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PART 1: INTRODUCTION 

Chapter 1. Intestinal microbiota in early infancy: composition 

and development 
 

 1.1 Microbiota composition in early infancy 

The  intestinal microbiota of humans is a specific ecosystem made of a complex array of 

microorganisms (~ 10
14

 – 10
15

 CFU/g of lumen content) which forms an individual 

microbiota typical for each being . In particular, the human intestinal microbiota 

consists of more than 400 different species.  

Birth brings about an immediate end to the sterility of the fetus enviroment: microbial 

colonization begins after birth, within a few hours bacteria start to appear in the feces. 

Studies of gnotobiotic mice have been particularly enlightening, illustrating the essential 

role of the gastrointestinal microbiota in normal gut development (Ley et al., 

2006).Thaks to these studies, it is argued that the microbial diversity of the human gut is 

the result of coevolution between microbial communities and their hosts and that the 

peculiar structure of microbial diversity in the human gut resulted from natural selection 

operating at two different levels:  the host level selection on the community which 

favours stable societies with a high degree of functional redundancy and a selection 

pressure driving microbial cells to become functionally specialized. 

The first microbial population the newborn comes into contact with are the maternal 

intestinal and vaginal microbiota; successively, the newborn will be exposed to the 

microbes from the environment. Still, the microbial colonization of the infant 

gastrointestinal tract (GIT) is a remarkable episode in the human lifecycle. 

A low amounts of bacteria is encountered a few hours after birth; the main bacteria 

genera  isolated at these time are Staphylococcus, Streptococcus, Propionibacterium, 

Corynebacterium. Following a rupture of the fecal membranes, bacteria of maternal 

origin can be isolated.  

The first bacteria encountered in the majority of healthy infants are facultative 

anaerobes, because the intestinal environmental of neonates shows a positive 

oxidation/reduction potential at birth. These bacteria remain predominant during the 

first few days of life, among them, Staphylococcus, Enterobacteriaceae and 

Streptococcus are the genera most commonly isolated from the newborn faeces at birth. 
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Gradually the consumption of oxygen by these bacteria changes the intestinal 

environment into a more-reduced one, permitting the subsequent growth of strict 

anaerobes (Bezirtzoglou, 1997). Facultative anaerobic bacteria are followed by 

Bifidobacterium spp., Bacteroides spp. and Clostridium spp. which are present within 2 

days with an increased incidence in newborns delivered by a Caesarean section. In fact, 

in comparison  with vaginal delivery, cesarean section resulted in lower colonization 

rates and counts of bifidobacteria and Bacteroides fragilis group species, whereas 

counts of Clostridium difficile and Escherichia coli are higher. The presence of C. 

difficile is impoetant for the installation of other anaerobic putrefactive microorganisms 

such as other bacteria belonging to the Clostridium genus. 

As already mentioned before, the microbial population of the newborn changes  in 

relation to many factors like diet (breast versus formula feeding), mode of delivery 

(natural delivery versus caesarean delivery), maternal diet, antibiotic use during the first 

few months of life and early enviromental surroundings (Table 1).  

In recent year a first large epidemiologic study (KOALA study) on determinants of gut 

microbial composition in early infancy was carried out in the Netherlands (Penders et 

al., 2006). Within the KOALA project fecal samples of 1000 infants, 1 month of age, 

were analyzed in order to study the potential determinants in a multivariate manner and 

to distinguish their independent effects. Participants at 34 weeks of gestation with 

diverse lifestyles, i.e. pregnant women with a conventional lifestyle and pregnant 

women with an alternative lifestyle women that consume only organic food, follow 

Steiner principles and alternative medicines, were recruited. 

In agreement with previous researches, the  KOALA study confirm that term infants 

who were born vaginally at home and were exclusively breastfed seemed to have the 

most “beneficial” gut microbiota, with the highest numbers of bifidobacteria and lowest 

numbers of C. difficile and E. coli. Conversely, lifestyle appears not to influence gut 

microbial composition. 
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Table 1 Principal factors influencing intestinal microbiota development in newborns 

Factors  

Place and mode of delivery 

Maternal microbiota of intestine, vagina and epidermis 

Type of infant feeding 

Antibiotic/antimycotic use  

Gestational age at birth 

Hospitalization after birth 

 

1.2 Influence of the mode of delivery on the infant microbiota 

composition 

The environment is extremely important for intestinal colonization of infants born by 

cesarean section. Cesarean section new borns do not come in contact with the maternal 

vaginal and faecal microrganisms and may be separated from the mother for a long 

period after birth (Biasucci et al., 2010). In this situation the environment becames a 

crucial source of colonizing bacteria. These bacteria are mainly introduced from the 

environment of the hospital although it is known that bacteria introduced from the 

hospital environment have a low colonization ability during the first 7 days of life. 

Anaerobic colonization, especially by Bacteroides spp. is delayed but Bifidobacterium 

retrieval and E.coli presence was similar in vaginally and caesarean section delivered 

infants. Additionally, an increased incidence of Clostridium perfringens and C. difficile 

is reported in relation to the hospital environment (Penders et al., 2006). 

Environmental contamination seems to be the main route for clostridial implantation in 

the newborn and the rapid implantation of C. perfringens in cesarean sectioned 

newborns seems to determine a decrease in redox potential which favors the subsequent 

colonization by anaerobic bacteria like other species of Clostridium and Bacteroides 

spp.. 
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1.3 Effects of infant feeding on the gut microbiotic composition in 

infants 

Another important factor that can influence composition of the intestinal microbiota in 

the neonates is the type of feeding. Also in the KOALA study it has been demonstrated 

that diet can have an influence on the gut microbiota. 

In both breast- and formula-fed infants, the GIT is initially colonized by streptococci 

and enterobacteria and these create anaerobic condition necessary for the establishment 

of the anaerobic Bacteroides spp. and Bifidobacterium spp. In full term breastfed 

neonates Bacteroides spp., bifidobacteria can appear 4 days after birth and after 1 week 

they dominate the faecal microbiota of breast-fed infants and their counts increase 

rapidly to constitute 80%-90% of the total flora. In contrast, the faecal microbiota of the 

formula-fed infants is more complex, with Bifidobacterium spp.,  enterobacteria and 

Streptococcus spp. in similar proportion. Another notable difference is that formula fed 

infants have much higher counts of Clostridium spp than breast fed infants (Penders et 

al., 2006). 

An important difference is the relative buffering capacity of the two feeds. Breast milk 

has poor buffering capacity, compared with formula milk, and this leads to market 

differences in the colon pH of breast and formula fed infants : 5.1 and 6.5, respectively. 

This low pH promotes the growth of  bifidobacteria and lattobacilli, but is inhibitory to 

many other bacteria (Tham et al., 2011). Moreover, a number of peptides capable of 

stimulating the growth of several bifidobacteria have recently been isolated from human 

milk. Another factor  that could contribute to the dominance of bifidobacteriain the 

faeces of breast-fed infants is the presence in the human milk of glucoprotein, 

glycolipids, fucose, neuraminic acid, lactose, N-acetylglucosamine, and, a variety of 

oligosaccharides (Coppa and Gabrielli, 2008 ).  

Both adults and neonates are regularly exposed to microorganisms via the diet, but with 

different effects. The microorganisms entering newborns throught breast milk are more 

likely to colonize than those entering in healthy adults with stable climax communities 

are. However, the results available to date on bifidogenic effects of milk molecules are 

still inconclusive and there is also a lack of information about the isolation and 

identification of commensal or potential probiotics bacteria, including bifidobacteria, 

from  milk of healthy women.  Even though authors are aware that human milk is 

difficult to sample and microbial contamination can never be totally discarded, some 
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studies have demostrated the presence of alive bifidobacteria in human milk ( Martin et 

al., 2003, Solis et al., 2010). 

It has been hypothesized, within the KOALA study,  that the maternal diet not only 

might be a determinant of the mother’s gut microbiota but also might influence her 

infant’s gut microbiotic composition. However, no association between maternal use of 

probiotics during pregnancy and the intestinal microbiotic composition at the age of 1 

month was found (Penders et al., 2006).  

Recent studies have been demonstrated that another additional anaerobic bacterial group 

is to be considered as dominant in breast-fed babies during the first days of life, i.e.  

Ruminococcus (Morelli, 2008). It is also interesting to note that ruminococci seem to be 

positively affected by oligosaccharides, at least in animal models. The complete role of 

ruminococci in protecting the health of babies is far from being understood, anyway 

Ruminococcus is recognized to have an important protective effect on the host because 

it produces ruminococcin A, a bacteriocin that can inhibit the development of many 

species of Clostridium.  

 

1.4 The intestinal bacterial colonization in preterm infants 

In contrast with full term neonates, little information concerning the composition of the 

microbiota in premature infants is available because only a few studies have determined 

the developmental aspects of the intestinal colonization in these subjects. It is difficult 

to draw firm conclusion on the fecal microbial community in preterm infants for several 

reasons: the inter-individual variability is very high and many parameters, such as  

antibiotic regiments and diet, may tend to increase study discrepancy. In particular, 

preterm often need parental feeding, due to the immaturity of their intestine and they 

often need respiratory support, they are vulnerable for infections and often  require 

antibiotic treatment. 

In addition, the limited number of patients analyzed usually do not allow to fully 

understand the microbiota composition. As this category of infants often require 

intensive care treatments due to  an increased risk for serious infections, insight in the 

intestinal colonization is important.  

At the first days of life, the preterm infants are predominantly colonized by facultative 

anaerobic bacteria, which remain at high levels, resembling the full term formula-fed 
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infants. However, the counts of enterobacteria and enterococci remain predominant until 

the 20
th
 day of life and significantly higher than in full term breast-fed infants (Magne et 

al., 2005). 

Moreover, one of the most significant differences between preterm and full term infants 

microbiota is the colonization of bifidobacteria that are not frequently identified in the 

first month of life of premature newborns (Westerbeek et al., 2006). 

This alteration in the composition of  the gut microbiota of preterm infants can be linked 

to the increased risk, for this subjects, of severe gastrointestinal disorders such as 

necrotizing enterocolitis (NEC) which affects predominantly premature and low weight 

newborns (Lin et al., 2008). 

 

1.5 Effects hospitalization on the microbiota composition in infants 

Prematurity is strongly associated with hospitalization. In addition, hospitalization itself 

is incriminated to changing the normal microbiota. Changes in the intestinal microbiota 

composition  upon chemioterapic administration is observed,  for example the oral use 

of antibiotics (mainly amoxicillin) by the infant during the first 1 month of life resulted 

in decreased numbers of bifidobacteria and B. fragilis-group species (Penders et al., 

2006; Mangin et al., 2010). 

Moreover the simple impact of hospitalization, even without any antibiotic treatment 

produces changes in the normal microbiota. In hospitalized newborns intestinal 

colonization by Klebsiella, Proteus, Pseudomonas, as well as E.coli occurs more 

frequently (Penders et al., 2006). 
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Chapter 2. Interaction between gut microorganisms and 

intestinal epithelial surface 
 

The microbiota is in close conctact with the intestinal mucosa and epithelia surface 

which is, after the respiratory area, the largest surface of the body, occupying 

approximately 250-400 m
2
. Some anatomical and physiological aspect of the host 

organism are directly linked to the presence and activity of the intestinal microbiota 

such as formation of the intestinal walls, production of organic acids and vitamins, 

stimulation of immune system etc. The main fuctions of the microbiota on the host 

organism will be analysed in this chapter.  

 

2.1 Structure and fuctions of intestinal surface 

The intestinal mucosal surface is exposed to the lumen and the cells present in the 

external layer, along with their secretions, form a barrier between non sterile internal 

environment and the essentially sterility of the body (Duerr and Hornef, 2011) (Figure 

1). As a result of these exposure the mucosal surfaces are the principal locus of attack 

by microorganisms. 

Mucosa consists of three layers: the first is made up of the epithelial cells, which can be 

a single layer as in GI tract. The cells are attached to a basement membrane overlying 

the second layer, the lamina propria, which consists of subepithelial connective tissue 

and lymph nodes, underneath which is the third layer, a thin layer of  smooth muscles 

called the muscolar mucosa. 

The epithelial cells of the GI tract are squamous in the esophageal part but they became 

leaky and die before being shed into the lumen. This desquamation of the cells is an 

important mechanism of preventing microrganism invasion. In the intestinal tract the 

columnar epithelial mucus  is secreted by goblet cells interspersed among the 

enterocytes. Enterocytes are polarized cells with a dinstinct apical and basolateral 

cytoplasmatic membrane. However the intestinal epithelium also contains M cells, 

which are present in Peyer’s patches and are part of the gut- associate lymphoid tissue. 

The M cells are specialized epithelial cells that transport antigens and microorganisms 

from their apical surface throught the cytoplasm to the basolateral surface by using 
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transcytosis.  Immune cells such as macrophages and lymphocytes are located in their 

extracellular compartement underneath these cells, waiting for antigen presentation. 

 

 

 

Figure 1 Anatomy of small intestine and colon immune system (Abreu, 2010) 

 

The innate defense system consists of three components: mechanical, chemical, and 

cellular barriers.  

The mechanical barrier is formed by the epithelial cells and the junctions between them 

(Yu and Yang, 2009). The chemical defence comes from antimicrobial proteins, 

peptides and cytokines that perform the immune response. The last component of the 

innate defence is the cellular defence enacted by M cells, dendritic cells, phagocytic 

cells, mast cells, lymphocytes and epithelial cells (Guarner, 2006). 

The first defence that an invading pathogen would encounter is the preepithelial barrier, 

consisting of a secreted mucus gel. Mucus is therefore a unique physical gel that has 

both flow and rigidity properties. The secreted mucins are the principals viscous and 

gel-forming components of the mucus gel secretions. Mucins are high molecular weight 

glycoproteins. 

Using in vitro and in vivo system (El Asmar et al., 2002; Cencič and Langerholc, 2010) 

it has been demonstrated that exposure to healthy commensal bacteria results in 



  9 

establishment of the normal tight-junction barrier between epithelial cells, which 

represent the major determinant of gut permeability. 

In particular the immaturity and the permeability of intestinal epithelial barrier  may 

play a role in pathophysiology of intestinal complications in some neonates and mainly 

in preterm borns (Stratiki et al., 2007). Among the most severe gastrointestinal 

complications linked to the weakness of epithelial barrier, there are feeding intolerance, 

necrotizing enterocolitis (NEC), and gut associated sepsis. These intestinal 

complications that may occur mostly in the first weeks of life, will be further treated 

subsequently. 

 

2.2 Protective effects of the  gut microbiota on the host 

The presence of an abundant commensal microbiota may provide some protection 

against incoming enteric pathogens and may activate the expression of virulence-related 

genes (Nataro, 2005). 

In addition, experimental data suggest the existence of  several complex interacting 

mechanism in the host defence such as competition with enteric pathogen bacteria for 

nutrients and adhesions site in the intestinal mucosa and stimulation of the mucosal 

immune system of the host by activating an appropriate inflammatory response or 

immune mechanisms against chronic infections (Figure 2). 

 

2.2.1 Competition for nutrients between indigenous microbiota and enteric 

pathogens 

The indigenous microbiota gains access to a nutrient enriched, stable environment, and 

thereby enters a symbiotic relation  with the host’s intestinal tract. In vitro evidence 

supporting the nutrient-niche hypothesis has been reported by many researcher who 

used continous flow chemostat culture systems designed to mimic condition of the 

intestine (Laux et al., 2005). The use of these systems has demonstrated the importance 

of microbial association in the surfaces, the stability of the population, with respect of 

major genera, and the role of nutrient utilization in maintaining the population stable. If 

the analogy of  a  chemostat is applied to the intestinal tract, several hundred species of 

bacteria are in equilibrium, competing for resources from an extensive mixture of 

limiting nutrients, and the only way for a  bacterial species to survive is to compete 

effectively for one or a few of the available nutrients. It’s important to remember that 
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gut is such a rich source of nutrients that it may seem unlike that this is the way in 

which the gut microbiota influences its own composition. However, it requires only one 

nutrient to be limiting for this mechanism to operate successfully. In vitro results 

suggest that probiotic microorganisms compete more efficiently than C. difficile for 

monomeric glucose, N-acetyl-glucosamine, and sialic acid found in the colonic contents 

(Fuller, 1991). 

Furthermore, some polysaccharides which can occur naturally (e.g. in breast milk) or 

are used as food additives can enter in the colon indigested and they are able to 

stimulate the  proliferation only of certain commensal bacteria like lactobacilli and 

bifidobacteria (Forchielli and Walker, 2005), this topic will be further treated below (see 

chapter 7). 

 

 

 

Figure 2 Host defence against  intestinal pathogenic bacteria (Britton and Versalovic, 

2008). 
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2.2.2 Competition for intestinal adhesion sites 

Adhesion to and colonization of the mucosal surfaces are possibly protective 

mechanisms against pathogens throught the competition of the binding sites. The ability 

of some potential probiotic strains belonging to the Bifidobacterium and Lactobacillus 

genera to strongly adhere to the intestinal mucosa has been widely studied in the last  

years (Collado et al., 2005, Del Re et al., 2000, Jankowska et al., 2008) . In particular,  

bacteria, that are able to adhere to mucus and unable to reach the epithelial cells, might 

be dislodged from the mucosal surface and washed away with the luminal contents. 

Indeed there are species of the normal human gut, often introduced in diary products 

like commercial strains, which should be carefully  selected and characterized also for 

the adhesion to the mucosal surfaces. Many studies used enterocyte-like Caco-2 and 

HT29 cell lines to investigate the adherence of a large number of Lactobacillus and 

Bifidobacterium strains (Del Re et al., 2000, Gopal et al., 2001, Candela et al., 

2008,Cencič and Langerholc, 2010). 

However, a wide bibliography shows that the displacement activity exerted by probiotic 

bacteria towards enteropathogens is related to mechanisms other than mere competition 

for common adhesion sites. Lievin et al. (2000) have demonstrated that Bifidobacterium 

strains isolated from infants produce antibacterial lipophilic factor(s) effective in 

inhibiting S. enterica serovar Typhimurium invasion of Caco-2 cells and in killing 

intracellular enteropathogenic cells. Fujiwara et al. (2001) have purified a proteinaceous 

factor that inhibits in vitro adherence of an enterotoxigenic E. coli strain to 

gangliotetraosylceramide molecules, which are physiological constituents of the 

mammalian intestinal epithelium surface. 

 

2.2.3 Stimulation of mucosal immune system   

 The communication between intestinal microorganisms and the GI epithelium has been 

extensively studied in the last decades using in vitro models and germfree animals. 

These studies showed that in the absence of the microorganisms, the intestinal immune 

system is underdeveloped and the morphology is disrupted  (Wostmann, 1996), 

furthermore the germfree animals presented hypoplastic peyer’s patches and, a great 

reduction of immunoglobulin-A producing plasma cells (Macpherson and Harris, 2004) 

. They also exhibit an altered gene-expression profile of  the intestinal epithelial cells.  
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Results of additional studies suggested that the indigenous intestinal microbiota in 

mammalians might contribute to the development of  both humoral and cellular mucosal 

immune systems (Hooper, 2004). These interactions maintain a physiologically 

controlled inflammation or activation of gut-associated lymphoid tissue thoughout life 

(Neish et al., 2000). 

The immune system is able to detect microorganisms by discriminating between self 

and nonself organisms. This discrimination  is possible throught a  sophisticated system 

of receptors that are called Toll-like receptors (TLRs), which provide considerable 

specificity for pathogen microorganisms.  As soon as TLRs provide the alarm signal of 

infection, the host reacts with an immediate immune response system (Vinderola et al., 

2005).TLRs are expressed by macrophages,  dendritic cells, endothelial and epithelial 

cells and they are specialized in different classes like TLR4 that recognizes 

lipopolisaccarides (LPS) and gram-negative bacteria and TLR2 that recognizes a variety 

of microbial components such as peptidoglycan and lipoteichoic acids from gram-

positive bacteria (Takeda and Akira, 2005).  

Furthermore in vitro and in vivo finding allowed to analyze the secretion of 

interleukine-6 (IL-6) in responce to bacterial infection (Miller et al., 2002). IL-6 is a 

multifunctional cytokine involved in diverse biological processes, such as host response 

to enteric pathogens, acute-phase reaction , hematopoiesis, growth factor  for normal or 

neoplasic cells, and terminal differentiation of  B lymphocytes: IL-6 is condidered the 

product of proinflammatory cells (Montier et al., 2012).  By now it is well known that 

the interaction between probiotics and intestinal cells could play an important role in the 

innate immune response induced by probiotics (Vinderola et al., 2005, Cencič and 

Langerholc, 2010). 

Much has been learned during recent years about the capability of probiotic strains to 

induce  IL_6 production from epithelial cells (Nissen et al., 2009) and it has been also 

demonstrated that LAB and bifidobacteria are able to use TLRs to send immune signals 

to the cells. It was reported that intestinal epithelial cells may be an important source of 

IL-1ß, IL-6 and IL-8 and that adherent population of Peyer’s patches was responsible 

for the production of gamma interferon (INF-γ) and tumor necrosis factor alpha (TNF-

α) (Perdigon et al., 2002, Tanoue et al., 2008) (Figure 3).  
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Figure 3 Innate and cell-mediated immune response (Vanderpool et al., 2008). 

 

In addition, reactive oxygen species (ROS) are classically thought of as cytotoxic and 

mutagenic molecules  or  as  inducers  of  oxidative  stress;  recent  evidence  suggests  

that ROS play a role in signal transduction. ROS are implicated in stimulation or 

inhibition of  cell proliferation,  apoptosis,  and  cell  senescence, moreover they can 

play an important role in host defence againts infections. Of particular interest, the 

production of  NO and  H2O2 by epithelial cells and macrophages mediates killing or 

growth inhibition of bacteria, fungi and parasites (Park et al., 1999; Pipenbaher et al., 

2009). The ROS compounds take part in the innate immune response (Keyaerts et al., 

2004) and recent studies showed that some probiotic strains increase the production of 

ROS in small intestinal epithelial cells and in macrophages (Nissen et al., 2009, 

Pipenbaher et al., 2009, Maragkoudakis et al., 2010). 
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Moderate production of H2O2 and NO induced by probiotics used in food could have a 

beneficial effect in manteining a balance and increasing resistence to infections. 

However, it should be noted that hight concentration of H2O2 and NO causes tissue 

injury, disseminated intravascular coagulation and shock (Park et al., 1999). 

 Lastly, several studies  showed that orally administration of  lactic acid bacteria (LAB) 

stimulated IgA secretion and T-cells activation (Perdigon et al., 2001, Dogi et al., 2008), 

in particular LAB were able to increase IgA cells in a dose dependent manner.  

Much of the research on interactions of LAB with epithelial cells has been conducted on 

tumoral cell lines such as HT-29 and CaCo-2,these studies allowed to better understand 

some of the complex mechanism of the interaction between microbiota and  immune 

cells.  

 

2.3 Experimental models of gut ecosystem 

Human and animal gut is a complex system formed by a large community of 

microorganisms (intestinal microbiota) that interact with host in the development of 

intestinal epithelium, in nutrient acquisition and metabolism and in the development of 

host immune system; because of this complexity it is difficult to find an appropriate 

experimental model. Germ free animal models have been widely used till recent years 

but even if they are a good realistic model for such studies they presents major 

disadvantages like the disagreement with the bioethical spirit of reduce animal testing of 

EU. Their use is also not suitable in all laboratories because special facilities and special 

trained personnel are needed. They are also very expensive and ultimely it is not always 

possible to find a good human model for some of these kind of studies like, for 

example, pathogen studies (Cencič and Langerholc, 2010) .  

As fully described by Cencič and Langerholc, (2010), in vitro cell models of the gut 

should functionally resemble the in vivo situation. Primary cells isolated from human or 

animal tissue conserve  the majority of the in vivo ecosystem functionality, however the 

primary cells usually survive  only a few days in in vitro culture. Primary cells derived 

from different individuals keep the diversity that is reflected on the results. 

Anyway, in vitro cell models satisfy basic requirements: availability and easy handling 

and good human predictive power (Cencič and Langerholc, 2010). Moreover cell 
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models formed by a combination of epithelial and other cell lines responde to 

envimental factors like cytokines and inflammatory molecules. 

As stated above, in most of the in vitro studies of the gut , human colon tumorigenic cell 

lines like Caco2, T84 and HT-29 have been widely used for mechanistic and functional 

studies of the gut. However, it is well assessed that the phenotype of tumorigenic cell 

lines traditionally used for this purpose distinguishes them profoundly from the normal 

gut epithelium (Tremblay and Slutsky, 2007), in fact adhenocancerogenic cell lines can 

be altereted in proliferation, glycosilation when compared to non tumorigenic ones. To 

study the interaction with probiotics and gut epithelium an interesting recent feature is 

to develop cell culture with non tumorigenic intestinal cells (Cencič and Langerholc, 

2010). 3D intestinal epithelial models from various species were developed using both 

human and animal cell cultures. In particular these 3D models are built from intestinal 

epithelial cells in a microporous membrane by also adding an underlay of immune cells 

(macrophage and dendridic cells) that mime the mucosal lymphoid tissue. In the apical 

side of the membrane, intestinal bacteria can be added in order to makes these models 

close to in vivo situation. 
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Chapter 3. Principal gastrointestinal diseases in infants and 

newborns 

 

3.1 Necrotizing enterocolitis (NEC) in infants 

NEC is the most common gastrointestinal emergency in the neonatal intensive care unit 

and a major cause of morbidity in preterm infants. It is characterized by gastrointestinal 

dysfunction progressing to pneumatosis intestinalis, systemic shock, and rapid death in 

severe cases. The most common risk factors cited are prematurity, enteral feeding and 

bacterial colonization, in particular intestinal injury in NEC may be the results of  

synergy  of these three factors ( Claud and Walker, 2001). 

However, there is a strong evidence that the initial bacterial colonization after birth 

plays a pivotal role in the developmentof NEC. As It has been already mentioned 

before, preterm newborns show a different colonization with respect to full term 

newborns where Bifidobacterium and Lactobacillus microrganisms are predominants. In 

preterm infants more pathogenic microrganisms such as enterobacteria and enterococci 

remain predominant until the 20
th

 day of life, for this reason one it has been  suggested 

that a major etiological factor for NEC is the abnormal microbiota, particularly as NEC 

usually occur after 8-9 days postpartum when anaerobic bacteria start to colonize the 

gut (Mai et al., 2011). It is also true that premature newborns have an immature and 

inappropriate intestinal ephitelial immunologic response to luminal bacterial stimuli. 

The observation that immature human enterocytes react with excessive pro-

inflammatory cytokine production after inflammatory stimulation  can help in part to 

explain why prematures exposed to initial colonizing bacteria can develop NEC 

(Nanthakumar et al., 2000). 

Several studies have shown that formula–fed infants have a higher incidence of NEC 

than breast-fed infants, this is due to the fact that breast milk contains passive immunity 

factors such as polymeric IgA that enhance intestinal maturation and antimicrobial 

factors providing protection to the newborn.  

Moreover the fetal gut is exoposed to amniotic fluid containing hormones and peptides 

that may have a role in intestinal maturation and preparation for postnatal feeding ( 

Claud and Walker, 2001). The preterm infants may not have this maturation process 

when initially fed and for that reason they are unable to fully digest carbohydrates and 
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proteins, leading to the production of organic acids which may be harmful to the 

developing intestine.  

However, despite these scientific evidences the exact etiology and pathogenesis of this 

disease have not been clearly delineated. 

 

3.2 Bacterial gastroenteritis  

Infectious gastroenteritis is one of the leading cause of morbidity especially in 

newborns and children under 5 years of age. Although gastroenteritis-associated 

mortality is rare in Western Europe, an increased incidence has been noted in some 

national registers over recent years (Wiegering et al., 2011). However, acute 

gastroenteritis vary from place to place depending on local socioeconomic conditions 

and geography. 

Several studies have focused on the etiology of infectious diarrhea in hospitalized 

newborns and children. Rotavirus is the most common cause of infectious diarrhea in 

children worldwide, followed by adenovirus and norovirus. The clinical manifestations 

of viral gastroenteritis include diarrhea, vomiting, fever, anorexia, headache and 

abdominal cramps. None of these single symptoms clearly distinguishes viral 

gastroenteritis from diarrheal illness due to bacterial or parasitic organisms.  

However,  bacterial and viral gastroenteritis present with different clinical features. The 

differentiation of bacterial vs. non-bacterial and rotavirus vs. non-rotavirus diarrhea 

appears to be of particular clinical relevance. Rotavirus infections are known to be more 

severe and more often associated with a complicated course. 

 In the last few decades, several enteric  bacteria (e.g.,   Salmonella spp., Shigella spp., 

Campylobacter  spp., Clostridium difficile, Klebsiella pneumoniae, Enterobacter 

cloacae, E. coli ) and parasites (e.g.,   Cryptosporidium  spp.) have been identified as 

important causes of diarrhea in human, particularly in infants (Amisano et al., 2011).  

Diarrheagenic E.coli represents one of the most the bacterial cause of  pediatric diarrhea 

in developing countries. E.coli is usually found in the commensal intestinal microbiota, 

but it can become a pathogen through acquisition of genetic determinants, which may 

enhance adhesiveness and toxicity. E.coli strains associated with diarrhea have been 

classified into six groups, based on clinical, epidemiological and molecular criteria: 

enteropathogenic E.coli (EPEC),enteroehaemorragic E.coli (EHEC), enteroinvasive 
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E.coli (EIEC), enterotoxigenic E.coli (ETEC), enteroaggregative E.coli (EAggEC) and 

diffusely adherent E.coli (DAEC). 

A further  important etiological agent is Shigella spp., that is one of the most common 

pathogen in children over 1 year of age. Accordingly, Shigella spp. (particularly the S. 

dysenteriae and S. flexneri serotypes) should also be regarded as a priority target for 

vaccine development, especially since dysenteric illness is not treated primarily with 

oral rehydration salts, but usually requires antimicrobial therapy .   

K. pneumoniae, E. clocae  and C. difficile, on the other hands, are normal commensals 

of the human intestine ubiquitously throughout most of the gut, and they can cause 

secondary bacteremia notably in the relatively vulnerable intestinal wall of young 

infants especially after mucosal damage due to rotavirus infection (Lowenthal et al., 

2006). 

In addition, Campylobacter emerged as a significant pathogen, mainly among under-6-

month-olds.Campylobacter was associated with diarrhoea in some study sites, but 

mainly among 0-5-month-olds (Allen et al., 2010).  

 

3.3 Infantile colics 

Infantile colics are a common condition in the first months of life, about 10-30% of 

infants are effected by this clinical condition. The classic definition of infantile colic is 

based on the rule of three: fussy crying that last for > 3 hours per day; for > 3 days per 

week; and a minimum of 3 weeks. In fact the infant suffers from paroxysms of 

excessive, highpitched, inconsolable crying, frenquently accompanied by flushing of the 

face, meteorism, drawing-up of the legs and passing of gas. The crying episodes tend to 

increase at 6 weeks of age and are most frequent in the evening hours but fortunately 

this condition usually resolves spontaneously by the age of 3 months. Although infant 

colic is a common disturbance, the aetiology conditions remain obscure, however 

evidences suggest multiple independent causes.  

The role of an aberrant intestinal microbiota has recently been reproposed to affect gut 

function and gas production that lead to colicky behaviour. According to Lehtonen et 

al.,1994, an anomalous microbial composition such as an inadequate bifidobacteria and 

lactobacilli level in the first months of life may affect the intestinal fatty acid profile 

thereby favouring the development of infantile colics. 
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Bifidobacteria and lactobacilli play an important role in the development of local and 

systemic immune responses in that way an inadequate balance of these microrganisms 

in colickly infants might underlie immaturity in the gut barrier and lead to aberrant 

immune responses and increase vulnerability. Furthermore recent studies (Savino et al., 

2009) showed that colickly infants have  higher counts  of anaerobic Gram- negative 

bacteria than healthy infants and in particular of gas forming coliforms that are rod-

shaped organisms that fermente lactose resulting in gas formation at 35-37°C. The most 

frequent faecal coliform genera are Escherichia, Enterobacter, Klebsiella and 

Enterococcus. 

Is is feasible that gas coliforms may contribute to colonic fermentation and 

consequently to excessive intra-intestinal air load, aerophagia and pain, which are the 

typical symptoms of infant crying, but many aspect of these relationships are still 

unknown and the contribution of coliforms colonization remains to be clarified (Savino 

et al., 2007). 

Some recent evidences suggest that infantile colics might have many several 

independent causes, such as lactose intolerance. In this regard, infants, during the first 

period of life, may display malabsorption of carbohydrates present in breast milk or 

formula milk and recently, the hypothesis is  that colic syntoms could be relieved by 

reducing the lactose content of the infant feed. According to other new theories, infant 

colics could be related to food allergy and sometimes could be manifestation of atipic 

deseases. According to Lindberg, 1999, infants with colic respond favourably to diet 

free of cow’s milk protein. Moreover, a recent trial  suggested that a new formula with 

partially hydrolized proteins, a low amount of lactose and containig a mixture of 

galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) led a significant 

improvement of infantile gas colics and other gastrointestinal disorders (Savino et al., 

2007). As indicated in a dedicated section (4.3), the possibly of reducing the synthoms 

of colics with the use of probiotics has been explored (Savino et al., 2010). 
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3.4 Neonatal bacterial infections: group B Streptococcal infection 

Early-onset bacterial sepsis remain one of the major cause of neonatal morbidity and 

mortality although the sepsis-associated death rates have declined significantly in the 

last decade (2001-2011) (Ferrieri and Wallen, 2012). The reason of the reduction of 

mortality is due to the introduction of intrapartum antibiotic prophylaxis in pregnant 

women during labor and delivery. There are multiple says throught which bacteria can 

enter and infect newborns: the primary portal appear to be the respiratory tract, however 

acquisition via placenta is also possible. The leading cause of onset infection of fetus 

and newborn is group B Streptococcus (GBS). This gram-negative bacterium that 

resides in  the cervix, vagine or rectum can  reach the amniotic through intact or rupted 

membranes and lead to infection.  

Identification of maternal colonization by GBS during pregnancy is very important for  

taking preventive measures, such as antibiotic prophylaxis, against neonatal disease.  

In 1996, the Centers for Disease Control and Prevention (CDC) published consensus 

guidelines for the prevention of neonatal GBS disease that approved the use of 

intrapartum antibiotic prophylaxis (IAP) for a maternal screening (Puopolo et al., 2005). 

Penicillin is recommended as the first-line agent for intrapartum antibiotic prophylaxis, 

while ampicillin is considered as an acceptable alternative. In penicillin-allergic  

women, who are not at high risk for anaphylaxis, clarithromycin and cefazolin are 

considered the agents of choice for intrapartum chemoprophylaxis because of its narrow 

spectrum  of  activity  and  ability  to  achieve high  intraamniotic concentrations.  

In Table 2 the principal symptoms of the early-onset and late-onset infection have been 

reported . They are very different: in the first case the infection manifests with 

respiratory disturbance and apneic episodes while in the second case with fever and 

poor feeding. 

As mentioned previously, over the past decade with the introduction of antibiotic 

maternal prophylaxis, there has been a significant decrease in the incidence of GBS to 

its current rate of approximately 0.32 per 1000 live births for early-onset disease, 

however there is no evidence that chemoprophylaxis prevents late-onset disease (Table 

2). However, there are no information in the literature on the effect that the antibiotic 

treatment may have on the early colonization of bacteria in the newborn gut, which is 

known to be highly influenced by the microorganisms that derive from the mother. 
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Table 2 Manifestations of early-onset and late-onset group B streptococcal disease 

Characteristic Early-onset disease Late-onset disease 

Age at onset Birth to day 6 Day 7 to 3 months 

Symptoms Respiratory distress, apnea Irritability, fever, poor 

feeding 

Findings Pneumonia, sepsis Sepsis, meningitis, 

osteoarthritis 

Mode of trasmission Vertical, in utero, intrapartum Nosocomial, horizontal 

Effect of antibiotic 

prophylaxis 

Reduce incidence by 85-90% No effect 
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Chapter 4. Probiotics 

 

4.1 History of Probiotics 

The term probiotic, meaning “for life,” is derived from the Greek language and it is 

currently used to name bacteria associated with beneficial effects for humans and 

animals. The original observation of the positive role played by some selected bacteria 

is attributed to Eli Metchnikoff, the Russian Nobel Prize working at the Pasteur Institute 

at the beginning of the last century; Metchnikoff (1908) in his book “The Prolongation 

of Life” was probably the first one to advocate, or rather postulate, the health benefits of 

LAB associated with fermented milk products. He hinted that the longevity of the 

Caucasians could be related to the high intake of fermented milk products and that  the 

intake of yogurt containing lactobacilli might result in a reduction of toxin-producing 

bacteria in the gut and that this could increase the longevity of the host. Tissier, a 

French paediatrician, recommended the administration of bifidobacteria to infants 

suffering from diarrhea, claiming that bifidobacteria supersede the putrefactive bacteria 

that cause the disease. The expression “probiotic” was probably first defined by Kollath 

in 1953 (Kollath, 1953), when he proposed the term to identify all organic and inorganic 

food complexes as “probiotics,” in contrast to harmful antibiotics in order to upgrade 

such food complexes as supplements.  

Later, Lilly and Stillwell (1965) identified probiotics as “substances secreted by one 

microorganism which stimulates the growth of another”, against the concept of 

antibiotic. It may be because of this positive and general claim of the definition that the 

term probiotic was subsequently applied to other substances and gained a more general 

meaning. In 1971 Sperti (Sperti, 1971) applied the term to tissue extracts that stimulate 

microbial growth. Parker (1974) was the first to use the term probiotic in the sense that 

it is used today. He defined probiotics as “organisms and substances which contribute to 

intestinal microbial balance.” The use of the word substances in Parker’s definition of 

probiotics resulted in a wide connotation that included antibiotics. Although numerous 

definitions have been proposed since then, none has proved completely satisfactory 

because of the need for additional explanations, e.g., with regard to statements such as 

“beneficial balance,” “normal population,” or “stabilization of the gut flora.” In 1989, 

Fuller (Fuller, 1989) attempted to improve Parker’s definition of probiotic with the 
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following distinction: “A live microbial feed supplement which beneficially affects the 

host animal by improving its intestinal microbial balance.” This revised definition 

emphasized the requirement of viability for probiotics and introduced the feature of a 

beneficial effect on the host, which was, according to his definition, an animal.  A 

similar definition was proposed by Havenaar and Huis in 't Veld (1992) “…mono- or 

mixed cultures of live microorganisms which, when applied to animal or man, 

beneficially affect the host by improving the properties of the indigenous microflora.” 

Probiotics are best known by the average consumer in relation to foods; in this contest 

the EU Expert Group on Functional Foods in Europe (FUFOSE) has defined them as 

“viable preparations in foods or dietary supplements to improve the health of humans 

and animals”. Salminen (1996) and Schaafsma (1996) broadened the definition of 

probiotics. According to Salminen, a probiotic is “a live microbial culture or cultured 

dairy product which beneficially influences the health and nutrition of the host.” 

According to Schaafsma, “Oral probiotics are living microorganisms which upon 

ingestion in certain numbers exert health effects beyond inherent basic nutrition.” , In 

2001, Schrezenmeir and Michael de Vrese proposed the following definition: “A 

preparation of or a product containing viable, defined microorganisms in sufficient 

numbers, which alter the microflora (by implantation or colonization) in a compartment 

of the host and by that exert beneficial health effects in this host”. In 2002, FAO/WHO 

has adopted the definition of probiotics as “Live microorganisms which when 

administered in adequate amounts confer a health benefit on the host” (FAO/ WHO, 

2002).  

In the past decades studies in the area of probiotics have progressed considerably and 

significant advances have been made in the selection and characterisation of specific 

probiotic cultures and in the identification of the positive effects they have on health. 

Members of the genera Lactobacillus and Bifidobacterium are now mostly employed, 

but not exclusively, as probiotic microorganisms and a larger variety of probiotic foods 

are now available to the consumer. 

The original assumption of Metchnikoff was that the dietary manipulation of the gut 

microbiota performed in order to increase the relative numbers of "beneficial bacteria" 

could contribute to the well being of the host. However he also stated that systematic 

investigations should be made on the relation of gut microbes to the age, and on the 
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influence of diets which prevent intestinal putrefaction in prolonging life and 

maintaining the forces of the body."  

It is necessary to assess the efficacy and safety of probiotics and this constitutes an 

important part of their characterization for human use.  

Microbes from many different genera are being used as probiotics. The most commonly 

used strains are members of the heterogeneous group of lactic acid bacteria; lactobacilli, 

enterococci and bifidobacteria.  

 

4.2 Principal effects of probiotics on human gut  

The mechanism of probiotic action is not totally known but different approaches could 

be developed. According to Fuller (1989) the probiotic effect of lactic acid bacteria and 

bifidobacteria may be expressed by three main mechanisms of action: 

1. Suppression of pathogenic microorganisms in the intestinal tract by: 

a) production of antibacterial substances including primary metabolites, such as lactic 

acid, acetic acid, carbon dioxide, diacetyl, acetaldehyde, hydrogen peroxide and 

bacteriocins; they are proteinaceous compounds with antimicrobial activities against 

other closely related bacteria; 

b) competition for nutrients. In the large intestine, the competition is limited for some 

nutrients, in particular for specific carbohydrates and polysaccharides; 

c) competition for adhesion receptors on the gut epithelium. Probiotic strains can adhere 

specifically or non-specifically. Specific adhesion takes place when a ligand on the 

bacterial cell binds to a receptor on the epithelial cell; this is commonly defined as a “ 

lock and key “ function. Non-specific adhesion is a more general phenomenon mediated 

by hydrophobic or electrostatic interaction and does not seem to have particular 

relevance in the colonisation of epithelia in vivo. 

2. Alteration of microbial metabolism in intestinal tract: 

a) increasing the activity of useful enzymes, e.g. β-galactosidase in the alleviation of 

lactose maldigestion; 

b) decreasing the activity of some colonic enzymes such as nitroreductase and 

azoreductase known to have carcinogenic effects. 

3. Stimulation of immunity: recent reports have shown that orally administered 

lactobacilli and bifidobacteria can improve immune status by increasing the circulating 
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and local antibody levels, the gamma interferon concentration, the macrophage activity 

and the number of natural killer cells (MacDonald and Monteleone, 2005). The 

inclusion of lactic acid bacteria and bifidobacteria as members of physiological 

indigenous microflora into the mucosa and the subsequent translocation to other organs 

is currently regarded as a crucial step for the development of the normal mucosal and 

systemic immunity.  

 

4.3 Use of probiotics in pedriatrics 

An increasing number of clinical trials have documented effects of ingestion of specific 

probiotics bacteria on the care of important infant diseases. The use of probiotics 

formula for infants older than 4 months of age has already been approved by the 

American Food and Drug Administration (FDA) and in particular B. lactis obtained the 

GRAS (generally regarded as safe) status. In addition some recent works have shown 

encouraging data about administration of Bifidobacterium breve strains in preterms and 

low birth weight infants (Li et al., 2004 and Wang et al., 2007) and a wide literature 

documentation reports clinical benefits with treatment of infant gastrointestinal disease 

with probiotics. 

One of the best-studied clinical outcome with the use of probiotics bacteria has been 

acute diarrheal disease in infants. The majority of the studies have been included 

various species of lactobacilli and bifidobacteria, and by far, the most used have been 

Lactobacillus rhamnosus (LGG), Lactobacillus reuteri and Bifidobacterium lactis 

(Guandalini et al., 2000 and Weizman et al., 2005). The larger number of trials 

documents therapeutic use of probiotics as supplements early in the course of the 

disease and the most consistent effect reported is a reduction in duration of illness, 

while another part of literature examine the reduction in incidence of acute diarrheal 

disease after a preventive administration of probiotics and these studies documented 

reduction in incidence or severity of the illness (Saavedra and Tschernia, 2007). No 

study to date has documented an increase in diarrheal disease with any probiotic strain 

used. Moreover, several probiotics strains resulted effective in reducing the risk of 

antibiotic-associated diarrhea in newborns and children. A clinical trial, performed with 

766 infants, indicated that concomitant treatment with probiotics, compared with 

placebo, reduced the risk of diarrhea from 28.5% to 11.9% (Szajewska et al., 2006). 
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Some recent works have described clinical trials conducted on preterm infants. The 

theoretical benefits of probiotics in preterm infants include the prevention of NEC. 

These initial studies are encouraging and demonstrate the efficacy of probiotics to re-

establish the balance of the gut flora by increasing the number of bifidobacteria. The 

most used probiotics strains were Lactobacillus acidophilus, Lactobacillus rhamnosus, 

Bifidobacterium longum subsp. infantis and Bifidobacterium  bifidum. In all these works 

the oral administration of probiotics showed a significant reduction in NEC incidence 

and NEC-associated mortality in respect with placebo group (Bin–Nun et al., 2005 and 

Lin et al., 2008). 

A new aspect of the application of probiotics in the pediatric field is the treatment 

against gas colics. A published study (Savino et al., 2007) examinated, for the first time, 

the modulation of intestinal microbiota of colickly infants by administering a probiotic 

strain. A cohort of 90 breastfed colickly infants was randomly assigned to treatment 

with the probiotic Lactobacillus reuteri and simethicone. This study evidenced that 

infants treated with L. reuteri had a significant reduction in crying compared to infants 

treated with simethicone.  The hypothesis, therefore, that probiotic supplementation can 

provided a reduction of gas colic symptoms and a modulation of intestinal microbiota 

was demonstrated  (Savino et al., 2007, Savino et al., 2010).  

To conclude, other clinical trials have shown a great improvement in infants affected by 

atopic dermatitis after administration with probiotics formula, in these cases, the 

severity of skin manifestation was strongly reduced (Viljanen et al., 2005). Lower 

counts of bifidobacteria have been reported in atopic vs non atopic children preceding 

allergen sensitization. Therefore, bifidobacteria are hypothesized to more effectively 

promote tolerance against antigen, stimulating GALT immune response.   

 

4.4 In vitro selection of probiotic strains 

Although progress in probiotic research has been achieved over the past few years, not 

all of the available probiotic bacteria which are on the market have adequate scientific 

documentation. It should be desirable to understand the mechanisms that determine the 

nutritional and health benefits derived from products containing probiotic bacteria, and 

to use the most promising strains. The probiotic concept will only gain acceptance if 

these underlying mechanisms are elucidated. Consequently, it is necessary to establish 
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rational criteria for the screening and selection of candidate microorganisms and also to 

evaluate the efficacy of the selected strains or the food products in well-controlled 

human clinical trials.  

Significant progress in legislation for the safety evaluation of probiotics has been made 

in USA, Canada, and Europe (EFSA, 2005a; HC, 2006; FAO/WHO, 2002); however, 

no unique standards are available. In the USA, microorganisms considered safe for 

human consumption are awarded the GRAS status by the FDA. In Europe, the European 

Food Safety Authority (EFSA) has introduced the concept of Qualified Presumption of 

Safety (QPS) similar in purpose to the GRAS approach. The QPS concept provides a 

generic assessment system for use within EFSA that in principle can be applied to all 

requests received for the safety assessments of microorganisms deliberately introduced 

into the food chain (EFSA, 2005b). EFSA has published a list of microorganism, which 

possess a known historical safety, proposed for QPS status (EFSA, 2007a). Although 

the FAO and WHO reports were mainly focused on foods enriched with probiotics, 

many of the recommendations, including the definition of probiotics, were approved at 

the Meeting of the International Scientific Association for Probiotics and Prebiotics in 

May 2002.  
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Figure 4 Procedure for the characterisation of novel strain with putative probiotic 

status. 

 

The main steps for the selection of a novel probiotics strain are (Figure 4): 

1. Strain identification; 

2. Safety evaluation; 

3. Fuctional characterization; 

 

4.4.1 Strain identification 

The first consideration is to identify and characterize the organism at the genus and 

species-level. Phenotypic tests may be useful to obtain a first tentative classification  at 

the genus level but the identification results should in any case be confirmed by 

molecular methods.  DNA-DNA reassociation is still considered as a reliable method 

for the delineation and description of a new bacterial species but it is impractical for the 

high cost and its complexity. Pattern- and sequence-based molecular methods provided 

actually a reproducible and easy methods thanks to the update of databases and data 

exchangeability. However, 16S rRNA does not allow a unequivocal separation of all the 
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taxa; for that reason it needs to be complemented by other molecular methods such as 

fingerprinting techniques: Amplified Fragment Length Polymorphism (AFLP), 

repetitive DNA element-PCR (rep-PCR) or Enterobacterial Repetitive Intergenic 

Consensus- PCR (ERIC-PCR). These techniques cold be used in association with 

sequencing of 23S rRNA , Internal Trascribed Spacer (ITS) elements and/or single copy 

genes (such as groEL, recA, tuf, atpD, dnaK and grpE).  

Once the strain has been identified, a scientifically recognized name must be employed 

and  the strains must be deposited in an internationally recognized culture collection.  

 

4.4.2 Safety evaluation 

As efficacy is inextricably linked to safety, any claims of health benefits for a probiotic 

require substantiation by scientific evidence.  

The presence of antibiotic resistances and transferability of the antibiotic resistance 

genes are key factors in safety evaluation. In 2008, a decision of the FEEDAP Panel of  

EFSA updated the criteria used for the assessment of bacteria for resistance to 

antibiotics of human and veterinary importance (EFSA, 2008). The aim of this decision 

was to provide guidance for developing studies to show the potential of each bacteria 

strain to bear resistance and to transfer it. The basis of such evaluation starts with the 

determination in vitro of the  minimal inhibitory concentration  (MIC) for a relevant 

range of antibiotics of human and veterinary importance (Table 3). The detection of the 

MIC above the breakpoint levels for one or more antimicrobials required further 

investigations to make the distinction between acquired and intrinsic resistance; the 

microbiological breakpoints categorizing bacteria as resistant are expressed in table 3. 

According to the principle of FEEDAP, when a bacterial strain proves resistant to a 

specific antibiotic, while others species are  normally susceptible to the same  antibiotic, 

the applicant should evaluate the reason for such resistance. If an acquired resistance 

may be transferred or if  known exogenous resistance genes are present, the probiotic 

strain is not considered suitable for use as  food or feed additive  

In addition, the determination of antibiotic resistance among probiotic microrganisms is 

affected by problems regarding the use of media, furthermore, MIC breakpoint values 

have been shown to be species specific and consequently they vary between species of 

the same genera. 
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From the evaluation of the current scientific data, it has been concluded that there is not 

a precise standard to enforce to assess the resistance of probiotic strains  to antibiotics; 

further studies are needed.  

 

Table 3  The Microbiological breakpoints used by EFSA 2008 categorising bacterial 

species as resistant (mg/l) 
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Ampicillin 2 4 4 2 2 2 n.r. 2 

Vancomycin          2 4 n.r. n.r. 4 4 4 4 

Gentamycin                 64 32 16 16 32 32 4 64 

Kanamycin n.r. 512 64 16 64 64 8 64 

Streptomycin   128 128 64 64 64 64 8 64 

Erythromycin        0.5 4 1 1 2 2 4 0.5 

Clindamycin 0.25 4 1 1 4 2 4 0.25 

Quinupristin/dalfopristin              1 4 4 4 4 4 4 0.5 

Tetracycline   8 2 8 8 4 4 8 2 

Chloramphenicol   4 8 4 4 8 4 8 2 

n.r. = Certain species are inherently resistant, and for these species MIC determination 

is not necessary 

 

Safety assessment for new probiotic strains may also include the evaluation of the 

potential cytotoxic effects of the microorganisms on human cells. Animal 

experimentation has a long tradition for risk assessment for new drugs, however, it is 

difficult to find a suitable animal model to study probiotic strains, for example toxicity 

studies of Bacillus probiotic strains have found no evident toxicity in lower animals 

such as mice and piglets (Sorokulova et al., 2008). Animal studies also present major 

disadvantages like the disagreement with the bioethical spirit of reducing animal testing 

in the EU, therefore, the need for a suitable cell culture model is to be consider 

paramount in order to avoid the use of a large number of animals.  
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As it has been formerly discuss in chapter 3, different kind of  in vitro cell models of the 

gut are now available and they represent a reliable system for assessing the potential 

cytotoxity of probiotics strains (Cencič and Langerholc, 2010). 

 

4.4.3 Functional characterization 

In vitro tests of candidate probiotic strains, some of them summarized in Table 4, are 

thought to provide some insight for a more appropriate choice for in vivo functionality.  

 

Table 4 Main in vitro tests currently used for the study of probiotic strains (from report 

FAO, 2002)   

Resistance to gastric acidity 

Bile acid resistance 

Adherence to mucus and or epithelial cells and cell lines of humans and/or animals 

Antimicrobial activity against potentially pathogenic bacteria 

Ability to reduce pathogen adhesion to surfaces 

 

Among the criteria used for the selection of probiotic strains, the most commonly 

employed is the survival in the stressful GIT conditions (low pH and high bile salts 

concentrations), the ability to transitory colonize the GIT, which is related with the 

adhesion to mucus and/or intestinal epithelium and the antimicrobial activity through 

the production of antimicrobial molecules or the ability to inhibit/displace the adhesion 

of pathogens. Several in vitro and in vivo tests are employed for the screening of these 

characteristics, although there is a lack of standardised or unified methodology for the 

assessment of probiotic functionality.  
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Chapter 5. The genus Bifidobacterium 

 

 

Figure 5 Scanning electron micrographs of Bifidobacterium spp. 

5.1 Physiology and metabolism 

Bifidobacteria are Gram-positive polymorphic branched rods that occur singly, in 

chains or in clumps (Figure 5). They are non-spore forming, non-motile and non-

filamentous. They are anaerobic : their sensitivity to oxygen changes in relation to the 

species and the different strains of each species. Bifidobacteria are chemoorganotrophs, 

having a fermentative type of metabolism. They produce acid but not gas from a variety 

of carbohydrates. They are catalase negative (with some exceptions). Their genome GC 

content varies from 42 mol% to 62 mol% (Biavati and Mattarelli, 2001). 

The optimum temperature for growth is 37-41 °C, while no growth occurs below 20 °C 

and above 46 °C. Growth at 45 °C seems to discriminate between animal and human 

strains. Bifidobacteria are acid-tolerant microorganisms.  

The optimum pH is between 6.5 and 7.0 and no growth is recorded below pH 4.5. 

Bifidobacteria are in fact acid tolerant but they are not acidophilic microorganisms. 

Bifidobacterium spp. produce lactic and acetic acid from glucose.  

The global equation is: 

2 glucose + 5 ADP + 5 P → 3 acetate + 2 lactate + 5 ATP 

This peculiar metabolic pathway is called “fructose-6-phosphate shunt” or “bifidus 

shunt”. The key enzyme of this pathway is fructose-6-phosphate-phosphoketolase, 

which is considered a taxonomic character for the identification on the genus level 

(Biavati and Mattarelli, 2001). Different species produce variable amounts of acetate, 

lactate ethanol and formate under the same conditions. The bifidobacteria utilize a great 
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variety of mono- and disaccharides as carbon sources and are able to metabolize also 

complex carbohydrates that are normally not digested in the small intestine. This feature 

should give an ecological advantage to colonizers of the intestinal environment where 

complex carbohydrates, such as mucin, are present either because they are produced by 

the epithelium of the host or because they are introduced through diet. 

 

5.2  Bifidobacterium spp. 

In 1900, Tissier observed and isolated in the feces of breast-fed infants a bacterium with 

a strange and characteristic Y shape and called it "Bacillus bifidus" (Tissier, 1899). This 

bacterium was anaerobic, Gram-positive and did not produce gas during its growth 

(Tissier, 1899). He proposed its inclusion in the family Lactobacillaceae. For a long 

time, bifidobacteria were included in the genus Lactobacillus. In the 8th edition of 

Bergey’s Manual of Determinative Bacteriology bifidobacteria were classified for the 

first time in the genus Bifidobacterium and comprised eight species.  

Nowadays, according to Taxonomic Outline of the Prokaryotes, the genus 

Bifidobacterium belongs to the phylum Actinobacteria, class Actinobacteria, sub-class 

Actinobacteridae, order Bifidobacteriales, family Bifidobacteriaceae. The other genera 

belonging to this family are: Aeriscardovia, Falcivibrio, Gardnerella, Parascardovia 

and Scardovia.  

At present the species included in the genus Bifidobacterium are: 

Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium animalis 

(with two subspecies B. animalis subsp. animalis and B. animalis subsp. lactis), 

Bifidobacterium asteroids, Bifidobacterium bifidum (type species), Bifidobacterium 

boum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium 

choerinum, Bifidobacterium coryneforme, Bifidobacterium cuniculi, Bifidobacterium 

dentium, Bifidobacterium gallicum, Bifidobacterium gallinarum, Bifidobacterium 

indicum, Bifidobacterium longum, Bifidobacterium magnum, Bifidobacterium 

merycicum, Bifidobacterium minimum, Bifidobacterium pseudocatenulatum, 

Bifidobacterium pseudolongum (with the two subspecies B. pseudolongum subsp. 

pseudolongum and B. pseudolongum subsp. globosum), Bifidobacterium 

psychraerophilum, Bifidobacterium pullorum, Bifidobacterium ruminantium, 

Bifidobacterium saeculare, Bifidobacterium scardovii, Bifidobacterium subtile, 

Bifidobacterium thermacidophilum (with the two subspecies B. thermacidophilum 

subsp. thermacidophilum and B. thermacidophilum subsp. porcinum), and 

Bifidobacterium thermophilum. 
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5.3 Bifidobacterial population in the infant gut 

The intestinal microbiota of breast-fed newborns is predominantly composed by 

bifidobacteria. In particular the most abundant Bifidobacterium species isolated from 

newborns gut are: B. breve, B. longum subsp. infantis and  B. longum subsp. longum. B. 

catenulatum, B. pseudocatenulatum, B. bifidum, B. dentium have also been isolated 

from infant gut but they are not the dominant species (Biavati et al., 1984). However 

standard infant formula seems to give a more adult-like microbiota at the level of 

Bifidobacterium species such as lower level of B. breve  and higher level of B. 

catenulatum.  

In addition formula-fed newborns can be colonized by B. adolescentis from the mothers 

(Haarman and Knol, 2005). Furthermore, several studies reported differences in the 

levels of Bifidobacterium species between allergic and nonallergic infants with a more 

adult-like microbiota in allergic infants (He, 2001, Ouwehand et al., 2001). 

 

5.4  Identification at the species level of the Bifidobacterium strains 

Since some strains of the genus Bifidobacterium have been used for clinic and 

therapeutic purposes, and due to the growing industrial importance, it has become 

increasingly important to establish a precise classification scheme for the increasing 

number of bifidobacterial species. 

The classical procedures for the identification of Bifidobacterium are based on 

cultivation-method approaches.  The morphology  can help  in the identification at the 

genus level, but is not sufficient to recognize bifidobacterial species.  However, one of 

the more practical approaches to the primary differentiation of bifidobacteria from 

related groups is based on identification by gas chromatography of the fermentation 

products, among which acetic acid generally predominates over lactic acid as the main 

final product. The most direct and reliable assignment of bacterial strains to the 

Bifidobacterium genus is based upon the demonstration, in cellular extract, of the 

presence of fructose-6-phosphase phosphoketolase, the key enzyme of bifidobacterial 

hexose metabolism. 

During the last decade the development of  molecular approach as based on sequence 

comparisons of DNA or RNA has provided a profound modification in the 

identification methodologies, moreover the availability of several whole genome 
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sequences has allowed significant progress in the identification of these bacteria and 

permitted various classification adjustments. In the past decades DNA-DNA 

hybridization methods were used to determine the belonging to a bacterial species, 

however this method is time-consuming and sometimes the results achived are 

questionable. During past years, therefore, the molecolar tools with regards to 

identification and classification methods were based on 16S rRNA gene as a molecular 

marker for deducing phylogeny in bacteria. The majority of the molecular tools for the 

identification of bifidobacterial species such as Amplified rDNA Restriction Analysis 

(ARDRA) (Ventura et al., 2001a), specie-specific primers (Matzuki et al., 1999, 

Ventura et al., 2001b) and denaturing gradient gel electrophoresis (DGGE) (Favier et al 

., 2002) are all based on 16S rRNA sequence. 

However, some bifidobacterial taxa have a very high degree  of similarity or even 

possess identical 16S rRNA gene sequences such as Bifidobacterium animalis subsp. 

animalis and Bifidobacterium animalis subsp. lactis, Bifidobacterium longum subsp. 

longum and Bifidobacterium longum subsp. infantis, Bifidobacterium catenulatum and 

Bifidobacterium pseudocatenulatum. To this end, new molecular approaches have been 

developed to ride over these taxonomic difficulties. In recent year, alternative genomic 

sequences have been used as molecular markers for the identification of bifidobacteria, 

such as groEL (Jian et al., 2001), recA and tuf (Ventura and Zink, 2003), atpD (Ventura 

et al., 2004), dnaK and grpE (Ventura et al., 2005a). Evolutionary study using single 

genes are popular because they allow quick and unequivocal results, however there are 

not still a complete sequence database for such genes. The criterion used to select new 

potential genes are not only their conservation in the genome they should not be 

susceptible to horizontal transfer events, G+C skew, dinucleotide frequency and codon 

usage analyses. The above-mentioned genes have been already used to investigate the 

phylogeny of bifidobacterial species and for each gene a tree was calculated in order to 

evaluate the overall compatibility between the different trees. Generally, these genes 

tested showed a discriminatory power as compared with the 16S rRNA gene, however, 

single gene tree may not adeguately reflect phylogenetic  relationships, because of the 

possibility of horizontal transfer events; consequently a phylogenetic tree using 

multigene conconcatenation approach reveals an increase discriminatory power and a 

most reliable picture of evolutionary relationships (Ventura et al 2006b). 
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Another technique wich allow phylogenetic and typing characterization of 

Bifidobacterium strains is the internal transcribed spacer (ITS) sequence analysis. 

Recently it was demonstrate that ampliflied ribosomal DNA restriction had powerful 

potential in the discrimination of various bifidobacteria to the species level. 

Enterobacterial Repetitive Intergenic consensus (ERIC)-PCR involves the use of 

oligonucleotides targeting short repetitive sequences dispersed throughout various 

bacterial genomes. Their location in bacterial genomes allows a discrimination at the 

genus, species and strain level based on their amplification pattern fingerprinting. This 

molecular approaches for a identification of bifidobacterial species was carried out by 

Ventura et al., 2003. This ERIC-PCR approach generated specie specific patterns for all 

investigated species of Bifidobacterium. This technique is a rapid, reproducible, and 

easy-to-handle molecular tool to enable highly specific detection and identification of 

bifidobacterial species within a mix of other bifidobacteria or in pure culture 

concentrates..  

ERIC-PCR can be a very useful tool in the rapid detection of various bifidobacterial 

species in commercial products since it does not require any bacterial cultivation step. 

So far, ERIC-PCR approach is evaluated for directly tracing bifidobacteria in dairy 

products or in infant formulae containing only bifidobacteria and not for any other 

microorganisms without any purification steps.  
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Chapter 6. Prebiotics 
 

6.1 The prebiotic capacity of different oligosaccharide compounds 

Prebiotics are nondigestible food ingredients that beneficially affect the host by 

selectively stimulating the growth and/or activity of one or a limited number of bacteria 

in the colon (Gibson and Roberfroid, 1995). For a dietary substrate to be classed as a 

prebiotic, at least three criteria are required: (1) the substrate must not be hydrolyzed or 

absorbed in the stomach or small intestine, (2) it must be selective for beneficial 

commensal bacteria in the large intestine such as the bifidobacteria, (3) fermentation of 

the substrate should induce beneficial luminal/systemic effects within the host 

(Scantlebury-Manning and Gibson, 2004). The effects of dietary fiber on upper and 

lower gastrointestinal tract are shown in Table 5. One of the strongest health benefits 

proposed for prebiotics is the amplification of the resistance against invading 

gastrointestinal pathogens that is directly linked to the selective stimulation of probiotic 

microorganisms (Gibson et al., 2004). The consumption of prebiotics has also been 

associated to the reduction of the serum lipid concentration, throught a mechanisms 

involving modulation of hepatic lipogenesis probably by short chain acids adsorbtion 

from the gut. Furthermore some fructooligosaccharides have been linked to stimulate 

adsorption and retention of several minerals and to improved mineralization of bone, 

particularly magnesium, calcium and iron. 

Most identified prebiotics are carbohydrates and oligosaccharides normally occurring in 

human and animal diet, with different molecular structures; dietary carbohydrates such 

as fibers, are candidate prebiotics, but most promising are non-digestible 

oligosaccharides (NDOs). NDOs which meet the critical point of the definition are 

fructooligosaccharides (FOS, oligofructose, inulin), galactooligosaccharides (GOS) or 

transgalactooligosaccharides (TOS), and lactulose; however a large number of other 

NDOs, to which less rigorous studies have been so far applied are gluco-

oligosaccharides, glycololigosaccharides, lactitol, isomaltooligosaccharides, 

maltooligosaccharides xylooligosaccharides, stachyose, raffinose, and sucrose 

oligosaccharides ( Patterson and Burkholder, 2003). Furthermore recent studies 

demonstrated the increasing interest in the capability of arabinogalactans and partially 

hydrolysed guar gum (PHGG) to stimulate the colonic growth of bifidobacteria and 
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lactobacilli. Arabinogalactans are water-soluble polysaccharides found in plants, fungi 

and bacteria and the dietary intake of this compound comes from carrots, radishes, 

tomatoes, pears and wheat. Arabinogalactans derived from the larch tree are 

commercially available as fiber ingredients and they are considered as nondigestible  

soluble dietary fibers.   

PHGG is a soluble fiber produced from the seed of guar bean that completely dissolves 

in water and is fermented in the colon liberating SCFAs. Chemically, guar gum is a 

polysaccharide composed of the sugars galactose and mannose (galactomannan) (Alam 

et al., 2000).  

Table 5 Intestinal functions assigned to prebiotics. 

Dietary fibers and gastrointestinal functions 

Effect on upper GI 

tract 

Resistance to digestion 

Retarded gastric emptying 

  

Increased oro-caecal transit time 

Reduced glucose absorption and low glycaemic index 

Hyperplasia of the small intestinal epithelium 

Stimulation of secretion of intestinal hormonal peptides  

Acting as food for colonic microbiota 

Acting as substrates for colonic fermentation 

Production of fermentation end products (mainlt SCFAs) 

Stimulation of saccharolytic fermentation 

Effect on lower GI 

tract 

Acidification of the colonic content 

Hyperplasia of the colonic epithelium 

  

Stimulation of secretion of colonic hormonal peptides 

Bulking effect on stool production 

Regularization of stool production (frequency and consistence) 

Acceleration of caeco-anal transit 

 

6.2  FOS, fructooligosaccharides 

FOS are natural food ingredients commonly found in varying percentages in dietary 

foods. They are present in > 36.000 plant species. The number of monosaccharides 

present in the molecule varies from 3 to 10. They are present as storage carbohydrates, 
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together with inulin, in a number of vegetables and plants including wheat, onion, 

bananas, garlic and chicory. These oligosaccharides are manufactured by two different 

general methods, which result in slightly different end products. In the first method they 

are produced from the disaccharide sucrose using the transfructosylation activity of the 

enzyme β-fructofuranosidase (or fructosyltransferase). The second method is instead the 

controlled enzymatic hydrolysis of the polysaccharide inulin. 

For what concern the synthesis of FOS from sucrose, the enzyme source can be divided 

into two classes: one comprehends plants such as asparagus, sugar beet, onion, 

Jerusalem artichoke etc.; the other consists of enzymes of bacterial and fungal origins 

such as Aspergillus spp., Aureobasidium spp., Arthrobacter spp., Fusarium spp.. The 

production yield of FOS using enzymes originated from plants is low and mass 

production of enzyme is limited by seasonal condition, therefore industrial production 

depends chiefly on fungal enzymes from either Aureobasidium spp. or A. niger. 

Moreover these enzymes are more stable than those of plants. 

For the production, a high concentration of the substrate (sucrose) is required for 

efficient reaction. The FOS formed in this process contain between two and four 

β(1→2)-linked fructosyl units linked to a terminal α-D-glucose residue. The 

oligosaccharides are named: 1-kestose (GF2, glucose-fructose2), 1-nystose (GF3) and 

1F-fructosylnystose (GF4) (Figure 6). 

FOS, together with inulin, are the most studied and well established prebiotics. It has 

been demonstrated that intake of FOS reduces significantly the count of Bacteroides 

spp. and clostridia. The increase in bifidobacteria is accompanied with other beneficial 

effects such as: modulation of intestinal functions, increase of stool weight, decrease of 

faecal pH (probably linked to the suppression of the production of putrefactive 

substances in the colon), modulation of cholesterol levels and modulation of mineral 

metabolism (Roberfroid, 2005). 
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Figure 6 General structure of sucrose derived FOS. 

6.3 Inulin 

Inulin is a polydisperse β(1→2) fructan. A glucose molecules typically resides at the 

end of each fructose chain and is linked by an α (1→2) bond to sucrose, but this is not 

necessary. Different fructans compounds are included under the same nomenclature, 

and they are both a mixture of oligomers and polymers that are characterized by a 

different degree of polymerization (DP). The chain lengths of these fructans range from 

2 to 60 units with the average DP ~ 10. The unique aspect of the structure of inulin is its 

β(1→2) bonds. These linkages prevent inulin from being digested like a typical 

carbohydrate and are responsible for its reduced caloric value and dietary fiber effects.  

The DP of inulin and the presence of branches are important properties that influence its 

functionality strikingly There is a strict distinction between inulin of plant and bacterial 

origin. The DP of plant inulin is low (DP < 60) in respect of bacterial inulin and varies 

according to the plant species. Moreover plant inulin are considered to be linear 

molecules with a very small degree of branching (1-2%). O the contrary bacterial inulin 

has a DP that varies from 10,000 up to 100,000 and it is highly branched (15%). 

Inulin is present in significant amounts in several fruits and vegetables that have been 

analyzed, and in different plant species there is a great diversity of inulin types. 

Inulin content ranges from less than 1 up to some 20% of fresh weight. In banana, for 

example, 100% of oligomers have a DP< 5, but in salsify (Tragonopon porrifolius), 

75% have a DP ≥5. In onion, DP ranges from 2 to 12, in chicory it ranges from 2 to 65, 

in globe artichoke 96% have a DP> 5 and 87% of polymers have a DP≥40. 



  41 

Inulin, with different chain lengths, is fermented at different rates according to their DP. 

Inulin with a low DP is fermented in the proximal part of the colon. Its intensive 

fermentation modifies drastically the composition of the intestinal microbiota 

(bifidogenic effect) in the more proximal part of the large intestine. The long chain 

inulin (HP-inulin), on the other hand, which is fermentedat a slower rate, is able to 

reach more distal parts of the colon. In this part of the intestine, easily fermented 

carbohydrates are scarce, so bacterial catabolism shifts towards proteolysis, which 

results in the production of toxic putrefactive products. HP-inulin is able to reduce the 

proteolytic activity in favour of a beneficial saccharolytic activity in the distal parts of 

the colon. 

Several experiments have demonstrated the increase of Bifidobacterium population after 

inulin intake in the gastrointestinal tract and also the growth of certain lactobacilli. 

Bifidobacteria have an inducible β-fructofuranosidase enzyme able to hydrolyse the 

β(2,1) glycosidic linkages between the fructose moieties (Rossi et al., 2005, Kolida and 

Gibson, 2007). 

 

6.4 GOS, galactooligosaccharides 

GOS are manufactured from lactose using the transgalactosylase activity of β-

galactosidase. They are therefore often referred as transgalactosylated oligosaccharides 

(TOS). This enzyme is a hydrolase enzyme and works by transferring galactose from 

lactose to water. Under condition of high lactose concentration, the enzyme utilises 

lactose as an alternative acceptor to water resulting in the formation of 

galactooligosaccharides. A variety of enzyme reactor configurations based upon free or 

immobilised β-galactosidases have been used to produce these NDOs (Rastall and 

Gibson, 2002). 

The transgalactosylation reaction leads to the formation of a mixture of oligosaccharides 

varying from DP 3 to DP 6 (DP, degree of polymerisation), with the average containing 

3-4 sugar moieties. The general structure of TOSs is: β-D-gal-(1→6)-[β-D-gal]n-

(1→4)-α-D-glu (Figure 7). 
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Figure 7 Chemical structure of galactooligosaccharides 

 

The linkages between the galactose units, the efficiency of transgalactosylation, and the 

components in the final products depend on the enzymes and the conditions of the 

reaction. Using β-galactosidases derived from Bacillus circulans or Cryptococcus 

laurentii, the glycoside bonds between two galactose units are mainly β(1→4) bonds 

(4’-GOS). While using enzymes from Aspergillus oryzae or Streptococcus thermophilus 

glycoside bonds are mainly β(1→6) (6’-GOS). In standardized large scale production 

using the enzyme from B. circulans, more than 55% of the lactose is converted to GOS.  

The lactose used as substrate for GOS production is usually purified from cow’s milk 

whey. The main products are trisaccharides, namely 4’- or 6’-galactosyllactose and also 

longer oligos (≥ 4 units).  

The indigestibility of GOS in vivo has been demonstrated, GOS resists digestion and 

absorption in the small intestine and reaches the caecum and colon, where they are 

fermented by the colonic bacteria. 4’-Galactosyllactose is selectively utilized by all the 

Bifidobacterium strains tested compared with lactulose and raffinose whose specificity 

is less remarkable. But also strains of other genera are able to use GOS, such as strains 

of Lactobacillus and Bacteroides. However, the utilisation of NDOs by bifidobacteria is 

usually mediated by the hydrolyzing enzymes they produce, and many strains produce 

glycolytic enzymes which hydrolyze a wide variety of monosaccharide units and 

different glycoside bonds. Other enteric bacteria, on the contrary, have enzymatic 

activities that are less varied and with a weaker activity (Sako et al., 1999). In vitro 

fermentations with human faecal or rat caecal microbiota indicate that GOS increases 
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the production of acetate and propionate. Follow on studies have addressed the 

galactooligosaccharides in respect to GOS fermentation by pure batch cultures. It has 

been demonstrated that these carbohydrates are readily fermentable by bifidobacteria, 

some but not all strains of Bacteroides, lactobacilli and Enterobacteriaceae but not by 

eubacteria, fusobacteria, clostridia, and most strains of streptococci (Gibson and 

Roberfroid, 1999).  

GOS have demonstrated positive effects on calcium absorption and have prevented 

bone loss in some animal research. In preliminary studies, GOS have shown some 

ability to lower triglyceride levels. GOS are now used as sweeteners by themselves, 

especially in fermented milk products, breads, jams, etc. For example GOS in bread are 

not broken down by yeasts and render the bread excellent in taste and texture. 

Fermented milk products containing probiotic bacteria with added GOS are 

commercially available in Japan and in Europe. Baby foods are promising fields of 

application of GOS. 

 

6.5 Human milk oligosaccharides: the prebiotic effect of human milk 

The characteristic composition of the intestinal microbiota of breast-fed neonates is in 

part due to the presence of oligosaccharides (HMO) in human milk. These HMO are 

resistant to digestive processes and thereby reach the colon, where they exert a prebiotic 

effect. Cow’s milk, which is commonly used in the preparation of infant milk formulas, 

and human milk have significant differences.  

HMO are one of the most important component in human milk, in contrast, these 

oligosaccharides are present only in small amounts in cow’s milk. HMO are synthesized 

in the mammary gland by the action of specific glycosyltransferase by the sequential 

addition of monosaccharide units to the lactose molecule; the monosaccharides building 

blocks are glucose, galactose, N-acetylglucosammine, fucose and sialic acid (Figure 8). 

Over the years the prebiotic effect of HMO has been confirmed and in vitro 

fermentation studies clearly demonstrated that bifidogenic effect of maternal milk is 

mainly due to the “non protein fraction” and that HMO have a pivotal role in 

stimulating the selective development of bifidobacteria (Ward et al., 2006).  In this 

study, it has been demonstrated that B. infantis is able to use HMO as a sole source of 

carbon and energy and this is  the confirmation that bifidobacteria can utilize complex 
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carbohydrates such as HMO. Recent studies focused on the molecular mechanisms 

underlying the promotion of human milk to specific development of intestinal 

bifidobacterial community, the identification of genes expressed by B. breve strains, 

upon HMO stimulation, rapresented the preliminary insight to understand the molecular 

mechanisms governing the initial stages of bacterial colonization in newborns (Turroni 

et al., 2011). Although some papers reported the isolation of bifidobacteria from human 

milk (Martin et al., 2003), an alternative hypothesis is that bifidobacteria are introduced 

into human milk throught newborn-mother contacts. 

Another characteristic substance of human milk is lactoferrin which is the most 

abundant protein, on the contrary it is present only in traces in cow’s milk. A small 

percentage of lactoferrin (about  6% to 10%) is extimated not to be digested by breast-

fed infants, it could consequently reach the colon and play a role as a prebiotic. The 

availability of bovine lactoferrin has made it possible to add lactoferrin to infant 

formulas and to study the effect of feeding such formulas to infants.  Recent studies 

have been found that lactoferrin appears to exert a prebiotic effect but an addition of 

lactoferrin in formula has a little effect on the newborn fecal microbiota (Coppa and 

Gabrielli, 2008). 

Other groups of substances studied for their possible prebiotic role are nucleotides. 

Human milk contains high concentrations of preformed nucleotides, whereas cow’s 

milk is usually devoid of such compounds. 

Some studies have also suggested a prebiotic role for lactose as it has been 

demonstrated that lactose reaching the colon stimulates the growth of bifidobacteria, 

although the amount of ingested lactose reaching a neonate’s colon is very low, 

(Szilagyi et al., 2002). Is it also true that a certain amount of lactose could remain after 

the fermentation by the intestinal microbiota and could be metabolized by bifidobacteria 

(Parche et al., 2006). In particular, studies have demonstrated that B. longum  exhibits a 

preferential metabolic pathway for the use of lactose. In addition, bifidobacteria possess 

several homologous genes encoding enzymes which are involved in the metabolism and 

transport of numerous sugars.  

In conclusion, within the complex mechanism that regulate the development of the 

intestinal microbiota, the ability to utilize complex carbohydrates is believed to exert an 

important influence on the development of specific bacteria strains over others; in the 
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GIT of breast-fed neonates, the relationship between HMO and the development of 

bifidobacteria represents a typical example of this situation. 

 

 

 

Figure 8 Chemical structure of human milk oligosaccharides 
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Chapter 7. Molecular approaches to study the gut microbiota 
 

7.1 Different molecular methods for studying  the microbiota 

It is now generally accepted in microbial ecology that cultivation-based approaches 

provide an incomplete picture of microbial diversity in the gastrointestinal tract because 

only a minority of microbes can be obtained in culture. Therefore the application of 

molecular approaches, especially those focused on 16S ribosomal RNA sequence 

diversity, have become popular as they enable researchers to bypass the cultivation step. 

These approaches have provided considerable information about microbial ecosystems, 

including the GI tract (Zoetendal et al., 2004). 

Studies on human microbiota, by both culture based (Harmsen et al., 1999, Marteau et 

al., 2001), and culture-independent (Haarman and Knol., 2004, Penders et al., 2006, 

Scanlan et al., 2008) methods, have indicated that this environment is dominated by 

obligate anaerobes, but a diverse range of species have been detected. The traditional 

culture-based methods of assessing mammalian gastrointestinal tract community 

structure are extremely laborious, and it has been estimated that only 10–60% of total 

bacteria from this environment are able to be cultured. 

Non-culture methods for assessing gut microbial ecology (reviewed in Zoetendal et al., 

2004), such as the construction and analysis of 16S rDNA clone libraries (Wang et al., 

2005), for example, have been instrumental in the discovery of new intestinal bacterial 

groups. Molecular indices of diversity, such as the community fingerprinting tools 

DGGE (Favier et al., 2002), T-RFLP (Sakamoto, 2004), have also provided insight into 

human gut microbial ecology. Although these procedures have proved useful for 

detecting community structure shifts, with the exception of fluorescent in situ 

hybridization- based studies (Kalliomäki et al., 2008), they have the drawback that they 

are typically not quantitative. Real-time PCR, on the contrary, can be quantitative as the 

number of target gene copies in DNA directly extracted from an environmental sample 

can be determined. Using group-specific primer sets, the abundance of a particular gene 

marker for a defined group in the community can be estimated by comparison to a 

standard curve (Penders et al., 2005). 
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7. 2  Real-time PCR 

In real-time or quantitative PCR a targeted DNA molecule is simultaneously amplified 

and quantified. Two common methods for detection of products in q-PCR are the use of 

fluorescent dyes that intercalate with ds DNA fragment and the use of fluorescently 

labelled oligonucleotides. By observing the point where the fluorescence crosses a 

threshold level, or crossing point value or Cp value (depending on the equipment, also 

known as a Ct value), a cycle number can be acquired for samples with different initial 

DNA concentrations. If the initial concentration is high, the threshold level will be 

crossed earlier than when the initial concentration is low (Figure 9). By measuring the 

Ct value for samples with known concentrations, standard curves can be made that can 

then be used for absolute quantification. The standard curve that is created prior to 

quantification of unknown samples gives important information about two parameters. 

First, it shows the detection window, or the range over which data points can be 

acquired. It is, however, important to notice that a linear relationship is used for 

quantification, and that sometimes not all points (especially at the window borders) fit a 

linear relationship (figure 6.2). That is why a distinction can be made between the 

detection window (i.e., the window over which detection is obtained) and the linear 

range of amplification (i.e., the window over which a linear relationship of the standard 

curve can be obtained). The second parameter that can be derived from the standard 

curve is the amplification efficiency (AE) through the following equation: AE = (10
(–

1/slope)
) – 1. When the theoretical optimum of a target doubling in each cycle is reached, 

the slope of the standard curve will be –3.32 and the value of AE will be 1.00. The AE 

can be used in several ways. First of all, deviations from the optimal value of 1.00 

indicate that the PCR is not performing optimally, either because of inhibition or 

because of a suboptimal PCR setup. Therefore, the AE is an excellent tool with which to 

perform PCR optimization. Unfortunately, there seems to be no consensus yet in the 

scientific community about the correct way to analyze quantitative data and to create 

standard curves for real-time PCR. Most published data show standard curves 

constructed of one data set  whereas others analyze and use multiple data sets to 

calculate the AE (Wolffs and Rådström, 2006). 
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Figure 9  Schematic overview of the generation of a standard curve used for real-time 

quantitative PCR (Walffs and Rådström, 2006). 

Two different approaches are possible in real-time PCR: nonspecific fluorescent dyes 

and labeled probes. 

The standard method for nonspecific real-time detection of PCR amplicons is use of 

fluorescent double-stranded (ds)DNA intercalating dyes such as SYBR Green™ I or 

SYBR Gold™. Both of these commercial dyes are DNA minor groove binding dyes that 

fluoresce after interacting with dsDNA (Figure 10).  

 

Figure10  Interaction of SybrGreen intercalating dye with double-stranded DNA and 

subsequent fluorescence under appropriate wavelength. The interaction is not sequence-

specific. 
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Most real-time PCR instruments are programmed to read near the emission and 

excitation wavelength spectrum of SYBR Green™ (495 and 537 nm, respectively). This 

dye is very light sensitive, degrading quickly following dilution to working 

concentrations, but when fully active, allow the user to obtain real time fluorescence 

emission data (relative fluorescence units on the y-axis of a plot) as a function of cycle 

number on the x-axis. Since relative fluorescence units for each sample are plotted 

during the exponential phase of amplification, results are quantitative and thus useful 

for determining copy number and genome equivalents from template DNA obtained 

from different complex matrixes such as food and fecal samples. SYBR Green™ I has 

been used as an alternative to ethidium bromide for staining DNA in agarose gels, but it 

is also useful for real-time PCR detection assays, such as quantification of pathogen in 

humans, animal and food products. Due to the logistical difficulty in optimizing real 

time-PCR assays, the approach has limited potential for large-scale applications, 

particularly in light of many of the real-time chemistries. In addition to simply 

quantitative detection of target pathogenic or spoilage bacteria in foods, intercalating 

dyes such as SYBR Green™ I allow the system to discriminate among amplicons in a 

multiplex PCR reaction by using melt curve analysis. The melt curve analysis allows 

also to detect non-specific amplification, such as primer-dimers. This approach consists 

in a slow and continual heating to 95°C while monitoring fluorescence over time. Since 

each amplicon of a varying length and/or GC content will melt at a slightly different 

temperature, fluorescence will decrease incrementally according to the population of 

products in the reaction tube (Figure 11).  

 

Figure 11 Example of a melting curve and its derivative. 
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A diverse array of fluorescently labeled probes are in use clinically and industrially for 

sequence-specific detection of target DNA or RNA. The primary category of these 

involves fluorescence resonance energy transfer (FRET) between a specific fluorophore 

and a quencher group. Perhaps the most widely used FRET conjugate pair for real-time 

PCR assays includes the fluorophore FAM (fluorescein) and the quencher 

tetramethylrhodamine (TAMRA). The resonance energy from the fluorophore is passed 

to the appropriate quenching moiety, and if in close proximity (as described below for 

specific primer and probe regimes), generates low levels, if any, detectable fluorescence 

as measured by a PCR cycler with fluorimeter capabilities. If separated or alone in 

solution, the fluorophore will not be quenched and the resonance energy will be emitted 

as a detectable fluorescent signal at the appropriate wavelength. Depending on the 

format of the PCR assay, the signal generated will be directly correlated with the 

amount of target DNA present or amplicon concentration. Regardless of the specific 

means in which the fluorophore/ quenching pair is applied, the basis remains the same, 

and includes the added advantage of sequence specificity that dsDNA intercalating dyes 

do not offer. One of the earliest uses for the FRET-based probe approach was the 5’-

nuclease (TaqMan) assay, first described as a radioisotopic system, but soon modified 

to be based on fluorogenics. The 5’-nuclease activity incorporates a target gene-specific 

primer set and a dual-labeled probe that will hybridize to a region on one of the template 

strands within the primer annealing sites. During the extension phase of a PCR cycle, 

the 5’-3’ exonuclease activity of Taq-polymerase will cleave the 5’ fluorophore from 

the terminal end of the hybridized probe, separating it from the quenching moiety, 

eliciting fluorescence at a specific wavelength (Figure 12). Depending on the 

instrument being used for real-time detection, the investigator may choose to use 

multiple TaqMan primer and probe combinations in the same reaction tube for 

multiplexing, with each being detected in a unique optical channel at the respective 

wavelength.  

http://en.wikipedia.org/wiki/Rhodamine
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Figure 12 Mechanism of TaqMan 5’ nuclease assay for real-time detection of PCR 

products using FRET-labeled probe internal to the sequence-specific primers. R denotes 

the reporter dye while Q represents the quenching moiety. 
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PART 2: AIM OF THE WORK 

Bifidobacteria are the major components of the microbiota of infants fed exclusively 

with breast milk and are commensal bacteria of the large intestine of humans and 

animals. They are widely used as probiotics for therapeutic purposes considering their 

capabilities of colonizing the gastrointestinal tract and their long history of safe-use. 

Recent results evidenced that probiotics may be also useful for the treatment of minor 

gastrointestinal problems of newborns such as colics the daily administration of L 

.reuteri DSM 17938 in early breastfed infants was found to improve symptoms of 

infantile colics (Savino et al., 2010).  No studies have been presented up to know on the 

possibility of using Bifidobacterium spp. strains for this enteric disorder, although, 

differently from Lactobacillus spp., Bifidobacterium spp. systemic infections upon 

administration in infants have never been reported. 

The aim of this research was the selection of probiotic strains belonging to the 

Bifidobacterium genus to be used on newborns for the treatment of enteric disorders 

with a special attention on colics. The selection of the strains has been done among 46 

Bifidobacterium strains, mainly deriving from human faeces, considering their 

capability of inhibiting the growth of pathogens typical of the newborn gastrointestinal 

tract and  the evaluation of the basic safety properties according to the EFSA guidelines. 

In addition, a study performed in collaboration with the University of Maribor has 

evaluated in vitro the cytotoxic effect of the selected strains and their ability to adhere to 

non tumorigenic gut epithelial cell lines; the capability of the selected strains of 

stimulating the metabolic activity and the immune response of gut cells has also been 

examined. The formulation of a synbiotic product with an appropriate prebiotic fiber 

capable of supporting the growth of the selected Bifidobacterium strains was also 

considered in this study. The last phase of the work has been dedicated to the evaluation 

of the gut microbial diversity in newborns whose mothers has been subjected to 

antibiotic therapy a few hours before the delivery because of a Streptococcus type B 

infection. These newborns can represent a possible target for the probiotic strains 

selected in this work. 
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PART 3: MATERIALS AND METHODS 

 

Chapter 8. Study design  

 

 

A design of the whole study is preseted in this scheme. The work performed can be 

divided into three sections:  

 Probiotic selection, described in chapter 9 and chapter 12 for Material and  

Methods abd results, respectively (Selection and characterization of 

Bifidobacterium strains); 

 Prebiotic selection, described in chapter 10 and chapter 13 (Evaluation of the 

most effective prebiotic fiber); 

 Possible target evaluation, described in Chapter 11 and chapter 14 (Evaluation 

of the effects of intrapartum antibiotic prophylaxis on newborn microbiota). 
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Chapter 9. Selection and characterization of Bifidobacterium 

strains 
 

9.1 Bifidobacterium strains and culture conditions 

46 strains of Bifidobacterium spp. were included in this study; the majority of them 

derives from infant faeces and belong to five different species (B. bifidum, B. breve, B. 

longum subsp. infantis, B. longum subsp. longum, B. adolescentis e B. 

pseudocatenulatum) (Figure 5). 

 In table 6 are reported all the Bifidobacterium strains and their original habitat. Forty-

two of them were obtained from the Bologna University Scardovi Collection of 

Bifidobacteria (BUSCoB), available at the University of Bologna, whereas 4 were from 

the American Type Culture Collection (ATCC 15697, ATCC 15707, ATCC 15708,  

ATCC 27917). Thirty-six of the BUSCoB strains have been previously characterized 

with phenotypic analyses and by means of the electrophoretic pattern of transaldolase 

and 6-phosphogluconic dehydrogenase (Scardovi et al., 1979). The remaining 6 strains 

(B7710, B7740, B7840, B7947, B7958, B8452) were isolated from preterm newborn 

faeces and characterized as members of the Bifidobacterium genus by means of 

phenotypic analyses and the fructose 6-phosphate phosphoketolase assay  (unpublished 

results). Bifidobacterium strains were cultivated in Tryptone, Peptone, Yeast extract 

medium (TPY prepared according to Biavati and Mattarelli 2006, see table 7) and 

incubated at 37 °C  under anaerobic conditions using an anaerobic atmosphere 

generation system (Anaerocult A, Merck, Darmstadt, Germany).  

 

Table 6 List of the 46 Bifidobacterium spp. strains used in this study and their original 

habitat    

Species  Strain   origin 

   

B. bifidum B1968 infant feces 

B. bifidum B2009 infant feces 

B. bifidum B2531 infant feces 

 B. bifidum B2091 infant feces 

B. breve B2274 infant feces 

 B. breve B2021  infant feces 

 B. breve B632 infant feces 

B. breve B1501 infant feces 

B. breve B2150 infant feces 
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B. breve B2142 infant feces 

B. breve B2228 infant feces 

B. breve B626 infant feces 

B. breve B633 infant feces 

B. breve B2136 infant feces 

 B. breve B2023 infant feces 

B. breve B2195 infant feces 

B. breve B2210 infant feces 

B.longum subsp. infantis B1412a infant feces 

B.longum subsp. infantis B651 infant feces 

B.longum subsp. infantis B1915 infant feces 

B.longum subsp. infantis B1860 infant feces 

 B.longum subsp. infantis Re 6 infant feces 

B.longum subsp. longum B1629 infant feces 

 B.longum subsp. longum Re11 infant feces 

 B.longum subsp. longum Re12 infant feces 

B.longum subsp. longum B2101 infant feces 

B.longum subsp. longum B1975 infant feces 

B.longum subsp. longum B1482 infant feces 

B.longum subsp. longum B2327 infant feces 

B.longum subsp. longum B2212 infant feces 

B.longum subsp. longum B2192 infant feces 

 B.longum subsp. longum B2055 infant feces 

B.longum subsp. longum B1993 infant feces 

B.longum subsp. longum B1996 infant feces 

B. adolescentis B7311 adult feces 

B. adolescentis B7162 adult feces 

B. pseudocatenulatum  B1279 infant feces 

Bifidobacterium spp  B1391 infant feces 

Bifidobacterium spp B2529 infant feces 

Bifidobacterium spp B3225 infant feces 

Bifidobacterium spp B7710 pre-term newborn feces 

Bifidobacterium spp B7740 pre-term newborn feces 

Bifidobacterium spp B7840b pre-term newborn feces 

Bifidobacterium spp B7947c pre-term newborn feces 

Bifidobacterium spp B7958d pre-term newborn feces 

Bifidobacterium spp B8452e pre-term newborn feces 

 

 a  strain identified as  B .longum subsp. longum within this work. 

b  strain identified as  B .breve within this work. 

c  strain identified as  B. breve within this work. 

d  strain identified as  B.longum subsp. longum within this work. 

e  strain identified as  B. pseudocatenulatum within this work. 
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Figure 14 Bifidobacterium species predominat in infant microbiota 

 

                

Table 7 Composition of TPY broth  

 

  TPY                                                                  g/l                         

Tryptone                                                             10.0 g                                  

Pepton                                                                  5.0 g                       

Glucose                                                              15.0 g                           

Yeast extract                                                        2.5 g                                

K2HPO4                                                                       1.5 g                        

MgCl2.6H2O                                                        0.5 g                            

Cistein-HCl                                                         0.5 g                                   

Tween 80                                                            0.5 g                               

pH                                                                       6.5    
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9.2 Antagonistic strains (potentially pathogenic) and culture conditions 

The strains used as antagonistic microorganisms were: E.coli ATCC 11105, S. 

enteriditis M94 strain  and C. difficile M216 strain (both isolated from hospitalized 

patients and available at BuSCoB), C. jejuni CIP 70.2
T
 (from the Collection de l’Institut 

Pasteur, Paris, France) and two gas-forming coliforms isolated from faeces of colicky 

infants, Klebsiella pneumoniae GC6a strain and Enterobacter cloacae GC23a (Savino 

et al. 2011). The E. coli, S. enteriditis, K. pneumonie and E. cloacae strains were 

cultivated in Nutrient Broth (NB) (Oxoid, ltd., Basingstoke, Hampshire, England) 

aerobically at 37°C. C. difficile M216 strain was grown in Brain Heart Broth (Merck) 

and incubated under anaerobic condition at 37°C; C. jejuni CIP 70.2
T
 strain were grown 

on Nutrient agar (Oxoid, Ltd., Basingstoke, Hampshire, England) containing 5% sheep 

blood at 42 °C under microaerophilic atmosphere (5% O2, 10% CO2, 85% N2) generated 

by using the CampyGen Atmosphere Generation System (Oxoid, Ltd., Basingstoke, 

Hampshire, England) in anaerobic jars for 24-48 hours. Thereafter, one colony of 

Campylobacter was transferred into NB (Nutrient broth) (Oxoid, Ltd., Basingstoke, 

Hampshire, England) supplemented
 
with 5 % of Laked Horse Blood (Oxoid, Ltd., 

Basingstoke, Hampshire, England), kept under microaerophilic conditions for 48 hours 

at 42 °C and then used for the experiment.  

The identification of E.coli ATTC 11105, E. clocae GC6a, K. pneumoniae GC23a and 

S. enteriditis M94 were confirmed using BBL Enterotube ™ II (BD, NJ, USA). In table 

8 are reported all the antagonistic strains used in this work and their original habitat. 

 

Table 8 List of the 6 antagonistic strains used in this study and their original habitat 

Species  Strain   origin 

   

Escherichia coli ATCC 11105™ collection strain (unknown origin) 

Salmonella enteriditis M94 hospitalized patient  

Clostridium difficile M216 hospitalized patient 

Campylobacter jejuni CIP 70.2™ bovine feces 

Enterobacter cloacae GC6a colicky infant feces 

 Klebsiella pneumoniae GC 23a colicky infant feces 
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9.3 In vitro inhibition of antagonistic strains   

 9.3.1 Agar spot test using living cells 

To assess the antimicrobial activity of Bifidobacterium spp. strains against selected 

bacteria (E.coli ATCC 11105, S. enteriditis M94, K. pneumoniae GC23a strain and E. 

cloacae GC 6a were used for all the 46 strains, whereas C. jejuni CIP 70.2
T
 and C. 

difficile M216 only for 16 selected strains) the protocol described by Santini et al. 

(2010) was employed.  TPY agar was poured in petri dishes. 10µl of each 

Bifidobacterium o.n. culture, having a absorbance at 600 nm (A600) of approximately 

0.7-1, corrisponding to the exponential phase of the growth, were spotted onto 

appropriate agar plate and, once dried, the plates were incubated in anaerobic conditions 

for 24-48 hours at 37°C.  

Subsequently, the plates were overlaid with 10 ml of nutrient broth 0.7% of agar, 

containing 100 μl  of each antagonistic cell suspension having A600 of 0.1. The petri 

were incubated for 24 hours at different conditions depending on the antagonistic strain 

used and the inhibition areas were measured 5 μl of acetic acid  (1 M) was used as a 

positive control and sterile TPY broth at pH 6.5 were used as a negative control. 

Each assay was performed in triplicate. 

 

9.3.2 Antimicrobial activity of Bifidobacterium spp. culture supernatants 

This assay was performed with the 16 strains showing the most interesting antimicrobial 

activity in the previously described assay and, as a negative control, a Bifidobacterium 

strain not showing any antagonistic activity in the spot agar assay (B7710). Cell-free 

supernatants were obtained by centrifuging TPY bifidobacteria o.n. cultures (15000 x g, 

20 min at 4 °C) followed by filtration through a 0.22 μm pore-size cellulose acetate 

filter. An aliquot of the supernatant was adjusted to pH 7. The antagonist strains used in 

this assay were: E.coli ATCC 11105, S. enteriditis M94, K. pneumoniae GC23a and E. 

cloacae GC23a.  The antagonistic strains were grown in NB until the A600 of 0.9 and 

used to inoculate 96-well plates. Each well contained: 100 µl of double concentrated 

NB, 25 or 50 µl of Bifidobacterium spp. cell-free supernatant (both neutralized and non-

neutralized), corresponding to a v/v percentage of 12.5 and 25, respectively, and water 

to 200 µl  of total volume. 1 % v/v  inoculum of the antagonistic strain was added. 



  59 

Posive controls were prepared by using 50 µl of fresh NB without any supernatants. The 

96-well plates were incubated aerobically at 37 °C for 22 h; A620 was periodically 

evaluated in a multiwell plate spectrophotomer (Multiskan, Thermo Electron, Oy, 

Vaanta, Finland). 

 

9.4 Genetic typing of the strains  

9.4.1 Enterobacterial Repetitive Intergenic Consensus PCR  (ERIC-PCR) 

Total DNA was extracted from 10 ml of  overnight pure cultures and purified using 

Wizard Genomic DNA purification kit (Promega, Madison, WI, USA). ERIC-PCR 

patterns of Bifidobacterium strains were obtained following the procedure described by 

Ventura et al. (2003). Primers ERIC-1 (5’ATGTAAGCTCCTGGGGATTCAC-3’) and 

ERIC -2 (5’AAGTAAGTGACTGGGGTGAGCG-3’) were used. The 20 µl reaction 

mixture contained 10 µl of HotStart Taq Plus Master Mix Kit (Qiagen, West Sussex, 

UK), 1µM of each primer, 1.5mM MgCl2 (Qiagen). PCR reactions were run in a Veriti 

Thermal Cycler (Applied Biosystem, Foster City, CA, USA). The reference strains used 

in this study were: B. pseudocatenulatum ATCC 27917
T
, B. catenulatum ATCC 

27539
T
, B. breve ATCC 15700

T
, B. bifidum DSM 20456

T
, B. longum subsp. longum 

ATCC 15707
T
, and B. longum subsp. infantis ATCC 15697

T
.  

 

9.4.2 PCR with genus-specific and specie-specific primers 

Bifidobacterium genus-specific PCR was performed on total DNA using 16S rDNA-

targeted primers Bif64-f (GGGTGGTAATGCCGGATG) and Bif662-r 

(CCACCGTTACACCGGGAA) (Satokari et al. 2001).  Species identification was 

carried out using species-specific PCR primers described by Matsuki et al. (1999).  

PCR was carried out in a total volume of 25 l of reaction mixture containing 10 mM of 

Tris-HCl (pH 8.3), 50 mM of KCl, 2.5 mM of MgCl2 (Applied Biosystems, Foster City, 

Ca), 200 M each dNTP (Fermentas GmbH, St. Leon-Rot, Germany) 25 M of each 

primer (see table 9) , 0.45 U of Taq DNA polymerase (Fermentas) and 1 l of template 

DNA. The PCR amplification program consisted of one cycle of 94 °C for 5 minutes, 

then 35 cycles of 94 °C for 20 seconds, 55 °C for 20 seconds, and 72 °C for 30 seconds, 

and finally one cycle of 72 °C for 5 minutes. Amplifications were carried out with a 

DNA thermocycler ((Biometra, Göttingen, Germany). The amplification products were 
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then separated by electrophoresis in 1.5% (w/v) agarose gel and ethidium bromide (0.5 

g/ml) staining was performed to observe the presence of bands under UV 

transillumination (Bio-Rad) and photographed. A positive control was performed by 

using DNA from type strains from our collection and the negative control was 

performed by using water instead of DNA.  

 

 

Table 9 Primer sets used for identification of Bifidobacterium strains 

Microorganism 

target 

Primer Sequence (5’-3’) Amplicon 

lengh(bp) 

Bifidobacterium  BiADO-1 CTCCAGTTGGATGCATGTC 279 

adolescentis BiADO-2 CGAAGGCTTGCTCCCAGT  

Bifidobacterium  BiBIF-1 CCACATGATCGCATGTGATTG 278 

bifidum BiBIF-2 CCGAAGGCTTGCTCCCAA  

Bifidobacterium breve BiBRE-1 CCGGATGCTCCATCACAC 288 

 BiBRE-2 ACAAAGTGCCTTGCTCCCT  

Bifidobacterium  BiCATg-1 CGGATGCTCCGACTCCT 285 

catenulatum group BiCATg-2 CGAAGGCTTGCTCCCGAT  

Bifidobacterium  BiLON-1 TTCCAGTTGATCGCATGGTC 831 

longum BiLON-2 GGGAAGCCGTATCTCTACGA  

Bifidobacterium  BiINF-1 TTCCAGTTGATCGCATGGTC 828 

infantis BiINF-1 GGAAACCCCATCTCTGGGAT  

 

9.5 Antibiotic resistance profiles 

9.5.1 Minimal inhibitory concentration (MIC)  

MIC for 12 antibiotics was determined with the microdiluition  assay in TPY broth for 

the 16 Bifidobacterium strains showing the highest antimicrobial activity. 12 antibiotics 

were selected for this analysis, 8 of which were suggested in the most recent EFSA 

guidelines (EFSA, 2008), i.e. tetracycline, cefuroxime, kanamycin, 

chloramphenicol,vancomycin, ampycillin, streptomycin and erythromycin (Sigma-

Aldrich, Milan, Italy) whereas other 4 were examined considering their wide use in 

infant therapy (cefuroxime, amoxicillin, ceftriaxone and clarithromycin) (Sigma-

Aldrich). All antibiotic solutions were diluted in distilled water or DMSO or water with 

Ethanol to prepare stock solution and then additionally diluted with water to final 

concentration of 2, 4, 8, 16, 32, 64, 128, 256 and 512 μg/ml for the antibiotic resistance 
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assay. All these dilutions were sterilized by microfiltration with 0,22 μm pore size filter 

(Millipore, Carrigtwohill, Ireland) before use.  

The assay was performed in 96 well plates. In each well we added 20 μl of appropriate 

dilution of antibiotic, 160 μl of fresh TPY broth and 20 μl of overnight bacterial 

suspension previously diluted 1:9 in fresh TPY broth to obtain 10
6
 CFU/ml. The 

number of tested bacteria was additionally determined by measuring the optical density 

(OD) at 620 nm and through the  use of a standard McFarland standards. The positive 

control in assay was a mixture of bacterial suspension (20 μl), broth (160 μl) and the 

solvent used to prepare antibiotic (20 μl) (with no antibiotic), and the negative control 

was a mixture of bacterial suspension in water. Two additional controls were included; 

mixture of water, broth and antibiotic solution and broth only. Growth or inhibition of 

the strains was determined by measuring the A620 at regular time intervals for a total 

incubation of 24h at 37°C. 

Minimal inhibitory concentration (MIC) is defined as the lowest concentration of 

antibiotic giving a complete inhibition of visible growth in comparison to an antibiotic 

free control well and was measured by reading optical density at 620 nm.  

 

9.5.2 Screening of resistance genes  

The presence of known antibiotic resistance genes was determined  by PCR reaction 

using specific primers (see table 10): aph (3’’)-I, aph (3’’)-II, aph (3’’)-III coding for 

kanamycin and neomicine resistance genes (Ouoba et al. 2008), aadA, aadE, ermA 

coding for streptomycin and erythromycin resistance genes (Ouoba et al. 2008), tet(M), 

tet(O), tet(W) coding for tetracycline resistance genes (Masco et al. 2006) and blaCTX-

M-g1, blaCTX-M-g2, coding for ß-lactam and resistance genes (Van Hoek et al. 2008). 

The following amplification program was used: 95 °C for 5 min, 35 cycle of 95°C for 1 

min,  45-64°C (depending on annealing temperature of each primer), 72°C for 1 min 

and a final extension step at 72°C for 10 min. L.casei L9 was used as positive control 

for aph(3’’)-III, aadA, aadE genes whereas B. adolescentis DSM 20087 was used as 

positive control for Tet (W) gene. PCR products were separated by electrophoresis on 

1,5% agarose gel. 
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Table 10 Primer sets evaluated for identification of antibiotic resistence genes 

Antibiotic target Primer Sequence (5’-3’) References 

Kanamycin,  aph(3’’)-IF AACGTCTTGCTCGAGGCCGCG Ouoba, 2008 

neomicine aph(3’’)-IR GGCAAGATCCTGGTATCGGTCTGCG  

Kanamycin,  aph (3’’)-IIF GCTATTCGGCTATGACTGGGC Ouoba, 2008 

neomicine aph (3’’)-IIR CCACCATGATATTCGGCAAGC  

Kanamycin,  aph (3’’)-IIIF GCCGATGTGGATTGCGAAAA Ouoba, 2008 

neomicine aph (3’’)-IIIR GCTTGATCCCCAGTAAGTCA  

Streptomycin aadA-F ATCCTTCGGCGCGATTTTG Ouoba, 2008 

 aadA-R GCAGCGCAATGACATTCTTG  

Streptomycin aadE-F ATGGAATTATTCCCACCTGA Ouoba, 2008 
 aadE-R TCAAAACCCCTATTAAAGCC  

Erythromycin ermA-F AAGCGGTAAAACCCCTCTGAG Ouoba, 2008 

 ermA-R TCAAAGCCTGTCGGAATTGG  

Tetracycline tet(M)-F GTTAAATAGTGTTCTTGG AG Masco, 2006 

 tet(M)-R CTAAGATATGGCTCTAACAA  

Tetracycline tet(O)-F GATGGCATACAGGCACAGAC Masco, 2006 

 tet(O)-R CAATATCACCAGAGCAGGCT  

Tetracycline tet(W)-F GAGAGCCTGCTATATGCCAGC Masco, 2006 

 tet(W)-R GGGCGTATCCACAATGTTAAC  

ß-lactam blaCTX-M-g1F GTACAGCAAAAACTTGCCG Van hoek,  

 blaCTX-M-g1R CTTTCACTTTTCTTCAGC 2008 

ß-lactam blaCTX-M-g2F CGCTGCATGCGCAGGCG Van hoek,  

 blaCTX-M-g2R GCAAAACGTTCATCGGCACG 2008 
 

 

 

 

9.5.3 Plasmid detection 

Pure Yield Plasmid Miniprep System kit (Promega) was used to extract and purified 

plasmid DNA from  the 16 Bifidobacterium strains showing the highest antimicrobial 

activity. B. longum B2399, which was known to possess two plasmids (Sgorbati et 

al.1982), was used as positive control for plasmid DNA extraction. Plasmids were 

separated after electrophoresis on a 0.7% agarose gel during 3.5 h at 100V and 

visualized in ethidium bromide staining. 

 

9.5.4 Evaluation of the transferability of the antibiotic resistance traits 

4 Bifidobacterium strains (B632, B1975, B2274, B7840) were used as donor strains, 

whereas  Bifidobacterium animalis ATCC 27536, B. longum subsp. suis PCD733B 

(Santini et al. 2010), 3 Bifidobacterium strains from this study (B1412, B7840, B632), 

Lactobacillus plantarum PCS22 (Nissen et al., 2009), and Enterococcus faecium 

PCD71 (Santini et al., 2010) were used as recipient strains. Bifidobacterium strains were 
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grown overnight as already described, whereas lactic acid bacteria were grown in MRS 

(DeMan-Rogosa Sharpe) broth (Merck, Darmstadt, Germany) at 37°C in anaerobic or 

aerobic conditions.  

The transferability of the antibiotic resistance traits was assayed following the protocols 

of Lampkowska et al. (2008) and Ouoba et al. (2008). Donor and recipient strains were 

cultivated separately to mid exponential growth phase in liquid medium with 

appropriate antibiotics, and then mixed in 1:1 ratio in a final volume of 200 µl. The 

mixture was inoculated into 10 ml of TPY broth (which permits the growth of both 

donor and recipient strains) anaerobically for 24 h at 37 °C. At the end of incubation 

time, cells were harvested by centrifugation (10 min at 6,000 rpm), resuspended in 1 ml 

of PBS and plated on donor- and recipient-selective agar plates and on selection plates, 

i.e. plates in which only the growth of recipient strains having acquired the antibiotic 

resistance can occur.  The same selection plates were also used to estimate the 

frequency of spontaneous mutations in the recipient strain. To counter select lactic acid 

bacteria having acquired antibiotic resistance from bifidobacteria, the selection plates 

were incubated in aerobic conditions. A scheme of the experiments, including the 

conditions for the selection of the recipients strains, is presented in table 11.  
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Table 11  Evaluation of the transferability of the antibiotic resistance traits from B. 

breve B632, B2274 and B7840 and B. longum B1975 to selected recipient strains 
 

Donor strain Antibiotic resistance 

assayed* 

Recipient 

strain(s) 

Selection plates 

B632 Ampicillin 

(blaCTX-M-g1) 

ATCC 27536        TPY+ AMP  + TET 

 

Ampicillin PCS22        MRS + AMP + aerobiosis** 
Kanamycin B1412        TPY+ KAN  + AMO 

Streptomycin B7840        TPY+ STR  + TET 

    

B1975 

 

Ampicillin 

(blaCTX-M-g1) 

ATCC 27536        TPY+ AMP  + TET 

 

Ampicillin PCS22        MRS + AMP + aerobiosis 

Kanamycin 

(aph (3’’)III) 

B1412        TPY+ KAN  + STR 

Amoxicillin 

(blaCTX-M-g1) 

PCD71        MRS + AMP + aerobiosis 

    

B2274 

 

Ampicillin PCS22        MRS + AMP + aerobiosis 

Tetracycline 
(tetW) 

PCD71        MRS + TET + aerobiosis 

Kanamycin B1412        TPY + KAN + TRIM 

Streptomycin B7840        TPY+ STR  + KAN 

Amoxicillin 

Amoxicillin 

B632 

PCD71 

       TPY+ AMO + TRIM 

       MRS + AMO + aerobiosis 

    

B7840 

 

Ampicillin 

(blaCTX-M-g1) 

Ampicillin 

PCD733B 

 

PCS22 

       TPY+ AMP  + STR 

 

       MRS + AMP + aerobiosis 

Tetracycline 

(tetW) 

Tetracycline 

     B632 

 

 PCD71 

       TPY+ TET  + STR 

 

       MRS + TET + aerobiosis 
Kanamycin B1412        TPY+ KAN  + STR 

Amoxicillin (blaCTX-M-

g1) 

Amoxicillin 

     B632 

 

PCD71 

       TPY+ AMO + STR 

 

       MRS + AMO + aerobiosis 

* the resistance genes indicated in brackets has been identified by PCR  

** plates were incubated in aerobic conditions to allow the growth only of lactic acid bacteria 

 

AMO = amoxicillin, AMP = ampicillin, CEFT = ceftriaxone, CEFU = cefuroxime, CHL = 

chloramphenicol, CLA = clarithromycin, ERY = erythromycin, KAN = kanamycin, GEN = gentamycin, 

STR = streptomycin, TET = tetracyclin, TRIM = Trimethoprim, VAN = vancomycin, 
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9.6 In vitro interaction between Bifidobacterium strains and human 

cells 
 

9.6.1 Growth and maintenance of cell line   

The following cell lines were used: small intestinal human epithelial cell line H4 

(Figure 15A), derived from human foetal tissue and supplied by Massachusetts General 

Hospital (Prof. W.A. Walker) , and human blood monocytes/macrophages, referred to 

as TLT (Figure 15B) cell line, established in the laboratory of Prof. A. Cencič, Maribor, 

Slovenia  (Cencič and Langerholc, 2010). Cell were routinely grown in Dulbecco 

Modified Essential Medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS), L-glutamine (2mmol/L), penicillin (100 U/ml) and streptomycin (1 mg/ml) . 

Cells were cultured in flasks or Petri dishes in an incubator with 5% CO2 at 37 °C. To 

perform biological assays the cells were seeded in 96 well plates at the concentration of 

1×10
6
 viable cells/ml, as determined by 0.1% trypan blue viability staining, and 

incubated for 24 h at 37°C in humidified atmosphere of 5% CO2. The assays described 

below were performed with the 16 Bifibobacterium strains showing the highest 

antagonistic activity against the bacteria assayed; they were grown in TPY, harvested by 

centrifugation at 2000 g for 10 min and suspended in DMEM to final concentrations of 

1×10
8
 CFU/ml. When cell monolayers in 96-well plates were obtained, the strains of 

Bifidobacterium were inoculated in each well at the concentration of 10
7 

CFU/ml. In 

most of the assays described the well known probiotic strain Lactobacillus rhamnosus 

GG (LGG) was used to compare the results obtained. All reagents used for these assays 

were purchased from Sigma-Aldrich. 

 

 

Figure 15 H4 (A) and TLT (B) human cell lines (image kindly provided by Department 

of Microbiology, Biochemistry and Biotechnology, Faculty of Medicine, University of 

Maribor, Slovenia) 
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9.6.2 Cytotoxicity assays 

Cytoxicity activity of Bifidobacterium spp. strains on cell monolayer of H4 and TLT 

cell lines was assayed. Bifidobacterium strains were inoculated in the wells at the 

concentration of 10
7 

CFU/ml and plates were then incubated under anaerobic conditions 

at 37°C for 90 minutes, after which free bacteria were eliminated by washing the cell 

layers three time with phosphate-buffered saline (PBS). 100 µl of DMEM without 

phenol red and antibiotics and supplemented only with L-glutamine was added to each 

well, and plates were incubated for 24 hours. Cell viability was measured with crystal 

violet staining, measuring absorbance at 595 nm (A595), and the value obtained was 

compared to the A595 obtained in non treated cells (i.e. cells not exposed to probiotics). 

 

9.6.3 Adhesion  assay 

The capability of selected Bifidobacterium strains of adhering to H4 and TLT cell lines 

was assayed. The cell monolayers were washed with PBS and probiotic strains were 

applied to the wells to have a concentration of 9.4 LOG(CFU/sqm). Plates were 

incubated for 90 minutes at 37 °C. Subsequently, the monolayers were washed three 

times with PBS, then cells with adherent bacteria were harvested with trypsin and the 

number of bacteria adhering to the cell lines was counted. Results of attached bacteria 

cells were expressed as % of adherent bacterial cells compared to initial inoculum. 

 

 9.6.4 Mitochondrial activity assay  

The metabolic activity of H4 and TLT cell lines after exposure to Bifidobacterium 

strains was measured by evaluation of their mitochondrial function as index of cell 

viability (Bergamini et al.,1992; Ivec et al., 2007). Bacterial pellet was resuspended in 

DMEM without phenol red and supplements. After 90 minutes of bacterial exposure to 

cell monolayers, cells were washed and reincubated for 24 hours at 37 °C in a 

humidified atmosphere of 5% CO2. A solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) in DMEM was added to each well and incubated 

for 75 minutes. Solubilization of MTT reduction product (i.e. formazan) was achieved 

by addiction of 0.04% HCl in isopropanol; solubilized formazan was evaluated at A650. 

Results are expressed as: (A650 of treated wells - A650 of untreated wells)/ A650 of 

untreated wells  100.  
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9.6.5 Determination of Reactive Oxygen species (ROS): NO, H2O2 

To measure the amount of NO and H2O2 released by H4 and TLT cells in the presence 

of probiotics, bacterial pellets were resuspended in DMEM supplemented with only L-

glutamine and added to confluent monolayers of H4 and TLT cells. After 90 minutes of 

bacterial treatment, monolayers were washed and reincubated for 24 hours at 37 °C in a 

humidified atmosphere of 5% CO2. The NO concentration was determinated by 

measuring the accumulation of nitrate using a modified Griess reagent (Sigma), 

according to the Griess reaction (Green et al., 1982, Ivec et al. 2007; Pipenbaher et al., 

2009). The release of H2O2 was determined by transferring 50 µl of supernatant into a 

96-well plate and adding 50 µl of 0.01% peroxidase and 100 µl of tetramethylbenzidine 

(TMB) solution (diluted in water 1:1). Absorbance was measured at 450 nm after 15 

minutes of incubation at room temperature. Constitutive H2O2 production by 

bifidobacteria was evaluated by incubating bifidobacteria in DMEM; the amount of 

H2O2 produced by bifidobacteria was subtracted from the amount produced by the cells.  

 

9.6.6 Dot-blot for interleukin 6 

Interleukin-6 (IL-6) in supernatants of H4 and TLT cells after probiotc treatment was 

detected using the dot-blot technique as described by Ivec et al. (2007). Supernatants 

were blotted onto nitrocellulose membrane (Pierce, Rockford, USA) under gravity with 

a Bio-Rad Dot Blot apparatus (Bio-Rad Laboratoires, Hercules, USA). Membrane was 

incubated with the primary antibody, a rabbit anti-human IL-6 (Sigma) and with a 

secondary antibody (an anti IgG horseradish peroxidise-conjugated antibody). Proteins 

were visualised with the supersignal West Pico chemioluminescent substrate system 

(Pierce) and BiomaxMR-1 film (Sigma Kodak, USA). Supernatants of monolayers not 

treated with bacteria were used as negative control, whereas L. casei Shirota and LGG 

were used as positive controls. To avoid false positive results, all samples were evenly 

tested against the sole secondary antibody. 

 



  68 

9.7 Experimental design, statistical analysis and strain selection 

criteria 

For the different trials the adopted experimental scheme was a fully randomised design. 

All the tests were performed in triplicate. Data on spot agar tests, cytotoxicity assay, 

adhesion test, mitochondrial activity test  and ROS (NO, H2O2) production were 

subjected to one way analysis of variance (ANOVA) by using the GLM procedure of 

the SAS statistical package. Means were subjected to Fisher’s test (SAS, 1988). When 

treatments were significant according to Fisher’s test, corresponding means were 

differentiated by the SNK multiple range test at the 0.05 level of probability.  

The correspondence analysis (CA) was applied to the fingerprinting pattern obtained 

from ERIC-PCR of Bifidobacterium reference strains and investigated strains. CA is a 

statistical method for visualising the association between levels of a two-way 

contingency table (Benzecri 1992). Banding profiles were scored as presence/absence of 

individual fragments in each investigated strain. The contingency table was analyzed by 

CA module of Statistica Software (ver. 7.1, StatSoft, Tulsa, Oklahoma, USA). Plotting 

the first two dimensions of the coordinates of cases (ERIC-PCR bands) and variables 

(strains) gave a global view of the correspondence among reference and investigated 

strains, and band patterns. The first and second dimensions explained 34 and 28% of the 

total variability, respectively. 

A first strain selection was based on antimicrobial activity against E.coli, S. enteriditis, 

K. pneumoniae and E. cloacae allowing the choice of the 16 best performing strains out 

of the original 46 strains. Among the 16 strains, four bifidobacteria were selected on the 

basis of a synthetic index, calculated as follows: the outputs of different analyses (spot 

agar tests, antibiotic resistance or sensitivity assay, cytotoxicity test, adhesion assay, 

mitochondrial dehydrogenase activity, NO and H2O2 production) were transformed into 

relative percentages by giving the 100 value to the strain showing the best performance 

in each test. A correction factor of 0.5 was given to the mitochondrial dehydrogenase 

activity, NO and H2O2 production tests, in order to give more importance to the other 

parameters which are defined in the EFSA guidelines (EFSA, 2005).  IL-6 production 

was not considered in this evaluation as it is not a quantitative test. These procedures 

allowed to select 4 strains which were checked for the transferability of the antibiotic 

resistance traits to other gut bacteria and were then deposited to the DSMZ culture 

collection. 
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Chapter 10. Evaluation of the most effective prebiotic fiber 
 

10.1 Prebiotic activity assay 

The ability of the 4 selected Bifidobacterium strains (B632, B1975, B2274, B7840) to 

use as the sole carbon source and energy source different polisaccharide fibers was 

investigated (Table 12). 

The assay was performed by adding 2% (v/v) of an overnight-incubated culture (A620 

0.7) of each Bifidobacterium strain to separate tubes containing a modified TPY broth 

(i.e. containing half the concentration of tryptone, peptone and yeast extract) 

supplemented with 1% (w/v) glucose or 1% (w/v) prebiotic fiber as the sole carbon 

source. To confirm that negligible growth occurred from use of indigenous carbon 

sources present in the base medium, strains were also grown on base medium with no 

added carbon source. The assay was performed in 96 well plates, and the bacterial 

growth  was determined by measuring the A620 nm after 0, 6, 24, 30 and 48 h of 

incubation at 37°C in anaerobic atmosphere. In addition, overnight cultures of coliforms 

of gut origin, i.e. E. coli ATCC25645, K. pneumoniae GC 23a and E. cloacae GC 6a 

were mixed in a 1:1:1 ratio (A620 0.1) (referred to as enteric mixture), then added at 2% 

(v/v) to separate tubes containing M9 medium (Eisenstadt et al., 1994) with 1% (w/v) 

glucose or 1% (w/v) prebiotic fiber. The cultures were incubated at 37°C under 

anaerobic conditions, and the bacterial growth  was determined by measuring A620 nm 

at the same incubation time and incubation conditions of bifidobacteria. Each assay was 

replicated three times. 

The growth curves for Bifidobacterium strains, for each enteric microrganism and for 

enteric mix grown in the presence of tested prebiotic fibers were generated by plotting 

the mean number of A620 versus incubation time (0, 6, 24 and 48 h).  

The prebiotic activity score was determined by a modification of the formula described 

in Huebner et al. (2007) as follows: 

= {(A620 nm of probiotics strain on the prebiotic at 24 h – A620 nm of probiotics strain 

on the prebiotic at 0 h)/ A620 nm of probiotics strain on glucose at 24 h – A620 nm of 

probiotics strain on the glucose at 0 h)} – {( A620 nm of enteric mixture on the 

prebiotic at 24 h – A620 nm of enteric mixture on the prebiotic at 0 h)/ (A620 nm 

enteric mixture on glucose at 24 h – A620 nm of enteric mixture on the glucose at 0 h)} 
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Table 12  List of prebiotic fibers used to evaluate the capability of stimulating 

bifidobacteria growth. 
 

Carbohydrate type Composition 

and DP 

(where 

available) 

 

Acronim 

Commercial 

name 

Provider 

Fructooligosaccharide f-nistose 11.3%, 

nistose 42.5%, 

l-ketose 43.1%, 

saccarose 2.4 % 

DP 2 to 5 

Actilight Actilight 950P1 

 

Beghin-Meiji, 

Francia 

Fructooligosaccharide DP < 8 FOS FOS Probiotical SpA 
Novara, Italy 

Inulin DP 9 to 12 Frutafit Frutafit2 Sensus, 

Netherlands 

Inulin  inulin 86% 

sugars 14 % 

DP < 10 

Beneo Beneo HSI3 Orafti, Belgium 

 oligofructose enriched inulin 

(patented blend of inulin and 

oligofructose) 

oligofructose 

92% 

sugars 8 % 

 DP N/A 

Synergy Raftilose  

Synergy 13 

Orafti, Belgium 

Inulin inulin 100% 

DP > 23 
Raftiline Raftiline HP3  Orafti, Belgium 

Galactooligosaccharide GOS 59% 

Lactose 21% 

Glucose 19% 

Galactose 1% 

Vivinal Vivinal GOS4 

 

Borculodomo,  

Netherlands 

Galactooligosaccharide GOS 
DP N/A 

CUP-Oligo CUP-Oligo5 Azelis SpA, 
Milano, Italy 

α-glucooligosaccharide DP>3 BioEcolians BioEcolians6 

 

Solabia group, 

Pantin Cedex, 

France 

Arabinogalactan 

(Larix occidentalis fiber) 

Arabinogalactan 

 

Larch fiber Arabinex 7 

 

Thorne research, 

Dover, USA 

Partially hydrolysed guar 

gum (PHGG) 

PHGG Benefibra Benefibra8 Novartis Pharma 

Spa, Origgio  

(Va), Italy 
 

More information about the products are available online at the following websites: 
1
  www.beghin-meiji.com/actilight 

2   
www.sensus.us

 

3
  www.orafti.com 

4
  www.vivinalgos.com 

5
  www.kowa-europe.com/food/ 

6
  www.solabia.fr/Solabia/SolabiaNutrition.nsf/ 

7 
 thorne.com/Products 

8  
www.benefibra.it 
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Chapter 11.  Evaluation of the effects of intrapartum antibiotic 

prophylaxis on newborn microbiota  
 

11.1 Newborn study design and sample collection 

From October 2011 to January 2012, a study with 31 newborns was carried out aimed at 

evaluating the effect on the gut microbiota after antibiotic administration to their mother 

every 4 hours before the delivery. 14 infants were born by mothers resulted negative to 

Group B Streptococcus (GBS) and 17 infants by mothers, positive to GBS and treated 

with 2g of ampicillin. 

All the subjects were recruited from the Neonatal Intensive Care Unit of the University 

of Bologna (Sant’Orsola Hospital) led by Dr. Luigi Corvaglia. Further inclusion criteria 

were: infants aged between 6-7 days, with a regular birth weight. Only infants born by 

natural delivery and breastfed were enrolled in order to reduce variability in the 

intestinal microbiota consequent to diet and delivery (Penders et al., 2006).  

About 200 g faeces were collected for each subject. Each sample was stored at 80°C, 

immediately after collection, in a numbered screw-capped plastic container, until they 

were processed for DNA extraction. 

 

11.2 DNA extraction from faecal samples 

DNA extraction from faecal samples was performed with QIAamp DNA Stool Mini Kit 

[Qiagen, Cat. No. 51504]. DNA purity and concentration was evaluated with a 

spectrophotometer (Beckman coulter, DU
®
730). Extracted DNA was stored at -20°C. 

 

11.3 Real-Time PCR assays 

The assays were performed with a 20 μl PCR amplification mixture containing 10 μl of 

Fast SYBR
®

 Green Master Mix (Applied Biosystems), optimized concentrations of 

primers (table 13a-b), H2O molecular grade and 2 μl DNA extracted from faecal 

samples at a concentration of 2.5 ng/μl for all the assay except C. difficile 

quantification. For C. difficile quantification DNA extracted from faecal samples was 

not diluted. The primer concentrations were optimized through primer optimization 

matrices in a 48-well plate and evaluating the best Ct/Rn ratio. The data obtained are 
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then transformed to obtain the number of bacterial Log cells/g faeces according with the 

rRNA copy number available at the rRNA copy number database (Table 13c) 

(Klappenbach et al., 2001; Lee et al., 2009). Equations and coefficients of 

determination for the different assays are reported in table 13d.  

Data of microbial counts were  subjected to one-way analisys of variance in order to 

evidence significant differences between treated and control group odf newborns. 

 

Table 13a  Primer sets used for identification of Bifidobacterium strains 

Microorganism 

target 

Primer Sequence (5’-3’) Amplicon 

lengh(bp) 

Refences 

Escherichia coli Eco-F GTTAATACCTTTGCTCATTGA 340 Malinen, 2003 
 Eco-R ACCAGGGTATCTAATCCTGTT   

Clostridium  Cdiff-F TTGAGCGATTTACTTCGGTAAAGA 114 Penders, 2006 

difficile Cdiff-R TGTACTGGCTCACCTTTGATATTCA   

Bifidobacterium  BiTOT-F TCGCGTCYGGTGTGAAAG 243 Rinttilä, 2004 

spp. BiTOT-R CCACATCCAGCRTCCAC   

Lactobacillus  Lac-F GCAGCAGTAGGGAATCTTCCA 349 Castillo, 2006 

spp Lac-R GCATTYCACCGCTACACATG   

Bacteroides  Bfra-F CGGAGGATCCGAGCGTTA 92 Penders, 2006 

fragilis group Bfra-R CCGCAAACTTTCACAACTGACTTA   

 

 

 

Table 13b Cycles and primers concentration for qPCR using SybrGreen chemistry 

 
  

Taget Bacteria 

Initial 

denaturation Denaturation 

Annealing 

temperature 

(°C) N. cycles Fw  Rev 

E.coli             

Eco-F/Eco-R 95°C – 20sec 95°C - 3 sec 60°C - 30 sec 40 400 nM 400 nM 

C.difficile             

Cdiff-F/Cdiff-R 95°C – 20sec 95°C - 3 sec 60°C - 30 sec 40 250 nM 250 nM 

Bifidobacterium spp.             

BifTOT-F/BifTOT-R 95°C – 20sec 95°C - 3 sec 60°C - 35sec 40 200 nM 300 nM 

Lactobacillus spp.             

Lac-F/Lac-R 95°C – 20sec 95°C - 3 sec 63.5°C - 30 sec 40 200 nM 200 nM 

B.fragilis group             

Bfra-F/Bfra-R 95°C – 20sec 95°C - 3 sec 60°C - 30 sec 40 300 nM 300 nM 
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Table 13c 16S rDNA copy number of different genera and species 

 

Genus- Species Targets Primer Targets 

Gene copy 

number mean* 

E.coli 16S rDNA 7 

C.difficile 16S rDNA 9,5 

Bifidobacterium spp. 16S rDNA 3,57 

Lactobacillus spp. 16S rDNA 5,71 

B.fragilis group 16S rDNA 6 

* (Klappenbach et al., 2001; Lee et al., 2009)  

 

 

 

 

Table 13d  qPCR equations and R
2 

for the different assay 

 

Target Equation R
2
 

Lactobacillus spp. Ct= -3.666x + 39.31 0,998 

Bifidobacterium spp. Ct= -3.579x + 39.615 0.998 

Bacteroides fragilis group. Ct= -3.925x + 47.69 0.995 

Escherichia coli Ct= -3.617x + 44.434 0.999 

Clostridium difficile Ct= -3.386x + 38.556 0.989 
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PART 4: RESULTS 

Chapter 12. Selection and characterization of Bifidobacterium 

strains 
 

12.1 Antimicrobial activity with the spot agar test  

The antimicrobial activity with the spot agar test was evaluated  measuring the radius of 

the target strain’s inhibition halo that surrounds the Bifidobacterium spot. The results 

obtained with the 46 Bifidobacterium strains against E. coli, E. cloacae,  K. pneumoniae 

and S. enteriditis evidenced antimicrobial activity to varying degrees (Table 14 ). An 

example of the halos obtained is shown in Figure 16, three strains (B2531, Re11, 

B7710) did not show any inhibition halo against all the indicator strains, 27 strains 

showed inhibition halo’s radius not higher than 0.5 cm, whereas 14 strains (Re12, 

B632, B1412, B1975, B2021, B2055, B2091, B2101, B2150, B2192, B2195, B2274, 

B7840, B7958) showed inhibition halo’s radius lower than 0.5 cm against all strains, 

including the two gas-forming coliforms isolated from colicky infants. The elaboration 

of the results with the ANOVA test allowed to indicate these 14 strains as the most 

performing; however, we decided to include two more strains (B7947 and B8452) for 

further studies considering their hight  anti-microbial activity against E. coli, which is 

the most abundant coliform in the infant gut, and their potential interest as pre-term 

isolated strains.  

These 16 strains were then assayed against C. jejuni and C. difficile as antagonistic 

microorganisms. The results obtained (Table 15) evidenced that all Bifidobacterium 

strains except for B2101 were capable of inhibiting both antagonistic microorganisms. 

Among them, 8 strains (B632, B1412, B1975, B2055, B2192,  B2274, B7840, B8452) 

showed a marked activity against the two pathogens.  
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Figure 16 Spot agar test of 3 Bifidobacterium strains (B632, B2055, B8452) against E. 

Coli (ATCC 11105™). 

Table 14 Evaluation of antimicrobial activity of 46 Bifidobacterium strains against 4 antagonistic 
strains (E. coli, E. cloacae,  K.  pneumoniae and S. enetriditis) expressed as average radius (in cm) of 

the  inhibition halos obtained on TPY plates in the agar spot test. The average of the values obtained for 

each Bifidobacterium strain is presented in the right column; mean values followed by different letters 

(in brackets) are statistically different at P<0.001. 
 

Strain   Antimicrobial activity  

 E. coli ATCC  

11105 

E. cloacae 

GC 6a 

 K. pneumoniae 

GC 23a 

   S. enteriditis 

M 94 

Average inhibition 

radius (cm) 

B1968 0.2 0.3 0.2 0.2 0.22(gh) 

B2009 0.4 0.4 0.3 0.4 0.37(eh) 

B2531 0 0 0 0              0 (h) 

B2091 0.6 0.6 0.6 0.7 0.62(bg) 

B2274 0.8 1 1 1.3 1.02(ab) 

B2021 0.6 0.9 0.9 1 0.85(ae) 

B632 1.2 0.8 0.9 1.2 1.02(ab) 

B1501 0.5 0.1 0.2 0.1 0.22(gh) 

B2150 0.6 1 0.8 1 0.85(ae) 

B2142 0.4 0.4 0.5 0.5 0.45(dh) 

B2228 0.2 0.3 0.1 0.2 0.20(gh) 

B626 0.1 0.3 0.1 0.3 0.20(gh) 

B633 0.2 0.2 0.1 0 0.12(gh) 

B2136 0.4 0.3 0.3 0.6 0.40(dh) 

B2023 0.7 0.2 0.2 0.7 0.45(dh) 

B2195 0.5 0.9 0.7 1.1 0.80(af) 

B2210 0.2 0.3 0.1 0 0.15(gh) 

B1412 1.2 1.3 0.9 1              1.10(a) 

B651 0.1 0.2 0.1 0.3 0.17(gh) 

B1915 0.1 0.2 0.1 0.3 0.17(gh) 

B1860 1.1 0.1 0.3 0 0.37(eh) 
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Strain   Antimicrobial activity  
 E. coli ATCC  

11105 

E. cloacae 

GC 6a 

 K. pneumoniae 

GC 23a 

   S. enteriditis 

M 94 

Average inhibition 

radius (cm) 

Re 6 0.7 0 0 0 0.17(gh) 

B1629 0.2 0.5 0.5 0.4 0.40(dh) 

Re11 0 0 0 0              0 (h) 

Re12 0.9 0.8 0.8 1 0.87(ad) 

B2101 0.9 0.9 1 1 0.95(ac) 

B197 0.9 0.7 0.6 1.2 0.85(ae) 

B1482 0.5 0 0.4 0 0.22(gh) 

B2327 0.3 0.3 0 0.6 0.30(gh) 

B2212 0.5 0 0.1 0 0.15(gh) 

B2192 0.9 1 0.7 1.5 1.02(ab) 

B2055 0.7 0.5 0.5 0.5 0.55(cg) 

B1993 0.1 0.3 0.2 0 0.15(gh) 

B1996 0.5 0.6 0.4 0.2 0.42(dh) 

B7311 0.3 0.4 0.5 0.7 0.47(dh) 

B7162 0.3 0 0 0.3 0.15(gh) 

B1279 0.5 0.5 0.4 0.4 0.45(dh) 

B1391 0.1 0.1 0.3 0.2 0.17(gh) 

B2529 0 0.1 0.1 0.3 0.12(gh) 

B3225 0.5 0.3 0.2 0.3 0.32(fh) 

B7710 0 0 0 0              0  (h) 

B7740 0 0.5 1 0.5 0.50(dh) 

B7840 0.7 1 0.6 1 0.82(ae) 

B7947 0.7 0.4 0.3 0.5 0.47(dh) 

B7958 0.7 0.6 0.8 1.1 0.80(af) 

B8452 0.6 0.1 0.6 0.2 0.37(eh) 

 

Table 15 Antagonistic activity of 16 selected Bifidobacterium strains against C.  jejuni LMG8841 and 

C.  difficile M216 expressed as average radius (in cm) of the  inhibition halos obtained on TPY plates in 

the agar spot test ; mean values followed by different letters (in brackets) are statistically different at 

P<0.05 for C.jejuni assay and P<0.01 for C. difficile. 

Strain C.  jejuni LMG8841 C.  difficile M216 

Re 12 1.1(a) 0.4(ab) 
B 632 0.8(ab) 0.7(a) 
B1412 1.1(a) 0.8(a) 
B1975 0.8(ab) 0.7(a) 
B2021 1.0(ab) 0.4(ab) 
B2055 1.0(ab) 0.6(a) 
B2091 0.8(ab) 0.4(ab) 
B2101 0.8(ab) 0.0(b) 
B2150 0.8(ab) 0.4(ab) 
B2192 1.0(ab) 0.6(a) 
B2195 1.2(a) 0.5(a) 
B2274 1.0(ab) 0.7(a) 
B7840 1.4(a) 0.6(a) 
B7947 0.3(b) 0.3(ab) 
B7958 1.1(a) 0.4(ab) 
B8452 0.8(ab) 0.7(a) 

P  0.05 0.01 
LSD 0.4 0.3  
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12.2 Antimicrobiobial activity of Bifidobacterium culture supernatants 

against coliforms and S. enteriditis 

In order to better characterize the antagonistic activity of bififdobacteria, the capability 

of crude and neutralized supernatants of inhibiting the growth of E.coli ATCC 11105, S. 

enteriditis M94, K. pneumoniae GC23a and E. cloacae GC6a was assayed. The  

neutralized supernatant was referred to as NCS whereas the  non-neutralized  one was 

referred to as CS. The culture supernatants, CS and NCS, of the 16 Bifidobacterium 

strains showing the highest antimicrobial activity (listed in Table 14), plus one strain 

(B7710) as negative control, were used for evaluating the inhibiting activity towards  

the selected target strains. The majority of Bifidobacterium supernatants were capable of 

exerting their inhibiting activity mainly when non-neutralized, whereas the inhibitory 

activity of 4 strains (B632, B1975, B2274 and B7840) was evidenced both with CSs 

and NCSs. Figure 17 shows details of the experiments performed with B632: the 

inhibitory activity of B632 towards E. coli and S. enteriditis  was clearly evident in the 

early hours of incubation (Figure 17A-B) with no differences in the use of CS and 

NCS, whereas the inhibitory activity towards E. cloacae and  K.  pneumoniae was less 

marked with respect to the other target strains (Figure 17C-D) and, moreover, it was 

more evident when the non-neutralized supernatants was used. The profiles obtained 

with B1975 showed a greater inhibition when the supernatants were used against E. coli 

and S. enteriditis (Figure 18A-B) and generally, there were no differences by using CS 

and NCS. Regarding the profiles of B2274 (Figure 19) CS showed an almost total 

inhibition of the growth of E. cloacae and  K. pneumoniae (Figure 19 C-D) at the 

highest concetration assayed. The inhibitory activity of B7840 is more marked during 

the first few hours of incubation and less evident as the incubation proceeded (Figure 

20). No inhibitory activity against all the antagonistic strains was evidenced by the 

B7710 strain (data not shown). 

In order to further characterize the inhibitory activity of B632, NCS was concentrated 

10 times by liophylization and the experiment was repeated. No particular differences 

were observed compared to the previous results. Threfore, althought the interpretation 

of these results does not clarifly the nature of the inhibitory activity, the presence of a 

proteinaceus molecules as inhibitory factor cannot be excluded. 
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Figure 17 Effect of culture supernatants (CS) and neutralized culture supernatants 

(NCS) of of B. breve B632 on the growth of E. coli ATCC 11105 (A), S. enteriditis 

M94 (B), E. cloacae GC6a (C), K. pneumoniae GC23a (D),  control with 50 μl NB 

(black),  25 μl CS (red),  50 μl CS (yellow) ,  25 μl NCS (green),  50 μl NCS ( light 

blue). 
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Figure 18 Effect of culture supernatants (CS) and neutralized culture supernatants 

(NCS) of of B. longum B1975 on the growth of E. coli ATCC 11105 (A), S. enteriditis 

M94 (B), E. cloacae GC6a (C), K. pneumoniae GC23a (D),  control with 50 μl NB 

(black), 25 μl CS (red),  50 μl CS (yellow) ,  25 μl NCS (green),  50 μl NCS ( light 

blue). 
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Figure 19 Effect of culture supernatants (CS) and neutralized culture supernatants 

(NCS) of of B. breve B2274 on the growth of E. coli ATCC 11105 (A), S. enteriditis 

M94 (B), E. cloacae GC6a (C), K. pneumoniae GC23a (D), control with 50 μl NB 

(black),  25 μl CS (red),  50 μl CS (yellow) , Δ 25 μl NCS (green),  50 μl NCS ( light 

blue). 
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Figure 20 Effect of culture supernatants (CS) and neutralized culture supernatants 

(NCS) of of B. breve B7840 on the growth of E. coli ATCC 11105 (A), S. enteriditis 

M94 (B), E. cloacae GC6a (C), K. pneumoniae GC23a (D), control with 50 μl NB 

(black),  25 μl CS (red),  50 μl CS (yellow) , Δ 25 μl NCS (green),  50 μl NCS ( light 

blue). 

 

12.3 Genotypic characterization of the Bifidobacterium strains 

The selected 16 strains were identified and classified at the species level using the 

ERIC-PCR approach proposed by Ventura et al., (2003). An accurate clustering and 

identification of the strains was achieved comparing ERIC-PCR banding patterns of the 

strains used in this work with those retrieved from reference strains (Figure 21a and 

21b).  
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Figure 21a ERIC-PCR patterns 3 different species of Bifidobacterium: B. breve, B. longum 

subsp.infantis, B bifidum. Lane L,100bp DNA Ladder (Fermentas), lane 1,Re1 (B. breve ATCC 
15700T, type strain), lane 2, B632, lane 3, B2021, lane 4, B2150, lane 5, B2195, lane 6, B2274, 

lane 7, B7840, lane 8, B7847, lane 9, Re6 (B. longum subsp.infantis ATCC 15697T, type 

strain), lane 10, MB28 (B. bifidum DSM 20456T, type strain), lane11, B2091. 
 

 

Figure 21b. ERIC-PCR patterns of 3 different species of Bifidobacterium: B. longum 

subsp.longum, B catenulatum, B. pseudocatenulatum. Lane L,100bp DNA Ladder (Fermentas), 

lane 1,Re11 (B. longum subsp. longum ATCC 15707
T
, type strain), lane 2, RE12, lane 3, B1412, 

lane4, B1975, lane 5, B2055, lane 6, B2101, lane 7, B2192, lane 8, B7958, lane 9, B669 

(B.catenulatum ATCC 27539
T
 ,type strain), lane 10, B8452, lane 11, B1279 (B. 

pseudocatenulatumATCC 27917
T
,type strain). 
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The CA and the scatterplot projections of variables (strains) and cases (ERIC-PCR 

bands) on the first two dimension evidenced four main clustering groups corresponding 

to different type strains (Figure 22 ). One group was formed by the B. 

pseudocatenulatum type strain (ATCC 27917
T
) and the B8452 strain: it was the most 

divergent cluster due to the exclusive presence of 8 DNA fragments.  A second main 

group clustered with the B. longum strains including the B. longum subsp. longum and 

the B. longum subsp. infantis type strains: 6 strains clustered close to longum subspecies 

and were therefore identified as B. longum subsp. longum (B1412, B1975, B2055, 

B2101, B2192, B7958, Re12). A third cluster grouped with the B. breve type strain 

(B632, B2021, B2150, B2274, B2195, B7840, B7847). Finally, the B2091 strain 

clustered close to the B. bifidum type strain. 

 

 

Figure 22 Relationships established among Bifidobacterium strains by means of CA 

based on ERIC-PCR band patterns. Numbers correspond to fingerprinting DNA 

fragments obtained after agarose gel electrophoresis following ERIC-PCR. 
 

 

 

 



  84 

To confirm the results obtained with ERIC-PCR, the strain identification was compared 

with species-specific standard PCR . 16S targeted species specific primers allowed to 

confirm the Bifidobacterium identification at the species level, except for the B. 

pseudocatenulatum strain which was only inserted in the “catenulatum group” with this 

technique.  

 

12.4 Antibiotic resistance profiles 

 

12.4.1 Minimal inhibitory concentration (MIC)  

The determination of the antibiotic resistance of bifidobacteria and LAB is an important 

issue, considering that these probiotics are often co-administered with antibiotics. On 

the other hand, probiotics could represent a potential source for the spread of antibiotic 

genes. The determination of the resistance or sensitivity to certain antibiotics is 

recommended by EFSA. 

The resistance or sensitivity of the selected 16 strains to 12 antibiotics and the relative 

MIC values obtained are shown in Table 3. All the strains were found to be sensitive to 

chloramphenicol, erythromycin, vancomycin (apart from B2091) and gentamycin 

according to most recent EFSA guidelines (EFSA, 2008).  Moreover, most of the strains 

were sensitive to tetracycline except a few strains (B2055, B2150, B2195,B2274, 

B7840, B7958). All the strains were resistant to ampicillin and the majority of them to 

kanamycin (except B1412). 9 strains out of 16 were resistant to streptomycin. 

Regarding cefuroxime,  ceftriaxone and clarithromycin , whose breakpoints are not 

present in the mentioned EFSA guidelines, the majority of the strains presented  low 

MIC values so they can be considered sentitive to them. All the strains but one (B632) 

presented a high MIC value for amoxicillin.  
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Table 16 MIC of various antibiotics of the selected strains. Strains are characterized as sentive (S) or resistant (R) according to the 

breakpoints defined by EFSA (2008) 
 

Strain 
Minimum Inhibitory Concentration (µg/ml) 

AMP 
(2) 

CHL 
(4) 

ERY 
(0.5) 

TET 
(8) 

VAN 
(2) 

KAN 
(8) 

STR 
(128) 

GEN 
(64) 

CEFU * 
 

AMO * 
 

CEFT 
* 

CLA * 
 

Re12 ≥256 R 2 S 0.5 S 4 S 2 S 64 R 32 S 8 S 8 ND ≥256 ND 2 ND 2 ND 

B632 ≥256 R 4 S 0.1 S 1 S 0.5 S 64 R ≥256 R 32 S 8 ND 2 ND 4 ND 2 ND 

B1412 ≥256 R 4 S 0.1 S 2 S 2 S 4 S ≥256 R 32 S 2 ND ≥256 ND 2 ND 2 ND 

B1975 ≥256 R 4 S 0.5 S 2 S 2 S 32 R 32 S 32 S 2 ND ≥256 ND 2 ND 2 ND 

B2021 ≥256 R 4 S 0.25 S 2 S 2 S ≥256 R ≥256 R 32 S 8 ND ≥256 ND 2 ND 2 ND 

B2055 ≥256 R 4 S 0.5 S 64 R 2 S 32 R 128 S 16 S 4 ND ≥256 ND 4 ND 2 ND 

B2091 ≥256 R 4 S 0.5 S 8 S ≥4 R ≥256 R ≥256 R 64 S 8 ND ≥256 ND 2 ND 2 ND 

B2101 ≥256 R 2 S 0.5 S 8 S 2 S 128 R 64 S 64 S 2 ND ≥256 ND 2 ND 2 ND 

B2150 ≥256 R 4 S 0.5 S 64 R 0.5 S ≥256 R ≥256 R 64 S 32 ND ≥256 ND 8 ND 2 ND 

B2192 ≥256 R 4 S 0.5 S 2 S 2 S ≥256 R 64 S 32 S 8 ND ≥256 ND 4 ND 2 ND 

B2195 ≥256 R 4 S 0.5 S 32 R 2 S 128 R ≥256 R 64 S 16 ND ≥256 ND 8 ND 2 ND 

B2274 ≥256 R 4 S 0.5 S 32 R 2 S ≥256 R ≥256 R 32 S 32 ND ≥256 ND 8 ND 2 ND 

B7840 ≥256 R 2     S 0.5 S 32 R 2 S ≥256 R 16 S 32 S 32 ND ≥256 ND 8 ND 2 ND 

B7947 ≥256 R 2 S 0.25 S 2 S 2 S ≥256 R 256 R 32 S ≥256 ND ≥256 ND 2 ND 2 ND 

B7958 ≥256 R 4 S 0.5 S 32 R 2 S 128 R 128 S 32 S 4 ND ≥256 ND 2 ND 2 ND 

B8452 ≥256 R 2 S 0.1 S 2 S 0.5 S ≥256 R ≥256 R 32 S 2 ND ≥256 ND 2 ND 2 ND 
 

AMP = ampicillin, CHL = chloramphenicol, ERY = erythromycin, TET = tetracyclin, VAN = vancomycin, KAN = kanamycin, STR = streptomycin, GEN = 

gentamycin, CEFU = cefuroxime, AMO = amoxicillin, CEFT = ceftriaxone, CLA = clarithromycin 
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12.4.2 Screening of resistance genes  

The screening of the resistance genes via PCR amplification of known genes in the 16 

strains of bifidobacteria allowed to detect the tet (W) amplicon only in two (B2274 and 

B7840) of the 6 tetracyclin resistance strains, whereas none of them was positive to 

tet(M) and tet (O). Only three strains (B1975, B2192, B7947) out of the 15 resistant to  

kanamycin were positive to aph(3’’)-III amplification, whereas aph(3’’)-I and aph(3’’)-

II were not amplified in any strain. With regard to the -lactam (-lac) resistance 

determinants, almost all the tested strains carried blaCTX-M-g1 apart from B2021, 

B2101, B2150, B2274, 7958 (Figure 27). No strains were found to be positive to the 

amplification of  the aadA and aadE streptomycin resistance genes (Table 17) . 

 

Table 17 Positive PCR for resistance genes in the 16 Bifidobacterium strains and 

relative control strains 

 

Strain TET KAN STR Β-LAC 

Re12    blaCTX-M-g1 

B632    blaCTX-M-g1 

B1412    blaCTX-M-g1 

B1975  aph(3’’)-III  blaCTX-M-g1 

B2021     

B2055    blaCTX-M-g1 

B2091    blaCTX-M-g1 

B2101     

B2150     

B2192  aph(3’’)-III  blaCTX-M-g1 

B2195    blaCTX-M-g1 

B2274 tet (W)    

B7840 tet (W)   blaCTX-M-g1 

B7947  aph(3’’)-III  blaCTX-M-g1 

B7958    blaCTX-M-g1 

B8452     

L9*  aph(3’’)-III aadA, aadE  

Ru424* tet (W)    

*strains used as positive control 
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Figure 27  PCR products of blaCTX-M-g1 gene obtained for 9 Bifidobacterium strains.  
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12.4.3 Plamid detection 

One of the main mechanism of horizontal transfer of genes in bacteria in natural 

environment is believed to be conjugation. Therefore, it is known that plasmids play an 

important role in the dissemination of antimicrobial resistance. This is the reason why 

the presence of plasmids was checked. Plasmids were detected only in B.longum subsp. 

longum B2192 strains, which was found to posses two plasmids (Figura 28). 

 

 

 

 

Figure 28 Plasmid profiles patterns of  9 Bifidobacterium strains: lane a, B2192, lane b, 

B2399, lane c,B632, lane d, B1412, lane e, B1975, lane g, B2055, lane h, B2192, lane i, 

B2274, lane l, B7840, lane m, B8452. λ/ hindIII DNA ladder (Fermentas). 
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12.5 In-vitro interaction between Bifidobacterium strains and human 

cells 

12.5.1 Cytotoxicity and adhesion 

Cytotoxicy assays showed that a number of strains (B1412, B2021, B2091, B2101, 

B2150, B2192, B7947, B7958 and Re12) at the bacterial concentration of 10
7
 CFU/mL 

after 90 min incubation exherted a cytotoxic effect to the H4 monolayers higher than the 

control strain LGG (P<0.05). Referring to TLT monolayers, LGG resulted the most 

cytotoxic strain (Figura 23), nevertheless, a consistent number of strains showed a low 

reduction of viability of TLT cells when compared to untreated cells, although data 

were not statistically significant. However, it has to be considered that a direct contact 

between the content of the intestinal lumen with macrophages is not an in vivo real 

condition. Only three B. breve strains B632, B2274, B7840, B. longum B2055 and B. 

pseudocatenulatum B8452 showed positive effects on both cell monolayers, in 

particular B632 and B2274 seemed to increase the viability of cells after the exposure 

(Figure 29). 
  

 

Figure 29  Cytotoxic effect of  16 Bifidobacterium spp. strains on the H4 and TLT cell 

monolayers. The LGG strain is used as control. Results are expressed as the average of three 

independent experiments (± SD). Mean with different letters are significantly different at P< 

0.05. 
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All strains showed a good ability to adhere to polarized human epithelial H4 cells and 

TLT macrophages. Figure 30 reports the % of adherent bacterial cells compared to 

initial inoculum. 

B. breve B632, B. pseudocatenulatum B8452 and B. longum B2192 showed a higher 

attachment to H4 cells with respect to the reference strain LGG whereas the majority of 

Bifidobacterium strains presented an adhesion capability comparable to LGG or slightly 

higher. The strain which showed a reduced capacity of attachment were B. longum 

B1975, B2091and B7958 (Figure 30). 

 

 

Figure 30 Adhesion of 16 Bifidobacterium strains and the LGG strain (used as control) to 

H4 and TLT cell monolayers. Results are expressed as the average of three independent 

experiments (± SD). Mean with different letters are significantly different at P< 0.05. 

 
15.5.2 Stimulation of cell activity: mitochondrial activity, production of reactive 

oxygen species and of interleukin 

The results of the mitochondrial activity enhancement with the MTT assay are shown in 

Figure 31. The mitochondrial dehydrogenase activity of H4 and TLT cell lines 

increased after exposure to B. breve B632 and B 2195 strains at the concentration of 1  

10
7
 CFU/ml. However, the percentage of stimulation obtained for most of the strains 

was higher than that obtained with the LGG strain. In addition, the stimulation was as 

negative as those obtained with the S. enteriditis and E. coli strains (i.e. potential 

pathogens), in particular these two microorganism showed a market negative effect on 
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the cellular mitochondria. Macrophages cell line TLT, resulted to be  generally more 

feeble than ephithelial cells, indeed only B632 was able to strongly stimulate the 

activity of mitochondrial dehydrogenase of macrophages; while only a slight 

enhancement was obtained with B2021 and B2274.  

 

 

Figure 31 Effect of  16 Bifidobacterium spp. strains on the mitochondrial dehydrogenase 

activity of H4 and TLT cell monolayers.  The LGG strain, E. coli and S. enteriditis are used 

as control. Results are expressed as the average of three independent experiments (± SD). 

Mean with different letters are significantly different at P< 0.05. 

 

Among the 16 Bifidobacterium strains, applied at the concentration of 10
7
 CFU/mL on 

H4 cell line, only B2274 induced an increase of NO production statistically higher than 

the reference strain LGG. Except for B632, B2091 and B7840 strains, the remaining 

Bifidobacterium strains exhibited a lower stimulation effect on NO production than 

LGG strain. As concerns the stimulation of NO production on TLT cell line, the 

strongest induction was observed for B1412 strain (approximately 5 times higher with 

respect to LGG strain). A moderate increase of NO production, comparable with that 

observed for LGG strain, was reported for B2091, B2274, B7840, B7947 and B7958 

strains. Twelve out of 16 Bifidobacterium strains stimulated H2O2 production from H4 
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cell lines, while all Bifidobacterium induced an increase of hydrogen peroxide from 

TLT cell lines. The B1412, B2021, B2055, B2150 and B2195 strains induced an 

increase of H2O2 production on H4 cell line statistically higher than LGG strain. In 

contrast, only one strain (B7947) was more efficacious in stimulating H2O2 production 

of TLT cell line than LGG.  E. coli and S. enteriditis, used as potential entheropatogens, 

induced the strongest stimulation of ROS production (ie nitric oxide, hydrogen 

peroxide) in both H4 and TLT cell lines (Table 18). 

 
Table 18 ROS production (nitric oxide, hydrogen peroxide) by different intestinal cell 

lines (H4, TLT) as a function of the stimulation from different bacterial strains. The 

results are expressed as mean ratios (%) of ROS production with respect to controls 

(intestinal cell lines not exposed to bacterial strains). Mean values followed by different 

letters (between brackets) are statistically different at P < 0.001. 

 

Strains 

  

Nitric oxide Hydrogen peroxide 

H4 TLT H4 TLT 

B632    7.40 (ce)    7.78 (dg)    6.53 (dh) 27.27 (fg) 

B1412 -2.36 (e) 61.71 (c) 25.63 (c) 27.29 (fg) 

B1975 -4.32 (e)   -3.35 (eh)  2.51 (fi) 20.51 (gi) 

B2021 -5.62 (e)   -1.12 (dh)  9.55 (df)     14.10 (ij) 

B2055 -3.01 (e)   -2.60 (dh) 17.59 (ce) 23.94 (fh) 

B2091   2.19 (ce)    1.86 (dh) 4.23 (fi) 10.08 (jk) 

B2101         -4.32 (e)   -5.58 (fh) -4.86 (hj)     16.24 (ij) 

B2150  -1.06 (de)   -2.60 (eh)  8.54 (df) 28.79 (ef) 

B2192  -0.41 (de)   -7.06 (gh)    -14.57 (j)  6.48 (kl) 

B2195 -6.92 (e)   -1.86 (dh)  18.39 (cd) 28.64 (ef) 

B2274 18.14 (c)    2.60 (dh)  3.52 (fi) 34.62 (e) 

B7840  15.21 (cd)   8.89 (df)   8.17 (dg) 28.64 (ef) 

B7947   1.54 (de)  10.78 (de)  1.97 (fi) 54.55 (c) 

B7958 -8.22 (e)    1.86 (dh)    -11.28 (j) 17.78 (hi) 

B8452 -6.27 (e) -8.55 (h)    5.93 (eh) 29.06 (ef) 

Re12 -4.97 (e)    0.37 (dh) -6.61 (ij) 2.10 (l) 

LGG    3.49 (ce) 12.58 (d) -4.02 (gj) 46.15 (d) 

E. coli       223.87 (a) 199.68 (a)    138.33 (a)    146.87 (a) 

S. enteriditis 160.51 (b) 143.67 (b) 111.15 (b)    123.67 (b) 
     

P 0.001 (***) 0.001 (***) 0.001 (***)   0.001 (***) 

LSD 16.56 14.89 12.29 7.12 

 

Dot-blot was performed to determine the presence of pro-inflammatory cytochine IL-6 

in cell free culture supernatants after exposure of cells to the bacteria for 24 h. A notable 

production of IL-6 was achieved by with H4 cells with all bacteria except for B. longum 
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subsp. longum B1412. The highest IL-6 production was noted for B632 and B2055 

(Figure 32). IL-6 production of TLT cells were obtained after exposure to the majority 

of the strains apart from B1412, B2150, B2195, B7840, B7947, B8452. However, a 

general greater production of IL-6 by H4 with respect to TLT resulted from the intesity 

of the dots. 

 

 

Figure 32 Dot-blot of IL-6 detection. The experiment was performed with 16 Bifidobacterium 

spp. strains. LGG and L. casei Shirota were used as positive controls; negative controls do not 

have any applied Bifidobacterium strain (H4 or TLT untreated cells). 

1a: B632/H4, 1b:B1412/H4, 1c: B1975/H4, 1d: B2021/H4,1e:B2055/H4, 1f:2101/H4, 

2a:B2150/H4, 2b:B2192/H4, 2c:B2195/H4, 2d:B2274/H4, 2e:B7840/H4,  2f:7958/H4,  

3a:B8452/H4, 3b:Re12/H4,  3c:B2091/H4,  3d:B7947/H4, 3e:LGG/H4,    3f: LGG /H4, 

4a: L.casei Shirota /H4, 4b: L.casei Shirota /H4, 4c: neg control/H4, 4d:neg control/H4, 4e: neg. 

control/TLT, 4f: neg control/TLT,  

5a:B1412/TLT,5b:B2091/TLT,5c:B1975/TLT, 5d: B2021/TLT, 5e:B2055/TLT, 5f:2101/TLT. 

6a:B2150/TLT,6b:B2192/TLT,6c:B2195/TLT,6d:B2274/TLT, 6e:B7840/TLT, 6f: B632/TLT, 

7a:B7947/TLT,7b:B7958/TLT,7c: B8452/TLT,7d: Re12/TLT,7e: LGG/TLT,7f: L. casei Shirota /TLT. 
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12.6 Selection of the best probiotic strains with the use of a synthetic index 

A global evaluation of all the results obtained during the first phase of  the work has 

been carried out in order to establish which Bifidobacterium strains, among the 16, are 

the more suitable to be used as probiotics for human use. In this respect, the outputs of 

each analysis were transformed into relative percentages and summerized into a data 

matrix (Table 19).  The criterion adopted involved the use of  different correction 

factors based on the importance of each parameter on for the evaluation of the 

Bifidobacterium strains; since the safety of use must be a pre-requisite for a new 

probiotic, no correction factor was used for the cytotoxic assays and antibiotic 

resistance evaluations. Furthermore, the same criterion was applied in the case of the 

antimicrobial activity against the enteric pathogens and the evaluation of adhesion to 

gut cells, which are the most important functional aspects for the purpose of the work. 

For all the other results (MTT assays, ROS production) a correction factor of 0.5 was 

applied in the calculation. The matrix thus completed  allowed to calculate a synthetic 

index. The strains with the highest synthetic index were selected, i.e. B632, B2274, and 

B7840. In addition, the B1975 strain was also chosen for further studies because of its 

high synthetic index and its high antimicrobial activity against potential pathogens. 
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Table 19 Selection of the most promising Bifidobacterium strains with the determination of a synthetic index. The outputs of each analysis (spot agar tests, 

antibiotic resistance or sensitivity assay, cytotoxicity test, adhesion assay, mitochondrial dehydrogenase activity, NO and H2O2 production) were transformed 

into relative percentages by giving the 100 value to the strain showing the best performance in each test. A correction factor of 0.5 was given to the 
mitochondrial dehydrogenase activity, NO and H2O2 production tests. The IL-6 production was not considered in this test as it is not a quantitative test. 

 

 Strain Spot 
agar 

test/1a 

Spot 
agar 

test/2b 

Antibiotic 
resistancec 

Cyto-
toxicity 

H4 cells 

Cyto- 
toxicity 

TLT cells 

Adhesion 
H4 cells 

Adhesion 
TLT cells 

MTTe 
assay 

H4 cells 

MTTe 
assay 

TLT cells 

NO 
production 

H4 cells 

NO 
production 

TLT cells 

H2O2 

production 

H4 cells 

H2O2 

production 

TLT cells 

Synthetic 
index 

B632 93 75 37.5 62 100 99 96 50 50 20 6 13 25 727 

B1412 100 75 50 -124 -35 79 94 -51 -4 -7 50 50 25 302 

B1975 77 95 50 100 -8 88 63 -43 -1 -12 -3 5 19 430 

B2021 77 75 37.5 -73 -23 80 92 -2 4 -15 -1 19 13 283 

B2055 50 70 50 75 13 75 92 -33 -7 -8 -2 34 22 430 

B2091 56 80 25 -41 -16 66 85 -19 -8 6 2 8 9 252 

B2101 86 60 25 -12 -59 90 100 -37 -9 -12 -5 -9 15 234 

B2150 77 40 37.5 -50 -71 86 94 -39 -34 -3 -2 17 26 178 

B2192 93 60 50 -204 -6 93 100 -120 -34 -1 -6 -28 6 1 

B2195 77 80 25 30 -19 76 98 34 -15 -19 -2 36 26 428 

B2274 93 85 25 62 84 82 100 -2 7 50 2 7 32 626 

B7840 75 85 37.5 40 22 85 97 -16 -4 42 7 16 26 512 

B7947 43 100 37.5 -12 -46 80 95 -84 -6 4 9 4 50 275 

B7958 73 30 37.5 -160 -78 69 89 -73 -15 -23 2 -22 16 -55 

B8452 34 75 37.5 25 71 100 95 -1 -23 -17 -7 12 27 426 

Re12 79 75 50 -86 -10 84 99 -12 -7 -14 0 -13 2 248 
 

a data obtained against E. coli, E. cloacae, K. pneumoniae, S. enteriditis (Table 1) were considered 
b data obtained against C. jejuni and C. difficile (Table 3) were considered 
c the number of antibiotic resistances (according to EFSA guidelines, EFSA 2008) was considered (Table 4). The absence of antibiotic resistances correspond to the maximum 

value (100).  
e the MTT assay regards data on mitochondrial dehydrogenase activity stimulati 
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12.7 Transferability of antibiotic resistance traits  

The capability of B632, B1975, B2274 and B7840 of transferring the antibiotic resistance 

traits to other was studied according to the scheme proposed in Table. As recipient strains, 

some Bifidobacterium spp. strains and lactic acid bacteria (Lactobacillus plantarum 

PCS22, Lactobacillus casei L9 and Enterococcus faecium PCD71) were used. The choice 

of recipient strains was done considering their sensitivity to the antibiotics used in the 

assay.  No recipient strains could receive the antibiotic resistance trait from all the donors 

and, in addition, no spontaneous mutants of the 4 donor strains was detected (Table 20).   

Table 20 Evaluation of the transferability of the antibiotic resistance traits from B. breve B632, 
B2274 and B7840 and B. longum B1975 to selected recipient strains 

 
Donor 

strain 

Antibiotic 

resistance 

assayed* 

Recipient 

strain(s) 

Selection plates Strains with 

acquired 

antibiotic 

resistance 

(CFU/ml) 

Spontane

ous 

mutants 

(CFU/ml) 

B632 Ampicillin 

(blaCTX-M-g1) 

ATCC 

27536 

       TPY+ AMP  + TET 

 
- - 

Ampicillin PCS22 MRS + AMP + 

aerobiosis** 
- - 

Kanamycin B1412        TPY+ KAN  + AMO - - 
Streptomycin B7840        TPY+ STR  + TET - - 

      
B1975 

 

Ampicillin 

(blaCTX-M-g1) 

ATCC 

27536 

       TPY+ AMP  + TET 

 
- - 

Ampicillin PCS22 MRS + AMP + aerobiosis - - 

Kanamycin 
(aph (3’’)III) 

B1412        TPY+ KAN  + STR - - 

Amoxicillin 

(blaCTX-M-g1) 

PCD71 MRS + AMP + aerobiosis - - 

      
B2274 

 

Ampicillin PCS22 MRS + AMP + aerobiosis - - 

Tetracycline 
(tetW) 

PCD71        MRS + TET + 
aerobiosis 

- - 

Kanamycin B1412        TPY + KAN + TRIM - - 

Streptomycin B7840        TPY+ STR  + KAN - - 

Amoxicillin 

Amoxicillin 

B632 

PCD71 

       TPY+ AMO + TRIM 

MRS + AMO + aerobiosis 

- 

 

- 

- 

 

- 

      
B7840 

 

Ampicillin 

(blaCTX-M-g1) 

Ampicillin 

PCD733B 

 

PCS22 

       TPY+ AMP  + STR 

 

MRS + AMP + aerobiosis 

- 

 

- 

- 

 

- 

Tetracycline 

(tetW) 

Tetracycline 

     B632 

 

 PCD71 

      TPY+ TET  + STR 

 

MRS + TET + aerobiosis 

- 

 

- 

- 

 

- 

Kanamycin B1412        TPY+ KAN  + STR - - 

Amoxicillin 

(blaCTX-M-g1) 

Amoxicillin 

     B632 

 

PCD71 

       TPY+ AMO + STR 

 

MRS + AMO + aerobiosis 

- 

 

- 

- 

 

- 

* the resistance genes indicated in brackets has been identified by PCR  
** plates were incubated in aerobic conditions to allow the growth only of lactic acid bacteria 

AMO = amoxicillin, AMP = ampicillin, CEFT = ceftriaxone, CEFU = cefuroxime, CHL = chloramphenicol, 

CLA = clarithromycin, ERY = erythromycin, KAN = kanamycin, GEN = gentamycin, STR = streptomycin, 

TET = tetracyclin, TRIM = Trimethoprim, VAN = vancomycin.
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Chapter 13. Evaluation of the most effective prebiotic fiber 

 

13.1 Prebiotic Activity Assay 

Prebiotic fibers, often employed in human and animal diet, such as FOS, GOS and 

inulin, were used within this work  together with less common polysaccharides derived 

from plants such as PHGG and arabinogalactans. 

The experiment was performed only with the 4 strains that were found to have the best 

probiotic properties in the previously performed) experiments (B. breve B632, B2274, 

B7840 and B. longum B1975). 

The first set of prebiotic fibers tested (Synergy, Raftiline, Beneo, Actilight, Vivinal), 

highlighted the different behaviour of four Bifidobacterium strains; which is not 

surprising considering that early studies on prebiotics reported that carbohydrate 

utilization pattern differs greatly among Bifidobacterium species and inside each 

species, among different strains (Crociani et al., 1994). A common feature of the 4 

assayed strains was that they could grow well on Vivinal, Actilight and Beneo. 

However, differences among the strains were observed; the growth of B632 (Figure 

33A) was mainly sustained by Beneo (i.e. a oligofructose DP< 10) giving an increase 

inA620 of 1.12 ± 0.03 after 48 hours of incubation. Beneo also supported the growth of 

B2274 (Figure 33C).  

Interestingly, the galactooligosaccharide Vivinal, together with the 

fructooligosaccharide Actilight, were the substrates which best supported the growth of 

the four strains. On the other hand Synergy and Raftiline (i.e. a inulin DP > 23) 

substained the growth less than glucose. B7840 could grow on there prebiotic fibers 

worse than on glucose (Figure 33D).  
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Figure 33 Growth curves of B632, B1975, B2274, B7840 strains using prebiotic fibers 

(Synergy, Raftiline, Beneo, Actilight, Vivinal) as sole carbon source. Glucose used as 

positive control for the growth. 

 

As regards the second set of prebiotics ( Larch fiber, FOS, BioEcolians, CUP-oligo, 

Benefibra, Frutafit), most of them supported the growth of the strains and, in several 

cases growth was better that on glucose. B 632 (Figure 34A) could grow on 

BioEcolians (a glucooligosaccharides), CUP and FOS better that on glucose. 

BioEcolians was also the best prebiotic for B1975 (Figure 34B), although growth was 

lower than on glucose. FOS could sustain the growth of B 2274 (Figure 34C)  and B 

7840 (Figure 34D) better than glucose. The growth of the latter strain was also very 

good on BioEcolians and CUP-oligo.  

A good prebiotic fiber should be selectively fermented by probiotics, while it should not 

sustain growth of potentially harmful bacteria. Therefore, the capability of a mixture of 

coliform strains potentially involved in enteric diseases in newborns (E. coli, K. 

pneumonia and E. cloacae) of growing on the same fibers was assayed. Differently 

from the Bifidobacterium strains, the coliform mixture could not grow on any of the 

first set of fibers used in this work (Figure 35A) whereas it could grow well on glucose. 
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On the contrary, FOS could sustain the growth the coliform mixture better that glucose 

(Figure 35B).  

B632 showed a great capability to grow on the most of the prebiotic substrates assayed. 

 

 

Figure 34 Growth curves of B632, B1975, B2274, B7840 strains using prebiotic fibers 

(Larch fiber, FOS, BioEcolians, CUP-oligo, Benefibra, Frutafit) as sole carbon source. 

Glucose used as positive control for the growth. 
 

 

 
Figure 35 Growth curves of coliform microorganism mixture (Escherichia coli, 

Klebsiella pneumoniae, Enterobacter cloacae, 1:1:1) using prebiotic fibers  as sole carbon 

source. Glucose used as positive control for the growth. 
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Several authors (Huebner et al., 2007; Depeint et al., 2008; Marotti et al., 2012) have 

proposed to evaluate the efficacy of a prebiotic fiber by comparing its capability of 

sustaining the growth of a probiotic strain with that of glucose and with E. coli or a 

mixture of selected bacterial strains. The prebiotic activity scores have been calculated 

as decribed in chapter 10,  taking as reference strains the 1:1:1 mixture of the coliforms 

(Figure 36). Beneo, Actilight, Vivinal and BioEcolians presented the highest prebiotic 

score, although they do not supported the growth of all the Bifidobacterium strains at 

the same level. On the contrary, Synergy and Raftiline showed similar values of 

prebiotic scores for all the 4 bifidobacteria. Finally, it is interesting to note that FOS 

which greatly supported the Bifidobacterium growth (Figura 34), showed the lowest 

prebiotic score,due to its capability of sustaining the enteric mixture growth. 
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Figure 36 Prebiotic activity scores calculated by using the mean of prebiotic scores 

obtained from the four different Bifidobacterium strains (B632, B1975, B2274, B7840) and 

enteric mixture (Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, 1:1:1) as 

target. Values are mean of three different repications ± standard deviations.  
 

To better understand these results, growth curves have been also obtained with each 

single enteric strains: E. coli (i.e. the coliform present at the highest concentration in 

newborns), E.cloacae and K. pneumoniae ( Figure 37 and 38).  
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Figure 37 Growth curves of Escherichia coli (A), Klebsiella pneumoniae (B), 

Enterobacter cloacae (C) using prebiotic fibers (Synergy, Raftiline, Beneo, Actilight, 

Vivinal) as sole carbon source. Glucose used as positive control for the growth. 

 

Growth curves of coliform bacteria evidenced that none of the first set of prebiotic 

fibers (Synergy, Raftiline, Beneo, Actilight, Vivinal) used sustained the growth of such 

bacteria a part from glucose (Table 37). As regards to the second set of prebiotics ( 

Larch fiber, FOS, BioEcolians, CUP-oligo, Benefibra, Frutafit), two of them, FOS and 

CUP-oligo, supported the growth of the strains and, in particular FOS supported the 

growth of K. pneumoniae, better than glucose (Figure 38 C). This result explained the 

low prebiotic index of FOS. 
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Figure 38 Growth curves of Escherichia coli (A), Klebsiella pneumoniae (B), 

Enterobacter cloacae (C) using prebiotic fibers (Larch fiber, FOS, BioEcolians, CUP-

oligo, Benefibra, Frutafit) as sole carbon source. Glucose used as positive control for the 

growth. 
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Chapter 14. Evaluation of the effects of intrapartum antibiotic 

prophylaxis on newborn microbiota 
 

14.1 Microbiological analysis of newborn fecal samples 

To analyse the effects of the maternal antibiotic treatment against Streptococcus 

infection on the intestinal microbiota of the newborns, the quantification of the principal 

groups of the newborn gut microbiota was carried out. Lactobacillus spp., 

Bidobacterium spp., Bacteroides fragilis group., C. difficile and E.coli quantification 

was obtained with real-time PCR. Table 22 shows the microbial counts of stool samples 

of newborns whose mothers were treated with ampicillin and of control samples (i.e. 

newborns whose mothers were not treated with any antibiotics). 

 

Table 22 Median counts of the different microbial groups analyzed in newborn stool 

samples expressed as Log (CFU/g of feces) for different microbial groups.  

 

Target Bifidobacterium Lactobacillus E. coli C. difficile B. fragilis group 

 spp. spp.       

A
n

ti
b

io
ti

c
  

tr
e
a

tm
e
n

t 

No Yes No Yes No Yes No Yes No Yes 

  7.77 6.83 6.40 6.03 10.23 6.04 3.85 3.74 10.24 9.98 

  4.12 3.24 6.67 5.40 9.87 8.35 4.80 4.80 10.25 4.86 

  7.10 5.53 6.37 6.00 8.79 11.42 3.06 3.72 5.22 11.08 

  7.05 5.13 7.93 6.20 10.73 10.35 2.85 3.77 10.53 11.15 

  7.90 5.51 5.45 6.02 10.79 11.40 5.46 3.58 8.99 11.34 

  7.46 4.97 6.74 5.98 9.74 4.09 3.19 3.54 10.38 4.67 

  9.71 3.78 6.37 6.22 9.55 10.35 3.76 3.16 10.19 10.41 

  7.57 5.87 5.84 6.82 5.38 5.03 4.02 3.96 9.90 5.09 

  9.41 5.47 6.91 6.53 10.38 6.18 3.12 3.48 7.05 5.47 

  4.88 6.66 7.07 7.80 5.73 6.40 3.29 3.87 11.16 6.72 

  9.08 5.62 5.85 6.63 10.12 5.35 3.89 3.98 10.75 6.66 

  4.04 5.31 7.59 6.76 7.35 11.12 3.86 4.18 7.75 10.90 

  7.64 5.25 6.16 7.08 6.33 10.63 4.33 4.27 7.00 7.09 

  4.46 7.67 6.35 6.29 6.10 10.73 4.47 4.48 6.80 11.07 

   7.54  6.71  6.00  4.08  10.39 

   4.86  6.45  10.64  3.94  6.76 

            

mean 7.01
a
 5.49

a
 6.55 6.41 8.65 8.39 3.85 3.90 9.01 8.32 

sd 1.22 1.13 0.67 0.59 2.02 2.74 0.74 0.43 1.87 2.73 
a 

Mean values of Bifidobacterium spp. are statistically significant at P< 0.05(*) 
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The results obtained suggested that most of the microbial genera and species analysed 

were not affected by the maternal treatment with ampicillin. In particular no variation in 

the nunber of Lactobacillus spp., C. difficile and E.coli was observed associated to the 

treatment. However, E. coli counts show a wide variability within each group of 

samples: 5.73-10.79 Log CFU/g in control group and  4.09-11.72 Log CFU/g in treated 

group. On the contrary, Lactobacillus spp. and C. difficile counts do not show great 

variability within and between the two groups.  

A slighly lower number of  B. fragilis was found in the stools of newborns born from 

treated women  (8.32Log CFU/g) with respect to respected to control samples (9.01Log 

CFU/g), although these data did not result significantly different after statistical 

analysis.  B.fragilis group counts found in the two groups were very variable; 

furthermore a distribution different from the Gaussian one can be hypothesized because 

the median values (8.53 Log CFU/g and 10.04 Log CFU/g in the treated and control 

group, respectively), have a greater differences with respect to the two average values 

(8.32 Log CFU/g and 9.01 Log CFU/g). 

The most interesting results obtained were the different counts of Bifidobacterium spp. 

between the two groups of newborns. The maternal treatment with ampicillin against 

the risk of Streptococcus infection resulted to reduce the intestinal  colonization of 

Bifidobacterium: 5.49 Log(CFU/g) of treated samples against 7. 01 Log(CFU/g)  of 

control samples. Even if data variability, was wide also in this case, differences 

resultedstatistically significant at P < 0.05. In order to reduce the variability of the 

population, a wider number of samples is necessary and we are at present going on with 

newborn stool sampling and analyses. 
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PART 5: DISCUSSION 

 

Probiotics are increasingly being used for the treatment of diseases and minor 

gastrointestinal problems in infants. A recent study has evidenced positive effects on 

infant colics after treatment  of newborns with a L. reuteri strain (Savino et al., 2010) , 

whereas no studies have been performed up to now regarding the use of bifidobacteria 

for this purpose. This work was therefore aimed at the characterization of 

Bifidobacterium spp. strains possessing in vitro capabilities of inhibiting the growth of 

pathogens typical of the infant gastrointestinal tract without exerting toxic activities on 

the gut epithelium and harmful effects to the host. Moreover, the possibility of 

stimulating the growth of Bifidobacterium strains with the use of a prebiotic fiber was 

explored with the objective of defining a synbiotic product to be administered to 

newborns suffering from gastrointestinal problems. The last part of the work has been 

focused on the exploration of the microbial diversity of  7 day old newborns, whose 

mother had been subjected to an antibiotic therapy a few hours before the delivery 

because of a streptococcal infection. These newborns can in fact be a possible target for 

probiotic treatment. 

 

Chapter 15. Selection and characterization of Bifidobacterium 

strains 

The majority of Bifidobacterium spp. strains used in this work derive from infant faeces 

(Scardovi et al., 1979), i.e. from the source which constitutes the target population of 

the potential probiotic (Arboleya et al., 2011). Pre-term isolates were also included 

considering the high stressing environment of the pre-term infant gut, which shows an 

higher prevalence of C. difficile compared with term infants (Penders et al., 2006).  

Sixteen strains out of the 46 assayed in this study were capable of contrasting the 

growth of pathogens which are the main cause of infectious diarrhoea of bacterial origin 

in infants, such as E. coli, S. enteriditis, C. difficile and C. jejuni (Rowland, 2008; Van 

Niel et al., 2002). Moreover, the same Bifidobacterium strains showed marked 

antimicrobial activity against gas producing coliforms isolated from stools of colicky 

infants. Considering that gas forming coliform concentration is higher in colicky infants 



106 

 

with respect to healthy controls (Savino et al., 2009; Savino et al., 2011), the results 

obtained are interesting in the perspective of developing a probiotic based therapy for 

colic treatment in newborns. The number of Bifidobacterium strains showing 

antimicrobial activity was lower by using NCSs. However, this experiment pointed out 

that at least in some strains, such as B. breve B632, the inhibitory activity may not result 

only from the production of acidic metabolites, but also from the action of other cell 

excreted metabolites such as bacteriocins. This result represents an interesting starting 

point for further studies aimed at the characterization of inhibitory molecules in this 

strain.  

A clear taxonomic identification is necessary for the use of a probiotic strain in humans 

(Arboleya et al., 2011). The genotypic characterization approach used in this work 

allowed to cluster the majority of the 16 strains into two species, i.e.  B. breve and B. 

longum subsp. longum, whereas only two strains were clustered within the B. 

pseudocatenulatum and B. bifidum species. The results of this analysis confirm that B. 

pseudocatenulatum and B. catenulatum, which are indistinguishable by standard PCR, 

can be easily and quickly distinguished via the ERIC-PCR approach (Ventura et al., 

2004). The strain B1412, which has been previously identified as B. longum subsp. 

infantis, has now been included in the longum subspecies. 

According to the most recent EFSA guidelines (EFSA, 2008), the spread of resistance to 

antimicrobials in bacteria requires the examination of the sensitivity/resistance to a 

number of antibiotics for potential probiotic strains as well as the risks of the resistance 

traits to be transferred to other bacteria. Except for a number of antibiotics for which the 

majority of the assayed Bifidobacterium strains are resistant, such as ampicillin, 

kanamycin and amoxicillin, or sensitive, such as chloramphenicol, erythromycin and 

vancomycin, there is a great variability among strains also belonging to the same 

species, as already evidenced in the literature (Masco et al., 2006; Ammor et al., 2008).  

Intrinsic resistance to aminoglycosides such as streptomycin and kanamycin is 

commonly present in bifidobacteria (D’Aimmo et al., 2007); however, information on 

streptomycin resistance genes is limited for Bifidobacterium strains (Kiwaki and Sato, 

2009). Aminoglycoside resistance genes, including aadE which was evidenced in a B. 

longum strain (Ouoba et al., 2008), were not found in the genome of the assayed strains 

as well as the kanamycin resistance genes aph (Ouoba et al., 2008). Conversely, all the 
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strains were sensitive to the aminoglycoside gentamycin, in agreement with the data 

present in the literature on bifidobacteria (Ammor et al., 2008).  The MICs for 

tetracycline obtained for most of the tested strains suggested the presences of 

tetracycline resistance genes. Tet genes, coding for ribosomal protection protein, are 

involved in resistance to tetracycline and tet(M) and tet(W) have been exclusively found 

in bifidobacteria (Aires et al., 2007). However, only two of the assayed strains, B. breve 

B2274 and B7840,  presented  the tet(W) amplicon. Bifidobacteria are usually 

susceptible to -lactams, such as ampicillin and amoxicillin (Ammor et al., 2008; Matto 

et al., 2007), whereas the majority of the strains considered in this analysis are resistant. 

Consequently, resistance to some -lactams can be considered an acquired resistance 

and therefore has the potential for lateral spread (EFSA, 2008). There is very little 

information on the mechanisms responsible for horizontal gene transfer in anaerobic gut 

bacteria like bifidobacteria; however, the most widespread is the conjugation of 

plasmids carrying the antibiotic resistance genes. All the 16 Bifidobacterium spp. strains 

potentially considered interesting for the aims of this study did not carry any plasmids, 

although plasmids have been identified in several bifidobacteria species and strains 

(Ventura et al., 2008). However, other genetic mechanisms can influence the likelihood 

of genetic transfer (Burrus and Waldor, 2003), such as transposons, which can carry 

resistance genes and can move from chromosome to plasmids and vice-versa, thereby 

increasing the mobility of these genes. Therefore, the transferability of the antibiotic 

resistance traits to Bifidobacterium spp. strains and lactic acid bacteria was assayed in 

the four strains which were considered the most interesting ones for the aim of this 

study (B. breve B632, B2274, B7840 and B. longum subsp. longum B1975) and the 

results allowed to conclude that there was no transfer of the antibiotic resistances 

neither to the bifidobacteria nor to the lactic acid bacteria assayed.  

Finally, adhesion and cytotoxic effects to human cells of the 16 putative probiotic 

strains were evaluated using non tumorigenic cell lines, which have already been used 

as a reliable in vitro method for the selection of lactic acid bacteria with potential 

probiotic properties (Maragkoudakis et al., 2010; Nissen et al., 2009), but have never 

been tested with Bifidobacterium spp. strains. This part of the work has been wholly 

performed at the Department of Biochemistry, Faculty of  Medicine, University of 

Maribor under the scientific supervision of professor Avrelija Cencic. It is well assessed 
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that the phenotype of tumorigenic cell lines traditionally used for this purpose 

distinguishes them profoundly from the normal gut epithelium (Tremblay and Slutsky, 

2007). The ability to adhere to the intestinal epithelium is one of the most important 

features as it allows to persist in the colon preventing the elimination by peristalsis and 

the adhesion of pathogenic bacteria. All the tested bacteria showed a good adhesion to 

both cell types, epithelial cells and macrophages. Furthermore, adhesion cannot singly 

determine the biological activity of these putative probiotic strains. It is a combination 

of different factors which determines epithelial integrity, viability and immuno 

response. Treatments with B. breve B632, B2274 and B7840, B. longum B2055, B. 

pseudocatenulatum B8452 manifested no cytotoxicity over H4 and TLT cell lines at the 

concentration of 10
7
 CFU/mL. In addition B. breve B632 and B2274 at the same 

concentration were able to increase the metabolic activity of cell mitochondria. These 

results indicate that these strains are not harmful when exposed to a healthy intestine. 

Most of the tested strains increase the production of ROS in small intestinal epithelial 

cells and in macrophages. The ability of probiotic bacteria to induce NO secretion from 

intestinal epithelium may offer a significant contribution to prevent the enteric 

pathogens from infecting the host. The ability to stimulate NO production in eukaryotic 

cells is not a common ability of the genera Lactobacillus and Bifidocbacterium, but 

rather of individual strains (Pipenbaher et al., 2009). Furthermore, most of the bacterial 

strains tested induced H2O2 release in both types of cells. Moderate production of H2O2 

and NO induced by probiotics could have a beneficial effect in maintaining a balance 

and increasing resistance to infections. However, it should be noted that high 

concentration of H2O2 and NO, as displayed by potential enteropathogens such as E. 

coli and S. enteriditis (Table 5), can cause tissue injury, disseminated intravascular 

coagulation and shock (Park et al., 1999). Last but not least, there is extensive evidence 

that cytokines play a pivotal roles in host defence, inflammatory response and 

autoimmune disease (Park et al., 1999). Therefore, IL-6 production is likely to be a 

good indicator of a degree of endothelial cells activation. In the present work exposure 

of H4 and TLT cells to Bifidobacterium and Lactobacillus strains resulted in marked 

increase of IL-6 production. In conclusion, the large array of aspects examined in the 

first part of the study and summarized in table 19 with the calculation of the synthetic 

index, has allowed the identification of 4 Bifidobacterium strains, B. breve B632, , 
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B2274, B7840 and B. longum subsp. longum B1975, as potential probiotics for the 

treatment of enteric disorders in newborns  such as infantile colics or as preventive 

agents for infantile diarrhoea of bacterial origin. They both possess strong antimicrobial 

activity against coliforms and other pathogenic bacteria, do not possess transmissible 

antibiotic resistance traits and are not cytotoxic for the gut epithelium. These four 

strains have been deposited to a international strain collection with the following 

accession numbers: DSM 24706 (B. breve B632), DSM 24707 (B. breve B2274), DSM 

24708 (B. breve B7840) and DSM 24709 B1975 (B. longum subsp. longum). Studies are 

currently being performed in order to develop suitable ways of administering the 

selected probiotic strains to newborns with the aim of planning a validation clinical 

trial. 

 

Chapter 16. Evaluation of the most effective prebiotic fiber 

A second part of the study has regarded the selection of a prebiotic fiber with the aim of 

preparing a synbiotic product to be administered to newborns. The interaction between 

gut microbiota and human milk has drawn attention to the bifidogenic effect of 

nutritional supplement and bifidogenicity has become a essential characteristic of the 

prebiotic concept (Saavedra and Tschernia, 2007). It has been reported that the 

supplementation of infant formula with specific oligosaccharides stimulates the growth 

of bifidobacteria in the intestine resembling the effect of breast-feeding (Boehm and 

Moro,  2008). For this purpose a wide range of different polysaccharide fibers has been 

analysed in order to establish which of them better supported the growth of the 4 

bifidobacteria selected in the first part of the work. The results of prebiotic activity 

assays suggested that 1 GOS formulations (Vivinal GOS), 2 FOS formulation (Actilight 

950P and FOS provided by Probiotical SpA) greatly stimulated the growth of the 

majority of the strains. In addition, Beneo HSI (inulin), BioEcolians 

(glucooligosaccharide) and CUP-oligo (GOS) showed a high prebiotic activity toward 

specific strains, the major effects were exerted on B632. According to the data present 

in literature the prebiotic properties of galactooligosaccharides are already well known 

and they are mainly due to the fact that galactooligosaccharides mime the activity of the 

components of human milk; for this reason they are often added to infant milk formulas 
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(Macfarlane et al 2008). Prebiotic effects of inulin and oligofructose were evidenced in 

in vivo trials (Kolida et al., 2007); however, our results on fructooligosaccharides and 

inulin are in agreement with those obtained by other Authors (Rossi et al., 2005) that 

sustain the thesis that bifidobacteria prefer short chain oligofructose to long chain 

fructooligosaccharides such as inulin with a high DP. That explains why long chain 

polysaccharides such as Raftiline were difficultly fermentated by the bifidobacteria 

tested in this work. It has also been assessed that only a few number of Bifidobacterium 

strains produce extracellular hydrolytic enzymes necessary for fructooligosaccharides 

fermentation (Perrin et al., 2001). However, carbohydrates have a positive prebiotic 

activity score if they are metabolized by probiotics but not by other intestinal bacteria. 

As defined by Huebner et al. (2007), the prebiotic activity reflects the ability of a given 

substrate to support the growth of a beneficial microorganism relative to other 

microorganisms and relative to growth on a non-prebiotic substrate, such as glucose. 

FOS formulation, provided from Probiotical SpA, showed a low prebiotic index, this is 

due to the fact they support the growth of K.pneumoniae, one of the microorganisms 

used in the coliform mixture. However, it has to be considered that in vivo real 

condition K. pneumoniae is not a predominant species in infant microbiota (Savino et al 

2009) and therefore it is difficult that it may become the predominant species in the gut. 

Bioecolians showed also a high prebiotic activity score comparable to Beneo HSI, 

Actilight 950P and Vivinal GOS, in particular for the B632 strain. 

Therefore, considering the results obtained both in the first phase of this work and in 

this section, it may be concluded that a synbiotic product for newborn use may be 

composed of the B. breve strain coupled to one of the following fiber: Beneo HSI, 

Actilight 950P, Vivinal GOS or BioEcolians. 

In vitro fermentation studies in a chemostat, capable of controlling pH of the medium, 

are being planned to discriminate the growth performance of the 4 best fibers. 
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Chapter 17. Evaluation of the effects of intrapartum antibiotic 

prophylaxis on newborn microbiota 
 

The last part of the work has considered a possible target for the probiotic strains 

selected in this work. The analysis has been conducted in collaboration with the 

Neonatal Intensive Care Unit (Sant’Orsola Hospital, Bologna).The study has regarded 

the quantification of the main microbial groups present in newborns (Bifidobacterium 

spp., Lactobacillus spp., B. fragilis group, C. difficile, E.coli) in 7 day old newborns 

whose mothers have been subjected to antibiotic prophylaxis against GBS and in 

controls (i.e. neonates from mothers negative to GBS and therefore not subjected to the 

prophylaxis). The intrapartum antibiotic prophylaxis of GBS positive women is 

nowadays routinely used in Europe and USA where it is estimated that about 10% of the 

mothers result positive to this infection (Ferrieri and Wallen, 2012). Currently, the 

impact of the antibiotic treatment on the onset of neonatal infections remains unclear 

and, in particular, the impact of the maternal antibiotic treatment on newborn microbiota 

composition is totally unknown (Al-Taiar et al., 2011). Previous studies have reported 

an increase in ampicillin resistant E.coli when ampicillin is used in intrapartum 

prophylaxis (Bizzarro et al ., 2008), however other studies reported that intrapartum 

ampicillin prophylaxis is associated with decreased early-onset E.coli infections (Schrag 

et al., 2006). Results obtained within this work confirm the great variability existing in 

the newborn’s microbial composition evidenced in several other works (Palmer et al. 

2007; Sanders et al. 2010). Microbial counts obtained in this study evidence a great 

variability in E.coli, B. fragilis group and Bifidobacterium , which are the largest 

microbial groups in infant microbiota, also in the “control group”. The differences in 

Lactobacillus spp. and in the C. difficile group were, on the contrary, less marked both 

within the “treated” and the “control” group.  

Only the Bifidobacterium counts showed a decrease after antibiotic treatment , this is in 

agreement with the data reported in literature that suggest that newborn treatment with 

ampicillin can affect the number of bifidobacteria (Penders et al., 2006; Mangin et al., 

2010). Therefore it is conceivable that this may also happen after intrapartum ampicillin 

prophylaxis. In addition, most of bifidobacteria colonizing the newborn gut derive from 

the mother and therefore a reduced number of bibidobacteria are available for newborn 
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colonization after antibiotic treatment.  A similar tendency was also observed for the 

Bacteroides fragilis population, although without reaching a statistical significance.  

Even though the results obtained are only preliminary, due to the restricted number of 

samples analyzed up to now, it is possible to speculate that newborns, whose mothers 

have been subjected to intrapartum antibiotic prophylaxis, can represent a potential 

target for selectedprobiotic administration. We are now planning a large scale study in 

which a wider number of newborns are examined and stool samples from the same 

newborns are withdrawn both at 7 days and at the age of 1 month. 
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