Assimilation of Meteosat Second Generation (MSG) satellite data in a regional numerical weather prediction model using a one-dimensional variational approach

Elementi, Marco (2007) Assimilation of Meteosat Second Generation (MSG) satellite data in a regional numerical weather prediction model using a one-dimensional variational approach, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Modellistica fisica per la protezione dell'ambiente, 19 Ciclo. DOI 10.6092/unibo/amsdottorato/443.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (17MB) | Anteprima

Abstract

The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Elementi, Marco
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
19
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
1D-VAR Data assimilation Meteosat second generation
URN:NBN
DOI
10.6092/unibo/amsdottorato/443
Data di discussione
9 Luglio 2007
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^