de Lyon of the University of Lyon, France,

and to Professor Catherine Colin from the Institut de Mécanique des Fluides de
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Abstract

Microscale flow boiling is currently the most promising cooling technology when high

heat fluxes have to be dissipated. The slug flow regime occupies a large area in the

microscale two-phase flow pattern map, thus the understanding of the thermal and

hydrodynamic features of the flow plays a fundamental role in the design of microe-

vaporators. The current experimental techniques are still inadequate to capture the

small scales involved in the flow, while the recent advances in the multiphase CFD

techniques provide innovative tools to investigate the two-phase flow. However, the

scientific literature concerning with numerical modeling of flow boiling patterns is

still poor, such that several aspects of the flow are not clarified yet.

The objective of this thesis was to improve the commercial CFD software Ansys

Fluent to obtain a tool able to perform accurate simulations of flow boiling in the

slug flow regime. The achievement of a reliable numerical framework allows a bet-

ter understanding of the bubble and flow dynamics induced by the evaporation and

makes possible the prediction of the wall heat transfer trends.

In order to save computational time, the flow is modeled with an axisymmetrical

formulation. Vapor and liquid phases are treated as incompressible and in laminar

flow. By means of a single fluid approach, the flow equations are written as for

a single phase flow, but discontinuities at the interface and interfacial effects need

to be accounted for and discretized properly. Ansys Fluent provides a Volume Of

Fluid technique to advect the interface and to map the discontinuous fluid properties

throughout the flow domain. The interfacial effects are dominant in the boiling slug

flow and the accuracy of their estimation is fundamental for the reliability of the

solver. Self-implemented functions, developed ad-hoc, are introduced within the nu-

merical code to compute the surface tension force and the rates of mass and energy

exchange at the interface related to the evaporation. Several validation benchmarks
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assess the better performances of the improved software.

Various adiabatic configurations are simulated in order to test the capability of

the numerical framework in modeling actual flows and the comparison with exper-

imental results is very positive. The study of the dynamics of evaporating bubbles

begins with a grid convergence analysis and a discussion on the effect of different

boundary conditions, in order to clarify some numerical aspects on the modeling

of the flow. The simulation of a single evaporating bubble underlines the dominant

effect on the global heat transfer rate of the local transient heat convection in the liq-

uid after the bubble transit. The simulation of multiple evaporating bubbles flowing

in sequence shows that their mutual influence can strongly enhance the heat transfer

coefficient, up to twice the single phase flow value.

Keywords: flow boiling, microchannel, slug flow, evaporation model, interface re-

construction algorithm, volume of fluid.



Sommario

L’ebollizione in microcanali è attualmente la tecnologia di raffreddamento più pro-

mettente per lo smaltimento di alti flussi termici. Siccome il regime di slug flow

occupa una porzione piuttosto ampia della mappa dei modelli di flusso bifase in

microcanali, la comprensione delle caratteristiche termofluidodinamiche del moto

svolge un ruolo fondamentale nella progettazione di microevaporatori. Le correnti

tecniche sperimentali sono ancora inadeguate a compiere misure su scale cos̀ı pic-

cole, mentre i passi in avanti compiuti recentemente dalle tecniche CFD multifase

forniscono degli strumenti innovativi per analizzare i flussi bifase. Ciononostante, la

letteratura scientifica riguardante la modellazione numerica di flussi in ebollizione è

ancora scarsa e diversi aspetti fisici non sono stati ancora chiarificati.

Questa tesi si è posta l’obiettivo di migliorare il codice commerciale CFD Ansys

Fluent, per ottenere un solutore in grado di compiere simulazioni accurate di flussi

in ebollizione nel regime di slug flow. Un codice numerico affidabile permette una

miglior comprensione della dinamica della bolla causata dall’evaporazione e rende

possibile la stima dello scambio termico alla parete.

Per limitare il costo computazionale delle simulazioni, il flusso fisico è modellato

con una formulazione assialsimmetrica. Le fasi liquido e vapore sono incomprimibili

ed in moto laminare. Attraverso un approccio di tipo single fluid, le equazioni che

governano il moto sono scritte come per un flusso a fase singola, tuttavia discon-

tinuità ed effetti di interfaccia vanno introdotti e discretizzati in maniera propria.

Fluent dispone di una tecnica di tipo Volume of Fluid per l’avvezione dell’interfaccia

e per mappare le discontinue proprietà del fluido su tutto il dominio. Nello slug flow

gli effetti di interfaccia sono dominanti, di conseguenza l’accuratezza con cui essi

sono calcolati è fondamentale per la veridicità del solutore. A tale scopo, sono state

introdotte nel codice numerico delle funzioni esterne, sviluppate appositamente per
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il calcolo della tensione superficiale e dello scambio di massa ed energia all’interfaccia

come conseguenza dell’evaporazione. Le migliori prestazioni del codice modificato

rispetto a quello originale sono dimostrate attraverso numerosi casi test.

Per provare la validità del nuovo codice numerico nella riproduzione di reali con-

figurazioni di flusso, sono stati simulati diversi flussi adiabatici ed il confronto con i

risultati sperimentali è molto positivo. Lo studio della dinamica delle bolle durante

l’evaporazione comincia con una analisi della convergenza di griglia e una discussio-

ne sugli effetti di diverse condizioni al contorno, allo scopo di capire alcuni aspetti

numerici sulla modellazione del flusso. La simulazione dell’evaporazione di una bolla

singola evidenzia che la convezione transitoria nel liquido, successivamente al passag-

gio della bolla, ha un effetto dominante sul coefficiente di scambio termico globale.

La simulazione di bolle multiple che evaporano in sequenza mostra che la loro in-

fluenza reciproca migliora notevolmente il coefficiente di scambio, fino a due volte

rispetto ad un flusso a fase singola.
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Introduction

Microscale flow boiling as the most promising cooling

technology for high heat density devices

The number of transistors that can be placed inexpensively on an integrated circuit

is growing as an exponential function of the time, as stated by the Moore’s law. The

necessity to cool down such electronic devices, whose power density is increasing,

requires cooling processes more and more efficient.

The Uptime Institute estimates that within the 2014 the heat load per product

footprint of data centers is going to exceed 10 W/cm2. Currently, the most widely

used cooling technology for microprocessors within data centers is refrigerated air

cooling. The heat power generated in the chip by Joule’s effect is conducted across a

thermal interface material in contact with the silicon chip die itself and then across

a heat spreader cooling element, where finally it is transferred to refrigerated air by

convection [9].

Nowadays, the electronic cooling technology is facing the challenge of removing

more than 300 W/cm2 from the electronic chip. The poor global efficiency together

with the waste of energy related to the whole refrigerating system, is making the

refrigerated air technology inadequate to face the increasing heat fluxes to be dis-

sipated. One promising solution is the application of two-phase cooling directly on

the chip through microchannels evaporators. The main advantages of two-phase flow

boiling heat transfer compared to other cooling methods are [10]: lower mass flow

rate of the coolant, lower pressure drop, lower temperature gradients due to satu-

rated flow conditions, heat transfer coefficient increasing with heat flux. Among the

drawbacks, the microscale flow and heat transfer trends are not yet fully clarified

and the macroscale models does not apply reliably.

xxvii
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The cooling of data centers, laser-diodes, microchemical reactors, portable com-

puter chips, aerospace avionics components, automotive and domestic air condition-

ing, are some of the industrial applications which the microscale two-phase cooling

technology is now penetrating.

The importance of the slug flow regime in the microscale

The slug flow (also known as segmented flow, Taylor flow, elongated bubbles flow,

etc.) is one of the most important flow patterns in the microscale, as it occupies

a large area on the flow map [4]. Due to the recirculating flow within the liquid

slugs, such flow pattern enhances heat and mass transfer from the liquid to the wall.

The large interfacial area promotes liquid-vapor mass transfer, the presence of the

bubbles separating the liquid slugs reduces axial liquid mixing. The evaporation

of the liquid film surrounding the bubble increases strongly the local heat transfer

coefficient [5].

Hence, the remarkable heat transfer performance achievable by such flow makes

it recommended to all those applications involving the cooling of high heat load den-

sities.

In spite of its great potential, the understanding of the local mechanisms enhanc-

ing mass, momentum and energy transfer is far from being complete. The reason

is that the current experimental techniques aimed to characterize the flow and the

temperature field, successful in the macroscale, are still inadequate to capture the

dynamics of the small scales involved.

On the other hand, the multiphase computational fluid dynamics evolved greatly

in the recent years. Numerical techniques more and more accurate to simulate inter-

facial flows appeared in the scientific literature, providing a reliable tool to investi-

gate the local features of the slug flow. Therefore, several experimental findings on

microscale two-phase flow have been anticipated by the numerics.

The multiphase CFD approach

The most advanced multiphase CFD techniques are able to perform a direct nu-

merical simulation of the interface. Interfacial effects, such as surface tension or

evaporation/condensation, are introduced in the flow equations through appropriate
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models involving the local interface topology, without resorting to empiricism.

Since the birth of such advanced techniques, several research groups have been

developing and proposing in-house numerical frameworks, aimed to simulate specific

two-phase flow configurations. Simultaneously, various commercial general purpose

CFD solvers have been appearing in the market, with specific multiphase tools. One

of the commercial CFD solvers most widely used for industrial applications is Ansys

Fluent [11], mainly because of the several multiphysics packages provided and the

robustness of the algorithms implemented.

Ansys Fluent is widely employed as well by several academic research groups as

a tool associated with the scientific research. The basic numerical algorithms imple-

mented are fairly accurate, thus the researcher who desires to investigate a specific

physical flow, whose models are absent or limited within the solver, can focus only

on the implementation and validation of additional user-defined subroutines.

However, keep in mind that since dealing with a commercial software, a pre-

liminary stage of validation of the numerical framework with analytical solutions or

experimental results is necessary before employing the software as a research tool.

The microscale two-phase flow phenomena recently studied with a multiphase

CFD approach are numerous: effect of the acting forces on the shape and velocity of

the bubble, pressure drop generated by the bubbly flow, flow dynamics within the

liquid slugs, bubble formation at orifices, gas-liquid behavior at T-junctions, role of

the gas-liquid-wall contact angle, heat transfer at the wall without phase change,

dynamics of the evaporating bubble and influence of the operating conditions. Al-

though several numerical studies are appearing dealing with adiabatic and diabatic

microscale slug flow without phase change, only few studies concern with evapo-

rating bubbles and the related heat transfer performance. The local flow dynamics

responsible of the enhancement of the wall heat transfer, as detected in experiments,

has not been investigated yet. The mutual influence of multiple bubbles flowing in

sequence in a slug flow is not known. A quantitative comparison of the heat transfer

coefficient measured in experiments with the results of numerical simulations still

lacks.

The objective of this thesis is to tackle the mentioned open issues.
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CFD modeling of two-phase boiling flows in the slug flow

regime with an interface capturing technique

The main objective of this thesis is to study through the CFD approach the thermal

and hydrodynamic characteristics of the slug flow in microchannels in flow boiling

conditions, by means of the following steps: assessment of appropriate physical and

numerical models to reproduce the physical phenomena involved; optimal set-up of

the numerical solver to replicate actual experimental conditions; validation of the nu-

merical framework by comparison with analytical solutions and experimental results

for numerous multiphase flow configurations; analysis of the flow and temperature

fields generated by the dynamics of the single evaporating bubble and multiple bub-

bles flowing in sequence. In order to save computational time, the boiling flows are

modeled through an axisymmetrical formulation.

The writing and subsequent validation of a new in-house CFD code with this

aim would have required a time longer than the duration of the doctoral course. The

modification of a pre-existing in-house solver would have taken time to learn the

code and to adequately improve programming skills. In order to focus mainly on

the physical aspects of the flow, it was decided to work with the commercial CFD

solver Ansys Fluent versions 6.3 and 12, whose single phase package and interface

advection scheme, based on interface capturing, have already been validated by the

scientific community.

Great attention was paid to the analysis and implementation of models to esti-

mate the interfacial effects that drive the flow. The computation of an accurate local

interface curvature is fundamental for the correct estimation of the surface tension

force. The poorly accurate Fluent original model for interface curvature calculation

has been replaced by an Height Function algorithm which is currently one of the

most accurate schemes. An evaporation model computing the rates of mass and

energy exchange at the interface proportional to the local interface superheating has

been introduced in the numerical solver.

Both the models are implemented as user defined subroutines written in C code

and they are capable of parallel computing. The resort to parallel computing, up to

128 parallel processors, allowed to complete the highest computational demanding

simulation performed for this thesis in three weeks, while serial computing would



have taken years to end.

The accuracy and the efficiency of the models implemented allowed to obtain

numerical results in good agreement with experiments for the flow configurations

simulated. Besides academic research purpose, the entire numerical framework of-

fers a reliable engineering tool for industrial applications dealing with two-phase

flows.

This thesis is organized as follows:

• Chapter 1: mathematical formulation of two-phase flow and review of the CFD

techniques aimed to multiphase modeling;

• Chapter 2: review of experimental and numerical studies on Taylor flow in

vertical channels and slug flow in microchannels;

• Chapter 3: physical basis and numerical discretization of the models imple-

mented to evaluate interfacial effects;

• Chapter 4: details of the Ansys Fluent solution algorithms and procedure,

development of the User Defined Functions;

• Chapter 5: validation of the numerical framework with typical benchmarks;

• Chapter 6: results on the adiabatic simulation of Taylor bubbles rising in stag-

nant liquid within vertical channels and elongated bubbles flowing in horizontal

microchannels;

• Chapter 7: results on the simulation of evaporating single and multiple elon-

gated bubbles flowing within horizontal microchannels;

• Conclusions;

• Appendix: capillary waves appearing in the simulation of multiphase flows as

additional effect of the numerical discretization of the surface tension force.

This three years doctoral project was developed at the Department of Energy, Nu-

clear and Environmental Control Engineering of the University of Bologna, Italy,

under the supervision of Dr. Beatrice Pulvirenti. Part of the work was conducted

during a six months visiting period at the Laboratory of Heat and Mass Transfer

of the Swiss Federal Institute of Technology (EPFL), under the supervision of Prof.

John R. Thome.





Chapter 1

Mathematical formulation of

two-phase flows

The definition of “multiphase flow” includes an enormous field of physical phenom-

ena, each of these ruled by specific natural laws. As well, the scale of the flow being

studied is of main importance to understand which effects have to be considered for

an easy, but reliable, modeling.

Even though the attention is limited to two-phase liquid-gas flows, the vastness

of the phenomena, the scaling effects and the differences among the possible inter-

actions are so wide that a unique mathematical formulation of the problem is not

practical nor achievable. As a consequence, an all-able numerical solver for multi-

phase flows does not exist.

Hence, when facing with the modeling of a multiphase flow, the first step consists

in the choice about which specific aspects to focus on, in order to derive a thorough

mathematical description.

Considering liquid-gas flows within confined domains, two different approaches

arise on the basis of the importance of the surface tension effects at the interface.

Two-phase flows driven by interfacial effects require the knowledge of the in-

terface topology to quantify accurately the inter-phase transfer mechanisms. An

example could be the modeling of slug flows. For such flows, a mathematical de-

scription based on the surface tracking is fundamental.

Two-phase flows whose interface effects can be accounted for without the need

to know the interface geometry require a different formulation. An example of such

1
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flow is the modeling of an entire channel in which nucleate boiling occurs, in which

the size of the bubbles is much smaller than the channel’s diameter.

Since this thesis deals with surface tension driven evaporating flows, the surface

tracking formulations are described more in detail in the Section 1.2.

In the following, it will always be referred to a liquid-vapor evaporating two-

phase flow in a confined domain, for Newtonian incompressible fluids and constant

surface tension.

1.1 Formulation without surface tracking

When one of the two phases is very dilute and it fills only a small part of the flow

domain (roughly below 10%), the dilute phase is considered as the dispersed phase,

within the continuous one. The effect of the volume fraction occupied by the dis-

persed phase on the modeling of the continuous phase is negligible, as well as the

particle-particle interactions. The best formulation for such flows is the Discrete

Phase Model : the Eulerian single phase flow equations are solved for the continuous

phase, while the discrete particles characterizing the dispersed phase are tracked in

a Lagrangian way. Models are necessary in order to quantify the phases interactions.

When the volume fraction of the dispersed phase is higher and the tracking of the

single particles would be computationally too expansive, an Eulerian-Eulerian ap-

proach is better. Two sets of ensemble-averaged conservation equations are written

for both phases and solved throughout the domain. The phases are mathematically

treated as interpenetrating continua, filling up the entire domain. Averaged con-

servation equations are formulated for each phase on the basis of the phase volume

fraction. Such a formulation is known in the literature as the two-fluid formulation.

Actually, more than two sets of equations can be written to study additional fields

(multifield models), with the individual fields representing topologically different flow

structures within a given phase, see for instance Podowski and Podowski [12].

The original two-fluid formulation is ascribable to the work of Ishii [13], who de-

rived the following governing equations for the mass, momentum and energy balances

for the k − th phase:

∂(αkρk)

∂t
+∇ · (αkρkuk) = Γk (1.1)
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∂(αkρkuk)

∂t
+∇ · (αkρkukuk) = −αk∇pk +∇ · (αkτk) + αkρkg +Mk (1.2)

∂(αkρkek)

∂t
+∇ · (αkρkukek) =−∇ · (αkqk) +∇ · [αk(−pkI + τk) · uk]+

+ αkρkg · uk + Ek

(1.3)

where αk, ρk, pk, uk, τk, ek, qk are respectively the volume fraction, density, pres-

sure, velocity, shear stress tensor, specific internal energy, local heat flux of the phase

k. g is the gravity vector. I is the identity tensor. Γk, Mk, Ek are the net interfacial

transfer per unit volume of mass, momentum and energy for the phase k. The shear

stress tensor for a Newtonian fluid is expressed as follows:

τk = µek

[
∇uk + (∇uk)T

]
(1.4)

where µek is the k − th phase effective viscosity.

Appropriate closure laws are necessary to model turbulence, interfacial transfers

and thermal boundary conditions for the near-wall heat transfer.

When the liquid is the continuous phase, turbulence within the liquid is normally

modeled using the k− ε model, modified to include the effect of bubble-induced tur-

bulence. The dispersed gas phase is assumed to be laminar.

Interphase mass and energy transfer occurs at the gas-liquid interface near the

heated wall as a consequence of an evaporating heat flux, and in the bulk liquid as a

consequence of gas evaporation or condensation due to superheated or subcooled liq-

uid. These effects are quantified by mechanistic models such as the Ranz-Marshall

correlation [14] for the interface mass transfer, and the RPI model by Kurul and

Podowski [15] for the wall evaporating heat flux. The mentioned models involve

empirical relationships to compute the frequency of the bubble detachment from the

wall, the mean bubble departure and bulk diameter, the number of wall nucleation

sites and other physical entities.

Interphase momentum transfer for bubbly flows involves drag, lift, virtual mass,

turbulent dispersion and lubrication forces. Mechanistic models for their computa-

tion are set-up by tuning some coefficients, on the basis of a previous validation with

experimental data.

For what concerns the near wall treatment of the heat transfer, the common

approach is to partition the wall heat flux into three components: a single phase
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heat flux (outside the influence area of the bubbles) q1Φ, an evaporation heat flux

(generating the bubbles) qe and a quenching heat flux qQ. These three components

are modeled as functions of the local difference between the wall temperature and

the temperature of the liquid adjacent to the wall. Starting from the constant heat

flux qw boundary condition at the wall, the wall temperature is obtained by solving

the equation:

qw = q1Φ + qe + qQ (1.5)

The key issue for the accurate modeling of multiphase flows by the use of the two-

fluid formulation is not only the correct formulation of the mentioned closure laws,

but also the reliability of the empirical relationships employed, typically validated

for a narrow range of operating conditions. The recent advances within the two-

fluid formulation regard more precise closure laws, based on correlations optimized

for specific operating conditions, see for instance Tu and Yeoh [16], Podowski and

Podowski [12], Končar et al. [17] and Chen et al. [18].

In order to avoid resorting to empiricism to predict interfacial flows accurately,

it is necessary to switch to a surface tracking technique, with all the advantages and

the limitations that are going to be described in the next Section.

1.2 Formulation with surface tracking

The approach based on the surface tracking formulation is also known as Direct Nu-

merical Simulation of interface motion (not of turbulence), because no closure laws

for interfacial effects are needed.

The direct tracking of the interface demands for an additional computational

effort which, depending on the method used, can be considerable. Moreover, the

computational grid necessary to solve the interface is finer than the one needed to

discretize the ensemble-averaged equations.

For this reason, the surface tracking formulation is far from being applied to

study the same flow configurations allowed by the former formulation. In spite of

this limitation, it provides an insight on the local fluid-dynamics effects occurring

near an interface that, currently, neither experimental techniques can give.

The surface tracking formulation is based on two general assumptions [19]. A
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sharp interface, with zero thickness, is assumed. Actually, the interface has a fi-

nite thickness, which represents a transition region for the fluids properties. But for

length scales for which the continuum hypothesis is valid, the assumption of sharp

interface is correct. The second principle, following from the first one, is that the

intermolecular forces determining the interface dynamics can be modeled in the con-

tinuum scale as capillary effects, quantified by the surface tension, concentrated on

the sharp interface.

The surface tracking formulations can be split into two families, depending on

the identification or description of the interface: through a mathematical relation

f(x, t) = 0 which explicitly locates the surface points on the spatial-temporal do-

main; by a marker or indicator function I(x, t), defined in the whole domain, whose

values implicitly locate the interface. The former leads to the two-fluid formulation

of the problem (analogous to the discussed two-fluid formulation without surface

tracking, but without the interpenetrating continua assumption), with two sets of

flow equations solved in each subdomain occupied by the individual phase, coupled

at the interface with appropriate jump conditions. The latter leads to the single

fluid formulation, with a single set of flow equations solved throughout the domain,

and variable fluid properties and interfacial effects included as source terms in the

equations.

Since this thesis deals with a single fluid formulation, this is treated more ex-

tensively in the Subsection 1.2.2, while in the following Subsection the two-fluid

formulation is briefly introduced.

1.2.1 Two-fluid formulation

By the two-fluid formulation, the flow domain is divided into subdomains filled with

the individual phases. Each subdomain is a single-phase domain, for which the

single-phase Navier-Stokes equations hold:

∂ρ

∂t
+∇ · (ρu) = 0 (1.6)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρg + f (1.7)

∂(ρcpT )

∂t
+∇ · (ρcpuT ) = −∇ · q + τ : ∇u (1.8)



6 CHAPTER 1. MATHEMATICAL FORMULATION

where all the fluid properties and flow variables refer to the phase filling the consid-

ered subdomain. f is a generic body force. cp is the constant pressure specific heat.

The shear stress tensor τ for a Newtonian fluid can be expressed as follows:

τ = µ

[
∇u+ (∇u)T

]
(1.9)

and the heat flux q can be expressed by means of the Fourier law:

q = −λ∇T (1.10)

with λ being the thermal conductivity.

Each set of equations is coupled with the sets belonging to the adjacent sub-

domains by interfacial jump equations, which serve as boundary conditions for the

solution of the flow problem. Appropriate interfacial jump conditions were firstly

derived by Ishii [13]. Juric and Tryggvason [20] modified them according to the

assumptions of thin and massless interface, constant surface tension and negligible

energy contribution of interphase stretching. They proposed the following jump con-

ditions respectively for the mass, normal and tangential stresses and thermal energy

for an interface separating the fluids 1 and 2:

ṁ = ρ1(u1 − V ) · n = ρ2(u2 − V ) · n (1.11)

p2 − p1 = −ṁ
(

1

ρ2
− 1

ρ1

)
+ (τ2 · n) · n− (τ1 · n) · n+ σκ (1.12)

(τ2 · n) · t = (τ1 · n) · t (1.13)

(q1 − q2) · n =− ṁ[h1,2 + (cp,2 − cp,1)(Tif − Tsat)]−
ṁ3

2

(
1

ρ2
2

− 1

ρ2
1

)
+

+ ṁ

[
(τ2 · n) · n

ρ2
− (τ1 · n) · n

ρ1

] (1.14)

where V is the interface velocity, n and t are the interface unit normal and tangential

vectors, ṁ is the interphase mass flux, h1,2 is the specific enthalpy jump related to the

phase change, Tif is the interface temperature and Tsat is the equilibrium saturation

temperature corresponding to the reference ambient system pressure. The surface

tension force is expressed as fσ = σκn where σ is the surface tension coefficient and

κ the interface curvature.

Equation (1.11) states that without phase change the normal velocity is contin-

uous at the interface. Generally, a no-slip condition is postulated at the interface,
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such that also the tangential velocity is continuous.

An additional boundary condition to set the interface temperature Tif is neces-

sary to complete the formulation.

The two-fluid formulation is suitable for those multiphase numerical methods

employing moving grids to fit the interface with the computational mesh: full La-

grangian methods, in which all the grid points are moved according to the com-

puted flow field; boundary fitted methods (BFM) [21], in which the mesh is built in

such a way that it is always orthogonal to the interface, see Fig. 1.1(a); arbitrary

Lagrangian-Eulerian algorithms (ALE), in which only the computational mesh close

to the interface is moved with the flow field to fit the interface as shown in Fig.

1.1(b), see for instance Hirt et al. [22], Li et al. [23] and Ganesan and Tobiska [24].

The main advantages of the numerical methods based on the two-fluid formula-

tion is that the interfacial effects can be accurately placed where they actually act, the

interface topology (normal vector and curvature) can be precisely computed through

(a) (b)

Figure 1.1: Examples of computational grids for a BFM from [21] in (a) and ALE

method from [22] in (b). The arrows in (b) locate the Lagrangian interface.
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geometrical considerations and the mass is well preserved. On the other hand, the

numerical solution of flow equations with jump boundary conditions require meth-

ods very different from the single-phase flow ones; the numerical management of the

deforming interface is tough, the most when break-up or coalescence occur; highly

deforming interfaces can affect the accurateness of the methods.

1.2.2 Single fluid formulation

Through the single fluid formulation a single set of flow equations is written and

solved throughout the whole flow domain. The flow domain is considered filled with

a fluid whose properties change abruptly at the phases boundary. The interfacial

effects are included in the flow equations as source terms concentrated at the inter-

face, thus modeled by δ functions. Thus, the jump conditions (1.11)−(1.14) in the

single fluid formulation are replaced by δ functions and the only boundary conditions

needed are those related to the domain boundary.

The transport equations take the following form:

∂ρ

∂t
+∇ · (ρu) = ṁδS(x) =

∫
Γ(t)

ṁδ(x− xS)ds (1.15)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρg +

∫
Γ(t)

σκnδ(x− xS)ds (1.16)

∂(ρcpT )

∂t
+∇ · (ρcpuT ) = −∇ · q + τ : ∇u−

∫
Γ(t)

q̇δ(x− xS)ds (1.17)

where Γ(t) represents the phases interface and q̇ is the interphase heat flux. δ(x−xS)

is a multidimensional delta function which is non-zero only where xS = x, with

xS = x(s, t) being a parametrization of Γ(t) [20].

An additional model is necessary to express the interfacial effects related to phase

change, identified by ṁ and q̇, by means of a proper condition for the interface

temperature.

Since the flow equations (1.15)−(1.17) are formally the same as the single-phase

flow ones (see Eqs. (1.6)−(1.8)) except for additional source terms, and they are

subject to the same boundary conditions, similar solution methods can be employed.

However, additional arrangements are necessary:

• definition of a marker function I(x, t) in order to identify each fluid and then

to compute the fluid properties;
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• a method to update the marker function as the interface evolves;

• modeling of the interfacial effects expressed by the delta function and approx-

imation of the delta function on the computational grid;

• reconstruction of the interface geometry in terms of normal vector and curva-

ture in order to compute the surface tension effects.

Typically, the marker function is a function whose value is 1 in a chosen primary

phase and 0 in a secondary phase. It is defined by the use of the delta function as

follows:

I(x, t) =

∫
Ω(t)

δ(x− xS)dV (1.18)

where Ω(t) is a control volume. The gradient of the marker function, which is non-

zero only if Ω(t) includes part of the interface Γ(t), identifies the interface normal

vector:

∇I =

∫
Γ(t)

nδ(x− xS)ds = nδS(x) (1.19)

Through such definition of the indicator function, each generic fluid material property

b can be expressed as:

b(x, t) = b2 + (b1 − b2)I(x, t) (1.20)

with b1 and b2 being the specific properties of the fluids. By the definition (1.18) of

the marker function, the fluid properties vary abruptly across the interface, leading

to numerical instabilities in the solution of the flow equations, especially when deal-

ing with high density and viscosity ratios. Then, a common approach is to employ

a smoothed version of the marker function.

The single fluid formulation is practical for the modeling of two-phase flows on

fixed grids. Nowadays, most of the numerical algorithms based on this formulation

derive from the original Marker And Cell (MAC) method developed in 1965 by Har-

low and Welch [25, 26], see McKee et al. [27] for a review. Currently, most of the

multiphase CFD codes with surface tracking are based on the single fluid formu-

lation rather than a two-fluid one, because it avoids the management of a moving
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grid, thus dealing more automatically with high interface deformations, break-up or

coalescence. However, the implicit treatment of break-up and coalescence has to be

intended as a “numerical” treatment, which does not lead necessarily to a physical

meaningful representation of it.

The method used to advect the indicator function splits the numerical schemes

based on the single fluid formulation into two categories:

• interface tracking methods: the interface is represented by marker points, con-

nected together to form a moving front, advected in a Lagrangian way by the

flow field computed on the background fixed grid. Thus, the interface is ad-

vected explicitly by moving the marker points and every time step the indicator

function is reconstructed by knowing their positions.

• interface capturing methods: the interface topology is implicit in the indicator

function field, which is advected by solving a conservation equation. The con-

servation equation for the marker function can be derived substituting the Eq.

(1.20) written for the phase density in the mass conservation equation (1.15),

leading to the following pure mass and marker function conservation equations

[28], respectively:

∇ · u = 0 (1.21)

∂I

∂t
+ u · ∇I = (u− V ) · ∇I (1.22)

Depending on how the marker function is advected, each method has its own way to

approximate the delta function and to compute the interface geometry. Three among

the most known approaches are discussed in the following sections. The Front Track-

ing (FT) algorithm, which is an interface tracking scheme, and the Level-Set (LS)

algorithm, which is an interface capturing scheme, are briefly introduced. The Vol-

ume Of Fluid (VOF) algorithm, which is an interface capturing method, is described

more extensively as it is the algorithm implemented in the CFD solver Ansys Fluent

version 12 and before, used in this thesis.
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1.3 The Front Tracking algorithm

Among the several versions of the Front Tracking algorithm for multiphase fluid-

dynamics, the most famous is the one developed by Unverdi and Tryggvason [30].

In their implementation, the governing flow equations are solved in the background

fixed grid. The interface, or front grid, is used to advect the marker points and to

compute the interfacial source terms. The Figure 1.2 reports a sketch of the grids

configuration.

The way chosen by the authors to transfer information from the fixed grid to the

front grid and vice versa is based on a smoothing transition approach. The interface

becomes a transition region between the fluids, where the two grids interact. By this

method, only the fixed grid points included in the transition region influence the

dynamics of the front, while the interfacial effects computed on the front grid are

transferred only in the fixed grid point included in the transition region. Moreover,

across the transition region the fluid properties vary smoothly from side to side.

The smoothing operation is done by appropriate approximation on the fixed grid

of the delta function appearing in the source terms of Eqs. (1.15)−(1.17).

Figure 1.2: Example of a front grid separating the primary from the secondary fluid

on a background fixed grid, from [29].
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The interface is advected in a Lagrangian way by integrating the following:

dxS
dt
· n = VS · n (1.23)

where xS identifies the points of the front. VS is the local front velocity, it is in-

terpolated from the velocities ui,j,k computed on the fixed grid points, consider-

ing only the points x included in the transition region by using weight functions

wi,j,k,S = w(x− xS):

VS =
∑
i,j,k

wi,j,k,Sui,j,k (1.24)

As the interface topology is updated, the marker function I(x, t) have to be recon-

structed on the fixed grid to compute the fluid properties by the Eq. (1.20). The

smoothed transition approach by Juric and Tryggvason [20] obtains the marker func-

tion field by integrating its gradient on the fixed grid, solving the following Poisson

equation:

∇ · ∇I = ∇2I = ∇ ·
∫

Γ(t)
nδ(x− xS)ds (1.25)

The integral appearing at the RHS, as well as the source terms in Eqs. (1.15)−(1.17),

are solved in the fixed grid by the discrete version of the smoothed delta function,

based on the same weight functions wi,j,k,S . By calling Φ the generic interface effect

to be transferred on the fixed grid, the integrals are discretized as follows:

Φi,j,k =
∑
S

ΦSwi,j,k,S
AS
Vi,j,k

(1.26)

where AS is the area of the front element S and Vi,j,k the volume of the i, j, k grid

element. The thickness of the transition region ∆ is chosen through the definition of

the weight functions by asking that wi,j,k,S 6= 0 only if (x − xS) < ∆/2. Juric and

Tryggvason chose the Peskin and McQueen weight functions [31], for which ∆ = 4

grid cells.

A consequent benefit of computing interfacial effects on the front grid, is the pre-

cise computation of interfacial normal vector and curvature, leading to the accurate

evaluation of surface tension effects. Since the interface is described by the marker

points, whose position is known, its topology can be computed by geometrical con-

siderations.
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The main advantages of the Front Tracking methods is the explicit advection of

the interface and the capability to evaluate interfacial effect right at the interface,

where they actually act. The representation of the interface with marker points

makes it independent of the fixed grid size. However, the direct advection of the

marker points does not guarantee the conservation of the mass, therefore accurate

interpolation and advection schemes are necessary. Moreover, the moving interface

grid demands particular care when break-up or coalescence occur, to overcome con-

nectivity and remeshing problems.

1.4 The Level-Set method

In the Level-Set approach [32] the marker function is a smooth function φ(x, t),

defined as the signed minimum distance of x from the interface. The phases interface

Figure 1.3: Iso-level curves from a level-set formulation [28]. The zero value iso-level

curve locates the phases interface.
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is identified as the zero level set φ(x, t) = 0, while positive values correspond to one

phase and negative values to the other. See Figure 1.3 as example.

The level-set function can be used to compute the interface unit normal vector

and curvature:

n =
∇φ
|∇φ|

and κ = −∇ · n = −∇ · ∇φ
|∇φ|

(1.27)

The level-set function is initialized by imposing |∇φ| = 1, such that it represents a

signed distance from the interface. Since the interface φ(x, t) = 0 moves with the

fluid flow, it is advected by solving the transport equation following from the Eq.

(1.22) [28]:

∂φ

∂t
+ u · ∇φ =

ṁ

ρ
|∇φ| (1.28)

The discretization of the convective term in the Eq. (1.28) requires the use of high

order schemes, such as ENO or WENO [33], to avoid unphysical oscillations of the

interface.

The computation of the fluid properties by use of the Eq. (1.20) needs for the def-

inition of a Heaviside function. A smoothed Heaviside function H(φ) is constructed

on the level-set function field, to obtain a smeared distribution of the fluid properties

across the interface [34]:

H(φ) =


0 if φ < −ε
(φ+ ε)/(2ε) + sin(πφ/ε)/(2π) if |φ| < ε

1 if φ > ε

(1.29)

where ε defines the thickness of the transition region represented by the smeared

interface, as seen previously for the Front Tracking method. The interface thickness

is 2ε/|∇φ|, then 2ε when the level-set function is initialized (such that |∇φ| = 1).

However, as the time-integration of Eq. (1.28) begins, even though the zero level

set φ = 0 always captures the phases interface, the level-set function ceases to be

a distance function away from the interface. As a consequence, |∇φ| = 1 is not

guaranteed anymore and a smearing or a stretching of the transition region could

occur, leading to loose or gain of mass.

Sussman et al. [32] overcame this problem by a reinitialization procedure. Af-

ter a certain amount of simulation time steps the level-set function is reinitialized
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around the zero level-set curve, in order to ensure the condition |∇φ| = 1. This is

accomplished by solving the following partial differential equation:

∂φ

∂τ
+ S(φ0)(|∇φ| − 1) = 0 (1.30)

together with the initial condition:

φ(x, τ = 0) = φ0(x) (1.31)

where φ0 is the un-initialized field and S(φ0) a sign function [32]. Equation (1.30)

is integrated in the pseudo-time τ until a steady state is reached, thus guaranteeing

the condition |∇φ| = 1 for the new field φ.

As for the Front Tracking algorithm, the interfacial effects are non-zero only

within the transition region identified by the not null values of a smoothed delta

function, which can be generated taking the gradient of the Heaviside function:

δ(φ) =
dH

dφ
(1.32)

The large use of the Level-Set algorithm in the multiphase CFD community is related

to its simplicity, because only one additional equation is required with respect to

the single phase case. Moreover, the interface normal vector and curvature can be

accurately computed by derivatives of the smooth level-set function, thus giving a

good surface tension force representation. Unfortunately, an important drawback of

the method is the not preservation of mass that the reinitialization procedure can not

overcome at all. This problem arises especially when the interface is poorly solved

by the grid, as for highly curved interfaces or thin fluid layers.

1.5 The Volume Of Fluid method

With the Volume Of Fluid method [35], the chosen marker function is the step

function defined by Eq. (1.18). The phases interface can be located as the curve for

which ∇I 6= 0. The fluid material properties can be directly computed as reported

in Eq. (1.20).

The advection of the marker function, thus of the interface, is obtained by the

solution of a transport equation derived from Eq. (1.22):

∂I

∂t
+ u · ∇I =

ṁ

ρ
δS(x) (1.33)
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Figure 1.4: Example of the volume fraction field (right) across an interface (left),

from [36].

The discrete version of the marker function is its spatial integration within the com-

putational cell volume and it is called volume fraction α:

α =
1

Ω

∫
Ω
I(x)dΩ (1.34)

with Ω being the volume of the computational cell. The so-defined volume fraction

represents the ratio of the cell volume occupied by the reference phase, and it is 1 if

the cell is filled with the reference phase, 0 if empty and 0 < α < 1 for an interfacial

cell. See as instance Fig. 1.4. By knowing the volume fraction value of the cell, the

generic fluid property b can computed:

b = b2 + (b1 − b2)α (1.35)

Interface unit normal vector and curvature can be computed as follows:

n =
∇α
|∇α|

and κ = −∇ · n = −∇ · ∇α
|∇α|

(1.36)

As for the previous numerical schemes, a smoothed delta function is used to identify

a transition region across which the fluid properties vary smoothly and where the

interfacial effects are concentrated. Using the relation (1.19) for the discrete volume

fraction gradient together with the Eq. (1.36) for the interface norm vector, a discrete

delta function can be expressed as:

δ(α) = |∇α| (1.37)
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The conservation equation to solve in order to update the volume fraction field

follows from the spatial integration of the Eq. (1.33) within the computational cell.

Employing the definition of the volume fraction (1.34) and the divergence theorem

it follows:

∂α

∂t
+

1

Ω

∫
S
I(x)u · ndS =

ṁ

ρ
|∇α| (1.38)

where S is the surface bounding the cell. Note that only the volume fraction equa-

tion for the reference phase is solved, while the volume fraction of the secondary

phase is simply evaluated as 1− α.

The second term at the LHS is the convective term and it quantifies the volume

fraction fluxes across the cell faces. In the interpolation of the volume fraction val-

ues from cells to faces centroids, the standard derivation schemes lead to undesired

numerical effects because the volume fraction field is not continuous across the in-

terface. Low-order schemes diffuse too much the interface while high order schemes

maintain a sharp interface, but they cause oscillations. A widely spread solution

to this problem is to compute geometrically the volume fraction fluxes across the

cell faces for interface and near interface cells, as originally proposed by Noh and

Woodward [37]. This procedure consists in an interface reconstruction step, in which

a linear piecewise approximation of the interface within the cell is built. It follows

an advection step for the Eq. (1.38), where the fluxes are computed in a geometrical

way by advecting the interface along a direction normal to itself.

In the original Simple Line Interface Calculation (SLIC) algorithm by Noh and

Woodward [37], the Eq. (1.38) is solved by a split advection along the two (or three)

spatial directions. For the advection in the horizontal direction the interface is ap-

proximated by a vertical line, vice versa in the other direction. The full part of the

cell is identified by means of the cell volume fraction gradient.

Later, Hirt and Nichols [35] modified slightly this method, imposing a unique ori-

entation of the interface line to advect the volume fraction in the different directions.

The orientation of the interface line, in two dimensions horizontal or vertical, was

chosen according to the volume fraction gradient, representing the interface norm

vector.

Youngs [38] developed the Piecewise Linear Interface Calculation (PLIC) algo-

rithm, in which the straight interface line within each interface cell can be arbitrarily

oriented with respect to the coordinate axis. The choice of the orientation is based
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on the volume fraction gradient. The VOF algorithm implemented in Ansys Fluent

12 and earlier versions is based on the PLIC reconstruction, which numerical algo-

rithm is discussed in the Section 4.3.

The figure 1.5 shows the different reconstructions of the same interface topology

for the aforementioned methods.

The advantage of the VOF method is its relative simplicity, since as for the

Level-Set only one additional transport equation is necessary with respect to the

single phase case. However, the discretization of the convective term within the

volume fraction equation needs for not conventional algorithms to avoid smearing or

oscillation of the interface. The positive consequence following from the use of such

algorithms is that mass conservation close to machine accuracy can be achieved.

On the other hand, the interface curvature computed by Eq. (1.36) is poorly

accurate, due to the inadequacy of conventional derivation schemes when dealing

with not continuous functions. Ansys Fluent computes the interface norm vector and

curvature through the Eq. (1.36), therefore it lacks of accuracy in the reconstruction

of the interface topology, thus in the estimation of the surface tension force. Since

the correct evaluation of the surface tension effects plays a fundamental role in the

simulation of interfacial flows, an additional algorithm to compute a precise curvature

is suggested. The recent literature is rich of such curvature calculation algorithms. In

(a) (b) (c) (d)

Figure 1.5: Different VOF reconstructions of the actual interface sketched in (a): (b)

SLIC reconstruction [37], the interface is oriented horizontally or vertically depending

on the advection direction; (c) Hirt and Nichols reconstruction [35], with a single

horizontal or vertical orientation; (d) PLIC reconstruction [38], with an arbitrarily

oriented interface. Figure taken from [19].
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the Section 3.1 a brief related overview is presented, followed by a detailed discussion

of the method chosen and implemented through external functions to improve the

CFD solver employed.

1.6 Hybrid methods

The borders between the described algorithms, as well as between the single and

two-fluid formulation, are not to be intended as rigid boundaries. Every method

has peculiar advantages, as well as drawbacks, which can be overcome by merging

different techniques. As a matter of fact, several hybrid methods based on the cou-

pling of the described formulations appeared in the recent computational multiphase

literature.

As instance, in order to overcome the LS limitation regarding the not preserva-

tion of mass, and the VOF limitation regarding the poor accuracy on surface tension

effect computation, Sussman and Puckett [39] developed a Coupled Level-Set and

Volume Of Fluid (CLSVOF) algorithm. Within their formulation, both the level-

set and the volume fraction equations are solved simultaneously. The fluid material

properties are updated according to the level-set field, as well as the terms appear-

ing in the surface tension force. A PLIC advection of the interface is performed

by approximating the interface as a linear segment orthogonal to the norm vector

computed by means of the level-set function n = ∇φ/|∇φ|. In order to preserve

the mass, the reinitialization of the level-set function is not obtained solving the Eq.

(1.30) but reconstructing an exact signed distance function from the volume fraction

updated field.

Nichita [40] implemented the CLSVOF algorithm within the CFD software An-

sys Fluent, by coupling User-Defined LS subroutines to the Fluent’s default VOF

scheme.

Aulisa et al. [41] coupled a Front Tracking algorithm with a Volume Of Fluid

scheme, to overcome the mass preservation troubles of the FT and the inaccuracy

of the PLIC algorithm within the VOF. At each time step, for every interface cell,

the polygon representing the reference phase within the cell, obtained by connecting

the interface marker points, is advected by the fluid flow by advecting its vertices

in a Lagrangian fashion. The updated polygon is used to compute the fluxes of
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the volume fraction across the interface cell faces, thus solving the Eq. (1.38) by a

geometrical reconstruction of the convective term more precise then the PLIC one.

Subsequently, the old marker points are reset and new marker points are generated

within each interface cell. This is done by imposing that the area of the polygon

representing the reference phase is the same as the one given by the volume fraction,

thus enforcing mass conservation. Accurate surface tension effects can be computed

reconstructing the interface topology by the marker points locations.

In order to complete this list of hybrid single fluid formulation based algorithms,

a merging of FT and LS schemes is mentioned. Enright et al. [42] developed a so-

called Particle Level-Set method in which marker particles identifying the interface

are used to reinitialize the level-set function when the poorly solved interface would

lead to the failure of the mass conservation.

1.7 Surface tension force modeling

From a macroscopic point of view, the surface tension force is a surface force acting

on the phases interface.

For a constant surface tension coefficient, this surface force in the two-fluid for-

mulation can be imposed as a boundary jump condition at the interface, expressed

as fσ,s(xS) = σκ(xS)n(xS), see Eq. (1.12).

The single fluid formulation with a fixed grid technique makes more convenient

to introduce the surface tension as a body force within the momentum equation,

thus considering the capillary force as a volume force, as seen in Eq. (1.16). In

order to have a surface tension force concentrated at a finite thickness interface, it

is formulated as fσ,v(x) = σκ(x)n(x)δS(x).

The most employed method to model the surface tension force as a volume force

is the Continuum Surface Force (CSF) proposed by Brackbill et al. [43] in the 1991.

By this method, the surface tension force is interpreted as a continuous effect acting

across a finite thickness interface, identified by the marker function proper of the

algorithm used to track the interface:

fσ,v(x) =
ρ(x)

< ρ >
σκ(x)

∇Ĩ(x)

[I]
(1.39)

where Ĩ is a smoothed version of the indicator function proper of the method and
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[I] is the jump in the function across the interface. The density correction term

ρ/ < ρ > with < ρ >= (ρ1 + ρ2)/2, does not affect the total magnitude of the force

applied, but weights the force more toward regions of higher density.

In the VOF formulation Ĩ is the volume fraction α and [α] = 1. Thus the

volume force is located on the finite transition region where ∇α 6= 0, leading to a

smooth variation of the pressure field (if κ 6= 0) across the interface. It is pointed out

that the CSF formulation requires the computation of the local interface curvature κ.

Alternative well-known formulations are: the Continuum Surface Stress (CSS)

proposed by Lafaurie et al. [44], which avoid resorting to the interface curvature; the

Ghost Fluid Method (GFM) developed by Liu et al. [45], which applies the surface

tension force to a narrower region than CSF, leading to a more realistic jump in the

pressure field across the interface.

The implementation of the capillary force by the CSF model is known to be a

tough issue, for the computation of the related terms (as example κ) and for its

discretization in the numerical grid. Inaccuracies lead to the so-called “spurious

velocities”, or “parasitic currents”, unphysical velocity fields appearing across the

interface, see Fig. 1.6 for an example. These numerical artefacts occur as interfa-

cial vortices which may lead to a not natural deformation of the interface, up to its

break-up, with the consequent failure of the simulation. The presence of spurious

vortices could strongly affect the reliability of the numerical results, leading to a

misunderstanding of the physical phenomenon being simulated. As instance, the nu-

merically enhanced momentum transport enhances locally the heat transport, thus

leading to higher heat exchanges in presence of a heated wall.

Harvie et al. [46] analyzed the magnitude of the spurious velocities in order to

find a correlation with the simulation conditions and they found that the magnitude

does not necessarily decrease by refining the mesh grid.

To understand the origin of the spurious currents let write the single fluid formu-

lation of the momentum equation (1.16) for an incompressible, inviscid two-phase

flow, without gravity, and interface advected by the VOF method:

ρ
Du

Dt
= −∇p+ σκ∇α (1.40)

where D/Dt represents the material derivative. The density correction term is omit-
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Figure 1.6: Example of the spurious velocity field across a circular interface, with in-

terface advected by a VOF method and curvature computed differencing the volume

fractions by Eq. (1.36).

ted for simplicity. If the pressure gradient and the capillary force are perfectly

balanced across the interface, both the sides of the equation are zero and none veloc-

ity field arises. Then, the appearance of the parasitic currents at the interface is due

to the unbalance of pressure and capillary terms within the momentum equation.

As observed firstly by Renardy and Renardy [47] and later by Francois et al. [48],

the following conditions must hold in order to achieve such balance, thus minimizing

the parasitic currents:

• the pressure and volume fraction gradients have to be evaluated at the same

grid location and discretized with the same derivation scheme. Francois et al.



[48] and Popinet [49] developed a so-called balanced-force algorithm to solve

the momentum equation following this guideline.

• the numerically computed interface curvature can not be perfect, but it needs

to be as much accurate as possible. This is the reason of the growing litera-

ture regarding VOF-based algorithms for a better estimation of the interface

curvature.

The most spread test case to assess if these conditions are adequately respected, is

the analysis of the magnitude of the unphysical flows arising in the simulation of a

two-phase flow involving a circular droplet in absence of external forces, as it will be

done in the validation Section 5.2.





Chapter 2

Elongated bubbles flow: a

review

The elongated bubbles regime appears in two-phase flow when the gas phase velocity

is reasonably high with respect to the liquid, but not so high as to switch to annular

flow. This flow pattern is called slug-flow due to the liquid slugs between the bullet-

shape gas bubbles, the latter also referred to as Taylor bubbles.

It is known that the hydrodynamics of Taylor flow allows a good heat and mass

transfer between bubbles, liquid plugs and the wall. Then, the capability of numeri-

cal codes to accurately predict these flow configurations is of great interest, especially

in the area of microfluidics, in which this flow pattern is very common.

Typical features of Taylor bubbles are a spherical nose shape, whose sharpness

depends on the importance of the inertial forces over the capillary forces. The bub-

ble tail is flat for low viscosity liquids, due to the recirculation vortices acting on

the rear of the bubble. When the viscous forces are noticeable, the bubble’s rear is

spherical oblate and the flow pattern on the wake might not show any vortex.

The bubble traps a thin liquid film between it and the channel wall. The dy-

namics of the film varies depending on the channel orientation, due to the effect of

gravitational forces. For upward rising bubbles in stagnant liquid, the film becomes

thinner from the top of the bubble to the bottom, due to the acceleration of the

trapped downward falling liquid. If the wall shear stress balances the gravitational

forces, the film becomes stable and its thickness remains constant downward along

25
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the bubble, with a value proportional to the viscous forces.

For bubbles moving within a horizontal channel, pushed by a liquid flow, the film

thickness decreases from the nose to the rear of the bubble, where it may become

almost stagnant. When the gravitational forces are negligible the film thickness

for circular channels is constant all around the bubble. Gravity tends to move the

bubble upward, thus thinning the film above the bubble. Depending on the bub-

ble length and on the operating conditions, the film may become thinner up to a

constant thickness, decrease monotonically also up to the wall dryout or show some

waves in the proximity of the bubble’s rear.

The review presented in this Chapter focuses on those elongated bubbles flows

which can be approximated, thus modeled, by an axisymmetrical geometry. This

situation is typical in the following configurations:

• circular vertical channels, where the gravity force acts along the channel’s axis.

The adiabatic upward rise of bubbles will be considered.

• circular horizontal channels, with negligible gravitational effects. This assump-

tion is valid when capillary forces dominate over buoyancy, characteristic of

the field of applications of microscale two-phase flows. Adiabatic, diabatic and

evaporating flows will be considered.

The intention, at the basis of the following review, is not to provide a list of all the

experimental and numerical literature regarding the elongated bubble flow, which

would be an endless effort. Instead, the idea is to cite and to describe briefly those

works that we consider as milestones for the Taylor flow understanding, as well as

those numerical studies which have been fundamental in the realization of this thesis.

2.1 Vertical circular channels

The beginning of the research on elongated bubbles rising in vertical channels can

be date to 1943, with the analytical and experimental study of Dumitrescu [50]. For

years, simplified analytical models and visualization techniques constituted the tool

for the analysis of the flow. At the end of the ’80s the Particle Image Velocimetry

allowed the characterization of the liquid flow field around the bubble. Reliable
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numerical techniques for the CFD simulation of such flows appeared at the beginning

of the ’90s.

In the following subsections, the major analytical and experimental studies on

Taylor bubbles are treated separately from numerical ones.

2.1.1 Experiments and analytical models

From a general point of view, buoyancy, viscous, inertial and interfacial forces act

on the rising bubble and determine the terminal shape and velocity. The adjec-

tive “terminal” is necessary in order to identify the steady rising of the bubble, at

the end of a transient stage during which the bubble deforms and accelerates. The

early research on elongated bubbles rising within circular channels in stagnant liquid

was based on the non-dimensional analysis to identify representative dimensionless

groups able to describe which forces are dominant in the flow.

In his pioneer work, Dumitrescu [50] applied the potential flow theory to describe

the profile of an air bubble rising in stagnant water, coming to the conclusion, vali-

dated by experimental evidence, that the terminal bubble velocity can be predicted

as Ub = 0.346(gD)1/2, with D being the channel diameter.

Later, Bretherton [51] theoretical analysis, confirmed by experiments, concluded

that if ∆ρgD2/σ < 3.37, where ∆ρ is the difference among the fluids densities, the

bubble does not rise at all.

White and Beardmore [1] identified the following non-dimensional groups to pre-

dict the terminal velocity of single Taylor bubbles rising in stagnant liquid:

Eo =
ρlgD

2

σ
, Mo =

gµ4
l

ρlσ3
, Fr =

Ub√
gD

,
ρl
ρg
,

µl
µg
,

Lb
D

where the subscripts l and g refer, respectively, to specific liquid and gas properties.

Eötvös number (Eo) quantifies the importance of buoyancy to interfacial forces,

Morton number (Mo) is the fluid property group, Froude number (Fr) compares

inertial to gravitational forces. Density and viscosity ratios are ignored for typical

liquid to gas properties ratios, bubble length Lb to channel diameter D ratio is

unimportant [1]. The authors performed a wide series of experiments in the range
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Eo= [3, 400] and Mo= [10−12, 103], and they summarized the results for the terminal

velocity of the bubble in the map reported in Fig. 2.1.

According to the Fig. 2.1, the following regimes can be identified:

• Eo< 4, the bubble does not rise at all, thus gravitational effects are negligible.

Bretherton found this limit to be Eo= 3.37 [51].

• Eo> 70, capillary effects are negligible.

• Fr< 0.05, inertial effects are negligible.

• Mo< 10−8, viscosity effects are negligible.

Figure 2.1: White and Beardmore [1] flow pattern map for Taylor bubbles rising in

stagnant liquid.
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Brown [52] applied lubrication theory to solve the Navier-Stokes equations within

the falling liquid film surrounding a Taylor bubble rising in a vertical cylindrical

channel. The theoretical solution for the velocity field within the stable film led to

the following expression for the stable film thickness δ:

δ =

(
3µlUb
2ρlg

(R− δ)
)1/3

(2.1)

with R being the channel’s radius. A stable film means that gravitational and shear

stress forces balance, such that the film becomes flat.

Nicklin et al. [53] analyzed bubbles rising within a vertical circular channel with a

cocurrent liquid flow . They pointed out that the bubble velocity is a superimposition

of two components, the bubble drift due to buoyancy and the transport of the mean

flow:

Ub = Ub,0 + CUl (2.2)

where Ub,0 is the velocity that the bubble would move at in a stagnant liquid and Ul

is the mean velocity of the liquid flow. C is a dimensionless coefficient which can be

interpreted as the ratio of the maximum to the mean liquid velocity, thus C = 1.2

for turbulent flows and C = 2 for laminar flows.

Campos and Guede de Carvalho [54] performed an experimental campaign of air

bubbles rising in a stagnant water/glycol mixture, using powders to analyze the wake

flow. They identified the limit for axisymmetrical wakes as the condition Nf < 500,

with Nf = (Eo3/Mo)1/4 being the inverse viscosity number. Moreover, the authors

estimated theoretically the minimum length of the bubble to reach a constant film

thickness. Applying lubrication theory and the Bernoulli theorem along the free

surface streamline from the top of the bubble to the stable film, they proved that

the film becomes stable and the flow is independent of bubble length when:

Lb > Lb,min =
[ρlgδ

2/(2µl) + Ub]
2

2g
(2.3)

confirming their theory by experiments.
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The first detailed velocity field measurements around a Taylor bubble was made

by DeJesus et al. [55]. They used Photocromic Dye Activation (PDA) to obtain

liquid velocity vectors for the region above the bubble nose, in the liquid film and

in the wake. The test case was an air bubble rising within a D = 25.4 mm channel

filled with stagnant kerosene, with Eo= 194 and Mo=2.9 · 10−9. For such condi-

tions, a turbulent wake occurred. They confirmed the Dumitrescu hypothesis of a

boundary-layer development shape for the falling film, which can be considered as

one-dimensional and inviscid along the bubble.

Bugg and Saad [56] used Particle Image Velocimetry (PIV) to detect the liquid

flow field for a flow characterized by Eo= 100 and Mo= 0.015, thus laminar. They

sketched the bubble shape by hand directly from the PIV image and used the data

obtained to validate a numerical code.

Nogueira et al. [57] coupled the PIV technique with a Pulsed Shadow Technique

in order to detect directly the bubble profile. They performed a wide experimental

campaign for both stagnant and co-current liquid flows spanning a large viscosity

ratio range.

2.1.2 Numerical simulations

Numerical simulations on rising Taylor bubbles attempted initially to predict the

terminal shape and velocity of the bubble, since these data were the only available

from experiments. Then, the more advanced experimental techniques such as PDA

and PIV, which characterize the liquid flow field around the bubble, provided data

to validate the advancing numerical techniques. Subsequently, proved the reliability

of the numerical frameworks, the simulations have been used not only in addition,

but also as a substitution for the practical activity.

The velocities involved in the Taylor flow simulations are typically low enough

to allow the use of an incompressible and laminar flow model. The channel sizes are

big enough for a no-slip condition at the wall to be true. Unless otherwise specified,

the use of such assumptions is implied in this subsection.
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Early numerical works on Taylor bubbles solved the Navier-Stokes equations

around the bubble by assuming a priori its shape. Modern simulations appeared in

1991 with the work of Mao and Duckler [58], which modeled the axisymmetric rising

of a single bubble, treating the interface as a free surface with zero shear stress. The

bubble shape was obtained as part of the solution, imposing that the normal stress

at the interface satisfied the condition of constant pressure within the bubble. The

comparison of the numerical terminal velocity with the White and Beardmore map

for some cases within the viscosity- and surface tension-free regime were satisfactory.

Tomiyama et al. [59] were the first to employ a surface tracking scheme, the

VOF model, to simulate two-dimensional rising bubbles. They studied successfully

the bubble terminal shapes for a variety of conditions as well as the effect of an

imposed shear field on the bubble trajectory.

Kawaji et al. [60], in the 1997, were the first to have the chance to validate

the numerical liquid flow field around the bubble, thanks to the experimental PDA

results of DeJesus et al. [55]. Using an axisymmetrical uniform grid with a VOF-

based numerical framework and a reference frame moving with the bubble to reduce

the computational domain, they studied the effect of the bubble length on the flow.

They found that none of the lengths set had any influence in the terminal velocity

of the bubble, which remained the same for all the simulation runs. However, all the

lengths chosen by the authors respected the condition (2.3), hence their result is not

surprising. Moreover, they studied the effect of the bubble wake flow on a trailing

Taylor bubble. The consequence is the radial displacement of the trailing bubble

into a zone of reduced drag force, thus causing an acceleration which may lead to

the coalescence of the bubbles.

Bugg et al. [61] implemented a VOF axisymmetrical framework to simulate ris-

ing bubbles under several different conditions. They spanned the various regimes

reported in the White and Beardmore map [1], showing in which way the flow de-

forms the bubble shape according to the dominant forces.

They performed one grid independence test and found that a uniform mesh grid

with 25 cells in the radial direction are enough to guarantee grid convergence. The
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film thickness of this test case was around 1/4 of the channel’s radius, thus 6-7 cells

discretized the liquid film. However, the same grid was able to lead to good results

also for thinner films, with only 2 computational cells inside the film. A channel

length of 8D was enough to allow the rise to reach the steady state. Two different

initial shapes for the bubble were tested and it was observed that the initial condi-

tion only influences the transient stage of the rising.

More recently, Ndinisa et al. [62] tested, by a rising bubble simulation, three

different numerical schemes to treat the interface with the commercial CFD solver

CFX [63]: a two-fluid formulation based algorithm without surface tracking, a VOF

method without geometrical reconstruction of the fluxes and a mixture of the two.

The comparison was made through the PIV experimental results by Bugg and Saad

[56].

The uniform grid mesh employed discretized the liquid film with around 10 com-

putational cells. The bubble was initialized as a cylinder. The most correct terminal

velocity was obtained by the VOF method, but the best results in the whole flow field

were obtained by the hybrid scheme, since the VOF experienced a serious smearing

of the interface on the wake. This is a typical effect deriving by the use of conven-

tional schemes to discretize the convective term within the volume fraction equation,

rather than implementing geometrical reconstruction algorithms.

Taha and Cui [64] used the commercial solver Fluent [11] and a VOF three-

dimensional model to simulate rising bubbles both in stagnant and cocurrent flowing

liquid. They compared successfully with experimental terminal velocities for laminar

but also turbulent flows, by use of a RNG k− ε turbulence model. They studied the

disturbances and the asymmetries generated by the turbulent wake, which may lead

to the detachment of small portion of the bubble.

A uniform computational grid with 52 cells in the radial direction was used for all

the axisymmetrical simulation runs. No information are available for what concerns

the minimum number of grid cells discretizing the liquid film in their cases. The

bubble was initialized as a slug. They set a non-stationary reference frame, moving

with the predicted velocity of the bubble.
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Chen et al. [65] employed a LS axisymmetrical framework to model the transient

formation of Taylor bubbles in a vertical nozzle/tube co-flow arrangement. They an-

alyzed the effect of gas and liquid superficial velocities and of the gas-liquid interface

contact angle with the orifice on the bubble formation, detachment and subsequent

length.

The grid employed was very coarse for the film thickness obtained, since in the

thinnest case less than one cell was included within the film.

It is worth to mention the work of Hayashi et al. [66], who employed a VOF

axisymmetrical formulation to simulate the rising of Taylor drops, not bubbles. They

gave detailed information concerning the set-up of the simulation as well as the initial

conditions. However, as for the cited Taha and Cui [64] paper, it is not possible to

derive the minimum number of cells within the film.

2.2 Horizontal circular channels

The flow of elongated bubbles in horizontal capillary tubes begun to be studied in

order to provide an index for the velocity of the liquid flow. Fairbrother and Stubbs

[67] in the 1935 published a pioneering work about the prediction of the liquid mean

velocity based on the velocity of a drifted bubble.

For years, theoretical models based on experimental results for the single bubble

were proposed and the assumption of negligible gravitational effects was considered

valid for channel’s diameters below 3 mm.

Since the 90’s, the flow of multiple bubbles in horizontal capillary tubes has been

analyzed as slug flow regime in the context of the microfluidics. As the unimpor-

tance of the gravitational effects is a recognized criterion to identify the macro to

microscale threshold, the validity of this assumption has been deeply explored.

In spite of over ten years of experiments on microscale slug flow, the current tech-

niques, valid in the macroscale, are still inadequate to capture the local thermal-fluid

dynamics generated by the bubbles, due to the small scales involved. Experimental

techniques to characterize the flow field, such as the PIV technique, have not been

developed yet for the microscale multiphase flow. Instead, the numerics, widely em-

ployed in the recent years to simulate such flow, provided a lot of information on the
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local flow field, thus preceding subsequent experimental evidences.

In the following subsections, the current criteria for the macro to microscale tran-

sition are discussed, together with the single bubble models and the microfluidics

findings. Next, those we consider the main recent numerical studies are introduced.

2.2.1 Experiments and analytical models

Macro- to microscale transition

Until the beginning of the 90’s, the assumption of negligible gravitational effects on

the motion of elongated bubbles in capillary tubes was considered valid for channels

diameters below 3 mm. This assumption was verified by direct observation of the

film thickness above and below the bubble, and it could be true for standard gravity

acceleration and atmospheric pressure, for the fluids most employed at the time.

However, within the context of the microfluidics, refrigerant fluids at high pres-

sures and microgravity conditions began to be adopted, and transition criteria based

only on channel’s diameters were found to be not anymore reliable. The Figure

2.2 shows an example of the bubble confinement effect occurring by decreasing the

channel’s diameter for R134a with typical operating conditions. Furthermore, the

same channel’s diameter could be considered both macro and microscale depending

on the operating pressure and gravity.

As well, the macro to microscale transition began to be more and more evident,

because the macroscale methods for the multiphase flow were unable to predict mi-

croscale trends. Among the transition criteria, the unimportance of gravitational

effects was recognized to play a fundamental role.

Kew and Cornwell [68] in 1997 proposed a criterion based on the balance of capil-

(a) (b) (c)

Figure 2.2: Revellin et al. [2] elongated bubble images for R134a at 30 oC within a

2 mm, 0.8 mm and 0.5 mm diameter channel.
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lary and gravitational forces, quantified in the following definition of the Confinement

number Co:

Co =

(
σ

g(ρl − ρg)D2

)1/2

(2.4)

and they suggested the transition to occur at Co= 0.5.

Han and Shikazono [3] performed a large experimental campaign comparing the

film thicknesses below and at the side of the bubble, by direct measurement of the

film thickness by a Laser focus displacement meter. On the basis of their results

with water, ethanol and FC-40 as working fluids, they identified the transition as a

function of the Capillary number and Bond number defined in the following, as can

be observed by the data plot reported in Fig. 2.3.

Ca =
µlUb
σ

, Bo =
ρlgD

2

σ
(2.5)

Figure 2.3: Han and Shikazono transition map from [3]. The cross marks correspond

to cases in which the bottom liquid film thickness is 5% larger than that at the tube

side while the squares identify a side film thickness within 5% of the bottom one.

The dash lines locate the transition based on this criterion.
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The most recent transition criterion was published by Ong and Thome [69] in the

2011. They measured top and bottom film thicknesses by capturing the interface by

image processing of high speed videos, suggesting that the gravity forces are fully

suppressed by the surface tension when Co≥ 1.

Experiments and theory on the single bubble dynamics

Fairbrother and Stubbs [67] early experiments on a single elongated bubble flow in

a capillary tube, showed the relative drift velocity m of the bubble to be a function

of the dimensionless group µlUb/σ only, later named Capillary number:

m =
Ub − Ul
Ub

= Ca1/2 (2.6)

valid for Ca< 0.015. They computed m indirectly, by pushing an air bubble within

a capillary tube initially full of liquid and weighting the amount of liquid expelled

from the tube. By knowing the initial weight of the liquid stored, the relative drift

velocity of the bubble could be derived as:

m = 1− w

w0
=

δ

R

(
1− δ

R

)
(2.7)

with w and w0 being the weight per unit length respectively of the fluid expelled and

of the fluid initially stored. The procedure, correct only for axisymmetrical flows,

led also to the film thickness δ as shown at the most RHS of Eq. (2.7). The bubble

velocity, necessary for the correlation (2.6), was obtained by dividing the distance

covered by the bubble’s nose by the time, measured with a stop-watch. Note that

Eqs. (2.6) and (2.7) can be merged to derive a correlation for the liquid film thickness.

Later, in the 1960 Taylor [70] repeated Fairbrother and Stubbs experiment, ex-

tending it to Capillary number up to 2, by using very viscous fluids. He employed

strong syrup-water mixtures, glycerine and a lubricating oil. By coupling each fluid

with the relative tube diameter, the smallest Confinement number of his campaign

was 0.75, thus rather close to Ong and Thome [69] criterion for negligible gravita-

tional effects.

Taylor did not provide any fit to its data, but he showed graphically that Eq.

(2.6) is reliable up to Ca< 0.09, while for higher Capillary numbers the relative drift
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velocity tends to the asymptotic value m = 0.56.

At the same time, Bretherton [51] developed a theoretical model of the flow

to predict the relative drift velocity and the pressure drop across the bubble. His

model was based on the assumption of negligible gravity, thus axisymmetric flow, and

low bubble velocity, thus small Capillary number. The limitation on the Capillary

number is equivalent to consider negligible inertial effects.

By these approximations, the bubble nose was assumed to be spherical with

curvature 2/R and the Navier-Stokes equation within the liquid film was solved

applying the lubrication theory. The analysis led to the following expressions for the

relative bubble drift velocity m and pressure drop ∆p:

m ' 1.29(3Ca)2/3, ∆p ' 7.16

(
σ

D

)
(3Ca)2/3 (2.8)

Bretherton conducted also an experimental work to assess the reliability of Eq. (2.8)

to predict m. He performed experiments on a tube of 1 mm of diameter, with

benzene and aniline as working fluids and air bubbles. The Confinement number for

such conditions are Co= 1.81 for benzene and Co= 2.03 for aniline, thus well within

the condition suggested by Ong and Thome [69] for axisymmetric flow. Bretherton’s

comparison with experiments assessed that Eq. (2.8) well predicts m for Ca< 0.003.

Thus, Eq. (2.8) together with Eq. (2.7) and the assumption that δ/D << 1 leads

to the widely used correlation for the film thickness:

δ

D
' 0.67Ca2/3 (2.9)

More recently (2000), Aussillous and Quéré [71] performed an experimental campaign

to study single elongated bubbles in small tubes at high Capillary number, such

as Taylor’s case. Differently from Taylor, they employed low viscosity fluids and

obtained high Capillary numbers by means of high speed moving bubbles. Bubble

velocities and liquid film thicknesses were deduced from video recordings. All the

conditions tested led to Confinement numbers over unity.

The authors found that, depending on the fluid, by increasing the Capillary

number there is a deviation in the film thickness from the Taylor law, with the film
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thicker than the predicted value. They suggested it to happen because of the not

anymore negligible inertial effects, which tend to sharpen the bubble’s nose.

They split the film dynamics into two regimes. In the visco-capillary regime, the

bubble velocity is low and the inertial effects are negligible. In this regime, the film

dynamics is well captured by the analysis of Bretherton and Taylor, unified in the

following law:

δ

D
∼ Ca2/3

1 + Ca2/3
(2.10)

But, over a threshold for the Capillary number, the flow enters in the visco-inertial

regime. The inertia tends to thicken the liquid film in such a way that the assumption

δ/D << 1 is not anymore valid. They introduced the Weber number to represent

the inertial effects:

We =
ρlU

2
bD

σ
(2.11)

By a scaling analysis in which the Weber number accounts for the inertial effects in

the film dynamics, Aussillous and Quéré derived the following relation for the film

thickness:

δ

D
∼ Ca2/3

1 + Ca2/3 −We
(2.12)

Kreutzer et al. [72] in the 2005 used numerical simulations to explore the effect of

the inertia in the flow of a single bubble, in terms of film thickness, bubble shape

and pressure drops. As previously reported by Aussillous and Quéré [71], Kreutzer

et al. found the film thickness to increase with the bubble velocity, see the results

plotted in Fig. 2.4. In addition, they observed that the bubble nose is sharpened

and the bubble rear is flattened by the inertial effects.

Kreutzer et al. fitted the numerical pressure drop data by a modified version of

the Bretherton’s Eq. (2.8) to account for the inertial term, leading to the following

expression:

∆p = 1.08

(
σ

D

)
(3Ca)2/3Re1/3 (2.13)
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Figure 2.4: Liquid film thickness to channel’s diameter ratio as a function of the

Reynolds number, for different Capillary numbers. The figure is taken from [3]

and reports the numerical results of Kreutzer et al. [72] as crosses and blue lines,

compared with the experimental results of Han and Shikazono [3].

where the Capillary and Reynolds number (Re= ρUD/µ) were computed using the

sum of gas and liquid superficial velocity instead of the bubble velocity. Each single

phase superficial velocity is the average velocity that the phase would move at if

it flow alone in the channel with its volumetric flow rate. Kreutzer and coworkers

tested the Eq. (2.13) by comparison with experiments performed in a vertical chan-

nel. The dependence of the pressure drops on the Reynolds and Capillary numbers

were well predicted, but a good agreement with experimental data was obtained

raising the coefficient 1.08 to 2.6. The authors justified the deviation as effect of

the impurities present in the fluid in actual experiments, generating surface tension

gradients resulting in Marangoni effect, which raises the pressure drops.

Han and Shikazono [3] in the 2009 carried out a large database of experimental

results on liquid film thicknesses for elongated bubbles in horizontal circular capillary

tubes. The film thickness above, below and at the sides of the bubble, was measured

by a Laser focus displacement meter.
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In agreement with the mentioned previous works, they observed the inertia effect

on the film thickness to be weak at low Capillary numbers, but to increase at higher

Ca. The Fig. 2.4 shows that for Ca< 0.002 the film thickness is independent of

Re, for 0.002 <Ca< 0.01 it increases monotonically with Re, for Ca> 0.01 the

dependence becomes more complex.

In order to fit their database of film thicknesses, they modified the scaling analysis

proposed by Aussillous and Quéré [71], to account for the effects of the inertia on

the bubble nose curvature. When the gravitational effects were not negligible, the

thickness at the bubble sides was considered as reference value. Their expression

for the liquid film thickness, in the following it is reported the one for Re< 2000, is

currently the most updated available in the literature:

δ/D =
0.67Ca2/3

1 + 3.13Ca2/3 + 0.504Ca0.672Re0.589 − 0.352We0.629
(2.14)

where the dimensionless groups have to be computed using the velocity of the bubble.

Slug flow in microchannels

The several years of research applied to the macroscale two-phase flow have led to

the definition of detailed flow pattern maps and reliable heat transfer and pressure

drop correlations. When dealing with microscale two-phase flows, the methods and

the correlations developed for the macroscale does not work anymore. Thus, the

first aim of the multiphase microfluidics has been to modify or reformulate maps

and correlations, according to the different physical effects arising in the microscale.

The motion of elongated bubbles in microchannels, also known as slug flow, is a

flow regime that has been deeply examined within the microfluidics. An example of

such flow is reported in the Fig. 2.5. The reason of the importance of the elongated

Figure 2.5: Microchannel slug flow snapshot from [73] for R245fa, horizontal 0.5 mm

circular channel, G = 517 kg/m2s, x = 0.047, Tsat = 34.4 oC.
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Figure 2.6: Flow pattern map of Triplett et al. [4] for air-water flow in a 1.1 mm

horizontal circular channel. Liquid and gas superficial velocities are used to identify

the regimes.

bubbles flow for engineering applications can be figured out through Fig 2.6. Figure

2.6 reports Triplett et al. [4] experimental flow pattern map for an air-water mixture

flowing within a 1.1 mm horizontal circular channel. The transition lines were ob-

tained by direct visualization of the flow. The map shows that the slug flow region

is the widest one, thus highlighting the importance of the slug flow in microchannels.

Several flow pattern maps were proposed after Triplett et al. work, for different

channel sizes, fluids and operating conditions. Transition lines were always traced

according to the flow visualization and some empirical models appeared in the litera-

ture to predict the regime transitions. However, there was a noticeable disagreement

among the maps proposed by the different experimental works. The discrepancy

came from to the difficulty to obtain good high-speed images used to identify by

visualization the regimes, but also from the arbitrary definition of the flow patterns

themselves. Thus, the capture of a transition line was subjective to who was pro-

cessing the images.
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The development of objective techniques to characterize each flow pattern has

been of great importance. Revellin and Thome [2] achieved this goal by employing an

optical technique to detect the bubbles within the channel. By this method, several

information such as bubble length, velocity and frequency could be obtained, leading

to a clearer distinction among the different regimes. The original idea of Revellin and

Thome [74] has been to create a diabatic and dynamic flow pattern map, by a vapor

quality-mass flux plot. Diabatic means that in the experiments the gas bubbles were

vapor bubbles created by evaporation, thus heating the channel. Dynamics means

that the flow pattern transition lines were extrapolated by mechanistic models, which

involved the physics of the flow. The models are able to predict the transition lines

among the regimes, according to the operating conditions and the fluid properties

as well. For what concerns the slug flow, an isolated bubble and a coalescing bubble

regime were detected.

When dealing with single elongated bubble simulations, there is not a unique way

to define the vapor quality x of the flow. The problem comes from the absence of

leading and trailing bubbles which confine the liquid slugs ahead and behind of the

bubble. Therefore, a reference length identifying the distance between the bubbles,

necessary to estimate the vapor mass flow rate, is missing and it can only be defined

arbitrarily. However, by knowing the mass flux G (as the mean velocity of the liquid

inflow multiplied by the liquid density), the range of variation for the vapor quality

may be determined by the use of the Revellin and Thome models for the transition.

The transition between the isolated bubble IB and the coalescing bubble CB regimes

is located as:

xIB/CB = 0.763

(
qρgσ

µlhlvG2

)0.41

(2.15)

where hlv is the latent heat of vaporization and q the constant wall heat flux. The

transition between the coalescing bubble and annular regime A is identified as:

xCB/A = 0.00014

(
GD

µl

)1.47(G2D

σρl

)−1.23

(2.16)

These expressions can be used to estimate the range [0, (xIB/CB or xCB/A)] within

which the vapor quality may fall.

Let it consider now the bubble velocity. The bubble velocity is linked to the

void fraction ε as ε = Usg/Ub, where Usg is the gas superficial velocity that can
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be obtained as Usg = Gx/ρg. The void fraction can be predicted as a function of

the volumetric flow rate β = Usg/Us, where Us is the flow superficial velocity. The

ε−β relationship depends on the model used, thus different models lead to different

bubble velocity:

homogeneous model: ε = β ⇒ Ub = Us (2.17)

Armand-Treschev correlation ε = 0.833β ⇒ Ub =
Us

0.833
(2.18)

where it is referred to [75] for details about the Armand-Treschev correlation. When

dealing with a single bubble flow, the identification of a proper superficial velocity is

quite arbitrary, since a unique vapor quality can not be defined. Considering a single

bubble simulation, the superficial velocity can be meant as the average velocity of

the liquid inflow Ul, which can be substituted to Us into the Eqs. (2.17) and (2.18).

Another relation for the prediction of the bubble velocity, by knowing the liquid

velocity, can be derived through Eq. (2.7) by writing the relative bubble drift velocity

as shown in (2.6):

Ub =
Ul

1− 4 δ
D

(
1− δ

D

) (2.19)

where the relative film thickness can be computed by one of the correlations dis-

cussed previously. The Figure 2.7 shows a comparison of Eqs. (2.17), (2.18) and the

Eq. (2.19) with Han and Shikazono [3] correlation (2.14) for the film thickness, to

compute the bubble velocity. It is remarkable that the Armand and Treschev corre-

lation (2.18) and Eq. (2.19) overlap when Ul < 0.6 m/s. For higher liquid velocity

the Eq. (2.19), involving the film thickness, predicts a bubble faster than Eq. (2.18)

one, because as the liquid film thickens the drag is reduced and the bubble moves

faster.

Agostini et al. [76] proposed a model to predict the velocity of evaporating

bubbles in microchannels as a function of the bubble length. The model suggested

that the bubble velocity increases monotonically with the bubble length, up to an

asymptote. This trend can explain the mechanism that leads to bubble coalescence,

with longer bubbles that, traveling faster, reach and merge with shorter bubbles.

However, Agostini et al. model requires the knowledge of the vapor quality, thus it

is difficult to be applied to the single bubble flow case.
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Figure 2.7: Comparison of the bubble velocity with respect to the liquid mean ve-

locity predicted by the homogeneous model (2.17), the Armand-Treschev correlation

[75] (2.18), and the (2.19) together with Han and Shikazono correlation (2.14) for

the film thickness. The operating fluid is R134a at 31 oC and the channel diameter

is 0.5 mm.

The experimental studies on boiling heat transfer in microchannels showed con-

flicting trends in determining the dependence of the heat transfer coefficient on vapor

quality, heat flux and mass flux. As a general evidence, a strong dependence of the

heat transfer coefficient on the heat flux and a weak dependence on the vapor quality

and mass flux was observed.

Many authors concluded that, since in the macroscale the mentioned dependence

is typical of the nucleate boiling, also in the microscale the nucleate boiling is the

principal heat transfer mechanism.

However, as it can be observed by Fig. 2.6, the bubbly flow occupies only a small

region of the flow pattern map. For vapor qualities over 0.05, only the slug flow and

then the annular flow occur, without bubble entrainment in the liquid film. Thus,

it is hard to believe that nucleate boiling can dominate the flow, without seeing the

typical small bubbles generated by such mechanism.

Instead, Thome et al. [77] suggested that the thin film evaporation in the liquid
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film is the dominant mechanism for the heat transfer. They showed that a phe-

nomenological boiling heat transfer model for the elongated bubble regime, based

on the thin film evaporation, can explain the trends observed for the heat transfer

coefficient. The validation of the model by comparison of the predicted heat transfer

coefficients with a large experimental slug flow database proved this interpretation.

Thome et al. three-zones model [5, 78] splits the single elongated bubble-liquid

slug unit into three zones: the liquid slug, the elongated bubble and the vapor slug,

see Fig. 2.8(a) for reference. The wall heat transfer coefficients for the liquid and

vapor slugs are derived from single-phase correlations. The liquid film is assumed to

be stagnant for film thicknesses below 1/100 of the channel diameter, thus the local

heat transfer coefficient is computed by one-dimensional heat conduction across the

film.

According to their approach, a time-averaged wall heat transfer coefficient at a

given location z can be computed as:

h(z) =
tl
τ
hl(z) +

tf
τ
hf (z) +

tv
τ
hv(z) (2.20)

where τ is the period of the bubble cycle, tl/τ , tf/τ and tv/τ are respectively the

fraction of the period occupied by the liquid slug, the film and the vapor slug. The

Figure 2.8(b) shows that as the bubble is passing at the given location, the heat

transfer coefficient increases because of the thinning of the liquid film, reaching a

maximum and subsequently dropping when dryout occurs.

The three-zones model has been widely validated with experimental data for the

prediction of time averaged heat transfer coefficients. However, its basic principle

of splitting the bubble cycle in two (without dryout) or three stages and computing

the heat transfer in the film zone by heat conduction, can be useful to obtain a

theoretical profile of the heat transfer coefficient to compare with simulation results.

Thome et al. three-zones model applies well at the isolated bubble regime. On

the basis of the thin film evaporation Consolini and Thome [8] developed a boiling

heat transfer model for the coalescing bubble regime. By application of the mass

and energy balance to a control volume bounded by the channel wall, the entrance

in the heated zone and a boundary moving with the nose of the generic bubble, the

authors derived the following time law governing the motion of the bubble nose:

zN (t) =
G

ρl

ρvhlvD

4q

[
exp

(
4q

ρvhlvD
t

)
− 1

]
(2.21)
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(a)

(b)

Figure 2.8: Thome et al. three-zones model [5, 78]: (a) scheme of the bubble-liquid

slug unit, (b) transient local heat transfer coefficient at a given axial location during

two bubble cycles. Figures from [5].

where zN is the bubble nose axial location when considered z = 0 as the location of

the entrance in the heated zone. The nose of the bubble is considered to enter in the

heated region at t = 0. It is referred to [8] for the model assumptions.

In a recent publication, Walsh et al. [6] showed their results on the local Nusselt

number at the wall of a microchannel heated by a constant heat flux, for an air/water
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slug flow. They used infrared thermography to measure the local temperature of the

wall Tw, thus deriving the local Nusselt number as:

Nu(x) =
qD

λl(Tw(x)− Tb)
(2.22)

where Tb is the bulk temperature of the flow. Walsh and his coworkers observed that

the most effective parameter governing the heat transfer is the liquid slug length

Ls to channel diameter ratio. The Figure 2.9 reports the time-averaged Nusselt

number along the dimensionless position x∗ = x/(DPe) (Peclet number Pe=Re·Pr)

downstream of the heated section entrance, for different Ls/D ratios. Due to the

high thermal diffusivity of the gas phase, only the liquid slugs contribute to the wall

cooling. Therefore, in order to reduce the data appropriately, the measured Nusselt

number is normalized by the percentage contact area of the liquid phase. This

percentage contact area is defined as 1 − ε, where the void fraction ε is considered

equal to the volumetric flow rate, according to the homogeneous model. The Figure

2.9 plots also the Nusselt number as predicted by the correlation (2.23) proposed by

Figure 2.9: Walsh et al. [6] local Nusselt number with respect to the dimensionless

position x∗ = x/(DPe) downstream of the heated section entrance, for different

Ls/D ratios. The Nusselt number and the dimensionless position are normalized by

1− ε.
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the authors.

The Figure 2.9 shows that the Nusselt number in the entrance region is bounded

below by the profile of the single phase developing Poiseuille flow and above by the

profile of the single phase developing plug flow, meaning a flow with Pr= 0. The

oscillations in the Nusselt number were ascribed to the internal circulation occurring

within the moving liquid slugs. As a consequence of this circulation, fresh liquid from

the centerline of the channel is moved toward the wall at the slug leading edge and

vice versa at the trailing edge. The characteristic length of such flow is the length of

the circulation path 2Ls +D which also reflects the period of the oscillations on Nu.

The Figure 2.9 shows that the length of the thermal entrance region is shorter than

the single phase case and it shortens as Ls/D decreases. Walsh et al. correlated

their database of fully developed Nusselt number on the basis of the single phase

value:

Nu = (1− ε)
[
4.36 + 25

(
Ls
D

)−1/2]
(2.23)

Subsequently, Howard et al. [79] suggested a correction to Walsh et al. data re-

duction to better predict the Nusselt number for fluids other than air/water and to

account for a wider range of Capillary numbers. They suggested to compute the

void fraction, used to normalize the data, through the following modification of the

homogeneous model:

ε =
D2

(2δ −D)2
β (2.24)

For what concerns the pressure drops within microchannels, most of the models avail-

able in the literature are modifications of empirical correlations originally developed

for the macroscale. Revellin and Thome [80] performed an experimental campaign

of pressure drops measurements for R134a and R245fa within 0.5 mm and 0.8 mm

channels and showed that none of 13 models and correlations chosen in the literature

were able to predict their data with a good agreement.

As well, a reliable phenomenological model for the prediction of pressure drops,

as the three-zones model is for boiling heat transfer, is still missing.
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2.2.2 Numerical simulations

Despite the absence of experimental techniques for quantitative measurements of

the velocity field in the microscale, necessary to validate the numerical simulations,

several two-phase flow phenomena have been studied through the numerics: bub-

ble dynamics, velocity and induced pressure drop; bubble formation at orifices and

subsequent dynamics; gas-liquid interface behavior at a T-junction; transient heat

transfer at the wall due to the bubble passage; mass, momentum and energy transfer

induced by the evaporation.

In the following paragraphs, those we consider the main recent numerical stud-

ies are split into adiabatic, diabatic without phase change and diabatic with phase

change.

Unless otherwise specified, an incompressible and laminar flow and a no-slip

condition at the wall are assumed. Furthermore, it is implied that when the model

is axisymmetric, gravitational effects are not accounted for.

Adiabatic studies

Kreutzer et al. [72] numerical study on the effect of inertia in the flow of elongated

bubbles has already been introduced in the previous subsection. Their numerical

framework solved the Navier-Stokes equations only for the liquid phase in an ax-

isymmetrical domain, treating the gas-liquid interface as a free-surface. A reference

frame moving with the bubble velocity was employed and the simulations were run

until a steady state was achieved. A fully developed laminar flow profile was imposed

at both the inlet and outlet boundaries, thus enforcing mass conservation.

Several cases were performed by varying the Capillary and Reynolds numbers,

in order to study the effect of the inertia on bubble shape, liquid film thickness and

pressure drop. For what concerns their results, it is referred to what already re-

ported in the previous subsection, together with Fig. 2.4 for the film thickness and

Eq. (2.13) for the pressure drops.

Qian and Lawal [81] analyzed the bubble formation and subsequent gas and liquid

slugs length when gas and liquid are separately fed by a T-junction. The simulations

were performed by means of the commercial CFD solver Fluent, tracking the inter-
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face by a VOF method. A two-dimensional domain was considered since they did not

observed substantial differences on the slugs lengths when using a three-dimensional

geometry. Gravity effects were found to be negligible for their operating conditions,

for which the minimum Confinement number is 0.9. A velocity inlet and an outflow

boundary conditions were applied to the channel inlet and outlet, see the Section 4.7

for an introduction on boundary conditions. The liquid film was not solved by the

computational grid, but a zero contact angle with the wall was set in order to have

rounded bubble meniscii at the wall when numerical dryout occurs.

Qian and Lawal performed a large campaign of simulations to analyze the effect

of the gas and liquid inlet velocities, the inlet geometrical configuration and the fluid

properties on the mean length of the gas and liquid slugs. A non-dimensional anal-

ysis was developed to derive some correlations for the prediction of the mentioned

lengths. They observed that the velocity of the bubbles was always very close to the

superficial velocity of the flow, in agreement with the homogeneous model Eq. (2.17).

Kumar et al. [82] performed a numerical study similar to Qian and Lawal one,

but in U-bends. The commercial solver Fluent with VOF interface capturing scheme

was used. The flow dynamics was captured by a three-dimensional model, in which

gravity was considered. Velocity inlet and outflow boundary conditions were im-

posed. The liquid film was not solved by the grid.

The effect of the inlet geometry, as well as channel diameter, bend curvature,

fluid properties and wall contact angle on the bubble length was analyzed. Among

their results, it is mentioned that the bubble velocity is very close to the superficial

flow velocity, as reported for the previous study.

Gupta et al. [83] published an excellent review of the recent experimental and

numerical works on microchannel elongated bubbles flow. Their aim was to highlight

and then clarify through simulations the role of the liquid film and the wall contact

angle in the CFD modeling of the slug flow. Their study was carried out through

the solver Fluent with VOF interface capturing and an axisymmetrical geometry. A

velocity inlet and a constant pressure conditions were applied at the channel inlet

and outlet.

The authors performed a detailed grid convergence study and found out that 5
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computational cells discretizing the liquid film are necessary to gain convergence in

the bubble dynamics. Moreover, uniform cells are recommended to discretize the

interface for a better surface tension force estimation.

Gas and liquid phases were introduced in the channel as coflowing streams, thus

generating a multiple bubble flow. With Ca= 0.006 and Re= 280 as dimensionless

numbers, they observed small waves on the interface profile at the rear of the bubble.

The film thickness in the flat region was in good accordance with Fairbrother and

Stubbs Eq. (2.7), Bretherton Eq. (2.9) and Aussillous and Quéré Eq. (2.10). The

bubbles velocity was 11% lower than the one predicted by the Armand and Treschev

correlation (2.18), but we found it to be in perfect agreement with the Eq. (2.19)

when using Han and Shikazono correlation (2.14) and replacing the liquid velocity in

(2.19) with the flow superficial one. The pressure drop measured in the simulation

was 25 % below the value predicted by Kreutzer et al. Eq. (2.13).

Diabatic studies without phase change

Fukagata et al. [84] analyzed the thermal-fluid dynamics of the slug flow by the

simulation of a single bubble-liquid slug unit. The flow was modeled through an

axisymmetrical geometry and the Level-Set algorithm was used to track the inter-

face. They imposed a periodic boundary condition for velocity and temperature and

a constant heat flux at the wall. A gas bubble was patched in the liquid domain at

the beginning of the simulation and a fixed pressure difference generated the flow.

Two separated mechanisms are observed to enhance the heat transfer perfor-

mance in terms of Nusselt number. The bubble transit forces a recirculating flow

within the liquid slugs, thus refreshing the liquid layer near the wall. The high

thermal diffusivity of the gas raises the bulk mean temperature in the film region,

decreasing the wall-bulk temperature difference and then maximizing the Nusselt

number, up to 5 times the single phase one. The local Nusselt number was defined

through the wall-bulk temperature difference. The global Nusselt number, averaged

over the bubble-slug unit, depends on the flow pattern and it is about 2 times the

single phase value for the elongated bubbles regime.

Lakehal et al. [85] performed a similar study by the use of the commercial

software TransAT [86]. In this case the gas and the liquid phases were injected as



52 CHAPTER 2. ELONGATED BUBBLES FLOW

coflow streams. A constant temperature was set at the wall. The domain length

was 40 diameters, which was proved to be enough to reach a thermal fully developed

condition.

The radial temperature profiles showed that the bubble passage erases part of

the thermal boundary layer at the wall, generating temperature gradients at the

wall higher than single phase case ones. Furthermore, the high heat diffusion within

the gas phase raises the mean bulk temperature thus leading to high heat transfer

coefficients. A strong recirculation pattern was observed in the slugs between the

bubbles, thus providing fresh liquid at the wall. The local wall Nusselt number

shows a periodical profile from a heated length of 15 − 20 diameters, identifying a

thermally developed situation. Note that the single phase flow would have taken 70

diameters to develop. The maximum peak in the Nusselt number is 9 times higher

with respect to the single phase and it is located at each bubble rear, where there is

the minimum film thickness. The Nusselt number averaged on the last 20 diameters

of the channel length is 4 times the single phase value for the elongated bubbles

flow pattern. According to their numerical database, they suggested the following

correlation:

Nu = 3.67 + 0.022Re0.8
b Pr0.4

l (2.25)

where Reb = ρlUbD/µl.

Gupta et al. [87] employed the commercial software TransAT, based on the LS

method, and Fluent, based on the VOF method, to simulate the slug flow formed

by a gas-liquid coflow inlet. Both constant temperature and heat flux conditions

at the wall were studied. As for the aforementioned works, the mechanism leading

to a heat transfer higher than single phase one was noticed to be twofold. The

recirculation pattern in the liquid slugs increases the wall heat exchange. The high

thermal diffusivity of the gas increases the wall Nusselt number in the film region

up to 20 times the single phase value. The average Nusselt number obtained for

the second and third bubble-slug unit at a heated length of about 15 diameters, is 3

times the single phase value. Gupta et al. also studied the length of the channel and

the number of bubbles necessary to obtain a fully-developed Taylor flow and found

them to be a function of the Reynolds and Péclet numbers of the flow. According

to this condition, they repeated the simulation for a 40 diameters length channel
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and found the average Nusselt number for the fifth unit cell to be 2.5 times the

single phase value. The authors found the best fit to their numerical data to be the

following modified version of the Walsh et al. [6] Eq. (2.23):

Nu = (1− ε)
[
4.36 + 19.2

(
Ls
D

)−1/2]
(2.26)

He et al. [88] simulated a bubble-liquid slug unit by the use of periodic boundary

conditions for the velocity and temperature fields. Their grid convergence analysis

suggested that a uniform mesh with 6 cells discretizing the liquid film is enough to

obtain converged fields of velocity and temperature. He et al. observed that at low

Reynolds numbers the recirculating flow within the liquid slugs has a lower effect

in enhancing the wall heat transfer than the heat diffusion within the gas. At high

Reynolds numbers, the convection is more effective and the wall temperature fluctu-

ations vanishes, as for the presence of a high thermal resistance across an adherent

liquid film on the wall. They reported that the Nusselt number averaged within the

bubble-slug unit depends on the flow pattern. For the elongated bubbles regime it

is 2.5 times higher than the single phase value.

Mehdizadeh et al. [89] employed the commercial software Fluent with the VOF

method to study the slug flow, also accounting for the axial conduction in the heated

wall. They found the axial conduction to cause a time-shifting in the inner and outer

wall temperature profiles. The wall stores a significant amount of heat during the

bubble passage and release it while the liquid slug is passing. Thus, the local heat

transfer is maximum in the liquid slug and reaches a minimum in the liquid film

close to the bubble rear, where the axial velocity is very low. However, the liquid

film region contributes to the wall heat exchange with the 25% of the overall heat

transfer. The wall storage and release capability explains the wide Nusselt number

oscillations that they observed, which ranges from 3 to 100. The average Nusselt

number for the flow is about 6 times the single phase value. The length of the

computational domain was 20 diameters and it was found to be sufficient to achieve

a fully developed regime.
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Diabatic studies with phase change

Mukherjee and Kandlikar [90] simulated the evaporation of a water vapor bubble

within a square microchannel, by use of a LS method to track the interface. A small

spherical vapor bubble was patched at the upstream of the channel in the centerline,

and a fixed velocity for a superheated liquid inlet was imposed. A constant temper-

ature higher than the saturation one was set at the heated wall. A constant contact

angle was imposed in case the interface touch the walls. Gravity effects were found

to be negligible.

According to their results, the vapor bubble grows spherically until it approaches

the channel’s walls, subsequently it stretches and generates a thin liquid film, even-

tually forming some dry patches. The bubble growth rate is linear with respect to

time at the spherical stage of the growth, then it becomes exponential. The liquid

velocity downstream the bubble is 40 times higher than the inlet value, due to the

evaporation that pushes liquid out of the channel. It was found that, by increasing

the superheating of the liquid inflow, the bubble growth rate increases and the dry

patches disappear because there is not time for the liquid film to evaporate. By

increasing the liquid inlet velocity, the bubble growth rate decreases because the

thermal boundary layer gets thinner while the liquid film gets thicker, thus decreas-

ing the interface area exposed to the superheated region.

In the 2009 Mukherjee [91] repeated the same simulations, but patching an initial

spherical vapor bubble at one channel’s wall. The aim was to study the effects of

different advancing and receding contact angles on the bubble growth rate and wall

heat exchange.

He found that smaller contact angles favour the elongated growing of the bubble,

thus leaving a liquid film between the interface and the walls. The heat exchange at

the wall is considerably enhanced in the film region, thus higher bubble growth rates

were obtained for smaller contact angles. This dynamics suggested to the author

that the thin film evaporation is the preeminent heat transfer mechanism in such

flow.

In the 2011 Mukherjee et al. [92] performed a parametric study to assess the

influence of wall superheat, Reynolds number, surface tension and contact angles on
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bubble growth rate and wall heat transfer. They figured out that an increase of the

wall superheat favours the bubble nose to move downstream to the channel, allow-

ing a longer liquid film to exist thus increasing the wall heat transfer. The Reynolds

number has a little effect on the flow, because the velocities associated to the evap-

oration phenomena are very high compared to the liquid inflow. The mentioned

trends for the heat transfer are in line with those observed by several experimental

researchers on microchannels, but such trends are justified in the paper by means of

a film evaporation mechanism.

The effect of the surface tension is negligible. The effect of the contact angle is

the same reported in the previous Mukherjee work [91].

Suh et al. [93] studied the bubble dynamics and the associated flow and heat

transfer in parallel microchannels, in order to investigate the conditions leading to

reversed flows. The Level-Set algorithm was used to track the interface and it was

extended to treat the immersed solid surface separating the channels. Two square

channels with shared inlet and outlet manifolds were simulated. A fixed mass flow

rate was imposed at the inlet section. A constant wall temperature was set at the

bottom wall while the top wall was set as adiabatic. A constant contact angle was

fixed in case of three-phase contact lines. The simulated bubbles were patched with

a spherical shape upstream the channels in the centerline.

Three different configurations were modeled: two bubbles (one for each channel)

created simultaneously; only one bubble created; two bubbles created with a time

lag. In the first case, the two bubbles grows identically and move downstream to

the channel. In the second case, the bubble grows also upstream, generating a

liquid backflow in the inlet manifold. The backflow leads to a different distribution

of the heat load in the two channels and the performances of the channel where

evaporation occurs are worse than the case without backflow. The third case shows

an intermediate situation. The flow reversal is seen to be boosted by higher wall

superheat and by smaller contact angles.



2.3 Concluding remarks: open issues on flow boiling in

microscale

The published literature about numerical and experimental studies on two-phase flow

in microchannels allowed to clarify several aspects of the flow. The role of the forces

acting on the bubble on determining bubble shape, pressure drop and steady velocity

has been deeply investigated. Gravitational effects are negligible when Co > 1, thus

allowing the axisymmetrical formulation of the flow problem adopted in the CFD

method employed in this work. Accurate and comprehensive flow pattern maps allow

to identify the two-phase flow regime by knowing only few variables which describe

the flow. Thome et al. three-zones model [5] provides a reliable tool to estimate the

time-averaged heat transfer coefficient under flow boiling conditions.

Although numerical simulations are currently the only technique which allows

to investigate the local features of evaporating flows, only few studies deal with

such flow configuration. Physical aspects such as the local thermal-fluiddynamics

induced by the evaporating bubble, local estimation of heat transfer performances,

the mutual effect of multiple evaporating bubbles and quantitative comparisons with

experimental results are still open issues, which we intend to explore by means of

CFD simulations.



Chapter 3

Modeling of interfacial effects

The equations governing the two-phase flow when the Volume Of Fluid method is

used to capture the interface are the continuity Eq. (1.21), the volume fraction Eq.

(1.38), the momentum Eq. (1.16) and the energy Eq. (1.17).

The volume fraction, momentum and energy equations include as source terms

the interfacial effects related to surface tension and phase change. The surface ten-

sion force, expressed by the CSF method [43], involves the calculation of the local

interface curvature κ, see Eq. (1.39). The phase change requires the calculation of

the local rates of mass ṁ and energy q̇ exchanges due to the evaporation.

It is clear that the interface curvature and the rates of mass and energy exchange

at the interface require ad hoc models for their formulation and discretization on

a computational grid. It is referred to interface reconstruction algorithm as those

algorithms aimed to reconstruct an approximation of the interface topology and to

the subsequent estimation of the local interfacial norm vector and curvature. Evapo-

ration models are those models which, on the basis of a chosen interface temperature

condition, estimate the mass and energy exchanges due to phase change.

The algorithms that we have implemented in the numerical code used in this

thesis are the Height Function algorithm for the curvature computation [94] and an

evaporation model based on the physical concept of interfacial resistance to the heat

transfer [95], introduced in the solver as proposed by Hardt and Wondra [7].

In the following sections, these algorithms are separately treated. For each of

57
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them, the regarding literature is briefly reviewed, then the physical and mathemati-

cal basis are discussed and finally the numerical algorithm is reported.

3.1 The interface reconstruction algorithm

An interface reconstruction algorithm has the task to compute the local interface

norm vector and curvature as accurate as possible. Furthermore, the features ex-

pected from an interface reconstruction algorithm are convergence as the computa-

tional grid is refined, precision also when the interface is poorly solved by the grid,

independence of the grid topology, simplicity of implementation.

According to our experience, an algorithm satisfying all the mentioned require-

ments does not exist, in general it can be said that accurate and easy-to-implement

algorithms are possible only limiting their range of application to particular grid

topologies.

The VOF based interface reconstruction algorithms estimate the local interface

unit norm vector and curvature from the volume fraction field. The local interface

topology can be estimated once that an approximation of the interface is built within

each interfacial cell (0 < α < 1). By calling m the vector tangent at the interface for

the generic interfacial cell, the local unit norm vector n is orthogonal to m and the

local curvature can be estimated as κ = −∇·n. The way to build this approximation

of the interface is the peculiarity of each interface reconstruction algorithm.

The first algorithm with this aim was the PLIC algorithm by Youngs [38] (1984),

which is the only scheme available in the CFD software Ansys Fluent version 12

and before. The interface within each interfacial cell is approximated as a piecewise

linear segment (see Fig. 1.5(d)) with orientation (∇α)−1 and position adjusted to

match the cell volume fraction. The local interface unit norm vector and curvature

are computed as reported in the Eq. (1.36). As discussed in the Section 1.5, this

method is poorly accurate and the computed curvature does not converge either re-

fining the computational mesh, as it is proved in Section 5.1.
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Puckett [96] proposed the Least-squares Volume-of-fluid Interface Reconstruction

Algorithm (LVIRA), through which the volume fractions of a 3× 3 block of cells are

considered to compute a linear approximation of the interface in the center cell of

the block. The interface norm vector is the one leading to a linear interface unique

for the block that minimizes the difference between the volume fraction defined area

of the block and the area of the polygon defined by the interface and the block sides.

An initial guess for the norm vector is obtained computing the interface orientation

by the finite differences of the interface heights on the side columns of the block. The

interface heights in the side columns are obtained by summing the volume fractions

columnwise. Once the unit norm vector is known, the curvature is computed as

κ = −∇ · n.

Williams [97] proposed to compute the interface topology as Youngs did, but

using a smoothed version of the volume fraction field obtained by the convolution

with a smoothing kernel of finite size across the interface. When this convolution

technique is used to estimate the curvature of a circular interface, the computed

curvature converges with the first order with respect to the mesh refinement.

Cummins et al. [94] reconstructed a distance function from the interface on the

basis of the volume fraction field. This distance function is analogous to the level-

set function, it varies smoothly across the interface and the interface topology can

be estimated by differencing its values with conventional derivation schemes. The

curvature convergence order in the reconstruction of a circle is first order.

Renardy and Renardy developed a Parabolic Reconstruction Of Surface Tension

(PROST) algorithm [47], approximating the interface as a piecewise parabolic curve

within a 3× 3 block centered on each interface cell. The coefficients of the parabola

are obtained by a fit done by a least-squares algorithm, as for the LVIRA method.

The interface curvature is estimated through the coefficients of the parabola.

Helmsen et al. [98] suggested a method to approximate the interface similar to

the technique used by Puckett [96] to find the initial guess for the LVIRA method.

However, a 7 × 3 block is considered instead of a 3 × 3 one and its orientation is
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chosen according to a preliminary estimation of the norm vector in the central cell.

By the local integration of the volume fraction field proper of the LVIRA method,

a local discrete field of the height of the interface within the block is obtained, such

that the interface segment orientation within the central cell can be computed by

finite-differences. This method is called Height Function (HF) and, currently, it is

the best compromise among accuracy and simplicity, even though its use is restricted

to orthogonal grids. The computed curvature converges with the second order of the

mesh grid size. The Height Function is the algorithm that we chose and implemented

in the numerical solver and it is thoroughly treated in the Subsection 3.1.1.

In the following paragraph, the Youngs algorithm [38] as implemented in the

Fluent software is introduced, since it is the default algorithm present in Fluent for

curvature computation and it came useful as a benchmark for our HF implementa-

tion.

The Youngs algorithm

The interface unit norm vector components are evaluated as derivatives of the volume

fraction field:

n = (nx, ny) =
1

|∇α|

(
∂α

∂x
,
∂α

∂y

)
(3.1)

where the norm of the volume fraction gradient is:

|∇α| =
[(

∂α

∂x

)2

+

(
∂α

∂y

)2]1/2

(3.2)

The derivatives along the horizontal and vertical directions are discretized at the cell

center by means of a finite-differences scheme in a 3× 3 block. The derivative in the

centroid of the center cell (i, j) is computed as average of the derivatives centered on

the cell faces. The derivative on each face is computed as average of the derivatives

evaluated at the face nodes. The derivative at each node is computed through the

volume fraction values of the cells surrounding the node.

This technique allows a smoother derivative of the volume fraction across the

interface than a standard 5 cells stencil. The final scheme becomes:(
∂α

∂x

)
i,j

=
αi−1,j+1 + 2αi,j+1 + αi+1,j+1 − αi−1,j−1 − 2αi,j−1 − αi+1,j−1

2∆x
(3.3)
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(
∂α

∂y

)
i,j

=
αi−1,j−1 + 2αi−1,j + αi−1,j+1 − αi+1,j−1 − 2αi+1,j − αi+1,j+1

2∆y
(3.4)

where ∆x and ∆y are the grid spacings. See the Figure 3.1 for the indexes reference.

The interface curvature can be computed as the divergence of the norm vector

or through the following extended expression proposed by Brackbill et al. [43]:

κ =
1

|n|

[(
n

|n|
· ∇
)
|n| − (∇ · n)

]
(3.5)

It is referred to [43] for the discretization of the terms appearing in (3.5).

The Figure 3.1 reports the volume fraction field across an interface represented

by a circular arc. The exact value of the curvature is the inverse of the arc radius,

κ = 200. The curvature computed by the Eq. (3.5) in the central cell of the block is

κi,j = 348, the 74% higher than the real value.

Even though the Youngs-based Fluent default interface curvature calculation in

our implementation is replaced by the HF algorithm, the volume fraction gradient

∇α and its norm |∇α|, when required by the solution algorithm, are discretized by

use of the Eqs. (3.3) and (3.4).

Figure 3.1: Example of the volume fraction field across a circular arc of radius 5

mm. The curvature of the arc is 200 m−1. The computational grid is uniform, with

spacing 0.5 mm. The dash segments represent the approximation of the interface by

the Height Function algorithm.
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3.1.1 The Height Function algorithm

The basic principle of the Height Function algorithm consists in the local integration

of the volume fraction field to obtain a smooth scalar field, which represents the

height of the interface with respect to a reference axis. The interface norm vector

and curvature can be computed by derivatives of this scalar field using conventional

finite-differences schemes.

The continuous height function

Let y = f(x) be the mathematical function identifying the interface line in a Carte-

sian (x, y) reference frame, as shown in the Fig. 3.2. The continuous height function

H(x;h) is the height of the interface line f(x), averaged within a local stencil of

width h and centered on x:

H(x;h) =
1

h

∫ x+h/2

x−h/2
f(t)dt (3.6)

The interface unit norm vector and curvature can be represented by geometrical

considerations as:

n =
1

[1 + (Hx)2]1/2
(Hx, 1) (3.7)

Figure 3.2: Sketch of the continuous height function.
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κ = −∇ · n = − Hxx

[1 + (Hx)2]3/2
(3.8)

where Hx and Hxx denotes first and second order derivatives with respect x.

Here, the height function is evaluated as integral over the x−axis, that is the

natural choice when df(x)/dx < 1. However, when df(x)/dx > 1, the inverse func-

tion x = f−1(y) can be considered and the interface geometry is computed through

derivatives of the width of f−1(y) with respect to the y− axis.

The function y = f(x) may easily become not biunivocal when representing an

interface. In this case, local heights or widths can be computed over a translated

(x′, y′) reference frame, which makes y′ = f ′(x′) locally biunivocal. Thus, local

heights or widths values are defined, but since the interface geometry is computed

through derivatives of heights or widths, the result is correct.

It is remarked the local feature of the height function. The orientation and the

position of the axis used as reference for the evaluation of heights or widths at the

generic x location is not important. It may vary at every location x, but the best

choice at each x is the one that leads to the most accurate computation of the inter-

face topology.

The Equations (3.7) and (3.8) refer to a two-dimensional geometry. For axisym-

metrical domains with revolution around the x−axis:

n =
1

[1 + (Hx)2]1/2
(Hx, 1) (3.9)

κ = − Hxx

[1 + (Hx)2]3/2
−
(
Hxx

|Hxx|

)
1

f(x)[1 + (Hx)2]1/2
(3.10)

For three-dimensional domains:

n =
1

[1 + (Hx)2 + (Hy)2]1/2
(Hx, Hy, 1) (3.11)

κ = −Hxx[1 + (Hy)
2] +Hyy[1 + (Hx)2]

[1 + (Hx)2 + (Hy)2]3/2
(3.12)

The discrete height function

In the discrete case, the discrete Height Function can be defined for each interfacial

cell (0 < α < 1). Let consider the interface cell (i, j) of the Fig. 3.1. The h width
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stencil is the grid spacing. The reference axis for the local computation of heights

or widths can be arbitrarily chosen among the lines of an orthogonal computational

grid. By approximating the interface line as a horizontal piecewise segment if heights

are being computed, otherwise vertical (in Fig. 3.1 heights are computed and the

interface segments are depicted with dash lines), the local height Hj of the interface

for the (i, j) cell is computed by the discrete version of the integral (3.6):

Hj =
1

∆x

tup∑
t=−tlow

αi−t,j∆y∆x (3.13)

where tlow is the number of cells separating the (i, j) cell from the reference axis and

tup the number of cells separating (i, j) from the top of the block of cells considered.

The columnwise sum of the volume fractions identifies the discrete height of the

interface. In the Fig. 3.1, tlow = tup = 1 and Hj = 1.66∆y. As well, the heights

in the side columns can be computed by keeping the same reference axis, leading to

Hj−1 = 1.15∆y and Hj+1 = 2.04∆y.

By this local discrete field of the interface heights, first and second order deriva-

tives in j can be evaluated through central finite-differences schemes, which are

second order accurate with respect to the grid spacing:

Hx:j =
Hj+1 −Hj−1

2∆x
, Hxx:j =

Hj+1 +Hj−1 − 2Hj

(∆x)2
(3.14)

The computation of the curvature for the (i, j) cell of the Fig. 3.1 by use of the Eq.

(3.8) leads to κi,j = 200.9, which is only 0.45% higher than the analytical value.

Generally speaking, the computation of the interface topology with the HF

method involves the columnwise or row-wise sum of the volume fractions within

a local block of cells whose extension is defined arbitrarily for each interface cell.

The algorithm implemented

For the example depicted in the Fig. 3.1, the HF algorithm is very simple and, once

defined the direction of the integration, the expression (3.13) is sufficient to compute

heights leading to a very accurate curvature. However, the interface topology when

simulating two-phase flows may be much more complicated. For each interfacial cell,

the HF algorithm has to be able to choose the best extension of the block of cells to

consider for the computation, as well as to give a consistent calculation when more
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than one interface cut the block. Moreover, the axisymmetrical case requires the

computation of the interface elevation with respect to the revolution axis (see Eq.

(3.10)).

The algorithm that we have implemented is a merge of the Malik et al. [36] and

Hernandez et al. [99] versions, with the addition of a routine for the axisymmetrical

curvature. The algorithm is written for a two-dimensional or axisymmetrical geom-

etry, with constant grid spacings ∆x and ∆y.

The following steps describe the procedure to evaluate the curvature in a (i, j)

interface cell. Note that, according to the CSF model, the surface tension force com-

puted through the Eq. (1.39) acts in every cell whose volume fraction gradient is

different from zero, even if the cell is not cut by the interface (α = 0, 1) such that a

curvature can not be defined. However, the introduction of a specific routine allows

the algorithm to apply well for such cells as well. See Fig 3.3 for indexes reference.

1. Choice between heights and widths. An approximation of the interface is built

by considering the volume fractions of a 3×3 block of cells surrounding the (i, j)

cell. If the interface forms an angle below 45o with the horizontal direction,

an horizontal interface is assumed and a block of cells extended on the vertical

direction is considered to compute heights. Otherwise, widths are computed

within an horizontally extended block of cells. To accomplish this, the following

condition is checked:∣∣∣∣∣
r=1∑
r=−1

(αi−1,j+r − αi+1,j+r)

∣∣∣∣∣ >
∣∣∣∣∣
r=1∑
r=−1

(αi+r,j+1 − αi+r,j−1)

∣∣∣∣∣
true → horizontal interface, vertical stencil.

false → vertical interface, horizontal stencil.

The following algorithm will always refer to a vertical oriented stencil.

2. Choice of the stencil extension. The stencil extension has to be sufficient to

capture the meaningful volume fraction variations. The stencil is always at

least 3 cells width, in order to perform second order accurate derivatives.

The number of rows tup over the i − th row is increased till the following two
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conditions are being satisfied:

sign(ny) ·
r=1∑
r=−1

(αi−tup,j+r − αi−tup+1,j+r) > 0 ,

0 <
r=1∑
r=−1

αi−tup,j+r < 3

The preliminary norm vector components (nx, ny) are computed by the Youngs

formulation given by Eqs. (3.3) and (3.4). A maximum of 3 rows is set. The

number of rows tlow is chosen by a similar procedure. Figure 3.3(a) reports a

sketch of the procedure step.

3. Correction of the local volume fraction field in order to have a monotonic

variation along the height direction. This improvement is needed to prevent

errors when more than one interface cut the stencil. The volume fractions of

the cells located above the i− th row are adjusted if the following condition is

satisfied:

sign(ny) · (αi−t,j+r − αi−t+1,j+r) < 0, t = 1, . . . , tup, r = −1, 0, 1

The volume fractions of the cells below the i − th row are adjusted if the

following condition is satisfied:

sign(ny) · (αi−t,j+r − αi−t−1,j+r) > 0, t = −tlow, . . . ,−1, r = −1, 0, 1

For both cases the adjustment is:

α∗i−t,j+r =
1

2

(
1 + sign(t) · sign(ny)

)
Figure 3.3(b) reports a sketch of the procedure step. At the end of the whole

procedure for the (i, j) cell the adjusted volume fractions are reset to their

original values.

4. Evaluation of the discrete height function field H in the stencil:

Hj+r =

tup∑
t=−tlow

αi−t,j+r ·∆y, r = −1, 0, 1
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5. Calculation of the offseti,j . The height function in the central column Hj could

not fall inside the considered cell, this is the case of the cell (i − 1, j) in the

Fig. 3.3(a). This may happen when the interface cuts the considered cell just

a little or not at all. Offset is the number of cells vertically far from (i, j) to

the cell where Hj falls. It is evaluated as follows:

offseti,j =


tup − floor

(
Hj

∆y

)
if sign(ny) > 0

floor

(
Hj

∆y

)
− tlow if sign(ny) < 0

where floor() stands for the largest previous integer of the number between

parenthesis. If offseti,j 6= 0 the curvature of the (i, j) cell is taken equal to the

neighbor cell pointed by the offset:

κi,j = κi−offset,j

Otherwise it is calculated as shown in the next steps.

6. Only for an axisymmetrical geometry, the elevation of the interface with respect

to the revolution axis has to be computed (f(x) in Eq. (3.10)). An approxi-

mation of the interface line within the cell is built estimating its orientation as

inverse of the volume fraction gradient and positioning the segment by means

of the Cube Chopping algorithm reported in [100]. The two intersections of

the interface segment with the cell sides are computed and then the elevation

of the midpoint of the segment is evaluated through geometrical relationships.

7. First and second order derivatives of the local height function field are com-

puted by the schemes reported in Eqs. (3.14) and the curvature is computed

according to the two-dimensional (3.8) or axisymmetrical (3.10) expression.

Discussion

The listed procedure allows the evaluation of interface norm vectors which converge

with the first order of the mesh element size and second order converging curvatures,
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(a) (b)

Figure 3.3: Examples of HF algorithm steps. (a) Step 2: the stencil extension for

the (i, j) cell calculation is chosen to be 1 row above the i− th (tup = 1) and 1 under

the i− th row (tlow = 1), the considered stencil has red colored boundaries. (b) Step

3: within the stencil chosen at step 2, colored in red, the volume fractions of the

marked cells are corrected to cancel the presence of a second interface within the

stencil. Note that in (a) and (b) the algorithm leads to the same height function

values within the stencil, thus to the same curvature for the (i, j) cell, as it actually

is. According to the step 5, the curvature in the cell (i − 1, j) is not computed

because the cell is marked with an offset6= 0. The curvature of the cell (i − 1, j)

will be set equal to the cell below, where the height function of the central column

actually falls.

as will be proved in the validation Section 5.1. The algorithm can be easily paral-

lelized providing enough boundary cells to each computing node, since through the

MPI protocol each node stores only a partition of the entire computational domain.

The computed curvature refers to the cell centroid curvature. Face-centered cur-

vatures can be obtained by interpolation of cell-centered values [48, 101], but the

approach used in the numerical code to solve the momentum equation involves only

cell-centered values of the curvature.

The application of the HF algorithm is limited to orthogonal grids due to the

heights or widths computation. The version implemented is restricted to constant
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grid spacings, Francois and Swartz [102] extended it to not constant grid spacings.

The HF algorithm becomes inadequate when the interface local radius is of the order

of the grid spacing, Bornia et al. [103] showed that with appropriate modifications

this limit can be crossed. The HF algorithm is as much accurate as the interface is

more aligned with the background grid, while it gets worse for 45o oriented interfaces.

Lopez et al. [104] proposed a procedure based on the smoothing of the derivatives

of H to improve the calculation in the mentioned case.

3.2 The evaporation model

The task of the evaporation model is to compute accurate local mass and energy

source terms at the interface as effect of the evaporation, depending on the local

temperature field.

The foundation of the evaporation model is the interfacial condition assigned to

the temperature. A custom approach is to assume thermodynamic equilibrium at

the interface. However, such approximation could be untrue in microscale boiling

flows, as a consequence a physical relationship accounting for the relevant additional

microscale effects at the interface needs to be applied.

Furthermore, the chosen physical model has to be implemented within the nu-

merical code. High evaporation rates could lead to numerical instabilities depending

on the numerical algorithms used, therefore it is necessary to provide a stable im-

plementation.

3.2.1 The interface temperature condition

Most of the evaporation models employed to simulate boiling flows assume thermo-

dynamic equilibrium at the interface, with both the liquid and the vapor phases

at the same temperature Tl = Tv, equal to the interface temperature Tif . By as-

suming thermodynamic equilibrium for each phase, liquid and vapor temperature

correspond to the saturation temperature at the system ambient pressure p∞, it

follows the interface temperature condition:

Tif = Tsat(p∞) (3.15)

which imposes a continuous variation of the temperature field at the interface. Es-

maeeli and Tryggvason [105] used the condition (3.15) to derive the following expres-



70 CHAPTER 3. MODELING OF INTERFACIAL EFFECTS

sion for the interphase mass flux ṁ from the energy jump condition (1.14):

ṁ =
1

hlv
(ql − qv) · n =

(λl + λv)

hlv
∇T · n (3.16)

where λ is the thermal conductivity.

The Eq. (3.15) is an adequate assumption for many macroscale boiling problems,

but in the microscale a significant deviation from thermodynamic equilibrium at the

interface may exist. For instance, liquid and vapor pressures at the interface could

not coincide when the laplacian jump in the pressure across the interface ∆p = σκ is

considerable. In this case, liquid and vapor temperatures computed referring to the

respective saturation conditions are different and the (3.15) is not anymore valid.

By considerations on small length scales, Tanasawa [109] argued that without an

interface jump in temperature a net flux of molecules across the interface can not

exist. Hardt and Wondra [7] showed that as a vapor-liquid interface approaches a

heated wall, under a certain value of the distance the deviation of the interfacial tem-

perature from the saturation condition can no longer be neglected. The mentioned

reasons suggest to seek for a more general relationship than the condition (3.15) at

the interface, when dealing with microscale boiling phenomena.

Schrage [106] assumed thermodynamic equilibrium within each phase but he

supposed an interfacial jump in the temperature to exist, such that Tsat(pl) = Tl 6=
Tv = Tsat(pv). Schrage applied the kinetic theory of gases to express the net flux

of molecules crossing the interface due to the phase change, as a function of the

temperature and pressure jumps. When phase change occurs, a fraction σ of the

molecules that from the bulk phase strike the interface crosses the interface and

evaporates/condensates, while the fraction 1 − σ is reflected. The evaporation and

condensation fractions σe and σc are often considered equal and referred to as ac-

commodation coefficient. The net mass flux across the interface ṁ is given by the

difference on the liquid-to-vapor and vapor-to-liquid mass fluxes and according to

[95] takes the following expression:

ṁ =
2σ

2− σ

(
M

2πR

)1/2( pv√
Tv
− pl√

Tl

)
(3.17)

where M is the molecular weight and R = 8.314 J/(mol·K) is the universal gas con-

stant, pv and Tv are the vapor pressure and temperature at the interface, pl and Tl
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are the liquid pressure and temperature at the interface.

The accommodation coefficient σ is difficult to be measured experimentally and

it is known only for a few liquids, with a large degree of uncertainty. As example,

Marek and Straub [107] analyzed the published data for water and reported values

in the range [10−3, 1]. Wang et al. [108] showed that non polar-liquids have an

experimentally determined accommodation coefficient of unity. In the simulations

performed in this thesis, the accommodation coefficient was always set to one, this

decision is justified in the validation Section 5.4.

Tanasawa [109] derived the Eq. (3.17) for vapor condensation on a liquid film.

He referred to the vapor-liquid interface as the “liquid interface”, thus pressure

and temperature of the liquid at the interface within the (3.17) are considered as

interfacial temperature Tif and pressure pif . The vapor pressure at the interface is

assumed to be equal to the system ambient pressure p∞ and the vapor temperature

at the interface is set equal to the saturation temperature Tv = Tsat(pv) = Tsat(p∞).

Tanasawa assumed that for small interface temperature jumps, such that (Tv −
Tif ) << Tv, the interphase mass flux depends linearly on the temperature jump:

ṁ =
2σ

2− σ

(
M

2πR

)1/2 ρvhlv

T
3/2
v

(Tif − Tv) (3.18)

where Tv = Tsat(p∞). Thus, in the Tanasawa model, the interfacial mass flux is

proportional to the interface superheating over the local vapor saturation condition.

The Equation (3.18) leads to the following interface temperature condition:

Tif − Tsat(p∞) =
ṁ

φ
(3.19)

where φ is the so-called kinetic mobility and 1/φ can be meant as the interfacial

resistance to mass transfer.

Juric and Tryggvason derived in [20] an interface temperature condition more

complete than the Eq. (3.19), by considering other terms in addition to the inter-

facial resistance to the heat transfer. They started from the interface jump on the

Gibbs function and, by means of thermodynamical considerations, they obtained the
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following interface temperature condition:

Tif − Tsat =
Tsat
hlv

(
1

ρv
− 1

ρl

)
(pif − p∞) +

cp,l − cp,v
hlv

(Tif − Tsat)2+

+
σTsatκ

2hlv

(
1

ρv
+

1

ρl

)
− 1

2

Tsat
hlv

(
1

ρv
− 1

ρl

)
[((τv + τl) · n) · n)] +

ṁ

φ
(3.20)

where Tsat = Tsat(p∞). The first and second terms at the RHS refer to the Gibbs

function jump for a flat and static interface; the third term accounts for the effects

of the curved interface; the fourth term is related to the shear stress at the interface

and the fifth comes from the modeling of the irreversible production of entropy at

the interface as a function of the kinetic mobility.

Note that if all the terms at the RHS are negligible, the condition (3.20) reduces

to the (3.15), while if only the last term is not negligible it reduces to the (3.19).

The importance of each term within Eq. (3.20) depends on the case studied, in

particular on the spatial scale. Juric and Tryggvason performed a scaling analysis

and observed that the term related to the shear stress is negligible compared to the

others.

We repeated their analysis by considering conditions representative of the cases

simulated in this thesis: q = 20 kW/m2, D = 0.5 mm, R113, R134a, R245fa and

water as working fluids, Tsat = 31 oC for the refrigerants and Tsat = 100 oC for the

water. The fifth term is estimated by considering ṁ = 1 and σ = 1 within φ. The

results are reported in the Tab. 3.1 in terms of interfacial superheating occurring

for each operating fluid tested, given by the (3.20), and in terms of the percentage

contribution of each term of the (3.20) to the total interface superheating. For all

Fluid p∞ [bar] Tif − Tsat [oC] I [%] II [%] III [%] V [%]

R113 0.56 0.1032 15.1 2.2 · 10−2 15.2 69.7

R134a 7.93 0.0106 6.1 2.3 · 10−3 6.5 87.4

R245fa 1.85 0.036 11.3 8.2 · 10−3 11.5 77.1

Water 1 0.2306 17.5 2.2 · 10−2 17.5 64.9

Table 3.1: Relative magnitude of the terms at the RHS of Eq. (3.20), as a percentage

of the Tif − Tsat computed by the (3.20) and reported in the third column. The

magnitude of the fourth term is always negligible and it is not reported.
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Figure 3.4: Contribution to the interfacial superheating given by the first, third and

fifth terms of the Eq. (3.20), depending on the length scale. The second and fourth

terms give a negligible contribution thus they are not reported. The fluid considered

is R113 at p∞ = 0.56 bar.

the fluids considered the interfacial resistance to mass transfer gives the dominant

contribution to the interface superheating. The magnitude of the superheating is of

the order of tenths of degree. However, the importance of the interfacial resistance

depends on the chosen reference ṁ = 1, which is only an average estimation of its

real value that, locally, can strongly exceed the unity.

The Figure 3.4 shows that the relative importance of the terms within the (3.20)

changes considerably by decreasing the length scale below the 0.5 mm adopted in

our simulations. For diameters below 0.1 mm the interface superheating becomes

remarkable and other effects rather than the interfacial resistance, which remains

constant, have to be considered. The second and fourth terms at the RHS of the

(3.20) are always negligible and they are not shown in Figure 3.4.

The interfacial temperature condition implemented in this thesis neglects all the

terms at the RHS of the Eq. (3.20) with the exception of the last, such that the
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Tanasawa Eq. (3.18) is used to compute the interphase mass transfer. The validity

of such assumption is proved in the validation Section 5.4.

3.2.2 The numerical model

A numerical method for the implementation of the mass and energy source terms

related to the evaporation was proposed by Hardt and Wondra [7] and it is discussed

in this Subsection.

According to the VOF formulation of the delta function (1.37), the evaporation

mass source term Sρ at the RHS of the mass conservation equation (1.15) can be

expressed as:

Sρ = ṁ|∇α| (3.21)

where |∇α| is expressed by the Eq. (3.2) and discretized through the Eqs. (3.3) and

(3.4).

Note that the source term has to be expressed as mass per unit time and vol-

ume. Actually, by means of the VOF algorithm the mass conservation equation is

replaced by the volume fraction conservation equation as discussed at the end of the

Subsection 1.2.2. The volume fraction source term to be introduced at the RHS of

Eq. (1.38) can be expressed as Sρ/ρ.

By expressing the mass flux ṁ through the Tanasawa Eq. (3.18), the mass source

term takes the following form:

Sρ = φ(Tif − Tsat(p∞))|∇α| (3.22)

The equality pv = p∞ used to express the mass flux in Eq. (3.22), valid in Tanasawa

analysis of liquid films within an infinitely extended vapor phase, can not be assumed

a priori if vapor bubbles within liquid are considered. In this case, pv = p∞ + ∆pif

where p∞ refers to liquid system ambient pressure and ∆pif is the laplacian pressure

jump at the interface. However, the operating conditions simulated in this thesis

involve small laplacian pressure jumps across the interface. As example, R113 va-

por bubbles at Tsat = 31 oC, approaching the channel size of 0.5 mm (typical test

conditions of our simulations), give a pressure jump across the interface of 132 Pa,

which in turn generates a rise on the saturation temperature of the vapor of 0.06 K.

Therefore, due to the negligible effect of the laplacian pressure jump on the satura-

tion temperature of the flow, we assumed pv ' p∞ and Tv ' Tsat(p∞) as Tanasawa
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did, and the expression (3.19) for the mass transfer is considered correct for our case

as well.

The mass source term expressed in Eq. (3.22) is defined over the whole com-

putational domain and it is non-zero only in a finite thickness region across the

interface, where |∇α| 6= 0. The local interface temperature Tif is given by the tem-

perature field, the saturation temperature at the system ambient pressure is constant

throughout the domain. The kinetic mobility φ is constant as well and it is computed

as:

φ =
2σ

2− σ

(
M

2πR

)1/2 ρvhlv

T
3/2
sat (p∞)

(3.23)

The mass source term could be implemented as expressed in (3.22). Hardt and

Wondra [7] suggested that, since the evaporation takes place on the liquid side of

the interface, the mass source term should reflect this phenomenon. Thus, Sρ is first

multiplied by the liquid volume fraction αl, which is zero on the vapor side, and then

multiplied by a normalization factor N to ensure the global actual evaporation rate,

such that:

Sρ = Nαlṁ|∇α| (3.24)

and the normalization factor is:

N =

∫
Ω
|∇α|dΩ

/∫
Ω
αl|∇α|dΩ (3.25)

where Ω is the computational domain. The liquid volume fraction αl is the updated

volume fraction given by the solution of the volume fraction equation (1.38) if the

liquid is the primary phase, otherwise α corresponds to the vapor volume fraction

and αl = 1 − α. The norm of the volume fraction gradient is independent of the

reference phase chosen. The discrete version of the integral (3.25) is a sum over all

the computational cells.

In principle, by referring to the RHS of the Eq. (3.24) as the original evaporation

rate ϕ0, the mass source term could be implemented as Sρ = ϕ0 in the vapor side and

Sρ = −ϕ0 in the liquid side. However, such a localized source term, concentrated

just on interface cells, is proved to lead to numerical instabilities, due to very high

evaporation rates concentrated in only a few cells.
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Hardt and Wondra suggested to derive a smeared version ϕ of the original evap-

oration rate field ϕ0 by solving, at each time step, a steady diffusion equation in

which ϕ0 represents the known term:

D∇2ϕ = ϕ− ϕ0 (3.26)

together with the following Neumann condition at the domain boundary:

n · ∇ϕ|∂Ω = 0 (3.27)

which ensures that the integrals over the whole domain of ϕ and ϕ0 give the same

result.

The diffusion constant D acts as a smoothing parameter to diffuse the evapo-

ration rate at both sides of the interface. The larger is D, the smoother is ϕ thus

preventing numerical instabilities. Nevertheless, Hardt and Wondra warned that for

curved interfaces the larger is D, the more asymmetric is the smoothing of ϕ0 at the

interface sides, violating the local mass conservation. This error is proportional to

the local curvature of the interface and it is zero where the interface is flat.

The smoothed scalar field ϕ, representing the evaporation rate, is thus used to

express the mass source term, concentrating vapor creation on the vapor side and

liquid disappearance in the liquid side, as follows:

Sρ = Nvαvϕ−Nlαlϕ (3.28)

The normalization factors Nv and Nl ensure that all the mass disappeared on the

liquid side reappears on the vapor side and they are determined as follows:

Nv =

∫
Ω
ϕdΩ

/∫
Ω
αvϕdΩ (3.29)

Nl =

∫
Ω
ϕdΩ

/∫
Ω
αlϕdΩ (3.30)

The Figure 3.5 reports a snapshot of the fields of ϕ0, its smoothed version ϕ

and the first and second terms at the RHS of the Eq. (3.28), across the interface

of the evaporating bubble simulated as a benchmark for the evaporation model and
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discussed in the Section 5.4. The initial source term ϕ0 is concentrated only on

superheated liquid side cells whose volume fraction gradient is non-zero (see Fig.

3.5(a)). Due to the chosen value of the diffusion constant, the smeared scalar field ϕ

is non-zero in about 20 cells across the interface (see Fig. 3.5(b)). The vapor creation

(a) ϕ0 (b) ϕ

(c) Nvαvϕ (d) Nlαlϕ

Figure 3.5: The subfigures are obtained through the simulation of a vapor bubble

growing in superheated liquid, benchmark discussed in Section 5.4. (a) is the original

evaporation rate field, (b) is the smeared version, (c) is vapor creation and (d) liquid

disappearance.



is actually located in the vapor side (Fig. 3.5(c)) and the liquid disappearance in

the liquid side (Fig. 3.5(d)).

The expression (3.28) represents the actual mass source term implemented in the

numerical code.

The evaporation energy source term SE at the RHS of the energy Eq. (1.17) can

be expressed, by means of the (1.37), as:

SE = −q̇|∇α| = −hlvṁ|∇α| (3.31)

where the interphase mass flux ṁ is computed by the (3.18) as done for the mass

source term. However, in order to have energy sink only in the liquid side, where

evaporation actually occurs, the energy source term (3.31) is modified as follows:

SE = −hlvϕ0 (3.32)

which was proved to be numerically stable, without the need for smoothing.

Note that the energy source term has to be expressed as an energy per unit time

and volume. The energy source term (3.32) is not yet complete, because it needs

to account for the enthalpy related to the vapor created and the liquid disappeared,

otherwise a non-physical local heating of the liquid and cooling of the vapor would

happen. By calling href,l the specific enthalpy of the liquid and href,v the specific

enthalpy of the vapor both at the reference temperature Tref , the complete energy

source term takes the following form:

SE = −hlvϕ0 +Nvαvϕ[href,v+cp,v(T −Tref )]−Nlαlϕ[href,l+cp,l(T −Tref )] (3.33)

The expression (3.33) represents the actual energy source term implemented in the

numerical code.

The complete evaporation model is constituted by the mass source term (3.28)

and the energy source term (3.33). Hardt and Wondra demonstrated in [7] that such

model leads to the correct evaporation rate through some numerical validation cases,

for which analytical solution can be obtained. They performed test cases on Ansys

Fluent and found good agreement with the analytical solutions.



Chapter 4

Ansys Fluent solver and the

implementation of the UDF

Ansys Fluent is a numerical solver of the partial differential equations governing

thermal-fluid-dynamics problems. The versions 6.3 and 12 were used to carry out

the simulations for this thesis. The double precision version of the solver was em-

ployed to minimize the truncation errors.

Fluent itself contains a VOF-PLIC algorithm [38] for the simulation of multiphase

flows. The only algorithm implemented for the interface curvature computation is

based on the Youngs formulation discussed within the Section 3.1. Models for the

computation of mass and energy exchange related to evaporation are not present.

Fluent allows the partial modification of the numerical code by means of the so-

called User-Defined Functions (UDF), external functions that the user can write in

C or C++ language and implement into the code. The UDF are a very powerful tool

to modify the basic numerical code and to optimize it for the desired scope. Within

this context, the physical and numerical models discussed in the previous Chapter

have been implemented in the solver by means of UDF, to optimize the simulation

of two-phase evaporating flows.

The objective of this Chapter is to give an overview of the Fluent solver, of the

algorithms and the set-ups chosen to simulate the flows object of this thesis, and of

the UDF implementation for the interfacial effects. Additional information about

the solver can be found in the Fluent User’s and UDF guides [110, 111].

79
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This Chapter is organized as follows: first of all the equations set governing

the multiphase flow is defined; then, the Fluent discretization procedure for the

generic flow equation is outlined; subsequently, the numerical treatment of each

flow equation is discussed separately, together with the specific algorithms and the

boundary conditions; the implementation of the Height Function and evaporation

algorithms by means of the UDF is explained in detail; finally, an overview of the

Fluent solution procedure is given.

4.1 The flow equation set

The solution of the multiphase flow problem in an axisymmetrical domain requires

the solution of a system of 6 coupled non-linear partial differential scalar equations:

the continuity equation (1.21), the volume fraction equation (1.38), the momentum

equation (1.16) in the axial and radial directions, the energy equation (1.17); the

Eq. (3.26) to be solved to obtain the evaporation rate smoothed field, is intended as

a conservation equation for the evaporation rate ϕ without transient and convective

terms. In the following, the mentioned equations are reported by separating at the

RHS the source terms discussed in the previous Chapter:

∇ · u = 0 (4.1)

∂α

∂t
+

1

Ω

∫
S
I(x)u · ndS = Sα (4.2)

∂(ρu)

∂t
+∇ · (ρuu) +∇p−∇ · µ

[
(∇u) + (∇u)T

]
− ρg = Sm (4.3)

∂(ρcpT )

∂t
+∇ · (ρcpuT )−∇ · (λ∇T ) = SE (4.4)

D∇2ϕ = Sϕ (4.5)

The viscous heating term in the energy equation has been neglected. Following the

dimensional analysis proposed by Morini [112], we estimated the contribution of the

viscous heating on the bulk temperature for a single phase flow under operating con-

ditions typical for this thesis. We found such contribution to be of the order of 10−4

compared with the rise in temperature generated by the wall heat flux, therefore

viscous heating was not included within Eq. (4.4).
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The source terms of volume fraction Sα, momentum Sm, energy SE and evapora-

tion rate equation Sϕ, developed in the previous chapters, are expressed as follows:

Sα =
Nvαvϕ−Nlαlϕ

ρ
(4.6)

Sm =
ρ

< ρ >
σκ∇α (4.7)

SE =− hlvϕ0 +Nvαvϕ[href,v + cp,v(T − Tref )]−

−Nlαlϕ[href,l + cp,l(T − Tref )]
(4.8)

Sϕ = ϕ− ϕ0 (4.9)

where αv ≡ α and αl = 1 − α if the vapor phase is the reference one, vice versa if

the liquid phase is the reference.

The system of the flow equations with appropriate boundary conditions is solved

for the 6 independent unknowns α, p, ux, uy, T (or the energy E) and ϕ.

4.2 Fluent discretization procedure

Fluent employs a finite-volume formulation of the transport equations to transform

the continuous non-linear partial differential equations in discrete linear algebraic

equations, that can be solved numerically. The transport equation for a generic

variable φ [110]:

∂(ρφ)

∂t
+∇ · (ρφu) = ∇ · (Γ∇φ) + Sφ (4.10)

is integrated within a control volume of volume V and bounding area A:∫
V

∂(ρφ)

∂t
dV +

∫
A
ρφu · ndA =

∫
A

Γ∇φ · ndA+

∫
V
SφdV (4.11)

where the divergence theorem has been invoked to convert the volume integral of

the divergence of a vectorial field into the surface integral of the scalar product

between the vectorial field and the outgoing unit normal n to the cell boundary. By

assuming that the value of the integrand function at the center of the cell is equal

to the average of the function within the cell, the volume integrals within the (4.11)

can be approximated by multiplying the value of the integrand function at the cell

center by the volume of the cell. As well, by assuming that the value of the integrand
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function at the center of the cell face is equal to the average of the function on the

cell face, the surface integrals within the (4.11) can be approximated with a midpoint

rule by multiplying the value of the integrand function at each cell face center by

the area Af of the respective face. It follows:

∂(ρφ)

∂t
V︸ ︷︷ ︸

unsteady term

+

Nf∑
f

ρfφfuf · nfAf︸ ︷︷ ︸
convective term

=

Nf∑
f

Γf (∇φ)f · nfAf︸ ︷︷ ︸
diffusive term

+ SφV︸︷︷︸
source term

(4.12)

where the subscript f identifies face centered values while the variables without the

subscript f refer to cell centered variables. The sum is intended about the Nf cell

faces of the control volume, as example with reference to the Fig. 4.1 the cell 0 has

Nf = 3 and the cell 1 has Nf = 4.

Fluent employs a collocated technique with which the algebraic equations are

solved for cell centered variables, thus interpolation schemes are required to express

the face centered variables appearing in the (4.12) as function of the cell centered

values. Furthermore, it is necessary to provide a scheme for the spatial discretization

of the gradients. The unsteady term has to be somehow discretized with respect to

the time.

These issues are discussed in the following subsections.

4.2.1 Temporal discretization

By grouping together as F (φ) all the terms appearing in the (4.12) but the unsteady

term, the first order explicit and implicit time discretizations can be expressed as

follows:

explicit
φn+1 − φn

∆t
= F (φn) (4.13)

implicit
φn+1 − φn

∆t
= F (φn+1) (4.14)

where ∆t is the time step of the time discretization. The temporal update of the flow

equations in both the implicit and explicit cases can be obtained by a time-marching

procedure, since the equations are parabolic in the time variable.

The explicit time discretization is subject to a limit for what concerns the time

step, to avoid numerical instabilities. The implicit formulation is unconditionally

stable with respect to the time step, but requires an iterative procedure to solve
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Figure 4.1: Example of a control volume used to discretize a generic transport equa-

tion. Figure adapted from [110].

the non-linear or coupled equations at each time step, until a converged solution is

obtained.

The implicit time discretization is the only choice possible in Fluent for the

momentum, energy and additional scalar equations when dealing with incompressible

flows, a first order time discretization is chosen. Fixed or variable time steps are set

depending on the test case being solved. The volume fraction equation is always

solved with an explicit formulation which is discussed in the Section 4.3.

4.2.2 Spatial discretization

The choice of the spatial discretization technique provides the scheme for the inter-

polation of the cell centered variables on the cell face centers. Fluent offers several

schemes to interpolate the face center variable φf appearing in the convective term

of the (4.12). Here it is discussed only the chosen scheme, which is the more ac-

curate available: the Monotonic Upstream-centered Scheme for Conservation Laws

(MUSCL) developed by van Leer [113]. It is a blending of a central finite difference

(CD) scheme and a second order upwind (SOU) scheme:

φf = θφf,CD + (1− θ)φf,SOU (4.15)
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where θ is a blending coefficient. The face centered value given by the central differ-

ence scheme is:

φf,CD =
1

2
(φ0 + φ1) +

1

2
[(∇φ)0 · r0 + (∇φ)1 · r1] (4.16)

where the subscripts 0 and 1 refer to the cells that share the face f , ∇φ is an appro-

priate discretization of the cell centered gradient (discussed in the next Subsection)

and r is the vector directed from the cell centroid to the face centroid, see Fig. 4.1.

The face centered value given by the second order upstream scheme is:

φf,SOU = φ+∇φ · r (4.17)

where all the entities refer to the upstream cell.

The gradient evaluated at the cell face center (∇φ)f appearing in the diffusive

term of the (4.12) is always discretized with a central finite difference scheme:

(∇φ)f =
1

2
[(∇φ)0 + (∇φ)1] (4.18)

4.2.3 Reconstruction of the cell centered gradients

Fluent uses the Green-Gauss theorem to compute the cell centered gradient of the

scalar φ as face-area-weighted average of the cell face centered values:

∇φ =
1

V

Nf∑
f

φ̄fnfAf (4.19)

Fluent computes the face value φ̄f according to the chosen scheme:

Green-Gauss cell based

The face value is taken from the arithmetic average of the values at the neighboring

cell centers:

φ̄f =
φ0 + φ1

2
(4.20)

For quadrilateral meshes, it is equivalent to compute the cell center gradient using

a 5 cells stencil.
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Green-Gauss node based

The face value is taken from the arithmetic average of the nodal values on the face:

φ̄f =
1

Nn

Nn∑
n

φ̄n (4.21)

where Nn is the number of nodes of the face f . The nodal value φ̄n is constructed

from the weighted average of the cell-centered values of the cells surrounding the

node n:

φ̄n =

∑Nc
c wcφc∑Nc
c wc

(4.22)

where Nc is the number of cells surrounding the node n. φc are the cell centered

values of the cells surrounding the node n. The weight coefficients wc are a function

of the distance of the cell centroid xc from the node point xn, derived as suggested

by Rauch et al. [114].

For a quadrilateral mesh, the node based formulation corresponds to the com-

putation of the cell center gradient using a 9 cells stencil. For quadrilateral meshes

with constant grid spacings along the horizontal and vertical directions, the scheme

is analogous to the Youngs discretization scheme of the volume fraction gradient

expressed with the Eqs. (3.3) and (3.4).

In Fluent, the volume fraction gradient appearing in the surface tension term is

reconstructed according to the gradient reconstruction scheme chosen. The choice

of the Green-Gauss node based scheme, thus leading to the Youngs formulation,

helps to enforce the balance among pressure and surface tension terms within the

momentum equation, thus minimizing the magnitude of the spurious currents. To

assess this issue, an inviscid static droplet simulation with unity density ratio was

performed. The test case will be better illustrated in the Section 5.2, here it is only

anticipated that the exact solution of the flow is a null velocity field, due to the ab-

sence of external forces. Thus, the magnitude of appearing numerical velocity gives

an estimation of the error generated by the numerical algorithm used. A comparison

between the node based formulation and the cell based one was carried out by adopt-

ing identical simulation set-ups with except of the gradient reconstruction scheme.

In order to cancel the effect of the errors in the numerical computation of the in-

terface curvature, an exact constant curvature was set within the Eq. (1.39). The
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Gradient reconstruction |umax| [m/s]

cell based 5.8 · 10−2

node based 2.5 · 10−16

Table 4.1: Comparison of the Green-Gauss cell based and node based schemes for the

reconstruction of cell centered gradients. The magnitude of the maximum velocity

in the domain after one time step is reported. The simulation set-up is discussed in

the Section 5.2.

Table 4.1 reports the maximum magnitude of the velocity after one simulation time

step (∆t = 5 · 10−7 s). The node based formulation gives a maximum velocity of the

order of the machine accuracy, while the cell based one shows a magnitude several

orders higher, thus proving the better consistency of the node based formulation.

4.2.4 The final algebraic equation

Through the discretization algorithms discussed in the previous subsections, the

generic equation (4.12) contains the unknown value of φ at the center of the cell

where the (4.12) is discretized, as well as the unknown values at the centers of the

surrounding neighbor cells. The resulting equation can typically be non-linear, the

linearization technique is part of the solution algorithm and the final linear algebraic

equation for each domain cell takes the following form:

aφn+1 =
∑
nb

anbφ
n+1
nb + b (4.23)

where the subscript nb refers to neighbor cells, a and anb are the linearized coefficients

for φ and φnb, and b is the known term. For each flow equation, a linear system of

N equations has to be solved, with N being the number of computational cells. The

numerical solution of each flow equation thus consists in the solution of the linear

system:

Aφn+1 = b (4.24)

withA being a [N×N ] sparse coefficient matrix, φ the [N×1] unknown terms vector

and b the [N × 1] known terms vector. The order in which the equations are solved

and the numerical methods used depend on the algorithms chosen to discretize the
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specific terms appearing in each equation, such that each term is available when it

is needed.

4.3 Discretization of the volume fraction equation: the

PLIC and the split advection techniques

The volume fraction equation is discretized in time with a first order explicit scheme.

The numerical stability of the explicit scheme poses a limitation on the time step

used to solve the volume fraction equation, since the interface must travel less than

one grid cell at each time interval. On the contrary, the time-implicit treatment of

the other flow equations, allows an higher time step for their temporal discretization.

Fluent allows the solution of the volume fraction equation with a finer time step with

respect to the other equations, thus for each time iteration of the flow equations set,

the volume fraction equation is updated more frequently.

The time step restriction for the volume fraction equation can be expressed by the

Courant number Co. The Courant number is a dimensionless number that compares

the simulation time step and the time it would take for the fluid to empty out the

cell:

Co =
∆t

V/
∑Nf

f uf · nfAf
(4.25)

The numerical stability requires that Co< 1. Fluent uses the user input for the maxi-

mum Courant number to set the volume fraction equation time step as the minimum

∆t obtained by looping the (4.25) on all the near-interface cells. The Fluent default

value Co=0.25 is maintained in all the simulations performed in this thesis.

For those cells whose volume fraction gradient is zero, thus far from the interface,

the convective term of the volume fraction Eq. (4.2) is replaced by ∇ · (αu) and

the consequent interpolation of face centered values is done through the MUSCL

scheme. For those cells whose volume fraction gradient is non-zero, the volume frac-

tion field is advected sequentially in the directions of the coordinates axis with a

split technique. For the advection along each direction, a piecewise linear interface

is reconstructed through the PLIC algorithm [38] described in the Section 3.1. Once

the interface position within each interface cell is known, the volume fraction fluxes
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across each near-interface cell face are reconstructed by geometrical relations, using

an Eulerian technique.

To derive the split advection procedure, the marker function conservation equa-

tion (1.22) without source terms is rewritten:

∂I

∂t
+∇ · (Iu) = I∇ · u = 0 (4.26)

Considering a two-dimensional geometry and expliciting the gradient and divergence

operators:

∂I

∂t
+
∂(Iux)

∂x
+
∂(Iuy)

∂y
= I

(
∂ux
∂x

+
∂uy
∂y

)
(4.27)

where ux and uy are respectively the horizontal and vertical components of the

velocity vector. The unsteady term is discretized with the aforementioned first order

explicit scheme, such that:

In+1 − In

∆t
+
∂(Iux)n

∂x
+
∂(Iuy)

n

∂y
= In

(
∂unx
∂x

+
∂uny
∂y

)
(4.28)

Now, the unsteady term can be rewritten as follows:

In+1 − In

∆t
=
In+1 − I∗ + I∗ − In

∆t
(4.29)

where I∗ refers to an intermediate marker function field. The (4.28) together with

the (4.29) can be split into the following two equations:

I∗ − In

∆t
+
∂(Iux)n

∂x
= In

∂unx
∂x

(4.30)

In+1 − I∗

∆t
+
∂(I∗uny )

∂y
= I∗

∂uny
∂x

(4.31)

which represent the split advection along the x and y directions. I∗ represents the

volume fraction field updated after the advection along x. The procedure for a three-

dimensional geometry is analogous.

In the following, the finite-volume discretization of the (4.30) is outlined. The

integration of the (4.30) within a cell of volume V bounded by the area A leads to:∫
V

I∗ − In

∆t
dV +

∫
A
Inunx · ndA =

∫
V
In
∂unx
∂x

dV (4.32)
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where the horizontal velocity component in the second term at the LHS is consid-

ered as a vector and thus typed with a bold character. By using the definition of

volume fraction (1.34) and considering an average value of ∂ux/∂x within the cell,

the integrals are discretized as follows:

α∗ − αn

∆t
V +

Nf∑
f

Inf u
n
x:f · nfAf = αn

∂unx
∂x

V (4.33)

If the integration is made within the (i, j) cell of a two-dimensional uniform square

grid with grid spacing h, the (4.33) takes the following form:

α∗i,j − αni,j
∆t

h2 +(Iuxh)ni,j+1/2− (Iuxh)ni,j−1/2 = αni,j(ux:i,j+1/2−ux:i,j−1/2)nh (4.34)

where the indexes (i, j + 1/2) and (i, j − 1/2) refer respectively to the right and the

left face boundaries of the (i, j) cell, see Fig. 4.2(a). The derivative at the RHS of

the (4.33) has been discretized with a central finite difference scheme.

Thanks to the explicit formulation of the volume fraction equation, the (4.34) in-

volves only known variables, defined at the time-level n, while the only unknown

term is the intermediate volume fraction α∗i,j :

α∗i,j =
1

h2

{
αni,j

[
h2 + (ux∆t · h)ni,j+1/2 − (ux∆t · h)ni,j−1/2

]
−

− (Iux∆t · h)ni,j+1/2 + (Iux∆t · h)ni,j−1/2

} (4.35)

which, by referring to the Fig. 4.2 (b) and (c), can be intended as the balance of

three areas normalized by 1/h2:

α∗i,j =
1

h2

(
αni,jb+ Φn

i,j−1/2 − Φn
i,j+1/2

)
(4.36)

where b/h2 is a contraction/expansion coefficient for the (i, j) cell given by the flow

field and the αni,jb area is shown in Fig. 4.2(b) with pink color. The terms grouped

as Φ are the volume fraction fluxes across the side faces of the (i, j) cell and they are

evaluated geometrically by knowing the position of the PLIC reconstructed interface.

Referring to the Fig. 4.2(c), the flux of volume fraction Φ across the (i, j − 1/2)

boundary (green color) is equal to the area of a trapezoid of height unx:i,j−1/2∆t

bounded by the PLIC reconstructed interface in the cell (i, j − 1), area computed

through geometrical relationships. In a similar manner, the flux of volume fraction
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(a)

(b)

(c)

Figure 4.2: Sketch of the areas involved in the horizontal advection step of the

volume fraction field for a square interfacial cell. (a) PLIC reconstructed interfaces,

(b) contraction/expansion of the (i, j) cell, (c) geometrical reconstruction of the

volume fraction fluxes across the vertical faces of the (i, j) cell.
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Φ across the (i, j + 1/2) boundary (yellow color) is reconstructed.

Once that the intermediate volume fraction field α∗ is known throughout the

domain, the PLIC algorithm updates the interface topology within each interfacial

cell. Subsequently, the last advection, along the y direction, is performed to compute

the new αn+1 field. Summarizing, the numerical solution of the volume fraction

equation in two dimensions proceeds as follows:

1. PLIC reconstruction of the interface by the known αn field;

2. For cells far from the interface (∇αn = 0), solution of the Eq. (4.2) with the

methods described in Section 4.2;

3. For cells close to the interface (∇αn 6= 0), advection along the x direction by

solving the Eq. (4.36) with the geometrical reconstruction of the fluxes through

areas computation, thus deriving an intermediate α∗ field;

4. New PLIC reconstruction of the interface by the known α∗ field;

5. For cells close to the interface (∇αn 6= 0), advection along the y direction with

the same procedure of step 3, thus deriving the final αn+1 field;

Since the solution of the volume fraction equation with the discussed method does

not require the knowledge of terms at the time-level n + 1, it is the first equation

solved in the Fluent solution algorithm. Subsequently, each fluid material property

field can be updated at the new time-level by the Eq. (1.35).

Note that Fluent solves the following form of the volume fraction equation:

∂(ρ1α)

∂t
+∇ · (ρ1αu) = Sα (4.37)

where 1 refers to the primary phase, thus the volume fraction source term has to be

provided as:

Sα = Nvαvϕ−Nlαlϕ (4.38)

differently from what expressed in the (4.6).
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4.4 Pressure-velocity coupling: the PISO algorithm

In the flow equations set the pressure does not appear to be a primitive variable,

as instead the density would be because of the continuity equation. For high Mach

number flows, the density is treated as an independent variable and a density field

is obtained by the solution of the continuity equation, while the pressure field is

derived by an equation of state. For low Mach numbers the density-pressure linkage

is weak or null in the limit of incompressible flows. In such a situation the pressure

is treated as an independent variable and the continuity equation is replaced by a

pressure equation, obtained by manipulating the continuity and momentum equa-

tions. In the Fluent software this solution approach is called pressure-based.

The solution procedure for the time-implicit momentum equations, which are

non-linear and coupled one to each other, requires to resort to iterations. Further-

more, the pressure field is needed, such that the momentum and pressure equations

form a system of 3 equations (in two dimensions) coupled and non-linear. With the

segregated approach, the equations are decoupled in such a manner that they can be

solved sequentially with an iterative procedure up to the convergence, when the final

velocity field satisfies the momentum equations and the divergence-free condition.

The segregated algorithms available in Fluent are of the predictor-corrector class:

an estimation of the velocity field is obtained by solving the momentum equations

with a guess pressure field (predictor step); a pressure-correction equation is solved

with the previously estimated velocity field, to obtain a pressure correction field;

the estimated velocity field is corrected with the pressure correction field to derive

a divergence-free velocity (correction step).

In the Fluent implemented SIMPLE (Semi Implicit Method for Pressure-Linked

Equations) [115] and SIMPLEC (SIMPLE Consistent) [116] algorithms, the predictor-

corrector operations are repeated iteratively up to the convergence of the pressure

and the velocity fields. Differently, the original PISO algorithm (Pressure Implicit

Splitting of Operators) [117] proposed by Issa involves a double corrector step, con-

sidered sufficient by the author to gain a converged field for pressure and velocity

without resorting to iterations. However, since the momentum equation is not linear

and discretized implicit in time, an iterative procedure for the solution is necessary.

Even if the cited algorithms were proposed for single-phase flows, they are effec-

tive also for multiphase flows. In order to choose the best pressure-velocity segregated
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algorithm, the same inviscid static droplet simulation used to compare the gradient

discretization algorithms (see Section 4.2) was performed. It was observed that all

the pressure-velocity schemes lead to maximum velocity magnitudes of the same or-

der |umax| ≈ 10−16 m/s, however only the PISO algorithm reached convergence.

For this reason the PISO algorithm was used in all the simulations performed in

this thesis. In the following, the PISO algorithm as originally proposed by Issa [117]

is shown. First, the derivation of the pressure correction equation is discussed.

The author started with the following expressions of the continuity and momen-

tum equations, for a generic flow with variable density similar in concept to the

single fluid formulation of the two-phase flow:

∂ρ

∂t
+∇ · (ρu) = 0 (4.39)

∂(ρu)

∂t
= ∇ · (τ − ρuu)−∇p+ f (4.40)

where f identifies every external volume force, such as buoyancy or surface tension.

The flow equations are discretized in time with an implicit first order formulation,

such that:

ρn+1 − ρn

∆t
+∇ · (ρu)n+1 = 0 (4.41)

(ρu)n+1 − (ρu)n

∆t
= ∇ · (τ − ρuu)n+1 −∇pn+1 + fn+1 (4.42)

By taking the divergence of the momentum equation and substituting the continuity

equation, the following pressure-correction equation is derived:

∇2pn+1 = ∇ · ∇ · (τ − ρuu)n+1 +∇ · fn+1 +
1

∆t
∇ · (ρu)n +

ρn+1 − ρn

(∆t)2
(4.43)

The PISO algorithm proceeds as follows:

Predictor step

The pressure field prevailing at the time-level n is used in the solution of the implicit

momentum equation (4.42) to yield the estimated velocity field u∗:

1

∆t
ρn+1u∗ =

1

∆t
(ρu)n +∇ · (τ − ρn+1uu)∗ −∇pn + f∗ (4.44)
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where ρn+1 is maintained since it is known from the updated volume fraction field.

The two scalar momentum equations (in two dimensions) are coupled in the velocity

components, thus an iterative solution is necessary.

First Corrector step

A new velocity field u∗∗ which satisfies the continuity equation at the level ∗∗ is

sought:

ρn+1 − ρn

∆t
+∇ · (ρn+1u∗∗) = 0 (4.45)

The new velocity field is obtained as solution of the following explicit momentum

equation:

ρn+1u∗∗ − (ρu)n

∆t
= ∇ · (τ − ρn+1uu)∗ −∇p∗ + f∗ (4.46)

in which the pressure field p∗ is found as solution of the pressure equation obtained

by taking the divergence of (4.46) and substituting the (4.45):

∇2p∗ = ∇ · ∇ · (τ − ρn+1uu)∗ +∇ · f∗ +
1

∆t
∇ · (ρu)n +

ρn+1 − ρn

(∆t)2
(4.47)

Second Corrector step

With the same procedure followed in the first correction step, the pressure correction

equation leads to the new pressure field p∗∗:

∇2p∗∗ = ∇ · ∇ · (τ − ρn+1uu)∗∗ +∇ · f∗∗ +
1

∆t
∇ · (ρu)n +

ρn+1 − ρn

(∆t)2
(4.48)

and the new velocity field u∗∗∗ is thus obtained solving the momentum equation:

ρn+1u∗∗∗ − (ρu)n

∆t
= ∇ · (τ − ρn+1uu)∗∗ −∇p∗∗ + f∗∗ (4.49)

More corrector steps could be introduced as Fluent offers this possibility, but we

observed that, as also proved in [117], two steps are sufficient, such that un+1 ≈ u∗∗∗

and pn+1 ≈ p∗∗.
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4.4.1 Interpolation of cell-centered pressures on cell faces

Fluent solves the momentum equation (4.3) by integration over a control volume of

volume V and face area A, thus leading to:

∂(ρu)

∂t
V +

Nf∑
f

(ρuu− τ )f · nfAf =

Nf∑
f

pfnfAf + SmV (4.50)

where Sm is an average of the source term within the cell. Equation (4.50) requires

the values of the pressure at the cell face centroids. But, the use of a collocated

technique to solve the pressure correction equation gives a field of pressure centered

at the cell centroids.

Fluent offers a body-force-weighted scheme to interpolate the computed cell-

centered pressures at the cell faces and a PRessure STaggering Option (PRESTO)

algorithm that solves the pressure correction equation for a staggered control vol-

ume, thus leading to face-centered pressures without the need of interpolations. The

second scheme is preferable for two-phase flows, where large body forces concen-

trated on a finite thickness interface exist. The interpolation errors caused by the

body-force-weighted method prevent the correct balance among pressure gradient

and surface tension force at the interface, thus generating spurious velocities.

In order to compare the performances of the PRESTO and body-force-weighted

methods, the inviscid static droplet simulation was used again. As reported in the

Table 4.2, the error given by the body-force-weighted formulation is several orders

of magnitude higher than the PRESTO one.

Face-centered pressure formulation |umax| [m/s]

body-force-weighted 5 · 10−2

PRESTO 2.5 · 10−16

Table 4.2: Comparison of the Fluent body-force-weighted and PRESTO formulations

to compute face-centered pressures. The magnitude of the maximum velocity in the

domain after one time step is reported.
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4.5 The energy equation

Fluent solves the energy equation in the following form:

∂(ρE)

∂t
+∇ · [u(ρE + p)] = ∇ · (λ∇T ) + SE (4.51)

where E is a mass-average energy defined as:

E =

∑Nq
q αqρqhq∑Nq
q αqρq

(4.52)

with Nq being the number of the phases and h the specific enthalpy. Thus, the

energy equation is solved in the variable E, subsequently the temperature field is

derived by the mass-average energy, where the specific enthalpy for each q− th phase

is expressed as follows:

hq =

∫ T

Tq,ref

cp,qdT (4.53)

with Tq,ref being the reference temperature at which corresponds the zero value of the

specific enthalpy for the q − th phase. Since Fluent sets automatically the enthalpy

of each phase equal to zero at the temperature Tref , the reference enthalpies within

the energy source term (4.8) disappear:

SE = −hlvϕ0 + ϕ(Nvαvcp,v −Nlαlcp,l)(T − Tref ) (4.54)

4.6 The additional scalar equation for the evaporation

rate

The numerical implementation of the evaporation model, discussed in Subsection

3.2.2, requires the solution of the transport equation (4.5) for the additional scalar

field ϕ.

Fluent can solve additional transport equations for user-defined scalars, ϕ in this

case. The form of the transport equation solved is the same as Eq. (4.10), as well

as the numerical algorithms used for its discretization and solution. Unsteady and

convective terms for the additional scalar equation can be neglected by the user,

thus the following transport equation for ϕ is solved:

∇ · (Γ∇ϕ) + Sϕ = 0 (4.55)
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In order for Eq. (4.55) to represent the (4.5), it is necessary to set a constant diffusion

coefficient Γ ≡ D and to implement the source term (4.9) with opposite sign:

Sϕ = −ϕ+ ϕ0 (4.56)

4.7 Boundary conditions

Fluent allows the user to set-up a boundary condition at each domain boundary.

Through the Fluent internal algorithms, each boundary condition may act differently

from one equation to another one. Thus, in this section the domain boundaries

together with the applied boundary conditions are discussed separately.

The boundary condition for the scalar ϕ equation can be directly set by the user

and it is set according to the (3.27).

Wall

Since this thesis deals with operating conditions whose Knudsen number is largely

below 0.001, at each wall boundary a no-slip condition for the velocity is applied:

u(x = xw) = 0 (4.57)

Such boundary condition is applied at the boundary faces of the next-to-boundary

control volumes. The Fluent solver transfers this information to the centroids of the

boundary cells by proper discretization of the momentum and pressure-correction

equations.

For what concerns the energy equation, two different wall boundary conditions

are applied:

constant temperature T (x = xw) = Twall (4.58)

constant heat flux q(x = xw) = qwall = −λ∇T |w · nw (4.59)

where the constant heat flux boundary condition is converted in a condition for the

temperature field at the wall.

Inlet sections

At sections where a fluid inflow occurs, two different boundary conditions were set:
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• velocity inlet, for which u(x = xi) = uinlet and T (x = xi) = Tinlet.

This boundary condition imposes a fluid inflow, the pressure at the boundary

is derived from the velocity condition input in the pressure-correction equation.

• pressure inlet, for which pT (x = xi) = pT,inlet and T (x = xi) = Tinlet.

The subscript T refers to the total pressure, as the sum of static and dynamic

pressure. The static pressure pS and velocity at the boundary are adjusted to

match the user input pT,inlet, according to the Bernoulli equation:

pT = pS +
1

2
ρ|u|2 (4.60)

Note that the pressure inlet condition does not force the fluid to enter the

domain, thus the fluid velocity at the boundary as well as its direction, depends

on the balance of the pressures among the inlet/outlet boundaries.

Outlet sections

At sections where a fluid outflow occurs, two different boundary conditions were set:

• outflow, for which no user input is necessary. The outflow boundary condition

is equivalent to impose that the flow at the exit boundary only depends on the

conditions upstream, such that the velocity and the pressure at the outflow

boundary are obtained as part of the solution. In the algebraic equation (4.23)

for a next-to-boundary cell, the outflow condition sets the coefficient a of the

downstream neighbor cell to zero, such that the downstream cell does not

influence the solution. Such condition can be interpreted as a null derivative

in the direction normal to the outflow boundary: ∇φ|o · no = 0.

The outflow boundary condition applies well where the above condition is a

good assumption for the flow pattern, while it fails if inverted flow occurs at

the exit.

• pressure outlet, for which pS(x = xo) = pS,outlet.

Differently from the pressure inlet condition, it is the static pressure to be

set by the user at the boundary, while Fluent computes the velocity at the

boundary by proper discretization of the momentum and pressure-correction

equations. Other variables, such as the temperature, are treated as for the

outflow condition.
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The pressure outlet condition works well also when inverted flow occurs and

fluid enters from the boundary, but adequate backflow values for temperature

and volume fraction have to be set by the user.

Symmetry axis

Fluent can solve the flow equations in an axisymmetrical domain but the symmetry

axis has to be horizontal. The axis boundary condition imposes null derivatives

along the direction normal to the axis: ∇φ|a · na = 0.

The relative nature of the pressure

The pressure correction Eq. (4.43) only involves derivatives of the pressure, thus the

computed pressure field is intended as relative.

For boundary conditions that do not involve the pressure, the absolute pressure

field is obtained by shifting the computed field at the end of the calculation, such

that the absolute pressure at a user input location matches a user input operating

pressure value.

Where pressure boundary conditions are applied, it is preferable to set a magni-

tude relative to an operating pressure separately introduced by the user rather than

an absolute value. Thus, the calculation procedure gives a relative pressure field and

the absolute pressure is obtained by summing the user input operating pressure at

the end of the calculation.

This management of the pressure as a relative pressure, with the operating pres-

sure added at the end of the calculation, helps to avoid round-off errors, because

the values of the absolute pressure are typically orders of magnitude higher than the

pressure differences in the flow.

4.8 Implementation of the interfacial effects: User-Defined

Functions

The models described in the Chapter 3 to evaluate the interfacial effects, leading to

the flow equations source terms (4.38), (4.7), (4.54) and (4.56), have to be imple-

mented in the numerical solver.
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The numerical implementation has to be coherent with the physical models, opti-

mized to avoid excessive slowing down of the computation, it needs to be numerically

stable and, preferably, capable of parallel computing. The biggest effort in the work

described with this thesis has been to achieve the cited tasks.

The aforementioned models have been implemented by means of the Fluent UDF.

Among the several UDF available in Fluent, the following have been necessary in

order to introduce and to set-up the models:

• Define Adjust function, executed at the beginning of each iteration, can be used

to modify or to extract each variable defined in the flow problem, such that

the user can compute additional quantities (integrals, calculation of minimums

and maximums).

• Define Source function, executed at each iteration when the relative equation

is being solved, can be used to define source terms in the form:

Sφ = b+ aφn+1 (4.61)

where b contains the time-explicit part of the source term, not depending on

φn+1, and a contains the time-implicit part. The user has to provide an ex-

pression for Sφ and for a. If a is set equal to zero Fluent will treat the source

term as explicit and it will be inserted in the known terms vector b in (4.24).

If a non-zero expression for a is set, Fluent will insert the explicit part b in the

known terms vector and the implicit term coefficient a in the coefficient matrix

A.

• Define Init function, executed before the beginning of the simulation, can be

used to inizialize the flow variables.

• Define Execute at End function, executed at the end of each time step, can be

used to extract or modify each variable or to compute additional quantities.

It is particularly useful to write text files where such quantities are saved, for

the post-processing of the data.

Furthermore, a User-Defined Scalar equation has to be defined to solve the addi-

tional equation for ϕ and several User-Defined Memories are defined to store data

useful for the post-processing, such as the source term fields.
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4.8.1 Initialization of the volume fraction field

The initialization of the volume fraction field in all the simulations performed was

done by using a Define Init function.

The initial shape of the interface can be introduced in the UDF by its analytical

profile, and Fluent sets as 0 the volume fraction of the cells whose centroid is on one

side of the interface, 1 if on the other side. Thus, the numerical interface at t = 0

has a stair-step aspect, but the Height Function algorithm works bad with such a

volume fraction field.

For this reason, the exact initial field of the volume fraction is computed with

an external software, by intersecting the analytical profile of the interface with the

computational grid. The volume fraction of each interfacial cell is calculated as the

area of the polygon bounded by the cell sides and the interface approximated with

several points.

Subsequently, this accurate volume fraction field is exported as a text file and

read by the Define Init function.

4.8.2 Implementation of the surface tension force

The Height Function algorithm reported in the Section 3.1.1 is introduced in the

code by use of a Define Adjust function.

The curvature for each cell whose norm of the volume fraction gradient is non-

zero is computed by extracting the volume fraction field.

Furthermore, Fluent internal values of the volume fraction gradients are adjusted,

since errors were noticed in the calculation of the gradients next to domain bound-

aries.

The surface tension force within the momentum equation is introduced by use

of a Define Source function. The surface tension force is discretized with a time

implicit scheme, as the momentum equation, such that:

Sm =
σ

< ρ >
(ρκ∇α)n+1 (4.62)

where all the terms at the time level n + 1 are known since the volume fraction

equation is the first one to be solved. The momentum source term does not depend

on the velocity thus it is treated as explicit, with a = 0 in (4.61).
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The HF algorithm requires up to 7 × 3 cells surrounding the cell for which the

curvature is being calculated.

When an MPI protocol (Message Passing Interface) is used to execute parallel

computation with Fluent, the whole domain is partitioned in subdomains. Each

computing node has access only to the variables of its allocated subdomain, plus

external next-to-boundary cells (one row). Thus, when computing the curvature of

cells close to the partition boundaries, the HF algorithm requires the volume fraction

of cells not available.

To overcome this limitation, Fluent versions of the C language Send and Receive

commands are used to exchange data between each node and its neighbors. The

objective of this thesis was to simulate axisymmetrical channels with high length-to-

diameter ratios, thus in order to minimize the communication among the nodes the

domain is partitioned in subdomains along the axial direction. By this method, each

node communicates only with two neighbors, one upstream and one downstream of

the channel. With such solution the scaling performance of the numerical code, as

the number of parallel computing processors is raised, is very good.

4.8.3 Implementation of the evaporation model

A Define Adjust function computes the model proper constants N , Nv and Nl

through integration all over the domain. For parallel simulations, each comput-

ing node performs an internal integration, the partial result is then sent to the host

node which calculates the global sum and the values of the constants. Since the con-

stants are defined as external variables, their values are available also for the Define

Source functions used to introduce the source terms in the flow equations.

Volume fraction source term

Fluent requires the definition of two source terms, separately for the gas and liquid

phase. Even if the convective term in the volume fraction equation is discretized

in time with an explicit formulation, the source term is treated as implicit for the

volume fraction but explicit for ϕ, to avoid coupling of the volume fraction with the

ϕ equation (that Fluent does not handle):

Sαv = (Nvϕ)nαn+1
v (4.63)
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Sαl
= (−Nlϕ)nαn+1

l (4.64)

Treating the vapor as the primary phase, the coefficient −Nlϕ goes in the known

terms vector and ϕ(Nv +Nl) in the coefficient matrix.

Energy source term

The temperature is considered the primitive variable to express the source term. The

energy equation is discretized in time with an implicit scheme and the same is done

for the temperature in the energy source term. The volume fraction at the time level

n+ 1 is known. The ϕ term at the time level n+ 1 is not known and the coupling is

handled by the use of iterations. Thus, the energy source term takes the following

form:

SE =

[
N |∇α|αlhlvφTsat − (Nvαvcp,v −Nlαlcp,l)ϕTref

]n+1

+

+

[
(Nvαvcp,v −Nlαlcp,l)ϕ−N |∇α|αlhlvφ

]n+1

Tn+1

(4.65)

with φ being here the kinetic mobility defined in Subsection 3.2.1. The term between

the square brackets at the upper line of the equation above goes in the known terms

vector while the one below goes in the coefficient matrix.

Evaporation rate equation source term

Similarly to the previous case:

Sϕ =

[
N |∇α|αlhlvφ(T − Tsat)

]n+1

+ (−1) · ϕn+1 (4.66)

4.9 Fluent solution procedure

The solution of each flow equation requires the solution of the linear algebraic system

(4.24). Fluent solves this linear system using a point implicit Gauss-Seidel linear

equation solver in conjunction with an algebraic multigrid method, for which details

it is referred to [110].

The solution of the set of non-linear and coupled equations requires an iterative

procedure until convergence is achieved. The non-linear terms in the equation being
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solved are linearized by using guess values, such that at the generic i− th iteration:

φn+1,i · φn+1,i → φn+1,i · φig (4.67)

where φn+1,i is the dependent variable of the equation being solved and φig is a guess

value for φ. As well, each variable independent of the equation, not known at the

time level n + 1, is substituted by a guess value. At the first iteration φi=1
g ≡ φn,

then at the beginning of each new iteration i the new guess is taken equal to the

previous φn+1,i−1 result obtained at the iteration i−1, such that φig ≡ φn+1,i−1 (true

only if the underrelaxation factor is 1, see the next paragraph).

The Fluent pressure-based segregated approach solves the flow equations set se-

quentially at each iteration, but also a non-iterative procedure with inner iterations

is available. The order in which the equations are solved depends on the discretiza-

tion schemes chosen for each equation, such that every term is known when it is

needed.

The Figure 4.3 reports a diagram representing the Fluent solution procedure,

on the basis of the algorithms that we have chosen for each equation. The volume

fraction equation is explicit with time and it requires only variables at the time level

n, thus it is the first one to be solved without the need of iterations. Once that the

volume fraction field is updated, all the material properties can be updated with the

(1.35).

Subsequently, the non-linear and time-implicit momentum equations coupled

with the pressure correction equation are solved by means of the PISO algorithm. In

the predictor step the momentum equations for each velocity component are solved

sequentially, using guess values for the non-linear terms. Each corrector step involves

the sequential solution of the pressure correction equation and the two momentum

equations.

The new velocity field un+1,i is used to solve the time-implicit energy equation.

The unknown ϕn+1 required in the source term is substituted by the guess value ϕig.

Finally, the ϕ time-implicit equation is solved, with the not yet updated guess

value T ig for the temperature appearing within the source term.

Now, if convergence is achieved the generic φn+1 becomes the φn term for the

new time step solution procedure, otherwise the guess values are updated and a new

iteration restarts from the predictor step of the PISO algorithm.



4.9. FLUENT SOLUTION PROCEDURE 105

Figure 4.3: Fluent pressure-based segregated solution procedure for VOF-treated

two-phase flows.
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Underrelaxation

The use of underrelaxation factors helps to stabilize the iterative procedure for the

solution of a non-linear equation, limiting the rate of changes of the variables es-

timated with guess values from iteration to iteration. The new guess value of the

generic φ at the i− th iteration is computed as:

φig = φi−1
g + γ(φn+1,i−1 − φi−1

g ) (4.68)

where γ, varying within the range [0, 1], is the underrelaxation factor that limits the

rate of change of the guess value. The previous statement that φig ≡ φn+1,i−1 is thus

true only if γ = 1.

The optimal value of each underrelaxation factor depends on the discretization

algorithm of the relative equation and on the problem being solved. Fluent defaults

are kept in the simulations performed in this thesis.

Convergence criterion

A convergence criterion is necessary to define when the iterative procedure for the

solution of the flow equations is converged, such that the solution procedure is applied

to a new time level. The exact solution of the generic equation (4.23) for a generic

computational cell c is the field φ that balances exactly the LHS and RHS terms,

otherwise the residual error Rc(φ) is different from zero:

Rc(φ) =

∣∣∣∣∑
nb

anbφnb + b− aφ
∣∣∣∣
c

(4.69)

As well, a residual vector R(φ) can be defined to represent the error of the whole

linear system solution, and its L1 norm gives a practical index of the error:

L1(R(φ)) =

N∑
c=1

∣∣∣∣∑
nb

anbφnb + b− aφ
∣∣∣∣
c

(4.70)

where N is the number of the computational cells. A more practical index is the

scaled residual error, defined as follows:

L∗1(R(φ)) =

∑N
c=1

∣∣∣∣∑nb anbφnb + b− aφ
∣∣∣∣
c∑N

c=1 |aφ|c
(4.71)
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This scaled residual error is the convergence criterion used in Fluent. When each

L∗1(R(φ)) decreases below the threshold chosen for the relative variable, the solution

is considered converged.

Instead, the convergence of the pressure correction equation is checked by moni-

toring whether continuity is achieved. The following continuity residual error norm

is defined:

L1(R(cont)) =
N∑
c=1

|rate of mass creation|c (4.72)

Convergence is obtained when the following scaled residual for the continuity de-

creases below the chosen threshold:

L∗1(R(cont)) =
L1(R(cont))

max(L1(R1−5(cont)))
(4.73)

where the scaling factor at the denominator is the maximum continuity residual

norm in the first five iterations.

In the simulations performed in this thesis, different values for the thresholds of

the scaled residuals were chosen according to the case simulated. For the validation

test cases discussed in the next Chapter, residuals within the range [10−12, 10−9]

were chosen. For the simulations shown in the Chapters 6 and 7, the range chosen

was higher, [10−6, 10−3] to speed-up the simulation time. The value 10−6 is a good

compromise for accuracy and speed, however for the cases simulated with the highest

threshold 10−3 it was preliminarily tested that the results were reliable and very close

to those obtained with 10−6.

4.10 Concluding remarks: flow solver set-up

We summarize the set-up chosen among Ansys Fluent several options. A VOF

method is used to advect the interface and a time-explicit PLIC reconstruction of

the volume fraction fluxes across the boundary faces of the interfacial cells is per-

formed. The time step for the volume fraction equation is chosen by the solver

according to the default maximum Courant number of 0.25. Momentum and energy

equations are discretized in time with an implicit formulation. Fixed time steps



are chosen for the validation benchmarks described in Chapter 5 and the simula-

tions presented in Chapter 6, variable time steps are set for the evaporating bubbles

simulations discussed in Chapter 7. In the latter case, the time step for momen-

tum and energy equations is computed by Fluent according to the user input of the

maximum Courant number of 0.5 (not for volume fraction). We recommend the

use of variable time steps in order to speed-up as possible the computations but

preventing numerical instabilities, especially when the time scales vary considerably

throughout the simulation. A third-order MUSCL scheme is used to discretize the

convective terms within each equation. The Green-Gauss node-based scheme is used

to reconstruct cell-centered gradients, since a test case assessed that the spurious

currents generated by such algorithm are less than those given by other options. A

PISO algorithm is chosen to deal with the velocity-pressure coupling, the other Flu-

ent options led to the same accuracy but failed to converge. The PRESTO scheme

is employed to compute pressures at the cell faces because a test case proved that

other available options generate stronger unphysical vortices. The Height Function

and evaporation models require the solution of one additional User-Defined Scalar

equation for the evaporation rate. One Define Adjust function is used to compute

the variables involved in the implemented models. Six Define Source functions are

necessary to introduce the source terms within the flow equations. One Define Init

function is used to initialize the flow variables. One Define Execute at End function

writes selected variables on a text file at the end of each time step for the postpro-

cessing with external softwares. Fifteen User-Defined Memories are enabled to store

variables useful for the postprocessing internal to the Fluent software.



Chapter 5

Validation of the numerical

framework

In this Chapter the validation benchmarks performed to test the Height Function

and the evaporation models performances are discussed.

The first validation case is the geometrical reconstruction of a given interface

profile and it involves the interface reconstruction algorithm alone. In the second test

case the Height Function algorithm is used to compute the local interface curvature

in the simulation of an inviscid static droplet, to test the implementation of the

algorithm within the flow equations solver Fluent. The third test case compares the

HF and Youngs performances on the simulation of gas bubbles rising in stagnant

liquid due to buoyancy effects. The last test case is a validation benchmark for the

whole framework, the HF and evaporation models compute the interfacial effects in

the simulation of a vapor bubble growing in superheated liquid.

5.1 Reproduction of a circular interface

The capability of the Height Function and Youngs interface reconstruction algo-

rithms to reproduce a known interface profile is tested in terms of norm vector and

curvature error norms convergence rates.

Youngs local interface norm vector and curvature are computed by means of the

Eqs. (3.1) and (3.5). HF interface topology is computed by means of the Eqs. (3.7)

and (3.8) with heights evaluated through the procedure outlined in the Subsection

109
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3.1.1 for a two-dimensional geometry.

A circular interface of radius R = 5 mm is placed inside a L = 4R side square do-

main. Different uniform mesh sizes ∆x are tested, in order to check the convergence

rate of the methods. The coarsest mesh has 10 × 10 elements, with R/∆x = 2.5.

This is the minimum resolution for the circular interface that the HF algorithm im-

plemented is able to solve correctly. The most refined mesh has 600× 600 elements,

with R/∆x = 150. This is close to the maximum resolution of the interface obtained

in the simulations discussed in the next Chapters.

The circle center is placed randomly around the domain center in the interval

([0,∆x], [0,∆x]). For each mesh element size, 50 runs are performed to span the

range of possible positions for the circle interface, then results are averaged.

The parameters observed are L2 and L∞ error norms evaluated for both interface

normal vector and curvature, defined as follows:

L2(|n|) =

√∑Ni
i=1 |ni − nex|2

Ni
(5.1)

L∞(|n|) = max (|ni − nex|), for i = 1, . . . , Ni (5.2)

L2(κ) =
1

κex

√∑Ni
i=1 |κi − κex|2

Ni
(5.3)

L∞(κ) =
max (|κi − κex|)

κex
, for i = 1, . . . , Ni (5.4)

where nex stands for the exact value of the i − th normal vector and ni for the

computed value. The exact local interface unit norm vector is computed for each

interface cell as the normalized vector connecting the center of the circular interface

with the centroid of the cell. Ni is the total number of interface cells. κex = 1/R is

the exact interface curvature, κi is the i− th interface cell calculated curvature.

The Figure 5.1 shows the convergence rate of the norm vector error norms.

Youngs computed norm vector does not converge to the exact value as the mesh

is refined, but the accuracy of the reconstruction remains constant. HF computed

one converges with the first order with respect to the mesh element size. However,

Youngs performs better for R/∆x ≤ 10, when the interface is poorly solved by the

mesh grid.

The Figure 5.2 shows the convergence rate of the curvature error norms. The
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Figure 5.1: L2(|n|) (left) and L∞(|n|) (right) error norms convergence rates. White

circles are HF errors and black diamonds are Youngs ones. Solid line is first order

convergence curve.

Figure 5.2: L2(κ) (left) and L∞(κ) (right) error norms convergence rates. White

circles are HF errors and black diamonds are Youngs ones. Solid line is second order

convergence curve.

Youngs algorithm performs always worse than the HF one and the Youngs computed

curvature diverges as the mesh is refined. The HF computed curvature converges
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with the second order of the mesh element size for R/∆x ≤ 40, in agreement with

Cummins et al. [94] results. For resolutions higher that R/∆x = 40, the perfor-

mances worsen and the published literature lacks of test cases with such a high

resolution. The reason of the worsening is that the computation of the second order

derivative of the heights, involved in the curvature expression (3.8), gets worse when

the interface is less aligned with the background grid. For such high resolutions, the

7 × 3 stencil captures an interface nearly flat and a differencing scheme based on

only three consecutive values of the height is not anymore adequate to estimate the

curvature. However, note that even if the HF curvature at high resolutions does not

converge, the maximum relative error at the highest mesh resolution is about 2 %,

fairly accurate for standard numerical simulations of multiphase flows.

5.2 Simulation of an inviscid static droplet

The Height Function and Youngs algorithms performances are assessed by means of

the numerical simulation of an inviscid static droplet in equilibrium without gravity.

The continuity and momentum equations for a two-dimensional geometry are solved

with the numerical methods described in the previous Chapter.

The inviscid static droplet simulation is a typical benchmark to assess the per-

formance of a multiphase CFD solver with surface tracking. The absence of gravita-

tional and viscosity effects, as well as the absence of density gradients at the interface

(both phases densities are set to unity), allow to test exclusively the accuracy of the

implementation of the surface tension term within the Navier-Stokes equations and

the solution algorithm.

The simplified momentum equation governing such flow is the Eq. (1.40). With

the initial condition u(x, t = 0) and wall domain boundaries, the exact solution of

the (1.40) is a null velocity field at each t > 0, constant pressure within and outside

the droplet and a pressure jump at the interface given by the Laplace law ∆p = σκ.

Thus, the magnitude of the arising velocity field in the numerical simulation as

well as the error in the computed pressure field are the parameters observed to assess

the performances of the numerical framework analyzed.

A circular droplet of radius R = 5 mm is centered on a L = 4R side square do-
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main. Different uniform mesh sizes ∆x are tested, in order to check the convergence

rate of the methods. The coarsest mesh has 20× 20 elements, with R/∆x = 5. The

most refined mesh has 160 × 160 elements, with R/∆x = 40. Surface tension and

phase densities are set as unity. Viscous and gravity effects are neglected. A pressure

outlet condition is set at all boundaries, with zero pressure. The simulation time

step is ∆t = 5 · 10−7 s.

The parameters observed are the non-dimensional velocity and interface pressure

jump error norms defined as follows:

L∞(|u∗|) =
1

U
·max(|ui|) for i = 1, . . . , N (5.5)

where N is the number of domain cells and U is a velocity scale defined as U =

(σ/2ρR)1/2,

L2(∆p∗) =
1

∆pex

√√√√ m∑
i=1

(∆pi −∆pex)2

m
(5.6)

where m is the number of interior droplet cells and ∆pex = σ/R is the exact value

of the pressure jump across the interface.

The Figure 5.3 reports the velocity error norm convergence rate with respect to

the mesh element size after 1 and 50 simulation time steps. Youngs velocity norm

diverges with respect to the mesh element size, thus when using the Youngs algo-

rithm to compute the interface topology a finer grid does not ensure more accurate

results. The HF results show second order convergence for R/∆x ≤ 10, then for

higher resolutions the convergence order is within the range [1, 2]. A similar behav-

ior was detected also by Francois et al. [48].

The Figure 5.4 shows the velocity field arising in the simulation when using the

HF algorithm, after 1 and 400 time steps. The so-called spurious velocities appear

as well-ordered vortices across the interface, presenting a fourfold symmetry. The

same flow pattern was reported also by Mercinger and Zun [101] using alternatively

PROST method [47] and a convolution technique [97] to compute curvatures, by

Nichita [40] who employed a CLSVOF algorithm, by Popinet [49] and Francois et al.

[48] using the HF method. Note also that the vortices after 400 time steps move the

flow field in the opposite directions with respect to what is seen after 1 time step.
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Figure 5.3: L∞(|u∗|) error norm after 1 (left) and 50 (right) time steps. White

circles are HF errors and black diamonds are Youngs ones. The dash line is the first

order convergence curve and the solid line is the second order curve.

(a) (b)

Figure 5.4: Velocity vectors after 1 (a) and 400 (b) simulation time steps, with the

interface curvature computed by the HF method.

We found this behavior of the vortices to be curiously ordered for what is considered

a “spurious” entity. Thus, we sought for a physical significance of such velocity field,
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analyzing its numerical origin and its time-evolution. The results of this analysis are

reported in the Appendix A.

The Figure 5.5 reports the pressure jump error norm convergence rate with re-

spect to the mesh element size after 1 and 50 simulation time steps. No differences

are evident for what concerns the convergence rate after 1 and 50 simulation time

steps. The results obtained with the Youngs algorithm show a first order converging

pressure norm for R/∆x ≤ 10, then for higher mesh resolutions the pressure field

diverges. The pressure field obtained by using the HF algorithm shows a convergence

order within the range [1, 2].

The pressure field is observed also from a local point of view, as pressure profile

across the droplet through an horizontal line located at y∗ = y/L = 0.5, and through

a diagonal line. The Figure 5.6 reports the profiles after 1 time step for the mesh

resolution R/∆x = 10. The pressure profile relative to the HF algorithm has a sharp

rise through the finite thickness interface and it is flat inside and outside the droplet,

as it would be expected. By observing the Figs. 5.6(b) and 5.6(d), the pressure pro-

file related to the HF method does not seem to be affected by the different interface

Figure 5.5: L2(∆p∗) error norm after 1 (left) and 50 (right) time steps. White circles

are HF errors and black diamonds are Youngs ones. The dash line is the first order

convergence curve and the solid line is the second order curve.
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(a) (b)

(c) (d)

Figure 5.6: Non-dimensional pressure jump profile across the droplet for R/∆x = 10

after one simulation time step. Profiles are captured along an horizontal line y∗ =

y/L = 0.5 (a,b) and along the diagonal (c,d). White squares represent the HF and

black diamonds the Youngs profiles. The solid line is the pressure jump exact profile.

orientation with respect to the background mesh.

The pressure field related to the Youngs algorithm shows a less sharp profile,

with a pressure gradient non-zero not only on interface cells but also in neighbor

cells. Moreover, the interface orientation has an appreciable influence. When the
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interface is aligned to the background mesh (see Fig. 5.6(b)) the pressure profile

within the droplet has a concave shape. Along the diagonal line (Fig. 5.6(d)) the

pressure profile shows a convex shape.

5.3 Simulation of an isothermal bubble rising in stag-

nant liquid

In this Section the Height Function and Youngs algorithms are compared by simu-

lations of a gas bubble rising in stagnant liquid due to buoyancy forces, for several

different operating conditions. A circular gas bubble is patched at the bottom of a

rectangular domain and the combination of inertial, gravitational, viscous and sur-

face tension forces determines the terminal shape and velocity of the bubble.

The non-dimensional groups governing the flow are the Eötvös and Morton num-

bers defined in the Subsection 2.1.1, while the terminal velocity of the bubble Ub can

be expressed by means of the Reynolds number Re= ρUbD/µ where D is the bubble

initial diameter.

Two different series of simulations were conducted and are discussed separately in

the following subsections: two-dimensional simulations with inviscid fluids and very

high surface tension; axisymmetrical simulations of air bubbles rising in a viscous

water/sugar solution.

5.3.1 Two-dimensional inviscid rising bubble

The inviscid rise of a gas bubble within stagnant liquid in a two-dimensional reference

frame was simulated. Two fictitious fluids with very high surface tension were chosen

in order to have surface tension dominance over inertia and buoyancy on the flow,

such that the accuracy in the curvature computation becomes fundamental.

A D = 2/3 diameter bubble is placed on a [−1, 1] × [−1, 3] rectangular domain

at (0, 0). Two resolutions were tested for the flow domain mesh in order to observe

the convergence rate of Youngs and HF methods: a coarser 40 × 80 and a finer

80× 160 grid. Gas and liquid density is respectively 1.226 and 1000, surface tension

is 728, gravity acceleration is set to −9.81 along the vertical axis, thus giving the

Bond number defined in Eq. (2.5) Bo= 5.989. The simulation time step is 5 · 10−4.

Boundary conditions are symmetry for the box sides, pressure inlet for the bottom
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and pressure outlet for the top.

These test conditions were analyzed by Francois et al. [48] with viscosity and

later by Popinet [49], who neglected viscosity.

The Figure 5.7(a) reports the bubble shapes as half volume fraction contour for

the coarse grid at different time instants. The HF and the Youngs methods lead to

similar bubble top profiles and differences are evident on bubble rear at t = 0.35 and

t = 0.5, when the Youngs computed curvature gives a bubble rear more indented.

Francois et al. reported very similar bubble shapes when curvature was computed

through the HF algorithm, see Figure 20(a) in [48].

The Figure 5.7(b) reports the bubble shapes for the fine grid. The differences

among the HF-based simulations and Youngs one are evident at t = 0.5, when the

(a)

(b)

Figure 5.7: Bubble shapes as half volume fraction contours obtained for the coarse

mesh in (a) and for the fine mesh in (b). Solid lines represent HF algorithm shapes

and dash lines are Youngs ones.
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Youngs computed side trailing edges are more closed toward the axis of the channel

than HF computed ones. Such profile deviates slightly from Francois et al. shape

shown in Figure 21 in [48], but it is closer to Popinet one obtained with a very fine

256× 512 computational grid reported in Figure 18 in [49].

5.3.2 Axisymmetrical bubble rising in viscous liquid

The rise of an air bubble within a stagnant water/sugar solution in an axisymmet-

rical reference frame was simulated. Different terminal shapes and velocities of the

bubble were obtained by changing the fluid properties in order to compare with

Bhaga and Weber [118] experimental results.

Bhaga and Weber performed several test cases with air bubbles rising in a quiet

water-sugar solution. Acting on sugar concentration, they could vary the liquid den-

sity and viscosity to span a wide range of Eötvös and Morton numbers, obtaining

different bubble shapes and terminal velocities, expressed as bubble Reynolds num-

ber. Surface tension variations were negligible in their experiments.

Numerical and experimental results are compared for four different cases char-

acterized by the same Eötvös number. The variation of the Morton number was

possible in the simulations by changing only the liquid viscosity. It was proved that

setting density ρl/ρg and viscosity µl/µg ratios as in the experiments leads to nu-

merical errors. Since similitude with experiments is guaranteed by the Eötvös and

Morton numbers which involve only the liquid properties, the gas properties are set

in order to fix the aforementioned ratios to ρl/ρg = 1000 and µl/µg = 100.

Bhaga and Weber tested that wakes behind the bubbles are closed and symmet-

ric until Re< 110. Since the simulations are performed on a 2D axisymmetrical

domain, the cases chosen satisfy this condition.

A bubble of diameter D = 3 cm is centered at (0, 2D) of a [0, 4D] × [0, 12D]

axisymmetric rectangular domain, with x = 0 being the revolution axis. The do-

main size is set in order to avoid boundary influence, following Hua et al. sensitivity

analysis [119]. Hua et al. showed also that a mesh resolution of D/∆x ≥ 20 ensures

grid independence, thus a 80× 240 grid is chosen. Pressure inlet and outlet are set

respectively on bottom and top boundaries. A free-slip condition is imposed on the

domain sides. The time step for momentum and energy equations is 10−4 s.
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Test Test Experiments [118] Simulations

case conditions

I

Eo = 116

Mo = 848

Re= 2.47 ReHF = 2.37 (4 %)

ReY = 2.37 (4 %)

II

Eo = 116

Mo = 41.1

Re= 7.16 ReHF = 7 (2.2 %)

ReY = 6.94 (3.1 %)

III

Eo = 116

Mo = 1.31

Re= 20.4 ReHF = 19.66 (3.7 %)

ReY = 19.55 (4.2 %)

IV

Eo = 116

Mo = 0.103

Re= 42.2 ReHF = 37.8 (10.4 %)

ReY = 39 (7.6 %)

Table 5.1: Comparison of experimental and numerical gas bubbles terminal shape

and Reynolds number. Solid lines are HF shapes, dash lines are Youngs shapes.
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All the simulations are run until a steady state condition for the rising bubble

is achieved, for both Height Function and Youngs algorithms. Then, the bubble

terminal velocity is computed and the Reynolds number is evaluated for each case.

The bubble velocity is the velocity of its center of gravity, evaluated at each time

instant as dyG/dt, where yG is the axial position of the center of gravity computed

as:

yG =

∑N
c=1 ycαcVc∑N
c=1 αcVc

(5.7)

where N is the number of computational cells, yc the position of the c − th cell

centroid, α the gas volume fraction and V the volume of the cell.

The Table 5.1 shows the comparison of experimental and numerical results. Ex-

perimental and numerical terminal shapes, together with the terminal Reynolds num-

bers for the four test conditions simulated are reported. The errors on the numerical

Reynolds numbers between parenthesis are computed as err=|Re-Renum|/Re.

The reflection of the light on the surface of the bubble in the experiments does not

allow to see clearly the bubble indentation on the pictures, however the bubble exter-

nal shapes for all the cases simulated are in good agreement with the experiments,

independently of the interface reconstruction algorithm employed. The numerical

simulations capture successfully the increase of the bubble velocity and the flatten-

ing of the bubble as the Morton number decreases.

For the test cases I, II and III, HF and Youngs methods show similar perfor-

mances, with errors in the Reynolds number below 5 %. The HF method performs

slightly better than Youngs one. Bubble shapes are very similar for both the meth-

ods.

The case IV is characterized by the highest bubble terminal velocity, hence by

the highest difference in the gas-liquid phases velocity. The Figures 5.8(a) and 5.8(b)

show the velocity field around the bubble respectively for cases I and IV.

In the case I the bubble terminal velocity is 0.065 m/s and the flow field in the

wake near to the bubble rear moves liquid toward the bubble with a velocity of about

0.07 m/s. In the case IV the bubble terminal velocity is 0.107 m/s while the liquid

is pushed on the bubble rear with a velocity of 0.14 m/s.

The difference among the liquid velocity in the wake and the bubble velocity in
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(a) (b)

Figure 5.8: Velocity vectors colored by the velocity magnitude for cases I (a) and IV

(b). The bubble terminal velocity Ub of each test case is reported on the top of each

figure.

the case IV is much higher than that of the case I. Therefore, the bubble becomes

more flattened because of the higher liquid push on the bubble rear and the change

of the bubble concavity where the side trailing edge matches the indented edge be-

comes more abrupt.

In the case IV such region of the interface is poorly solved by the grid and the HF

algorithm computes a wrong local geometry, leading to errors in the calculation of

the capillary effects. This wrong forces computation leads to the detachment of little

parts of gas at the bubble side trailing edges in the simulations, such that the smaller

bubble main body moves with a lower velocity with respect to the experiments.
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We repeated the test case IV with a twice refined 160× 480 computational grid.

The results obtained with the Height Function method are closer to the experiments

than those obtained with the coarser mesh. On the contrary, the Youngs method

gets worse with the finer mesh. This behavior is in agreement with what reported

in the Section 5.1, also when simulating rising bubbles the refinement of the compu-

tational grid does not ensure better results when computing the interface curvature

with the Youngs algorithm.

5.4 Simulation of a vapor bubble growing in superheated

liquid

The Height Function interface reconstruction algorithm and the evaporation model

were implemented in order to simulate the growth of a spherical vapor bubble in an

infinitely extended superheated liquid. According to the Plesset and Zwick analysis

[120], bubble growth process can be temporally split in two stages. A first stage,

called inertia-controlled growth, which starts at bubble formation. At this stage,

growth is governed by momentum interaction between bubble and surrounding liq-

uid. At the beginning of this stage, temperature and pressure inside the bubble

are at their maximum value. Temperature is equal to superheated liquid tempera-

ture, pressure is at saturation pressure for that temperature. Later, an asymptotic

stage is reached, called heat-transfer-controlled growth. Temperature and pressure

inside the bubble are at their lowest value, with pressure equal to the liquid pressure

increased by pressure jump at the interface, and temperature is equal to the satu-

ration temperature for that pressure. At this stage, characterized by a growth rate

lower than the first stage, growth is limited by heat transport to the interface. This

asymptotic stage is the object of our study. Scriven [121] has derived an analytical

solution for this stage, neglecting viscous and surface tension effects and considering

the interface at saturation temperature. He obtained an analytical bubble radius R

as a function of time t:

R(t) = 2β
√
γt (5.8)

where β is a growth constant which details can be found in [121] and γ is liquid

thermal diffusivity. This solution is used to validate numerical results.



124 CHAPTER 5. VALIDATION OF THE NUMERICAL FRAMEWORK

5.4.1 Discrete domain and initial conditions

The growth of a spherical bubble of initial radius R0 = 0.1 mm is simulated. The

domain is axisymmetric and two-dimensional. The flow domain is rectangular, with

size 8R0 × 4R0. The bubble is centered in the middle of symmetry axis, as reported

in Fig. 5.9. A uniform mesh size is chosen, with 1µm element size. Such a fine

grid is necessary in order to solve the thin thermal boundary layer surrounding the

bubble interface. As boundary conditions, a pressure outlet is set at all boundaries

except for the axis. Gravity effects are neglected. The initial bubble size is large

enough to neglect vapor saturation temperature rising due to pressure jump across

the interface, then saturation temperature is equal for both phases. The velocity

field is zero. Initial temperature is saturation temperature for the bubble, while the

liquid is superheated at a temperature T∞ = Tsat + 5 oC.

Figure 5.9: Initial condition for axisymmetric bubble growth simulation. The bubble

is placed at the center of axis boundary. The bubble is at saturation temperature

while the liquid is superheated. A thin thermal boundary layer surrounds the bubble

on the liquid side.
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5.4.2 Initial thermal boundary layer placement

A thin thermal boundary layer is placed around the interface on the liquid side. Since

the simulation starts at t = t0, when R(t0) = R0, a thermal boundary layer has been

developing around the bubble since the beginning of heat-transfer-controlled growth

stage. The temperature field around the bubble at t = t0 can be extrapolated

from the Scriven solution [121] as a function of spatial coordinate r and time. The

thickness of initial thermal layer δT is defined as:

δT = r(T = Tsat + 0.99(T∞ − Tsat))−R0 (5.9)

Figure 5.10 reports an example of initial thermal layer profile in a dimensionless

radial coordinate, as given by the Scriven solution. This profile is fitted through

a parabolic curve in order to have an easier implementation. Coefficients of the

parabola are obtained imposing the following boundary conditions:

T (r = R0) = Tsat

T (r = R0 + δT ) = T∞

∂T

∂r
(r = R0 + δT ) = 0

Figure 5.10: Initial dimensionless temperature profile at the bubble interface on the

liquid side.
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Great attention has to be paid to initial thermal boundary layer position. Analytical

initialization suggests thermal layer to begin at r = R0. This is true in those cells

for which interface lays upon the background grid. Nevertheless, in those cells which

interface is less aligned with the grid (close to π/4 and 3/4π), cells centroids are

located at r > R0. Then, in those cells, thermal layer intersects the bubble interface,

leading to a faster initial growth rate than analytical. To avoid this effect, the

thermal boundary layer is initialized with a bit of misplacement, about 1-2 cells,

outside the bubble interface.

5.4.3 Working fluids properties

Three different fluids were tested. Water at atmospheric pressure and HFE-7100 at

0.52 bar, both with β = 15.1 and δT = 7 µm and R134a at 0.84 bar, with β = 9.34

and δT = 11 µm. The choice of each system pressure was done in order to have

similar growth constants for the fluids. All vapor and liquid properties for the fluids

are considered constant at the saturation temperature. They are summarized in

Table 5.2. For what concerns the accommodation coefficient, Hardt and Wondra

[7] performed some benchmarks to validate the evaporation model and obtained a

good agreement with the analytical solutions with an accommodation coefficient set

to 1. We repeated some of the Hardt and Wondra benchmarks and found the same

Property Water HFE-7100 R134a

Liquid Vapor Liquid Vapor Liquid Vapor

ρ [kg/m3] 958 0.597 1425 5.15 1388 4.43

cp [kJ/kg·K] 4.22 2.03 1.43 0.9 1.27 0.72

λ [mW/m·K] 679 25 61.8 10.3 106 9

µ [µPa·s] 277 12.55 356 11.13 401 9.64

hlv [kJ/kg] 2257 117.8 219.5

σ [mN/m] 59 13.6 16

φ [kg/m2sK] 6.94 15.03 22

Table 5.2: Properties of the working fluids. φ is the kinetic mobility, computed

through Eq. (3.23). Saturation temperatures are 100 oC for water, 41 oC for HFE-

7100 and −30 oC for R134a.
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results, then the accommodation coefficient was always set as unity in the simulations

performed.

5.4.4 Setting of diffusion parameter

The evaporation model computes the local evaporation rate at the interface and

derives a smoothed rate by solving the diffusion equation (3.26). The diffusion pa-

rameter D does not influence only the numerical stability of the computation, but

it is also responsible of the correct bubble growth rate with time. As a matter of

fact, a too small value would not diffuse adequately evaporation rate ϕ0, leading to

instabilities, but on the other hand a too large value could lead to violation of global

mass conservation. The latter happens when diffusing the evaporation rate across a

curved interface, because the integral over the domain of diffused ϕ evaporation rate

is not the same on both sides of the interface, then the rate of liquid disappearing

does not coincide with the rate of vapor created. Hardt and Wondra proved in [7]

that this error scales with
√
D/R.

To explore the sensitivity of the diffusion constant, we solved the Eq. (3.26) in

Figure 5.11: Smoothing of the original evaporation rate ϕ0 (dash line) into ϕ (solid

lines), for different values of the diffusion constant D. The white circles are the cell

centroids positions.
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a cylindrical reference frame invariant along the axial and angular coordinates, such

that ϕ = ϕ(r). A local evaporation rate ϕ0 = 1 was concentrated on three computa-

tional cells located at r = R0. The Figure 5.11 shows the profile of ϕ(r) in a window

including r = R0 for different values of the diffusion constant. Diffusion constant

D = 10−12 m2 lowers the peak of ϕ of about 20 % and diffuses the evaporation rate

over 6-7 cells per side. The choice D = 10−11 m2 is more conservative and it is

the value set in the simulations for all the fluids. It lowers the peak to 40 % of its

unsmoothed value and diffuses evaporation rate over about 15 cells per side. The

relative error in mass conservation is around 10−8. Diffusion constants for HFE-7100

and R134a could be lower than the water one, since their growth rate is rather less.

However, due to the small relative error in mass conservation, the same value was

set.

5.4.5 Results

The bubble grows due to the evaporation of the liquid phase in interface cells, with

evaporation rate locally proportional to interface cell superheating. At each time

Figure 5.12: Temperature and vapor volume fraction profiles across the interface at

different time instants for water. The solid line is temperature profile and the dash

one is the volume fraction profile. White circles are cell centroids positions.
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Figure 5.13: Velocity vectors and bubble interface positions for water bubble simula-

tion at various time instants. Vectors are colored by velocity magnitude reported on

the right in m/s units and interface positions are computed as half volume fraction

contours.
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step, the evaporation model takes away the latent heat from the interfacial cells

where evaporation occurs, thus cooling down the cells to a temperature close to the

saturation temperature. Then, the thermal layer moves with bubble growth, staying

always in contact with the interface, as shown in the Fig. 5.12 for water at different

time instants.

During the whole simulation, the bubble shape remains spherical. At the initial

stage of this work, this was proved not to happen using Youngs method for evaluating

interface curvature. Moreover, growth was too fast due to the high convective heat

transfer led by spurious velocities. Instead, the spherical shape is kept during growth

by the Height Function. The Fig. 5.13 shows water bubble interface and velocity

vectors at different growth stages. Velocity vectors around the interface always point

to the radial direction with uniform magnitude, as a consequence the growth proceeds

radially and uniform with respect to the angular direction. The magnitude of the

interface velocity vectors decreases with time as 1/R, since bubble growth rate is

proportional to liquid vapor interface (∝ R2), but inversely proportional to volume

(∝ R3).

Figure 5.14 shows the bubble radius evolution obtained through the HF method,

compared to analytical solutions, for all the fluids. Numerical data show very good

Figure 5.14: Vapor bubble radius over time for analytical and numerical solutions.
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agreement with analytical results, thus validating our choice of an accommodation

coefficient set as unity. Note that the analytical solution of the problem was obtained

by setting the interface at saturation conditions, while the evaporation model in the

numerical solver is based on interfacial superheating. Since the interfacial resistance

to mass transfer is very low for all the fluids tested, the interfacial temperature stays

always very close to the saturation condition (actually little above of about 0.1 K),

hence analytical and numerical solutions can match.

For each fluid, the bubble numerical growth rate follows a
√
t proportional law,

as it should be from Eq. (5.8). This does not happen during the initial growth

phase, in a more evident way for HFE-7100 and R134a. The reason is that at the

beginning of the simulations, the initially misplaced thermal boundary layer arranges

to fit the interface position. This settlement phase is reflected on numerical growth

rates lower than analytical ones at the beginning of the simulations. As detected

by Kunkelmann and Stephan [122], the liquid thermal conductivity is the parameter

that rules the length of this thermal layer settlement phase. The higher the liquid

thermal conductivity is, the faster is thermal layer arrangement. For this reason,

numerical bubble growth rate deviation from the analytical curve is more evident

for refrigerant fluids and is highest for HFE-7100, which has the lowest thermal

conductivity.

5.5 Concluding remarks: set-up of the evaporation model

There are two variables involved in the evaporation model which the user may need

to tune when performing simulations. The first is the accommodation coefficient,

which is a property of the fluid simulated and of the operating conditions as well

and it can range from 0 to 1. Difficulties in its experimental measurement prevent

the definition of a unique value for each fluid, however evidence suggests it to be

very close to one for common fluids. Comparisons of numerical with analytical so-

lutions confirm this hypothesis. As well, we obtained good agreement of numerical

simulations with analytical solutions by setting an accommodation coefficient equal

to one. For this reason, in the simulations discussed in the remainder of this thesis

we always set a unity coefficient.

The second parameter to fix when setting-up the evaporation model is the diffu-



sion constant which governs the rate of smoothing of the evaporation rate, see Eq.

(3.26). Note that it is a mathematical parameter which influences solely the local

evaporation rate, but not the global integral of the evaporation rate, therefore the

value chosen for D does not affect the global rate of vapor creation. However, this is

true provided that excessive smoothing across curved interfaces is avoided, because

the mathematical procedure can violate local mass conservation. Therefore, we sug-

gest to set a value of the diffusion constant adequately small to smear the original

evaporation rate only over few computational cells to avoid instabilities, however

checking whether mass is preserved.



Chapter 6

Results on elongated bubbles

motion in adiabatic condition

This Chapter deals with the further validation of the numerical framework by means

of test cases more meaningful from the physical point of view than the analytical

benchmarks discussed in the previous Chapter.

We study the rising of Taylor bubbles within vertical channels through stagnant

liquid, due to buoyancy forces. Then, we analyze the flow of elongated bubbles

within horizontal channels as consequence of a liquid inflow, neglecting gravitational

effects. Both of the configurations are adiabatic, thus without phase change. The

latter configuration is the starting point for the simulation of evaporating bubbles,

which will be considered in the next Chapter.

In this Chapter, the results of the simulations of vertical rising and horizontal

flowing bubbles are discussed separately and compared with experimental results

and analytical models.

6.1 Taylor bubbles rising in vertical circular channels

It is referred to the Section 2.1 for the discussion of the regarding experimental and

numerical literature which has been the background for the simulations that are go-

ing to be presented.

The target of this study is to analyze the set-up, the performances and the limits

of the numerical framework on the axisymmetrical modeling of Taylor bubbles rising

133
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within stagnant liquid due to buoyancy. The study is reported with the following

outline: detailed analysis of the simulation sensitivity to initial conditions and nu-

merical parameters; validation of the liquid flow field surrounding the bubble by

comparison with the PIV results of Bugg and Saad [56]; simulation of nine test cases

under various operating conditions in order to test the numerical method.

6.1.1 Simulation sensitivity analysis

We perform a sensitivity analysis of the numerical simulation to physical and nu-

merical parameters and to bubble initial conditions. The case simulated has values

of Eo= 100 and Mo= 0.01. The effect of the variation of the parameters is observed

in the transient and terminal velocity of the bubble, computed as reported in the

Eq. (5.7).

We initialize a gas bubble as a cylinder with spherical rounded ends, placed at

the bottom (top) of the domain for fixed (moving) reference frame simulations. The

boundary conditions are all no-slip for the fixed reference frame. For the moving

reference frame simulations, we impose a fixed velocity at the side wall and the same

velocity as liquid inflow at the top of the domain, an outflow condition at the bottom.

As initial condition, velocity is zero throughout the domain for the fixed reference

frame and equal to the velocity of the liquid inflow in the moving frame case. Figure

6.1 reports a sketch of bubble initial configuration for the fixed reference frame.

The following parameters are the objects of the analysis: reference frame, fixed

or moving; domain length L; initial film thickness δ; initial bubble length Lb; domain

computational grid given as D/∆x, with D = 10 mm being the channel diameter

and ∆x the mesh size; simulation time step given as ∆t/(∆x/Ub), where ∆x/Ub is

Figure 6.1: Bubble initial configuration.
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a time scale representing the time it would take for the bubble to travel one grid

spacing at the terminal velocity Ub estimated through the White and Beardmore

flow pattern map reported in Fig. 2.1.

The first simulation of the sensitivity analysis was run fixing each parameter in-

volved to a chosen starting value. Then, we performed several test cases varying one

at a time each parameter object of the analysis within a chosen range of values.

We chose the starting value for each parameter according to Bugg et al. [61]

set-up, but we considered also the set-up for the axisymmetrical simulations of Taha

and Cui [64], Ndinisa et al. [62] and Hayashi et al. [66], summarized in the Table

6.1. The Table 6.1 reports also the values tested in the present work and, marked

by an asterisk, the starting value chosen for each parameter.

Only Taha and Cui tested a moving reference frame and they reported a faster

attainment of the steady state condition for the bubble rise. We started with a fixed

reference frame.

We kept constant the domain length to 8D according to Bugg et al.. This length

is sufficient for the bubble to reach a steady rising in a fixed frame, as well as to

capture the whole flow disturbance caused by the bubble in a moving frame.

Taha and Cui set the initial film thickness according to a guess value calculated

using a mass balance and an estimated terminal velocity. We chose the starting value

0.1D according to Hayashi et al. and Ndinisa et al. and we tested different initial

thickness keeping constant the bubble volume.

We initialized the bubble as a cylinder with spherical rounded ends as well as

Parameter [61] [64] [62] [66] Present work

ref. frame fixed moving fixed fixed fixed∗,moving

L 8D 11D 8D 9D 8D

δ/D − variable ' 0.13 0.1 0.05,0.1∗,0.15

Lb/D 2 ' 2 ' 2.5 ' 2.3 2∗,3

D/∆x 50 104 76 64 30,40,60∗

∆t/(∆x/Ub) − − − − 1/10∗,1/50

Table 6.1: Numerical parameters and initial conditions for the considered literature

and the present work. Values with asterisks are the starting settings.
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Bugg et al. and Hayashi et al.. Ndinisa et al. chose a cylindrical shape and Taha

and Cui a slug shape.

The bubble initial length is around 2D for all the studies considered, we tested

also a 3D length keeping the starting value of the film thickness.

All the considered studies employed uniform computational grids. Rather than

discuss on the mesh element size, it would be more reasonable to consider the min-

imum terminal film thickness to element size ratio for each published work. Such

information is available only for Bugg et al. work in which the minimum film thick-

ness is discretized by two cells and for Ndinisa et al. work which performed a single

simulation with 9 cells within the terminal film. We started with D/∆x = 60 then

we only coarsened the mesh, since excellent agreement was obtained already with

the starting one.

We do not report the simulation time step of the considered studies since it de-

pends on the numerical methods adopted.

We did not test the effect of different density and viscosity ratios. We set density

ratio to 1000 and viscosity ratio to 50, as for water-air flow.

Figure 6.2 reports the bubble Froude number evolution with time for all the sim-

ulation runs. The White and Beardmore map [1] suggests for this configuration a

terminal Froude number of 0.295. All the cases simulated lead to the same terminal

value of Fr= 0.293, thus very close to experiments.

Differences are noticeable only in the transient behavior, depending on the ref-

erence frame and on the initial conditions for the bubble. The moving reference

frame allows the bubble to reach the steady state 10 % faster, thus decreasing the

computational time of the simulation, as reported also by Taha and Cui [64]. We ob-

served that the initialization of the velocity field with the value of the liquid inflow is

fundamental to shorten the computational time in the moving reference frame case.

A thinner film slows down the rising, since the velocity of the falling liquid in the

film is limited by the viscous boundary layer, while a thicker film leads to a faster

transient phase. The longer bubble has the slowest transient stage, since it takes

more time for the bubble to adjust its shape according to the forces acting on it.

Thus, it can be concluded that the initial conditions for the bubble shape influence

only the transient rise.
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Figure 6.2: Bubble Froude number for Eo= 100 and Mo= 0.01 from the beginning

of the simulations to the steady state.

All the computational grids tested give the same results, hence the liquid film is

well-solved by all the grids. The coarsest mesh considered has δ/∆x = 3, thus it can

be concluded that 3 computational cells are enough to discretize the liquid film.

The starting time step value is sufficiently smaller than the defined time scale

∆x/Ub such that the bubble interface travels much less than one grid spacing in one

simulation time step. This ensures a stable time-marching of the numerical solution

and a smaller time step does not improve the results.

6.1.2 Comparison with PIV analysis

Bugg and Saad [56] made PIV measurements around an air Taylor bubble rising in

stagnant olive oil. The configuration adopted yielded Eo= 100 and Mo= 0.01 and

the terminal velocity of the bubble expressed by means of the Froude number led to

Fr= 0.303. The detected liquid velocity field showed an axisymmetrical flow field.

Setting the parameters as marked by the asterisks in Tab. 6.1, we simulated the

same conditions of the PIV experiment and in the following we compare the numer-
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ical liquid flow around the bubble, at steady state, with the experimental data.

Figure 6.3 reports the liquid flow field across the bubble for the numerical simu-

lation. The rising bubble accelerates the liquid ahead of it and this fluid is pushed

sideways to allow the bubble to rise. The liquid is then pulled downward by the

gravitational field and it accelerates within the film region, up to a constant velocity

profile where the wall shear stress balances the weight of the film. Below the bubble,

the liquid from the falling film moves toward the centerline of the axis. The weak

effect of the viscosity causes recirculation to occur in the wake, the fluid changes

direction moving upward along the channel axis thus pushing the bubble rear. As a

consequence, the bubble rear shows an indented profile.

Figures 6.4 and 6.5 show the liquid velocity components, axial u∗z and radial u∗r ,

made non-dimensional by the bubble terminal velocity Ub. The radial and axial co-

ordinates are expressed through dimensionless quantities computed respectively as

r∗ = r/R and z∗ = z/D, locating the reference z = 0 at the bubble nose. See the Fig.

6.3 as reference for the coordinates system and for the location of the visualization

planes of the velocity profiles discussed in the following.

In both the experimental and numerical cases the axial velocity of the liquid at

the bubble tip equals the bubble velocity while the radial component is negligible,

as required by the symmetry condition. The Figure 6.4(a) shows that the axial ve-

locity of the liquid along the axis decreases below 0.05Ub already at D/3 ahead of

the bubble.

Figure 6.3: Liquid flow field around the bubble. Gas phase velocity vectors are not

reported for the sake of clarity.
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(a) (b)

Figure 6.4: (a) Axial non-dimensional velocity along the axis above the bubble nose.

(b) Axial and radial non-dimensional velocities at z∗ = 0.111 (above the bubble).

Figure 6.4(b) shows the velocity components above the bubble, very close to

the tip. The axial velocity is positive at the center of the channel, due to the liquid

pushed by the bubble, then the gravity pulls down the liquid at the sides of the

channel. The radial component is zero at the center of the channel and reaches a

maximum close to mid-way between the center and the side.

Figure 6.5(a) shows the velocity components in the liquid film at z∗ = −0.5,

where liquid is still accelerating. The velocity still has a weak radial component due

to the pushing effect of the interface, the axial component reaches a maximum close

to the interface. Moving lower (z∗ = −1.5), the liquid within the film has accelerated

up to a velocity for which the wall shear stress is able to support the weight of the

liquid. The radial velocity is zero while the axial one has a maximum localized at

the interface, as shown by Fig. 6.5(a). The film is considered fully developed. The

equilibrium film thickness in the simulation is δ/D = 0.122, close to the experimental

one of δ/D = 0.128.

Figure 6.5(b) shows the velocity components at D/5 below the bubble, in the

wake. The liquid from the falling film moves from the side to the center of the

channel, as shown in Fig. 6.3, refilling the wake. This is the reason of the strong

negative radial component of the velocity. The axial component shows a change in

the direction from the side to the center, where liquid moves with the same velocity
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(a) (b)

Figure 6.5: (a) Axial and radial non-dimensional velocities at z∗ = −0.5 (across

bubble nose) and z∗ = −1.5 (across the bubble where the film is constant). (b)

Axial and radial non-dimensional velocities at D/5 below the bubble.

of the bubble. The numerical axial component at the channel center underpredicts

the experimental value by about 15 %. The reasons are twofold: there is a slight

difference in the bubble bottom shape from the simulation to the experiment, in

which the bubble profile was sketched by hand from the PIV image; furthermore,

the flow in the wake changes very rapidly along z, therefore even small errors in the

location of the distance D/5 lead to high differences in the velocity.

However, we can conclude stating an excellent agreement of the numerical flow

field was found in comparison with the experimental one.

6.1.3 Numerical simulations of Taylor bubbles: results

We simulated Taylor flows for nine different couples of Eo and Mo numbers, com-

bining Eo= 10, 40, 100 with Mo= 10−8, 10−2, 10. The couples chosen span widely

all the regions of the White and Beardmore [1] flow pattern map shown in the Fig.

2.1. Our objective is to test the range of reliability of the axisymmetrical model to

simulate Taylor bubbles.

The numerical and the physical parameters of the simulations, as the initialized

bubble, are set as reported in the Tab. 6.1. Figure 6.6 summarizes terminal bubbles

shapes, velocity and liquid film thickness. The terminal velocities are compared with
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White and Beardmore map [1] and film thicknesses with the Brown [52] theoretical

expression reported in Eq. (2.1), but also the Han and Shikazono correlation [3]

reported in Eq. (2.14) is taken into account.

Cases 1 and 2 share the feature to have an inverse viscosity number Nf greater

than 500, respectively 3162 and 1590, then according to Campos and Guede de

Carvalho [54] the flow is not axisymmetric. The axisymmetrical simulation is not

capable of capturing the physics of the flow and the errors cause the detachment of

some parts of gas from the main bubble. The rise does not reach a steady state, but

the velocity of the bubble oscillates around a value very close to experiments.

Case 3 satisfies the condition on the inverse viscosity number. The combined

effect of a low Morton number (low viscosity) and a relatively small Eötvös number

(high surface tension) tends to flatten the center of the bubble bottom but to round

the bottom sides. It is not possible to define a unique value for the film thickness,

since it is not constant along the bubble. Campos and Guede de Carvalho [54] ob-

tained theoretically the expression (2.3) for the minimum length of the bubble Lb,min

to reach a constant film thickness.

In this case Lb,min = 2.3D while bubble length is Lb = 1.7D. The condition

expressed in Eq. (2.3) is not satisfied, for this reason the film thickness does not

become stable, but an average can still be defined. The value reported in Fig. 6.6

refers to the minimum film thickness across the bubble, located at its bottom. It

underpredicts the theoretical one. The averaged film thickness in the central portion

of the bubble is δ/D = 0.067, which is in better agreement with theory. It is remark-

able that, even with a not completely developed film, the Froude number is very

well predicted, with a negligible error. This is consistent with White and Beardmore

observation that the terminal velocity of cylindrical bubbles is independent of the

length of the bubble.

Cases 4 and 5 both satisfy the minimum bubble length condition such that a

stable condition for the film is reached, therefore the bubbles show a cylindrical

shape below the nose. The Morton number is still low enough to lead to a flattened

bubble bottom, but the higher surface tension of case 5 with respect case 4 justifies

the change in concavity. Numerical film thicknesses and Froude number agree in

excellent way with theory and experiments. Han and Shikazono correlation for the

film thickness [3] leads respectively to δ/D = 0.115 for case 4 and δ/D = 0.1 for case
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5, in reasonable agreement with numerical results.

Case 6 shows a constant film thickness below the bubble top. With respect to

case 5, the lower Eötvös number leads to the rounding and enlargement of the bub-

ble bottom. Thus, even if condition (2.3) is largely satisfied, the flat liquid film

is disturbed by the bottom of the bubble. The numerical film thickness reported

in Fig. 6.6 refers to the minimum value, but the thickness observed in the stable

region is δ/D = 0.103, very closer (3 % error) to Brown theory. For this case Han

and Shikazono correlation predicts a very thinner film, around δ/D = 0.038. Froude

number is well predicted, the relatively high deviation with experiments (10 %) is

due to the difficulty to extrapolate such a low value on White and Beardmore map.

Cases 7 and 8 are characterized by the highest Morton number and the very high

viscosity tends to round the bottom of the bubble. The high ratio of viscous forces

over surface tension effects produces the longest bubbles of the simulated series. The

long and stable films have thicknesses which accord very well with Brown theoretical

values. Also Han and Shikazono correlation gives good results, leading respectively

to δ/D = 0.148 and δ/D = 0.12.

Figure 6.6: Terminal shape of the Taylor bubbles for the numerical simulations.

Terminal velocity is compared with White and Beardmore map [1], film thickness

with Eq. (2.1) by Brown [52]. Relative errors are computed as |exp−num|
exp × 100.
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Case 9, as previous cases 3 and 6, shows a rounded bottom bigger than the top of

the bubble, an effect related to the dominance of surface tension effects. It is remark-

able that all the cases showing this behavior have the same Eo= 10, indicating high

capillary to gravitational effects. The numerical minimum film thickness underpre-

dicts the theoretical value, while the thickness in the stable region is δ/D = 0.103,

closer to theory. Han and Shikazono correlation predicts a lower film thickness

δ/D = 0.039, resulting not reliable for this case. The reason for the 20 % error in

the Froude number prediction is the same as for case 6.

The Figure 6.7 summarizes the results of the nine physical configurations simu-

lated. The axisymmetrical CFD modeling of rising Taylor bubbles is reliable only

for Nf < 500 in agreement with Campos and Guede de Carvalho [54] experimental

Figure 6.7: Rising Taylor bubbles simulation runs placed within the White and

Beardmore [1] flow pattern map. Green circles identify successful simulations, the

red circle identifies a failed simulation and the yellow one an intermediate result.

The dash black line locates Campos and Guede de Carvalho [54] threshold for ax-

isymmetric Taylor flow.
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evidence. For Nf > 500 the numerical simulations terminates with the break-up of

the bubble.

When the flow is axisymmetric the numerical framework gives excellent results,

bubbles terminal velocities agree very well with White and Beardmore [1] map and

the shapes are consistent with the effects of the dominant forces. The film thickness

in the numerical simulations is in good agreement with Brown theory [52], but at

low Eötvös numbers the surface tension tends to enlarge the bubble bottom and

the Brown equation overpredicts the liquid thickness in that region. The Han and

Shikazono correlation [3] for the liquid film thickness, obtained by fitting data on

horizontal flows, is not reliable to predict the thickness for vertical Taylor flows.

6.2 Elongated bubbles flowing in horizontal circular chan-

nels

It is referred to the Section 2.2 for the discussion of the regarding experimental and

numerical literature which has been the background for the simulations that are go-

ing to be presented.

The objective of this study is to test the performance of the numerical framework

in simulating the flow of elongated bubbles within horizontal channels drifted by a

liquid inflow. We simulated some test cases and the numerical results on pressure

drops, film thickness and bubble velocity are compared with experimental corre-

lations. The pressure drops across the bubble are compared with Kreutzer et al.

correlation [72] reported in Eq. (2.13), the film thickness with Han and Shikazono

correlation [3] shown in Eq. (2.14) and the terminal bubble velocity with the expres-

sion (2.19) where the Eq. (2.14) is used to calculate the film thickness.

The pressure and velocity field for a chosen test condition is particularly analyzed

to detect the differences with respect to the single phase flow, in order to figure out

the reasons of the enhanced momentum and energy transport provided by the slug

flow.

The flow domain is modeled as a two-dimensional axisymmetrical channel with

diameter D = 1 mm and length L = 8D. The bubble is initialized as a cylinder

with spherical rounded ends for the cases at low surface tension and as a slug for
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the cases at higher surface tension. The bubble initial length is always 3D and the

bubble volume is 1.77 mm3 for the slug shape and 1.65 mm3 on the other case. The

gravity vector is set to zero. The liquid flow into the channel is modeled as a fully

developed laminar velocity profile set as boundary condition at the channel inlet and

outlet. Each simulation is run until a steady state condition for the bubble velocity

is reached. The bubble velocity is computed at each time instant as reported in Eq.

(5.7).

Two series of simulations were executed by varying the surface tension and the

density of two fictitious fluids, to obtain the chosen Capillary and Reynolds numbers.

The viscosity is always set to 0.001 Pa·s and the mean velocity of the liquid inflow

to Ul = 0.25 m/s. The liquid to gas density ratio is set to 1000 and the viscosity

ratio to 50. The surface tension of the first series is set to 0.01 N/m and four operat-

ing conditions were tested by setting the liquid density to 62.5, 250, 1250 and 2500

kg/m3. With such conditions the Capillary number is Ca= 0.025 and Re= 15.625,

62.5, 312.5, 625 with both the numbers computed through the liquid mean velocity

as reference. The computational grid is a uniform D/∆x = 100 mesh in order to

have at least 5 cells discretizing the predicted liquid film thickness, according to

Gupta et al. [83] recommendation. The second series has surface tension σ = 0.02

N/m such that Ca= 0.0125. The densities tested, then the Reynolds numbers, are

the same of the first series. The computational domain is refined to D/∆x = 200 to

capture adequately the liquid film dynamics.

The Figure 6.8 shows the bubble terminal shapes for the numerical simulations.

For each simulations series the increase of the Reynolds number tends to sharpen

the bubble nose, to flatten the rear and to thicken the liquid film as effect of the

inertia, as already observed by Aussillous and Quéré [71] and Kreutzer et al. [72].

At low Reynolds numbers the liquid film is flat but, as Reynolds is increased,

the bubble rear enlarges thus squeezing locally the film. At the highest Reynolds

number simulated, the bubble rear in Figs. 6.8(g) and (h) shows some waves whose

wavelength seems to be a function of the surface tension. In such a situation the

liquid film does not reach a constant thickness because from the bubble nose toward

the rear it becomes thinner and then wavy.
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(a) Ca= 0.025, Re= 15.625 (b) Ca= 0.0125, Re= 15.625

(c) Ca= 0.025, Re= 62.5 (d) Ca= 0.0125, Re= 62.5

(e) Ca= 0.025, Re= 312.5 (f) Ca= 0.0125, Re= 312.5

(g) Ca= 0.025, Re= 625 (h) Ca= 0.0125, Re= 625

Figure 6.8: Bubble terminal shapes for different test conditions.

By comparing the shapes obtained with Ca= 0.0125 with those relative to Ca=

0.025, the thinning of the liquid film is evident, as effect of the higher surface tension

that tends to round off and thus shorten the bubble.

The Figures 6.9(a) and (b) report the static pressure profiles along the channel

axis separately for each simulations series. The zero pressure reference is located at

the channel end. The front of the bubble is always more curved than the rear such

that the laplacian jump in pressure across the interface generates a higher pressure

jump in the front of the bubble than in the rear. The inertia tends to increase the

difference among the front and rear curvatures such that the pressure jump across

the bubble grows as the Reynolds number is increased. Since the laplacian pressure

jump is proportional to the surface tension value, the cases with Ca= 0.0125 are

characterized by a higher pressure within the bubble.
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(a) Ca= 0.025 (b) Ca= 0.0125

Figure 6.9: Static pressure profiles along the channel axis.

The Table 6.2 summarizes the numerical results on pressure drops, liquid film

thickness and bubble terminal velocity compared with the considered correlations.

Kreutzer et al. correlation (2.13) computes the pressure drops across the bubble.

The values reported in the table refer to the pressure drop on the entire channel,

which can be predicted by adding an additional term to Eq. (2.13) to account for

the pressure drop in the liquid slug:

∆p = 1.08

(
σ

D

)
(3Ca)2/3Re1/3 +

64

Re

(
1

2
ρU2

s

)
Ls
D

(6.1)

where Ls is the length of the liquid slug and Us is the flow superficial velocity

required to compute the Capillary and Reynolds numbers. For each simulation

run, the flow superficial velocity is obtained by summing the mean liquid velocity

and an estimation of the gas superficial velocity. This estimation is computed by

considering the simulated channel as part of a longer channel, where the bubbles

flow with velocity Ub and frequency Ub/(8D). An estimation of the gas volumetric

flow rate is built by multiplying the bubble volume Vb by the transit frequency thus

leading to the following expression for the gas superficial velocity:

Usg =
Vb · Ub/(8D)

πR2
(6.2)

The simulations reproduce well the rise of the pressure drops as effect of the increase
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Ca 0.025

Re 15.625 62.5 312.5 625

Us [m/s] 0.331 0.331 0.330 0.333

∆p [Pa] Eq. (6.1) 60 65 69 73

num (err) 52 (13.3) 54 (16.9) 71 (2.9) 80 (9.6)

δ/D Eq. (2.14) 0.0494 0.0493 0.052 0.0573

num (err) 0.05 (1.2) 0.047 (4.7) 0.05 (3.8) 0.06 (4.7)

Ub [m/s] Eq. (2.19) 0.308 0.308 0.311 0.319

num (err) 0.308 (0) 0.305 (1) 0.305 (1.9) 0.315 (1.3)

Ca 0.0125

Re 15.625 62.5 312.5 625

Us [m/s] 0.328 0.328 0.330 0.332

∆p [Pa] Eq. (6.1) 62 67 74 80

num (err) 57 (8.1) 58 (13.4) 61 (17.6) 82 (2.5)

δ/D Eq. (2.14) 0.0326 0.0327 0.0349 0.0377

num (err) 0.0279 (14.4) 0.028 (14.4) 0.035 (0.3) 0.038 (0.8)

Ub [m/s] Eq. (2.19) 0.286 0.286 0.289 0.292

num (err) 0.279 (2.4) 0.278 (2.8) 0.285 (1.4) 0.291 (0.3)

Table 6.2: Comparison of numerical results with experimental correlations. The

errors between parenthesis are computed as |exp−num|
exp × 100.

of the Reynolds number for both the series, the maximum error with Kreutzer et al.

correlation is of 17.6 % and the average error is 8÷ 10 %. The dimensionless groups

involved in the Eq. (2.14) for the liquid film thickness are computed through the

bubble terminal velocity measured in each simulation, as suggested by the authors

of the correlation. It is not possible to identify a unique value of the film thickness

for each simulation run. At low Reynolds the value reported in the Table refers to

the thickness on the central region of the film, where it is almost constant. At high

Reynolds a constant thickness region does not exist and the value reported in the

Table refers to the location where the smooth profile of the bubble matches the wavy

profile at the rear, then such value has to be intended as an average.

The thickening effect of the inertia on the liquid film is well captured by the
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simulations as well as the thinning effect of the capillary forces, such that the film

thickness increases as Ca and Re grow. The accordance with Han and Shikazono

correlation is very good and the errors are within the 5 % with the exception of the

cases with Ca= 0.0125 and Re= 15.625, 62.5 whose errors are about 14 %. However,

the values of the film thickness reported on the Table are average values of the actual

thickness in the simulations, which oscillates within [0.022, 0.032] for Re= 15.625 and

[0.02, 0.038] for Re= 62.5.

The Eq. (2.19) estimates the terminal velocity of the bubble in excellent agree-

ment with the numerical simulations for all the simulation runs, with errors included

within 3 %. The rise of Ca and Re thickens the liquid film and the bubble shape

adjusts to a better hydrodynamic profile, reducing the liquid drag effect thus mov-

ing faster. The Armand and Treschev [75] correlation (2.18) overpredicts the bubble

velocity by a 25 %, but replacing the flow superficial velocity with the mean velocity

of the liquid inflow the error would be within 5 %.

Analysis of the flow field for Ca= 0.0125 and Re= 625

Among the operating conditions simulated, the one characterized by Ca= 0.0125 and

Re= 625 is the closest to the test conditions of the simulations with phase change

that are going to be discussed in the next Chapter, for this reason it is particularly

studied in this Subsection.

The Figures 6.10(a) and (b) report the pressure and velocity field across the

bubble at the steady state. The pattern of the velocity vectors allows to identify

the disturbance on the flow field generated by the bubble transit, which extends less

than one diameter behind and ahead of the bubble. The liquid film appears to be

almost stagnant, with very small vectors in the central region.

The density of the gas is low enough to make the effect of the inertia negligible

within the bubble, as well as the viscous stress. As a consequence, the pressure is

uniform throughout the gas phase and its value of about 150 Pa corresponds to the

average of the laplacian jump in pressure across the entire bubble interface. The

pressure in the central region of the liquid film, where it is almost cylindrical, can

be estimated as pbubble − σ/R ≈ 110 Pa because the interface curvature in the (r, z)

plane is nearly zero and the second curvature is approximately 1/R. The wavy pro-

file of the interface at the rear of the bubble is characterized by a curvature that
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(a)

(b)

Figure 6.10: Pressure field and velocity vectors across the bubble for Ca= 0.0125

and Re= 625. (b) is a zoom of the rear bubble region. The figures are not in scale.

changes its sign in the (r, z) plane, generating regions within the film with over- and

undershoots of the pressure with respect to the gas phase. These pressure fluctua-

tions force a local recirculation of liquid which may enhance locally the transport of

momentum and energy in the proximity of the channel wall.

In order to quantify the effect of the bubble passage in the liquid flow field we

reported in the Figures 6.11(a) and (b) the radial profiles of the axial velocity sepa-

rately in the wake and the film regions, at different axial locations z/D. The position

of the bubble rear interface on the channel axis is z/D ≈ 3.7. The velocity is made
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(a) (b)

Figure 6.11: Profiles of the dimensionless axial velocity of the liquid along the radial

direction at various axial locations in the wake (a) and in the liquid film (b) for

Ca= 0.0125 and Re= 625. F.d.l. stands for fully developed laminar flow. The

bubble velocity is Ub = 0.291 m/s.

nondimensional by use of the bubble velocity Ub = 0.291 m/s. The figures depict

also the velocity profile of a fully developed laminar flow given by the Poiseuille law

u(r) = 2Ul(1− (r/R)2).

At z/D = 3, less than one diameter behind the bubble, the axial velocity profile

matches the fully developed profile, then the bubble disturbance on the liquid flow

becomes negligible behind this location. Moving toward the bubble rear the liquid

velocity profile modifies, the value on the channel axis decreases from the maximum

value of the Poiseuille profile to the bubble velocity. Since the continuity condition

imposes a constant liquid volumetric flow rate behind the bubble, if the liquid ve-

locity on the channel axis decreases it is necessary that moving radially toward the

wall the velocity increases with respect to a fully developed profile, as proved by the

axial profiles at z/D = 3.5, 3.6 shown in Fig. 6.11(a). The higher liquid velocity in

the proximity of the channel wall guarantees a better energy exchange among the

wall and the liquid if heat exchange exists, but the higher axial velocity gradient

increases the wall shear stress thus leading also to higher pressure drop. The axial

location z/D = 3.75 is partially within the bubble and the liquid axial velocity pro-
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file is strongly influenced by the presence of the first recirculation pattern.

The axial velocity profiles in the liquid film region reported in the Fig. 6.11(b)

depend on the local recirculation pattern. At z/D = 4 a strong clockwise rotating

vortex exists (see Fig. 6.10(b)) thus generating a high radial gradient of the axial

velocity. At z/D = 4.5, 5, the bubble profile is nearly flat such that recirculation

within the film is negligible and the liquid velocity is almost zero. Moving down-

stream toward the bubble nose the film thickens, the bubble interface becomes more

oblique and the liquid accelerates in the streamwise direction as demonstrated by

the velocity profiles at z/D = 5.5, 6.

The Figure 6.12 shows the streamlines of the defect flow field u−Ub in the wake

and the film region. Behind the bubble along the centerline of the channel the liq-

uid velocity exceeds the bubble one as previously discussed, while moving radially

toward the wall at above r/R ≈ 0.6 ÷ 0.7 the liquid moves slower than the bubble.

Thus, the liquid in the wake region undergoes a recirculating motion in a reference

frame moving with the bubble and the liquid from the center of the channel is drifted

toward the wall. Here, it comes in contact with a liquid layer leaving the film region

which tends to adhere to the channel wall. Such adherent film may constitute a ther-

Figure 6.12: Streamlines of the defect flow field u − Ub in the wake and the film

region for Ca= 0.0125 and Re= 625.
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mal inertia for the energy transfer among the bulk liquid and the channel wall, He

et al. [88] accounted for its effect in the development of a phenomenological model

for the heat transfer.

By summarizing the results discussed, the slug flow may enhance momentum and

energy transport compared to the single phase flow due to the following effects:

• at high Reynolds numbers, the undulations at the rear of the bubble interface

induce small recirculation patterns close to the wall;

• the bubble perturbs the liquid flow field in the wake by increasing the liquid

velocity in proximity of the channel wall;

• a recirculation pattern in the bubble wake, whose length scale is of the order

of the channel radius, moves liquid from the centerline of the channel to the

wall.

6.3 Concluding remarks: limits of the computations

The capability of the numerical framework to simulate elongated bubbles flowing

within horizontal circular microchannels has limitations which are intrinsic on the

mathematical and numerical models used. The chosen orders of magnitude of liquid-

gas density and viscosity ratios, respectively 103 and 102, are the maximum values of

interfacial jumps in properties that the PISO algorithm, together with the selected

options for the solver, is able to manage giving numerically stable computations. The

axisymmetrical formulation of horizontal flows adopted is a good approximation as

long as capillary forces overwhelm gravitational effects, otherwise a comparison with

experimental results obtained for horizontal microscale flows is not feasible. This

condition poses a limitation on the surface tension coefficient, which has to be high

enough to give a Confinement number over unity. On the other hand, the liquid film

thickness decreases as the surface tension is raised, hence when using uniform mesh

grids the computational cost of the simulation increases to adequately solve the flow

within the film. As well the velocity of the liquid inlet, thus the Reynolds number,

has effect on the liquid film thickness. An increase of the Reynolds number leads to

thicker liquid films, at least for typical flow configurations with Ca < 0.01, but it has



to be also kept below 2000 to avoid turbulent flows. In conclusion, the mesh element

size which ensures reliable results and quick computations depends on the operating

conditions simulated. However, the computational cost of simulations whose domain

is discretized with uniform elements limits the minimum film thickness achievable.



Chapter 7

Results on elongated bubbles

motion with evaporation

This Chapter presents the results of various simulations of elongated bubbles flows

with phase change. Firstly, the optimal set-up of the numerical and physical parame-

ters involved in the simulation of an evaporating flow is discussed. A grid convergence

analysis is performed to obtain the minimum number of computational cells neces-

sary to accurately discretize the temperature and velocity gradients occurring within

the liquid film region. The effect of two different sets of boundary conditions at the

channel inlet and outlet sections on the bubble dynamics is investigated.

Then, the features of the local temperature and flow fields induced by the evapo-

rating bubble are described, in order to figure out the mechanisms that enhance the

wall heat transfer when a slug flow occurs.

Actual experiments on two-phase flows in microchannels involve multiple bubbles

in sequence. The results of a simulation run with two bubbles allow to understand

the mutual influence among consecutive bubbles and the effect on the wall heat

transfer. By assuming that the flow of two bubbles in sequence is a good approxima-

tion of an actual flow dealing with the periodical transit of bubble-liquid slug pairs,

the heat transfer performance is compared with models and correlations available in

the related scientific literature.

155
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7.1 Grid convergence analysis

When a thermal load is applied at the wall of a channel initially filled with saturated

liquid, a thermal developing region is generated.

When the interface of a vapor bubble flowing within the heated channel gets in

contact with the superheated thermal boundary layer, the evaporation starts. For

elongated bubbles such contact likely occurs in the liquid film region, where the

thickness of the thermal layer approaches the height of the film.

The evaporation model described in the Section 3.2 cools down locally the liquid

temperature to maintain the bubble interface close to the saturation temperature.

Therefore, the liquid temperature within the film drops sharply from the highest

value at the channel wall to the lowest value at the bubble interface. For this reason,

in the film region high temperature gradients take place and the computational grid

needs to be fine enough in order to solve the gradients properly. The accurate dis-

cretization becomes fundamental in conjunction with the evaporation model, which

computes the rate of evaporation proportional to the local interface superheating.

Gupta et al. [83] criterion, which suggests that a minimum of 5 cells should

discretize the liquid film, is valid in the case of adiabatic or diabatic flows without

phase change, but it can not be assumed a priori in the present case.

The objective of this Section is to find out the minimum number of computational

cells necessary to discretize the liquid film in order to model properly the tempera-

ture gradients, thus leading to correct evaporating bubble dynamics and wall heat

transfer.

The flow of an elongated bubble within a heated channel is simulated with four

different computational grids. The flow domain is modeled as a two-dimensional ax-

isymmetrical channel with diameter D = 0.5 mm and length L = 20D. The channel

is split in an adiabatic region of length 8D followed by an heated region of length

12D. The bubble is initialized as a cylinder with spherical rounded ends and it is

placed at the upstream of the adiabatic region of the channel. The initial bubble

length id Lb = 3D.

The operating fluid is R113 at the pressure p = 1.097 bar and saturation tem-

perature Tsat = 50 oC, the vapor and liquid material properties are reported in the

Table 7.1. The bubble is pushed by a liquid inflow of mass flux G= 600 kg/m2s.
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Property Liquid Vapor

ρ [kg/m3] 1502 8

cp [kJ/kg·K] 0.943 0.695

λ [mW/m·K] 63.2 9.62

µ [µPa·s] 477 10.4

hlv [kJ/kg] 143.54

σ [mN/m] 14.4

Table 7.1: Properties of R113 liquid and vapor at saturation conditions for Tsat =

50 oC. Pressure is p = 1.097 bar.

A flat velocity profile with Ul = G/ρl = 0.4 m/s is set at the inlet section while at

the outlet section an outflow condition is imposed. The temperature of the liquid

inflow is equal to the saturation temperature. A constant heat flux of q= 9 kW/m2

is applied at the heated wall.

The initial velocity and temperature fields are obtained by a preliminary single

phase steady state simulation at the same flow conditions. The Figure 7.1 reports

a sketch of the simulation conditions with the initial temperature field, the Figures

7.2(a) and (b) show the initial wall temperature profile and heat transfer coefficient

computed as:

h(z, t = 0) =
q

Tw(z)− Tsat
(7.1)

where z is the axial coordinate and Tw the wall temperature.

By considering the inflow velocity as reference, Han and Shikazono correlation

[3] predicts a liquid film thickness of δ/D = 0.035. Four computational grids are

employed, ranging the predicted film thickness to mesh element ratio from 3.5 to 14,

such that the grids are characterized by the channel diameter to mesh element size

ratios D/∆x = 100, 200, 300, 400. For each computational grid the simulation is run

until the nose of the bubble reaches the end of the channel.

The grid convergence analysis is performed by examining the differences on the

numerical bubble dynamics and wall heat transfer obtained with the computational
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Figure 7.1: Initial temperature field. The bubble interface is represented by the

black line profile at the upstream of the channel. The figure is stretched vertically

to enlarge the thermal boundary layer at the heated wall.

(a) (b)

Figure 7.2: Initial wall temperature and heat transfer coefficient along the heated

region.

grids employed. The bubble dynamics is reconstructed by computing at each time

instant the bubble nose velocity as dzN/dt and the bubble growth rate as dVb/dt,

where zN is the bubble nose position and Vb the volume of the vapor bubble.

The Figure 7.3 reports the bubble nose velocity as a function of the time. There is

a short stage that lasts less than one millisecond in which the bubble shape modifies

from the initialized shape to attain a steady motion. After this settlement period the
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Figure 7.3: Velocity of the bubble nose.

bubble flows steadily up to the heated region with a constant velocity of Ub = 0.47

m/s which is the same for all the computational grids employed.

The Figure 7.4 shows the bubble profiles obtained with the various mesh grids

at t = 5.5 ms, just before evaporation begins. The bubble nose is already within

the heated region because zN/D > 8, but the evaporation has not started yet be-

cause the interface has still to get in contact with the superheated liquid within the

developing thermal layer at the wall. All the bubble profiles overlap as a sign that

Figure 7.4: Bubble profiles at t = 5.5 ms.



160 CHAPTER 7. RESULTS: FLOW WITH EVAPORATION

also the coarsest mesh is adequate to capture the adiabatic flow and δ/D ≈ 0.045,

close to the predicted value. Han and Shikazono correlation predicts a value of 0.039

when using the terminal bubble velocity to compute the dimensionless numbers.

We observed unexpected oscillations of the bubble rear when running the finest

grid simulation case. We found out the reason to be the numerical error in the com-

putation of the local interface curvature with the Height Function algorithm when

the interface is less aligned with the grid, causing a wrong computation of the surface

tension force. The Figure 5.2 of Section 5.1 proves that the computed curvature of

a R radius circle does not converge with the mesh refinement when R/∆x > 40 and

the maximum relative error rises from 10−3 to over 10−2 when R/∆x = 150. In the

present elongated bubble simulation the bubble rear is rather flat, with an estimated

R/∆x > 1000 when discretizing the domain with the finest D/∆x = 400 grid (here

R is an estimation of the bubble rear radius of curvature). Therefore, we believe

that the worsening of the performances of the HF algorithm for such high radius of

curvature to mesh element size ratios gives rise to the observed effects.

The Figure 7.3 suggests evaporation to start at around t = 6 ms, when the

bubble nose begins to accelerate. The beginning of the evaporation phenomenon is

clearly detected by the plot of the bubble volume growth rate in Fig. 7.5. Henceforth

Figure 7.5: Bubble volume growth rate.
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the different performances of the computational grids become evident. The computed

evaporation rate decreases as the mesh is refined converging to similar profiles for

the grids with D/∆x = 300 and 400. Instead, an inadequate mesh element size

within the liquid film leads to a faster growth of the bubble, as a consequence of the

inaccuracy on the discretization of the local temperature gradients. The Figure 7.6

shows some snapshots of the bubble evolution at various time instants for all the

grids. The location of the bubble rear zR is the same for all the computational grids

at each time instant considered, this is not surprising because it is a simple function

of the elapsed time zR(t) = zR(t = 0) + Ult. The bubble nose for D/∆x = 100

moves faster as effect of the wrong higher evaporation rate and for D/∆x = 200 the

(a) t= 7.5 s (b) t= 8.5 s

(c) t= 10.5 s (d) t= 12.5 s

Figure 7.6: Bubble evolution at various time instants. For each time instant, the

plots are sorted from the coarsest grid on the top, to the finest grid on the bottom.
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dynamics appears to be already well represented.

The Figures 7.7 and 7.8 show the heat transfer coefficient at chosen time instants.

The heat transfer coefficient is computed considering the saturation temperature as

reference, as reported in Eq. (7.1). The effect of the bubble transit on the wall heat

transfer begins to be evident in the film region in the proximity of the bubble rear,

while it becomes negligible toward the nose. The enhancement of the heat transfer

increases moving upstream to the channel and it is maximum in the wake region

behind the bubble.

The higher evaporation rate of the simulation with the grid D/∆x = 100 gives

also a false higher heat transfer coefficient, because the higher latent heat sunk cools

down wrongly the channel wall. The peaks on the heat transfer coefficient observed

for D/∆x = 100 are related to the numerical errors in the temperature gradient

discretization.

As the mesh grid is refined, the heat transfer coefficient converges and forD/∆x =

300 and 400 the profiles are similar. The simulation with D/∆x = 400 shows spa-

tial oscillations in the heat transfer coefficient. We believe this to be an effect of

the discussed numerical errors in the curvature computation, which force unphysi-

cal vortices enhancing the wall heat transfer. However, in absence of the numerical

errors the heat transfer coefficient for D/∆x = 400 would be very similar to the

one obtained with the D/∆x = 300 grid. The grid with D/∆x = 300 has a min-

imum film thickness to mesh element size ratio δmin/∆x ≈ 7. Therefore, the grid

convergence analysis suggests that the minimum number of cells necessary to solve

the thermal boundary layer within the liquid film is 7. Note that 7 cells was also

the minimum size of the initial thermal boundary layer in the vapor bubble growth

simulation discussed in the Section 5.4.
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Figure 7.7: Heat transfer coefficient and positions of the bubble nose and rear (verti-

cal lines) at t = 7.5, 8.5, 9.5 ms. Red lines: D/∆x = 100; black lines: D/∆x = 200;

blue lines: D/∆x = 300, cyan lines: D/∆x = 400. Dash line: single phase.
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Figure 7.8: Heat transfer coefficient and positions of the bubble nose and rear

(vertical lines) at t = 10.5, 11.5, 12.5 ms. Red lines: D/∆x = 100; black lines:

D/∆x = 200; blue lines: D/∆x = 300, cyan lines: D/∆x = 400. Dash line: single

phase.
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7.2 Flow boundary conditions

For the grid convergence analysis, the simulations were conducted by imposing veloc-

ity inlet / outflow boundary conditions for the momentum equations at the channel’s

inlet and outlet. The different boundary conditions pressure inlet / pressure outlet

can be imposed as well. In the remainder of this Section it will be referred to the

velocity / outflow boundary condition as V, to the pressure inlet /outlet as P.

The choice of the velocity inlet boundary condition forces the liquid flow rate set

to enter the channel regardless of the flow dynamics downstream, while due to the

outflow boundary condition pressure and velocity at the outlet section depend only

on the flow upstream.

On the contrary, the boundary condition on the pressure makes the flow rate

at the inlet / outlet sections to depend on the phenomenon occurring within the

domain, thus inverted flows are possible.

In absence of evaporation both the couple of boundary conditions lead to the

same bubble and flow dynamics, while remarkable differences arise with the appear-

ance of the phase change.

In order to study the dynamics involved, the same simulation set-up is run twice

by varying the boundary conditions. The operating conditions for the simulations

are the same of the grid convergence analysis, the computational grid used is the

D/∆x = 300 one. The pressure gauge set between the terminal sections is the value

leading to the same bubble steady velocity of the V boundary condition case before

the bubble enters in the heated region.

The Figure 7.9 shows the bubble evolution for both the boundary conditions at

regular time intervals. The bubble moved with the P condition shows a delay that

appears to increase as time elapses after the beginning of the evaporation. The rea-

son is closely related to the boundary condition. The bubble accelerates the fluid

in front of it thus increasing the pressure drop. In order to maintain constant the

pressure difference among the inlet and outlet sections, the inlet flow rate decreases

thus slowing down the bubble with respect to the V case.

The Figure 7.10(a) shows the bubble volume growth rate, which is similar for

both cases. The Figure 7.10(b) reports the velocity of the bubble rear. The oscilla-

tions observed in the adiabatic region are related to the settlement of the rear of the

bubble as a consequence of the initialization and they are dumped by the
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Figure 7.9: Bubble evolution during evaporation, from t = 4.5 ms to 12.5 ms at time

intervals of 1 ms. Blue: V condition; red: P condition.
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(a) (b)

(c) (d)

Figure 7.10: (a) Bubble volume growth rate, (b) rear velocity, (c) nose velocity and

(d) center of gravity velocity. Blue: V condition; red: P condition.

evaporation. After the beginning of the evaporation, the rear of the bubble for the

V condition continues to move at a velocity stabilizing at Ub = 0.47 m/s, while the

velocity of the bubble pushed by the P condition decreases as effect of the reduction

in the inlet flow rate. The velocity of the nose of the bubble is reported in the Fig.

7.10(c). As the evaporation starts, the nose of the bubble pushed by the fixed inflow

accelerates uniformly (actually the law of the motion is exponential as will be shown

in Subsection 7.3.1). The velocity of the nose for the P condition case increases more

gradually because of the reduced inlet flow rate.
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In the following, the differences on the bubble profiles induced by the evapora-

tion, when different boundary conditions are applied, are discussed.

We observed the evaporation to take place at the interface between the bubble

and the liquid film, where superheated liquid exists. Such film evaporation mech-

anism was suggested to rule the heat transfer in the elongated bubble regime by

Thome and co-workers [5] as well. However, the local film evaporation when em-

ploying the V condition is not reflected in a decrease of the thickness. The Figure

7.11(a) reports the profiles of the bubble at t = 12.5 ms for V and P cases, the

two profiles are shifted such that the axial position of the nose is the same. The

figure reports also the steady thickness of the liquid film during the adiabatic stage,

measured at the valley of the third wave from the left side at the rear of the bubble.

The film evaporation is expected to get the film thinner, but the figure shows it

to remain almost equal to the adiabatic value. This is a direct consequence of the

outflow condition. According to Han and Shikazono [3] and previous studies as well,

a thinner film is the consequence of a decreased Capillary number, as though the

capillarity is overcoming the viscous effects. But the velocity of the bubble is not

decreased, rather is increasing due to the evaporation, so Ca is actually increasing.

Therefore as the film gets thinner because of the evaporation, the hydrodynamic

forces (proportional to Ca) tend to recover the thickness to a value depending on

Ca, thus to a thickness equal or higher than the one before. The outflow boundary

condition does not set any restriction on the bubble nose motion, as a consequence

the bubble is free to rearrange its shape by varying the film thickness in accord with

the acting forces, while the vapor created gets the bubble longer rather than larger.

The situation is different when the P condition is applied, because the velocity

of the nose is limited by the boundary condition set. Therefore, the bubble is not

free to arrange its shape and a slight decrease in the film thickness with respect

to the adiabatic value is noticeable in Figure 7.11(a) as a consequence of the film

evaporation.

However, it is important to remark that the configuration simulated is only a

model of the real physics involving multiple bubbles flowing in sequence. In the real

dynamics of the evaporation, the acceleration of the nose of each bubble is limited

also by the presence of another bubble downstream to the channel, not considered

here.
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(a)

(b) (c)

Figure 7.11: (a) Bubble profile at t = 12.5 ms. Profile of the bubble nose at various

time instants obtained with the V condition (b) and the P condition (c). Within

each figure the profiles are shifted in order to match the nose positions.

Figures 7.11(b) and 7.11(c) report the shape of the nose of the bubble at vari-

ous time instants after that evaporation has begun. In both V and P cases, as the

velocity of the bubble increases the nose becomes sharper and its curvature increases

because of the inertia effects, in accord with Aussillous and Quéré [71] and Han and

Shikazono [3] scaling analysis of the forces acting on the bubble.
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The P boundary condition does not guarantee the flow of the bubble downstream

to the channel, but it depends on the pressure drop generated by the evaporation.

The high acceleration of the fluid in front of the bubble causes the velocity profile

to deviate from the fully developed parabolic profile and the pressure drop increases

due to the formation of a hydrodynamic entrance region.

The pressure drop in the liquid slug behind the bubble and across the bubble

can be neglected with respect to the pressure drop in the accelerated liquid ahead

of the bubble. Thus, the pressure drop across the entire channel can be estimated

proportional to the liquid mass flow rate at the channel exit, given by the continuity

condition:

∆p ∝ ṁo = ṁi + ṁ

(
ρl − ρv
ρv

)
(7.2)

where ṁi and ṁo are the liquid mass flow rates at the channel inlet and outlet and

ṁ is the vapor mass flow rate generated by the evaporation. If the heat flux is used

only to evaporate the liquid and the latent heat is absorbed only from the heat load

at the wall, the Eq. (7.2) becomes:

ṁo = ṁi +
qπDLh
hlv

(
ρl − ρv
ρv

)
(7.3)

where Lh is the heated length of the channel. The terms at the RHS are of com-

parable magnitude in the present case. Thus, the pressure drop induced by the

evaporation is sensible of the heat flux applied and it increases as the heat flux is

increased.

In the discussed test case P the heat flux is q = 9 kW/m2 and the pressure

drop generated by the evaporation still allows the bubble to move downstream. We

repeated the simulation with both the V and P conditions, raising the heat flux

to q = 20 kW/m2 to investigate the effect of the heat flux. The channel length is

increased to L = 30D, with ten heated diameters more than the previous case. The

evolution of the bubble is shown in Fig. 7.12. As the whole bubble is entered in

the heated region, the evaporation is very strong and the liquid highly accelerated,

such that the pressure drop generated causes backflow at the inlet in the P case. As

reported in the Figure 7.13(a), the velocity of the bubble rear quickly decreases and

becomes negative. The shape of the rear of the bubble becomes similar to the nose,
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Figure 7.12: Bubble evolution during evaporation, from t = 4.5 ms to 14.5 ms at

time intervals of 1 ms, q = 20 kW/m2. Blue: V condition; red: P condition.
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(a) (b)

Figure 7.13: Velocity of the bubble (a) rear and (b) nose for q = 20 kW/m2. Blue:

V condition; red: P condition.

but with a less curved profile because the velocity is lower. The nose of the bubble

continues to move downstream with gradually growing velocity.

In this Section the different bubble dynamics led by velocity and pressure bound-

ary conditions were presented. The best boundary conditions to be set at the chan-

nel’s inlet and outlet depend only on the objective of the simulation. As instance,

reversed flows may arise in parallel microchannels with a common manifold and their

numerical modeling through a single channel simulation would require the use of pres-

sure boundary conditions with time-varying pressure. The objective of the following

sections is to study the wall heat transfer induced by an evaporating bubble. In

order to compare with experiments, a constant mass flux throughout the simulation

is favourable, therefore a velocity boundary condition is more appropriate.

7.3 Analysis of the flow and temperature field induced

by an evaporating bubble

In this Section the test case run with the D/∆x = 300 computational mesh, whose

operating conditions are described in Section 7.1, is particularly analyzed. The ob-
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jective is to relate the flow and temperature field to the dynamics of the evaporating

bubble and to explain the consequent trend of the heat transfer performances.

The flow is captured at the time instant t = 12.5 ms. At this time instant the

velocity of the nose of the bubble is Ub,N = 1.07 m/s, the center of gravity moves at

Ub = 0.76 m/s. The axial location of the bubble nose at the center of the channel is

zN/D = 18.91, the location of the rear is zR/D = 12.43. In the following, when it

is referred to the single phase case, or flow without the bubble, it is considered the

steady flow obtained with a preliminary simulation with only liquid.

The contours and isolines of the velocity field are depicted in the Fig. 7.14. The

figure shows also the liquid bulk axial and radial velocities plotted as a function of

the axial coordinate. Both average velocities are calculated at each axial location z

as:

umean(z) =
2

R2 − (R− δ(z))2

∫ R

R−δ(z)
u(r, z)rdr (7.4)

The Figures 7.15 and 7.16 show the contours and isolines of the temperature field

respectively in the wake of the bubble and in the region occupied by the bubble. A

black dash line represents the thickness of the thermal boundary layer δT for the

single phase case computed as:

δT (z) = R− r(T = Tsat + 0.01(Tw(z)− Tsat)) (7.5)

Each figure reports also the wall temperature Tw and the heat transfer coefficient

obtained in presence of the bubble (subscript tp: two-phase) and without the bubble

(sp: single phase). Both the heat transfer coefficients are computed as reported in

Eq. (7.1) by considering the saturation temperature as reference (subscript sat).

In addition to the saturation based heat transfer coefficient, a bulk heat transfer

coefficient is defined (subscript b). It is based on the bulk temperature Tb as reference

instead of the saturation one, computed as:

Tb(z) =

∫ R
0 ρcpT |uz|rdr∫ R
0 ρcp|uz|rdr

(7.6)

with uz being the axial velocity. This coefficient is introduced in order to compare

the results with the published data for heat transfer without phase change in the



174 CHAPTER 7. RESULTS: FLOW WITH EVAPORATION

Figure 7.14: Average liquid axial and radial velocity (above) defined in Eq. (7.4)

and contours of the velocity field (below).

elongated bubble regime.

The Figure 7.17 reports two curves identifying the relative difference between

each two-phase heat transfer coefficient defined and the single phase one.

The analysis of the flow field begins from the wake region. The effect of the bub-

ble transit is evident in the wall and liquid temperature fields reported in Fig. 7.15

from the entrance in the heated region located at z/D = 8, to the rear of the bubble.

The bubble passage squeezes the thermal boundary layer on the channel wall and the

film evaporation cools down locally the superheated liquid to the saturation condi-

tion. The axial velocity profiles reported in the Figs. 7.18(a) and 7.18(b) show that
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Figure 7.15: Wall temperature and heat transfer coefficient (above) in the wake.

The subscripts w stands for wall, sp and tp respectively for single phase and two-

phase, sat for saturation temperature as reference. Below, the contours and isolines

of temperature are reported. The black dash line represents the width of the thermal

boundary layer for the single phase case.

the bubble disturbance on the liquid flow field is negligible until a location placed

between z/D = 10 and z/D = 11. The isolines of the velocity field in Fig. 7.14 are

horizontal until approximately z/D = 10.5, thus suggesting that disturbance arises

only downstream such location.

Therefore, in the region within z/D = [8, 10.5] the thermal boundary layer is

developing with the time toward the steady situation holding before of the bubble

transit and the local heat transfer performances are enhanced by such transient heat
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Figure 7.16: Wall temperature and heat transfer coefficient (above) in the region

occupied by the bubble. The subscripts w stands for wall, sp and tp respectively for

single phase and two-phase, sat for saturation temperature as reference. Below, the

contours and isolines of temperature are reported. The black dash line represents

the width of the thermal boundary layer for the single phase case.

convection mechanism. As a consequence, the heat transfer coefficient shows a sub-

stantial increase with respect to the single phase profile, see Fig. 7.15.

At z/D > 10.5 the bubble disturbance on the liquid flow behind it becomes re-

markable. The axial velocity profile deviates from the parabolic shape as shown in

Fig. 7.18(b) because the rear of bubble is moving at the velocity Ub,R = 0.47 m/s,

while the liquid velocity at the centerline of the channel is around 2Ul = 0.8 m/s. The
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Figure 7.17: Local enhancement on the heat transfer induced by the two-phase flow.

axial velocity profile becomes more flat when sections closer to the bubble rear are

considered, as discussed in the Section 6.2. Nearby the bubble rear, at z/D = 12.4,

the Fig. 7.18(c) shows that the axial velocity at the axis of the channel matches

the bubble rear velocity of 0.47 m/s. Due to the continuity condition, the liquid

velocity in the region near the wall increases, thus preventing the thermal boundary

layer from developing similarly to a hydrodynamically developing flow. Such effect

is evident in the Fig. 7.15. The thermal layer profile evolves in the axial direction

increasing the thickness until z/D ≈ 10.5, then for z/D > 10.5 such increase stops.

Actually, the thickness decreases slightly because a positive radial component of the

velocity field exists. The combined effect of transient heat convection and flat veloc-

ity profile behind the bubble drops locally the wall temperature by more than 1 oC,

see the temperature profiles in Figs. 7.18(a) and 7.18(b). This region shows in Fig.

7.17 the maximum enhancement on the heat transfer performance. The saturation

based heat transfer coefficient is constantly more than 25 % higher than the single

phase value within z/D = [10.5, 12], with a peak of 30 %.

Moving toward the rear of the bubble, the isolines of the velocity field at r/D >

0.35 converge on the channel wall, at the location z/D = 12.65 of the first crest
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(a) z/D = 10

(b) z/D = 11

(c) z/D = 12.4

Figure 7.18: Left: temperature profile, right: axial velocity profile. Red: two-phase,

blue: single phase.
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(a) z/D = 12.65

(b) z/D = 12.83

(c) z/D = 13.5

Figure 7.19: Left: temperature profile, right: axial velocity profile. Red: two-phase,

blue: single phase. Black horizontal line: radial location of the interface.
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(a) z/D = 14

(b) z/D = 14.5

(c) z/D = 19

Figure 7.20: Left: temperature profile, right: axial velocity profile. Red: two-phase,

blue: single phase. Black horizontal line: radial location of the interface. Blue

dashed line: fully developed laminar flow with the same flow rate of the liquid at

that location.
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of the interfacial wave in the film region. The wavy profile at the rear of the bub-

ble generates liquid recirculation as shown by the velocity vector field in Fig. 7.21.

Upon each crest anticlockwise vortices exist and the local axial velocity is negative,

as depicted by the profile at z/D = 12.65 reported in Fig. 7.19(a). Upon each valley

clockwise vortices can be observed. The Fig. 7.19(b) reports a positive axial velocity

profile at the location of the first valley z/D = 12.83. The anticlockwise vortex in

proximity of the first crest drifts downward the liquid on the left, as can be seen by

the velocity vectors in Fig. 7.21. Such flow pattern transports energy toward the

center of the channel, thus thickening locally the thermal boundary layer behind the

bubble within z/D = [12, 12.4]. Such effect is visible in the Fig. 7.15, magnified by

the vertical stretching of the figure.

In the liquid film region at the rear of the bubble, within z/D = [12.5, 15],

the velocity contours of Fig. 7.14 shows an almost null velocity of the liquid phase.

Actually, the undulations of the interface profile generate a series of counter-rotating

vortices whose axial average velocity is small but not null and oscillates around the

zero value. The average axial velocity shows local minimums at each crest of the

wave and maximums at each valley and it changes the sign in between. Proceeding

downstream to the channel, the amplitude of the interfacial wave decreases, as well

as the oscillations on the average axial velocity profile.

In this region, the bulk temperature based local heat transfer coefficient shows the

maximum values with peaks over two times the single phase coefficient, see Fig. 7.17.

The curve representing the bulk heat transfer coefficient is highly irregular, because

it is strongly influenced by the dynamics of the flow field within the film. In order

to investigate such behavior, the Figure 7.21 reports the temperature contours plot

together with the velocity vectors, the bulk heat transfer coefficient and the average

axial velocity. The htp,b values drop at each axial location where the vortices change

the roll direction, thus where the average axial velocity is zero. Such behavior was

detected also by Gupta et al. [83] for flow without phase change. On the contrary,

the heat transfer shows peaks at each crest and valley of the interface, where the

magnitude of the axial velocity is maximum.

The wall temperature is weakly influenced by the dynamics of the vortices, thus

by the axial variations of the average axial velocity. Therefore, the saturation based
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Figure 7.21: Fluid flow, temperature field and heat transfer in the wavy region of

the film. The data boxes within the figures report the axial locations at which the

vortices change the roll direction. The boxes in the figure on the left identify the

local minimums on the bulk heat transfer coefficient and on the right the zeros of

the average axial velocity.

heat transfer coefficient decreases smoothly toward the bubble nose, giving within

z/D = [12.5, 14] a mean improvement of 20 % with respect to the single phase case.
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The three zones model proposed by Thome et al. [5] assumes that for D/δ > 100

the liquid film is sufficiently thin to become stagnant, thus allowing the estimation

of the heat transfer coefficient by one-dimensional heat conduction. The liquid film

is considered flat and the thickness decreasing linearly from the bubble nose to

the rear. The maximum and minimum thicknesses are derived through correlations

based on the flow conditions. In order to test specifically the assumption of pure heat

conduction within the film, a one-dimensional heat conduction based heat transfer

coefficient hcond is computed by considering heat transfer across the actual profile of

the liquid film:

hcond(z) =
λl

R ln
(

R
R−δ(z)

) (7.7)

The Figure 7.22 shows a good agreement of the bulk with the heat conduction based

heat transfer coefficient in the region under analysis, in which the liquid velocity is

small. The heat conduction based heat transfer coefficient captures well the mag-

nitude of the peaks on the heat transfer located at the first four crests of the wavy

bubble profile. The comparison of the average bulk heat transfer coefficient with the

heat conduction based one within z/D = [12.6, 14] is very positive, with the former

Figure 7.22: Comparison of the local bulk heat transfer coefficient with the heat

conduction based heat transfer coefficient defined in Eq. (7.7). The dashed lines

represent the average values within z/D = [12.6, 14], where the velocity of the liquid

within the film is small.
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exceeding the latter by only the 6.8%.

However, the average value of the heat conduction based heat transfer coefficient

is 40 % higher than the saturation based coefficient in the same axial interval. Thus,

the pure heat conduction across the film can not be assumed as the dominant mecha-

nism for heat transfer in such situation. This is not surprising because the local film

is much more thicker (D/δ ≈ 20) than the values assumed by Thome and coworkers,

therefore an axial convective transport of energy still exists.

From z/D = 14 toward the bubble nose, the film thickness increases smoothly

without waves. The liquid included between the bubble and the channel wall is

accelerated as effect of the evaporation. The enhancement on the heat transfer led

by the bubble decreases moving downstream to the channel and at z/D = 17 the

difference among the two-phase and the single phase heat transfer coefficient has

reached an horizontal asymptote. The remaining gap between single and two-phase

coefficients for z/D > 17 is ascribed to different hydrodynamic conditions for the

flows. Since the liquid is accelerated by the evaporation, the flow in the liquid region

around the nose and ahead of the bubble is less developed than a single phase flow

at the same axial location, therefore the wall heat transfer is higher.

Because of the high acceleration given by the evaporation to the liquid ahead

of the bubble nose, the local axial velocity profile depicted in Fig. 7.20(c) is rather

different with respect to a fully developed laminar profile. The figure reports as ref-

erence the Poiseuille parabolic profile of a flow with the same liquid mass flow rate

of the simulated case at z/D = 19. The velocity profile of the accelerated liquid is

flat at the channel axis and shows a higher derivative at the wall than the theoretical

profile, thus raising the pressure drop in the remaining part of the channel.

Global heat transfer coefficients are obtained by averaging the local values over

the entire heated length of the channel. The enhancement of the heat transfer relative

to the single phase flow is of 47 % when considering the bulk temperature and 12.4 %

if referring to the saturation conditions. Both the values are small with respect to

the expected performance of a two-phase flow, however the flow simulated deviates

significantly from actual experimental test conditions. In experiments the heated

length is much longer, such that thermally developed conditions are guaranteed.
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Multiple bubbles flow in sequence, thus affecting the time development of the thermal

boundary layer leading to better heat exchange performances. The heat transfer

coefficient is measured several diameters downstream to the entrance in the heated

region.

The numerical literature about CFD simulations without phase change reports

enhancements of the bulk heat transfer coefficient, for the elongated bubble regime,

from two to six times the fully developed single phase laminar case, at least 25 %

higher than the value obtained in the present study. The reason of such deviation is

again connected to the multiple bubbles simulated in the cited literature. Moreover,

the mentioned studies simulate flows without phase change such that the temperature

of the gas phase increases considerably due to the high thermal diffusivity of the gas.

As a consequence, the local bulk temperature shows high peaks in presence of the

bubble and the wall-bulk temperature difference decreases thus increasing the heat

transfer coefficient.

7.3.1 Comparison of the bubble nose position with a theoretical

model

Consolini and Thome describe in [8] a phenomenological model to predict the boiling

heat transfer in the coalescing bubble regime. Within the model the time law for

the position of the bubble nose is derived and it is reported in the Eq. (2.21). The

objective of this Subsection is to compare the position of the bubble nose in the

simulation with the mentioned theoretical relationship.

Firstly, two assumptions of the model not valid in the simulation are described.

The phases are in thermodynamic equilibrium, while in the numerical simulation

superheated is allowed. The heat flux is used only to evaporate the liquid, while in

the simulation the heat flux can warm up the liquid.

The version (2.21) of the theoretical nose position is valid if the bubble nucleates

at the time t = 0 at the entrance of the heated section located at z = 0. In the

simulation the bubble enters the heated section located at z0 = 4 mm at the time

instant t0 = 4.7 ms, thus such initial conditions have to be introduced within the Eq.

(2.21). Furthermore, the model as t → 0 gives a bubble nose initial velocity equal

to the velocity of the liquid inflow Ub,N = Ul = G/ρl. In the simulation the velocity

of the bubble, before that evaporation begins, exceeds the velocity of the liquid
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inflow, as expressed with the theoretical relationship (2.19). The adiabatic velocity

of the bubble is Ub = 1.175Ul, thus the G/ρl term within the (2.21) is multiplied by

1.175. The final version of the time law for the prediction of the bubble nose position

becomes:

zN (t) = z0 + 1.175
G

ρl

ρvhlvD

4q

[
exp

(
4q

ρvhlvD
(t− t0)

)
− 1

]
(7.8)

The Figure 7.23(a) shows the comparison of Eq. (7.8) with the simulation data.

There is a good agreement between model and simulation. The model overestimates

slightly the bubble velocity at a first stage, then in the simulation the bubble nose

accelerates more than the value predicted. The same trend is observed on the bubble

volume Vb depicted in Fig. 7.23(b), whose theoretical expression is derived from the

model:

Vb(t) = Vb,0 +
πD2

4

ρl
ρl − ρv

[
z(t)− z0 + 1.175

G

ρl
(t− t0)

]
(7.9)

The origin of the initial overestimation of nose position and bubble volume is due to

the delay in the beginning of the evaporation in the simulation. Even if the bubble

nose crosses the entrance in the heated region at t0 = 4.7 ms, the evaporation starts

at around t = 6 ms, when the interface gets in contact with the superheated liquid

(a) (b)

Figure 7.23: Comparison of (a) bubble nose position and (b) bubble volume between

numerical results and theoretical model.
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in the thermal boundary layer.

As the time elapses, the bubble growth rate in the simulation exceeds the theo-

retical prediction and the deviation increases with the time. The reason is the model

assumption of a constant wall heat flux used only to evaporate the liquid. In the

simulation, the heat power absorbed by the evaporation varies with the time. Such

heat power is obtained from the sensible heat of the superheated liquid and it can

exceed or be smaller than the wall heat flux. In order to obtain an estimation of the

time-varying heat flux qe absorbed by the bubble evaporation, the power absorbed

to generate vapor is divided by the heated surface actually traveled by the bubble

at the time instant t:

qe =
(dVb/dt)ρvhlv
πD(zN (t)− z0)

(7.10)

The Figure 7.24 shows that qe < q until t < 8 ms, which is the time instant at which

the entire bubble enters within the heated region. For greater t, the vapor generation

absorbs an increasing amount of heat flux given by the whole wall heat flux plus part

of the liquid sensible heat. This is possible since the liquid has stored energy before

Figure 7.24: Heat flux absorbed by the bubble evaporation, computed through Eq.

(7.10).
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of the bubble transit. The consequence is that as t > 8 ms the difference between the

numerical and the theoretical bubble growth rate increases, thus raising the deviation

between theoretical and numerical results as observed in Figs. 7.23(a) and (b).

7.4 Dynamics and heat transfer induced by multiple

bubbles

The previous Section treated the results of the simulation of a single evaporating

bubble. It was demonstrated that the bubble dynamics induces disturbance on the

flow field in the wake behind it, thus affecting the development of the thermal bound-

ary layer at the wall. As a consequence, a trailing bubble would experience different

flow and thermal conditions, leading to different bubble dynamics and wall heat

transfer.

Actual operating conditions in boiling heat transfer experiments involves the

presence of multiple bubbles flowing in series and each bubble influences the dy-

namics of the trailing bubble, in a way depending on the length of the liquid slugs

trapped in between.

In order to simulate an elongated bubble flow comparable with actual experi-

ments, the evaporating flow of two consecutive bubbles is simulated.

7.4.1 Simulation conditions

Two vapor bubbles are patched at the upstream of a microchannel, at the beginning

of an adiabatic region. The adiabatic region is followed by a diabatic region heated

with a constant heat flux. The length of the heated region is increased with respect

to the test case presented in Section 7.3, in order to evaluate the heat transfer

performances sufficiently downstream to the thermal entrance section. A further

adiabatic portion of the channel follows the heated part to allow both the bubbles to

get out of the heated region without being influenced by the channel outlet section.

The refrigerant R113 is disappearing from the experimental research on boiling

flows because of its high environmental impacts, thus the simulation of such fluid

has little importance for the scientific community. We decided to simulate R245fa

because the material properties in terms of saturation pressure, surface tension and

vapor density, are similar to R113 at the same saturation temperature.
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The operating conditions simulated are set accordingly to Consolini and Thome

[123] experiments on microchannel boiling heat transfer. The chosen diameter of the

channel is D = 0.5 mm, leading to a Confinement number Co ≈ 2 which is largely

within the condition Co > 1 suggested by Ong and Thome [69] for an axisymmetric

flow. The mass flux is G = 550 kg/m2s set by a velocity inlet boundary condition,

leading to a predicted film thickness well solved by the D/∆x = 300 computational

mesh and to a Reynolds number ensuring laminar flow. The saturation temperature

is Tsat = 31 oC accordingly to [123]. The saturation properties of R245fa at 31 oC

are listed in the Table 7.2.

The heat flux set in the simulation is q = 5 kW/m2, which is lower than the

values adopted in the experimental campaign of [123]. Such a low value is set in

order to limit the bubble growth in the simulation. The bubble length at the exit

of the heated region is proportional to the wall heat flux. The last adiabatic part

of the simulated channel needs to be long enough to store both the bubbles. Thus,

higher heat flux means longer channel, therefore higher computational cost of the

simulation. The value of the heat flux set in the simulation limits the length of each

bubble, predicted through Consolini and Thome model [8], to 7− 8 diameters.

The length of the adiabatic region upstream to the channel is 16D and it is

considered enough for the bubbles to reach a steady adiabatic flow. The heated

length is 22D. The length of the thermal entrance with the flow conditions simulated

is around 210D for a laminar single phase flow. However, recent publications [6, 79]

showed that the thermal entrance length for slug flows is much shorter than for a

Property Liquid Vapor

ρ [kg/m3] 1322 10.5

cp [kJ/kg·K] 1.352 0.926

λ [mW/m·K] 88.2 14.4

µ [µPa·s] 376 10.5

hlv [kJ/kg] 187.29

σ [mN/m] 13.28

Table 7.2: Properties of R245fa liquid and vapor at saturation conditions for Tsat =

31 oC. Pressure is p = 1.85 bar.
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continuous flow and several CFD studies [87, 85, 89] were conducted with around

20D heated. The length of the last adiabatic part of the channel is 34 diameters.

The boundary condition at the channel inlet section is a fixed constant velocity

of the liquid inflow, computed as Ul = G/ρl = 0.416 m/s. The liquid enters the

channel as a saturated liquid. At the channel outlet an outflow condition is set.

The bubbles are initialized as slugs of 3D of length, with the vapor at the saturation

temperature. The distance between them is 6D. The initial condition for the velocity

and temperature fields is obtained through a preliminary single phase steady state

simulation run with the same flow conditions.

7.4.2 Bubbles dynamics

Within the adiabatic portion of the channel both the bubbles reach a steady flow

condition. The velocity of the bubbles is Ub = 0.485 m/s and the thickness of the

film before the wavy region is δ/D = 0.04. The velocity is in perfect accord with

Eq. (2.19) which predicts Ub = 0.486 m/s with the actual film thickness. The film

thickness is in good accord with Han and Shikazono correlation [3] which predicts

δ/D = 0.0373 with Reynolds and Capillary numbers evaluated through the actual

bubble velocity.

The Figure 7.25 shows the bubbles evolution within the heated region, which is

included within z/D = [16, 38]. It is immediately evident that the trailing bubble

grows less than the one ahead, while transiting into the heated region.

The Figures 7.26(a) and (b) report respectively the position and the velocity of

the nose and the rear of the bubbles as a function of the time. The first bubble enters

the heated region at t = 4 ms and starts to evaporate at around t = 5 ms, when

the nose begins to accelerate. Until the trailing bubble has not begun to grow, the

dynamics of the first bubble during the evaporation proceeds as though the bubble

flows alone in the channel. The nose accelerates while the rear moves at a constant

velocity equal to the adiabatic velocity of the bubble. At t = 14 ms the trailing

bubble starts to evaporate. The acceleration of the nose is lower than that of the

leading bubble. The transit of the bubble ahead has cooled down the superheated

liquid near the wall and the thermal boundary layer has not had enough time to

rearrange to the steady situation. Therefore, the trailing bubble crosses a region

cooler than before the leading bubble passed and the growth rate is lower. The rear
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Figure 7.25: Evolution of two bubbles flowing in sequence during evaporation, from

t = 7 ms to 30 ms at time intervals of 2.3 ms.
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(a) (b)

Figure 7.26: Bubbles position (a) and velocity (b). Blue and red: nose and rear of

the bubble ahead, black and green: nose and rear of the trailing bubble.

of the leading bubble accelerates as well because of the liquid pushed by the evapo-

ration of the trailing bubble. The velocity of the rear of the bubble ahead arranges

at a value which exceeds slightly the velocity of the nose of the bubble behind, thus

increasing the length of the liquid slug trapped.

At t = 19 ms the nose of the leading bubble exits of the heated region, but it con-

tinues to accelerate until t = 22 ms because of the superheated liquid transported by

the flow within the adiabatic zone. The Figure 7.27 reports the profile of the leading

bubble at t = 19 ms. The bubble has reached the length of 9D and the film thickness

is increased to δ/D = 0.05 because of the increased bubble velocity. As the nose of

the leading bubble decelerates, while the bubble crosses the terminal section of the

heated region, the rear restarts to oscillate as before evaporation began. When the

bubble ahead leaves entirely the heated region the length is increased to 15D.

The nose of the trailing bubble reaches the end of the heated section at t = 31

ms, the profile of the bubble at this time instant is reported in Fig. 7.27. The length

of the bubble is 7D and the liquid film thickness is increased to δ/D = 0.045. When

also the trailing bubble gets out completely of the heated region the terminal length
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Figure 7.27: Profiles of the bubbles. Red: adiabatic; blue: bubble ahead at t = 19

ms, when the nose exits of the heated region; black: bubble behind at t = 31 ms,

when the nose exits of the heated region. The profiles are shifted in order to match

the nose positions.

is 9D. The length of the liquid slug trapped between the bubbles is increased from

the initial value of 6D to 7D.

In conclusion, the leading bubble has the effect to cool down the liquid when

evaporating within the heated region. As a consequence, the trailing bubble flows

across a zone which has not had the time to restore the steady temperature field and

the growth rate is less. Such effect is proved by the different length of the bubbles

at the end of the growth stage. The leading bubble is grown to 15D, the trailing one

to 9D.

At a given axial location the successive transit of multiple bubbles equally dis-

tanced would generate a time-periodic flow and temperature field. The number of

bubble-liquid slug cycles necessary to attain such steady situation is unknown be-

cause in the present case only two bubbles are simulated. In the next heat transfer

analysis it is assumed that the steady-periodic condition is achieved for the cycle

which the second bubble is part of.

7.4.3 Heat transfer performance

The heat transfer performance obtained with the two-phase flow simulated is ana-

lyzed by means of the heat transfer coefficient, computed with the saturation tem-
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perature as reference, see Eq. (7.1). The subscript sat is dropped in the following.

The heat transfer coefficient htp as a function of the time, at four axial locations,

is shown in the Fig. 7.28. The axial coordinate zh is measured with respect to the

location of the entrance in the heated region (zh = 0). Each subfigure reports a

black horizontal dash line identifying the value of the heat transfer coefficient in

the preliminary single phase simulation at the given location. Time-averaged heat

transfer coefficients are computed separately for the leading and the trailing bubble

cycles at each axial location as:

htp(z) =

∫ t(z=zR−Ls/2)

t(z=zN+Ls/2)
htp(z, t)dt (7.11)

where t(z = zN +Ls/2) is the time instant at which the axial location of the bubble

nose plus half length of the trapped liquid slug crosses the section which the heat

transfer is being averaged at. Half length of the liquid trapped is considered as well

behind the bubble rear. Thus, each bubble cycle includes the bubble plus the length

of the trapped liquid slug, half ahead of the bubble and half behind. The averaged

heat transfer coefficients are reported as horizontal dash blue lines in Fig. 7.28. Each

line extends within the time-window considered to compute the average value, the

limits of the window are identified as vertical red lines.

The first axial location which the heat transfer is reported at in Fig. 7.28 is

zh/D = 4. The heat transfer coefficient for the preliminary single phase simulation

is 2234 W/m2K, about three times the value for thermally developed laminar flow

with constant heat flux 4.36 · (λl/D) = 769 W/m2K. The two-phase heat transfer

coefficient begins to rise when about half bubble has crossed the location considered,

similarly to the case discussed in the Section 7.3. As well, a peak in the heat transfer

coefficient is reached in the wake behind each bubble rear. The peak at the rear of

the leading bubble (first cycle) is 3331 W/m2K and it is 49 % higher than the single

phase value at that axial location. The average value of the heat transfer coefficient

for the first bubble cycle is 2626 W/m2K which is 18 % more than the single phase

value. After the peak reached when the rear of the leading bubble is passing, the

heat transfer coefficient drops as the thermal boundary layer at the wall is being

restored while the liquid slug transits. The local minimum on the heat transfer

coefficient is the 85 % of the peak value. The drop in the heat transfer performance

is limited by the transit of the trailing bubble, which raises htp to values higher than
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Figure 7.28: Heat transfer coefficient at various axial locations. The axial location

is reported by referring to the entrance in the heated region. The black vertical lines

locate the transit of the bubbles nose and rear, the red lines locate the limits of the

time intervals which the coefficients are averaged within. The horizontal black dash

lines identify the value of the heat transfer coefficient in the single phase case.

those measured for the first cycle. The peak related to the second bubble cycle is

htp = 3571 W/m2K (60 %) while the average is htp = 3195 W/m2K (43 %). The
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reason of the higher values is that the trailing bubble comes across a region whose

thermal layer has not restored to the steady situation, therefore the effects of two

consecutive transits overlap partially. Note that, as a consequence of the transit

of both the bubbles, at zh/D = 4 the thermal layer takes about 30 ms to restore

completely, over twice the time taken for both the bubbles to pass.

Moving on downstream axial locations, peaks and average values of the heat

transfer coefficient reduce, as shown in Fig. 7.29(a) which plots the average values of

htp. The two-phase flow profiles for both the bubble cycles decrease similarly to the

Graetz solution for single phase flow, as detected also by Walsh et al. [6]. The Table

7.3 lists the heat transfer coefficients at the sections whose time-varying coefficients

are plotted in Fig. 7.28.

The axial location zh/D = 21 is the most downstream location analyzed and it

is next to the exit of the heated region (22 diameters long). The absolute efficiency

has decreased with respect to the locations upstream, but the enhancement with

respect to the single phase flow has grown. The average heat transfer coefficient

for the first cycle has increased up to 24 % over the single phase value, from 18 %

at zh/D = 4. For the second cycle the growth is much more sensible, from 43 %

at zh/D = 4 to 100 %. The reasons to explain such an improvement on the second

cycle, as downstream locations are considered, are various. Firstly, the time lag

between the transit of the rear of the leading bubble and the nose of the trailing

bubble reduces because of the acceleration of the evaporating bubbles. The time

left for the thermal layer to develop to the steady configuration is less, such that

zh/D hsp htp,1 max(htp,1) htp,2 max(htp,2)

4 2234 2626 (18) 3331 (49) 3195 (43) 3571 (60)

10 1571 1907 (21) 2496 (59) 2697 (72) 3090 (97)

16 1305 1604 (23) 2138 (64) 2486 (90) 3014 (131)

21 1171 1447 (24) 1950 (67) 2343 (100) 2891 (147)

Table 7.3: Heat transfer coefficients in W/m2K units at the axial locations con-

sidered in the plots of Fig. 7.28. The value between parenthesis is the relative

enhancement with respect to the single phase value reported in the second column

and it is computed as
htp−hsp
hsp

× 100.
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(a) (b)

Figure 7.29: (a) Time-averaged heat transfer coefficient along the axial coordinate,

(b) enhancement on the heat transfer coefficient with respect to the local single phase

value. Black: single phase case, blue: leading bubble cycle, red: trailing bubble cycle.

the drop in the heat transfer coefficient is almost disappeared at zh/D = 21, see

Fig. 7.28. Secondly, the liquid within the trapped slug is getting faster because it

is being pushed by the nose of the accelerating trailing bubble, thus the local Peclet

number increases. The Peclet number is related to the heat transfer performance in

a thermal entrance region, correlations for hydrodynamically developed flow takes

typically the following aspect:

Nux =
C

(x∗)α
= C

(
Pe ·D
x

)α
(7.12)

where C and α are constants relative to the particular correlation considered. The

axial location x can be meant here as the distance from the rear of the leading

bubble, where the thermal layer restarts to develop. Therefore, at the same distance

from the rear of the bubble, a higher Peclet number means a higher Nusselt number,

thus better heat transfer performance. In addition, the velocity profile within the

trapped liquid slug is far from the hydrodynamic developed condition. The profile

is more flat as shown in Fig. 7.20(c), the velocity at the wall is higher thus slowing

down the reforming of the thermal boundary layer.

The Figure 7.29(b) shows that the enhancement on the heat transfer led by the
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first bubble cycle is almost flat at around 20 % more than the single phase value.

Differently, the trailing cycle raises strongly the cooling efficiency compared to the

single phase flow as downstream sections are observed. The Figure 7.29(b) suggests

that for a distance from the thermal entrance region greater than 21D, the heat

transfer coefficient tends to be over twice the single phase flow one.

Comparison with correlations for slug flow without phase change

The average value of the heat transfer coefficient at the last zh/D = 21 heated sec-

tion is compared with correlations obtained for elongated bubbles flow without phase

change, introduced in the Section 2.2. Such correlations express the time-averaged

Nusselt number for a bubble-liquid slug cycle, by considering a steady-periodic flow.

It is assumed that the heat transfer at zh/D = 21 has already reached the periodic

condition for the trailing bubble cycle. It means that a third bubble equally dis-

tanced from the bubble ahead of it, would give the same profile htp(t) while passing

at the chosen axial location. The correlations considered were obtained by fitting the

Nusselt number data calculated through reference to the bulk temperature, therefore

they might overestimate a coefficient based on the saturation temperature. On the

other hand, such correlations refer to thermally developed two-phase flow, while the

axial location considered is still within the thermal entrance region as the profile of

htp at zh/D = 21 is not yet asymptotic. Therefore, the simulation value is slightly

above the fully developed value that would hold more downstream of the thermal

entrance section. For this reason the two-phase Nusselt number relative to the single

phase flow value at zh/D = 21 is observed in addition to the absolute value.

The average two-phase Nusselt number for the trailing bubble cycle in the sim-

ulation and the relative enhancement on the heat transfer performance are:

Nutp =
htpD

λl
= 13.29,

Nutp
Nusp

= 2 (7.13)

where Nusp = 6.64.

Lakehal et al. [85] developed a correlation for elongated bubbles flow based on

the results of numerical simulations. The correlation is reported in Eq. (2.25),

but the asymptotic value for constant heat flux 4.36 replaces the value for constant

temperature 3.67. To compute the bubble Reynolds number, we used both the

adiabatic bubble velocity Ub = 0.485 m/s and the mean velocity Ub = 0.58 m/s
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while crossing the location zh/D = 21.

Walsh et al. [6] proposed a correlation for slug flow based on experimental results.

The correlation that they proposed is reported in Eq. (2.23). The term 1− ε, used

to reduce the data, accounts for the percentage contact area of the liquid slug, since

the gas slug does not contribute to the wall cooling. However in the present case, in

which phase change occurs, the region occupied by the bubble gives a great contribute

to the heat transfer due to the presence of the liquid film, thus the term 1 − ε is

dropped.

Gupta et al. [87] only modified a multiplying coefficient within Walsh et al.

correlation according to the results of numerical simulations. See Eq. (2.26) for

reference.

The values predicted by the cited correlations are reported in the Table 7.4. The

correlations of Walsh et al. and Gupta et al. give results in accord with Lakehal et

al. prediction, thus the drop of the term 1− ε is a valid approximation. The Nusselt

number obtained through the simulation is in very good accord with the correlations.

It is placed within the range [12.2, 15.67] given by the experimental models and the

relative error is within 15 % for all the predictions considered. As well, the two-phase

to single phase flow Nusselt number ratio is well within the range [1.8, 2.6] obtained

through the correlations. The maximum relative error is 23 % for the comparison

with Lakehal et al. prediction with Ub = 0.58 m/s, while it is within 15 % in the

other cases.

Nutp
Nutp

Nusp

Simulation 13.29 2

Lakehal et al. [85] 14.16− 15.67 2.25− 2.6

Walsh et al. [6] 14.57 2.34

Gupta et al. [87] 12.2 1.8

Table 7.4: Comparison of the heat transfer performance obtained with the simulation

with the values predicted by correlations. The single phase Nusselt number used as

reference is 6.64 for the simulation and 4.36 for all the correlations.
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Comparison with a heat transfer model for evaporation

The time evolution of the heat transfer coefficient htp(t) at the axial location zh/D =

21 is compared with a heat transfer model for evaporation based on the actual flow

configuration. The principle is similar to the three zones model of Thome et al. [5],

which is not applicable entirely to the simulated conditions.

The three zones model computes time-averaged heat transfer coefficients for liq-

uid slug, film and dryout zones by integration of h(t) over the time intervals estimated

for each zone. The length of each zone is derived through models and correlations

involving the operating conditions of the flow, correlations validated by a large ex-

perimental database. Introducing the general coefficients for the model reported in

[78], the fluid properties, the wall heat flux and the saturation pressure lead to a

bubble-liquid slug pair transit period of 6.5 s, generated by the bubble formation

process. The mass flow rate imposed at the channel inlet section leads to a vapor

quality of the order of 10−5 to obtain bubbles of length comparable with the simu-

lation. The model with such parameters predicts the formation of bubbles 8D long,

separated by liquid slugs more than 5000D long, dryout does not occur. Differently,

in the simulation the bubble formation process is not accounted for and the length of

the trapped liquid slug is set arbitrarily to 6D at the beginning of the simulation. As

a consequence, the average heat transfer coefficient given by the three zones model

is insensitive of the liquid film zone around the bubble, whose length is 1/1000 of the

liquid slug one, and it is influenced only by single phase heat convection within the

slug. In the simulation liquid and bubble zones have similar length and contribute

equally to the average heat transfer.

In addition, the modified version of the Moriyama and Inoue [124] correlation

for the film thickness used in the model predicts a value of δ/D ≈ 1/250, ten times

higher than the simulation result. As a consequence, the assumption of heat con-

duction gives an average heat transfer coefficient of 40000 W/m2K within the film

zone, more than one order of magnitude higher than the simulation one. However,

the correlation for the film thickness involves variables estimated through considera-

tions on the flow induced by the evaporation process occurring upstream of the axial

location considered. Thus, the reason of the high deviation is again the different flow

configuration.
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According to the configuration simulated, the following sequence of patterns

crosses the axial location under analysis: liquid slug ahead of the leading bubble,

leading bubble, trapped liquid slug, trailing bubble, liquid slug behind the trailing

bubble. During the transit of each pattern, the heat transfer coefficient as a function

of the time can be estimated through the same models employed in the three zones

model:

• liquid slug ahead of the leading bubble: by neglecting the acceleration of the

liquid due to the evaporation, the heat transfer is constant and depends only

on the axial location.

⇒ h(zh, t) = h(zh) = hsp(zh) (7.14)

• leading and trailing bubbles: it is assumed heat conduction across the film,

whose geometry is modeled as an annulus.

⇒ h(zh, t) =
λl

R ln
(

R
R−δ(zh,t)

) (7.15)

where the actual film thickness measured in the simulation is introduced as

δ(zh, t).

• trapped liquid slug and liquid slug behind the trailing bubble: the flow is

assumed to be hydrodynamically and thermally developing, the London and

Shah correlation given by the VDI [125] for laminar developing flow is used.

⇒ h(zh, t) =

(
λl
D

)
0.455Pr1/3

(
ReD

zR(zh, t)− zh

)1/2

(7.16)

where the Reynolds number is computed with the inflow liquid velocity as a

reference. The thermal boundary layer is assumed to reform from the rear of

the bubble, whose location zR(zh, t) can be intended as thermal entrance, thus

the distance of zh from the the thermal entrance zR(zh, t) − zh is introduced

in the correlation.

The liquid film thickness decreases from the value R at the nose of the bubble to

the minimum value next to the rear. Thus, the assumption of heat conduction gives

increasing values of the heat transfer coefficient from the value zero at the nose of

the bubble. To allow a smooth transition from the liquid slug to the bubble zone,
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the heat transfer coefficient is computed through Eq. (7.16) while the Eq. (7.15)

gives a smaller value, even if the bubble is passing.

The Figure 7.30 plots the heat transfer coefficient for the simulation compared

with the result of the described model. The heat conduction assumption overesti-

mates the heat transfer performance on both the film regions. In particular at the

rear of the leading bubble the estimation is almost twice the value measured in the

simulation. This is not surprising because in the Section 7.3 it was already shown

that the saturation based heat transfer coefficient was quite smaller than the heat

conduction based one. Therefore, the heat conduction assumption is not verified

even in this case, but consider that the liquid film is rather thick.

The heat transfer coefficient computed by the correlation for developing flow

reaches high peaks next to the rear of each bubble, where zR is very close to zh. At

Figure 7.30: Comparison of the simulation heat transfer coefficient (blue) at zh/D =

21 with the model (red). The blue and red dash horizontal lines identify the average

values for each cycle, the black dash horizontal line the single phase coefficient, the

black solid vertical lines the time instants of the transit of each nose and rear of the

bubbles.



the rear of the bubble the model overestimates the result of the simulation, after-

words it drops sharply as the liquid slug transits. For the reason previously discussed,

in the simulation the heat transfer in the wake of the bubble remains high. The dy-

namics of the flow behind the bubble is very different from a developing flow, thus it

is not surprising that the correlation is not able to predict the actual heat transfer

performance. Furthermore the initial condition, from which the thermal layer devel-

ops, depends on the thermal and fluiddynamics occurred during the transit of the

bubble.

The good agreement between the average coefficients for the trailing bubble cycle

(relative deviation of 20 %) is due mainly to the balance of local overestimation in

the liquid film and local underestimation in the bubble wake.

In general, the model does not predict the local heat transfer coefficient in a

satisfactory way. The correlations adopted are not able to capture the peculiar

dynamics of the flow in the film and in the wake region, which determines the local

trend of the heat transfer coefficient.

However, the model has to be meant as a starting point. A thorough study of the

flow field in the film and the liquid slug regions can lead to more detailed analytical

or phenomenological descriptions of the flow. The route toward a reliable prediction

of the heat transfer passes across the accurate modeling of the flow in the mentioned

regions.





Conclusions

The project of this three years doctoral course was to improve a CFD solver in order

to model the evaporation of bubbles in the slug flow regime in microchannels. The

objective was to analyze the thermal and fluid dynamics of the flow, thus providing

a better understanding of the mechanisms leading to an enhanced wall heat transfer

with respect to single phase flow.

The numerical framework employed is based on the commercial CFD software

Ansys Fluent, improved with self-implemented models to accurately account for the

interfacial effects that dominate the flow. An Height Function method allows the

accurate computation of the local interface curvature, leading to a correct evaluation

of the surface tension force. An evaporation model computes the rates of mass and

energy exchange at the phases interface on the basis of the local interface superheat-

ing, accounting for the kinetic mobility of liquid and vapor molecules that generates

an interfacial resistance to mass transfer.

Typical benchmarks for the validation of multiphase aimed numerical schemes

assessed the reliability of the numerical framework, providing the following conclu-

sions.

• The Height Function reconstructs a circular interface with errors in the cur-

vature computation that scale with the second order with respect to the mesh

element size when D/∆x < 80. The Fluent default Youngs algorithm gives

errors that worsen as the mesh is refined. When D/∆x > 80 the interface

reconstruction worsen for the HF as well, but the accuracy remains more than

three orders of magnitude better than Youngs one.

• Errors in the curvature computation generate unphysical vortices across the

interface thus preventing the numerical results on the flow field from being

205
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reliable nearby the interface. If the HF method is employed the magnitude of

such spurious velocities scales with a convergence order in the range [1, 2] as

the mesh is refined, on the contrary Youngs generated vortices get faster.

• The Green-Gauss node based reconstruction of the face centered gradients

allows better balance of pressure gradient and surface tension terms at the

interface, minimizing pressure overshoots and undershoots in proximity of the

interface and the magnitude of the unphysical flows.

• The simulation of the heat-transfer-controlled stage of a vapor bubble growing

in superheated liquid showed that excellent agreement between numerical and

analytical bubble growth rates is obtained when the accommodation coefficient

is set as unity.

• The magnitude of the spurious vortices arising when employing the Youngs

method to compute the interface curvature leads to a wrong faster growth rate

due to the unphysical convective flows and prevents the bubble from main-

taining the spherical shape. The growth rate obtained with the HF method

accords very well with the analytical solution.

The validated numerical framework was employed to perform preliminary simulations

of adiabatic flows. An axisymmetrical formulation of the flow equations is adopted

in order to fulfill grid resolution requirements but keeping low computational time.

The comparison of the simulations results with experimental findings and published

correlations was very satisfactory and the reliability of the improved CFD tool to

model actual flow configurations was assessed.

In particular, the numerical code is able to capture the concurrent effects of

capillary, viscous and inertial forces on the liquid film thickness and pressure drop

related to elongated bubbles drifted by a liquid flow rate within a horizontal circular

microchannel. Such flow configuration corresponds to the adiabatic version of the

flow which this thesis deals with, therefore the good results obtained provide an

optimal starting point to ensure a reliable modeling of bubble and flow dynamics as

energy equation and evaporation model are turned on.

The evaporating flow was obtained by simulating bubbles flowing within a circular

horizontal channel, heated by a constant heat flux. The flow conditions were chosen

in order to guarantee a laminar flow (Rel < 2000) and negligible gravitational effects
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(Co> 1 [69]), the latter allowing an axisymmetrical formulation of the flow problem.

The liquid flowing into the channel is at saturated conditions, as well as liquid and

vapor phases at the beginning of the simulation, except the thermal boundary layer.

A superheated developing thermal boundary layer is placed at the heated wall, as

result of a preliminary steady state single phase simulation.

The analysis of the thermal and hydrodynamics features of the flow and the wall

heat transfer led to the conclusions that follow.

• Velocity boundary condition at the channel inlet forces the bubble to move

downstream but the thinning of the liquid film as effect of the evaporation is not

captured. Differently, when a fixed pressure difference is imposed among the

terminal sections of the channel, the bubble slows down as evaporation starts,

thus decreasing the film thickness. The bubble may decelerate generating a

backflow, even though the nose continues to travel downstream to the channel.

• The heat transfer performance is improved by the two-phase flow with respect

to the single phase case throughout the heated length of the channel. The

maximum enhancement is measured in the wake of the bubble, with the two-

phase flow heat transfer coefficient exceeding the single phase one by more

than 20 % along 3 diameters behind the bubble. There are two main reasons

for such an improvement. Firstly, the bubble transit has squeezed the thermal

boundary layer against the wall and the local film evaporation has cooled down

the superheated liquid. The thermal layer then develops to reach the steady

situation that was holding before the bubble passage, in the meantime the

transient heat convection is more efficient. Secondly, the bubble modifies the

velocity profile of the liquid behind it from parabolic to flat. The liquid velocity

in the proximity of the channel wall is temporarily increased, therefore the

development of the thermal layer to the steady situation is delayed.

• The measured liquid film thickness gives D/δ ≈ 20. For such thickness the

film can not be assumed stagnant and the assumption of pure heat conduction

across the film leads to overestimation of the heat transfer coefficient.

• When multiple bubbles evaporate in sequence, the bubble ahead cools down

the thermal layer such that the bubble behind grows less. The time-averaged

heat transfer coefficient at given axial locations is higher for the trailing bubble
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cycle, due to the effect of the transit of two consecutive bubbles on the local

thermal layer development. After a heated length of 21D, the leading bubble

cycle measures an average heat transfer coefficient of 20 % higher than the

single phase one, while the trailing cycle doubles the single phase value. The

transient heat convection mechanism in the wake of the bubble has a strong

influence on the average heat transfer performance of the bubble cycle. Hence,

models aimed to predict the heat transfer performance of a slug flow should

solve properly the transient heat convection problem holding in such region.

• The average Nusselt number measured for the trailing bubble cycle accords well

with the prediction given by three correlations proposed for slug flow without

phase change, the errors are included within 15 %. The chosen length of the

trapped liquid slug does not reflect actual flow boiling conditions, thus the

comparison of the heat transfer performance with flow boiling experimental

results or prediction models is not feasible.

Further improvements

The set-up of the simulations of evaporating bubbles could be modified to model

actual experimental conditions on flow boiling and the numerical framework could

be improved to decrease the computational time. By the following modifications, the

heat transfer coefficients measured far downstream the entrance in the heated region

are expected to reproduce experimental results closely, thus providing an efficient

prediction tool.

• Instead of patching vapor bubbles at the beginning of the simulation, both

vapor and liquid phases can be introduced within the channel as coflow streams

at the inlet section. In this way, bubbles and liquid slugs length reflects the flow

conditions. The existence of univocal vapor and liquid flow rates make possible

the definition of a void fraction and a vapor quality, which are parameters

fundamental to characterize a two-phase flow.

• The heated length can be increased, in order to obtain thermally developed

flow conditions as in experiments.



• The computational grid should be refined at the wall, where the most important

phenomena occur, while coarsened at the center of the channel. Such arrange-

ment could reduce considerably the computational cost of the simulations, thus

allowing the modeling of flows with much thinner liquid films. Nevertheless the

Height Function method should be modified to work with non-uniform grids

or replaced by more flexible interface reconstruction algorithms.





Appendix A

Numerically induced capillary

waves in the simulation of

multiphase flows

Francois et al. [48] showed that employing a balanced-force algorithm for the

pressure-velocity coupling and providing the exact curvature, the parasitic currents

across a static droplet in equilibrium without gravity are of the round-off error or-

der. Thus, the non-zero velocity field appearing when computing the local curvature

through an interface reconstruction algorithm (an Height Function algorithm was

employed), was interpreted by these authors as the consequence of an insufficiently

accurate curvature estimation. Recently, Popinet [49] showed that running longer

in time the same static droplet simulation and reconstructing the interface with an

Height Function algorithm, it is possible to recover the exact balance between pres-

sure and surface force terms. At the end of a transient stage, the velocity fields

magnitude decreases to the round-off error. This is in contrast with the concept of

“parasitic” entity, which should hold independently of time. Moreover, Popinet ob-

served that the time period of the velocity field oscillations detected also by Francois

et al. was compatible with the evolution of a physical capillary wave, induced by the

numerical errors in the droplet profile initialization. Thus, he suggested a physical

consistence for those velocity fields.

We have performed several numerical simulations of a two-dimensional inviscid

static droplet in equilibrium without gravity, for a wide range of numerical and
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physical parameters. Our aim is to confirm Popinet interpretation proving that the

space and time evolution of the droplet interface agrees with the results of a stability

analysis of the droplet, subject to initial small amplitude perturbations.

A.1 Stability analysis of a static droplet

The stability analysis of a static droplet in equilibrium without gravity is performed,

for small amplitude initial perturbations. Viscous effects are not taken into account.

The droplet is modeled in two dimensions, thus it can be considered as a cylinder

and perturbations are invariant along the z axis. Using a polar coordinates reference

frame (r, θ) centered at the droplet center, continuity and momentum equations have

the following form:

1

r

[
∂(rur)

∂r

]
+

1

r

∂uθ
∂θ

= 0 (A.1)
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= −1

r
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where ur(r, θ, t) and uθ(r, θ, t) are the radial and the angular velocity components and

p(r, θ, t) is the pressure. Equations from (A.1) to (A.3) can be rewritten substituting

each variable with the sum of a steady plus a perturbed quantity, as example ur =

ur + u′r. Neglecting the products of perturbed quantities and reminding that the

steady velocities are zero and the steady pressure is constant inside the droplet, the

equations simplify in the form:

1

r

[
∂(ru′r)

∂r

]
+

1

r

∂u′θ
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= 0 (A.4)
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Applying the operators 1
r
∂[r( )]
∂r and 1

r
∂
∂θ to the Eqs. (A.5) and (A.6) and summing

the results, the following Laplace equation yields for the pressure:
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1

r2
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Initial interface perturbation is supposed to be in the form:

R(θ, t = 0) = R0 + δ0e
imθ (A.8)

where R0 and δ0 are the initial droplet radius and the perturbation amplitude, m

is the mode of oscillation. By adding a δ0,je
imjθ term to Eq. (A.8) for each j − th

additional mode, the presence of more than one mode of oscillation is accounted

for. Pressure and velocities evolution can be expressed as products of single variable

functions:

p′(r, θ, t) = p̂(r)A(t)eimθ (A.9)

u′r(r, θ, t) = ûr(r)A(t)eimθ (A.10)

u′θ(r, θ, t) = ûθ(r)A(t)eimθ (A.11)

Substituting the Eq. (A.9) in (A.7), the following ordinary differential equation

yields for the pressure:

r2d
2p̂

dr2
+ r

dp̂

dr
−m2p̂ = 0 (A.12)

The solution of Eq. (A.12) can be expressed as a linear combination of two solutions:

p̂(r) = c1r
m + c2r

−m (A.13)

but the second term is singular at r = 0, then c2 = 0. Substituting Eqs. (A.9),

(A.10) and (A.13) in (A.5), the following relation can be found:

dA/dt

A
= −mc1r

m−1

ρlûr
= β (A.14)

Since the left and the center sides of the equation are independent one of the other,

in order for the equation to be true they both have to be equal to a constant that

will be called β. Solving left hand with right hand side equation, the function of

time A(t) is found:

A(t) = a0e
βt (A.15)

It is evident that β is related to the stability of the time perturbation. The interface

evolution with time is postulated to be in the form:

R(θ, t) = R0 + δ0e
imθB(t) (A.16)
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where B(t = 0) = 1. The expression for B(t) can be found imposing that the

time derivative of the interface has to equalize the radial velocity at the interface:

dR/dt = u′r(r = R0, θ, t). It follows:

B(t) =
ûr(R0)a0

δ0β
eβt (A.17)

and the constant a0 is obtained imposing initial condition on B(t), then a0 =

βδ0/ûr(R0). Interface evolution with time takes the following form:

R(θ, t) = R0 + δ0e
imθeβt (A.18)

The time-constant β is a complex number. Its imaginary part identifies non-damped

oscillations, a positive real part leads to growing oscillations and a negative one to

dumped oscillations. To find the value of the constant β, the pressure jump at the

interface is imposed through the Laplace law:

(p− pe)r=R0 = σκ(θ, t) (A.19)

where pe is the pressure outside the droplet. κ(θ, t) is the local interface curvature,

which in polar coordinates is evaluated as follows:

κ =
R2 + 2R2

θ −RRθθ
(R2 +R2

θ)
3/2

=
1− δ/R0

R0
+
m2δ

R2
0

(A.20)

with δ(θ, t) being the local perturbation amplitude δ = δ0e
imθeβt. The subscript θ

indicates the order of derivation with respect to the angular coordinate. Using the

fact that (p̄− p̄e)r=R0 = σ/R0, Eq. (A.19) leads to the following expression:

β2 = − σ

ρlR
3
0

m(m2 − 1) (A.21)

For m > 1, Eq. (A.21) has always two pure imaginary solutions, then the perturba-

tions do not grow with time, but they have an oscillatory behavior. Wave pulsation

is ω =Im(β), and it is related to the time period of the perturbation as ω = 2π/T .

Thus, the perturbation time period can be expressed as:

T =

√
4π2ρlR

3
0

σm(m2 − 1)
(A.22)

This expression underlines that a bigger and more dense droplet evolves more slowly

than a smaller and lighter one. The surface tension can be meant as the elastic

constant of the droplet surface, thus a higher surface tension leads to oscillations

with higher frequency.
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A.2 Numerical origin of the capillary wave in the static

droplet simulations

The capillary wave evolution in the equilibrium static droplet simulations takes its

origin from the droplet initialization. A circular droplet of radius Rex is initialized

by the volume fraction mapping over a discrete uniform meshed domain. The vol-

ume fraction values are 1 for inside droplet cells and 0 outside. For cells cut by the

interface, the volume fraction is computed as the area included within the discrete

interface and the cell sides. Thus, the droplet has initially an exact shape.

However, the Height Function computed curvature is not uniform along the

droplet interface. Due to the numerical errors, the HF computed curvature is more

accurate where the interface is aligned with the grid (θ = (kπ)/2, k ∈ Z) and less

accurate where worst aligned (θ = (1+2k)π/4). The Fig. A.1 shows the initial local

radius of the droplet R(θ, t = 0), as a black dash-dot line with asterisks. The aster-

isks indicates the droplet local radius evaluated as the inverse of the HF computed

curvature, at the angular coordinates θ of the discrete locations of the interface cells

centroids. The profile is clearly periodic with period Θ = π/2. The Figure A.1

reports also the theoretical initial droplet profile, as a black solid line, given by the

Figure A.1: Initial non-dimensional droplet radius distribution. The asterisks rep-

resent the numerical profile, lines are the analytical profiles given by Eq. (A.8):

the black solid line is m = 4 wave and the red one is the sum of a two modes of

oscillations wave with m = 4, 8.
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real part of Eq. (A.8), with R0 and δ0 extrapolated from numerical data. R0 and δ0

depend only on the mesh element size, the droplet size and its position with respect

to the background grid. Mode of oscillation is m = 2π/Θ = 4. The red solid line in

the figure is the initial theoretical profile given by a wave with two modes of oscilla-

tion, its meaning will be introduced in Section A.3.2.

Since Eq. (A.8) represents the initial interface perturbation, it is clear that the

initial HF non-uniform computation of the droplet curvature is the spark for the

capillary phenomenon in the simulations. As the simulation starts, surface ten-

sion algorithm gets a perturbed interface and acts to uniform the droplet numerical

curvature. As a consequence, the droplet evolves oscillating and recovering exact

numerical balance.

In order to prove that the numerical droplet evolves as a capillary wave, we have

to show that it obeys to the relations developed in Section A.1. The numerical in-

terface position is expected to follow the evolution given by Eq. (A.18) and the time

period of the oscillations has to agree with Eq. (A.22).

A.3 Numerical simulations of the static droplet

With the aim of comparing the numerical with the theoretical results based on

the stability analysis, 19 two-dimensional inviscid static droplet simulations were

performed. The reference case was a droplet of radius Rex placed inside a L = 4Rex

side square domain. This droplet was centered at (xC = L/2 + ∆x/2, yC = L/2 +

∆x/2), with ∆x being the cell size. The domain was meshed with a uniform 80× 80

grid. The surface tension and both phases’ densities were set as unity. Viscous

and gravity effects were neglected. The free-slip boundary condition was applied

at all boundaries. The simulation time step ∆t for the reference case had a value

of 0.1∆tCFL, with ∆tCFL being the Courant-Friedrichs-Lewy condition. Starting

from this reference case, 18 simulations were performed changing one at a time the

parameters listed in Table A.1. The term ρe stands for the density of the external

fluid.



CAPILLARY WAVES IN THE SIMULATION OF MULTIPHASE FLOWS 217

Parameter Range

Rex L/16 − L/4

h Rex/20 − Rex/5

σ 10−4 − 104

ρl = ρe 10−3 − 103

ρl/ρe 10−3 − 103

(xC , yC) (L/2 + ∆x/2, L/2 + ∆x/2) − (L/2, L/2)

∆t/∆tCFL 10−1 − 10−2

Table A.1: Summary of the parameters varied in the numerical simulations.

A.3.1 Oscillation time period

In order to identify the numerical oscillation time period Tnum, we considered the

following numerical non-dimensional velocity norm:

L2(|u∗|) =
1

U

√√√√ n∑
i=1

|ui|2
n

(A.23)

with n being the number of interface cells and ui being the i − th cell-centered

velocity. Thus, this velocity norm can be meant as the average velocity of the

interface. U = [σ/(ρl + ρe)Rex]1/2 is the velocity scale chosen as reference. Figure

A.2 reports the velocity norm for the reference case, with respect to dimensionless

time. Tσ = [4(ρl + ρe)R
3
ex/σ]1/2 is the time scale associated to U . The velocity

norm defined oscillates with time with the same period T of the capillary wave. The

numerical time period of the oscillation was identified as the time-interval between

the beginning of the simulation and the second local minimum of the velocity norm.

It can be seen that Tnum ≈ 0.4Tσ as reported by Popinet [49].

Theoretical time period T of the oscillations was computed by Eq. (A.22),

setting m = 4 and replacing ρl with ρl + ρe to include the presence of an external

fluid, as suggested by Fyfe et al. [126]. The numerical and analytical time periods

of the oscillations are reported in Table A.2 for all the test cases. The agreement

is good for the cases 1-9, with a constant error around 5%. For the cases 10-13,

characterized by a density ratio not unitary, the velocity error norm evolution was

not as smooth as the one reported in Fig. A.2, however it was still possible to identify
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Figure A.2: Numerical dimensionless velocity norm defined in Eq. (A.23) with

respect to the non-dimensional time, for the reference case. Velocity and time are

made non-dimensional using respectively U and Tσ as reference scales.

a time period. Results are satisfactory with except for the case 13, which shows an

error about 10% due to numerical errors generated by the high density ratio. Cases

14-17 share the feature to have a Rex/∆x ratio lower than the reference case, leading

to less accuracy in the computation of the interface effects. Shifting the droplet at

the center of the domain (case 18) has the effects of placing the interface tangent to

the grid where they are aligned, as a consequence the error becomes half than the

original. The case 19 shows that a finer time step does not change the accuracy of

the numerical computation.

A.3.2 Droplet profile evolution

The numerical droplet profile evolution with time R(θ, t) is compared to the theoret-

ical profile. Figure A.3 reports the numerical and two analytical profiles, at different

time instants. The analytical profile plotted with the black solid line refers to the

real part of Eq. (A.18) with m = 4 and R0, δ0 set in order to fit the numerical profile

at the instant t = 0. The analytical profile matches well the numerical data at the

time instants t = T/2 and t = T . However, it fails to predict numerical waves at

t = T/4 and t = 3/4T , because at these time instants the time component of Eq.

(A.18) is zero. But the numerical wave is not null at t = T/4 and t = 3/4T , there-



CAPILLARY WAVES IN THE SIMULATION OF MULTIPHASE FLOWS 219

Case Modified parameter T [s] Tnum [s] (err.)

1 - 4.06 · 10−4 4.26 · 10−4 (5%)

2 σ = 102 4.06 · 10−5 4.26 · 10−5 (5%)

3 σ = 104 4.06 · 10−6 4.26 · 10−6 (5%)

4 σ = 10−2 4.06 · 10−3 4.26 · 10−3 (5%)

5 σ = 10−4 4.06 · 10−2 4.26 · 10−2 (5%)

6 ρl = ρe = 102 4.06 · 10−3 4.26 · 10−3 (5%)

7 ρl = ρe = 103 1.284 · 10−2 1.347 · 10−2 (5%)

8 ρl = ρe = 10−2 4.06 · 10−5 4.26 · 10−5 (5%)

9 ρl = ρe = 10−3 1.284 · 10−5 1.355 · 10−5 (5.5%)

10 ρl/ρe = 102 2.882 · 10−4 2.98 · 10−4 (3.4%)

11 ρl/ρe = 103 2.869 · 10−4 2.955 · 10−4 (3%)

12 ρl/ρe = 10−2 2.888 · 10−3 2.706 · 10−3 (6.3%)

13 ρl/ρe = 10−3 9.074 · 10−3 8.08 · 10−3 (10.1%)

14 Rex = L/8 1.434 · 10−4 1.625 · 10−4 (13.3%)

15 Rex = L/16 5.07 · 10−5 6.4 · 10−5 (26.2%)

16 h = Rex/10 4.06 · 10−4 4.605 · 10−4 (13.4%)

17 h = Rex/5 4.06 · 10−4 5.12 · 10−4 (26.1%)

18 (xC , yC) = (L/2, L/2) 4.06 · 10−4 4.16 · 10−4 (2.5%)

19 ∆t/∆tCFL = 10−2 4.06 · 10−4 4.26 · 10−4 (5%)

Table A.2: Comparison of analytical and numerical periods of the oscillations. The

error between the brackets is computed as |T − Tnum|/T .

fore the capillary wave has at least a second mode of oscillation. This second mode

has a spatial frequency double with respect to the main mode, thus a wave number

of m = 8. The amplitude is several times less and it is shifted by π/8 with respect

to the main mode. This higher frequency mode of oscillation is able to capture the

flattening of the t = 0 droplet numerical profile where the interface is best aligned

with the background grid and the sharpening when worst aligned, as can be seen

coming back to Fig. A.1. Adding this second mode of oscillation to Eq. (A.18) and

adjusting R0, the resulting theoretical profile, which is shown as a red solid line in

Fig. A.3, matches better the numerical interface profile at t = T/4 and t = 3/4T .



Figure A.3: Non-dimensional droplet radius evolution at t = T/4 (a), t = T/2 (b),

t = 3/4T (c) and t = T (d), for case 1. The dash-dot line with the asterisks is the

numerical profile, the black solid line is the analytical profile given by Eq. (A.18)

with m = 4, the red line is the theoretical profile with both m = 4, 8 modes of

oscillation.

A.3.3 Velocity fields

We observed that the flow field across the droplet shows the oscillatory behavior of

the capillary wave. Counter-current velocity vortices appear at the interface and they

decay rapidly far from it, see Fig. 5.4. We compared the numerical velocity norm

defined in Eq. (A.23) with the time-derivative of the theoretical interface profile

given by Eq. (A.18). Both of the velocities showed the same periodical behavior,

but the theoretical one overpredicted the numerical norm. The choice of a more

representative index for the numerical velocity is still an open issue.
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